IBM® WebSphere® Commerce Version 5.4

Business Edition Integration Guide
for the Ariba® Buyer System

.|||
"II
2

Note: Before using this information and the product it supports, read the information in “Notices and
trademarks”

First Edition (August 2002)

This edition applies to version 5, release 4 of IBM WebSphere Commerce Business Edition
(Program 5724 - A18) and to all subsequent releases and modifications until otherwise indicated
in new editions.

IBM welcomes your comments. You can send your comments by any one of the following
methods:

1. Electronically to the E-mail address listed below. Be sure to include your entire network
address if you wish a reply.

Internet:torrcf@a.i bmcom

2. By regular mail to the following address:
IBM Canada Ltd. Laboratory
B3/KB7/8200/MKM
8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2002. All rights reserved.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

2 Procurement Integration Guide

Contents

[0 0 0 =T o 3 R 3
Chapter 1. INtrodUCEION ... e e e e e e e e e e e eeeaeeeaeeeeeeerereeereeesesssesenennnnnnns 5
Y o To 10 8 T3 oo Yo | SRR 5
Who should read thisS DOOK?coiuiiiiiiiiii ettt et e e st e e s snneeeeesnneeas 5
SOftWAre rEQUITEMENES.eiieiiiiie et e e e e e e e e e e et e e e e e e e eeereaeeeaens 5
Conventions and terminology used in this DOOK ... 6
Chapter 2. Features of procurement integrationccccoviiinnin 7
GENETAl OVEIVIEW ... iiiiee ettt et e e e et e e e ettt e e e st e e e e ette e e e esteeeeasteeeeeasteeeeeanteeaeeansaeaansaeeesnnses 7
Y =Y o] g or=T o F=1 o1 1 (1Y ST PRRTRR 8
Business models €nabled............oeeiiiiiiii oo 9
Chapter 3. Supported CXML MESSAGESccuiriurrirriseriisissriisisrs s ssssss s s ssss s sass s s s san s ssssns s assnnees 1
Chapter 4. Configuring the reference applicationcccccciiiriiciincccin e 13
Configuring the buyer and SUPPHIET.coi i 13
Creating and configuring YOUT STOTEcoiiiiiiiiiiiieiee e e e e e e e e e eannreeee s 18
Chapter 5. Customizing procurement integration ... 23
Enabling procurement integration for other procurement systemscccoovviiiiiiiicceeneeen, 23
Chapter 6. USE CASES ..ccieriiiiiccieeiieirieiiisissreeesssssssssnee e e s sssssssssssseeseessssssnssseeeesaassssnnnseeesass s snnanesasssnnsnnsessnnssnnnen 35
Appendix A: System_template.Xml............. e anan 39
Appendix B: Sample XML MESSAgES......cuuiuiriiiimiiiiiieriiisrsissssrsisssss s ssssss s ssssss s ssssss s sssssss s ssssssssssnsssssnns 45
Appendix C: LogonRequest in HTML format............cccceiiiiiiininniniessnsre e ee s s ss s s sme e s ssse s 53
Appendix D: Sample buyer information form ... ——— 61
Notices and trade@marks......... ..o e 63

© IBM Corporation 2002 3

4 Procurement Integration Guide

Chapter 1. Introduction

About this book

This book provides information about the features and the major capabilities of
the reference application for procurement integration between WebSphere
Commerce version 5.4, Business Edition and the Ariba Buyer version 7.1. It talks
about the business models enabled with this integration, creating and configuring
buyers and suppliers, creating and configuring a business-to-business (B2B)
store, and customizing procurement integration.

Procurement integration

The procurement integration subsystem is a generic framework that enables
WebSphere Commerce Version 5.4, Business Edition to handle B2B transactions
using industry-standard protocols. It provides an extensible and customizable
functionality on WebSphere Commerce that allows you to extend the message,
schema, or business logic.

Who should read this book?

This document is oriented towards WebSphere Commerce administrators,
programmers, and other experts. The following knowledge and experience is
assumed:

¢ Thorough knowledge of Java, and a working knowledge of VisuaIAgeD for
Java

« Experience with the Windows 2000" or Windows NT" user interfaces and
the Internet Explorer V5.5 web browser.

¢ Anunderstanding of creating content and programming for the Internet as
well as the World Wide Web environment.

¢ Anunderstanding of HTML 3.2 syntax, including tables and forms.
» Experience with database programming using SQL.
¢ Experience with the IBM WebSphere Application Server.

« Experience with Java Servlets, Java Server Pages (JSPs), and Enterprise
Java Beans (EJBs).

e Familiarity with IBM WebSphere Commerce Version 5.4, Business Edition.

¢ Knowledge of e-procurement systems.

Software requirements

The following must be installed on your system:

© IBM Corporation 2002 5

e IBM WebSphere Commerce Version 5.4, Business Edition on Windows NT
or Windows 2000 with the associated software stack.

¢ IBM DB2 Universal Database 7.2 (with Fixpack 5) or Oracle 8.1.7.2.

For more details on the software requirements, refer to the IBM WebSphere
Commerce Installation Guide.

Note: The hardware requirements will be the same as those for WebSphere
Commerce Version 5.4, Business Edition.

