IBM® Web Sphere Commerce

Store Developer’s Guide

Version 54

<|ll

IBM® Web Sphere Commerce

Store Developer’s Guide

Version 54

<|ll

Note:
Before using this information and the product it supports, be sure to read the
information in the Notices section.

Second Edition (May 2002)

This edition applies to the following products:

IBM® WebSphere® Commerce Business Edition for Windows NT® and Windows® 2000, Version 5.4

IBM WebSphere Commerce Business Edition for AIX®, Version 5.4

IBM WebSphere Commerce Business Edition for Solaris, Version 5.4

IBM WebSphere Commerce Business Edition for Linux, Version 5.4

IBM WebSphere Commerce Studio, Business Developer Edition for Windows NT and Windows 2000, Version 5.4
IBM WebSphere Commerce Professional Edition for Windows NT and Windows 2000, Version 5.4

IBM WebSphere Commerce Professional Edition for AIX, Version 5.4

IBM WebSphere Commerce Professional Edition for Solaris, Version 5.4

IBM WebSphere Commerce Professional Edition for Linux, Version 5.4

IBM WebSphere Commerce Studio, Professional Developer Edition for Windows NT and Windows 2000, Version
5.4

and to all subsequent releases and modifications of the above listed products, until otherwise indicated in new
editions. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address given below.

IBM welcomes your comments. You can send your comments by any one of the following methods:

1.

Electronically to the network ID listed below. Be sure to include your entire network address if you would like a
reply.

Internet: torrcf@ca.ibm.com

By mail to the following address:

IBM Canada Ltd. Laboratory
B3/KB7/8200/MKM

8200 Warden Avenue

Markham, Ontario, Canada L6G 1C7

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2002. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Before you begin . Vii
Conventions used in this book . . vii
Where to find new information . viii
Part 1. Overview 1
Chapter 1. Store architecture overview . 3
What is an online store? .3
The composition of a store. .3
Store architecture . .4
Chapter 2. Store development .7
Store development options. . .7
Creating a store based on a sample .7
Creating a store by developing new store assets . 8
Creating a store using a combination of the
sample store and new store assets . . 8
The store archive . . 8
Sample store archives .9
Determining when to use a store archlve .9
Store development tools . . . 10
Tools for developing the store front . 10
Tools for developing the store data .11
Tools for developing the back office . 12
The Store Developer’s role .12
Part 2. Developing your store front 13
Chapter 3. Developing your store front 15
Store front architecture . .15
Default commands and views . . 15
Creating your store pages . . 16
Developing a list of store pages. . . 16
Developing a list of command and view URLs .19
Associating JSP filename to views . . 20
Part 3. Store data overview. . 23
Chapter 4. Store data . 25
What is store data? . . .25
The store data 1nformat10n model .25
Store data assets. . 26
Store data architecture. .27
Store data architecture and the sample stores R
Tools for creating data. . . . 30
WebSphere Commerce Loader package . . 30
Store Services. .o . . 30
Administration Console . . 30
WebSphere Commerce Accelerator. . 30
Organizational Administration Console . . 30
Tool and store data summary chart . 31

© Copyright IBM Corp. 2002

Part 4. Developing your store data 35

Chapter 5. Site assets 37
Understanding site assets in WebSphere Commerce 37
Language37
Member attributes38
Attribute types38
Member group types G <
User. . . I <
Organlzatlon N <
Role. . . . T £
Quantity unit conversion.38
Quantity units39
Tax types39
Calculation usage39
Currency39
Number usage39
Item types.39
Device formatso 39
Creating site assets in WebSphere Commerce .. .40
Chapter 6. Store assets41
Understanding store assets in WebSphere Commerce 41
Store entity . . . Lo L4
Creating store assets in WebSphere Commerce .42
Creating store data assets in an XML file . . .42

Chapter 7. Commands, views, and URL

registry data49
Registering commands, views, and URLs in
WebSphere Commerce. . . Lo 4
Creating an XML file to reglster commands
views,and URLs49
Chapter 8. Catalog assets 53
Understanding catalogs in WebSphere Commerce . 53
Catalogs54
Catalog groups54
Catalog entries55
Products55
Items5
Packages55
Bundles55
Dynamic kits.56
Productsets56
Attributes56
Attribute values.56
Package attributes56
Package attribute values56
Creating catalog assets in WebSphere Commerce . .57
Creating a master catalog.57
Displaying store catalog assets74
Creating a navigational catalog.76
Creating category cycles77

iii

Adding a product to a second category78
Managing catalog assets in WebSphere Commerce 81
Catalog groups81
Catalog entries . . . S 82
Product Management tools L.83
Catalog Manager84
Chapter 9. Pricing assets. 85
Understanding pricing in WebSphere Commerce . 85
Offer8
Offer price. . . [
Trading position contamer86
Terms and conditions86
Types of pricing terms and condltlons86
Trading agreement86
participant.87
Participantrole8
Contract8
Business policy87
Price policy . . . T
Catalog entry shlppmg < <
Other pricing assets88
Creating pricing assets in WebSphere Commerce . 88
Creating pricing assets in an XML file 88
Chapter 10. Contract assets 93
Understanding contracts in WebSphere Commerce 94
Account (business account)9%
Contract9
Trading agreement9
Terms and conditions95
Business policies.9
Attachment9
Order item 9%
Creating a default contract asset in WebSphere
Commerce. . . L. Y7
Creating busmess pohcy XML ﬁles o099
Creating a default contract XML File 100
Chapter 11. Fulfillment assets 105
Understanding fulfillment assets in WebSphere
Commerce106
Fulfillment center106
Receipts106
RaDetail107
Inventory. . . R [0 /4
Shipping arrangements e 04
Other fulfillment assets (14
Creating fulfillment assets in WebSphere
Commerce 108
Creating store fulflllment assets e ()
Chapter 12. Campaign assets 113
Understanding campaigns in WebSphere
Commerce . . . A N)

Creating campaign assets in WebSphere Commerce 114

Chapter 13. Payment assets 115
Create payment assets using an XML file 115

iV Store Developer’s Guide

Chapter 14. Language assets 117
Understanding language assets in WebSphere

Commerce . . . B b V4
Default language e i V4
Supported language118
Alternative language 118

Creating language assets in WebSphere Commerce 118

Chapter 15. Currency assets 119
Understanding currency assets in WebSphere
Commerce119
Currency format120
Number usage . . . Lo ..o o120
Currency format descr1ptrono 120
Supported currency120
Currency conversion rule120
Counter currency 120
Creating currency assets in WebSphere Commerce 121
Creating currency assets using an XML file . . 121

Chapter 16. Units of measure assets 125
Understanding units of measure in WebSphere
Commerce 125
Quantity unit and quantlty un1t format ... 126
Creating units of measure in WebSphere Commerce 127

Chapter 17. Jurisdiction assets. . . . 129
Understanding jurisdiction assets in WebSphere
Commerce . . . oo 129
Creating jurisdiction assets in WebSphere
Commerce130
Chapter 18. Shipping assets 131
Understanding shlppmg assets in WebSphere
Commerce . . B K 1
Shipping modes A K 24
Calculation codes o 132
Jurisdictions and jurisdiction groups . . 133
Creating shipping assets in WebSphere Commerce 133
Creating shipping assets using an XML file . . 134
Creating shipping fulfillment assets 142
Creating store-catalog-shipping assets 144
Creating a default shipping mode 145
Chapter 19. Tax assets 147
Understanding tax assets in WebSphere Commerce 147
Tax category.147
Calculation code 148
Jurisdictions and jurisdiction groups Lo 149
Creating tax assets in WebSphere Commerce . . . 150
Creating tax assets using an XML file 150
Creating tax fulfillment assets. 160
Creating store-catalog-tax assets 162
Chapter 20. Discount assets 165
Understanding discounts in WebSphere Commerce 165
Calculation code 165

Creating discount assets in WebSphere Commerce 166

Chapter 21. Inventory assets. 167

Understanding inventory assets in WebSphere

Commerce167
ATP inventory168
Non-ATP inventory . . . 169

Creating inventory assets in WebSphere Commerce 170

Chapter 22. Order assets 171

Understanding order assets in WebSphere

Commerce . . . e V4|
Orders and order 1tems B V4|
Order itemso 172

Creating order assets in WebSphere Commerce .. 174

Chapter 23. Customer and Seller

assets 175
Understanding customer assets in WebSphere
Commerce . . . N V4]
Address 1nformatlon e V4 4)
Interest lists 176
Understanding Seller assets in WebSphere
Commerce176
Stores177
Accounts.177
Contracts.177
Productsets.178
Price lists.178
Catalogs178
Fulfillment centers.179
Inventory items 179
Understanding member assets in WebSphere
Commerce17
Members.180
Member attributes.181
Roles 181

Creating member assets in WebSphere Commerce 182

Part 5. Adding access control to

your store 183

Chapter 24. Access control in your

store 185

Understanding access control in WebSphere

Commerce18
Access control pohc1es I £
Access control in stores187

Adding access control to your store 191
Creating access control in your store . . . 192

Editing access control files in the store archlve 195

Part 6. Packaging your store . . . 199
Chapter 25. Packaging a store 201
Creating a store archiveo...o20
Creating a sample store archive203
Part 7. Publishing your store . . . 207

Chapter 26. Publishing a complete

store 209
Understanding pubhsh in WebSphere Commerce 209
Start publish. . . . L. 210
Pre-publish checks.211
Publish assets212
Configure payment219
Publish log files219

Chapter 27. Overview of loading store

data 221
Understanding data loadmg in WebSphere
Commerce222
Loader package commands for loadmg store
data 225
Loader package Commands for transformmg
and extracting data 239
Tools related to the Loader package commands 247
Loading store data 248
Using the Loader package Commands and
scripts. . . . oo 0249
Examples of resolvmg 1dent1f1ers ... 0250
Example of loading data.257

Chapter 28. Loading WebSphere

Commerce database asset groups . . 259
Database asset groups259

Database asset loading sequence259
Loading a store. 261
Loading database asset groups oo 207

Chapter 29. Publishing business

accounts and contracts 273

Publishing business accounts and contracts using

Store Services or the command line 274

Publishing business accounts and contracts using

commands 274
Publishing business account assets ... 274
Publishing contract assets275

Chapter 30. Publishing store front

assets and store configuration files. . 277
Publishing store front assets and store

configuration files using Store Services or the

command line . . . o277
Publishing store front assets and store

configuration files by copying to the WebSphere
Commerce Server 278

Part 8. Adding WebSphere
Commerce features to your store . 281

Chapter 31. Adding customer care to

your store.283
Understanding customer care in a store 283
Using the frameset284
Monitoring customers using customer care . . 286
Adding customer care to your store. 290

Contents V

Part 1: Installing pre-requisites29
Part 2: Copying the customer care 1ntegrat10n

files from the sample store29
Part 3: Adding the frameset to your store ... 291
Part 4: Adding the code to obtain the customer’s
nameorID 292
Part 5: Adding code to determme Wthh page

the customer is browsing 293
Part 6: Adding code to track the number of

items in the shopping cart293
Part 7: Adding a link to customer care 294
Part 8: Changmg messages that dlsplay to the
customer 294

Chapter 32. Adding e- Marketlng Spots

to your store. 295
e-Marketing Spot29
e-MarketingSpot bean 298

Adding an e-Marketing Spot to your store pages 298

Part 9. Appendixes 301

Vi Store Developer’s Guide

Appendix A. UML legend

Appendix B. Creating your data
Creating data for sample stores
Store Services and sample stores .

Appendix C. sarinfo.xml .
Example of sarinfo.xml .

Appendix D. sarrule.xml .
Example of sarrulexml .

Appendix E. Database asset groups
Database asset groups dependencies.

Appendix F. Notices

Trademarks .

. 303

. 305
. 305
. 306

. 307
. 307

. 313
. 313

317

. 317

. 323
. 325

Before you begin

The IBM WebSphere Commerce Store Developer’s Guide provides information about
the WebSphere Commerce store architecture and the store development process. In
particular, it provides details on the following topics:

* Store development options

* The store archive

* Store development tools

* Developing your storefront

* Developing your store data

* Store data architecture

e Store data information model

* Adding access control to your store
* Packaging your store

* Publishing your store

* Adding WebSphere Commerce features to your store

Conventions used in this book

This book uses the following highlighting conventions:

Boldface type indicates commands or graphical user interface (GUI) controls such
as names of fields, buttons, or menu choices.

Monospaced type indicates examples of text you enter exactly as shown, as well as
directory paths.

Italic type is used for emphasis and variables for which you substitute your own
values.

This icon marks a Tip — additional information that can help you
complete a task.

indicates information specific to Windows NT.
indicates information specific to Windows 2000.
RS indicates information specific to AIX.
indicates information specific to the Solaris Operating Environment.

BT i dicates information specific to the IBM eserver iSeries” 400 (formerly
called AS/400%).

indicates information specific to Linux.
indicates information specific to WebSphere Commerce Business Edition.

indicates information specific to WebSphere Commerce Professional
Edition.

© Copyright IBM Corp. 2002 vii

Where to find new information

This book may be updated in the future. Check the following WebSphere
Commerce Web site for updates:

http://www.ibm.com/software/webservers/commerce/wc_be/1it-tech-
general.html

http://www.ibm.com/software/webservers/commerce/wc_pe/lit-tech-
general.htm]

Updates may include new information.

viii Store Developer’s Guide

Part 1. Overview

© Copyright IBM Corp. 2002

2 Store Developer’s Guide

Chapter 1. Store architecture overview

This chapter provides an introduction to the WebSphere Commerce Server store
architecture.

What is an online store?

An online store is a store that uses Internet technologies to sell or exchange goods
or services. It is composed of a collection of Web pages that display your products
and allow customers to purchase them. The home page brings customers into the
store, and directs them to your products and services. Online catalog pages group
products together, and direct customers to the product pages, where they can find
detailed information about the product. In business-to-consumer stores, the
Shopping Cart page fulfills the same role as a physical shopping cart: you add
products you wish to purchase to it, and then pay for them in the Checkout pages.
In business-to-business sites, certain pages allow you to submit orders and requests
for quotes (RFQs).

Store pages are created using JavaServer Pages (JSP) technology. Each page
contains HTML for static content, client-side JavaScript " to handle input data and
sophisticated data display, URLs to invoke WebSphere Commerce Server
commands and other views, as well as JSP tags and Java " code for generating
dynamic content. A set of commerce data beans included with WebSphere
Commerce Studio and WebSphere Commerce are available for use by your
JavaServer Page files, allowing you to access information from the database, such
as the price of a product, or the product’s attributes.

Your store is also composed of the database assets necessary to create a functional
store. For example, a functional store must include data on catalogs, taxes,
shipping, and currency.

The composition of a store

An online store is composed of the following assets:
* Store front

The external portion of your store, or the portion that displays to your
customers, is known as the store front. The store front is comprised of Web
assets such as HTML pages, JSP files, style sheets, images, graphics and other
multimedia file types.

This guide discusses the concepts and tasks involved in creating the JSP files
that build your store pages. For more information, see (Chapter 3, “Developing|
[your store front” on page 15|

e Back office

The portion of your store that customers don’t see, the commands, customized
code, and the implementation of business logic that allow a customer to
purchase a product in the store front, is known as the back office.

For more detailed information on creating business logic or customized code see
the IBM WebSphere Commerce Programmer’s Guide.

e Store data

The data assets that compose your store. In order to operate properly, a store
must have the data in place to support all customer activities. For example, in

© Copyright IBM Corp. 2002 3

4

order for a customer to make a purchase, your store must contain a catalog of
goods for sale, a process to handle orders, the inventory to fulfill the request,
and a shipping process in place. You must also have methods for processing and
collecting payment.

The concepts and tasks involved in creating store data are discussed in
[“Developing your store data” on page 35,

Store architecture

The WebSphere Commerce store architecture consists of the following components:
* WebSphere Commerce Server

* WebSphere Commerce Server instance

* Store configurations

WebSphere Commerce Server
The WebSphere Commerce Server is the server that handles the store-and

commerce-related functions of an e-commerce solution. The store front assets and
back-office business logic reside in a Web application within the WebSphere
Commerce Server. WebSphere Commerce provides a default Web application (WCS
Stores) for your use, or you can create your own.

A Web application can contain the assets for one store, or the assets for multiple
stores. When a Web application contains multiple store fronts and back offices, the
assets for each store are separated by store directory (storedir).

WebSphere Commerce Server instance

A WebSphere Commerce Server instance is a WebSphere Application Server
application with an associated database. An instance can support multiple stores.
All stores in an instance share the same database and may share some types of
data, for example, catalog, fulfillment, or receipts. All stores in an instance also
share the same EJB container.

Store configurations
WebSphere Commerce supports several store configurations. That is, using

WebSphere Commerce you can create a single store in an instance, or you can
create multiple stores in an instance with separate store fronts, back offices, and
store data. Or, you can create multiple stores in an instance with separate store
fronts, shared back offices, and shared catalogs. The following diagram illustrates

Store Developer’s Guide

some possible store configurations.

Store front Back-office + Store data
' '
! H ‘-
Single store in Store 1 | Store 1 .
an instance Web assets | logic | L
E E Store 1 catalog
i Store 1 orders
s -
Store 1 ! Store 1 !
Web assets ! logic !
Multiple stores i : L
in an instance | : -
. . Store 1
Store 2 ' Store 2 ' catalog and orders
Web assets , logic !
I \ Store 2
| | catalog and orders
1 1
Store 1 i Store 1 |
Web assets ' logic i A
Multiple stores ' . |
in an instance, ! !
owned by the ! Shared logic : |
same owner | | N
(Conglomerate | i Shared catalog
stores) | | Store 1 orders
Store 2 ' Store 2 ' Store 2 orders
Web assets I logic]
1 1

Note: Each store has its own identifier. The licensing for WebSphere Commerce
sets a specific limit on the number of stores you may create. You may
purchase additional entitlement. See your licensing agreement for details.

Chapter 1. Store architecture overview 5

6 Store Developer’s Guide

Chapter 2. Store development

This chapter provides an overview of the store development process in WebSphere
Commerce.

Store development options

WebSphere Commerce provides several options to develop your store:

* Creating a store based on a sample

* Creating a store by developing new store assets

* Creating a store using a combination of the sample store and new store assets

Creating a store based on a sample

In WebSphere Commerce, the fastest and easiest way to create an online store is to
copy one of the sample stores provided with WebSphere Commerce and then
customize it to meet your needs.

Sample stores

WebSphere Commerce includes several fully functional online sample stores that
you can use as the basis for creating your own store. These samples, which include
both business-to-consumer stores and business-to-business stores, implement many
of the most commonly used features in today’s top electronic commerce sites, and
provide all the necessary store assets. For more information about the online stores
provided with WebSphere Commerce, see the WebSphere Commerce online help.

Why start with a sample store?: Although it is possible to create an entirely new
online store with WebSphere Commerce, using a copy of one of the sample stores
as the base for your own store allows you to create a functional store much more

quickly.

WebSphere Commerce requires that certain data be loaded into the WebSphere
Commerce Server database to create a functional store, and that this data be loaded
in the order determined by the schema. Since the sample stores include all the
mandatory data in the order and structure that the WebSphere Commerce Server
database requires, using one as a base for your own store saves you a substantial
amount of time during the initial creation period.

After creating a copy of a sample store, you can edit it a lot or a little, depending
on your store’s needs. For example, you may only need to edit the data using the
tools available with WebSphere Commerce and change the look and feel of the
store pages using WebSphere Commerce Studio. Or, you may need to edit the XML
files or the database directly to make more comprehensive changes to the data, and
rewrite the store pages to change the store’s flow and features. For more
information on editing stores, see the WebSphere Commerce online help topic
"Changing store database assets.”

WebSphere Commerce also provides several reference stores that are designed to
be used as code samples for the highlighted features. A reference store is an online
store which contains fully functional code for selected features of an online store,
for example, coupons. Reference stores are available from

http://www.ibm.com/software/webservers/commerce/wc_be

© Copyright IBM Corp. 2002 7

/downloads.html

http://www.ibm.com/software/webservers/commerce/wc_pe
/downloads.html

For more information on creating a store based on a sample, see the WebSphere
Commerce online help.

Creating a store by developing new store assets

Not everyone will want to create their store by basing it on a sample store. For
example, if the flow of your store pages is significantly different than that of any of
the provided samples, or if you plan to significantly customize the WebSphere
Commerce Server database schema, you may want to create your store b
developing your own store front, back office and store data assets. See
ldevelopment tools” on page 10| for a list of tools provided with WebSphere
Commerce.

Creating a store using a combination of the sample store and
new store assets

Using a combination of the sample store and developing new store assets may be
the method of store development that works best for you. For example, if some of
the database assets in one of the sample stores closely match your store’s needs,
but the flow of that store’s pages does not, you can copy the database assets from
the store and customize them, while developing entirely new Web assets.

The store archive

8

The sample stores included with WebSphere Commerce are provided in store
archive format. A store archive file (.sar) is a compressed archive file (for example,
a ZIP file) that contains all the assets necessary to create a store. It is primarily
used as a vehicle for packaging and delivering stores in a format that can be easily
copied, and then used as a base upon which to create new stores. A store archive
only needs to be published to the WebSphere Commerce Server to create a
functional store that you can view, browse, and shop.

Typically, a store archive is composed of the following files:

* Web assets: The files that create your store pages, such as HTML files, JSP files,
images, graphics, and include files. Web assets are grouped together as a
compressed file in the store archive.

* Property resource bundles (optional): Contains the text for your store pages. If
your store supports more than one language, the resource bundle will contain
multiple bundles; that is, one bundle per language.

* Store data assets: The data to be loaded into the database. Store data assets
include data such as campaigns, catalog entries, currencies, fulfillment
information, pricing, shipping, store, and taxation information. For a more
detailed list of store data assets, see [Part 4, “Developing your store data” on|
[page 33
The store database assets in the sample store archives provided with WebSphere
Commerce are well-formed, XML files valid for the Loader package. The store
archive XML files are intended to be portable and should not contain generated
primary keys that are specific to a particular instance of the database. Instead
they use internal aliases, which are resolved by the ID Resolver when the store

Store Developer’s Guide

is published. The use of these conventions allows the sample store archives to be
copied and published multiple times. For more information, see
[“Creating your data” on page 305

For more information on the Loader package, see [Part 7, “Publishing your store”|

* Payment assets: Configuration information for the IBM Payment Manager.

e A descriptor: An XML file, sarinfo.xml, that describes the store archive,
including the names of the Web assets compressed archive file, the resource
bundles, and the store database asset XML files. The sarinfo.xml file also
contains the names of include files and consistency checking files, as well as
information about the archive file that is needed during the publishing process.
The sarinfo.xml is the only mandatory file in a store archive.

Note: The ToolTech and NewFashion sample store archives also
including the following files:

* tools_properties.zip
* tools_xml.zip
* runtime_xml.zip

These files are used by Store Services to configure stores. These files should
not be changed, removed, or copied to other stores.

Sample store archives

A sample store archive file (.sar) is a store archive that is meant to be copied and
used as a base upon which to create new stores. Sample store archives include a
few conventions that allow them to be copied and published multiple times. These
conventions include the following:

* No references to generated primary keys or foreign keys: Sample store archives
do not contain generated primary keys that are specific to a particular instance

of the database. Instead they use internal aliases, which are resolved by the ID
Resolver when the store is published. For more information, see

[“Creating your data” on page 305

The sample stores provided with WebSphere Commerce are sample store archives.
These stores are available from the Samples list in the Create Store Archive page in
Store Services.

Determining when to use a store archive

The store archive is designed as a vehicle for packaging and delivering stores. If
you want to use your store as a sample to be delivered to others, to deploy it on
another server or platform, or to use it as the basis of creating other stores,
consider bundling it in the store archive form.

You may also want to use the store archive if your store is closely based on one of
the sample stores and you do not need to make many changes to the archive.

If you choose to use the store archive, and have created a store using a sample
store, your store will already be in store archive format. You can then maintain
your new store in the store archive format by ensuring that all changes you make
during store development are reflected in the store archive.

Chapter 2. Store development 9

You can also package a store you have created using other methods as a store
archive. For more information on creating a store archive, see [Part 6, “Packaging]

[your store” on page 199

When wouldn’t | want to use a store archive?

You may choose not to use the store archive if you are creating a single instance of
your store, or if you are making extensive changes to the existing WebSphere
Commerce schema. Changes to the WebSphere Commerce schema are not
immediately supported by the store archive and WebSphere Commerce store
development tools out of the box. If you want to maintain your store archive after
making extensive schema changes, contact an IBM representative for more
information.

Store development tools

10

WebSphere Commerce provides a variety of tools to help you develop your store.
Which tools you use depends on how you choose to develop and package your
store.

Tools for developing the store front
Developing your store front assets may include customizing the sample store
pages, replacing them with existing pages of your own, creating new pages, or
doing a combination of all three.

WebSphere Commerce provides the following tools to create or edit store front
assets:

Store Developer’s Guide

WebSphere Commerce Studio: Commerce Studio includes the tools required to
create and edit your store front assets, including HTML, graphics, multimedia,
and JavaServer Pages (JSP) files. Page Designer, included in Commerce Studio,
allows you to create HTML or JSP files, as well as animated images. You can
also configure WebSphere Commerce Studio to use another Web development
tool of your choice. Refer to the WebSphere Studio online help for more
information on registering your own tools with WebSphere Commerce Studio.

If you plan to work with your store in store archive format, WebSphere
Commerce Studio allows you to import the Web assets from the store archive
into a Studio project, while keeping the store archive structure intact. After
making changes to the JSP files, HTML files, and images using the Studio tools,
you can export the files back to the store archive on the WebSphere Commerce
Server and republish the Web assets.

If you are not maintaining your store archive, you can publish the files directly
to your functional store using WebSphere Commerce Studio.

Store Services: The Web Assets dialog in Store Services allows you to replace the
Web assets compressed archive file in the store archive with another set of Web
assets, or to download the existing Web assets to a location of your choice,
where you can edit them with your preferred Web development tool. If you are
working with your store in store archive format, you can use the Web Assets
dialog to put the changed assets back into the store archive. The Configure
stores pages allow you to enable or disable different features in the JSP files in
published stores. Currently Store Services only supports configuring the
collaboration features: Collaborative Workspaces and Customer Care. These

features are only available for configuration in stores based on the
ToolTech and NewFashion sample stores.

For more information on using the tools in WebSphere Commerce Studio and Store
Services to create and edit your store front assets, see the WebSphere Commerce
online help. For more information on creating your store front in WebSphere
Commerce, see|Part 2, “Developing your store front” on page 13|

Tools for developing the store data

You have several options for developing and editing the database assets in the
store.

e Store Services

Store Services is a browser-based set of tools that works on store archives. Using
Store Services, you can quickly create a store archive based on a sample
provided with WebSphere Commerce. Once you have created a store archive,
Store Services allows you to perform the following tasks:

— Publish the store archive to create a functional store.
— Change tax settings using the Tax notebook.
— Change shipping settings using the Shipping notebook.

Change general store settings using the Store Profile notebook.

Store Services does not allow you to edit all store data assets in the store
archive. For a list of the assets you can edit using Store Services, see the
WebSphere Commerce online help topic "Changing store database assets.” To edit
other assets in store archive, edit the XML assets directly.

For more information on using Store Services, see the WebSphere Commerce
online help.

When to use Store Services: Use Store Services to copy sample store archives
and to edit database assets in store archive format.

* WebSphere Commerce Loader package

The WebSphere Commerce Loader package consists primarily of utilities for
preparing and loading data into a WebSphere Commerce database. Use the
Loader package to load large amounts of data and to update data in your
WebSphere Commerce database. The Loader utility in this package uses valid
and well-formed XML as input to load data into the database. Elements of the
XML document map to table names in the database, and element attributes map
to columns.

For information on using the Loader package to develop and load data assets,
see [Part 7, “Publishing your store” on page 207]

When to use WebSphere Commerce Loader package: Use the WebSphere
Commerce Loader package to initially load database assets into the WebSphere
Commerce database and to update them.

Important: If you have changed the database schema, the Loader package is
your only option for loading data into the database.

* WebSphere Commerce Accelerator

WebSphere Commerce Accelerator is a workbench of online tools primarily used
to maintain online stores through various store operations. However, since the
WebSphere Commerce Accelerator allows you to edit data already in the
database, you can use it as a store development tool once you have initially
populated the database, whether it is with the sample store data, or data you
have created. For a list of the database assets you can edit with the WebSphere
Commerce Accelerator, see the WebSphere Commerce online help topic
"Changing store database assets.".

Chapter 2. Store development 11

12

When to use WebSphere Commerce Accelerator: Use the WebSphere Commerce
Accelerator after you have already populated the WebSphere Commerce
database.

+ Editing the database directly
You always have the option of editing the database directly using SQL inserts.

Note: SQL is database specific. Oracle may require a different SQL syntax. Note
that SQL statements will necessarily have database specific values and the
SQL statements may not be reusable in another WebSphere Commerce
Server instance.

Tools for developing the back office

Tools for developing the back office, including creating and extending commands,
creating customized code, and implementing business logic are discussed in the
IBM WebSphere Commerce Programmer’s Guide.

The Store Developer’s role

Store Developers develop all three types of store assets. They design and
implement the store front assets, including JavaServer Pages files and the back
office, including creating new commands and any necessary customized code.
They also create the store data, and can modify any of the standard functionality
included with WebSphere Commerce.

Store Developers who are creating the storefront and the store data must have
programming skills in Java, JavaScript, HTML, JSP technology, and be familiar
with the WebSphere Commerce store architecture, store data and store archives.

Store Developers who are creating the back office must have programming skills in
Java, JavaBeans ', VisualAge® for Java, J2EE programming, and be familiar with
the WebSphere Commerce programming model and object model. The IBM
WebSphere Commerce Programmer’s Guide provides more information on customizing
the back office.

Store Developers may work with database developers and Web designers.
Database developers modify and extend the WebSphere Commerce database
schema for the purpose of implementing customized store functions, or integrating
with existing database information. This member usually has database
administrator skills for DB2® or Oracle.

Web designers create the look and feel for the site, and work with Store
Developers to create store pages. Web designers should have experience using
multimedia tools, HTML and JavaScript skills, and familiarity with JSP technology.

Note: The database developer and Web designer roles are not defined in the
WebSphere Commerce Server. If necessary, database developers and Web
designers should be assigned Store Developer access.

Once a store archive has been created, Store Developers have the authority to make
changes to it manually or by using the Store Profile notebook and Tax and
Shipping notebooks, but they do not have the authority to publish the store
archive to the WebSphere Commerce Server.

Store Developer’s Guide

Part 2. Developing your store front

© Copyright IBM Corp. 2002

13

14 Store Developer’s Guide

Chapter 3. Developing your store front

This chapter provides an overview of the WebSphere Commerce store front
architecture, including how the external portion of your store, the Web assets such
as HTML pages, JSP files, style sheets, images, graphics and other multimedia file
types, are displayed to your customers.

Store front architecture

WebSphere Commerce uses a system of commands and views to display the Web
assets in a store front to customers.

* Commands perform a specific business process, such as adding a product to the
shopping cart, processing an order, updating a customer’s address book, or
displaying a specific product page. When the action is completed, the command
returns a view.

* Views display the results of commands and user actions, that is, views present
your store pages (JSP files) to the customers. In order for the view to invoke a
JSP file, the JSP filename must be registered with the view in the view registry
(VIEWREG) table. The corresponding JSP file is stored using the JSP filename in
the subdirectory (storedir) for the store under the WCS Stores webapp doc root.

Both commands and views are invoked using URLs. For example, when a
customer clicks Shopping Cart in the sample store, the customer invokes the URL
https://hostname/path/OrderItemDisplay?, which is passed into the WebSphere
Commerce Server. The WebSphere Commerce Server calls the OrderltemDisplay
command, and the shopping cart page is displayed to the customer.

When a customer clicks Help in the sample store, the customer invokes the URL
https://hostname/path/HelpView?, which is passed into the WebSphere Commerce
Server. The WebSphere Commerce Server calls the HelpView, which returns the
Help page.

The WebSphere Commerce Server can also map multiple commands to a URL,
which allows each store to optionally have its own implementation of that
command.

Similarly, the WebSphere Commerce Server also allows you to map multiple JSP
files to a single view, where each store can optionally register different JSP
filenames for different device types

Note: The product display and category display commands return views as well
as JSP filenames. These JSP filenames, which display products and categories
are stored in the catalog data. For more information, see [“Displaying stord
[catalog assets” on page 74} You can optionally assign different JSP filenames
to display products and categories for each member group or language
supported by your store.

Default commands and views

WebSphere Commerce provides default commands and views which you can use
in your store. These default commands and views are listed in the
wcs.bootstrap.xml file. The bootstrap files are located in the following directory:

© Copyright IBM Corp. 2002 15

. drive:\webSphere\CommerceServer\schema\xm]

. drive:\Program Files\WebSphere\CommerceServer\schema\xm]
. /usr/WebSphere/CommerceServer/schema/xml

. /opt/WebSphere/CommerceServer/schema/xm1

. /opt/WebSphere/CommerceServer/schema/xml

. /q1'bm/proddata/WebCommerce/schema/xm]

If a needed command or view is not provided, you can create your own. For
information on creating commands and views, see the IBM WebSphere Commerce
Programmer’s Guide.

Creating your store pages

16

The largest task in creating your store front is creating the actual store pages.
Before beginning development work on the store pages, you should complete the
following planning activities:

* Developing a list of store pages needed
* Developing a list of command and view URLs

* Associating JSP filenames with views

Developing a list of store pages

In order to develop a list of the pages needed to create your store, you need to
know the business and functional requirements of the store, as well as any
business processes that have been defined.

Working from use cases

Many people gather requirements in the form of use cases. Use cases define the
business processes in your store, in the form of interactions between the customer
and the proposed system. In the case of an online store, use cases may define how
a customer registers at the store, browses the catalog, or orders an item.

A set of use cases, detailing the business processes for the sample stores are
provided in the online help. These use cases can help you to more thoroughly
understand the flow of the sample stores, and can be used as a guide if you wish
to create use cases for your own store.

The following is an example of a Registration use case:

Registration use case: The registration process allows customers to enter personal
information in the database.

Actor:
¢ Customer

Main flow: The customer selects Register from the sidebar. The system then
displays a page with the following fields:

e E-mail

* Password

* Verify password
* First name

¢ Last name

Store Developer’s Guide

* Age (optional)
* Gender (optional)

The customer enters the appropriate information in the above fields, and selects
Submit. The system creates a new customer in the system and saves the
customer’s information (E1, E2, E3). The system prompts the customer to manage
their account following the process in the Manage Personal Account use case.

Alternate flows: None.

Exception flows: E1: E-mail address already exists:

* If the e-mail address already exists in the system, the system displays an error
message asking the user to enter another e-mail address. The use case resumes
from beginning.

E2: Missing mandatory fields:

* If any of the following fields (E-mail, Password, Verify password, First name,
Last name) are not completed, the system issues an error message. The use case
resumes from beginning.

E3: Invalid password:

¢ If the password is invalid or does not match the verification password, the
system issues a warning.

Determine the store shopping flow: Regardless of whether you develop use
cases to illustrate your store’s business processes, or use another method, once
business processes are available, you can create the shopping flow for your store.

Note: Since use cases often contain flow information such as, "If the customer
selects Submit, the Order page displays,” use cases can provide useful
information for creating shopping flow diagrams.

The shopping flow reflects the requirements and business processes defined for

your store, illustrating how a customer will move through the store. For example, a

customer may enter your site through the home page and be asked to register

before browsing the catalog, or you may choose to allow customers to view the
catalog as guests, without registering. Some shopping flows allow customers to
complete a "quick checkout”, while others require that a customer completes all
checkout steps every time they make a purchase. Or, your shopping flow can offer
customers the choice of both checkouts.

To verify that the store flow diagram is complete, ensure that all steps in
the use cases for your store are illustrated in the store flow diagram.

Mapping out the shopping flow visually, as the following diagram for the
InFashion sample store’s shopping flow does, allows you to see how customers

Chapter 3. Developing your store front 17

will travel through your store.

Home
page
| o heg
Help Select category Select product Contact Us Privacy Policy M?/Q/I\scgcr)s)r:t
v
Product Privacy q
Help page Category 1L Select —»| page Contact us policy Register or — Forgot ——» | Forgot your
pages product Login page password password
T
Add to Return to
Shopping Shopping . Send
Cart l Cart Login Register password
: Shopping Cart My .
Shopping 4_1 account «—Login— Registration Password
cart page page sent
Change
‘ Personal Edit My
Checkout Information Address Book
New New 1. Choose Change
Al
billing «—billing —| billing personal bggliess
address address address information
Delete Edit
Next L ¢
New New 2. Choose Delete E:(';
shipping |«— shipping—»| shipping address address
address address address
Add New Address
Next
3. Choose Add new
shipping address
method
I
Next
4. Order
summary
Order Now
Legend
Order
These pages can be accessed confirmation
from any page in the site.

The diagram for the InFashion shopping flow is quite simple. Although it includes
the main flow of the a customer’s journey through the store, it does not include
any error scenarios. For example, what happens when a customer logs in using the
wrong password, or enters an invalid credit card number? However, even a simple
diagram like this allows you to develop a list of pages needed for the store. To
start you will need to create a view for every page listed in the shopping flow
diagram.

For example, if you were to create a store with the same shopping flow as in the
InFashion diagram, you would have to create the following pages:

Note: The following table lists the view names used in for the InFashion store

InFashion shopping flow diagram pages (as | Corresponding view
seen by customer)

Home page StoreCatalogDisplayView
Help page HelpView

Contact us ContactView

Privacy policy PrivacyView

Register or Login Page LogonForm

Forgot your password LogoffView

Password sent ResetPasswordForm

18 Store Developer’s Guide

InFashion shopping flow diagram pages (as | Corresponding view

seen by customer)

My account page LogonForm

Change personal information UserRegistrationForm

Address book AddressBookForm

Add new address AddressForm

Delete address AddressBookForm

Edit address AddressForm

Registration page UserRegistrationForm

Shopping cart OrderltemDisplayViewShiptoAssoc
Choose billing address OrderltemDisplayViewShiptoAssoc
New billing address OrderltemDisplayViewShiptoAssoc
Choose shipping address OrderltemDisplayViewShiptoAssoc
New shipping address AddressForm

Choose shipping method OrderltemDisplayViewShiptoDsp
Order summary OrderDisplayPendingView

Order confirmation OrderOKView

Note: Many of the views used in InFashion were created specifically for InFashion.
These views are listed in the command.xm] file in the InFashion store archive.
For more information, see|“Registering commands, views, and URLs in|
[WebSphere Commerce” on page 49}

The above table implies only the basic set of pages you need to create. To
determine what other pages you need to create, you can look more closely at the
use cases or other methods used to define your business processes.

Error pages: The exception flows in your use cases can also help you determine
what error pages you need to create for your store. The registration use case for
InFashion specifies the following exceptions flows:

* E-mail address already exists: If the e-mail address already exists in the system,
the system displays an error message asking the user to enter another e-mail
address. The use case resumes from beginning.

* Missing mandatory fields: If any of the following fields (E-mail, Password,
Verify password, First name, Last name) are not completed, the system issues an
error message. The use case resumes from beginning.

* Invalid password: If the password does not match the verification password, the
system issues a warning.

As a result, you will need to create an error page or error message for each
exception flow.

Developing a list of command and view URLS

As demonstrated in the InFashion shopping flow diagram, business processes, such
as checkout and register, may require several pages. In order to combine these
pages into a working business process or flow, rather than just a collection of
pages, you must include commands and views in your pages.

Chapter 3. Developing your store front 19

Developing a list of URLs needed

Just as you developed a list of pages necessary to create the store, you also need to
develop a list of the command and view URLs necessary to implement the
business processes for your store. Using the shopping flow diagram for your store,
and the list of default commands and views, identify the URLs necessary to
complete each action.

Understanding which command and view URLs are used in the sample stores may
also help you determine what URLs you need in your store. The following
illustration identifies the URLs for some of the actions in the InFashion shopping
flow diagram. For more details, see the information on the samples stores in the
WebSphere Commerce online help.

header.jsp footer.jsp sidebar.jsp The header, footer and sidebar
JSP files are included in every
page in the site. Many of the links
’ ‘ ‘ represented in the Home page are

‘ actually in the header or footer files.

Home page
StoreCatalogDisplay.jsp

‘ Register or
Help Select product Contact Us My Account
HelpView ProductDisplay ContactView LogonForm
Help page Product page Contact us Register or
Help.jsp ProductDisplay.jsp Contact.jsp Login page
LoginForm.jsp

Select category Shopping Cart Privacy Policy

CategoryDisplay OrderltemDisplay PrivacyView
Category pages Shopping Cart Privacy policy
CategoryDisplay.jsp OrderltemDisplay.jsp Privacy.jsp

Legend

These pages can be accessed
from any page in the site.

Bold Customer Action
Italics URL

Associating JSP filename to views

The WebSphere Commerce Server uses view commands to compose a view as a
response to a request. WebSphere Commerce Server provides the following view
commands:

* HttpForwardViewCommandImpl: This view command forwards the view request to
a JSP file.

* HttpRedirectViewCommandImpl: This view command redirects the view request to
another URL.

20 Store Developer’s Guide

e HttpDirectViewCommandImpl: This type of view command sends the response
view directly to the client. It does not call a JSP file. Direct views allow
controller commands to produce the output response (rather than the view
command).

Use the HttpForwardViewCommandImpl view command to render JSP files directly.
For example, in the diagram illustrating the URLs used in InFashion, in order to
display the Help page (Help.jsp), the HelpView is registered in the view registry
and associated with the Help.jsp and the HttpForwardViewCommandImplcommand.
This is demonstrated in the following example:

<viewreg

viewname="HelpView"

devicefmt_id="-1"

storeent_id="@storeent_id_1"
interfacename="com.ibm.commerce.command.ForwardViewCommand"
classname="com.ibm.commerce.command.HttpForwardViewCommandImpl"
properties="docname=help.jsp"

internal="0"

https="0"

/>

Note that the the fully qualified classname for the interface and the
implementation class is used.

Note: In this example, the URL that invokes the view is not restricted. That is,
anyone can access the URL directly. If you use this technique, ensure that
the JSP file only renders public data.

Use the HttpForwardViewCommandImpl view command to render views returned
from a display command. A display command reads data from the database, but
does not change it. For example, in the diagram illustrating the URLs used in
InFashion, the OrderltemDisplay command returns the
OrderltemDisplayViewShiptoAssoc view. When this view was registered in the
view registry, the OrderItemDisplay.jsp and the HttpForwardViewCommandImpl were
associated with it. This is demonstrated in the following example:

<viewreg

viewname="0OrderItemDisplayViewShiptoAssoc"

devicefmt_id="-1"

storeent_id="@storeent_id_1"
interfacename="com.ibm.commerce.command.ForwardViewCommand"

classname="com. ibm.commerce.command.HttpForwardViewCommandImp1"
properties="docname=0rderItemDisplay.jsp"

internal="0"

https="0"

/>

Note: In this example, the URL that invokes the view is restricted. That is, only
those with designated access can invoke the URL directly. Access to this
view is controlled by whoever has access to the URL for the command.

You must associate a JSP filename for every view associated with every display
command (for example, OrderltemDisplay) you use. For more information about
associating JSP filenames with views, see [‘Registering commands, views, andl
[URLs in WebSphere Commerce” on page 49

Note: ProductDisplay and CategoryDisplay list the associated JSP filename in the
catalog data rather than the view registry.

Chapter 3. Developing your store front 21

22

Use the HttpRedirectViewCommandImpl view command to render views returned
from a command that changes the database. To use the redirect view, specify the
view name using the 8URL= parameter on the URL. For example, when you add
address information in the InFashion sample store AddressForm and click Submit,
it invokes the AddressAdd command. The URL used to invoke the AddressAdd
command specifies AddressBookForm as the view using the &URL= parameter. This
results in a redirect to the AddressBookForm view. When the AddressBookForm
view was registered in the view registry, the AddressBookForm.jsp and the
HttpForwardViewCommandImpl were associated with it.

You must use the URL=parameter technique for all non-display commands.
Non-display commands are commands that cause changes to the data in the
database.

Store Developer’s Guide

Part 3. Store data overview

© Copyright IBM Corp. 2002

23

24 Store Developer’s Guide

Chapter 4. Store data

This chapter provides an overview of the WebSphere Commerce Server store data
architecture and the data assets that create a store. The WebSphere Commerce
Server information model is also introduced in this chapter.

What is store data?

Store data is the information loaded into the WebSphere Commerce Server
database, which allows your store to function. In order to operate properly, a store
must have the data in place to support all customer activities. For example, in
order for a customer to make a purchase, your store must contain a catalog of
goods for sale (catalog data), the data associated with processing orders (tax and
shipping data), and the inventory to fulfill the request (inventory and fulfillment
data).

The store data information model

This guide uses an information model to illustrate how store data is structured in
the WebSphere Commerce Server. The WebSphere Commerce Server information
model is a high-level abstraction of the information contained in the WebSphere
Commerce Server data and object models. The information model highlights the
most important features of the data and object models, but does not include the
lower level details that are specific to the schema and object implementations.

For example, certain tables and objects in the data or object models that contain
entity-relationship data (such as foreign key pairs) do not display in the
information model as entities. Instead these entity relationships are implied by the
relationship lines between entities in the information models. The information
model also does not illustrate detail extensions (additional data attributes of an
entity that are stored in a separate table as a result of implementation concerns: for
example, the product description is a separately stored extension of the product
entity). For more information on relationship objects and detail extensions, see the
object model in the WebSphere Commerce online help.

For more information on the WebSphere Commerce object and data
models, see the WebSphere Commerce online help.

© Copyright IBM Corp. 2002 25

Store data assets

The following diagram illustrates the data assets of a WebSphere Commerce store.

Business Contracts Site Lewvel Customers Sellers
Policies Infarmation
T - [E Ei
- . ! s .
- ' ! ‘ .
. - ! B .
“ ! s .
B ! ‘ .
- ! B
Campaigns . . s Payment
. | ‘
- ! s .
. ! ! .
" | i .
kT . ! ‘ B 7
. N L ' . . Fis
—| . - . ' ; R —|
. \ ! B B
Prices . ' . N L - Fulfillmerit
. .
. \ ! . -
- “ ! B . .
e ~ . ' 0 v -
L - B ' ' r .7 LT
. - . _-
_| - N A_I_| - e _|
Catalogs o Stores - Irwerntany
o= T-
T TEIARREE S el
URL Registry L=~ B Orders
Entries - [P . RO .
- < . . ' ' N . "
- . < - . ' . . . S
- . . ' . - N -
- < " " 1 k] k] ~ -
- . < r h ' ' N N .
—| et K K : ' . . - . —|
- - ' ' . " ~ s
“ew Registry L . ' ' . . . Jurizdictionz
. ! ! . -
Entries L B B ! 4 . -
. v El 1 1 ks -
- El 1 . . -
. < " El 1 Kl . -
. s v 1 Kl k] - .
. B ‘ ! ' -
. ‘ ! . “
. ‘ ! 4 -
. ‘ ! \ -
Command K N ' t v Tanes
Registry Entries n N ' B L
. . ! . “
. ¢ | '\ ~
. ‘ , __l __l
Supported Supported Units of Supported Shipping Dizcourts
Languages heasure Cumencies

This diagram, and all others in the store data section are part of the
WebSphere Commerce information model. For more information on the
information model, see|“The store data information model” on page 25
For more information on the conventions used in this diagram, see
[Appendix A, “UML legend” on page 303

Notice the two directions of arrows in the diagram. In some cases, the arrow
points toward the store, for example from Currency to Stores. In this case, the
currency assets are exclusive to this particular store and are part of the store. These
are the currencies that this store supports. If the store was deleted, the list of
currencies supported by a store would also be deleted.

When an arrow points from Stores to an asset, for example Catalog, the asset can
be shared by other stores. One catalog can be shared by several stores. However, if
the store was deleted, the catalog would still exist.

Each of the data assets illustrated in the above diagram is discussed in more detail
in the chapters in [Part 4, “Developing your store data” on page 35|

26 Store Developer’s Guide

Store data architecture

Data in WebSphere Commerce stores conforms to the architecture depicted in the
following diagram. Each of the store data assets illustrated in the diagram in
[“Store data assets” on page 26} can be classified as belonging to one or more of the
types of store data illustrated below.

Operational
A
Managed
Sample Configuration
store archives
Core
v

WebSphere Commerce Server instance

WebSphere Commerce Server instance

The basic level of data is contained in the WebSphere Commerce Server instance.
When an instance is created, the bootstrap files, which are loaded in XML format,
populate the database with information. The bootstrap files create the following
types of data:

* Calculation usage types, device types (browsers, e-mail, I-Mode, and so on),
message types and roles

e The default administrative ID, WCSADMIN

e The default commands, views and URLs

¢ The default business policies

* The languages and currencies supported by the instance

* The default organization, which can be used as the store owner

¢ The default site organization

* The default store group

This information is available to all stores that exist in that instance, and is
identified as the Site Level Information in the diagram in [‘Store data assets” on|

For more detailed information on the bootstrap files and the database tables they
populate, see the WebSphere Commerce online help.

Core data
The next level of store data is the core data. The core data creates the minimum
data for a store, including:

e The store identifier in the STOREENT table. This creates a store in the database.

Chapter 4. Store data 27

28

e The default contract.
¢ The store identifier in the contract database tables.

* The member identifier for the organization that owns the store in the contract
database tables.

* The store directory in the STORE table. The store directory is the directory in
which the store’s Web assets are located.

e The nickname or identifier for the store’s address in the STADDRESS table. The
nickname is unique for each store.

If you used Store Services to create a store, this information was created for you
with the new store archive. Store Services allows you to select the default
organization that can act as the store owner, or you can create another organization
to act as the owner using the Administration Console. If you did not use Store
Services to create a store, you will have to load this information into the database
using the Loader package, or edit the database directly.

The Stores data in the diagram in [“Store data assets” on page 26|is core data.

Configuration data

Configuration data controls the commerce server run time. The common server run
time provides a framework in which the commerce applications are deployed and
executed. The framework consists of the programming model, the process model,
exception handling, transaction control, data access, and the persistence model. The
common server run time leverages the run time services provided by WebSphere
Application Server to support WebSphere Commerce Server applications.
Configuration data determines which commands, views, and JSP files your store
will use to display store pages.

The following data assets identified in the diagram in[“Store data assets” on|
are classified as Configuration data:

* Command Registry Entries

* View Registry Entries
* URL Registry Entries

Managed data

Managed data is that data which the seller creates, and is read-only for customers
of the seller’s site. Since the seller is in complete control of the state of this data,
managed data may be managed through a content management system.

The following data assets identified in the diagram in [“Store data assets” on|
that are classified as managed data:

* Campaigns

* Business policies
* Contracts

* Fulfillment centers
 Jurisdictions

* Tax

* Discounts
 Shipping

* Currencies

e Units of measure

* Languages

Store Developer’s Guide

* Catalogs
e Prices

* Customers
* Sellers

¢ Payment

Operational data

Operational data is data which is created or changed (directly or indirectly) by
customers of the site as a result of their interactions with the site. For example,
customer orders are considered operational data, as are inventory levels, which go
up and down as your store operates. Customers are also considered operational
data. Data created by the seller can also be operational.

Since changes to operational data are not under the complete control of the seller,
it doesn’t make sense to manage this data using a content management system.

The following data assets identified in the diagram in [“Store data assets” onl
are classified as operational data:

e Orders
¢ Inventory
e Fulfillment

e Customers

Note: In some instances the line between operational and managed data may be
hard to determine. For example, in one store, customer and contract data
may be considered managed data, while in another store, the same type of
data may be considered operational. The first store may manage their
customer data and related contracts because they have a specific set of
customers (that is, customers cannot register online). However, the second
store allows customers to register online, and create contract information
online.

A second example involves catalog data. In a single seller site, the catalog is
considered managed data. In a marketplace site, catalog data may be
considered operational.

In some sites, certain records of the same data type may be considered
managed while other records are considered operational. For example, the
default contract may be managed data, but the specific contracts negotiated
online are operational data.

Store data architecture and the sample stores

The sample stores provided with WebSphere Commerce include most of the types
of store data in store data architecture. For example, a WebSphere Commerce
Server instance must exist before a store can be created using a sample store or a
sample store can be published. Then when you create a store based on a sample
store using the tools in Store Services, the core data is created. The sample stores
include all the necessary configuration, and most of the managed data required for
a functional store. When creating stores based on certain sample stores, you may
be instructed to complete some set up of data, using the tools in the WebSphere
Commerce Accelerator.

Chapter 4. Store data 29

Tools for creating data

30

WebSphere Commerce provides several tools to create and manipulate your store
data. These tools are listed below:

WebSphere Commerce Loader package

The Loader package consists primarily of utilities for preparing and loading data
into a WebSphere Commerce database. For more information, see
[“Publishing your store” on page 207}

Store Services

Store Services edits pre-published data in the form of a store archive, rather than
live data in the database. Store Services also allows you to publish all store data
assets to the database. For more information, see [Part 7, “Publishing your store” on|

Administration Console

The Administration Console allows you to control your site or store by completing
administrative operations and configuration tasks. You can also use the
Administration Console to create new organizations and users, as well as assign
users to roles (Store Developer, Store Administrator, Site Administrator, and so on).
The Administration Console also allows you to identify which notification and
messaging types will be available in your store.

WebSphere Commerce Accelerator

The WebSphere Commerce Accelerator is a workbench of online tools that allow
you to create and maintain various store assets. A large portion of store data can
be created and managed using the tools in the WebSphere Commerce Accelerator.
However, in some cases, certain data must already be loaded into the database,
using either the publish tools in Store Services or the Loader package before you
can create data using the WebSphere Commerce Accelerator. For more information,
see the [“Tool and store data summary chart” on page 31}

Organizational Administration Console

The Organizational Administration Console allows you to manage the
organizations that access your site or store. The Organizational Administration
Console also allows the buyer’s Administrator to manage buyers within their
organization.

Store Developer’s Guide

Tool and store data summary chart

The following chart lists the tools you can use to create each type of data.

Loader package

core data in the
form of an XML
file. For more
information, see
“Creating store|

configuration
data in the form
of an XML file.
For more
information, see

data assets in an|

“Creating an|

XML file” on|

XML file to|

page 421

managed data in
the form of an
XML file. For
more
information, see
the
corresponding
chapters on the
managed data
assets.

Tools for Core data Configuration |Managed data | Operational
creating data data data
WebSphere Use the Loader |Use the Loader |Use the Loader |In general,
Commerce package to load |package to load |package to load |operational data

cannot be loaded
with the Loader
Package.

Store Services
(for
pre-published
data in the form
of a store
archive only)

When you create
a new store
archive using
Store Services,
the core data is
created for you.
For more
information on
using Store
Services, see the
WebSphere
Commerce
online help.

Not applicable.

Store Services
allows you to
create and edit
portions of the
following
managed assets:

* Jurisdictions
¢ Taxes

* Shipping

e Currency

* Languages

For more
information on
which portions
of the database
assets Store
Services allows
you to edit or
create, see the
WebSphere
Commerce
online help,
"Changing store
database assets”.

Not applicable.

Administration
Console

Use the
Administration
Console to create
an organization
to act as the
store owner.

Not applicable.

Not applicable.

Not applicable.

Chapter 4. Store data

31

32

Tools for
creating data

Core data

Configuration
data

Managed data

Operational
data

WebSphere
Commerce
Accelerator

Not applicable.

Not applicable.

Use the

WebSphere

Commerce

Accelerator to

create or edit the

following data:

* Campaigns

* Contracts (a
default
contract must
exist in the
database
before you can
use the
Business
Relationship
Management
tools in the
WebSphere
Commerce
Accelerator to
create
additional
contracts or
change
existing ones.
Use the
Loader
package or
Store Services
to create a
default
contract in the
database).

Customers create
operational data
when they
register with the
store, or make
purchases from
it. However, in
some cases, you
can use the
WebSphere
Commerce
Accelerator to
place orders for
a customer, or to
create a return.

The WebSphere
Commerce
Accelerator also
allows you to
manage your
inventory.

Store Developer’s Guide

Tools for
creating data

Core data

Configuration
data

Managed data

Operational
data

WebSphere
Commerce
Accelerator
continued

Not applicable.

Not applicable.

Fulfillment
* Discounts

* Catalogs (a
master catalog
must exist in
the database
before you can
use the
Product
Management
tools in the
WebSphere
Commerce
Accelerator to
create a
navigational
catalog, and
add or change
product
information.
Use the
Loader
package or
Store Services
to create a
master catalog
in the
database.)

* Prices

Not applicable.

Organizational
Administration
Console

Not applicable.

Not applicable.

Not applicable.

Customers and
buyers are
created when
they enter the
store. However,
with the
Organizational
Administration
Console, you can
approve buyers,
or create new
ones.

Chapter 4. Store data 33

34 Store Developer’s Guide

Part 4. Developing your store data

The chapters in this section explain each of the store data assets in more detail. The
store data assets in the this section are organized according to the WebSphere
Commerce store data architecture structure:

* WebSphere Commerce Server instance
— Site
* Core data
— Store
* Configuration data
— Command Registry
— View Registry
— URL Registry
* Managed data
— Shared assets
- Catalog
- Prices
- Contracts (including Business Policies)
- Fulfillment
- Campaigns
- Payment
— Exclusive to the store assets
- Supported languages
- Supported currencies
- Supported units of measure
- Jurisdictions
- Shipping
- Taxation
- Discounts
* Operational data
— Inventory
— Orders
— Customers

© Copyright IBM Corp. 2002 35

36 Store Developer’s Guide

Chapter 5. Site assets

Each WebSphere Commerce Server instance has its own database of relational
information. An instance is created by the bootstrap files, which populate the
database tables with information, after the schema has been created. Once the data
has been loaded, you can see the pre-loaded information in the appropriate
database tables. Many database tables contain store or store group level
information that is particular to a store or group of stores. This information is
usually managed by Store Administrators. However, some tables contain
information that represents WebSphere Commerce site level capabilities available
for use by all stores in the instance, and which are managed by the WebSphere
Commerce Site Administrator. These capabilities are discussed in this chapter. For
more information on the bootstrap files, see the WebSphere Commerce online help.
For more information on store-specific asset information see [Chapter 6, “Store]
lassets” on page 41}

Understanding site assets in WebSphere Commerce

The following diagram illustrates the types of data the site contains and their
relationships to the site.

+fr0mUnit\l,1 |

O O] O

CalculationlUsage Language QuantitylInit toUnit GuantitylUnitConversionRule
+talini

/_/‘x efinedCalculationlsage 1.n 1.n

+definedGuantitylinit
+definedLanguage & Q

Q 1.n Currency

TaxType +definedTaxType

+definedCurrancy

MemberAttribute p MNumberUsage

temType

AftributeType

O O O

Organization User MemberGroupType

DeviceFormat

For more information on the conventions used in this diagram, see
[Appendix A, “UML legend” on page 303, This diagram, and all others in
the store data section are part of the WebSphere Commerce information
model. For more information on the information model, see
|[data information model” on page 25,

Language
A site can define many languages in the LANGUAGE table, and describe them in

the LANGUAGEDS table. Each store generally supports a subset of these
languages by adding rows to the STORELANG table. The ten pre-defined

© Copyright IBM Corp. 2002 37

languages are: German, Traditional and Simplified Chinese, Japanese, Korean,
Italian, French, Spanish, Brazilian Portuguese, and English.

Member attributes

Member attributes are stored in the MBRATTR table and represent the set of defined
attribute names for which values can be stored for organizations or users.
Examples of such attribute names include JobFunction, ProcurementCard,
SpendingLimit, ReferredBy, and CountryOfOperation. Attribute values for
particular organizations or users can be stored in the MBRATTRVAL table, and
these values can be different for different stores or store groups.

Attribute types

Attribute types are stored in the ATTRTYPE table and represent the defined data
types that can be used to represent attribute values. Examples of data types
include INTEGER, STRING, and FLOAT.

Member group types

Member group types are stored in the MBRGRPTYPE table and represent the set of
defined member group usages. Member groups are assigned usages by adding
rows to the MBRGRPUSG table. Examples of member group usages include
AccessGroup (for use with access control policies) and UserGroup (for general
purposes, such as customer groups).

User

User represents authenticated user identities. Users generally represent customers
placing or approving orders on behalf of buying organizations, selling agents
processing orders for selling organizations or maintaining store level assets, or Site
Administrators maintaining the WebSphere Commerce Server instance. Each user is
associated with one site and is defined in the USERS table.

Organization

Organization represents organizations and organizational units within
organizations. Organizations generally represent business entities responsible for
buying or selling. Orders placed by customers in a business-to-business buying
organization are recorded as being placed on behalf of the buying organization.
Stores, catalogs, and fulfillment centers are owned by organizations responsible for
certain aspects of selling. Organizations are defined in the ORGENTITY table.

Role

Role represents the set of defined roles that users can be assigned within
organizations. For example, a user may be assigned the role of Customer Service
Representative within a selling organization, or may be assigned the role of Buyer
Approver within a buying organization. The names and descriptions of the default
roles are populated in the ROLE table. For more information on specific roles, see
the WebSphere Commerce online help.

Quantity unit conversion

Each site has quantity conversions. These represent multiplication or division
operations that are used to convert between different units of measure. These are
populated in the QTYCONVERT table.

38 Store Developer’s Guide

Quantity units
Quantity units represent the set of units of measure for the site. They are defined in
the QTYUNIT table and described in the QTYUNITDSC table. Each store can
specify how amounts in each unit of measure are rounded and formatted for
display, depending on their intended usage, by adding rows to the QTYFORMAT
table.

Tax types

Tax types represent the calculation usages that calculate taxes. Sales tax and
shipping tax are two different calculation usages that calculate taxes. Tax types are
defined in the TAXTYPE table.

Calculation usage

Calculation usage represents the different kinds of calculations that can be
performed by the OrderPrepare command. Calculation usages are defined for
discounts, shipping, sales tax, shipping tax, and e-coupons. Calculation usages are
defined in the CALUSAGE table.

Currency

Each site defines a number of currencies in the SETCURR table and describes them
in the SETCURRDSC table. Each store supports a subset of these currencies by
adding rows to the CURLIST table, one row for each currency supported.

Number usage

Number usage represents the intended usage for numbers. Stores can specify
different rounding and formatting rules for the numbers they display according to
how they are used. For example, a store may round unit prices to four decimal
places by specifying the "unit price” usage, but other monetary amounts to two
decimal places by specifying the "default” usage. Number usage is defined in the
NUMBRUSG table, and described in the NUMBRUSGDS table.

ltem types

Item types represent the different kinds of base items. The two types of base items
in WebSphere Commerce are dynamic kit and normal item. Item types are
pre-defined in the ITEMTYPE table. For more information on base items, see
[Chapter 21, “Inventory assets” on page 167}

Device formats

Device formats are stored in DEVICEFMT table and represent the many device
formats a site uses such as browsers, I MODE, e-mail, MQXML, and MQNC. All
these device types allow users to interact with the site through various media.

Note: For some of the site assets, such as Language, Currency, Quantity unit, and
Quantity unit conversion rule, the Site Administrator can extend the site
level capabilities by adding rows to the appropriate tables. For the others,
related customizations may be also be required to extend the site level
capabilities they represent. For example, if a Site Administrator added a new
number usage to display subtotals with a customized currency symbol, then
the program that displays subtotals would have to be customized to specify
the new subtotal number usage when formatting subtotal amounts for
display.

Chapter 5. Site assets 39

Creating site assets in WebSphere Commerce

Site assets are created when you create an instance in the WebSphere Commerce
Server. For more information on creating an instance in the WebSphere Commerce
Server, refer to the IBM WebSphere Commerce Installation Guide, Chapter 5 "Creating
or Modifying an Instance.”

40 Store Developer’s Guide

Chapter 6. Store assets

In order to create a store in WebSphere Commerce you must first create the

following in the database:
¢ The store

* The group to which it belongs

* The abstract store entity object that dually represents a store or store group

Understanding store assets in WebSphere Commerce

The following diagram illustrates the store assets in the WebSphere Commerce

O

StoreAddress H.:q:atiun

n.A
|+/|:|:|nta|:t \‘

N

Server.
@)
Member Towner
1 +wer
StoreEntihy -
Stare 1 StoreGroup

@,

StoreEntityDescription

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information

on the information model, see [“The store data information model” on|

|page 25| For more information on the conventions used in this diagram,

see|Appendix A, “UML legend” on page 303,

Store entity

A store entity is an abstract superclass that can represent either a store or a store

group.

© Copyright IBM Corp. 2002

41

A store entity has one owner (a member). For more information on members, see
[Chapter 23, “Customer and Seller assets” on page 175

Store entity description

The store entity description describes the store entity. A store entity may include a
description. If your store supports multiple languages, the store entity description
may be in multiple languages. The description may include a contact address for
the store entity, as well as a location address for the store entity.

Store
A store is a store entity. A store must belong to a store group.

Store group

A store group is a collection of stores. A store group is a store entity. The store
group acts as a container for common information, which can be stored at a store
group level and shared by all the stores in the store group. For example, stores in
the same store group can share information such as tax categories, supported
languages, supported currencies, calculation codes, and shipping jurisdictions.

Currently, only one store group can exist and be maintained at the site
administration level within a WebSphere Commerce Server.

For more detailed information on the structure of store assets in
WebSphere Commerce Server, see the store object and data models in the
WebSphere Commerce online help.

Creating store assets in WebSphere Commerce

The Store Services tools in WebSphere Commerce allow you to create or edit the
following store assets:

* The store identifier and member identifier in the contact assets
* The store identifier in the STOREENT table

* The store directory in the STORE table

* The address nickname in the STADDRESS table

* The store description

* The store address

Note: The Store Services tools work with pre-populated XML files in the form of a
store archive.

As a result, you have two options for creating store assets:
* Edit the existing store assets from one of the sample stores provided with
WebSphere Commerce, or an existing store archive.

* Create store assets in the form of an XML file that can be published as part of a
store archive, or loaded using the Loader package.

For information on editing the store assets in an existing store archive, see the
WebSphere Commerce online help. For information on creating store assets in the
form of an XML file, see [“Creating store data assets in an XML file”}

Creating store data assets in an XML file

Create your store assets in the format of XML files that can be loaded into the
database using the Loader package. If you are creating a multicultural store, you
may want to create separate XML files for each locale your store supports. The

42 Store Developer’s Guide

locale-specific file should specify all description information, so it can be easily
translated. For more information on the Loader package, see [Part 7, “Publishing]
[your store” on page 207}

The sample stores, from which many of the examples in these tasks are taken, use
one store.xml file for all information that does not need to be translated, and
another store.xml file for each locale the store supports, for the information that
needs to be translated. The locale-specific files contain all the description
information.

To create store assets, do the following:

1. Review the XML files used to create store assets for the sample stores. All files
for the sample stores are located in the corresponding store archive file.

The store archive files are located in the following directory:
. drive:\WebSphere\CommerceServer\samp1estores
. drive:\Program Files\WebSphere\CommerceServer\samplestores
. /usr/WebSphere/CommerceServer/samplestores
. /opt/WebSphere/CommerceServer/sammestores
. /opt/WebSphere/CommerceServer/samplestores
. /q1'bm/proddata/WebCommerce/samp1estores
Note: The WebSphere Commerce online help contains information about
each of the data assets contained in the sample stores.

Each sample store includes two store.xml files, which include the store
information. To view the store.xml files in the store archive, decompress the
store archive using a ZIP program. The store.xml files are located in the data
directory. The language-specific store.xml is in a locale-specific subdirectory of
the data directory.

2. Review the information in [Appendix B, “Creating your data” on page 305

3. Create a store.xml file, either by copying one of the store.xml files in the
sample store archives, or by creating a new one. For more information, see the
DTD file that corresponds to store.xml. The DTD files are located in the
following directory:

o NI drive:\WebSphere\CommerceServer\xml\sar

. dr‘ive:\Pr‘ogr‘am Files\WebSphere\CommerceServer\xml\sar
. /usr/WebSphere/CommerceServer/xml/sar

. /opt/WebSphere/Commer‘ceServer/xm]/sar

. /opt/WebSphere/CommerceServer/xml/sar

. /q1'bm/proddata/WebCommerce/xm]/sar
4. Create a store entity.

a. Using the following example as your guide, define a store entity in your
XML file for the STOREENT table.

<storeent
storeent_id="@storeent_id_1"
member_id="&MEMBER_ID"

Chapter 6. Store assets 43

type:"S"
identifier="ToolTech"
setccurr="USD"

/>

where

* storeent_id is a generated unique key.

* member_id is the owner of the store entity.

* type is the kind of store entity: G = StoreGroup, S = Store.

* identifier is a string that, along with the owner, uniquely identifies the
store entity.

¢ setccurr is the default currency for a store entity, in other words, the
currency that will be used by a customer that does not already have a
preferred currency. If it is NULL for a Store, the default currency is
obtained from its store group.

5. Create a store address.

a. Using the following example as your guide, create the store address or
addresses in your XML file for the STADDRESS table. If you are creating a
multicultural catalog, you should include this information in a
locale-specific XML file.

<staddress
staddress_id="@staddress_id_en_US_1"
member_id="&MEMBER_ID"
nickname="storeaddress English"
address1="12xx Martindale Avenue"
address2="Suite 9xx"
businesstitle="ToolTech"
city="Toolsville"

state="Ontario"

zipcode="Lxx 1xx"
country="Canada"
phonel="1-800-555-1234"
fax1="1-800-555-4321"
emaill="info@tooltech.xxx"

/>

where
+ staddress_id is a generated unique key.
* member_id is the owner of the store entity.

6. Create a description for the store entity.

a. Using the following example as your guide, create the description of the

store entity in your XML file for the STOREENTDS table. If you are creating
a multicultural catalog, you should include this information in a
locale-specific XML file.

<storeentds
description="Commerce Models Store entity"
language_id="&en_US"
displayname="ToolTech"
storeent_id="@storeent_id_1"
staddress_id_cont="@staddress_id_en_US_1"
staddress_id_loc="@staddress_id_en_US 1"

where

* description is a longer description of the store entity, suitable for display
to customers.

44 Store Developer’s Guide

* language_id is the default language for information displayed to
customers shopping in the store.

* displayname is a brief description of the store entity, suitable for display
to customers.

* storeent_id is the store entity.
¢ staddress_id_cont is the contact address of the StoreEntity.
* staddress_id_loc is the physical location of the StoreEntity.

7. Create a store in the database.

a.

Using the following example as your guide, define a store in your XML file
in the STORE table.

