<|lI!

IBM WebSphere Commerce

Connectivity and Notification: Online Help
Files

Version 54

<|lI!

IBM WebSphere Commerce

Connectivity and Notification: Online Help
Files

Version 54

Note!
Before using this information and the product it supports, be sure to read the general information in
the Notices section.

Contents

Chapter 1. Program Adapter

CommandProperty object .

Device format algorithm

XML over HTTP

MQSeries as middleware .

WebSphere CommerceMQSeries adapter

Parallel versus serial message processing in MQSerres adapter

Chapter 2. Configuring the Program Adapter .
Enabling the Program Adapter for XML Requests over HTTP
Adding adapters

Downloading and mstallrng the MQSerres MA88 product extensron pack.

Enabling the MQSeries adapter.

Configuring JMS for MQSeries . .
Updating the WebSphere Application Server classpath varrable .
Configuring JMS using JMSAdmin e
Response processing using MQSeries adapter

Chapter 3. Program Adapter Security for MQSeries .
Program Adapter security for HTTP requests

Message composition services

Messaging system .

Generic Application and System Error XML messages

Setting up outbound message composition . . .
Example of using the messaging system composrtron service .
Error handling in the messaging system composition service
Invoke the messaging system compose method .

Chapter 4. OrderltemStatus command .
GetPickPackListDetail command .
BroadcastMessage command .
OrderlnvoiceStatus command .
OrderShippingStatus command
OrderStatus command
ProductOfferPriceUpdate command
ProductinventoryUpdate command .
SendWCSOrder task command
SendXMLOrder command
NewlnboundMessage command .
OrderConfirmStatus command.
ProductListPriceUpdate command

Chapter 5. How the outbound messaging system works .
Outbound messaging system . .

Outbound messaging system admrnrstratron

Outbound back-end integration messages

Outbound fulfillment integration messages

Outbound messaging system store administration

Outbound messaging system site administration .

Adding new messages to the Transport Adapter .

Chapter 6. Enabling outbound messaging Send/Receive sending services

Enabling the messaging system transport adapter

© Copyright IBM Corp. 1996, 2002

WO OWOo~NO OOl Ul

B

WWWNN R

. 15
. 16
. 16
. 16
.17
.17

. 18
. 20

.21
.22
. 23
. 24
. 25
. 25
.27
. 28
. 28
. 29
. 29
. 30
. 30

.31
.31
. 32
. 32
. 32
. 33
. 34
. 34

. 35
. 35

Assigning the error condition message type to a transport
Activating a transport method for a store .

Adding a transport method to a store .

Configuring a transport method for a store

Deactivating a transport method for a store . .

Assigning a transport method to a message type for a store
Activating a transport method for a site L

Adding a transport method to a site.

Assigning a transport method to a message type for a srte
Configuring a transport method for a site .

Deactivating a transport method for a site .
Checking the system settings for the e-mail transport method .
Activating notification .

Enabling error notification

Activating notification .

Enabling the shipment not|f|cat|on e- mall

Enabling broadcast messages.

Enabling order status notification . .

Setting up outbound message composition . .

Assigning the error condition message type to a transport
Enabling order status notification .

Enabling messages to be sent from the Admlnrstratron Console
Enabling the outbound OrderCreate message .

Chapter 7. Message types.

Outbound messaging system mterface

Outbound message extension .

New outbound message support . .
UserData element for outbound messages . .
Outbound messaging system interface programming examples
Message composition templates .

Initialization services

Message content setting services

Add e-mail parts or attachments services
Configurable message data services

Sending services .

Other services .

Chapter 8. Inbound back-end integration messages
Inbound fulfillment integration messages .

Chapter 9. Adding a new inbound XML message.
Adding a new DTD file to the system . .
Adding to the list of inbound message DTD frles .
Inbound message extension

UserData element for inbound messages

Chapter 10. Message mappers .

XML message mapper

Legacy message mapper

Inbound message template defrnrtron frles
Removing message mappers .

Adding message mappers .

New inbound message support

Chapter 11. Customizing the NewlnboundMessage command.

iv Connectivity and Notification: Online Help Files

. 35
. 36
. 36
. 36
. 37
. 37
. 37
. 37
. 38
. 38
. 38
. 38
. 39
. 39
. 40
. 40
. 40
.41
.41
.42
. 42
. 42
. 43

. 45
. 46
.47
. 48
. 48
. 48
. 50
. 51
. 51
. 52
. 52
. 53
. 53

. 55
. 56

. 59
. 59
. 59
. 60
. 60

. 61
. 61
. 61
. 62
. 63
. 63
. 63

. 65

Chapter 12. Message mapper configuration .
XML parsing using template definition files .
sys_template.xml file .

user_template.xml file .

ec_template.dtd file.

TemplateDocument element of a template def|n|t|0n f|Ie

TemplateTag element of a template definition file .

Chapter 13. Messaging system back-end integration messages .

Chapter 14. Fulfillment integration messages .

Chapter 15. Customizing the NewInboundMessage command.

Chapter 16. Integration message DTD files .
Back-end integration legacy messages
Back-end integration XML messages

Sample scenarios using fulfillment integration messages .

ReleaseShipNotify message

Response_ WCS Expectedlanecord message
Response_ WCS_PickBatch message . .
Report WCS_PickPackListDetail message .
Response_WCS_CreatelnvReceipt message
Response_WCS_UpdatelnvReceipt message .
Response_WCS_CreateShipConfirm message.
Update_ WCS_OrderStatus message

Order Status Update message

Update_ WCS_ProductPrice message . .
Create_ WCS_ExpectedinventoryRecord message
Create_ WCS_ PickBatch message .
Inquire_WCS_PickPackListDetail message
Create. WCS_InventoryReceipt message .
Update_ WCS_InventoryReceipt message .
Create_ WCS_ShipmentConfirmation message
Create_ WCS_Customer message .

Update_ WCS_Customer message.

Update_ WCS_Productinventory message .
Product Price Update message .

Product Quantity Update message.

Order Create message .

Customer New message

Customer Update message

Update_ NC_Customer message
Update_NC_OrderStatus message.
Create_NC_Customer message.
Update_NC_Productinventory message .
Update_NC_ProductPrice message

Report_ NC_PurchaseOrder message.
CUSTOMER_NEW_HDRO010_DATA .
CUSTOMER_UPDATE_HDRO010_DATA.
ORDER_CREATE_HDRO010_DATA .
ORDER_STATUS UPDATE_HDRO010_DATA .
PRODUCT_PRICE_UPDATE_HDRO010_DATA

PRODUCT_QUANTITY_UPDATE_HDRO010_DATA.

ORDER_CREATE_HDRO020_DATA
ORDER_CREATE_HDRO030_DATA

. 67
. 67
. 67
. 68
. 69
. 69
.71

. 73
. 75
.77

.79
. 80
.81
. 82
. 83
. 83
. 85
. 86
. 89
. 90
.91
. 92
. 95
. 97
. 98
.. 99
. 100
. 100
. 101
. 102
. 103
. 103
. 106
. 107
. 108
. 108
. 110
. 110
111
. 113
. 116
. 117
. 117
. 118
. 126
. 130
. 134
. 135
. 136
. 140
. 140
. 141

\Y

ORDER_CREATE_HDRO040_DATA
ORDER_CREATE_ITM010_DATA . .
ORDER_STATUS_UPDATE_ITM010_DATA .
ORDER_CREATE_PROLOG_DATA
ORDER_STATUS _UPDATE_PROLOG_DATA
PRODUCT_PRICE_UPDATE_PROLOG_DATA .
PRODUCT_QUANTITY_UPDATE_PROLOG_DATA
CUSTOMER_NEW_PROLOG_DATA.
CUSTOMER_UPDATE_PROLOG_DATA
DATUSR_DATA for outbound messages
DATUSR_DATA for inbound messages .
NCCustomer_10.mod file . .
NCCommon.mod - source file
NCCustomer_10.mod - source file . .
Invoke the messaging system compose method.
SendXMLOrder command .

Chapter 17. Fulfillment integration messages.

Notices

Vi Connectivity and Notification: Online Help Files

. 142
. 144
. 146
. 148
. 148
. 149
. 149
. 149
. 150
. 150
. 150
. 151
. 153
. 153
. 154
. 154

. 157

. 159

Chapter 1. Program Adapter

The Program Adapter allows external systems to communicate with WebSphere Commerce by passing
XML requests over the HTTP protocol. The Program Adapter provides external systems such as
procurement systems with a common way to communicate with WebSphere Commerce through HTTP,
allowing WebSphere Commerce to act as a supplier to these systems, for buyer/supplier transactions. The
Program Adapter handles incoming XML requests by performing the following actions:

* Recognizing the request and verifying if it is an XML request. If the following three attributes of the
request are supported, it can be distinguished it as an XML request.

— content-type
— method
— character encoding

The supported request attributes are specified in the adapter configuration.
» Extracting the input stream of the request.
» Calling the message mapper and passing the content of the input stream.

» Receiving the CommandProperty object representing a WebSphere Commerce command returned by
the message mapper.

» Determining the proper device format in which to generate the response.
» Executing the command.

* Sending an XML response message, created by a JSP and based on the viewname specified by the
command executed and the device format of the received request.

Each request is treated as a separate session. The credentials of the message are specified in the control
area of the message. By default, the Program Adapter checks the user ID and password parameters to
determine the authenticity of a request. The Program Adapter does not support legacy messages because
legacy messages do not support the specification of credentials.

The lifecycle of the Program Adapter exists throughout the WebSphere Commerce instance. It is
initialized when an instance is started unless its configuration parameters are removed or the adapter is
not enabled, and it resides as long as the instance runs.

For architectural information on how WebSphere Commerce handles receiving requests from devices,
refer to the WebSphere Commerce Programmer’s Guide.

CommandProperty object

The CommandProperty object is a representative of a controller command. The object contains the
command name to be executed, the command properties when executing the command, and the
parameters of the command. The purpose of the message mappers is to convert inbound request
messages into controller commands to be executed by an adapter. Although they can be used by all
components of WebSphere Commerce to map data into a extended TypedProperty object, the main
purpose for message mappers is converting XML objects into common Java objects that represents
controller commands.

The CommandProperty datatype is composed of the following three parts:
« commandName: the name of the command to be executed, in the form of a string.

* requestProperties: the command properties when executing the command, in the form of a
TypedProperty object.

» executionProperties: the control data for executing the command in the form of a TypedProperty
object.

© Copyright IBM Corp. 1996, 2002 1

Device format algorithm

The device format algorithm is used to determine the appropriate JSP to use as the response for a
particular request. When a request is received and the message mapper is used to convert the request
into a CommandProperty object, the message mapper and adapter used to process the request determine
the appropriate device format for generating the content of the response. The ID of the message mapper
is added to the device format ID of the adapter to determine the overall device format ID of the response.
This overall device format ID and the VIEWNAME are used to get the appropriate JSP from the VIEWREG
table, which generates the content of the response.

Each adapter accepting requests and using the message mapper is given a device format ID. This ID is
defined in the adapter’s instance_name.xm1 configuration file. This ID is defined in the adapter’s
configuration found in the instance_name.xm1 configuration file. The default device format ID for each
receiving adapter using the message mapper is in intervals of -10000. An program adapter has a device
format ID of -10000 and the MQSeries adapter has a device format ID of -20000. The adapter that
supports legacy messages uses the device format ID of -30000. When determining the appropriate JSP
and view command to call the JSP, the message mapper ID is added to the adapter’s device format ID to
determine the device format ID for the response view. However, if the view of the calculated device format
ID does not exist, the default view of the adapter’s interval is used. Thus, for an XML over HTTP request,
the default device format ID is -10000 and for MQSeries adapter requests, the default device format ID is
-20000. Differentiating the response view is necessary so that an HTTP response will use the
HttpForwardViewCommand interface while a response from the MQSeries adapter will use the
MessagingViewCommand interface.

This algorithm allows a maximum of 9999 possible message mappers to be defined with one adapter. The
configuration file for each message mapper contains an ID number in intervals of 1. To configure additional
adapters that use the message mapper should be given a device format ID that is an interval of 10000.
For example, a new request mechanism could be given a device format interval of 40000.

Note 1: If the calculated device format ID cannot be found, the default device format ID of the adapter is
used to obtain the result. This number is configurable in the HTTP adapter configuration.

Note 2: The size of the interval is not important. For example, if only 2 message mappers exist, then the
interval can be of size 3. The interval 10000 is used by default.

Example 1. An inbound message is handled by a message mapper with an ID of -1 and by the program
adapter which has a device format ID of -10000. Following the device format algorithm, the device format
ID generated for a response to that inbound message would be -10001. The JSP file defined in the
VIEWREG table for the VIEWNAME and the device format ID of -10001 is used for creating the response.

Example 2: Alternatively, an inbound message is handled by the same message mapper with the 1D of -1,
but is handled by the MQSeries adapter, which has a device format ID of -20000. The generated device
format ID for the response to that message would be -20001. Thus, the JSP file defined in the VIEWREG
table for the VIEWNAME and the device format ID of -20001 is used for creating the response. Note that
even though the request can use the same JSP for responding to the request, the class used to call the
JSP may differ.

XML over HTTP

WebSphere Commerce can receive inbound XML messages over HTTP using the Program Adapter. The
following steps illustrate the overall flow of an XML over HTTP request:

1. An external system sends an XML message to WebSphere Commerce over HTTP.
2. The request is mapped to the Program Adapter.
3. The Program Adapter passes the XML request to the appropriate message mapper.

2 Connectivity and Notification: Online Help Files

4. The message mapper converts the XML request into a CommandProperty object and passes it
back to the Program Adapter.

5. The Program Adapter prepares the command for execution and passes it to the WebController for
execution.

6. The Program Adapter generates the proper XML response and returns the XML response to the
external system that made the request.

When the Program Adapter receives the XML request, it must verify the credentials of the external system
that sent the request. Not all XML requests can be processed. Even if the XML request can be mapped to
a WebSphere commerce command, there must be some verification to ensure that the request should be
processed. See Brogram Adapter Security for HTTP Requests for more information.

MQSeries as middleware

The MQSeries adapter allows you to integrate back-end and external systems with WebSphere Commerce
using MQSeries as middleware. The MQSeries adapter allows WebSphere Commerce to receive
messages from back-end systems and external systems. The supported software is MQSeries Version 5.2
or higher, with the MA88 product extension.

You can set up MQSeries as your middleware through the use of MQ Java in one of two modes:

* bindings mode
WebSphere Commerce is installed on the same machine as the MQSeries server and it connects to the
MQSeries server through MQSeries Java using the Java Native Interface (JNI). Since communication is
through direct NI calls to the queue manager API rather than through a network, bindings mode
provides better performance than client mode done using network connections.

e client mode

WebSphere Commerce is installed on one machine and the MQSeries server is installed on a back-end
system.

To verify MQSeries connections, queues, and channels, run test programs to put messages into and get
messages from MQSeries queues. For details, refer to your MQSeries documentation.

WebSphere CommerceMQSeries adapter

The WebSphere Commerce MQSeries adapter, or simply the MQSeries adapter, is a component of
WebSphere Commerce that enables integration with back-end systems by processing inbound messages
via MQSeries. The MQSeries adapter is a combination of the JIMS-MQ CCF Connector to retrieve MQ
messages, and the Program Adapter which is called to execute those messages.

The MQSeries adapter has a set of predefined messages that help integrate WebSphere Commerce
business processing with back-end or external system processing. Each incoming message activates
processes within WebSphere Commerce to update database tables or perform other operations. Refer to
the back-end integration and fulfillment integration message information for more details on the messages
provided. In addition to the existing pre-defined messages, the adapter supports message extensions and
new messages.

Parallel versus serial message processing in MQSeries adapter

MQSeries adapter can process inbound messages in two ways: serially or in parallel. Serial processing
means that each message is put in a line, or queue, and handled one after another. In this method, each
message must wait until processing of the previous message is complete. Parallel processing on the other
hand, means that a number of messages can be processed at the same time. Instead of each message
having to wait for the previous one to be completed, many of them can be run simultaneously.

Chapter 1. Program Adapter 3

../refs/rcvhttps.htm

Although parallel processing generally results in faster throughput, it is not suitable for all types of
requests. There are some situations in which the serial nature of the transactions must be preserved. For
example, if a new customer registers at your store, then makes a correction to their address information,
then makes a purchase order, you would want the order of these transactions to be preserved when
processing them. You could not perform the address modification or the purchase order unless the account
had already been created. Likewise, you would not want to fulfill a purchase order without having the
correct shipping information.

Although it is generally preferable to use parallel processing where possible, you will have to decide where
it is appropriate to use this method on your data.

4 Connectivity and Notification: Online Help Files

Chapter 2. Configuring the Program Adapter

The program adapter is configured using the instance_name.xml configuration file. The program adapter
entry is used to define the adapter. The information found between the ProgramAdapter nodes defines the
configuration of the program adapter, defining which message mappers it uses, the supported

content-types, and other request attributes that distinguish the request as an XML over HTTP request. In
the instance_name.xml1 configuration, the entry for the program adapter should look similar to the following:

<HttpAdapters display="false">

class="com.ibm.commerce.messaging.programadapter.security.CredentialsSpecifiedProgramAdapterSessionContextIm

<HttpAdapter deviceFormatTypeld="-10000"
enabled="true"
deviceFormatId="-10000"
deviceFormatType="XmlHttp"
factoryClassname="com.ibm.commerce.programadapter.HttpProgramAdapterImpl"
name="XML/HTTP">

<ProgramAdapter>

<SessionContext

<SessionContextConfig />

</SessionContext>

<Configuration supportedMethods="POST, M-POST"
supportedContentTypes="text/xml, text/xml-SOAP"
supportedMessageMappers="WCS.INTEGRATION"
supportedCharacterEncoding="1508859-1, UTF-8" />

</ProgramAdapter>

</HttpAdapter>

</HttpAdapters>

Enabling the Program Adapter for XML Requests over HTTP

When the instance is created, the Program Adapter is disabled. In order to support XML over HTTP, you
must enable the Program Adapter using the instance_name .xmlconfiguration file. To enable the Program
Adapter to support XML requests over HTTP, do the following:

1.
2.

Open the instance_name.xm1 configuration file.
Locate the HttpAdapterssection and set the enabled parameter to “true”.

Adding adapters

To add a new adapter, you must manually add it to the group of adapters in the instance_name .xml
configuration file. To add a new adapter, do the following:

1.
2.

Open the instance_name.xm1 configuration file.

Locate the HttpAdapters XML node and add XML syntax similar to the following to define your
adapter:

<HttpAdapter

enabled="true/false"

deviceFormatType="-device format-"

deviceFormatId="#"

name="—name-"

factoryClassname="- class implementing HttpAdapterFactory -">

< —- free range format of XML to contain adapter configuration information —>

© Copyright IBM Corp. 1996, 2002

Note: The above syntax would be used to add a program adapter. To add a different type of adapter,
modify the class implementation accordingly. In the above example, HttpAdapterFactory is the class
implementation.

Downloading and installing the MQSeries MA88 product extension
pack

To install the MQSeries MA88 product extension pack, do the following:

Note: This information is subject to change as the MQSeries installation procedure is updated.

AlX

Solaris

Lo

n

Download the appropriate ma88 product extension pack for your operating system from the following
URL:

Download the document MQSeries Using Java in PDF format from the same URL.
Decompress and install SupportPac.

Follow the setup instructions, installing the product extensions in the MQ_install_path\java directory,
where MQ_install path is the path where MQSeries is installed.

Update the admin.config file found in the following directory:

drive:\Program Files\WebSphere\CommerceServer\bin

drive:\WebSphere\CommerceServer\bin

/usr/WebSphere/CommerceServer/bin

/opt/WebSphere/CommerceServer/bin

/QIBM/Proddata/WebCommerce/bin

Add the MQ install path\java\lib directory to the com.ibm.ejs.sm.util.process.Nanny.path variable.
See Updating the WehSphere Application Server classpath variabld for changes to iSeries class
libraries.

400

1. Download the appropriate ma88 product extension pack for your operating system from the following

URL:
hitp: /Ay ibm com/saftware/ts/mgseries/txppacs/mag88 html. The file is in compressed (zipped) format.

Be sure to get the file named ma88_iSeries.zip.
* Download the document MQSeries Using Java in PDF format from the same URL.

6 Connectivity and Notification: Online Help Files

http://www.ibm.com/software/ts/mqseries/txppacs/ma88.html
tcvupwas.htm
http://www.ibm.com/software/ts/mqseries/txppacs/ma88.html

2. Uncompress using InfoZip’s Unzip. This will create the file ma88_400.sav.
3. Create a save file called MA88 in a suitable library on the iSeries 400, for example QGPL
CRTSAVF FILE(QGPL/MA88)

4. Transfer ma88 iSeries.sav into this save file as a binary image. If you use FTP to do this, the put
command should be similar to:
PUT C:\TEMP\MAB8 iSeries.SAV QGPL/MA88

5. Install the MQSeries classes for Java, product Id 5648C60, using RSTLICPGM:
RSTLICPGM LICPGM(5648C60) DEV(*SAVF) SAVF(QGPL/MA88)

6. Delete the save file created in Step 2:
DLTF FILE(QGPL/MA8S8)

Enabling the MQSeries adapter

Use the following checklist to enable the MQSeries adapter messages.

1. Install MQSeries Version 5.2. Refer to the document MQSeries Using Java for information on how to
set up either the MQSeries binding mode or the MQSeries client mode configuration. For e-Integrator
Version 3.0 use the bindings mode.

AIX

The user logon ID must have the authority to read and write to the queue manager and queues
defined. For e-Integrator Version 3.0 use the binding mode.

400

The Instance User Profile must have the authority to read and write to the queue manager and
gueues defined. To define this authority use the GRTMQMAUT command.

2. Ensure that the following MQSeries objects have been defined:
* Queue manager
* Inbound message queue
* Outbound message queue

Transmission queue

Error queue

* Parallel queue

» Serial queue

AIX

Set the MQSeries queue manager coded character set identifier to 1208 (UTF8). Run the following
MQSeries commands from the command line:

Chapter 2. Configuring the Program Adapter 7

7.
8.
9.

strmgm YourQueueManagerName
runmgsc YourQueueManagerName
alter gmgr ccsid(1208)

end

where YourQueueManagerNameis the name of your MQSeries queue manager.

If you are using the MQSeries client mode, all of the required channels must be defined and you must
identify the channel name that the MQSeries client will use to communicate with the MQSeries server.

| PR . | . |

This product extension contains the Java Message Service (JMS) API that the MQSeries adapter uses
to communicate with MQSeries.

bﬂnﬁg&&lMS—taLhA-QSeuﬂd. i .
You must create a JIMS QueueConnectionFactory and JMS Queues that map to corresponding
MQSeries objects. This allows the MQSeries adapter to access MQSeries entities through JMS.

Enable the messaging system transpart adaptel.
| : - Teaion s o

Note: To use the MQSeries adapter, ensure that the Queue Manager is started before you start the
WebSphere Commerce Server and instance.

Configuring JMS for MQSeries

To configure the messaging system to work with JMS (Java Messaging Service), do the following:

1.

400

The iSeries QShell provides an emulator where Unix commands can be executed on your WebSphere
Commerce machine.You must use Java 1.3 to perform the remaining commands. To set the user
profile to use Java version 1.3, add the line java.version=1.3 into the users
SystemDefault.properties file. For more information, consult the iSeries Java documentation. You
must do this before starting QShell.

Start the iSeries QShell by typing: STRQSH at a CL prompt.

From the WebSphere Commerce machine update your classpath variable:
a. Type the following command, all on one line:

set classpath=%classpath%;MQ install path\java\lib\com.ibm.mgjms.jar;
MQ_install path\java\lib\com.ibm.mq.jar;WAS install path\1ib\ns.jar

AlX

8 Connectivity and Notification: Online Help Files

tcvma88.htm
tcvcnfjms.htm
tcvcnfjms2.htm
tcventrans.htm
tcvupwas.htm

export CLASSPATH=$CLASSPATH:MQ install path/java/1ib/com.ibm.mgjms.jar:
MQ_install path/java/lib/com.ibm.mq.jar:WAS install path/1ib/ns.jar

export

CLASSPATH=$CLASSPATH:WAS install_path/1ib/ujc.jar:

WAS install_path/1ib/ejs.jar:

WAS_install_path/1ib/ss1ight.jar

Note:This statement is too long to add as one statement at the command prompt. It must be
added in two segments.

where
WAS install path is the path in which you installed the WebSphere Application Server

where MQ_install_path is the path in which you installed MQSeries.
b. Add a new environment variable named MQ_JAVA INSTALL_PATH by typing the following command:

set MQ_JAVA_INSTALL_PATH=MQ install _path\java

AIX

export MQ_JAVA_INSTALL_PATH=MQ_install_path/java

where MQ_install_path is the path in which you installed MQSeries.

Update the environment to use the jdk that comes with WebSphere Application Server by typing
the following command:

set PATH=WAS install_path\Java\bin;%PATH%

export PATH=WAS install _path/java/jre/sh:$PATH

export PATH=WAS install path/java/jre/bin:$PATH

4. IConfigure IMS using IMSAdmin.

Updating the WebSphere Application Server classpath variable

To update the WebSphere Application Server classpath variable for an instance, do the following:
1. Open the WebSphere Application Server Advanced Administrative Console.

Select the host on which you are running your WebSphere Commerce instance.

Select WebSphere Administrative Domain.

Select Nodes.

Select your host name.

Select Application Servers

o g s~ wDN

Chapter 2. Configuring the Program Adapter 9

tcvcnfjms2.htm

7. Select WebSphere Commerce Server instance_name,
where instance_name is the name of your WebSphere Commerce instance. For iSeries select
instance_name - WebSphere Commerce Server.

8. Go to the JVM Settings table of the instance.
9. Select Add to add a new system property.

10. Type in the following system property:
name = ws.ext.dirs
value = MQJAVA/1ib For iSeries: value=/QIBM/ProdData/mgm/java/1ib

11. Click Applyto apply the changes.
12. Repeat steps 2-7 for every WebSphere Commerce instance with which MQSeries is used.
13. Close the WebSphere Advanced Administrative Console.

400
For iSeries perform steps 1-11 above, then do the following:
Click JVM.
To the right of the System Properties box, click Add. A new system property shows up in the list.
Type java.library.path under the Name field.
Type /QSYS.LIB/QMQMJAVA.LIB under the Value field.
Click Applyto apply the changes.
Repeat steps 2-7 for every WebSphere Commerce instance with which MQSeries is used.
Close the WebSphere Advanced Administrative Console.

N o o wDdhRE

Configuring JMS using JMSAdmin

To map the queue manager and the queues created in the WebSphere Commerce namespace, do the

following in QShell:

1. Ensure that WebSphere Application Server is running and that the environment variables and
classpath have been set.

2. Change to the following directory:

MQ_install_path\java\bin

MQ_install path/java/bin

MQ _install path/java/bin

/QIBM/ProdData/WebCommerce/bin

where MQ_install_path is the path where MQSeries is installed.
3. Open the JMSAdmin.config file in a text editor.

Ensure that the following three variables have been set to the values shown:
INITIAL_CONTEXT_FACTORY=com.ibm.ejs.ns.jndi.CNInitialContextFactory
PROVIDER_URL=1iop://host_name:was_port

SECURITY_AUTHENTICATION=none

where

10 Connectivity and Notification: Online Help Files

host_name
Your instance host name

was_port
The WebSphere Application Server administration port used to configure the instance.

4. From a command line, run the IMSAdmin program:

JMSAdmin -cfg JMSAdmin.config -t -v

./IMSAdmin -cfg JMSAdmin.config -t -v

./JMSAdmin -cfg JMSAdmin.config -v

./JMSAdmin -cfg JMSAdmin.config -v

Wait for the administration command line interface to load and the Initctx> prompt to appear.

5. Register the queue connection factory to the queue manager in the WebSphere Application Server
namespace:

define qcf(JMSQueueConnectionFactory) qmanager(YourQueueManagerName)
where
JMSQueueConnectionFactory
This is defined in the QueueConnectionFactory ConnectionSpec attribute found in the JMS

configuration for MQSeries. This can be found on the ConnectionSpec-JMS Interface CCF
Connection page in the Configuration manager.

YourQueueManagerName
The name of your MQSeries queue manager.

AIX

Set the coded character set identifier to 1208 (UTF8):
alter qcf(JMSQueueConnectionFactory) ccsid(1208)

where

JMSQueueConnectionFactory
The name of the MQQueueConnectionFactory JMS object.

7. Define the following JMS queues. To define the queue type the appropriate command all on one line.
JMSSeriallnboundQueue — serial inbound queue
define
q(JMSSerialInboundQueue)gmanager(YourQueueManagerName)queue(YourSerialInboundQueueName)

For example:
define q(JMSSSerialInboundQueue)gmanager (WCSQMGR)queue (JMSSIBQ)

Chapter 2. Configuring the Program Adapter 11

* JMSParallelinboundQueue — the parallel inbound queue
define
q(JIMSParallelInboundQueue)gmanager(YourQueueManagerName)queue(YourParallelInboundQueueName)

e JMSInboundQueue — the inbound queue
define q(JMSInboundQueue)gmanager(YourQueueManagerName)queue (YourInboundQueueName)

¢ JMSOutboundQueue — the outbound queue
define q(JMSOutboundQueue)gmanager(YourQueueManagerName)queue (YourOutboundQueueName)

* JMSErrorQueue -the error queue
define q(JMSErrorQueue)gmanager(YourQueueManagerName)queue(YourErrorQueueName)

YourQueueManagerName
The name of the MQSeries queue manager.

YourSeriallnboundQueueName
The name of the MQSeries queue created for the serial inbound queue.

YourParallelinboundQueueName
The name of the MQSeries queue created for the parallel inbound queue.

YourlnboundQueueName
The name of the MQSeries queue created for the inbound message queue.

YourOutboundQueueName
The name of the MQSeries queue created for the outbound queue.

YourErrorQueueName
The name of the MQSeries queue created for the error queue.

The default name of the queue is the same as the name used for the ConnectionSpec-JMS Interface CCF
Connection values in Configuration Manager. If you change the default name, you must also change the
name in Configuration Manager or for outbound messaging, the name change can be done in the
Administration Console.

8. The outbound queue and error queue require that you set the target client to indicate that JMS is
interacting with a native MQSeries application. Run the following command:
alter q(JMSOutboundQueue) targclient(MQ)
alter q(JMSErrorQueue) targclient(MQ)

200

If you are using an MQSeries client/server setup where the MQSeries client is on the same machine
as WebSphere Commerce Server, run the following commands:

alter qcf(JMSQueueConnectionFactory) transport(CLIENT)

alter qcf(JMSQueueConnectionFactory) hostname(YourMQServerHostName)

where YourMQServerHtostName is the name of your MQSeries server.

This command connects to the remote MQSeries Server and configures the client.

10. Type end to exit the administration command line interface.

12 Connectivity and Notification: Online Help Files

Response processing using MQSeries adapter

The MQSeries adapter can be used as an alternative interface to the WebSphere Commerce system and
functionality. The MQSeries adapter not only processes inbound requests, but can provide a reply to the
request. Any command that formulates a response can be configured to provide a response through the
MQSeries adapter.

When an inbound message is received by the MQSeries adapter it is mapped to a command and that
command is called with the parameters specified in the inbound message. If a response is to be generated
from this inbound request, an entry in the MEWREQ table is needed. For more information on how the

table is used, refer to the WebSphere Commerce Programmer’s Guide. If a response is
generated by the command, that response is placed on the outbound queue of the Parallel or Serial
connector depending on the connector which receives the inbound request.

If an error with the inbound request occurs, the message generating the error is placed on the error
queue. To generate an error response to the outbound queue, another entry is needed in the
table to map the error response using the proper device format.

To setup the MQSeries adapter component for providing responses for inbound messages, do the
following:

1. Verify that the instance_name.xml file includes an Outbound Queue for Inbound Parallel and Serial
Connector by ensuring that syntax similar to the following is included for the Inbound Parallel
Connector:

<EditableProperty Admin="outQueue"
editabTe="Yes"
name="setOutboundQueue"
display="false"
value="JMSParallelOutboundQueue" />

2. lUsing IMSAdmin, define the JMS name for the serial and parallel outbound queues.

3. Add an entry in the MIEWREQ table to define the response needed for the inbound request. This step
is required both for existing WebSphere Commerce commands and for new commands. Use the
following values:

VIEWNAME
The same value as for regular HTTP responses

INTERFACENAME
com.ibm.commerce.messaging.viewcommands.MessagingViewCommand

CLASSNAME
com.ibm.commerce.messaging.viewcommands.MessagingViewCommandImpl

PROPERTIES
docname=JSP filename
DEVICEFMT_ID
» -20000 for XML inbound messages
» -30000 for legacy inbound messages
* Add -5 for new inbound messages

Chapter 2. Configuring the Program Adapter 13

../database/VIEWREG.html
../database/VIEWREG.html
../database/VIEWREG.html
tcvcnfjms2.htm
../database/VIEWREG.html

14 Connectivity and Notification: Online Help Files

Chapter 3. Program Adapter Security for MQSeries

To change the level of security, you must change the value of the class attribute in the SessionContext
node of the MQSeries adapter configuration.

Before the request is executed by the WebController, the WebController determines the credentials the
request must execute under. This is determined by the specified class, which uses the CommandProperty
object to determine the credentials of the request.

There are two levels of security available:
* Level 1: Limited security.
* Level 2: User ID and password required for every request.

You can also create your own customized security class. The only restriction is that it must implement the
ProgramAdapterSessionContext interface.

Security Level 1: Limited security

This level of security is enabled by default at installation. It assumes that all requests are to be processed
by a default user ID unless otherwise specified. If the request is to be processed by another user ID, this
user ID is specified in the request. The password of the specified user ID is not required and the request
is processed by WebSphere Commerce using the credentials of the specified user.

The class that implements this security level is
messaging.programadapter.security.DefaultCredentialsProgramAdapterSessionContextImpl.

Security Level 2: Logon and Password for every request

This level of security requires that a request sent to WebSphere Commerce contains a user ID and
password. If the password does not match the specified user ID, a security exception is thrown and the
request is rejected. If the user ID and password are not specified in the request, the request is processed
as a guest user. This means that commands that need authorization before executing must have the
credentials specified in the request.

The class that implements this security level is
messaging.programadapter.security.CredentialsSpecifiedProgramAdapterSessionContextImpl.

The validation of credentials uses the same technique used when customers interact with WebSphere
Commerce through a browser. This takes into consideration whether the user registration is handled by
WebSphere Commerce or a third party software.

All of the WebSphere Commerce supported XML integration messages support this level of security,
although credential specification is not mandatory.

Program Adapter security for HTTP requests

This level of security requires that a request sent to WebSphere Commerce contains a user ID and
password. If the password does not match the specified user ID, a security exception is thrown and the
request is rejected. If the user ID and password are not specified in the request, the request is processed
as a guest user. This means that commands that need authorization before executing must have the
credentials specified in the request. This form of security behaves in a similar manner to HTTP requests
made from a browser client.

© Copyright IBM Corp. 1996, 2002 15

The class that implements this security level is
messaging.programadapter.security.CredentialsSpecifiedProgramAdapterSessionContextImpl.

The validation of credentials uses the same technique used when customers interact with WebSphere
Commerce through a browser. This takes into consideration whether the user registration is handled by
WebSphere Commerce or a third party software.

All of the WebSphere Commerce supported XML integration messages support this level of
security,although credential specification is not mandatory. Legacy messages are not supported by this
implementation of security.

Message composition services

Some of the WebSphere Commerce messages use the message composition services. Through the use
of JSP templates, the composition services generate a message before it is sent through the transport. If
the composition service is used for a message, it runs a JSP passing it information such as an order
number or a store number. When the template is executed, the JSP may retrieve any additional
information necessary for the message from the database using data beans. The output is generated and
the formatted message is sent through the transport. You can modify the message templates just as you
would any other JavaServer Page.

Some of the features of the generated message you may want to modify include:

* The layout of the message.

* The information about your store, the order, or the customer that is retrieved from the database and
displayed on the page.

* The text of the messages to the customer such as “Thank you for ordering with us”.

» The format of the output generated. For example, you may want to send a message in HTML format,
plain-text format, or XML format.

Messaging system

The WebSphere Commerce messaging system gives WebSphere Commerce the ability to communicate
with its external environment. This communication includes sending messages to and receiving messages
from back-end systems or external systems, as well as sending notification to customers and
administrators that events have occurred within WebSphere Commerce. This is accomplished through two
subsystems: an inbound system that manages inbound messages coming from back-end and external
systems, and an outbound messaging system that allows you to send notification to users as well as
outbound messages to back-end systems and external systems.

For example, you can set up the messaging system to send e-mail messages notifying your customers
that their orders have been shipped. The messaging system provides a mechanism for integrating
WebSphere Commerce with back-end systems. You can configure WebSphere Commerce to send an
outbound message to a back-end system whenever an order is created at your store. This order
information can be used by the back-end system to do necessary order fulfillment processing. The
back-end system can later send order status messages back to WebSphere Commerce indicating that
order delivery has taken place or an order invoice has been issued. An e-mail can also be sent to update
the customer.

Generic Application and System Error XML messages

In WebSphere Commerce, generic application and system errors can occur. These messages appear in
XML format, and are sent to the outbound queue.

16 Connectivity and Notification: Online Help Files

A generic application error message is sent to the outbound queue if the error is related to the user.
When a user enters an invalid parameter in an XML message, an ECApplicationException is thrown. The
message is then sent to the outbound queue and the exception is documented in a log file.

Note: When an exception of this type is thrown, the Web controller will not retry the command, even if it is
specified as a command that could be retried.

A generic system error message is sent to the outbound queue if a run-time exception or a WebSphere
Commerce configuration error is detected, such as null-pointer exceptions and translation rollback
exceptions.

The contents of generic XML messages vary depending on the contents of inbound XML messages
however, the format is similar to the following:

<?xml version="1.0" encoding="UTF-8"?>

<WCS_Error type="GenericApplicationError"> (or <WCS_Error type="GenericSystemError">)
<RequestAttributes>

...(Error parameters and data of inbound XML message)

<excMsg>(Error message key, e.g. ERR_REMOTE_EXCEPTION)</excMsg>

</RequestAttributes>

</WCS_Error>

Setting up outbound message composition

To set up and use the composition service for an outbound message, do the following:
1. Assign the transports to the appropriate message type, using either of these methods:

A valid device format, as specified in the REVICEEMT table, must be specified for each transport to
be used.

2. Referring to the information in the topic Dutbound messaging system interfacd, create a messaging

system object using the SendMsgCmd task command. Use the setMsgType() and setStoreld()
initialization services.

3. lnvoke the messaging system compose methad.

Example of using the messaging system composition service

The following is an example of how you might use the messaging system composition service. If you have
a store named DemoStore and you want to assign two transports, e-mail and file, to the OrderAuthorized
message type, you would do the following:

1. Add an entry to the MEWREQ table for the JSP file to use for composing this outbound message. The
keys for the MEWREd table are the view name, the store ID, and the device format ID. For more
information on how the MIEWREQ table is used, refer to the WebSphere Commerce Programmer’s
Guide.

Chapter 3. Program Adapter Security for MQSeries 17

tcvsastrn.htm
tcvstrat.htm
../database/DEVICEFMT.html
../refs/rcvomint.htm
../refs/rcvinvcm.htm
../database/VIEWREG.html
../database/VIEWREG.html
../database/VIEWREG.html

Important: Each view created to be used by the Messaging System’s compose service must use the
Messaging View Command for the interface and class name fields. It must also contain the name of
the JSP file in the docname field. To summarize:

INTERFACENAME
com.ibm.commerce.messaging.viewcommands.MessagingViewCommand

CLASSNAME
com.ibm.commerce.messaging.viewcommands.MessagingViewCommandImp]l

PROPERTIES
Use the following format to point to the JSP file 'docname=jsp file’.

DEVICEFMT_ID

Represents the device format and should use the value -3 (the standard device format) unless

using custom device formats for your application. The DEVICEFMT _ID specified in the
VIEWREG entry must correspond to the device format selected when assigning a message
type to a transport.

For example, if the store ID for DemoStore were 5 and the viewname is OrderAuthorized you could
insert a record using the following SQL statement:

insert into viewreg (VIEWNAME,STOREENT ID,DEVICEFMT ID,INTERFACENAME,CLASSNAME,
PROPERTIES)values

(’OrderAuthorizedView',5,-3,
"ibm.commerce.messaging.viewcommands.MessagingViewCommand’
"ibm.commerce.messaging.viewcommands.MessagingViewCommandImpl’,
"docname=0rderAuthorized.jsp’);

2. Use the Administration Console to assign the e-mail and file transports to the OrderAuthorized
message and configure the settings. This can be done using either site or store level administration
authority. Creating settings on site level will make it accessible to all stores.

3. In the implementation of a command, instantiate the SendMsgCmd command to use messaging
services and call the setMsgType() and setStorelD() methods, using the message ID of the
OrderAuthorized message type and the store ID of DemoStore. If you need to use site-level
configuration, specify 0 as the store ID and attach "&storeDir=no" at the end of the JSP name.
Otherwise, use your store ID. (If no configuration exists for your store, the Messaging System defaults
to site-level configuration automatically.)

4. Invoke the compose method of the outbound messaging system interface and pass any additional
parameters in the form of a TypedProperty object. By specifying a viewname, you will override the
message types default viewname used when composing the message.

5. Call sendimediate or sendTransacted on SendMsgCmd if you want the message to be sent
immediately or after the transaction has successfully been committed. Refer to the Messaging System
documentation for a further explanation of the use of each method.

6. Call execute method of the SendMsgCmd to execute sending.

Error handling in the messaging system composition service

When an error occurs in the processing of a JavaServer page, the result of the page typically contains
extensive information generated by the runtime. If this is not the desired result on a JavaServer page
failure, there are two potential approaches to make the behavior more predictable.