Conventions and terminology used in this book
Procurement integration

The procurement integration subsystem is a generic framework that enables
WebSphere Commerce to handle B2B transactions using industry-standard
protocols.

Reference application

A reference application is a set of system features combined or packaged
together as an offering that demonstrates to users a unique capability of the
system.

Member subsystem

The member subsystem is a component of WebSphere Commerce that
includes data for users, groups of users, and organizational entities.
Business logic provides registration, profile management, access control,
authentication, and session management services.

Catalog subsystem

The catalog subsystem is a component of WebSphere Commerce that
provides online catalog navigation, partitioning, categorization, and
associations. In addition, the catalog subsystem includes support for
personalized interest lists and customer display pages. The catalog
subsystem contains all logic and data relevant to an online catalog. This
includes categories, products, items, and any associations or relationships
among them.

Order subsystem

The order subsystem is a component of WebSphere Commerce that
provides shopping carts, order processing, and management functions
support. Related services such as pricing, taxation, payment, and fulfillment
are also part of the order subsystem. Order processing capabilities include
quick order or buy, scheduled orders, multiple pending orders, and reorders.

Contract

A contract is an arrangement between a seller and one or more buyers.
Through this contract, the buyers can purchase goods and services from the
seller, based on mutually agreed terms and conditions, for the specified
duration of time.

Note: A contract does not refer to a one-time purchase order. It is the agreement
on the terms of orders that the buyer may place during the validity period of the
contract.

6 Procurement Integration Guide

Chapter 2. Features of procurement integration

This section details the features, major capabilities, and business models of
procurement integration.

General overview

Procurement integration is a component of WebSphere Commerce that enables
the functionality to integrate external buy-side systems. It allows registered buyer
organizations to connect from their procurement systems to interact with the
supplier’s catalog system and conduct B2B e-commerce transactions. This
results in increased sales and enhances the organization’s B2B presence on the
web.

Procurement integration provides the following benefits:

e Suppliers can maintain a single catalog within WebSphere Commerce and
use that catalog to enable their own web presence and participate in the
procurement system’s network.

¢ Reduces costs of order processing through WebSphere Commerce
connectivity to Supply Chain Management, Retail Business System, and
Order Management backend systems. These automate the flow of orders
from the procurement system’s buyer to your business systems.

¢ Uses the updated B2B features of WebSphere Commerce to use and
maintain buyer organizations, buyer-specific catalogs, price lists, and
contract pricing.

Procurement integration gives connective capabilities to the Ariba procurement
system. It has out-of-the-box Commerce XML (cXML) capability that enables two
different ways of shopping, through local catalogs and Internet catalogs.

Local catalog orders

In the local catalog mode, suppliers have their catalogs replicated on the
procurement systems. Buyers browse the catalog and construct their shopping
carts without connecting to WebSphere Commerce. When the requisitioning
buyer submits the order, an Or der Request message is sent to WebSphere
Commerce (supplier) and batch processing of the order is performed. In this
mode, no approval function is executed as it is assumed that the incoming order
request is already approved. WebSphere Commerce sends a response
(OrderResponse) indicating the success or failure of the order request. Managing
the replication of the catalog is not within the scope of procurement integration.

Note: If there is a difference in the price of an item in the local catalog and the
supplier’s catalog, the price in the supplier’s catalog is used.

Internet catalog orders

In this mode, suppliers maintain a single catalog within WebSphere Commerce
and that catalog is used to enable their web presence and participation in the
procurement system’s network. When the buyer selects the supplier on the
procurement system, a connection is made to WebSphere Commerce through a
message, for example, PunchQut Set upRequest . After successful
authentication of the parties involved, WebSphere Commerce sends the

© IBM Corporation 2002 7

appropriate CatalogDisplay URL and related information to bind the session back
to the procurement system.

The procurement system uses the URL to display the WebSphere Commerce
catalog in the browser. From this point until the shopping cart is prepared, the
requisitioning buyer uses normal browser-based shopping.

When the requisitioning buyer prepares the shopping cart, it is placed in an XML
message for example, PunchQut Or der Message and is sent to the procurement
system for approval. When the approver on the procurement system approves
the order, an Or der Request message (the same as in local catalog mode) is
sent to WebSphere Commerce to create the order.

Major capabilities
To enable procurement integration the different subsystems of WebSphere
Commerce such as the member subsystem, catalog subsystem, order
subsystem, and so on are modified. To support XML messaging in WebSphere
Commerce, XML messaging over HTTP is introduced. New controller
commands, task commands, and view commands are introduced to support B2B
functionality. The database schema is enhanced with new tables and
corresponding EJBs.
The functionality included in the B2B sell-side extensions includes the following:
« Buyer organization registration.

« Buyer organization profile.

e Support for buyer and seller organization identification numbers, such as
DUNS.

¢ Product classification code support for catalog entries and products, such as
SPSC or UNSPSC.

¢ Unit of measure support for products, such as UNUOM.

e Contract support between buyers and sellers, where buyers can get specific
views and prices of products based on the contract.

e The ability of the shopping cart functionality to send the shopping cart to the
buyer systems for approval.

« The ability to process purchase orders sent from an external system.
¢ The buyer’s ability to change their shopping carts.

« The buyer’s ability to inspect the availability of a product before placing an
order.