<store
store_id="@storeent_id_1"
directory="ToolTech"
ffmcenter_id="@ffmcenter_id_1"
language_id="&en_US"
storegrp_id="-1"
allocationgoodfor="43200"
bopmpadfactor="0"
defaultbooffset="2592000"
ffmcselectionflags="0"
maxbooffset="7776000"
rejectedordexpiry="259200"
rtnffmctr_id="@ffmcenter_id_1"
pricerefflags="0"
storetype="B2B"

/>

where
* store_id is a generated unique key.

 directory is the directory in which store-specific Web assets are found.
The actual location of these assets in the file system is based on the value
of this column, plus several configuration parameters in the WebSphere
Commerce configuration file: StoresDocRoot, StoresWebPath, and
StoresPropertiesPath. For example, if the StoresDocRoot is
D:\WebSphere\wcs\stores, StoresWebPath is web, StorePropertiesPath is
properties, and the value of this column is mystore, then the JSP files
will be located in the directory D:\WebSphere\wcs\stores\web\mystore
and the property files will be located in
D:\WebSphere\wcs\stores\properties\mystore.

e ffmcenter_id is the default fulfillment center for the store.

* language_id is the default language for information displayed to
customers shopping in the store.

* storegrp_id is the store group the store is associated with. This number
is generated in the STOREGRP table.

* allocationgoodfor means that the ReleaseExpired Allocations scheduler
job can be used to reverse ATP inventory allocations when this many
seconds have passed since the allocations were made.

* bopmpadfactor means if this store calculates order amounts (such as tax
or shipping charges) differently for different fulfillment centers, the order
amount for a previously submitted order can change when fulfillment
centers are finally allocated to backordered items. This padding factor
represents a percentage by which the order amount presented to Payment
Manager can be increased, if necessary. For example, specify 5 to allow an
increase of up to 5 percent.

Chapter 6. Store assets 45

46

¢ defaultbooffset is after an estimated availability time cannot be
determined for a backordered Orderltem, it will be set to this many
seconds in the future.

* maxbooffset means if the estimated availability time for a backordered
Orderltem would normally exceed this many seconds in the future, it will
be set to this many seconds in the future.

* rejectedordexpiry are orders with payment in Declined state longer than
this number of seconds and are candidates for cancellation.

* rtnffmctr_id is the default fulfillment center for returning merchandise
to the store.

e pricerefflags contains bit flags that control which TradingAgreements
and Offers are searched when prices are refreshed by the default
implementation of the GetContractUnitPrices task command:

— 1 = usePreviousOnly - Use the ones referenced by the Orderltems. Fail
if they can no longer be used.

— 2 = usePreviousOrSearchAgain - Same as usePreviousOnly, but instead
of failing when they can no longer be used, search the ones saved in
the ORDIOFFER and ORDITRD tables

- 4 = alwaysSearchAgain - Always search the ones saved in the
ORDIOFFER and ORDITRD tables.

* storetype indicates one of the following store types, for use by a user
interface that provides appropriate functions depending on the StoreType:
B2B = Business-to-Business. B2C = Business-to-Consumer.

8. Define a supported language for the store.

Store Developer’s Guide

a. Using the following example as your guide, define a supported language

for your store in your XML file to add information to the STORELANG
table. If your store supports multiple languages, you should include this
information in a locale-specific XML file (one for each language your store
supports).

<storelang
language_id="&en_US"
storeent_id="@storeent_id_1"

/>

where
* language_id is the language supported by the store entity.
* storeent_id is the store entity.

. Using the following example as your guide, add information about the

language to the STORELANGDS table. If your store supports multiple
languages, you should include this information in a locale-specific XML file
(one for each language your store supports).
<storlangds
description="United States"
language_id="&en_US"
storeent_id="@storeent id 1"
language_id_desc="&en_US"
/>

where

* description is a brief description of the language, suitable for display to
customers in a selection list.

* language_id is the language of the description.
¢ storeent_id is the store entity that supports the language.

¢ language_id_desc is the language being described.

For more information about the use of @ and & see |AEEendix BJ
|“Creating your data” on page 305}

Chapter 6. Store assets 47

48 Store Developer’s Guide

Chapter 7. Commands, views, and URL registry data

When you create a WebSphere Commerce Server instance, the default commands,
views, and URLs provided with WebSphere Commerce are registered in the
WebSphere Commerce Server database in the corresponding tables: CMDREG,
VIEWREG, and URLREG. These commands, views, and URLs are available for use
in all stores residing in the instance.

WebSphere Commerce also provides default JSP files to display the default views.
These JSP files are associated with the views in the VIEWREG table.

If you create new commands, views, or URLs, or customize existing ones, you
must register them in the corresponding database tables (CMDREG, VIEWREG,
and URLREG) before they are available for use in your store. If you create new JSP
files for use in your store, you must associate them with the corresponding view in
the VIEWREG table.

Note: If you create a new JSP file, but give it the same name as the default JSP file
associated with the view, you do not need to register the new JSP file in the
VIEWREG table.

For more information on creating or customizing command, views, or URLs, see
the IBM WebSphere Commerce Programmer’s Guide. The Programmer’s Guide also
contains information on how and when to register commands, views, URLs, and
JSP files.

For more detailed information on the structure of command and view
assets in the WebSphere Commerce Server, see the command and view
data models in the WebSphere Commerce online help.

Registering commands, views, and URLs in WebSphere Commerce

If you create or customize multiple new commands, views, URLs, or JSP files for
your store, you may want to register them using an XML file, which you can then
load into the database using the Loader package, or as part of a store archive that
can be published using Store Services. For more information on the Loader
package, see [Part 7, “Publishing your store” on page 207}

Note: Before creating an XML file to load new or customized commands, refer to
the Programmer’s Guidefor more detail on how commands work.

Creating an XML file to register commands, views, and URLsS

To create an XML file to register the new commands, views, and JSP files for your
store, do the following:

1. Review the XML files used to register commands, views, JSP files for the
sample stores. Each sample store includes a command.xml file, which includes
the registration information. The store archive files are located in the following
directory:

. dr‘ive:\WebSphere\CommerceServer\samp]estor‘es
. dr‘ive:\Pr‘ogram Files\WebSphere\CommerceServer\samplestores

© Copyright IBM Corp. 2002 49

50

Store Developer’s Guide

. /usr/WebSphere/CommerceServer/samplestores
. /opt/WebSphere/CommerceServer/samp1estores
. /opt/WebSphere/CommerceServer/samplestores

. /q1'bm/proddata/WebCommerce/samp]estores

Note: The WebSphere Commerce online help contains information about
each of the data assets contained in the sample stores.

To view the contents of the store archive, use a decompression program. The

command.xml file is located in the data directory.

Review the information in [Appendix B, “Creating your data” on page 305,

Create a command.xml file, either by copying one of the command.xml files in the
sample store archives, or by creating a new one. For more information, see the
DTD file that corresponds to command.xml. The DTD files are located in the
following directory:

. drive:\WebSphere\CommerceServer\xm]\sar

. drive:\Program Files\WebSphere\CommerceServer\xml\sar
. /usr/WebSphere/CommerceServer/xml/sar

. /opt/WebSphere/CommerceServer/xml/sar

. /opt/WebSphere/CommerceServer/xml/sar

. /q1'bm/proddata/WebCommerce/xm1/sar

Controller commands must be registered in the URLREG table and the
CMDRERG table. To register a new or customized controller command in the
URLREG table, create an entry in the XML file for each new customized
controller command, using the following example as your guide:

<urlreg

url="MyProductDisplay"

storeent id="@storeent id 1"
interfacename="com.mystore.commerce.catalog.commands.ProductDisplayCmd"
https="0"

description="Product display command for my store"

authenticated="0"

internal="0" />

where

* urlreg is the name of the database table (URLREG) that this information will
populate.

¢ url is the URI name

* storeent_id is the store entity identifier and the use of the @ symbol is
known as internal-alias resolution. When using internal-alias resolution, an
alias is substituted in place of the primary key (identifier) in the XML
document. This alias is then used elsewhere in the XML file to refer to that
element. This eliminates the need to know the unique indexes necessary to
build the XML file. During publish, the ID Resolver replaces the @ symbol
with a unique value. For more information, see|Appendix B, “Creating your]
[data” on page 305

* interfacename is the controller command interface name

* https is the secure HTTP required for this URL request. Use 1 when secure
HTTP is required and 0 when it is not.

* authenticated is whether or not user log on is required for this URL request.
Use 1 when authentication is required and 0 when it is not.

* internal indicates whether the command is internal to WebSphere
Commerce. URLs that are internal are used by WebSphere Commerce tools.
Use 1 when it is internal and 0 when it is external. URLs you create should
be external.

5. To register a new controller command, or a new task command, in the
CMDREG table, create an entry in the XML file for each new or customized
controller or task commands, using the following example of a task command
(from the ToolTech sample store command.xml file) as your guide:
< cmdreg
storeent_id="@storeent_id_1"
interfacename="com.ibm.commerce.payment.commands.DoPaymentCmd"
classname="com. ibm.commerce.payment.commands.DoPaymentMPFCmdImp1"/>
where

* cmdreg is the name of the database table (CMDREG) that this information
will populate.

* storeent_id is the store entity identifier and the use of the @ symbol is
known as internal alias resolution. When using internal-alias resolution, an
alias is substituted in place of the primary key (identifier) in the XML
document. This alias is then used elsewhere in the XML file to refer to that
element. This eliminates the need to know the unique indexes necessary to
build the XML file. During publish, the ID Resolver replaces the @ symbol
with a unique value. For more information, see|Appendix B, “Creating your
[data” on page 305

* interfacename is the command interface name

* classname is the command implementation class name. Typically, this name
is the interface name with Impl appended at the end.

6. To register new views, or to associate new JSP files with a view, create an entry
in the VIEWREG table, using the following example (from the ToolTech sample
store command.xml file) as your guide:

<viewreg

viewname="0OrderOptionsView"

devicefmt_id="-1"

storeent id="@storeent id 1"
interfacename="com.ibm.commerce.command.ForwardViewCommand"
classname="com.ibm.commerce.command.HttpForwardViewCommandImp1"
properties="docname=Shipping.jsp"

internal="0"

https="0"/>

where

* viewreg is the name of the database table (VIEWREG) that this information
will populate.

e viewname is the name of the view.

e devicefmt_id is the type of device on which this view will be used, for
example, a browser.

Chapter 7. Commands, views, and URL registry data 51

52

storeent_id is the store entity identifier and the use of the @ symbol is
known as internal-alias resolution. When using internal-alias resolution, an
alias is substituted in place of the primary key (identifier) in the XML
document. This alias is then used elsewhere in the XML file to refer to that
element. This eliminates the need to know the unique indexes necessary to
build the XML file. During publish, the ID Resolver replaces the @ symbol
with a unique value. For more information, see[Appendix B, “Creating your|
|data” on page 305l
interfacename is the view command interface name. Default options are
ForwardView, DirectView, and RedirectView.

classname is the view implementation class name. Typically, this name is the
interface name with Impl appended at the end.

properties is the default name-value pairs set as input properties to the
command. If the same page is always displayed set the JSP file name in this
property, for example, docname=Shipping.jsp.

internal indicates whether the view is internal to WebSphere Commerce.
Internal views are used by WebSphere Commerce tools. Use 1 when it is
internal and 0 when it is external. Views you create should be external.

https is the secure HTTP required for this URL request. Use 1 when secure
HTTP is required and 0 when it is not.

For more information about the use of @ and & see |AEp_endix BJ
[“Creating your data” on page 305}

Store Developer’s Guide

Chapter 8. Catalog assets

Like a traditional catalog, your online catalog consists of the goods and services
you offer for sale. Although the size and structure of online catalogs can differ
greatly from store to store, depending on the type and amount of merchandise
available for purchase, catalogs require the following:

* What you are selling, including
— Prices, which are almost always included in an online catalog.
— Product data, such as descriptions and images of your merchandise.

— Categories, as most, but not all catalogs divide merchandise into categories, to
facilitate navigation for customers.

* A display method for what you are selling. Catalog display pages outline how a
page looks to your customers and provide a consistent look and feel between
various catalog pages. How you structure your catalog depends on your
merchandise.

Understanding catalogs in WebSphere Commerce

WebSphere Commerce places several requirements on your store’s online catalog.

Every store in the WebSphere Commerce system must have a master catalog. The

master catalog is the central location to manage your store’s merchandise. It is the
single catalog containing all products, items, relationships, and standard prices for
everything that is for sale in your store.

You can share the master catalog across stores and define as many stores as
needed. In addition to creating a master catalog for catalog management, you may
also choose to create one or more navigational catalogs for display purposes. A
navigational catalog may contain the same entries as the master catalog, but will
have a much more flexible structure for customer display purposes. You can have
as many navigational catalogs as you want. However, since it is the master catalog
that is used to manage your online merchandise, we recommend that you also use
the master catalog as your navigational catalog to minimize maintenance overhead.

If you are creating a new master catalog for use with a WebSphere Commerce
store, or if you are using an existing master catalog available from a WebSphere
Commerce sample store, such as ToolTech, you will have to modify your catalog to
meet these requirements. The following diagram outlines the basic structure of a

© Copyright IBM Corp. 2002 53

54

catalog in WebSphere Commerce.

+roat Q +subCatalogGroup
Catalog CatalogGroup
+parent
+pare\ri\;

+subCatalogEntry

Pubilshed

Storegntity CatalogEniny FroductSet

1

Dynarmickit Bundle Product Package

0.1 o1

Q 1

Alftribte FPackageAtiribute

1

1
Q Q - PackageAttributelalue
ltem 1 AﬁribUteval 05

This diagram, and all others in the store data section are part of the
WebSphere Commerce information model. For more information on the
information model, see[“The store data information model” on page 25,
For more information on the conventions used in this diagram, see
|Appendix A, “UML legend” on page 303

Catalogs

The catalog is the starting point for the information model. The catalog contains all
hierarchical and navigational information for the online catalog and is a collection
of catalog groups and catalog entries that are available for display and purchase at
an online store.

In WebSphere Commerce, a catalog is represented in the database by a catalog
entity. A catalog entity consists of a unique catalog ID and a description of the
catalog, for example, the catalog name. Since each catalog is a separate, unique
entity, it can easily be associated with one or more stores. Every store in the
WebSphere Commerce system must be related to at least one catalog entity. The
master catalog is a special catalog that contains all of the items that are for sale in
your online store.

Catalog groups

Catalog groups are generic groupings of your catalog entries, created for
navigational and catalog partitioning purposes. A catalog group belongs to a
catalog and may contain more than one catalog group or catalog entries. You can
associate catalog groups to more than one catalog. A catalog group is also known
as a category.

Store Developer’s Guide

A flat catalog is a catalog that does not group its products in categories; instead, it
displays a list of products. Although it is possible to create a flat catalog in
WebSphere Commerce, it is recommended that you create catalog groups for
structural and navigational purposes.

When creating catalog groups, you must first arrange your catalog in a hierarchy,
or inverted tree. The tree begins at a general catalog group (called the root
category), and branches out into increasingly specific subcategories until it cannot
be further divided. Each lowest level catalog group, which contains only products,
is a leaf. A catalog group is the parent to the categories immediately below it, and
a child of the one above. For example, Men’s Fashion is a grouping of the men’s
apparel categories, while the catalog groups Pants and Shirts are groupings of
products.

Catalog entries

Each catalog group contains catalog entries. Catalog entries represent orderable
merchandise in an online catalog. The entries typically have a name or part
number, a description, one or more prices, images, and other details. A catalog
entry can be a product, item, package, bundle, or dynamic kit. If necessary, you
can create new catalog entry types that do not fit into one of the five existing
models. More information on each type of catalog entry is available below.

Products

A product is a type of catalog entry. A product acts as a template for a group of
items or SKUs that exhibit the same attributes. For example, a shirt is a product in
your catalog. After adding attributes and attribute values to the shirt, each
variation becomes an item, such as a small black shirt.

ltems

An item is a tangible unit of merchandise that has a specific name, part number,
and price. For example, a small black shirt is an item while a shirt is a product. All
items related to a particular product exhibit the same set of attributes and are
distinguished by their attribute values.

Note: For WebSphere Commerce Accelerator users, items and SKUs are considered
synonymous. When using the Product Management tools in the WebSphere
Commerce Accelerator, the orderable item is called a SKU. In the WebSphere
Commerce database schema, this particular type of catalog entry is called an item.

Packages

A package is an atomic collection of catalog entries. For example, a computer
package might contain a specific central processing unit, monitor, and hard drive
that cannot be sold separately. Similar to a product, a package has defining
attributes and is a container for fully resolved packages. A fully resolved package
is comparable to a SKU. A package has its own price and is an actual orderable
SKU that can be added to a shopping cart. You cannot decompose or modify a
package either during navigation or after the package has been placed in the
shopping cart.

Bundles

A bundle is a collection of catalog entries to allow customers to buy multiple items
at once. For example, a bundle for a computer might be composed of a central
processing unit, a monitor, a hard drive, and a CD-ROM drive. A bundle is a

Chapter 8. Catalog assets 55

56

grouping of items, or a combination of products, items, and fully resolved
packages. If you select a bundle which only contains items, the bundle is
decomposed into separate orderable SKUs that are added individually to the
shopping cart. However, if you select a bundle which contains products, these
products need to be resolved into items through SKU resolution before they can be
added to a shopping cart. In either case, once a bundle is decomposed and its
component items are added to a shopping cart, you can modify or remove each
item.

Dynamic Kkits

A dynamic kit is a type of catalog entry which can be dynamically configured by
the customer. This configuration (or grouping) of products is based on the
customer’s requirements and is sold as a single unit. The components of a dynamic
kit are composed by an external product configurator through a set of predefined
rules and user interaction. Adding a dynamic kit to an order is similar to adding a
package. Like a package, the individual components of a dynamic kit cannot be
modified and the entire configuration must be fulfilled as a whole. However, you
may change the dynamic kit components by reconfiguring it using an external
product configurator.

Product sets

Product sets are associated with published CatalogEntry objects. A product set
provides a mechanism to partition your catalog into logical subsets. This
partitioning allows you to show different parts of your catalog to different users.
You can create a contract and specify that the participants of the contract are only
entitled to purchase products that fall into a predefined product set. WebSphere
Commerce provides tools to create product sets from the master catalog and to
make use of them in contracts for entitlement filtering.

Attributes

Attributes are properties of products in an online store, such as color or size. An
attribute belongs to a product. Each possible combination of attributes and
attribute values defines an item.

Attribute values

Attribute values are properties of an attribute such as a specific color (blue or
yellow) or size (small, medium, or large). You must predefine attribute values
before assigning them to items. Each possible combination of attributes and
attribute values defines an item.

Package attributes

Package attributes are inherited from the attributes of the products that are
contained within packages. A package can have zero or more package attributes. A
package attribute refers to one attribute.

Package attribute values

Package attribute values are the values assigned to package attributes. Package
attribute values are inherited from the attribute values of the products that are
contained within packages. A package attribute value refers to one attribute value.

For more detailed information on the structure of catalog assets in
WebSphere Commerce, see the catalog data models in the WebSphere
Commerce online help.

Store Developer’s Guide

Creating catalog assets in WebSphere Commerce

To create the catalog assets for your store, you need to create a master catalog by

adding information to several WebSphere Commerce database tables. You can

create your catalog using XML files that are loaded into the database by the Loader

package. If you are creating a multicultural catalog, you will need separate XML
files for each locale your store supports. Each locale specific XML file adds the

translatable information, such as descriptions, for your catalog, catalog groups, and
catalog entries.

The following is an overview of the catalog creation process:

1.

In WebSphere Commerce, a catalog is created using XML files. Creating a
catalog begins with a catalog entity, your database’s equivalent of a paper
catalog.

Create the catalog structure and navigation by adding catalog groups to
determine the categories and layout of your merchandise.

Create inventory information as a base for the catalog entries.
Add your merchandise in the form of catalog entries, which represent products,
SKUs, packages, bundles, and dynamic kits.

Attributes and attribute values are added to your catalog’s products to
distinguish the different SKUs from one another.

You can create packages and bundles to group certain catalog entries together
for promotional purposes.

The relationships between the catalog groups and catalog entries are created
next. This determines which entries belong to a catalog group.

You can create merchandising associations for your catalog entries as product
recommendation strategies.

Associate your catalog, catalog groups, and catalog entries to your WebSphere
Commerce store.

10. In the final steps, you need to create:

a. taxes for your merchandise,
b. shipping methods,

C. a fulfillment center to act as an inventory warehouse and a shipping and
receiving center. A store can have more than one fulfillment center defined,

d. prices for your merchandise.

Creating a master catalog

To create a master catalog that contains multiple levels of categories, complete the
following tasks:

Part 1: Preparing for catalog creation

1.

Review the catalog information and its corresponding object and data models
within WebSphere Commerce. The catalog information is a component of the
WebSphere Commerce Server that provides online catalog navigation,
partitioning, categorization, and associations for orderable merchandise.

Review the WebSphere Commerce Loader package information. The Loader
package consists primarily of utilities for preparing and loading data into a
WebSphere Commerce database. You can use the Loader package to load large
amounts of data and to update data in your database. For more information on
the Loader package, see [Part 7, “Publishing your store” on page 207

Chapter 8. Catalog assets 57

3. Review the information in [Appendix B, “Creating your data” on page 305,

4. Create an organization through the Administration Console to act as the catalog
owner. For more information, see the WebSphere Commerce online help topic
"Creating an organization”.

5. Create a new XML file for your master catalog by using the existing XML
entries and catalog.xml files from the ToolTech sample store as your guide. If
you are creating a multicultural catalog, create a separate catalog.xml file for
each locale your store supports. The locale-specific file should specify all
description information, so it can be easily translated. In this example, one
catalog.xml file will be used for all information that does not need to be
translated, and a second catalog.xml will be used for each locale the store
supports and will include the information that needs to be translated. Or, if you
prefer, you can use the existing XML file from the ToolTech sample store and
change the information as needed. The catalog.xml files from the ToolTech
sample store are located in its store archive file. To view the catalog.xml files,
decompress the store archive using a ZIP program. The catalog.xml files are
located in the following data directories:

. drive:\WebSphere\CommerceSer‘ver‘\samp]estores

. drive:\Program Files\WebSphere\CommerceServer\samplestores

. /usr/WebSphere/CommerceServer/samplestores

. /opt/WebSphere/CommerceServer/samplestores

. /qibm/proddata/WebCommerce/samplestores

Note: The WebSphere Commerce online help contains information about each
of the data assets contained in the sample stores.

The catalog.dtd file is located in the following directory:

. drive:\WebSphere\CommerceServer\xm]\sar

. drive:\Program Files\WebSphere\CommerceServer\xml\sar

. /usr/WebSphere/CommerceServer/xml/sar

. /opt/WebSphere/CommerceServer/xml/sar

. /q1'bm/proddata/WebCommerce/xm1/sar

Part 2. Creating a catalog entity

1. Using the following example from the ToolTech sample store as your guide,
create a catalog entity by adding information to the CATALOG and
CATALOGDSC tables. A catalog entity represents a catalog in the database.
<catalog
catalog_id="@catalog_id_1"
member_id="&MEMBER ID;"
identifier="ToolTech"
description="ToolTech Catalog"
tpclevel="0"

/>

where
* catalog_id is the internal reference number.

* member_id is the internal reference number that identifies the owner of the
catalog.

58 Store Developer’s Guide

¢ identifer is an external name for the catalog.
* description is a description of the catalog.
Using the following example from the ToolTech sample store as your guide,

add the catalog’s description in the locale-specific XML file for translation
purposes:

<catalogdsc
catalog_id="@catalog_id_1"
Tanguage_id="&en_US;"
name="Store master catalog"

/>

where

* catalog_id is the internal reference number relating this language specific
information to a catalog.

* language_id is the identifier of the language.
* name is the language-dependent name of the catalog.

Part 3: Creating catalog groups

1.

Using the following example from the ToolTech sample store as your guide,
create catalog groups by adding information to the CATGROUP and
CATGRPDESC tables. Catalog groups, also known as categories, are groupings
of other catalog groups or products. Complete this task for each catalog group
in your catalog:

<catgroup

catgroup_id="@catgroup_id_1"

member_id="&VEMBER _ID;"

identifier="Woodworking"

markfordelete="0"
/>

where
* catgroup_id is the internal reference number of the catalog group

* member_id is the internal reference number that identifies the owner of the
catalog.

e identifer is an external name for the catalog.

* markfordelete indicates whether the catalog group has been marked for
deletion:
- 0 = No.
— 1= Yes.

Using the following example from the ToolTech sample store as your guide,

add the catalog group’s description in the locale-specific XML file for
translation purposes. Complete this task for each catalog group in your catalog:

<catgrpdesc
language_id="&en_US;"
catgroup_id="@catgroup_id_1"
name="Woodworking"
shortdescription="Woodworking"
longdescription="Woodworking"
published="1"

/>

where
* language_id is the identifier of the language.
* catgroup_id is the internal reference number of the catalog group.

Chapter 8. Catalog assets 59

* name is language-dependent name of the catalog.
* shortdescription is a brief description of the catalog group.
* longdescription is a detailed description of the catalog group.

* published indicates whether this catalog group should be displayed for the
language indicated by Tanguage_id:

Note: Each time you create a catalog group and its description, the
catgroup_id changes to represent a new catalog group. For example,
catgroup_id="@catgroup_id_2" , catgroup_id="@catgroup_id_3" , and
catgroup_id="@catgroup_id 4", and so on.

3. After creating your catalog groups, assign a top-level catalog group to the
catalog by adding information to the CATTOGRP table. This catalog group is
the parent to the catalog groups immediately below it. Complete this task for
each top-level catalog group in your catalog. Use the following example from
the ToolTech sample store as your guide:
<cattogrp
catalog_id="@catalog_id 1"
catgroup_id="@catgroup_id_1"

/>

where
* catalog_id is the reference number of the catalog.
 catgroup_id is the reference number of the catalog group.

Note: Each time you assign top-level catalog groups to the catalog, the
catgroup_id is modified to represent a new catalog group association.
For example, catgroup_id="@catgroup_id_2",
catgroup_id="@catgroup_id 3", and catgroup_id="@catgroup_id 4", and
so on.

4. Once the parent and child structure has been determined for your catalog
groups, create relationships between the catalog groups by adding information
to the CATGRPREL table. Complete this task for each parent and child catalog
group structure in your catalog. Use the following example from the ToolTech
sample store as your guide:
<catgrprel
catgroup_id_parent="@catgroup_id_1"
catgroup_id_child="@catgroup_id_11"
catalog_id="@catalog_id_1"
sequence="0"

/>

where

e catgroup_id_parent is the source catalog group of this relationship.
* catgroup_id_child is the target catalog group of this relationship.

 catalog_id is the reference number of the catalog.

* sequence is the number that determines the display order of the contents of
the catalog group.

Note: With each catalog group relationship, the catgroup_id_child and the
sequence is modified to represent a new relationship. For example,
subsequent relationships would be displayed as
catgroup_id_child="@catgroup_id_12" and sequence="1", and

60 Store Developer’s Guide

catgroup_id child="@catgroup_id 13" and sequence="2", and so on. If
you are not using a navigational structure in your catalog, then you can
remove the CATGRPREL relationship.

Part 4: Creating inventory information

1. Using the following example from the ToolTech sample store as your guide,
create inventory information by adding information to the BASEITEM,
BASEITEMDSC, ITEMSPC, ITEMVERSN, VERSIONSPC, DISTARRANG, and
STOREITEM tables. Begin by creating base items by adding information to the
BASEITEM table. Base items represent a general family of products with a
common name and description. Complete this task for each group of inventory
items in your catalog:
<baseitem
baseitem_id="@baseitem_id_102"
member_id="&VEMBER _ID;"
markfordelete="0"
partnumber="tooltech_sku_102"
itemtype_id="ITEM"
quantitymeasure="C62"

quantitymultiple="1.0"
/>

where
* baseitem_id is the generated unique key.
* member_id is the owner of the base item.
* markfordelete indicates whether the base item is marked for deletion:
— 0= No.
— 1 =Yes.
* partnumber uniquely identifies the base item for the owner.
e itemtype_id is the type of base item:
— ITEM = items, packages, or bundles
— DNKT = dynamic kits.
¢ quantitymeasure is the unit of measure for the quantity multiple.
* quantitymultiple is the amount of the base item that is measured in integral

units. Along with quantitymeasure, this indicates how much each integral
unit represents.

Note: You must create a base item for every product that you create in your
catalog. Each time you create a base item, the baseitem_id and
partnumber numbers change to create a new base item. For example, a
new base item would contain baseitem id="@baseitem_id 147" and
partnumber="tooltech_sku_147" as entries, while another base item
would contain baseitem_id="@baseitem_id_192" and
partnumber="tooltech_sku_192" as entries, and so on.

2. Using the following example from the ToolTech sample store as your guide,
add information about specified items to the database. A specified item is an
item with values for all its attributes, and represents an item, package, bundle,
or dynamic kit in the catalog. Complete this task for each specified item in
your catalog:
<itemspc
itemspc_id="@itemspc_id_106"
baseitem_id="@baseitem_id_102"
markfordelete="0"

Chapter 8. Catalog assets 61

62

Store Developer’s Guide

partnumber="T0000106"
member_id="&VEMBER_ID;"
discontinued="N"

/>

where

e itemspc_id is the generated unique key.

* baseitem_id is the product base item.

» markfordelete indicates whether the specified item is marked for deletion:
- 0= No.
- 1= Yes.

* partnumber uniquely identifies the specified item for the owner.

* member_id is the owner of the specified item.

* discontinued indicates whether the specified item has been discontinued:

— Y = Discontinued and can be ordered if there is sufficient inventory but it
cannot be backordered.

— N = Active and may be backordered if out of stock.

Note: You must create a specified item for each item that you create in your
catalog. Each time you define a specified item, the
itemspc_id="@itemspc_id_107", baseitem_id="@baseitem_id_102",
partnumber="T0000107" numbers change to create a new specified item.
For example, a new specified item would contain
itemspc_id="@itemspc_id 108", baseitem id="@baseitem id 102", and
partnumber="T0000108" as entries, while another specified item would
contain itemspc_id, baseitem_id, and partnumber as entries, and so on.

Using the following example from the ToolTech sample store as your guide,
add the following information for a relationship between an item version and a
base item to the database. Complete this task for each such relationship in your
catalog:

<itemversn

itemversn_id="@itemversn_id_102"

baseitem_id="@baseitem_id_102"

expirationdate="2010-01-01 00:00:00.000000"

versionname="version"

/>

where

* itemversn_id is a generated reference number which identifies the item
version.

* baseitem_id is the base item.
* expirationdate is the time the item version expires.

* versionname uniquely identifies the item version for its base item.

Note: Each time you create a relationship between an item version and a base
item, the itemversn_id and baseitem_id numbers change to create a new
relationship. baseitem_id matches an existing base item. For example, a
new relationship would contain itemversn_id="@itemversn_id_107" and
baseitem_id="@baseitem_id_107" as entries, while another relationship
would contain itemversn_id="@itemversn_id_108" and
baseitem_id="@baseitem_id_108" as entries, and so on.

Using the following example from the ToolTech sample store as your guide,
add the following information for a relationship between a product version and
a specified item to the database. Complete this task for each such relationship
in your catalog:

<versionspc

versionspc_id="@versionspc_id_106"

itemspc_id="@itemspc_id 106"

itemversn_id="@itemversn_id_102"

/>

where

+ versionspc_id is the generated unique identifier.

e itemspc_id is the specified item that the catalog entry relates to.
* itemversn_id identifies the item version.

Note: Each time you create a relationship between a product version and a
specified item, the versionspc_id and itemspc_id numbers change to
create a new relationship. itemspc_id matches an existing specified item.
For example, a new relationship would contain
versionspc_id="@versionspc_id_107" and
itemspc_id="@itemspc_id_107" as entries, while another relationship
would contain versionspc_id="@versionspc_id 108" and
jtemspc_id="@itemspc_id 108" as entries, and so on.

Using the following example from the ToolTech sample store as your guide,

add the distribution arrangements to the database. A distribution arrangement

enables a store to sell its own inventory. Complete this task for each
distribution arrangement in your catalog:

<distarrang

distarrang_id="@distarrang_id 102"

wholesalestore_id="@storeent_id_1"

merchantstore_id="@storeent_id 1"

baseitem_id="@baseitem_id_102"

pickingmethod="F"

startdate="2000-12-25 00:00:00.000000"

(/enddate="2010—01—01 00:00:00.000000"

>

where

* distarrang_id is the reference number of the distribution arrangement.

* wholesalestore_id is the wholesale store that owns the inventory that can be
sold by the merchant store. This wholesale store must be the same as
merchantstore_id.

* merchantstore_id is the merchant store that can sell from the inventory of
the wholesale store. This merchant store must be the same as
wholesalestore_id.

* baseitem_id is the product covered by the distribution arrangement.

¢ pickingmethod determines the sequence in which inventory is picked from
the RECEIPT table under this arrangement:

— F = FIFO (First In First Out) - the least recently received inventory.

- L = LIFO (Last in First Out) - the most recently received inventory.
* startdate is the time the distribution arrangement starts being effective.
* enddate is the time the distribution arrangement stops being effective.

Chapter 8. Catalog assets 63

Note: Each time you create a distribution arrangement, the distarrang_id and
the baseitem_id numbers change to create a new distribution
arrangement. For example, a second distribution arrangement might
contain the values distarrang_id="@distarrang id 147" and
baseitem_id="@baseitem_id_147", while a third might contain
distarrang_id="@distarrang_id_192" and
baseitem_id="@baseitem_id_192", and so on.

6. Using the following example from the ToolTech sample store as your guide,
add the attributes that affect how a particular store allocates inventory for the
specified items of a particular base item to the database. Complete this task for
each base item in your catalog:

<storeitem
baseitem_id="@baseitem id_102"
storeent_id="@storeent_id_1"
trackinventory="Y"
forcebackorder="N"
releaseseparately="N"
returnnotdesired="N"
backorderable="Y"
creditable="Y"
mingtyforsplit="0"

/>

where
* baseitem_id is the base item.
» storeent_id is the store or the store group.

¢ trackinventory controls whether or not inventory is tracked in the RECEIPT
table:

— N = Inventory is not tracked and there are no entries in the RECEIPT
table.

- Y = Inventory is tracked in the RECEIPT table.

+ forcebackorder temporarily suspends allocation of specified items for the
base item:

- N = Inventory can be allocated (normal behavior).
— Y = Inventory cannot be allocated, even if there is enough inventory.

* releaseseparately controls how specified order items for the base item are
released:

- N = order items may be released along with other order items.
— Y = order items must be released separately (in their own boxes).

* returnnotdesired indicates that an item return is not wanted (for example,
perishable food items), even if customer is willing or able to return it:

— N = Request for credit evaluated based on the customer’s intention to
return the item, but the return is not expected.

— Y = Request for credit evaluated as if return is expected.

* backorderable indicates that specified items for the base item cannot be
backordered:

— N = Items may not be backordered.
- Y = Items may be backordered.

e creditable indicates whether the merchant will, without an override, issue a
credit for this item:

— N = Sold as-is.
— Y = Creditable.

64 Store Developer’s Guide

* mingtyforsplit indicates that order items will not be automatically split
during inventory allocation if the remaining unallocated quantity in the new
order item would be less than the specified minimum quantity.

Note: Each time you define the inventory allocation rules for a store item, the
baseitem_id number changes to represent a new base item. For example,
a new allocation might contain baseitem_id="@baseitem_id_147" while a
third might contain baseitem_id="@baseitem_id_192", and so on.

7. Using the following example from the ToolTech sample store as your guide,
add the base item description to the locale-specific XML file for translation
purposes. Complete this task for each base item description in your catalog:
<baseitmdsc
baseitem_id="@baseitem id_102"
language_id="&en_US;"
shortdescription="Circular Saw"
longdescription="Light on weight but not in quality. The Circular Saw
weighs a maximum of 10.91bs., with a choice of a 12 or 14 amp motor,
and speeds of up to 600 rpms! Low friction 220V aluminum alloy shoe
will ensure the job gets done on time."

/>

where

* baseitem_id is the generated unique key.

* language_id is the language of this information.

* shortdescription is a brief description of the base item.

* longdescription is a detailed description of the base item.

Part 5: Creating catalog entries

1. Using the following example from the ToolTech sample store as your guide,
create catalog entries by adding information to the CATENTRY and
CATENTDESC tables. Each type of catalog entry — products, items, packages,
bundles, and dynamic kits — represents the orderable pieces of merchandise
for sale in your catalog. You need to define a base item for each product
catalog entry. Complete this task for each product catalog entry in your catalog;:
<catentry
catentry_id="@product_id_102"
baseitem_id="@baseitem_id_102"
member_id="&MEMBER_ID"
catenttype_id="ProductBean"
partnumber="T0000102"
mfpartnumber="Sprain-Tools-102"
mfname="Sprain Tools"
markfordelete="0"
buyable="1"

/>

where

* catentry_id is the internal reference number of the product catalog entry.
¢ baseitem_id is the base item that the catalog entry relates to.

* member_id is the reference number that identifies the catalog entry.
 catenttype_id identifies the type of catalog entry:

ItemBean = identifies an item.

ProductBean = identifies a product.
— PackageBean = identifies a package.
BundleBean = identifies a bundle.

Chapter 8. Catalog assets 65

66

Store Developer’s Guide

— DynamicKitBean = identifies a dynamic kit.

partnumber is the reference number that identifies the part number of the
catalog entry.

mfpartnumber is the part number used by the manufacturer to identify the
catalog entry.

mfname is the name of the manufacturer of the catalog entry.

markfordelete indicates whether the catalog entry is marked for deletion:
- 0= No.

- 1= Yes.

buyable indicates whether you can purchase the catalog entry individually:
- 0= No.

- 1= Yes.

Note: Each time you add a base item to a product catalog entry, the
catentry_id and the baseitem_id sequence changes to represent a new
catalog entry. The catenttype_id changes depending on the type of
catalog entry.

Using the following example from the ToolTech sample store as your guide,
define a specified item for each catalog entry. Complete this task for each
catalog entry in your catalog:

<catentry
catentry_id="@catentry_id_106"
itemspc_id="@itemspc_id 106"
member_id="&MEMBER_ID"
catenttype_id="ItemBean"
partnumber="T0000106"
mfpartnumber="Sprain-Tools-106"
mfname="Sprain Tools"
markfordelete="0"

buyable="1"

/>

where
— catentry_id is the internal reference number of the catalog entry.
— itemspc_id is the specified item that the catalog entry belongs to.
— member_id is the reference number that identifies the catalog entry.
— cattentype_id identifies the type of catalog entry:

- ItemBean = identifies an item.

- ProductBean = identifies a product.

- PackageBean = identifies a package.

- BundleBean = identifies a bundle.

- DynamicKitBean = identifies a dynamic kit.

— partnumber is the reference number that identifies the part number of the
catalog entry.

— mfpartnumber is the part number used by the manufacturer to identify the
catalog entry.

— mfname is the name of manufacturer of the catalog entry.

- markfordelete indicates whether the catalog entry is marked for deletion:
- 0 =No.
- 1 = Yes.

— buyable indicates whether you can purchase the catalog entry

individually:
- 0= No.
- 1 = Yes.

Note: Each time you add a specified item to a catalog entry, the catentry_id
and the itemspc_id sequence changes to represent a new catalog entry.
The catenttype_id changes depending on the type of catalog entry.
Under the master catalog structural restriction, a catalog entry cannot
belong to more than one category. To place a catalog entry in more
than one category, you must use a navigational catalog.

 Using the following example from the ToolTech sample store as your guide,
add the description to the locale-specific XML file. Complete this task for
each catalog entry description in your catalog:
<catentdesc
catentry_id="@product_id_102"
language_id="&en_US"
name="Circular"
shortdescription="Circular Saw"
longdescription="Light on weight but not in quality. The Circular Saw
weighs a maximum of 10.91bs., with a choice of a 12 or 14 amp motor,
and speeds of up to 600 rpms! Low friction 220V aluminum alloy shoe
will ensure the job gets done on time."
thumbnail="1images/circular_saw_sm.gif"
fullimage="1images/circular_saw.gif"
available="1"
published="1"
/>

where

— catentry_id is the internal reference number that indicates the catalog
entry that this language-specific information relates to.

— language_id is the identifier of the language.
— name is the language-dependent name of the catalog entry.
— shortdescription is a brief description of the catalog entry.
— longdescription is a detailed description of the catalog entry.
— thumbnail is the path for the thumbnail image.
— fullimage is the path for the full image.
— available indicates the length of time to availability of the catalog entry.
— published indicates whether this catalog entry should be displayed for the
language indicated by language_id
- 0 = Display.
- 1 = Not display.

Part 6: Creating attributes and attribute values

1. Using the following example from the ToolTech sample store as your guide,
create attributes and attribute values for your products by adding information
to the ATTRIBUTE and ATTRVALUE tables in the locale-specific XML file for
translation purposes. Each product in your catalog has a specific set of
attributes, such as size and color for a shirt or a pair of pants. Items are defined
by the attribute values. For example, while a shirt is a product, a medium,
black shirt is an item. Complete this task for each attribute in your catalog:
<attribute

attribute_id="@attribute_id 103"
language_id="&en_US"

Chapter 8. Catalog assets 67

68

Store Developer’s Guide

attrtype_id="STRING"
name="Amps"

sequence="0"
description="Amps"
catentry_id="@product_id_102"
description2="Amps"

/>

where

e attribute_id is the internal reference number of the attribute.

* language_id is the language that this attribute pertains to.

* attrtype_id is the type of the corresponding attribute value.

* name is the name of the attribute.

* sequence is a sequence number that determines the display order of
attributes for a given product.

* description is the description of the attribute.

 catentry_id is the reference number of the product to which this attribute
belongs.

e description2 is an additional description of the attribute.

Note: Each time you add an attribute to a product defined by catentry_id, the
attribute_id sequence changes to represent a new attribute.

Using the following example from the ToolTech sample store as your guide,
add the attribute values. Complete this task for each attribute value in your
catalog:

<attrvalue

attrvalue_id="@attrvalue_id_114"

language_id="&en_US"

attribute_id="@attribute_id_103"

name="12.0amps"

attrtype_id="STRING"

stringvalue="12.0amps"

sequence="0"

catentry_id="@catentry_id_106"

/>

where
» attrvalue_id is the internal reference number of attribute value
* language_id is the language that this attribute value pertains to

* attribute_id is the internal reference number of the attribute associated with

the value
* name is the name of the attribute value
 attrtype_id is the type of attribute value
* stringvalue is the attribute value

* sequence is a sequence number that determines the display order of attribute

values for a given attribute
* catentry_id is the item ID that this attribute value describes

Note: Each time you add an attribute value to an attribute, the attrvalue_id
sequences changes to represent different values. The attribute_id
sequence changes to represent a different attribute. The sequence
increases with each new attribute values. For example, subsequent
attribute values would be sequence="1", sequence="2", and
sequence="3", and so on.

Part 7: Creating relationships between products and items

1. After creating products and items for your catalog, define the relationships
between products and items by adding information to the CATENTREL table.
Use the following example from the ToolTech sample store as your guide.
Complete this task for each product and item relationship value in your
catalog:
<catentrel
catentry_id_parent="@product_id_147"
catreltype_id="PRODUCT_ITEM"
catentry_id_child="@catentry_id_152"
sequence="2"
quantity="1"

/>

where

* catentry_id_parent is the reference number of the source catalog entry in
this relationship, that is, the product.

¢ catreltype_id is the type of relationship: PRODUCT_ITEM

* catentry_id_child is the reference number of the target catalog entry in this
relationship, that is, the item.

* sequence is the sequence number used to determine the display order.

* quantity is a quantity that can be associated with the relationship.

Note: Each time you add a relationship between a product and item, the
catentry_id_parent and the catentry_id_child numbers change to
create different relationships, based on the catreltype_id. With each new
relationship, the sequence number is different. For example, if you have
sequence="2", the next relationship will have sequence="3", followed by
sequence="4", and so on.

Part 8: Creating packages and bundles

1. Once you have created your products and items, create packages and bundles
by adding information to the CATENTRY, CATENTDESC, and CATENTREL
tables. Using the following example from the ToolTech sample store as your
guide, begin by creating a package or bundle by adding information to the
CATENTRY table. Complete this task for each package and bundle in your
catalog:
<catentry
catentry id="@package id_102"
member_id="&MEMBER_ID"
catenttype_id="PackageBean"
partnumber="sku-@package_id_102"
mfpartnumber="sku-@package_id_102"
mfname="Tool1Tech"
markfordelete="0"
buyable="1"

/>

where

 catentry_id is the reference number of the catalog entry.

e member_id is the reference number that identifies the owner of the catalog
entry.

 catenttype_id identifies the type of catalog entry:
— PackageBean = identifies a package.
— BundleBean = identifies a bundle.

Chapter 8. Catalog assets 69

70

Store Developer’s Guide

partnumber is the reference number that identifies the part number of the
catalog entry.

mfpartnumber is the part number used by the manufacturer to identify the
catalog entry.

mfname is the name of the manufacturer of the catalog entry.
markfordelete indicates if the catalog entry is marked for deletion:

- 0= No.

- 1= Yes.

buyable indicates whether the catalog entry can be purchased individually:

Note: Each time you create a package or a bundle, the catentry_id,
partnumber, and mfpartnumber numbers change to create different
package or bundle. For example, to create a new package, you could
use catentry id="@package id 103", partnumber="sku-

@package_id 103", and mfpartnumber="sku-@package id 103",
including catenttype_id="PackageBean" to identify the entry as a
package. To create a new bundle, you could use
catentry_id="@package_id_110", partnumber="sku-@package_id_110",
and mfpartnumber="sku-@package_id_110", including
catenttype_id="BundleBean" to identify the entry as a bundle, and so
on.

Using the following example from the ToolTech sample store as your guide,
add the package or bundle description by adding information to the
CATENTDESC table in the locale-specific XML file for translation purposes.
Complete this task for each package and bundle description in your catalog:
<catentdesc
catentry_id="@catentry_id_102"
language_id="-1"
name="computer"
shortdescription="Computer"
longdescription="A combination of a central processing unit, monitor,

hard drive, and color printer. An ideal starter system."
thumbnail="1images/package_system_sm.gif"
fullimage="1images/package_system.gif"
availabTe="1"
pubTished="1"
/>

where

— catentry_id is the internal reference number that indicates the catalog
entry that this language specific information relates to.

— Tlanguage_id is the identifier of the language.

— name is the language-dependent name of the catalog entry.

— shortdescription is a brief description of the catalog entry.

— longdescription is a detailed description of the catalog entry.

— thumbnail is the thumbnail image path of the catalog entry.

— fullimage is the full image path of the catalog entry.

— available indicates the length of time to availability of the catalog entry.

— pubTished indicates whether the catalog entry should be displayed for the
language indicated by Tanguage_id:

- 0 = Do not display catalog entry.

- 1 = Display catalog entry.
¢ Using the following example from the ToolTech sample store as your guide,
create relationships between packages or bundles and their components by
adding information to the CATENTREL table. Complete this task for each
package or bundle component relationship in your catalog;:
<catentrel
catentry_id_parent="@catentry_id_102"
catreltype_id="PACKAGE_COMPONENT"
catentry_id _child="@catentry id 97"
sequence="1.0"

quantity="1.0"
/>

where

— catentry_id_parent is the reference number of the source catalog entry in
this relationship, that is, the package or bundle.

— catreltype_id is the type of this relationship:

- PACKAGE_COMPONENT represents a relationship between a package
and its components.

- BUNDLE_COMPONENT represents a relationship between a bundle
and its components.

— catentry_id_child is the reference number of the target catalog entry in
this relationship, that is, the component.

— sequence is the sequence number used to determine the display order.
— quantity is a quantity that can be associated with the relationship.

Note: Each time you create a relationship between a package and bundle,
the catentry_id_parent and catentry_id_child number changes to
match existing catalog entries. With each new relationship, the
sequence number is different. For example, if you begin with
sequence="1.0", the next relationship will have sequence="2.0",
followed by sequence="3.0", and so on.

Part 9: Creating relationships between catalog groups and
catalog entries

1. After creating catalog groups and catalog entries in your catalog, define the
relationships between catalog groups and catalog entries by adding information
to the CATGPENREL table. Under the master catalog structural restriction, a
catalog entry cannot belong to more than one category. To place a catalog entry
in more than one category, you must use a navigational catalog. Use the
following example from the ToolTech sample store as your guide. Complete this
task for each catalog group and catalog entry relationship in your catalog:
<catgpenrel
catgroup_id="@catgroup_id_11"
catalog_id="@catalog_id 1"
catentry_id="@product_id_102"
sequence="0"

/>

where

¢ catgroup_id is the source catalog group of this relationship.

* catalog_id is the catalog inside of which this relationship is found.
 catentry_id is the target catalog entry of this relationship.

Chapter 8. Catalog assets 71

72

sequence is the sequence number that determines the display order of the
contents of the catalog group.

Note: Each time you create a relationship between catalog groups and catalog

entries, the catgroup_id and catentry_id numbers change to form new
relationships with different catalog groups and catalog entries. With each
new relationship, the sequence number is different. For example, if you

begin with sequence="0", the next relationship will have sequence="1",
followed by sequence="2", and so on.

Part 10: Creating merchandising associations

1.

Using the following example from the ToolTech sample store as your guide,
create merchandising associations between catalog entries by adding
information to the MASSOCECE table. Complete this task for each
merchandising association in your catalog:

<massoccece
massoccece_id="@relationship_id_100"
massoctype_id="X-SELL"
catentry_id_from="@product_id_1"
catentry_id_to="@product_id 15"
massoc_id="REQUIRES"

quantity="2.0"

rank="1.00000"

/>

where
* massoccece_id is the reference number of this entry.
* massoctype_id is the identifier of the association type:
— X-SELL = cross-sell.
— UPSELL = up-sell.
— ACCESSORY = accessory.
¢ catentry_id_fromis the catalog entry that is the source of the association.
* catentry_id_to is the catalog entry that is the target of the association.
e massoc_id is the identifier of the semantic specifier:
- REQUIRED
- OPTIONAL
- COMES WITH
* quantity is the quantity related to this association.

* rank is the sequence number used for display order.

Note: Each time you add a merchandising association, the massoccece_id
number changes to represent a new relationship. The catentry_id_from
and the catentry_id_to numbers vary to create new merchandise
content for the association.

Part 11: Associating your catalog to a store

1.

Store Developer’s Guide

Associate your catalog to a store by assigning the catalog, its catalog groups,
and catalog entries to a store in the database by using the existing
storecatalog.xml from the ToolTech sample store as your guide. You should
also assign display pages to the catalog groups and catalog entries. Add this
information to the STORECAT, STORECENT, STORECGRP, DISPCGPREL, and
DISPENTREL tables. If you are creating a multicultural catalog, create a
separate store-catalog relationship XML file for each locale your store supports:

<storecat
catalog_id="@catalog_id_1"
storeent_id="@storeent_id 1"
mastercatalog="1"

/>

where

+ catalog_id is the reference number of the catalog.

* storeent_id is the reference number of the store entity in the database.

* mastercatalog specifies a master catalog for the store. A value of 1 indicates
that this catalog is designated as a master catalog.

2. Using the following example from the ToolTech sample store as your guide,
add catalog entries to the store-catalog relationship. Complete this task for each
catalog entry in your catalog:

<storecent
storeent_id="@storeent_id_1"
catentry_id="@product_id_102"
/>

where
* storeent_id is the reference number of the store entity in the database.
e catentry_id is the reference number of the catalog entry.

Note: Each time you add a catentry_id to the store entity, the reference
number changes to match an existing catalog entry.

3. Using the following example from the ToolTech sample store as your guide,
add catalog groups to the store entity. Complete this task for each catalog
group in your catalog:
<storecgrp
storeent_id="@storeent_id 1"

catgroup_id="@catgroup_id_1"
/>

where
* storeent_id is the reference number of the store entity in the database.
* catgroup_id is the reference number of the catalog group.

Note: Each time you add a catgroup_id to the store entity, the reference
number changes to match an existing catalog group.

Part 12: Associating taxes to your catalog

1. Associate taxes to the products and services in your catalog for a specific store.
You must associate a tax calculation code with the catalog entries by adding
this information to the to the CATENCALCD table. For more information, see
[“Creating tax assets in WebSphere Commerce” on page 150,

Part 13: Associating shipping methods to your catalog

1. To associate shipping methods to the products and services in your catalog,
you must associate a shipping calculation code with the catalog entries. Add
this information to the CATENCALCD table. For more information, see
[“Creating shipping assets in WebSphere Commerce” on page 133}

Chapter 8. Catalog assets 73

74

Part 14: Associating a fulfillment center to your catalog

1. Associate your catalog with a fulfillment center to ship products to customers.
A fulfillment center manages product inventory and shipping for a store. Add
this information to the FFMCENTER table. For more information, see
[fulfillment assets in WebSphere Commerce” on page 108,

Part 15: Creating prices for your catalog entries

1. Create the pricing for your catalog entries. Pricing represents the price range
for a catalog entry and any criteria that must be satisfied in order to use that
price. To create a functional catalog, you need to add offering information to
the database. Add this information to the TRADEPOSCN, TDPSCNCNTR,
MGPTRDPSCN, OFFER, and OFFERPRICE tables. For more information, see
[“Creating pricing assets in WebSphere Commerce” on page 88} Or you can
create or update the pricing for a catalog entry using the Product Management
tools in the WebSphere Commerce Accelerator.

Part 16: Loading the XML file

1. After you have created your data, load the XML file into the database by either
using the Loader package or through the Publish function in Store Services. For
more information on the Loader package, see [Part 7, “Publishing your store” on|

Note: You can also use the Product Management tools from the WebSphere
Commerce Accelerator to create catalog assets for your master catalog.
For more detailed information on the Product Management tools, see the
WebSphere Commerce online help.

Displaying store catalog assets

After associating a catalog, catalog groups, and catalog entries to a store, assign JSP
templates to display your catalog entries and catalog groups by creating these
relationships in the database. Create these relationships in the format of XML files
that can be loaded into the database using the Loader package.

The storecatalog.xml file from the ToolTech sample is located in its store archive
file. To view the storecatalog.xml file, decompress the store archive using a ZIP
program. The storecatalog.xml file is located in the following data directories:

. drive:\WebSphere\CommerceServer\samp]estores

. drive:\Program Files\WebSphere\CommerceServer\samplestores
. /usr/WebSphere/CommerceServer/samplestores

. /opt/WebSphere/CommerceServer/samplestores

. /q1'bm/proddata/WebCommerce/samp1estores

Note: The WebSphere Commerce online help contains information about each of
the data assets contained in the sample stores.

The store-catalog.dtd file is located in the following directory:

o ENEMN irive:\WebSphere\CommerceServer\xml\sar

. dr'ive:\Program Files\WebSphere\CommerceServer\xml\sar
. /usr/WebSphere/CommerceServer/xml/sar

. /opt/WebSphere/CommerceServer/xml/sar

Store Developer’s Guide

. /qibm/proddata/WebCommerce/xml/sar

Before you can create store-catalog relationships, ensure that you have created the
store data assets. Complete the following tasks, each of which creates entries in the
storecatalog.xml file:

1.

In order to display your catalog groups (categories) in your store, you must
assign JSP templates to your catalog groups. You can assign a particular display
page template to a catalog group or a default template to display all catalog
groups. Using the following example from the ToolTech sample store as your
guide, assign catalog group templates by adding information to the
DISPCGPREL table. Complete this task for each template you want to assign to
your catalog groups:

<dispcgprel

catgroup_id="@catgroup_id_1"

devicefmt_id="-1"

dispcgprel_id="@dispcgprel_id_1"

mbrgrp_id="0"

pagename="/ToolTech/CategoryDisplay.jsp"

storeent_id="@storeent_id_1"

rank="0"/>

where

* catgroup_id is the reference number of the catalog group for which this page
name will be displayed. A value of 0 indicates that this page name will be
used for all catalog groups.

* devicefmt_id is the reference number of the device type that the page will be
displayed on. A value of -1 indicates that this template page will be used by
an HTTP browser.

e dispcgprel_id is the reference number of this entry.

* mbrgrp_id is the reference number of the member group for which this
template page will be displayed. A value of 0 indicates that this template
page will be used for all member groups.

* pagename is the name and path of the display template page.

* rank is a sequence number used to break ties when more than one page
satisfies the selection criteria.

Note: Each time you assign a JSP template to a catalog group, the catentry_id
changes sequence to match an existing catalog entry.

To display your catalog entries (products, items, packages, bundles, and
dynamic kits) in your store, you must assign JSP templates to your catalog
entries. You can assign a default template to display all catalog entries, or a
default to display each type of catalog entry, for example, a template for
products and another template for items, or a specific template for a specific
catalog entry. Using the following example from the ToolTech sample store as
your guide, assign templates by adding information to the DISPENTREL table.
Complete this task for each template you want to assign to your catalog entries:
<dispentrel

auctionstate="0"

catentry_id="0"

catenttype_id="ProductBean"

devicefmt_id="-1"

dispentrel_id="@dispentrel_id_1"

mbrgrp="0"

pagename="/ToolTech/ProductDisplay.jsp"

storeent_id="@storeent_id_1"

rank="0"/>

Chapter 8. Catalog assets 75

where

* auctionstate indicates that this template page displays a catalog entry that is
on auction:

— 0 = Not an auction template.
- 1 = Auction template.

* catentry_id is the reference number of the catalog entry for which this page
name will be displayed. A value of 0 indicates that this page name will be
used for all catalog entries.

 catenttype_id is the type of catalog entry that this page will be used to
display:
— ProductBean = Displays a product.
— ItemBean = Displays an item.
— PackageBean = Displays a package.
— BundleBean = Displays a bundle.
— DynamicKitBean = Displays a dynamic kit.
e devicefmt_id is the reference number of the device type that the page will be

displayed on. A value of -1 indicates that this template page will be used by
an HTTP browser.

e dispentrel_id is the reference number of the catalog entry.

e mbrgrp is the reference number of the member group for which this template
page will be displayed. A value of 0 indicates that this template page will be
used for all member groups.

* pagename is the name and path of the display template page.

* storeent_id is the reference number of the store for which this page will be
displayed.

* rank is a sequence number used to break ties when more than one page
satisfies the selection criteria.

Note: Each time you assign a JSP template to a catalog entry, the catentry_id
changes sequence to match an existing catalog entry.

Creating a navigational catalog

76

A WebSphere Commerce store allows two types of catalogs: master and
navigational. Navigational catalogs do not need to meet the structural restrictions
that are placed on master catalogs. These catalog are meant to provide a flexible
display structure to allow you to create navigational catalogs that suit your store’s
requirements.

In particular, navigational catalogs do not need to satisfy the following restrictions
that are imposed on master catalogs:

* A master catalog must be a proper tree, which means that there are no cycles
and cannot use the following structure: The parent category A has a subcategory
B. It is important that B and any of B’s subcategories are not the parent category
of A.

* A product cannot belong to more than one category.

The following tasks create a navigational catalog by modifying the NewFashion
sample store catalog. The resulting catalog can no longer be classified as a master
catalog since it the following steps introduce category cycles and the categorization
of some products into multiple categories. A classic navigational catalog is created

Store Developer’s Guide

by adding information to the category relationship tables: CATGRPREL, which
holds the subcategory relationships, and CATGPENREL, which holds the
category-product relationships. Although these examples involve NewFashion, you
can follow these basic steps with your own master catalog, making the appropriate
adjustments to match your catalog information, structure, and designs.

Creating category cycles

The NewFashion catalog contains four top categories: Men’s Fashions, Women'’s
Fashions, New Arrivals, and Homepage promotions. This example shows you
how to copy the New Arrivals category into Men’s Fashions and copy Homepage
promotions into Women’s Fashions, and then change name to New Arrivals.

To change the NewFashion sample store master catalog to a navigational catalog
using category cycles, do the following;:

1. Publish the NewFashion store archive to create the NewFashion sample store.
NewFashion is available in US English and one of the nine national languages
shipped with WebSphere Commerce. Choose one of the
NewFashion_en_US_locale.sar files for publication.

2. Open the catalog.xml file in an editor. The file is located in the following
WebSphere Commerce directory:

. drive:\WebSphere\CommerceServer\samp1estores\NewFashion
\locale\data

o AU drive:\Program

Files\WebSphere\CommerceServer\samplestores\NewFashion
\locale\data

. /usr/WebSphere/CommerceServer/samplestores/NewFashion
/locale/data

. /opt/WebSphere/Commerce/samplestores/NewFashion
/locale/data

. /qibm/proddata/WebCommerce/samplestores/NewFashion
/locale/data

3. Locate the CATGRPREL data section in the catalog.xml file. Create a new top
category relationship between Men’s Fashion and New Arrivals. Currently,
both categories are at the top level. For a navigational relationship, create a
new section which places New Arrivals as a subcategory of Men’s Fashion
while preserving the original structure. Under the CATGRPREL section, add the
following extract:
<catgrprel
catgroup_id_parent="@catgroup_id_11"
catgroup_id_child="@catgroup_id_21"
catalog_id="@catalog_id 1"
sequence="7"

/>

where

 catgroup_id_parent is the catalog group internal reference number of the
parent category as defined by the NewFashion sample store. In this example,
@catgroup_id_11 is the Men’s Fashion category.

* catgroup_id_child is the catalog group internal reference number of the
child category as defined by the NewFashion sample store. In this example,
@catgroup_id_21 is the New Arrivals category.

Chapter 8. Catalog assets 77

78

4.

e catalog_id is the internal reference number of the catalog as defined by the
NewFashion sample store.

* sequence is the number that determines the display order of the contents of
the catalog group as defined by the NewFashion sample store. In this
example, the New Arrivals category will be displayed last, after the first six
Men’s Fashions subcategories.

Repeat the above step, this time creating a new top category relationship
between Women'’s Fashions and Homepage promotions. Currently, both
categories are at the top level. For a navigational relationship, create a new
section which places Homepage promotions as a subcategory of Women's
Fashion while preserving the original structure. Under the CATGRPREL
section, add the following extract:

<catgrprel

catgroup_id_parent="@catgroup_id_20"

catgroup_id_child="@catgroup_id 22"

catalog_id="@catalog_id_1"

sequence="9"

/>

where

* catgroup_id_parent is the catalog group internal reference number of the
parent category as defined by the NewFashion sample store. In this example,
@catgroup_id_20 is the Women’s Fashion category.

* catgroup_id_child is the catalog group internal reference number of the
child category as defined by the NewFashion sample store. In this example,
@catgroup_id_22 is the Homepage promotions category.

+ catalog_id is the internal reference number of the catalog as defined by the
NewFashion sample store.

* sequence is the number that determines the display order of the contents of
the catalog group as defined by the NewFashion sample store. In this
example, the Homepage promotions category will be displayed last.

Now that Homepage promotions is a subcategory to Women'’s Fashions, the

category name is erroneous. Rename the category name to New Arrivals, to

match the new subcategory in Men’s Fashions.

Save the catalog.xml file.

To view your changes, do one of the following: publish the modified

NewFashion store archive through Store Services or load the catalog.xml file
with the Loader package as instructed in [“Loading database asset groups” on|

Adding a product to a second category

This example shows you how to copy products from one category to another while
preserving the original structure. The Homepage promotions category contains the
Summer Nightgown product, which could also belong under the Sleepwear
subcategory for the Women’s Fashions top category. These instructions will show
you how to copy the Summer Nightgown product and its SKUs to the Sleepwear
category.

To change the NewFashion sample store master catalog to a navigational catalog
adding a product to a second category, do the following;:

1.

Store Developer’s Guide

Publish the NewFashion store archive to create the NewFashion sample store.
NewFashion is available in US English and one of the nine national languages
shipped with WebSphere Commerce. Choose one of the
NewFashion_en_US_locale.sar files for publication.

. Open the catalog.xml file in an editor. The file is located in the following
WebSphere Commerce directory:

. drive:\WebSphere\CommerceServer\samp1estores\NewFashion
\locale\data

o AU drive:\Program

Files\WebSphere\CommerceServer\samplestores\NewFashion
\locale\data

. /usr/WebSphere/CommerceServer/samplestores/NewFashion
/locale/data

. /opt/WebSphere/CommerceServer/samplestores/NewFashion
/locale/data

. /q1'bm/proddata/WebCommerce/samp]estores/NewFashion
/locale/data

. Locate the CATGPENREL data section in the catalog.xml file. Create a new
product entry for Summer Nightgown, originally a product under the
Homepage promotions category. Under the CATGPENREL section, add the
following extract to include the product:

<catgpenrel

catgroup_id="@catgroup_id_18"

catalog_id="@catalog_id_1"

catentry_id="@product_id_2692"

sequence="2"

/>

where

 catgroup_id is the catalog group internal reference number as defined by the
NewFashion sample store. In this example, @catgroup_id_18 is the Sleepwear
category.

* catalog_id is the internal reference number of the catalog as defined by the
NewFashion sample store.

* catentry_id is the catalog entry internal reference number as defined by the
NewFashion sample store. In this example, @catentry_id_2692 is the
Summer Nightgown product.

* sequence is the number that determines the display order of the contents of
the catalog group as defined by the NewFashion sample store. In this
example, the Summer Nightgown product will be displayed last.

. After adding the Summer Nightgown product entry, add the SKU entries for
the product under the CATGPENREL section, as defined in the NewFashion
sample store. Currently, the Summer Nightgown product contains ten defined
SKUs. Under the CATGPENREL section, add the following extracts to include
the SKUs:

<catgpenrel
catgroup_id="@catgroup_id_18"
catalog_id="@catalog_id_1"
catentry_id="@catentry_id_2695"
sequence="2"

/>

<catgpenrel
catgroup_id="@catgroup_id_18"
catalog_id="@catalog_id_1"
catentry_id="@catentry_id_2696"
sequence="2"

/>

Chapter 8. Catalog assets 79

<catgpenrel
catgroup_id="@catgroup_id 18"
catalog_id="@catalog_id_1"
catentry_id="@catentry id_2697"

sequence="2"
/>
<catgpenrel

catgroup_id="@catgroup_id 18"
catalog_id="@catalog_id_1"
catentry_id="@catentry id_2698"

sequence="2"
/>
<catgpenrel

catgroup_id="@catgroup_id 18"
catalog_id="@catalog_id_1"
catentry_id="@catentry id_2699"

sequence="2"
/>
<catgpenrel

catgroup_id="@catgroup_id 18"
catalog_id="@catalog_id_1"
catentry_id="@catentry id_2700"

sequence="2"
/>
<catgpenrel

catgroup_id="@catgroup id 18"
catalog_id="@catalog_id_1"
catentry_id="@catentry_id_2701"

sequence="2"
/>
<catgpenrel

catgroup_id="@catgroup id 18"
catalog_id="@catalog_id_1"
catentry_id="@catentry_id_2702"

sequence="2"
/>
<catgpenrel

catgroup_id="@catgroup_id_18"
catalog_id="@catalog_id_1"
catentry_id="@catentry_id_2703"

sequence="2"
/>
<catgpenrel

catgroup_id="@catgroup_id_18"
catalog_id="@catalog_id_1"
catentry_id="@catentry_id_2704"
sequence="2"

/>

where

* catgroup_id is the catalog group internal reference number as defined by the
NewFashion sample store. In this example, @catgroup_id_18 is the Sleepwear
category.

 catalog_id is the internal reference number of the catalog as defined by the
NewFashion sample store.

80 Store Developer’s Guide

e catentry_id is the catalog entry internal reference number as defined by the
NewFashion sample store. In this example, @catentry_id_2695 through
@catentry_id_2704 represent the ten SKUs that have been defined for the
Summer Nightgown product.

* sequence is the number that determines the display order of the contents of
the catalog group as defined by the NewFashion sample store. In this
example, the Summer Nightgown SKUs will be displayed last.

5. Save the catalog.xml file.
6. To view your changes, do one of the following: publish the modified

NewFashion store archive through Store Services or load the catalog.xml file

with the Loader package as instructed in [‘Loading database asset groups” on|

Managing catalog assets in WebSphere Commerce

Over time, you will need to update the database asset information from the master
catalog. Maintaining your catalog is an ongoing process, as you will need to
continually add and remove merchandise, create and associate categories or catalog
groups, and update product information, such as descriptions and price.

You can change your catalog assets by editing the WebSphere Commerce XML data
using the existing database entries and catalog.xml files from your store. Use the
WebSphere Commerce sample store XML files as a reference, located in the
following data directory:

o BN orive:\WebSphere\CommerceServer\samplestores

o BNEIIM 5rive:\Program Files\WebSphere\CommerceServer\samplestores
. /usr/WebSphere/CommerceServer/samplestores

. /opt/WebSphere/CommerceServer/samplestores

. m/q1‘bm/proddata/WebCommerce/samp]estores

Note: These examples originate from the NewFashion sample store and identify
which XML elements must be modified to change the catalog asset
information.

Catalog groups

Catalog groups are created in a WebSphere Commerce catalog using the
CATGROUP and CATGRPDESC database tables. From the catalog.xml file, a
typical catalog group looks like the following extract:

<catgroup

catgroup_id="@catgroup_id_1"

member_id="&MEMBER_ID"

identifier="Accessories"

markfordelete="0"
/>

The catgroup_id is the internal reference number of the catalog group. Each
catalog group is assigned an internal reference number in WebSphere Commerce,
which identifies the group when adding catalog entries. The identifer is an
external name for the catalog group. Both elements are unique within the database
assets and cannot be duplicated.

Chapter 8. Catalog assets 81

82

Names and descriptions belong to the locale specific catalog.xml file, one of which
is required for each locale your store supports. A typical catalog group containing
translatable information looks like the following extract:

<catgrpdesc

language_id="&en_US"

catgroup_id="@catgroup_id_1"

name="Accessories"

shortdescription="Accessories"

longdescription="Accessories"

pubTished="1"

/>

The Tanguage_id identifies the language of your catalog information. This identifier
must change to match each language your store supports. The name is displayed to
the customer, as are the shortdescription and longdescription elements, which
may contain a brief and detailed description of the catalog group.

When creating a new catalog group, follow the above structure for the information.

Notes:

1. While the identifer and name elements are identical in the above example, the
content can vary. For instance, you might choose to rename your catalog group
to Complementary Additions. In such a case, you do not need to change the
information in identifer, only name.

2. When deleting catalog groups, ensure that catgroup_id occurrences are
updated accordingly. For instance, if you also want to delete the catalog entries
under the catalog group, then you would remove the entire XML entries.
However, if you plan to keep the catalog entries, then you need to change the
catgroup_id to the correct group.