In the first approach, you can specify an error page in your JavaServer page, which runs if an

unanticipated error is encountered, such as an uncaught exception. To use this approach, you need to
include the following line in your main page:

18 Connectivity and Notification: Online Help Files

<%0 page errorPage="YourError.jsp" %>

YourError. jsp:

<%@ page isErrorPage="true" %>

Note: In the event of an error, the result of the message composition is the result of YourError. jsp. For
more details please see the JSP 1.0 specification.

In the second approach, instead of having the error message processed as an outbound message, you
can use an error JavaServer page that generates output that is processed as an exception. To do this, use
the ComposerError. jsp as the basis for handling the error. Do this the same way as described above, but
the beginning of YourError.jsp should start with the first two lines of ComposerError.jsp. This allows the
composition runtime to detect that an error occurred, and to raise an exception. The ComposerError.jsp
can be found in the following directory:

drive:\Program
Files\WebSphere\AppServer\installedApps\WC_Enterprise App_<instance name>.ear\wcstores.war

drive:\WebSphere\AppServer\installedApps\WC Enterprise App_<instance_name>.ear\wcstores.war

/usr/WebSphere/AppServer/installedApps/WC Enterprise App <instance name>.ear/wcstores.war

/opt/WebSphere/AppServer/installedApps/WC_Enterprise App_<instance name>.ear/wcstores.war

/QIBM/Userdata/WebASAdv4/<WAS instance name>/installedApps/WC_Enterprise App_<instance name>.ear/wcstores.wa

ComposerError. jsp are as follows:

ERROR
<%0 page isErrorPage="true" %>

errorPage="ComposerError.jsp" in the main JSP page. If you want extra information, you can copy this
file to another filename, such as YourError. jsp, and place the extra error information after these two lines
in the new file. You would then set errorPage="YourError.jsp" in the main JSP page. Any extra output
specified after these two first lines will be part of the text of the exception thrown by the composition
service.

Chapter 3. Program Adapter Security for MQSeries 19

Invoke the messaging system compose method
To invoke the compose() method of the buthound messaging system interfacel, specify the following

parameters:

viewname: The name of the comi)osition view to be used, as specified in the VIEWNAME column of an
existing record in the table. For more information on how the MIEWREQ table is used, refer
to the WebSphere Commerce Programmer’s Guide.

Important: In the record referred to in the MEwWREd table, the values of the INTERFACENAME and
CLASSNAME columns must contain the name of the interface and class associated with all WebSphere
Commerce messaging system view commands. The name of the interface must be
com.ibm.commerce.messaging.viewcommands.MessagingViewCommand. The name of the class must be
com. ibm.commerce.messaging.viewcommands.MessagingViewCommandImpl.

CommandContext: For information on the CommandCaontext interface or the CommandCantextimpl class

that implements the interface, refer to the WebSphere Commerce Programmer’s Guide.

TypedProperty: The values in the typed property must be strings, or objects that implement the
toString() method. For more information on the TypedProperty, refer to the WebSphere Commerce
Programmer’s Guide.

The compose() method runs a view command for each of the transports enabled and assigned to the
current message type in the Administration Console. The method performs the following processes:

It uses the viewname parameter as well as the storeld and device format from each transport, as
defined in the Administration Console. These values are used to look up the view command in the
table.

It runs the view command, passing it the values specified in the TypedProperty parameter. When the
command is run, the system uses the viewname, storeld, and device format id to look up the JSP
template in the PROPERTIES column of the MEWREQ table. The JSP template is run and passed the
values in the TypedProperty parameter.

The JSP composes the message, and it is sent through the appropriate transport when a send method
is invoked in the object. Sending may be done using transacted, immediate, or request-reply on the
messaging object on which composition was run.

20 cConnectivity and Notification: Online Help Files

rcvomint.htm
../database/VIEWREG.html
../database/VIEWREG.html
../database/VIEWREG.html
../javadoc/com/ibm/commerce/command/CommandContext.html
../javadoc/com/ibm/commerce/command/CommandContextImpl.html
../database/VIEWREG.html
../database/VIEWREG.html

Chapter 4. OrderltemStatus command

The OrderltemStatus command is called internally by the OrderStatus, OrderConfirmStatus,
OrderlnvoiceStatus, and OrderShippingStatus commands when an Update. WCS_OrderStatus,
Update_NC_OrderStatus, or Order Status Update message is received from a back-end system. The
command updates information regarding the status of an an existing order for an item.

Parameters
The following is a list of the parameters for the command. Each parameter corresponds to a field in the

table:

versioning: String “TRUE” or “FALSE”. optional, Default is FALSE.
If TRUE, versioning will be enabled.

orderltemld: Integer
WebSphere Commerce order item reference number as defined in the ORDERITMES_ID in table
ORDISTAT. This is a foreign key that references column ORDERITEMS_ID in table
ORDERITEMS.

merchantltemNumber: String
Order item number generated in the backend system as defined in the OIMITEM column.

PartNumber: String
Item Product number/SKU as defined in the PARTNUMBER column.

UnitOfMeasure: String
Item unit of measure as defined in the OIUOFM column.

RequestQuantity: Integer
Quantity of items requested as defined in the OIQTREQUEST column.

ConfirmQuantity: Integer
Quantity of items confirmed as defined in the OIQTCONFIRM column.

ShipQuantity: Integer
Quantity of items shipped as defined in the OIQTSHIP column.

Currency: String
The 1SO 4217 currency type in which the price is expressed as defined in the OICPCUR column.

UnitPrice: BigDecimal(20,4)
The unit price for the product as defined in the OIUNPRC column.

PriceTotal: BigDecimal(20,4)
The total product price for the item as defined in the OIPRTOT column.

TaxTotal: BigDecimal(20,4)
The total tax for the item as defined in the OITXTOT column.

ShippingTotal: BigDecimal(20,4)
The total shipping charge for the item as defined in the OISHTOT column.

ShippingTaxTotal: BigDecimal(20,4)
The total tax on shipping charge for the item as defined in the OISHTXTOT column.

Status: String
The status of the item as defined in the OISTATUS column.

PlaceDateTime: Timestamp
The date that the item is actually placed as defined in the OIPLTIME column.

© Copyright IBM Corp. 1996, 2002 21

../database/ORDISTAT.html

RequestShipDateTime: Timestamp
The date that the item is requested to be shipped as defined in the OIRSTIME column.

ScheduleShipDateTime: Timestamp
The date that the item is scheduled to be shipped as defined in the OISSTIME column.

ActualShipDateTime: Timestamp
The date that the item is actually shipped as defined in the OIASTIME column.

InvoiceDateTime: Timestamp
The date that the item is invoiced as defined in the OIINVTIME column.

InvoiceValue: BigDecimal(20,4)
The net value that the item is invoiced as defined in the OIINVVAL column.

itemShipCondition: String
Code to be designate whether partial shipment of the item will be accepted as defined in the
OISCOND column. 'SC’: Ship Complete, 'SP’: Ship Partial.

itemComment: String
Comments regarding the item status as defined in the OICMNT column.

field1: Integer
Item status customization field 1 as defined in the FIELD1 column.

field2: BigDecimal(15,2)
Iltem status customization field 2 as defined in the FIELD2 column.

field3: String
Iltem status customization field 3 as defined in the FIELD3 column.

Behavior
* The first order item status for an order must have orderltemld and merchantitemNumber specified.
» Check if the order item specified in orderltemld exists in the ORDERITEMS table.

* In each subsequent order item status which already has an entry in the ORDISTAT table, the
orderltemld is not required to allow a new line item to be created by the back-end system for existing
line item.

» Create or update a row in the ORDISTAT table using information provided.

» If versioning is enabled and this is the first order item status for the order, a new row will be created in
the ORDISTAT table. Otherwise a copy of the last order item status will be made and its version
(OIVERNBR) will be set to the maximum number of existing versions +1. A new row will be created
containing all of the information provided, with its version (OIVERNBR) set to 0.

Exception Conditions
* The orderltemld specified is not a valid order number in the ORDERITEMS table.

 Either orderltemld or merchantltemNumber is not specified in the first order item status for a particular
order item.

* The orderltemld and merchantitemNumber do not match the one already in ORDISTAT table for a
particular order item in a subsequent order item status update.

GetPickPackListDetail command

This command retrieves pick ticket and packing list information for the Inquire_ WCS_PickPackListDetail
XML message.

Parameters

22 Connectivity and Notification: Online Help Files

pickBatchld
The reference number of the pick batch as defined in the PICKBATCH_ID column of the
PICKBATCH table.

Behavior
» Checks if the pickBatchld exists in the BickBATCH table.
« Checks that there is at least one record in the QRDRELEASH table for that pickBatchld.

* Retrieves the pick ticket XML from the BickBATCH table and the packing list XML for the given
pickBatchld and forwards to the view task to compose the Report. WCS_PickPackListDetail message.

* The Report_WCS_PickPackListDetail message containing pick ticket and packing list information is sent
in response.

Exception Conditions

+ The pickBatchld is invalid or not found in the PICKBATCH or QRDRELEASH tables.

BroadcastMessage command

This command broadcasts an e-mail to customers.

BroadcastMessage

v

»»— http://host_name/path/

»—BroadcastMessage? L J L J &URL=s >
&langld=s &storeld=s

»— &messageContent=s — &subject=s — &sender=s — &mode=s

v

v

—&messageType:sJ |~&recipient=sJ |~&partNumber=sJ |~&contractld=s J

v
A\
A

—&offerld:sJ |~&catEntryId=sJ

Parameter Values

http://host_name/path/
The fully qualified name of your WebSphere Commerce Server and the configuration path.

langld Sets or resets the preferred Ianguage for the duration of the session; the supported languages for
a store are found in the table.

storeld
The reference number of the store from which the message is being sent.

URL The URL to be called when the command completes successfully.

messageContent
The content of the message being sent. If specified, this content overrides the content of the
message template. This parameter must be specified if the messageType parameter is specified.

subject
The content of the Subject line in the e-mail. If the subject is not specified, the default subject
specified in the message type configuration will be used.

Chapter 4. OrderltemStatus command 23

../database/PICKBATCH.html
../database/ORDRELEASE.html
../database/PICKBATCH.html
../database/PICKBATCH.html
../database/ORDRELEASE.html
../database/STORELANG.html

sender
The content of the From line in the e-mail. If the sender is not specified, the default sender
specified in the message type configuration is used.

mode Possible values:

1. Sends the message to all shoppers for a given store who have purchased any product and
have indicated that they would like to receive promotional e-mail.

2. Sends the message to all shoppers for a given store who have purchased the indicated SKU
and have indicated that they would like to receive promotional e-mail.

3. Sends the message to all shoppers who have indicated that they would like to receive
promotional e-mail.

messageType
Reference to a predefined message template defined in the MSGTYPE_ID column of the
table. If messageType is not specified, the site-level message type for broadcast
messaging will be used. By default, the site-level message type has no associated message
template, so it is recommended that stores have their own broadcast message type set up. See
ing for information on how to set up new message types.

recipient

The extra recipients of the e-mail, in a comma-separated list.
partNumber

The part number of the item associated with the e-mail in mode 2.
contractld

Target members that have purchased under this contract in mode 2.
offerld

Target members that have purchased under this offer in mode 2.
catEntryld
Target members that have purchased this catalog entry in mode 2.

Behavior
» Calls the GetRecipientsCmd task command to create a list of broadcast e-mail message recipients.

» Calls another task command to send e-mail messages by providing the return e-mail address, subject of

message, the message, and the comma-separated list of recipients parameters.
» Uses the template corresponding to the specified message type for the body of the message.

Exception Conditions
If the list of recipients could not be determined or there is an error delivering the message, the
BroadcastMessageErrorView error task is called.

OrderlnvoiceStatus command

The OrderlnvoiceStatus command is used when an Update. WCS_ OrderStatus XML message with an
OrderStatusType tag value of OrderInvoice is received from a back-end system. The command updates
information regarding the invoice status of an an existing order. It has the same parameters, behavior, and

exception conditions as the OrderStatus command. The only difference between the two commands is that

the OrderlnvoiceStatus command sets the value of the orderStatus parameter to a default value of I which
means the order has been invoiced if it is not provided in the message.

For detail on the parameters, behavior, and exceptions handling for the OrderinvoiceStatus command,
refer to the OrderStatus command.

24 Connectivity and Notification: Online Help Files

../database/MSGTYPES.html
../concepts/clsmessa.htm

OrderShippingStatus command
The OrderShippingStatus command is used when an Update WCS_OrderStatus XML message with an

OrderStatusType tag value of OrderShipping is received from a back-end system. The command updates

information regarding the shipping status of an an existing order. It has the same parameters, behavior,

and exception conditions as the OrderStatus command. The only difference between the two commands is
that the OrderShippingStatus command sets the value of the orderStatus parameter to a default value of S

which means the order has been shipped if it is not provided in the message.

For detail on the parameters, behavior, and exceptions handling for the OrderShippingStatus command,
refer to the OrderStatus command.

OrderStatus command

The OrderStatus command is used when an Update_ WCS_OrderStatus, Update_ NC_OrderStatus, or
Order Status Update message is received from a back-end system. The command updates information
regarding the status of an an existing order.

Parameters

sequenceNumber
String. WCS order status sequenceNumber for serialization.

lastUpdateTimestamp:
String in timestamp format. WebSphere Commerce order status last update timestamp for
serialization.

versioning: String “TRUE” or “FALSE”. Default is FALSE.
If TRUE, the versioning will be enabled.
The parameters listed below correspond to columns in the BRDSTAT table.

orderld: Integer.
WebSphere Commerce order reference number as defined in the ORDERS _ID column in table
ORDSTAT. This is a foreign key that references column ORDERS_ID in the DRDERY table.

merchantOrderNumber: String, mandatory.
Order number generated in the backend system as defined in the OSMORDER column.

currency: String

The ISO 4217 currency type in which the price is expressed as defined in the OSCPCUR column.

priceTotal: BigDecimal(20,4)
The total product price for the order as defined in the OSPRTOT column.

taxTotal: BigDecimal(20,4)
The total tax for the order as defined in the OSTXTOT column.

shippingTotal: BigDecimal(20,4)
The total shipping charge for the order as defined in the OSSHTOT column.

shipingTaxTotal: BigDecimal(20,4)
The total tax on shipping charge for the order as defined in the OSSHTXTOT column.

orderStatus: String
The status of the order as defined in the OSSTATUS column.

placeDateTime: Timestamp
The date that the order is actually placed as defined in the OSPLTIME column.

requestShipDateTime: Timestamp
The date that the order is requested to be shipped as defined in the OSRSTIME column.

Chapter 4. OrderltemStatus command

25

../database/ORDSTAT.html
../database/ORDERS.html

scheduleShipDateTime: Timestamp

The date that the order is scheduled to be shipped as defined in the OSSSTIME column.

actualShipDateTime: Timestamp

The date that the order is actually shipped as defined in the OSASTIME column.

invoiceDateTime: Timestamp

The date that the order is invoiced as defined in the OSINVTIME column.

invoiceValue: BigDecimal(20,4)

The net value that the order is invoiced as defined in the OSINVVAL column.

shipCondition: String

Code to be designate whether partial shipment of the order will be accepted as defined in the
OSSCOND column. 'SC’: Ship Complete, 'SP": Ship Partial.

shippingModeFlag: String

Code to indicate shipping address and shipping mode are at order level or order item level as
defined in the OSSMFLAG column. 'O”: Order level; 'I': Item level.

comment: String

Comments regarding the order status as defined in the OSCMNT column.

field1: Integer

Order status customization field 1 as defined in the FIELD1 column.

field2: BigDecimal(15,2)

Order status customization field 2 as defined in the FIELD2 column.

field3: String

Order status customization field 3 as defined in the FIELD3 column.

items: Vector of Hash table.

Each hash table represents the parameters for one item.

Behavior

The first order status for an order must have orderld and merchantOrderNumber specified.
Check if the order specified in orderld exists in the ORDERS table.

If serialization information is available, such as the sequenceNumber and the lastUpdateTimestamp
parameters, check if the values are more recent than the ones already in the ORDSTAT table, if not
then no update will be performed.

Create or update a row in the table ORDSTAT using all the provided information.

If versioning is enabled and this is the first order status for the order a new row will be created in
ORDSTAT table, otherwise a copy of the last order status will be made and its version (OSVERNBR)
will be set to the maximum number of existing version +1. A new row will be created containing all
provided information with its OSVERNBR

value set to O.

Update the value in the STATUS column of table ORDERS to 'G’.

Exception Conditions

The orderld specified is not a valid order number in the ORDERS table.

Either the orderld or merchantOrderNumber is not specified in the first order status for a particular
order.

The orderld and merchantOrderNumber do not match one already in ORDSTAT table for a particular
order in a subsequent order status udpate.

Serialization information is provided and the order status message is out of sequence

26 Connectivity and Notification: Online Help Files

ProductOfferPriceUpdate command

The ProductOfferPriceUpdate command is used to update product price information for the
Update_ WCS_ProductPrice, Update_NC_ProductPrice, and Product Price Update messages.

Parameters

offerld
The reference number that identifies the offer.

partNumber
The part number of the catalog entry as defined in the PARTNUMBER column of CATENTRY
table.

memberld
The reference number that identifies the owner of the catalog entry.

catEntryld
The catalog entry offered for sale.

currency
The ISO 4217 currency type in which the price is expressed. This value is mandatory.

offerPrice
The offer price to be used for this update.

precedence
The precedence to be used for this update.

tradingPositionContainerld
The TradingPositionContainer of which the offer is a part.

startDateTime
The start of the time range during which the Offer is effective.

endDateTime

The end of the time range during which the Offer is effective.
minimumQuantity

The minimum quantity that can be purchased in a single order under this offer.

maximumQuantity
The maximum quantity that can be purchased in a single order under this offer.

quantityUnit
The unit of measure for minimumQuantity and maximumQuantity.

Behavior
* The command updates a record in the OFFERPRICE table.

* The process by which the primary key is determined varies slightly, depending on the format of the
inbound message that executed the command. For a description of how the primary key is determined,
refer to the specific inbound message.

Exception Conditions
* The currency parameter is empty.
* The offerld parameter value can not be found in the OFFERPRICE table.

* The catalog entry cannot be found using the memberld, which owns the store along with the
partNumber.

* The tradingPositionContainerld parameter value cannot be found in the OFFER table for the matching
offerld.

+ The precedence parameter value exceeds the maximum value. The precedence must be less than 106,

Chapter 4. OrderltemStatus command 27

ProductinventoryUpdate command

The ProductInventoryUpdate command is used to update product inventory for the
Update_NC_Productinventory message, Update_ WCS_Productinventory message, or Product Quantity
Update message.

Parameters

catEntryld
WebSphere Commerce catalog entry as defined in the CATENTRY _ID column in INVENTORY
table. If the catalog entry is empty, then the combination of the part number and the member id
which owns both the store and the catalog will be used to get the catalog entry.

partNumber
The part number of the catalog entry as defined in the PARTNUMBER column of CATENTRY
table. Together with the member id which owns the catalog, it is used to get the key catEntryld in
the table CATENTRY, if the catEntryld parameter is empty.

storeld
The store id that references column STORE_ID in the table INVENTORY. Together with catalog
entry and the default fulfillment center, this is a key to the row in the table INVENTORY.

inventoryQuantity
The quantity as defined in the QUANTITY column in table INVENTORY.

fulfillmentCenterID
The fulfillment center id that references column FFMCENTER_ID in the table INVENTORY. This a
key to the FFMCENTER database table.

Behavior

* The command updates a record in the INVENTORY table.

* The store id (which references STORE_ID in the INVENTORY table) is mandatory.

* The catalogEntryld and the storeld are used to update a row in the INVENTORY table.

« If the catEntryld is not present, then the storeld (STORE_ID) is used to obtain the member id (which
references MEMBER_ID in the CATENTRY table). The member id must be the same as the owner of
the catalog. The member id (MEMBER_ID), along with the partNumber (which references
PARTNUMBER in the CATENTRY table) are used to obtain the catEntryld. The catEntryld, along with
the store id and the default fulfillment center id for that catalog entry are used to update a row in the
INVENTORY table.

e |If the row in the table INVENTORY does not exist, an error will occur.
Exception Conditions

The command generates an entry in the error log if the following exceptions are encountered:
* The storeld does not exist.
* The catEntryld can not be found using the member id which owns the store along with the partNumber.

* The catEntryld, along with storeld and default fulfillment center id, can not find a matching row in table
INVENTORY.

SendWCSOrder task command

The SendWCSOrder command is used by the WebSphere Commerce system to send the Order Create
legacy message to back-end systems.

Behavior

28 Connectivity and Notification: Online Help Files

* The task command is enabled by assigning it to the OrderMessagingCmd interface within the
OrderProcess command. Once enabled, it is called before the OrderProcess command finishes
processing.

» Using the order reference number as its input parameter, it collects all of the necessary order
information.

* Based on the available order information, it then builds the Order Create legacy message as a String
and then store it in the message using the outbound messaging system content setting services.

» If the message creation is successful, the command attempts to send the message using the outbound
messaging system sending services.

Exception Conditions

The command generates an entry in the error log if an exception is encountered.

SendXMLOrder command

The SendXMLOrder command is used by the WebSphere Commerce outbound messaging system to
send the Report_NC_PurchaseOrder XML message to back-end systems. The command uses a
message composition template to generate the XML message, then the outbound messaging system
sends it to a back-end system.

Behavior

* The task command is enabled by assigning it to the OrderMessagingCmd interface within OrderProcess
command.

* Once enabled, it is called before OrderProcess command finish processing.

* The task command calls the messaging system composition services, which uses the
OrderCreateXML.jsp composition template to collect of the necessary order information and build the
Report_NC_PurchaseOrder outbound XML message.

* If composition is successful, the command attempts to send the message using the outbound
messaging system sending services.

Exception Conditions

The command generates an entry in the error log if an exception is encountered.

NewInboundMessage command

The NewInboundMessage command is used for customized inbound messages that are not implemented
using the user_template.xml inbound message template definition file. The command is run when the
adapter does not recognize an inbound message. This means that it is neither a legacy message nor an
XML message defined in the sys_template.xml or user_template.xml inbound message template
definition files. Initially, the NewlnboundMessage command contains no programming statements, so you
must customize the command yourself.

Behavior
» Stores the inbound message in a String buffer which can be retrieved using the getMessage() method.

Exceptions

If the performExecute() method is not implemented, it generates an exception by default.

Chapter 4. OrderltemStatus command 29

OrderConfirmStatus command

The OrderConfirmStatus command is used when an Update. WCS_OrderStatus XML message with an
OrderStatusType tag value of OrderConfirm is received from a back-end system. The command updates
information regarding the confirmation status of an an existing order. It has the same parameters,
behavior, and exception conditions as the OrderStatus command. The only difference between the two
commands is that the OrderConfirmStatus command sets the value of the orderStatus parameter to a
default value of C which means the order has been confirmed if it is not provided in the message.

For detail on the parameters, behavior, and exceptions handling for the OrderConfirmStatus command,
refer to the OrderStatus command.

ProductListPriceUpdate command

The ProductListPriceUpdate command is used to update product price information for the
Update_ WCS_ProductPrice XML message. The command is used to update information in the WebSphere
Commerce database regarding the listed price of a product.

Parameters

partNumber
The part number of the catalog entry as defined in the PARTNUMBER column of CATENTRY
table.

memberld
The reference number that identifies the owner of the catalog entry.

catEntryld
The catalog entry offered for sale.

currency
The ISO 4217 currency type in which the price is expressed. This value is mandatory.

listPrice
The product list price used to update the LISTPRICE table.

Behavior
* The command updates a record in the LISTPRICE table.

* The partNumber, together with memberld are used to get the catalog entry key (CATENTRY_ID in table
CATENTRY).

 |If the catalog entry matches an existing one in the LISTPRICE table, but the currency type does not
match a currency type for any record for that catalog entry, a new record is created in the LISTPRICE
table. This allows you to specify prices in different currencies for the same catalog entry.

Exception Conditions
* The currency parameter is empty.

* The catalog entry cannot be found using the memberld, which owns the store along with the
partNumber.

30 cConnectivity and Notification: Online Help Files

Chapter 5. How the outbound messaging system works

The messaging system uses a plug-in model that implements the Common Connector Framework (CCF)
to provide a common interface between the system and the various transports. During administration of
the system site and store administrators can perform the following tasks:

* Add, enable, and configure transports. The administrator creates the settings using the Administration
Console. Communication between the messaging system and the transports take place through a
singular administration interface.

* Maintain profiles, assigning transports to individual message types and indicating the settings to be
used for each one. The administrator does this using the Administration Console.

At run time, when a message is generated by a WebSphere Commerce sub-system, the following events
occur:

1. The appropriate profile is retrieved for the message type. If no store profile exists for that message, the
site profile is used. The profile is used to determine what transport method and settings are used.

2. If the message uses the composition service, a template is used to generate the message.
3. The message is sent through the run time interface to the transport, which delivers the notification.

The use of a common interface with external transports allows the implementation details of the transport
to be kept separate from the operation of the messaging system. This architecture makes it possible to
plug in additional transports that adhere to the CCF interface.

Outbound messaging system

The WebSphere Commerce messaging system allows you to manage all aspects of defining and sending
messages generated within WebSphere Commerce. It allows you to control the manner in which
administrators, customers, back-end and fulfillment center systems are notified of various events, such as
customer orders or system errors.

To configure the outbound messaging system use the Administration Console. The messaging system can
send messages using transports such as e-mail using SMTP and file using UTF-8 encoding. For e-malil
the supported outbound protocol is SMTP, the message encoding depends on the specified language.
Optionally, you can configure the messaging system to send messages to a back-end or fulfillment center
system using MQSeries.

The runtime environment of the outbound messaging system provides a highly customizable messaging
environment. These features include the following:

» Composition services
Customize messages using predefined JSP templates.

* Multiple message transmissions support
Allows you to send a single message through more than one transport.

* Multiple notification messages over the same transport
This is useful for sending broadcast emails to multiple recipients.

» Support for three processing types:

— Transacted
Use for messages that should be sent upon successful completion of the current transaction.

— Immediate
Use for messages that should be sent when the event takes place in WebSphere Commerce. The
message is sent whether the transaction commits or not.

© Copyright IBM Corp. 1996, 2002 31

— Request-reply
Use for messages that require a response message from the back-end system.

Note: Ensure transport attributes, for example e-mail addresses, and file locations are valid. The
Messaging System does not validate attributes; incorrect attributes will result in failure to send the
message.

Outbound messaging system administration

Administration of the outbound messaging system can be divided into two main categories: site
administration and store administration. A Site Administrator provides the basic framework to be used by
all stores within the site, such as which transports can be used. For example, a store may not use e-malil
as a transport unless it has previously been configured and enabled by the Site Administrator. Store
administrators can then accept the settings made at the site level, or they can modify them for their store.

Outbound back-end integration messages

An outbound back-end message is a WebSphere Commerce-generated request that can be sent to an
external system. WebSphere Commerce can be configured to generate the Report NC_PurchaseOrder
XML outbound message that allows you to communicate to back-end systems that an order has been
placed. The XML message is generated and sent out by the outbound messaging system, encoded in
Unicode UTF-8 format. You can also use the legacy Order Create message, which performs a similar
function.

The outbound messages contain order information sent from the WebSphere Commerce Server to
external systems, where further order fulfillment processes take place. To enable the outbound message,
first you need to choose which one you want to use, either the Report_NC_PurchaseOrder XML message
or the legacy Order Create message. The two can not be enabled at the same time.

If you choose to use the Report_ NC_PurchaseOrder XML message, update your EMDREJ database table
using the following SQL statement:

update cmdreg set

classname='com. ibm.commerce.messaging.commands.SendXMLOrderCmdImpl’ where
interfacename="com.ibm.commerce.order.commands.OrderMessagingCmd’

This assigns the SendXMLOrderCmdIlmpl task command which generates and sends the message to the
OrderMessagingCmd interface of the OrderProcess command.

If you choose to use the legacy Order Create message, update your database CMDREG table using the
following SQL statement:

update cmdreg set

classname='com. ibm.commerce.messaging.commands.SendWCSOrderCmdImpl’ where
interfacename="com.ibm.commerce.order.commands.OrderMessagingCmd’

This assigns the SendWCSOrderCdemEI task command which generates and sends the message to the
OrderMessagingCmd interface of the command. You need to restart your WebSphere
Commerce instance in order for the change to take effect.

You can also create new outbound back-end integration messages.

Outbound fulfillment integration messages

An outbound fulfillment integration message is a WebSphere Commerce generated request that can be
sent to a fulfilment center system. WebSphere Commerce can be configured to generate outbound
messages in response to inbound messages, containing information to be communicated to fulfillment
center systems.

32 Connectivity and Notification: Online Help Files

../database/CMDREG.html
../refs/rosorderprocess.htm

The outbound XML messages are sent out by the outbound messaging system encoded in Unicode UTF-8

format. Refer to Message composition templated for information on the JSP files that generate the

following outbound messages.

The Response WCS_ExpectedinvRecord outbound message allows you to respond to fulfillment center

systems when a request for an expected inventory record has been created. It contains the RA_ID and
RADETAIL ID that are generated. The outbound message is invoked by the

Create WCS_ExpectedinventaryRecord message and generated by the RACreateResult.jsp file.

The Response WCS_PickBatcH outbound message allows you to communicate to fulfilment center
systems that a pickbatch has been created. The outbound message is invoked by the

Create WCS_PickBatcH message and generated by the PickBatchResult.jsp file.
The Repart WCS_PickPacklistDetail outbound message is invoked by the

Inquire_ WCS_PickPackListDetail message and allows you to respond to a fulfillment center request by
sendmg details for a specific PICKBATCH_ID. It contains the pick ticket and packing list from the
table for the given PICKBATCH_ID.

The Respanse WCS_CreatelnvReceipd outbound message allows you to communicate to fulfillment center

systems that an inventory recelpt has been created. The outbound message is invoked by the
message and generated by the CreatelnvReceiptOK.jsp file.

The Respanse WCS UpdatelnvReceipi outbound message allows you to respond to fulfillment center

systems informing them that mventory has been updated upon receipt. The outbound message is invoked
by the message and generated by the UpdatelnvReceiptOK.jsp file.

The Response WCS CreateShipConfirm outbound message is invoked by the
Create WCS ShipmentConfirmation message and allows you to respond to fulfillment center systems
confirming that a shipment confirmation has been created.

The Release WCS ShipmentNotifyl outbound message is an outbound e-mail message that allows you

the option of notifying customers when an order has been shipped.

Outbound messaging system store administration

The Store Administrator is responsible for enabling the transport methods that are used by the store. The
Store Administrator can add, activate, deactivate, and configure transport methods for the store, and
assign transport methods to message types. The Store Administrator has the option to either accept the
settings created by the Site Administrator, or override them. The following is a list of the tasks involved in
store administration:

* Add transport methods.

» Activate or deactivate transport methods.

» Configure transport methods.

» Assign transport methods to message types.

Once a Store Administrator has overridden a site-level setting, any future changes made by the Site
Administrator to that particular setting will not affect that store. Changes made to other settings at the
site-level, that have not been modified by the Store Administrator, still apply. For example, if e-mail is
configured for the site on a SMTP host, smtp.host1.com, but Store A has specified smtp.host2.com, any
future changes site-level to e-mail will not affect the settings for e-mail at Store A.

Chapter 5. How the outbound messaging system works 33

../refs/rcvtempl.htm
../refs/rcvrepad.htm
../refs/rcvcrepad.htm
../refs/rcvrcrpb.htm
../refs/rcvcrpkb.htm
../refs/rcvrippld.htm
../database/ORDRELEASE.html
../refs/rcvrcrir.htm
../refs/rcvcrcpt.htm
../refs/rcvrupin.htm
../refs/rcvinadj.htm
../refs/rcvrcrsc.htm
../refs/rcvshpcnf.htm
../refs/rcvrelshp.htm

Outbound messaging system site administration

The Site Administrator can determine which transports are to be supported by the site, and configure them
on a site-wide basis. Site level administration provides default settings which can be overridden by store
level administration settings.

A Site Administrator can activate and configure transports and message types for the site, or allow Store
Administrators to specify their own settings. The following is a list of the tasks involved in site
administration:

* Add transports.

» Activate or deactivate transports.

» Configure transports. This supplies default configurations that a Store Administrator can override.

» Assign transports to message types. These assignments can be overridden by Store Administrators.

Only Site Administrator can perform these tasks:

+ [Enable errar naotificatiod to send e-mail messages to administrators

* Enable the MQSeries JMS transport to send messages to back-end system

» [Enable arder status notification to update customers or administrators on the status of existing orders

Adding new messages to the Transport Adapter

WebSphere Commerce allows you to extend the Transport Adapter to process additional messages. This
involves creating an XML template of the message, and mapping the message to a Controller
Command. To do this, you will need to have an advanced knowledge of XML, and of the WebSphere
Commerce Controller Commands. If your message requires you to create a nhew Controller Command,
you will also need to have an advanced knowledge of the WebSphere Commerce database schema, and
Java programming.

34 Connectivity and Notification: Online Help Files

../tasks/tcvsener.htm
../tasks/tcvsenor.htm

Chapter 6. Enabling outbound messaging Send/Receive
sending services

WebSphere Commerce can interact with other systems through the outbound messaging Send/Receive
sending services. This allows WebSphere Commerce to send a message to another system and wait for a
reply. The behavior of Send/Receive is similar to the SendImmediate method except that it waits for a
return reply from the system receiving its message request.

After sending the request message, WebSphere Commerce listens to the inbound queue and waits until
the reply message is placed on the queue with a correlation ID equal to the message ID of the request
message.

You should use separate queues for Send/Receive from the queues used for the MQSeries adapter.

To enable WebSphere Commerce to use the Send/Receive message service, do the following:

1. Create a message type in the MSGTYPEY table for the new message used for the Send/Receive.
The value in the VIEWNAME column is the VIEWNAME used to generate the message to send.

2. Create a command that uses the sendReceiveImmediate sending mode and the message type ID
created in step 1. This is used to call the SendMsg interface.

3. To generate the outbound message, create an entry in the MEWREd table to associate the
VIEWNAME created in step 1 with a JSP file. The entry must use the following values:

INTERFACENAME
com.ibm.commerce.messaging.viewcommands.MessagingViewCommand

CLASSNAME
com. ibm.commerce.messaging.viewcommands.MessagingViewCommandImp]l

PROPERTIES
docname=JSP filename
4. Create a JSP file to generate the message to send to the outbound queue.
5. Use the Administration Console to ensure that the transport assigned to the Send/Receive is active.

6. Use the Administration Console to define each message type that you created in step 1. In the Mode
field specify 0. This indicates a Send/Receive mode of communication.

Enabling the messaging system transport adapter
To enable the messaging system transport adapter, do the following:
Select Host name —> Instance, then open the Components folder.
Select TransportAdapter.

Ensure that the check-box next to Enable Component is activated and click Apply.
Exit Configuration Manager.

IRESI&LLthEJALEhSphELE_App.“.CaILQﬂ_S.&DLEﬂ- i .

o 0k whPE

Assigning the error condition message type to a transport

Ensure that error messages are assigned to the site, not individual stores. To assign the error condition
message type to a transport method, do the following:

1. lOpen the Administration Consold and log on as a Site Administrator.

2. From the Configuration menu, select Message Types. The Message Type Configuration page
displays.

© Copyright IBM Corp. 1996, 2002 35

../database/MSGTYPES.html
../database/VIEWREG.html
tcmopcm.htm
tsrwas.htm
tacopen.htm

3. Click New. The Message Transport Assignment page opens.

a. On the Message Type drop-down list select Description of an Error Condition occurring in
WebSphere Commerce.

b. On the Message Severity field specify 0 0.

c. From the Transport drop-down list, select E-mail.

d. From the Device Format drop-down list, select Standard Device Format.
4. Click Next. The Message Transport Assignment parameter page displays.

a. On the Host field, type the fully qualified name of your mail server.

b. On the Protocol field, type smtp.

c. On the Recipient field, specify the administrator who should receive error notification messages. If
multiple recipients are specified, separate recipient names with commas.

d. On the Sender field, specify the sender of the message.
This text appears in the Sender field of the e-mail message.

e. On the Subject field, specify the subject of the message.
This text appears in the Subject field of the e-mail message.

5. Click Finish.

Activating a transport method for a store

To activate an existing transport method for your store, do the following:

1. Dpen the Administration Consold and log on as a Store Administrator.

2. From the Configuration menu, select Transports. The Transport Configuration page displays.
3. Click the check box next to the transport you want to activate.

4. Click Change Status. The page reloads and the status changes.

Adding a transport method to a store

To add a new transport method to your store, do the following:

1. Dpen the Administration Consold and log on as a Store Administrator.

2. From the Configuration menu, select Transports. The Transport Configuration page displays.
3. Click Add. The Add Transport dialog opens.
4

Select the check box next to the transport you want to add to the store. You can select all transports
by selecting the check box at the top-left. If there are no transports available, then you have already
added all of the transports made available by the Site Administrator.

5. Click Add to add the transport, or click Cancel to return to the Transport Configuration page.

Configuring a transport method for a store

To configure a transport method for your store, do the following:

1. Dpen the Administration Cansald and log on as a Store Administrator.

2. From the Configuration menu, select Transports. The Transport Configuration page displays.
3. Select the check box beside the transport you want to configure.
4

Click Configure. The Transport Configuration Parameters page opens. The name of the transport
you selected displays at the top-left of the parameter table.

Provide the information for the transport in the appropriate fields.

6. Click OK to accept the changes, or click Cancel to return to the Transport Configuration menu without
making changes.

36 Connectivity and Notification: Online Help Files

tacopen.htm
tacopen.htm
tacopen.htm

Note: Do not click OK unless you want the settings to take effect. Once you have clicked OK, changes
made to the configuration of this transport by the Site Administrator will no longer affect this store. If you
have not made any changes, or do not want the settings to take effect , click Cancel.

Deactivating a transport method for a store

To deactivate an existing transport method for your store, do the following:

1. lOpen the Administration Consold and log on as a Store Administrator.

2. From the Configuration menu, select Transports. The Transport Configuration page displays.
3. Click the check box for the transport you want to deactivate.

4. Click Change Status. The page reloads, indicating that the transport status is now Inactive.

Assigning a transport method to a message type for a store

A Store Administrator can accept the transport method assignments made by the Site Administrator, or
override them for their store. To assign transport methods to be used for specific message types for a
store, do the following:

1. Qpen the Administration Consald and log on as a Store Administrator.

2. From the Configuration menu, select Message Types. The Message Type Configuration page
displays.

3. Click the check box next to the message type to which you want to assign a transport, and click
Change. If the message type is not in the list, click New. The Message Transport Assignment page
opens.

4. If this is a new transport assignment, select the message type to which a transport is to be assigned
from the Message Type drop-down list.

5. Type the transport configuration values in the appropriate fields. In general, a message severity of
0,0, and a Standard Device Format is recommended.

6. Click Next to configure the transport parameters for the specified message type.
7. Type the attributes for the transport you have chosen for this message type.
8. Click Finish to save your changes or Cancel to return to the Message Type Configuration page.

Note: Do not click Finish unless you want the settings to take effect. Once you have clicked Finish,
changes made to the configuration of this transport by the Site Administrator will no longer affect this store.
If you have not made any changes, or do not want the settings to take effect effect, click Cancel.

Activating a transport method for a site

To activate an existing transport method for your site, do the following:

1. Qpen the Administration Consold and log on as a Site Administrator.

2. From the Configuration menu, select Transports. The Transport Configuration page displays.
3. Click the check box next to the transport you want to activate.

4. Click Change Status. The page reloads, indicating that the status of the transport is now Active.

Adding a transport method to a site

To add a new transport method to your site, do the following:

1. lQpen the Administration Consold and log on as a Site Administrator.

2. From the Configuration menu, select Transports. The Transport Configuration page displays.
3. Click Add to open the Add Transport page.
4

Select the check box next to the transport you wish to add to the site. You can select all transports by
selecting the top check-box.

Chapter 6. Enabling outbound messaging Send/Receive sending services 37

tacopen.htm
tacopen.htm
tacopen.htm
tacopen.htm

5. Click Add to accept the changes, or click Cancel to return to the Transport Configuration page.
When you add a transport method to a site, it is automatically activated.

Assigning a transport method to a message type for a site

To assign a transport method to be used for specific message types for a site, do the following:

1. Dpen the Administration Consald and log on as a Site Administrator.

2. From the Configuration menu, select Message Types. The Message Type Configuration page
displays.

3. Click the check box next to the message type to which you want to assign a transport, and click
Change. If the message type is not in the list, click New. The Message Transport Assignment page
opens.

4. If this is a new transport assignment, select the message type to which a transport is to be assigned
from the Message Type drop-down list.

5. Type the transport configuration values in the appropriate fields. In general, a message severity of
0,0, and a Standard Device Format is recommended.

6. Click Next to configure the transport parameters for the specified message type.
7. Type the attributes for the transport you have chosen for this message type.
8. Click Finish or Cancel to return to the Message Type Configuration page.

Configuring a transport method for a site

To configure a transport method for your site, do the following:

1. Dpen the Administration Consald and log on as a Site Administrator.

2. From the Configuration menu, select Transports. The Transport Configuration page displays.
3. Select the check box beside the method you want to configure.
4

Click Configure. The Transport Configuration Parameters dialog opens. The name of the transport
method you selected appears at the top-left of the parameter table.

Type the values to be used by the transport method.
6. Click OK to accept the changes, or click Cancel to return to the Transport Configuration page.

o

Deactivating a transport method for a site

To deactivate an existing transport method for your site, do the following:

1. Dpen the Administration Consold and log on as a Site Administrator.

2. From the Configuration menu, select Transports. The Transport Configuration page displays.
3. Click the check box next to the transport you want to deactivate.

4. Click Change Status. The page reloads, and the status changes.

Checking the system settings for the e-mail transport method

Ensure that the default settings for the e-mail transport method have been set by doing the following:

1. Launch the Configuration Managet

2. Select the Instance, then open the transports —> Outbound—> JavaMail —> ConnectionSpec
folder.

Click the Advanced tab in the right-hand frame.
Set the value of host, to your SMTP mail server.
Set the value of protocol, to smtp.