¢ The buyer’s ability to obtain more information about a product from their
external procurement systems.

¢ The ability to process large orders from the external buyers.

8 Procurement Integration Guide

The ability to register requisitioning buyers from the external buyer
organizations during runtime.

The ability to authenticate and validate requests from buyers from external
systems.

Business models enabled

The following business models are enabled by procurement integration::

Suppliers can maintain a single catalog at the supplier’s site, and buyers can
do Internet catalog shopping at the supplier’s site.

Suppliers can receive messages from external procurement systems like
. 0
Ariba, Commerce One —, and so on.

Many buyers can access a single supplier’s store.
The shopping cart can be sent in the procurement system’s specific.
Buyers can receive Internet catalog orders.

You can receive unsolicited orders through local catalog shopping.

Chapter 2 Features of procurement integration 9

10 Procurement Integration Guide

Chapter 3. Supported cXML messages

Procurement integration uses five cXML messages (XML over HTTP) to integrate
with Ariba. There are two inbound messages to WebSphere Commerce from
Ariba, and three outbound response messages from WebSphere Commerce to

Ariba.

The following are the messages and commands directly invoked by the
messages (for inbound messages) or commands sending out the messages (for
outbound messages):

Message Name Command (ME) Direction | Response
PunchOutSetupRequest PunchOutSetup IN PunchOutSetupResponse
OrderRequest BatchOrderRequest IN OrderResponse
PunchOutSetupResponse PunchOutSetup ouT

PunchOutOrderMessage PrepareOrder ouT

OrderResponse BatchOrderRequest ouT

Here, PunchQut Or der Message is the shopping cart sent to Ariba for approval.
For sample messages see, “Appendix B: Sample XML messages”.

© IBM Corporation 2002

11

12 Procurement Integration Guide

Chapter 4. Configuring the reference application

This section covers how to configure the buyer and supplier settings. It also
provides information on creating a new store and enabling an existing store with
procurement integration.

Configuring the buyer and supplier
Configuring supplier settings

In the Pl Suppl i er Confi g. xn file presentin the

procurenenti nt egrati on. zi p modify the supplier information to configure a
new PISupplier as a member of WebSphere Commerce. A confi g. bat file is
provided to load the configuration data for the Windows environment only. This
file resides in the same directory as the configuration XML files. The

Confi g. t xt file in this directory describes how to run the conf i g. bat file. The
following is a code fragment from Pl Suppl i er Confi g. xm :

<menber
Menber _i d="1"
Type="0CO
State="1"

/>

<or gcode

orgcode_i d="1"

orgentity_i d=<StoreOmerld>
codet ype=" DUNS"

code="sreed"

/>

<menber
Menmber _i d="1"
Type="0O'
State="1"

/>

<vi ew eg

vi ewname="PunchCQut Ari baVi ew'
devi cef nt _i d="-10000"
storeent _i d="0"
i nt erfacenanme="com i bm conmer ce. command. Ht t pFor war dVi ewConmand”
cl assnane="com i bm conmer ce. command. Ht t pFor war dVi ewConmand| npl "
properti es="docnane=PunchQut Set upResponse. j sp"

/>

<vi ew eg
vi ewnane="PunchQut Ari baErr or Vi ew"
devi cef nt _i d="-10000"
storeent i d="0"
i nterfacenanme="com i bm commer ce. command. H t pFor war dVi ewConmand"
cl assnanme="com i bm conmmrer ce. conmand. Ht t pFor war dVi ewComrand| npl "
properti es="docnane=PunchQut Ari baError.jsp"

/>

© IBM Corporation 2002 13

<vi ewr eg

vi ewnane="PunchQut Cat al ogVi ew"
devicefm id="-1"
storeent _i d="0"

i nterfacenanme="com i bm conmer ce. command. Ht t pFor war dVi ewConmand"
cl assnanme="com i bm conmmer ce. comrand. Ht t pFor war dVi ewComrand| npl "

properties="docnanme=PunchCut Cat al ogDi spl ay. j sp"
/>

<vi ewr eg
vi ewnane=" Submi t Shoppi ngCart Vi ew'
devi cef nt _i d="-1"
storeent _i d="0"

i nterfacenanme="com i bm commer ce. command. Ht t pFor war dVi ewConmand"
cl assnane="com i bm conmer ce. command. Ht t pFor war dVi ewConmand| npl "

properties="docnanme=Subni t Shoppi ngCart.jsp"
/>

<vi ewr eg
vi ewnane=" Submi t Shoppi ngCart Error Vi ew'
devi cefnt _i d="-1"
storeent _id="0"

i nterfacenanme="com i bm commer ce. cormand. Ht t pFor war dVi ewConmand"
cl assnanme="com i bm conmer ce. conmand. Ht t pFor war dVi ewComrandI npl "

properti es="docnane=error.jsp"
/>

<vi ewr eg
vi ewname=" SendShoppi ngCart Vi ew'
devi cefnt _id="-1"
storeent _i d="0"

i nt erfacename="com i bm conmer ce. cormand. Ht t pFor war dVi ewConmand"

cl assnanme="com i bm commrer ce. command. Ht t pFor war dVi ewComrand| npl "