Catalog entries

Catalog entries are created in a WebSphere Commerce catalog using the
information from the CATENTRY and CATENTDESC database tables. A catalog
entry can be a product, item, package, bundle, or dynamic kit. From the
catalog.xml file, a typical catalog entry looks like the following extract:
<catentry

catentry_id="@product_id 102"

baseitem_id="@baseitem_id_102"

member_id="&MEMBER_ID"

catenttype_id="ProductBean"

partnumber="product-sku-nf-102"

mfpartnumber="product-sku-nf-102"

mfname="NewFashion"

markfordelete="0"

buyable="1"

/>

The catentry_id is the internal reference number of the product catalog entry. The
baseitem_id is base item that the catalog entry relates to, for inventory purposes.
The partnumber is the reference number that identifies the part number of the
catalog entry. The mfpartnumber is the part number used by the manufacturer to
identify the catalog entry. These elements are unique within the database assets
and cannot be duplicated.

The catenttype_id identifies the type of catalog entry: ItemBean, ProductBean,
PackageBean, BundleBean, or DynamicKitBean.

Store Developer’s Guide

Names and descriptions belong to the locale specific catalog.xml file, one of which
is required for each locale your store supports. Merchandise images are also
included in this file. A typical catalog group containing translatable information
looks like the following extract:

<catentdesc

catentry_id="@product_id_102"

language_id="&en_US"

name="Belt"

shortdescription="Classic belt"

longdescription="This classic belt looks great with your favorite jeans,

or takes you to work in style. 1 1/2 inches wide in full-grain leather

with a solid nickel buckle."

thumbnail="images/mens_accessories_belt_sm.gif"
fullimage="images/mens_accessories_belt.gif"

availabTe="1"

published="1"

/>

The Tanguage_id identifies the language of your catalog information. This identifier
must change to match each language your store supports. The name is displayed to
the customer, as are the shortdescription and Tongdescription elements, which
may contain a brief and detailed description of the catalog entry.

When creating a new catalog entry, follow the above structure for the information.

Notes:

1. When deleting catalog entries, ensure that each occurrence of the unique
elements are updated accordingly. For instance, if you also want to delete the
catalog entries under the catalog group, then you would remove the entire
XML entries. However, if you plan to keep the catalog entries, then you need to
change the catgroup_id to the correct group.

2. Products must be created before other types of catalog entries.

If you do not want to manually change the XML files, choose one of the following
methods: the Product Management tools or the Catalog Manager utilities.

Product Management tools

The Product Management tools in the WebSphere Commerce Accelerator allow you
to manage the products in your store’s master catalog using various wizards and
notebooks. You can update your catalog’s content or create new catalog data:

* Create, update, and delete products and product details using the wizard or
notebook. Products act as templates for SKUs, the individual items which are
ultimately sold to a customer. Product details include the product code (which
uniquely identifies the product), the product name and description, any
merchandising options (such as displaying a product to customers or indicating
if that product is part of a special promotion), the product images, tax and
shipping specifications, discounts assigned to the products, and manufacturer
information.

* Generate, update, and delete SKUs (or items) for purchase. SKUs represent each
orderable item of merchandise for sale. All SKUs related to a particular product
exhibit the same set of attributes and are distinguished by their attribute values.
Additions or changes made to SKUs include the same information as products,
except on an orderable basis.

* Create, update, and delete categories (or catalog groups), which are a group of
objects that have similar properties which are used to organize products or
services offered by the store. You can manage the category hierarchy of your

Chapter 8. Catalog assets 83

84

master catalog by creating, changing and deleting categories and details about
the categories, such as the category code, the name, and description, including
parent category and images.

* Associate products and SKUs with categories by choosing the parent category or
moving products and SKUs from one category to another.

* Create attributes and attribute values for products. Each possible combination of
attributes and attribute values equals a new SKU. You must predefine attribute
values before assigning them to SKUs. After creating attributes and their values,
you can create or update information such as name, description, (text, whole
numbers, or decimal numbers), and sequence in which the attributes and
attribute values will appear.

* Create, update, delete, and associate catalog pricing with products. You can
define a price for a product or SKU, in one or more currencies, along with a set
of conditions such as setting a price for single or bulk quantities, which must be
satisfied in order to use the price.

You can refer to the Product Management section in the online help for detailed
instructions on each task.

Notes:

1. The Product Management tools are recommended for minor changes only. For
large catalog updates, such as adding or removing seasonal merchandise or
preparing for a clearance sale, use the Loader package.

2. Any changes to the catalog data cannot be displayed in the store unless you
disable caching or remove the currently cached JSP pages. For more
information, refer to the CacheDelete command in the WebSphere Commerce
online help. The CacheDelete command initiates remote cleanup of the dynamic
page cache and allows you to manage the cache without requiring direct access
to the file system. Before using this command ensure that Auto Page
Invalidation is enabled. Note that you must be logged in as either a Site
Administrator or Store Developer to use this command.

Catalog Manager

You can also maintain your catalog using the Loader package or the Web Editor,
two utilities available from the Catalog Manager. The Loader package is ideal for
importing large amounts of existing product information into the database. In
WebSphere Commerce, this is the primary tool to create and manage catalog
information. This package consists primarily of command utilities for preparing
and loading data into a WebSphere Commerce database. The Loader package also
allows you to extract data from a database as an XML document, transform XML
data into alternate XML formats, and transform data between a character-delimited
variable format and an XML data format.

The Web Editor uses a Web browser interface, in which you can create, edit, or
delete catalog data. Data-entry forms for viewing and updating information are
central to the Web Editor. In the simplest case, the forms correspond to tables in
the WebSphere Commerce database. The administrator can choose to use the
default forms provided or to customize the available forms. Refer to the IBM
WebSphere Commerce Version 5.4 Catalog Manager User’s Guide for more information.

Store Developer’s Guide

Chapter 9. Pricing assets

Pricing represents the price for a catalog entry and any criteria that must be
satisfied in order to use that price. In order to create a functional catalog, you need
to add pricing information to the database. You can create pricing information in
the format of XML files that can be loaded into the database using the Loader
package. Or you can use the Product Management tools from the WebSphere

Commerce Accelerator for small amounts of pricing data.

Understanding pricing in WebSphere Commerce

The following diagram illustrates the pricing assets in the WebSphere Commerce

Server.

+owner\l/ 1

Menber

Q

1 +owner

+owner 1

Q

FarticipantRale

1

Paricipant

O

BuzineszFolicy

FricePaolicy

Tem Cordition -

Q

TradingAgreement

L 4

StoreEntity

i

Store

+deployedContract

Price TCTyoe

TradingPositionContainer

OfferPrice

1.n
Noainz! GuantityOffermed A

4

Q

Contract

Q 0.1

+defaultContract

Catalog

T +root

CatalogEntryShipping

Catalog Gmoun

Q

+parent
1 +subCatalogEntry

Offer

CatalogEntry

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information

on the information model, see ['The store data information model” on|

[page 25] For more information on the conventions used in this diagram,

see[Appendix A, “UML legend” on page 303.

Offer

Offers, or pricing, are different prices for the same product or item to different
customers or organizations. An offer represents the price of a catalog entry and
criteria, such as the quantity to be purchased, that the customer must satisfy in
order to pay that price. For example, merchandise or services are often priced

© Copyright IBM Corp. 2002

85

86

differently for children, students, adults, and seniors. In WebSphere Commerce, an
offer is also known as a trading position and is part of a trading position container.

Offer price

The offer price is a price at which catalog entries are offered by a store by means of
trading agreements or contracts. An offer can have one or more than one offer
prices defined in multiple currencies.

Trading position container

Terms

Types

An offer is part of a trading position container, which is owned by a member. A
trading position container contains trading positions. It can be made available to
all customers, or to only customers in certain groups through the trading
agreements or contracts, and the terms and conditions in the contracts. Under a
contract, a trading position container is a price business object that can be
referenced by multiple price business policies and can be shared by a store or all
stores in a store group. A trading position container is also referred to as a price
list.

and conditions

Terms and conditions define the behavior and properties of a trading agreement.
Many terms and conditions reference business policies because several aspects of a
store’s operation are defined by business policies.

of pricing terms and conditions

Pricing terms and conditions define what products are available under a contract and
what prices the customer will pay for the products. At least one of the following
pricing terms is required in a contract:

* A customized price list specifies that both the list of products for sale and their
prices are customized for sale in a contract and their price is customized. Items
are not limited to a section of the store catalog they can be from anywhere in the
store catalog.

* An entire catalog with adjustment term offers all of the products available in a
store catalog for sale with a percentage adjustment (mark-up or discount) from
the base price as defined in the store catalog. If no adjustment is specified, items
are sold at the base price.

* A price list with adjustment term offers all of the products available in a price list
for sale with a percentage adjustment (mark-up or discount) from the base price
as defined in the store catalog. If no adjustment is specified, items are sold at the
base price.

A price list with selective adjustment term is similar to price list with adjustment
except the adjustment is not applied to the entire price list. The adjustment is
made on a subset of the price list. The subset of the price list may either be a
product set business policy or a customized product set.

Trading agreement

A trading agreement can be a contract, an RFQ, a business account, or an auction. A
trading agreement is an agreement negotiated between a seller and a buyer upon
which the buyer is enabled to purchase certain items with the specified terms and
conditions and the business policies stipulated in the contract. For example, it
allows the customer to purchase products from a store at the specified price for a
specified period of time, under the pricing terms and conditions In WebSphere
Commerce, all customers must shop in a store under a contract, A store may

Store Developer’s Guide

deploy one or more contracts and one of them can be designated to be the default
contract. A default contract contains a set of terms and conditions that are
associated with a set of store default policies. A trading agreement may contain
zero or more participants of different roles.

Participant

A participant can be part of either a trading agreement or terms and conditions. A
participant is a member which can be a member group, an organization, and so on.
If a participant of a buyer role is specified for a contract, a buyer must be a
member of the buyer participant in order to shop under the contract. The terms
and conditions in the contract can also contain zero or multiple participants.

Participant role
A participant can have one of the following participant roles:
* Creator
* Seller
* Buyer
e Supplier
e Approver
* Account holder
* Buyer contact
* Seller contact
e Attorney
¢ Administrator.

Contract

A contract contains the offer price for the product. In WebSphere Commerce, all
customers must shop under a contract. A contract allows the customer to purchase
products from a store at the specified price for a specified period of time, under
the terms and conditions, and business policies, stipulated in the contract. A store
owns zero or more contracts, and owns at least one default contract.

Business policy

Business policies are sets of rules followed by a store or store group that define
business processes, industry practices, and the scope and characteristics of a store
or store groups offerings. Business policies are enforced with a combination of a
combination of one or more business policy commands that implement the rules of
the business policy, a reference to a business object that the rules act on, and a set
of properties to configure the operation of the business policy commands.

Price policy
A price policy contains a reference to a price list and can be associated with
multiple business policy commands that define how the business policies will be
implemented on the price lists. The policy may be defined for a store or a store
group. If the policy is registered for a store group, then the policy may be used by
all stores in that group.

Chapter 9. Pricing assets 87

Catalog entry shipping

Catalog entry shipping information includes information about how the product is
packaged for shipping. Each catalog entry can have different types of shipping
information defined. For example, the height, weight, and length of the product
when packaged.

Other pricing assets
The following assets are associated with pricings:

* A member who owns the trading position container. A trading position container
only has one owner.

A store entity represents a store in the WebSphere Commerce Server database.

* A catalog contains catalog entries that will be referenced in a contract. The
catalog contains all hierarchical and navigational information for the online
catalog and is a collection of catalog groups and catalog entries that are available
for display and purchase at an online store.

* A catalog group, or category, are generic groupings of catalog entries, created for
navigational and catalog partitioning purposes. A catalog group belongs to a
catalog and may contain more than one catalog group or catalog entries. You can
associate catalog groups to more than one catalog.

* A catalog entry represents orderable merchandise in an online catalog. Catalog
entries belong to catalog groups. An offer is always associated with one catalog
entry.

For more detailed information on the structure of pricing assets in the
WebSphere Commerce Server, see the pricing object and data models in
the WebSphere Commerce online help.

Creating pricing assets in WebSphere Commerce

You have two options for creating your pricing assets:

* Create prices using the Product Management tools in the WebSphere Commerce
Accelerator. Using the tools in the WebSphere Commerce Accelerator is most
suited to creating prices for a very small catalog.

* Create prices in an XML file, which can be loaded by the WebSphere Commerce
Loader package, or as a part of a store archive, which can be published through
Store Services. This method is more suitable for creating large amounts of data.

For more information on creating prices using the Product Management tools in
the WebSphere Commerce Accelerator, see the WebSphere Commerce online help.
For more information on creating prices in an XML file, see [“Creating pricing|
lassets in an XML file”}

Creating pricing assets in an XML file

Create your pricing assets in the format of XML files that can be loaded into the
database using the Loader package. For more information on the Loader package,
see [Part 7, “Publishing your store” on page 207}

1. Review the XML files used to create pricing assets for the sample stores. All
files for the sample stores are located in the corresponding store archive file.

The store archive files are located in the following directory:

. dr1've:\WebSphere\CommerceServer\samp1estores

88 Store Developer’s Guide

. drive:\Program Files\WebSphere\CommerceServer\samplestores
. /usr/WebSphere/CommerceServer/samplestores
. /opt/WebSphere/CommerceServer/sammestores
. /opt/WebSphere/CommerceServer/samplestores
. /q1'bm/proddata/WebCommerce/samp1estores
Note: The WebSphere Commerce online help contains information about
each of the data assets contained in the sample stores.

Each sample store includes two offering.xml files, which include the pricing
information. To view the offering.xml files in the store archive, decompress it
using a ZIP program. The offering.xml files are located in the data directory.
The language-specific offering.xml is in a locale-specific subdirectory of the
data directory.

. Review the information in [Appendix B, “Creating your data” on page 305,

. Create an offering.xml file, either by copying one of the offering.xml files in
the sample store archives, or by creating a new one. For more information, see
the DTD file that corresponds to offering.xml. The DTD files are located in the
following directory:

o EBYEMN drive:\WebSphere\CommerceServer\xml\sar

. dr‘ive:\Pr‘ogram Files\WebSphere\CommerceServer\xml\sar
. /usr/WebSphere/CommerceServer/xml/sar

. /opt/WebSphere/CommerceSer‘ver/xm]/sar

. /opt/WebSphere/CommerceServer/xml/sar

. /qibm/proddata/WebCommerce/xml/sar

. Create a trading position container. In order to offer prices for the goods in
your store, you must first create a trading position container. To create a
trading position container, add information to the TRADEPOSCN table.

a. Using the following example as your guide, create a trading position
container in your XML file in the TRADEPOSCN table:

<tradeposcn
tradeposcn_id="@tradeposcn_id_101"
member_id="&MEMBER_ID"
markfordelete="0"

name="ToolTech"

precedence="0"

/>

where
 tradeposcn_id is a generated unique key
* member_id is the owner of the trading position container.
* markfordelete is as follows:
— 0 = the TradingPositionContainer can be used

— 1 = the TradingPositionContainer has been marked for deletion (refer
to the DBClean utility) and should not be used

* nameis a mnemonic name for the trading position container, unique for a
particular owner.

Chapter 9. Pricing assets 89

90

* precedence is when more than one trading position containers is qualified
at a particular time, the one with the highest PRECEDENCE is used.

Associate the master catalog with a trading position container by adding
information to the CATGRPTPC table. When you associate the master catalog
with a trading position container, every catalog entry in the master catalog
must have a standard price. For more information on creating master catalogs,
see [“Displaying store catalog assets” on page 74|

a.

Using the following example as your guide, associate the master catalog to
the trading position container by adding information to the CATGRPTPC
table:

<catgrptpc
catalog_id="@catalog_id_1"
tradeposcn_id="@tradeposcn_id_101"
/>

where

e catalog_id is the master catalog.

* tradeposcn_id is the trading position container.

6. Create offers and offer price for catalog entries by adding information to the
OFFER and OFFERPRICE tables

Store Developer’s Guide

a.

Using the following example as your guide, create an offer for a catalog
entry by adding information to the OFFER table. Note that you must have
created catalog entries before you can create prices. For more information
on creating catalog entries, see [“Displaying store catalog assets” on page 74

offer

offer_id="@offer_id_138"
startdate="2000-06-19 00:00:00.000000"
catentry_id="@product_id_102"
precedence="0"

published="1"

identifier="1"

flags="1"
tradeposcn_id="@tradeposcn_id_101"

/>
where

« offer_id is a generated unique key.

 startdate is the start of the time range during which this offer is
effective.

 catentry_id is the catalog entry offered for sale.

* precedence is when more than one offer is effective at a particular time,
the one with the highest PRECEDENCE is used.

* published is
— 0 = not published (temporarily disabled)
- 1 = published
— 2 = marked for deletion (and not published).

e identifier is a number that uniquely identifies this offer along with its
specified catalog entry and trading position container.

* flags are

— 1 = shiptoAddressRequired - if 1, OrderPrepare will return an error if
an Orderltem references this Offer but does not have a shipping
address.

 tradeposcn_id is the trading position container this offer is part of.

b. Using the following example as your guide, create an offerprice for a
catalog entry by adding information to the OFFERPRICE table. The offer
price is the actual price at which a catalog entry is offered for sale. Note
that you must have created catalog entries before you can create prices. For
more information on creating catalog entries, see [“Displaying store catalog]
lassets” on page 74|

<offerprice
offer_id="@offer_id_138"
currency="USD"
price="590.00"

/>

where
+ offer_id is offer associated with this price.
* currency is the currency which the price is offered in.

* price is the price for the nominal quantity (see
CATENTSHIPNOMINALQUANTITY) of the product referred to by the
offer.

Note: To display multiple currencies in your store, create a separate XML
entry in the OFFERPRICE table for each currency. For example, to
display the currency in Canadian dollars, use currency="CAD" in a
new XML entry. The price value would change to reflect the price in
Canadian dollars. Or you can use a conversion, allowing the
customer to display different rates based on the currency they select.
For more information, see [‘Creating currency assets using an XMIJ
file” on page 121}

C. Repeat steps a and b for all catalog entries in your catalog.

For more information about the use of @ and & see |AE£>endix B]
[“Creating your data” on page 305}

Chapter 9. Pricing assets 91

92 Store Developer’s Guide

Chapter 10. Contract assets

In WebSphere Commerce, all store customers must shop under a contract. A
contract allows customers to purchase products from a store at a specified price for
a specified period of time under specific conditions. When browsing a store’s
catalog, customers will only see products covered by the contracts they are entitled
to within the store.

If you want customers who do not have any contract with your store (for example,
guest shoppers) to be able to shop in the store, or if you want customers to be able
to purchase products not covered by their contracts, your store will require a
default contract.

— Important
WebSphere Commerce Professional Edition supports only the store default
contract.

Contracts other than the store default contract are supported only by
WebSphere Commerce Business Edition.

In order to allow all customers to shop at a store, a store created with WebSphere
Commerce must include the following:

* Business policies
e Default contract

The business policies are referenced by the default contract, thus allowing all
customers to shop at a store.

© Copyright IBM Corp. 2002 93

Understanding contracts in WebSphere Commerce

94

The following diagram illustrates the structure of contracts in WebSphere
Commerce:

StoreEntity

AttachmentUsage
0.1 Q +initials tore Q

0.9 Account o1 Store

0.1

Attachrnent

1 +deployedContract

0.1 Q Q 0.1

Ordertem TradingAgreement 1 01 Contract

+defaultContract

N P
TradingAgreement Type

Tem A ndCondition
0.1 BusinessPaolicy

B
TermAndConditionSuh Type P olicy Type J T

1

: ! O

TermAndCondition Type PolicyTypeCmdinterface PalicyCammand

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information
on the information model, see [“The store data information model” onl
|page 25| For more information on the conventions used in this diagram,
see|Appendix A, “UML legend” on page 303

Account (business account)

A business account represents the relationship between a buyer organization and a
seller organization. A business account can be used to organize various trading
agreements and to specify terms and conditions related to the relationship between
buyer and seller such as: invoice customization, purchase order verification, or
maintaining a buyer’s line of credit with the seller.

Contracts are associated with business accounts since they represent an agreement
between a buyer and a seller. The exception to this is the store default contract
which cannot be associated with a business account. A business account can have
many contracts associated with the account.

A business account is a type of trading agreement. For a description of trading
agreements, see [“Trading agreement” on page 95,

Important: Business accounts are only supported by WebSphere Commerce
Business Edition.

Store Developer’s Guide

Contract

There are two types of active contracts associated with stores: deployed contracts
and default contracts. Deployed contracts entitle specific buyer organizations or
individual buyers and can be created using the WebSphere Commerce Accelerator
after you have created your store. A deployed contracts is associated with one
business account. A default contract defines the default behavior of your store for
buyers who do not have any other contracts with your store. A default contract can
only be created using XML files and only one default contract may be defined for a
store. For more information on contracts, refer to the online information. For
information on creating a default contract asset, see [“Creating a default contract]
lasset in WebSphere Commerce” on page 97

A contract is a type of trading agreement. For a description of trading agreements,
see [“Trading agreement”}

Trading agreement

Terms

WebSphere Commerce provides a number of trading mechanisms governing the
interactions between buyers and sellers. The following trading mechanisms are
supported by different editions of WebSphere Commerce:

* Auctions (supported by both Business and Professional editions)
* Business accounts (only supported by Business edition)

* Contracts (see restrictions discussed previously in this chapter)

* Request for quotes (RFQs) (only supported by Business edition)

All of these trading mechanisms have common properties. For example, all trading
mechanisms have participants and they all have rules governing the behavior of
the trading mechanism. The rules governing the behavior of trading mechanisms
are known as terms and conditions in WebSphere Commerce.

A trading agreement represents an instance of a trading mechanism and records
the properties of that instance of a trading mechanism. Each contract, business
account, and RFQ in WebSphere Commerce is represented by a trading agreement.
There is a single trading agreement that governs all auctions in WebSphere
Commerce.

A trading agreement consists of a profile stored in the TRADING table;
participants stored in the PARTICIPNT table; terms and conditions stored in the
TERMCOND table; and optional attachments stored as Universal Resource
Identifiers (URIs) in the ATTACHMENT table. Because a trading agreement can
have multiple attachments, attachments are related to the trading agreement
through the TRDATTACH table. Note that attachments are not supported for
RFQs.

In addition to the general trading agreement, each type of trading agreement stores
additional information specific to the type of trading agreement in its own table:
CONTRACT stores contract-specific information; RFQ stores RFQ-specific
information; and ACCOUNT stores business account-specific information.

and conditions
Terms and conditions define the behavior and properties of a trading agreement.

For contracts, the terms and conditions define how a contract is implemented for a
buyer organization. They define what is being sold under the contract; the price of

Chapter 10. Contract assets 95

96

the items being sold; how the items are shipped; how orders are paid for; how
item returns are handled; how orders are approved; and where orders are shipped
from.

Some terms and conditions reference business policies because many aspects of a
store’s operation are defined by business policies. Terms and conditions provide
parameters for the business polices they reference. Providing parameters to the
business policies allows you to modify the behavior of business policies for each
contract.

Business policies

Business policies are sets of rules followed by a store or group of stores. Business
policies define business processes, industry practices, and the scope and
characteristics of a store’s or group of stores” offerings. They are the central source
and reference template for all allowed and supported practices within a store or
group of stores.

In WebSphere Commerce, business policies are enforced with a combination of one
or more business policy commands that implement the rules of the business policy,
a reference to a business object that the rules act on, and a set of properties to
configure the operation of the business policy commands. Terms and conditions
may provide parameters for the business polices they reference. This allows the
behavior of the business policy to be modified depending on the term and
condition referencing the business policy.

Attachment

An attachment provides addition information about a trading agreement that is not
covered by other elements of the trading agreement. An example is a file that
provides additional information about RFQ requirements and any general remarks
about the RFQ. A trading agreement can have multiple attachments. Attachments
are stored outside of WebSphere Commerce and the trading agreement stores
Universal Resource Identifiers (URIs) to the attachments. Examples of URIs include
the following:

* http://www.mycompany.com/information/documentl.txt
* file:///home/joeuser/mydocs/documentl
* ftp://ftp.mycompany.com/information/attachment.txt

All attachments can be assigned an attachment usage that indicates what the
attachment is for. The attachment usage is an optional property of an attachment.

Order item

An order item is a product that is included with an order. Different order items in
a single order may be purchased under different contract trading agreements.
Buyers can select the contract trading agreement they shop under at either the start
of the shopping flow or when they add an item to their order, depending on the
store design. When purchasing items under different contract trading agreements
the following rules apply:

* Contract trading agreements for all items in an order must share at least one
payment method. If the contract for an item does not share a payment method,
the buyer can not add that item to the order. Only the payment methods shared
by all items in an order can be used to pay for the order.

* All items in an order must come from contract trading agreements belonging to
the same business account or the store default contract.

Store Developer’s Guide

For more detailed information on the structure of contract assets in
WebSphere Commerce, see the contract data model in the WebSphere
Commerce online help.

Creating a default contract asset in WebSphere Commerce

The default contract defines the default behavior of a store. As with all contracts,
you can set the available products, prices, payment methods, shipping methods,
and other store behavior.

The store default contracts provided with the WebSphere Commerce sample stores
contain terms and conditions that specify the following;:

* Customers can purchase all products available in the master catalog for the store
at standard prices set in the master catalog (no discounts or mark-ups).

* Any shipping charges are paid to the seller (store).

e Customers can return purchases without penalty charges within a certain
number of days.

* Customers can receive refunds using the same payment method used for the
original purchase.

Also, the most general version of a store’s default contract omits terms and
conditions that restrict the payment and shipping methods that buyers can use.
Omitting these terms allows buyers to pay for purchases using any of the default
payment methods supported by the store and use any shipping method available
in the store.

The default contract’s properties are defined in its terms and conditions. Some of
the terms and conditions reference business policies. For more information on
business policies and terms and conditions, refer to the online information.

To create a default contract asset, do the following;:

1. Review the online information on terms and conditions, contracts, default
contracts, and business policies.

2. Review the business policies defined in the wcs.bootstrap.xml file. For
information on the wcs.bootstrap.xml file, refer to the online information.

3. Review the files used to create default contract assets for the sample stores. All
sample stores files are located in the corresponding store archive file. Each
sample store includes a businesspolicy.xml and contract.xml, which includes
additional business policy information and default contract information. The
store archive files are located in the following directory:

. /usr/WebSphere/CommerceServer/samplestores

. /q1’bm/proddata/webCommerce/samp]estor‘es

. /opt/WebSphere/CommerceServer/samplestores

. /opt/WebSphere/Commer‘ceSer‘ver/samp]estor‘es

. dr‘ive:\Pr‘ogram Files\WebSphere\CommerceServer\samplestores
. dr‘ive:\WebSphere\CommerceSer'ver\samp]estor‘es

Notes:

a. The WebSphere Commerce online help contains information about each of
the data assets contained in the sample stores.

Chapter 10. Contract assets 97

98

b. To view the businesspolicy.xml and contract.xml files in the store archive,
decompress them using a ZIP program. The files are located in the data
directory.

c. The contract asset files for the ToolTech sample store that is provided with

WebSphere Commerce Business Edition includes information for contracts
other than the store default contract.

Review the information in [Appendix B, “Creating your data” on page 305,

Create a businesspolicy.xml file by copying one of the businesspolicy.xml
files in the sample store archives, or by creating a new file. Instructions on
creating a new file are in [“Creating business policy XML files” on page 99} If
you want to create different business policies from the ones discussed, see the
DTD file that corresponds to businesspolicy.xml. The DTD files are located in
the following directory:

. /usr/WebSphere/CommerceServer/xml/sar
. /q1’bm/proddata/WebCommer‘ce/xm]/sar

. /opt/WebSphere/CommercServer/xml/sar
. /opt/WebSphere/CommercServer‘/xm]/sar'
. drive:\Progr'am Files\WebSphere\CommerceServer\xml\sar

. drive:\WebSphere\CommerceServer\xml\sar

Load the businesspolicy.xml file using the Loader package. For more
information on the Loader package, see [Part 7, “Publishing your store” on|

If you are creating a multicultural store, you may want to create

separate XML files for each locale your store supports. The locale-specific file
should specify all description information, so it can be easily translated.

Create a contract.xml file by copying one of the contract.xml files in the
sample store archives, or by creating a new file. Instructions for creating a new
file are in [‘Creating a default contract XML File” on page 100} If you want to
create a more complex default contract, review the B2BTrading.dtd file which
defines the structure of a contract.xml file. The B2BTrading.dtd is located in
the following directory:

. usr/WebSphere/CommerceServer/xml/trading
BESM /usr/WebSphere/C Server/xml/tradi
. /q1'bm/proddata/WebCommerce/xm]/tr‘ading

. /opt/WebSphere/CommerceServer/xml/trading
. /opt/WebSphere/CommerceServer‘/xm]/tr‘ading
. drive:\Pr‘ogram Files\WebSphere\CommerceServer\xml\trading

. drive:\WebSphere\CommerceServer\xml\trading

Publish the contract using the ContractiImportApprovedVersion command. For
more information, see [Chapter 29, “Publishing business accounts and contracts’|
Information on the ContractimportApprovedVersion command is
also available in the online information.

WebSphere Commerce Business Edition users can define contracts for specific
customers using the WebSphere Commerce Accelerator. For more information on
creating contracts for specific customers, refer to the online information.

Store Developer’s Guide

Creating business policy XML files

While WebSphere Commerce provides a number of business policies that the terms
and conditions in your store’s default contract can reference, some business
policies must still be defined by you. You must define any return charge, return
approval, and pricing business policies that the store default contract terms
reference. Commands for these business policies are provided and can be used
without modification. If you want to create your own business policies, refer to
IBM WebSphere Commerce Programmer’s Guide.

In order to create business policies for your store, you must create the business
policy and associate one or more commands with the business policy. To create a
business policy, add information to the POLICY table. To associate a command
with a business policy, add information to the POLICYCMD table.

To create a business policy and associate commands with the policy, do the
following:

1. Create a business policy in your business policies XML file by adding
information to the POLICY table. Use the following example as a guide:

<policy

policy_id="@policy_id_10"
policyname="MasterCatalogPricelList"
policytype_id="Price"

storeent_id="@storeent_id 1"
properties="name=InFashion&member_id=&4MEMBER_ID"
/>

where
e policy_id is the unique, numeric identifier for the business policy.
* policyname is a unique name for this business policy.
* policytype_id is the type of policy being defined. Valid policytype_ids are:
— InvoiceFormat
- Payment
— Price
— ProductSet
— ReturnApproval
— ReturnCharge
- ReturnPayment
— ShippingCharge
— ShippingPayment
* storeent_id is the store or store group.

* properties is a list of name—value pairs that is sent to the business policy
command.

2. Associate a command with the business policy in your business policies XML
file by adding information to the POLICYCMD table. Use the following
example as a guide:
<policycmd
policy_id="@policy_id_10"
businesscmdclass=

"com.ibm.com.commerce.price.commands.CalculateContractPricesCmdImpl"

/>

where

Chapter 10. Contract assets 99

100

e policy_id is the numeric identifier of the business policy with which the
command is being associated.

* businesscmdclass is the name of Java class implementing the business policy.

The line breaks in the businesscmdclass attribute are for display purposes only.

For more information about the use of @ and & see |AE£>endix B]
|“Creating your data” on page 305}

Creating

a default contract XML File

In order to create a default contract, you must define the contract, the contract
owner, the contract description, the contract participants, and the terms and
conditions of the contracts. Contract information is stored in four tables:
CONTRACT, PARTICIPNT, TRADING, and TERMCOND.

The default contract is associated with a store using the STOREDEF database table.
For WebSphere Commerce Business Edition users, contracts other than the default
contract are associated with a store using the STORECNTR database table.

To create a default contract, do the following:

1.

Store Developer’s Guide

Define the default contract in your XML file. The default contract is defined at

the beginning of the XML file as follows:

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE Trading SYSTEM "B2BTrading.dtd">

<Trading>

<Contract state="Active" origin="Manual"
name="&STORE_IDENTIFIER; Default Contract" majorVersionNumber="1"
minorVersionNumber="0" contractUsage="Default">

Note that line breaks in the Contract element are for display purposes only.
Define the contract owner. Use the following example as a guide:

<ContractOwner>
<Member>
<Organization distinguishName="&MEMBER IDENTIFIER;" />
</Member>
</ContractOwner>

where distinguishName is the name of the user owning the contract in LDAP
distinguished name format. For example,
uid=erickoeck,ou=People,dc=ibm,dc=com.

Define the contract description in your contract XML file. Use the following
example as a guide:

<ContractDescription title="This is a store default contract." languagelId="-1">
</ContractDescription>

where
e titleis a text description of the contract.

* languageld is the language the title is in. The following values are predefined
for languageld:

- -1 (English — US)
— -2 (French)

— -3 (German)

— -4 (Italian)

— -5 (Spanish)

— -6 (Brazilian Portuguese)

— -7 (Simplified Chinese)

— -8 (Traditional Chinese)

— -9 (Korean)

- -10 (Japanese)

Additional values can be defined for 1anguageld by updating the language

assets for your store. For more information on language assets, see
[Chapter 14, “Language assets” on page 117

Define the contract participants in your contract XML file. Use the following
example as a guide:
<Participant role="Buyer">
</Participant>
<Participant role="Seller">

<Member>

<Organization distinguishName="&MEMBER_IDENTIFIER;"/>

</Member>

</Participant>

where distinguishName is the name of the user that is the seller for this
contract in LDAP distinguished name format. For example,
uid=erickoeck,ou=People,dc=ibm,dc=com. In many cases, this will be the same
as the contract owner.

Note: No members are specified in the buyer participant role because the
contract is available to all users with a buyer role.

Define the terms and conditions in your contract XML file. The XML elements
and attributes are different for the various types of terms and conditions. Use
the B2BTrading.dtd file to learn the XML elements and attributes to use for
each type of term. When defining terms and conditions the following attributes
are commonly used:

policyName
The name of the business policy that the term and condition references.
This name is stored in POLICY.POLICYNAME.

policyType
The type of business policy that the term and condition references.
Valid values are:

¢ Price

¢ ProductSet

* InvoiceFormat

¢ Payment

¢ ReturnApproval

¢ ReturnCharge

* ReturnPayment

¢ ShippingCharge

 ShippingMode
storeldentity

The store or store group for the term and condition.

Chapter 10. Contract assets 101

distinguishName
The name of the user that owns the store or store group. The name
must be in LDAP distinguished name format. For example,
uid=wcsadmin,o=Root Organization.

The following sample terms and conditions are preceded by a description of
what they define:

* All buyers can purchase all items in the store’s master catalog at the prices
set in the master catalog;:

<TermCondition>
<PriceTC>
<PriceTCMasterCatalogWithOptionalAdjustment>
</PriceTCMasterCatalogWithOptionalAdjustment>
</PriceTC>
</TermCondition>

* Buyers pay any shipping charges to the seller:

<TermCondition>
<ShippingTC>
<ShippingTCShippingCharge>
<PoTicyReference policyName="StandardShippingChargeBySeller"
policyType="ShippingCharge" storeldentity="&STORE_IDENTIFIER;">
<Member>
<User distinguishName="&VMEMBER_IDENTIFIER;">
</Member>
</PolicyReference>
</ShippingTCShippingCharge>
</ShippingTC>
</TermCondition>

Line breaks in the PolicyReference element are for display purposes only.

* Buyers can return products without any return charges. The products must
be returned within the number of days defined in the ApprovalByDays
business policy:
<TermCondition>

<ReturnTC>
<ReturnTCReturnCharge>
<ReturnChargePolicyReference>
<PolicyReference policyName="NoCharges"
policyType="ReturnCharge"
storeldentity="&STORE_IDENTIFIER;">
<Member>
<Organization distinguishName="&VMEMBER_IDENTIFIER;">
</Member>
</PolicyReference>
</ReturnChargePolicyReference>
<ReturnApprovalPolicyReference>
<PolicyReference policyName="ApprovalByDays"
policyType="ReturnApproval"
storeldentity="&STORE_IDENTIFIER;">
<Member>
<Organization distinguishName="&VMEMBER_IDENTIFIER;">
</Member>
</PolicyReference>
</ReturnApprovalPolicyReference>
</ReturnTCReturnCharge>
</ReturnTC>
</TermCondition>

Line breaks in the PolicyReference elements are for display purposes only.

102 Store Developer’s Guide

Note for WebSphere Commerce Business Edition users:

Omitting these terms and conditions from the store default contract indicates
that, by default, the store does not accept returns. Other contracts, however,
may allow buyers to do returns, by defining the returns term and condition.

Note for WebSphere Commerce Professional Edition users:
Omitting these terms and conditions from the store default contract indicates

that the store does not accept returns.
* Refunds are paid using the same payment method the buyer used when
completing the order:

<TermCondition>
<ReturnTC>
<ReturnTCRefundPaymentMethod>
<PoTlicyReference policyName="UseOriginalPayment"
policyType="ReturnPayment" storeldentity="&STORE_IDENTIFIER;">
<Member>
<User distinguishName="&VEMBER_IDENTIFIER;">
</Member>
</PolicyReference>
</ReturnTCRefundPaymentMethod>
</ReturnTC>
</TermCondition>

Note that line breaks in the PolicyReference element are for display
purposes only.

For more information about the use of @ and & see |AEEendix B:l
[“Creating your data” on page 305}

Chapter 10. Contract assets

103

104 Store Developer’s Guide

Chapter 11. Fulfillment assets

Fulfillment centers are used by stores as both inventory warehouses and shipping
and receiving centers. One store may have one or many fulfillment centers
associated with it. The fulfillment center manages the product inventory and
shipping for a store. Fulfillment includes picking, packing, and shipping. Picking is
the selection of products in one or more releases from a fulfillment center, packing
is putting these products into shipping containers, and shipping is sending them to
customers.

Products are configured for fulfillment with the Product wizard and the Product
notebook. Product configuration provides options to track inventory, allow
backorders, force backorders, release the product separately, and specify that the
product should not be returned.

Typically, there are a number of people working in a fulfillment center at one time,
each with a different task or tasks to perform. The WebSphere Commerce
Accelerator divides the most common tasks into roles, and these roles are assigned
to users. In the WebSphere Commerce Accelerator, you must select one fulfillment
center at logon time, if you have been assigned one or more roles pertaining to
fulfillment.

Note: For more information on fulfillment, fulfillment centers, and roles, refer to
the WebSphere Commerce online help.

© Copyright IBM Corp. 2002 105

Understanding fulfillment assets in WebSphere Commerce

In order to understand fulfillment assets, it is necessary to understand the
relationships between fulfillment and the store. This can be explained by the use of
an information model. The following sections describe the relationships that
inventory has to a store and other assets.

ShippingJurisdictionGroupCalculationRule TaxlurisdictionGroupCalculationRule

Shippingarrangement Q

StoreftemFulfillmentCenter
Mamber

+owener 1

PickBatch

0 i Orderltern
Q +defaultFulfilimentCente Q M

Store 0 FulfillmentCenter

1 N
Q) Q)

Receipt RaDetail
g 0.1

ltermFulfillmentCenter

O

Inventory

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information
on the information model, see |”The store data information model” or{
page 25| For more information on the conventions used in this diagram,
see|Appendix A, “UML legend” on page 303

Fulfillment center

In the preceding diagram, the fulfillment center is at the center of the fulfillment
process. A fulfillment center has an owner, defined in the MEMBER table. Each
store is associated with a fulfillment center and has a default fulfillment center. A
fulfillment center can have several stores associated with it. There are several
interactions between the store and the fulfillment center, as indicated in the
diagram. For more information on store assets, see [“Understanding store assets in|
[WebSphere Commerce” on page 41

Receipts

Fulfillment centers receive inventory for items on a daily, weekly, or monthly basis.
When inventory is received for an item, a receipt is created in the RECEIPT table
which records information about the quantity received, as well as the store which

106 Store Developer’s Guide

owns the inventory. As orders are processed, the RECEIPT table is updated to
reflect the current available inventory levels. For information on creating receipts,
see [’Creating inventory assets in WebSphere Commerce” on page 170}

RaDetail

RaDetail is the detailed information about items on an expected inventory record.
This information can be used to estimate when inventory may be expected to be
received at a fulfillment center and provide customers with expected shipping
dates for backordered items.

Inventory

A store has inventory which is associated with the fulfillment center. Inventory
includes everything that can be physically accounted for in a fulfillment center.
Inventory is associated with one store and one fulfillment center. Information
about the inventory that a store owns at the fulfillment center is also recorded such
as reserved quantities, amounts on backorder, and amounts allocated to
backorders. This information is stored in the ITEMFEMCTR table. For more
information on inventory and inventory assets, see [Chapter 21, “Inventory assets”|

fon page 167

Shipping arrangements

The last relationship between the store and the fulfillment center involves shipping
arrangements. Shipping arrangements indicate that a fulfillment center can ship
products on behalf of a store using a shipping mode. Each store has a shipping
arrangement with a fulfillment center and vice versa. Shipping arrangements are
set up in the SHPARRANGE table. For information on creating shipping
arrangements, see [“Creating shipping fulfillment assets” on page 142

Other fulfillment assets

There are other relationships to a fulfillment center that are not directly related to a
store. A pick batch is one that is associated with one fulfillment center. A pick
batch groups together order releases for their processing as a unit at a fulfillment
center, and creates pick slips and pack slips. Once items have been picked and
packed, an order release can then be shipped, and the shipment can be confirmed.
Pick batch information is stored in the PICKBATCH table. An order item is also
associated with one fulfillment center. An item is a specific instance of a product,
defined by attributes. Information about each item in an order is stored in the
ORDERITEM table. For more information on order assets, see |[Chapter 22, “Order|
lassets” on page 171|

Like other entities, a fulfillment center has rules which govern some of it’s actions.
Each fulfillment centre has rules for tax and shipping charges. These are defined in
the TAXJCRULE and SHPJCRULE tables respectively. For more information on tax
and shipping assets, see [Chapter 18, “Shipping assets” on page 131|, and
[“Understanding tax assets in WebSphere Commerce” on page 147

For more detailed information on the structure of fulfillment assets in
WebSphere Commerce Server, see the fulfillment data models in the
WebSphere Commerce online help.

Chapter 11. Fulfillment assets 107

Creating fulfillment assets in WebSphere Commerce

108

Before your store can ship goods to a customer, you must define the fulfillment
center, or centers, that will supply these goods. Create this information in the
format of XML files that can be loaded into the database using the Loader packa

ge.

For more information on the Loader package, see [Part 7, “Publishing your store”’

o pagee 207

To create fulfillment assets for your store using an XML file, do the following:

1. Review the XML files used to create fulfillment assets for the sample stores. All

files for the sample stores are located in the corresponding store archive file.

The store archive files are located in the following directory:

. dr1've:\WebSphere\CommerceServer\samp1estores

. drive:\Program Files\WebSphere\CommerceServer\samplestores
. /usr/WebSphere/CommerceServer/samplestores

. /opt/WebSphere/CommerceServer/samp]estores

. /opt/WebSphere/CommerceServer/samplestores

. /qibm/proddata/WebCommerce/samplestores

Note: The WebSphere Commerce online help contains information about
each of the data assets contained in the sample stores.

Each sample store includes a fulfillment.xml file, which includes the

fulfillment information. To view the fulfillment.xml file in the store archive,

decompress it using a ZIP program. The fulfillment.xml file is located in the

data directory.

2. Review the information in [Appendix B, “Creating your data” on page 305

3. Create a fulfillment.xml file, either by copying one of the fulfillment.xml
files in the sample store archives, or by creating a new one. For more
information, see the DTD file that corresponds to fulfillment.xml. The DTD
files are located in the following directory:

. drive:\WebSphere\CommerceServer\xm]\sar

. drive:\Program Files\WebSphere\CommerceServer\xml\sar
. /usr/WebSphere/CommerceServer/xml/sar

. /opt/WebSphere/CommerceServer/xml/sar

. /opt/WebSphere/CommerceServer/xml/sar

- ZCTIM /qibm/proddata/WebCommerce/xml /sar
4. Define the fulfillment center, or centers that your store supports:

a. Using the following example as your guide, define a fulfillment center in
the XML file in the FFMCENTER table:

<ffmcenter
ffmcenter_id="@ffmcenter_id_1"
member_id="&VMEMBER_ID"
name="ToolTech Home"
defaultshipoffset="0"
markfordelete="0"
/>

Store Developer’s Guide

where

ffmcenter_id is a generated unique key
member_id is the owner of the fulfillment center

name is a string that, along with the owner, uniquely identifies this
fulfillment center.

defaultshipoffset is an estimate of the number of seconds it takes for an
item to be shipped from this fulfillment center. This value can be
overridden in the STORITMFEC table.

markfordelete indicates whether the fulfillment center should be deleted
as follows: 0 = do not delete. 1 = delete if no longer in use. For more
details, see the information on the Database Cleanup utility in the
WebSphere Commerce online help.

b. Using the following example as your guide, describe the fulfillment center
in the XML file in the FFMCENTDS table. If you are creating a multicultural
store, you should include this information in a locale-specific XML file.

<ffmcentds

ffmcenter_id="@ffmcenter_id 1"

description="The fulfillment center that supplies products to ToolTech."
Tanguage_id="&en_US"

displayname="ToolTech Fulfillment"

staddress_id="@staddress_id_en_US_1"

/>

where

ffmcenter_id is a generated unique key

description is a description of the fulfillment center, suitable for display
to a customer.

language_id is the language in which this information will display.

displayname is the name of the fulfillment center, suitable for display to a
customer.

staddress_id is the physical location of the fulfillment center.

C. Repeat steps a and b for all fulfillment centers that your store supports.

For more information about the use of @ and & see |Agp_endix BJ
|“Creating your data” on page 305}

Creating store fulfillment assets

After you have defined the fulfillment center or centers that will supply goods for
your store, you must associate a fulfillment center to each product. That is, you
must identify which fulfillment center will supply which of your products. To
create this relationship, add information to the INVENTORY table. Create this
information in the format of XML files that can be loaded into the database using
the Loader package. For more information on the Loader package, see

[“Publishing your store” on page 207}

Note:

You must create store assets before you can associate a store with a
fulfillment center. For more information on creating store assets, see
[‘Creating store data assets in an XML file” on page 42} You must also
create the catalog assets before you can create the store fulfillment assets.
For more information, see [“Displaying store catalog assets” on page 74|

Chapter 11. Fulfillment assets 109

110

2. Create store fulfillment assets only if you implement non-ATP
fulfillment. The INVENTORY table is not used by a store that includes
the ATP functions.

To create the store fulfillment relationship using an XML file, do the following;:

1.

Store Developer’s Guide

Review the XML files used to create store fulfillment assets for the sample
stores. All files for the sample stores are located in the corresponding store
archive file.

The store archive files are located in the following directory:

o BN Grive:\WebSphere\CommerceServer\samplestores

. drive:\Program Files\WebSphere\CommerceServer\samplestores
. /usr/WebSphere/CommerceServer/samplestores

. /opt/WebSphere/CommerceServer/samplestores

. /opt/WebSphere/CommerceServer/samplestores

. /qibm/proddata/WebCommerce/samplestores

Note: The WebSphere Commerce online help contains information about
each of the data assets contained in the sample stores.

Each sample store includes a storefulfill.xml file, which includes the store
fulfillment information. To view the storefulfill.xml file in the store archive,
decompress it using a ZIP program. The storefulfill.xml file is located in the
data directory.

Review the information in [Appendix B, “Creating your data” on page 305,

Create a storefulfill.xml file, either by copying one of the storefulfill.xml
files in the sample store archives, or by creating a new one. For more
information, see the DTD file that corresponds to storefulfill.xml. The DTD
files are located in the following directory:

. dr1've:\WebSphere\CommerceServer\xm]\sar

. drive:\Program Files\WebSphere\CommercServer\xml\sar
. /usr/WebSphere/CommerceServer/xml/sar

. /opt/WebSphere/CommerceServer/xml/sar

. /opt/WebSphere/CommerceServer/xml/sar

. /qibm/proddata/WebCommerce/xml/sar

Using the following example as your guide, create a store-fullfillment center
relationship in the XML file, by adding information to the INVENTORY table.

<inventory
catentry_id="@catentry id_1470"
quantity="100"
ffmcenter_id="@ffmcenter_id_1"
store_id="@storeent_id_1"
quantitymeasure="C62"
inventoryflags="0"

/>

where

 catentry_id is the catalog entry that this fulfillment center will supply.

* quantity is the quantity amount, in units indicated by
QUANTITYMEASURE, available from this fulfillment center.

+ ffmcenter_id is the fulfillment center that will be supplying the inventory.
e store_id is the store for which the inventory is being supplied.

* quantitymeasure is the unit of measurement for QUANTITY.

* inventoryflags are bit flags that indicate how QUANTITY is used:

— 1 = noUpdate. The default UpdateInventory task command does not
update QUANTITY.

— 2 = noCheck. The default CheckInventory and Updatelnventory task
commands do not check QUANTITY.

5. Repeat step 3 for each catalog entry in your store.

For more information about the use of @ and & see |AEEendix BJ
[“Creating your data” on page 305}

Chapter 11. Fulfillment assets ~ 111

112 Store Developer’s Guide

Chapter 12. Campaign assets

Campaigns serve to organize your marketing efforts. Campaigns are typically
created by either a Marketing Manager, or by a Merchandising Manager. They are
often associated with a certain set of objectives. For instance, a "Back to School”
campaign may have an objective of increasing sales of children’s clothes during the
campaign.

Understanding campaigns in WebSphere Commerce

Within WebSphere Commerce, campaigns contain any number of campaign
initiatives, which define a condition. The campaign initiatives generate targeted
content for the customers, when the defined condition is evaluated to be true. The
result is that a campaign is the high-level marketing element that organizes the
initiatives.

Campaign initiatives are associated with a campaign that contains a collection of
initiatives. As an example of this relationship, if an office supply store had a "Back
to School” campaign, the initiatives would be responsible for lower-level actions,
such as advertising a discount on pens, or suggesting lined paper to any customer
who has registered and listed her occupation as a student.

Campaign initiatives are capable of displaying three types of dynamic content:
* Suggestive selling initiative
* Collaborative filtering-based recommendation

* Awareness advertisement

Suggestive selling content is designed to provide rule-based category and product
recommendations, targeted at a specific customer audience, based on a customer’s
profile, and other customers’ behaviors. Initiatives displaying this type of content
are intended to be used to create cross-sell and up-sell opportunities.

Collaborative filtering-based recommendations are also intended to create product
recommendations, but they use a different recommendation algorithm, which
targets items based on customers’ overall behavior, rather than predefined rules.

Awareness advertisements are designed to provide advertising content targeted at
a specific customer audience, based on the same criteria as those used for
suggestive selling, but they are intended to be used to increase a customer’s
awareness about activities at the online store, highlight special offers, and to
increase brand awareness.

Initiatives can be incorporated into any page on the site. When the site is designed,
special placeholders, called e-Marketing Spots, are placed on the site. When
displayed to a customer, these placeholders are replaced by the specific targeted
content. Target locations are assigned by scheduling initiatives to display in
e-Marketing Spots in the desired locations. For more information on adding
e-Marketing Spots to your store, see [Chapter 32, “Adding e-Marketing Spots to|
[your store” on page 295}

© Copyright IBM Corp. 2002 113

Campaign initiatives contain a condition that determines when and to whom they
are displayed. This condition is defined when the initiative is created and can be
changed during the lifetime of the initiative to adjust the initiative’s visibility and
the displayed content.

Campaign initiatives generate statistics about their use. These statistics can be
viewed using the WebSphere Commerce Accelerator by Merchants, Marketing
Managers, and Merchandising Managers. The statistics illustrate an initiative’s
clickthrough rate for each e-Marketing Spot where it is implemented. These
statistics provide feedback on the effectiveness of the initiative, as well as
comparative success rates among the various locations in which it displays.

Creating campaign assets in WebSphere Commerce

114

Campaigns and campaign initiatives are typically created by either a Marketing
Manager, or by a Merchandising Manager using the Campaign and Campaign
Initiative wizards in the WebSphere Commerce Accelerator. For more information,
see the WebSphere Commerce online help.

For more information on adding e-Marketing Spots to your store, see |[Chapter 32,
[“Adding e-Marketing Spots to your store” on page 295|

Store Developer’s Guide

Chapter 13. Payment assets

WebSphere Commerce supports the IBM Payment Manager. In order to create
payment assets for your store, specify whether the store uses the Payment
Manager, and if so, what type of payment cassette and brands the store accepts.

Specify this information by doing the following;:

* Create payment data in the form of an XML file (paymentinfo.xml) that is loaded
during store publish using Store Services. This configures Payment Manager
with the merchant and the brand types specified for the store being published.
For more information, see [’Create payment assets using an XML file”}

Note: paymentinfo.xml does not populate tables in WebSphere Commerce Server
database. It configures the Payment Manager. paymentinfo.xml is only
applicable if you are using offline credit card as the payment method. To
configure other methods of payment, see the next bullet.

* Complete the set up of Payment Manager for your store using the
Administration Console or the Payment Manager user interface. If you use the
Administration Console, menu items appear on the Payment Manager menu. If
you use the Payment Manager user interface, menu items appear under
Administration in the navigation frame. For more information, see the
WebSphere Commerce online help topic "Setting up Payment Manager for your
store.”

Create payment assets using an XML file

To create payment assets for your store using an XML file, do the following:

1. Review the XML files used to create payment assets for the sample stores. All
files for the sample stores are located in the corresponding store archive file.

The store archive files are located in the following directory:
o EBNEMN drive:\WebSphere\CommerceServer\samplestores
. drive:\Program Files\WebSphere\CommerceServer\samplestores
. /usr/WebSphere/CommerceServer/samplestores
. /opt/WebSphere/CommerceServer/sammestores
. /opt/WebSphere/CommerceServer/samplestores
. /q1'bm/pr‘oddata/WebCommerce/samp]estores
Note: The WebSphere Commerce online help contains information about
each of the data assets contained in the sample stores.

Each sample store includes a paymentinfo.xml file, which include the payment
information. To view the paymentinfo.xml file in the store archive, decompress
it using a ZIP program. The paymentinfo.xml files are located in the data
directory.

2. Create a paymentinfo.xml file, either by copying one of the paymentinfo.xml
files in the sample store archives, or by creating a new one. For more
information, see the DTD file that corresponds to paymentinfo.xml. The DTD
files are located in the following directory:

© Copyright IBM Corp. 2002 115

116

Store Developer’s Guide

drive:\WebSphere\CommerceServer\xml\sar
drive:\Program Files\WebSphere\CommerceServer\xml\sar
/usr/WebSphere/CommerceServer/xml/sar
/opt/WebSphere/CommerceServer/xml/sar
/opt/WebSphere/CommerceServer/xml/sar

/qibm/proddata/WebCommerce/xml1/sar

Enable or disable Payment Manager.

a.

Using the following example as your guide, in your XML file enable or
disable Payment Manager and specify what types of payment cassette,
currencies and brands your store accepts

<paymentinfo>
<PaymentManager enable="yes"/>
<Cassette type="0fflineCard">
<Account currency="USD">
<Brand type="MasterCard"/>
<Brand type="VISA"/>
<Brand type="American Express"/>
<Account/>
<Account currency="EUR">
<Brand type="MasterCard"/>
<Brand type="VISA"/>
<Brand type="American Express"/>
</Account>
</Cassette>
</paymentinfo>

where:
* enable is whether Payment Manager is enabled or disabled.
* Cassette type is the type of cassette supported.

* Account currency is the currency your store supports. Account currency

is required if you are using the OfflineCard cassette type. The currency
must be identified in a three letter code conforming to the ISO 4217
standard. For example, "USD" for U.S. dollars.

* Brand type is the type of credit card supported by the account and the
currency.

Chapter 14. Language assets

In WebSphere Commerce, your site can define many languages which can be used
within it. The LANGUAGE table defines ten supported languages including
German, Traditional and Simplified Chinese, Japanese, Korean, Italian, French,
Spanish, Brazilian Portuguese, and English. Sites can define additional languages,
or dialects of existing languages, to tailor the way information is presented to
customers from different cultures or demographics.

Understanding language assets in WebSphere Commerce

In order to understand language assets, it is necessary to understand the
relationships between languages and the store. This can be explained by the use of
an information model below. The following section describes the relationships and
associations language has to a store and other assets.

The diagram below depicts the language asset information model.

AlternativeLanguage StoreEntity Supportedlanguage
Store
0.1 +idefaultLanguage
+shoppingLanguage Q 1
1 Language +zupportedLanguage
+alternativelanguage 1

There are four classifications of languages in WebSphere Commerce. They are
default languages, supported languages, alternative languages, and shopping
languages. Each one of these classifications performs a different role in the store.
All languages are stored in the LANGUAGE table.

Default language

A default language is associated with each store. This is the language that the store
has chosen to use as it’s main language, and will be the language displayed to
customers that do not explicitly choose a shopping language. The default language
for a store is implicitly supported by the store; that is, the store must always be
able to display information in the default language, or one of its alternative
languages, if any are defined in the LANGPAIR table. When information is not
available in one of its supported languages, or alternative languages, the
information will be displayed in the default language.

© Copyright IBM Corp. 2002 117

Supported language

The STORELANG table indicates the languages each store supports. A store must
be able to display information in its supported languages, or one of their alternative
languages, if any are defined in the LANGPAIR table. A store also supports all
languages supported by its store group.

Alternative language

When information is not available in the one of the supported languages the store
tries to display the information in an alternative language, if it is available. A store
can specify the sequence in which to try each of its alternative languages. The
alternative languages for a store include the alternative languages for its store
group. Alternative languages can be useful when some information is available in
only one language, but should be made available to customers shopping in a
different, related, language. This might be the case when, for example, not all
information has yet been translated into all supported languages, or when, for
example, two very similar dialects of the same language are supported, sometimes
with identical information.

For more detailed information on the structure of language assets in
WebSphere Commerce Server, see the language object and data models in
the WebSphere Commerce online help.

Creating language assets in WebSphere Commerce

118

You can define the languages your store supports in one of the following ways:
* Using the tools in Store Services

* In an XML file that will be loaded by the Loader package, or by the publishing
tool in Store Services

Note: The Store Services tools work with pre-populated XML files in the form of a
store archive.

For more information on defining store supported languages using Store Services,
see the WebSphere Commerce online help. For more information on defining store

supported languages in an XML file, see [“Creating store data assets in an XMI]
fic” on poge 13

Store Developer’s Guide

Chapter 15. Currency assets

You can display prices in your site in one currency, or you can use multiple
currencies by following the instructions provided for the euro. For a site with
multiple stores, you can use different currencies for the stores, or you can assign
currencies to the store group. Depending on the nature of the site that you are
creating, you can specify what currencies you want to use and how they are
displayed.

In WebSphere Commerce, you can allow customers to select a shopping currency.
The shopping currency is the currency in which customers pay for products at a
specific store. All monetary amounts on the store pages are displayed in this
currency. When customers change their shopping currency, the prices for the items
that they have added to their shopping carts and their order totals are
automatically converted, recalculated, and displayed in the new shopping currency.

Customers can shop in many currencies, including the euro. The euro became the
legal currency for the European Union on January 1, 1999, and is now used in
financial markets. The conversion rates between the euro and the currencies of all
participating countries are fixed. Notes and coins for the European Union’s future
single currency will become available on January 1, 2002. Six months later, the
existing national currencies will be withdrawn from circulation permanently.
During the transition period from 1999 to 2001, merchants must accept both the
national currencies and the euro.

Understanding currency assets in WebSphere Commerce

The following diagram illustrates the currency structure in the WebSphere
Commerce Server:

*> StoreEntity t

? O

Language

1
O

CurrencyF ormatDescription

1.n

O Q @) @)

CounterCurrencyPair SuppontedCurrency CurrencyFormat CurrencyConversionRule

B

MumberlUsage

+defaultCurrency 0.1 1 1

1

1
+countervalueCurrency +toCurrency

1
1
+shoppingCurrency +romcCurrency

© Copyright IBM Corp. 2002 119

Currency

120

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information
on the information model, see|“The store data information model” on|
|page 25| For more information on the conventions used in this diagram,
see|Appendix A, “UML legend” on page 303,

In the diagram above, currency is at the center of the information model. Each
store, or group of stores, has a default currency.

Currency format

A store entity can have many currency formatting rules. If a store does not have a
formatting rule for a particular currency, it uses the formatting rule of its store
group. Currency formats are set up in the CURFORMAT table.

Number usage

Each formatted currency rule is associated with one number usage. Numbers such
as quantities and monetary amounts can be rounded and formatted differently
depending on their associated usage. Stores can specify different rounding and
formatting rules for the numbers they display according to how they are used,
such as a store may round unit prices to four decimal places by specifying the unit
price usage, but other currency amounts to two decimal places by specifying the
default usage. Number usage is stored in the NUMBRUSG table.

Currency format description

A currency format rule can have many currency format descriptions. A currency
format description describes how to format (for display purposes) a monetary
amount in a particular currency and particular language. Each description is
associated with a language in the LANGUAGE table. For more information on
language assets see, [Chapter 14, “Language assets” on page 117} Currency format
descriptions are stored in the CURFMTDESC table.

Supported currency

A store entity can have many supported currencies. A supported currency is one in
which payment is accepted.

Currency conversion rule

All currencies have rules governing their conversions to and from other currencies.
Each currency conversion rule can be used to convert a price (stored in the database
in a particular currency) to an amount customers will be charged in a supported
shopping currency.

Counter currency

Counter currencies are currency amounts that are displayed along with a supported
currency. They cannot be used for purchases but are used for informational
purposes. If customers decide to shop in the euro, they can have the European
Monetary Union monetary amounts, and other currency amounts displayed in the
store. Amounts in the shopping currency are converted to all the counter value
currencies for that shopping currency. The counter currencies are paired with a
supported currency such as the Netherlands guilder, and the euro. Counter
currency pairs are stored in the CURCVLIST table.

Store Developer’s Guide

For more detailed information on the structure of currency assets in
WebSphere Commerce Server, see the currency data model in the
WebSphere Commerce online help.

Creating currency assets in WebSphere Commerce

The Store Service tools in WebSphere Commerce allow you to add supported
currencies to your store and to select a default currency for your store. For more
information on which assets you can edit with the Store Services tools, see the
WebSphere Commerce online help topic "Changing store database assets.”

Note: The Store Services tools work with pre-populated XML files in the form of a
store archive.

You can also add supported currencies and a default currency to your store using
an XML file that can be loaded into the database using the Loader package. This
method also allows you to create other types of currency assets, including defining
currency conversion rates, and counter value currencies.

For information on editing the currency assets in an existing store archive, see the
WebSphere Commerce online help. For information on creating new currency
assets in the form of an XML file, see [“Creating currency assets using an XMI|

Creating currency assets using an XML file

Create the currency assets for your store in the format of XML files that can be
loaded into the database using the Loader package. For more information on the
Loader package, see|Part 7, “Publishing your store” on page 207}

To create currency assets for your store using an XML file, do the following:

1. Review the XML files used to create currency assets for the sample stores. All
files for the sample stores are located in the corresponding store archive file.

The store archive files are located in the following directory:

. drive:\WebSphere\Commer‘ceSer‘ver\samp]estor‘es

. drive:\Program Files\WebSphere\CommerceServer\samplestores
. /usr/WebSphere/CommerceServer/samplestores

. /opt/WebSphere/CommerceServer/samp1estores

. /opt/WebSphere/CommerceServer/samplestores

. /q1'bm/proddata/WebCommerce/samp1estores

Note: The WebSphere Commerce online help contains information about
each of the data assets contained in the sample stores.

Each sample store includes a currency.xml file, which includes the currency
information. To view the currency.xml files in the store archive, decompress it
using a ZIP program. The currency.xml files are located in the data directory.

2. Review the information in [Appendix B, “Creating your data” on page 305

Chapter 15. Currency assets 121

122

Create a currency.xml file, either by copying one of the currency.xml files in
the sample store archives, or by creating a new one. For more information, see
the DTD file that corresponds to currency.xml. The DTD files are located in the
following directory:

. drive:\WebSphere\CommerceServer\xm]\sar

. drive:\Program Files\WebSphere\CommerceServer\xml\sar
. /usr/WebSphere/CommerceServer/xml/sar

. /opt/WebSphere/CommercServer/xm]/sar

. /opt/WebSphere/CommercServer/xml/sar

- I / ibm/proddata/WebCommerce/xml/sar
Define the currencies supported by your store.

a. Using the following example as your guide, define the currencies supported
by your store in your XML file for the CURLIST table:

<curlist currstr="USD" storeent_id="@storeent_id_1" />

where:

* currstr is the 3 character ISO 4217 currency code representing the
supported currency. This code must appear in the SETCCURR column of
the SETCURR table. A store must be able to accept payment in all its
supported currencies.

* storeent_id is the store entity.

b. Repeat for each currency supported by store.

The default currency for the store is defined in the STOREENT table. For
more information, see [“Creating store data assets in an XML file” on|

5.

Store Developer’s Guide

(Optional) What currency prices in your store display in depends on how you
set up your prices. You can define prices for every currency used in your store,
or you can define prices for the default currency only. For more information on
setting up prices, [“Creating pricing assets in WebSphere Commerce” on|
‘ae 88

If when setting up prices, you defined prices for the default currency only, yet
want to display prices in your store in other supported currencies, you must
add conversion rates to your store. Use this conversion rate to convert from the
default currency to the supported currency.

a. Determine the currency from which you will be converting, for example, US
dollar (USD), and the currency or currencies to which you are converting,
for example the Yen (JPY). To determine the ISO currency codes for each
currency, see ISO 4217 codes for international currencies.

b. Using the following example as your guide, add conversion information to
the CURCONVERT table:

<curconvert
storeent_id="@storeent_id_1"
fromcurr="USD"

tocurr="JpPY"

factor="105.10"
multiplyordivide="M"
bidirectional="Y"

updatable="Y"
curconvert_id="@curconvert_id_1" />

where:

storeent_id is the store entity.

fromcurr is the currency from which you are converting. An amount in
the FROMCURR currency is normally part of a rule or other information
used to determine a price, discount, shipping charge, or similar amount
associated with a product offered for sale.

tocurr is the currency to which you are converting. TOCURR is normally
the currency in which the customer intends to pay. Amounts in this
currency are normally part of an order item, such as a unit price,
shipping charge, or tax amount.

factor is the conversion factor.

multiplyordivide is as follows: To convert from FROMCURR to
TOCURR:

- M = Multiply by FACTOR

- D = Divide by FACTOR

For bidirectional rules, conversion from TOCURR to FROMCURR is
allowed using the inverse operation.

bidirectional indicates whether the rule is bidirectional or
unidirectional:

— Y = bidirectional
— N = unidirectional

updatable is a flag intended to be used by a user interface that manages
currency conversion rules. Valid values:

— N = conversion rate is irrevocable - should never be changed
— Y = conversion rate can be changed

curconvert_id is a generated unique key.

C. Repeat steps a and b for all currencies in which you want to display prices.

Even if you have defined prices for all supported currencies in your
pricing information, you may want to define the currency conversion
rates for the supported currencies in your store.

6. (Optional) If you want to include display prices both in the shopping currency,
and a counter currency (for example, display prices in both the Netherlands
guilder and the euro), you must add information to the CURCVLIST table.

a.

Using the following example as your guide, add conversion information to
the CURCVLIST table:

<curcvlist
storeent_id="@storeent_id_1"
currstr="NLG"
countervaluecurr="EUR"
displayseq="1" />

where:

* storeent_id is the store entity.

* currstr is the three character ISO 4217 currency code representing the

currency. This code must appear in the SETCCURR column of the
SETCURR table is the currency from which you are converting. An
amount in the FROMCURR currency is normally part of a rule or other
information used to determine a price, discount, shipping charge, or
similar amount associated with a product offered for sale.

Chapter 15. Currency assets 123

+ countervaluecurr is the three character ISO 4217 currency code
representing the counter value currency. This code must appear in the
SETCCURR column of the SETCURR table.

* displayseq is the number which indicates the presentation order of the
counter value currency. Counter value currencies are displayed in
ascending order based on the counter value display sequence specified in
the DISPLAYSEQ column in the CURCVLIST table.

For more information about the use of @ and & see|AEEendix B]
|“Creating your data” on page 305}

Other currency tasks
For more information on currency in general and on other currency tasks,

including:

* Adding new currencies not currently supported by WebSphere Commerce
* Changing existing currency formats

* Adding new format rules for new currencies or for a specific store

see the WebSphere Commerce online help.

124 Store Developer’s Guide

Chapter 16. Units of measure assets

Products can be sold, and inventory tracked, in a variety of quantity units, such as
kilograms, inches, liters, and so on. Of these units, products can be ordered in
minimum quantities, and by multiples of specific quantities.

The controller commands use the UOM (unit of measure) to specify the quantity
unit. If a UOM parameter is not specified, then the customer’s specified quantity is
multiplied by the nominal quantity of the catalog entry in the CATENTSHIP
database table. The result is known as the requested quantity.

The requested quantity is rounded up to the next highest quantity multiple for the
catalog entry. For example, if the multiple is 2 kilograms and the requested
quantity is 4.1 kilograms, the result of the rounding would be 6 kilograms. The
rounded quantity is used when checking inventory, which has its own quantity
unit. If the inventory quantity unit and the catalog entry quantity unit are
different, there must be a conversion between the two units.

When Available to Promise (ATP) inventory is enabled (refer to the
ALLOCATIONGOODEFOR column of the STORE table), the inventory quantity unit
is defined in the QUANTITYMEASURE column of the BASEITEM table.
Otherwise, it is defined in the QUANTITYMEASURE column of the INVENTORY
table.

The rounded quantity divided by the nominal quantity of the catalog entry is
known as the normalized quantity. The normalized quantity is stored in the order
item or the interest item, depending on the command being run. For example, if
the rounded quantity is 6 kilograms and the nominal quantity is 2 kilograms, then
the normalized quantity is 3.

When finding an offer for a catalog entry, the requested quantity can affect which
offer gives the best price, and hence determines which offer will be used. For
example, if the rounded quantity is 6 kg and there are two offers, one that specifies
a price of $4.00 for the nominal quantity of 2 kilograms and a minimum quantity
of 10 kilograms, and another that specifies a price of $4.50 for the nominal quantity
of 2 kilograms and a minimum quantity of 2 kilograms, then only the second offer
can be used.

Understanding units of measure in WebSphere Commerce

The following diagram illustrates the structure of units of measure in the
WebSphere Commerce Server:

© Copyright IBM Corp. 2002 125

StoreEntity

O @) 1 @)

Mumberllsage CuantityLinitF armat GantitylUnit

Q¢ O

QuantitynitFormatDescription Language

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information
on the information model, see [“The store data information model” on|
[page 25] For more information on the conventions used in this diagram,
see|Appendix A, “UML legend” on page 303

Quantity unit and quantity unit format

A quantity unit is the unit of measurement used in the store, for example,
kilograms, pounds, meters, inches, liters, and so on. The quantity unit format is
how this quantity unit is formatted in the store, for example how many decimal
places are used when displaying the quantity unit.