Click Apply.

o ok~ w

38 Connectivity and Notification: Online Help Files

tacopen.htm
tacopen.htm
tacopen.htm
tcmopcm.htm

7. |Restart the WebSphere Commerce Servel.

Note: This provides a system wide default setting for the e-mail transport. This setting will be overridden
by those created in the Administration Console.

Activating notification
Once you have set the system default settings for the e-mail transport method, activate notification by
doing the following:
1. Edit the <instance_name>.xm1 by setting:
<Notification display="false">
<order enabled="true" />
<error enabled="true" />
<pwdreset enabled="true" />
</Notification>

2. |Restart \Althphprn Commerce Servet

Note: If you encounter problems when sending e-mail for error notification the following actions may be
required:

» Check that configuration values are correct.

» Clean-up all configuration data by deleting all entries that configure transport at the store level. The
following SQL statement will delete all entries:

delete from cseditatt where store id is not null

* Open the Administration Console and check that all message types are configured properly and do not
configure transport at the store level.

Enabling error notification

To enable e-mail error notification, do the following:
1. Ensure that the system default settings for the e-mail transport method have been set.

2. lActivate nofification for error messages.
3. lAssign the error condition message type to a transport.
4. |Assign a transport method to message types for a sitd.
On the Message Transport Assignment page enter the following values:

a. On the Message Type drop-down list select Description of an Error Condition occurring in
WebSphere Commerce.

b. On the Message Severity field specify 0 0.
From the Transport drop-down list, select E-mail.
d. From the Device Format drop-down list, select Standard Device Format.

On the Message Transport Assignment parameter page use the following values:
a. On the Host field, type the fully qualified name of your mail server.
On the Protocol field, type smtp.

On the Recipient field, specify the administrator who should receive error notification messages. If
multiple recipients are specified, separate recipient names with commas.

d. On the Sender field, specify the sender of the message.
This text appears in the Sender field of the e-mail message.

e. On the Subject field, specify the subject of the message.
This text appears in the Subject field of the e-mail message.

Chapter 6. Enabling outbound messaging Send/Receive sending services 39

tsrwcs.htm
tsrwcs.htm
tcvsactnt.htm
tcverrtr.htm
tcvsastrn.htm

Note: If you encounter problems when sending e-mail for error notification the following actions may be
required:

* Check that configuration values are correct.

» Clean-up all configuration data by deleting all entries that configure transport at the store level. The
following SQL statement will delete all entries:

delete from cseditatt where store_id is not null

* Open the Administration Console and check that all message types are configured properly and do not
configure transport at the store level.

Activating notification

Once you have set the system default settings for the e-mail transport method, activate notification by
doing the following:

1. Edit the <instance_name>.xm] by setting:
<Notification display="false">
<order enabled="true" />
<error enabled="true" />
<pwdreset enabled="true" />
</Notification>

2. Restart WehSphere Commerce Serve,

Note: If you encounter problems when sending e-mail for error notification the following actions may be
required:

» Check that configuration values are correct.

» Clean-up all configuration data by deleting all entries that configure transport at the store level. The
following SQL statement will delete all entries:

delete from cseditatt where store_id is not null

* Open the Administration Console and check that all message types are configured properly and do not
configure transport at the store level.

Enabling the shipment notification e-mail

To enable the shipment notification email to be sent to customers when their order is shipped, do the
following:
+ Update the CMDREQ database table using the following SQL statement:
update cmdreg set classname='com.ibm.commerce.messaging.commands.ReleaseShipNotifyCmdImpl’
where interfacename="com.ibm.commerce.messaging.commands.ReleaseShipNotifyCmd’

Note: By default, the Release_ WCS_ShipmentNotify messa%e is disabled using
ReleaseShipNotifyDummylmpl as the CLASSNAME in the database table. The
ReleaseShipNotifyDummylmpl is a dummy implementation which does nothing.

Enabling broadcast messages

To send a broadcast e-mail message, do the following:
1. Create a JSP file called BroadcastMessage. jsp.
2. Place the file in the site or store directory.

3. Dpen the Administration Cansald and log on as a Site or Store Administrator.

40 connectivity and Notification: Online Help Files

tsrwcs.htm
../database/CMDREG.html
../database/CMDREG.html
tacopen.htm

a. From the Configuration menu, select Message Types. The Message Type Configuration page
displays.
b. Click New. The Message Transport Assignment page opens.
1) On the Message Type drop-down list select A broadcast message.
2) On the Message Severity field specify 0 0.
3) From the Transport drop-down list, select E-mail.
4) From the Device Format drop-down list, select Standard Device Format.
c. Click Next. The Message Transport Assignment parameter page displays.
1) On the Host field, type the fully qualified name of your mail server.
2) On the Protocol field, type smtp.

3) On the Recipient field, specify a default recipient. If multiple recipients are specified, separate
recipient names with commas. The recipient name will be replaced by the customers e-mail
address at run-time.

4) On the Sender field, specify the sender of the message. This text appears as the content of
the From line in the e-mail.

5) On the Subject field, specify the subject of the message. This text appears as the content of
the Subject line in the e-mail.

Click Finish.

To send the message, follow the directions in the BroadcastMessage command reference file.

For example, to send a message to all customers who have purchased part number “sku1234”
from any store in site type the following on the address line of your browser:

BroadcastMessage?subject=testing&messageContent=this+is+a+test
&sender=example%40ca.ibm.com&mode=2&partNumber=skul234&URL=BroadcastMessage. jsp

Enabling order status notification

To enable notification for order status messages, do the following:
1. Open a database command window on your WebSphere Commerce machine.

2. Register the order status notification command by typing the following SQL statement:
update cmdreg set
classname="com. ibm.commerce.messaging.commands.OrderStatusNotifySendCmdImpl'whereinterfacename="com.ibm.c

3. [Stop and the WehSphere Commerce Servei
4. If necessary, add transports methods to your site or store.

5. Assign the “Notification message of the order status” type to a transport. Ensure that you select HTTP
Browser in the Device Format drop-down list.

Setting up outbound message composition

To set up and use the composition service for an outbound message, do the following:
1. Assign the transports to the appropriate message type, using either of these methods:

e o ——

A valid device format, as specified in the % table, must be specified for each transport to

be used.

2. Referring to the information in the topic Quthound messaging system interfacd, create a messaging

system object using the SendMsgCmd task command. Use the setMsgType() and setStoreld()
initialization services.

3. lnvoke the messaging system compose methad.

Chapter 6. Enabling outbound messaging Send/Receive sending services 41

../refs/rprbroadcastmessage.htm
tsrwcs.htm
tcvsastrn.htm
tcvstrat.htm
../database/DEVICEFMT.html
../refs/rcvomint.htm
../refs/rcvinvcm.htm

Assigning the error condition message type to a transport

Ensure that error messages are assigned to the site, not individual stores. To assign the error condition
message type to a transport method, do the following:

1. Dpen the Administration Consale and log on as a Site Administrator.

2. From the Configuration menu, select Message Types. The Message Type Configuration page
displays.
3. Click New. The Message Transport Assignment page opens.

a. On the Message Type drop-down list select Description of an Error Condition occurring in
WebSphere Commerce.

b. On the Message Severity field specify 0 0.

c. From the Transport drop-down list, select E-mail.

d. From the Device Format drop-down list, select Standard Device Format.
4. Click Next. The Message Transport Assignment parameter page displays.

a. On the Host field, type the fully qualified name of your mail server.

b. On the Protocol field, type smtp.

c. On the Recipient field, specify the administrator who should receive error notification messages. If
multiple recipients are specified, separate recipient names with commas.

d. On the Sender field, specify the sender of the message.
This text appears in the Sender field of the e-mail message.

e. On the Subject field, specify the subject of the message.
This text appears in the Subject field of the e-mail message.

5. Click Finish.

Enabling order status notification

To enable natification for order status messages, do the following:
1. Open a database command window on your WebSphere Commerce machine.

2. Register the order status notification command by typing the following SQL statement:
update cmdreg set
classname="com. ibm.commerce.messaging.commands.OrderStatusNotifySendCmdImp1'whereinterfacename='com.ibm.comm

3. Btop and the WebhSphere Commerce Servei
4. If necessary, add transports methods to your site or store.

5. Assign the “Notification message of the order status” type to a transport. Ensure that you select HTTP
Browser in the Device Format drop-down list.

Enabling messages to be sent from the Administration Console

If you have based your store on the InFashion sample store, you can enable Customer Service
Representatives to send messages to customers using the WebSphere Commerce Administration
Console. To enable messages to be sent from the WebSphere Commerce Administration Console, do the
following:

1. Dpen the Administration Cansald and log on as a Site Administrator or Store Administrator.

2. From the Configuration menu, select Message Types. The Message Type Configuration page
displays.
3. Click New. The Message Transport Assignment page opens.

a. On the Message Type drop-down list select Order related message sent by customer service
representative.

b. On the Message Severity field specify 0 0.

42 Connectivity and Notification: Online Help Files

tacopen.htm
tsrwcs.htm
tacopen.htm

c. From the Transport drop-down list, select E-mail.

d. From the Device Format drop-down list, select Standard Device Format.
4. Click Next. The Message Transport Assignment parameter page displays.

a. On the Host field, type the fully qualified name of your mail server.

b. On the Protocol field, type smtp.

c. On the Recipient field, specify a default recipient. If multiple recipients are specified, separate
recipient names with commas. The recipient name will be replaced by the customer e-mail address
at run-time.

d. On the Sender field, specify the sender of the message.

This text appears in the Sender field of the e-mail message. (This value is overriden by the E-malil
address value entered in Store Services.)

e. On the Subject field, specify the subject of the message.

This text appears in the Subject field of the e-mail message. (This value is overriden by the values
entered in Store Services.)

5. Click Finish.

Enabling the outbound OrderCreate message

The OrderCreate outbound message can be enabled in either XML format or the legacy format. The two
formats are generated by the following task commands:

1. SendXMLOrder generates the Report_ NC_PurchaseOrder XML message.
2. SendWCSOrder generates the Order Create legacy message.

It is recommended that you use the XML format unless you are migrating from a previous version of
WebSphere Commerce and want to maintain the existing format. You cannot enable both.

To enable the Report_ NC_PurchaseOrder XML message, update your database EMDREQ table using the
following SQL statement:

update cmdreg set classname="com.ibm.commerce.messaging.commands.SendXMLOrderCmdImp1’ where
interfacename="com.ibm.commerce.order.commands.OrderMessagingCmd’

To enable the Order Create legacy message, update your database CMDREG table using the following
SQL statement:

update cmdreg set classname="com.ibm.commerce.messaging.commands.SendWCSOrderCmdImp1’ where
interfacename="com.ibm.commerce.order.commands.OrderMessagingCmd’

Chapter 6. Enabling outbound messaging Send/Receive sending services 43

../database/CMDREG.html

44 Connectivity and Notification: Online Help Files

Chapter 7. Message types

The WebSphere Commerce outbound messaging system can process different message types. Each
message type is sent to the messaging system in response to a specific type of event that occurs within
the WebSphere Commerce system. The messaging system processes the message according to the
message type and the message settings specified in the Administration Console. The following table
shows the message types supported by the outbound messaging system.

Message Type
in MSGTYPE table

Name in Administration Console

Usage

ErrorMessage

Description of an error condition
occurring in WebSphere WebSphere
Commerce

Configure this message type to
enable administrators to receive
e-mail messages when an error
occurs in WebSphere Commerce.

To enable this message, see Enahbid

OrderCreateFixFormat

Outbound message for WebSphere
Commerce order create

Indicates that an order has been
created in WebSphere Commerce.
The message can be used to send an
outbound WebSphere Commerce
order create message to a back-end
system.

See Enahle the authound
rderCreate messagdl,

OrderCreateXMLFormat

Outbound message for WebSphere
Commerce XML create

Indicates that an order has been
created in WebSphere Commerce.
The message can be used to send an
outbound WebSphere Commerce
order create message to a back-end
system.

See Enable the outhound
OrderCreate messagd.

OrderStatusNotify

Notification message of the order
status

Indicates that the status of an order
has changed.

See Enable order status natification.

OrderAuthorized

Message for an authorized order

Indicates that an order has been
authorized.

To send authorized order messages
you need to create a JSP template.

See lQrderPracess command.

OrderReceived

Message for a received order

Indicates that an order has been
received.

To send received order messages
you will need to create a JSP
template.

See QrderProcess command.

© Copyright IBM Corp. 1996, 2002

45

../tasks/tcvsener.htm
../tasks/tcvsener.htm
../tasks/tcvenord.htm
../tasks/tcvenord.htm
../tasks/tcvenord.htm
../tasks/tcvenord.htm
../tasks/tcvsenor.htm
rosorderprocess.htm
rosorderprocess.htm

Message Type
in MSGTYPE table

Name in Administration Console

Usage

OrderRejected

Message for a rejected order

Indicates that an order has been
rejected.

To send rejected order messages you
need to create a JSP template.

See QrderProcess command.

OrderCancel

Notification message for a canceled
order

Indicates that an order has been
canceled.

To send canceled order messages
you will need to create a JSP
template.

See OrderPraocess command.

PasswordNotify

Notification message for password
reset

Configure this message type to
enable e-mail messages to be sent to
customers indicating that their
password has been reset.

BroadcastMessage

A broadcast message

Configure this message type to send
broadcast message to customers.

To send broadcast messages you
need to create a broadcast message
JSP template.

See BroadcastMessage command.

MerchantOrderNotify

Message for notifying the merchant of
an order

Related to the NotifyMerchant
parameter of the OrderProcess
command.

To send notification messages you
need to create a JSP template.

See lQrderPracess command.

AdminOrderComment

Order related message sent by
customer service representative

Configure this message type to
enable Customer Service
Representatives to send customers
e-mail messages from the
WebSphere Commerce Accelerator.

NotifyReleaseShip

Message sent to customer to notify
them their order has been shipped

Configure this message type to send
customers e-mail messages about
shipment confirmation of orders.

See the ReleaseShipConfirm
command.

Outbound messaging system interface

Interactions with the outbound messaging system can be done through the SendMsgCmd task command.
This task command externalizes all available interfaces to methods provided by the messaging system to
set necessary parameters to construct and use the messaging system object. The following is a list of all
available services in the SendMsgCmd command interface:

. Db —
- . —

46 connectivity and Notification: Online H

elp Files

rosorderprocess.htm
rosorderprocess.htm
rprbroadcastmessage.htm
rosorderprocess.htm
rcvomin1.htm
rcvomin2.htm

Outbound message extension

The Report_NC_PurchaserOrder message includes the Liserbatd XML element, which contains the
UserDataField element. You can customize the UserData element to pass extra information not included in
the Report_NC_PurchaserOrder outbound message by extending the SendXMLOrderMsg command and
implementing either the getHeaderExtensionRecords() method or the getltemExtensionRecords()method,
depending on whether you want to add the information at the header or item level. By default, both
getHeaderExtensionRecords() and getltemExtensionRecords() methods return a null String value. Once
implemented, both methods should return a String object that contains a series of UserDataField elements
as follows:

<UserDataField name="field name">field value</UserDataField>

UserDataField repeated Toop
<UserDataField name="field_name">field_value</UserDataField>
For more information about how to extend commands, see the WebSphere Commerce Programmer’s

Guide.The following table outlines the methods called for the XML elements of the
Report_ NC_PurchaseOrder message:

Message XML Element Method Called
Report_NC_PurchaserOrder Report_PO_Header getHeaderExtensionRecords()
Report_NC_PurchaserOrder Report_PO_ltem getltemExtensionRecords()

The Order Create message includes the USRLST record, which contains the m data
segment. DATUSR allows you to add optional fields to a message. You can customize the DATUSR
records to pass extra information not included in the Order Create outbound message by extending the
SendWCSOrderMsg command and implementing either the getHeaderExtensionRecords() method or the
getltemExtensionRecords()method, depending on whether you want to add the information at the header
or item level. By default, both getHeaderExtensionRecords() and getltemExtensionRecords() methods
return a null String value. Once implemented, both methods should return a String object that contains a
series of DATUSR records as follows:

For more information about how to extend commands, see the WebSphere Commerce Programmer’s
Guide. The following table outlines the methods called for the sections of the Order Create message:

Message USRLST Section Method Called
Order Create <HEADER> getHeaderExtensionRecords()
Order Create <ITMDAT> getltemExtensionRecords()

Chapter 7. Message types 47

rcvomin3.htm
rcvomin4.htm
rcvomin6.htm
rcvomin5.htm
rcvudout.htm
rcvdato.htm

New outbound message support

In addition to the supported XML and WebSphere Commerce outbound messages, you can add support
for new outbound messages. To add a new outbound message, you must write a new controller command
to build the content of the new outbound message and send the message to the back-end system using
the send services of the outbound messaging system.

There are two methods for building the content of new outbound messages. The first method is to build
your new outbound message in your own String buffer and assign it to the outbound messaging system
through the use of its message content setting services that set the message content directly. This
alternative requires you to include the logic of building the message in the controller command that you
write. The second method is to build your new outbound message through the use of the outbound
messaging system composition services. Through the use of JSP templates, the composition services
generate an outbound message according to the message layout and content you defined in the JSP
template.

For more information on how to use the outbound messaging services, refer to the Outbound Messaging
System Interface section. For more information on how to write commands, see the WebSphere
Commerce Programmer’s Guide.

UserData element for outbound messages

The outbound XML message Report NC_PurchaseOrder includes the UserData XML element as an
optional element. Include the UserDataField element in this message to send additional data. You can
customize the fields to pass extra data that is not included in the messages.

The name of the new field to be added should be the attribute of the name for the UserDataField element.

The following DTD describes the UserData element:

<!ELEMENT UserData (UserDataField+)>

<!ELEMENT UserDataField (#PCDATA)>

<IATTLIST UserDataField

name CDATA #REQUIRED>

The following is an example of the UserData element:

<UserData>
<UserDataField name="field name">field value</UserDataField>

.UserDataField repeated loop

</UserData>

Outbound messaging system interface programming examples

The following Java code segment shows how interactions with the outbound messaging system can take
place. Example 1 shows you how to build a new XML message and send it through the outbound
messaging system. Example 2 shows you how to build an e-mail message and send it through the
outbound messaging system:

Example 1

try
{

48 Connectivity and Notification: Online Help Files

com. ibm.commerce.messaging.commands.SendMsgCmd api =
(com.ibm.commerce.messaging.commands.SendMsgCmd)

CommandFactory.createCommand (SendMsgCmd.NAME, getStoreld());

// Assume you have set the msgType in the MSGTYPES table to 100 and you are using
// storeld of 1.

api.setMsgType(new Integer(100));

api.setStoreID(new Integer(1));

// You have to choice on how to build the msg:

// First choice: build your xml msg in a String object and then use the setContent().
String OrderCreateMsg = new String("<?xml version="1.0" encoding="UTF-8"?> ...");
api.setContent (OrderCreateMsg);

// Or, use the message composition services (compose()) by passing the template/view name
// This view name should be registered in VIEWREG and MSGTYPES tables referring to

// a JSP message layout template.

String viewName = new String("OrderCreateMsgView");

TypedProperty tp = new TypedProperty();

// get the orderRefNumber and put it into tp

tp.put("ORDER REF_NUMBER", getOrderRn().toString());

// get the languageld and put it into tp

tp.put ("LANGUAGE_ID", getCommandContext().getLanguageId());

// Pass the viewName, command Context and parameters stored in tp to compose services.

// Upon successful completion, a message is build according to message layout defined in the
// JSP message layout template referred by viewName.

api.compose(viewName, getCommandContext(), tp);

// Send out the message using sendTransacted send service.
api.sendTransacted();

// Set the command context obtained from the controller command.
api.setCommandContext (getCommandContext());

// Run the outbound messaging system services

api.execute();

}

catch (Exception ex)

{

ex.printStackTrace(System.err);

}
Example 2

try

{

com.ibm.commerce.messaging.commands.SendMsgCmd api =
(com.ibm.commerce.messaging.commands.SendMsgCmd)

CommandFactory.createCommand (SendMsgCmd.NAME, getStoreld());

// Assume you have set the msgType in the MSGTYPES table to 200 and you are using
// storeld of 1.

api.setMsgType(new Integer(200));

api.setStoreID(new Integer(1));

// You have to choice on how to build the msg:

// First choice: build your xml msg in a String object and then use the setContent().
String OrderNotifyMsg =

new String("Your Order has been received. Thank You for Shopping with us.");
api.setContent (OrderNotifyMsg);

Chapter 7. Message types 49

// Or, use the message composition services (compose()) by passing the template/view name

// This view name should be registered in VIEWREG and MSGTYPES tables referring to

// a JSP message layout template.

String viewName = new String("OrderNotifyMsgView");

TypedProperty tp = null;

// Pass the viewName, command Context and null parameter stored in tp to compose services.
// Upon successful completion, a message is build according to message layout defined in the
// JSP message layout template referred by viewName.

api.compose(viewName, getCommandContext(), tp);

// Set the subject, recipient and sender information using Configurable message data services
api.setConfigData("subject","Your Order has been received");
api.setConfigData("recipient",getEmailAddress());
api.setConfigData("sender","storeAdmin@storeABC.com);

// Send out the message using sendImmediate send service.
api.sendImmediate();

// Set the command context obtained from the controller command.
api.setCommandContext (getCommandContext());

// Run the outbound messaging system services

api.execute();

}

catch (Exception ex)

{

ex.printStackTrace(System.err);

Message composition templates

The WebSphere Commerce outbound messaging system includes JavaServer page composition templates
for a number of message types. When a message of one of these types is generated within WebSphere
Commerce, the message composition service uses the corresponding template to create the outbound
message. Once it is created, the outbound message can be sent through whatever transports have been
assigned to the message type in the Administration Console. An example of a message type that uses a
message composition template is OrderCreateXMLFormat, which uses the OrderCreateXML. jsp template.
The JavaServer page templates can be found in the following directory:

drive:\Program
Files\WebSphere\CommerceServer\installedApps\WC _Enterprise App<instance name>.ear\wcstores.war

drive:\WebSphere\CommerceServer\installedApps\WC Enterprise_App<instance name>.ear\wcstores.war

/usr/WebSphere/CommerceServer/installedApps/WC_Enterprise App<instance name>.ear/wcstores.war

/opt/WebSphere/CommerceServer/installedApps/WC_Enterprise App<instance name>.ear/wcstores.war

/QIBM/Userdata/WebASAdv4/<WAS_instance_name>installedApps/WC_Enterprise_App<instance_name>.ear/wcstores.war

The following table shows message types that use composition templates, and the JSP file associated with
it.

50 cConnectivity and Notification: Online Help Files

Message type Template
OrderCreateXMLFormat OrderCreateXML.jsp
OrderStatusNotify OrderStatusNotify.jsp
PasswordReset PasswordResetNotification.jsp

You can customize these JSP files.

The following table shows other message types that use composition templates, to use these message
t%Ees create your own JSP templates with the default name (the default name is registered in the

table):

Message type Default template name
OrderAuthorized OrderAuthorized.jsp
OrderReceived OrderReceived. jsp
OrderRejected OrderRejected. jsp
BroadcastMessage BroadcastMessage.jsp
MerchantOrderNotify MerchantOrderNotification.jsp
OrderCancel OrderCanceledNotification.jsp

Initialization services

These methods set the initial parameters that identify which messaging profile is used for the current
message. These parameters retrieve the information created and maintained in the Administration
Console.
* public void setMsgType(Integer msgType)
This method is required. It is used to set the Message Type for the current message.
e public void setStoreID(Integer storeld)
This method is required. It is used to retrieve message profile information for the store. To retrieve
site-level information, the site-level store id can be used. The messaging system attempts to retrieve a
profile based on the store entered. If none exists, it attempts to retrieve a profile based on the default
site identifier.
e public void setPriority(Integer priority)
This method provides optional initialization information. The priority integer specified limits the profiles
retrieved. Only those profiles whose priority range includes this integer will be retrieved for the current
message.

Message content setting services

You can either use the composition service or set the message content directly. To use the messaging
system composition service, use the following service:

* To use the messaging system composition service, use the following service:

— public void compose(String viewName, CommandContext cmdContext, TypedProperty inParms)
This method accesses the composer functionality. It allows users to set the message content through
the use of JSP templates. See the composer documentation for more information on this topic. The
cmdContext parameter provides the necessary context information to the composer. The viewName
parameter allows the user to determine the JSP that will be accessed by the composer. The inParms
parameter represents the data to be passed to the JSP. There are rules governing what vales can be
placed in the TypedProperty object. See the composer documentation for more information.

» To set the message content directly, use the following services:

Chapter 7. Message types 51

../database/VIEWREG.html

— public void setContent(Integer transportld, Integer languageld, byte[] msgContent)
This method allows you to set the content of a message directly using the msgContent parameter.
The other two parameters must be present, but can be null. The transportID parameter allows you to
set the content for a specific transport. The languagelD parameter allows you to set the content for a
specific language. For maximum flexibility in setting the content for multiple languages, it is
suggested that you use the compose method to run a JSP.

— public void setContent(Integer transportld, Integer languageld, String msgContent)
This setContent method performs the same function as the one described above, except it allows
you to enter the content in String format rather than as an array of bytes.

Add e-mail parts or attachments services

The standard e-mail transport, as well as some other transports, allow attachments to be added to
messages. The following methods allow users of the messaging system to attach content parts, or
attachments, to messages:

public void addContentPart(byte[] msgAttachment)

This method offers a simple way to add content parts to a message. For the e-mail transport, a “content
part” refers to an attachment. The msgAttachment parameter represents the content to be added to the
message. Note that this must be the actual content of the part, translated into byte format.

public void addContentPart(byte[] msgAttachment, String partName, String partType)

This method gives you greater flexibility in adding content parts to a message. The msgAttachment
parameter represents the content to be added to the message. The partName parameter represents a
name to be used for the content part. The partType parameter represents the MIME type of the part
being sent. For example, the partType for Mime Email could be 'text/plain’.

Configurable message data services

Use the following generic method to configure the transport services used for the message:

public void setConfigData(String key, String value)

This generic method allows the user to configure the transport services used for the message. The key
parameter refers to the administration name used to identify the attribute to be changed. The value
parameter is the value to be assigned. Invoking this method to this method will cause the values
specified here to override the values assigned in the Administration Console. Refer to the table below
containing the default transports available to the messaging system, and the attributes that apply to
each. See the addMember method below for an alternative way of setting e-mail recipients.

The default transports available to the Messaging System contain the following attributes (attribute keys
are case sensitive):

Transport Attribute key Description
E-mail subject The subject of the email.
recipient The e-mail address of the recipient.
sender The e-mail address of the sender.
host The mail host used to send the message.
protocol The protocol used to connect to the mail host.
File location The location of the file to be written.
FileName The name of the file to be written.
mode The type of write to perform.
0 - append, or create if the file does not exist
1 - overwrite

52 Connectivity and Notification: Online Help Files

Sending services

The following methods are provided with the outbound messaging system sending services:

public void sendImmediate()
This method sends the message immediately to recipients. The caller is blocked until the message has
been sent.

public void sendTransacted()

This method stores the message in the MSGSTORH database table. At a predetermined time, the
WebSphere Commerce scheduler invokes a job that sends all messages stored in batch mode. Using
this method ensures that a send occurs only after the caller has committed or terminated successfully.
This method should be used if blocking a call using the sendimmediate() method cannot be tolerated.

sendReceivelmmediate()

This method is used to perform a request-reply send. This type of send is used with the MQ-JMS
transport for back-end integration messages. The content of the reply is stored internally and can be
accessed via the getReply() method.

Hint: To perform a send-receive using the MQ-JMS transport, you must ensure that you have set the
mode attribute appropriately, using either the Administration Console or the setConfigData() method in
the configurable message data services.

public byte[] getReply()

This method is used to retrieve the result of the sendReceivelmmediate() method. To obtain the result, it
should be called after the performExecute() method, which executes the command. It returns the
response from the transport as an array of bytes.

Other services

The following methods outline the other services offered by the outbound messaging system:

e public void addMember(Long aMember)

This method represents the second way of entering recipient data into the messaging system (the first
being setConfigData). The parameter represents a valid member. The user can call this method
repeatedly, each call adding an additional member to the list of recipients. Internally, the messaging
system extracts the appropriate address from the Member.

Note 1:lt is important that you ensure validation is performed on member addresses.

Note 2:The recipient can be set using either addMember or setConfigData but not both. If both are
entered, the setConfigData entries will be overridden by the addMember entries. Also note that the
messaging system requires the user to enter the recipients before the content is set. This is because
member information may alter the content used in a message.

public void remTransport(Integer aRemoveTransportID)

This method gives you flexibility over which transports are used to deliver the method. The parameter
should be a transport id that is valid for this message type. When this method is called, the messaging
system removes the transport from the messages list of transports that may be used. In other words,
the transport passed in as a parameter will be disabled for this particular message call.

public void setPartialSend(Boolean partialSend)

This method is applicable only when the addMember method is used to set the recipients. The boolean
parameter represents whether partial sends are permitted. In the messaging system, a partial send
refers to sending the message as long as one of the members added has a preferred e-mail address
associated with their profile. The following is an explanation of the partialSend parameter:

— true: Permit partial sends. Those members who have not set up an address in the appropriate place
will be skipped.

— false: All or nothing. Returns an exception if even one of the members does not have an
appropriately configured email.

Note: No verification is performed by the messaging system to ensure an address is of the correct
format. Partial send operates on the principle of the existence of a value in the appropriate place.

Chapter 7. Message types 53

../database/MSGSTORE.html

54 Connectivity and Notification: Online Help Files

Chapter 8. Inbound back-end integration messages

An inbound message is a request that WebSphere Commerce receives from an external application. Each
inbound message activates a command in WebSphere Commerce that performs a particular function. If
there is an error processing an inbound message, it is placed into the error queue.

WebSphere Commerce supports inbound back-end messages that accomplish the following five functions:
» Create a customer registration

» Update a customer registration

* Update the status of an order

» Update the inventory for a product

* Update the price of a product

Each of the functions listed above can be activated by a request message in XML format, and some can
be activated using the legacy message format. In general, the XML format is recommended. The XML
messages are encoded in UTF-8 format.

To create a customer registration, use the Create WCS_Customet XML message. If you already record
customer information on an existing back-end system, rather than re-create this information from scratch,
use this message to register the customer data on the WebSphere Commerce database. The message
sends existing customer information from the back-end server to the WebSphere Commerce server. You
can also use the Create_ NC_Customer XML message, and the Customer Update legacy messages to
perform similar function. However, the Create_ WCS_Customer XML message provides you with capability
to enter more customer information.

To update a customer registration that already exists in the WebSphere Commerce database, use the
Update WCS_Customed XML message. When you use this message, the back-end customer
management system updates customer information and sends the message to WebSphere Commerce to
update information about a registered shopper. You can also use the Update_ NC_Customer XML
message, and the Customer Update legacy messages to perform a similar function. However, the
Update_ WCS_Customer XML message provides you with capability to update more customer information.

To update the status of an order that already exists in the WebSphere Commerce database, use the
Update WCS OrderStatud XML message. Use this message to update the WebSphere Commerce
database with the status of orders that are processed by a back-end application. For example, the
shipping status of an order from the back-end fulfilment system can be updated in the WebSphere
Commerce system by sending this message from the back-end system to WebSphere Commerce. You
can also use the Update_NC_OrderStatus XML message or the Order Status Update legacy message to
perform similar function. However, the Update. WCS_OrderStatus XML message provides you with
capability to update more order status information.

To update the inventory for a product that already exists in the WebSphere Commerce database, use the
XML message. This message is ideal for instances when an external or
back-end mventory system maintains product inventory. The external system can send the message to
WebSphere Commerce to update inventory in the WebSphere Commerce database. You can also use the
Product Quantity Update legacy message to perform the same function. Alternatively, the
Update_NC_Productinventory XML message performs a similar function. However, the
Update_ WCS_Productinventory XML message provides you with capability to update more inventory
information.

To update either the list price or the offer price of a product that already exists in the WebSphere

Commerce database, use the Update WCS_ProductPricd XML message. This message is ideal for
instances when an external or back-end system maintains product information, including prices. The

© Copyright IBM Corp. 1996, 2002 55

../refs/rcvxmlcn2.htm
../refs/rcvxmlun.htm
../refs/rcvuwcsos.htm
../refs/rcvxmlwpi.htm
../refs/rcvxwcspp.htm

external system can send one of these messages to WebSphere Commerce to update list prices or offer
prices of products in the WebSphere Commerce database. If you are updating the offer price of a product,
you can also use the Update NC_ProductPrice XML message or the Product Price Update legacy
message to perform the same function. However, only the Update. WCS_ProductPrice message can be
used to update list price information.

Inbound fulfillment integration messages

An inbound fulfillment integration message is a request that WebSphere Commerce receives from a
fulfillment center system. Each inbound message activates a command in WebSphere Commerce that
performs a particular function. If there is an error processing an inbound message, the failed message is
placed into the error queue.

WebSphere Commerce supports fulfilment integration messages that accomplish the following functions:
» Create an expected inventory record

» Create a pick batch

* Request pick tickets and packing lists

* Create a receipt

» Adjust the inventory receipt level of a product maintained by WebSphere Commerce database under the
RECEIPT table

* Issue shipment confirmation by the fulfillment center

Each of the functions listed above can be activated by a message in XML format. The XML messages are
encoded in UTF-8 format.

The following table outlines the inbound fulfillment integration messages used and the controller command
that they invoke:

XML Messages Description Controller Command

[Create WCS FExpectedinventoryRecordCreates an expected inventory ExpectedinventoryRecordCreateCmd
record.

Create WCS PickBatcH Generates a pick batch. PickBatchGenerateCmd

Inguire WCS_PickPackl istDetail Requests details created by GetPickPackl istDetailCmd
CreatePickBatch.

Create WCS_InventoryReceipf Creates inventory records of items. ReceiptCreateCmd

LUpdate WCS_InventoryReceip] Adjusts inventory for an item. InventoryAdjustCmd

Create WCS_ShipmentConfirmatiod | Issues shipment confirmation for an | ReleaseShipConfirmCmd
item.

Creating an expected inventory record

To create an expected inventory record in the WebSphere Commerce database, use the

Create WCS_ExpectedinventoryRecard XML message. This message is ideal for instances when a
fulfillment center manages the inventory and ordering information of vendors. WebSphere Commerce is
informed about the availability of future stock and can track inventory levels. The fulfillment center can
send one of these messages to WebSphere Commerce to create an expected inventory record in the
WebSphere Commerce database when the inventory level for a product is low. This record can be used
for backorders.

Creating a pick batch
To create a pick batch record in the WebSphere Commerce database, use the Create \WCS_PickBRatch
XML message. This message is ideal for instances when a fulfillment center manages the pickbatch

functions. The fulfillment center can send one of these messages to WebSphere Commerce to create a

56 Connectivity and Notification: Online Help Files

../refs/rcvcrepad.htm
../refs/rcvcrpkb.htm
../refs/rcvinqpp.htm
../refs/rcvippld.htm
../refs/rcvcrcpt.htm
../refs/rcvinadj.htm
../refs/rcvshpcnf.htm
../refs/rcvcrepad.htm
../refs/rcvcrpkb.htm

pickbatch in the WebSphere Commerce database. A pickbatch groups together all outstanding orders
ready for release for the given fulfillment center and store. A pick ticket for all released orders in a
pickbatch is created and stored in the PICKBATCH table. A packing list for each released order is created
and stored in DRDRELEASH table.

Getting pick pack list details
To inquire about the pick ticket details, use the lngquire WCS._PickPacklistDetail XML message. This
message is used with the bneate_\ALCS_ELckBatcH message. After the fulfillment center sends a

Create_ WCS_PickBatch message to WebSphere Commerce, a pickbatch is created, the new pickbatch ID
is returned to the fulfillment center. The fulfillment center can then send the
Inquire_WCS_PickPackListDetail message with the pick batch ID as a parameter to retrieve the details of
the pick ticket and packing list.

Creating inventory receipts
To create a receipt for products ordered, use the ICreate \WWCS._InventaryReceipf XML message. This
message allows you to create a receipt for products that have been ordered from a vendor, helping to
update the inventory available on hand (under the RECEIPT database table) within the WebSphere
WebSphere Commerce inventory database. A fulfilment center can send one of these messages to
WebSphere Commerce to create a receipt that can be used to keep track of products ordered.

Updating inventory levels

To resolve any discrepancies between a physical inventory count and the inventory levels maintained in
WebSphere Commerce, use the Lipdate WCS_InventoryReceint XML message. This message is used
when an external fulfillment center system manages the inventory shipments. The fulfilment center system
can send this message to WebSphere Commerce to adjust product inventory levels.

Issuing shipment confirmation
To issue a shipment confirmation to WebSphere Commerce, use the ICreate WCS ShipmentCanfirmation
XML message. A fulfillment center can send one of these messages to WebSphere Commerce to create a
shipment confirmation message verifying that an order is shipped. This message also glves you_ the option
of sending an e-mail notification to the customer when orders are shipped. See

Natification e-mail for further details on how to enable the customer e-mail notification.

Chapter 8. Inbound back-end integration messages 57

../database/PICKBATCH.html
../database/ORDRELEASE.html
../refs/rcvinqpp.htm
../refs/rcvcrpkb.htm
../refs/rcvcrcpt.htm
../database/RECEIPT.html
../refs/rcvinadj.htm
../refs/rcvshpcnf.htm
../tasks/tcvenshpn.htm
../tasks/tcvenshpn.htm

58 Connectivity and Notification: Online Help Files

Chapter 9. Adding a new inbound XML message

The following steps are required to add support for a new inbound message:

1. Define a DTD for the new XML message. You can use the DTD files for existing XML messages as a
guide. By default these files are located in the following directory:

2000

drive:\Program Files\WebSphere\CommerceServer\xml\messaging

N

!

drive:\WebSphere\CommerceServer\xml\messaging

AIX

/usr/WebSphere/CommerceServer/xml/messaging

Solaris

/opt/WebSphere/CommerceServer/xml/messaging

400
/QIBM/ProdData/WebCommerce/xml/messaging

E

3. Update the buser template xml inbound message template definition file for the new message. To do
this, refer to the structural guidelines outlined in initi iled.

Adding a new DTD file to the system
To allow your new inbound XML message to be recognized and processed by the XML message mapper,
do the following:

1. Place the DTD file you created for the new message in the same directory as your other DTD files. By
default, the directory is:

2000

drive:\Program Files\WebSphere\CommerceServer\xml\messaging

NT

drive:\WebSphere\CommerceServer\xml\messaging

AlX

/usr/WebSphere/CommerceServer/xml/messaging

Solaris

/opt/WebSphere/CommerceServer/xml/messaging

400

/QIBM/ProdData/WebCommerce/xml/messaging
2. Add the name of the new DTD file to the list of inbound message DTD files.

Adding to the list of inbound message DTD files

To add a new DTD file to the list of DTD files for inbound messages, do the following:

1. lLaunch the Configuration Manages.

2. Select Instance Properties, then open the Messaging folder.

© Copyright IBM Corp. 1996, 2002 59

tcvaddtd.htm
../refs/rcvusrtmp.htm
../concepts/ccvintdf.htm
tcmopcm.htm

3. In the Inbound Message DTD Files field add the name of your new DTD file to the end of the list,
placing a comma before the new filename.

4. Click Apply to save the changes.

5. From the WebSphere Application Server Administration Console, ktop then re-start the instance]

Inbound message extension

WebSphere Commerce allows you to modify or extend the functionality of all inbound messages by
modifying the WebSphere Commerce controller command that is run by each message. You can provide
additional pre-processing or post-processing statements to any inbound message command used, or you
can override the existing processing entirely. To do this, you need to have a knowledge of Java
programming.

When an inbound message is received from a back-end system, its information is processed into
command parameters and a WebSphere Commerce controller command is invoked along with all the
provided parameters. When the command is run, the performExecute() method is invoked, which in turn
invokes three methods, in the following order:

1. doPreProcess()
2. doProcess()
3. doPostProcess()

When you first install WebSphere Commerce, only the doProcess() method contains programming
statements. You can add pre-processing statements by extending the command and implementing the
doPreProcess() method, or you can add post-processing statements by implementing the doPostProcess()
method. Alternatively, you can implement either the doProcess() or the performExecute() method to
overwrite the entire process. For more information about how to extend commands, see the WebSphere
Commerce Programmer’s Guide.

UserData element for inbound messages

All inbound messages include the UserData XML element as an optional element.. Include the
UserDataField element to transport additional data. You can customize the fields to pass extra data that is
not included in the messages.

The name of the new field to be added should be the attribute of the name for the UserDataField element.

The following DTD describes the UserData element:

<!ELEMENT UserData (UserDataField+)>

<IELEMENT UserDataField (#PCDATA)>

<!ATTLIST UserDataField

name CDATA #REQUIRED

>

The following is an example of the UserData element:

<UserData>
<UserDataField name="field_name">field_value</UserDataField>

.UserDataField repeated loop

</UserData>

60 Connectivity and Notification: Online Help Files

tsrwas.htm

Chapter 10. Message mappers

A message mapper is a mechanism that takes an XML message and converts it to a CommandProperty
object. It provides a common interface so that messages can be converted to CommandProperty objects
and used by all WebSphere Commerce components.

Supported adapters, such as the Program Adapter, and WebSphere Commerce components can both call
a message mapper. For both, the message mapper performs the following tasks:

* Receives an XML message.
» Converts the message to a CommandProperty object.
* Returns null if the the XML message cannot be converted.

Inbound messages are sent to WebSphere Commerce by back-end systems or external systems to
request some sort of action. In order for WebSphere Commerce to perform that action, the XML message
must be processed by the message mapper to determine what action has been requested. WebSphere
Commerce includes two message mappers at installation: the XML message mapper for parsing XML
integration messages, and the legacy message mapper for parsing back-end integration legacy messages.