properti es="docnane=ConposeShoppi ngCart Ari ba. j sp"
/>

<vi ewr eg
vi ewnane=" SendShoppi ngCart Error Vi ew'
devicefm id="-1"
storeent _i d="0"

i nterfacenanme="com i bm conmer ce. command. Ht t pFor war dVi ewConmand"
cl assnanme="com i bm conmmer ce. command. Ht t pFor war dVi ewComrandl| npl "

properti es="docnane=error.jsp"
/>

<vi ew eg
vi ewnane="Pur chaseOr der ResponseAri baVi ew'
devi cef nt _i d="-10000"
storeent _i d="0"

i nt erfacenanme="com i bm conmmer ce. command. Ht t pFor war dVi ewConmand"
cl assnane="com i bm conmer ce. command. Ht t pFor war dVi ewConmand| npl "

properti es="docnane=Pur chaseOr der ResponseAri ba. j sp"
/>

<vi ewr eg
vi ewnane="PunchQut Cat al ogEdi t Vi ew"
devi cefnt _id="-1"
storeent id="0"

i nterfacenanme="com i bm conmmer ce. cormand. H t pFor war dVi ewConmand"
cl assnanme="com i bm conmer ce. conmand. Ht t pFor war dVi ewComrand| npl "

properti es="docnane=PunchQut Cat al ogDi spl ay. j sp"
/>

14 Procurement Integration Guide

Getting buyer invitations and soliciting buyer information

To transact business with a buyer over the procurement system, a buyer must
invite you to become a supplier. Once invited, you must obtain some basic
information about the buyer and enter that information into WebSphere
Commerce. Information specific to the procurement system is collected through
new forms that are part of procurement integration.

See “Appendix D: Sample buyer information form” for a sample form You may
implement and deliver this form in any manner you wish — as a printed form, a file
sent as an e-mail attachment, a web-based form, and so on. Typically, you would
send this form to a buyer or have them complete the form on the Internet.

Once the buyer completes the form or you obtain the buyer information in some
other manner, you can proceed to register a new buyer organization.

Configuring buyer settings

A buyer organization or a buyer is any business organization that wants to
procure goods and services. There may be multiple buyer organizations within a
buyer’s enterprise. To create and configure the buyer, you must update the
database tables with the buyer information. You can do this by creating an XML
file.

In the Pl Buyer Confi g. xnl file presentin the

procurenenti ntegration. zi p modify the supplier information to configure
a new PIBuyer as a member of WebSphere Commerce. A confi g. bat file is
provided to load the configuration data. This file resides in the same directory as
the configuration XML files. The Confi g. t xt file in this directory describes how
to run the conf i g. bat file. The following is a code fragment from

Pl Buyer Confi g. xm :

<nenber
Menber i d="5000"
Type="0CO
State="1"

/>

Type ‘O’ specifies that the member is an organization.
<orgentity

Orgentity id="5000"

O gentitytype="C

Orgentitynanme="5t apl es”
/>

Orgentitytype indicates that the type is an organization.

Or gent i t ynane, is the name of the department or organization.

Chapter 4 Configuring the reference application 15

<or gcode
orgcode_i d="2"
orgentity id="5000"
codet ype="Ari baNet wor ki d”
code="nkri shna@n. i bm conf
/>

code and codet ype represent the DUNS number or any other mutually agreed-
on number.

Add an address book entry to the address book and address tables.

<addr book
addr book_i d="4000"
di spl aynanme="St apl es address Book"
menber _i d="5000"

/>

<addr ess
addr book i d="4000"
addr ess_i d="3000"
menber _i d="5000"
ni cknanme="St apl es_Ni ckNamel"
sel faddress="1"
addressl1l="Airport Road"
ci ty="Bangal or e"
country="Indi a"
st at e=" Kar nat aka"
zi pcode="560008"
status="P"

/>

<nbrattrva
nbrattrval i d="790"
nmenber i d="5000"
attrtype_i d="1 NTEGER"
nbrattr_id="-21"
i nt egerval ue="1"

/>
<!I'-- Now register the protocol which the buyer supports - - >
<procsys
procsysname="Ari ba”
/>

<pr ocpr ot cl
procprotcl _id="1"
procsysname="Ari ba”
pr ot ocol nane="cXM."
version="1.0"
aut ht ype="1"
t wost epnode="Y"
cl assi f domai n=" UNSPSC’
uonst andar d=""

/>

16 Procurement Integration Guide

<pr ocnmsgvw
procprotcl id="1"
orgentity id="5000"
nsgnane="PunchQut Set up”
vi ewnane=" PunchQut Ari baVi ew’
/>

<pr ocnsgvw

procprotcl id="1"

orgentity id="5000"

nsgnane=" SendShoppi ngCart”

vi ewname=" SendShoppi ngCart Vi ew’
/>

<pr ocnsgvw
procprotcl id="1"
orgentity id="5000"
nmsgnane="Pur chaseOr der Response”
vi ewnane=" Pur chaseOr der ResponseAri baVi ew’
/>

<pr ocbuyprf
procprotcl _id="1"
orgentity_i d="5000"
reqgi dpar n¥" User”
or guni t par m=<dept Nanme>
/>

Creating member groups for buyers

A member group is a collection of buyers as defined by the supplier, who share a
common interest. Member groups are similar to the exclusive clubs offered by
large stores for their frequent or preferred buyers. Being part of a member group
can entitle buyers to discounts or other bonuses when purchasing products. For
example, if market research shows that certain buyers repeatedly purchase
certain products, you can assign these buyers to the same member group.
Alternatively, you can create a member group to reward frequent buyers for their
business. You can assign different prices to products for different member
groups. You can also customize the way products and categories are shown to
member groups.