Each quantity unit format is part of only one store entity, but each store entity may
have several quantity unit formats.

A quantity unit format can exist for each quantity unit and number usage, and
may have one or more quantity unit format descriptions, depending on how many
languages the store supports.

Quantity unit format description
A quantity unit format description describes how to format (for display purposes) a
quantity amount in a particular quantity unit, in a particular language.

Number usage

Number usage defines the way a number is used in an application. For example, by
using number usage codes in your WebSphere Commerce code, you can choose the
way you would like that number (currency or quantity) to be formatted or
rounded. These codes (defined in the NUMBRUSG table) allow the number to be
formatted according to the rules specified for that type of number usage in the
CURFORMAT, CURFMTDESC, QTYFORMAT and QTYFMTDESC tables. This
allows stores to format numbers in different ways to meet the requirements of a
variety of situations.

For more detailed information on the structure of unit of measure assets
in WebSphere Commerce Server, see the quantity unit data model in the
WebSphere Commerce online help.

126 Store Developer’s Guide

Creating units of measure in WebSphere Commerce

Units of measure are pre-populated in the WebSphere Commerce Server database
when an instance is created. For more information, see [Chapter 5, “Site assets” on|

You can also define new units of measure in WebSphere Commerce for use in your
store, or delete units of measure that you do not want to use in your store.

To define new units of measure for use in your store, add information to the
following database tables:

« QTYUNIT
QTUNITDSC
QTYFORMAT
QTYEMTDESC
QTYUNITMAP
QTYCONVERT

Chapter 16. Units of measure assets 127

128 Store Developer’s Guide

Chapter 17. Jurisdiction assets

Jurisdictions are geographical regions or zones representing a country or region,
province or territory, or zip code range, to which you sell goods. Jurisdictions can
be grouped together to form jurisdiction groups.

Jurisdiction groups are used in the calculation of the shipping charge and tax
charges on orders. That is, a jurisdiction group can be used to qualify shipping
charges and tax calculation rules used. These qualified calculation rules are
applicable to items in an order only if the item is being shipped to an address
within one of the jurisdictions in a jurisdiction group that is associated with the
calculation rule. As a result, shipping charges and tax amounts may be calculated
differently depending on the shipping addresses for the different items in the
order.

Understanding jurisdiction assets in WebSphere Commerce

The following diagram illustrates how jurisdictions and jurisdictions groups fit into
the WebSphere Commerce Server.

@

————i ; »-—
StoreEntiy

rdefinedJurisdictionGroup +defineddurisdiction
SsdichionGrous Surlsdichion
TaxJurisdictionGraup InGroun TaxJurisdiction
ShippingJurisdictionGroup InGroup ShippingJurisdictian

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information
on the information model, see [‘The store data information model” on|
|page 25| For more information on the conventions used in this diagram,
see|Appendix A, “UML legend” on page 303

© Copyright IBM Corp. 2002 129

In WebSphere Commerce a jurisdiction or jurisdiction group is part of a store, and
is exclusive to the store or store group for which it is created. For example, if you
create three jurisdictions for your store, and then delete your store, the jurisdictions
are also deleted. They are not available for use by any other existing stores, or any
stores you might create in the future.

However, if you create jurisdictions for a store group, jurisdictions are not deleted
when the stores in that group are deleted. The jurisdictions would be available for
new stores created in that store group.

WebSphere Commerce supports two types of jurisdictions: shipping jurisdictions
and tax jurisdictions. Shipping jurisdictions can be grouped together to form
shipping jurisdiction groups, which qualify shipping charge calculation rules.
Similarly, tax jurisdictions can be grouped together to form tax jurisdiction groups,
which qualify tax calculation rules.

For more detailed information on the structure of jurisdiction assets in
theWebSphere Commerce Server, see the jurisdiction data model in the
WebSphere Commerce online help.

Creating jurisdiction assets in WebSphere Commerce

130

You must create jurisdiction assets for your store in order to apply tax and
shipping charges. For more information on creating jurisdictions, see f’Creating ta>_<|

assets in WebSphere Commerce” on page 150| or [“Creating shipping assets in|

WebSphere Commerce” on page 133

Once jurisdictions have been created for your store, you can edit them or create
new ones, using the Tax and Shipping notebooks in Store Services.

Note: Store Services automatically creates a jurisdiction group for every
jurisdiction it creates. Store Services creates jurisdictions for stores, but not
for store groups.

Note: Store Services only works on pre-published data in the form of a store
archive.

Store Developer’s Guide

Chapter 18. Shipping assets

Shipping is how a store handles physically delivering goods to customers. In most

cases, goods are shipped from a fulfillment center, a separate agency that is

responsible for warehousing the store’s goods.

In order to offer shipping services, and charge for these services, a store created
with WebSphere Commerce should include the following:

* At least one shipping mode

* At least one shipping calculation code

* Jurisdictions and jurisdiction groups

Understanding shipping assets in WebSphere Commerce

The following diagram illustrates the shipping structure in the WebSphere
Commerce Server.

+definedJurisdictionGroup

il
StoreEntiy [T

\

0.1

+definedShippinghode)

+defaultShippinadode

JurisclictionGroup

+definedJurisdiction

+definedCalculationCode

Jutlsciction

CalculationCode

I ippingJdurisdiction

InGraugn

i

CalculationRule

ShippingJurisdictionGroup

T

Ol

ShippingMode

ShippingJurisdictionGroupCalculationRule

1

.
Stare il

O

ShippingArrangement

FulfillmentCentar

+|:|efauItFqu|IImentCenterﬂ1

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information

on the information model, see[*The store data information model” on|

[page 25] For more information on the conventions used in this diagram,

see|Appendix A, “UML legend” on page 303.

© Copyright IBM Corp. 2002

131

132

Shipping modes

The shipping mode is a way of shipping goods. More specifically, a shipping mode
is the combination of a shipping carrier (which is a company that provides
shipping services from a fulfillment center to a customer), and the shipping service
offered by that carrier. For example, ABC Shipping Company, Overnight service
and ABC Shipping Company, Express delivery are shipping modes.

A shipping mode belongs to a store entity. If the store entity is deleted, the
shipping modes defined within that store entity are also deleted. A store is not
required to have a default shipping mode, but it is recommended.

Shipping arrangements
A shipping arrangement is an arrangement between the store and the fulfillment

center, indicating that a fulfillment center will ship goods for a particular store
using specified shipping modes. Certain restrictions can be placed on a shipping
arrangement, including the time period for which the shipping arrangement is
effective, and the shipping jurisdictions.

If a shipping arrangement is associated with a shipping mode, it applies only for
that shipping mode. Otherwise, the shipping arrangement applies to all available
shipping modes. A shipping arrangement is part of a store and will be deleted if
the store is deleted.

Calculation codes

Calculation codes are used to calculate shipping charges, that is, a shipping
calculation code indicates how shipping charges are calculated for order items. In
order to calculate shipping charges on the order item, you must assign shipping
calculation codes to either a catalog entry or a group of catalog entries.

A calculation code is part of a store entity. A calculation code can only be
associated with one store entity, but a store entity may have several calculation
codes. If the store entity is deleted, the calculation codes associated with that store
entity are also deleted.

For more information about the use of calculation codes, see the IBM
WebSphere Commerce Calculation Framework Guide.

Calculation rules
Each calculation code has a set of calculation rules. Shipping charges for an order

item may vary depending on the shipping mode, fulfillment center, and which
shipping jurisdictions. ShippingJurisdictionGroupCalculationRules are relationship
objects that associate shipping calculation rules with jurisdictions, fulfillment
centers, and shipping modes, to determine which calculation rules should be used
for each order item.

If the calculation rule, or any of the other objects referred to by the
ShippingJurisdictionGroupCalculationRules, is deleted, the
ShippingJurisdictionGroupCalculation rule is also deleted.

For more information about the use of calculation rules, see the IBM
WebSphere Commerce Calculation Framework Guide.

Store Developer’s Guide

Jurisdictions and jurisdiction groups

Jurisdictions are geographical regions or zones representing a country or region,
province or territory, or zip code range, to which you sell goods. Jurisdictions are
grouped together to form jurisdiction groups.

WebSphere Commerce supports two types of jurisdictions: shipping jurisdictions
and tax jurisdictions. Each of these jurisdictions is part of a corresponding group,
for example, shipping jurisdictions are in the shipping jurisdictions group and tax
jurisdictions are in the tax jurisdictions group.

Jurisdiction groups are associated with calculation rules. The calculation rule uses
the jurisdiction group as part of the calculation to determine the shipping charge
amount.

Jurisdictions and jurisdiction groups are part of a store entity. If the store entity is
deleted, the jurisdictions and jurisdiction groups associated with that store entity
are also deleted.

One shipping address may resolve to several shipping jurisdictions. For example, a
shipping address in New York, United States will apply to the following shipping
jurisdictions: "New York, United States”, "United States”, and "World"”. When a
shipping address applies to multiple shipping jurisdictions, several shipping
calculation rules will be applicable. In such cases, the precedence of the associated
ShippingJurisdictionGroupCalculationRules is used to determine which rule or
rules will be used.

For more detailed information on the structure of shipping assets in
WebSphere Commerce Server, see the tax object and data models in the
WebSphere Commerce online help.

Creating shipping assets in WebSphere Commerce

The Store Service tools in WebSphere Commerce allow you to create and edit
certain shipping assets (for example shipping modes and jurisdictions) in a store
archive, but not all shipping assets. For more information on which assets you can
edit with the Store Services tools, see the WebSphere Commerce online help topic
"Changing store database assets.”

Note: The Store Services tools work with pre-populated XML files in the form of a
store archive.

You can also create your shipping assets in the format of XML files that can be

loaded into the database using the Loader package. As a result, you have the

following two options for creating shipping assets:

* Edit the existing shipping assets from one of the sample stores provided with
WebSphere Commerce, or an existing store archive

* Create new shipping assets in the form of an XML file
For information on editing the shipping assets in an existing store archive, see the

WebSphere Commerce online help. For information on creating new shipping
assets in the form of an XML file, see [“Creating shipping assets using an XML file”

fon pase 134

Chapter 18. Shipping assets 133

134

Creating shipping assets using an XML file

Create your shipping assets in the format of XML files that can be loaded into the
database using the Loader package. For more information on the Loader package,
see [Part 7, “Publishing your store” on page 207} If you are creating a multicultural
store, you may want to create separate XML files for each locale your store
supports. The locale-specific file should specify all description information, so it
can be easily translated.

The sample stores, from which many of the examples in these tasks are taken, use
one shipping.xml file for all information that does not need to be translated, and
another shipping.xml file for each locale the store supports, for the information
that needs to be translated. The locale-specific files contain all the description
information, so it can be easily translated.

To create shipping assets for your store using an XML file, do the following:

1. Review the IBM WebSphere Commerce Calculation Framework Guide. The
WebSphere Commerce calculation framework calculates monetary amounts (for
example, shipping) associated with the product or service a customer has
selected to purchase.

2. Review the XML files used to create shipping assets for the sample stores. All
files in the sample stores are located in the corresponding store archive file.
Each sample store includes two or more shipping.xml files, which include the
shipping information. The store archive files are located in the following
directory:

. dr1've:\WebSphere\CommerceSer‘ver\samp]estores

. drive:\Pr‘ogram Files\WebSphere\CommerceServer\samplestores
. /usr/WebSphere/CommerceServer/samplestores

. /opt/WebSphere/CommerceServer/samp1estores

. /opt/WebSphere/CommerceServer/samplestores

. /qibm/proddata/WebCommerce/samplestores

Note: The WebSphere Commerce online help contains information about
each of the data assets contained in the sample stores.

To view the shipping.xml files in the store archive, decompress them using a

ZIP program. The shipping.xml files are located in the data directory. The

language-specific shipping.xml is in a locale-specific subdirectory of the data

directory.

3. Review the information in [Appendix B, “Creating your data” on page 305

4. Create a shipping.xml file, either by copying one of the shipping.xml files in
the sample store archives, or by creating a new one. For more information, see
the DTD file that corresponds to shipping.xml. The DTD files are located in the
following directory:

o I drive:\WebSphere\CommerceServer\xml\sar

. drive:\Progr‘am Files\WebSphere\CommerceServer\xml\sar
. /usr/WebSphere/CommerceServer/xml/sar

. /opt/WebSphere/CommercServer/xm]/sar

. /opt/WebSphere/CommercServer/xml/sar

Store Developer’s Guide

. /qibm/proddata/WebCommerce/xml/sar

5. Define the jurisdictions and jurisdiction group to which you are shipping goods
and services. All jurisdictions must belong to a jurisdiction group.

a. Using the following example as your guide, define a jurisdiction group in
your XML file in the JURSTGROUP table:

<jurstgroup

jurstgroup_id="@jurstgroup_id 1"
description="Jurisdiction Groupl for Shipping"
subclass="1"

storeent id="@storeent id 1"

code="World"/>

where

e jurstgroup_id is a generated unique key

* description is a brief description of the jurisdiction group, suitable for
display in a user interface that manages jurisdiction groups.

* subclass is the jurisdiction group subclass as follows:
— 1 = Shipping]JurisdictionGroup
- 2 = TaxJurisdictionGroup

* storeent_id is the store entity associated with this jurisdiction group.

+ code which, together with its store entity and subclass, uniquely identifies
this jurisdiction group.

b. Using the following example as your guide, define a jurisdiction in your
XML file in the JURST table.

< jurst
jurst_id="@jurst_id 1"
storeent_id="@storeent_id_1"
code="World"
subclass="1"/>
where
* Jjurst_id is a generated unique key
* storeent_id is the store entity associated with this jurisdiction group.
* code which, together with its store entity and subclass, uniquely identifies
this jurisdiction group.
* subclass is the jurisdiction subclass as follows:
— 1 = ShippingJurisdiction
— 2 = TaxJurisdiction

c. Using the following example as your guide, associate the jurisdiction you
created in step b with the jurisdiction group you defined in step a, by
adding information to the JURSTGRPREL table.

<jurstgprel

Jjurst_id="@jurst_id_1"
jurstgroup_id="@jurstgroup_id 1"
subclass="1"/>

where

* Jjurst_id is the jurisdiction

* jurstgroup_id is the jurisdiction group

Chapter 18. Shipping assets 135

* subclass is the subclass of the jurisdiction and of the jurisdiction group
These should match:

— 1 = ShippingJurisdiction[Group]
— 2 = TaxJurisdiction[Group]

d. Repeat steps a through c for all jurisdictions and jurisdiction groups your
store supports.

6. Define the shipping modes your store will use.

a. Using the following example as your guide, define a shipping mode in your
XML file for the SHIPMODE table:

<shipmode

shipmode_id="@shipmode_id_1"

fieldl

storeent_id="@storeent id 1"

code="Ground 1 week"

carrier="XYZ Carrier"/>

where:

* shipmode_id is a generated unique key.

e fieldl is a field available for customization.

¢ storeent_id is the store entity associated with this shipping mode.
* code is the merchant assigned code, unique for the store entity.
* carrier is the name or identifier of the carrier.

b. Using the following example as your guide, add information about the
shipping mode to the SHPMODEDSC table. If you are creating a
multicultural store, you should include this information in a locale-specific
XML file:

< shpmodedsc

description="International mail"

field1="USD$5.00 per order plus USD$1.00 for each item"
field2="5 business days"

shipmode_id="@shipmode_id_1"

Tanguage_id="&en US;"/>

where:

* description is a brief description of the ShippingMode, suitable for
display to a customer for selection.

e fieldl and field2 are fields available for customization.
* shipmode_id is a generated unique key.
e language_id is the language used.
C. Repeat steps a and b for all shipping modes in your store.
7. Define the calculation codes to be used by your store.

a. Using the following examples as your guide, define the calculation code in
your XML file for the CALCODE table.

< calcode
calcode_id="@calcode_id_1"
code="shipping Code 1- per/order"
calusage_id="-2"
storeent_id="@storeent_id_1"

136 Store Developer’s Guide

groupby="0"
published="1"
sequence="+0.00E+000"
calmethod id="-23"
calmethod_id_app="-24"
calmethod id gfy="-22"
flags="0" />

where:

calcode_id is a generated unique key.

code is a character string that uniquely identifies this CalculationCode,
given a particular CalculationUsage and StoreEntity.

calusage_id indicates the kind of calculation this CalculationCode is used
for. For example, the CalculationCode may be used to calculate one of the
following monetary amounts:

— Discounts (-1)

— Shipping charges (-2)

— Sales tax (-3)

— Shipping tax (-4)

— Coupons (-5)

storeent_id is the store entity associated with this calculation code.
groupby are bit flags indicating to the CalculationCodeCombineMethod
how Orderltems should be grouped when performing calculations. 0 =
No grouping. Place all applicable Orderltems in a single group. Refer to
CALCODE table: details in the WebSphere Commerce online help for more
information.

pubTished specifies whether or not the calculation code is published:

— 0 = Not published (temporarily disabled)

— 1 = Published

— 2 = Marked for deletion (and not published)
sequenceCalculationCodes are calculated and applied in sequence from
lowest to highest. If two calculation codes have the same sequence
number, the calculation codes with the lower calcode_id will be
calculated first.

calmethod_id is the CalculationCodeCalculateMethod that defines how to
calculate a monetary amount for this CalculationCode.
calmethod_id="-23", the CalculationCodeCalculateMethod for shipping, is
the only shipping calculation method provided with WebSphere
Commerce.

calmethod_id_app is the CalculationCodeApplyMethod that stores the
calculated amount for the associated Orderltems. calmethod_id_app="-
24", the CalculationCodeApplyMethod for shipping is the only shipping
apply method provided with WebSphere Commerce.

calmethod_id_qfy is the CalculationCodeQualifyMethod that defines
which Orderltems are associated with this CalculationCode.
calmethod_id_qgfy="-22", the CalculationCodeQualifyMethod for shipping
is the only shipping qualification method provided with WebSphere
Commerce.

flags specifies whether the CalculationCodeQualifyMethod of this
CalculationCode should be invoked.

Chapter 18. Shipping assets 137

138

b.

C.

— 0 = unrestricted. The method will not be invoked
— 1 = restricted. The method will be invoked.

Using the following example as your guide, add the calculation code
description information in your XML file for the CALCODEDSC table. If
you are creating a multicultural store, you should include this information
in a locale-specific XML file.

<calcodedsc

calcode_id="@calcode_id_3"

description="5.00USD per order"

language_id="&en_US"

longdescription= "This shipping calculation code charges 5.00USD per order."
/>

where

* calcode_id is the calculation code to which this information applies.
¢ description is a short description of the calculation code.

* language_id is the language for which this information applies.

* longdescription is the detailed description of the calculation code.
Repeat steps a and b for each calculation code used in your store.

8. Define the calculation rules for your store.

Store Developer’s Guide

a.

Using the following example as your guide, set up the calculation rule in
your XML file for the CALRULE table:

<calrule

calrule_id="@calrule_id_1"

calcode_id="@calcode_id_1"

startdate="1900-01-01 00:00:00.000000"
enddate="2100-01-01 00:00:00.000000"
sequence="+1.00000000000000E+000"

combination="2"

calmethod_id="-27"

calmethod id gqfy="-26"

flags="1"

identifier="1" />where

e calrule_id is a generated unique identifier.

* calcode_id is the calculation code this calculation rule is part of.
¢ startdate is the time this calculation rule becomes effective.
* enddate is the time this calculation rule stops being effective.

* sequence is the order this calculation rule will be processed in.
Calculation rules for the same calculation code are processed in sequence
from lowest to highest value.

* combination specifies the bit flag for special processing to be performed
by the default CalculationRuleCombineMethod implementation. Refer to
the CALRULE table in the WebSphere Commerce online help for more
information.

* calmethod_id is the CalculationRuleCalculateMethod that calculates a
monetary result for a set of Orderltems.

e calmethod_id_qgfy is the CalculationRuleQualifyMethod that determines

which of a set of OrderItems should be sent to the
CalculationRuleCalculateMethod.

+ flags are used by CalculationRuleCombineMethod to determine how this
calculation rule may be combined with other calculation rules. Refer to
CALRULE table for more information.

* identifier identifies this calculation rule, in combination with its
calculation code.

For more information see the CALRULE table in the WebSphere Commerce
online help.

b. Repeat step a for each calculation rule used in your store. Note that each
calculation code may have several calculation rules. For example,
calcode_id="@calcode_id_1" may be associated with several calrule_ids.

9. Define calculation scales for your store.

A calculation scale is the set of ranges that will apply to the calculation. For
example, for shipping costs you may have a set of weight ranges that each
correspond to a particular cost. That is, a product that weighs between 0 to 5
kg might cost $10.00 to ship. And a product weighing 5 to 10 kg might cost
$15.00 to ship. These ranges create a scale.

a. Using the following example as your guide, set up the calculation scale in
your XML file for the CALSCALE table:

<calscale

calscale id="@calscale_id 1"

code="Scale Code 1 per order USD"
storeent_id="@storeent_id_1"
calusage_id="-2"

setccurr="USD"

calmethod id="-28"/>

where

* calscale_id is a generated unique identifier.

* code is a character string that uniquely identifies this calculation scale,
given a particular calculation usage and store entity.

* storeent_id is the store entity that this calculation scale is part of.

* calusage_id indicates the kind of calculation this CalculationScale is used
for. For example, the CalculationScale may be used to calculate one of the
following monetary amounts:

— Discounts (-1)

Shipping charges (-2)
Sales tax (-3)
Shipping tax (-4)

Coupons (-5)

* setccurr if specified, indicates the currency for the range start values of
the calculation range objects for this calculation scale. The
CalculationScaleLookupMethod should return a "lookup number” in this
currency.

* calmethod_id is the CalculationScaleLookupMethod that given a set of
order items determines a lookup value, a base monetary value, a result
multiplier, and a set of mathematical weights that can be used by the
calculation scale to calculate a monetary amount. To determine which
CalculationScaleLookupMethod to use, do the following:

— Refer to the CALMETHOD table in the WebSphere Commerce online
help. Refer to the description for the SUBCLASS column. Click the link

Chapter 18. Shipping assets 139

140

for the CALMETHOD table: details. This table lists the types of
calculation methods available. The
MonetaryCalculationScaleLookupMethod method is 9.

— Open the bootstrap file wes.bootstrap_xx_XX.xml, where xx_XX is the
code for the locale. The bootstrap files are located in the following
directory:

- dr1’ve:\WebSphere\CommerceServer\schema\xm]

- [BMEIOTM drive:\Program Files\WebSphere\CommerceServer
\schema\xm1

- /usr/WebSphere/CommerceServer/schema/xml
- /opt/WebSphere/CommerceServer/schema/xm]
- /opt/WebSphere/CommerceServer/schema/xml

- -m-/q1'bm/proddata/webCommerce/schema/xm]

— Locate the section listing the available calculation methods
(CALMETHOD,.

— Locate the calculation methods with the calusage_ID value for tax (-3
for sales tax and -4 for shipping tax).

— Locate the calculation methods, which have a subclass of 7; there are
several. Pick the one which meets your needs.

For more information, see the CALSCALE table in the WebSphere
Commerce online help.

. Repeat step a for each calculation scale used in your store. For example, for

shipping, InFashion creates a cost per order scale and a cost per item scale.

10. Define calculation ranges for the calculation scales.

Store Developer’s Guide

a. Using the following example as your guide, set up the calculation range in

your XML file for the CALRANGE table.

<calrange

calrange id="@calrange id 1"

calscale_id="@calscale_id_1"

calmethod id="-33"

rangestart="0.00000"

cumulative="0"/>

where

 calrange_id is a generated unique identifier.

* calscale_id is the calculation scale this calculation range is part of.

¢ calmethod_id is the CalculationRangeMethod that determines a
monetary amount from the CalculationRangeLookupResult. For
example, Fixed AmountCalculationRangeCmd,
PerUnitAmountCalculationRangeCmd, or
PercentageCalculationRangeCmd. To determine the
CalculationRangeMethod, do the following:

— Refer to the CALMETHOD table in the WebSphere Commerce online
help. Refer to the description for the SUBCLASS column. Click the
link for the CALMETHOD table: details. This table lists the types of
calculation methods available. The CalculationRangeMethod is 10.

11.

— Open the bootstrap file wes.bootstrap_xx_XX.xml, where xx_XX is the
code for the locale. The bootstrap files are located in the following
directory:

- dr1‘ve:\WebSphere\CommerceServer\schema\xm]
- drive:\Program

Files\WebSphere\CommerceServer\schema\xml
- /usr/WebSphere/CommerceServer/schema/xml
- /opt/WebSphere/CommerceServer/schema/xm]
- /opt/WebSphere/CommerceServer/schema/xml

- /qibm/proddata/WebCommerce/schema/xml

— Locate the section listing the available calculation methods
(CALMETHOD).

— Locate the calculation methods with the calusage_ID value for tax (-3
for sales tax and -4 for shipping tax).

— Locate the calculation methods which have a subclass of 9; there are
several. Pick the one which meets your needs.

e cumulative are the valid values:

— 0 = only the matching CalculationRange with the highest
RANGESTART value is used.

- 1 = all matching CalculationRanges are used. The calculated
monetary amounts are summed to arrive at the final result.

For more information, see the CALRANGE table in the WebSphere
Commerce online help.

Repeat step a for each calculation range associated with the calculation
scale used in your store.

Define the calculation lookup values for the calculation scales. The calculation
lookup values are the values associated with the calculation scale. For
example, a calculation scale includes the following weight ranges and
associated prices for shipping:

* 0 to 5 kg costs $10.00

* 5 to 10 kg costs $15.00

The lookup values are $10.00 and $15.00.

a.

Using the following examples as your guide, set up the calculation lookup
values in your XML file for the CALRLOOKUP table. If you are creating a
multicultural store, you should include this information in a locale-specific
XML file, that is, one file per locale that your store supports. For example,
if your store ships to customers in the United States and Japan, you should
add the US dollar lookup values in one XML file, and the Yen lookup
values in another XML file.

<calrlookup
calrlookup_id="@calrlookup_id_1"
setccurr="USD"

calrange id="@calrange id 1"
value="5.00"/>

where

* calrlookup_id is a generated unique identifier.

Chapter 18. Shipping assets 141

* calrange_id is the calculation range this calculation range lookup result
is part of.

* value is the value of the calculation range lookup result, used by the
calculation range method of the calculation range to determine a
monetary result.

For more information, see the CALRLOOKUP table in the WebSphere
Commerce online help.

b. Repeat step a for each lookup value associated with the calculation scale
used in your store.

12. Associate the calculation rule and calculation scale

a. Using the following examples as your guide, associate the calculate scale
with the calculation rule in your XML file for the CRULESCALE table.

< crulescale
calrule_id="@calrule_id_1"
calscale_id="@calscale_id_1" />
where

* calrule_id is the calculation rule.

* calscale_id is the calculation scale.

b. Repeat step a for each calculation scale and rule association.

For more information about the use of @ and & see |ABEendix B]
[“Creating your data” on page 305}

Creating shipping fulfillment assets

In order for your shipping assets to work correctly in your store, you must
associate the shipping jurisdiction groups to the calculation rules and the
fulfillment centers to the shipping modes used in the store.

You must create your fulfillment assets before you can associate your shipping
assets to a fulfillment center. For more information on creating fulfillment assets,
see [“Creating fulfillment assets in WebSphere Commerce” on page 108

After you have created the fulfillment assets, associate shipping assets to them by
adding information to the SHPJCRULE and SHPARRANGE tables. Do the
following:

1. Review the IBM WebSphere Commerce Calculation Framework Guide. The
WebSphere Commerce calculation framework calculates monetary amounts (for
example, shipping) associated with the product or service a customer has
selected to purchase.

2. Review the XML files used to create shipping fulfillment assets for the sample
stores. All files for the sample stores are located in the corresponding store
archive file. Each sample store includes a shipfulfill.xml file, which includes
the shipping fulfillment information. To view the shipfulfill.xml file in the
store archive, decompress it using a ZIP program. The shipfulfill.xml file is
located in the data directory.

The store archive files are located in the following directory:
. dr1’ve:\WebSphere\Commer‘ceSer‘ver\samp]estor‘es
. drive:\Program Files\WebSphere\CommerceServer\samplestores

142 Store Developer’s Guide

. /usr/WebSphere/CommerceServer/samplestores
. /opt/WebSphere/CommerceServer/sammestores
. /opt/WebSphere/CommerceServer/samplestores

. /q1'bm/proddata/WebCommerce/samp1estores

Note: The WebSphere Commerce online help contains information about
each of the data assets contained in the sample stores.

. Review the information in [Appendix B, “Creating your data” on page 305

. Create a shipfulfill.xml file, either by copying one of the shipfulfill.xml
files in the sample store archives, or by creating a new one. For more
information, see the DTD file that corresponds to shipfulfill.xml. The DTD
files are located in the following directory:

. dr1‘ve:\WebSphere\CommerceServer\xm]\sar

. drive:\Program Files\WebSphere\CommerceServer\xml\sar
. /usr/WebSphere/CommerceServer/xml/sar

. /opt/WebSphere/CommerceServer/xm]/sar

. /opt/WebSphere/CommerceServer/xml/sar

. /qibm/proddata/WebCommerce/xml/sar

. Associate calculation rules to a shipping jurisdiction group by adding
information to the SHPJCRULE table. Use the following example as your guide.
If you are creating a multicultural store, also create an XML file for each locale
your store supports.

<shpjcrule

calrule_id="@calrule_id 1"

ffmcenter_id="@ffmcenter_id_1"

jurstgroup_id="@jurstgroup_id 1"

precedence="0"

shipmode_id="@shipmode_id_1"

shpjcrule_id="@shpjcrule_id_1"

where
* calrule_id is the calculation rule used.

* ffmcenter_id is the fulfillment center. If this is NULL then this association
applies to all fulfillment centers.

* Jjurstgroup_id is the shipping jurisdiction group. If this is NULL, then this
association applies to all shipping jurisdiction groups.

 precedence is when a shipping address falls within more than one of the
specified shipping jurisdiction groups for the same fulfillment center and
shipping mode. Only the calculation rule with the highest
SHPJCRULE.PRECEDENCE value qualifies.

* shipmode_id is the shipping mode.
* shpjcrule_id is a generated unique identifier.

. Repeat step 3 for each jurisdiction group, fulfillment center and rule association
in your store.

. Associate the shipping mode and a fulfillment center to your store, by adding
information to the SHPARRANGE table. Use the following example as your
guide:

Chapter 18. Shipping assets 143

<shparrange
shparrange_id="@shparrange_id_2"
store_id="@storeent_id 1"
ffmcenter_id="@ffmcenter_id_1"
shipmode_id= "@shipmode_id_2"
startdate="1970-06-22 23:00:00.000000"
enddate= "2008-06-22 23:00:00.000000"
precedence= "0Q"
flags="0"
/>

where

* shparrange_id is a generated unique identifier.
* store_id is the store.

» ffmcenter_id is the fulfillment center.

¢ shipmode_id is the shipping mode. NULL indicates this shipping
arrangement can be used regardless of shipping mode.

 startdate is the time this shipping arrangement starts being effective.
* enddate is the time this shipping arrangement stops being effective.

* precedence is when more than one shipping arrangement (for the same store
and shipping mode) is effective at a particular time; the one with the highest
PRECEDENCE is used.

» flags contains bit flags:

— 1 = restricted - This shipping arrangement applies only to order items
whose shipping address matches one of the shipping jurisdiction groups
associated (through the SHPARJURGP table) with this shipping
arrangement.

8. Repeat step 5 for all shipping modes used in your store.

For more information about the use of @ and & see|AERendix B]
|“Creating your data” on page 305}

Creating store-catalog-shipping assets

In order to associate shipping modes with your store, you must associate a
calculation code with the catalog entries in your store for each contract your store
includes.

You must create your store and catalog assets before you can create
store-catalog-shipping assets. For more information on creating store assets, see
[“Creating store data assets in an XML file” on page 42| For more information on
creating catalog assets, see ['Displaying store catalog assets” on page 744

To create store-catalog-shipping assets, do the following:

1. Review the IBM WebSphere Commerce Calculation Framework Guide. The
WebSphere Commerce calculation framework calculates monetary amounts (for
example, shipping) associated with the product or service a customer has
selected to purchase.

2. Review the XML files used to create shipping fulfillment assets for the sample
stores. All files for the sample stores are located in the corresponding store
archive file.

The store archive files are located in the following directory:

. drive:\WebSphere\CommerceServer\samplestores

144 Store Developer’s Guide

. drive:\Program Files\WebSphere\CommerceServer\samplestores
. /usr/WebSphere/CommerceServer/samplestores
. /opt/WebSphere/CommerceServer/sammestores
. /opt/WebSphere/CommerceServer/samplestores
. /q1'bm/proddata/WebCommerce/samp1estores
Note: The WebSphere Commerce online help contains information about
each of the data assets contained in the sample stores.

Each sample store includes a store-catalog-shipping.xml file, which includes
the shipping fulfillment information. To view the store-catalog-shipping.xml
file in the store archive, decompress it using a ZIP program. The
store-catalog-shipping.xml file is located in the data directory.

3. Review the information in [Appendix B, “Creating your data” on page 305

4. Create a store-catalog-shipping.xml file, either by copying one of the
store-catalog-shipping.xml files in the sample store archives, or by creating a
new one. For more information, see the DTD file that corresponds to
store-catalog-shipping.xml. The DTD files are located in the following
directory:

o NI drive:\WebSphere\CommerceServer\xml\sar

. dr‘ive:\Pr‘ogram Files\WebSphere\CommerceServer\xml\sar
. /usr/WebSphere/CommerceServer/xml/sar

. /opt/WebSphere/CommerceSer‘ver/xm]/sar

. /opt/WebSphere/CommerceServer/xml/sar

. /qibm/proddata/WebCommerce/xml/sar

5. Create the store-catalog-shipping relationship by adding information to the
CATENCALCD table. Use the following example as your guide:

<catencalcd
calcode_id="@calcode_id_1"
catencalcd_id="@catencalcd id_1"
store_id="@storeent_id_1"

/>

where
* calcode_id is the calculation code.

* catencalcd_id is a generated unique identifier.
* store_id is the store.

For more information about the use of @ and & see |AEEendix B]
|“Creating your data” on page 305}

Creating a default shipping mode

In order to set a default shipping mode for the store, you must add information to
the STOREDEEF table. To add information to the STOREDEF table, do the
following:

1. Review the XML files used to create store default assets for the sample stores.
All files for the sample stores are located in the corresponding store archive file.

Chapter 18. Shipping assets 145

146

The store archive files are located in the following directory:

o SN drive:\WebSphere\CommerceServer\samplestores

. drive:\Program Files\WebSphere\CommerceServer\samplestores
. /usr/WebSphere/CommerceServer/samplestores

. /opt/WebSphere/CommerceServer/samplestores

. /opt/WebSphere/CommerceServer/samplestores

. /qibm/proddata/WebCommerce/samplestores

Note: The WebSphere Commerce online help contains information about
each of the data assets contained in the sample stores.

Each sample store includes a store-defaults.xml file, which includes the
default shipping information. To view the store-defaults.xml file in the store
archive, decompress it using a ZIP program. The store-defaults.xml file is
located in the data directory.

Review the information in |[Appendix B, “Creating your data” on page 305,

Create a store-defaults.xml file, either by copying one of the
store-defaults.xml files in the sample store archives, or by creating a new one.
For more information, see the DTD file that corresponds to
store-defaults.xml. The DTD files are located in the following directory:

. drive:\WebSphere\CommerceServer\xm]\sar

. drive:\Program Files\WebSphere\CommerceServer\xml\sar
. /usr/WebSphere/CommerceServer/xml/sar

. /opt/WebSphere/CommerceServer/xml/sar

. /opt/WebSphere/CommerceServer/xml/sar

. /q1'bm/proddata/WebCommerce/xm1/sar

Using the following example as your guide, in your XML file, specify the
default shipping mode for the store by adding information to the STOREDEF
table:

<storedef
store_id="@storeent_id 1"
shipmode_id="@shipmode_id_1"
/>

where
* store_id is the store.
* shipmode_id is the default shipping mode for the store.

For more information about the use of @ and & see |AEp_endiX B]
|“Creating your data” on page 305}

Store Developer’s Guide

Chapter 19. Tax assets

In order to charge and collect taxes on the goods and services your store provides,
a store created with WebSphere Commerce must include the following:

* Tax categories
* Calculation codes
e Jurisdictions and jurisdiction groups

The combination of the tax categories, calculation codes, and jurisdictions and
jurisdiction groups create the tax charges for the store.

Understanding tax assets in WebSphere Commerce

The following diagram illustrates the taxation structure in WebSphere Commerce
Server.

Q +definedJurisdictionGrougp Q

StoreEntity JurisdictionSroup

A A

+definedJurisdiction

Q)

Jurisdiction

CalculationCode

TaxCategory CalculationRule

0.1
[

1 InGroup

TaxType Q TaxJurisdictionGroup

TaxdurisdictionGroupCalculationRule

+definedCalculationCode

TaxJurisdiction

Q +defaultFulfillmentCenter

Store 01 Fulfillment Center

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information
on the information model, see [“The store data information model” on|
|page 25| For more information on the conventions used in this diagram,
see|Appendix A, “UML legend” on page 303,

Tax category

Tax categories correspond to the different kinds of tax a store may be required to
collect, such as federal, state or provincial, and municipal.

© Copyright IBM Corp. 2002 147

148

A tax category is part of one store entity, although a store entity may have several
tax categories. If the store entity is deleted, the tax categories associated with that
store entity are also deleted.

Tax type

A store typically collects two type of taxes: sales or use tax, and shipping tax. Each
tax category has one tax type. Although each tax category may only be of one tax
type, (for example the tax category federal is a sales tax type), several different tax
categories may belong to the same tax type (for example, the tax type sales tax,
applies to the categories federal, provincial, and municipal).

Calculation code

Calculation codes are used to calculate tax charges, that is, a tax calculation code
indicates how tax is calculated for order items. In order to calculate tax on the
order item, you must assign sales tax and shipping tax calculation codes to either a
catalog entry or a group of catalog entries. Only one tax calculation code of each
tax type can be applied to a particular catalog entry or group of catalog entries.
Typically, sales or use tax is levied on the net price, and shipping tax is levied on
shipping charges.

A calculation code is part of a store entity. A calculation code can only be
associated with one store entity, but a store entity may have several calculation
codes. If the store entity is deleted, the calculation codes associated with that store
entity are also deleted.

For more information about the use of calculation codes, see the IBM
WebSphere Commerce Calculation Framework Guide.

Calculation rules

Each calculation code has at least one calculation rule, which defines the
calculations for each tax category, and specifies the conditions under which the
calculations will be done. Each tax calculation rule is associated with a tax
category, a jurisdiction group and a fulfillment center, which together define the
conditions under which the calculation rule is used. For example, a different rule
may be selected to calculate an amount for a particular tax category depending on
the shipping address and fulfillment center specified in the order.

Each calculation rule belongs to exactly one calculation code.

A particular tax calculation code can have several calculation rules, one for each
combination of tax category, tax jurisdiction group, and fulfillment center
associated with the store. Each sales tax and shipping tax calculation rule can be
associated with multiple TaxJurisdictionGroupCalculationRules (TaxRules). For
example in the chart below, calculation rule 10001 is applicable to both jurisdiction
groups 1234 and 1235.

TAXJCRULE_ID | CALRULE_ID FFMCENTER_ID| JURSTGROUP_IDPRECEDENCE

10001 10001 NULL 1234 0

10002 10001 NULL 1235 0

Store Developer’s Guide

Each TaxRule defines the conditions under which the calculation rule should be
applied. For example, you may define a calculation rule for each jurisdiction group
to which the store ships. In the example below, calculation rule 10001 is applicable
to both jurisdiction group 1234 and 1235.

In the following example, the tax calculation code uses calculation rule A for the
provincial sales tax category, when the tax jurisdiction is Alberta, and rule C when
the tax jurisdiction is British Columbia.

Tax jurisdiction Federal sales tax Provincial sales tax

Alberta, Canada Calculation rule B, which calculation rule A, which
gives Y% gives X%

British Columbia, Canada Calculation rule B, which calculation rule C, which
gives Y% gives Z%

When a shipping address matches more than one tax jurisdiction group, the
calculation rule with the highest associated TAXJCRULE.PRECEDENCE column
value is used.

The association of TaxJurisdictionGroupCalculationRules (TaxRule) with a
calculation rule determines when the calculation rule is applicable. A sales tax or
shipping tax calculation rule is applicable when any one of the conditions given by
the TaxRules is met. In the example below, calculation rule 10001 is applicable
when you are shipping to jurisdiction group 1001, or when you are shipping from
fulfillment center 1001, or you are shipping to jurisdiction group 1001.

CALRULE_ID FFMCENTER_ID JURSTGROUP_ID
10001 NULL 1001
10001 1001 1001

Each TaxJurisdictionGroupCalculationRule is associated with at most 1 jurisdiction
group. Calculation rules themselves are not directly associated with jurisdiction
groups.

For more information about the use of calculation rules, see the IBM
WebSphere Commerce Calculation Framework Guide.

Jurisdictions and jurisdiction groups

Jurisdictions are geographical regions or zones representing a country or region,
province or territory, or zip code range, to which you sell goods. Jurisdictions are
grouped together to form jurisdiction groups.

WebSphere Commerce supports two types of jurisdictions: shipping jurisdictions
and tax jurisdictions. Each of these jurisdictions is part of a corresponding group,
for example, shipping jurisdictions are in the shipping jurisdictions group and tax
jurisdictions are in the tax jurisdictions group.

Jurisdictions and jurisdiction groups determine which calculation rules are used to
calculate the tax charges.

Jurisdictions and jurisdiction groups are part of a store entity. Each jurisdiction and
jurisdiction group is part of one store entity, however a store entity may have

several jurisdictions or jurisdiction groups. If the store entity is deleted, the

Chapter 19. Tax assets 149

jurisdictions and jurisdiction groups associated with that store entity are also
deleted.

For more detailed information on the structure of tax assets in WebSphere
Commerce Server, see the tax object and data models in the WebSphere
Commerce online help.

Creating tax assets in WebSphere Commerce

150

The Store Service tools in WebSphere Commerce allow you to create and edit
certain tax assets (for example tax categories and jurisdictions) in a store archive,
but not all tax assets. For more information on which assets you can edit with the
Store Services tools, see the WebSphere Commerce online help topic "Changing store
database assets.”

Note: The Store Services tools work with pre-populated XML files in the form of a
store archive.

You can also create your tax assets in the format of XML files that can be loaded

into the database using the Loader package. As a result, you have the following

two options for creating shipping assets:

* Edit the existing tax assets from one of the sample stores provided with
WebSphere Commerce, or an existing store archive

* Create new tax assets in the form of an XML file which can be published as part
of a store archive, or loaded using the Loader package.

For information on editing the tax assets in an existing store archive, see the
WebSphere Commerce online help. For information on creating new tax assets in
the form of an XML file, see [‘Creating tax assets using an XML file”]

Creating tax assets using an XML file

Create your tax assets in the format of XML files that can be loaded into the
database using the Loader package. For more information on the Loader package,
see [Part 7, “Publishing your store” on page 207} If you are creating a multicultural
store, you may want to create separate XML files for each locale your store
supports. The locale-specific file should specify all description information, so it
can be easily translated.

The sample stores, from which many of the examples in these tasks are taken, use
one tax.xml file for all information that does not need to be translated, and
another tax.xml file for each locale the store supports, for the information that
needs to be translated. The locale-specific files contain all the description
information

To create tax assets for your store using an XML file, do the following:

1. Review the IBM WebSphere Commerce Calculation Framework Guide. The
WebSphere Commerce calculation framework calculates monetary amounts (for
example, taxes) associated with the product or service a customer has selected
to purchase.

2. Review the XML files used to create tax assets for the sample stores. All files
for the sample stores are located in the corresponding store archive file.

The store archive files are located in the following directory:
. dr1‘ve:\WebSphere\CommerceServer\samp1estores
. drive:\Program Files\WebSphere\CommerceServer\samplestores

Store Developer’s Guide

. /usr/WebSphere/CommerceServer/samplestores
. /opt/WebSphere/CommerceServer/sammestores
. /opt/WebSphere/CommerceServer/samplestores
. /q1'bm/proddata/WebCommerce/samp1estores
Note: The WebSphere Commerce online help contains information about
each of the data assets contained in the sample stores.

Each sample store includes two tax.xml files, which include the tax
information. To view the tax.xml files in the store archive, decompress it using
a ZIP program. The tax.xml files are located in the data directory. The
language-specific tax.xml is in a locale-specific subdirectory of the data
directory.

. Review the information in [Appendix B, “Creating your data” on page 305

. Create a tax.xml file, either by copying one of the tax.xml files in the sample
store archives, or by creating a new one. For more information, see the DTD file
that corresponds to tax.xml. The DTD files are located in the following
directory:

o EYEMN drive:\WebSphere\CommerceServer\xml\sar

. dr‘ive:\Pr‘ogram Files\WebSphere\CommerceServer\xml\sar
. /usr/WebSphere/CommerceServer/xml/sar

. /opt/WebSphere/CommerceServer/xm]/sar

. /opt/WebSphere/CommerceServer/xml/sar

. /qibm/proddata/WebCommerce/xml/sar

. Define the jurisdictions and jurisdiction groups to which you are shipping
goods and services. Assign your tax jurisdictions to tax jurisdiction groups
according to their applicable tax category calculation rules.

a. Using the following example as your guide, define a jurisdiction group in
your XML file in the JURSTGROUP table:

<jurstgroup
Jjurstgroup_id="@jurstgroup_id_2"
description="Tax Jurstiction Group 1"
subclass="2"
storeent_id="@storeent_id_1"
code="Wor1d"/>

where

e jurstgroup_id is a generated unique key

* description is a brief description of the jurisdiction group, suitable for
display in a user interface that manages jurisdiction groups.

* subclass is the jurisdiction group subclass as follows:
— 1 = ShippingJurisdictionGroup
— 2 = TaxJurisdictionGroup
 storeent_id is the store entity associated with this jurisdiction group.

 code which, together with its store entity and subclass, uniquely identifies
this jurisdiction group.

Chapter 19. Tax assets 151

b. Using the following example as your guide, define a jurisdiction in your
XML file in the JURST table.

<jurst

jurst_id="@jurst_id_2"

storeent_id="@storeent id 1"

code="World"

subclass="2"/>

where

* Jjurst_idis a generated unique key

» storeent_id is the store entity associated with this jurisdiction group.

+ code which, together with its store entity and subclass, uniquely identifies
this jurisdiction group.

* subclass is the jurisdiction subclass as follows:
— 1 = ShippingJurisdiction
— 2 = TaxJurisdiction

c. Using the following example as your guide, associate the jurisdiction you

created in step b with the jurisdiction group you defined in step a, by
adding information to the JURSTGRPREL table.

<jurstgprel
jurst_id="@jurst_id 2"
Jjurstgroup_id="@jurstgroup_id_1"
subclass="2"/>
where
* Jjurst_id is the jurisdiction
* Jjurstgroup_idis the jurisdiction group
* subclass is the subclass of the jurisdiction and of the jurisdiction group
These should match:
— 1 = ShippingJurisdiction[Group]
— 2 = TaxJurisdiction[Group]

d. Repeat steps a through c for all jurisdictions and jurisdiction groups your
store supports.

6. Define the tax categories your store will use.

a. Using the following example as your guide, define a tax category in your
XML file for the TAXCGRY table:

<taxcgry
taxcgry_id="@taxcgry_id_1"
taxtype_id="-3"
storeent_id="@storeent_id_1"
name="Sales Tax"
displayseq="0"
displayusage="0"/>

where:
+ taxcgry_id is a generated unique key.

+ taxtype_id="-3" is the tax type for this tax category. WebSphere
Commerce supports two tax types:

— sales or use tax (-3)
— shipping tax (-4)
* storeent_id is the store entity associated with this tax category.

152 Store Developer’s Guide

* name is the name of the tax category. Along with the store entity, the
name uniquely identifies this tax category.

+ displayseq specifies the sequence, from lowest to highest, of tax amounts
when displayed, for example, in an order.

 displayusage specifies that this tax category in relation to the
PriceDataBean as follows:

— 0 = is not calculated
— 1 = is calculated

The PriceDataBean can be used to obtain tax amounts that should be
shown along with the product price.

b. Repeat step a for each tax category used in your store.

c. Using the following example as your guide, add the tax category
description information in your XML file for the TAXCGRYDS table. If you
are creating a multicultural store, you should include this information in a
locale-specific XML file.
<taxcgryds

taxcgry_id="@taxcgry_ id 1"
description="Sales Tax"
Tanguage_id="&en_US"/>

where
* taxcgry_id is the tax category.

* description is a brief description of the tax category, suitable for display
to customers.

* language_id is the language in which this information will display.
d. Repeat step c for each tax category used in your store.
7. Define the calculation codes to be used by your store.

a. Using the following examples as your guide, define the calculation code in
your XML file for the CALCODE table.

<calcode
calcode_id="@calcode_id_3"
code="Tax Code 1"
calusage_id="-3"
storeent_id="@storeent_id_1"
groupby="0"

pubTished="1"

sequence="0"
calmethod_id="-43"
calmethod_id_app="-44"
calmethod_id_qfy="-42"
displaylevel="0"

flags="0"

precedence="0"

/>

where:
* calcode_id is a generated unique key.

* code is a character string that uniquely identifies this calculation code,
given a particular calculation usage and store entity.

* calusage_id indicates the kind of calculation this calculation code is used
for. For example, the calculation code may be used to calculate one of the
following monetary amounts:

— Discounts (-1)
— Shipping charges (-2)

Chapter 19. Tax assets 153

154

Store Developer’s Guide

— Sales tax (-3)

— Shipping tax (-4)

— Coupons (-5)

storeent_id is the store entity associated with this calculation code.
groupby are bit flags indicating to the calculation code combine method
how order items should be grouped when performing calculations. Zero
specifies no grouping (all applicable order items are in a single group).
Refer to CALCODE table: details in the WebSphere Commerce online help
for more information.

pubTished specifies whether or not the calculation code is published:

— 0 = not published (temporarily disabled)

— 1 = published

— 2 = marked for deletion (and not published)

sequence is the order in which the calculation code is calculated.
Calculation codes are calculated and applied in sequence from lowest to

highest. If two calculation codes have the same sequence number, the
calculation codes with the lower calcode_id will be calculated first.

calmethod_idThe calculation code calculate method that defines how to

calculate the tax amounts for this calculation code. In order to determine

which calculation code calculate method to use, do the following:

— Refer to the CALMETHOD table in the WebSphere Commerce online
help. Refer to the description for the SUBCLASS column. Click the link
for the CALMETHOD table: details. This table lists the types of
CALMETHOD:s available. The calculation code calculate method type
is 3.

— Open the bootstrap file wes.bootstrap_xx_XX.xml, where xx_XX is the
code for the locale. The bootstrap files are located in the following
directory:

- drive:\WebSphere\CommerceServer\schema\xml
- drive:\Program

Files\WebSphere\CommerceServer\schema\xml
- /usr/WebSphere/CommerceServer/schema/xml
- /opt/WebSphere/CommerceServer/schema/xm]
- /opt/WebSphere/CommerceServer/schema/xml

- /qibm/proddata/WebCommerce/schema/xml

— Locate the section listing the available calculation methods
(CALMETHOD).

— Locate the calculation methods with the calusage_ID value for tax (-3
for sales tax and —4 for shipping tax).

— Locate the calculation method which has the subclass of 3. This
calculation method is —43.

calmethod_id_app is the CalculationCodeApplyMethod that stores the
calculated amount for the associated Orderltems. Use the method
described in calmethod_id to determine which calculation code apply
method to use.

— calmethod_id_app="-44" is the CalculationCodeApplyMethod for Sales
tax

¢ calmethod_id_qfy is the CalculationCodeQualifyMethod that defines
which order items are associated with this calculation code. Use the
method described in calmethod_id to determine which calculation code
qualify method to use.
— calmethod_id_qfy="-42" is the CalculationCodeQualifyMethod for

Sales tax.

+ display level determines if amounts calculated by this calculation code

should be displayed with each:

— 0 = Orderltem

- 1 = Order
— 2 = product
- 3 =item

— 4 = contract

* flags specifies whether the CalculationCodeQualifyMethod of this
calculation code should be invoked.

— 0 = unrestricted. The method will not be invoked
— 1 = restricted. The method will be invoked.

b. Using the following example as your guide, add the calculation code
description information in your XML file for the CALCODEDSC table. If
you are creating a multicultural store, you should include this information
in a locale-specific XML file.
<calcodedsc

calcode_id="@calcode_id_3"

description="Vitamins

language_id="&en_US"

longdescription= "In Ontario vitamins are taxed federally, but
not provincially."

/>

where
* calcode_id is the calculation code to which this information applies.
* description is a short description of the calculation code.
* language_id is the language for which this information applies.
* longdescriptionis the detailed description of the calculation code.
C. Repeat steps a and b for each calculation code used in your store.
8. Define the calculation rules for your store.

a. Using the following example as your guide, set up the calculation rule in
your XML file for the CALRULE table:

<calrule
calrule_id="@calrule_id_10"
calcode_id="@calcode_id_3"
startdate="1900-01-01 00:00:00.000000"
taxcgry_id="@taxcgry_id_1"
enddate="2100-01-01 00:00:00.000000"
flags="1"
identifier="1"
combination="2"
calmethod_id="-47"
calmethod_id_qfy="-46"
/>

where
* calrule_id is a generated unique identifier.

Chapter 19. Tax assets 155

¢ calcode_id is the calculation code this calculation rule is part of.

* startdate is the time this calculation rule becomes effective.

 taxcgry_id is the tax category for which this calculation rule is effective.

* enddate is the time this calculation rule stops being effective.

* combination are used by CalculationRuleCombineMethod to determine
how this calculation rule may be combined with other calculation rules.
Refer to CALRULE table for more information.

e ijdentifier identifies this calculation rule, in combination with its
calculation code.

+ flagsspecifies the bit flag to indicate special processing to be performed
by the default CalculationRuleCombineMethod implementation. Refer to

the CALRULE table in the WebSphere Commerce online help for more
information.

* calmethod_id is the CalculationRuleCalculateMethod that calculates a
monetary result for a set of order items. To determine which calculation
rule calculate method to use, do the following:

— Refer to the CALMETHOD table in the WebSphere Commerce online
help. Refer to the description for the SUBCLASS column. Click the link
for the CALMETHOD table: details. This table lists the types of
CALMETHOD:s available. The calculation rule calculate method is 7.

— Open the bootstrap file wes.bootstrap_xx_XX.xml, where xx_XX is the
code for the locale. The bootstrap files are located in the following
directory:

- dr1‘ve:\WebSphere\CommerceServer\schema\xm]

- drive:\Program Files\WebSphere\CommerceServer
\schema\xm1

- usr/WebSphere/CommerceServer/schema/xm
SRS /usr/WebSphere/C S /schema/xml
- /opt/WebSphere/CommerceServer/schema/xm]
- /opt/WebSphere/CommerceServer/schema/xml

- /qibm/proddata/WebCommerce/schema/xml

— Locate the section listing the available calculation methods
(CALMETHOD).
— Locate the calculation methods with the calusage_ID value for tax (-3
for sales tax and -4 for shipping tax).
— Locate the calculation method which has the subclass of 7. This
calculation method is -47.
¢ calmethod_id_qfy is the CalculationRuleQualifyMethod that determines
which of a set of Orderltems should be sent to the
CalculationRuleCalculateMethod. Use the method described in
calmethod_id to determine which calculation rule qualify method to use.
b. Repeat step a for each calculation rule used in your store. Note that each
calculation code may have several calculation rules, one for each applicable
tax category. For example, calcode_id="@calcode_id_1" may be associated
with several calrule_ids.
9. Define calculation scales for your store.

A calculation scale is the set of ranges that will apply to the calculation. These
ranges create a scale.

156 Store Developer’s Guide

a. Using the following example as your guide, set up the calculation scale in
your XML file for the CALSCALE table:
<calscale
calscale_id="@calscale_id_19"
code="Sales Tax 1"
storeent_id="@storeent_id_1"
calusage_id="-3"
setccurr="USD"
calmethod_id="-53"
/>

where

 calscale_id is a generated unique identifier.

* code is a character string that uniquely identifies this calculation scale,
given a particular calculation usage and store entity.

* storeent_id is the store entity that this calculation scale is part of.

* calusage_id indicates the kind of calculation this CalculationScale is used
for. For example, the CalculationScale may be used to calculate one of the
following monetary amounts:

discounts (-1)
— shipping charges (-2)

sales tax (-3)

shipping tax (-4)

coupons (-5)

* setccurr if specified, indicates the currency for the range start values of
the calculation range objects for this calculation scale. The
CalculationScaleLookupMethod will return a "lookup number” in this
currency. In this case, it is not specified; the
CalculationScaleLookupMethod will return a lookup number in the
currency of the order. The currency does not need to be specified unless
the scale range start values are non-zero.

¢ calmethod_id is the CalculationScaleLookupMethod that given a set of
order items determines a lookup number, a base monetary value, a result
multiplier, and a set of mathematical weights that can be used by the
calculation scale to calculate a monetary amount. To determine which
CalculationScaleLookupMethod to use, do the following:

— Refer to the CALMETHOD table in the WebSphere Commerce online
help. Refer to the description for the SUBCLASS column. Click the link
for the CALMETHOD table: details. This table lists the types of
CALMETHODs available. The
MonetaryCalculationScaleLookupMethod method is 9.

— Open the bootstrap file wes.bootstrap_xx_XX.xml, where xx_XX is the
code for the locale. The bootstrap files are located in the following
directory:

- drive:\WebSphere\CommerceServer\schema\xml

- drive:\Program Files\WebSphere\CommerceServer
\schema\xm1

- /usr/WebSphere/CommerceServer/schema/xml
- /opt/webSphere/CommerceServer/schema/xm]

- /opt/WebSphere/CommerceServer/schema/xml

Chapter 19. Tax assets 157

158

- TSI /i bm/proddata/WebCommerce/schema/xml
— Locate the section listing the available calculation methods
(CALMETHOD).

— Locate the calculation methods with the calusage_ID value for tax (-3
for sales tax and -4 for shipping tax).

— Locate the calculation method which has the subclass of 9. There are
several calculation methods with the subclass of 9. Pick the one which
meets your needs.

For more information, see the CALSCALE table in the WebSphere
Commerce online help.

b. Repeat step a for each calculation scale used in your store.
c. Using the following example as your guide, add the calculation scale

description information in your XML file for the CALSCALDS table. If you
are creating a multicultural store, you should include this information in a
locale-specific XML file.
<calscaleds

calscale_id="@calscale_id_19"

description="Sales Tax 5% "

language_id="&en_US"

/>

where
» calscale_id is the calculation scale to which this description applies.

* descriptionis a brief description of the calculation scale, suitable for
display to customers to explain how a calculation is performed. For
example, "$.10 per kilogram, minimum charge of $5.00.” or "10% off
quantities of 5 or more.”

* language_id is the language in which this information will display.

d. Repeat step c for each calculation scale used in your store.

10. Define calculation ranges for the calculation scales.

Store Developer’s Guide

a. Using the following example as your guide, set up the calculation range in

your XML file for the CALRANGE table.
<calrange
calrange_id="@calrange_id_37"
calscale_id="@calscale_id_19"
calmethod_id="-59"
rangestart="0.00000"
cumulative="0"

/>

where
 calrange_id is a generated unique identifier.
* calscale_id is the calculation scale this calculation range is part of.

¢ calmethod_id is the CalculationRangeMethod that determines a
monetary amount from the CalculationRangeLookupResult. For
example, Fixed AmountCalculationRangeCmd,
PerUnitAmountCalculationRangeCmd, or
PercentageCalculationRangeCmd. To determine the
CalculationRangeMethod, do the following:

— Refer to the CALMETHOD table in the WebSphere Commerce online
help. Refer to the description for the SUBCLASS column. Click the
link for the CALMETHOD table: details. This table lists the types of
CALMETHOD:s available. The CalculationRangeMethod is 10.

11.

— Open the bootstrap file wes.bootstrap_xx_XX.xml, where xx_XX is the
code for the locale. The bootstrap files are located in the following
directory:

- dr1‘ve:\WebSphere\CommerceServer\schema\xm]
- drive:\Program

Files\WebSphere\CommerceServer\schema\xml
- /usr/WebSphere/CommerceServer/schema/xml
- /opt/WebSphere/CommerceServer/schema/xm]
- /opt/WebSphere/CommerceServer/schema/xml

- /q1‘bm/proddata/webCommerce/schema/xm1

— Locate the section listing the available calculation methods
(CALMETHOD).

— Locate the calculation methods with the calusage_ID value for tax (-3
for sales tax and -4 for shipping tax).

— Locate the calculation method which has the subclass of 10. There are
several calculation methods with the subclass of 10. Pick the one
which meets your needs.

* rangestart is if a lookup number is greater than or equal to
RANGESTART, or if RANGESTART is NULL, this row matches the
lookup number.

e cumulative is the following:

— 0 = only the matching CalculationRange with the highest
RANGESTART value is used.

- 1 = all matching CalculationRanges are used. The calculated
monetary amounts are summed to arrive at the final result.

For more information, see the CALRANGE table in the WebSphere
Commerce online help.

b. Repeat step a for each calculation range associated with the calculation
scale used in your store. In the example above there is only one range,
since all amounts are taxed at the same rate.

Define the calculation lookup values for the calculation scales. The calculation
lookup values are the values associated with the calculation scale. For
example, a calculation scale includes the following ranges and associated tax
rates for Ontario provincial sales tax on meals served in a restaurant:

e $0.00 - $3.99 taxed at the rate of 0.00%
* $4.00 and up taxed at the rate of 8.00%
The lookup values are 0.00 and 8.00.

a. Using the following examples as your guide, set up the calculation lookup
in your XML file for the CALRLOOKUP table.

<calrlookup
calrlookup_id="@calrlookup_id_37"
calrange_id="@calrange_id 37"
value="5.00"

/>

where
* calrlookup_id is a generated unique identifier.

* calrange_id is the calculation range this calculation range lookup result
is part of.

Chapter 19. Tax assets 159

160

 value is the value of the calculation range lookup result, used by the
calculation range method of the calculation range to determine a
monetary result. In this example, the tax rate is 5.00%.

For more information, see the CALRLOOKUP table in the WebSphere
Commerce online help.

. Repeat steps a and b for each lookup value associated with the calculation

scale used in your store. In this example, there is only one CALRLOOKUP
value, since CALRLOOKUP.SETCCURR is NULL, and there is only one
CALRANGSE, since the tax rate is the same for all amounts.

12. Associate the calculation rule and calculation scale.

a. Using the following examples as your guide, associate the calculate scale

with the calculation rule in your XML file for the CRULESCALE table.

<crulescale
calrule_id="@calrule_id_10"
calscale_id="@calscale_id_19"
/>

where
* calrule_id is the calculation rule.
* calscale_id is the calculation scale.

. Repeat step a for each calculation scale and rule association. In example

used above, there is only one calculation scale for each calculation rule.

Note: If the tax rate varies depending on the amount purchased, you will
need to create scales with non-zero rangestart values. Then, you will
need to create a calculation scale for each supported currency
(setting CALSCALE.SETCCURR to the appropriate currency) for
which you have not established a conversion rate (refer to the
CURCONVERT table) and associate them all with the calculation
rule for that particular tax category. For example, there is no Ontario
provincial sales tax on meals under $4.00. If your store supported
selling meals in US dollars, you would need to either establish a
conversion from US dollars to Canadian dollars, or create a separate
tax calculation scale with an appropriate rangestart value, perhaps
$6.00 USD, and associate it with the same tax calculation rule. Only
the appropriate calculation scale would be used, according to the
currency of the order.

For more information about the use of @ and & see |AE]:_>endix BJ
|“Creating your data” on page 305}

Creating tax fulfillment assets

In order for your tax assets to work correctly in your store, you must associate the
tax jurisdiction groups in your store to the fulfillment center used by your store,
and then associate a calculation rule to both.

You must create your fulfillment assets before you can associate your tax assets to
a fulfillment center. For more information on creating fulfillment assets, see

[“Creating fulfillment assets in WebSphere Commerce” on page 108

After you have created the fulfillment assets, associate your tax assets to them, by
adding add information to the TAXJCRULE table. Do the following:

Store Developer’s Guide

. Review the IBM WebSphere Commerce Calculation Framework Guide. The
WebSphere Commerce calculation framework calculates monetary amounts (for
example, taxes) associated with the product or service a customer has selected
to purchase.

. Review the XML files used to create tax fulfillment assets for the sample stores.
All files for the sample stores are located in the corresponding store archive file.

The store archive files are located in the following directory:

. dr‘ive:\WebSphere\Commer'ceSer'ver\samp]estor‘es

. drive:\Program Files\WebSphere\CommerceServer\samplestores
. /usr/WebSphere/CommerceServer/samplestores

. /opt/WebSphere/CommerceServer/samplestores

. /opt/WebSphere/CommerceServer/samplestores

. /q1'bm/proddata/NebCommer‘ce/samp]estor‘es

Note: The WebSphere Commerce online help contains information about
each of the data assets contained in the sample stores.

Each sample store includes a taxfulfill.xml file, which include the tax
information. To view the taxfulfill.xml file in the store archive, decompress it
using a ZIP program. The taxfulfill.xml file is located in the data directory.

. Review the information in [Appendix B, “Creating your data” on page 305

. Create a taxfulfill.xml file, either by copying one of the taxfulfill.xml files
in the sample store archives, or by creating a new one. For more information,
see the DTD file that corresponds to taxfulfill.xml. The DTD files are located
in the following directory:

o EYEMN drive:\WebSphere\CommerceServer\xml\sar

o BNEIIM rive:\Program Files\WebSphere\CommerceServer\xml\sar
. /usr/WebSphere/CommerceServer/xml/sar

. /opt/WebSphere/Commer‘ceServer/xm]/sar‘

. /opt/WebSphere/CommerceServer/xml/sar

. /qibm/proddata/WebCommerce/xml/sar

. Using the following example as your guide, in your XML file add information
for the TAXJCRULE table:

<taxjcrule
taxjcrule_id="@taxjcrule_id_1"
calrule_id="@calrule_id_10"
ffmcenter_id="@ffmcenter_id_1"
jurstgroup_id="@jurstgroup_id 2"
precedence="0"

/>

where
+ taxjcrule_id is a generated unique identifier.

* calrule_id is the calculation rule used.

» ffmcenter_id is the fulfillment center. If this is NULL then this association
applies to all fulfillment centers.

Chapter 19. Tax assets 161

162

6.

e jurstgroup_id is the tax jurisdiction group. If this is NULL, then this
association applies to all tax jurisdiction groups.

* precedence is when a shipping address falls within more than one of the
specified tax jurisdiction groups, for the same fulfillment center, only the
calculation rule with the highest TAXJCRULE.PRECEDENCE value qualifies.

Repeat step 3 for each jurisdiction group, fulfillment center and rule association
in your store.

For more information about the use of @ and & see |A}3}gendix B:|
[“Creating your data” on page 305}

Creating

store-catalog-tax assets

In order to associate taxes with the goods and services in your store, you must
associate a calculation code with the catalog entries in your store for each contract
your store includes.

You must create your store and catalog assets before you can create
store-catalog-tax assets. For more information on creating store assets, see

[“Creating store data assets in an XML file” on page 42| For more information on

creating catalog assets, see [‘Displaying store catalog assets” on page 74}

To create store-catalog-tax assets, do the following:

1.

Store Developer’s Guide

Review the IBM WebSphere Commerce Calculation Framework Guide. The
WebSphere Commerce calculation framework calculates monetary amounts (for
example, shipping) associated with the product or service a customer has
selected to purchase.

Review the XML files used to create store-catalog-tax assets for the sample
stores. All files for the sample stores are located in the corresponding store
archive file.

The store archive files are located in the following directory:

. dr1've:\WebSphere\CommerceServer\samp1estores

. drive:\Program Files\WebSphere\CommerceServer\samplestores
. /usr/WebSphere/CommerceServer/samplestores

. /opt/WebSphere/CommerceServer/samp1estores

. /opt/WebSphere/CommerceServer/samplestores

. /q1'bm/proddata/WebCommerce/samp]estor'es

Each sample store includes a store-catalog-tax.xml file, which includes the
shipping fulfillment information. To view the store-catalog-tax.xml file in
the store archive, decompress it using a ZIP program. The
store-catalog-tax.xml file is located in the data directory.

Note: The WebSphere Commerce online help contains information about
each of the data assets contained in the sample stores.

Review the information in |[Appendix B, “Creating your data” on page 305

Create a store-catalog-tax.xml file, either by copying one of the
store-catalog-tax.xml files in the sample store archives, or by creating a new
one. For more information, see the DTD file that corresponds to
store-catalog-tax.xml. The DTD files are located in the following directory:

. drive:\WebSphere\CommerceServer\xm]\sar

. drive:\Program Files\WebSphere\CommerceServer\xml\sar
. /usr/WebSphere/CommerceServer/xml/sar

. /opt/WebSphere/CommerceServer/xm]/sar

. /opt/WebSphere/CommerceServer/xml/sar

. /q1‘bm/proddata/WebCommerce/xm/sar

5. Create the store-catalog-tax relationship by adding information to the
CATENCALCD table. Use the following example as your guide:

<catencalcd
calcode_id="@calcode_id_ 3"
catencalcd_id="@catencalcd_id_3"
store_id="@storeent id 1"

/>
where
* calcode_id is the calculation code.

+ catencalcd_id is a generated unique identifier.
* store_id is the store.

For more information about the use of @ and & see |Agp_endix BJ
[“Creating your data” on page 305}

Chapter 19. Tax assets 163

164 Store Developer’s Guide

Chapter 20. Discount assets

Discounts allow you to offer customers price incentives to promote a purchase.
You can offer percentage discounts (such as 10% off), or fixed-amount discounts
(such as $15 off). Discounts can apply to specific products or to the total purchase.
For example, you can offer a 20% reduction to senior citizens; or if you have many
red baseball caps in stock, you can offer a 25% discount on the caps for a limited
time.

Understanding discounts in WebSphere Commerce

The following diagram illustrates the discount structure in the WebSphere
Commerce Server.

Q)

StoreEntity

+definedCalculationCode CeleulkitonCs

T T
QJ

CalculationRule

+customerGroup
Q Q +cust0meeru& Q
Store . RecognizedhemberGraup ! hWlernberGraup

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information
on the information model, see |“The store data information model” on|
[page 25] For more information on the conventions used in this diagram,
see|Appendix A, “UML legend” on page 303

Calculation code

A discount is represented by and calculated using a discount calculation code. A
discount calculation code indicates how the discount is calculated for order items.