The CommandProperty object represents a WebSphere Commerce command to accommodate the
requirements from the supported device adapters. Other components can also use the message mapper
mechanism to convert messages to CommandProperty objects.

The lifecycle of a message mapper exists throughout the WebSphere Commerce instance. It is initialized
when an instance is started and it resides as long as the instance runs.

XML message mapper

The XML message mapper is responsible for converting the XML data from inbound XML messages to
CommandProperty objects. It is an extension of the ECSAX parser. The XML configuration node for the
XML message mapper found in the instance_name.xml configuration file should look similar to the
following:

<MessageMapper messageMapperld="-1"
classname="com.ibm.commerce.messaging.programadapter.messagemapper.ecsax.ECSAXMessageMapper"
enable="true"
name="WCS.INTEGRATION">
<configuration/>
</MessageMapper>

Legacy message mapper

The legacy message mapper is responsible for converting the data from inbound legacy messages to
CommandProperty objects. The XML configuration node for the legacy message mapper found in the
instance_name.xml1 configuration file should look similar to the following:

<MessageMapper messageMapperld="-2"
classname="com.ibm.commerce.messaging.programadapter.messagemapper.nclegacy.NetCMessageMapper"
enable="true">
name="NC.LEGACY">
<configuration>
</MessageMapper>

© Copyright IBM Corp. 1996, 2002 61

Inbound message template definition files

WebSphere Commerce provides an XML message mapper which can be used to map inbound XML
messages to WebSphere Commerce command interfaces based on the inbound XML message template
definition files.

Whenever an inbound XML message is passed to the message mapper, it checks to see if the message is
defined in the template definition files. If so, it retrieves the WebSphere Commerce controller command
name and parameter names for the message, and parses the incoming message to get the values for the
parameters. Once the message has been parsed, the message mapper returns a CommandProperty
object that contains the command name and the parameter name-value pairs for the command.

The message template definition files are used to define the XML parsing information for the inbound XML
message. Each message defined in these files has the following two base elements:

TemplateDocument: Defines the DTD file used by the message, the command that is called when the
message is received, which tag mapping is to be used, and the XML element from which tag mapping
is started.

TemplateTag: Defines the mapping of XML elements in the DTD file to parameter names of commands
in WebSphere Commerce. The template tag element identifies the parameter names and tells the
message mapper where to find the values on an incoming message.

There are two template definition files provided by WebSphere Commerce. The kys_template xml file is
the template definition used to map existing WebSphere Commerce inbound XML messages. The

Lser template xmllis provided to enable you to add additional inbound XML messages. Both files are in
XML format, based on the bc_template dtd template definition DTD file.

!

N

drive:\WebSphere\CommerceServer\xml\messaging

2000

drive:\Program Files\WebSphere\CommerceServer\xml\messaging

AlX

/usr/WebSphere/CommerceServer/xml/messaging

Solaris

/opt/WebSphere/CommerceServer/xml/messaging

400
/QIBM/Proddata/WebCommerce/xml/messaging

Important: For security reasons, you must ensure that only authorized persons can access and modify the
kys template xmll and the user template xmll message template definition files. If unauthorized persons
have access to write to this file, they would have the ability to write new inbound messages that could
invoke any WebSphere Commerce command as a Site Administrator.

62 Connectivity and Notification: Online Help Files

../refs/rcvsystemp.htm
../refs/rcvusrtmp.htm
../refs/rcvectemp.htm
../refs/rcvsystemp.htm
../refs/rcvusrtmp.htm

Removing message mappers

To remove a message mapper, you must manually remove it from the group of message mappers in the
instance_name.xml configuration file. To remove a message mapper, do the following:

1. Open the instance_name.xm1 configuration file.
2. Locate the component with the name MessageMapperGroup.

3. Locate the XML configuration node for the message mapper that you want to remove. It will look
similar to the following:

<MessageMapper messageMapperId="#"
classname="class inplementing MessageMapper interface"
enable="true"
name="Name of Message Mapper">
<configuration />
</MessageMapper>

4. Change the enable parameter to "false". This will disable the message mapper and make it
unavailable for use.

Adding message mappers

To add a new message mapper, you must manually add it to the group of message mappers in the
instance_name.xml configuration file. To add a new message mapper, do the following:

1. Open the instance_name.xml configuration file.
2. Locate the component with the name MessageMapperGroup.

3. Between the property tags of that component, add the following XML node to define your message
mapper:

<MessageMapper messageMapperId="#"
classname="class inplementing MessageMapper interface"
enable="true"
name="Name of Message Mapper">

</MessageMapper>

Refer to Message mapper configuration for information on these parameters.

4. Within the configuration node of the message mapper, add any extra configuration parameters needed
for the message mapper. This is converted into a TypedProperty object and passes to the init method
of the message mapper. The following is an example of extra parameters that might be added:

<configuration
EcSystemTemplateFile="mapping.xml"
EcInboundMessageDtdFiles="something.dtd"
EcTemplatePath="E:\users\user\test\map"

EcSaxParserClass="com.ibm.xml.parsers.ValidatingSAXParser"
EcInboundMessageDtdPath="E:\users\user\test\dtd"

EcSaxParserClass="com.ibm.xml.parsers.ValidatingSAXParser"

/>

New inbound message support

In addition to the supported XML and WebSphere Commerce messages, you can add support for new
inbound messages. There are two primary methods for adding new inbound messages.

The recommended method is to add a new inbound XML message through the use of the

Lser template xmllinbound message template definition file. In this file, you can indicate the controller
command the new inbound message invokes, define the elements of the message, and indicate the
command parameters to which each element corresponds. When the message is received, the XML

Chapter 10. Message mappers 63

../refs/rcvmapcnf.htm
rcvusrtmp.htm

message mapper identifies the command to be run and the parameters to be used. The command is then
invoked using the Site Administrator authority. For security reasons, you must ensure that only authorized
persons can access and modify the user template.xmll message template definition file, otherwise
unauthorized users would have the ability to write a new inbound message and invoke any WebSphere
Commerce command as Site Administrator.

If you do not want to use the inbound XML message template definition files together with the XML
message mapper, you can also implement the NewlnhoundMessagd command to add new messages.
This command is invoked when the message mapper does not recognize the message as an existing
legacy message, or as an XML message defined in the inbound XML message template definition files.
Since the INewlnhoundMessagd command is not pre-programmed, you have full control over the
processing that takes place once it is invoked. However, this method requires considerable programming
effort, particularly where there are a large number of new messages.

64 Connectivity and Notification: Online Help Files

rcvusrtmp.htm
rcvnewms.htm
rcvnewms.htm

Chapter 11. Customizing the NewInboundMessage command

To customize the NewlnboundMessage command to process messages that you have created, do the
following:

1. Extend the NewlnboundMessage command. Refer to the WebSphere Commerce Programmer’s Guide
for details on how to do this.

2. To receive the inbound message, use the getMessage() method of the command, which returns the
message as a String.

3. Implement the performExecute() method of the command. Inside the method, place the programming
statements that process your inbound message.

4. Use the following SQL statement to register your new extended command by updating the CMDREQ
table in the WebSphere Commerce database:
update cmdreg set classname="yourCommandClassName’ where
interfacename="com.ibm.commerce.messaging.commands.NewInboundMessageCmd’

© Copyright IBM Corp. 1996, 2002 65

../database/CMDREG.html

66 Connectivity and Notification: Online Help Files

Chapter 12. Message mapper configuration

The instance_name.xml configuration file lists all possible message mappers, and includes their name,
class, device format, whether they are available, and specific configuration parameters. To locate the
parameters for a certain message mapper, find the component of the instance_name.xm1 file with the
name MessageMapperGroup.Since each message mapper may have different configuration parameters,
each has a node of XML configuration information within the MessageMapperGroup component. The only
requirement for the format of the configuration parameters node is that the parameters must be
name-value-pairs. This allows the message mapper configuration parameters to be easily converted to a
TypeProperty object.

The following lists the parameters for each individual message mapper:
* name: the name of the message mapper.
* class: the class that contains the implementation of the message mapper interface.
* messageMapperld: the ID for the message mapper. Each message mapper ID must be unique.

* enabled: indicate whether the message mapper should be used and initialized or not. If this
value is set to "true", the message mapper is initialized at the startup of the instance and is
available. If this value is set to "false", the message mapper is disabled.

XML parsing using template definition files

When the XML message mapper parses an inbound XML message, it gets the document type, the version
if it is available, and the element name, one by one from the XML documents in the message. The
message mapper looks up the template document defined in the ECTemplate element of the template
definition file. The template document tells the message mapper the following information:

* From which element the tag mapping should be started.
* Which tag template to use.

* The command name to be invoked by the inbound message. The command could be an existing
WebSphere Commerce controller command or a new one that you have created.

Once the tag mapping has started, the message mapper looks in the TemplateTag, as defined in the
ECTemplate file to determine the field name and type based on the XPath generated from the inbound XML
message, then sets a value for that field. The field and value pairs are stored in a TypedProperty hash
table of either commandProperty or messageProperty, based on the value in the FieldInfo attribute for that
field. After the whole inbound message is parsed successfully, a PropertyCommand object is returned, which
contains the command name as well as the commandProperty and messageProperty objects.

sys_template.xml file

The sys_template.xml file contains the outline of all inbound XML messages supported by WebSphere
Commerce. The file defines the data fields for each message, mapping the message to the appropriate
WebSphere Commerce Controller Command, and mapping each field within the message to the
appropriate parameter for that command. The structure of sys_template.xml is based on the
ec_template.dtd file, which defines the format that messages must take.

Do not add new messages to this file. To add your own inbound messages, use the user_template.dtd
file.

All XML files are located in the following directory:

© Copyright IBM Corp. 1996, 2002 67

drive:\Program Files\WebSphere\CommerceServer\xmi\messaging

!

N

drive:\WebSphere\CommerceServer\xml\messaging

AlX

/usr/WebSphere/CommerceServer/xml/messaging

SIES

/opt/WebSphere/CommerceServer/xml/messaging

400
/QIBM/Proddata/WebCommerce/xml/messaging

user_template.xml file

The user_template.xml is an XML message template definition file that allows you to add new inbound
XML messages to be supported by your system. An outline should be added to this file for each new XML
message that you want to support. You can use the sys _template.xml file as a guide on how to use or
update this template file.

The outline should indicate the tag template to be used, the element from which the tag mapping should
be started, the name of the WebSphere Commerce controller command to be invoked, and the URL
parameters that correspond to each XML element. If you are using the new inbound XML message to
invoke a new WebSphere Commerce command, refer to theWebSphere Commerce Programmer’'s Guide
on how to write and register a new WebSphere Commerce controller command.

All XML files are located in the following directory:

2000

drive:\Program Files\WebSphere\CommerceServer\xml\messaging

!

N

drive:\WebSphere\CommerceServer\xml\messaging

AlX

/usr/WebSphere/CommerceServer/xml/messaging

Solaris

/opt/WebSphere/CommerceServer/xml/messaging

400
/QIBM/Proddata/WebCommerce/xml/messaging

Before you add any of your own messages, ensure the file contains the following lines:

<?xml version="1.0" encoding="UTF-8'?>
<IDOCTYPE ECTemplate SYSTEM ’ec_template.dtd” >
<ECTemplate>

</ECTemplate>

Each message that you define in the template definition file includes two base elements:
* TemplateDocument
* TemplateTag

68 Connectivity and Notification: Online Help Files

For an explanation of each of these elements, follow the link below.

ec_template.dtd file

The ec_template.dtd file contains the blueprint for all inbound messages outlined in the sys _template.xm]
file, and should be used to guide you in the creation of any new messages in the user_template.xml file.

All DTD files are located in the following directory:

drive:\Program Files\WebSphere\CommerceServer\xml\messaging

drive:\WebSphere\CommerceServer\xml\messaging

/usr/WebSphere/CommerceServer/xml/messaging

/opt/WebSphere/CommerceServer/xml/messaging

/QIBM/Proddata/WebCommerce/xml/messaging
The following text describes the ec_template.dtd file:
<!ELEMENT ECTemplate ((TemplateDocument | TemplateTag)*)>

<IATTLIST ECTemplate
version CDATA #FIXED "1.0">

TemplateDocument element of a template definition file

For each inbound XML message, there must be at least one template document defined in the message.
This is defined in the TemplateDocument element. The TemplateDocument element has four sub-elements:

» DocumentType (with optional version attribute): This part specifies the XML document name, or

root element name, and the “version” attribute of the root element, if it exists. The following is an

example of the DocumentType element:

<DocumentType version="1.0">Reset Password</DocumentType>

» StartElement: This part specifies the element from which the XML message mapper starts the tag
mapping. This must correspond to an element in the DTD for the message. The tag mapping generates
the name value pairs which are used as command parameters. The following is an example of the

Chapter 12. Message mapper configuration

69

usage of StartElement:

<StartElement>PasswordInfo</StartElement>

In this example, there should be an element named PasswordInfo defined in the DTD file for this
message. For example, the DTD file should contain a line such as the following that defines a
PasswordInfo element:

<!ELEMENT PasswordInfo (Password, ConfirmPassword)>

* TemplateTagName: This part specifies which tag mapping is to be used for the message. The tag
mapping is defined elsewhere in the template definition file under the TemplateTag element. This means
that the value of the TemplateTagName element should match the name attribute of a TemplateTag element
that appears somewhere in the template definition file. Refer to the section on the TemplateTag element
for more details. The following example illustrates the use of the TemplateTagName element:
<TemplateTagName>PasswordReset10Map</TemplateTagName>
In this example, the following TemplateTag element should exist elsewhere in the template definition file:
<TemplateTag name='PasswordReset10OMap’>

</TemplateTag>
The elements between the start and end tags depend on the mapping of the message.

« CommandMapping: This element determines which commands are invoked by the message. The
element contains one sub-element called Command. The Command element is used to indicate the
WebSphere Commerce controller command that is run when the message is successfully mapped. It
contains one mandatory attribute called CommandName, which is used to indicate the name of the
command. The value of this attribute must correspond to an existing command that is registered in the

table. For example, you could associate a message with the command that resets a password
using the following syntax:
<CommandMapping>
<Command CommandName="ResetPassword’ />
</CommandMapping>
You can also associate multiple commands with the same message. To do this, you need to use the
following additional attributes of the Command element:

— Condition attribute: The syntax for condition is as follows ([means it is optional, * means it can be
repeated):

fieldName [="fieldValue "] [AND fieldName [="fieldValue "]]=*

fieldName

It should match the Field attribute of the Tag element in the TemplateTag definition. If the
XPath attribute of this tag exists in the inbound XML message, then the condition is true.

fieldName="fieldValue ”
A value in the XML message is set to the field in fieldName. When the message is mapped,
if the value is same as fieldValue, the condition is true.

fieldNamel="fieldValuel” AND fieldNamel="fieldValue2”
The values in the XML message are set to the field fieldNamel and fieldName2 when the
message is parsed. If the values are same as fieldValuel and fieldValue2 respectively,
then the condition is true.

— TemplateTagName attribute: If you specify the TemplateTagName attribute for this Command
element, whenever the Condition becomes true, a new tag template with the name defined in
TemplateTagName will be used for the rest of the inbound XML message.

— Constant Element: the list of constants to be put in the TypedProperty for that command.
- Field: The field name of the name value pair which will be put into the TypedProperty.

- FieldInfo: See the definition in TemplateTag.
The value should be placed between the <Constant> and </Constant> tags.

70 Connectivity and Notification: Online Help Files

../database/URLREG.html

The following is a simple example of how you could use the multiple Command elements to map to
multiple commands:
<CommandMapping>

<Command CommandName="ResetPassword’ Condition="Verb="Reset" AND Noun="Password"'/>

<Command CommandName='AdminResetPassword’ Condition="Verb="Reset" AND Noun="AdminPassword"'/>
</CommandMapping>
In this example, you there should be Noun and Verb elements defined in the DTD file for the message.

TemplateTag element of a template definition file

The TemplateTag element is used, along with the TemplateDocument element, in the template definition file.
Several TemplateTag elements can be defined for each inbound XML message. However, each
TemplateTag element must be linked to a TemplateDocument element using the name attribute. The value
associated with the name attribute should match the value in the TemplateTagName sub-element of a
TemplateDocument element defined with the template definition file.

Each TemplateTag element contains a list of tag definitions in the Tag sub-element. The Tag element can
contain the following five attributes:

« XPath: The path of the XML element, relative to the StartElement indicated in the TemplateDocument.
The XPath element is the key to finding the field name of the name-value pair. Examples of XPath are:

— E1/E2: Element E2, which is nested inside element E1. The following is an example of this type of
path:
XPath="Address/ZipCode’
E1/E2/E3: Element E3, which is nested inside element E2, which is nested inside element E1. The
following is an example of this type of path:
XPath="ContactInfo/Address/ZipCode’

— E3@al : The attribute al in element E3. The following is an example of this type of path:
XPath="InvoiceInfo@InvoiceType’
In this case, the InvoiceType attribute may be used to indicate which one out of a variety of invoice
types the message applies to.

— E4[1] : The first instance of element E4. There can be multiple instances of E4. For example, you
could use this format where you have multiple lines of an address. Each line of the address would
be contained in a separate Tag element.

— E5[@a2="value 2"] : An instance of element E5, where the attribute a2 of E5 equals to “value 2". For
example, you could use the following format:
XPath="InvoiceInfo[@InvoiceType="ShippingInvoice"]
E5[@al="valuel”|[@a2="value 2"] : The instance of element E5, where the attribute al of E5 equals
to ™valuel”, and the attribute a2 of E5 equals to “value 2".

« XPathType: The type of element indicated in the XPath. This attribute indicates how the XML element
should be processed by the XML parser. The supported types are:

— PCDATA : The element or the attribute of the element contains raw, inbound data that will be
processed and returned in a nave-value pair. This is the default value for the XPathType.

— EMPTY: The element is empty or contains data that can be ignored. No name-value pair is returned
for this element.

— REPEAT : The element can have multiple instances. Each element's PCDATA is returned in a
name-value pair.

— ATTRIBUTE: If the element field name is determined by the value of an attribute, this attribute
should have ATTRIBUTE type.

— VECTOR: A new hash table will be appended to the Vector, and all name-value pairs generated for
sub-elements will be put into the new hash table.

— USERDATA: Indicates a user-defined element. The element has an attribute called name whose value
is the field name. The data of the element is returned in a name-value pair.

Chapter 12. Message mapper configuration 71

* Field: The field name of the name-value pair which will be put into the TypedProperty. This should
match name of a parameter used by the called command.

» FieldType: The type of the data field. The field type could be String or Date (ISO 8601 Date format).
String is default.

* FieldInfo: Indicate the TypedProperty into which the name value pair should be placed. Data is the
default. If you want to put the name value pair into more than one TypedProperty, you must specify
more than one of the values listed below, separated by a comma:

— Data: The name-value pair will be put into the a commandProperty object which contains arguments
for the command.

— Control: The name-value pair will be put into a messageProperty which contains control information
for the command, such as USERID or PASSWORD

— Command: The name-value pair is used to determine which command should be called. The
generated name-value pairs are used in the CommandMapping element of the TemplateDocument
element.

If the element XPath is not found in the tag template, the XPath in the XML message will be used as the
field name, and the XPathType is PCDATA, generating a name-value pair using XPath as the field name.

For an example of how the TemplateTag element is used, refer to the Isgs:templa_ua_mll file.

72 Connectivity and Notification: Online Help Files

rcvsystemp.htm

Chapter 13. Messaging system back-end integration
messages

The WebSphere Commerce messaging system provides a mechanism for integrating WebSphere
Commerce with back-end systems through the use of inbound and outbound messages. Inbound
messages are used to run commands in WebSphere Commerce based on messages coming from
back-end systems. Outbound messages can be generated by the outbound messaging system in order to
update back-end systems with events that have taken place, such as a new customer order. To use
back-end integration messages, you must have an adapter installed, and have the messaging system
configured to receive XML messages.

The messaging system is prepared to send and receive a number of pre-defined messages in XML format.
This format offers a high degree of readability, making the messages easy to modify and maintain. You
can also use the legacy message format. However, the XML message format is recommended. For an
explanation of each message, refer to the sections on inbound and outbound back-end integration
messages. You can also add new messages. For new inbound messages, you can associate them with
either existing WebSphere Commerce commands, or commands that you have created.

© Copyright IBM Corp. 1996, 2002 73

74 Connectivity and Notification: Online Help Files

Chapter 14. Fulfillment integration messages

WebSphere Commerce provides a mechanism for integration with fulfillment center systems using inbound
and outbound messages. Inbound fulfillment integration messages are used to run commands in
WebSphere Commerce based on inbound requests received from fulfillment center systems. Outbound
messages can be generated by the outbound messaging system in order to update fulfilment center
systems with events that have taken place, such as receipt of new stock, or an order shipment. To use
fulfillment integration messages, you must have an adapter installed, and have the messaging system
configured to receive XML messages.

The messaging system is prepared to send and receive a number of pre-defined messages in XML format.
This format offers a high degree of readability, making the messages easy to modify and maintain. For an
explanation of each message, refer to the sections on inbound and outbound fulfillment integration
messages. You can also add new messages. For new inbound messages, you can associate them with
either existing WebSphere Commerce commands, or commands that you have created.

The format of the XML messages consists of a set of XML elements defined within specific DTD files.
Each DTD may contain one or more common files, identified by a .mod file extension. In addition, each
inbound message is associated with a WebSphere Commerce controller command in the
sys_template.xml message template definition file. All DTD, MOD, and XML files are located in the
following directory:

drive:\Program Files\WebSphere\CommerceServer\xml\messaging

drive:\WebSphere\CommerceServer\xml\messaging

/usr/WebSphere/CommerceServer/xml/messaging

Solaris

/opt/WebSphere/CommerceServer/xml/messaging

QIBM/ProdData/WebCommerce/xml/messaging

© Copyright IBM Corp. 1996, 2002 75

76 Connectivity and Notification: Online Help Files

Chapter 15. Customizing the NewlnboundMessage command

To customize the NewlnboundMessage command to process messages that you have created, do the
following:

1. Extend the NewlnboundMessage command. Refer to the WebSphere Commerce Programmer’s Guide
for details on how to do this.

2. To receive the inbound message, use the getMessage() method of the command, which returns the
message as a String.

3. Implement the performExecute() method of the command. Inside the method, place the programming
statements that process your inbound message.

4. Use the following SQL statement to register your new extended command by updating the CMDREQ
table in the WebSphere Commerce database:
update cmdreg set classname="yourCommandClassName’ where
interfacename="com.ibm.commerce.messaging.commands.NewInboundMessageCmd’

© Copyright IBM Corp. 1996, 2002 77

../database/CMDREG.html

78 Connectivity and Notification: Online Help Files

Chapter 16. Integration message DTD files

All supported WebSphere Commerce integration XML messages consist of information found in DTD files.

Some DTD files use information from the common file NCCommon.mod or other MOD files. The format and
the source of the XML element values for the DTD files are described in these MOD files.

All DTD and MOD files are located in the following directory:

drive:\Program Files\WebSphere\CommerceServer\xml\messaging

drive:\WebSphere\CommerceServer\xml\messaging

/usr/WebSphere/CommerceServer/xml /messaging

/opt/WebSphere/CommerceServer/xml/messaging

/QIBM/Proddata/WebCommerce/xml/messaging

Message DTD and MOD Files used

Create NC Customer messagel Create NC Customer 10.dtd
NCCustomer 10.mad

Update NC OrderStatis messagd Update NC OrderStatus_10.dtd

Update NC Productlnventory messagel Update NC_ProductInventory 10.dtd
NCCommon mod

Update NC_ProductPrice messagd Update NC ProductPrice 10.dtd

Report_NC_PurchaseQrder message Report_NC_P0_10.dtd

Create WCS_Customer messagel Create WCS Customer 20.dtd

Update WCS_ProductPrice messagd UEdate WCS ProductPrice 20.dtd

Update WCS_Productinventory messagd UEdate WCS ProductInventory 20.dtd

lUpdate WCS_Customer messagel UEdate WCS Cixstomer_lo.dtd
NCCustomer 10 mod

Lpdate WCS_QrderStatus messagd UEdate WCS OrderStatus_20.dtd

Create WCS ExpectedinventoryCreate messagd Create_WCS_ExpectedInventoryRecord 10.dtd

© Copyright IBM Corp. 1996, 2002

79

rcvxmlcn.htm
rcvcomsr.htm
rcvmodc.htm
rcvwcsos.htm
rcvcomsr.htm
rcvxmlpi.htm
rcvcomsr.htm
rcvxmlpp.htm
rcvcomsr.htm
rcvxmlrn.htm
rcvxmlcn2.htm
rcvcomsr.htm
rcvxwcspp.htm
rcvcomsr.htm
rcvxmlwpi.htm
rcvcomsr.htm
rcvxmlun.htm
rcvcomsr.htm
rcvmodc.htm
rcvuwcsos.htm
rcvcomsr.htm
rcvcrepad.htm

Create WCS_PickBatch messagd Create_WCS_PickBatch_10.dtd

lnquire WCS_PickPackl istDetail messagd Inquire WCS_PickPackListDetail 10.dtd
Create WCS_InventoryReceipt messagd Create_WCS_InventoryReceipt_10.dtd
lUpdate WCS_InventaryReceipt messagd Update WCS_InventoryReceipt 10.dtd
Create WCS_ShipmentCaonfirmation messagd Create WCS_ShipmentConfirmation_10.dtd
Response WCS_ExpectedinventaryRecard messagd Response WCS_ExpectedInventoryRecord 10.dtd
Response WCS PickBatch messagd Response WCS PickBatch 10.dtd

Repart WCS PickPackl istDetail messagd Report WCS_PickPackListDetail 10.dtd
Response WCS CreatelnyReceint messagd Response WCS CreateInvReceipt 10.dtd
Respanse WCS UpdatelnvReceipt messagd Response WCS UpdateInvReceipt 10.dtd
Respanse WCS CreateShipCanfirm messagd Response_WCS_CreateShipConfirm_ 10.dtd

Back-end integration legacy messages

The WebSphere Commerce offers support for messages which use the legacy message format. Unless
you are migrating from a previous version of WebSphere Commerce Suite, it is recommended that you
use the XML messages instead, since they accomplish the same function, and are easier to read and
maintain.

The format of the WebSphere Commerce messages consists of two sections: the message descriptor and
the application data. In the case of inbound messages, the message descriptor contains control
information required to operate, such as the message identity and type. The application data contains the
information to be processed. All WebSphere Commerce messages consist of a set of tags and records in
a logical sequence and defined data segments within the records. The <PROLOG>, <HDR>, <ITM>, and
<DATUSR> records, which are included in the supported messages, adhere to the following format:

<TAG>DATA SEGMENT</TAG>

where the data segment is identified with a _DATA suffix. For instance, a record for the Order Create
message looks like this:

<HDRO10>ORDER_CREATE_HDRO10_DATA</HDRO10>

Each data segment (in this example, ORDER_CREATE_HDR010 DATA) must be replaced with specific field and
database table information for the particular message.

The following table outlines the six supported messages, as well as the controller command called by each
one:

Message Message Data Segment Controller

Name Type Command

Customel | Inbound CUSTOMER NEW _PROLOG DATA LiserRegistratiod

Neul CLUSTOMER NEW HDRO10 DATA aad
DATUSR_DATA for inhaund messaged

Customel |Inbound ELSTOMER UPDATE PROLOG DATA [serRegistratiod

Lipdatd CUSTOMER UPDATE _HDR010 DATA Lipdatd
DATUISR _DATA for inhaund messaged

80 Connectivity and Notification: Online Help Files

rcvcrpkb.htm
rcvinqpp.htm
rcvcrcpt.htm
rcvinadj.htm
rcvshpcnf.htm
rcvrepad.htm
rcvrcrpb.htm
rcvrippld.htm
rcvrcrir.htm
rcvrupin.htm
rcvrcrsc.htm
rcvcustn.htm
rcvcustn.htm
rcvprocn.htm
rcvh1cn.htm
rcvdatin.htm
rmsuserregistrationadd.htm
rmsuserregistrationadd.htm
rcvcustp.htm
rcvcustp.htm
rcvprocu.htm
rcvh1cu.htm
rcvdatin.htm
rmsuserregistrationupdate.htm
rmsuserregistrationupdate.htm

Message Message Data Segment Controller
Name Type Command
Orgel Outbound DRDER_CREATE PROLOG DATA BendwCsarded
Creatd DRDER_CREATE _HDR01Q _DATA

DRDER_CREATE HDRQO20 DATA

DRDER_CREATE _HDR030 DATA

DRDER _CREATE HDR0O40 DATA

DORDER_CREATE ITMQ10 DATA
Qrdel Inbound DRDER_STATUS UPDATE PROLOG DATA Drdersiand
Statud DRDER_STATUS UPDATE HDRO10 _DATA

DRDER_STATUS UPDATE ITM010_DATA
Broducl Inbound PRODICT PRICE UPDATE PROIOG DATA BroductOffe]
Brcd PRODICT PRICE_UPDATE _HDRO10_DATA Bricelipdatd
Broducl Inbound PRODUCT QUANTITY UPDATE PROLOG DATA Produciinventon)
Quantin] PRODICT QUANTITY UPDATE HDRO10 _DATA Lipdatd

Back-end integration XML messages

WebSphere Commerce offers support for inbound and outbound messages that use the XML format. Each
inbound message invokes specific behaviors within the WebSphere Commerce Server by executing a
controller command. Each controller command in turn performs operations on the WebSphere Commerce
database and subsystems. Some controller commands can be executed by more than one XML message.

In addition, some messages can invoke different commands, depending on the content of the message.

The format of the XML messages consists of a set of XML elements defined within specific DTD files.

Each DTD may contain one or more common files, identified by a .mod file extension. In addition, each

inbound message is associated with a WebSphere Commerce controller command in the
sys_template.xml message template definition file. All DTD, MOD, and XML files are located in the

following directory:

drive:\Program Files\WebSphere\CommerceServer\xml\messaging

drive:\WebSphere\CommerceServer\xml\messaging

/usr/WebSphere/CommerceServer/xml/messaging

SIS

/opt/WebSphere/CommerceServer/xml/messaging

/QIBM/Proddata/WebCommerce/xml/messaging

The following table outlines the inbound messages used and the controller command that they invoke:

Chapter 16. Integration message DTD files

81

rcvordcr.htm
rcvordcr.htm
rcvprooc.htm
rcvh1oc.htm
rcvh2oc.htm
rcvh3oc.htm
rcvh4oc.htm
rcvdato.htm
rcvi1oc.htm
rcvsndwcs.htm
rcvordsta.htm
rcvordsta.htm
rcvordsta.htm
rcvproos.htm
rcvh1osu.htm
rcvdatin.htm
rcvi1osu.htm
rcvoscmd.htm
rcvprodp.htm
rcvprodp.htm
rcvprodp.htm
rcvpropp.htm
rcvh1ppu.htm
rcvpopuc.htm
rcvpopuc.htm
rcvprodq.htm
rcvprodq.htm
rcvprodq.htm
rcvpropq.htm
rcvh1pqu.htm
rcvpuqcm.htm
rcvpuqcm.htm

XML Messages Description Controller Command

Create WCS Customed, Creates a registration record for a UserRegistrationAdd

Create NC_Customel new user, or updates a record for an
existing user.

Lpdate NC Customed, Updates a registration record for an |lUserRegistrationUpdatd

Lpdate WCS_Customel existing user.

Update WCS _QrderStatug, Updates the general status of an Qrderstand

Lipdate NC_OrderStatud order.

Lpdate WCS QrderStatud Updates the confirmation status of an |lQrderConfirmStatud
order.

Lpdate WCS QrderStatud Updates the shipping status of an QrderShippingStatud
order.

Update WCS QrderStatud Updates the invoice status of an QrderinvoiceStatud
order.

Update WCS ProductPriced, Updates the offer price information for | BraductQfferPricelindated

Lpdate NC ProductPricel a product.

Update WCS ProductPrice Updates the list price information for |Praductl istPricellpdatel
an order.

Update NC_Productinventon) Updates product inventory Productinventorylindate

Update WCS Productinventory information.

Note:Some messages contain the letters NC in the name and others contain the name WCS in the name.
Those with names that contain the letters NC are XML messages from previous versions of WebSphere
Commerce. Those with WCS in the name use updated formats that offer greater flexibility. It is generally
recommended that you use the WCS versions where you have choice.

The following table outlines the back-end integration message used by the outbound messaging system,
as well as the command that generates it:

XML Message

Description

Controller Command

Report NC_PurchaseQrdel

Sends a message to a back-end system
containing information on a new order.

BendxMlQrdel

Sample scenarios using fulfillment integration messages

Fulfillment integration messages allow WebSphere Commerce to communicate with a fulfillment center
system. This allows a Site Administrator to stay informed about the availability of products they are offering
to customers. The following scenarios illustrate the way a fulfillment center system and the WebSphere
Commerce system can work together by communicating using fulfillment integration messages.

Scenario 1 - Expected Inventory & Backorders

A fulfillment center system finds the inventory level of an item is low. It orders more inventory from a
vendor and uses the Create_ WCS_ExpectedinventoryRecord XML message to report the expected receipt
of new stock to WebSphere Commerce.

WebSphere Commerce can continue to offer that item for sale, even if the inventory level is low, by
allowing backorders based on the expected receipt of more stock. WebSphere Commerce sends a
Response_WCS_ExpectedinvRecord message in response that includes a WCSRaDetailID parameter.

82 Connectivity and Notification: Online Help Files

rcvxmlcn2.htm
rcvxmlcn.htm
rmsuserregistrationadd.htm
rcvxmlunc.htm
rcvxmlun.htm
rmsuserregistrationupdate.htm
rcvuwcsos.htm
rcvwcsos.htm
rcvoscmd.htm
rcvuwcsos.htm
rcvordc.htm
rcvuwcsos.htm
rcvordss.htm
rcvuwcsos.htm
rcvordis.htm
rcvxwcspp.htm
rcvxmlpp.htm
rcvpopuc.htm
rcvxwcspp.htm
rcvprdpup.htm
rcvxmlpi.htm
rcvxmlpi.htm
rcvxmlwpi.htm
rcvpuqcm.htm
rcvxmlrn.htm
rcvxmlrn.htm
rcvsndxml.htm

The fulfillment center notes this WCSRaDetailID parameter. When the new shipment arrives, the fulfillment
center sends the Create. WCS_InventoryReceipt XML message including the WCSRaDetai1ID parameter for
reference. If there is no WCSRaDetailID associated with the new stock, the WCSRaDetailID can be omitted.

Scenario 2 - Inventory Update
The staff at the fulfilment center discovers a discrepancy between an inventory level recorded in the
system and the actual inventory present during a physical inventory count. The fulfillment center can use

the Update. WCS_ InventoryReceipt XML message to inform WebSphere Commerce of the discrepancy.

WebSphere Commerce updates the recorded inventory levels accordingly and responds with the
Response_WCS_UpdatelnvReceipt message.

Scenario 3 - Order Fulfillment

To fulfill an order, the fulfillment center sends the Create_ WCS_PickBatch XML message to WebSphere
Commerce, initiating the fulfillment process.

WebSphere Commerce sends a response message including a PickBatchID, grouping together a list of
“ready to ship” items.

The fulfillment center sends the Inquire_ WCS_PickPackListDetail XML message to request pick ticket and
packing list details, as well as other shipping information.

WebSphere Commerce responds with a list of what to pick and pack.
The fulfillment center prepares the shipment and sends it to a customer, optionally informing WebSphere

Commerce of the shipment with the Create_ WCS_ShipmentConfirmation XML message. The fulfillment
may also inform the customer of the shipment with an e-mail.

ReleaseShipNotify message

The ReleaseShipNotify message is an outbound e-mail message sent to noti% the customer when an
order release is manifested. This occurs when the STATUS column of the table is updated
to MNF. The e-mail message is sent by the ReleaseShipNotify task command, using ReleaseShipNotify.jsp
to compose the content of the message. The ReleaseShipNotify task command is invoked by the
ReleaseManifest controller command.

This message can be used regardless of whether the fulfillment center system is internal or external.
When using the internal WebSphere Commerce fulfillment center, an administrator can select the release
manifest option in the shipment confirmation screen to trigger this message. When using an external
fulfillment center system, a shipment confirmation message with the UpdateManifestStatus attribute set to
1 triggers this message.

The message can be enabled or disabled at the store level by overriding the ReleaseShipNotify task
command. By default, this message is disabled using a ReleaseShipNotifyDummylmpl as the class name
in the mﬁ table.

Response WCS_ExpectedinvRecord message

The Response_ WCS_ExpectedinvRecord message is an outbound message that contains information on
a WebSphere Commerce expected inventory record. WebSphere Commerce generates this message in
response to the inbound Create. WCS_ExpectedinventoryRecord message.

If the inbound message contains a valid StoreID or a valid ExpectedDate, the message calls the
ExpectedinventoryRecordCreate command which redirects to either

Chapter 16. Integration message DTD files 83

../database/ORDRELEASE.html
../database/CMDREG.html

ExpectedinventoryRecordCreateRedirectView view task on successful completion, or
ExpectedinventoryRecordCreateErrorView view task on command failure. The
ExpectedinventoryRecordCreateRedirectView view task is implemented by RACreateError.jsp to compose
the Response_WCS_ExpectedinvRecord response message. Within the response message sent back to
fulfillment centers, the BackendRaDetailID parameter can be included so that the fulfillment center can

correctly associate the response with the original message it sent.

Note: If the inbound message does not contain a valid StorelIDor a valid ExpectedDate, the
GenericApplicationError viewname is used for error message composition. The response message is

generated by GenericApplicationErrorXML. jsp.

The Response_WCS_ExpectedinvRecord message uses the XML message format and follows
Response WCS_ExpectedInvRecord 10.dtd.

The following table describes the format of the Response_ WCS_ExpectedinvRecord message. For a
description of the database column, follow the link to its associated table. All fields are optional unless
otherwise noted. The tag value length in the XML message for database fields of type INT, BIGINT and
DOUBLE should be CHAR (10), CHAR(19), and CHAR(16) respectively.

Create_ WCS_ExpectedinventoryRec

Field Name Comment Table Name Column Name Note

1 ResponseStatus | Mandatory N/A N/A Error comment in
case of command
failure

2 status Mandatory N/A N/A OK or ERROR
(an attribute of
ResponseStatus)

3 code N/A N/A Error code (an
attribute of
ResponseStatus,
existing only if
status="ERROR")

4 BackendRalD N/A N/A Referenced by
the original
message

5 StorelD R4 STORE_ID

6 VendorID R4 VENDOR_ID

7 OrderDate R4 ORDERDATE

8 WCSRalD R4 RA_ID

9 BackendRaDetaillD N/A N/A Can be used as a
reference

10 ItemOwnerID ITEmsPd MEMBER_ID

11 ProductSKU ITEMsPd PARTNUMBER

12 WCSRaDetaillD RabDETAI] RADETAIL_ID Can be used with

Create_WCS_Inve
message

ntoryReceipt

84 Connectivity and Notification: Online Help Files

../database/RA.html
../database/RA.html
../database/RA.html
../database/RA.html
../database/ITEMSPC.html
../database/ITEMSPC.html
../database/RADETAIL.html

Response WCS_PickBatch message

The Response_ WCS_ PickBatch message is an outbound message that contains information on a
WebSphere Commerce pickbatch. WebSphere Commerce generates this message in response to the
inbound Create. WCS_PickBatch message. If the inbound message contains a valid StorelD, the message
calls the PickBatchGenerate command, which redirects to either PickBatchGenerateRedirectView view
task on successful completion, or PickBatchGenerateErrorView view task on command failure. The
PickBatchGenerateRedirectView is implemented by PickBatchResult. jsp for response processing. In the
Response_WCS_PickPatch XML message, the back-end PickBatchID from the original request and the

newly generated PickBatchID are sent back as the response. In case of command failure,

PickBatchGenerateErrorView is used, which is implemented by PickBatchError. jsp.

Note: If the inbound message does not contain a valid StoreID, the GenericApplicationError viewname is
used for error message composition. The response message is generated by
GenericApplicationErrorXML.jsp.

The Response_WCS_PickBatch message uses the XML message format and follows
Response_WCS_PickBatch_10.dtd.

The following table describes the format of the Response WCS_PickBatch message. For a description of
the database column, follow the link to its associated table. All fields are optional unless otherwise noted.
The tag value length in the XML message for database fields of type INT, BIGINT and DOUBLE should be

CHAR (10), CHAR(19), and CHAR(16) respectively.

Level

Field Name

Comment

Table Name

Column Name

Note

ResponseStatus

Mandatory

N/A

N/A

Error comment if
status="ERROR”

status

Mandatory

N/A

N/A

OK or ERROR
(an attribute of
ResponseStatus)

code

N/A

N/A

Error code (an
attribute of
ResponseStatus,
existing only if
status="ERROR?”)

MorePickBatch

N/A

N/A

YES or NO:
indicates whether
another

Create_ WCS_Pick
message should
be submitted
again for more
PickBatches

Batch

BackendPickBatch

D

N/A

N/A

A reference to the
original PickBatch
request

WCSPickBatchlD

PICKBATCH_ID

Can be “NULL" if
no PickBatch is
available for the
specified StorelD
and

FulfilmentCenterlD.

Used in the
Inquire_WCS_Pick

PackListDetail

message

Chapter 16. Integration message DTD files 85

../database/PICKBATCH.html

Report WCS_PickPackListDetail message

The Report WCS_PickPackListDetail message is an outbound message that reports pick ticket and
packing list details. WebSphere Commerce generates this message in response to the inbound
Inquire_ WCS_ PickPackListDetail message. The inbound message calls the GetPickPackListDetall
command which redirects to either PickPackListRedirectView view task on successful completion, or
PickPackListErrorView view task on command failure. PickPackListRedirectView is implemented by
PickPackListResult.jsp for response processing. PickPackListErrorView is implemented by
PickPackListError.jsp.