A procurement integration buyer can belong to one member group, the default
group. Creating the procurement integration buyer group is similar to creating a
member group for buyers. The f ont nbr gr p_i d must be present in the
BUYSUPMAP table with the f ont buyor guni t _i d and the f ont supor g_i d to
form a unique index.

A sample XML file, Pl Buyer Conf i g. xm is provided to create member groups
for buyers. The following is a code fragment from the file Pl Buyer Confi g. xm :

<memnber
Menber i d="101"
Type=*G’
State="1"
/>

Chapter 4 Configuring the reference application 17

<nbrgrp
Mor gr p_i d="101"
nbr gr pnane="Store Requi sitioners for BuyOg”
Omner _i d=*5000"

/>

This fragment creates a member with the type ‘O’, which represents the member
group.

The Oaner _i d is the Menber _i d that owns the group. If the buyer group will
apply site-wide, set this to zero. Otherwise, consider setting the ID to the
orgentity_ i d of the organization within which this buyer group is used.

<buysupnap
procprotcl id="1"
buyorgunit_i d="5000"
supor g_i d=<St or eOaner | d>
catal og_id="1"
nbrgrp_i d="101"

/>

The buyer and supplier must have access to execute the WebSphere Commerce
or procurement integration commands. The following XML fragment assigns
roles to the buyers and suppliers required to execute the commands.

<nbrol e
menber _i d="5000"
role id="-25"
orgentity id="-2001"

/>

<nbrre
descendant _i d="5000"
ancestor i d="-2001"
sequence=2

/>

Register a buyer with the Ariba Net wor kUser |1 d as the | ogonl d and

Shar edSecr et as the password for the buyer organization from the
adminconsole. Assign the ‘Procurement Buyer Administrator’ role to this buyer.
This default buyer can now dynamically register other buyers from the
procurement system. Assign this buyer to the member group created previously.
For instructions on how to create a user refer to the WebSphere Commerce
online documentation

Note: Restart the instance after configuring the buyer and supplier.

Creating and configuring your store
To provide an Internet catalog, you can create a new store in your WebSphere
Commerce Installation or configure an existing store. Use the Pl Ref App. sar
provided with this reference application as a template.

Note: You must disable the cache in the WebSphere Commerce instance that is
being used for this reference application.

1. Publish a new procurement — enabled store

18 Procurement Integration Guide

a. Before you begin, make sure that the following services are running:

e IBMHTTP Server
e IBM WS AdminServer
* WebSphere Commerce Server instance

For more details on Starting and stopping services, refer to the WebSphere
Commerce Installation Guide.

b. From procurementintegration.zip copy Pl Ref App. sar to the
WCBE | nst al | _Pat h\ sanpl es\ st or es\ Tool Tech directory.

c. GotoWCBE Install Path\xm \tool s\devtool s. Open the file
SARRegi stry. xm . Append the following code to the end before
the last line, </ SAR- pr operti es>

<Sanpl eSAR
fil eNanme="Pl Ref App. sar"
rel ati vePat h="Tool Tech" >
<htm | ocal e="en_US"
featureFi|l e="Tool Tech/ Feature_refapp_en_US. htm "
sampl eSi t e="Tool Tech/ previ ew en_US/ i ndex. htm "/ >
</ Sanpl eSAR>

d. Copy the file Feat ure_refapp_en_US. ht M from the
downloadable location to
WCBE | nst al | _Pat h\ sanpl est or es\ Tool Tech.

e. Editthefilestore-all.dtdinWCBE | nstall _Pat h\xm \sar.

You need to add the following to the <store-asset> element just before
the symbol “) *) >”

| cl asi fcode | clsfcodeds |catclsfcod

Add the following lines at the end:

<! ELEMENT cl asi f code EMPTY>

<! ATTLI ST cl asi f code

clasifcode_ id CDATA #REQUI RED
domai n CDATA #REQUI RED
code CDATA #REQUI RED
par ent code CDATA #1 MPLI ED

>

<! ELEMENT cl sf codeds EMPTY>
<! ATTLI ST cl sf codeds

| anguage_i d CDATA #REQUI RED
clasifcode_id CDATA #REQUI RED
description CDATA #REQUI RED

>

<! ELEMENT cat cl sfcod EMPTY>

<! ATTLI ST catcl sfcod
catentry_ id CDATA #REQUI RED
dommi n CDATA #REQUI RED

Chapter 4 Configuring the reference application 19

code CDATA #REQUI RED

f. Restart the WebSphere Commerce Server —i nst ance_nane by
selecting Start >> Programs >> IBM WebSphere >> Application
Server V3.5 >> Administrator’s Console. Expand your hostname,
and go to WebSphere Commerce Server — i nst ance_narne. Right
click, and select Stop. After it stops successfully, start it again.

g. Start Store Services: from the Start menu, select Programs >> IBM
WebSphere Commerce >> Store Services.

h. Click the New button on the right-hand pane. All the sample store
archives are listed in a list box named “sample.”

i. Provide the store archive and store directory name. Select the
Owner organization for this store and select the Pl Ref App. sar file
from samples list. Click OK.

j- Select the store archive created in the previous step and click on
Publish. This may take some time. Click Refresh to see the Publish
Status change from ‘Not Published’ to ‘Publishing’ and then to
‘Publishing Completed Successfully’.