A calculation code belongs to a store entity. Multiple calculation codes can be
defined within a store entity. If the store entity is deleted, the calculation codes
defined within that store entity are also deleted.

Each discount calculation code can have a start date and an end date, which define
the time period in which the discount is effective. The discount calculation code
can also be associated with one or more member groups, which define the eligible
member groups.

The discount calculation code can be attached to one or more catalog entries, and
catalog groups. Attaching a calculation code to a catalog group has the same effect

© Copyright IBM Corp. 2002 165

as attaching it to all the catalog entries directly in the catalog group. However,
discount calculation codes attached to catalog group A are not attached to products
and items in catalog group B if catalog group A contains catalog group B.

Catalog entries or catalog groups may have more than one discount associated
with them. When more than one discount calculation code is applicable to an
order, discount calculations are performed in ascending sequence of their
calculation code sequence attributes.

Note: Define discount sequence orders to implement discounts on discounts.

The order items are grouped for calculation in one of the following ways:
* Per trading agreement

* Per product

* Per offer

* Per shipping address

For more information, see the WebSphere Commerce online help.

For more information about the use of calculation codes, see the IBM
WebSphere Commerce Calculation Framework Guide.

Calculation rules

Each calculation code has a set of calculation rules, which define the conditions
under which the calculation will be done. Each discount calculation rule is
associated with one or more member groups, for whom the discount is effective.
Member groups may be eligible for more than one discount at a time.

Note: If an eligible member group is defined at the calculation code level, it does
not need to be defined again at the calculation rule level.

For more information about the use of calculation rules, see the IBM
WebSphere Commerce Calculation Framework Guide.

Creating discount assets in WebSphere Commerce

166

The primary method of creating discounts in a store created with WebSphere
Commerce is using the Discount wizard in the WebSphere Commerce Accelerator.
For more information on creating discounts using the WebSphere Commerce
Accelerator, see the WebSphere Commerce online help.

Discounts can also be created by using an XML file and then loaded by the Loader
package, or published by Stores Services. However, discounts created in this
manner, as well as discounts imported during migration from previous versions,
will function correctly, but may not display properly in the WebSphere Commerce
Accelerator.

Store Developer’s Guide

Chapter 21. Inventory assets

Inventory includes anything that can be physically accounted for in a fulfillment
center. There are specific definitions of types of inventory that can be fulfilled, such
as items, products, SKUs, bundles, and packages; but these are all considered
inventory. Products are configured for fulfillment in the Product wizard and the
Product notebook. This includes options to track inventory, allow backorder, force
backorder, release separately, and specify that the product should not be returned.
The WebSphere Commerce Accelerator distinguishes between two major types of
inventory that can be received:

* Expected inventory that has an associated expected inventory record.
¢ Ad hoc inventory, or inventory not recorded as expected.

Expected inventory is received from a vendor and typically paid for with a
purchase order. The WebSphere Commerce Accelerator tracks expected inventory
with expected inventory records, and allows you to record an external identifier,
typically a purchase order number from an external system. In this way, you can
easily keep track of the inventory you have ordered, as well as what has and has
not arrived. Expected inventory details are the specifics about products in an
expected inventory record, such as the fulfillment center expecting the product, the
expected receipt date, quantity expected, and comments.

An expected inventory record cannot be deleted once inventory has been received
against it, and expected inventory details cannot be changed or deleted once any of
that inventory has been received.

When orders are placed for inventory that is available in a fulfillment center, the
order system allocates inventory to those orders. Allocating inventory to an order
makes it unavailable to the order system. If the order is canceled, the inventory
becomes available again. If an order is placed for inventory that is not available, a
backorder can be created. If there is expected inventory that could be used to fulfill
the backorder, then the expected inventory is allocated to the backorder and the
customer can be provided with an expected ship date.

Ad hoc inventory receipts are created when inventory arrives at a fulfillment
center without a corresponding expected inventory record. This could be due to an
unexpected inventory arrival, or it could be the choice of the merchant or seller not
to use expected inventory records to record inventory receipts.

Note: Products must exist in the WebSphere Commerce system in order to be
received, whether the inventory receipt is expected or ad hoc.

Understanding inventory assets in WebSphere Commerce

In order to understand inventory assets, it is necessary to understand the
relationships between inventory and the store. This can be explained by the use of
an information model. The following sections describe the relationships and
associations inventory has to a store and other assets. The diagrams below depict
the relationships and associations for ATP inventory and non-ATP inventory.
Non-ATP inventory is the way previous versions of the product handled inventory,

© Copyright IBM Corp. 2002 167

168

and can still be used if a store chooses not to use the ATP features. Each diagram
and its associations are described below. For more information on ATP, see the
online help.

ATP inventory

o er

@) 1 Ol

StoreEntity N Member ownar FulfillmentCenter
owner

o O

CatalogEntny T Storeltem StoreltemFulfillmentCenter

@)

DistributionArrangement

3 Ty e

Product Baselte

!

O Q)

Item ltemSpecification

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information
on the information model, see [“The store data information model” on|
|page 25| For more information on the conventions used in this diagram,
see|Appendix A, “UML legend” on page 303

Base item
The base item is the center of the inventory diagram and represents a general family

of goods with a common name and description. Base items are used exclusively for
fulfillment and are not particular to any store. Each catalog entry that represents a
product in the catalog, has a corresponding base item for fulfillment purposes.
Base items are defined in the BASEITEM table.

Item specification
An item specification is a base item with values defined for all its attributes. Each

catalog entry that represents an item in the catalog has a corresponding item
specification for fulfillment purposes.

Catalog entries
Products and items are catalog entries. Catalog entries are associated with store

entities, meaning catalog entries, such as products and items, are found in stores.

Distribution arrangement
A distribution arrangement is associated with a base item, enabling a store to sell its

own inventory. Distribution arrangements are stored in the DISTARRANG table.

Store Developer’s Guide

Store item

A store item represents attributes that affect the way a particular store or store
group allocates inventory for the specified items of a particular base item,
including whether to allow backorders and track inventory. The STORITMFFC
table defines an estimate of the number of seconds it takes from the time an order
item is released for fulfillment, until it is shipped to the customer. This table is
only populated if a store wishes to define an override to the FFMCENTER default
shipping offset for a store item.

Non-ATP inventory

+owner

1 Q 1

StoreEntihy quner Mermbar N
D +defaultFulfilmentCenter
Store 01 FulfillmentCenter

1 @,

CataiogEntns Inwemntarny

@ @,

Froduct Baseltem

i

QO @,

Itermn 01 termSpecification

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information
on the information model, see [“The store data information model” onl
|page 25| For more information on the conventions used in this diagram,
see|Appendix A, “UML legend” on page 303,

The base item is also the center of the non-ATP inventory diagram. The
relationship of the base item to products, items, and catalog entries, is the same as
for the general inventory diagram. A base item is still owned by a member, and
once defined by that member, can be sold in the store. In this case however, there
is no distribution arrangement, store item association, or store item fulfillment
center.

Chapter 21. Inventory assets 169

Fulfillment center

Inventory is associated with one fulfillment center and one store. A store can
designate one default fulfillment center. Like base items, fulfillment centers are
owned by members, and share that ownership with the store. For more
information on fulfillment assets, seqChapter 11, “Fulfillment assets” on page 105,

For more detailed information on the structure of inventory assets in the
WebSphere Commerce Server, see the inventory object and data models
in the WebSphere Commerce online help.

Creating inventory assets in WebSphere Commerce

170

Since inventory is operational data, it changes daily, as your customers purchase
products from your store, or return items to it. As a result your inventory levels go
up and down as you sell products, and as your fulfillment centers receive new
inventory from suppliers. The WebSphere Commerce Accelerator allows you to
complete the following inventory related tasks:

* Record expected inventory

* Receive expected and ad hoc inventory from vendors
* Adjust inventory

* Maintain return records

* Maintain return reasons

* Receive returned inventory from customers

* Manage returned inventory disposition

For more information on using the WebSphere Commerce Accelerator to manage
inventory, see the WebSphere Commerce online help.

Store Developer’s Guide

Chapter 22. Order assets

Order assets in the WebSphere Commerce system provide shopping cart, order
management, and order processing functionality. Order processing capabilities
include quick order or buy, scheduled orders, multiple pending orders, reorders,
splitting orders and backorders. Related services, such as pricing, taxation,
payment, inventory, and fulfillment, are also part of the order assets.

Understanding order assets in WebSphere Commerce

The following diagram illustrates the order assets in the WebSphere Commerce
Server. Descriptions of each asset follows the diagram.

OLe e

Currency +defaultCurrency StoreEntity 1 Member

1 +seller +eustomer, 1 1A +owmer

O O +billTo P

————p
OrderPaymentinfo Order 01 Address

+shipTo | 0.1

@

Orderltemn

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information
on the information model, see [‘The store data information model” on|

Orders and order items

In the WebSphere Commerce system, for a customer or shopper, an order is a list of
selected products (for example, an order can contain two books and a CD) and
each product on that list is an order item (for example, each book and CD is an
order item of the same order). When a customer places an order with the store, the
customer must provide a billing address to which the store sends the invoice. A
single currency identifier is associated with each order. From a store perspective,
an order is a list of order items. It is part of the store’s data.

Currency

A store can display prices in one currency, or use multiple currencies. Each store
must also define a default currency. You can also allow customers to select a
shopping currency. If the shopping currency is the same as the default currency for
the store, it is already supported in the STOREENT table. If the shopping currency
is not the default currency for the store, then you must add the currency to the
CURLIST table. Customers use the shopping currency to place orders at your store.

© Copyright IBM Corp. 2002 171

172

Payment information

Once a customer has selected a preferred shopping currency, all payment will be
processed in that currency. Depending on the store’s payment support and policies,
customers can pay for purchases using online payment (where a customer
provides payment information over the Internet on the store’s site) or offline
payment (where the customer provides payment information without Internet
channels, such as through phone or fax). Regardless of online or offline payment
methods, customers must provide payment information when placing orders,
including any of the following:

* Payment method: The customer’s method of payment for the order. Depending

on the payment cassettes configured in Payment Manager for the store, you can
set up the store to accept offline payment, CyberCash for online payments, SET
Secure Electronic Transaction' and Merchant Initiated Authorization (MIA) for
online payments that do not require customers to use an online wallet, or a
custom payment method.

For credit card payments, information about the card: The customer’s credit card
brand, number, and expiry date used to pay for the order. Credit card
information is typically required if the store supports online payment.

Purchase order number: The purchase order number, which the customer may
have provided when ordering at the store. The purchase order number

authenticates the customer as one that is authorized to order from the store, as
stipulated in the terms within the contract between the store and the customer.

Order items

Order items are the individual products or items that make up an order. An order
must have at least one order item. Each order item represents something that a
customer has selected for purchase. In addition, each order item has a reference to
a trading agreement (usually a contract), a shipping mode, a fulfillment center, and
a price offer. Discounts, shipping charges, and total tax are stored with each order
item.

Store Developer’s Guide

The following diagram illustrates the WebSphere Commerce order item assets.
Descriptions of each asset follows the diagram.

+customer Q 1

1 Mernber +OWHET

+owner 1

Ol O] +shisTo Q)

Crrder - SubOrder 0 Address FulfillmentCenter

0.1 +shipTg
n.

ShippingMode
/
Q 0.1 Q 01 Q

TradingAgreement Orderltern Offer

N4
e 0

Contract Termondition CatalogEntny

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information
on the information model, see [“The store data information model” on|
[page 25] For more information on the conventions used in this diagram,
see|Appendix A, “UML legend” on page 303,

Suborders

Order items are grouped to form suborders. A suborder is the part of an order that
is being shipped to a specific address. For example, a customer may indicate
different shipping addresses for different products in the shopping cart. Each
shipping address and the products associated with it constitute a suborder. Order
items in a suborder have the same shipping address, and can be used to display
sub-totals of their order item amounts.

The quantity attribute of the Orderltem object is a unitless number that can be
multiplied by the nominal quantity attribute of the
CatalogEntryShippingInformation object associated with the CatalogEntry object to
arrive at the actual quantity represented by the Orderltem. The
CatalogEntryShippingInformation object specifies the unit of measurement in
which quantities are stated.

Although orders are usually associated with a single store, a special type of order
that can be associated either with a store or a store group is the order profile. The
order profile is represented in the object model as an Order with status of ‘Q’. The
order profile holds default information about a customer, such as payment
information, shipping address, shipping mode, and billing address.

Other order item assets
An order item can be associated with zero or one of each of the following objects.

Chapter 22. Order assets 173

* A shipping address for the customer who placed the order containing the order
item. A customer must specify a shipping address during the order process, so
that the store’s fulfillment center can use this address to ship the order item
appropriately.

A fulfillment center for shipping and receiving order items required by customer
orders, and for storing inventory for the order item.

* A shipping mode for the order item, which is a combination of a shipping
carrier (a company that provides shipping services from a fulfillment center to a
customer), and the shipping service offered by that carrier. For example, ABC
Shipping Company, Overnight service and ABC Shipping Company, Express
delivery are shipping modes.

* A price offer associated with the order item. By including different offers in
different price lists (or "trading position containers”), stores can present different
prices for the same product or SKU to different customers. For example, a travel
agency may offer plane tickets in four different price lists: adult pricing, seniors
pricing, children’s pricing, and student pricing.

* A catalog entry for the order item; that is, each order item orders an item from a
catalog.

* A trading agreement that defines the terms and conditions under which the item
is ordered. This is normally a contract, but may be a Request for Quotation
(RFQ), representing a negotiation, until the order has been submitted for
processing.

For more detailed information on the structure of order assets in the
WebSphere Commerce Server, see the order object and data models in the
WebSphere Commerce online help.

Creating order

assets in WebSphere Commerce

A customer can place orders from a store, or request that a Customer Service
Representative for the store to help complete this task (using the WebSphere
Commerce Accelerator). To create an order on behalf of a B2C customer, see the
WebSphere Commerce online help topic "Creating an order for a registered
customer” and "Creating an order for a non-registered customer”. To create an
order on behalf of a B2B customer, see the help topic "Creating an order for a
business user”.

174 Store Developer’s Guide

Chapter 23. Customer and Seller assets

Although a store can include several players who participate in store activities, at a
minimum, a store has a customer and a Seller.

Understanding customer assets in WebSphere Commerce

A customer is the person who shops at the store, creates an interest list if desired,
places orders, and purchases from the store or the Seller. The following diagram
illustrates the assets that a customer requires to place an order from a store.

Address Interest Lists
Information

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information
on the information model, see [“The store data information model” on|
|page 25| For more information on the conventions used in this diagram,
see[Appendix A, “UML legend” on page 303

As shown in the preceding diagram, the WebSphere Commerce system contains
members. Each user member and organizational entity member can be assigned a
role.

Note: In WebSphere Commerce, a member can be either an organizational entity,
user, or member group. Refer to[“Members” on page 180| for more details.

In this case, the user member is a customer. A customer must provide address
information and can have an interest item list. The diagram illustrates the
reciprocal relationship between a member (customer) and the customer assets
associated with it: a customer must own and provide an address and can have an
interest list to shop at a store; the address and interest list depend on the existence
of a customer.

© Copyright IBM Corp. 2002 175

Address information

A customer must provide three types of address information, when purchasing
from a store: the contact address, billing address, and shipping address. The
following describes these address types; each address can be unique or the same:

* A contact address is used to notify the customer for various purposes, such as
regarding the status or changes to an order, and notices about upcoming store
events (such as promotions or store maintenance). The customer’s contact
address includes the street name and number, city, state or province, ZIP or
postal code, country or region, e-mail address, phone number, and fax number.
Typically, the contact address is where the customer can be reached most easily,
such as a work address.

* A billing address is used to send a bill or invoice for purchases. A billing
address includes the street name and number, city, state or province, ZIP or
postal code, and country or region, phone number, and e-mail address. The
billing address may or may not be the same as the contact or shipping
addresses.

* A shipping address is used for delivering purchased goods. A shipping address
includes the street name and number, city, state or province, ZIP or postal code,
and country or region, phone number, and e-mail address. The shipping address
may or may not be the same as the contact or billing addresses.

Interest lists

Stores can support interest lists. That is, customers add products, that they may like
to order in the future, to their interest lists. An interest list is not a shopping cart; a
interest list can contain items from multiple stores, and does not contain prices,
shipping addresses, shipping modes, inventory availability information, or
calculated amounts such as discounts, shipping charges, and taxes.

Understanding Seller assets in WebSphere Commerce

176

A Seller supervises the overall store objectives and management, in addition to
tracking the store sales. A Seller sells the goods and services to the customer. The
Seller role is equivalent to a merchant and has access to all WebSphere Commerce
Accelerator capabilities. The following diagram illustrates the assets that a Seller
requires to maintain a store and to sell to customers.

1 [| 1 (1

Stores Accounts Contracts ProductSets

] N R~]
Seller Address Members Pricelists
Information oo ooz " b oo

Inventory ltems Fulfillment Catalogs
Centers

Store Developer’s Guide

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information
on the information model, see|“The store data information model” on|
[page 25] For more information on the conventions used in this diagram,
see|Appendix A, “UML legend” on page 303

As shown in the preceding diagram, the WebSphere Commerce system contains
members. Each member is assigned a role, such as Customer Service
Representative for the store, or Inventory Receiver at a warehouse. The Seller role
can maintain the following assets in order to sell to customers:

* Stores

e Accounts (optional)

* Contracts (or at least the WebSphere Commerce default contract)

¢ Product sets

* Price lists

 Catalogs

¢ Fulfillment centers

* Inventory items

The preceding diagram illustrates the relationship between a member (Seller) and

the Seller assets; that is, a Seller can have the assets listed above to maintain a
store and the assets need to have a Seller got deployment.

Stores

A WebSphere Commerce online store is comprised of a set of HTML and JavaServer
Pages files, as well as tax, shipping, payment, catalog and other database assets,
which are contained in a store archive. A store also contains store data, which is
the information populated into the WebSphere Commerce database to allow a store
to function.

For more information about WebSphere Commerce stores, refer to [Chapter 6, “Store]
lassets” on page 41| and [Part 4, “Developing your store data” on page 35|

Accounts

A store can set up business accounts for customers to allow them to purchase from

the store. An account contains the following information:

e The account name, which is often the name of the organization with which the
customer is associated. This organization has defined contracts with the store,
stipulating terms for the customer to shop at the store. For example, the
organization IBM may have contracts with the ABC Office Supplies Company.

* The representative name, which is the name of the representative organization
within the Seller’s organization that is responsible for the account.

¢ The number of contracts that belong to the account.

For more information about WebSphere Commerce accounts, refer to
[(business account)” on page 94 and the WebSphere Commerce online help.

Contracts

Typically, in WebSphere Commerce, all customers must shop under a contract. Each
account between the customer and the Seller must be associated with one or more
contracts (or at least a default contract for non-registered customers or customers to

Chapter 23. Customer and Seller assets 177

178

shop at the store, or if you want customers to be able to purchase products not
covered by other contracts). A contract allows the customer to purchase products
from a store at a specified price for a specified period of time, under terms and
conditions, and business policies, stipulated in the contract. The Seller deploys the
contract so that customers can buy from the store.

For more information about WebSphere Commerce contracts and the default
contract a Seller can use, refer to [“Contract” on page 95|

Product sets

Product sets provide a mechanism for a Seller to categorize online catalogs into
logical subsets so that a Seller can allow various customers to take advantage of
different catalog views. Furthermore, a Seller can create a contract for a customer
and stipulate that the customer can only purchase products under a predefined
product set.

For more information about WebSphere Commerce product sets, refer to
lsets” on page 56|

Price lists

A price list is associated with the price a Seller offers or presents to a customer. A
Seller can list different prices for the same product to different customers. In
WebSphere Commerce, a price offer is also known as a trading position and
represents the price of a catalog entry and criteria that the customer must satisfy in
order to qualify for that price.

In WebSphere Commerce, an Offer object is part of a TradingPositionContainer,
which is owned by a member. A TradingPositionContainer contains
TradingPositions, and can be made available to all customers, or to only customers
in certain groups through the trading agreements or contracts. Sometimes a
TradingPositionContainer is referred to as a price list. There are two kinds of price
lists: a standard price list which contains the base prices for the products in the
store catalog or a custom price list which specifies the list of products and their
customized prices.

For more information about WebSphere Commerce price lists, refer to|Chapter 9
[‘Pricing assets” on page 85

Catalogs

A WebSphere Commerce store uses at least one online catalog to showcase the
goods and services that the Seller offers for sale. Typically, an online catalog
contains prices, images, and descriptions of the items for sale. An online catalog
may also present merchandise into distinct categories to facilitate navigation.

Each store in the WebSphere Commerce system must have a master catalog, which
is used for catalog management. The master catalog is the central location to
manage a Seller’s merchandise; it is the single catalog containing all products,
items, relationships, and standard prices for everything that is for sale in the store.
If a Seller has more than one store, the master catalog can be shared between these
stores.

For more information about WebSphere Commerce product sets, refer to|Chapter 8
[“Catalog assets” on page 53|

Store Developer’s Guide

Fulfillment centers

Fulfillment centers are used by stores as both inventory warehouses and shipping
and receiving centers. A Seller may have one or many fulfillment centers.

From a WebSphere Commerce server perspective, a FulfillmentCenter object is
separate from the Store object. It manages product inventory and shipping. To ship
an order, the fulfillment center relies on a ShippingMode object that is specified by
the customer. The ShippingMode object indicates the shipping carrier and method
of shipping for fulfilling orders. In a fulfillment center, the ShippingArrangement
object indicates that a Store object has arranged with a FulfillmentCenter object to
ship products using a certain ShippingMode.

For more information about WebSphere Commerce fulfillment centers, refer to

Chapter 11, “Fulfillment assets” on page 105 and [Chapter 18, “Shipping assets” on

page 131|.

Inventory items

Inventory items include anything that can be physically accounted for in a Seller’s
fulfillment center. The WebSphere Commerce system defines specific types of
inventory that can be fulfilled, such as items, products, SKUs, bundles, and
packages; but these are all considered inventory. Products are configured for
fulfillment using the Product Management tools on WebSphere Commerce
Accelerator.

For more information about WebSphere Commerce inventory items, refer to the
WebSphere Commerce online help and [Chapter 21, “Inventory assets” on page 167}

Understanding

member assets in WebSphere Commerce

WebSphere Commerce member assets include data for participants of the
WebSphere Commerce system. A member can be a user, a group of users, or an
organizational entity. An administrator, such as a Site Administrator, assigns roles
to users and organizational entity members. Once a member is assigned a role, the
access control component authorizes the member to participate in activities. For
example, an organization can be a buyer or a Seller, or both. A user can also be
assigned multiple roles. An administrator can create member groups, which are
groups of users categorized for various business reasons. Use the WebSphere
Commerce Administration Console to create and work with organizations, users,
roles, and member groups.

Business logic for the member assets provides member registration and profile
management services. Other services which are closely related to the member
assets include access control, authentication, and session management. For more
details about these topics, refer to the WebSphere Commerce online help.

Chapter 23. Customer and Seller assets 179

The following diagram illustrates the WebSphere Commerce member assets.
Descriptions of each asset follow the diagram.

O

MemberRale Role

StoreEntity

0.1
1
Fowner

1 @)

hemberAttribute’alue Mambear

R
O ®

+owiner

M ernberAttribute MernberGroupMermber
+descendant
N | |
Q +ancestor Q Q
s i obi
Orpanization User
g +descendant MermberGroup
+ancestor
+intended usage
org | e

MemhberGroupType

Cralnit Q‘

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information
on the information model, see['The store data information model” on|
[page 25] For more information on the conventions used in this diagram,
see|Appendix A, “UML legend” on page 303.

Members

A member in WebSphere Commerce can be any of the following:

* An organizational entity. This can be an organization, such as "IBM" or an
organizational unit within a large organization, such as the "Electronic
Commerce Division” within IBM.

* A user (either registered or non-registered). A registered user has a unique
identifier, and a password, and is required to provide profile data for
registration purposes. Registered users can be classified according to their profile
type: type ‘B’ denotes a business user (or a B2B customer) and type of 'C’
denotes a retail user (or a B2C customer). For more information about registered
and non-registered users, refer to "Members” in the WebSphere Commerce
online help.

180 Store Developer’s Guide

* A member group. This is a group of users categorized for various business
reasons. The groupings can be used for access control purposes, for approval
purposes, as well as for marketing purposes (such as calculating discounts,
prices, and displaying products).

Each store entity (that is, a store or store group) is owned by a member.

Member attributes

A WebSphere Commerce member has a set of attributes and each attribute has a
value associated with it. A basic user profile for a member incorporates registration
information, demographics, address information, purchase history, and other
miscellaneous attributes.

A business user profile contains the same information as a basic user profile, as
well as employment information, such as an employee number or a job title, or a
job description. During registration, business users should identify their business
organization to which they belong. Profiles for organizational entities include this
additional information, such as organization name and business category.

Access control rules enforce user authority for performing profile management.
Member profiles can contain a variety of personal and business-related attributes
(such as roles, payment information, addresses, preferred languages and currencies,
and pervasive computing devices). Attributes can be store-sensitive. These
attributes are not supported for member groups.

Roles

Each user member can perform one or more roles in an organization. A Site
Administrator assigns a role or roles to each user member. For example, as a
member of the IBM organization, John Smith’s role as a Customer Service
Representative means that John performs tasks on behalf of IBM customers and
assists them with inquiries or concerns regarding their registration information,
orders, or returns. John may also have the role of a Customer Service Supervisor,
who has all the responsibilities of the tasks described above, as well as approval
and supervisor authority over other Customer Service Representatives.

The WebSphere Commerce system provides the following set of default role types:
* Site and content development roles

¢ Technical operations roles

* Marketing management roles

* Product management roles

* Business relationship management roles

* Logistics and operations management roles

* Organizational management roles

For details about each of these roles, refer to the WebSphere Commerce online help
topic Roles. A Site Administrator can assign these roles, as well as any new roles
created by the Site Administrator, by organizational entity; that is, users who

belong to an organizational entity can assume roles assigned to that organizational
entity.

When a user is assigned a role, the role is scoped to organizational entity. When a
user is assigned a role, the user does not necessarily perform that role for the
organizational entity to which the user belongs; that is, when an administrator

Chapter 23. Customer and Seller assets 181

performs the assignment, the administrator can select the organizational entity for
which the user performs that role. If the administrator selects the Root
Organization, the user plays that role for all the organizational entities.

For more detailed information on the structure of member assets in
WebSphere Commerce, see the member object and data models in the
WebSphere Commerce online help.

Creating member assets in WebSphere Commerce

In order to create a Seller (an organization that acts as the store owner) and to
maintain information about the Seller, use the Administration Console. For more
information, see the WebSphere Commerce online help topic "Creating an
organization”.

A customer is not created by the Store Developer; when a customer registers with

a store, registration information is collected and maintained by the WebSphere
Commerce system.

182 Store Developer’s Guide

Part 5. Adding access control to your store

© Copyright IBM Corp. 2002 183

184 Store Developer’s Guide

Chapter 24. Access control in your store

WebSphere Commerce allows you to determine, through access control, which
tasks a particular user, be they customers or administrators, can perform. This
chapter focuses on how you can add access control to your store, thus restricting
which pages your customers can see, and which tasks in the store they can
perform.

For more information on the access control model in WebSphere Commerce, as
well as applying access control at the site level, refer to the IBM WebSphere
Commerce Access Control Guide. For more information on implementing access
control in customized code, refer to the IBM WebSphere Commerce Programmer’s
Guide. These guides are available from the following URLs:

http://www.ibm.com/software/webservers/commerce/wc_be/1it-tech-
general.html

http://www.ibm.com/software/webservers/commerce/wc_pe/lit-tech-
general.html

Understanding access control in WebSphere Commerce

The access control model for WebSphere Commerce is covered in detail in the IBM
WebSphere Commerce Access Control Guide. However, in order to understand how
access control affects store development, a brief summary is provided here.

Access control in WebSphere Commerce is composed of the following elements:
users, actions, resources, and relationships.

¢ Users are the people that use the system. For access control purposes, users
must be grouped into relevant access groups. For example, in your store you
might group users into following access groups: registered customers, guest
customers, or administrative groups like customer service representatives.

* Actions are the activities that users can perform on the resource. For access
control purposes, actions must also be grouped into relevant action groups. For
example, a common action used in a store is a view. A view is invoked to
display a store page to customers. The views used in your store must be
assigned to an action group.

* Resources are the entities that are protected. For example, if the action is a view,
the resource for the action is the class com.ibm.commerce.command.ViewCommand.
For access control purposes, resources are grouped into resource groups.

* Relationships are the relationship between the user and the resource. Access
control policies may require that a relationship between the user and the
resource be satisfied.

Access control policies

Access control policies authorize access groups to perform particular actions on the
resources of WebSphere Commerce, as long as the users in the access group satisty
a particular relationship with respect to the resource.

WebSphere Commerce provides over two hundred default access control policies
that are loaded during instance creation. These policies cover a wide range of

© Copyright IBM Corp. 2002 185

186

common business activities, including order creation and processing, and trading,

such as request for quotes and contracts. The default policies
are documented in the IBM WebSphere Commerce Access Control Guide

Each access control policy is owned by an organizational entity. An access control
policy can only be applied to resources that are owned by the access control policy
owner.

Note: In terms of access control, ownership of resources has a special meaning. All

resources must implement the com.ibm.commerce.security.Protectable
interface. One of the methods on this interface is getOwner (), which returns
the member ID of the owner of the resource. For example, the Order entity
bean is a resource that is protected by having its remote interface extend the
Protectable interface. The Order’s implementation of getOwner() is such that
a specific Order resource returns the owner of the store where the order was
placed. For policies where the resource is a command, for example,

com. ibm.commerce.command.ViewCommand, the default implementation of
getOwner() is to return the owner of the store that is currently in the
command context. If there is no store in the command context, then Root
Organization is used as the owner. For more information, see the IBM
WebSphere Commerce Programmer’s Guide.

Consider the following diagrams:

Root (-2001)
Default (-2000) Seller (-2002)
Store A Store B Store C

In WebSphere Commerce Professional Edition the Root Organization is the highest
level organization. It owns all other organizational entities. As a result, access
control policies that are owned by the Root Organization apply to all resources in
the site. If an access control policy is owned by the Seller Organization, then the
access control policy only applies to the resources owned by the seller.

Store Developer’s Guide

Business

Root (-2001)

1

Default (-2000) Seller (-2002)
Organization 1 Organization 2
Store A Store B Store C

In WebSphere Commerce Business Edition the Root Organization is the highest
level organization. It owns all other organizational entities. As a result, access
control policies that are owned by the Root Organization apply to all resources in
the site. If an access control policy is owned by the Seller Organization, then the
access control policy only applies to the resources owned by the seller, that is, it
would apply to the resources owned by Organizations 1 and 2, including Stores A,
B, and C. If the access control policy was owned by Organization 1, then it would
only apply to the resources including Store A. If the access control policy was
owned by Organization 2, it would apply to the resources in Stores B and C.

Since access control policies are owned by organizational entities, if you
are creating multiple stores in your site, and want to apply different access control
policies to individual stores, you must create separate organizations to own each
store.

Note: Most of the default access control policies provided with WebSphere
Commerce are owned by the Root Organization, and apply to all resources
in the site. Access control policies owned by the Root Organization are
referred to as site-level policies. Policies owned by other organizational
entities are known as organization-level policies.

Access control in stores

All stores created in WebSphere Commerce are subject to the default access control
policies owned by the Root Organization. The resources in stores are also subject to
any access control policies owned by the organization that owns the store, and any
access control policies owned by that organization’s ancestors.

By default, the Root Organization owns most of the access control policies.
However, if you create your store based on one of the sample stores provided with
WebSphere Commerce, you will create new access control policies that are owned
by the organization that owns the store. For more information about the access

control policies in the sample stores, see [“Access control in the samples stores” on|
page 188

Chapter 24. Access control in your store 187

188

When you are creating your own store, regardless of whether it is based on a
sample, you may want to create new access control policies or modify existing
policies, which will only apply to stores owned by that organization. For example,
if you create new views to display your store pages, you must assign access
control policies to these views.

Access control data at the organization level is defined in high level access control
policy files. These files define the possible actions, action groups, resources,
resource groups, and relationships that can be used by any policy. They also define
policies specific to a particular organization. The sample stores provided with
WebSphere Commerce contain these high level access control policy files. The
following section illustrates how the samples stores use these access control policy
files to define organization information.

Access control in the samples stores
All of the sample stores contain the high level access control policy files, which

define access control policies created specifically for the stores. These policies are
owned by the organization that owns the store. The access control policies defined

for the NewFashion and ToolTech sample stores are discussed below.

The access control policies created for ToolTech are as follows:
* AllUsersForToolTechExecuteToolTechAllUsersViews

* Registered ApprovedUsersForToolTechExecuteTool Tech
Registered ApprovedUsersViews

The access control policy created for NewFashion is as follows:
* AllUsersExecuteNewFashionAllUsersViews

These access control policies determine which users will see which views in the
sample stores, or in stores based on the samples.

The access control information for these policies is defined in two high level access
control policy files, which define the possible actions, action groups, resources, and
policy definitions used in the sample stores: samplestorenameAccessPolicies.xml
and samplestorenameAccessPolicies_locale.xml. These files are located in the
following directory:

. drive:\WebSphere\CommerceServer\samples\stores\samplestorename

. drive:\ProgramFi1es\WebSphere\CommerceServer\samp1es
\stores\samplestorename

. /usr/WebSphere/CommerceServer/samples/stores/samplestorename
. /opt/WebSphere/CommerceServer/samp]es/stores/samplestorename
. /opt/WebSphere/CommerceServer/samples/stores/samplestorename

. /QIBM/ProdData/WebCommerce/samples/stores/samplestorename

where samplestorename is the name of the sample store archive on which you
based your store, for example NewFashion.

Before packaging the sample stores as store archive, these two high level access
control policy files are transformed, which results in two XML files, suitable for use
with the Loader package. These transformed XML files are then packaged in the
store archive and published with the rest of the store archive.

Store Developer’s Guide

Understanding the sample store access control policy files: To understand how
access control is added at the store level, familiarize yourself with the high level
sample store access control policy files. The following examples are taken from the

ToolTechAccessPolicies.xml file.

Defining actions: The first section of the ToolTechAccessPolicies.xml file
defines the new actions in the store, which are not covered by existing access
control policies. In this case, the actions are all views used in the store. In order to
display a page in your store using a view that can be called directly from a URL,
or that can be launched by a redirect from another command (in contrast to being
launched by forwarding to the view) you must define it as an action. Consider the
following example:

<l-- [Start of Action definitions] -->

<!l-- [this is the dictionary of possible actions -->

<Action Name="GenericApplicationError"

CommandName="GenericApplicationError">
</Action>

<Action Name="GenericSystemError"
CommandName="GenericSystemError">
</Action>

<Action Name="OrderOptionsView"
CommandName="0rderOptionsView">
</Action>

<!--[End of Action definitions] -->

where

e Action Name is the label used to reference this action in the XML file. In these
examples, the label is the same as the view name.

¢ CommandName is the name of the view that is stored in the VIEWNAME column of
the VIEWREG table. The CommandName will be stored in the Action column of
the ACACTION table.

Note: If an action is already defined in the default policies or any other policy in
WebSphere Commerce, you do not have to redefine it for each policy that
uses the action.

Defining resource categories: The second section in the file defines the resource
categories. A resource category refers to a class of resources. The resource
categories identified for ToolTech are the classes

com. ibm.commerce.command.ViewCommand and

com. ibm.commerce.tools.command.ToolsForwardViewCommand.

<!-- [Start of Resource Category definitions] -->
<l-- the dictionary of Protectable resources -->

<ResourceCategory Name="com.ibm.commerce.command.ViewCommandResourceCategory"
ResourceBeanClass="com.ibm.commerce.command.ViewCommand">

</ResourceCategory>
<ResourceCategory Name="com.ibm.commerce.tools.command.
ToolsForwardViewCommandResourceCategory"

ResourceBeanClass="com.ibm.commerce.tools.command.ToolsForwardViewCommand">

</ResourceCategory>
<!-- [End of Resource Category definitions] -->

Chapter 24. Access control in your store 189

190

where

* ResourceCategory Name label used to reference this resource category in the XML
file.

¢ ResourceBeanClass is the name of class.

Note: If a resource category is already defined in the default policies or any other
policy in WebSphere Commerce, you do not have to redefine it for each
policy that uses the resource category. The resource category defined in the
example above is already defined in the default policies, but is defined
again here for illustration purposes.

Defining action groups: The third section defines the action group. The action group
is a grouping of the actions defined in the first section of the file. In the ToolTech
example, all new user views are grouped into the group ToolTechAllUserViews,
which will be used in a policy that will allow all users to access those views, or the
ToolTechRegistered ApprovedUserviews, which will be used in a policy that will
allow only registered users to access those views.

Note: You can also add actions that are defined elsewhere in WebSphere
Commerce to your action groups. If defined elsewhere in WebSphere
Commerce, these actions do not have to be defined in the Action list
discussed in [“Defining actions” on page 189}

<!l-- [Start of Action Group definitions] -->
<!-- Dictionary of grouped actions usable in policies -->
<!l-- cross-component view-related action groups -->
<ActionGroup Name="ToolTechAllUsersViews"
OwnerID="RootOrganization">

<ActionGroupAction Name="UserRegistrationForm"/>
<ActionGroupAction Name="UserRegistrationErrorView"/>
<ActionGroupAction Name="GenericApplicationError"/>
<ActionGroupAction Name="GenericSystemError"/>
<ActionGroupAction Name="LogonForm"/>

</ActionGroup>

<!l-- [End of Action Group definitions] -->

where
* ActionGroup Name is the name of the action group.

* OwnerID is the owner of the action group. The Root Organization must be the
owner of the action group.

e ActionGroupAction Name is the name of an action that belongs to this group. The
ActionGroupAction Name must match the name defined in the Action Name
element in |”Defining actions” on page 189l

Defining resource groups: The next section defines the resource groups. A resource
group identifies a set of related resources.

<!-- [Start of Resource Group definitions] -->
<!-- Dictionary of grouped resources usable in policies -->

<!-- Grouped resources permitting view execution,

by any command extending com.ibm.commerce.command.ViewCommand

(with or without the Tools Framework) -->

<ResourceGroup Name="ViewCommandResourceGroup" OwnerID="RootOrganization">

<ResourceGroupResource Name="com.ibm.commerce.command.ViewCommandResourceCategory"/>
</ResourceGroup>

</ResourceGroup> !-- [End of Resource Group definitions] -->

Store Developer’s Guide

where
* ResourceGroup Name is the name of the resource group.

* OwnerID is the owner of the resource group. The Root Organization must own
the resource group.

* ResourceGroupResource Name is the name of a resource category included in
the group.

Defining policies: The final section defines the new policies used in the store.
I-- [Start of Policy definitions] -->

I-- AllUsers for ToolTech can execute ToolTechAllUsersViews -->

<Policy Name="AllUsersForToolTechExecuteToolTechAllUsersViews"
OwnerID="MEMBER_ID"
UserGroup="AlTlUsers"
UserGroupOwner="RootOrganization"
ActionGroupName="ToolTechAlTUsersViews"
ResourceGroupName="ViewCommandResourceGroup">
</Policy>

I-- RegisteredApprovedUsers for ToolTech can execute
ToolTechRegisteredApprovedUsersViews -->

<PoTicy Name="RegisteredApprovedUsersFor
ToolTechExecuteToolTechRegisteredApprovedUsersViews"

OwnerID="MEMBER_ID"
UserGroup="RegisteredApprovedUsers"
UserGroupOwner="RootOrganization"
ActionGroupName="ToolTechRegisteredApprovedUsersViews"
ResourceGroupName="ViewCommandResourceGroup">
</Policy>

I-- [End of of Policy definitions] -->

where
* Policy Name is the name of the policy being defined.

¢ OwnerId is the owner of the policy. In this case the owner of the policy is the
organization that owns the store.

 UserGroup is the group of users (the access group) to whom the policy applies.

* UserGroupOwner is the owner of the access group. In this example, the owner of
the access group is different than the policy owner. If the the policy owner and
the UserGroupOwner are the same, this element can be omitted.

* ActionGroupName is the group of actions to which the policy applies.
* ResourceGroupName is the group of resources to which the policy applies.

Adding access control to your store

From a store development perspective the most common types of access control
needed are for the new views and commands you create for your store. However,
you may want to add other types of access control to your store. For more
information on access control for views, commands and other features, see the IBM
WebSphere Commerce Access Control Guide. Before continuing with the next steps
outlined in the this guide, ensure you review the IBM WebSphere Commerce Access
Control Guide.

If you are adding new access control features to a store based on a sample store,
edit the existing high level access control policy XML file. For detailed instructions,
see [“Editing access control files in the store archive” on page 195| If you are adding

Chapter 24. Access control in your store 191

192

access control to a store not based on a sample store, you will need to create a new
high level access control policy XML file, and then transform it. For detailed
instructions, see ['Creating access control in your store”}

Creating access control in your store

The access control assets are different than the other assets in the store, in that for
access control you create two high level access control XML files and then
transform them. The resulting XML files can then be loaded in the the database
using the Loader package or used in the store archive.

To create access control assets, do the following:

1.

Store Developer’s Guide

Review the high level XML files used to create store assets for the sample
stores: samplestorenameAccessPolicies.xml and
samplestorenameAccessPolicies_locale.xml. These files are located in the
following directory:

. drive:\webSphere\CommerceServer\samp]es
\stores\samplestorename

. drive:\ProgramFi1es\WebSphere\CommerceServer\samp1es
\stores\samplestorename

. /usr/WebSphere/CommerceServer/samples/stores/samplestorename
. /opt/WebSphere/CommerceServer/samp1es/stores/sampZestorename
. /opt/WebSphere/CommerceServer/samples/stores/samplestorename

. /QIBM/ProdData/WebCommerce/samples/stores/samplestorename

where samplestorename is the name of the sample store archive on which you
based your store, for example NewFashion.

Review the information in[Appendix B, “Creating your data” on page 305}

Create a storenameAccessPolicies.xml file, either by copying one of the
samplestorenameAccessPolicies.xml files or by creating a new one. For more
information, see the DTD file that corresponds to
samplestorenameAccessPolicies.xml. The DTD files are located in the following
directory:

. drive:\WebSphere\CommerceServer\xml\policies\dtd
. dm’ve:\Program

Files\WebSphere\CommerceServer\xml\policies\dtd
. /usr/WebSphere/CommerceServer/xml/policies/dtd
. /opt/WebSphere/CommerceServer‘/xm]/poh’cies/dtd
. /opt/WebSphere/CommerceServer/xml/policies/dtd

. /QIBM/ProdData/WebCommerce/xml/policies/dtd

Create a separate high level XML file for each locale your store supports. The
locale-specific file should specify all description and display name
information, so it can be easily translated. Create this file,
storenameAccessPolicies_locale.xml for each language in your store, either by
copying one of the samplestorenameAccessPolicies_locale.xml files or by
creating new ones.

Note: You will need to create a locale-specific file even if your store only
supports one language.

5. Add the appropriate access control information to the file. For more
information see [“Access control in the samples stores” on page 188|and the
IBM WebSphere Commerce Access Control Guide.

6. Copy storenameAccessPolicies.xml and storenameAccessPolicies_locale.xml
to the following directory:

. drive:\WebSphere\CommerceServer\xml\policies\xm]
. drive:\Pr‘ogram

Files\WebSphere\CommerceServer\xml\policies\xml
. /usr/WebSphere/CommerceServer/xml/policies/xml
. /opt/WebSphere/CommerceServer/xml/policies/xml
. /opt/WebSphere/CommerceServer/xml/policies/xml

. Copy to any user data directory. Specify the full path to the DTD
in the existing XML files. The access control DTD files are located in the
following directory: /QIBM/ProdData/WebCommerce/xml/policies/dtd

7. Run the xmltransform command to transform storenameAccessPolicies.xml.
a. At a command prompt, change the directory to the following;:

. drive:\WebSphere\CommerceServer\bin

. drive:\ProgramFi1es\WebSphere\CommerceServer\bin
. /usr/WebSphere/CommerceServer\bin

. /opt/WebSphere/CommerceServer/bin

. /opt/WebSphere/CommerceServer/bin

b. Then type: xmltransform -infile
..\xml\policies\xml\samplestorenameAccessPolicies.xml -transform
..\xml\policies\xsT\accesscontrol.xs1 -outfile
..\xmT\policies\xml\samplestorenameAccessPoliciesOut.xml

BN TRNWCSXML INFILE (input file)
TRANSFORM(' /QIBM/ProdData/WebCommerce/xml/policies/xs]
/accesscontrol.xs1') INSTROOT(instance root) OUTFILE(output file)

C. Check the following log file to ensure that the transform has completed
successfully:

. dm’ve:\WebSphere\CommerceServer‘\b1'n\xm]transform.de.]og
. dr‘ive:\Progr‘am

Files\WebSphere\CommerceServer\bin\xmltransform.db2.1og
. /usr/webSphere/CommerceServer/bin/xm]transform.dbz.1og
. /opt/WebSphere/CommerceSer‘ver/bin/xm]transfor‘m.de.]og
. /opt/WebSphere/CommerceServer/bin/xmltransform.dbh2.10g

. /QIBM/UserData/WebCommerce/instances/instancename
/10gs/TRNWCSXML. tx

If the transform was successful, the following message displays: "<DATE>
<TIME> java.lang.Class main XMLTransformer Transform Successful"

8. Run the xmltransform command to transform
storenameAccessPolicies_locale.xml.

a. At a command prompt, change the directory to the following:

Chapter 24. Access control in your store 193

. drive:\WebSphere\Commer‘ceServer\bin

. drive:\ProgramFi1es\WebSphere\CommerceServer\bin
. /usr/WebSphere/CommerceServer\bin

. /opt/WebSphere/CommerceServer/bin

. /opt/WebSphere/CommerceServer/bin

b. Then type: xmltransform -infile
..\xml\policies\xml\storenameAccessPolicies_locale.xml -transform
..\xml\policies\xsT\accesscontrolnls.xs1 -outfile
..\xml\policies\xml\storenameAccessPoliciesOut_Tlocale.xml

c. EZCOIM TRNWCSXML INFILE(input file)
TRANSFORM(' /QIBM/ProdData/WebCommerce/xml/policies/
xs1/accesscontrolnls.xs1') INSTROOT(instance_ root)
OUTFILE(output file)

9. Make the following changes to the resulting XML files:

a. In storenameAccessPolicesOut.xml, replace the opening and closing tags
with the following:
<?xml version="1.0"?>
<IDOCTYPE accesscontrol-asset SYSTEM "accesscontrol.dtd">
<accesscontrol-asset>
</accesscontrol-asset>

b. In storenameAccessPolicesOut_locale.xml, replace the opening and
closing tags with the following:
<?xml version="1.0" encoding="correct Tanguage code for the file"?>
<IDOCTYPE accesscontrol-asset SYSTEM "../accesscontrol.dtd">
<accesscontrol-asset>
</accesscontrol-asset>

C. In storenameAccessPolicesOut_locale.xml, replace the @locale with the
&locale; for example change LANGUAGE_ID="@en_US" to
LANGUAGE_ID="&en_US;"

d. In storenameAccessPolicesOut locale.xml, locate the reference to the
"acpoldesc” table. Remove the @ at the end of the ACPOLICY_ID value.
For example, change "@A11UsersExecuteInFashionAlTUsersViews@" to

"@AT1UsersExecuteInFashionAT1UsersViews".

e. In storenameAccessPolicesOut.xml, replace MEMBER_ID="MEMBER_ID"
with MEMBER_ID="&MEMBER_ID;"

f. In storenameAccessPolicesOut.xml locate the reference to the "acpolicy”
table. Remove the "@MEMBER_ID" at the end of the ACPOLICY_ID value.
For example, change
"@Al1UsersExecuteInFashionAT1UsersViews@MEMBER ID" to
"@AT1UsersExecuteInFashionAT1UsersViews"

10. At this point you have two options:

* Load the access control data using the Loader package. For more
information, see|Part 7, “Publishing your store” on page 207}

* Add the access control data to the store archive. For more information on
creating a store archive, see [Part 6, “Packaging your store” on page 199

For more information about the use of @ and & see |AQp_endix B
[“Creating your data” on page 305}

194 Store Developer’s Guide

Editing access control files in the store archive

WebSphere Commerce provides two pre-transformed access control XML files, one
that applies to all languages (samplestorenameAccessPolicies.xml), and one that
contains locale specific information (samplestorenameAccessPolicies_locale.xml),
for each sample store. You must transform each of these files, which results in two
XML files, one that applies to all languages
(samplestorenameAccessPoliciesOut.xml), and one that contains locale specific
information (samplestorenameAccessPoliciesOut_locale.xml)

To edit the access control database asset in the store archive, do the following;:

1.

Locate the pre-transformed access control XML files for the sample store on
which you based your store. These files are called
samplestorenameAccessPolicies.xml and
samplestorenameAccessPolicies_locale.xml. The files are located by default
in the following directory:

. dr1've:\WebSphere\CommerceServer\samp1es\stores
\samplestorename

. drive:\ProgramFi1es\WebSphere\CommerceServer\samp1es
\stores\samplestorename

. /usr/WebSphere/CommerceServer/samples/stores/samplestorename
. /opt/WebSphere/CommerceServer/samp1es/stores/sampZestorename
. /opt/WebSphere/CommerceServer/samples/stores/samplestorename

. /QIBM/ProdData/WebCommerce/samp]es/stores/sampZestorename

where samplestorename is the name of the sample store archive on which you
based your store, for example NewFashion.

Note: Changing the corresponding DTD files may result in unusable
policies.

Make the necessary changes to the file. For more information on the existing
file, see ["Understanding the sample store access control policy files” on|

|Eage 189] For more information on methods of access control available in the
WebSphere Commerce, see the IBM WebSphere Commerce Access Control Guide.

Copy samplestorenameAccessPolicies.xml and
samplestorenameAccessPolicies_locale.xml to the following directory:

. drive:\WebSphere\CommerceServer\xml\policies\xml
. drive:\Pr‘ogram

Files\WebSphere\CommerceServer\xml\policies\xml
. /usr/WebSphere/CommerceServer/xml/policies/xml
. /opt/WebSphere/CommerceServer/xml/policies/xml
. /opt/WebSphere/CommerceServer/xml/policies/xml

. Copy to any user data directory. Specify the full path to the DTD
in the existing XML files. The access control DTD files are located in the
following directory: /QIBM/ProdData/WebCommerce/xm1/policies/dtd

Run the xmltransform command to transform
samplestorenameAccessPolicies.xml.

a. At a command prompt, change directories to the following:

Chapter 24. Access control in your store 195

196

. drive:\WebSphere\Commer‘ceServer\bin

. drive:\ProgramFi1es\webSphere\CommerceServer\bin
. /usr/WebSphere/CommerceServer\bin

. /opt/WebSphere/CommerceServer/bin

. /opt/WebSphere/CommerceServer/bin

Then type:xmltransform -infile
..\xml\policies\xml\samplestorenameAccessPolicies -transform
..\xml\policies\xsT\accesscontrol.xs1 -outfile
..\xmT\policies\xml\samplestorenameAccessPoliciesOut.xml

TRANSFORM(' /QIBM/ProdData/WebCommerce/xml/policies
/xs1/accesscontrol.xs1")
INSTROOT (instance_root) OUTFILE(output file)

Check the following log file to ensure that the transform has completed
successfully:

. drive:\WebSphere\CommerceServer\bin\xmltransform.db2.10g

o AU drive:\Program

Files\WebSphere\CommerceServer\bin\xmltransform.db2.1og
. /usr/WebSphere/CommerceServer/bin/xmltransform.db2.1og
. /opt/WebSphere/CommerceSer'ver/bin/xm]transfor‘m.dbz.1og
. /opt/WebSphere/CommerceServer/bin/xmltransform.db2.10g

. /QIBM/UserData/WebCommerce/1'nstances/
instancename/1ogs/TRNWCSXML. tx

If the transform was successful, the following message displays: "<DATE>
<TIME> java.lang.Class main XMLTransformer Transform Successful"

5. Run the xmltransform command to transform
samplestorenameAccessPolicies_locale.xml.

a.

b.

At a command prompt, change directories to the following:

o ENEMN drive:\WebSphere\CommerceServer\bin

. drive:\ProgramFi1es\WebSpher‘e\CommerceServer\b1'n
. /usr/WebSphere/CommerceServer\bin

. /opt/WebSphere/CommerceServer/bin

. /opt/WebSphere/CommerceServer/bin

Then type: xmltransform -infile
..\xml\policies\xml\samplestorenameAccessPolicies Tocale.xml
-transform ..\xml\policies\xs1\accesscontrolnls.xsl -outfile
..\xml\policies\xml\samplestorenameAccessPoliciesOut_locale.xml

BN TRNWCSXML INFILE (input file)

TRANSFORM(' /QIBM/ProdData/WebCommerce/xml/policies/
xs1/accesscontrolnls.xs1')

INSTROOT (instance_root) OUTFILE(output file)

6. Make the following changes to the resulting XML files:

Store Developer’s Guide

a.

In samplestorenameAccessPolicesOut.xml, replace the opening and closing
tags with the following:

10.

11.

<?xml version="1.0"7>
<IDOCTYPE accesscontrol-asset SYSTEM "accesscontrol.dtd">
<accesscontrol-asset>
</accesscontrol-asset>

b. In samplestorenameAccessPolicesOut_locale.xml, replace the opening and
closing tags with the following;:
<?xml version="1.0" encoding="correct Tanguage code for the file"?>
<IDOCTYPE accesscontrol-asset SYSTEM "../accesscontrol.dtd">
<accesscontrol-asset>
</accesscontrol-asset>

C. In samplestorenameAccessPolicesOut_locale.xml, replace the @locale with
the &locale; for example change LANGUAGE_ID="@en_US" to
LANGUAGE_ID="&en_US;"

d. In samplestorenameAccessPolicesOut_locale.xml, locate the reference to
the "acpoldesc” table. Remove the @ at the end of the ACPOLICY_ID
value. For example, change "@AT11UsersExecuteInFashionATTUsersViews@"
to "@AT1UsersExecutelnFashionAlTUsersViews".

e. In samplestorenameAccessPolicesOut.xml, replace
MEMBER_ID="MEMBER_ID" with MEMBER_ID="&MEMBER_ID;"

f. In samplestorenameAccessPolicesOut.xml locate the reference to the
"acpolicy” table. Remove the "@MEMBER_ID" at the end of the
ACPOLICY_ID value. For example, change
"@Al1UsersExecuteInFashionAT1UsersViews@MEMBER ID" to
"OAT1UsersExecuteInFashionAllUsersViews"

Locate the store archive file for your store, (for example, mystore.sar) The
store archive files are located by default in the following directory:

. drive:\WebSphere\CommerceServer\instances\instancename\sar

o AU drive:\Program

Files\WebSphere\CommerceServer\instances\instancename \sar
. /usr/WebSphere/CommerceServer/instances/instancename/sar
. /opt/WebSphere/CommerceServer/1'nstances/instancename/sar
. /opt/WebSphere/CommerceServer/instances/instancename/sar

. /QIBM/UserData/WebCommerce/instances/instancename/sar

Rename samplestorenameAccessPolicesOut.xml and
samplestorenameAccessPoliciesOut_locale.xml to the following:
accesscontrol.xml

Note: The locale specific accesscontrol.xml file is located by default in the
data/locale directory, for example, data/en_US.

Open the store archive file using a ZIP program.

Replace the existing accesscontrol.xml and locale specific
accesscontrol.xml in the store archive file with the ones you renamed in step
8.

Save the store archive file.

Chapter 24. Access control in your store 197

198 Store Developer’s Guide

Part 6. Packaging your store

© Copyright IBM Corp. 2002 199

200 Store Developer’s Guide

Chapter 25. Packaging a store

If you want to use your store as a sample to be delivered to others, to deploy it on
another server or platform, or to use it as the basis of creating other stores, you can

p
T

ackage it in the store archive form.

he sample stores provided with WebSphere Commerce are packaged as store

archives. The files in the sample store archives are grouped as follows:

Web assets: The files used to create your store pages, such as HTML files, JSP
files, images, graphics, and include files. Web assets are grouped together as a
compressed file (webapp.zip) in the store archive.

Property resource bundles (optional): Contains the text for your store pages. If
your store supports more than one language, the resource bundle will contain
multiple bundles; that is, one bundle per language. Property resource bundles
are grouped together as a compressed archive file (properties.zip) in the store
archive.

Store data assets: The data to be loaded into the database. Store data assets
include data such as campaigns, catalog, currencies, fulfillment information,
pricing, shipping, store, and taxation information.

Payment assets: Configuration information for the IBM Payment Manager.

A descriptor: An XML file, sarinfo.xml, that describes the store archive,
including the names of the Web assets compressed archive file, the resource
bundles, and the store database asset XML files. The sarinfo.xml file also
contains the names of include files and consistency checking files, as well as
information about the archive file that is needed during the publishing process.
The sarinfo.xml is the only mandatory file in a store archive.

Creating a store

archive

To package your store as a store archive, do the following;:

1. Review the structure and content of the sample store archives provided with
WebSphere Commerce.

The store archive files are located in the following directory:

o BBNEMN drive:\WebSphere\CommerceServer\samplestores

. drive:\Program Files\WebSphere\CommerceServer\samplestores
. /usr/WeSphere/CommerceServer/samplestores

. /opt/WebSphere/CommerceServer/samp1estores

. /opt/WebSphere/CommerceServer/samplestores

. /q1'bm/pr‘oddata/WebCommerce/samp]estores

To view the store archive, use a decompression program.

2. Create a temporary directory on the WebSphere Commerce Server for your
store. For example, mystore.

3. Group your Web assets (JSP files, HTML, images) together in a directory

© Copyright IBM Corp. 2002

called webapp, in the temporary directory. Create a compressed archive file,
using a ZIP program, of the webapp folder.

201

202

10.

Store Developer’s Guide

(Optional) Group your property resource bundles together in a directory
called properties in the temporary directory. If your store supports more than
one language, the resource bundle will contain multiple bundles; that is, one
bundle per language. Create a compressed archive file, using a ZIP program,
of the properties folder.

Group your store data assets together in a directory called data in the
temporary directory. If your store supports several languages, create
subdirectories for language-specific information using locale names. For
example, en_US.

(Optional) Copy the sarrule.xml file from an existing store archive into your
data directory. The sarrule.xml file is located in the data directory in the
sample store archives. The sarrule.xml acts a consistency checker when you
publish using Store Services. For more information on the sarrule file, see
[Appendix D, “sarrule.xml” on page 313

Create a directory called SAR-INF in the temporary directory.

Create a sarinfo.xml file for your store archive. For more information on the
XML specifications, see the archive descriptor, sarinfo.dtd in the following
directory:

o EEIN drive:\WebSphere\CommerceServer\xml\sar

o NI rive:\Program Files\WebSphere\CommerceServer\xml\sar
. /usr/WeSphere/CommerceServer/xml/sar

- BEEEEA /opt/WebSphere/CommercServer/xml /sar

. /opt/WebSphere/CommercServer/xml/sar

. m/q1‘bm/proddata/WebCommer‘ce/xm]/sar‘

a. Using the example and information in [Appendix C, “sarinfo.xml” on|

page 307|as your guide, create a sarinfo.xml file. The order in which the
data assets are published is important, since some data assets must be
published before others. As a result, the order of your assets, as specified
in your sarinfo.xml file, should match the order of the assets specified in
the sarinfo.xml files for the sample stores.

Note: If you choose to include a sarrule.xml file in your store archive (see
step 6), you should include information about sarrule.xml in your
sarinfo.xml file. If you choose not to include a sarrule.xml file,
ensure that you do not mention it in your sarinfo.xml file.

b. Save sarinfo.xml in the SAR-INF directory you created in step 6.

Create a ZIP file composed of the Web assets ZIP file, the property resource
bundles, the store data assets and the sar-inf directory. Name this ZIP file
storearchivename.sar.

If you want to edit or publish your store archive using Store Services, save
storearchivename.sar to the following directory:

. drive:\WebSphere\CommerceServer\instances\instancename\sar

o AN drive:\Program

Files\WebSphere\CommerceServer\instances\instancename\sar
. /usr/WebSphere/CommerceServer/instances/instancename/sar
. /opt/WebSpher‘e/CommerceServer‘/1'nstances/instancename/sar

. /opt/WebSphere/CommerceServer/instances/instancename/sar

/QIBM/UserData/WebCommerce/instances/instancename/sar

11. Your store archive will now display in the list of store archives in Store
Services.

Creating a sample store archive

After packaging your store as a store archive, you may choose to use it as a sample
store in Store Services. A sample store archive is a store archive that is meant to be
copied and used as a base upon which to create new stores. In order to use your
store archive as a sample store archive, do the following:

1. Save the store archive file to the following directory:

drive:\WebSphere\CommerceServer\samplestores\storeachivename

2N drive:\Program

Files\WebSphere\CommerceServer\samplestores\storeachivename

/usr/WeSphere/CommerceServer/samplestores/storeachivename

/opt/WebSphere/CommerceServer/samplestores/storeachivename
/opt/WebSphere/CommerceServer/samplestores/storeachivename

/qibm/proddata/WebCommerce/samplestores/storeachivename

2. (Optional) Create preview pages. In order for previews of your store pages to
display in Store Services, you must create preview pages. Do the following:

a.

(Optional) In Store Services, select New. The Create Store Archive page
displays. From the Sample list, select one of the sample stores, then click
Preview. The pages that display are called preview pages. These pages are
HTML files that present a pre-defined sample shopping flow, and act as a
preview of the sample store.

Determine the shopping flow you want to show in your preview pages.
(Optional) Create some sample data in a published store. For example, add
items into the shopping cart, and create a few shipping addresses and

billing addresses. You will be creating the preview pages from this store,
and data makes the pages look more realistic.

Using Internet Explorer, browse the store. Save the HTML for each page, by
selecting File, Save As. You should also save the style sheet (.css) and
images. Save the files to the following directories:

* stylesheet.css

- drive:\WebSphere\AppServer\installedApps\
WC_Enterprise_App_instancename.ear\wcstools.war\
tools\devtools\storearchivename\preview

- drive:\Progr‘am Files\WebSphere\AppServer\installedApps\
WC_Enterprise_App_instancename .ear\wcstools.war
\tools\devtools\storearchivename\preview

- /usr/WebSphere/AppServer/installedApps
WC_Enterprise_App_instancename .ear/wcstools.war
/tools/devtools/storearchivename/preview

- /opt/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instancename.ear/wcstools.war
/tools/devtools/storearchivename/preview

Chapter 25. Packaging a store 203

204

Store Developer’s Guide

/opt/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instancename.ear/wcstools.war
/tools/devtools/storearchivename/preview

/Qibm/UserData/WebAsAdv4/WASinstancename/
installedApps/WC_Enterprise App_instancename.ear
/westools.war/tools/devtools/storearchivename/preview

HTML

drive:\WebSphere\AppServer\installedApps\
WC_Enterprise_App_instancename.ear\wcstools.war
\tools\devtools\storearchivename\preview\locale

drive:\Program Files\WebSphere\AppServer\installedApps\
WC_Enterprise_App_instancename.ear\wcstools.war\
tools\devtools\storearchivename\preview\locale

/usr/WebSphere/AppServer/installedApps/
WC_Enterprise App_instancename.ear/wcstools.war/tools
/devtools/storearchivename/preview/locale

/opt/WebSphere/AppServer/installedApps/
WC_Enterprise App_instancename.ear/wcstools.war/tools
/devtools/storearchivename/preview/locale

/opt/WebSphere/AppServer/installedApps/
WC_Enterprise App_instancename.ear/wcstools.war/tools
/devtools/storearchivename/preview/locale

/Qibm/UserData/WebAsAdv4/WASinstancename/
installedApps/WC_Enterprise_App_instancename.ear
/westools.war/tools/devtools/storearchivename/preview/locale

locale independent images

drive:\WebSphere\AppServer\installedApps\
WC_Enterprise App_instancename.ear\wcstools.war\
tools\devtools\storearchivename\preview\images

drive:\Program Files\WebSphere\AppServer\installedApps\
WC_Enterprise_App_instancename.ear\wcstools.war
\tools\devtools\storearchivename\preview\images

/usr/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instancename.ear/wcstools.war/
tools/devtools/storearchivename/preview/images

/opt/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instancename.ear/wcstools.war/
tools/devtools/storearchivename/preview/images

/opt/WebSphere/AppServer/installedApps/
WC_Enterprise App_instancename.ear/wcstools.war/
tools/devtools/storearchivename/preview/images

- 400 | /Qibm/UserData/WebAsAdv4/WASinstancename/
installedApps/WC_Enterprise App_instancename.ear
/wcstools.war/tools/devtools/storearchivename/preview/images

locale dependent images

e.

f.

- drive:\WebSphere\AppServer\installedApps\
WC_Enterprise_App_instancename .ear\wcstools.war\tools
\devtools\storearchivename\preview\locale\images

- drive:\Program Files\WebSphere\AppServer\
installedApps\WC _Enterprise App_instancename.ear\
westools.war\tools\devtools\storearchivename
\preview\locale\images

- /usr/WebSphere/AppServer/installedApps/
WC_Enterprise App_instancename.ear/wcstools.war/tools/devtools
/storearchivename/preview/locale/images

- /opt/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instancename.ear/wcstools.war/tools/devtools
/storearchivename/preview/locale/images

- /opt/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instancename.ear/wcstools.war/tools/devtools
/storearchivename/preview/locale/images

- /Qibm/UserData/WebAsAdv4/WASinstancename/
installedApps/WC_Enterprise App_instancename.ear
/wcstools.war/tools/devtoolsstorearchivename/preview
/locale/images

Since the location of the images and the css file have changed, you must
change the references to the images and css file in the HTML pages. After
changing the references, ensure that you can view the images when you
open the HTML pages in a browser.

Change the links in the HTML pages from commands to links that reference
the HTML files.

3. Create an HTML file that summarizes the store archive. This information will
display in the Sample description in the Create Store Archive page in Store
Services.

a.

Using the following example as your guide, create the new file.

<doctype html public "-//w3c//dtd html 4.0 transitional//en">
<htm1>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=is0-8859-1">
</head>
<body>
Describe store here
</body>
</html>
Save this file as Feature_locale.html, where locale is the abbreviation for
the language you are using. For example, en_US. Save this file to the

following directory:

o ENEIN drive:\WebSphere\CommerceServer\
samplestores\storeachivename

. drive:\Progr‘am Files\WebSphere\CommerceServer\samplestores
\storeachivename

. /usr/WeSphere/CommerceServer/samplestores/storeachivename
. /opt/webSphere/CommerceServer/samp]estores/storeachivename

. /opt/WebSphere/CommerceServer/samplestores/storeachivename

Chapter 25. Packaging a store 205

206

5.

Store Developer’s Guide

. /q1‘bm/proddata/WebCommerce/samp1estores/storeachivename

Add the store archive to the sarregistry.xml file. The sarregistry.xml file
determines which store archives display in the Sample list in the Create Store
Archive page in Store Services. The sarregistry.xml also determines which
preview pages and feature file are associated with each store archive.
sarregistry.xml is located in the following directory:

o NI drive:\WebSphere\CommerceServer\xml\tools\devtools
. drive:\Program

Files\WebSphere\CommerceServer\xml\tools\devtools
. /usr/WebSphere/CommerceServer/xml/tools/devtools
. /opt/WebSphere/CommerceServer/xm]/too]s/devtoo]s
. /opt/WebSphere/CommerceServer/xml/tools/devtools

. /QIBM/ProdData/WebCommerce/xml1/tools/devtools

a. Using the following example as your guide, add the new store archive to
the sarregistry.xml.
<SampleSAR fileName="infashion_en _US_es_ES.sar" relativePath="InFashion">
<html Tocale="es_ES" featureFile="InFashion/Feature_es_ES.htm1"
sampleSite="RetailModel/preview/es_ES/index.html"/>
<html locale="en_US" featureFile="InFashion/Feature_en US.htm1"
sampleSite="RetailModel/preview/en_US/index.htm1"/>
</Samp1eSAR>

This example defines the preview pages for the English and Spanish
InFashion store archives. The lines in bold, define the home page for the
English and Spanish preview pages.
You should now be able to see your store archive in the Sample list in the
Create Store Archive page in Store Services.

Part 7. Publishing your store

In order to create a functioning store, the store front Web assets must be published
to the WebSphere Commerce Server, and the store data must be published to the
WebSphere Commerce database.

The chapters in this section discuss the publishing options WebSphere Commerce
provides:

« |Chapter 26, “Publishing a complete store” on page 209|- This chapter discusses
publishing an entire store (store front and store data assets), if the store is in the
form of a store archive, using either Store Services or the command line publish.

* |Chapter 27, “Overview of loading store data” on page 221|- This chapter
discusses publishing the store data assets to the database using the Loader
package and other components of WebSphere Catalog Manager.

+ |Chapter 28, “Loading WebSphere Commerce database asset groups” on page 259
- This chapter discusses publishing groups of store data assets or all of the store
data to the database using the Loader package and other components of
WebSphere Catalog Manager.

* |Chapter 29, “Publishing business accounts and contracts” on page 273/ - This
chapter discusses publishing the account, contract and product set assets.

+ |Chapter 30, “Publishing store front assets and store configuration files” on|

page 277] - This chapter discusses publishing the store front assets and the store
configuration files.

© Copyright IBM Corp. 2002 207

208 Store Developer’s Guide

Chapter 26. Publishing a complete store

In order to create a functioning store, the store front Web assets must be published
to the WebSphere Commerce Server, and the store data must be published to the
WebSphere Commerce database. This chapter discusses publishing an entire store
(store front and store data assets), if the store is in the form of a store archive,
using either Store Services or the command line publish.

Note: If you prefer not to package your store as a store archive, you can publish
the assets individually. For more information, sedChaEter 27, “Overview oﬂ
loading store data” on page 221| [Chapter 28, “Loading WebSpher:

Commerce database asset groups” on page 259, [Chapter 29, “Publishin
business accounts and contracts” on page 273} and [Chapter 30, “Publishing]

store front assets and store configuration files” on page 277]

Understanding publish in WebSphere Commerce

The publish option that is available from Store Services or from the command line
allows you to publish a complete store (store front and store data assets) all at
once. In order to use this option, your store assets must be packaged in the form of
a store archive. For more information on packaging your store as a store archive,
see [Part 6, “Packaging your store” on page 199

© Copyright IBM Corp. 2002 209

210

The following diagram outlines the steps in the publishing process.