The Report WCS_PickPackListDetail message contains two individual fixed XML slips generated by the
Create WCS PickPackListDetail 10.dtd. They are the pick ticket and the packing list. The attributes of
pick tickets and packing lists are described in the tables below.

The Report WCS_PickPackListDetail message uses the XML message format and follows
Report WCS_PickPackListDetail 10.dtd.

The following table describes the format of the Report_PickPackListDetail message. For a description of
the database column, follow the link to its associated table. All fields are optional unless otherwise noted.
The tag value length in the XML message for database fields of type INT, BIGINT and DOUBLE should be
CHAR (10), CHAR(19), and CHAR(16) respectively.

Level XML Element Comment Table Name Column Name Note

1 ResponseStatus | Mandatory N/A N/A Error comment if
status="ERROR"

2 status Mandatory N/A N/A OK or ERROR
(an attribute of
ResponseStatus)

3 code N/A N/A Error code (an
attribute of
ResponseStatus,
existing only if
status="ERROR")

4 PickPackListRepor N/A N/A Exists only if
status="0K".
Contains pick
ticket and packing
lists.

The definition of the pick ticket element follows PickTicket_10.dtd. The content of this DTD file is fixed
and should not be modified.

Level XML Element Comment Table Name Column Name Note

1 Pickticket Mandatory N/A N/A Contains
Pickbatch_Informal
and
Pickbatch_ltems.
Multiple
Pickbatch_ltems
may be found in 1
message.

86 Connectivity and Notification: Online Help Files

ion

Level

XML Element

Comment

Table Name

Column Name

Note

Pickbatch_Informat

idhandatory

N/A

N/A

With attributes of
Store_Name,
Fulfillment_Center
and
Pickbatch_Number

Store_Name

Mandatory

DISPLAYNAME

An attribute of
Pickbatch_Informat

Fulfillment_Center

Mandatory

DISPLAYNAME

An attribute of
Pickbatch_Informat

Pickbatch_Number

Mandatory

PICKBATCH_ID

An attribute of
Pickbatch_Informat

Pickbatch_ltems

N/A

N/A

With attributes of
SKU,
Product_Name,
Product_Descriptio
and Quantity

SKU

Mandatory

PARTNUMBER

An attribute of
Pickbatch_ltems

Product_Name

Mandatory

SHORTDESCRIPT]

AN attribute of
Pickbatch_ltems

Product_Descriptio

LONGDESCRIPTI(

DAIN attribute of
Pickbatch_ltems

10

Quantity

Mandatory

QUANTITY

An attribute of
Pickbatch_ltems

ion

ion

ion

The definition of a packing list follows PackSlip_10.dtd. The content of this DTD file is fixed and should not

be modified.

Level

XML Element

Comment

Table Name

Column Name

Note

Packslip

Mandatory

N/A

N/A

Contains
Order_Information,
Shipto and
Order_Items.
Multiple Packslip
may be found in 1
message.

Order_Information

Mandatory

N/A

N/A

With attributes of
Store_Name,
Fulfillment_Center,
Order_Number,
Release_Number,

Order_Date,
Catalog_Name,
Shipping_Provider,

and
Invoice_Method

PickBatch_Number

Customer_Number

Store_Name

Mandatory

DISPLAYNAME

An attribute of
Order_Information

Fulfillment_Center

Mandatory

DISPLAYNAME

An attribute of
Order_Information

Chapter 16. Integration message DTD files

87

../database/STOREENTDS.html
../database/FFMCENTDS.html
../database/PICKBATCH.html
../database/BASEITEM.html
../database/BASEITMDSC.html
../database/BASEITMDSC.html
../database/ORDERITEMS.html
../database/STOREENTDS.html
../database/FFMCENTDS.html

Level

XML Element

Comment

Table Name

Column Name

Note

Order_Number

Mandatory

OrRDERITEMS

ORDERS_ID

An attribute of
Order_Information

Release_Number

Mandatory

DORDERITEMS

ORDERELEASENL

URN attribute of
Order_Information

PickBatch_Number

Mandatory

PICKBATCH_ID

An attribute of
Order_Information

Order_Date

Mandatory

TIMEPLACED

Attribute of
Order_Information

Shipping_Provider

Mandatory

DESCRIPTION

An attribute of
Order_Information

10

Customer_Number

Mandatory

MEMBER_ID

An attribute of
Order_Information

11

Invoice_Method

STRINGFIELD1

This is a sting. 3
options: both,
e-Mail, printed.
Default is NULL.

12

Shipto

Mandatory

N/A

N/A

With attributes of
AddressID,
First_ Name,
Last_Name,
Middle_Name,
Address_1,
Address_2,
Address_3, City,
State, Zip and
Country

13

AddressID

Mandatory

ADDRESS_ID

An attribute of
Shipto

14

First_ Name

FIRSTNAME

An attribute of
Shipto

15

Last Name

Mandatory

LASTNAME

An attribute of
Shipto

16

Middle_Name

MIDDLENAME

An attribute of
Shipto

17

Address_1

Mandatory

MIDDLENAME

An attribute of
Shipto

18

Address_2

ADDRESS2

An attribute of
Shipto

19

Address_3

ADDRESS3

An attribute of
Shipto

20

City

Mandatory

CITYy

An attribute of
Shipto

21

State

STATE

An attribute of
Shipto

22

Zip

ZIPCODE

An attribute of
Shipto

23

Country

Mandatory

COUNTRY

An attribute of

Shipto

88 Connectivity and Notification: Online Help Files

../database/ORDERITEMS.html
../database/ORDERITEMS.html
../database/PICKBATCH.html
../database/ORDERS.html
../database/SHPMODEDSC.html
../database/ORDERS.html
../database/TERMCOND.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html

Level

XML Element

Comment

Table Name

Column Name

Note

24

Order_ltems

Mandatory

N/A

N/A

May contain
multiple
components with
attributes of SKU,
Product_Name,
Product_Descriptio
Quantity,
Catalog_Name,
Unit_Price,
Total_Price,
Currency and
Customer_Comme|

>

nts.

25

SKU

Mandatory

PARTNUMBER

An attribute of
Order_Items

26

Product_Name

Mandatory

SHORTDESCRIPT]

AN attribute of
Order_Items

27

Product_Descriptio

LONGDESCRIPTI(

DAIn attribute of
Order_Items

28

Quantity

Mandatory

QUANTITY

An attribute of
Order_ltems

29

Catalog_Name

Mandatory

NAME

An attribute of
Order_Items

30

Unit_Price

Mandatory

PRICE

An attribute of
Order_Items

31

Total_Price

Mandatory

TOTALPRODUCT

An attribute of
Order_Items

32

Currency

Mandatory

CURRENCY

An attribute of
Order_ltems

33

Customer_Comme

nts

COMMENTS

An attribute of
Order_Items

34

Component

N/A

N/A

With attributes of
SKU,
Product_Name,
Product_Descriptio
and Quantity

35

SKU

Mandatory

PARTNUMBER

An attribute of
Component

36

Product_Name

Mandatory

SHORTDESCRIPT]

AN attribute of
Component

37

Product_Descriptio

=)

LONGDESCRIPTI(

DAIN attribute of
Component

38

Quantity

Mandatory

QUANTITY

An attribute of
Component

Response WCS_CreatelnvReceipt message

The Response_ WCS_ CreatelnvReceipt message is an outbound message that contains information for
creating a WebSphere Commerce inventory receipt. WebSphere Commerce generates this message in
response to the inbound Create. WCS_InventoryReceipt message. If the inbound message contains a
valid storeIDand a valid ReceiptDate, it calls the view task ReceiptCreateRedirectView which uses
CreatelnvReceiptOK.jsp to generate a response message. In the response message, a new receipt_id for

Chapter 16. Integration message DTD files 89

../database/BASEITEM.html
../database/BASEITMDSC.html
../database/BASEITMDSC.html
../database/ORDERITEMS.html
../database/CATENTDESC.html
../database/ORDERITEMS.html
../database/ORDERITEMS.html
../database/ORDERITEMS.html
../database/ORDERITEMS.html
../database/BASEITEM.html
../database/BASEITMDSC.html
../database/BASEITMDSC.html
../database/ORDERITEMS.html

records created in the RECEIPT| and RCPTAVAIL| tables is included. If the command encounters an error,
the view task used is ReceiptCreateErrorView. This error view task is implemented by
CreatelnvReceiptError.jsp. If enough inventory exists to fulfill an expected inventory record, the record is
closed.

Note: If the inbound message does not contain a valid StoreIDor a valid ReceiptDate, the
GenericApplicationError viewname is used for error message composition. The response message is
generated by GenericApplicationErrorXML. jsp.

The Response_ WCS_CreatelnvReceipt message uses the XML message format and follows
Response WCS CreatelnvReceipt 10.dtd.

The following table describes the format of the Response_ WCS_CreatelnvReceipt message. For a
description of the database column, follow the link to its associated table. All fields are optional unless
otherwise noted. The tag value length in the XML message for database fields of type INT, BIGINT and
DOUBLE should be CHAR (10), CHAR(19), and CHAR(16) respectively.

Level Field Name Comment Table Name Column Name Note

1 ResponseStatus | Mandatory N/A N/A Error comment

2 status Mandatory N/A N/A OK or ERROR
(an attribute of
ResponseStatus)

3 code N/A N/A Error code (an
attribute of
ResponseStatus,
existing only if
status="ERROR?”)

4 ltemOwnerID [TEmMSPA MEMBER_ID N/A

5 ProductSKU ITEMSEG PARTNUMBER | N/A

6 StorelD RECEIPT STORE_ID N/A

7 FulfillmentCenterlD RECERT FFMCENTER_ID |N/A

8 VendorID ReEceERT VENDOR_ID N/A

9 QTYReceived ReECEIRT QTYRECEIVED |N/A

10 ReceiptDate Recepd RECEIPTDATE |N/A

Response WCS_UpdatelnvReceipt message

The Response_ WCS_UpdatelnvReceipt message is an outbound message that contains information for
updating the inventory for an item. WebSphere Commerce generates this message in response to the
Update_WCS_InventoryReceipt message. If the inbound message contains a valid StorelD, it calls the
InventoryAdjust command which redirects to the view task InventoryAdjustRedirectView. Upon successful
completion, InventoryAdjustRedirectView uses UpdateInvReceiptOK.jsp to generate the response
message. If the command encounters an error, the view task InventoryAdjustErrorView is used. This error
view task is implemented by UpdateInvReceiptError.jsp.

If the inventory adjustment in the message is positive, the command creates a new row in the RECEIRT
and mﬂl database tables. If the adjustment is negative, the QTYONHAND column in the
table is marked down using the appropriate picking method.

Note: If the inbound message does not contain a valid StorelD, the GenericApplicationError viewname is

used for error message composition. The response message is generated by
GenericApplicationErrorXML.jsp.

90 cConnectivity and Notification: Online Help Files

../database/RECEIPT.html
../database/RCPTAVAIL.html
../database/ITEMSPC.html
../database/ITEMSPC.html
../database/RECEIPT.html
../database/RECEIPT.html
../database/RECEIPT.html
../database/RECEIPT.html
../database/RECEIPT.html
../database/RECEIPT.html
../database/RCPTAVAIL.html
../database/RECEIPT.html

The Response_ WCS_UpdatelnvReceipt message uses the XML message format and follows
Response WCS_UpdateInvReceipt 10.dtd.

The following table describes the format of the Response. WCS_UpdatelnvReceipt message. For a
description of the database column, follow the link to its associated table. All fields are optional unless
otherwise noted. The tag value length in the XML message for database fields of type INT, BIGINT and
DOUBLE should be CHAR (10), CHAR(19), and CHAR(16) respectively.

Level Field Name Comment Table Name Column Name Note

1 ResponseStatus | Mandatory N/A N/A Error comment

2 status Mandatory N/A N/A OK or ERROR
(an attribute of
ResponseStatus)

3 code N/A N/A Error code (an
attribute of
ResponseStatus,

existing only if
status="ERROR?”)

4 ItemOwnerID ITEmMSPA MEMBER_ID N/A
5 ProductSKU [TEmMSPd PARTNUMBER | N/A
6 StorelD RECEIPT STORE_ID N/A
7 FulfillmentCenterID| RECEIPT FFMCENTER_ID |N/A
8 QTYAdijusted INvADIUST QUANTITY N/A
9 InvAdjCodelD INVADIUST INVADJCODE_ID |N/A

Response WCS_CreateShipConfirm message

The Response_ WCS_CreateShipConfirm message is an outbound message that contains information for
creating a shipment confirmation for an order. WebSphere Commerce generates this message in response
to the inbound Create. WCS_ShipmentConfirmation message. If the inbound message contains a valid
ActualShipDate, it calls the ReleaseShipConfirm command, which redirects to the view task
ReleaseShipConfirmRedirectView on successful completion. The Response_ WCS_CreateShipConfirm
response message is generated by CreateShipConfirmOK. jsp. The command updates the required
database, changing the fulfillment status of the item to confirm shipment. It gets a new manifest_id from
the MANIFEST table through the key manager, and propagates the MANIFEST table with input data. With
Release_ WCS_ShipmentNotify message enabled, if the command executes successfully and the
UpdateManifestStatus is 1, the default ReleaseShipNotify.jsp generates a notification email.

If the command encounters an error, it redirects to the view task ReleaseShipConfirmErrorView. This error
view task is implemented by CreateShipConfirmError. jsp.

Note: If the inbound message does not contain a valid ActualShipDate, the GenericApplicationError
viewname is used for error message composition. The response message is generated by
GenericApplicationErrorXML.jsp.

The Response_ WCS_ CreateShipConfirm message uses the XML message format and follows
Response WCS CreateShipConfirm_10.dtd.

The following table describes the format of the Response_ WCS_ CreateShipConfirm message. For a
description of the database column, follow the link to its associated table. All fields are optional unless
otherwise noted. The tag value length in the XML message for database fields of type INT, BIGINT and
DOUBLE should be CHAR (10), CHAR(19), and CHAR(16) respectively.

Chapter 16. Integration message DTD files 91

../database/ITEMSPC.html
../database/ITEMSPC.html
../database/RECEIPT.html
../database/RECEIPT.html
../database/INVADJUST.html
../database/INVADJUST.html
../database/MANIFEST.html
../database/MANIFEST.html

Level Field Name Comment Table Name Column Name Note

1 ResponseStatus | Mandatory N/A N/A Error comment if
status="ERROR”

2 status Mandatory N/A N/A OK or ERROR
(an attribute of
ResponseStatus)

3 code N/A N/A Error code (an
attribute of
ResponseStatus,
existing only if
status="ERROR”")

ShipModelD ManiFEST SHIPMODE_ID | N/A
OrderNumber MANIFEST ORDERS_ID N/A
OrderReleaseNum MaNnIFEST ORDERRELEASENNM

Update WCS_OrderStatus message

The Update_ WCS_OrderStatus message is an inbound message that contains status information for a
WebSphere Commerce order. The message has four possible forms. Although each form of the
message has the same XML elements, each one is associated with a different Command. The mapping
of message forms to commands is as follows:

Order Status Message Type Command
OrderConfirm QrderCaonfirmStatud
OrderShipping QrderShippingStatud
Orderlnvoice QrderinvoiceStatud
OrderStatus DrderStatud

When an order is received by a back-end system, it generates this message, containing any order
fulfillment status information, and sends it to the WebSphere Commerce inbound message queue, where
the WebSphere Commerce system receives the message. WebSphere Commerce calls the appropriate
Controller Command to update the tables ORDSTAT and ORDISTAT with the new order status information.

The Update_ WCS_OrderStatus message uses the XML message format and follows
Update WCS OrderStatus 20.dtd.

The following table describes the format of the Update_ WCS_OrderStatus message. Each of the four
Order Status message types follows the same format, except where noted. The format and the source of
the XML element values are described in the following table. For a description of the database column,
follow the link to its associated table. All fields are optional unless otherwise noted. The tag value length in
the XML message for database fields of type INT, BIGINT and DOUBLE should be CHAR (10), CHAR(19),
and CHAR(16) respectively.

Level Field Name Comment Table Name Column Name Note

1 OrderStatusType |Mandatory N/A N/A OrderConfirm,
OrderShipping,
Orderlnvoice, or
OrderStatus

92 Connectivity and Notification: Online Help Files

../database/MANIFEST.html
../database/MANIFEST.html
../database/MANIFEST.html
rcvordc.htm
rcvordss.htm
rcvordis.htm
rcvoscmd.htm

Level Field Name Comment Table Name Column Name Note
1.1 SerializationInfo N/A N/A If provided, it is
used for checking
serialization
information for the
message.
1.1.1 SequenceNumber brDSTAT OSSEQNUM
1.1.2 LastUpdate brDsTAT OSUPDTIME
Timestamp
1.2 OrderStatus Mandatory N/A N/A
Header
1.2.A1 Versioning Attribute N/A N/A Value of 'TRUE’
or 'FALSE'. If
'TRUE’ then
versioning is
enabled.
121 OrderNumber brDSTAT ORDERS_ID/ If type=ByWCS
OSMORDER then ORDERS_ID
(which is
WebSphere
Commerce order
reference
number),
otherwise
OSMORDER
(which is order
reference number
generated by
back-end system).
type Attribute ByWCS or
ByBackend
1.2.2 TotalPricelnfo N/A N/A
1.2.2.A1 currency Attribute rDsTAT OSCPCUR
1.2.2.1 TotalNetPrice brDsTAT OSPRTOT
1.2.2.2 TotalTaxPrice rDsTAT OSTXTOT
1.2.2.3 TotalShippingPrice brDsTAT OSSHTOT
1.2.2.4 TotalTaxOn rDsTAT OSSHTXTOT
ShippingPrice
1.2.3 Status brDsTAT OSSTATUS Default values:
'C’'="Confirmed’
for OrderConfirm
'S’="Shipped’ for
OrderShipping
'I'="Invoiced’ for
Orderlnvoice
1.2.4 PlacedDate Mandatory brpsTaT OSPLTIME
1.25 Shippinginfo N/A N/A

Chapter 16. Integration message DTD files 93

../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html

Level Field Name Comment Table Name Column Name Note

1.2.5.A1 ShipCondition Attribute brDsTAT OSSCOND Code to indicate
whether partial
shipment of order
is allowed
'SC’=Ship
Complete
'SP’=Ship Partial.

1.2.5.A2 ShipModeFlag Attribute brDsTAT OSSMFLAG Code to indicate
whether shipping
address and
shipping mode
are at order level
or order item
level.
'O’ = Order level
‘I = Order item
level.

1.2.5.1 RequestShipDate BrDSTAT OSRSTIME

1.2.5.2 ScheduledShip BRrRDSTAT OSSSTIME

Date

1.25.3 ActualShipDate BRDSTAT OSASTIME

1.2.6 Invoicelnfo

1.2.6.1 InvoiceDate BRDSTAT OSINVTIME

1.2.6.2 InvoiceValue BRrRDSTAT OSINVVAL

1.2.7 Comment BRDSTAT OSCMNT

1.2.8 CustomerField First occurrence |QRDSTAT FIELD1

1.2.8 CustomerField Second ORDSTAT FIELD2

occurrence

1.2.8 CustomerField Third occurrence |DRDSTAT FIELD3

1.2.9 UserData N/A N/A

1.3 OrderStatusltem | Repeatable N/A N/A Vector

1.3.A1 Versioning Attribute N/A N/A Value of 'TRUE’
or 'FALSE'. If
'TRUE’ then
versioning is
enabled.

1.3.1 ItemNumber brDisTAT ORDER If type = ByWCS,

ITMES_ID/ then
OIMITEM ORDERITMES _ID,

if type =
ByBackend then
OIMITEM

1.3.1.A1 type Attribute N/A N/A ByWCS or
ByBackEnd.

1.3.2 ProductNumber brDisTAT PARTNUMBER

ByMerchant

1.3.3 Quantitylnfo N/A N/A

1.3.3.1 RequestedQuantity BrDISTAT OIQTREQUEST

1.3.3.2 ConfirmedQuantity DRDISTAT OIQTCONFIRM

94 Connectivity and Notification: Online Help Files

../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html

Level Field Name Comment Table Name Column Name Note
1.3.3.3 ShippedQuantity brDISTAT OIQTSHIP
1.3.4 ItemUnitPrice brDisTAT OIUNPRC
1.3.5 TotalPricelnfo N/A N/A
1.3.5.A1 currency Attribute brDISTAT OICPCUR
1.35.1 TotalNetPrice brDISTAT OIPRTOT
1352 TotalTaxPrice brDISTAT OITXTOT
1.35.3 TotalShippingPrice brDiSTAT OISHTOT
1.35.4 TotalTaxOn brDISTAT OISHTXTOT
ShippingPrice
1.3.6 Status brbisTAT OISTATUS
137 PlacedDate brDISTAT OIPLTIME
1.3.8 ShippingInfo N/A N/A
1.3.8A1 ShipCondition brDISTAT OISCOND Code to indicate
whether partial
shipment of the
line item is
allowed.
'SC’=Ship
Complete
'SP’=Ship Partial
1.3.8A2 ShipModeFlag N/A N/A
1.3.8.1 Requested ORDISTAT OIRSTIME
ShipDate
1.3.8.2 Scheduled ORDISTAT OISSTIME
ShipDate
1.3.8.3 ActualShipDate ORDISTAT OIASTIME
1.3.9 Invoicelnfo N/A N/A
1.3.9.1 InvoiceDate brDisTAT OIlINVTIME
1.3.9.2 InvoiceValue brDisTAT OIINVVAL
1.3.10 Comment beDisTAT OICMNT
1.3.11 CustomerFieldl First occurrence brDisTAT FIELD1
1.3.11 CustomerField2 Second broisTAT FIELD2
occurrence
1.3.11 CustomerField3 Third occurrence | QRDISTAT FIELD3
1.3.12 LserDatd N/A N/A

Order Status Update message

The Order Status Update message is an inbound message that contains status information for a
WebSphere Commerce order. A back-end application generates this message and sends it to the
WebSphere Commerce inbound message queue, where the WebSphere Commerce system receives the

message. WebSphere Commerce uses the
ORDISTAT with the new order status information.

command to update the tables ORDSTAT and

The Order Status Update message supports two sets of application data: Order Status Update Version 01
and Order Status Update Version 02. Version 02 includes a superset of the data within Version 01.

Chapter 16. Integration message DTD files 95

../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
rcvudin.htm
rcvoscmd.htm

The Order Status Update message uses the WebSphere Commerce message format and consists of a set
of records, which follow each other sequentially in a buffer. The following data describes the Order Status
Update message:

<ECEDOC>
<PROLOG>ORDER_STATUS_UPDATE_PROLOG_DATA</PROLOG>
<HEADER>
<HDRO10>0RDER_STATUS_UPDATE_HDRO10_DATA</HDRO10>
<USRLST>
<DATUSR>DATUSR_DATA</DATUSR>

.DATUSR repeated Toop

<DATUSR>DATUSR_DATA</DATUSR>
</USRLST>
</HEADER>
<ITMLST>
<ITMDAT>
<ITMO10>0RDER_STATUS_UPDATE_ITMO10_DATA</ITMO10>
<USRLST>
<DATUSR>DATUSR_DATA</DATUSR>

.DATUSR repeated Toop

<DATUSR>DATUSR_DATA</DATUSR>

</USRLST>
</ITMDAT>
.ITEM repeated loop
<ITMDAT>
<ITMO10>0RDER_STATUS_UPDATE_ITMO10 DATA</ITMO10>
<USRLST>

<DATUSR>DATUSR_DATA</DATUSR>
.DATUSR repeated Tloop

<DATUSR>DATUSR_DATA</DATUSR>
</USRLST>
</ITMDAT>
</1TMLST>
</ECEDOC>

Notes:

» All records are in sequential order in the buffer. Indentation is used here for readability; it does not
appear in the buffer.

» All fields in the data segments are left-justified and padded to the right with spaces in the buffer.

Data Segments for Order Status Update
« IORDER_STATUS UPDATE _PRQOLOG DATA

Specifies the type_of message the appﬁcation data defines. In this case, the message is Order Status
Update.

« IORDER_STATUS UUPDATE HDRQ1Q DATA
Specifies order information within the Order Status Update message.

96 Connectivity and Notification: Online Help Files

rcvproos.htm
rcvh1osu.htm

- DATUSR DATA

Specifies_optional information to be added to the Order Status Update message. DATUSR_DATA
appears in the <HDR> and <ITM> sections of this message.

« IORDFR_STATUS UPDATE_ITM010 DATA

Specifieg item or Eroduct shi_pping information within the Order Status Update message.

Update_ WCS_ProductPrice message

The Update_ WCS_ProductPrice message is an inbound message that contains price information for a

product. A back-end application generates this

message and sends it to the WebSphere Commerce

inbound message queue. When the WebSphere Commerce system receives the message, it runs a
controller command. The controller command that is run depends on the type of message. The following
table shows the two types of messages that can be sent, along with their associated controller commands.

Product Price Message Type

Controller Command

OfferPrice Update

BroductOfferPricelipdate

ListPrice Update

I — I

The Update_ WCS_ProductPrice message uses the XML message format and follows

Update WCS ProductPrice 20.dtd.

OfferPrice Update

The following table describes the format of the OfferPrice Update variant of the

Update_ WCS_ProductPrice message. For a description of the database column, follow the link to its
associated table. All fields are optional unless otherwise noted. The tag value length in the XML message
for database fields of type INT, BIGINT and DOUBLE should be CHAR (10), CHAR(19), and CHAR(16)

respectively.

Level XML Element Comment Table Name Column Name

1 OfferPricelnfo N/A N/A

1.1 ProductNumberByMerchant Mandatory CATENTRM | PARTNUMBER

1.2 MerchantID Mandatory CatenTRM | MEMBER_ID

1.2.A1 type Attribute N/A N/A

1.3 Precedence (@Y= PRECEDENCE

1.4 TradingPositionContainerlD beeeER TRADEPOSCN_ID
15 Currency Mandatory REEERPRICH | CURRENCY

1.6 ltemUnitPrice REEERPRICH | PRICE

1.7 StartTimeStamp REEER STARTDATE

1.8 EndTimeStamp keeer ENDDATE

1.9 MinimumQuantity QeEEER MINIMUMQUANTITY
1.10 MaximumQuantity QEEER MAXIMUMQUANTITY
1.11 QuantityUnit oY== QTYUNIT_ID

1.12 Published QeeeR PUBLISHED

1.13 PriceCustomField First occurrence QEEER FIELD1

1.13 PriceCustomField Second occurrence beeER FIELD2

1.14 UserData N/A N/A

Chapter 16. Integration message DTD files 97

rcvdatin.htm
rcvi1osu.htm
rcvpopuc.htm
rcvprdpup.htm
../database/CATENTRY.html
../database/CATENTRY.html
../database/OFFER.html
../database/OFFER.html
../database/OFFERPRICE.html
../database/OFFERPRICE.html
../database/OFFER.html
../database/OFFER.html
../database/OFFER.html
../database/OFFER.html
../database/OFFER.html
../database/OFFER.html
../database/OFFER.html
../database/OFFER.html

Behavior for OfferPrice Update:

* The currency type (which references CURRENCY in the OFFERPRICE table) is mandatory and must
be specified in [SQ 4217 format.

* The combination of the part number (which references PARTNUMBER in the CATENTRY table) and the
member id (which references MEMBER _ID in the CATENTRY table) will be used to obtain a catalog
entry (CATENTRY_ID). This value, along with either the precedence (PRECEDENCE) or the trade
position container (TRADEPOSCN _ID), will be used to obtain a product price reference number
(OFFER_ID). The product price reference number, along with the currency type, will be used as the key
to update a row in the OFFERPRICE table.

 If the product price reference number (OFFER_ID) matches an existing one in the database, but the
currency type does not match a currency type for any record with that product price reference number,
a new record will be created in the OFFERPRICE table. This allows you to specify prices in different
currencies for the same offer.

» If the precedence (PRECEDENCE) is not specified, then the ProductOfferPriceUpdate command locates
all previous records that match the values given without the precedence. The maximum of these values
is taken and incremented by one. If a previous record does not exist, then the precedence value is set
to 1. A new row is inserted in the table OFFERPRICE with the new precedence value. The precedence
value must be less than10®. If the maximum value has been reached, then the new update will be
rejected.

ListPrice Update

The following table describes the format of the ListPrice Update variant of the Update_ WCS_ProductPrice
message. For a description of the database column, follow the link to its associated table. All fields are
optional unless otherwise noted. The tag value length in the XML message for database fields of type INT,
BIGINT and DOUBLE should be CHAR (10), CHAR(19), and CHAR(16) respectively.

1 ListPricelnfo N/A N/A

1.1 ProductNumberByMerchant CATENTRY PARTNUMBER
1.2 MerchantID CATENTRM MEMBER_ID
1.2.A1 type Attribute N/A N/A

1.3 Currency LISTRRICH CURRENCY
1.4 ltemUnitPrice LisTericH LISTPRICE

15 UserData N/A N/A

Behavior for ListPrice Update:
* The command updates a record in the LISTPRICE table.

* The partNumber, together with memberld are used to get the catalog entry key (CATENTRY_ID in table
CATENTRY).

» If the catalog entry matches an existing one in the LISTPRICE table, but the currency type does not
match a currency type for any record for that catalog entry, a new record is created in the LISTPRICE
table. This allows you to specify prices in different currencies for the same catalog entry.

Create_ WCS_ExpectedinventoryRecord message

The Create_ WCS_ExpectedinventoryRecord message is an inbound message that contains information for
creating an expected inventory record in the WebSphere Commerce database. A fulfillment center
application generates this request and sends it to the WebSphere Commerce inbound message queue,
where the WebSphere Commerce system receives it. After WebSphere Commerce processes the
message, the ExpectedinventoryRecordCreate command is invoked. The command creates a record in the
B4l table and one RADETAIL record for each RADETAIL component in the message.

98 Connectivity and Notification: Online Help Files

rcuintiso.htm
../database/CATENTRY.html
../database/CATENTRY.html
../database/LISTPRICE.html
../database/LISTPRICE.html
../database/RA.html

Note: If the inbound message does not contain a valid StorelD or a valid ExpectedDate, the
GenericApplicationError viewname is used for error message composition and the
ExpectedinventoryRecordCreate command is not invoked. The response message is generated by
GenericApplicationErrorXML.jsp.

The Create. WCS_ExpectedinventoryRecord message uses the XML message format and follows

Create_WCS_ExpectedInventoryRecord_10.dtd.

The following table describes the format of the Create. WCS_ExpectedinventoryRecord message. For a
description of the database column, follow the link to its associated table. All fields are optional unless

otherwise noted. The tag value length in the XML message for database fields of type INT, BIGINT and
DOUBLE should be CHAR (10), CHAR(19), and CHAR(16) respectively.

Field Name Comment Table Name Column Name Note

1 BackendRalD N/A N/A This can be used
in the response
message to
associate with the
original request

2 StorelD Mandatory STORE_ID N/A

3 VendorID Mandatory VENDOR_ID N/A

4 OrderDate Mandatory RA ORDERDATE N/A

5 ExternallD RA EXTERNALID N/A

6 FulfillmentCenterID| Mandatory RADETAI FFMCENTER_ID |N/A

7 ItemOwnerID Mandatory [TEmMSPA MEMBER_ID N/A

8 ProductSKU Mandatory [TEmMSPA PARTNUMBER | ProductSKU
along with
ItemOwnerlD is
used to identify
the item
specification

9 ExpectedDate Mandatory RaneTal] EXPECTEDDATE |ISO 8601 date
format

10 QuantityOrdered | Mandatory RaneTAl] QTYORDERED |N/A

11 Comment RaneTal] RADETAILCOMMENTA

12 BackendRaDetaillO N/A N/A This can be used
in the response
message to
associate with the
original request.

Create_ WCS PickBatch message

The Create_ WCS_PickBatch message is an inbound message that contains information for generating a
WebSphere Commerce pickbatch. A fulfillment center application generates this request and sends it to
the WebSphere Commerce inbound message queue. After WebSphere Commerce processes the
message, the PickBatchGenerate controller command is invoked. This command gets a new
PICKBATCH_ID through the key manager, selects all rows with a value of SHIP in the STATUS column of
the DRDRELEASH database table, generates the XML pick ticket and packing list XML for the input
StorelID and FulfillmentCenterID, and saves them to the RICKBATCH and RRDRELEASH tables
respectively. The Response. WCS_PickBatch message is sent in response.

Chapter 16. Integration message DTD files 99

../database/RA.html
../database/RA.html
../database/RA.html
../database/RA.html
../database/RADETAIL.html
../database/ITEMSPC.html
../database/ITEMSPC.html
../database/RADETAIL.html
../database/RADETAIL.html
../database/RADETAIL.html
../database/ORDRELEASE.html
../database/PICKBATCH.html
../database/ORDRELEASE.html

Note: If the inbound message does not contain a valid StorelD, the GenericApplicationError viewname is
used for error message composition and the PickBatchGenerate command is not invoked. The response
message is generated by GenericApplicationErrorXML. jsp.

The Create_ WCS_PickBatch message uses the XML message format and follows
Create_WCS_PickBatch_10.dtd.

The following table describes the format of the Create. WCS_PickBatch message. For a description of the
database column, follow the link to its associated table. All fields are optional unless otherwise noted. The
tag value length in the XML message for database fields of type INT, BIGINT and DOUBLE should be

CHAR (10), CHAR(19), and CHAR(16) respectively.

Level Field Name Comment Table Name Column Name Note
1 BackendPickBatchID N/A N/A This can be used
in the
Response_ WCS_H
message
StorelD Mandatory DRDERITEMY |STORE_ID N/A
3 FulfillmentCenterID Mandatory DRDERITEMY |FFMCENTER_ID |N/A

Inquire_ WCS_PickPackListDetail message

The Inquire_WCS_PickPackListDetail message is an inbound message that requests the pick ticket and
packing list information created by an earlier Create_ WCS_PickBatch message. A fulfillment center
application generates this request and sends it to the WebSphere Commerce inbound message queue.
When processed, the inbound message calls the GetPickPackListDetail command, which redirects to
PickPackListResult view task on successful completion, or PickPackListErrorView view task on command
failure. On successful completion, the command retrieves the pick ticket XML from the PICKBATCH table
table for the given PICKBATCH_ID. The

and the packing list XML from the

PickPackListResult.jsp file generates the outbound Report. WCS_PickPackListDetail message including
the pick ticket and packing slips in response.

The Inquire_ WCS_PickPackListDetail message uses the XML message format and follows
Inquire WCS_PickPackListDetail 10.dtd.

The following table describes the format of the Inquire_PickPackListDetail message. For a description of
the database column, follow the link to its associated table. All fields are optional unless otherwise noted.
The tag value length in the XML message for database fields of type INT, BIGINT and DOUBLE should be
CHAR (10), CHAR(19), and CHAR(16) respectively.

ickBatch

Level

XML Element

Comment

Table Name

Column Name

Note

1

PickBatchID

Mandatory

BickeaTcH

PICKBATCH_ID

N/A

Create_ WCS_InventoryReceipt message

The Create. WCS_InventoryReceipt message is an inbound message that contains information for creating

a WebSphere Commerce inventory record. A fulfillment center application generates this request and

sends it to the WebSphere Commerce inbound message queue, where the WebSphere Commerce system

receives the message. When the WebSphere Commerce system receives the message, it calls the
ReceiptCreate controller command. If the command executes successfully, the
Response_WCS_CreatelnvReceipt message is sent in response. If enough inventory exists to fulfill an
expected inventory record, the record will be closed.

100 connectivity and Notification: Online Help Files

../database/ORDERITEMS.html
../database/ORDERITEMS.html
../database/PICKBATCH.html
../database/ORDRELEASE.html
../database/PICKBATCH.html

Note: If the inbound message does not contain a valid StorelIDor a valid ReceiptDate, the
GenericApplicationError viewname is used for error message composition and the ReceiptCreate
command is not invoked. The response message is generated by GenericApplicationErrorXML. jsp.

The Create_ WCS_InventoryReceipt message uses the XML message format and follows
Create_WCS_InventoryReceipt 10.dtd.

The following table describes the format of the Create. WCS_InventoryReceipt message. For a description
of the database column, follow the link to its associated table. All fields are optional unless otherwise
noted. The tag value length in the XML message for database fields of type INT, BIGINT and DOUBLE
should be CHAR (10), CHAR(19), and CHAR(16) respectively.

Level Field Name Comment Table Name Column Name Note

1 ItemOwnerID Mandatory [TEMSPA MEMBER_ID N/A

2 ProductNumberbyNidtahdatory ITEmMSPA PARTNUMBER | N/A

3 VersionName [TEMVERSN VERSIONNAME | Reserved for IBM
internal use.

4 StorelD Mandatory RECEIPT STORE_ID N/A

5 FulfillmentCenterlD Mandatory RECEIPT FFMCENTER_ID |N/A

6 VendorID Mandatory RECEIPT VENDOR_ID N/A

7 Cost Mandatory RECEIPT COST N/A

8 Currency Mandatory RECEIPT SETCCUR N/A

9 QTYReceived Mandatory RECEIPT QTYRECEIVED |N/A

10 ReceiptDate Mandatory RECEIPT RECEIPTDATE |ISO 8601 date
format

11 WCSRaDetaillD RECEIPT RADETAIL_ID An expected
inventory record
in the RA table. If
it does not exist,
the receipt is an
ad-hoc type

12 ReceiptComment RECEIPT COMMENT1 N/A

13 QualityComment Recepd COMMENT2 N/A

Update. WCS_InventoryReceipt message

The Update_ WCS_InventoryReceipt message is an inbound message that contains information for
adjusting the inventory for an item. A fulfillment center application generates this message and sends it to
the WebSphere Commerce inbound message queue, where the WebSphere Commerce system receives
the message. After WebSphere Commerce receives the message, the InventoryAdjust command is
invoked.

Note: If the inbound message does not contain a valid StoreID, the GenericApplicationError viewname is
used for error message composition and the InventoryAdjust command is not invoked. The response
message is generated by GenericApplicationErrorXML.jsp.

The Update_ WCS_InventoryReceipt message uses the XML message format and follows
Update_WCS_InventoryReceipt_10.dtd.

The following table describes the format of the Update_ WCS_InventoryReceipt message. For a description
of the database column, follow the link to its associated table. All fields are optional unless otherwise

Chapter 16. Integration message DTD files 101

../database/ITEMSPC.html
../database/ITEMSPC.html
../database/ITEMVERSN.html
../database/RECEIPT.html
../database/RECEIPT.html
../database/RECEIPT.html
../database/RECEIPT.html
../database/RECEIPT.html
../database/RECEIPT.html
../database/RECEIPT.html
../database/RECEIPT.html
../database/RECEIPT.html
../database/RECEIPT.html

noted. The tag value length in the XML message for database fields of type INT, BIGINT and DOUBLE
should be CHAR (10), CHAR(19), and CHAR(16) respectively.

Level |Field Name Comment |Table Column Name |Note
Name

1 ltemOwnerID Mandatory |[ZEMSPd |[MEMBER_ID |N/A

2 ProductSKU Mandatory |ITEMSPd |PARTNUMBER |N/A

3 VersionName ITEMVERSN| VERSIONNAME| Reserved for IBM internal use.

4 StorelD Mandatory |RECEIPT |STORE_ID N/A

5 FulfillmentCenterlD Mandatory |RECEIPT |FFMCENTER_IQN/A

6 Comment RECEIPT |COMMENTL |N/A

7 QTYAdjusted Mandatory InvaDI0sT QUANTITY Can be positive or negative value
8 InvAdjCodelD Mandatory |INVADIUST |INVADJCODE_IDN/A

Create_ WCS_ShipmentConfirmation message

The Create_ WCS_ShipmentConfirmation message is an inbound message that contains information for
issuing shipment confirmation for an item. A fulfillment center application generates this request and sends
it to the WebSphere Commerce inbound message queue. After WebSphere Commerce processes the
message, the ReleaseShipConfirm command is invoked.

On successful completion, the command redirects to the view task ReleaseShipConfirmRedirectView. The
Response_WCS_CreateShipConfirm response message is generated by CreateShipConfirmOK. jsp. The
command updates the required database, changing the fulfillment status of the item to confirm shipment. It
cE;ets a new manifest_id from the table through the key manager, and propagates the

table with input data. If the command executes successfully and the UpdateManifestStatus is
1, the default ReleaseShipNotify.jsp generates a notification email.

If the command encounters an error, it redirects to the view task ReleaseShipConfirmErrorView. This error
view task for MQSeries is implemented by CreateShipConfirmError.jsp.

Note: If the inbound message does not contain a valid ActualShipDate, the GenericApplicationError
viewname is used for error message composition. The response message is generated by
GenericApplicationErrorXML.jsp.

The Create_ WCS_ShipmentConfirmation message uses the XML message format and follows
Create_WCS_ShipmentConfirmation_10.dtd.

The following table describes the format of the Create. WCS_ShipmentConfirmation message. For a
description of the database column, follow the link to its associated table. All fields are optional unless
otherwise noted. The tag value length in the XML message for database fields of type INT, BIGINT and
DOUBLE should be CHAR (10), CHAR(19), and CHAR(16) respectively.

Level Field Name Comment Table Name Column Name Note
1 UpdateManifestStatus ManIEEST UPDATEMANIFESTSATUS, an
attribute of parent
element
ShipmentConfirma
ShipModelD Mandatory MaNIEEST SHIPMODE_ID | N/A
OrderNumber Mandatory MANIFEST ORDERS_ID N/A
OrderReleaseNum | Mandatory MaNIFEST ORDERRELEASENNM
102 Connectivity and Notification: Online Help Files

ion

../database/ITEMSPC.html
../database/ITEMSPC.html
../database/ITEMVERSN.html
../database/RECEIPT.html
../database/RECEIPT.html
../database/RECEIPT.html
../database/INVADJUST.html
../database/INVADJUST.html
../database/MANIFEST.html
../database/MANIFEST.html
../database/MANIFEST.html
../database/MANIFEST.html
../database/MANIFEST.html
../database/MANIFEST.html

Level Field Name Comment Table Name Column Name Note

5 PackagelD ManiEEST PACKAGEID N/A

6 TrackingID ManiEEST TRACKINGID N/A

7 PickUpRecordID MaNIEEST PICKUPRECORDIDN/A

8 ActualShipDate | Mandatory ManIEEST DATESHIPPED |1SO 8601 date
format

9 ShippingCosts Mandatory MaNIEEST SHIPPINGCOSTS | N/A

10 Weight Mandatory ManIEEST WEIGHT N/A

11 measure Mandatory ManIEEST WEIGHTMEASUREAN attribute of
Weight

12 currency Mandatory MaNIFEST SETCCURR An attribute of

ShippingCosts

The default value for the UpdateManifestStatus flag is 0. If it is set to 1, a task command is called to
update the manifest status and an e-mail is sent to inform the customer about completion of product

shipment.