Enabling an existing store with procurement integration

The procedures in this section assume that you have already published a store
using Store Services. This process creates stores with a standard structure.
Since stores created by means other than Store Creator can vary dramatically in
organization, capability, and layout, there is no standard set of instructions that
can explain how to enable these stores.

Note: You must disable the cache in the WebSphere Commerce instance.
To enable a store that already exists in WebSphere Commerce, do the following:

1. Make a backup of the web directory for your existing WebSphere Commerce
catalog,
WebSpher eAppServer _I nstal |l ati on_Pat hl nstal | edApps/ WC_Ent

erpri se_App_instance_nane ear/wcstores.war/. Where,
i nst ance_nane is the name of the WebSphere Commerce instance in
your installation.

2. Navigate to the
WebSpher eAppServer _Installation_Path/lnstall edApps/ WC En

terprise_App_instance_nane. ear/wstores. war/. Where,

i nst ance_nane is the name of the WebSphere Commerce instance in
your installation and <st or edi rect ory> di rectory where
store_directory contains all the pages of your website. Open the
shoppi ngcart.j sp in any editor.

3. Extract Pl Ref App. sar into a temporary directory and open
shoppi ngcart.j sp.

4. Make the necessary changes to the shoppi ngcart . j sp in your store to

call the Submi t Shoppi ngCar t Crd during checkout (or) addToOr der by
comparing it with the Pl Ref App’ s shoppi ngcart.j sp.

20 Procurement Integration Guide

7.

Copy Punchout Set upResponse. j sp, Punchout Cat al ogDhi spl ay. j sp,
Punchout Qut Ari baError.jsp, Subm t Shoppi ngCart. | sp,

Pur chaseOr der Response. j sp, and

ConposeShoppi ngCart Ari ba. j sp into your

WebSpher eAppServer _Installation_Path/lnstall edApps/ WC_En
terprise_App_<instance_nane>. ear\wcst or es. war / directory.

From PI Ref App. sar, extract dat a/ r ef app. dt d and dat a/ r ef app. xm
into any temporary directory. Edit r ef app. xm to change the element from
<refapp-asset> to <import> and the closing tag from </refapp-asset> to
</import>. Edit r ef app. dt d and change the element type from refapp to
import. Change the corresponding cat ent ry_i d values to those of the
existing store catalog’s cat ent ry_i ds. Add more or delete some if
required. Set the classpath to contain the following jar or zip files.

cl asspat h=%I asspat h%

WCBE Install _Path\lib\loader\jgl2.0.0.jar;
WCBE Install _Path\lib\loader\jlog.jar;
WCBE I nstall_Path\lib\loader\wcnmxm p.jar;
WCBE I nstall_Path\ | oader\wcnxslt.jar;
WCBE I nstal | _Path\Iib\Il oader\Logger. zi p;
WCBE_I nstal | _Path\1i b\l oader\ WCALogger . zi p;
WCBE I nstall _Path\lib\l oader\ SAFServ. zi p;
WCBE Install _Path\lib\loader\I|dResGen. zi p;
WCBE I nstall _Path\li b\l oader\ MassLoader. zi p;
WCBE I nstall _Path\li b\l oader\ WCMConmon. zi p;
WCBE I nstall _Path\lib\l oader\db2\ dbconnect. zi p;
WCBE | nstal | _Pat h\ commer ce\ xnl \ | oader;

Run the following command from the command window:

java comibm wca. MassLoader. MassLoad - dbnane <dbnane>
- dbuser <dbuser> -dbpwd <dbpwd> -infile refapp.xm
-met hod sql i nport

This will insert the required classification code for the respective catentries.

Restart the WebSphere Commerce instance.

Note: When buyers access your catalog though a remote session, they see a
slightly different navigation sequence than when viewing your store directly
through WebSphere Commerce. This is normal. Message extensions replace
certain standard operations such as the checkout process with applications that
incorporate message extension order processing workflow in place of the
standard WebSphere Commerce flow.

Business account for the supplier and buyer

1. Create a business account

For instructions on how to create a business account refer to the WebSphere
Commerce online documentation. When creating a business account note
the following:

Don’t select the Allow customers to purchase under the terms and
conditions of store’s default contract checkbox in the Customer page.

Chapter 4 Configuring the reference application 21

Don’t select the Purchase order number may be specified at the time of
the order checkbox in the Purchase Order page.

Specify the credit line account number in the Credit Line page.

2. Create a contract for the business account created previously.

For instructions on how to create a contract for the business account refer to
WebSphere Commerce online documentation. When creating a contract note
the following:

¢ Select the Allow the payment using the account’s credit line checkbox.