Site Administrator
Store Administrator

Start Publish Start Publish

WebSphere Store Services Command line
Commerce

Pre-publish checks
1. Consistency check
2. Discrepancy check
3. Miscellaneous checks

Scheduler ¢

Publish assets
1. Unpacks store front files from store archive
2. Loads store data to the database
a. Validates XML files and concatenates them
to a master XML file
b. Calls ID Resolver to resolve IDs
c. Calls Loader to load resolved master XML
into database
3. Unpacks store configuration files
4. Calls commands to publish product sets,
business accounts, and contracts

v

Configure payment

1. Creates merchant

2. Creates account (offline cassette)

3. Creates payment brands (offline cassette)
4. Assigns user authority

Start publish

In order to publish a store, you must have Site Administrator or Store
Administrator (for all stores) authority. Site Administrators or Store Administrators
can initiate the publish process using either of the following methods:

* Store Services
¢ Command line

Both methods of publishing require you to select the store archive you want to
publish. Using either method, you can select how much of the store archive you
would like to publish. For example, you can select any combination of the
following for publishing:

 Store database assets, with or without the online catalog data
* Web assets such as JSP files, HTML files and images
* Property files (the text for the store)

The first time you publish, it is recommended that you publish the entire store
archive (all of the above), so that you can view a functional store. In subsequent

Store Developer’s Guide

publishes however, you may want to update only one of the following: the
database assets, the Web assets or the property resource bundles, rather than
republishing the entire store archive.

If you choose not to publish the online catalog data the first time you publish a
store archive, some of the data assets (contracts and accounts) may not be
published properly as they rely on data in the catalog. Also, if you do not publish
both the catalog data and the Web assets the first time you publish, the store ID,
catalog ID and language ID will not be created, and you will not be able to launch
the store from Store Services. For more information, see [‘Creates parameters jsp|
ffile” on page 218

The online catalog data is composed of the following XML files in the store
archive:

* catalog.xml

e offering.xml

* store-catalog.xml

* store-catalog-shipping.xm]l

* store-catalog-tax.xml

e storefulfill.xml

If you choose to publish this information at a later date, you can publish it using
Store Services, or through the Loader package. For more information on loading a

subset of data using database asset groups, for example the catalog group data
listed above, see|“Loading database asset groups” on page 267

For more detailed information on how to publish a store archive using either Store
Services or the command line, see the WebSphere Commerce online help.

Note: After you have initiated the publish process using either Store Services or
the command line, you do not have to do anything else. All other steps
listed in the preceding diagram, and in this chapter are completed by the
WebSphere Commerce system.

Pre-publish checks

Once publish is initiated by the Site or Store Administrator, WebSphere Commerce
performs several checks before beginning the actual publishing process. These
checks include the following;:

* Consistency check
* Discrepancy check
* Miscellaneous checks

Note: The command line publish checks the parameters passed to it, and
completes consistency and discrepancy checks. However, if you publish
using the command line publish, you will not see the messages described in
the following paragraphs. Instead, if you publish using the update mode,
the command line overwrites the existing store without prompting you. If
you publish using the insert mode, the command line loads the new store. If
the publish fails, a publish fail error message displays.

Consistency check

The pre-publish check uses the rules in the sarrule.xml file, to ensure that the
information in the XML files is consistent with the Web assets in store archive. For
example, if the command.xm1 file references a particular JSP file, the check ensures

Chapter 26. Publishing a complete store 211

212

that the JSP file is in the webapp.zip in the store archive. If the consistency check
finds an error, the error will be written to the log, but publishing continues as
normal. For more information on the log files, see [‘Publish log files” on page 219}

For an example of a sarrule.xml file, see|[Appendix D, “sarrule.xml” on page 313

Discrepancy check

During the pre-publish check, WebSphere Commerce checks for discrepancies
between the store and the catalog. In particular, it checks the database for the
following:

* An existing store with the same identifier in the STOREENT table: If the store
already exists, a message displays asking if you want to overwrite the store, or
cancel the publish.

* An existing catalog with the same catalog identifier: If the catalog already exists,
a message displays asking if you want to overwrite the catalog, or cancel the
publish. If the catalog belongs to others stores, a message displays stating which
stores the catalog belongs to and asks if you want to continue the publish and
overwrite the catalog, or cancel the publish.

Miscellaneous checks

During the pre-publish check, WebSphere Commerce also checks that the scheduler
is enabled, that the cache triggers and the cache are disabled, and that the
summary tables are disabled. If not, a warning message displays, telling you which
feature is inappropriately enabled or disabled.

Note: The command line publish does not complete these checks.

Scheduler: As will be discussed in more detail in the following sections, the
scheduler runs the publish job. If the scheduler is disabled, the publish process will
not be able to run.

Cache and cache triggers: Leaving the cache on during publish may result in
cache triggers being invoked during publish, when the database is updated. Cache
triggers may generate unnecessary database activity that could result in a database
transaction log overflow and affect the publishing performance. To disable the
cache triggers, see the WebSphere Commerce online help.

Summary tables: - DB2_ Leaving the summary tables enabled may result in
summary tables being updated during publish, which could result in a database
transaction log overflow and affect the publishing performance. To disable the
summary tables, see the WebSphere Commerce online help.

Publish assets

The publish assets phase of the publish process is a scheduled job run by the
scheduler. When the scheduler runs the publish job, WebSphere Commerce
completes the following actions:

* Unpacks the store front files from the store archive

* Loads store data from the XML files in the store archive to the database
* Creates parameters.jsp file

* Unpacks the store configuration files

* Calls the commands to publish business accounts and contracts

* Updates the registry components

Store Developer’s Guide

Unpacks the store front files from the store archive
Unpacking the Web assets from the store archive to the WebSphere Commerce

Server is the first action in the publish assets phase. While unpacking the files from

the store archive, WebSphere Commerce does the following:

Unpacks the Web assets and copies them to the following locations on the
WebSphere Commerce Server:

* The JSP files, HTML, include files, images and graphics are published to the

store directory (storedir) under the Stores Web application document root:

- drive:\WebSphere\AppServer\insta]1edApps\
WC_Enterprise_App_instancename.ear\wcstores.war\storedir

- drive:\Program Files\WebSphere\AppServer\

installedApps\WC_Enterprise_App_instancename.ear\wcstores.war\storedir

/usr/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instancename.ear/wcstores.war/storedir

- /opt/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instancename.ear/wcstores.war/storedir

- /opt/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instancename.ear/wcstores.war/storedir

- /QIBM/UserData/WebASAdv4/WASinstancename/installedApps/
WC_Enterprise App_instancename.ear/wcstores.war/storedir
* The resource bundles and properties files are published to the application
properties path:

- drive:\WebSphere\AppServer\installedApps\
WC_Enterprise App_instancename.ear\wcstores.war\WEB-
INF\classes\storedir

- drive:\Program Files\WebSphere\AppServer\
installedApps\WC Enterprise App_instancename.ear\wcstores.war\WEB-
INF\classes\storedir

- /usr/WebSphere/AppServer/installedApps/
WC_Enterprise App_instancename.ear/wcstores.war/WEB-
INF/classes/storedir

- /opt/WebSphere/AppServer/installedApps/
WC_Enterprise App_instancename.ear/wcstores.war/WEB-
INF/classes/storedir

- /opt/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instancename.ear/wcstores.war/WEB-
INF/classes/storedir

- /QIBM/UserData/WebASAdv4/WASinstancename/installedApps/
WC_Enterprise_App_instancename.ear/wcstores.war/WEB-
INF/classes/storedir

Loads store data from the XML files in the store archive to the

database
While loading the store data from the XML files in the store archive to the

database, WebSphere Commerce does the following:

Chapter 26. Publishing a complete store

213

214

Note: Only the XML files of type db-load are loaded into the database. The file
type is specified in the sarinfo.xml file. For more information on the
sarinfo.xml file, see|[Appendix C, “sarinfo.xml” on page 307|

Validates the XML files in the store archive and concatenates them to a master
XML file: WebSphere Commerce validates the XML files using the corresponding
DTD files. The DTD files are located in the following directory:

o EEMN drive:\WebSphere\CommerceServer\xml\sar

. dm’ve:\Program Files\WebSphere\CommerceServer\xml\sar
. /usr/WebSphere/CommerceServer/xml/sar

. /opt/WebSphere/CommerceServer/xml/sar

. /opt/WebSphere/CommerceServer/xml/sar

. /q1'bm/proddata/WebCommer‘ce/xm]/sar

If the XML files are not valid, WebSphere Commerce writes an error to the error
log. If the errors in the error log exceed the maximum number of errors specified
in the DevTools portion of the WebSphere Commerce Configuration File,
instance_name .xml, (by default MaxErrorsInSarXML=1) publish fails. The
WebSphere Commerce Configuration File, instance_name.xm1 is located in the
following directory:

o EBNEMN drive:\WebSphere\CommerceServer\instances\
instancename\xml\instance_name .xm]

. drive:\Program Files\WebSphere\CommerceServer\instances\
instancename\xml\instance_name .xml

. /usr/WebSphere/CommerceServer/instances/instancename
/xm1/instance_name .xml

. /opt/WebSphere/CommerceServer/1'nstances/instancename
/xm1/instance_name .xml

. /opt/WebSphere/CommerceServer/instances/instancename
/xm1/instance_name .xml

. /QIBM/UserData/WebCommerce/instances/instancename
/xm1/instance_name .xml

After the XML files are validated, they are then concatenated into one file:
storenamemaster.xml. The files are concatenated according to the priority specified
in the sarinfo.xml file. For more information, see|Appendix C, “sarinfo.xml” on|

. The storenamemaster.xml file is located in the following directory:

o NI Grive:\WebSphere\CommerceServer\temp\instancename\tools\devtools

o @YU drive:\Program

Files\WebSphere\CommerceServer\temp\instancename\tools\devtools
. /usr/WebSphere/CommerceServer/temp/instancename/tools/devtools
. /opt/WebSphere/CommerceServer/temp/instancename/too1s/devtoo]s
. /opt/WebSphere/CommerceServer/temp/instancename/tools/devtools

. /QIBM/UserData/WebCommerce/1'nstances/instancename
/temp/tools/devtools

Store Developer’s Guide

Calls the ID Resolver to resolve IDs: The ID Resolver, which is a Loader package
utility, generates unique identifiers for XML elements in the store archive XML
files. For example, the ID Resolver replaces the @ alias used in the sample store
XML files with a unique value. For an example of internal-alias resolution used in
the sample stores, see[Appendix B, “Creating your data” on page 305}

Note: The ID Resolver can also resolve identifiers for already published stores,
when you republish. For example if you have published the store archive
once, and you need to republish the store archive or portions of it, ID
Resolver retrieves the unique identifiers from the database and uses those
during the republishing process.

For more information on the ID Resolver and the other components of the Loader

package, see [Chapter 27, “Overview of loading store data” on page 221}

When the Store Services or command line publish calls the ID Resolver, it must
specify which ID Resolver method to use. The ID Resolver has several methods,
which can be used to process the ID Resolver input; specifically, whether to treat
the data as if identifiers exist in the original data (update method) or do not (load
method). Mixed method is used when some identifiers exist and others do not.

Note: Mixed method is the recommended method for Store Services. If you are
publishing using command line, you may also want to specify the mixed
mode, particularly if you don’t know if the data being published already
exists in the database.

You can specify which method Store Services or the command line publish will use

in the WebSphere Commerce Configuration File, instance_name .xml1. By default,

Store Services uses the mixed method. For more information on the ID Resolver

methods, see [“ID Resolve command” on page 225,

Store Services and the command line publish must also specify a customizer file to
be used with the ID Resolver. If you do not specify a customizer file in the
WebSphere Commerce Configuration File, instance_name .xml1, the publish code
will use one of the default customizer files: DBConnectionCustomizer or
OracleConnectionCustomizer.

The OracleConnectionCustomizer customizer file is located in the following
directory:

. drive:\WebSphere\AppServer\installedApps\
WC_Enterprise App_instancename.ear\properties

. drive:\Program Files\WebSphere\AppServer\installedApps\
WC_Enterprise_App_instancename.ear\properties

. /usr/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instancename.ear/properties

. /opt/WebSphere/AppServer/installedApps/
WC_Enterprise App_instancename.ear/properties

. /opt/WebSphere/AppServer/installedApps/
WC_Enterprise App_instancename.ear/properties

- [EECIM /(18M/UserData/WebASAdv4/WASinstancename/install edApps/
WC_Enterprise App_instancename.ear/properties

Chapter 26. Publishing a complete store 215

216

The DBConnectionCustomizer file is located in the following ZIP file:

. drive:\WebSphere\AppServer\installedApps\

WC_Enterprise_App_instancename.ear\1ib\loader
\idresgen.zip

drive:\Program Files\WebSphere\AppServer\installedApps\
WC_Enterprise App_instancename.ear\1ib\
Toader\idresgen.zip

/usr/WebSphere/AppServer/installedApps/
WC_Enterprise App_instancename.ear/1ib/
loader/idresgen.zip

/opt/WebSphere/AppServer/installedApps/
WC_Enterprise App_instancename.ear/1ib/
loader/idresgen.zip

/opt/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instancename.ear/1ib/
loader/idresgen.zip

/QIBM/UserData/WebASAdv4/WASinstancename/installedApps/
WC_Enterprise_App_instancename.ear/1ib/
loader/idresgen.zip

Note: If you want to specify your own customizer file, you must add the

following to the DevTools section of the instance_name.xm1 file:
* IDResolverCustomizerFile="myIDResolverCustomizerfile"

By default the WebSphere Commerce Configuration File, instance_name .xml,
does not specify a value for this attribute.

The ID Resolver uses the storenamemaster.xml and corresponding DTD file,
wcs.dtd. After the IDs are resolved, ID Resolver creates the following file,
storenametime_stampmaster.xml file, which contains the unique identifiers. If an
error occurs during the ID resolving process, the Loader package creates an
error.xml file, storenamemaster.error.xml.

Note: The publishing process saves these temporary files automatically when a

publishing attempt fails. However, if a publish is successful, these files are
deleted by default. You may want to keep these files for troubleshooting
purposes, or for the purpose of publishing and working with a store in the
WebSphere Test Environment. To save the temporary files, see "Store Service
parameters” in the WebSphere Commerce online help.

storenametime_stampmaster.xml file and storenamemaster.error.xml are located in
the following directory:

drive:\WebSphere\CommerceServer\temp\instancename\tools\devtools

ZAUISS drive:\Program

Files\WebSphere\CommerceServer\temp\instancename\tools\devtools
/usr/WebSphere/CommerceServer/temp/instancename/tools/devtools
/opt/WebSphere/CommerceServer/temp/instancename/tools/devtools

Store Developer’s Guide

. /opt/WebSphere/CommerceServer/temp/instancename/tools/devtools

. /QIBM/UserData/WebCommerce/1'nstances/instancename/
temp/tools/devtools

Calls the Loader package to load the resolved master XML file into the
database: The Loader package loads the resolved storenametime_stampmaster.xml
into the database. If an error occurs during the loading process, the Loader
package creates an error.xml file, storenametime_stamp master.error.xml.

For more information on the Loader package, see [Chapter 27, “Overview of|
lloading store data” on page 221}

When the Store Services or command line publish calls the Loader package, it
must specify which Loader method to use. Store Services can use any of the
following Loader methods:

* SQL import
e Import
* Load

Note: By default Store Services uses the SQL import method.

You can specify which method Store Services or the command line publish will call
in the WebSphere Commerce Configuration File, instance_name.xml, using the
LoaderMode attribute in the DevTools element.

* SQL import: This method uses Java Database Connectivity (JDBC) to insert and
update data, providing the most flexible method of operation but also the
slowest for importing large amounts of data into a small number of tables. It
allows column-level update. It is recommended that you use SQL import.

Note: SQL import method is the safest method to use because it will not corrupt
your database if the data is invalid. Before you can load using SQL
import, the records must meet the database schema constraints. The other
Loader methods are faster because they are bulk loaded into the database
without much checking. As a result you must be certain of data
correctness before using the other methods.

¢ Import: This method uses DB2 native import functions and allows cell-level
update with medium speed and flexibility. This method is not available with
Oracle.

* Load: This method uses the native facilities of the RDBMS (DB2 Load or
SQLLoad) and is the fastest method for loading large amounts of data into a
small number of tables.

For more information on the methods in the load command, see [“Load command”]

fon page 237

Store Services and the command line publish must also specify a customizer file to
be used with the Loader. If you do not specify a customizer file in the WebSphere
Commerce Configuration File, instance_name .xml1, the publish code will use the
default customizer file: MassLoadCustomizer.

Note: If you want to specify your own customizer file, you must add the
following to the DevTools section of the instance_name.xml file:

* LoaderCustomizerFile="myLoaderCustomizerFile"

Chapter 26. Publishing a complete store 217

218

By default the WebSphere Commerce Configuration File, instance_name .xml,
does not specify a value for this attribute.

Creates parameters.jsp file

The publish process creates the file parameters.jsp. This file includes three
parameters: storeld, catalogld, and langld. The indexjsp file in the sample stores
uses these parameters to launch the store.

In order for the publish process to create the parameters.jsp file, the catalog data
and Web assets much be published concurrently at least once. If these two items
are not published together Store Services will not be able to launch the store.

parameters.jsp is located in the following directory:

. drive:\WebSphere\AppServer\installedApps\
WC_Enterprise_App_instancename.ear\wcstores.war\storedir\include

. dm’ve:\Program Files\WebSphere\AppServer\
installedApps\WC_Enterprise App_instancename.ear\wcstores.war\storedir
\include

. /usr/WebSphere/AppServer/installedApps/
WC_Enterprise App_instancename.ear/wcstores.war/storedir/include

. /opt/WebSphere/AppServer/1'nsta11edApps/
WC_Enterprise_App_instancename.ear/wcstores.war/storedir/include

. /opt/WebSphere/AppServer/installedApps/
WC_Enterprise App_instancename.ear/wcstores.war/storedir/include

. /QIBM/UserData/WebASAdv4/WASinstancename/installedApps/
WC_Enterprise App_instancename.ear/wcstores.war/storedir/include

Unpack store configuration files

The ToolTech and NewFashion sample store archives also including the
following files:

* tools_properties.zip

* tools_xml.zip

* runtime_xml.zip

These files are registered in the sarinfo.xml file and are used by Store Services to
configure stores. During the publish process these files are unpacked and copied to

the directories specified in the WebSphere Commerce Configuration File,
instance name.xml. For more information, see [‘Publishing store front assets andl

store configuration files by copying to the WebSphere Commerce Server” onl

page 27§|.

Note: These files should not be changed, removed, copied to other stores, or saved
in a different directory.

Calls command to publish business accounts and contracts
Some of the store database assets, (contracts and business accounts) cannot be
loaded by the Loader package, so publish also calls the corresponding commands
to publish those assets to the WebSphere Commerce Server. These commands are
as follows:

* AccountImport — Creates a business account from the businessaccount.xml file
in the store archive.

Store Developer’s Guide

* ContractlmportApprovedVersion — Imports a contract from the contract.xml
file in the store archive.

* ProductSetPublish — Synchronizes the product set data in the database with the
catalog before business accounts and contracts are created. Store Services and the
command line publish call the ProductSetPublish command, which then calls the
Accountlmport and ContractimportApprovedVersion commands.

For more information on publishing business accounts and contracts, see
(Chapter 29, “Publishing business accounts and contracts” on page 273,

Updates registry components

The last action in the publish process is updating the registry components. Publish
updates all of the registries in WebSphere Commerce. For more information on the
registries, see the WebSphere Commerce online help.

Error handling

If an error occurs during the publish assets phase of the publish process, you can
view the error message either in the publish logs (see [“Publish log files”) or
through the Publish Summary page in Store Services.

Configure payment

The last step in the publishing process is to configure payment. WebSphere
Commerce supports the IBM Payment Manager. If you plan to use Payment
Manager as your method of processing payment, you should create a payment
XML file as described in [Chapter 13, “Payment assets” on page 115 If a payment
XML file is included in the store archive being published, WebSphere Commerce
will complete the following payment configuration during publish:

* Create the merchant.

* Create the account (for offline cassettes only).

* Create the brands specified in paymentinfo.xml (for offline cassettes only).
* Assign user authority.

Error handling
If an error occurs during the configure payment phase of the publish process, you
can view the error message in the publish logs (see ["Publish log files”).

Publish log files

Any errors encountered during the publish assets phase of the publishing process
are written to the following log and trace files:

* messages.txt: Contains error messages from the Loader package part of the
publishing process. Check this log first when publish fails. Line or column
numbers mentioned in these error messages refer to the temporary master.xml
files: storenamemaster.xml, or storenametime_stampmaster.xml.

* trace.txt: Contains trace information for the Loader package and ID Resolver
parts of the publishing process. By default, trace.txt is turned off.

* ecmsg_instancename_timestamp.log: Logs all running error messages from the
WebSphere Commerce Server.

* wcs.log file: Contains the output from all applications (including publishing)
running in the WebSphere Application Server to the standard console.

The log files are located in the following directory:
. dm’ve:\WebSphere\CommerceServer\1'nstances\instancename\]ogs

. drive:\Program Files\WebSphere\CommerceServer\instancename\1ogs

Chapter 26. Publishing a complete store 219

. /usr/WebSphere/CommerceServer/instances/instancename/10gs
. /opt/WebSphere/CommerceServer/1'nstances/instancename/1ogs
o UEETEE Jopt/WebSphere/CommerceServer/instances/instancename/10gs
. /QIBM/UserData/WebCommerce/1'nstances/instancename/]ogs

To configure the trace.txt and messages.txt log files (that is, adjust the log level or
other options), edit the following file:

. drive:\WebSphere\CommerceServer\xml\loader\WCALoggerConfig.xml
. drive:\Program

Files\WebSphere\CommerceServer\xml\loader\WCALoggerConfig.xml
. /usr/WebSphere/CommerceServer/xml/Toader/WCALoggerConfig.xml
. /opt/WebSphere/CommerceServer/xml/Toader/WCALoggerConfig.xml
. /opt/WebSphere/CommerceServer/xml/Toader/WCALoggerConfig.xml

. /QIBM/UserData/WebCommerce/1'nstances/instancename/
xm1/WCALoggerConfig.xml

Note: For more information on configuring the WCALoggerConfig.xml file, see the
WebSphere Commerce Catalog Manager User’s Guide.

220 Store Developer’s Guide

Chapter 27. Overview of loading store data

After creating your store data, you can choose to package it as a store archive and
publish it using Store Services or you can load it directly into the WebSphere
Commerce Server database using the WebSphere Commerce Catalog Manager
Loader package. Refer to |ChaEter 28 “Loading WebSphere Commerce databasel

sset groups” on page 259 and [“Loading database asset groups” on page 267 for
information on the loading process for WebSphere Commerce database asset
groups.

The Catalog Manager provides six command-line utilities (collectively referred to
here as the "Loader package”) and three related administrative tools that you can
use to prepare data for loading as well as to load data into your store. These
commands and tools use Extensible Markup Language (XML) data files to manage
the information.

© Copyright IBM Corp. 2002 221

Understanding data loading in WebSphere Commerce

The data preparation, loading, and extraction processes that you can perform using
the Loader package commands are shown in the following figure.

Generic

csv «— Text Transform command XML
data file data file

L | I

Parameter XML XSLT XML Transform command
file schema file rule file

<«

WebSphere
Commerce
XML
data file

I [

- "

ID Resolve command

] i

XML XML data

pTD data file file with
resolved
identifiers

|

Load command

DTD d

DTD

v

v

Database

Loading store data into WebSphere Commerce

A

WebSphere

Commerce
Database]

f—> Extract command —>
Extraction — XML

filter file data file

Note that a dotted line indicates the two processes that are most commonly used
to load store data into a WebSphere Commerce Server database: resolving
identifiers and loading the data. These processes are the focus of this chapter.

For more information on preparing your data for loading into a WebSphere
Commerce Server database, refer to [Part 4, “Developing your store data” on page

222 Store Developer’s Guide

The following two Loader package command-line utilities are commonly used for
loading data into a WebSphere Commerce Server database:

¢ ID Resolve command

To load XML data into a WebSphere Commerce Server database using the
Loader package, the XML elements must map directly to the schema of the
targeted WebSphere Commerce Server database. All XML elements that have
attributes corresponding to unique or primary keys in the database schema must
have unique identifiers; and all non-nullable columns of the database schema
must have corresponding attributes defined with non-null values. The ID
Resolver can generate unique identifiers for unique or primary key attributes of
qualifying XML elements.

Note: As referred to in this document, an identifier is a value in a single column
of a database table that gives each row a unique identity. If you use the
ID Resolver to generate identifiers, it obtains a base value from the KEYS
or SUBKEYS table and increments the value sequentially to resolve an
identifier for each row in the database table.

For information on this command, refer to [“ID Resolve command” on page 225|

“Using the Loader package commands and scripts” on page 249 and [“Examples|

of resolving identifiers” on page 250|

* Load command

The Loader uses valid and well-formed XML files as input to load data into the
database. Elements of the XML document map to table names in the database;
and element attributes map to columns.

Note: Refer to the World Wide Web Consortium (W3C) XML guidelines for a
description of the validity and well-formedness constraints.

For information on this command, refer to [“Load command” on page 232}
“Using the Loader package commands and scripts” on page 249 and |“Example]
of loading data” on page 257

These commands are the primary focus of this chapter.

The following Loader package command-line utilities can also be used to manage

your data:

* DTD Generate command
The DTD Generator generates a document type definition (DTD) that describes
the tables and columns of the target database into which XML data is to be
loaded. The DTD Generator can also generate an XML schema for the database.
The DTD Generator can create a DTD based on the WebSphere Commerce
database schema. If you use the DTDs provided with the sample store archives
and you do not modify the database schema, you normally do not need to
generate a DTD using the DTD Generator.

Refer to[’DTD Generate command” on page 239 for more information.

e Extract command

The Extractor uses a query against a database to extract selected subsets of data
from the database into an XML document.

You can use this command to extract data from your database into an XML
format.

Refer to [“Extract command” on page 242|for more information.

Chapter 27. Overview of loading store data 223

224

e Text Transform command

The Text Transformer transforms data between a character-delimited variable
format and an XML data format.

If your data cannot be extracted directly from a database in an XML format, for
example, you can save your data in a character-delimited variable format then
use this command to transform it into an XML format.

Refer to|“Text Transform command” on page 244| for more information.

¢ XML Transform command

The XML Transformer transforms the data in an XML document to an alternate
XML format. It uses Extensible Stylesheet Language (XSL) to define the mapping
rules for the transformation.

You can use this command to convert your XML data into a format that maps
directly to the schema of the target WebSphere Commerce database into which
you want to load the data.

Refer to["XML Transform command” on page 245 for more information.

These commands are not the primary focus of this chapter. For detailed
information on these commands, refer to the most recent version of the IBM
WebSphere Commerce 5.4 Catalog Manager User’s Guide.

The WebSphere Commerce Catalog Manager also includes the following tools to
assist in the administration of its data-management functions:

¢ Text Transformation tool

The Text Transformation tool helps you process a transformation of data
between a character-delimited variable format and an XML data format using
the Text Transform command.

* XSL editor
The XSL editor gives you a visual interface for editing XSL files that can be used
by the XML Transformer. Using the XSL editor, you establish the association
from an element in a source DTD to an element in a target DTD when defining
the mapping rules for transforming data between XML formats.

* Web editor

The Web editor enables you to create, modify, and delete data in a database
through a Web browser.

These tools are not the primary focus of this chapter. For detailed information on

these tools, refer to the most recent version of the IBM WebSphere Commerce 5.4
Catalog Manager User’s Guide.

Store Developer’s Guide

Loader package commands for loading store data

ID Resolve command

This command generates unique identifiers for XML data elements that require
them before the elements can be loaded into a database. If your source XML data
already supplies the necessary unique identifiers, you do not have to run the ID
Resolver.

The WebSphere Commerce database schema defines primary and foreign keys
within its tables that are used to represent various relationships between the tables.
For this reason, WebSphere Commerce XML elements must contain corresponding
attributes with unique identifiers. Within the WebSphere Commerce Server
database, the tables whose identifiers must be resolved are those defined in the
KEYS and SUBKEYS tables. These tables are called primary tables within WebSphere
Commerce. For more information on the KEYS and SUBKEYS tables, see the
WebSphere Commerce online help.

Note: If it is necessary to resolve identifiers for a table that is not defined in the
KEYS or SUBKEYS table, add the table to the SUBKEYS table before running
the ID Resolver.

Because WebSphere Commerce XML elements and attributes are intended to be
portable across databases and across database instances, its identifiers are usually
represented using internal aliases. Before the data can be loaded into any
WebSphere Commerce Server database, these aliases must be resolved into valid
numeric identifiers. For more information, refer to |[Appendix B, “Creating your|
[data” on page 303,

1D Resolve
wm— java com.ibm.wea. ldResGenldResolve =
w—-dbname 5 — -dbuser 5 — -dbpwd 5 — -infile § — -outfile 5 —— -method —»
S 1L JL i
update -propfile s -poolsize s -customizer § -schemanarme §
rixed
Notes:

1. The above diagram is intended primarily as a reference for the command
parameters. The command file or script provided for this command and listed
under [“Using the Loader package commands and scripts” on page 249|acts as a
wrapper to the actual Java command and accepts the same parameters;
therefore, it is recommended that you use the command file or script rather
than invoke the Java command directly.

2. Filenames specified as parameters for this command can be preceded by
relative or absolute paths.

Chapter 27. Overview of loading store data 225

Parameter values:

-dbname
Name of the target database

-dbuser
Name of the user connecting to the database

-dbpwd
Password for the user connecting to the database

-infile Name of the input XML document containing table records

-outfile
Name of the output XML file to be produced; this file can be used as input
to the Loader

-method
Method to be used in processing the input file

¢ Use the load method to process the input file if all records in the file do
not exist in the database.

¢ Use the update method to process the input file if all records in the file
exist in the database.

¢ Use the mixed method to process the input file if only some records in
the file exist in the database.

The default method is load.

-propfile
Text file containing Java properties in the form of name=value pairs. This
property file sets the way in which the ID Resolver resolves identifiers. It is
used to describe which columns of a primary entry should be used as
lookups for tables that require the identifier of a primary row. This file
defines the column names for foreign-key identifier lookup and the select
predicate for main table (such as CATEGORY and PRODUCT) queries. You
can omit entries in this file for tables that have a defined unique index that
does not include the identifier. This parameter is optional.
IdResolveKeys.properties is the default file. This property file can be
specified as shown in either of the following examples:

-propfile d:\WebSphere\CommerceServer\prop\idresprop.properties
-propfile d:\WebSphere\CommerceServer\prop\idresprop

If this file exists in the current directory, the same file can be specified as
shown in the following example:

-propfile idresprop.properties

If this file exists in a directory specified in the classpath
system-environment variable, the same file can be specified as shown in
the following example:

-propfile idresprop

For more information on creating and specifying a new properties file for
use with the ID Resolver, refer to the most recent version of the IBM
WebSphere Commerce 5.4 Catalog Manager User’s Guide.

-poolsize
Number of identifiers to be reserved. This parameter is optional. The
default number is 50.

226 Store Developer’s Guide

-customizer
Name of the customizer property file to be used. This parameter is
optional. The customizer property file sets the way that the ID Resolver
functions. DB2ConnectionCustomizer.properties is the default file. The
customizer property file can be specified as shown in either of the
following examples:

-customizer d:\WebSphere\CommerceServer\prop\idres.properties
-customizer d:\WebSphere\CommerceServer\prop\idres

If this file exists in the current directory, the same file can be specified as
shown in the following example:

-customizer idres.properties

If this file exists in a directory specified in the classpath
system-environment variable, the same file can be specified as shown in
the following example:

-customizer idres

For more information on creating and specifying a new customizer
property file, refer to the most recent version of the IBM WebSphere
Commerce 5.4 Catalog Manager User’s Guide.

-schemaname
Name of the target database schema. This parameter is optional.

If this parameter is not specified when running the command, the
command looks for a name=value pair in the customizer property file that
specifies the value of SchemaName. If this pair is present in the property
file, the command uses the value specified. If neither a command-line nor a
property-file specification for this parameter exists, the command defaults
to the schema name of the table in the database.

400

RESWCSID

»— RESWCSID .

— DATABASE(S) — SCHEMA(S) — INSTROOT(5) — PASSWD{s) — INFILE(S) —

"LOAD) |—F”HC'F”FILE[-'-'E_‘.-J |—F”C'C'LSI2E[-E'i}J

»—OUTFILE{s}— METHOD —E (*MIX)
*UPDY)

|—CL.'ST':III‘».I’!IZEF*\[E_‘.-J

Note: Filenames specified as parameters for this command can be preceded by
relative or absolute paths.
Parameter values:

DATABASE
Name of the target database, as displayed in the relational database
directory

Chapter 27. Overview of loading store data 227

SCHEMA
Name of the target database schema; this is the same as the instance name

INSTROOT
Full name of the WebSphere Commerce instance root path, such as
/QIBM/UserData/WebCommerce/instances/instance_name

PASSWD
Password for the WebSphere Commerce instance

INFILE
Name of the input XML document containing table records

OUTFILE
Name of the output XML file to be produced; this file can be used as input
to the Loader

METHOD
Method to be used in processing the input file

* Use the load method (*LOAD) to process the input file if all records in
the file do not exist in the database.

¢ Use the update method (*UPD) to process the input file if all records in
the file exist in the database.

* Use the mixed method (*MIX) to process the input file if only some
records in the file exist in the database.

PROPFILE
Text file containing Java properties in the form of name=value pairs. This
property file sets the way in which the ID Resolver resolves identifiers. It is
used to describe which columns of a primary entry should be used as
lookups for tables that require the identifier of a primary row. This file
defines the column names for foreign-key identifier lookup and the select
predicate for main table (such as CATEGORY and PRODUCT) queries. You
can omit entries in this file for tables that have a defined unique index that
does not include the identifier. This parameter is optional.
IdResolveKeys.propertiesis the default file. This property file can be
specified as shown in either of the following examples:

PROPFILE(/wc/prop/idresprop.properties)
PROPFILE(/wc/prop/idresprop)

If this file exists in the current directory, the same file can be specified as
shown in the following example:

PROPFILE(idresprop.properties)

If this file exists in a directory specified in the classpath
system-environment variable, the same file can be specified as shown in
the following example:

PROPFILE (idresprop)

For more information on creating and specifying a new properties file for
use with the ID Resolver, refer to the most recent version of the IBM
WebSphere Commerce 5.4 Catalog Manager User’s Guide.

POOLSIZE
Number of identifiers to be reserved. This parameter is optional. The
default number is 50.

228 Store Developer’s Guide

CUSTOMIZER

Name of the customizer property file to be used. This parameter is
optional. The customizer property file sets the way that the ID Resolver
functions. The default file is ISeries RESWCSID Customizer.properties.
The customizer property file can be specified as shown in either of the
following examples:

CUSTOMIZER(/wc/prop/idres.properties)
CUSTOMIZER(/wc/prop/idres)

If this file exists in the current directory, the same file can be specified as
shown in the following example:

CUSTOMIZER(idres.properties)

If this file exists in a directory specified in the classpath
system-environment variable, the same file can be specified as shown in
the following example:

CUSTOMIZER(idres)

For more information on creating and specifying a new customizer
property file, refer to the most recent version of the IBM WebSphere
Commerce 5.4 Catalog Manager User’s Guide.

Resolution techniques:
The ID Resolver resolves identifiers using a combination of two or three of the
following techniques, depending on whether or not a properties file is used.

Internal-alias resolution

When using internal-alias ID resolution, an alias is substituted for the unique
key (identifier) in the source XML document. This alias is then used elsewhere in
the XML file to refer to that element.

Internal aliases must be used consistently throughout the XML file. For example,
if an address-book ID, ADDRBOOK_ID, is aliased to @addrbook_1, all
foreign-key references to that ID in the file must use @addrbook_1.

Note that aliases are transient to the specific XML file. They are not saved; and
an alias cannot be used in a separate XML file without introducing the alias
again. During publish in Store Services, however, publish concatenates the XML
files so that resolution can occur across all of the data.

Unique-index resolution

The ID Resolver can also analyze the database schema to determine whether or
not there is a unique index that fulfills its requirements. The ID Resolver looks
for a unique index only when there is no entry in the properties file for the table
being analyzed or when there is no properties file. If these conditions are true, a
unique-index check is performed. The unique index is considered valid if it
exists and does not include the primary key for the table.

Properties-file specification

The ID Resolver lets you use an alternate Java properties file to describe which
columns of a primary entry should be used as lookups for tables that require the
identifier of a primary row.

The sample store archives provided with WebSphere Commerce use internal aliases

in their XML files. This allows the store archives to be portable across databases.
Although the unique-index and properties-file specification techniques also allow
for portability across databases, a user can change what the unique columns are at
any time and cause problems when these techniques are later used for ID

Chapter 27. Overview of loading store data 229

230

resolution. If a user changes a unique column, for example, the column name must
then be changed in the property-file definition. With the internal-alias technique,
however, a change in the database does not necessitate a change in the XML or
properties files. During publish in Store Services or using the Loader package, the
ID Resolver replaces the alias with a unique value. Once the data is loaded, the

aliases are transparent to the user. For more information, refer to

[“Creating your data” on page 305

The ID Resolver uses the following process:

* If your input XML data has an element from a primary table that already has a
hard-coded identifier ("12345" for example), the ID Resolver does not create a
new identifier for that element.

* If your input XML data has an element from a primary table that does not have
an identifier, the ID Resolver looks in the database to see whether or not there is
already a row for this element.

Looking up the element in the database requires that other columns in the
element be used to form a unique key. These other columns can be specified in
the properties file; or the ID Resolver can be allowed to determine which
columns to use.

— If a properties file is being used and there is an entry in the properties file for
the table being analyzed, the ID Resolver uses the columns specified in the
properties file to form the unique key.

— If there is no properties file being used or there is no entry in the properties
file for the table being analyzed, the ID Resolver uses unique-index
resolution.

Unique-index resolution uses any of the specified unique indexes on a table
as a means of locating the identifier. For example, MEMBER_ID plus
IDENTIFIER is a unique index on the CATALOG table and can therefore be
used as a resolution point to the foreign key CATALOG_ID of the
CATALOGDSC table.

The element is deemed to already exist in the database if there is a row with the
same unique key; otherwise, it is seen as a new piece of data.

¢ If the element already exists as a row in the database, its identifier is retrieved
and saved so that it can be used later. Otherwise, a new identifier is generated
by ID Resolver using an available value in the KEYS or SUBKEYS table.

* If you specified an internal alias for the element ("@store_id_1" for example) in
the XML document, that alias is associated with the identifier so that the
identifier can be looked up later using the same internal alias.

* Subsequent XML document elements that need to refer to an element from the
primary table use either the internal alias if the primary table element had one
("@store_id_1" for example) or the values of the lookup columns if it did not
("@WC2001@100" for example). In either case, the value specified is used to look
up the actual identifier and the value is replaced with that identifier.

* When the output XML document is produced, all primary table elements have
actual identifiers in them and all elements that refer to those primary table
elements refer to them using the actual identifiers, not the internal aliases or
lookup column values mentioned above. This is the fully resolved XML
document.

Store Developer’s Guide

Methods for the ID Resolve command:
The ID Resolve command lets you choose the load, update, or mixed method to
process the input file.

Load method:
The load method for the ID Resolver is used to generate new identifiers for all
new records that are loaded into the database.

Note: If you specify the load method for the ID Resolver, the records in the input
file should not already exist in the database. If the load method is used with
the ID Resolver and a record in the source XML file already exists in the
target database, the Loader will generate an error when you load the data.
The ID Resolver will assign a new primary key to the record in the XML file
during ID resolution; but when you load the data into the database, an error
will be generated. The Loader will not stop at the point of processing the
duplicate record; but it will report an error and the duplicate record will not
be loaded into the database.

The following example is used to generate identifiers for data elements that are
new to the database:

.

idresgen -dbname db -dbuser user -dbpwd pwd -infile input.xml
-outfile output.xml -method Toad -customizer customizer -schemaname wcsadmin

A Solaris |

./idresgen.sh -dbname db -dbuser user -dbpwd pwd -infile input.xml
-outfile output.xml -method load -customizer customizer -schemaname wcsadmin

QWEBCOMM/RESWCSID DATABASE(DATABASE_NAME) SCHEMA(WCSADMIN)
INSTROOT (/QIBM/UserData/WebCommerce/instances/mser)

PASSWD (mypassword) INFILE(input.xml) OUTFILE(output.xml)
METHOD (*LOAD)

Note: Refer to[“Using the Loader package commands and scripts” on page 249|for
the location of the appropriate ID Resolve command or script.

Update method:

If you specify the update method for the ID Resolver, the records in the input file
should already exist in the database. The ID Resolver locates the identifiers in the
database as described on page If a record does not exist in the database, the
ID Resolver is not able to resolve the identifier for this record and it indicates that
an error has occurred. The following example is used to locate identifiers for data
elements that already exist in the database:

.

idresgen -dbname db -dbuser user -dbpwd pwd -infile input.xml
-outfile output.xml -method update -customizer customizer -schemaname wcsadmin

A Solaris |

./idresgen.sh -dbname db -dbuser user -dbpwd pwd -infile input.xml
-outfile output.xml -method update -customizer customizer -schemaname wcsadmin

. 400

QWEBCOMM/RESWCSID DATABASE (DATABASE_NAME) SCHEMA(WCSADMIN)
INSTROOT (/QIBM/UserData/WebCommerce/instances/mser) PASSWD(mypassword)
INFILE(input.xml) OUTFILE(output.xml) METHOD(*UPD)

Chapter 27. Overview of loading store data 231

232

Note: Refer to[“Using the Loader package commands and scripts” on page 249| for
the location of the appropriate ID Resolve command or script.

Mixed method:

If the input data file contains records that already exist in the database as well as
some records that are new, the ID Resolver must be run using the mixed method.
With this method, the ID Resolver creates new identifiers for records only if the
records do not exist in the database. Otherwise, the existing identifier is obtained
from the database. The following example is used to generate identifiers for new
data and to locate identifiers for data elements that already exist in the database:

.

idresgen -dbname db -dbuser user -dbpwd pwd -infile input.xml
-outfile output.xml -method mixed -customizer customizer -schemaname wcsadmin

A Solaris |

./idresgen.sh -dbname db -dbuser user -dbpwd pwd -infile input.xml
-outfile output.xml -method mixed -customizer customizer -schemaname wcsadmin

. 400

QWEBCOMM/RESWCSID DATABASE (DATABASE_NAME) SCHEMA(WCSADMIN)
INSTROOT (/QIBM/UserData/WebCommerce/instances/mser) PASSWD(mypassword)
INFILE (input.xml) OUTFILE(output.xml) METHOD (*MIX)

Notes:

1. Refer to|“Using the Loader package commands and scripts” on page 249| for
the location of the appropriate ID Resolve command or script.

2. Mixed method is the recommended method for Store Services.

For detailed information on setting up and customizing the files used to run this
command, refer to the most recent version of the IBM WebSphere Commerce 5.4
Catalog Manager User’s Guide.

Load command
This command loads an XML input file into a target database.

Load
w—java com.ibmwea Massloader Massload +
—-dhname s — - ¢-dbuser s — - dbpwd 5 -infile s —— -method —
o 11 I L I
- load — -NoprIMmanry —— errar -commitcount s -MmaxXerror s
F sglirmport skip
- delete — insert
L .customizer .";J L EE:"'IEI‘I'].E,II']-EII‘I'IE.";J

Store Developer’s Guide

Notes:

1. The above diagram is intended primarily as a reference for the command
parameters. The command file or script provided for this command and listed
under [“Using the Loader package commands and scripts” on page 249 acts as a
wrapper to the actual Java command and accepts the same parameters;
therefore, it is recommended that you use the command file or script rather
than invoke the Java command directly.

2. Filenames specified as parameters for this command can be preceded by
relative or absolute paths.

Parameter values:

-dbname

Name of the target database

-dbuser

Name of the user connecting to the database

-dbpwd

Password for the user connecting to the database

-infile Name of the input XML file

-method

Mode of operation for the Loader to use when inserting data into the
database

The load method uses the native loader from the database vendor. You
can use the load method for both local and remote Oracle databases; but
the load method can only be used for local DB2 databases.

Although the import method can be used to load data into local or
remote databases, it is usually used to load data into remote DB2
databases. This method uses the import or update option if it is
available from the database vendor. If you specify this method for a
database in which the import or update option is not available, such as
Oracle, SQL statements using JDBC are used to update the database.

The SQL import (sqlimport) method can be used with both local and
remote databases.

The delete method deletes data from the database.

-noprimary
Action the Loader must take when the primary key is missing for a record
in the input file

The error option indicates that it should report the missing primary key
as an error and terminate.

The skip option skips any record in the input file that does not have a
primary key.
The insert option tries to insert or delete the data.

This parameter is optional. The default action is error.

-commitcount
Number of records processed before the database commit occurs when
using the SQL import method of operation. This parameter is optional. The
default number is 1.

-maxerror

Number of errors after which the Loader will terminate in the SQL import
method of operation. This parameter is optional.

Chapter 27. Overview of loading store data 233

234

-customizer

Name of the customizer property file to be used. This parameter is
optional. The customizer property file sets the way that the Loader
functions. MassLoadCustomizer.properties is the default file. The
customizer property file can be specified as shown in the following
example:

-customizer d:\WebSphere\CommerceServer\prop\ml.properties

If this file exists in a directory specified in the classpath
system-environment variable, the same file can be specified as shown in
the following example:

-customizer ml

For more information on creating and specifying a new customizer
property file, refer to the most recent version of the IBM WebSphere
Commerce 5.4 Catalog Manager User’s Guide.

-schemaname

400

Name of the target database schema. This parameter is optional.

If this parameter is not specified when running the command, the
command looks for a name=value pair in the customizer property file that
specifies the value of SchemaName. If this pair is present in the property
file, the command uses the value specified. If neither a command-line nor a
property-file specification for this parameter exists, the command defaults
to the schema name of the table in the database.

LODWCSDTA

w— | ODWCSOTA *
r— DATABASE(S) — SCHEMA{S] — INSTROCOT{s) —PASSWD(s) — INFILE{s} —»
— METHOD — {"IMP)

{"LOAD) |— NOPRIMARY — (*ERROCR)
{(*saL} —E ("SKIP)
{"DLT) (*INSERT)

|—CDMIMITNL.Jr-.ﬂ{S}J LMA}(EHHDH{E}J LGUSTDMIZEH{S}J

L
rs

Note: Filenames specified as parameters for this command can be preceded by

relative or absolute paths.

Parameter values:

DATABASE

Name of the target database as displayed in the relational database
directory

SCHEMA

Store Developer’s Guide

Name of the target database schema; this is the same as the instance name

INSTROOT
Full name of the WebSphere Commerce instance root path, such as
/QIBM/UserData/WebCommerce/instances/instance_name

PASSWD

Password for the WebSphere Commerce instance

INFILE

Name of the input XML file

METHOD
Mode of operation for the Loader to use when inserting data into the
database

The load method (*LOAD) uses the native loader from the database
vendor. You can use the load method (*LOAD) for both local and remote
Oracle databases; but the load method (*LOAD) can only be used for
local DB2 databases.

Although the import (*IMP) method can be used to load data into local
or remote databases, it is usually used to load data into remote DB2
databases. This method uses the import or update option if it is
available from the database vendor. If the import or update option is not
available, SQL statements using JDBC are used to update the database.

The SQL import (*SQL) method can be used with both local and remote
databases.

The delete (*DLT) method deletes data from the database.

NOPRIMARY
Action that the Loader must take when the primary key is missing for a
record in the input file

The error option (*ERROR) indicates that it should report the missing
primary key as an error and terminate.

The skip option (*SKIP) skips any record in the input file that does not
have a primary key.

The insert option (*INSERT) tries to process (insert or delete) the data.

This parameter is optional. The default action is error.

COMMITNUM
Number of records processed before the database commit occurs when
using the SQL import method of operation. This parameter is optional. The
default number is 1.

MAXERROR
Number of errors after which the Loader will terminate in the SQL import
method of operation. This parameter is optional.

CUSTOMIZER
Name of the customizer property file to be used. This parameter is

optional. The customizer property file sets the way that the ID Resolver
functions. The default file is ISeries_LODWCSDTA_Customizer.properties.
The customizer property file can be specified as shown in the following
example:

CUSTOMIZER(/wc/prop/ml.properties)

If this file exists in a directory specified in the classpath
system-environment variable, the same file can be specified as shown in
the following example:

CUSTOMIZER(m1)

Chapter 27. Overview of loading store data 235

236

For more information on creating and specifying a new customizer
property file, refer to the most recent version of the IBM WebSphere
Commerce 5.4 Catalog Manager User’s Guide.

Methods for the Load command:
Before loading data, you should determine which of the three methods of
processing will produce the best results.

Load method:
Consider the load method in any of the following situations:

* The source data is clean, and the database does not contain any data

Note: Clean data is data that does not violate any of the constraints of the tables
into which it is being loaded.

e The source data is clean, and the database does not contain the data that is
being loaded

* The source data is clean, one or more of the targeted tables do not contain
primary keys, and the database does not contain the data that is being loaded

e The database is a local DB2 database
e The database is a local or remote Oracle database

* The database is not being accessed by other users or applications while the load
is taking place

With the load method, data is loaded into the database. If the data
already exists, the command fails as a result of a duplicate-key error and a
duplicate-error message displays.

The following restrictions exist on using the load method:
* The load method cannot insert or update data in bit data fields.

- D2 With the load method, only new records are inserted into the
database; existing records are not updated.

. m The load method can only be used for local, not remote, DB2
databases.

Import method:

With the import method for DB2, data is also

loaded into the database. If the data already exists, it is not deleted but is updated
with new values. Consider this method in any of the following situations:

* The database management system is DB2

* You do not know whether or not the data is clean

* You have to update large sets of homogeneous data at a column level

 All of the tables into which data is being imported have primary keys

With the import method, data is also loaded into the database. If the data
already exists, it is not deleted but it is updated with new values. Consider this
method in any of the following situations:

* You do not know whether or not the data is clean

e The data already exists in the database

 All of the tables into which data is being imported have primary keys

Store Developer’s Guide

The following restrictions exist on using the import method:

* The database management system must be DB2 in order to use the import
method.

* The import method cannot insert or update data in bit data fields.

* With the import method, the Loader only inserts or updates tables that have
primary keys defined on them; the import method cannot insert or update data
in tables that do not have a primary key. If the input record only has values for
columns that are primary, the record is rejected.

SQL import method:

With the SQL import method, JDBC or SQL statements are used to update or insert
data into the database. Data is inserted if it does not already exist, and existing
data is updated. Consider this method in any of the following situations:

* You are updating existing data and require column-level updates

e Some of the data is not clean

* The database is not local

Note: If you are using Product Advisor search-space synchronization, you must
use the SQL import method for loading data.

Delete method:

The delete method is used to delete data that is in the input XML document from
the database. The element must contain the values for the primary key or the
unique index for the table. If the data being deleted has data in another table that
is dependent on it with "cascade on delete” enabled, the dependent data is also
deleted.

Comparing the methods:
* Comparison of the SQL import and load methods

The SQL import method checks for data consistency, including foreign
references, and allows you to update existing data. The load method does not.

* Comparison of the import and SQL import methods

The import and SQL import methods perform similar functions. The import
method is typically faster, but it requires disk space for temporary files.

The import method can only insert or update tables that have primary keys
defined in them; whereas, the SQL import method does not require that tables
have primary keys in them.

* Comparison of methods based on database product used

The import and load methods use native utilities that are optimized for DB2,
while the SQL import method uses JDBC calls (which are generic to many
database products).

Chapter 27. Overview of loading store data 237

Performance considerations:
When using the Loader to load large documents into a database, consider the
following items:

* Java Virtual Machine (JVM) heap size

By default, the maximum amount of memory allocated to the JVM heap is 64
MB. If this is not increased, the JVM can eventually run out of memory during
the load process. The maximum amount of memory allocated to the Java heap
can be varied by using the JVM -mx option in the Java command.

* Trace logging

The trace logger can exhaust the JVM heap when loading a large XML
document. Trace information is used mostly for debugging a run if the run fails.
If tracing the load process is not necessary, the trace should be turned off. There
is a significant performance gain when the trace is turned off. The trace is
turned off by modifying the logging configuration XML document. For
information on modifying the logging configuration XML document, refer to the
most recent version of the IBM WebSphere Commerce 5.4 Catalog Manager User’s
Guide.

¢ Commit count

The default commit count for the Loader when it is operating in SQL import
mode is 1. By default, therefore, transactions are committed for every update or
insertion into the database. To improve the performance of the Loader for large
documents, the commit count should be increased. A value of "100” is suggested;
but it can be higher depending on the amount of physical memory on the server,
the DBMS transaction log size, and so forth.

The commit count for the Loader is changed using the -commitcount count
option for the Load command (where count is the number of statements
executed before the transaction is committed).

* Logging configuration
Unusually slow progress when loading data could result from one of the
following situations:

— The user invoking the Loader does not have permission to write to the
directory or to update the file specified in the logging configuration
document.

— The directory specified as the location of the file in the logging configuration
document does not exist.

— The drive specified as the location of the file in the logging configuration
document does not have enough space.

When you correct any of these problems, you may need to change the specified
location of the file by modifying the logging configuration document
(WCALoggerConfig.xml by default). For information on modifying the logging
configuration XML document, refer to the most recent version of the IBM
WebSphere Commerce 5.4 Catalog Manager User’s Guide.

For detailed information on setting up and customizing the files used to run this

command, refer to the most recent version of the IBM WebSphere Commerce 5.4
Catalog Manager User’s Guide.

238 Store Developer’s Guide

Loader package commands for transforming and extracting
data

DTD Generate command

This command creates a DTD for use with the Loader package. This DTD is used
throughout the data loading process. Depending on how you invoke the
command, the DTD Generator can generate a DTD alone or a DTD along with an
XML schema.

The DTD Generator can create a DTD based on the WebSphere Commerce
database schema. If you use the DTDs provided with the sample store archives
and you do not modify the database schema, you do not need to generate a DTD
using the DTD Generator. The DTDs that are provided are located in the following
directory:

. drive:\WebSphere\CommerceServer\xm]\sar

. drive:\Program Files\WebSphere\CommerceServer\xml\sar
. /usr/WebSphere/CommerceServer/xml/sar

. /opt/WebSphere/CommerceServer/xml/sar

. m/QIBM/ProdData/WebCommerce/xm]/sar

It is recommended that you use the DTDs provided. If you customize a database
schema, however, you must either edit the DTD provided to match your changes
or create a new DTD.

DTD Generate

we— lava com.ibmwea DTDGenerator GenerateCTD

¥

-infile s
— -dhname § — -dbuser § — -dbpwd 5—— -outfile s <|: —*

-tablenames s—

L

+4

L'Km|Tah|EDEEC SJ |~-cuslr:|rni1er EJ |~-5t:hemar1arme sJ |~-pru:upﬂ|e EJ

Notes:

1. The above diagram is intended primarily as a reference for the command
parameters. The command file or script provided for this command and listed
under [“Using the Loader package commands and scripts” on page 249 acts as a
wrapper to the actual Java command and accepts the same parameters;
therefore, it is recommended that you use the command file or script rather
than invoke the Java command directly.

2. Filenames specified as parameters for this command can be preceded by
relative or absolute paths.

Chapter 27. Overview of loading store data 239

240

Parameter values:

-dbname
Name of the target database

-dbuser
Name of the user connecting to the database

-dbpwd
Password for the user connecting to the database

-outfile
Name of the output DTD file (preferably with a .dtd extension)

-infile Name of an input file containing a database-table name on each line

-tablenames
Names of tables separated by commas and enclosed in quotation marks

(")

-xmltabledesc
File path of the XML schema file to be created. This parameter is optional.

-customizer
Name of the customizer property file to be used. This parameter is
optional. The customizer property file sets the way that the DTD Generator
functions. DB2ConnectionCustomizer.properties is the default file. The
customizer property file can be specified as shown in the following
example:

-customizer d:\WebSphere\CommerceServer\prop\dtdgen.properties

If this file exists in a directory specified in the classpath
system-environment variable, the same file can be specified as shown in
the following example:

-customizer dtdgen

For more information on creating and specifying a new customizer
property file, refer to the most recent version of the IBM WebSphere
Commerce 5.4 Catalog Manager User’s Guide.

-schemaname
Name of the target database schema. This parameter is optional.

If this parameter is not specified when running the command, the
command looks for a name=value pair in the customizer property file that
specifies the value of SchemaName. If this pair is present in the property
file, the command uses the value specified. If neither a command-line nor a
property-file specification for this parameter exists, the command defaults
to the name of the database user.

-propfile
Properties file where help text, default values, and field-description
information can be stored for a Web editor form description. This
parameter is optional.

Store Developer’s Guide

400

GENWCSDTD

re— GENWCSOTD *
— DATABASE(S) —— SCHEMA (S) — INSTROOT(S) — PASSWD(5) — QUTFILE(S) —*

L d
'

{leILE{s}
TABMNAMES(S) - I—:w:I-ﬂLT;ﬂxErl:}ESAE:{S}J I—CUSTOMIZEH{S}J

Note: Filenames specified as parameters for this command can be preceded by
relative or absolute paths.

Parameter values:

DATABASE
Name of the target database, as displayed in the relational database
directory

SCHEMA
Name of the target database schema; this is the same as the instance name

INSTROOT
Full name of the WebSphere Commerce instance root path, such as
/QIBM/UserData/WebCommerce/instances/instance_name

PASSWD
Password for the WebSphere Commerce instance

OUTFILE
Name of the output DTD file (preferably with a .dtd extension)

INFILE
Name of an input file containing a database-table name on each line

TABNAMES
Names of tables separated by commas and enclosed in quotation marks

(//H)

XMLTABDESC
File path of the XML schema file to be created. This parameter is optional.

CUSTOMIZER
Name of the customizer property file to be used. This parameter is
optional. The customizer property file sets the way that the DTD Generator
functions. The default file is ISeries GENWCSDTD_Customizer.properties.
The customizer property file can be specified as shown in the following
example:
CUSTOMIZER(/wc/prop/dtdgen.properties)

If this file exists in a directory specified in the classpath
system-environment variable, the same file can be specified as shown in
the following example:

CUSTOMIZER(dtdgen)

Chapter 27. Overview of loading store data 241

For more information on creating and specifying a new customizer
property file, refer to the most recent version of the IBM WebSphere
Commerce 5.4 Catalog Manager User’s Guide.

For detailed information on setting up and customizing the files used to run this
command, refer to the most recent version of the IBM WebSphere Commerce 5.4
Catalog Manager User’s Guide.

Extract command
This command extracts a selected subset of data from a database in the form of an
XML file.

To extract data from a database using the Extractor, you must specify the data that

you want to extract using an extraction-filter file. The extraction filter that you use
depends on the type of data that you want to extract.

Extract
»— java com.ibmowea. MassExtract Extract -
— -filter 5 —— -outfile s —— -cdbname s -dbuser s —— -dbpwd 5 ———»

[

L-cuslumizer E J |— -schamaname s J

Notes:

1. The above diagram is intended primarily as a reference for the command
parameters. The command file or script provided for this command and listed
under [“Using the Loader package commands and scripts” on page 249 acts as a
wrapper to the actual Java command and accepts the same parameters;
therefore, it is recommended that you use the command file or script rather
than invoke the Java command directly.

2. Filenames specified as parameters for this command can be preceded by
relative or absolute paths.

Parameter values:

-filter Name of the extraction-filter file

-outfile
Name of the output XML file where the extracted data will be stored

-dbname
Name of the database from which data is being extracted

-dbuser
Database user name for the database from which data is being extracted
-dbpwd
Password associated with the user name for the database from which data
is being extracted

-customizer
Name of the customizer property file to be used. The customizer property
file sets the way that the Extractor functions.

242 Store Developer’s Guide

DB2ConnectionCustomizer.properties is the default file. The customizer
property file can be specified as shown in the following example:

-customizer d:\WebSphere\CommerceServer\prop\extract.properties

If this file exists in a directory specified in the classpath
system-environment variable, the same file can be specified as shown in
the following example:

-customizer extract

For more information on creating and specifying a new customizer
property file, refer to the most recent version of the IBM WebSphere
Commerce 5.4 Catalog Manager User’s Guide.

-schemaname
Name of the database schema from which data is being extracted. This
parameter is optional.

If this parameter is not specified when running the command, the
command looks for a name=value pair in the customizer property file that
specifies the value of SchemaName. If this pair is present in the property
file, the command uses the value specified. If neither a command-line nor a
property-file specification for this parameter exists, the command defaults
to the schema name of the table in the database.

400

EXTWCSDTA

w— EXTWCSDTA
»—FILTER(s) — OUTFILE(s) — DATABASE(s) — SCHEMA(s}

L

L

— [NSTROOT (s} — PASSWD(s) |_ J
CUSTOMIZER(S)

Note: Filenames specified as parameters for this command can be preceded by
relative or absolute paths.

Parameter values:

FILTER
Name of the extraction-filter file

OUTFILE
Name of the output XML file where the extracted data will be stored

DATABASE
Name of the database from which data is being extracted as displayed in
the relational database directory

SCHEMA
Name of the database schema from which data is being extracted; this is
the same as the instance name

INSTROOT
Full name of the WebSphere Commerce instance root path, such as
/QIBM/UserData/WebCommerce/instances/instance_name

Chapter 27. Overview of loading store data 243

244

PASSWD
Password for the WebSphere Commerce instance

CUSTOMIZER
Name of the customizer property file to be used. The customizer property
file sets the way that the Extractor functions. The default file is
ISeries_EXTWCSDTA_Customizer.properties. The customizer property file
can be specified as shown in the following example:

CUSTOMIZER(/wc/prop/extract.properties)

If this file exists in a directory specified in the classpath
system-environment variable, the same file can be specified as shown in
the following example:

CUSTOMIZER(extract)

For more information on creating and specifying a new customizer
property file, refer to the most recent version of the IBM WebSphere
Commerce 5.4 Catalog Manager User’s Guide.

For more information on this command, refer to the most recent version of the IBM
WebSphere Commerce 5.4 Catalog Manager User’s Guide.

Text Transform command

This command transforms data between a character-delimited variable format and
an XML format.

Text Transform

»—java com.ibmowea. ransformer TextTransformer >

»—cparameter txty »a

Note: The above diagram is intended primarily as a reference for the command
parameters. The command file or script provided for this command and
listed under [“Using the Loader package commands and scripts” on page 249
acts as a wrapper to the actual Java command and accepts the same
parameters; therefore, it is recommended that you use the command file or
script rather than invoke the Java command directly.

Parameter values:
The following values are specified and separated by commas in a parameter file
(parameter.txt):

input file
Name of the file to be transformed

schema file
Name of the XML schema file to be used in the transformation

output file
Name of the output file in which the transformed data will be stored

Store Developer’s Guide

transformation method
Method to be used in adding the data to the output file. Specify Create if a
new file is to be created; or specify Append if the output data is to be
appended to an existing data file.

This file is also referred to as a "manifest” or "command” file. It can contain
multiple lines of four parameters each.

400

TRNWCSTXT

w— THNWCSTXT

L

I

»—PARAMFILE{ <parameter.txt »)

Parameter values:
The following values are specified and separated by commas in a parameter file
(parameter.txt):
input file
Name of the file to be transformed

schema file
Name of the XML schema file to be used in the transformation

output file
Name of the output file in which the transformed data will be stored

transformation method
Method to be used in adding the data to the output file. Specify Create if a
new file is to be created; or specify Append if the output data is to be
appended to an existing data file.

Note: This file is also referred to as a "manifest” or "command” file.

For more information on this command, refer to the most recent version of the IBM
WebSphere Commerce 5.4 Catalog Manager User’s Guide.

XML Transform command
This command converts an XML file into an alternate XML format.

XML Transform

»—java com.ibm.wea. XMLTransformer XMLTranstormer >

—-infile 5 — -transform s — -outfile s |_
v -param s]—|

I

Notes:

1. The above diagram is intended primarily as a reference for the command
parameters. The command file or script provided for this command and listed

Chapter 27. Overview of loading store data 245

246

under [“Using the Loader package commands and scripts” on page 249 acts as a
wrapper to the actual Java command and accepts the same parameters;
therefore, it is recommended that you use the command file or script rather
than invoke the Java command directly.

2. Filenames specified as parameters for this command can be preceded by
relative or absolute paths.

Parameter values:

-infile Name of the file to be transformed

-transform
Name of the transform XSL mapping rule file

-outfile
Name of the output XML file in which the transformed data will be stored

-param
Parameter to be passed to the XSL mapping rule file. This parameter is
optional. This parameter can be specified multiple times to pass multiple
name=value pairs.

400

TRNWCSXML

w— THNWCSXML »
— INFILE{s} — THANSFORM(s) — INSTROOT(s)— OUTFILE(s) L

PAHAM(El}J

Note: Filenames specified as parameters for this command can be preceded by
relative or absolute paths.

Parameter values:

INFILE
Name of the file to be transformed

TRANSFORM
Name of the transform XSL mapping rule file

INSTROOT
Full name of the WebSphere Commerce instance root path, such as
/QIBM/UserData/WebCommerce/instances/instance_name

OUTFILE
Name of the output XML file in which the transformed data will be stored

PARAM
Parameter to be passed to the XSL mapping rule file. This parameter is
optional. The string can contain multiple values to pass multiple
name=value pairs.

For more information on this command, refer to the most recent version of the IBM
WebSphere Commerce 5.4 Catalog Manager User’s Guide.

Store Developer’s Guide

Tools related to the Loader package commands

Text Transformation tool

The Text Transformation tool helps you to process a transformation of data
between a character-delimited variable format and an XML format using the Text
Transform command. The following views are provided:

1. The Text Schema Edit View allows you to create and modify the XML schema
file to be used in a transformation.

2. The Transformation Command Edit View allows you to create and modify the
actual commands used to run the transformation process.

3. The Transformation Command Process View allows you to launch the
transformation process.

For more information on this tool, refer to the most recent version of the IBM
WebSphere Commerce 5.4 Catalog Manager User’s Guide.

XSL editor

The XML Transformer uses XSL to define the rules for transforming an XML file
into another XML file. The mapping function in the XSL editor gives you a visual
interface with which you can establish the association from an element in a source
DTD to an element in a target DTD. Given two DTDs, you can develop XSL rules
that determine how an XML file that conforms to the first (source) DTD is
transformed into a file that conforms to the second (target) DTD.

For more information on this tool, refer to the most recent version of the IBM
WebSphere Commerce 5.4 Catalog Manager User’s Guide.

Web editor

The Web editor enables you to create, delete, and change your catalog data
through a Web browser. Data-entry forms for viewing and updating information
are central to the Web editor. In the simplest case, the forms correspond to tables in
the WebSphere Commerce Server database. The Store Developer can choose to use
the default forms provided or to customize the available forms.

For more information on this tool, refer to the most recent version of the IBM
WebSphere Commerce 5.4 Catalog Manager User’s Guide.

Chapter 27. Overview of loading store data 247

Loading store data

This section provides examples of how to load store data into your WebSphere
Commerce Server database using the Loader package command-line utilities.

Notes:

1. The examples in this section are performed in a Windows NT environment. For
information on running these commands in other environments, refer to the
most recent version of the IBM WebSphere Commerce 5.4 Catalog Manager User’s
Guide.

2. Although the Loader package command-line utilities support DB2, DB2 for
iSeries, and Oracle databases, only the commands and options for DB2 are
included in the following examples. If you are using a database other than
DB2, make sure that you modify your customizer properties files as described
in the most recent version of the IBM WebSphere Commerce 5.4 Catalog Manager
User’s Guide.

Refer to|Chapter 28, “Loading WebSphere Commerce database asset groups” onl
page 259 and [“Loading database asset groups” on page 267 for information on the
loading process for WebSphere Commerce database asset groups.

248 Store Developer’s Guide

Using the Loader package commands and scripts

To run the Loader package commands, use the scripts or commands provided in
the following WebSphere Commerce directory:

o NI ¢rive:\WebSphere\CommerceServer\bin
drive:\Program Files\WebSphere\CommerceServer\bin

SIS

/usr/WebSphere/CommerceServer/bin

/opt/WebSphere/CommerceServer/bin

QWEBCOMM native library

The scripts and commands are as follows:

dtdgen.cmmd
idresgen.cmd
massload.cmd
massextract.cmd
txttransform.cmd
xmltransform.cmd

AIX
dtdgen.sh
idresgen.sh
massload.sh
massextract.sh
txttransform.sh
xmltransform.sh

L 400]
GENWCSDTD
RESWCSID
LODWCSDTA
EXTWCSDTA
TRNWCSTXT
TRNWCSXML

DTD Generate command
ID Resolve command
Load command

Extract command

Text Transform command
XML Transform command

DTD Generate shell script
ID Resolve shell script
Load shell script

Extract shell script

Text Transform shell script
XML Transform shell script

DTD Generate command
ID Resolve command
Load command

Extract command

Text Transform command
XML Transform command

Chapter 27. Overview of loading store data 249

250

Examples of resolving identifiers

The examples of identifier resolution described in this section use the store-asset
files from the ToolTech sample store.

Because this example is based on loading new data into the WebSphere Commerce
Server database, we will use the load method.

If you later need to modify certain elements within the XML document, you can
do so using the update method. The update method should run faster than the
load method because no new identifiers are allocated with the update method.
With the update method, a database query is performed to locate the identifier and
an error is reported if the identifier is not found. Refer to the discussion beginning
on page for more information on how this process works.

If your input XML file contains elements that already exist in the database as well
as elements that do not, use the mixed method. With the mixed method, a
database lookup is done first and an identifier is assigned to the element if the
record is not found. When in doubt, use the the mixed method. Although the load
and update methods provide faster performance than the mixed method, the
resolved XML file produced by using the mixed method has a greater likelihood of
loading without errors.

For a discussion of how the ID Resolver works, refer to[“Methods for the ID|
[Resolve command” on page 231}

Resolving identifiers in XML files with internal aliases

To resolve identifiers using internal aliases before loading the data into your
WebSphere Commerce Server database, run the ID Resolve command as shown in
the following example.

Note: This example assumes that WebSphere Commerce is located on drive c. If
WebSphere Commerce is located on a different drive on your system,
substitute the letter of that drive for ¢ in the examples shown in the
remainder of this chapter.

1. Create a working directory.
For this example, create the following directory:
c:\WebSphere\CommerceServer\runtime\test

Note: If you do not use c:\WebSphere\CommerceServer\runtime\test as your
working directory, substitute the name and path of the working directory
that you do use for c:\WebSphere\CommerceServer\runtime\test in the
examples shown in the remainder of this chapter.

2. Make sure that your input XML file as well as any referenced DTD files are in
a location where the ID Resolver can find them.