The JSP file that generates the response message is Response_WCS_ CreateShipConfirm.jsp.
ReleaseShipNotify.jsp is the default JSP file, generating the email if UpdateManifestStatus flag is set to 1.

See

for information on JSP file locations.

Create_ WCS_Customer message

The Create_ WCS_Customer message is an inbound message that contains customer information for a
shopper. A back-end application generates this message and sends it to the WebSphere Commerce
inbound message queue, where the WebSphere Commerce system receives the message. WebSphere
Commerce adds information for a new shopper by calling the UserRegistrationAdd command.

The Create. WCS_Customer message uses the XML message format and follows
Create WCS_Customer 20.dtd.

The format for fields mapping to the database fields for this message is similar to the format for the

Update_ WCS_Customer message.

Update WCS_Customer message

The Update_ WCS_Customer message is an inbound message that contains customer information for a
shopper. A back-end application generates this message and sends it to the WebSphere Commerce
inbound message queue, where the WebSphere Commerce system receives the message. WebSphere
Commerce updates information for a customer by calling the UserRegistrationUpdate command.

The following table describes the format of the Update_ WCS_Customer message. For a description of the
database column, follow the link to its associated table. All fields are optional unless otherwise noted. The
tag value length in the XML message for database fields of type INT, BIGINT and DOUBLE should be

CHAR (10), CHAR (19), and CHAR (16) respectively.

Level Field Name Comment Table Name | Column Name

1 Registration Mandatory N/A N/A

11 Logonlinfo Mandatory N/A N/A

1.1.1 LogonID Mandatory LSERREQ |LOGONID

1.1.2 Password LISERREG |LOGONPASSWORD

Chapter 16. Integration message DTD files

103

../database/MANIFEST.html
../database/MANIFEST.html
../database/MANIFEST.html
../database/MANIFEST.html
../database/MANIFEST.html
../database/MANIFEST.html
../database/MANIFEST.html
../database/MANIFEST.html
rcvtempl.htm
../database/USERREG.html
../database/USERREG.html

Level Field Name Comment Table Name | Column Name

1.1.3 VerifyPassword N/A N/A

1.2 Statusinfo N/A N/A

1.2.1 CustomerStatus USERREQ |[STATUS

1.2.2 PasswordExpired N/A N/A

1.2.2.A1 |value Attribute LISERREd | PASSWORDEXPIRED

13 Challenge N/A N/A

1.3.1 Question LSERREQ |CHALLENGEQUESTION

1.3.2 Answer LSERREQ |CHALLENGEANSWER

2 Addressinfo N/A N/A

2.1 AddressID BDDRESY |ADDRESS ID

2.2 AddressNickName BDDRESY | NICKNAME

2.3 AddressType BDDRESY |ADDRESSTYPE

2.4 PersonName N/A N/A

2.4.1 Title BDDRESY |PERSONTITLE

2.4.2 LastName BDDRESY |LASTNAME

2.4.3 FirstName BDDRESY |FIRSTNAME

2.4.4 MiddleName BDDRESY |MIDDLENAME

25 Address N/A N/A

25.A1 |primary Attribute BDDRESY |ISPRIMARY

25A2 |self Attribute BDDRESY |SELFADDRESS

25.1 AddressLine First occurrence BDDRESY |ADDRESS1

251 AddressLine Second occurrence BDDRESY |ADDRESS?2

25.1 AddressLine Third occurrence BDDRESY |ADDRESS3

2.5.2 City BDDRESS |CITY

25.3 State WDDRESY |STATE

2.5.4 ZipCode BDDRESY |ZIPCODE

255 Country BDDRESY | COUNTRY

2.6 Contactlnfo N/A N/A

26.1 Telephone First occurrence BDDRESY |PHONE1

2.6.1 Telephone Second occurrence BDDRESY |PHONE2

2.6.1.A1 |type Attribute BDDRESY | PHONELTYPE/ PHONE2TYPE

2.6.1.A2 | publish Attribute BDDRESY |PUBLISH PHONEL / PUBLISH
PHONE2

2.6.2 BestCallingTime BDDRESY |BESTCALLINGTIME

2.6.3 Fax First occurrence BDDRESY |FAX1

2.6.3 Fax Second occurrence BDDRESY |FAX2

2.6.4 Email First occurrence BDDRESY |EMAILL

2.6.4 Email Second occurrence BDDRESY |EMAIL2

2.7 Billing N/A N/A

2.7.1 Code BDDRESY | BILLINGCODE

2.7.2 CodeType BDDRESY |BILLINGCODETYPE

104 connectivity and Notification: Online Help Files

../database/USERREG.html
../database/USERREG.html
../database/USERREG.html
../database/USERREG.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html

Level Field Name Comment Table Name | Column Name

2.8 PackageSuppression BDDRESY | PACKAGESUPPRESSION
29 AddressField First occurrence BDDRESY |FIELD1

2.9 AddressField Second occurrence BDDRESY |FIELD2

29 AddressField Third occurrence BDDRESY |FIELD3

3 Profile N/A N/A

3.A1 type Attribute LseErd PROFILETYPE

3.1 Personal N/A N/A

3.1.1 DistinguishedName LseErd DN

3.1.2 PreferredCurrency OsErRd SETCURR

3.1.3 PreferredLanguage LsErd LANGUAGE_ID
3.1.4 UserField First occurrence OsErRY FIELD1

3.14 UserField Second occurrence OsSERY FIELD2

3.1.4 UserField Third occurrence OsSErRY FIELD3

3.15 DisplayName LISERPROH | DISPLAYNAME
3.16 Photo LISERPROH | PHOTO

3.1.7 PreferredMeasure L'SERPROH | PREFERREDMEASURE
3.1.8 PreferredCommunication LISERPROH | PREFERREDCOMM
3.1.9 PreferredDelivery LSERPROH | PREFERREDDELIVERY
3.1.10 Description LISERPROH | DESCRIPTION
3.1.14 UserProfileField First occurrence LSERPROH | FIELD1

3.1.14 UserProfileField Second occurrence | USERPROH | FIELD2

3.2 Business N/A N/A

321 BusinessTitle BDDRESY |BUSINESSTITLE
3.2.2 Organization N/A N/A

3.2.2.1 |OrganizationlD BUSPRQH |[ORG_ID

3.2.2.2 OrganizationName BDDRESY | ORGNAME

3.2.2.3 | OrganizationUnitld BuserOH |ORGUNIT ID
3.2.2.4 | OrganizationUnitName BDDRESY | ORGUNITNAME
3.2.3 Employee N/A N/A

3.2.3.1 |EmployeelD BusPrOH |EMPLOYEEID
3.2.32 |AlternatelD BUSPRQHA | ALTERNATEID
3.2.3.1 |EmployeeType BUSPROH |EMPLOYEETYPE
3.2.4 OfficeAddress BDDRESY | OFFICEADDRESS
3.2.6 DepartmentNumber BUSPROH | DEPARTMENTNUM
3.2.7 Manager BUSPROH |MANAGER

3.2.8 Secretary BUSPROH |SECRETARY

3.3 Demographics N/A N/A

331 Age LSERDEMA| AGE

3.3.2 Gender LISERDEMA| GENDER

333 Income LISERDEMA| INCOME

3.3.3.A1 |[Currency Attribute LSERDEMA| INCOMECURRENCY

Chapter 16. Integration message DTD files

105

../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/USERS.html
../database/USERS.html
../database/USERS.html
../database/USERS.html
../database/USERS.html
../database/USERS.html
../database/USERS.html
../database/USERPROF.html
../database/USERPROF.html
../database/USERPROF.html
../database/USERPROF.html
../database/USERPROF.html
../database/USERPROF.html
../database/USERPROF.html
../database/USERPROF.html
../database/ADDRESS.html
../database/BUSPROF.html
../database/ADDRESS.html
../database/BUSPROF.html
../database/ADDRESS.html
../database/BUSPROF.html
../database/BUSPROF.html
../database/BUSPROF.html
../database/ADDRESS.html
../database/BUSPROF.html
../database/BUSPROF.html
../database/BUSPROF.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html

Level Field Name Comment Table Name | Column Name
3.3.4 MaritalStatus LISERDEMd| MARITALSTATUS
3.35 Children LISERDEMJ| CHILDREN

3.3.6 Household LISERDEMJ| HOUSEHOLD
3.3.7 CompanyName LSERDEMA| COMPANYNAME
3.3.8 Hobbies LISERDEMJ| HOBBIES

3.3.9 OrderBefore LISERDEMA| ORDERBEFORE
3.3.10 |TimeZone LSERDEMJ| TIMEZONE
3.3.11 DemographicField First occurrence LSERDEMA|FIELD1

3.3.11 DemographicField Second occurrence LSERDEMA| FIELD2

3311 DemographicField Third occurrence LSERDEMA| FIELD3

3.3.11 DemographicField Fourth occurrence LSERDEMA| FIELD4

3311 DemographicField Fifth occurrence LSERDEMA| FIELDS

3.3.11 DemographicField Sixth occurrence LSERDEMA| FIELD6

3311 DemographicField Seventh occurrence LSERDEMA| FIELD7

4 UserDatd N/A N/A

4.1 UserDataField N/A N/A

Update WCS_Productinventory message

The Update_ WCS_Productinventory message is an inbound message that contains inventory information
for a product. A back-end application generates this message and sends it to the WebSphere Commerce
inbound message queue, where the WebSphere Commerce system receives the message. WebSphere

Commerce updates the INVENTORY table with the new inventory information.

The Update_ WCS_Productinventory message uses the XML message format and follows

Update WCS ProductInventory 20.dtd.

The format and the source of the XML element values are described in the following table. For a
description of the database column, follow the link to its associated table. Fields are optional unless
otherwise noted. The tag value length in the XML message for database fields of type INT, BIGINT and
DOUBLE should be CHAR (10), CHAR(19), and CHAR(16) respectively.

Level XML Element Comment Table Name Column Name Note
1 ProductNumber Mandatory (see INVENTORM CATENTRY_ID Mandatory only
ByMerchant note) when ProductSKU

is not used. This
attribute should
not be used when
ProductSKU is
used.

2 MerchantID Mandatory INVENTORM STORE_ID

3 Quantity Mandatory INVENTORM QUANTITY

4 Lserbatd N/A N/A

5 FulfillmentCenterID INVENTORM FFMCENTER_ID

106 cConnectivity and Notification: Online Help Files

../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
rcvudin.htm
../database/INVENTORY.html
../database/INVENTORY.html
../database/INVENTORY.html
rcvudout.htm
../database/INVENTORY.html

Level XML Element Comment Table Name Column Name Note

6 ProductSKU Mandatory (see |[CATENTRM PARTNUMBER | Mandatory only
note) when
ProductNumberByMerchant
is not used. This
attribute should
not be used when
ProductNumberByMerchant
is used.

Behavior:

* The WebSphere Commerce product reference number (which references CATENTRY_ID in the
INVENTORY table) and the merchant reference number (STORE_ID) are used to update a row in the
INVENTORY table.

* If the row in the table INVENTORY does not exist, an exception occurs.

Product Price Update message

The Product Price Update message is an inbound message that contains price information for a product. A
back-end application generates this message and sends it to the WebSphere Commerce inbound
message queue. When the WebSphere Commerce system receives the message, it runs the
ProductOfferPriceUpdate command.

The Product Price Update message supports two sets of application data: Product Price Update version
01 and Product Price Update 02. Version 02 includes a superset of the data within version 01.

The Product Price Update message uses the WebSphere Commerce message format and consists of a
set of records, which follow each other sequentially in a buffer. The following data describes the Product
Price Update message:

<ECEDOC>
<PROLOG>PRODUCT _PRICE_UPDATE_PROLOG_DATA</PROLOG>
<HEADER>

<HDRO10>PRODUCT PRICE_UPDATE_HDRO10_DATA</HDRO10>
</HEADER>
</ECEDOC>

Notes:
» All records are in sequential order in the buffer. Indentation is used here for readability; it does not
appear in the buffer.

» All fields in the data segments are left-justified and padded to the right with spaces in the buffer.

Data Segments for Product Price Update
« PRODUCT PRICE UPDATE PRQLQG DATA

Specifies the type of message the application data defines. In this case, the message is Product Price
Update.

« PRODUCT PRICE _UUPDATE _HDRQ10 DATA

Specifies item or pE)duct pricﬁlg information within the Product Price Update message.

Chapter 16. Integration message DTD files 107

../database/CATENTRY.html
rcvpropp.htm
rcvh1ppu.htm

Product Quantity Update message

The Product Quantity Update message is an inbound message that contains inventory information for a
product. A back-end application generates this message and sends it to the WebSphere Commerce
inbound message queue, where the WebSphere Commerce system receives the message.

The Product Quantity Update message uses the WebSphere Commerce message format and consists of
a set of records, which follow each other sequentially in a data buffer. The following data describes the
Product Quantity Update message:

<ECEDOC>
<PROLOG>PRODUCT_QUANTITY UPDATE_PROLOG_DATA</PROLOG>
<HEADER>

<HDRO10>PRODUCT_QUANTITY_ UPDATE_HDRO10 DATA</HDRO10>
</HEADER>
</ECEDOC>

Notes:
» All records are in sequential order in the buffer. Indentation is used here for readability; it does not
appear in the buffer.

» All fields in the data segments are left-justified and padded to the right with spaces in the buffer.

Data Segments for Product Quantity Update

+ PRODUCT QUANTITY UPDATE_PROQI QG _DATA
Specifies the type of message the application data defines. In this case, the message is Product
Quantity Update.

+ PRODUCT QUANTITY UPDATE HDR010 DATAl
Specifies product information within the Product Quantity Update message.

Order Create message

The Order Create message is an outbound message that contains order details for a completed order. The
WebSphere Commerce system generates this message and sends its data to an outbound message
queue, where a back-end system receives the message. This application takes the message and
continues any back-end business processes required to complete the specified task for the order. Use
Order Create to fulfill the order process of orders that begin with the WebSphere Commerce system, but
also require some additional or back-end work by a separate system.

The Order Create message uses the legacy message format and consists of a set of records, which follow
each other sequentially in a buffer. The message contains order, shopper, billing, merchant, and shipping
information. The following data describes the Order Create message:

<ECEDOC>
<PROLOG>ORDER_CREATE_PROLOG_DATA</PROLOG>
<HEADER>
<HDRO10>0RDER_CREATE_HDRO10_DATA</HDRO10>
<HDRO20>0RDER_CREATE_HDR020 DATA</HDR020>
<HDRO30>0RDER_CREATE_HDR030_DATA</HDR030>
<HDRO40>0RDER_CREATE_HDRO40 DATA</HDRO40>
<USRLST>
<DATUSR>DATUSR_DATA</DATUSR>

.DATUSR repeated Toop
<DATUSR>DATUSR_DATA</DATUSR>

108 connectivity and Notification: Online Help Files

rcvpropq.htm
rcvh1pqu.htm

</USRLST>

</HEADER>
<ITMLST>

<ITMDAT>
<ITMO10>0RDER_CREATE_ITMO10 DATA</ITMO10>
<USRLST>
<DATUSR>DATUSR_DATA</DATUSR>

.DATUSR repeated loop

<DATUSR>DATUSR_DATA</DATUSR>
</USRLST>
</ITMDAT>

.ITEM repeated loop

<ITMDAT>
<ITMO10>0RDER_CREATE_ITMO10_DATA</ITMO10>
<USRLST>
<DATUSR>DATUSR_DATA</DATUSR>

.DATUSR repeated loop
<DATUSR>DATUSR_DATA</DATUSR>

</USRLST>
</ITMDAT>

</ITMLST>
</ECEDOC>

Notes:

All records are in sequential order in the buffer. Indentation is used here for readability; it does not
appear in the buffer.

All fields in the data segments are left-justified and padded to the right with spaces in the buffer.

Data Segments for Order Create

(ORDEFR CREATE PROI OG DATA

Specifies the type of message the application data defines. In this case, the message is Order Create.
OQRDER_CREATE_HDR010_DATA

Specifieg order information within the Order Create message.

ORDER_CREATE_HDR020_DATA

Specifieg shopperTnformatio_n within the Order Create message.

ORDER_CREATE_HDRQ30 DATA

Specifieg billing information within the Order Create message.

ORDER_CREATE_HDR040 DATA

Specifieg merchant information within the Order Create message.

DaTUSR _DATA

Specifies_optional information to be added to the Order Create message. DATUSR_DATA appears in the
<HDR> and <ITM> sections of this message.

ORDER_CREATE_ITM010 DATA
Specifies item or product shipping information within the Order Create message.

Chapter 16. Integration message DTD files 109

rcvprooc.htm
rcvh1oc.htm
rcvh2oc.htm
rcvh3oc.htm
rcvh4oc.htm
rcvdato.htm
rcvi1oc.htm

Customer New message

The Customer New message is a legacy format inbound message that contains customer information for a
shopper. A back-end application generates this message and sends it to the WebSphere Commerce
inbound message queue, where the WebSphere Commerce system receives the message. WebSphere
Commerce updates information for a new shopper by calling the UserRegistrationAdd controller
command.

The following data describes the Customer New message:

<ECEDOC>
<PROLOG>CUSTOMER_UPDATE_PROLOG_DATA</PROLOG>
<HEADER>
<HDRO10>CUSTOMER_UPDATE_HDRO10 DATA</HDRO10>
<USRLST>
<DATUSR>DATUSR_DATA</DATUSR>

.DATUSR repeated loop

<DATUSR>DATUSR _DATA</DATUSR>
</USRLST>
</HEADER>
</ECEDOC>

Notes:

» All records are in sequential order in the buffer. Indentation is used here for readability; it does not
appear in the buffer.

» All fields in the data segments are left-justified and padded to the right with spaces in the buffer.

Data Segments for Customer New
+ ICUSTOMFR NFW PROI OG _DATA
Specifies the type of message the application data defines. In this case, the message is Customer New.
+ ICUSTOMER _NEW_HDRQO10_DATA
Specifies shopper information within the Customer New message.
- DATUSR_DATA
Specifies optional information to be added to the Customer New message. DATUSR_DATA appears in
the <HDR> section of this message.

Customer Update message

The Customer Update message is an inbound message that contains customer information for a shopper.
A back-end application generates this message and sends it to the WebSphere Commerce inbound
message queue, where the WebSphere Commerce system receives the message. WebSphere Commerce
updates information for a registered shopper by calling the UserRegistrationlpdatd command.

The Customer Update message uses the WebSphere Commerce message format and consists of a set of
records, which follow each other sequentially in a buffer. The following data describes the Customer
Update message:

<ECEDOC>
<PROLOG>CUSTOMER_UPDATE_PROLOG_DATA</PROLOG>
<HEADER>
<HDRO10>CUSTOMER_UPDATE_HDRO10_DATA</HDRO10>
<USRLST>
<DATUSR>DATUSR_DATA</DATUSR>

110 connectivity and Notification: Online Help Files

rmsuserregistrationadd.htm
rcvprocn.htm
rcvh1cn.htm
rcvdatin.htm
rmsuserregistrationupdate.htm

.DATUSR repeated Toop

<DATUSR>DATUSR_DATA</DATUSR>
</USRLST>
</HEADER>
</ECEDOC>

Notes:
» All records are in sequential order in the buffer. Indentation is used here for readability; it does not
appear in the buffer.

» All fields in the data segments are left-justified and padded to the right with spaces in the buffer.

Data Segments for Customer Update

+ ICUSTOMER _UPDATE _PRQL QG _DATA
Specifies the type of message the application data defines. In this case, the message is Customer
Update.

 ICUSTOMER UUIPDATE HDR010Q DATA
Specifies shopper information within the Customer Update message.

- DaTUSR DATA
Specifies optional information to be added to the Customer Update message. DATUSR_DATA appears
in the <HDR> section of this message.

Update_ NC Customer message

The Update_NC_Customer message is an inbound message that contains customer information for a
shopper. A back-end application generates this message and sends it to the WebSphere Commerce
inbound message queue, where the WebSphere Commerce system receives the message. WebSphere
Commerce updates information for a registered shopper by calling the UserRegistrationUpdate command.
Since the message invokes the same WebSphere Commerce controller command, the message is
identical to the Create_ NC_Customer message.

The Update_NC_Customer message uses the XML message format and follows the
Update NC_Customer_10.dtd file.

The following table describes the format of the Update_ NC_Customer message. For a description of the
database column, follow the link to its associated table. All fields are optional unless otherwise noted. The
tag value length in the XML message for database fields of type INT, BIGINT and DOUBLE should be
CHAR (10), CHAR(19), and CHAR(16) respectively.

Level Field Name Comment Table Name Column Name

1 Logininfo Mandatory N/A N/A

11 LoginID Mandatory LiserrEd LOGONID

1.2 Password LsErRrEd LOGONPASSWORD
1.3 VerifyPassword OsErred LOGONPASSWORD

2 MerchantID N/A N/A

2.A1 type Attribute N/A N/A

3 MethodOfCommunication [ISERPROH |PREFERREDCOMM

4 ChallengeQuestion OsErRREAQ CHALLENGEQUESTION
5 ChallengeAnswer OsErRrEd CHALLENGEANSWER
6 ShopperField First occurrence OsSERY FIELD1

Chapter 16. Integration message DTD files 111

rcvprocu.htm
rcvh1cu.htm
rcvdatin.htm
../database/USERREG.html
../database/USERREG.html
../database/USERREG.html
../database/USERPROF.html
../database/USERREG.html
../database/USERREG.html
../database/USERS.html

Level Field Name Comment Table Name Column Name
6 ShopperField Second occurrence OseErd FIELD2

6 ShopperField Third occurrence LseErd FIELD3

7 ContactPersonName N/A N/A

7.1 Title BDDRESY PERSONTITLE
7.2 FullName N/A N/A

7.3 LastName BDDREST LASTNAME
7.4 FirstName BDDRESY FIRSTNAME
7.5 MiddleName BoprEST MIDDLENAME
7.6 AlternateName BDDREST NICKNAME

8 RepCompany RDDREST ORGNAME

9 Address N/A N/A

9.1 AddressLine First occurrence BDDRESY ADDRESS1
9.1 AddressLine Second occurrence BDDRESY ADDRESS2
9.1 AddressLine Third occurrence BDDREST ADDRESS3
9.2 City RDDRESS CITY

9.3 State BDDREST STATE

9.4 Zip BDDRESY ZIPCODE

9.5 Country BRDDRESY COUNTRY

10 ContactlInfo N/A N/A

10.1 Telephone First occurrence BRDDRESS PHONE1

10.1 Telephone Second occurrence RDDRESS PHONE2

10.2 Email First occurrence RDDRESY EMAIL1

10.2 Email Second occurrence BDDRESS EMAIL2

10.3 Fax BDDRESS FAX1

11 DayPhonelnfo N/A N/A

11.1 Phonelnfo N/A N/A

11.1.A1 |type Attribute koDrESY PHONELTYPE
11.1.A2 |isListed Attribute kDDRESY PUBLISHPHONE1
12 EveningPhonelnfo N/A N/A

12.1 Phonelnfo N/A N/A

12.1.A1 |type Attribute BDDRESY PHONE2TYPE
12.1.A2 |isListed Attribute BDDRESY PUBLISHPHONE?
13 BestTimeToCall koprEST BESTCALLINGTIME
14 IncludePackagelnsert RDDREST PACKAGESUPPRESSION
15 AddressOptField First occurrence BDDREST FIELD1

15 AddressOptField Second occurrence kDDREST FIELD2

15 AddressOptField Third occurrence BDDREST FIELD3

16 Gender N/A N/A

16.A1 value Attribute LLSERDEMA | GENDER

17 AgeGroup OSERDEMA |AGE

18 IncomeGroup OSERDEMA | INCOME

112 connectivity and Notification: Online Help Files

../database/USERS.html
../database/USERS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html

Level Field Name Comment Table Name Column Name
19 MaritalStatus LSERDEMA | MARITALSTATUS
20 NumberOfChildren LsERDEMA | CHILDREN

21 NumberinHouse LSsErRDEMd |HOUSEHOLD

22 WorkCompany OSERDEMA | COMPANYNAME
23 Interests [sErDEMA |HOBBIES

24 PreviousOrder [iSERDEMA | ORDERBEFORE
25 Demographics First occurrence OsSErRDEMA | FIELD1

25 Demographics Second occurrence OsSERDEMA | FIELD2

25 Demographics Third occurrence OSERDEMA | FIELD3

25 Demographics Fourth occurrence OSERDEMA | FIELD4

25 Demographics Fifth occurrence OSERDEMA | FIELDS

25 Demographics Sixth occurrence OSERDEMA | FIELD6

25 Demographics Seventh occurrence OSERDEMA | FIELD7

26 LserDatd N/A

26.1 UserDataField N/A

Update_NC OrderStatus message

The Update_NC_OrderStatus message is an inbound message that contains status information for a
WebSphere Commerce order. A back-end application generates this message and sends it to the
WebSphere Commerce inbound message queue, where the WebSphere Commerce system receives the
message. WebSphere Commerce OrderStatus command updates the tables ORDSTAT and ORDISTAT
with the new order status information.

The Update_ NC_OrderStatus message uses the XML message format and follows

Update NC OrderStatus_10.dtd.

The following table describes the format of the Update_NC_OrderStatus message. For a description of the
database column, follow the link to its associated table. All fields are optional unless otherwise noted. The
tag value length in the XML message for database fields of type INT, BIGINT and DOUBLE should be

CHAR (10), CHAR(19), and CHAR(16) respectively.

Level Field Name Comment Table Name Column Name Note
1 OrderStatus N/A N/A N/A
Header
1.1 OrderNumber brDsTAT OSMORDER Order reference
ByBackend number generated
by the back-end
system.
1.2 OrderNumber Mandatory brDSTAT ORDERS_ID WebSphere
ByNC Commerce order

reference number.
This is a foreign
key that
references
column
ORDERS_ID in
table ORDERS.

Chapter 16. Integration message DTD files 113

../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
rcvudin.htm
../database/ORDSTAT.html
../database/ORDSTAT.html

Level Field Name Comment Table Name Column Name Note
1.3 OrderNumber N/A N/A N/A
ByBuyer

1.4 TotalPricelnfo N/A N/A N/A

1.4.A1 currency Attribute brDsTAT OSCPCUR Currency in which
the price is
expressed. The
format of the
currency must
adhere to ISO
4217 standards.

1.4.1 TotalNetPrice brDsTAT OSPRTOT Total product
price for the
order.

1.4.2 TotalTaxPrice brDSTAT OSTXTOT Total tax for the
order.

1.4.3 TotalShippingPrice BrDSTAT OSSHTOT Total shipping
charges for the
order.

1.4.4 TotalTaxOn BrDSTAT OSSHTXTOT Total tax on

ShippingPrice shipping charges
for the order.

15 RequisitionerID N/A N/A N/A

1.5.A1 type Attribute N/A N/A N/A

1.6 Status BRDSTAT OSSTATUS Status of the
order.

1.7 DateTime N/A N/A N/A

Reference

1.71 PlacedDate brDsTAT OSPLTIME Order placed
timestamp

1.7.2 PlacedTime N/A N/A N/A

1.7.3 LastUpdateDate N/A N/A N/A

1.7.4 LastUpdateTime brDsTAT OSUPDTIME Last update
timestamp for the
order.

1.8 ShipDate N/A N/A N/A

Reference
1.8.1 Requested brDsTAT OSRSTIME Requested
ShipDate shipping
timestamp.

1.8.2 Scheduled brDsTAT OSSSTIME Scheduled

ShipDate shipping
timestamp.

1.8.3 Actual brDsTAT OSASTIME Actual shipping

ShipDate timestamp.

1.9 CustomerField First occurrence. |DRDSTAT FIELD1 Reserved for
customization.

1.9 CustomerField Second BrRDSTAT FIELD2 Reserved for

occurrence. customization.

114 cConnectivity and Notification: Online Help Files

../database/ORDSTAT.html
../database/ORDSTAT.html
../database/ORDSTAT.html
../database/ORDSTAT.html
../database/ORDSTAT.html
../database/ORDSTAT.html
../database/ORDSTAT.html
../database/ORDSTAT.html
../database/ORDSTAT.html
../database/ORDSTAT.html
../database/ORDSTAT.html
../database/ORDSTAT.html
../database/ORDSTAT.html

Level

Field Name

Comment

Table Name

Column Name

Note

1.9

CustomerField

Third occurrence.

brDsTAT

FIELD3

Reserved for
customization.

1.10

UserDatd

N/A

N/A

N/A

OrderStatusltem

N/A

N/A

N/A

2.1

OrderNumber
ByBackend

OSMORDER

Back-end system
order number.

2.2

ItemNumber
ByBackend

OIMITEM

Back-end
system order item
number.

2.3

OrderNumber
ByNC

Mandatory

ORDERS_ID

WebSphere
Commerce order
reference number.
This is a foreign
key that
references
column
ORDERS _ID in
table ORDERS.

2.4

ItemNumber
ByNC

ORDER
ITMES_ID

WebSphere
Commerce item
reference number.
This is a foreign
key that
references
column
ORDERITEMS_ID
in table
ORDERITEMS.

2.5

Quantity

OIQTCONFIRM

Quantity of items
confirmed.

2.6

ItemUnitPrice

OIUNPRC

Unit price
for the item.

2.7

TotalPricelnfo

N/A

N/A

N/A

2.7.A1

currency

Attribute

OICPCUR

Currency in which
the price of the
item is expressed.
The format of the
currency must
adhere to ISO
4217 standards.

271

TotalNetPrice

OIPRTOT

Total price for the
item.

2.7.2

TotalTaxPrice

OITXTOT

Total tax for the
item.

2.7.3

TotalShippingPrice

OISHTOT

Total shipping
charges for the
item.

2.7.4

TotalTaxOn
ShippingPrice

OISHTXTOT

Total tax on the
shipping charges
for the item.

2.8

Status

OISTATUS

Order item status.

Chapter 16. Integration message DTD files 115

../database/ORDSTAT.html
rcvudout.htm
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html

Level Field Name Comment Table Name Column Name Note
2.9 DateTime N/A N/A N/A
Reference

29.1 PlacedDate brDisTAT OIPLTIME Order item placed
timestamp.

2.9.2 PlacedTime N/A N/A N/A

2.9.3 LastUpdateDate N/A N/A N/A

294 LastUpdateTime N/A N/A N/A

2.10 ShipDate N/A N/A N/A

Reference
2.10.1 Requested brDisTAT OIRSTIME Requested
ShipDate shipping
timestamp.

2.10.2 Scheduled brDisTAT OISSDATE Scheduled

ShipDate shipping
timestamp.

2.10.3 Actual brDISTAT OIASTIME Actual shipping

ShipDate timestamp.

2.11 Instruction DRDISTAT OICMNT Comments from
the shopper
regarding the item
ordered. For
example, a
shopper can
include a
message with an
ordered gift.

2.12 CustomerField First occurrence. | N/A N/A Reserved for
customization.

2.12 CustomerField Second N/A N/A Reserved for

occurrence. customization.

2.12 CustomerField Third occurrence. | N/A N/A Reserved for
customization.

2.13 lserDatd N/A N/A N/A

Create_NC _Customer message

The Create_ NC_Customer message is an inbound message that contains customer information for a
shopper. A back-end application generates this message and sends it to the WebSphere Commerce
inbound message queue, where the WebSphere Commerce system receives the message. WebSphere
Commerce updates information for a new shopper by calling the UserRegistrationAdd command.

The Create_ NC_Customer message uses the XML message format and follows
Create_NC_Customer_10.dtd.

The format for fields mapping to the database fields for this message is similar to the format for
Update NC_Customer message.

116 connectivity and Notification: Online Help Files

../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
rcvudout.htm

Update_NC_Productinventory message

The Update_NC_Productinventory message is an inbound message that contains inventory information for
a product. A back-end application generates this message and sends it to the WebSphere Commerce
inbound message queue, where the WebSphere Commerce system receives the message. WebSphere
Commerce updates the INVENTORY table with the new inventory information.

The Update_NC_Productinventory message uses the XML message format and follows
Update_NC_ProductInventory 10.dtd.

Note: It is recommended that you use the Update_ WCS_Productinventory message in place of
Update_NC_Productinventory as it is an improved version. When using the

Update_ WCS_Productinventory message, the ProductNumberByMerchant field can be optionally replaced
by ProductSKU.

The format and the source of the XML element values are described in the following table. For a
description of the database column, follow the link to its associated table. Fields are optional unless
otherwise noted. The tag value length in the XML message for database fields of type INT, BIGINT and
DOUBLE should be CHAR (10), CHAR(19), and CHAR(16) respectively.

Level XML Element Comment Table Name Column Name
1 ProductNumber Mandatory INVENTORM CATENTRY_ID
ByMerchant
MerchantiD Mandatory INVENTORM STORE_ID
Quantity Mandatory INVENTORY QUANTITY
UserDatd N/A N/A
Behavior:

* The WebSphere Commerce product reference number (which references CATENTRY_ID in the
INVENTORY table) and the merchant reference number (STORE_ID) are used to update a row in the
INVENTORY table.

» If the row in the table INVENTORY does not exist, an exception occurs.

Update_NC_ProductPrice message

The Update_NC_ProductPrice message is an inbound message that contains price information for a
product. A back-end application generates this message and sends it to the WebSphere Commerce
inbound message queue, where the WebSphere Commerce system receives the message. The system
then invokes the ProductOfferPriceUpdate command which updates the OFFERPRICE table with the new
price information.

The Update_NC_ProductPrice message uses the XML message format and follows
Update_NC_ProductPrice_10.dtd.

The format and the source of the XML element values are described in the following table. For a
description of the database column, follow the link to its associated table. All fields are optional unless
otherwise noted. For database fields of type INT, the message element should be CHAR (12).

Level XML Element Comment Table Name Column Name

1 ProductNumber Mandatory CATENTRM PARTNUMBER
ByMerchant

2 MerchantID Mandatory CATENTRY MEMBER_ID

Chapter 16. Integration message DTD files 117

../database/INVENTORY.html
../database/INVENTORY.html
../database/INVENTORY.html
rcvudout.htm
../database/CATENTRY.html
../database/CATENTRY.html

Level XML Element Comment Table Name Column Name

3 PriceGroupinfo N/A N/A

3.1 Precedence EEER PRECEDENCE

3.2 Requisitioner QEEER TRADEPOSCN_ID
GrouplD

4 Currency Mandatory QEEERPRICH CURRENCY
ItemUnitPrice QEEERPRICH PRICE

6 Start beEER STARTDATE
Timestamp

7 End bEEER ENDDATE
Timestamp

8 PriceCustom N/A N/A
Field

9 [iserDatd N/A N/A

Report_NC_PurchaseOrder message

The Report_ NC_PurchaseOrder message is an outbound message that contains order details for a
completed order. The WebSphere Commerce outbound messaging system generates this message using
the OrderCreateXML.jsp composition template and sends its data to an outbound message queue, where
a back-end system receives the message. This application takes the message and continues any
back-end business processes required to complete the specified task for the order. Use
Report_NC_PurchaseOrder to fulfill the order process of orders that begin with the WebSphere Commerce
system, but also require some additional or back-end work by a separate system.

The Report_ NC_PurchaseOrder message uses the XML message format and follows
Report_NC_PO_10.dtd.

The DTD file consists of a set of XML elements. The message contains order, shopper, billing, merchant,
and shipping information. The following data describes Report NC_PO 10.dtd, which is used for the
Report_NC_PurchaseOrder message:

The format and the source of the XML element values are described in the following table. For a
description of the database column, follow the link to its associated table. All fields are optional unless
otherwise noted. The tag value length in the XML message for database fields of type INT, BIGINT and
DOUBLE should be CHAR (10), CHAR(19), and CHAR(16) respectively.

Level XML Element Comment Table Name | Column Name

1 ReportPO Mandatory N/A N/A
Header

1.1 OrderNumber N/A N/A
ByBuyer

1.2 OrderNumber BRDERY |ORMORDER
ByMerchant

1.3 OrderNumber brDERY |ORDERS_ID
ByNC

1.4 DateTime N/A N/A
Reference

1.4.1 PlacedDate BrRDERY | TIMEPLACED

1.4.2 PlacedTime BRDERY | TIMEPLACED

118 connectivity and Notification: Online Help Files

../database/OFFER.html
../database/OFFER.html
../database/OFFERPRICE.html
../database/OFFERPRICE.html
../database/OFFER.html
../database/OFFER.html
rcvudout.htm
../database/ORDERS.html
../database/ORDERS.html
../database/ORDERS.html
../database/ORDERS.html

u/

Level XML Element Comment Table Name | Column Name
1.4.3 LastUpdate N/A N/A
Date
1.4.4 LatestUpdate N/A N/A
Time
15 TotalPricelnfo Mandatory N/A N/A
1.5.A1 currency Attribute BepeRd CURRENCY
15.1 TotalNet Mandatory BRDERY | TOTALPRODUCT
Price
152 TaxInfo N/A N/A
1521 Monetary Mandatory BRDERY [TOTALTAX
Amount
1.5.2.1.A1 |currency Attribute DRDERS CURRENCY
1.5.2.2 TaxType N/A N/A
1523 Percentage N/A N/A
1524 TaxExemption N/A N/A
StatusType
1525 TaxExemption N/A N/A
Number
15.2.6 TaxJurisdiction N/A N/A
Code
1527 TaxJurisdiction N/A N/A
CodeType
1.5.3 Total Mandatory DRDERS TOTALSHIPPING
ShippingPrice
154 TotalTaxOn Mandatory DRDFERS TOTALTAXSHIPPIN(
ShippingPrice
1.6 Instruction N/A N/A
1.7 ShipStatus BrRDERY |STATUS
1.8 BillTolnfo N/A N/A
1.8.1 OrgName N/A N/A
1.8.2 Address Mandatory N/A N/A
1.8.2.1 AddressLine Mandatory; first repeated occurrence BDDRESY |ADDRESS1
1821 AddressLine second repeated occurrence BDDRESY | ADDRESS?2
1.8.2.1 AddressLine third repeated occurrence BDDRESY |ADDRESS3
1.8.2.2 City Mandatory bopresd |ciTy
1.8.2.3 State Mandatory BDDRESY |STATE
1.8.2.4 Zip Mandatory BDDRESY | zIPCODE
1.8.25 Country Mandatory BDDRESY |COUNTRY
1.8.3 ContactPerson Mandatory N/A N/A
Name
1.8.3.1 Title N/A N/A
1.8.3.2 FullName N/A N/A
1.8.3.3 LastName Mandatory BDDRESY |LASTNAME
1.8.3.4 FirstName BDDRESY | FIRSTNAME

Chapter 16. Integration message DTD files

119

../database/ORDERS.html
../database/ORDERS.html
../database/ORDERS.html
../database/ORDERS.html
../database/ORDERS.html
../database/ORDERS.html
../database/ORDERS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html

Level XML Element Comment Table Name | Column Name
1.8.3.5 MiddleName BDDRESY | MIDDLENAME
1.8.36 AlternateName BDDRESY | NICKNAME
1.8.4 Contactinfo Mandatory N/A N/A
1.84.1 Telephone first repeated occurrence BDDRESY |PHONE1
1.84.1 Telephone second repeated occurrence BDDRESY |PHONE2
1.84.2 Email first repeated occurrence BDDRESY |EMAILL
1.8.4.2 Email second repeated occurrence BDDRESY |EMAIL2
1.8.4.3 Fax BDDRESY | FAX1
1.9 Merchantinfo N/A N/A
1.9.1 OrgName Mandatory ETOREENTOSISPLAYNAME
1.9.2 OrgID first repeated occurrence N/A N/A
1.9.2.A1 type attribute DRDERS STOREENT_ID
1.9.3 Address Mandatory N/A N/A
1931 AddressLine Mandatory; first repeated occurrence ETADDRESY ADDRESS1
1931 AddressLine second repeated occurrence ETADDRESY ADDRESS?2
1931 AddressLine third repeated occurrence EIADDRESY ADDRESS3
1.9.3.2 City Mandatory EIADDRESY CITY
1.9.3.3 State Mandatory ETADDRESY STATE
1.9.3.4 Zip Mandatory ETADDRESY zIPCODE
1.9.35 Country Mandatory ETADDRESY COUNTRY
194 URL N/A N/A
1.95 Telephone ETADDRESY PHONE1
1.9.6 ContactPerson N/A N/A

Name
1.96.1 Title BTADDRESY PERSONTITLE
1.9.6.2 FullName N/A N/A
1.9.6.3 LastName Mandatory ETADDRESY LASTNAME
1.9.6.4 FirstName ETADDRESY FIRSTNAME
1.9.6.5 MiddleName ETADDRESY MIDDLENAME
1.9.6.6 AlternateName N/A N/A
1.9.7 Contactinfo Mandatory N/A N/A
1971 Telephone first repeated occurrence ETADDRESH PHONE1
1.9.7.1 Telephone second repeated occurrence ETADDRESY PHONE2
1.9.7.2 Email first repeated occurrence ETADDRESY EMAILL
1.9.7.3 Email second repeated occurrence ETADDRESY EMAIL2
1.9.7.4 Fax ETADDRESY FAX1
1.10 BuyOrginfo N/A N/A
1.10.1 OrgName Mandatory BDDRESY |ORGNAME
1.10.2 OrglD first repeated occurrence; N/A N/A
1.10.2.A1 type Attribute; N/A N/A
1.10.3 Address N/A N/A

120 Connectivity and Notification: Online Help Files

../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/STOREENTDS.html
../database/ORDERS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/ADDRESS.html

Level XML Element Comment Table Name | Column Name
1.10.3.1 AddressLine Mandatory; first repeated occurrence N/A N/A
1.10.3.1 AddressLine second repeated occurrence N/A N/A
1.10.3.1 AddressLine third repeated occurrence N/A N/A
1.10.3.2 City Mandatory N/A N/A
1.10.3.3 State Mandatory N/A N/A
1.10.3.4 Zip Mandatory N/A N/A
1.10.3.5 Country Mandatory N/A N/A
1.10.4 URL N/A N/A
1.10.5 Contactinfo N/A N/A
1.10.5.1 Telephone first repeated occurrence N/A N/A
1.10.5.1 Telephone second repeated occurrence N/A N/A
1.10.5.2 Email first repeated occurrence N/A N/A
1.10.5.2 Email second repeated occurrence N/A N/A
1.10.5.3 Fax N/A N/A
1.11 ShipTolnfo N/A N/A
1.111 ContactPerson Mandatory N/A N/A
Name
1.11.1.1 Title N/A N/A
1.11.1.2 FullName Mandatory N/A N/A
1.11.1.3 LastName Mandatory N/A N/A
1.11.14 FirstName N/A N/A
1.11.1.5 MiddleName N/A N/A
1.11.1.6 AlternateName N/A N/A
1.11.2 OfficeAddress N/A N/A
Line
1.11.3 Address Mandatory N/A N/A
1.11.31 AdddressLine Mandatory; first repeated occurrence N/A N/A
1.11.31 AdddressLine second repeated occurrence N/A N/A
1.11.31 AdddressLine third repeated occurrence N/A N/A
1.11.3.2 City Mandatory N/A N/A
1.11.3.3 State Mandatory N/A N/A
1.11.34 Zip Mandatory N/A N/A
1.11.35 Country Mandatory N/A N/A
1.11.4 Contactinfo N/A N/A
1.11.4.1 Telephone first repeated occurrence N/A N/A
11141 Telephone second repeated occurrence N/A N/A
1.11.4.2 Email first repeated occurrence N/A N/A
1.11.4.2 Email second repeated occurrence N/A N/A
1.11.4.3 Fax N/A N/A
1.115 Comment N/A N/A
1.12 Requisitioner N/A N/A

Info

Chapter 16.