« Don't specify any contract shipping addresses. This is required only if
shipping is necessary for various shipping addresses.

w

. Modify the payment method information for the store using the following sql:
updat e cndreg set
cl assnane=' com i bm comer ce. paynent . conmands. DoPaynent MP

FCrdl nmpl * where storeent _i d=<SupplierOgStorel D> and
i nterfacename="com i bm comer ce. paynment . DoPaynment Cnd’

Your store is now enabled with procurement integration.

22 Procurement Integration Guide

Chapter 5. Customizing procurement integration

Procurement integration provides an extensible and customizable framework to
support B2B transactions on top of WebSphere Commerce so that one can
extend the message, schema, or business logic. This component is built over
WebSphere Commerce in order to enable the functionality to integrate external
buy-side systems.

Enabling procurement integration for other procurement
systems

To enable procurement integration for different procurement systems such as
Ariba, mySAP, Commerce One, and so on, means supporting the system with
the functionality to handle different protocols such as cXML, OCI, and XCBL.

Procurement integration provides out-of-the-box cXML support. It can also
support any other protocol as long as it receives XML over HTTP. To support
new protocols, you need to customize procurement integration. This
customization involves the following:

¢ Registering the new protocol with procurement integration.

« Creating the configuration file (that is, mapping protocol-specific XML to
procurement integration specific variables).

¢ Customizing the procurement integration specific Java Server Pages (JSP).

e Customizing the different subsystems like member subsystem, catalog
subsystem, and order subsystem.

1. Registering a new protocol with procurement integration

This includes creating an entry for the new protocol in the database and
associating it with the suppliers and buyers by doing the following:

a. Populate the procurement system information into the PROCSYS table
for the new procurement system.

b. Populate the protocol-specific information like protocol name, version,
format, and so on into the PROCPROTCL table.

c. Populate the view task name for the specific protocol. Each procurement
integration command (PunchQut Set up, Bat chOr der Request,
SendShoppi ngCart) that needs to compose a response message to be
sent to the procurement system will look up the PROCMSGVW table to
get the correct view task name.

d. Populate the PROCBUYPRF table that contains the buyer organization’s
profile information such as the requisition id, department name, and so
on.

e. Associate the buying organization unit with the supplier. Populate the
BUYSUPMAP table that will contain the pr ot ocol id,catal og id,

© IBM Corporation 2002 23

and the member gr oup i d created for the buyer.

See, “Configuring the buyer and supplier” for sample XML files to
populate these tables.

2. Creating configuration files

To let procurement integration understand the incoming XML message, the
message must be mapped to a WebSphere Commerce or procurement
integration command and the elements of the message must be mapped to
the parameters of that command. For instance, map the | ogon request,
order request, and other messages to their respective commands using
a system template or user template. Refer to “Appendix A:
System_template.xml” for more information.

To receive XML over HTTP enable the HTTP adapter in

WCBE I nstall _Path\instances\instance_nane\ xm \ <i nst ance_
nanme>. xm by changing enabled="true" in the following section of the XML
file.

Note: Where i nst ance_nane is the name of the instance in your WebSphere
Commerce installation.

<Ht t pAdapt ers di spl ay="fal se">
<Ht t pAdapt er devi ceFor mat Typel d="-10000"
enabl ed="true"
devi ceFor mat Type="Xm Ht t p"
devi ceFor mat | d="-10000"
nane="XM./ HTTP"
factoryd assname="com i bm conmmer ce. pr ogr amadapt er .
Ht t pPr ogr amAdapt er | npl " >
<Pr ogr amAdapt er >
<Sessi onCont ext
cl ass="com i bm commer ce. messagi ng. pr ogr anedapt er. security.
Credenti al sSpeci fi edProgr amAdapt er Sessi onCont ext | npl " >
<Sessi onCont ext Config />
</ Sessi onCont ext >
<Configurati on supportedMessageMapper s="WCS. | NTEGRATI ON'
support edCont ent Types="text/xm , text/xm ;charset=UTF-8,
text/xm - SOAP"
support edMet hods="PCOST, M PCST"
support edChar act er Encodi ng="1S08859-1, UTF-8" />
</ Progr amAdapt er >
</ Ht t pAdapt er >
</ Ht t pAdapt er s>

You can configure the XML or HTTP adapter support using a separate
template XML file for each procurement system. To do this, add the following
section to the message-mapper group section for each message mapper in
demo.xml.

The path is:

<drive>\WCBE I nstall _Path\instances\instance_nane\ xm .
Where i nst ance_nane is the name of the instance in your WebSphere
Commerce Installation.

<MessageMapper
nessageMapper | d="1"
cl assnane="com i bm conmer ce. messagi ng. pr ogr amadapt er .
messagenmapper . ecsax. ECSAXMessageMapper "
enabl e="true"

24 Procurement Integration Guide

/>

nanme="WCS. | NTEGRATI ON' >
<configuration

Add the following lines under the configuration element before the end tag, in
the code given above.