For this example, do the following:
a. From the Windows command prompt, enter the following command:

copy c:\WebSphere\CommerceServer\samplestores\ToolTech\ToolTech
_en_US_fr_FR.sar c:\WebSphere\CommerceServer\runtime\test

This copies the ToolTech_ en_US_fr_FR.sar file into c:\WebSphere\
CommerceServer\runtime\test.

b. From a Windows command prompt, enter the following command:
cd c:\WebSphere\CommerceServer\runtime\test

Store Developer’s Guide

c. Do one of the following:

* If you have Java installed, enter the following command from the
Windows command prompt:

Jjar -xvf ToolTech_en_US_fr_FR.sar

* Use any up-to-date unzipper product (such as WinZip or PKZIP) to
extract the entire contents of c:\WebSphere\CommerceServer\
samplestores\ToolTech\ToolTech_en_US_fr_FR.sar into c:\
WebSphere\CommerceServer\runtime\test.

This extracts the ToolTech sample store XML files into c:\
WebSphere\CommerceServer\runtime\test\data.

d. From the Windows command prompt, enter the following command:

copy c:\WebSphere\CommerceServer\xml\sar\store.dtd
c:\WebSphere\CommerceServer\runtime\test\data

This copies the store.dtd file into c:\WebSphere\CommerceServer\
runtime\test\data.

e. From the Windows command prompt, enter the following command:

copy c:\WebSphere\CommerceServer\xml\sar\DBLoadMacros.dtd
c:\WebSphere\CommerceServer\runtime\test\data

This copies the DBLoadMacros.dtd file into c:\WebSphere\CommerceServer\
runtime\test\data.

f. From the Windows command prompt, enter the following command:

copy c:\WebSphere\CommerceServer\xml\sar\fulfillment.dtd
c:\WebSphere\CommerceServer\runtime\test\data

This copies the fulfillment.dtd file into c:\WebSphere\CommerceServer\
runtime\test\data.

3. Make sure that the WebSphere Commerce schema is loaded into your database
along with the necessary bootstrap data by creating an appropriate WebSphere
Commerce Server database instance.

Note: For information on creating an instance, refer to the WebSphere
Commerce installation guide for your operating system.

The WebSphere Commerce Server database instance that this example uses is
called mall. Primary and foreign keys will be obtained from the KEYS and
SUBKEYS tables of this database; therefore, the ID Resolver will be unable to
resolve the identifiers if the database is not loaded properly.

4. In the store.xml file, you will find the following element:

<storeent
STOREENT_ID="@storeent_id_1"
MEMBER_ID="&MEMBER_ID;"
TYPE="S"
IDENTIFIER="ToolTech"
SETCURR="USD"

/>

This element of store.xml maps to the storeeent table in the database; and its
STOREENT_ID MEMBER_ID, TYPE, IDENTIFIER, and SETCURR attributes
map to columns in that table. The @storeent_id_1 specification is an internal
alias for the value of the STOREENT _ID attribute; and &MEMBER_ID; is an
entity parameter. The value of the entity &MEMBER_ID; has to be substituted
before it can be loaded using the Loader. The value of &MEMBER_ID; is

Chapter 27. Overview of loading store data 251

defined in the DBLoadMacros.dtd macro file; and the value is substituted from
that file. When the ID Resolver encounters @storeent_id_1, it looks in its cache
of primary tables to see if storeent is present. Because it is a primary table,
storeeent is present. The ID Resolver fetches the counter for that table,
increments it, and replaces the internal alias with the result. All other such
entries in the store.xml file are processed in the same way.

5. Make sure that your path includes the directory containing the appropriate ID
Resolve command or script as listed in [‘Using the Loader package commands|
[and scripts” on page 249

For this example, enter the following command from a Windows command
prompt:
cd c:\WebSphere\CommerceServer\bin

where c: \WebSphere\CommerceServer\bin should be changed to the name of the
directory containing the ID Resolve command idresgen.cmd if it is not located
in c:\WebSphere\CommerceServer\bin on your system.

6. From the Windows command prompt, enter the following command:

idresgen -dbname mall -dbuser dbZ2admin -dbpwd db2admin

-infile c:\WebSphere\CommerceServer\runtime\test\data\store.xml
-outfile c:\WebSphere\CommerceServer\runtime\test\data\storel.xml
-method Toad

where

* mall should be changed to the name of the target database if you are not
using mall

e the first db2admin should be changed to the name of the user connecting to
the database if you are not using db2admin

* the second db2admin should be changed to the password of the user
connecting to the database if you are not using db2admin

The first output XML fragment in storel.xml looks like this:

<storeent
STOREENT_ID="10001"
MEMBER_ID="-2001"
TYPE="S"
IDENTIFIER="ToolTech"
SETCCURR="USD"

/>

Note: This is an example. Your output file may contain different values.

The second XML fragment in storel.xml looks like this:

<store
STORE_ID="10001"
DIRECTORY="ToolTech"
FFMCENTER_ID=""
LANGUAGE_ID="-1"
STOREGRP_ID="-1"
ALLOCATIONGOODFOR="43200"
BOPMPADFACTOR="0"
DEFAULTBOOFFSET="2592000"
FFMCSELECTIONFLAGS="0"
MAXBOOFFSET="7776000"
REJECTEDORDEXPIRY="259200"
RTNFFMCTR_ID=""
PRICEREFFLAGS="0"
STORETYPE="B2B"

/>

252 Store Developer’s Guide

Note: This is an example. Your output file may contain different values.

The FFMCENTER_ID and the RTNFFMCTR_ID attributes were not resolved.

Instead of internal-alias @ffmcenter_id_1 being resolved, it was replaced with

empty quotation marks ("”). This is an error. You will not be able to load the

data properly using the Loader due to a foreign-key constraint violation. The
ID Resolver could not resolve this internal alias because the FFMCENTER table

had not been processed before using an alias referencing it. To solve this
problem, choose one of the following three options:

* Option 1:
a. Enter the following command to run the ID Resolver against the
fulfillment.xml file (where the FEMCENTER table is defined):

idresgen -dbname mall -dbuser dbZ2admin -dbpwd dbZadmin

-infile c:\WebSphere\CommerceServer\runtime\test\data\fulfillment.xml
-outfile c:\WebSphere\CommerceServer\runtime\test\data\fulfillmentl.xml

-method load

where

— mall should be changed to the name of the target database if you are

not using mall

— the first db2admin should be changed to the name of the user
connecting to the database if you are not using db2admin

— the second db2admin should be changed to the password of the user

connecting to the database if you are not using db2admin

The resolved element in the fulfillmentl.xml output file looks like this:

<fulfillment-asset>

<ffmcenter
FFMCENTER_ID="10001"
MEMBER_ID="-2001"
NAME="Too1Tech Home"
DEFAULTSHIPOFFSET="0"
MARKFORDELETE="0"

/>

</fulfillment-asset>

Note: This is an example. Your output file may contain different values.

b. Get the FFMCENTER_ID key from the resulting output file
(fulfillmentl.xml) and substitute that key for all occurrences of

@ffmcenter_id_1 in your working copy of store.xml in c:\WebSphere\

CommerceServer\runtime\test\data.
c. Enter the following command:

idresgen -dbname mall -dbuser dbZ2admin -dbpwd db2admin

-infile c:\WebSphere\CommerceServer\runtime\test\data\store.xml
-outfile c:\WebSphere\CommerceServer\runtime\test\data\storel.xml
-method Toad

where

— mall should be changed to the name of the target database if you are

not using mall

— the first db2admin should be changed to the name of the user
connecting to the database if you are not using db2admin

— the second db2admin should be changed to the password of the user

connecting to the database if you are not using db2admin

Chapter 27. Overview of loading store data

253

254

Store Developer’s Guide

The fully resolved elements in the storel.xml

<st
<st

ore-asset>

oreent
STOREENT_ID="10151"
MEMBER_ID="-2001"
TYPE="S"
IDENTIFIER="ToolTech"
SETCCURR="USD"

/>

<st

/>

<ve

/>

<di

/>

<di

/>

<di

/>

<in

ore
STORE_ID="10151"
DIRECTORY="ToolTech"
FFMCENTER_ID="10001"
LANGUAGE_TD="-1"
STOREGRP_ID="-1"
ALLOCATIONGOODFOR="43200"
BOPMPADFACTOR="0"
DEFAULTBOOFFSET="2592000"
FFMCSELECTIONFLAGS="0"
MAXBOOFFSET="7776000"
REJECTEDORDEXPIRY="259200"
RTNFFMCTR_ID="10001"
PRICEREFFLAGS="0"
STORETYPE="B2B"

ndor

VENDOR_ID="10001"
STOREENT_ID="10151"
VENDORNAME="Tooltech Vendor"
MARKFORDELETE="0"

spentrel
AUCTIONSTATE="0"
CATENTRY_ID="0"
CATENTTYPE_ID="ProductBean"
DEVICEFMT_ID="-1"
DISPENTREL_ID="10001"
MBRGRP_ID="0"
PAGENAME="CatalogProductDisplay.jsp"
STOREENT_ID="10151"
RANK="0"

spentrel
AUCTIONSTATE="0"

CATENTRY_ID="0"
CATENTTYPE_ID="ItemBean"
DEVICEFMT _ID="-1"
DISPENTREL_ID="10002"
MBRGRP_ID="0"
PAGENAME="CatalogItemDisplay.jsp"
STOREENT_ID="10151"

RANK="0"

spcgprel
CATGROUP_ID="0"
DEVICEFMT_ID="-1"
DISPCGPREL_ID="10001"
MBRGRP_ID="0"
PAGENAME="CatalogCategories.jsp"
STOREENT_ID="10151"
RANK="0"

vadjcode
ADJUSTCODE="PCNT"
INVADJCODE_ID="10001"
MARKFORDELETE="0"
STOREENT_ID="10151"

output file look like this:

/>
<invadjcode
ADJUSTCODE="SPLG"
INVADJCODE_ID="10002"
MARKFORDELETE="0"
STOREENT_ID="10151"

/>
<invadjcode
ADJUSTCODE="DISC"
INVADJCODE_ID="10003"
MARKFORDELETE="0"
STOREENT_ID="10151"
/>
<rtnreason
REASONTYPE="C"
RTNREASON_ID="10001"
STOREENT_ID="10151"
MARKFORDELETE="0"
CODE="WPR"
/>
<rtnreason
REASONTYPE="B"
RTNREASON_ID="10002"
STOREENT_ID="10151"
MARKFORDELETE="0"
CODE="DEF"
/>
<rtnreason
REASONTYPE="M"
RTNREASON_ID="10003"
STOREENT_ID="10151"
MARKFORDELETE="0"
CODE="ERR"
/>
<rtnreason
REASONTYPE="M"
RTNREASON_ID="10004"
STOREENT_ID="10151"
MARKFORDELETE="0"
CODE="WPS"
/>

</store-asset>

Note: This is an example. Your output file may contain different values.
¢ Option 2:
a. Merge the fulfillment.xml and store.xml files by adding any content
that is unique in fulfilIment.xml (including the reference to
fulfillment.dtd) to store.xml, making sure that the ffmcenter element
shown below precedes the store element.
<ffmcenter
FFMCENTER_ID="@ffmcenter_id_1"
MEMBER_ID="&MEMBER_ID;"
NAME="ToolTech Home"
DEFAULTBOOFFSET="0"
MARKFORDELETE="0"

/>

b. Run the ID Resolver against the merged file.

* Option 3: Load the store-assets data group using the process described in
[“Loading database asset groups” on page 267}

Chapter 27. Overview of loading store data 255

256

Specifying a properties file with the ID Resolver

You can modify the way in which the ID Resolver resolves identifiers by using the
-propfile parameter. The default properties file is IdResolveKeys.properties; but
you can modify it or specify your own file when invoking the ID Resolve
command.

. IdResolveKeys.properties is located in the

following directory:

- drive:\WebSphere\CommerceServer\ properties

- drive:\Program Files\ WebSphere\CommerceServer\properties
- /usr/WebSphere/CommerceServer/properties

- /opt/WebSphere/CommerceServer/properties

If you do not place this file in the current directory when you run the ID
Resolver, you can place it in a directory defined in the classpath environment
variable. You can also specify the full path to this file.

. M T, change IdResolveKeys.properties, copy it from the
/QIBM/ProdData/WebCommerce/properties directory, save it to the /instroot/xml
directory, then make any necessary changes to the new file.

Note: The above directory is in the classpath used by the RESWCSID command.
The property-file specification takes precedence over the use of internal aliases.

Here is a sample XML fragment from the store.xml file:

<store
STORE_ID="@storeent_id_1"
DIRECTORY="ToolTech"
FFMCENTER_ID="@ffmcenter_id_1"
LANGUAGE_ID="&en_US;"
STOREGRP_ID="-1"
ALLOCATIONGOODFOR="43200"
BOPMPADFACTORr="0"
DEFAULTBOOFFSET="2592000"
FFMCSELECTIONFLAGS="0"
MAXBOOFFSET="7776000"
REJECTEDORDEXPIRY="259200"
RTNFFMCTR_ID="@ffmcenter_id_1"
PRICEREFFLAGS="0"
STORETYPE="B2B"

/>

If you run the ID Resolver with the -propfile specified as c:\WebSphere\
CommerceServer\runtime\test\data\myPropFile and the specified file,
myPropFile.properties, contains the following entries:

NAMEDELIMETER=@

SELECTDELIMETER=:
FFMCENTER=GFFMCENTER_IDGMEMBER ID:10051 -2001

the ID Resolver queries the database for the FEFMCENTER table with a where
clause of 10051 and -2001 when the store element is processed. The index that is
returned for this value is then used to resolve the identifier for FFMCENTER_ID.

For more information on using this command, refer to|“ID Resolve command” on|

Store Developer’s Guide

Example of loading data

When you have resolved the identifiers in the XML file if necessary, you are ready
to load the data into the WebSphere Commerce Server database.

Note: If you have properly resolved the identifiers in your XML data, your source
XML file should not contain any of the following;:

* words preceded by an at (@) symbol
* words preceded by an ampersand (&) symbol
* identifiers with empty quotation marks ("")

The presence of any of these is an indication that your XML file is not ready
to be loaded.

The example of loading data described in this section uses the fulfillmentl.xm]
file that was resolved in [“Examples of resolving identifiers” on page 250

To load data into your WebSphere Commerce Server database, run the Load
command as shown in the following example:

1. Create a working directory.

For this example, use the directory called c:\WebSphere\CommerceServer\
runtime\test\data that you created in [“Examples of resolving identifiers” on|

2. Make sure that your input XML file is in a location where the Loader can find
it.

For this example, make sure that the fulfillmentl.xml output file that you
created in [“Examples of resolving identifiers” on page 250|is in c:\WebSphere\
CommerceServer\runtime\test\data.

3. Make sure that you back up your WebSphere Commerce Server database so
that you can restore the database from the backup if an unrecoverable error
occurs.

Note: See the backup and recovery documentation provided with your
database product for information on backing up your database.

4. Make sure that your path includes the directory containing the appropriate
Load command or script as listed in [“Using the Loader package commands and|
[scripts” on page 249}

For this example, enter the following command from a Windows command
prompt:
cd c:\WebSphere\CommerceServer\bin

where c:\WebSphere\CommerceServer\bin should be changed to the name of the
directory containing the Load command massToad.cmd if it is not located in
c:\WebSphere\CommerceServer\bin on your system.

5. Run the Load command against your resolved XML file to load your data into
the target database.
For this example, enter the following command from a Windows command
prompt:
massload -dbname mall -dbuser dbZadmin -dbpwd dbZadmin -infile

c:\WebSphere\CommerceServer\runtime\test\data\fulfillmentl.xml
-method sqlimport -commitcount 50

Chapter 27. Overview of loading store data 257

258

where

* mall should be changed to the name of the target database if you are not
using mall

e the first db2admin should be changed to the name of the user connecting to
the database if you are not using db2admin

* the second db2admin should be changed to the password of the user
connecting to the database if you are not using db2admin

Even though there are less than 50 elements to be loaded, this example specifies a
value of 50 for -commitcount. This is for performance reasons. By default, the
commit count is 1. Using this default causes a commit operation for each record
written to the database. Setting the number to 50 in the above example ensures
that database 1/O occurs only once if loading is successful and that nothing is
written to the database if errors occur. If you have a large amount of data to load,
however, it is recommended that you do not set the commit-count value as large as
the number of elements for the following reasons:

* A high commit-count value causes high memory consumption.

¢ When the commit-count value is smaller than the number of elements, at least
some data is written to the database. Depending on the value of -maxerror, a
smaller value for -commitcount ensures that some data is written to the database
before the maximum number of errors is exceeded and the tool terminates. The
default value for -maxerror is 1.

The default for the -noprimary option is error so that the tool reports errors and
terminates when primary keys are missing.

Because these examples do not load the store assets in the order used by Store
Services and described in[“Database asset loading sequence” on page 259} the
storel.xml file created in [“Examples of resolving identifiers” on page 250| may
violate the integrity constraints of some tables. If you tried to load storel.xm]
without modification using the load method, a constraint violation would cause
the database to enter pending state. For simplicity, therefore, this example of using
the Load command is based on the resolved version of the fulfillment.xml file,
whose only foreign key is that of the MEMBER_ID defined in the sample store.
This example loads the resolved fulfillmentl.xml file that was output in
[“Examples of resolving identifiers” on page 250|and uses the SQL import method.
When you are not sure that the contents of your XML file are clean, use the SQL
import method as shown in this example with the -commitcount and -maxerror
parameters set appropriately so that any database constraint violations are reported
without altering the database and jeopardizing database integrity.

When you run this command, a trace text file (trace.txt) is created in the
execution subdirectory (c:\ WebSphere\ CommerceServer\bin in the above example) by
default. If your WCALoggerConfig.xml logging configuration file has been altered to
place trace.txt in a different location, go to that location to inspect the file. For
more information on customizing WCALoggerConfig.xml, refer to the most recent
version of the IBM WebSphere Commerce 5.4 Catalog Manager User’s Guide.

The trace.txt file contains a listing of the actions performed by the command and
their results. If you use the SQL import method with the command as shown in
the above example, the end of trace.txt will contain an entry indicating the
number of records committed.

For more information on using this command, refer to [“Load command” on pagel

Store Developer’s Guide

Chapter 28. Loading WebSphere Commerce database asset
groups

If you do not want to create all the database assets and package them into a store
archive file before publication, then you can load database asset groups using the
WebSphere Commerce Loader package.

The first part of this chapter explains WebSphere Commerce database asset groups,
and how a grouping is determined. The second part describes the loading process
for these database asset groups into the WebSphere Commerce database. Before
reading this section, you should thoroughly review the information in
[“Overview of loading store data” on page 221} which helps you understand what
you need to know to load database asset groups with the Loader package.

Database asset groups

Database assets are divided into groups to simplify the creation and loading
processes. These database asset groups comprise a logically related set of tables. The
order in which a database asset group is organized is important to loading, since
before loading the relationship between the data, the data must exist.

To load the entire set of database assets for a store, you need to follow the
[“Database asset loading sequence”} To load a single group of database assets, you
need to ensure that this group is logically complete. For example, when publishing
a store archive, you can choose to omit the catalog database assets, which can then
be published at a later time. In this case, any database assets dependent on the
catalog (inventory, price lists, and some shipping and taxation data) also remain
unpublished. To publish the omitted data, ensure that the catalog database assets
are logically complete: that is, the base items, catalog entries, attributes, and so on
must be provided. You must also publish the dependent database assets which
must be logically complete amongst itself. In other words, each SKU must have the
appropriate inventory, price, shipping, and taxes defined. In this case, related
catalog data which is logically complete is collectively called the catalog database
asset group.

WebSphere Commerce database assets described in the previous chapters of this
guide can be arranged into groups. A group is a logically complete set of data,
which can be loaded individually. Each database asset group consists of WebSphere
Commerce database tables and has external dependencies as described in
|Appendix E, “Database asset groups” on page 317} The table list is based on the
WebSphere Commerce sample stores, however the list is applicable to any generic
store. Remember that the list of tables for each database asset group is not
exhaustive, but provided as a general guideline. You may need to include or
exclude some tables depending on your store’s specific needs.

Database asset loading sequence

There is a certain order to follow to successfully load database asset groups. Each
group is considered structurally complete and independent from the other
database asset groups. There are, however, foreign key relationships within a
database asset group. Such relationships (with the data from other groups) are
called the external dependencies of a database asset group.

© Copyright IBM Corp. 2002 259

The external dependencies of a database asset group must be met before loading
the group into the WebSphere Commerce database. Any group defined as the
external dependency of a given database asset group must be loaded first. You can
find the list of external dependencies and related tables in [‘Database asset groups|
[dependencies” on page 317}

Note: A WebSphere Commerce store requires a store owner. You can use the

default organization, available as the default owner. To load this
group, create a new organization instead of using the default one.

Load the database asset groups in the following order:

1. Database asset groups dependent on bootstrap data only.
a. Load the organization database assets first.

2. Database asset group dependent on fulfillment owner.

a. Fulfillment database assets. Except for the organization database asset
group, several other database asset groups have a direct or indirect external
dependency on the data defined in this group.

3. Database asset groups dependent on store owner organization.

a. Access control database assets are dependent on the store owner
organization (ORGENTITY_ID). None of the other database asset groups have
a dependency on the data defined in this group, which means that access
control database assets can be loaded at any time. However, the access
control owner must be the same as the store owner.

b. Store database assets are dependent on the store owner organization
(ORGENTITY_ID).

The store can refer to a fulfillment center. The store owner organization can

also be the fulfillment center’s owner organization.

4. Database asset groups dependent on the store database assets. The following
groups can be loaded in any order:

Campaign database assets.
Command database assets.
Currency database assets.

a0 o

Policy database assets.
e. Shipping database assets.
f. Tax database assets.

5. Other database asset groups.

a. Catalog database assets are dependent on the shipping and tax database
asset groups.

b. Store default database assets have external dependencies on the shipping
database asset group. If shipping database assets do not exist, then this
group does not need to be populated.

c. Contract database assets are dependent on the organization assets. The
contract database assets are not loaded directly. Refer to
fcontract assets” on page 275 for more information. You should load the
contract assets after the other database asset groups.

Refer to[Appendix E, “Database asset groups” on page 317] to see the contents of
the database asset groups as formed by the WebSphere Commerce sample stores.

260 Store Developer’s Guide

Loading a store

To assist you in loading database assets, sample packages are available from the
WebSphere Commerce Web site. These packages are based on the WebSphere
Commerce sample stores and contain the files found in the steps below. You can
download the packages from:

. http://www.ibm.com/software/webservers/commerce/wc_be/
downloads.html

. http://www.ibm.com/software/webservers/commerce/wc_pe/
downloads.html

To load XML data for an entire store into the WebSphere Commerce database, do
the following:

1. Review the following information:

a. [Appendix B, “Creating your data” on page 305

b. [Appendix E, “Database asset groups” on page 317} as you need to know

which WebSphere Commerce database asset files and database tables are
affected.

c. |Chapter 27, “Overview of loading store data” on page 221} which provides

the background information for the Loader package.

2. Plan your loading process for a complete set of store database assets. Whether
you want to load a single database asset group as instructed in

[database asset groups” on page 267|or an entire store, the basic process

remains the same. In the next steps, you will use or create the following files
for your loading process:

a.

one or more database asset files for each group. When you load the
complete store, you need all of your created database asset files. For
example, you will need a database asset.xml file (as in campaign.xml,
catalog.xml or currency.xml), and separate, locale specific database
asset.xml files for locale your store supports. Examples of such files are
shipped with the WebSphere Commerce sample stores in the following
directory:

o ENEEN ¢ ive:\WebSphere\CommerceServer\samplestores\
sample store name\data\

o AU drive:\Program

Files\WebSphere\CommerceServer\samplestores\
sample store name\data\

. /usr/WebSphere/CommerceServer/samplestores/
sample store name/data/

. /opt/WebSphere/CommerceServer/samplestores/
sample store name/data/

. /QIBM/ProdData/webCommerce/samp1estores/
sample store name/data/

Note that not all database asset groups require locale specific information.

a new XML file which consolidates all the XML database asset files for
your store, contains the XML entity references, and contains the root
element for the entire store. This is referred to as the main database asset
group XML file. You can find this file in the sample package, called
store-data-assets.xml.

Chapter 28. Loading WebSphere Commerce database asset groups 261

262

3.

Store Developer’s Guide

c. anew DTD file which defines all the data types required by the XML files
from a database asset group, referred to as the main database asset group
DTD file. You can find this file in the sample package, called
store-data-assets.dtd.

d. asecond DTD file which defines the external dependencies. You may need
to include this file in the main database asset group DTD file. You can find
this file in the sample package, called ForeignKeys.dtd.

e. a third DTD file containing the definition of all WebSphere Commerce
tables. The wcs.dtd file already exists in WebSphere Commerce, located in
the following directory:

. drive:\WebSphere\CommerceServer\schema\xml\

o BNEIIM 5rive:\Program Files\WebSphere\CommerceServer\schema\xm1\
. /usr/WebSphere/CommerceServer/schema/xml/

. /opt/WebSphere/CommerceServer/schema/xml/

. [EECIM /(18M/ProdData/WebCommerce/schema/xm1/

You may need to include this file in the main database asset group DTD file.
If you have not customized the WebSphere Commerce schema, then you
can use this file without modification.

Create the database asset XML files as instructed in previous chapters from
this guide. If you completed the tasks in the asset chapters, then these XML
files already exist. The database asset files should not contain any DTD
declarations or page directives at the start of the file since this may cause
conflicts when the files are concatenated. Also, for simplicity you may decide
not to create any root elements. The only file that must have a root element is
the main database asset group XML file.

Note: If you have database asset files for more than one language, then each
file must begin with <?xml encoding = locale specific encoding>. For
example, English database asset files should specify <?xml encoding =
"UTF-8"?>, but French files should specify <?xml encoding =
"1S0-8859-1"?>.

Create the main database asset group XML file for the entire set of store data.
This file contains reference entities to include various database asset XML files
for your store. By using external reference entities, you can concatenate the
XML files to simplify the ID Resolve command and the load process. Also,
internal aliases used within each XML file can be external to another XML
database asset file within a group or across other groups when loading more
than one group at a time. An XML parser would substitute the contents of the
file referenced by the external reference entity in place of the external
reference.

Using the following example for loading the entire set of store data as your
guide, you can create your database asset group file based on this extract:

<?xml version="1.0"?>

<IDOCTYPE import SYSTEM "all-store-assets.dtd">
<import>

<!Fulfillment data group -->

&fulfillment.xml;

<!-- Store data group -->
&store.xml;
&en_US_store.xml;
&fr_FR_store.xml;

<!-- Tax data group -->
&tax.xml;

&en _US_tax.xml;
&fr_FR_tax.xml;
&taxfulfill.xml;

<!-- Shipping data group -->
&shipping.xml;
&en_US_shipping.xml;
&fr_FR_shipping.xml;
&shipfulfill.xml;

<!-- Catalog data group -->
&catalog.xml;
&en_US_catalog.xml;
&fr_FR_catalog.xml;
&storecatalog.xml;
&storefulfill.xml;
&offering.xml;
&store-catalog-tax.xml;
&store-catalog-shipping.xml;

<!-- Currency data group -->
¤cy.xml;
&en_US_currency.xml;
&fr_FR_currency.xml;

<!-- Campaign data group -->
&campaign.xml;
&en_US_campaign.xml;

&fr FR_campaign.xml;

<!-- Business policy data group -->
&businesspolicy.xml;
&en_US_businesspolicy.xml;
&fr_FR_businesspolicy.xml;

<!-- Access control data group -->
&accesscontrol.xml;
&en_US_accesscontrol.xml;
&fr_FR_accesscontrol.xml;

<!-- Other data groups -->
&command.xml;
&store-default.xml;
</import>

where

* import is the root element of the XML document. The root element has
already been defined in the wcs.dtd file, provided with WebSphere
Commerce, and includes the definitions for all the WebSphere Commerce
database tables. However, if you customized the WebSphere Commerce
schema, you may need to use a different root element. You can generate a
new DTD file that reflects the customized schema or you can update the
existing wcs.dtd file.

e all-store-assets.dtd refers to the name of the main database asset group
DTD file you will create in the next step.

* the commented text separates the different database asset groups for your
store.

* &database asset.xml; is an XML entity reference to the database asset XML
file. The path and location are defined in the database asset group DTD file.
This name will change to match the database assets files already created for
each group.

Chapter 28. Loading WebSphere Commerce database asset groups 263

e &locale_database asset.xml; is needed for each language your store
supports. If your store is unilingual, then only reference one file. If your
store supports more than one language, then you require a reference for
each language. The above extract assumes that your store supports the
English and French languages.

5. Create a main database asset group DTD file that defines the above entities
and the other DTD files required by the database assets.

Using the following example for the entire set of store database assets as your
guide, you can create your main database asset group DTD file:

<IENTITY % wcs.dtd SYSTEM "absolute path for WebSphere Commerce wcs.dtd file">
%swes.dtd;

<IENTITY % NonStoreForeignKeys.dtd SYSTEM "NonStoreForeignKeys.dtd">
%NonStoreForeignKeys.dtd;

<IENTITY fulfillment.xml SYSTEM "data/fulfillment.xml">

<IENTITY en_US_fulfillment.xml SYSTEM "data/en_US/fulfillment.xml">
<IENTITY fr_FR_fulfillment.xml SYSTEM "data/fr_FR/fulfillment.xml">

<IENTITY store.xml SYSTEM "data/store.xml">
<IENTITY en_US_store.xml SYSTEM "data/en_US/store.xml">
<IENTITY fr_FR_store.xml SYSTEM "data/fr_FR/store.xml">

<IENTITY tax.xml SYSTEM "data/tax.xml">

<IENTITY en_US_tax.xml SYSTEM "data/en_US/tax.xml">
<IENTITY fr_FR_tax.xml SYSTEM "data/fr_FR/tax.xml">
<IENTITY taxfulfill.xml SYSTEM "data/taxfulfill.xml">

<IENTITY shipping.xml SYSTEM "data/shipping.xm1">

<IENTITY en_US_shipping.xml SYSTEM "data/en_US/shipping.xm1">
<IENTITY fr_FR_shipping.xml SYSTEM "data/fr_FR/shipping.xm1">
<IENTITY shipfulfill.xml SYSTEM "data/shipfulfill.xml">

<IENTITY catalog.xml SYSTEM "data/catalog.xml">

<IENTITY en_US_catalog.xml SYSTEM "data/en_US/catalog.xml">

<IENTITY fr_FR_catalog.xml SYSTEM "data/fr_FR/catalog.xml">

<IENTITY store-catalog.xml SYSTEM "data/store-catalog.xml">

<!IENTITY storefulfill.xml SYSTEM "data/storefulfill.xml">

<IENTITY offering.xml SYSTEM "data/offering.xml">

<IENTITY store-catalog-tax.xml SYSTEM "data/store-catalog-tax.xml">

<IENTITY store-catalog-shipping.xml SYSTEM "data/store-catalog-shipping.xm1">

<IENTITY currency.xml SYSTEM "data/currency.xml">
<IENTITY en_US_currency.xml SYSTEM "data/en_US/currency.xml">
<IENTITY fr_FR _currency.xml SYSTEM "data/fr_FR/currency.xml">

<IENTITY campaign.xml SYSTEM "data/campaign.xml">
<IENTITY en_US_campaign.xml SYSTEM "data/en_US/campaign.xml">
<IENTITY fr_FR_campaign.xml SYSTEM "data/fr_FR/campaign.xml">

<IENTITY businesspolicy.xml SYSTEM "data/businesspolicy.xml">

<IENTITY en_US businesspolicy.xml SYSTEM "data/en_US/businesspolicy.xml">
<IENTITY fr_FR_businesspolicy.xml SYSTEM "data/fr_FR/businesspolicy.xm1">
<IENTITY accesscontrol.xml SYSTEM "data/accesscontrol.xml">

<IENTITY en_US_accesscontrol.xml SYSTEM "data/en_US/accesscontrol.xml">
<IENTITY fr_FR _accesscontrol.xml SYSTEM "data/fr_FR/accesscontrol.xml">

<IENTITY command.xml SYSTEM "data/command.xml">
<IENTITY store-defaults.xml SYSTEM "data/store-defaults.xml">

where

264 Store Developer’s Guide

* wcs.dtd refers to the DTD file containing data defined outside its database
asset group. This file, provided with WebSphere Commerce, also defines the
root element used in the database asset group XML file.

* NonStoreForeignKeys.dtd refers to the DTD file which defines elements
other than the root element. This file contains all the XML entity reference
declarations and definitions for the external dependencies outside the
database asset group. As such, the XML files have references to foreign key
values that are not created as part of the database asset group and must
already be loaded into the database before this group.

Note: Ensure that the path is correctly identified. In this example, the file is
in the same directory as the main database asset group DTD file.

e store.xml, en_US_store.xml, and fr_FR_store.xml are the external reference
entities used in the main database asset group XML file, assuming your
store supports English and French. To use the reference, follow the entity
reference convention: &alias_name;.

* database asset.xml refers to the name of the XML files from which the
database assets are loaded. This name will change to match the database
assets files already created for each group. Note that the locale-specific XML
files are under the following directory:

- dr‘ive:\WebSphere\CommerceServer\samp]estores\
sample store name\data\locale\

— @S drive:\Program

Files\WebSphere\CommerceServer\samplestores\
sample store name\data\locale\

/usr/WebSphere/CommerceServer/samplestores/
sample store name/data/locale/

- /opt/WebSphere/CommerceServer/samplestores/
sample store name/data/locale/

- /QIBM/ProdData/WebCommerce/samp1estores/
sample store name/data/locale/

* the path_database asset.xml files are needed for each language your store
supports, located under the above directories. If your store is unilingual,
then you would only reference one file. If your store supports more than
one language, then you would require a locale-specific file for each
language. The above extract assumes that your store supports the English
and French languages.

Each database asset group requires information defined outside its domain or
its set of data, as each group may have external dependencies. You can
provide this data in a DTD file. For example, the store database asset group
has the following external dependencies:

bootstrap.LANGUAGE.LANGUAGE_ID, bootstrap.MEMBER.MEMBER_ID,
bootstrap.SETCURR.SETCURR_ID, fulfillment.FFMCENTER.FFMCENTER_ID

When loading a database asset group or the entire set of store assets, the
external dependencies must be defined from the WebSphere Commerce
database. To use this data, follow the corresponding XML entity reference. For
example, to use the data defined by the ffmcenter_id entity, you would write
&ffmcenter_id; in your XML file. Using the following example for store
database assets as your guide, you can create your DTD file based on this
extract, called ForeignKeys.dtd:

Chapter 28. Loading WebSphere Commerce database asset groups 265

<IENTITY en_US "-1">
<IENTITY fr_FR "-2">
<IENTITY de DE "-3">
<IENTITY it_IT "-4">
<IENTITY es_ES "-5">
<IENTITY pt_BR "-6">
<IENTITY zh_CN "-7">
<IENTITY zh_TW "-8">
<IENTITY ko_KR "-9">
<IENTITY ja_JP "-10">
<IENTITY MEMBER_ID "-2000">
<IENTITY ffmcenter_id "10001">

where

* MEMBER_ID is the internal reference number that identifies the owner of the
store.

» ffmcenter is the reference number for your store’s fulfillment center. Since
your store can use more than one fulfillment center, more than one can be
defined in the NonStoreForeignKeys.dtd file.

* locale is the WebSphere Commerce reference number for each locale
(identified by country or region and language). The values are located in
the LANGUAGE database table.

Note: If you are splitting an existing store archive into database asset groups,
ensure that all references to, as an example, alias @ffmcenter_id are
replaced with the corresponding entity reference: &ffmcenter_id;.

7. Once all the data files have been created, run the IDResolve command against
the main database asset group XML file to resolve the data as described in
[Resolve command” on page 225|

8. Run the Load command on the resolved data file as described in
[command” on page 232| To verify your loading process, refer to the log files:

. > DB2 idresgen.db2.1og and massload.db2.Tog

. m idresgen.oracle.log and massload.oracle.log
The log files are located under:
o« SN irive:\WebSphere\CommerceServer\logs\
. drive:\Program Files\WebSphere\CommerceServer\logs\
. /usr/WebSphere/CommerceServer/logs/
. /opt/WebSphere/CommerceServer/logs/
- 400 | /QIBM/ProdData/WebCommerce/1ogs/
9. Run the AccountImport command as described in

[business account assets” on page 274

10. If aii licable, publish contracts as described in [“Publishing contract assets” on|
page 275

11. Complete the tasks in[“Publishing store front assets and store configuration|
[files by copying to the WebSphere Commerce Server” on page 278

266 Store Developer’s Guide

Loading database asset groups

To assist you in loading database assets, sample packages are available from the
WebSphere Commerce Web site. These packages are based on the WebSphere
Commerce sample stores and contain the files found in the steps below. You can
download the packages from:

. http://www.ibm.com/software/webservers/commerce/wc_be/
downloads.html

. http://www.ibm.com/software/webservers/commerce/wc_pe/
downloads.html

To load XML data for a single database asset group into the WebSphere Commerce
database, do the following;:

1. Review the following information:

a. [Appendix B, “Creating your data” on page 305

b. [Appendix E, “Database asset groups” on page 317} as you need to know
which WebSphere Commerce asset files and database tables are affected.

c. |Chapter 27, “Overview of loading store data” on page 221} which provides
the background information for the Loader package.

2. Plan your loading process and decide which database asset group you you
will load. Whether vou want to load the entire set of store database assets as
instructed in [“Loading a store” on page 261|or a single database asset group,
the basic process remains the same. In the next steps, you will use or create
the following files for your loading process:

a. one or more database asset files, depending on which group you choose.
For example, if you load the store database group assets, you will need a
store.xml file and a separate store.xml file for each locale your store
supports. Examples of such files are shipped with the WebSphere
Commerce sample stores in the following directory:

o EBNEMN ¢rive:\WebSphere\CommerceServer\samplestores\
sample store name\data

o AU drive:\Program

Files\WebSphere\CommerceServer\samplestores\
sample store name\data

. /usr/WebSphere/CommerceServer/samplestores/
sample store name/data

. /opt/WebSphere/CommerceServer/samplestores/
sample store name/data

. /QIBM/ProdData/NebCommerce/samp1estores/
sample store name/data

Note that not all database asset groups require locale specific information.
b. a new XML file which consolidates all the XML database asset files,
contains the XML entity references, and contains the root element for the
database assets. This is referred to as the main database asset group XML file.
You can find this file in the sample package, called store-all-assets.xml.

c. anew DTD file which defines all the data types required by the XML files
from a database asset group, referred to as the main database asset group
DTD file. You can find this file in the sample package, called
store-all-assets.dtd.

Chapter 28. Loading WebSphere Commerce database asset groups 267

268

3.

Store Developer’s Guide

d. asecond DTD file which defines the external dependencies. You may need
to include this file in the main database asset group DTD file. You can find
this file in the sample package, called Nondatabase asset
groupForeignKeys.dtd.

e. a third DTD file containing the definition of all the WebSphere Commerce
tables. The wcs.dtd file already exists in WebSphere Commerce, located in
the following directory:

. drive:\WebSphere\CommerceServer\schema\xml\

. drive:\Program Files\WebSphere\CommerceServer\schema\xm1\
. /usr/WebSphere/CommerceServer/schema/xm1/

. /opt/WebSphere/CommerceServer/schema/xml/

. /QIBM/ProdData/WebCommerce/schema/xm1/

You may need to include this file in the main database asset group DTD file.
If you have not customized the WebSphere Commerce schema, then you
can use this file without modification.

Create the database asset XML files for the group you will load as instructed
in previous chapters from this guide. If you completed the tasks in the asset
chapters, then these XML files already exist. The database asset files should
not contain any DTD declaration or page directives at the start of the file since
this may cause conflicts when the files are concatenated. Also, for simplicity
you may decide not to create any root elements. The only file that must have
a root element is the main database asset group XML file.

Note: If you have database asset files for more than one language, then each
file must begin with <?xm1 encoding = locale specific encoding>. For
example, English database asset files should specify <?xml encoding =
"UTF-8"?>, but French files should specify <?xml encoding =
"1S0-8859-1"7>.

Create the main database asset group XML file for each group you want to
load. This file contains reference entities to include various XML files in one
database asset group, or more. By using external reference entities, you can
concatenate the XML files to simplify the ID Resolve command and the load
process. Also, the internal aliases used within each XML file can be external to
another XML data file within a group or across groups when loading more
than one group at a time. An XML parser would substitute the contents of the
file referenced by the external reference entity in place of the external
reference.

Using the following example for loading the single store database asset group
as your guide, you can create your database asset group XML file based on
this extract:

<?xml version="1.0"?>

<IDOCTYPE import SYSTEM "store-assets.dtd">

<import>

&store.xml;

&en_US_store.xml;

&fr_FR_store.xml;

</import>

where

* import is the root element of the XML document. The root element has
already been defined in the wcs.dtd file, provided with WebSphere
Commerce, and includes the definitions for all the WebSphere Commerce

database tables. However, if you customized the WebSphere Commerce
schema, you may need to use a different root element. You can generate a
new DTD file that reflects the customized schema or you can update the
wes.dtd file.

e store-assets.dtd refers to the name of the main database asset group DTD
file you will create in the next step.

* &store.xml; is an XML entity reference to the database asset group XML
file. The path and location are defined in the database asset group DTD file.
This name will change to match the assets files already created for each
group.

* locale_store.xml; is needed for each language your store supports. If your
store is unilingual, then only reference one file. If your store supports more
than one language, then you would require a reference for each language.
The above extract assumes that your store supports the English and French
languages.

Create a main database asset group DTD file that defines the above entities
and the other DTD files required by the group.

Using the following example for loading the single store database asset group
as your guide, you can create your main database asset group DTD file for
any data group:

<IENTITY % wcs.dtd SYSTEM "absolute path for WebSphere Commerce wcs.dtd file">
swes.dtd;

<IENTITY % NonStoreForeignKeys.dtd SYSTEM "NonStoreForeignKeys.dtd">
%NonStoreForeignKeys.dtd;

<IENTITY store.xml SYSTEM "store.xml">

<IENTITY en_US store.xml SYSTEM "en US/store.xml">

<IENTITY fr_FR_store.xml SYSTEM "fr_FR/store.xml">

where

* wcs.dtd refers to the DTD file containing data defined outside its database
asset group. This file, provided with WebSphere Commerce, also resolves
and defines the root element used in the database asset group XML file.

* NonStoreForeignKeys.dtd refers to the DTD file which defines elements
other than the root element. This file contains all the XML entity reference
declarations and definitions for the external dependencies outside the
database asset group. As such, the XML files have references to foreign key
values that are not created as part of the database asset group and must
already be loaded into the database before this group.

Note: Ensure that the path is correctly identified. In this example, the file is
in the same directory as the database asset group DTD file.

* store.xml, en_US_store.xml, and fr_FR_store.xml are the external reference
entities used in the database asset group XML file. To use the reference,
follow the entity reference convention: &alias_name;.

 store.xml refers to the data file for the group from which the database
assets are loaded. This name will change to match the database assets files
already created for each group. Note that the locale-specific XML files are
under the following directory:

— SN (/rive:\WebSphere\CommerceServer\samplestores\
sample store name\data\locale\

Chapter 28. Loading WebSphere Commerce database asset groups 269

— @Y drive:\Program

Files\WebSphere\CommerceServer\samplestores\
sample store name\data\locale\

- /usr/WebSphere/CommerceServer/samplestores/
sample store name/data/locale/

- /opt/WebSphere/CommerceServer/samplestores/
sample store name/data/locale/

- m/QIBM/ProdData/WebCommerce/samp]estores/
sample store name/data/locale/

* the path_store.xml are needed for each language your store supports,
located under the above directories. If your store is unilingual, then you
would only reference one file. If your store supports more than one
language, then you would require a locale-specific file for each language.
The above extract assumes your store supports the English and French
languages.

6. Each database asset group requires information defined outside its domain or
its set of data, as each group may have external dependencies. You can
provide this data in a DTD file. For example, the store database asset group
has the following external dependencies:

bootstrap.LANGUAGE.LANGUAGE_ID, bootstrap.MEMBER.MEMBER_ID,
bootstrap.SETCURR.SETCURR_ID, fulfillment.FFMCENTER.FFMCENTER_ID

When loading a data group or the entire set of store data, the following
external dependencies must be defined from the WebSphere Commerce
database. To use this data, follow the corresponding XML entity reference. For
example, to use the data defined by the ffmcenter_id entity, you would write
&ffmcenter_id; in your XML file. Using the following example for the store
database asset group as your guide, you can create your DTD file based on
this extract, called Nondatabase asset groupForeignKeys.dtd:

<!ENTITY en_US "-1">

<IENTITY fr_FR "-2">

<!IENTITY de_DE "-3">

<IENTITY it_IT "-4">

<IENTITY es_ES "-5">

<!ENTITY pt_BR "-6">

<IENTITY zh_CN "-7">

<UENTITY zh_TW "-8">

<IENTITY ko_KR "-9">

<IENTITY ja_JP "-10">

<IENTITY MEMBER_ID "-2000">

<IENTITY ffmcenter_id "10001">

where
* MEMBER_ID is the internal reference number that identifies the owner of the
store.

» ffmcenter is the reference number for your store’s fulfillment center. Since
your store can use more than one fulfillment center, more than one can be
defined in the NonStoreForeignKeys.dtd file.

e locale is the WebSphere Commerce reference number for each locale
(identified by country or region and language). The values are located in
the LANGUAGE database table.

270 Store Developer’s Guide

10.

11.

Note: If you are splitting an existing store archive into database asset groups,
ensure that all references to, as an example, alias @ffmcenter_id are
replaced with the corresponding entity reference: &ffmcenter_id;.

Once all the data files have been created, run the IDResolve command against
the database asset group XML file to resolve the data as described in @
[Resolve command” on page 225|

Run the Load command on the resolved data file as described in
fcommand” on page 232} To verify your loading process, refer to the log files:

- D52 idresgen.db2.7og and massload.db2.Tog

. m idresgen.oracle.log and massload.oracle.log

The log files are located under:

o« SN irive:\WebSphere\CommerceServer\logs\

. drive:\Program Files\WebSphere\CommerceServer\logs\

. /usr/WebSphere/CommerceServer/logs/

. /opt/WebSphere/CommerceServer/logs/

. /QIBM/Pr‘odData/WebCommerce/]ogs/

Run the Accountlmport command as described in

[business account assets” on page 274}

If applicable, publish contracts as described in [“Publishing contract assets” on|
Complete the tasks in [“Publishing store front assets and store configuration|
[files by copying to the WebSphere Commerce Server” on page 278

Chapter 28. Loading WebSphere Commerce database asset groups 271

272 Store Developer’s Guide

Chapter 29. Publishing business accounts and contracts

Some of the store database assets, (business accounts, and contracts) cannot be
loaded by the Loader package. You can publish these database assets by using
Store Services or from the command line, as part of the publishing a complete
store option, described in [Chapter 26, “Publishing a complete store” on page 209}
or you can publish business accounts and contracts using their corresponding
commands. These commands are as follows:

* AccountImport— Creates business accounts from the businessaccount.xml file in
the store archive.

* ContractlmportApprovedVersion—Creates a contract from the contract.xml file.
If the contract is in active state, the command creates and deploys the contract.
Even if the contract.xml file contains more than one contract the command
only needs to be called once.

¢ ProductSetPublish — Synchronizes the product set data in the product set
database tables with the catalog before business accounts and contracts are
created. Store Services and the command line publish call the ProductSetPublish
command which then calls the Accountlmport and
ContractImportApprovedVersion commands.

Note: For more information on these commands, see the WebSphere Commerce
online help.

Business account assets are included in the form of XML files in some of the
sample store archives provided with WebSphere Commerce. However, it is
recommended that you create business account assets using the tools provided,
rather than creating XML files for these assets. For more information on creating
these assets using the tools provided, see the WebSphere Commerce online help.
The instructions for publishing business accounts are included in the following
sections, in case you choose to publish the corresponding XML files provided with
the sample store archives, or create your own.

Note: If you are not using Store Services to publish the business accounts or
contracts, the store and catalog assets must be published before you can
publish business accounts, and contracts. In particular you need the store
and catalog identifiers, as well as the ID for the organization that owns the
store, as well as the IDs for any buyer organizations associated with the
contract. If the terms and conditions of your contract do not specify a
particular catalog, you do not need to publish a catalog before publishing a
business account or contract.

If you publish these assets using Store Services or the command line
publish, ensure that you select the catalog option, or that your store already
has a published catalog. If you publish these assets using the corresponding
commands, ensure that you have already loaded the assets listed above into
the database.

© Copyright IBM Corp. 2002 273

Publishing business accounts and contracts using Store Services or
the command line

You can publish business accounts and contracts using Store Services, or using the
publish utility from the command line. In order to publish the business accounts
and contracts using either Store Services or the command line, the assets must be
packaged in the store archive format. For more information on packaging the store
front assets as a store archive, see|Part 6, “Packaging your store” on page 199|

Using Store Services or the command line publish, you can choose to publish all
types of assets in the store archive (including store front assets, store data assets
and resource bundles) or you can choose to publish just one type of the assets. For
detailed step-by-step instructions on publishing assets using Store Services or the
command line, see the WebSphere Commerce online help.

Publishing business accounts and contracts using commands

274

If you prefer not to package your assets as a store archive, you can still publish the
business accounts and contracts using the corresponding commands:

* AccountImport— Creates business accounts from the businessaccount.xml file in
the store archive.

* ContractlmportApprovedVersion— Imports an approved or active contract into
WebSphere Commerce Server from an XML file. Before importing the contract,
the command ensures that the contract being imported contains the necessary
terms and conditions and is a valid contract.

* ProductSetPublish — Synchronizes the product set data in the product set
database tables with the catalog before business accounts and contracts are
created. Store Services and the command line publish call the ProductSetPublish
command which then calls the AccountImport and
ContractImportApprovedVersion commands.

Publishing business account assets
To publish the business account assets, do the following:

1. Using the Administration Console, update the view registry, or restart the
WebSphere Commerce instance. For more information see the WebSphere
Commerce online help.

2. Copy businessaccount.xml to the following directory:
. drive:\WebSphere\CommerceSer‘ver\xm]\tr‘ading
. drive:\Pr‘ogram Files\WebSphere\CommerceServer\xml\trading
. /usr/WebSphere/CommereServer/xml/trading
. /opt/WebSphere/CommerceServer/xm]/trading
. /opt/WebSphere/CommerceServer/xml/trading

. /QIBM/UserData/WebCommerce/1'nstances/instancename/xm]/trading
3. Open businessaccount.xml and make the following changes:

* Replace all occurrences of &STORE_IDENTIFIER; with the store identifier for
your store.

* Replace all occurrences of &MEMBER_IDENTIFIER; with the member
distinguished name for your store.

Store Developer’s Guide

o

Note: If you are working with a businessaccount.xml that is part of a store
archive created using Store Services this step will already be completed.

Save and close the file.
Open the Administration Console. Login as an administrator.
In a browser, type the following:

* https://hostname:8000/webapp/wcs/stores/serviet/
AccountImport?fileName=businessaccount.xml
&URL=URL to redirct to upon successful completion

Note: For more information on the command syntax and parameters, see the

WebSphere Commerce online help.

Publishing contract assets
To publish the contract assets, do the following:

1.

Copy contract.xml to the following directory:

Note: This path is configurable. The following path is the default.

. drive:\WebSphere\CommerceServer\xm]\trading

. drive:\Program Files\WebSphere\CommerceServer\xml\trading
. /usr/WebSphere/CommerceServer/xml/trading

. /opt/WebSphere/CommerceServer/xm]/trading

. /opt/WebSphere/CommerceServer/xml/trading

. /QIBM/UserData/WebCommerce/1'nstances/instancename/xm]/trading
Open contract.xml and make the following changes:

* Replace all occurrences of &STORE_IDENTIFIER; with the store identifier for
your store.

* Replace all occurrences of &MEMBER_IDENTIFIER; with the member
distinguished name for your store.

Save and close the file.
Open the Administration Console. Login as an administrator.
In a browser, type the following:

* https://hostname:portnumber/webapp/wcs/tools/serviet/
ContractImportApprovedVersion?fileName=contract.xml
&targetStoreld=store_id&URL=ContractDisplay

If your store contains multiple contract.xml files (for example, locale specific
contract files), repeat steps 1 through 5 for each contract.xml file.

Chapter 29. Publishing business accounts and contracts 275

276 Store Developer’s Guide

Chapter 30. Publishing store front assets and store
configuration files

Publishing the store front assets, the HTML and JSP files, properties files or
resource bundles, and images and graphics that create your store pages, is part of
the process of creating a functional store. You can publish your store front assets
using Store Services or from the command line, as part of the publishing a
complete store option, described in [Chapter 26, “Publishing a complete store” on|
or you can publish the store front assets by simply copying the assets to
a specified location on the WebSphere Commerce Server.

If you publish JSP files contained in the sample stores ToolTech and
NewFashion, and you plan to configure the store to use the collaboration features,
you will also need to publish the store configuration files that are part of that store
archive. Both stores contain the following store configuration files:

* tools_properties.zip

* tools_xml.zip

e runtime_xml.zip

If you publish a complete store using Store Services or from the command line
(selecting all publishing options), the store configuration files are also published.
However, if you choose to publish the store front assets by copying them to the

WebSphere Commerce Server, you will also have to copy the store configuration
files to the WebSphere Commerce Server.

Publishing store front assets and store configuration files using Store
Services or the command line

You can publish the store front assets and store configuration files using Store
Services, or using the publish utility from the command line.

Note: In order to publish the store configuration files using Store Services or the
publish utility, you must publish all store assets, including Web assets and
data assets. You cannot choose to publish just the store configuration files.

In order to publish the store front assets and store configuration files using either
Store Services or the command line, the store front assets and store configuration
files must be packaged in the store archive format. For more information on
packaging the store front assets as a store archive, see|Part 6, “Packaging your]
lstore” on page 199

Using Store Services or the command line publish, you can choose to publish all
types of assets in the store archive (including store front assets, store data assets
and resource bundles) or you can choose to publish just one type of the assets. For
detailed step-by-step instructions on publishing assets using Store Services or the
command line, see the WebSphere Commerce online help.

© Copyright IBM Corp. 2002 277

Publishing store front assets and store configuration files by copying
to the WebSphere Commerce Server

278

If you prefer not to package your assets as a store archive, you can still publish the
store front assets by copying them directly to the WebSphere Commerce Server.
The Web assets (HTML, JSP files, images, and graphics) must be copied to the Web
application document root. The resource bundles or properties files must be copied
to the application’s properties path.

To copy the store front assets and the store configuration files to the WebSphere
Commerce Server, do the following;:

1. Copy the JSP files, HTML, include files, images and graphics to the store
directory (storedir) in the Stores Web application document root:

drive:\WebSphere\AppServer\installedApps\
WC_Enterprise_App_instancename.ear\wcstores.war\storedir

BIPITM rive:\Program Files\WebSphere\AppServer\
installedApps\WC _Enterprise App_instancename.ear\wcstores.war\storedir

/usr/WebSphere/AppServer/installedApps/
WC_Enterprise App_instancename.ear/wcstores.war/storedir

/opt/WebSphere/AppServer/installedApps/
WC_Enterprise App_instancename.ear/wcstores.war/storedir

/opt/WebSphere/AppServer/installedApps/
WC_Enterprise App_instancename.ear/wcstores.war/storedir

/QIBM/UserData/WebASAdv4/WASinstancename/installedApps/
WC_Enterprise App_instancename.ear/wcstores.war/storedir

where storedir is the value of the DIRECTORY column from the STORE
database table. If this value does not exist, you can add a value by doing the
following: select directory from store=add relative directory name for
publishing file assets

2. Copy the resource bundles and properties files to the application properties
path:

Store Developer’s Guide

drive:\WebSphere\AppServer\installedApps\
WC_Enterprise App_instancename.ear\wcstores.war\WEB-
INF\classes\storedir

drive:\Program Files\WebSphere\AppServer\
installedApps\WC _Enterprise App_instancename.ear\wcstores.war\WEB-
INF\classes\storedir

/usr/WebSphere/AppServer/installedApps/
WC_Enterprise App_instancename.ear/wcstores.war/WEB-
INF/classes/storedir

/opt/WebSphere/AppServer/installedApps/
WC_Enterprise App_instancename.ear/wcstores.war/WEB-
INF/classes/storedir

/opt/WebSphere/AppServer/installedApps/
WC_Enterprise App_instancename.ear/wcstores.war/WEB-
INF/classes/storedir

/QIBM/UserData/WebASAdv4/WASinstancename/installedApps/
WC_Enterprise App_instancename.ear/wcstores.war/WEB-
INF/classes/storedir

. Copy the store configuration files to the locations defined in the WebSphere
Commerce Configuration File, instance_name.xml. This file is located in the
following directory:

drive:\WebSphere\CommerceServer\instances\instancename\xm1

drive:\Program Files\WebSphere\CommerceServer\instances
\'instancename\xml

/usr/WebSphere/CommerceServer/instances/
instancename/xml

/opt/WebSphere/CommerceServer/instances/
instancename/xml

/opt/WebSphere/CommerceServer/instances/
instancename/xml

/QIBM/UserData/WebCommerce/instances/
instancename/xml

The store configuration files are copied to the following locations:

runtime_xml.zip is copied to the StoresXMLPath. This path is defined in the
WebSphere Commerce Configuration File, instance_name.xml.

tools_properties.zip is copied to the ToolsStoresPropertiesPath. This path is
defined in the WebSphere Commerce Configuration File, instance_name.xml.

tools_xml.zip is copied to the ToolsStoresXMLPath. This path is defined in
the WebSphere Commerce Configuration File, instance_name.xml.

. Launch the store using one of the following methods:

Use the StoreCatalogDisplay command:

StoreCatalogDisplay?storeld=storeld&catalogld=catalogld&langld=langId

where

— storeld is the value located in the STORE_ID column of the STORE
database table,

— catalogld is the value located in the CATALOG_ID column of the
CATALOG database table,

— Tangld is the value of the LANGUAGE_ID column of the LANGUAGE

database table for a given locale. For a list of default WebSphere
Commerce values, refer to the LANGUAGE database table.

e If your store is based on a WebSphere Commerce sample store, assemble the

store’s URL by editing the parameters.jsp file under:

- drive:\WebSphere\AppServer\installedApps\
WC_Enterprise_App_instancename.ear\
wcstores.war\storedir

- drive:\Program Files\WebSphere\AppServer\installedApps\
WC_Enterprise_App_instancename.ear\
wcstores.war\storedir

- /usr/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instancename.ear/
wcstores.war/storedir

Chapter 30. Publishing store front assets and store configuration files 279

280

Store Developer’s Guide

- /opt/WebSphere/AppServer/installedApps

/WC_Enterprise_App_instancename.ear/
wcstores.war/storedir

/QIBM/ProdData/WebCommerce/AppServer/
installedApps/WC_Enterprise App_instancename.ear/
wcstores.war/storedir

Add the correct values for the following parameters:

hostname is the fully-qualified name of your WebSphere Commerce
machine,

storeld is the value located in the STORE_ID column of the STORE
database table,

catalogld is the value located in the CATALOG_ID column of the
CATALOG database table,

langlId is the value of the LANGUAGE_ID column of the LANGUAGE
database table for a given locale. For a list of default WebSphere
Commerce values, refer to the LANGUAGE database table.

To view your store in a browser, launch the following URL: http://host
name /webapp/wcs/stores/servlet/storedir/index.jsp

Part 8. Adding WebSphere Commerce features to your store

In order to add certain features available in WebSphere Commerce to your store,
you need to complete some manual steps. The chapters in this section discuss
adding the following features to your store:

+ |Chapter 31, “Adding customer care to your store” on page 283|

* |Chapter 32, “Adding e-Marketing Spots to your store” on page 295|

© Copyright IBM Corp. 2002 281

282 Store Developer’s Guide

Chapter 31. Adding customer care to your store

The customer care feature in WebSphere Commerce provides real-time customer
service support by way of a synchronous text interface using the Lotus®
Sametime " server. When customer care is enabled in your store, a customer may
enter the store, click on a link and connect to a Customer Service Representative
(CSR). Then, the customer can can communicate with a CSR over the Internet.

Note: This chapter covers how to enable customer care in your store. However,
before you can enable customer care in your store, you must first install a
Sametime server and configure it to work with WebSphere Commerce. For
more information, see the WebSphere Commerce Additional Software guide. You
must also register CSRs in the Administration Console to enable them to use
customer care. For more information on this task, as well as the overall
concepts of customer care and how a CSR uses customer care, see the
WebSphere Commerce online help.

Note:

You can enable customer care in your store quickly and easily using Store Services,

if you create your store based on one of the following sample stores:
ToolTech and NewFashion. After publishing the store using Store Services, select
the Stores view, then select the store, then select Configure and enable the
customer care features. For more detailed instructions, see the WebSphere
Commerce online help.

However, if you do not create your store using a sample store as a base, you will
have to do some work to enable customer care in your store. The remainder of this
chapter discusses the concepts and steps necessary to enable customer care in a
store not based on one of the samples.

Note: The sample stores ToolTech and NewFashion demonstrate how
customer care should be implemented, and provide the code that you can
use in your store to enable customer care. This chapter will refer to
examples from these two stores to illustrate how to enable customer care in
your store. Ensure that you have the latest version of the sample stores
(available from the WebSphere Commerce product Web site) when reading
this chapter.

Understanding customer care in a store

When a customer selects the customer care link, for example, Live Chat with
Customer Assistant, in a store enabled with customer care, an applet containing
the chat window is launched. This applet is run within a hidden frameset that
does not interfere with the look and feel of the site. When the applet is launched it
connects to a Lotus Sametime server.

© Copyright IBM Corp. 2002 283

284

The following diagram illustrates the composition of the frameset.

frameset (in index.jsp)

frame name = main (visible) contains site content

content panel

sidebar - jsp “include”
on every content panel

page content

link to request help

starts chat monitoring page
frame name = sametime (hidden) session information push
contains shopper side applet l
e s | — to Sametime
| Il server .
| shopper side applet 1 "

frame name = jsframe (hidden)
used for confirmation of applet initialization
r

frame name = StUpdate (hidden)
refreshes the customer's name or ID
r

The frameset includes four frames:

* Main: The frame that contains the content for your store, including the files that
create the store pages, that is the files that create the body of the page, the
header and footer files, and the sidebar files. The contents of this frame are
visible to the visitors to your store. Note that the main frame contains the
following connections to the Sametime frame: a link to customer care and
monitoring information. Monitoring information is discussed in more detail in
[“Monitoring customers using customer care” on page 286)

* Sametime: The frame that contains the customer care applet. This frame is not
visible to your store’s visitors. However, when a customer clicks on the link to
launch the applet, the customer will see the customer care window. This frame
also pushes information to the main frame, through the page push feature.

* jstrame: The frame that confirms that the applet has been loaded properly. The
contents of this frame do not display to customers.

* StUpdate: The frame refreshes the customer’s name or ID.

Using the frameset

Launching the customer care applet in a frameset separates the applet code from
the code in the store pages. As the diagram above illustrates, the store pages are
contained in the main frame of the frameset, while the applet code is contained in
the Sametime frame. By separating the applet code from the store pages you
reduce network traffic, as the applet is only downloaded once, when the frameset

Store Developer’s Guide

is first launched. If the customer care applet was not part of the frameset, it would
have to be in every store page, and would be downloaded every time a new store
page was accessed.

Using a frameset also allows you to maintain the connection with the Sametime
server. If the applet was part of each page and not the frameset, a new Sametime
session would be created each time a customer accessed a new page. Since the
customer care applet logs on to the Sametime server anonymously, creating a new
session each time a customer accessed a new page would not allow you to trace
the customers activities through the store. Using the frameset, the customer’s
original Sametime session is maintained, and the customer’s activities are sent back
to the Sametime server as attributes change.

Issues with using framesets
Although using a frameset is the recommended method to implement Customer

Care in your store, you should be aware of the following issues with using
framesets:

Single point of entry: Customers can only use customer care if they browse your
store within the framework. Likewise, CSRs can only monitor customer
movement through the frameset. To ensure that customers are browsing the
store via the frameset, they must access the site through a single entry point, for
example through the store’s home page (in the case of the sample stores,
index.jsp). If a customer accesses your store through another page (for example,
a catalog page), they will not be in the frameset.

Bookmarking: When using the frameset customers will only be able to bookmark
the main URL for the site, not individual pages.

Refreshing: When a customer is in the frameset and clicks refresh, they will be
taken back to the main frame address, as coded in the frameset, for example,
index.jsp.

Resizing browser window: If a customer resizes the browser window while in
the frameset, the browser may automatically reload the entry address. If the
entry address is reloaded, the connection to the Sametime Server may be
terminated. Different browsers behave differently in this situation.

Security: When a customer is browsing a site through a frameset, each
individual frame, as well as the frameset (the URL in the location bar) maintains
its own connection, either unsecure (http, by default port 80) or secure (https,
by default port 443). If a customer is browsing the store via an unsecure
connection all frames within the frameset are in HTTP. In this scenario there are
no issues with SSL. However, if the customer browses to a secure page (for
example, the registration page), the main frame within the frameset will switch
to HTTPS, while the rest of the frames remain unsecure (http). In this situation, a
customer will not be able to launch the customer care applet. The browser will
not authorize launching the applet, because the applet (secure, port 443) appears
to be coming from a different server than the URL in the location bar of the
browser (HTTP, port 80). The applet cannot be launched until the the entire
frameset becomes secure again, that is, until the URL in the location bar points
to HTTPS. To make the entire frameset secure again, you have the following
options:
— Redirect the entire frameset to a secure connection. However, when doing so,
you will end any chat currently in progress, as the applet switches to a new
Sametime connection.

— Redirect the entire frameset to a secure connection upon entry to the site. This
imposes a slight performance penalty, but adds security and browsing privacy
to the customer’s session.

Chapter 31. Adding customer care to your store 285

286

One method of redirecting the frameset to a secure connection, is to add the
following code to the index.html file:
— <html>
<head>
<META HTTP-EQUIV=Refresh CONTENT="0;URL=https://hostname/webapp/wcs/stores/
servlet/NewFashion/index.jsp>
</head>
<html>
</head>

Monitoring customers using customer care

Customer care allows you to monitor the customers who are corresponding with
the CSRs in your store by

* Obtaining the customer’s name or ID
* Determining which page the customer is browsing
* Tracking the items in the shopping cart

Customized code is added to the store pages in order to obtain this information.
The following sections discuss how each of these monitoring features are
implemented in the sample stores.

Obtaining the customer’s name or ID

Once the customer care applet is launched and the CSR is logged on, the CSR is
able to identify who is using the applet by name or by shopper ID. The sample
stores include specialized code that work with the customer care applet to
determine the customer’s name or shopper ID. This code determines whether the
customer is a guest customer, a guest customer with items in a shopping cart or a
registered customer, then assigns a name or ID to the customer, and passes this
name back to the customer care applet. These names then display to the CSR. For
example, if the customer is a guest customer, who hasn’t placed anything in the
shopping cart, the customer is assigned a generated ID, with shopper ID -1002. If
the customer is a guest with items in the shopping cart, the shopper ID will
display, and if the customer is registered, their first name and last names display.

The sample stores obtain the customer’s name or ID by adding the following code
to the store’s header file which refreshes the StUpdate frame. This code is included

in header. jsp in NewFashion and in NavHeader. jsp in ToolTech.

Note: Each time a customer browses a new page in the store, the customer’s name
or ID is refreshed.

<script language="javascript">
if (typeof top.updateStInfo == 'function')
top.updateStInfo();
</script>

The preceding code refreshes the following in the StUpdate frame.
//set Customer Name for LiveHelp if user is registered.

if (userRegistrationDataBean.findUser()) {
if (userRegistrationDataBean.getLastName() != null & &
userRegistrationDataBean.getLastName().length() > 0) {

if(cmdcontext != null) {

Long uid = cmdcontext.getUserId();

String customerName ="";

if (locale.toString().equals("ja_JP")||locale.toString().equals("ko KR")
||1ocale.toString().equals("zh CN")||locale.toString().equals("zh _TW"))

{

customerName = "" + userRegistrationDataBean.getlLastName() + " "

Store Developer’s Guide

+ userRegistrationDataBean.getFirstName();
}
else {
customerName = "" + userRegistrationDataBean.getFirstName() + " "
+ userRegistrationDataBean.getLastName();
1
}
else {
customerName=userRegistrationDataBean.getUserId();
if (customerName.equals("-1002"))
customerName="";
customer_name=customer_name.trim();

}

In the sample store’s Logout page, more custom code is included, which sets the
customer name to a generated ID and resets the number of items in the shopping

cart to zero. The Logout page in NewFashion is LoginForm.jsp. In
ToolTech it is Logoff.jsp. The custom code is as follows:

<HTML>

<HEAD>

<SCRIPT language="javascript">

if (typeof parent.setCustomerName == 'function')

parent.setCustomerName (parent.WCSGUESTID, '')
if (typeof parent.setShoppingCartItems == 'function')
parent.setShoppingCartItems(0);
</SCRIPT>
</HEAD>
</HTML>

Determining which page the customer is browsing

Customer care also allows CSRs to determine what page the customers in the store
are currently browsing. The sample stores determine what pages the customers are
in, by adding the following code to the header file (header.jsp in NewFashion and

in NavHeader.jsp in ToolTech):

<%

//Determine Page Type for LiveHelp

String headerType = (String) request.getAttribute("TiveHelpPageType");
if (headerType==null)

headerType = "";

0,
%>

<script language="javascript">
<%
String pname = request.getRequestURI();
int indpn = pname.lastIndex0f('/');
indpn = pname.lastIndex0f('/', indpn-1);
if(indpn != -1)
pname = pname.substring(indpn+1);

//Determine if this is a personal page or not
if (headerType.equals("personal")) {
%>
if (typeof parent.setPageParams == 'function')
parent.setPageParams('PERSONAL_URL', '<%=pname%>');
<% } else { %>

if (typeof parent.setPageParams == 'function')
parent.setPageParams(lTocation.href, '<%=pname%>');

<%} %>

</script>

If a page does not use the header file, the file StHeaderl. jsp is included in the
page. StHeaderl.jsp contains the same code that is added to the store’s header file.