Integration message DTD files

121

Level XML Element Comment Table Name | Column Name
1121 RequisitionerID first repeated occurrence brDERS MEMBER_ID
1.12.1.A1 type Mandatory; attribute N/A N/A
1.12.1 RequisitionerID second repeated occurrence USERREd |LOGONID
1.12.1.A2 type Mandatory; attribute N/A N/A
1.12.2 Requisitioner N/A N/A
Group
1.12.3 Address N/A N/A
1.12.3.1 AddressLine Mandatory; first repeated occurrence BDDRESY | ADDRESS1
1.12.3.1 AddressLine second repeated occurrence BDDRESY |ADDRESS?2
1.12.3.1 AddressLine third repeated occurrence BDDRESY |ADDRESS3
1.12.3.2 City Mandatory BDDRESY |cITY
1.12.3.3 State Mandatory BDDRESY |STATE
1.12.3.4 Zip Mandatory BDDRESY |zIPCODE
1.12.35 Country Mandatory BDDRESY |COUNTRY
1.12.4 ContactPerson N/A N/A
Name
1.12.4.1 Title BDDRESY | PERSONTITLE
1.12.4.2 FullName Mandatory N/A N/A
1.12.4.3 LastName Mandatory BDDRESY |LASTNAME
1.12.4.4 FirstName BDDRESS |FIRSTNAME
1.12.45 MiddleName BDDRESY | MIDDLENAME
1.12.4.6 AlternateName N/A N/A
1.12.5 Contactinfo Mandatory N/A N/A
1.125.1 Telephone first repeated occurrence BDDRESY |PHONE1
1.125.1 Telephone second repeated occurrence BDDRESY | PHONE2
1.12.5.2 Email first repeated occurrence BDDRESY |EMAILL
1.125.2 Email second repeated occurrence BDDRESS |EMAIL2
11253 Fax hDoDRESY | FAX1
1.13 ShipDate N/A N/A
Reference
1.13.1 Requested N/A N/A
ShipDate
1.13.2 Scheduled N/A N/A
ShipDate
1.13.3 Actual N/A N/A
ShipDate
1.14 PCardInfo N/A N/A
1.14.1 Monetary BRDPAYMTHEIAXAMOUNT
Amount
1.14.1.A1 |currency Attribute BrRDERY | CURRENCY
1.14.2 CardType BRDPAYMTHHAYMETHOD
1.14.3 CardNumber BRDPAYMTHBAYDEVICE

122 cConnectivity and Notification: Online Help Files

../database/ORDERS.html
../database/USERREG.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ORDPAYMTHD.html
../database/ORDERS.html
../database/ORDPAYMTHD.html
../database/ORDPAYMTHD.html

Level XML Element Comment Table Name | Column Name

1.14.4 Expiration BrDPAYMTHENDDATE
Date

1.14.5 IssueDate DRDPAYMTHBTARTDATE

1.14.6 Credit N/A N/A
Authorization
Number

1.14.7 Customer N/A N/A
Reference
Number

1.15 Shipping N/A N/A
Carrierinfo

1.15.1 Carrier N/A N/A

1.15.2 Method N/A N/A

1.16 BuyOrg N/A N/A
Accounting
Detail

1.16.1 Percentage N/A N/A

1.16.2 Monetary N/A N/A
Amount

1.16.2.A1 currency Attribute N/A N/A

1.16.3 BudgetCode Mandatory N/A N/A

1.16.4 Description N/A N/A

1.16.5 Calculation Mandatory N/A N/A
Code

1.17.2 OrderCustomer first repeated occurrence DRDERS FIELD1
Field

1.17.2 OrderCustomer first repeated occurrence QORDERY |FIELD2
Field

1.17.2 OrderCustomer second repeated occurrence brDERY FIELD3
Field

1.18 UserDatd N/A N/A

2 ReportPOltem Mandatory; first repeated occurrence N/A N/A

2.1 ItemLine N/A N/A
Number

2.2 ltemNumber BRDERITEMSDRDERITEMS ID
ByNC

2.3 ProductNumber N/A N/A
ByBuyer

2.4 ProductNumber Mandatory EATENTRY | PARTNUMBER
ByMerchant

25 Manufacturer N/A N/A
Name

2.6 Manufacturer N/A N/A
URL

2.7 Manufacturer N/A N/A
PartNumber

2.8 ItemUnitPrice Mandatory BRDERITEM®RICE

Chapter 16.

Integration message DTD files

123

../database/ORDPAYMTHD.html
../database/ORDPAYMTHD.html
../database/ORDERS.html
../database/ORDERS.html
../database/ORDERS.html
rcvudout.htm
../database/ORDERITEMS.html
../database/CATENTRY.html
../database/ORDERITEMS.html

DN

Level XML Element Comment Table Name | Column Name
2.8.A1 currency Attribute BrRDOERITEMSURRENCY
2.9 TaxInfo first repeated occurrence N/A N/A
2.9.1 Monetary first repeated occurrence N/A N/A
Amount
29.1.A1 currency attribute N/A N/A
29.2 TaxType N/A N/A
293 Percentage N/A N/A
294 TaxExemption N/A N/A
StatusType
295 TaxExemption N/A N/A
Number
2.9.6 TaxJurisdiction N/A N/A
Code
297 TaxJurisdiction N/A N/A
CodeType
2.10 ltemProduct Mandatory DRDERITEMUANTITY
Quantity
2.11 UnitOf N/A N/A
Measure
2.12 Classification N/A N/A
2.13 ltemProduct EATENTDES@HORTDESCRIPTIQ
ShortDescription
2.14 Instruction N/A N/A
2.15 ShipTolnfo N/A N/A
2.15.1 ContactPerson Mandatory N/A N/A
Name
2.151.1 Title N/A N/A
2.15.1.2 FullName Mandatory N/A N/A
2.15.1.3 LastName Mandatory BDDRESY |LASTNAME
2.15.1.4 FirstName bDDRESY | FIRSTNAME
2.15.1.5 MiddleName RDDRESY | MIDDLENAME
2.15.1.6 AlternateName BDDRESY | NICKNAME
2.15.2 Office not supported for this version N/A N/A
AddressLine
2.15.3 Address N/A N/A
2.15.3.1 AddressLine Mandatory; first repeated occurrence BDDRESY |ADDRESS1
2.153.1 AddressLine second repeated occurrence BDDRESY |ADDRESS?2
2.153.1 AddressLine third repeated occurrence BDDRESY |ADDRESS3
2.15.3.2 City Mandatory Boporesd |ciTy
2.15.3.3 State Mandatory BDDRESY |STATE
2.15.3.4 Zip Mandatory BDDRESY | ZIPCODE
2.15.35 Country Mandatory BDDRESY |COUNTRY
2.154 Contactinfo Mandatory N/A N/A
2.154.1 Telephone first repeated occurrence BDDRESY |PHONE1

124 cConnectivity and Notification: Online Help Files

../database/ORDERITEMS.html
../database/ORDERITEMS.html
../database/CATENTDESC.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html

Level XML Element Comment Table Name | Column Name
2.154.1 Telephone second repeated occurrence BDDRESY |PHONE2
2.15.4.2 Email first repeated occurrence BDDRESY |EMAILL
2.15.4.2 Email second repeated occurrence BDDRESY |EMAIL2
21543 Fax BoDRESY |FAX1
2.155 Comment BRDERITEMROMMENTS
2.16 Shipping N/A N/A
Carrierinfo
2.16.1 Carrier Mandatory EHIPMODH | CARRIER
2.16.2 Method Mandatory EHIPMODH |coDE
2.17 ShipStatus BRDERITEMSTATUS
2.18 DateTime Mandatory N/A N/A
Reference
2.18.1 PlacedDate Mandatory BRDERITEMIASTCREATE
2.18.2 PlacedTime BRDERITEMIASTCREATE
2.18.3 LastUpdate BRDERITEMIASTUPDATE
Date
2.18.4 LastUpdate DRDERITEMIASTUPDATE
Time
2.19 Product N/A N/A
Measurement
2.20 BuyOrg first repeated occurrence N/A N/A
Accounting
Detail
2.20.1 Percentage N/A N/A
2.20.2 Monetary N/A N/A
Amount
2.20.2.A1 currency Attribute N/A N/A
2.20.3 BudgetCode Mandatory N/A N/A
2.20.4 Description N/A N/A
2.20.5 Calculation Mandatory N/A N/A
Code
221 Service first repeated occurrence N/A N/A
Allowance
Charge
2211 Allowance Mandatory N/A N/A
ChargeCode
2.21.2 Percentage N/A N/A
2.21.2 Monetary N/A N/A
Amount
2.21.2.A1 currency Attribute N/A N/A
2.21.3 Description N/A N/A
2214 Calculation Mandatory N/A N/A
Code
2.22 ItemShipping N/A N/A
Schedule

Chapter 16.

Integration message DTD files

125

../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ORDERITEMS.html
../database/SHIPMODE.html
../database/SHIPMODE.html
../database/ORDERITEMS.html
../database/ORDERITEMS.html
../database/ORDERITEMS.html
../database/ORDERITEMS.html
../database/ORDERITEMS.html

Level XML Element Comment Table Name | Column Name

2.22.1 Quantity Mandatory N/A N/A

2.22.2 ShipDate Mandatory N/A N/A
Reference

22221 Requested N/A N/A
ShipDate

2.22.2.1 Scheduled N/A N/A
ShipDate

2.22.2.3 ActualShip N/A N/A
Date

2.23 ItemCustomer first repeated occurrence BROERITEMSIELD1
Field

2.23 ltemCustomer second repeated occurrence BRDERITEMSIELD2
Field

2.24 UserDatd N/A N/A

CUSTOMER_NEW_HDRO010_DATA

The Customer New message includes the CUSTOMER_NEW_HDRO010_DATA segment. This data
segment consists of shopper information for new shoppers for the Customer New message.

The format and the source of the fields for CUSTOMER_NEW_HDRO010_DATA are described in the
following table. For field lengths, use the table below. For a description of a database column, follow the
link to its associated table.

Field Name Field Type Table Name Column Name Note

NC_HDRO010 CHAR (2) N/A N/A Fixed value of 01.

Version

Number

NC_LoginID CHAR (31) LSERREG LOGONID Registered shopper’s
unique logon ID.

NC_Password CHAR (12) LserrEd LOGONPASSWORD | Registered shopper’s
encrypted logon
password.

NC_Verify CHAR (12) N/A N/A Verification of the

Password registered shopper’s
encrypted logon
password. To process
the message, the
value in this field
should be the same
as the data in
NC_Password.

NC_Merchant CHAR (10) N/A N/A N/A

RefNumber

126 Connectivity and Notification: Online Help Files

../database/ORDERITEMS.html
../database/ORDERITEMS.html
rcvudout.htm
../database/USERREG.html
../database/USERREG.html

Field Name Field Type Table Name Column Name Note
NC_Method CHAR (2) LsErprod PREFERREDCOMM | Shopper's preferred
Comm method of
communication:
E1l - E-mail or URL
address 1
E2 - E-mail or URL
address 2
P1 - Phone number 1
P2 - Phone number 2
NC_Challenge CHAR (250) LSERREG CHALLENGEQUESTIQhallenge question
Ques for verbal confirmation
of the shopper’s
identity.
NC_Challenge CHAR (250) LSERREG CHALLENGEANSWER Answer to the
Ans challenge question.
NC_Shopper CHAR (254) [sSErdY FIELD1 Reserved for
Field1l merchant
customization.
NC_Shopper CHAR (254) [ISERS FIELD2 Reserved for
Field2 merchant
customization.
NC_Title CHAR (5) BRDDRESY PERSONTITLE Shopper's title:
Dr
Mr
Mrs
Ms
N - Not provided
(default)
NC_Last CHAR (30) BDDRESY LASTNAME Shopper’s last name.
Name
NC_First CHAR (30) bDDRESY FIRSTNAME Shopper’s first name.
Name
NC_Middle CHAR (30) bDDRESY MIDDLENAME Shopper’s middle
Name name.
NC_Rep CHAR (80) bDDRESY ORGNAME Company that the
Company shopper represents.
NC_Phonel CHAR (30) bDDRESS PHONE1 Shopper’s primary
phone number.
NC_Phone2 CHAR (30) bDDRESST PHONE2 Shopper’s secondary
phone number.
NC_Fax CHAR (30) bDDREST FAX1 Shopper’s facsimile
number.
NC_Addrl CHAR (50) DDREST ADDRESS1 Shopper's address
line 1.
NC_Addr2 CHAR (50) kDDRESH ADDRESS2 Shopper’s address
line 2.
NC_Addr3 CHAR (50) BDDRESS ADDRESS3 Shopper’s address
line 3.
NC_City CHAR (30) kDDRESH CITY Shopper’s city name.

Chapter 16. Integration message DTD files 127

../database/USERPROF.html
../database/USERREG.html
../database/USERREG.html
../database/USERS.html
../database/USERS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html

Field Name

Field Type

Table Name

Column Name

Note

NC_State

CHAR (20)

kDDRESY

STATE

Shopper’s state,
province, or
equivalent,
abbreviated.

NC_Country

CHAR (30)

COUNTRY

Shopper’s
country/region name.

NC_ZipCode

CHAR (20)

ZIPCODE

Shopper’s zip code or
equivalent.

NC_Emaill

CHAR (254)

EMAIL1

Shopper’s primary
e-mail or URL
address.

NC_Email2

CHAR (254)

EMAIL2

Shopper’s secondary
e-mail or URL
address.

NC_Day
PhoneType

CHAR (3)

PHONELTYPE

Type of daytime
phone, such as TTY
for a teletypewriter for
people who have a
hearing impairment,
or PHN for a standard
telephone.

NC_Day
PhonelList

CHAR (1)

PUBLISHPHONE1

1 - Daytime phone
number is listed.

0 - Daytime phone
number is unlisted.

NC_Evening
PhoneType

CHAR (3)

PHONE2TYPE

Type of evening
phone, such as TTY
for a teletypewriter for
people who have a
hearing impairment,
or PHN for a standard
telephone.

NC_Evening
PhonelList

CHAR (1)

PUBLISHPHONE2

1 - Evening phone
number is listed.

0 - Evening phone
number is unlisted.

NC_BestTime
ToCall

CHAR (1)

BESTCALLINGTIME

Best time to call
indicator:

D - Daytime

E - Evening

NC_Package
Insert

CHAR (1)

PACKAGESUPPRESS

®Blckage inserts
suppression flag,
which indicates the
shopper’s preference
for including package
inserts in orders
shipped.

1 - Include

0 - Do not include

NC_Address
OptFieldl

CHAR (3)

FIELD1

Reserved for
merchant
customization.

128 Connectivity and Notification: Online Help Files

../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html

Field Name

Field Type

Table Name

Column Name

Note

NC_Address
OptField2

CHAR (1)

kDDRESS

FIELD2

Reserved for
merchant
customization.

NC_Shopper
Gender

CHAR (1)

LserDEMA

GENDER

Shopper’s gender:
F - Female

M - Male

N - Not provided
(default)

NC_Shopper
Age

CHAR (10)

AGE

Shopper’s age:

0 - Not provided
(default)

1 - 0-9 years

2 - 10-19 years

3 - 20-29 years

4 - 30-39 years

5 - 40-49 years

6 - 50-59 years

7 - 60 years or older

NC_Shopper
Income

CHAR (10)

INCOME

Shopper’s annual
income:

0 - Not provided
(default)

1-$0 - $19,999

2 - $20,000 - $39,999
3 - $40,000 - $59,999
4 - $60,000 or more

NC_Marital
Status

CHAR (1)

MARITALSTATUS

Shopper’'s marital
status:

S - Single

M - Married

C - Common Law
P - Separated

D - Divorced

W - Widowed

0 - Other

N - Not Provided

NC_Number
OfChildren

CHAR (10)

CHILDREN

Number of children.
Default is 0.

NC_Number
InHouse

CHAR (10)

HOUSEHOLD

Number of people in
the shopper’s
household. Default is
1.

NC_Shopper
Company

CHAR (30)

COMPANYNAME

The company for
which the shopper
works.

NC_Shopper
Interest

CHAR (254)

HOBBIES

The shopper’s main
interests and hobbies.

NC_Previous
OrderFlag

CHAR (1)

ORDERBEFORE

Indicator of whether
or not the shopper
has previously placed
an order.

NC_Demog
Field1l

CHAR (1)

FIELD1

Reserved for
merchant
customization.

Chapter 16. Integration message DTD files 129

../database/ADDRESS.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html

Field Name Field Type Table Name Column Name Note
NC_Demog CHAR (1) LsErRDEMA FIELD2 Reserved for
Field2 merchant
customization.
NC_Demog CHAR (1) USERDEMA FIELD3 Reserved for
Field3 merchant
customization.
NC_Demog CHAR (1) LsERDEMA FIELD4 Reserved for
Field4 merchant
customization.
NC_Demog CHAR (254) LsErRDEMA FIELD5 Reserved for
Field5 merchant
customization.
NC_Demog CHAR (10) [ISERDEMA FIELD6 Reserved for
Fieldé merchant

customization.

CUSTOMER_UPDATE_HDRO010_DATA

The Customer Update message includes the CUSTOMER_UPDATE_HDRO010_DATA segment. This data
segment consists of shopper information for registered shoppers for the Customer Update message.

The format and the source of the fields for CUSTOMER_UPDATE_HDRO010_ DATA are described in the
following table. For field lengths, use the table below. For a description of a database column, follow the
link to its associated table.

RefNumber

Field Name Field Type Table Name Column Name Note

NC_HDRO010 CHAR (2) N/A N/A Fixed value of 01.

Version

Number

NC_LoginID CHAR (31) LserrEd LOGONID Registered shopper’s
unique logon ID.

NC_Password CHAR (12) Lserred LOGONPASSWORD | Registered shopper’s
encrypted logon
password.

NC_\Verify CHAR (12) N/A N/A Verification of the

Password registered shopper’s
encrypted logon
password. To process
the message, the
value in this field
should be the same
as the data in
NC_Password.

NC_Merchant CHAR (10) N/A N/A N/A

130 cConnectivity and Notification: Online Help Files

../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERREG.html
../database/USERREG.html

Field Name Field Type Table Name Column Name Note
NC_Method CHAR (2) LsErprod PREFERREDCOMM | Shopper's preferred
Comm method of
communication:
E1l - E-mail or URL
address 1
E2 - E-mail or URL
address 2
P1 - Phone number 1
P2 - Phone number 2
NC_Challenge CHAR (250) LSERREG CHALLENGEQUESTIQhallenge question
Ques for verbal confirmation
of the shopper’s
identity.
NC_Challenge CHAR (250) LSERREG CHALLENGEANSWER Answer to the
Ans challenge question.
NC_Shopper CHAR (254) [sSErdY FIELD1 Reserved for
Field1l merchant
customization.
NC_Shopper CHAR (254) [ISERS FIELD2 Reserved for
Field2 merchant
customization.
NC_Title CHAR (5) BRDDRESY PERSONTITLE Shopper's title:
Dr
Mr
Mrs
Ms
N - Not provided
(default)
NC_Last CHAR (30) BDDRESY LASTNAME Shopper’s last name.
Name
NC_First CHAR (30) bDDRESY FIRSTNAME Shopper’s first name.
Name
NC_Middle CHAR (30) bDDRESY MIDDLENAME Shopper’s middle
Name name.
NC_Rep CHAR (80) bDDRESY ORGNAME Company that the
Company shopper represents.
NC_Phonel CHAR (30) bDDRESS PHONE1 Shopper’s primary
phone number.
NC_Phone2 CHAR (30) bDDRESST PHONE2 Shopper’s secondary
phone number.
NC_Fax CHAR (30) bDDREST FAX1 Shopper’s facsimile
number.
NC_Addrl CHAR (50) DDREST ADDRESS1 Shopper's address
line 1.
NC_Addr2 CHAR (50) kDDRESH ADDRESS2 Shopper’s address
line 2.
NC_Addr3 CHAR (50) BDDRESS ADDRESS3 Shopper’s address
line 3.
NC_City CHAR (30) kDDRESH CITY Shopper’s city name.

Chapter 16. Integration message DTD files 131

../database/USERPROF.html
../database/USERREG.html
../database/USERREG.html
../database/USERS.html
../database/USERS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html

Field Name

Field Type

Table Name

Column Name

Note

NC_State

CHAR (20)

kDDRESY

STATE

Shopper’s state,
province, or
equivalent,
abbreviated.

NC_Country

CHAR (30)

COUNTRY

Shopper’s
country/region name.

NC_ZipCode

CHAR (20)

ZIPCODE

Shopper’s zip code or
equivalent.

NC_Emaill

CHAR (254)

EMAIL1

Shopper’s primary
e-mail or URL
address.

NC_Email2

CHAR (254)

EMAIL2

Shopper’s secondary
e-mail or URL
address.

NC_Day
PhoneType

CHAR (3)

PHONELTYPE

Type of daytime
phone, such as TTY
for a teletypewriter for
people who have a
hearing impairment,
or PHN for a standard
telephone.

NC_Day
PhonelList

CHAR (1)

PUBLISHPHONE1

1 - Daytime phone
number is listed.

0 - Daytime phone
number is unlisted.

NC_Evening
PhoneType

CHAR (3)

PHONE2TYPE

Type of evening
phone, such as TTY
for a teletypewriter for
people who have a
hearing impairment,
or PHN for a standard
telephone.

NC_Evening
PhonelList

CHAR (1)

PUBLISHPHONE2

1 - Evening phone
number is listed.

0 - Evening phone
number is unlisted.

NC_BestTime
ToCall

CHAR (1)

BESTCALLINGTIME

Best time to call
indicator:

D - Daytime

E - Evening

NC_Package
Insert

CHAR (1)

PACKAGESUPPRESS

®Blckage inserts
suppression flag,
which indicates the
shopper’s preference
for including package
inserts in orders
shipped.

1 - Include

0 - Do not include

NC_Address
OptFieldl

CHAR (3)

FIELD1

Reserved for
merchant
customization.

132 Connectivity and Notification: Online Help Files

../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html

Field Name

Field Type

Table Name

Column Name

Note

NC_Address
OptField2

CHAR (1)

kDDRESS

FIELD2

Reserved for
merchant
customization.

NC_Shopper
Gender

CHAR (1)

LserDEMA

GENDER

Shopper’s gender:
F - Female

M - Male

N - Not provided
(default)

NC_Shopper
Age

CHAR (10)

AGE

Shopper’s age:

0 - Not provided
(default)

1 - 0-9 years

2 - 10-19 years

3 - 20-29 years

4 - 30-39 years

5 - 40-49 years

6 - 50-59 years

7 - 60 years or older

NC_Shopper
Income

CHAR (10)

INCOME

Shopper’s annual
income:

0 - Not provided
(default)

1-$0 - $19,999

2 - $20,000 - $39,999
3 - $40,000 - $59,999
4 - $60,000 or more

NC_Marital
Status

CHAR (1)

MARITALSTATUS

Shopper’'s marital
status:

S - Single

M - Married

C - Common Law
P - Separated

D - Divorced

W - Widowed

0 - Other

N - Not Provided

NC_Number
OfChildren

CHAR (10)

CHILDREN

Number of children.
Default is 0.

NC_Number
InHouse

CHAR (10)

HOUSEHOLD

Number of people in
the shopper’s
household. Default is
1.

NC_Shopper
Company

CHAR (30)

COMPANYNAME

The company for
which the shopper
works.

NC_Shopper
Interest

CHAR (254)

HOBBIES

The shopper’s main
interests and hobbies.

NC_Previous
OrderFlag

CHAR (1)

ORDERBEFORE

Indicator of whether
or not the shopper
has previously placed
an order.

NC_Demog
Field1l

CHAR (1)

FIELD1

Reserved for
merchant
customization.

Chapter 16. Integration message DTD files 133

../database/ADDRESS.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html

Field Name Field Type Table Name Column Name Note
NC_Demog CHAR (1) LsErRDEMA FIELD2 Reserved for
Field2 merchant
customization.
NC_Demog CHAR (1) USERDEMA FIELD3 Reserved for
Field3 merchant
customization.
NC_Demog CHAR (1) LsERDEMA FIELD4 Reserved for
Field4 merchant
customization.
NC_Demog CHAR (254) LsErRDEMA FIELD5 Reserved for
Field5 merchant
customization.
NC_Demog CHAR (10) [ISERDEMA FIELD6 Reserved for
Fieldé merchant

customization.

ORDER_CREATE_HDR010 DATA

The Order Create message includes the ORDER_CREATE_HDRO010_ DATA segment.
consists of order specifications for the Order Create message.

This data segment

The format and the source of the fields for ORDER_CREATE_HDRO010_DATA are described in the
following table. For a description of the database column, follow the link to its associated table.

Field Name Field Type Table Name Column Name Description
NC_HDRO010 CHAR (2) N/A N/A Fixed value of 01.
Version
Number
NC_Order CHAR (10) brpERY ORDERS_ID Unique order
RefNumber reference number,
internally
generated. This is a
primary key.
NC_Order CHAR (8) brDERY TIMEPLACED Date the order was
Date placed, in the
format
YYYYMMDD.
NC_Order CHAR (6) brDERY TIMEPLACED Time the order was
Time placed, in the
format HHMMSS.
NC_Currency CHAR (10) brDERY CURRENCY Currency in which
Type the price is
expressed. The
format of the
currency must
adhere to ISO 4217
standards.
NC_Total CHAR (16) brDERY TOTALPRODUCT Total product price
Price for the order.
NC_Total CHAR (16) brDERY TOTALTAX Total sales tax for
TaxPrice the order.

134 cConnectivity and Notification: Online Help Files

../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/ORDERS.html
../database/ORDERS.html
../database/ORDERS.html
../database/ORDERS.html
../database/ORDERS.html
../database/ORDERS.html

Field Name Field Type Table Name Column Name Description
NC_Total CHAR (16) brDERY TOTALSHIPPING Total shipping
ShippingPrice charges for the
order.
NC_Total CHAR (16) brDERY TOTALTAXSHIPPING Total tax on
TaxShipping shipping charges
Price for the order.
NC_Shopper CHAR (10) brpeERd MEMBER_ID Shopper reference
RefNumber number.
NC_Merchant CHAR (10) brpERS STOREENT_ID Merchant reference
RefNumber number.
NC_Merchant CHAR (30) QORDERS ORMORDER Unique order
OrderNumber reference number
generated by the
merchant
NC_BillTo CHAR (10) ORDERS ADDRESS_ID Billing address
RefNumber reference number.
NC_Order CHAR (10) ORDERS FIELD1 Reserved for
CustFieldl merchant
customization.
NC_Order CHAR (16) DRDERS FIELD2 Reserved for
CustField2 merchant
customization.
NC_Order CHAR (254) ORDFERS FIELD3 Reserved for
CustField3 merchant
customization.

ORDER_STATUS_UPDATE_HDRO010_DATA

The Order Status Update message includes the ORDER_STATUS UPDATE_HDRO010 DATA segment.
This data segment consists of order specifications for the Order Status Update message.

The format and the source of the fields for ORDER_STATUS_UPDATE_HDRO010_DATA are described in
the following table. For field lengths, use the table below. For a description of a database column, follow

the link to its associated table.

Field Name Field Type Table Name Column Name Note

NC_HDRO010 CHAR (2) N/A N/A Fixed value of 01.

Version

Number

NC_Order CHAR (10) brDSTAT ORDERS_ID WebSphere

RefNumber Commerce order
reference number.

NC_Customer N/A N/A N/A N/A

OrderNumber

NC_Currency CHAR (10) brDSTAT OSCPCUR Currency in which the

Type price is expressed.
The format of the
currency must adhere
to 1ISO 4217
standards.

Chapter 16. Integration message DTD files 135

../database/ORDERS.html
../database/ORDERS.html
../database/ORDERS.html
../database/ORDERS.html
../database/ORDERS.html
../database/ORDERS.html
../database/ORDERS.html
../database/ORDERS.html
../database/ORDERS.html
../database/ORDSTAT.html
../database/ORDSTAT.html

Field Name Field Type Table Name Column Name Note
NC_TotalPrice CHAR (16) brDsSTAT OSPRTOT Total product price for
the order.
NC_Total CHAR (16) brDsTAT OSTXTOT Total tax for the order.
TaxPrice
NC_Total CHAR (16) brDSTAT OSSHTOT Total shipping
ShippingPrice charges for the order.
NC_Total CHAR (16) brDsTAT OSSHTXTOT Total tax on shipping
TaxShipping charges for the order.
Price
NC_Shopper N/A N/A N/A N/A
LoginID
NC_Merchant CHAR (30) BrDSTAT OSMORDER Order reference
OrderNumber number generated by
the merchant.
NC_Order CHAR (32) BrDSTAT OSSTATUS Order status:
Status P - In pending state
C - In past state
X - canceled
| - Inventory update
pending (ship to no
longer pending)
M - Ready for
authentication (ship to
passed inventory
update)
NC_Schedule CHAR (8) BRDSTAT OSSSTIME Scheduled shipping
ShipDate date, in the format
YYYYMMDD.
NC_Actual CHAR (8) QRDSTAT OSASTIME Actual shipping date,
ShipDate in the format
YYYYMMDD.
NC_PlaceDate CHAR (8) brDsTAT OSPLTIME Placing date, in the

format YYYYMMDD.

PRODUCT_PRICE_UPDATE_HDRO010 DATA

The Product Price Update message includes the PRODUCT_PRICE_UPDATE_HDRO010 DATA segment.
This data segment consists of product or item pricing information for the Product Price Update message.

The Product Price Update message supports two sets of application data: Product Price Update version
01 and Product Price Update version 02. Version 02 includes a superset of the data within version 01.
Specifically, the PRODUCT_PRICE_UPDATE_HDRO010 DATA segment for version 01 contains a value of
01 for the field NC_HDRO10VersionNumber; whereas version 02 contains a value of 02 for
NC_HDRO10VersionNumber. In addition, version 02 also contains an additional field called

NC_ProductNumber.

The format and the source of the fields for PRODUCT_PRICE_UPDATE_HDRO010 DATA for version 02
are described in the following table. For field lengths, use the table below. For a description of a database
column, follow the link to its associated table.

136 Connectivity and Notification: Online Help Files

../database/ORDSTAT.html
../database/ORDSTAT.html
../database/ORDSTAT.html
../database/ORDSTAT.html
../database/ORDSTAT.html
../database/ORDSTAT.html
../database/ORDSTAT.html
../database/ORDSTAT.html
../database/ORDSTAT.html

Field Name Field Type Table Name Column Name Description
NC_HDRO010 CHAR (2) N/A N/A (fixed value of 02)
VersionNumber
NC_Product CHAR (10) kEEER CATENTRY_ID The CatalogEntry
RefNumber offered for sale.
NC_Product CHAR (16) bEEERPRICH PRICE Price of the product
Price or item.
NC_Currency CHAR (10) QEEERPRICH CURRENCY Currency in which the
Type price is expressed.
The format of the
currency must adhere
to 1ISO 4217
standards.
NC_Shopper CHAR (10) BEEER TRADEPOSCN_ID |The
Group TradingPositionContair
of which the Offer is a
part.
NC_Precedence CHAR (10) BEEER PRECEDENCE Precedence for this
price.
NC_Merchant CHAR (10) CATENTRY MEMBER_ID The reference number
RefNumber that identifies the
owner of the Catalog
Entry.
NC_ProductNumber | CHAR (64) CATENTRM PARTNUMBER The reference number
that identifies the
owner of the Catalog
Entry
NC_Product CHAR (10) OEEER OFFER_ID Product or item price
PriceRefNum reference number.
NC_Start CHAR (26) QEEER STARTDATE Date that the product
Timestamp or item price becomes
effective, in the format
YYYYMMDD
hh:mm:ss.ssssss.
Default is the current
date and time.
NC_End CHAR (26) tEEER ENDDATE Date that the product
Timestamp or item price expires,
in the format
YYYY-MM-DD
hh:mm:ss.ssssss.
Default is 9999-12-31
23:59:59.999999.
NC_Price N/A N/A N/A Reserved for
CustomField1l merchant
customization.
NC_Price N/A N/A N/A Reserved for
CustomField2 merchant
customization.

Behavior for version 02:

er

* The currency tyge %which references CURRENCY in the DEEERPRICH table) is mandatory and must
be specified in format.

Chapter 16. Integration message DTD files 137

../database/OFFER.html
../database/OFFERPRICE.html
../database/OFFERPRICE.html
../database/OFFER.html
../database/OFFER.html
../database/CATENTRY.html
../database/CATENTRY.html
../database/OFFER.html
../database/OFFER.html
../database/OFFER.html
../database/OFFERPRICE.html
rcuintiso.htm

« If the product price reference number (which references OFFER_ID in the QEEER table) is specified,
this value along with the currency type, will be used as the key to update a row in the OFFERPRICE

table.

 If the product price reference number (OFFER_ID) is not specified, then the combination of the product
table) and either the precedence
(which references PRECEDENCE in the OFFER table) or the trade position container (which references
TRADEPOSCN_ID in the OFFER table) will be used to obtain a product price reference number
(OFFER_ID). This value, along with the currency type, will be used as the key to update a row in the
OFFERPRICE table.

 If the product reference number (CATENTRY_ID) is not specified, then the combination of the product
number (which references PARTNUMBER in the CATENTRY table) and the merchant reference number
(which references MEMBER_ID in the CATENTRY table) will be used to obtain a product reference
number (CATENTRY_ID). This value, along with either the precedence (PRECEDENCE) or the trade
position container (TRADEPOSCN_ID), will be used to obtain a product price reference number
(OFFER_ID). The product price reference number, along with the currency type, will be used as the key
to update a row in the OFFERPRICE table.

* If the product price reference number (OFFER_ID) matches an existing one in the database, but the
currency type does not match a currency type for any record with that product price reference number,
a new record will be created in the OFFERPRICE table. This allows you to specify prices in different
currencies for the same offer.

 If the precedence (PRECEDENCE) is not specified, then the ProductOfferPriceUpdate command locates
all previous records that match the values given without the precedence. The maximum of these values
is taken and incremented by one. If a previous record does not exist, then the precedence value is set
to 1. A new row is inserted in the table OFFERPRICE with the new precedence value. The precedence
value must be less than10®. If the maximum value has been reached, then the new update will be

reference number (which references CATENTRY_ID in the

rejected.

The format and the source of the fields for PRODUCT_PRICE_UPDATE_HDRO010_DATA for version 01

are described in the following table:

RefNumber

Field Name Field Type Table Name Column Name Description

NC_HDRO010 CHAR (2) N/A N/A Fixed value of 01.

VersionNumber

NC_Product CHAR (10) (aT===z CATENTRY_ID The CatalogEntry

RefNumber offered for sale.

NC_Product CHAR (16) beEERPRICH PRICE Price of the product

Price or item.

NC_Currency CHAR (10) EEERPRICH CURRENCY Currency in which the

Type price is expressed.
The format of the
currency must adhere
to 1ISO 4217
standards.

NC_Shopper CHAR (10) beeer TRADEPOSCN_ID | The

Group TradingPositionContair
of which the Offer is a
part.

NC_Precedence CHAR (10) BEEER PRECEDENCE Precedence for this
price.

NC_Merchant CHAR (10) CATENTRY MEMBER_ID The reference number

that identifies the
owner of the Catalog

Entry.

138 Connectivity and Notification: Online Help Files

../database/OFFER.html
../database/CATENTRY.html
../database/OFFER.html
../database/OFFERPRICE.html
../database/OFFERPRICE.html
../database/OFFER.html
../database/OFFER.html
../database/CATENTRY.html

Field Name

Field Type

Table Name

Column Name

Description

NC_Product
PriceRefNum

CHAR (10)

OeEeR

OFFER_ID

Product or item price
reference number.

NC_Start
Timestamp

CHAR (26)

DeEeR

STARTDATE

Date and time that
the product or item
price becomes
effective, in the format
YYYY-MM-DD
hh:mm:ss:ssssss.
Default is the current
date and time.

NC_End
Timestamp

CHAR (26)

ENDDATE

Date and time that
the product or item
price expires, in the
format

YYYY-MM-DD
hh:mm:ss:ssssss.
Default is 9999-12-31
23:59:59.999999.

NC_Price
CustomField1

CHAR (30)

N/A

N/A

Reserved for
merchant
customization.

NC_Price
CustomField2

CHAR (1)

N/A

N/A

Reserved for
merchant
customization.

Behavior for version 01:
* The currency type (which references CURRENCY in the OFFERPRICE table) is mandatory and must

be specified in

b iots

format.

 If the product price reference number (which references OFFER_ID in the OFFER table) is specified,
this value along with the currency type, will be used as the key to update a row in the OFFERPRICE

table.

 If the product price reference number (OFFER_ID) is not specified, then the combination of the product

reference number (which references CATENTRY_ID in the CATENTRY table) and either the precedence
(which references PRECEDENCE in the OFFER table) or the trade position container (which references
TRADEPOSCN_ID in the OFFER table) will be used to obtain a product price reference number
(OFFER_ID). This value, along with the currency type, will be used as the key to update a row in the
OFFERPRICE table.

If the product price reference number (OFFER_ID) matches an existing one in the database, but the
currency type does not match a currency type for any record with that product price reference number,
a new record will be created in the OFFERPRICE table. This allows you to specify prices in different
currencies for the same offer.

If the precedence (PRECEDENCE) is not specified, then the ProductOfferPriceUpdate command locates
all previous records that match the values given without the precedence. The maximum of these values
is taken and incremented by one. If a previous record does not exist, then the precedence value is set
to 1. A new row is inserted in the table OFFERPRICE with the new precedence value. The precedence
value must be less than10®. If the maximum value has been reached, then the new update will be
rejected.

Chapter 16. Integration message DTD files 139

../database/OFFER.html
../database/OFFER.html
../database/OFFER.html
rcuintiso.htm

PRODUCT_QUANTITY_UPDATE_HDRO010_DATA

The Product Quantity Update message includes the PRODUCT_QUANTITY_UPDATE_HDRO010_DATA
segment. This data segment includes product or item inventory information for the Product Quantity

Update message.

The format and the source of the fields for PRODUCT_QUANTITY_UPDATE_HDRO010_DATA are
described in the following table. For field lengths, use the table below. For a description of a database
column, follow the link to its associated table.

Field Name Field Type Table Name Column Name Note

NC_HDRO010 CHAR (2) N/A N/A Fixed value of 01.

VersionNumber

NC_Product CHAR (10) INVENTORM CATENTRY_ID The CatalogEntry for

RefNumber which the product
quantity applies.

NC_Product CHAR (10) INVENTORM QUANTITY The product quantity.

Quantity

NC_Product CHAR (64) CATENTRM PARTNUMBER Part Number of the

Number Catalog Entry.

NC_Merchant CHAR (10) INVENTORM STORE_ID The store for which

RefNumber the product quantity
applies.

Behavior:

* The merchant reference number (which references STORE_ID in the INVENTORY table) is mandatory.

* The WebSphere Commerce product reference number (which references CATENTRY_ID in the
INVENTORY table) and the merchant reference number (STORE_ID) are used to update a row in the

INVENTORY table.

* If the product reference number (CATENTRY_ID) is not present, then the merchant reference number
(STORE_ID) is used to obtain the member number (which references MEMBER_ID in the CATENTRY
table). The member number must be the same as the owner of the catalog entry. The member number
(MEMBER_ID), along with the product number (which references PARTNUMBER in the CATENTRY
table) are used to obtain a product reference number (CATENTRY_ID). The product reference number,
along with the merchant reference number (STORE_ID) are used to update a row in the INVENTORY

table.

e |If the row in the table INVENTORY does not exist, an error will occur.

ORDER_CREATE_HDRO020_DATA

The Order Create message includes the ORDER_CREATE_HDRO020_DATA segment. This data segment
consists of shopper specifications for the Order Create message.

The format and the source of the fields for ORDER_CREATE_HDRO020 DATA are described in the
following table. For field lengths, use the table below. For a description of a database column, follow the
link to its associated table.

Version
Number

Field Name |Field Type | Table Column Note
Name Name
NC_HDRO020 |CHAR (2) [N/A N/A Fixed value of 01.

140 connectivity and Notification: Online Help Files

../database/INVENTORY.html
../database/INVENTORY.html
../database/CATENTRY.html
../database/INVENTORY.html

Field Name |Field Type | Table Column Note
Name Name

NC_Shopper | CHAR (31) LsERREJ | LOGONID Registered shopper’s unique logon ID.
LoginID

NC_Purchaser CHAR (30) BDDRESH | LASTNAME | Purchaser’s last name.

LastName

NC_Purchaser CHAR (30) BDDRESY | MIDDLENAMPurchaser’s middle name.
MiddleName

NC_Purchaser CHAR (30) BDDRESY | FIRSTNAME| Purchaser’s first name.
FirstName

NC_Purchaser CHAR (50) BDDRESH | ADDRESSL1 | Purchaser’s address line 1.
Addrl

NC_Purchaser CHAR (50) BRDDRESY | ADDRESS? | Purchaser’s address line 2.
Addr2

NC_Purchaser CHAR (50) BDDRESY | ADDRESS3 | Purchaser’s address line 3.
Addr3

NC_Purchaser CHAR (30) RDDREST | CITY Purchaser’s city name.
City

NC_Purchaser CHAR (20) BRDDRESY | STATE Purchaser’s state, province, or equivalent, abbreviated.
State

NC_Purchasef CHAR (30) |BDDRESS | COUNTRY |Purchaser’s country/region.
Country

NC_Purchasef CHAR (20) |BDDRESS | ZIPCODE | Purchaser's zip code or equivalent.
ZipCode

NC_Purchaser CHAR BRDDREST | EMAILL Purchaser’s primary e-mail or URL address.
Emaill (254)

NC_Purchaser CHAR BDDREST | EMAIL2 Purchaser’s secondary e-mail or URL address.
Email2 (254)

NC_Purchaser CHAR (30) bDDRESY | PHONEL Purchaser’s primary phone number.
Phonel

NC_Purchaser CHAR (30) BDDRESY | PHONE2 Purchaser’s secondary phone number.
Phone2

NC_Purchaser CHAR (30) bDDRESY |FAX1 Purchaser’s facsimile number.
Fax

NC_Purchaser CHAR (80) BDDRESY | ORGNAME Company that the purchaser represents.
CompanyName

NC_Purchaser CHAR (50) MBRGRH MBRGRPNANMhopper group that purchaser belongs to.
Shopper
GroupName

ORDER_CREATE_HDR030_ DATA

The Order Create message includes the ORDER_CREATE_HDRO030_DATA segment. This data segment
consists of billing details for the Order Create message.

The format and the source of the fields for ORDER_CREATE_HDRO030_DATA are described in the

following table. For field lengths, use the table below. For a description of a database column, follow the
link to its associated table.

Chapter 16. Integration message DTD files 141

../database/USERREG.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/MBRGRP.html

Field Name Field Type Table Name Column Name Note
NC_HDRO030 CHAR (2) N/A N/A Fixed value of 01.
VersionNumber
NC_BillTo CHAR (30) bDDRESS LASTNAME Bill to person’s last
LastName name.
NC_BillTo CHAR (30) bDDRESY MIDDLENAME Bill to person’s
MiddleName middle name.
NC_BillTo CHAR (30) BDDRESS FIRSTNAME Bill to person’s first
FirstName name.
NC_BillTo CHAR (50) BDDRESS ADDRESS1 Bill to person’s
Addrl address line 1.
NC_BillTo CHAR (50) _DDRESS ADDRESS2 Bill to person’s
Addr2 address line 2.
NC_BillTo CHAR (50) RDDRESY ADDRESS3 Bill to person’s
Addr3 address line 3.
NC_BillTo CHAR (30) BDDRESY CITY Bill to person’s city
City name.
NC_BillTo CHAR (20) RDDRESY STATE Bill to person’s state,
State province, or
equivalent,
abbreviated.
NC_BillTo CHAR (30) BDDRFSY COUNTRY Bill to person’s
Country country/region.
NC_BillTo CHAR (20) BDDRESY ZIPCODE Bill to person’s zip
ZipCode code or equivalent.
NC_BillTo CHAR (254) BDDRESY EMAIL1 Bill to person’s
Emaill primary e-mail or URL
address.
NC_Billto CHAR (254) bDDRESY EMAIL2 Bill to person’s
Email2 secondary e-mail or
URL address.
NC_BillTo CHAR (30) bDDRESY PHONE1 Bill to person’s
Phonel primary phone
number.
NC_BillTo CHAR (30) bDDRESY PHONE2 Bill to person’s
Phone2 secondary phone
number.
NC_BillTo CHAR (30) DDRESS FAX1 Bill to person’s
Fax facsimile number.

ORDER_CREATE_HDRO040 DATA
The Order Create message includes the ORDER_CREATE_HDRO040_DATA segment. This data segment

consists of merchant information for the Order Create message.

The format and the source of the fields for ORDER_CREATE_HDRO040 DATA are described in the
following table. For field lengths, use the table below. For a description of a database column, follow the
link to its associated table.

142 cConnectivity and Notification: Online Help Files

../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html

Field Name Field Type Table Name Column Name Note
NC_HDRO040 CHAR (2) N/A N/A Fixed value of 01.
Version
Number
NC_Supplier CHAR (80) ETorEENTDY DISPLAYNAME Merchant’'s company
Name name.
NC_Supplier CHAR (50) ETaDDRESY ADDRESS1 Merchant’s company
Addrl address line 1.
NC_Supplier CHAR (50) ETADDRESY ADDRESS?2 Merchant’s company
Addr2 address line 2.
NC_Supplier CHAR (50) ETADDRESY ADDRESS3 Merchant’s company
Addr3 address line 3.
NC_Supplier CHAR (30) KIADDRESY CITY Merchant's company
City city name.
NC_Supplier CHAR (20) KIADDRESY STATE Merchant’s company
State state, province, or
equivalent,
abbreviated.
NC_Supplier CHAR (30) KIADDRESY COUNTRY Merchant’s company
Country country/region.
NC_Supplier CHAR (20) BIADDRESY ZIPCODE Merchant's company
ZipCode zip code or
equivalent.
NC_Supplier CHAR (30) BIADDRESY PHONE1 Merchant's company
Phonel phone number.
NC_Supplier CHAR (30) EIADDRESY LASTNAME Merchant contact’s
Contact last name.
LastName
NC_Supplier CHAR (30) ETaDDRESY MIDDLENAME Merchant contact's
Contact middle name.
MiddleName
NC_Supplier CHAR (30) ETaDDRESY FIRSTNAME Merchant contact’s
Contact first name.
FirstName
NC_Supplier CHAR (30) ETaDDRESY PERSONTITLE Merchant contact’s
ContactTitle title.
NC_Supplier CHAR (30) ETaDDRESY PHONE1 Merchant contact’s
Contact primary phone
Phonel number.
NC_Supplier CHAR (30) ETADDRESY PHONE2 Merchant contact’s
Contact secondary phone
Phone2 number.
NC_Supplier CHAR (254) ETADDRESY EMAIL1 Merchant contact's
Contact primary e-mail or URL
Emaill address.
NC_Supplier CHAR (254) ETADDRESY EMAIL2 Merchant contact's
Contact secondary e-mail or
Email2 URL address.

Chapter 16. Integration message DTD files 143

../database/STOREENTDS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html
../database/STADDRESS.html

ORDER_CREATE_ITM010_DATA

The Order Create message includes the ORDER_CREATE_ITM010_ DATA segment. This data segment
consists of item or product shipping specifications for the Order Create message.

The format and the source of the fields for ORDER_CREATE_ITM010_DATA are described in the following
table. For field lengths, use the table below. For a description of a database column, follow the link to its

associated table.

Field Name Field Type Table Name Column Name Note

NC_ITMO010 CHAR (2) N/A N/A Fixed value of 01.

VersionNumber

NC_lItem CHAR (3) N/A N/A (generated as a |N/A

LineNumber sequential number)

NC_Item CHAR (10) brDERITEMS ORDERITEMS_ID Unique ship to

RefNumber reference number,
internally generated.
This is a primary key.

NC_Item CHAR (10) BRDERITEMS CATENTRY_ID Item or product

ProductRefNumber reference number.
This is not a foreign
key.

NC_Item CHAR (64) CATENTRM PARTNUMBER Item SKU or product

ProductNumber number.

NC_Item CHAR (254) CATENTDESd SHORTDESCRIPTION| Short description of

Product the item or product,

ShortDescription including its name.

NC_ltem CHAR (16) BRDERITEMS PRICE Unit price of the item.

UnitPrice

NC_Item CHAR (10) ORDERITEMY CURRENCY Currency in which the

CurrencyType price is expressed.
The format of the
currency must adhere
to ISO 4217
standards.

NC_lItem CHAR (10) brDERITEMT QUANTITY Quantity ordered.

ProductQuantity

NC_Item CHAR (10) BrRDERITEMS ADDRESS_ID Address reference

ShipToAddr number for the

RefNum shipping address.

NC_ltem CHAR (10) QrDERITEMS SHIPMODE_ID Merchant shipping

ShipMode mode reference

RefNum number

NC_ItemState CHAR (1) brDERITEMS STATUS Order Status:

P - In pending state
C - In past state

X - canceled

| - Inventory update
pending (ship to no
longer pending)

M - Ready for
authentication (ship to
passed inventory
update)

144 Connectivity and Notification: Online Help Files

../database/ORDERITEMS.html
../database/ORDERITEMS.html
../database/CATENTRY.html
../database/CATENTDESC.html
../database/ORDERITEMS.html
../database/ORDERITEMS.html
../database/ORDERITEMS.html
../database/ORDERITEMS.html
../database/ORDERITEMS.html
../database/ORDERITEMS.html

Field Name Field Type Table Name Column Name Note
NC_Item CHAR (30) bDDRESY LASTNAME Ship to customer’s
ShipTo last name.
LastName
NC_Item CHAR (30) BDDRESS MIDDLENAME Ship to customer's
ShipTo middle name.
MiddleName
NC_Item CHAR (30) BDDRESY FIRSTNAME Ship to customer's
ShipTo first name.
FirstName
NC_ltem CHAR (50) BDDRESY ADDRESS1 Ship to customer's
ShipToAddrl address line 1.
NC_Item CHAR (50) _DDRESS ADDRESS2 Ship to customer’s
ShipToAddr2 address line 2.
NC_ltem CHAR (50) RDDRESY ADDRESS3 Ship to customer’s
ShipToAddr3 address line 3.
NC_Item CHAR (30) RDDRESY CITY Ship to customer’s
ShipToCity city name.
NC_ltem CHAR (20) RDDRESY STATE Ship to customer's
ShipToState state, province, or
equivalent,
abbreviated.
NC_ltem CHAR (30) BDDRESY COUNTRY Ship to customer’s
ShipToCountry country/region.
NC_Item CHAR (20) BRDDRESY ZIPCODE Ship to customer’s zip
ShipToZipCode code or equivalent.
NC_Item CHAR (254) BDDRESS EMAIL1 Ship to customer’s
ShipToEmaill primary e-mail or URL
address.
NC_Item CHAR (254) bDDRESY EMAIL2 Ship to customer’s
ShipToEmail2 secondary e-mail or
URL address.
NC_lItem CHAR (30) bDDRESY PHONE1 Ship to customer’s
ShipToPhonel primary phone
number.
NC_lItem CHAR (30) DDRESY PHONE2 Ship to customer’s
ShipToPhone2 secondary phone
number.
NC_lItem CHAR (30) BDDRESS FAX1 Ship to customer’s
ShipToFax facsimile number.
NC_ltem CHAR (30) EHiPMODH CARRIER Carrier identifier, such
ShippingCarrier as Federal Express.
NC_ltem CHAR (30) EHIPMODH CODE Carrier service
ShippingMethod shipping mode, such
as FedEx Express
Overnight.
NC_Item CHAR (254) BrDERITEMS COMMENTS Comments from
ShipToComment customer, such as a
greeting for a gift.
NC_ltem CHAR (64) BRDERITEMS LASTCREATE Date and time the
Creation ship to entry was
Timestamp made.

Chapter 16. Integration message DTD files 145

../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/SHIPMODE.html
../database/SHIPMODE.html
../database/ORDERITEMS.html
../database/ORDERITEMS.html

Field Name Field Type Table Name Column Name Note

NC_Item CHAR (64) RrRDERITEMS LASTUPDATE Date and time the

Update ship to entry was last

Timestamp updated.

NC_ltem CHAR (10) QrDERITEMS FIELD1 Reserved for

CustFieldl merchant
customization.

NC_Item CHAR (254) brDERITEMS FIELD2 Reserved for

CustField2 merchant
customization.

ORDER_STATUS_UPDATE_ITMO010_DATA

The Order Status Update message includes the ORDER_STATUS UPDATE_ITM010_DATA segment. This
data segment consists of item or product shipping specifications for the Order Status message.

The Order Status Update message supports two sets of application data: Order Status Update version 01
and Order Status Update version 02. Version 02 includes a superset of the data within version 01.
Specifically, the ORDER_STATUS UPDATE_ITM010_DATA segment for version 01 contains a value of 01
for the field NC_HDRO10VersionNumber; whereas version 02 contains a value of 02 for
NC_HDRO10VersionNumber. In addition, Versions 02 also contains some additional fields not within

version 01.

The format and the source of the fields for ORDER_STATUS UPDATE_ITMO010_DATA for version 02 are
described in the following table. For field lengths, use the table below. For a description of a database
column, follow the link to its associated table.

Field Name Field Type Table Name Column Name Note
NC_ITMO010 CHAR (2) N/A N/A (fixed value of N/A
VersionNumber 02)
NC_Order CHAR (10) QRDISTAT ORDERS_ID WebSphere
RefNumber Commerce order
reference number.
NC_Merchant CHAR (30) brDisTAT OSMORDER Merchant's order
OrderNumber reference number.
NC_Item CHAR (10) broisTAT ORDERITMES_ID | WebSphere
RefNumber Commerce item
reference number.
NC_ltemMerchant CHAR (30) brDiSTAT OIMITEM Merchant item
RefNumber reference number.
NC_Order CHAR (32) brDisTAT OISTATUS Order item status.
ItemStatus
NC_lItem CHAR (8) brDISTAT OISSTIME Scheduled shipping
Schedule date, in the format
ShipDate YYYYMMDD.
NC_Item CHAR (8) BrDISTAT OIASTIME Actual shipping date,
ActualShipDate in the format
YYYYMMDD.
NC_Item CHAR (8) BrDISTAT OIPLTIME Placing date, in the
PlaceDate format YYYYMMDD.
NC_Item CHAR (10) brDISTAT OIQTCONFIRM Quantity of items
Quantity ordered.

146 cConnectivity and Notification: Online Help Files

../database/ORDERITEMS.html
../database/ORDERITEMS.html
../database/ORDERITEMS.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html

Field Name Field Type Table Name Column Name Note

NC_lItem CHAR (10) brDisTAT OICPCUR Currency in which the

CurrencyType price of the item is
expressed. The
format of the price
must adhere to ISO
4217 standards.

NC_Item CHAR (16) brDisTAT OIPRTOT Unit price for the item.

UnitPrice

NC_Item CHAR (16) brDisTAT OITOTPRC Total price for the

TotalPrice item.

NC_ltem CHAR (16) brDisTAT OITXTOT Total sales price for

TotalTaxPrice the item.

NC_ltemTotal CHAR (16) CrDISTAT OISHTOT Total shipping price

ShippingPrice for the item.

NC_ltemTotal CHAR (16) BrDISTAT OISHTXTOT Total tax on the

TaxShippingPrice shipping price for the
item.

NC_Item CHAR (250) brDISTAT OICMNT Comments from the

Comment shopper regarding the

item ordered. For
example, a shopper
can include a greeting
message with the
ordered gift.

The format and the source of the fields for ORDER_STATUS UPDATE_ITM010_DATA for version 01 are
described in the following table:

Field Name Field Type Table Name Column Name Description
NC_ITMO010 CHAR (2) N/A N/A Fixed value of 01.
VersionNumber
NC_Order CHAR (10) troisTAT ORDERS_ID WebSphere
RefNumber Commerce order
reference number.
NC_Item CHAR (10) troisTAT ORDERITMES_ID | WebSphere
RefNumber Commerce item
reference number.
NC_Order CHAR (32) brbnisTAT OISTATUS Order item status.
ItemStatus
NC_lItem CHAR (8) brnisTAT OISSTIME Scheduled shipping
Schedule date, in the format
ShipDate YYYYMMDD.
NC_Item CHAR (8) brDiSTAT OIASTIME Actual shipping date,
ActualShipDate in the format
YYYYMMDD.
NC_Item CHAR (8) brDisTAT OIPLTIME Placing date, in the
PlaceDate format YYYYMMDD.
NC_ltem CHAR (10) brDisTAT OIQTCONFIRM Quantity of items
Quantity ordered.

Chapter 16. Integration message DTD files 147

../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html
../database/ORDISTAT.html

NC_Item CHAR (250) ORDISTAT OICMNT Comments from the
Comment shopper regarding the
item ordered. For
example, a shopper
can include a greeting
message with the
ordered gift.

ORDER_CREATE_PROLOG_DATA

The Order Create message includes the ORDER_CREATE_PROLOG_DATA segment. This data segment
identifies the type of message that is being defined; that is, the segment indicates that the message is an
Order Create message with a field value of ON (Order New).

The format and the source of the fields for ORDER_CREATE_PROLOG_DATA are described in the

following table:

Field Name Field Type Field Value
NC_MsgType CHAR (10) ON

NC_MsgVersion CHAR (2) 01

NC_RESERVED CHAR (10) Reserved for IBM use.

ORDER_STATUS_UPDATE_PROLOG_DATA

The Order Status Update message includes the ORDER_STATUS UPDATE_PROLOG_DATA segment.
This data segment identifies the type of message that is being defined; that is, the segment indicates that
the message is an Order Status Update message with a field value of OS (Order Status).

The Order Status Update message supports two sets of application data: Order Status Update version 01
and Order Status Update version 02. Version 02 includes a superset of the data within version 01.
Specifically, the ORDER_STATUS_ UPDATE_PROLOG_DATA segment for version 01 contains a value of
01 for the field NC_MsgVersion; whereas version 02 contains a value of 02 for NC_MsgVersion.

The format and the source of the fields for ORDER_STATUS UPDATE_PROLOG_DATA for version 02 are
described in the following table:

Field Name Field Type Field Value
NC_MsgType CHAR (10) (O]

NC_MsgVersion CHAR (2) 02

NC_RESERVED CHAR (10) Reserved for IBM use.

The format and the source of the fields for ORDER_STATUS_UPDATE_PROLOG_DATA for version 01 are
described in the following table:

Field Name Field Type Field Value
NC_MsgType CHAR (10) (O]

NC_MsgVersion CHAR (2) 01

NC_RESERVED CHAR (10) Reserved for IBM use.

148 cConnectivity and Notification: Online Help Files

../database/ORDISTAT.html

PRODUCT_PRICE_UPDATE_PROLOG_DATA

The Product Price Update message includes the PRODUCT_PRICE_UPDATE_PROLOG_DATA segment.
This data segment identifies the type of message that is being defined; that is, the segment indicates that
the message is a Product Price Update message with a field value of PP (Product Price).

The Product Price Update message supports two sets of application data: Product Price Update version
01 and Product Price Update version 02. Version 02 includes a superset of the data within version 01.
Specifically, the PRODUCT_PRICE_UPDATE_PROLOG_DATA segment for version 01 contains a value of
01 for the field NC_MsgVersion; whereas version 02 contains a value of 02 for NC_MsgVersion.

The format and the source of the fields for PRODUCT_PRICE_UPDATE_PROLOG_DATA for version 02
are described in the following table:

Field Name Field Type Field Value
NC_MsgType CHAR (10) PP

NC_MsgVersion CHAR (2) 02

NC_RESERVED CHAR (10) Reserved for IBM use.

The format and the source of the fields for PRODUCT_PRICE_UPDATE_PROLOG_DATA for version 01
are described in the following table:

Field Name Field Type Field Value
NC_MsgType CHAR (10) PP

NC_MsgVersion CHAR (2) 01

NC_RESERVED CHAR (10) Reserved for IBM use.

PRODUCT _QUANTITY_UPDATE_PROLOG_DATA

The Product Quantity Update message includes the PRODUCT_QUANTITY_UPDATE_PROLOG_DATA
segment. This data segment identifies the type of message that is being defined; that is, the segment
indicates that the message is a Product Quantity Update message with a field value of PQ (Product

Quantity).

The format and the source of the fields for PRODUCT_QUANTITY_UPDATE_PROLOG_DATA are

described in the following table:

Field Name Field Type Field Value
NC_MsgType CHAR (10) PQ

NC_MsgVersion CHAR (2) 01

NC_RESERVED CHAR (10) Reserved for IBM use.

CUSTOMER_NEW_PROLOG_DATA

The Customer New message includes the CUSTOMER_NEW_PROLOG_DATA segment. This data
segment identifies the type of message that is being defined; that is, the segment indicates that the
message is a Customer Update message with a field value of NC (New Customer).

The format and the source of the fields for CUSTOMER_NEW_ PROLOG_DATA are described in the

following table:

Chapter 16. Integration message DTD files 149

Field Name Field Type Field Value
NC_MsgType CHAR (10) NC

NC_MsgVersion CHAR (2) 01

NC_RESERVED CHAR (10) Reserved for IBM use.

CUSTOMER_UPDATE_PROLOG_DATA

The Customer Update message includes the CUSTOMER_UPDATE_PROLOG_DATA segment. This data
segment identifies the type of message that is being defined; that is, the segment indicates that the
message is a Customer Update message with a field value of UC (Update Customer).

The format and the source of the fields for CUSTOMER_UPDATE_PROLOG_DATA are described in the
following table:

Field Name Field Type Field Value
NC_MsgType CHAR (10) uc

NC_MsgVersion CHAR (2) 01

NC_RESERVED CHAR (10) Reserved for IBM use.

DATUSR_DATA for outbound messages

The outbound message Order Create includes the DATUSR_DATA data segment. Include the DATUSR
records in this message to send additional data. You can customize the fields to pass extra data that is not

included in the messages.

The format and the source of the fields for DATUSR_DATA are described in the following table:

Field Name Field Type Description

NC_FieldName CHAR (8) Name of the new field to be added.
NC_FieldLength CHAR (10) Length of the NC_FieldValue field.
NC_FieldValue CHAR (variable) Text string for the value of the new field.

DATUSR_DATA for inbound messages

The inbound messages Order Status Update, Customer New, and Customer Update, include the
DATUSR_DATA data segment. Include the DATUSR records in these messages to receive additional data.
You can customize the fields to pass extra data that is not included in the messages. DATUSR_DATA can

be repeated multiple times.

The format and the source of the fields for DATUSR_DATA are described in the following table:

Field Name Field Type Description

NC_FieldName CHAR (8) Name of the new field to be added.
NC_FieldLength CHAR (10) Length of the NC_FieldValue field.
NC_FieldVvalue CHAR (variable) Text string for the value of the new field.

150 cConnectivity and Notification: Online Help Files

NCCustomer_10.mod file

The NCCustomer_10.mod customer common file consists of shopper information for new shoppers. It is used
for for both the Create_ NC_Customer and Update NC_Customer messages.

All MOD files are located in the following directory:

drive:\Program Files\WebSphere\CommerceServer\xml\messaging

drive:\WebSphere\CommerceServer\xml\messaging

/usr/WebSphere/CommerceServer/xml/messaging

Solaris

/opt/WebSphere/CommerceServer/xml/messaging

/QIBM/Proddata/WebCommerce/xml/messaging

The format and the source of the XML element values for NCCustomer_10.mod are described in the
following table. For a description of the database column, follow the link to its associated table. All fields
are optional unless otherwise noted.

N

Level XML Element Comment Table Name |Column Name

1 Logininfo Mandatory N/A N/A

1.1 LoginID Mandatory USERREG |LOGONID

1.2 Password Mandatory LSERREd |LOGONPASSWORD

1.3 VerifyPassword Mandatory N/A N/A

2 MerchantID N/A N/A

3 MethodOf LisERPROH | PREFERREDCOMM
Communication

4 Challenge USERREQ | CHALLENGEQUESTION
Question

5 Challenge USERREQ | CHALLENGEANSWER
Answer

6 ShopperField First repeated occurrence bOserd FIELD1

6 ShopperField Second repeated occurrence Oserd FIELD2

7 ContactPerson Mandatory N/A N/A
Name

7.1 Title BDDRESY | PERSONTITLE

7.2 FullName Not supported in this version N/A N/A

7.3 LastName Mandatory BDDRESY |LASTNAME

7.4 FirstName BDDRESY | FIRSTNAME

75 MiddleName BDDRESY | MIDDLENAME

Chapter 16. Integration message DTD files 151

../database/USERREG.html
../database/USERREG.html
../database/USERPROF.html
../database/USERREG.html
../database/USERREG.html
../database/USERS.html
../database/USERS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html

DN

Level XML Element Comment Table Name | Column Name

7.6 AlternateName Not supported with this version N/A N/A

8 RepCompany BDDRESY | ORGNAME

9 Address Mandatory N/A N/A

9.1 AddressLine Mandatory; first repeated occurrence BDDRESY | ADDRESS1

9.1 AddressLine Second repeated occurrence BDDRESY |ADDRESS2

9.1 AddressLine Third repeated occurrence BDDRESY |ADDRESS3

9.2 City Mandatory kDDRESY |cITY

9.3 State Mandatory BDDRESY |STATE

9.4 Zip Mandatory BDDRESY | zIPCODE

9.5 Country Mandatory BDDRESY | COUNTRY

10 Contactlnfo Mandatory N/A N/A

10.1 Telephone First repeated occurrence BDDRFSY | PHONE1

101 Telephone Second repeated occurrence BDDRESY | PHONE2

10.2 Email First repeated occurrence BDDRESY |EMAILL

10.2 Email Second repeated occurrence RDDRESY |EMAIL2

10.3 Fax BDDRESY |FAX1

11 DayPhonelnfo N/A N/A

111 Phonelnfo N/A N/A

11.1.A1 |type Attribute RDDRESY |PHONEITYPE

11.1.A2 |isListed Attribute BDDRESY | PUBLISHPHONE1

12 EveningPhone N/A N/A
Info

121 Phonelnfo N/A N/A

12.1.A1 |type Attribute BDDRESY | PHONE2TYPE

12.1.A2 |isListed Attribute BWDDRESY | PUBLISHPHONE2

13 BestTimeToCall kDDRESY |BESTCALLINGTIME

14 Include BDDRESY | PACKAGESUPPRESSI(
Packagelnsert

15 Address First repeated occurrence bkDDRESY |FIELD1
OptField

15 Address First repeated occurrence bkDDRESY |FIELD2
OptField

16 Gender N/A N/A

16.A1 value Mandatory; attribute USERDEMA | GENDER

17 AgeGroup LsErRDEMA | AGE

18 IncomeGroup LSERDEMA | INCOME

19 MaritalStatus N/A N/A

19.A1 |value Mandatory; attribute LSERDEMA | MARITALSTATUS

20 NumberOf [.SERDEMJ | CHILDREN
Children

21 Numberin [ISERDEMA | HOUSEHOLD
House

152 Connectivity and Notification: Online Help Files

../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/ADDRESS.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html

Level XML Element Comment Table Name | Column Name
22 WorkCompany LsERDEMA | COMPANYNAME
23 Interests LisERDEM | HOBBIES

24 PreviousOrder LISERDEMJ | ORDERBEFORE
25 Demographics First repeated occurrence UsERDEMA | FIELD1

25 Demographics Second repeated occurrence LsSERDEMA | FIELD2

25 Demographics Third repeated occurrence USERDEMA | FIELD3

25 Demographics Fourth repeated occurrence LSERDEMA | FIELD4

25 Demographics Fifth repeated occurrence OSERDEMA | FIELDS

25 Demographics Sixth repeated occurrence OSERDEMA | FIELD6

26 UserDatd N/A N/A

NCCommon.mod - source file

WebSphere Commerce defines all inbound XML messages based on DTD files. Each DTD file consists of
several XML elements and the NCCommon.mod file. In addition, the Create NC Customer_10.dtd and
Update_ NC_Customer_10.dtd files also include information from the NCCustomer10.mod common file.

All MOD and DTD files are located in the following directory:

drive:\Program Files\WebSphere\CommerceServer\xml\messaging

drive:\WebSphere\CommerceServer\xml\messaging

/usr/WebSphere/CommerceServer/xml/messaging

/opt/WebSphere/CommerceServer/xml/messaging

/QIBM/Proddata/WebCommerce/xml/messaging

NCCustomer_10.mod - source file

WebSphere Commerce defines all inbound XML messages based on DTD files. Each DTD file consists of
several XML elements and the NCCommon.mod file. In addition, the Create NC Customer 10.dtd and

Update NC Customer_10.dtd files also include information from the NCCustomerl10.mod customer common
file.

All MOD and DTD files are located in the following directory:

drive:\Program Files\WebSphere\CommerceServer\xml\messaging

NT

Chapter 16. Integration message DTD files 153

../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
../database/USERDEMO.html
rcvudin.htm
rcvmodc.htm

drive:\WebSphere\CommerceServer\xml\messaging

AlX

/usr/WebSphere/CommerceServer/xml/messaging

/opt/WebSphere/CommerceServer/xml/messaging

400

/QIBM/Proddata/WebCommerce/xml/messaging

Invoke the messaging system compose method
To invoke the compose() method of the buthound messaging system interfacel, specify the following

parameters:

viewname: The name of the comi)osition view to be used, as specified in the VIEWNAME column of an
existing record in the table. For more information on how the MIEWREQ table is used, refer
to the WebSphere Commerce Programmer’s Guide.

Important: In the record referred to in the MIEWREd table, the values of the INTERFACENAME and
CLASSNAME columns must contain the name of the interface and class associated with all WebSphere
Commerce messaging system view commands. The name of the interface must be

com. ibm.commerce.messaging.viewcommands.MessagingViewCommand. The name of the class must be
com. ibm.commerce.messaging.viewcommands.MessagingViewCommandImpl.

CommandContext: For information on the CommandCaontext interface or the CommandCantextlmpl class

that implements the interface, refer to the WebSphere Commerce Programmer’s Guide.

TypedProperty: The values in the typed property must be strings, or objects that implement the
toString() method. For more information on the TypedProperty, refer to the WebSphere Commerce
Programmer’s Guide.

The compose() method runs a view command for each of the transports enabled and assigned to the
current message type in the Administration Console. The method performs the following processes:

It uses the viewname parameter as well as the storeld and device format from each transport, as
defined in the Administration Console. These values are used to look up the view command in the
table.

It runs the view command, passing it the values specified in the TypedProperty parameter. When the
command is run, the system uses the viewname, storeld, and device format id to look up the JSP
template in the PROPERTIES column of the MIFEWREQ table. The JSP template is run and passed the
values in the TypedProperty parameter.

The JSP composes the message, and it is sent through the appropriate transport when a send method

is invoked in the object. Sending may be done using transacted, immediate, or request-reply on the
messaging object on which composition was run.

SendXMLOrder command

The SendXMLOrder command is used by the WebSphere Commerce outbound messaging system to
send the Report NC_PurchaseOrder XML message to back-end systems. The command uses a
message composition template to generate the XML message, then the outbound messaging system
sends it to a back-end system.

Behavior

The task command is enabled by assigning it to the OrderMessagingCmd interface within OrderProcess
command.

154 Connectivity and Notification: Online Help Files

rcvomint.htm
../database/VIEWREG.html
../database/VIEWREG.html
../database/VIEWREG.html
../javadoc/com/ibm/commerce/command/CommandContext.html
../javadoc/com/ibm/commerce/command/CommandContextImpl.html
../database/VIEWREG.html
../database/VIEWREG.html

* Once enabled, it is called before OrderProcess command finish processing.

* The task command calls the messaging system composition services, which uses the
OrderCreateXML.jsp composition template to collect of the necessary order information and build the
Report_NC_PurchaseOrder outbound XML message.

» If composition is successful, the command attempts to send the message using the outbound
messaging system sending services.

Exception Conditions

The command generates an entry in the error log if an exception is encountered.

Chapter 16. Integration message DTD files 155

156 Connectivity and Notification: Online Help Files

Chapter 17. Fulfillment integration messages

WebSphere Commerce provides a mechanism for integration with fulfillment center systems using inbound
and outbound messages. Inbound fulfillment integration messages are used to run commands in
WebSphere Commerce based on inbound requests received from fulfillment center systems. Outbound
messages can be generated by the outbound messaging system in order to update fulfilment center
systems with events that have taken place, such as receipt of new stock, or an order shipment. To use
fulfillment integration messages, you must have an adapter installed, and have the messaging system
configured to receive XML messages.

The messaging system is prepared to send and receive a number of pre-defined messages in XML format.
This format offers a high degree of readability, making the messages easy to modify and maintain. For an
explanation of each message, refer to the sections on inbound and outbound fulfillment integration
messages. You can also add new messages. For new inbound messages, you can associate them with
either existing WebSphere Commerce commands, or commands that you have created.

The format of the XML messages consists of a set of XML elements defined within specific DTD files.
Each DTD may contain one or more common files, identified by a .mod file extension. In addition, each
inbound message is associated with a WebSphere Commerce controller command in the
sys_template.xml message template definition file. All DTD, MOD, and XML files are located in the
following directory:

drive:\Program Files\WebSphere\CommerceServer\xml\messaging

drive:\WebSphere\CommerceServer\xml\messaging

/usr/WebSphere/CommerceServer/xml/messaging

Solaris

/opt/WebSphere/CommerceServer/xml/messaging

QIBM/ProdData/WebCommerce/xml/messaging

© Copyright IBM Corp. 1996, 2002 157

158 cConnectivity and Notification: Online Help Files

Notices

Any reference to an IBM licensed program in this document is not intended to state or imply that only
IBM'’s licensed program may be used. Any functionally equivalent product, program, or service that does
not infringe any of IBM’s intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to:

Director of Licensing

Intellectual Property & Licensing
North Castle Drive, MD-NC119
Armonk, NY 10504-1785

U.S.A.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independent created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

Lab Director

IBM Canada Ltd. Laboratory
8200 Warden Avenue
Markham, Ontario

L6G 1C7

Canada

Such information may be available, subject to appropriate terms and conditions, including in some cases
payment of a fee.

This document may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples may include the names of individuals, companies, brands,
and products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

This document may contain information about other companies’ products, including references to such
companies’ Internet sites. IBM has no responsibility for the accuracy, completeness, or use of such
information.

This product is based on the SET protocol.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Trademarks

The following terms are trademarks or registered trademarks of International Business Machines
Corporation in the United States or other countries or both:

AIX CICS DB2
DB2 Extenders Encina HotMedia
IBM iSeries MQSeries

© Copyright IBM Corp. 1996, 2002 159

SecureWay VisualAge WebSphere
400
Blaze Advisor is a trademark of HNC Software, Inc. in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Lotus and Domino are trademarks of Lotus Development Corporation in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Oracle is a registered trademark of Oracle Corporation.

SET and the SET Logo are trademarks owned by SET Secure Electronic Transaction LLC. For further
information see http://www.setco.org/aboutmark.html.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

160 cConnectivity and Notification: Online Help Files

	Contents
	Chapter 1. Program Adapter
	CommandProperty object
	Device format algorithm
	XML over HTTP
	MQSeries as middleware
	WebSphere CommerceMQSeries adapter
	Parallel versus serial message processing in MQSeries adapter

	Chapter 2. Configuring the Program Adapter
	Enabling the Program Adapter for XML Requests over HTTP
	Adding adapters
	Downloading and installing the MQSeries MA88 product extension pack
	Enabling the MQSeries adapter
	Configuring JMS for MQSeries
	Updating the WebSphere Application Server classpath variable
	Configuring JMS using JMSAdmin
	Response processing using MQSeries adapter

	Chapter 3. Program Adapter Security for MQSeries
	Program Adapter security for HTTP requests
	Message composition services
	Messaging system
	Generic Application and System Error XML messages
	Setting up outbound message composition
	Example of using the messaging system composition service
	Error handling in the messaging system composition service
	Invoke the messaging system compose method

	Chapter 4. OrderItemStatus command
	GetPickPackListDetail command
	BroadcastMessage command
	OrderInvoiceStatus command
	OrderShippingStatus command
	OrderStatus command
	ProductOfferPriceUpdate command
	ProductInventoryUpdate command
	SendWCSOrder task command
	SendXMLOrder command
	NewInboundMessage command
	OrderConfirmStatus command
	ProductListPriceUpdate command

	Chapter 5. How the outbound messaging system works
	Outbound messaging system
	Outbound messaging system administration
	Outbound back-end integration messages
	Outbound fulfillment integration messages
	Outbound messaging system store administration
	Outbound messaging system site administration
	Adding new messages to the Transport Adapter

	Chapter 6. Enabling outbound messaging Send/Receive sending services
	Enabling the messaging system transport adapter
	Assigning the error condition message type to a transport
	Activating a transport method for a store
	Adding a transport method to a store
	Configuring a transport method for a store
	Deactivating a transport method for a store
	Assigning a transport method to a message type for a store
	Activating a transport method for a site
	Adding a transport method to a site
	Assigning a transport method to a message type for a site
	Configuring a transport method for a site
	Deactivating a transport method for a site
	Checking the system settings for the e-mail transport method
	Activating notification
	Enabling error notification
	Activating notification
	Enabling the shipment notification e-mail
	Enabling broadcast messages
	Enabling order status notification
	Setting up outbound message composition
	Assigning the error condition message type to a transport
	Enabling order status notification
	Enabling messages to be sent from the Administration Console
	Enabling the outbound OrderCreate message

	Chapter 7. Message types
	Outbound messaging system interface
	Outbound message extension
	New outbound message support
	UserData element for outbound messages
	Outbound messaging system interface programming examples
	Message composition templates
	Initialization services
	Message content setting services
	Add e-mail parts or attachments services
	Configurable message data services
	Sending services
	Other services

	Chapter 8. Inbound back-end integration messages
	Inbound fulfillment integration messages

	Chapter 9. Adding a new inbound XML message
	Adding a new DTD file to the system
	Adding to the list of inbound message DTD files
	Inbound message extension
	UserData element for inbound messages

	Chapter 10. Message mappers
	XML message mapper
	Legacy message mapper
	Inbound message template definition files
	Removing message mappers
	Adding message mappers
	New inbound message support

	Chapter 11. Customizing the NewInboundMessage command
	Chapter 12. Message mapper configuration
	XML parsing using template definition files
	sys_template.xml file
	user_template.xml file
	ec_template.dtd file
	TemplateDocument element of a template definition file
	TemplateTag element of a template definition file

	Chapter 13. Messaging system back-end integration messages
	Chapter 14. Fulfillment integration messages
	Chapter 15. Customizing the NewInboundMessage command
	Chapter 16. Integration message DTD files
	Back-end integration legacy messages
	Back-end integration XML messages
	Sample scenarios using fulfillment integration messages
	ReleaseShipNotify message
	Response_WCS_ExpectedInvRecord message
	Response_WCS_PickBatch message
	Report_WCS_PickPackListDetail message
	Response_WCS_CreateInvReceipt message
	Response_WCS_UpdateInvReceipt message
	Response_WCS_CreateShipConfirm message
	Update_WCS_OrderStatus message
	Order Status Update message
	Update_WCS_ProductPrice message
	Create_WCS_ExpectedInventoryRecord message
	Create_WCS_PickBatch message
	Inquire_WCS_PickPackListDetail message
	Create_WCS_InventoryReceipt message
	Update_WCS_InventoryReceipt message
	Create_WCS_ShipmentConfirmation message
	Create_WCS_Customer message
	Update_WCS_Customer message
	Update_WCS_ProductInventory message
	Product Price Update message
	Product Quantity Update message
	Order Create message
	Customer New message
	Customer Update message
	Update_NC_Customer message
	Update_NC_OrderStatus message
	Create_NC_Customer message
	Update_NC_ProductInventory message
	Update_NC_ProductPrice message
	Report_NC_PurchaseOrder message
	CUSTOMER_NEW_HDR010_DATA
	CUSTOMER_UPDATE_HDR010_DATA
	ORDER_CREATE_HDR010_DATA
	ORDER_STATUS_UPDATE_HDR010_DATA
	PRODUCT_PRICE_UPDATE_HDR010_DATA
	PRODUCT_QUANTITY_UPDATE_HDR010_DATA
	ORDER_CREATE_HDR020_DATA
	ORDER_CREATE_HDR030_DATA
	ORDER_CREATE_HDR040_DATA
	ORDER_CREATE_ITM010_DATA
	ORDER_STATUS_UPDATE_ITM010_DATA
	ORDER_CREATE_PROLOG_DATA
	ORDER_STATUS_UPDATE_PROLOG_DATA
	PRODUCT_PRICE_UPDATE_PROLOG_DATA
	PRODUCT_QUANTITY_UPDATE_PROLOG_DATA
	CUSTOMER_NEW_PROLOG_DATA
	CUSTOMER_UPDATE_PROLOG_DATA
	DATUSR_DATA for outbound messages
	DATUSR_DATA for inbound messages
	NCCustomer_10.mod file
	NCCommon.mod - source file
	NCCustomer_10.mod - source file
	Invoke the messaging system compose method
	SendXMLOrder command

	Chapter 17. Fulfillment integration messages
	Notices