Chapter 31. Adding customer care to your store 287

In order to maintain customer privacy, CSRs should not have access to certain
pages. For example, a CSR might not have access to a campaign page, a page that
includes a price determined by a contract, or a page that includes the user ID, for
example, the address book page. These pages are marked as personal. In the
sample stores the following pages are marked as personal:

* NewFashion
— AddressBookForm. jsp
— AllocationCheck.jsp
— edit_registration.jsp
— emptyshoppingcart.jsp
— interestItemDisplay.jsp
— myaccount.jsp
— orderItemDisplay.jsp
— OrderDisplayPending.jsp
— ResultList.jsp
— shoppingcart.jsp
— TrackOrderStatus.jsp

. ToolTech

— Address.jsp

— Addressbook.jsp

— AddToExistReqlList.jsp

— AdvancedSearch.jsp

— AllocationCheck.jsp

— CatalogMainDisplay.jsp

— CatalogltemDisplay.jsp

— CatalogTopCategoriesDisplay.jsp

— Confirmation.jsp

— OrderDisplayPending.jsp

— OrderItemDisplay.jsp

— OrderDetail.jsp

— QuickOrder.jsp

— RequisitionListCreate.jsp

— RequisitionListDetailDisplay.jsp

— RequsitionListDisplay.jsp

— RequsitionListUpdate.jsp

— Result List.jsp

— Shipping.jsp

— shoppingcart.jsp

— TrackOrderStatus.jsp

— UserAccount.jsp

— UserRegistrationUpdate.jsp
In order to mark pages as personal, that is, not available to the CSR, the sample
stores include the following code in the page, just before the header is included.
<5

// Set header type needed for this JSP for Customer Care. This must
// be set before Header.jsp

288 Store Developer’s Guide

request.setAttribute("TiveHelpPageType", "personal");

0,
%>

<%

String incfile;

incfile = includeDir + "Header.jsp";
%>

<jsp:include="<%=incfile%>"flush="true"/>

Note: Although a CSR cannot see the content of a page marked personal, the CSR
can see the URL of that page.

Tracking the number of items in the shopping cart
Customer Care also allows CSRs to track how many items a customer has in their

shopping cart at any time. The sample stores obtain the number of items in the

shopping cart in the following locations:

* Shopping cart page (NewFashion: shoppingcart.jsp,
ToolTech:ShoppingCart.jsp)

e Empty shopping cart page (NewFashion: emptyshopcart.jsp,
ToolTech:EmptyOrder. jsp)

* Order confirmation page (NewFashion: confirmation.jsp,

ToolTech:confirmation.jsp)
* Logout page (JEEE ToolTech:Logoff. jsp)

Note: Although the shopping cart is designated as a personal page, CSRs can track
the number of items in the shopping cart. They cannot see what the
shopping cart contains using these method, only the number of items in it.
However, a CSR can view the contents of the shopping cart using the View
Shopping Cart button. For more information, see the WebSphere Commerce
online help.

The sample stores determine the number of items in the shopping cart by adding

the following code to the above pages:

* First an int variable is defined
int TiveHelpShoppingCartItems = 0;

* Next, the following line of code is used to add the quantity to
liveHelpShoppingCartltems whenever there is an orderitem addition to the cart:
TiveHelpShoppingCartItems+= orderItem.getQuantityInEJBType().intValue();

* Then, the following code is added at the end of the page to set the customer
name to the guest shopper ID, and to obtain the number of items in the
customer’s shopping cart.
<script language="javascript">

if (typeof parent.setShoppingCartItems == 'function')

parent.setShoppingCartItems(<%=1iveHelpShoppingCartItems%>);
</script>

The following code is used in the empty shopping cart page and the order
confirmation page to reset the number of items in the cart to zero:
<script language="javascript">
if (typeof parent.setShoppingCartItems == 'function')
parent.setShoppingCartItems(0);
</script

Chapter 31. Adding customer care to your store 289

Adding customer care to your store

290

To add customer care to a store that is not based on a sample, do the following;:

Part 1. Installing pre-requisites

In order for customer care to work in your store, you must do the following:

Install a Sametime server. For more information, see the WebSphere Commerce
Additional Software guide.

Install the WebSphere Commerce Sametime integration package. For more
information, see the WebSphere Commerce Additional Software guide.

Stop the WebSphere Commerce instance, then enable Sametime in the
Configuration Manager, then restart the instance. For more information, see the
WebSphere Commerce Additional Software guide.

Create a CSR and register the CSR for customer care using the Administration
Console. For more information, see the WebSphere Commerce online help.

Part 2: Copying the customer care integration files from the
sample store

The sample stores NewFashion and ToolTech include the following files which are
used to integrate customer care into the store:

Sametime.js: Contains JavaScript functions that are included for all frames. The
functions from this file are called with a parent prefix from pages in the main
frame, for example, parent.setCustomerName.

StBlank.jsp: An empty JSP file.

StFrame.jsp: Contains JavaScript functions and embeds the customer care applet
for the store front.

StReadyJS. jsp: Indicates that the applet is loaded properly.

StHeaderl.jsp: A header file that passes in a parameter to the applet indicating
whether the page that includes this header is a personal page or not.

StUpdate.jsp: Updates the customer’s name information and ID.

To copy the Sametime integration files from the sample store to your store, do the
following:

1.

Locate the store archive file for the NewFashion store or the ToolTech store. The
store archive files are located in the following directory:

. dr1’ve:\WebSphere\Commer‘ceSer‘ver\samp]estor‘es

. drive:\Pr‘ogram Files\WebSphere\CommerceServer\samplestores
. /usr/WebSphere/CommerceServer/samplestores

. /opt/WebSphere/CommerceServer/samp]estores

. /opt/WebSphere/CommerceServer/samplestores

. /qibm/proddata/WebCommerce/samplestores

Open either the ToolTech or NewFashion folder, then select a ToolTech or
NewFashion store archive.

Open the store archive file using WinZip or a similar tool.

Locate the webapp.zip file. Open it using WinZip of a similar tool.
Select the following files:

e Sametime.js

Store Developer’s Guide

* StBlank.jsp
e StFrame.jsp
* StReadydS.jsp
* StHeaderl.jsp
e StUpdate.jsp

Extract the files to the directory that contains the web assets for your store.

Note: StHeaderl.jsp is in an include directory in the sample store archives.

you have a separate directory for the files that you include into your

store pages, save StHeaderl.jsp in that directory. If not, save it in the

same directory as your other store files.

Part 3: Adding the frameset to your store

As discussed in [“Using the frameset” on page 284} the customer care applet runs in
a frameset. This frameset should be added to your store home page, or the page
customer’s are most likely to enter the store through. To add the frameset to your
store, do the following:

1.
2.

o ok w

Determine which page is the point of entry for your store.

If

Open the store archive file for ToolTech or NewFashion. The store archive files

are located in the following directory:

. drive:\WebSphere\CommerceServer\samplestores

. dr‘ive:\Pr‘ogr‘am Files\WebSphere\CommerceServer\samplestores

. /usr/WebSphere/CommerceServer/samplestores
. /opt/WebSphere/Commer‘ceServer/samp]estor‘es
. /opt/WebSphere/CommerceServer/samplestores

. /qibm/proddata/WebCommerce/samplestores

Open the store archive file using WinZip or a similar tool.

Locate the webapp.zip file. Open it using WinZip or a similar tool.
Open the index. jsp file.

Copy the following code:

<script src="<%="Sametime.js"%></script>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"DTD/xhtml1l-transitional.dtd">
<html>
<head>
<title></title>
<script language="javascript">
var MainPageURL=""};

if (MainPageURL=="")
MainPageURL="/webapp/wcs/stores/serviet/Logoff?storeld=<%=storeld%>
&langId=<%=1angld%>&URL=LogonForm?
storeld=<%=storeld%>&catalogld=<%=catalogld%>";
function loadFrame()

{

main.document.location.href=MainPageURL;

}
</script>
</head>
<%
String sBasePath="/webapp/wcs/stores/serviet/";
String sSametimeUrl="StFrame.jsp?storeld="+storeld;
String sBlankUr1="StBlank.jsp?storeld="+storeld;
String sUpdateUrl1="StUpdate.jsp?storeld="+storeld;

Chapter 31. Adding customer care to your store

291

292

8.

%>

<FRAMESET border=0 frameBorder=0 ROWS="100%,1,1,1,1,1" onLoad="ToadFrame() ;">
<FRAME NAME="main"

SRC="javascript:top.loadFrame();" MARGINWIDTH=0 SCROLLING="Auto"
FRAMEBORDER="no" noresize>

<FRAME NAME="JSFrame"

SRC="<%=sBlankUr1% >" MARGINWIDTH=0 SCROLLING="no"

FRAMEBORDER="no" noresize>

<FRAME NAME="sametime" SRC="<%=sSametimeUr1%>" MARGINWIDTH=0 SCROLLING="no"
FRAMEBORDER="no" noresize>

<FRAME NAME="StUpdate" SRC="<%=sUpdateUrl1%>" MARGINWIDTH=0 SCROLLING="no"
FRAMEBORDER="no" noresize>

</FRAMESET>

</html>

Note: In the example above, from the ToolTech sample store, the source (SRC)
for the "main” frame is a command to another page. Depending on how
your store is set up, the SRC can be a command, a JSP file, or an HTML
file.

Paste the code you copied in step 6 into the page you have designated as the
store’s entry point. Make any necessary changes to the source (SRC) for the
main frame.

Save the file.

Part 4: Adding the code to obtain the customer’s name or ID

In order to display the name of shopper ID of the customer using customer care to

the
1.
2.

Store Developer’s Guide

CSR, do the following:

Review the information in [“Obtaining the customer’s name or ID” on page 286/

Determine where you plan to obtain the customer’s name or shopper ID from.
For example,

* Point of entry to the store

* New registration or update registration
¢ Logout

* Header

After determining where you plan to obtain the customer’s name or shopper ID
from, determine whether those pages include the main header file for your
store. If not, determine whether you will add the necessary code to the page
itself, or include a header file.

From the webapp.zip file in the NewFashion store archive, or the ToolTech store
archive, open one of the following files

* NewgFashion: header. jsp
* ToolTech: NavHeader. jsp

Note: Both files are located in the include directory in the webapp.zip file.
Copy the following code:

<script language="javascript">
if (typeof top.updateStInfo == 'function')
top.updateStInfo()
</script>
Paste the code you copied in step 5 into either the header file for your store, or
directly into the appropriate pages.

Note: If you prefer, you can include the file StHeaderl. jsp into the appropriate
page, instead of copying the above code into the store header file, or
directly into the file.

Save the files.

(Optional) To reset the customer ID in the Logout page (for example from the
customer’s ID to -1002) and to reset the number of items in the shopping cart
to zero, add the following code to the Logout file:

<HTML>

<HEAD>

<SCRIPT language="javascript">

if (typeof parent.setCustomerName == 'function')

parent.setCustomerName (parent.WCSGUESTID, '')
if (typeof parent.setShoppingCartItems == 'function')
parent.setShoppingCartItems(0);
</SCRIPT>
</HEAD>
</HTML>

Part 5: Adding code to determine which page the customer is
browsing

To determine which page the customer is browsing, do the following:

1.

Include the StHeaderl. jsp file to the store’s header file, for example:
<%@ include file="StHeaderl.jsp" %>

Add the following code to any pages that should be marked personal, and thus
not available for access by the CSR:

<%

// Set header type needed for this JSP for Customer Care. This must

// be set before Header.jsp
request.setAttribute("1iveHelpPageType", "personal");

0,
%>

<%

String incfile;

incfile = includeDir + "Header.jsp";

%>

<jsp:include="<%=incfile%>"flush="true"/>

Add the following code to any pages that don’t use a header, but should be
marked personal:

<

// Set header type needed for this JSP for Customer Care. This must

// be set before StHeaderl.jsp
request.setAttribute("1iveHelpPageType", "personal");

String incfile;
incfile = includeDir + "StHeaderl.jsp";
%>

<jsp:include page="<%=incfile%>" flush="true"/>

Part 6: Adding code to track the number of items in the
shopping cart

To allow CSRs to track the items that a customer has in their shopping cart, do the
following:

1.

2.

Review the information in [“Tracking the number of items in the shopping cart’]

Determine where you plan to track the shopping cart items. For example,

* Shopping cart page

* Empty shopping cart page
* Order confirmation page

* Logout page

Chapter 31. Adding customer care to your store 293

294

Part 7:

Part 8:

3. In the pages that you plan to track the shopping cart items, do the following;:
a. Define an int variable:
int liveHelpShoppingCartItems= 0;

b. To add the quantity to shoppingCartltems when an order item is added to
the cart, add the following line of code:

TiveHelpShoppingCartItems+= orderItem.getQuantityInEJBType().intValue();

C. At the end of the page, add the following code, to set the guest shopper 1D
(-1002) to the actual shopper ID, and to obtain the number of items in the
shopping cart:
<script Tanguage="javascript">
if (typeof parent.setCustomerName == 'function')
parent.setCustomerName (<%=cmdcontext.getUserId()%>, parent.CustomerName);
if (typeof parent.setShoppingCartItems == 'function')
parent.setShoppingCartItems(<%=1iveHelpShoppingCartItems%>);

</script>

d. If you plan to track data in the empty shopping cart page and order
confirmation page, add the following code to those pages, to reset the
shopping cart value to zero:
<script language="javascript">

if (typeof parent.setShoppingCartItems == 'function')

parent.setShoppingCartItems(0);
</script

Adding a link to customer care

To allow customers to access customer care in your store, do the following:

1. Determine where you would like to place the link to customer care. For
example, you may want to place the link in a navigation bar, so it is always
available to customers, or in certain pages in the store.

2. Copy the following code into the pages that will contain the link:

<%=infashiontext.getString("LiveHelp")%>

Changing messages that display to the customer

The messages that display to a customer when they initially connect to a CSR, for
example, "Hello, how can I help you?”, or "Our office hours are from 9 a.m. to 9
p-m. are stored in properties files in on the Sametime Server. The properties files
are divided into two types of files: Customer.properties and Agent.properties.
The Customer.properties file contains messages that display to the customer, while
the Agent.properties file contains information that displays to the CSR. Both of
these files also have corresponding locale-specific files, for example

Customer_de DE.properties and Agent de DE.properties, for each locale installed
in your instance of WebSphere Commerce.

To change the messages in these files, do the following:

1. Locate the properties files on the Sametime Server. By default, these properties
files are located in the following directory:
o BN Grive:\Sametime\Data\domino\html\wc\properties

2. Make the necessary changes.

3. Close and save the file.

Store Developer’s Guide

Chapter 32. Adding e-Marketing Spots to your store

e-Marketing Spots reserve space on your store pages in which personalized
marketing content for campaign initiatives displays. When a page is requested by a
customer, any e-Marketing Spots present on the page will communicate with the
rule server to process the rule-based code associated with the spot. Each
e-Marketing Spot has one or more campaign initiatives associated with it. For more
information on campaigns and campaign initiatives, see [Chapter 12, “Campaign|
lassets” on page 113|and the WebSphere Commerce online help.

In order to for campaign initiatives to display correctly on your store pages, an
e-Marketing Spot must be added to the JSP file, and then registered in the database
using the WebSphere Commerce Accelerator. This chapter discusses how to add
e-Marketing Spots to the store’s JSP files. For more information on registering the
e-Marketing Spot in the database using the WebSphere Commerce Accelerator, see
the WebSphere Commerce online help.

e-Marketing Spot

The following is an example of an e-Marketing Spot.

//* The sample contained herein is provided to you "AS IS".

//* It is furnished by IBM as a simple example and has not been thoroughly tested
//* under all conditions. IBM, therefore, cannot guarantee its reliability,
//* serviceability or functionality.

//* This sample may include the names of individuals, companies, brands and
//* products

//* in order to illustrate concepts as completely as possible.

//*A11 of these names

//* are fictitious and any similarity to the names and addresses used by actual
persons

//*or business enterprises is entirely coincidental.

[x*
* START - the following code should exist only once in a page, it initialize the
* command context and store data bean.

*/

// create the store bean to get the store directory
String collateralPath = "/webapp/wcs/stores/";
com.ibm.commerce.command.CommandContext emsCommandContext =
(com. ibm.commerce.command.CommandContext) request.getAttribute(
ECConstants.EC_COMMANDCONTEXT) ;
com. ibm.commerce.common.beans.StoreDataBean storeDataBean =
new com.ibm.commerce.common.beans.StoreDataBean();
storeDataBean.setStoreld(emsCommandContext.getStoreld().toString());
com. ibm.commerce.beans.DataBeanManager.activate(storeDataBean, request);
if (storeDataBean.getDirectory() != null) {
collateralPath += storeDataBean.getDirectory() + "/";

}

°
%>

// The following HTML form submits the request on the e-marketing spot to the
ClickInfo

// command which captures the campaign statistics, and redirect to the location
//specified by the URL parameter.

© Copyright IBM Corp. 2002 295

<form name="storeEmsForm" method="POST" action="/webapp/wcs/stores/serviet/ClickInfo">
<input type="hidden" name="evtype">
<input type="hidden" name="mpe_id">
<input type="hidden" name="intv_id">
<input type="hidden" name="URL">
</form>
<%
[x%
* END - the following code should exist only once in a page, it initialize the
* command context and store data bean.
*
/

>

BN

<

N

[**
* START - the following code can be used to drop multiple e-marketing
spots onto the page.

* Customize the appropriate EMarketingSpot instance name and the
e-marketing spot

* name before use. Duplicate this code if more than 1 spot is
needed, do not use

* the same spot name.

*/

// create the e-Marketing Spot
com.ibm.commerce.marketing.beans.EMarketingSpot eMarketingSpot =
new com.ibm.commerce.marketing.beans.EMarketingSpot();

// IMPORTANT - set the correct name here
eMarketingSpot.setName("eMarketingSpotName");

// the maximum number of products/categories/ad copies that display
//through this e-marketing spot can be set here
eMarketingSpot.setMaximumNumberOfCatalogEntries(20);
eMarketingSpot.setMaximumNumberOfCategories (20);
eMarketingSpot.setMaximumNumberOfCollateral(20);

// instantiate the bean
com. ibm.commerce.beans.DataBeanManager.activate(eMarketingSpot,
request);

0,
%>

<%
// The following block is used to display the advertisements associated with this
// e-marketing spot. The URL 1ink defined with an advertisement can be referenced
//through the submittion of the HTML form attached above.

if (eMarketingSpot.getCollateral() != null && eMarketingSpot.getCollateral().
length > 0) {

%>

<TABLE>

<% for (int i=0; i eMarketingSpot.getCollateral().length; i++) { %>
<TR>

<% if (eMarketingSpot.getCollateral()[i].getTypeName().equals("Image")) { %>
<TD>

A HREF="javascript:document.storeEmsForm.evtype.value="'CpgnClick'
;document.storeEmsForm.mpe_id.value=' <%= eMarketingSpot.getId() %>
";document.storeEmsForm.intv_id.value='<% = eMarketingSpot.getCollateral
()[i].getInitiativeld() %>';document.storeEmsForm.URL.value="
<%= eMarketingSpot.getCollateral()[i].getUrlLink() %>';
document.storeEmsForm.submit() ;">

IMG SRC=" <%= collateralPath + eMarketingSpot.getCollateral()[i].getLocation() %>">

</TD>
<TD>
<%= eMarketingSpot.getCollateral()[i].getMarketingText() %>
</TD>
<% } else if (eMarketingSpot.getCollateral()[i].getTypeName().equals("Flash")) { %>
<TD>

EMBED src=" <% = collateralPath + eMarketingSpot.getCollateral()[i].getLocation()
%>" quality=high bgcolor=#FFFFFF WIDTH=120 HEIGHT=90
TYPE="application/x-shockwave-flash"> </EMBED>

296 Store Developer’s Guide

</TD>

<TD>

A HREF="javascript:document.storeEmsForm.evtype.value="'CpgnClick’
;document.storeEmsForm.mpe_id.value='<% = eMarketingSpot.getId()
%>';document.storeEmsForm.intv_id.value='<% = eMarketingSpot.getCollateral()
[i].getInitiativeld() %>';document.storeEmsForm.URL.value="
<% = eMarketingSpot.getCollateral()[i].getUrliLink() %>';
document.storeEmsForm.submit() ;">

<%= eMarketingSpot.getCollateral()[i].getMarketingText() %>

</TD>
<% } %>
</TR>
<% } %
</TABLE>
<% } %

<%
// The following block is used to display the categories associated with this e-marketing
// spot. The category display page which shows the selected category in the campaign will
// be referenced through the submittion of the HTML form attached above.

if (eMarketingSpot.getCategories() != null && eMarketingSpot.getCategories().length > 0) {

%>

<TABLE>

<% for (int i=0; i eMarketingSpot.getCategories().length; i++) { %>
<TR>
<TD>

A HREF="/webapp/wcs/stores/serviet/ClickInfo?evtype=CpgnClick
&mpe_id=<% = eMarketingSpot.getId() %>&intv_id=<% = eMarketingSpot.
getCategories()[i].getInitiativeld()
%>%URL=/webapp/wcs/stores/servlet/CategoryDisplay&
<%= ECConstants.EC_STORE_ID %>= <%= emsCommandContext.getStoreld().toString() %>&
<% = ECConstants.EC_CATEGORY_ID %>=<% =
eMarketingSpot.getCategories()[i].getCategoryld() %>&<%
= ECConstants.EC_CATALOG_ID %>=<%= eMarketingSpot.getCategories()[i].getCatalogld() %>
&<% = ECConstants.EC_LANGUAGE_ID %>=<% = emsCommandContext.getlLanguageld().toString() %>">
<%= eMarketingSpot.getCategories()[i].getDescription
(emsCommandContext.getLanguageld()).getName() %>

</TD>
<TD><% = eMarketingSpot.getCategories()[i].getDescription
(emsCommandContext.getLanguageId()).getLongDescription() %> </TD>

</TR>
<% } %
</TABLE>
<% } %

<5
// The following block is used to display the products associated with this e-marketing
// spot. The product display page which shows the selected product in the campaign will
// be referenced through the submittion of the HTML form attached above.

if (eMarketingSpot.getCatalogEntries() != null &&
eMarketingSpot.getCatalogEntries().length > 0) {
%>
<TABLE>
<% for (int i=0; i eMarketingSpot.getCatalogEntries().length; i++) { %>
<TR>
<TD>
A HREF="/webapp/wcs/stores/servlet/ClickInfo?evtype=CpgnClick
&mpe_id=<%= eMarketingSpot.getId() %>&intv_id=<%=
eMarketingSpot.getCatalogEntries()[i].getInitiativeld()
%>8URL=/webapp/wcs/stores/serviet/ProductDisplay
&<%= ECConstants.EC_STORE_ID %>=<%= emsCommandContext.getStoreld().toString()
%>&<%= ECConstants.EC_PRODUCT_ID %>=<%=
eMarketingSpot.getCatalogEntries()[i].getCatalogEntryID() %>&<%
= ECConstants.EC_LANGUAGE_ID %>=<%= emsCommandContext.getlLanguagelId().toString() %>">
IMG SRC="<%= collateralPath + eMarketingSpot.getCatalogEntries()
[i].getDescription(emsCommandContext.getLanguageld()).
getThumbNail() %>" ALT="<%= eMarketingSpot.getCatalogEntries()[i].getDescription
(emsCommandContext.getLanguageld()).getShortDescription()%>" BORDER=0 WIDTH=60>

Chapter 32. Adding e-Marketing Spots to your store 297

</TD>
<TD><%= eMarketingSpot.getCatalogEntries()[i].getDescription
(emsCommandContext.getLanguagelId()).getShortDescription() %> </TD>
</TR>
<% } %
</TABLE>

<% } %

<% [x*
* END - the following code is used to drop multiple e-marketing spots onto the page.
* Customize the appropriate e-marketing spot name before use.
* Duplicate this code if more than 1 spot is needed, do not use the same spot name.
*/

%>
The preceding e-Marketing Spot supports three types of campaign initiatives:
* Product recommendation

. Category recommendation
e Awareness advertisement

Note: For more detailed information on each of these initiatives, see|Chapter 12
[“Campaign assets” on page 113}

e-MarketingSpot bean

e-Marketing Spots use the e-MarketingSpot bean to return the results of campaign
initiatives that are currently scheduled onto the spot. Using different properties of
the bean allows you to customize your e-Marketing Spot and the corresponding
campaign initiative. For more information on the e-MarketingSpot bean and its
properties, see the WebSphere Commerce online help.

Adding an e-Marketing Spot to your store pages

In order to add an e-Marketing Spot to your store pages, do the following;:

1. Determine on which JSP files the spot will display. The spot can be added to
multiple JSP files.

Determine where on the JSP file to place the spot.

Copy the sample e-Marketing Spot in [“e-Marketing Spot” on page 295|

Paste the sample e-Marketing Spot to the desired location on your JSP file(s).
Customize the sample e-Marketing Spot to fit the layout of your JSP file(s).

o g~ wDN

Within the e-Marketing Spot code, give the e-Marketing Spot a name.

Note: e-Marketing Spots should be descriptively named so as to include their
location, such as HomePageAd, or CheckOutPageRecommendation. This
helps to reduce confusion about where it will appear, and what content
it should contain. If necessary, numbers can be added to the name to
differentiate between two e-Marketing Spots appearing on the same
page. e-Marketing Spot names must be valid Java identifiers. You must
use this same name when registering the e-Marketing Spot in the
database using the WebSphere Commerce Accelerator.

7. If you require more than one e-Marketing Spot per JSP file, repeat steps 2
through 6. When adding another e-Marketing Spot on a JSP file, ensure that
you copy all of the second section of the sample e-Marketing Spot provided in
[“e-Marketing Spot” on page 295|and paste the entire second section on the JSP
file again. Then, change the name of the e-Marketing Spot in the JSP file.

298 Store Developer’s Guide

8. Register the e-Marketing Spot in the database using the WebSphere Commerce
Accelerator. For detailed instructions, see the WebSphere Commerce online
help.

Note:

a. If you plan to add the store ID, catalog ID, or language ID to the
URL using the following convention, "langld=<%= languageld %>",
note that the JSP in which the e-marketing spot is embedded must
make the appropriate ID available. The IDs can also be retreived
through the command context, for example,
getCommandContext().getLanguageld()?).

b. As a result of the structure of the NewFashion sample store, only
products can be recommended through the e-Marketing spot, not
items in stores based on the NewFashion sample store.

c. The URL parameter, CatalogDisplay should start with "&" instead of
"?" because the code isn’t referencing the command directly.

Chapter 32. Adding e-Marketing Spots to your store 299

300 Store Developer’s Guide

Part 9. Appendixes

© Copyright IBM Corp. 2002 301

302 Store Developer’s Guide

Appendix A.

© Copyright IBM Corp. 2002

UML legend

Unified Modeling Language is a standard graphical language for presenting
different elements of software design. The following examples are some of the
most common elements of UML. For further detail about formal specifications,
refer to http://www.rational.com and http://www.omg.org.

UML diagrams consist of the following items:

* Boxes: Boxes represent classes of objects. The class names appear at the top of
the box. Attributes, if shown, appear below the class name. The class name and
attributes are separated by a line.

* Lines: Lines represent possible relationships between objects of two classes.
Objects of the class on one of end of the line can be "associated” with objects of
the other class.

* Solid diamonds: Solid diamonds on the end of a line indicate containment by
value. Objects of the class on the other end of the line are part of one and only
one object of the class the diamond touches.

* Open diamonds: Open diamonds on the end of a line indicate containment by
reference. Objects at the diamond end of the line can be thought of as grouping
objects of the class at the other end of the line.

* Cardinality numbers: These appear at the end of relationship lines to indicate a
cardinality restriction. The following table summarizes cardinality restrictions:

Cardinality number Relationship type
1 one and only one
0.1 Zero or one

0.n Zero or more

1.n one or more

If no cardinality restriction is shown, the cardinality is assumed to be 0..n, unless
a solid diamond appears on the end of a relationship line. In that case, the
cardinality must be 1.

* Plus signs: Plus signs appearing at the end of relationship lines indicate the
object of the class at the end of the line plays a role in the relationship. Text
following the plus sign indicates the object’s role in the relationship.

e Arrows: Arrows at the end of a relationship line indicate the direction of the
relationship between two objects is in the direction of the arrow. The absence of
any arrows on a relationship line indicates the direction of the relationship
between the objects is normally in both directions.

303

The following diagrams illustrate the above concepts:

+association role Q
 —

Entity bean 2

O

Entity bean 2

This diagram shows two entity beans with the decoration stereotype symbol
indicating an Enterprise Java Bean. There is a unidirectional association from the
first bean to the second entity bean. The plus sign is followed by text that
describes what role Entity bean 2 plays the association.

+owner)
Member StoreEntity

1

In this diagram, a StoreEntity has one and only one owner, which is a Member. A
Member may own zero or more StoreEntities. The plus sign indicates that the
Member plays a role in the relationship. In this case the Member is the owner of
the StoreEntity. The arrow indicates that you would normally find out the owner
of a StoreEntity by asking the StoreEntity for its owner, and not asking a Member
for all the StoreEntities it owns.

Order @ — Orderltem

In this diagram, an Orderltem is always part of one and only one Order. An Order
has zero or more Orderltems.

TaxCodeClassification — [<>——— Q
0..1 CalculationCode

This diagram indicates that a CalculationCode is grouped by zero or one
TaxCodeClassifications and a TaxCodeClassification groups zero or more
CalculationCodes.

304 Store Developer’s Guide

Appendix B. Creating your data

Before creating store data in the form of XML files, do the following:

* Determine the order of the information you are creating. The information in each
of the store data chapters advises you on the order in which to create the data,
but when creating XML files remember that information for a parent table must
precede information for a child table.

* Determine how you want to use your store. If you are creating a sample store
archive file (.sar), that is, a store archive that is meant to be copied and used as a
base upon which to create new stores, you will need to create your data slightly
differently than if you aren’t creating a sample store. For more information, see
[“Creating data for sample stores”}

Creating data for sample stores

Data in sample store archives takes the form of well-formed, XML files valid for
the Loader package. The store archive XML files are intended to be portable and
should not contain generated primary keys that are specific to a particular instance
of the database. Instead they use internal-aliases, which are resolved by the ID
Resolver at the time of publish. The use of these conventions allows the sample
store archives to be copied and published multiple times.

It is not necessary to use these conventions when creating store data for
your store in the form of XML files, unless you plan to create a sample
store archive that will be used to generate several stores, or unless you
want to create a store archive that is portable, that is a store archive that
can be published to another WebSphere Commerce instance.

As a result, the sample store archives use the following conventions:

e & as in member_id="&MEMBER ID;"The &XXX;convention is a DTD macro (known
in XML as an entity).

Note: You must define MEMBER_ID as a DTD macro when you are creating a
sample store archive.
WebSphere Commerce defines a set of macros in the following file:

- dm’ve:\WebSphere\CommerceSer‘ver\xm]\sar\DBLoadMacros.dtd
- drive:\Program

Files\WebSphere\CommerceServer\xml\sar\DBLoadMacros.dtd

/usr/WebSphere/CommerceServer/xml/sar/DBLoadMacros.dtd

- /opt/WebSphere/CommerceServer/xml/sar/DBLoadMacros.dtd
- /opt/WebSphere/CommerceServer/xml/sar/DBLoadMacros.dtd

/qibm/proddata/WebCommerce/xml/sar/DBLoadMacros.dtd

Macros like en_US and es_ES are set to the appropriate language IDs. For
example:

<IENTITY en_US "-1">

The information will be specified using the tools in Store Services. For
example, the user selects the MEMBER_ID in the Create Store Archive page in

© Copyright IBM Corp. 2002 305

306

Store Services. The MEMBER_ID macro is a place holder for the ID of the
member who owns the store. When you create a store archive, you select a
member to be the store owner. The MEMBER_ID macro is set to the member’s
ID. For example, if you select member ID -2000, then MEMBER_ID is set to
-2000 as follows:

<IENTITY MEMBER_ID "-2000">

* @ as in ffmcenter_id="@ffmcenter_id_1". The use of the @ symbol is known as
internal-alias resolution. The ID Resolver, which is a Loader package utility,
generates identifiers for XML elements that require them. One of the techniques
ID Resolver uses is internal-alias resolution. When using internal-alias resolution,
an alias is substituted in place of the primary key (identifier) in the XML
document. This alias is then used elsewhere in the XML file to refer to that
element. This eliminates the need to know the unique indexes necessary to build
the XML file. During publish in Store Services, or using the Loader package, the
ID Resolver replaces the @ symbol with a unique value. See the following
examples from an XML file:

— Pre-ID Resolver

<catalog
catalog_id="@catalog_id_1"
member_id="&VEMBER ID;"
identifer=InFashion"
description="InFashion Catalog"/>

— Post ID Resolver

<catalog

catalog_id="10001"
member_id="-2000"
identifer=InFashion"
description="InFashion Catalog"/>

where 10001 is the unique ID assigned by the ID Resolver and -2000 is the
member ID selected by the user in Store Services. The resulting XML file then
gets loaded using the Loader package. Running the files through the ID Resolver
ensures that numerous stores can be created from a single set of XML files.

Store Services and sample stores

The New and Create Store Archive options in the Store Services are dependent on
the conventions described above. If you want to use your store as a template to
create other stores through Store Services, you must follow these conventions when
creating your data assets.

However, if you are not creating a sample store archive, you can still edit or

publish a store archive that does not follow these conventions using the tools in
Store Services.

Store Developer’s Guide

Appendix C. sarinfo.xml

Each store archive must include a sarinfo.xml file. This file, known as the
descriptor, contains information about the store archive that is used when a store
archive is published, including the names of the file asset ZIP files and the store
database XML files, and the order in which they are published. If a store archive
includes files in multiple languages, the sarinfo.xml file also includes that
information, and determines the order in which each language file is published.

Note: The order in which the data assets are published is important, since some
data assets must be published before others. As a result, the order of your
assets, as specified in yoursarinfo.xml file, should match the order of the
assets specified in the sarinfo.xml files for the sample stores. The sample
store archives are located in the following directory.

. drive:\WebSphere\CommerceServer\sammestores

. drive:\Program Files\WebSphere\CommerceServer\samplestores
. /usr/WebSphere/CommerceServer/samplestores

. /opt/WebSphere/CommerceServer/samp1estores

. /opt/WebSphere/CommerceServer/samplestores

. /q1'bm/proddata/WebCommerce/samp1estores

To view the content of the store archive, decompress it by using a ZIP
program. The sarinfo.xml is located in the SAR-INF directory.

Example of sarinfo.xml

The following example is the ToolTech sarinfo.xml file. For more information on
the elements, attributes and attribute values, see the information below. For more
information on the XML specifications for a store archive, see the sarinfo.dtd in
the following directory:

. drive:\WebSphere\CommerceServer\xm]\sar

. drive:\Program Files\WebSphere\CommerceServer\xml\sar
. /usr/WebSphere/CommerceServer/xml/sar

. /opt/WebSphere/CommerceServer/xml/sar

. /opt/WebSphere/CommerceServer/xml/sar

A 400 | /qibm/proddata/WebCommerce/xml/sar

<?xml version = "1.0"?>

<IDOCTYPE sarinfo SYSTEM "sarinfo.dtd">

<sarinfo complete-store="yes" multi-language="yes" version="1.0">
<store-info asset-name="store"/>

<file name="webapp.zip" type="zip">

<asset fragmented="no" name="webapp">

<file name="webapp.zip" type="zip">

<display-name>My Web App Display Name</display-name>

© Copyright IBM Corp. 2002 307

<description>My Web App</description>
</file>
</asset>

<asset fragmented="no" name="properties">
<file name="properties.zip" type="zip" />
</asset>

<asset fragmented="no" name="dbloadmacros">
<file name="data/DBLoadMacros.dtd" type="dtd"/>
</asset>

<asset fragmented="no" name="fulfillment">

<file name="data/fulfillment.dtd" type="dtd"/>

<file name="data/fulfillment.xm1" priority="1" type="db-Toad"/>

<file name="data/en_US/fulfillment.xml" priority="31" type="db-load">
<locale>en_US</locale>

</file>

<file name="data/es_ES/fulfillment.xml" priority="31" type="db-load">
<locale>es_ES</locale>

</file>

</asset>

<asset fragmented="yes" name="store">

<file name="data/store.dtd" type="dtd"/>

<file name="data/store.xml" priority="2" type="db-load"/>
<file name="data/en_US/store.xml" priority="3" type="db-load">
<locale>en_US</Tocale>

</file>

<file name="data/es_ES/store.xml" priority="3" type="db-load">
<locale>es ES</locale>

</file>

</asset>

<asset fragmented="yes" name="catalog">

<file name="data/catalog.dtd" type="dtd"/>

<file name="data/catalog.xml" priority="4" type="db-load"/>
<file name="data/en_US/catalog.xml" priority="5" type="db-1oad">
<locale>en_US</Tlocale>

</file>

<file name="data/es_ES/catalog.xml1" priority="5" type="db-load">
<locale>es_ES</Tocale>

</asset>

<asset fragmented="yes" name="tax">

<file name="data/tax.dtd" type="dtd"/>

<file name="data/tax.xml" priority="6" type="db-load"/>
<file name="data/en_US/tax.xml1" priority="7" type="db-load">
<locale>en_US</locale>

</file>

<file name="data/es_ES/tax.xml1" priority="7" type="db-load">
<locale>es_ES</locale>

</file>

</asset>

<asset fragmented="no" name="taxfulfill">

<file name="data/taxfulfill.dtd" type="dtd"/>

<file name="data/taxfulfill.xm1" priority="8" type="db-load"/>
</asset>

<asset fragmented="yes" name="shipping">

<file name="data/shipping.dtd" type="dtd"/>

<file name="data/shipping.xm1" priority="9" type="db-load"/>

file name="data/en_US/shipping.xml" priority="10" type="db-load">
<locale>en_US</Tlocale>

/file>

file name="data/es_ES/shipping.xm1" priority="10" type="db-load">

308 Store Developer’s Guide

<locale>es_ES</locale>
<file>
</asset>

<asset fragmented="no" name="shippingfulfill">

<file name="data/shipfulfill.dtd" type="dtd"/>

<file name="data/shipfulfill.xm1" priority="11" type="db-load"/>
</asset>

<asset fragmented="no" name="store-catalog">

<file name="data/store-catalog.dtd" type="dtd"/>

<file name="data/store-catalog.xml" priority="12" type="db-Toad"/>
</asset>

<asset fragmented="no" name="storefulfill">

<file name="data/storefulfill.dtd" type="dtd"/>

<file name="data/storefulfill.xml" priority="13" type="db-load"/>
</asset>

<asset fragmented="yes" name="offering">

<file name="data/offering.dtd" type="dtd"/>

<file name="data/offering.xml" priority="14" type="db-load"/>
</asset>

<asset fragmented="no" name="command">

<file name="data/command.dtd" type="dtd"/>

<file name="data/command.xm1" priority="16" type="db-load"/>
</asset>

<asset fragmented="yes" name="currency">

<file name="data/currency.dtd" type="dtd"/>

<file name="data/currency.xml" priority="17" type="db-load"/>
<file name="data/en_US/currency.xml" priority="18" type="db-load">
<locale>en_US</locale>

</file>

<file name="data/es_ES/currency.xml" priority="18" type="db-load">
<locale>es_ES</locale>

</file>

</asset>

<asset fragmented="yes" name="campaign">
<file name="data/campaign.dtd" type="dtd"/>
<file name="data/campaign.xml" priority="20" type="db-load"/>

<file name="data/en_US/campaign.xml" priority="24" type="db-load">
<locale>en_US</locale>

</file>

<file name="data/es_ES/campaign.xml" priority="24" type="db-load">
<locale>es_ES</locale>

</file>

</asset>

<asset fragmented="no" name="store-catalog-tax">

<file name="data/store-catalog-tax.dtd" type="dtd"/>

<file name="data/store-catalog-tax.xml" priority="21" type="db-load"/>
</asset>

<asset fragmented="no" name="store-catalog-shipping">

<file name="data/store-catalog-shipping.dtd" type="dtd"/>

<file name="data/store-catalog-shipping.xml" priority="22" type="db-load"/>
</asset>

<asset fragmented="no" name="store-defaults">

<file name="data/store-defaults.dtd" type="dtd"/>

<file name="data/store-defaults.xml" priority="23" type="db-load"/>
</asset>

Appendix C. sarinfo.xml

309

<asset fragmented="no" name="consistency_check">

<file name="data/sarrule.dtd" type="dtd"/>

<file name="data/sarrule.xml" priority="25" type="config"/>
</asset>

<asset fragmented="no" name="payment">

<file name="data/es_ES/paymentinfo.xml1" type="config"/>
<file name="data/paymentinfo.dtd" type="dtd"/>

</asset>

<asset fragmented="yes" name="policy">

<file name="data/businesspolicy.dtd" type="dtd"/>

<file name="data/businesspolicy.xml" priority="26" type="db-load"/>
<file name="data/en_US/businesspolicy.xml" priority="27" type="db-load">
<locale>en_US</Tlocale>

</file>

<file name="data/es_ES/businesspolicy.xml" priority="27" type="db-load">
<locale>es_ES</locale>

</file>

</asset>

<asset fragmented="no" name="organization">

<file name="data/organization.dtd" type="dtd"/>

<file name="data/organization.xml" priority="28" type="db-1oad"/>
</asset>

asset fragmented="no" name="businessaccount">

<file name="data/businessaccount.xml" type="xm1"/>

/asset>

asset fragmented="yes" name="contract">

<file name="data/contract.xml" priority="1" type="xml"/>
<file name="data/en_US/contract.xml" priority="2" type="xml">
<locale>en_US</Tlocale>

</file>

file name="data/es_ES/contract.xml" priority="2" type="xml">
<locale>es_ES</locale>

</file>

</asset>

<asset fragmented="yes" name="accesscontrol">

<file name="data/accesscontrol.dtd" type="dtd"/>

<file name="data/accesscontrol.xml" priority="29" type="db-load"/>
<file name="data/en_US/accesscontrol.xml" priority="30" type="db-load">
<locale>en_US</locale>

</file>

<file name="data/es_ES/accesscontrol.xml" priority="30" type="db-load">
<locale>es_ES</locale>

</file>

</asset>

<l-- next priority should be 32 -->

</sarinfo>
where

sarinfo is all information contained in the sarinfo.xml file. The attributes in the
following chart contain general information about the store archive.

310 Store Developer’s Guide

Attribute name

Attribute value(s)

multi-language (required)

Determines whether multi-languages will be
supported in this store archive:

° yes

* no

complete-store (required)

Determines whether the store archive
includes the assets necessary for a complete
store:

* yes

®* no

version

The version of the store archive. For
example: 1.0, 1.1

display-name

The name of the store archive.

description

A brief description of the store archive.

standard-schema (required)

Does the store archive follow the standard
WebSphere Commerce database schema:

° yes

®* no

store-info asset-name (required)

The asset that functions as the anchor for the
store archive. All information for the store is
found in the files belonging to this asset. For
example: store

locale

The locale(s) supported by the store archive.
The locale variables (listed below) are
composed of the language_country:

* de_DE
* en_US
* es_ES
e fr FR
e it IT

> ja_JP

* ko_KR
° pt_BR
e zh_ CN
e Zh TW

asset (mandatory) An asset is a logical collection of related files. For example, tax
is the name for the group of files that all relate to the stores taxes.

Attribute name

Attribute value(s)

name (required)

The name of the asset type. For example:
* store

* catalog

* payment

¢ tax

Appendix C. sarinfoxml 311

312

Attribute name

Attribute value(s)

fragmented (required)

Determines whether the asset information is
split into multiple files according to
languages.

> yes

* no

file

Attribute name

Attribute value(s)

name (required)

The name of the file.

type (required)

Type of file format. For example:

e db-load - files to be loaded into the
database

* dtd - document type definition files

 zip - ZIP file for file assets, for example,
webapp.zip

* config - configuration files

priority

The order that the files in the store archive
will be published. 1,2,34 . . .

Note: If two files share the same priority,
the load order does not matter. If files must
be loaded in a certain order, ensure they are
assigned different priorites.

display-name

The name of the file.

description

Description for reference.

locale

The locale. The locale variables (listed
below) are composed of the
language_country.

* de_DE
* en_US
* es_ES
e fr FR
e it IT

> ja_JP

* ko_KR
° pt_BR
* zh CN
e Zh_ TW

Store Developer’s Guide

Appendix D. sarrule.xml

Each store archive contains a sarrule.xml file, which acts a consistency checker
when you publish using Store Services. While publishing, the publish utility uses
the rules in the sarrule.xml file to check that your store archive contains the Web
assets that are listed in the XML files.

Example of sarrule.xml

The following sarrule.xml file is from the ToolTech sample store.

The store archive files are located in the following directory:

o BBNEMN Grive:\WebSphere\CommerceServer\samplestores

. drive:\Program Files\WebSphere\CommerceServer\samplestores
. /usr/WebSphere/CommerceServer/samplestores

. /opt/WebSphere/CommerceServer/samp]estores

. /opt/WebSphere/CommerceServer/samplestores

. m/q1'bm/proddata/WebCommerce/samp]estores

To view the sarrule.xml file in the store archive, decompress it using a ZIP
program. The sarrule.xml file is located in the data directory.

The sarrule.dtd file is located in the following directory:

. drive:\WebSphere\CommerceServer\xm]\sar

. drive:\Program Files\WebSphere\CommerceServer\xml\sar
. /usr/WebSphere/CommerceServer/xml/sar

. /opt/WebSphere/CommerceServer/xml/sar

. /opt/WebSphere/CommerceServer/xml/sar

. /q1'bm/proddata/WebCommerce/xm/sar

Note: It is recommended that you use the sarrule.xmlfile provided with the
sample stores in your store archive. However, if you want, you can add new
rules to the existing sarrule.xml file.

<?xml version="1.0"?>
<IDOCTYPE SAR-rules SYSTEM "sarrule.dtd">
<SAR-rules>
<asset name = "command">
<check type="webasset registration">
<rule entry="viewreg" attribute="properties" type="java.lang.String"
removeStoreDir="false" file="webapp.zip"/>
</check>
</asset>
-
<asset name = "catalog">
<check type="webasset registration">
<rule entry = "catalogdsc" attribute="thumbnail" type="java.lang.String"
removeStoreDir="false" file="webapp.zip"/>
<rule entry = "catalogdsc" attribute="fullimage" type="java.lang.String"

© Copyright IBM Corp. 2002 313

314

removeStoreDir="false" file="webapp.zip"/>
<rule entry = "catentdesc" attribute="thumbnail" type="java.lang.String"
removeStoreDir="false" file="webapp.zip"/>
<rule entry = "catentdesc" attribute="fullimage" type="java.lang.String"
removeStoreDir="false" file="webapp.zip"/>
<rule entry = "catgrpdesc" attribute="thumbnail" type="java.lang.String"
removeStoreDir="false" file="webapp.zip"/>
<rule entry = "catgrpdesc" attribute="fullimage" type="java.lang.String"
removeStoreDir="false" file="webapp.zip"/>
</check>
</asset>
-
<asset name = "store">
<check type="webasset registration">
<rule entry = "dispentrel" attribute="pagename" type="java.lang.String"
removeStoreDir="false" file="webapp.zip"/>
<rule entry = "dispcgprel" attribute="pagename" type="java.lang.String"
removeStoreDir="false" file="webapp.zip"/>
</check>
</asset>
</SAR-rules>

where in

<asset name = "command">
<check type="webasset registration">
<rule entry="viewreg" attribute="properties" type="java.lang.String"
removeStoreDir="false" file="webapp.zip"/>
</check>
</asset>

the publish utility in Store Services checks that each JSP file listed in the
command.xml file exists in the Web assets in the store archive.

where in

<asset name = "catalog">
<check type="webasset registration">
<rule entry = "catalogdsc" attribute="thumbnail" type="java.lang.String"
removeStoreDir="false" file="webapp.zip"/>
<rule entry = "catalogdsc" attribute="fullimage" type="java.lang.String"
removeStoreDir="false" file="webapp.zip"/>
<rule entry = "catentdesc" attribute="thumbnail" type="java.lang.String"
removeStoreDir="false" file="webapp.zip"/>
<rule entry = "catentdesc" attribute="fullimage" type="java.lang.String"
removeStoreDir="false" file="webapp.zip"/>
<rule entry = "catgrpdesc" attribute="thumbnail" type="java.lang.String"
removeStoreDir="false" file="webapp.zip"/>
<rule entry = "catgrpdesc" attribute="fullimage" type="java.lang.String"
removeStoreDir="false" file="webapp.zip"/>
</check>
</asset>

the publish utility in Store Services checks that each catalog asset listed in the
catalog.xml file exists in the Web assets in the store archive.

where in

<asset name = "store">
<check type="webasset registration">
<rule entry = "dispentrel" attribute="pagename" type="java.lang.String"
removeStoreDir="false" file="webapp.zip"/>
<rule entry = "dispcgprel" attribute="pagename" type="java.lang.String"
removeStoreDir="false" file="webapp.zip"/>
</check>
</asset>

Store Developer’s Guide

the publish utility in Store Services checks that each store asset listed in the
store.xml file exists in the Web assets in the store archive.

If memory is an issue while publishing, comment out the catalog asset
rule in sarrule.xml before attempting to publish.

Appendix D. sarrulexml 315

316 Store Developer’s Guide

Appendix E. Database asset groups

All WebSphere Commerce database assets are divided into groups for creation and
loading. These groups are a logically related set of tables. The order in which these
database asset groups are organized is important to data loading, since certain
objects must exist before loading the relationship between objects.

When loading database assets in XML format for your store, you can choose to
load only selected groups. These groups consist of the database assets created in
the previous chapters, such as catalog or fulfillment. Before loading data groups as
instructed in [“Loading database asset groups” on page 267} do the following;

* Determine which database asset group you are loading. Each group contains
dependencies which must be met before the assets can be loaded. Review the
information in|“Database asset groups dependencies”}

* Ensure that you have created or updated the XML files for the selected database
asset group. The information in each of the asset chapters advises you on the
order in which to create the database assets, but when creating or updating XML
files, remember that information for a parent table must precede information for
a child table.

Database asset groups dependencies

Each database asset group draws its information from WebSphere Commerce
database tables. Database assets have dependencies within their own group. That
is, a database asset group cannot draw data in other XML files from a different
data group, and each group is independent minus the foreign keys. However, if
the database asset group needs to refer to the external data defined in another
group, then you need to provide that data manually. This means that the data from
one group has an external dependency on data defined outside of its domain, that is,
on another database asset group. External dependencies occur when a database
asset group has a foreign key relationship to the primary key of a table in another
group. To load a database asset group, its external dependencies must be satisfied.
To use an example from the chart below, one of the external dependencies for the
store database asset group is fulfillment.FFMCENTER.FFMCENTER_ID, which
indicates that the fulfillment database assets must already exist in the WebSphere
Commerce database before you can load the store database asset group.

Consider the following chart before you begin your loading process. Each group of
database assets is dependent on other database tables, from which the data is
loaded.

Some points to remember:

* Some external dependencies may not be satisfied by a single group. Site wide or
general database assets, used by every store, are pre-populated at instance
creation in the bootstrap and can be readily accessed. Tables contained in
database asset groups have foreign key references to this type of data. Bootstrap
data is divided into common and locale-specific data. If you have a multilingual
store, you need to choose the common and the locale-specific bootstrap data. For
example, you need the language and member bootstrap data. The instance
creation process populates the LANGUAGE table with the supported WebSphere
Commerce languages for your store and creates a root organization
(MEMBER .MEMBER_ID=-2001) and a default organization (MEMBER.MEMBER_ID=-2000).

© Copyright IBM Corp. 2002 317

318

You must use the root organization where required, but you should create a
store owner organization instead of using the default organization. For more
information about organizations and their hierarchy, refer to the WebSphere
Commerce online help.

* The files listed under the External dependencies column use the following

naming structure: database asset group.database table.database column. Using the
store.STOREENT.STOREENT_ID file as an example, the data is taken from the store
database asset group, STOREENT table, and STOREENT_ID column. File names
beginning with bootstrap indicate that the data was populated during the
WebSphere Commerce instance creation.

¢ The files listed under the External dependencies column contain foreign key

references to the Related tables. These tables must be populated first.

* For presentation purposes only, the tables have been split to indicate the

locale-specific tables containing multilingual information, such as product
descriptions.

* The tables in the chart represent the database assets from the WebSphere

Commerce sample stores. The tables may vary according to your store’s size,
function, and needs. Depending on your store’s requirements, ensure that you
include all database tables containing your store’s assets, even if that particular
table is not listed below.

Access control database assets

External dependencies Related tables from | Related locale-specific
the database asset |tables from the database
XML files asset XML files

bootstrap.LANGUAGE . LANGUAGE_ID (root accesscontrol.xml |accesscontrol.xml

and store owner organizations), ACACTACTGP, ACACGPDESC,

bootstrap.MEMBER.MEMBER_ID (root and ACACTGRP, ACACTDESC,

store owner organizations) ACACTION, ACPOLDESC,
ACPOLICY, ACRSCGDES,
ACRESCGRY, ACRESGPDES
ACRESGPRES,
ACRESGRP

Business policy database assets

External dependencies Related tables from | Related locale-specific
the database asset |tables from the database
XML files asset XML files

bootstrap.LANGUAGE.LANGUAGE_ID, businesspolicy.xml |businesspolicy.xml

boostrap.MEMBER.MEMBER_ID, POLICY, POLICYDESC

store.STOREENT.STOREENT_ID (store owner | POLICYCMD

organization)

Campaign database assets

External dependencies Related tables from | Related locale-specific
the database asset |tables from the database
XML files asset XML files
store.STOREENT.STOREENT_ID campaign.xml campaign.xml
CAMPAIGN, COLLDESC
COLLATERAL,
EMSPOT,
STENCALUSG

Catalog database assets

Store Developer’s Guide

External dependencies

Related tables from | Related locale-specific
the database asset |tables from the database

XML files asset XML files

bootstrap.LANGUAGE.LANGUAGE_ID,
bootstrap.MEMBER.MEMBER ID (store owner
organization),
store.STOREENT.STOREENT_ID,
shipping.CALCODE.CALCODE_ID,
tax.CALCODE.CALCODE_ID

catalog.xml catalog.xml
BASEITEM, ATTRIBUTE,
CATALOG, ATTRVALUE,
CATENTREL, BASEITMDSC,
CATENTRY, CATALOGDSC,
CATGROUP, CATENTDESC,
CATGRPREL, CATGRPDESC,
CATTOGREP, PKGATTR,
ITEMSPC, PKGATTRVAL,
ITEMVERSN, RA,
RADETAIL,
STOREITEM,
STORITMFFC,
VERSIONSPC
offering.xml
CATGRPTPC,
MGPTRDPSCN,
OFFER,
OFFERPRICE,
TRADEPOSCN
storeful fill.xml
INVENTORY
store-catalog.xml
DISPCGPREL,
DISPENTREL,
STORECAT,
STORECENT,
STORECGRP
store-catalog-
shipping.xml
CATENTCALCD,
CATENTSHIP
store-catalog-
tax.xml
CATENTCALD

Command database assets

External dependencies

Related tables from |Related locale-specific
the database asset |tables from the database

XML files asset XML files

store.STOREENT.STOREENT_ID

command . xm1 N/A
CMDREG,
VIEWREG

Contract database assets

External dependencies

Related tables from the
database asset XML files

store.STOREENT.STOREENT_ID

The contract database tables are
not loaded directly and follow a
different process than the other
WebSphere Commerce data

groups. Refer to |“Publishin§|

lcontract assets” on page 275for

more information.

Currency database assets

Appendix E. Database asset groups

319

320

External dependencies

Related tables from
the database asset
XML files

Related locale-specific
tables from the database
asset XML files

store.STOREENT.STOREENT_ID

currency.xml
CURCVLIST

currency.xml
CURCONVERT,
CURLIST

Fulfillment database assets

External dependencies

Related tables from
the database asset

Related locale-specific
tables from the database

XML files asset XML files
bootstrap.LANGUAGE.LANGUAGE_ID, fulfillment.xml fulfillment.xml
boostrap.MEMBER.MEMBER_ID (store owner |FFMCENTER, FFEMCENTDS
organization) STADDRESS

Organization database assets

External dependencies

Related tables from
the database asset
XML files

Related locale-specific
tables from the database
asset XML files

bootstrap.LANGUAGE. LANGUAGE_ID (root
and store owner organizations),
boostrap.MEMBER.MEMBER_ID (root and
store owner organizations)

organization.xml
ADDRBOOK,
ADDRESS,
MBRREL, MEMBER,
ORGENTITY

N/A

Shipping database assets

External dependencies

Related tables from
the database asset
XML files

Related locale-specific
tables from the database
asset XML files

bootstrap.LANGUAGE . LANGUAGE_ID,
bootstrap.MEMBER.MEMBER_ID (store owner
organization),
fulfillment.FFMCENTER.FFMCENTER_ID,
store.STOREENT.STOREENT_ID

shipping.xml
CALCODE,
CALRULE,
CRULESCALE,
JURST,
JURSTGPREL,
JURSTGROUP,
SHIPMODE,
STENCALUSG
shipping.xml
SHPJCRULE,
SHPARRANGE

shipping.xml
CALCODEDSC,
CALRANGE,
CALRLOOKUP,
CALSCALE,
SHPMODEDSC

Store database assets

External dependencies

Related tables from
the database asset

Related locale-specific
tables from the database

XML files asset XML files
bootstrap.LANGUAGE.LANGUAGE_ID, store.xml store.xml
bootstrap.MEMBER.MEMBER_ID (store owner | INVADJCODE, FFMCENTDS,
organization), RTNREASON, INVADJDESC,
bootstrap.SETCURR.SETCURR_ID, STORE, STORENT, |RTNRSNDESC,
fulfillment.FFMCENTER.FFMCENTER ID STORELANG, STADDRESS,

VENDOR STOREENTDS,

STORLANGDS,
VENDORDESC

Store default database assets

Store Developer’s Guide

External dependencies

Related tables from
the database asset
XML files

Related locale-specific

tables from the database

asset XML files

shipping.SHIPMODE . SHIPMODE_ID (if
applicable, this file must be loaded first),
contract.CONTRACT.CONTRACT_ID,
store.STOREENT.STOREENT_ID

store-default.xml
STOREDEF

N/A

Tax database assets

External dependencies

Related tables from
the database asset
XML files

Related locale-specific

tables from the database

asset XML files

bootstrap.LANGUAGE.LANGUAGE_ID,
boostrap.MEMBER.MEMBER_ID (store owner
organization),
store.STOREENT.STOREENT_ID,
fulfillment.FFMCENTER.FFMCENTER_ID,
store.STOREENT.STOREENT_ID

tax.xml
CALCODE,
CALRANGE,
CALRLOOKUP,
CALRULE,
CALSCALE,
CRULESCALE,
JURST,
JURSTGROUP,
JURSTGPREL,
STENCALUSG,
TAXCGRY,
TAXJCRULE
taxfulfill.xml
TAXJCRULE

tax.xml
CALCODEDSC,
CALSCALEDS,
TAXCGRYDS

Appendix E. Database asset groups

321

322 Store Developer’s Guide

Appendix F. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

500 Columbus Avenue
Thornwood, NY 10594
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2002 323

324

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Canada Ltd.

Office of the Lab Director

8200 Warden Avenue Markham, Ontario L6G 1C7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to

Store Developer’s Guide

IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

©Copyright International Business Machines Corporation 2001. Portions of this
code are derived from IBM Corp. Sample Programs. ©Copyright IBM Corp. 2000,
2001. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Credit card images, trademarks, and trade names provided in this product should
be used only by merchants authorized by the credit card mark’s owner to accept
payment via that credit card.

Trademarks

The following terms are trademarks or registered trademarks of International
Business Machines Corporation in the United States or other countries or both:

AIX IBM WebSphere
AS/400 IBM Payment
Manager
DB2 iSeries
DB2 Universal 0S/400®
Database™
eServer VisualAge

Microsoft®, Windows, and Windows NT, Active Directory, and the Windows logo
are trademarks or registered trademarks of Microsoft Corporation in the United
States, other countries, or both.

Oracle is a registered trademark and Oracle8 is a trademark of Oracle Corporation.
SET Secure Electronic Transaction, SET " and the SET logo are trademarks owned
by SET Secure Electronic Transaction LLC. Use of the trademarks without a written
license from SET Secure Electronic Transaction LLC is strictly prohibited.

Solaris, Solaris Operating Environment, Java, JavaServer Pages, JavaBeans, and all
Java-based trademarks and logos are trademarks or registered trademarks of Sun

Microsystems, Inc.

UNIX® is a registered trademark of The Open Group in the United States and
other countries.

Other company, product and service names may be the trademarks or service
marks of others.

Appendix F. Notices 325

326 Store Developer’s Guide

Printed in U.S.A.

	Contents
	Before you begin
	Conventions used in this book
	Where to find new information

	Part 1. Overview
	Chapter 1. Store architecture overview
	What is an online store?
	The composition of a store
	Store architecture
	WebSphere Commerce Server
	WebSphere Commerce Server instance
	Store configurations

	Chapter 2. Store development
	Store development options
	Creating a store based on a sample
	Sample stores

	Creating a store by developing new store assets
	Creating a store using a combination of the sample store and new store assets

	The store archive
	Sample store archives
	Determining when to use a store archive
	When wouldn't I want to use a store archive?

	Store development tools
	Tools for developing the store front
	Tools for developing the store data
	Tools for developing the back office
	The Store Developer's role

	Part 2. Developing your store front
	Chapter 3. Developing your store front
	Store front architecture
	Default commands and views

	Creating your store pages
	Developing a list of store pages
	Working from use cases

	Developing a list of command and view URLs
	Developing a list of URLs needed

	Associating JSP filename to views

	Part 3. Store data overview
	Chapter 4. Store data
	What is store data?
	The store data information model
	Store data assets
	Store data architecture
	WebSphere Commerce Server instance
	Core data
	Configuration data
	Managed data
	Operational data

	Store data architecture and the sample stores

	Tools for creating data
	WebSphere Commerce Loader package
	Store Services
	Administration Console
	WebSphere Commerce Accelerator
	Organizational Administration Console
	Tool and store data summary chart

	Part 4. Developing your store data
	Chapter 5. Site assets
	Understanding site assets in WebSphere Commerce
	Language
	Member attributes
	Attribute types
	Member group types
	User
	Organization
	Role
	Quantity unit conversion
	Quantity units
	Tax types
	Calculation usage
	Currency
	Number usage
	Item types
	Device formats

	Creating site assets in WebSphere Commerce

	Chapter 6. Store assets
	Understanding store assets in WebSphere Commerce
	Store entity
	Store entity description
	Store
	Store group

	Creating store assets in WebSphere Commerce
	Creating store data assets in an XML file

	Chapter 7. Commands, views, and URL registry data
	Registering commands, views, and URLs in WebSphere Commerce
	Creating an XML file to register commands, views, and URLs

	Chapter 8. Catalog assets
	Understanding catalogs in WebSphere Commerce
	Catalogs
	Catalog groups
	Catalog entries
	Products
	Items
	Packages
	Bundles
	Dynamic kits
	Product sets
	Attributes
	Attribute values
	Package attributes
	Package attribute values

	Creating catalog assets in WebSphere Commerce
	Creating a master catalog
	Part 1: Preparing for catalog creation
	Part 2: Creating a catalog entity
	Part 3: Creating catalog groups
	Part 4: Creating inventory information
	Part 5: Creating catalog entries
	Part 6: Creating attributes and attribute values
	Part 7: Creating relationships between products and items
	Part 8: Creating packages and bundles
	Part 9: Creating relationships between catalog groups and catalog entries
	Part 10: Creating merchandising associations
	Part 11: Associating your catalog to a store
	Part 12: Associating taxes to your catalog
	Part 13: Associating shipping methods to your catalog
	Part 14: Associating a fulfillment center to your catalog
	Part 15: Creating prices for your catalog entries
	Part 16: Loading the XML file

	Displaying store catalog assets

	Creating a navigational catalog
	Creating category cycles
	Adding a product to a second category

	Managing catalog assets in WebSphere Commerce
	Catalog groups
	Catalog entries
	Product Management tools
	Catalog Manager

	Chapter 9. Pricing assets
	Understanding pricing in WebSphere Commerce
	Offer
	Offer price
	Trading position container
	Terms and conditions
	Types of pricing terms and conditions
	Trading agreement
	Participant
	Participant role
	Contract
	Business policy
	Price policy
	Catalog entry shipping
	Other pricing assets

	Creating pricing assets in WebSphere Commerce
	Creating pricing assets in an XML file

	Chapter 10. Contract assets
	Understanding contracts in WebSphere Commerce
	Account (business account)
	Contract
	Trading agreement
	Terms and conditions
	Business policies
	Attachment
	Order item

	Creating a default contract asset in WebSphere Commerce
	Creating business policy XML files
	Creating a default contract XML File

	Chapter 11. Fulfillment assets
	Understanding fulfillment assets in WebSphere Commerce
	Fulfillment center
	Receipts
	RaDetail
	Inventory
	Shipping arrangements
	Other fulfillment assets

	Creating fulfillment assets in WebSphere Commerce
	Creating store fulfillment assets

	Chapter 12. Campaign assets
	Understanding campaigns in WebSphere Commerce
	Creating campaign assets in WebSphere Commerce

	Chapter 13. Payment assets
	Create payment assets using an XML file

	Chapter 14. Language assets
	Understanding language assets in WebSphere Commerce
	Default language
	Supported language
	Alternative language
	

	Creating language assets in WebSphere Commerce

	Chapter 15. Currency assets
	Understanding currency assets in WebSphere Commerce
	Currency format
	Number usage
	Currency format description
	Supported currency
	Currency conversion rule
	Counter currency

	Creating currency assets in WebSphere Commerce
	Creating currency assets using an XML file
	Other currency tasks

	Chapter 16. Units of measure assets
	Understanding units of measure in WebSphere Commerce
	Quantity unit and quantity unit format
	Quantity unit format description
	Number usage

	Creating units of measure in WebSphere Commerce

	Chapter 17. Jurisdiction assets
	Understanding jurisdiction assets in WebSphere Commerce
	Creating jurisdiction assets in WebSphere Commerce

	Chapter 18. Shipping assets
	Understanding shipping assets in WebSphere Commerce
	Shipping modes
	Shipping arrangements

	Calculation codes
	Calculation rules

	Jurisdictions and jurisdiction groups

	Creating shipping assets in WebSphere Commerce
	Creating shipping assets using an XML file
	Creating shipping fulfillment assets
	Creating store-catalog-shipping assets
	Creating a default shipping mode

	Chapter 19. Tax assets
	Understanding tax assets in WebSphere Commerce
	Tax category
	Tax type

	Calculation code
	Calculation rules

	Jurisdictions and jurisdiction groups

	Creating tax assets in WebSphere Commerce
	Creating tax assets using an XML file
	Creating tax fulfillment assets
	Creating store-catalog-tax assets

	Chapter 20. Discount assets
	Understanding discounts in WebSphere Commerce
	Calculation code
	Calculation rules

	Creating discount assets in WebSphere Commerce

	Chapter 21. Inventory assets
	Understanding inventory assets in WebSphere Commerce
	ATP inventory
	Base item
	Item specification
	Catalog entries
	Distribution arrangement
	Store item

	Non-ATP inventory
	Fulfillment center

	Creating inventory assets in WebSphere Commerce

	Chapter 22. Order assets
	Understanding order assets in WebSphere Commerce
	Orders and order items
	Currency
	Payment information

	Order items
	Suborders
	Other order item assets

	Creating order assets in WebSphere Commerce

	Chapter 23. Customer and Seller assets
	Understanding customer assets in WebSphere Commerce
	Address information
	Interest lists

	Understanding Seller assets in WebSphere Commerce
	Stores
	Accounts
	Contracts
	Product sets
	Price lists
	Catalogs
	Fulfillment centers
	Inventory items

	Understanding member assets in WebSphere Commerce
	Members
	Member attributes
	Roles
	Creating member assets in WebSphere Commerce

	Part 5. Adding access control to your store
	Chapter 24. Access control in your store
	Understanding access control in WebSphere Commerce
	Access control policies
	Access control in stores
	Access control in the samples stores

	Adding access control to your store
	Creating access control in your store
	Editing access control files in the store archive

	Part 6. Packaging your store
	Chapter 25. Packaging a store
	Creating a store archive
	Creating a sample store archive

	Part 7. Publishing your store
	Chapter 26. Publishing a complete store
	Understanding publish in WebSphere Commerce
	Start publish
	Pre-publish checks
	Consistency check
	Discrepancy check
	Miscellaneous checks

	Publish assets
	Unpacks the store front files from the store archive
	Loads store data from the XML files in the store archive to the database
	Creates parameters.jsp file
	Unpack store configuration files
	Calls command to publish business accounts and contracts
	Updates registry components
	Error handling

	Configure payment
	Error handling

	Publish log files

	Chapter 27. Overview of loading store data
	Understanding data loading in WebSphere Commerce
	Loader package commands for loading store data
	ID Resolve command
	Load command

	Loader package commands for transforming and extracting data
	DTD Generate command
	Extract command
	Text Transform command
	XML Transform command

	Tools related to the Loader package commands
	Text Transformation tool
	XSL editor
	Web editor

	Loading store data
	Using the Loader package commands and scripts
	Examples of resolving identifiers
	Resolving identifiers in XML files with internal aliases
	Specifying a properties file with the ID Resolver

	Example of loading data

	Chapter 28. Loading WebSphere Commerce database asset groups
	Database asset groups
	Database asset loading sequence

	Loading a store
	Loading database asset groups

	Chapter 29. Publishing business accounts and contracts
	Publishing business accounts and contracts using Store Services or the command line
	Publishing business accounts and contracts using commands
	Publishing business account assets
	Publishing contract assets

	Chapter 30. Publishing store front assets and store configuration files
	Publishing store front assets and store configuration files using Store Services or the command line
	Publishing store front assets and store configuration files by copying to the WebSphere Commerce Server

	Part 8. Adding WebSphere Commerce features to your store
	Chapter 31. Adding customer care to your store
	Understanding customer care in a store
	Using the frameset
	Issues with using framesets

	Monitoring customers using customer care
	Obtaining the customer's name or ID
	Determining which page the customer is browsing
	Tracking the number of items in the shopping cart

	Adding customer care to your store
	Part 1: Installing pre-requisites
	Part 2: Copying the customer care integration files from the sample store
	Part 3: Adding the frameset to your store
	Part 4: Adding the code to obtain the customer's name or ID
	Part 5: Adding code to determine which page the customer is browsing
	Part 6: Adding code to track the number of items in the shopping cart
	Part 7: Adding a link to customer care
	Part 8: Changing messages that display to the customer

	Chapter 32. Adding e-Marketing Spots to your store
	e-Marketing Spot
	e-MarketingSpot bean

	Adding an e-Marketing Spot to your store pages

	Part 9. Appendixes
	Appendix A. UML legend
	Appendix B. Creating your data
	Creating data for sample stores
	Store Services and sample stores

	Appendix C. sarinfo.xml
	Example of sarinfo.xml

	Appendix D. sarrule.xml
	Example of sarrule.xml

	Appendix E. Database asset groups
	Database asset groups dependencies

	Appendix F. Notices
	Trademarks