/>

> NT W 2000

EcSyst enTenpl ateFi | e="ari ba_sys_tenplate. xm"

EcTenpl at ePat h="C: \ WebSpher e\ Conmmer ce\ xm \ nessagi ng"
Ecl nboundMessageDt dFi | es="cXM.. dt d"

cl nboundMessageDt dPat h="C: \ WebSpher e\ Comrer ce\ xmi \ nes
sagi ng"

/>

A _ _
EcSyst enTenpl at eFi | e="ari ba_sys_tenplate. xm "

EcTenpl at ePat h="/usr/ WebSpher e/ Conmrer ceSer ver/ xm / mes
sagi ng"

Ecl nboundMessageDt dFi | es="cXM.. dt d"

cl nboundMessageDt dPat h="/ usr/ WebSpher e/ Commrer ceSer ver
/ xm / messagi ng"

/>

EcSyst enTenpl at eFi | e="ari ba_sys_tenplate. xm "

EcTenpl at ePat h="/ opt / WebSpher e/ Cormer ceSer ver/ xm / mes
sagi ng"

Ecl nboundMessageDt dFi | es="cXM.. dt d"

cl nboundMessageDt dPat h="/ opt / WebSpher e/ Conmrer ceServer/ xm / m
essagi ng"

Note: Some e-procurement protocols use HTML as the transport format instead
of XML. Procurement integration can support such messages. Refer to
“Appendix C: LogonRequest in HTML format” to configure an HTML message.

3.

Customizing JSPs

JSPs generate the messages that need to be transferred to different
procurement systems. To generate messages in any format specific to a
protocol, customize the following JSPs:

Logon Response JSP
Shopping Cart JSP

Purchase Order Request JSP
Order Response JSP

For protocol specific messages, modify the following JSPs and then update
the VIEWREG table accordingly:

PunchQut Cat al ogDi spl ay. | sp
PunchQut Set upResponse. j sp
OrderltenDi splay.jsp

Submi t Shoppi ngCart.jsp

Chapter 5 Customizing procurement integration 25

ConposeShoppi ngCart Ari ba. j sp
Pur chaseOr der ResponseAri ba. j sp

4. Customizing the member subsystem

The member subsystem may be customized in the following ways:

Adding extension tables to the existing member subsystem schema or
modifying the existing tables.

Adding entity beans corresponding to the new tables or modifying the
existing entity beans to reflect changes in the table schema.

Implementing new controller and task commands.

For instructions, refer to the WebSphere Commerce Programmers Guide
Version 5.4.

Extending the controller and task commands.
Receiving LogonRequest in HTML format.

Refer to “Appendix C: LogonRequest in HTML format” to customize
PunchQut Set upCnd.

Customizing commands

You can extend any of the procurement integration controller and task
commands to provide custom behavior by over-riding certain methods.
For instructions, refer to the Programmers Guide for WebSphere
Commerce Version 5.4. Each command is based on an interface; and
one way to customize a certain command would be to provide a custom
implementation of the required interface. A default implementation class
has been provided for some interfaces.

The following is a list of all the membership subsystem interfaces and
their default implementation classes:

Controller commands

Interface Default Implementation
PunchOutSetupCmd PunchOutSetupCmdIimpl

PunchOutCatalogDisplayCmd | PunchOutCatalogDisplayCmdImpl

Task commands

Interface Default Implementation
AuthenticationHelperCmd AuthenticationHelperCmdImpl
ProcurementDBAuthenticationCmd | ProcurementDBAuthenticationCmdimpl
LdapAuthenticationCmd

RegisterRequisitionerCmd RegisterRequisitionerCmdImpl
ThirdPartyB2BauthCmd

26 Procurement Integration Guide

b. Customizing CIData

The PunchQut Set upCnd uses the ClData object to store all the XML
parameters that it receives from the PunchQut Set upRequest
message. A default implementation of the CIData interface is provided in
CliDatalmpl. To customize ClData, the buyer can provide a custom
implementation of the ClData class. This captures custom information
from the XML parser.

The PunchQut Set upCnd receives the XML parameters in the form of a
TypedPr oper t y data structure that extends the HashTable class. It
then passes the TypedPr oper t y object to the ClData object in the

set Request Properti es() method as follows:

Example:

public void set Request Properties(TypedProperty
typedproperty)throws ECException
{

String s = "set Request Properties";
ECTrace. entry (ECTracel dentifiers. CO/PONENT _USER,
get d ass().get Name(), s);
request Properties = typedproperty;
ci Dat a. set LogonDat a(t ypedproperty);
ECTrace. exit(16L, getd ass().getNane(), s);
}

The procurement integration data then processes the TypedPr operty,
thatis t ypedpr operty in the method processHeader (). The
pr ocessHeader () method in turn populates the following objects:

i) SupplierCred — Stores the supplier credentials for authentication
purposes.

i) BuyerCred — Stores the buyer organization credentials for
authentication purposes.

i) MpCred — If the PunchQut Set upRequest comes from an
online marketplace, then this object stores the marketplace
credentials for authentication purposes.

iv) B2BAgent — Captures the information about the messaging
protocol.

v) Sessioninfo — Stores information relevant to register the
requisitioning buyer.

Any of these may be modified to store information received through
custom elements in the XML message. The following example shows
how some of the supplier credentials are set.

Example:
private void processHeader (TypedProperty
t ypedproperty)
{
String s = "processHeader";

supplierCred = new Credential s();

Chapter 5 Customizing procurement integration 27

suppl i er Cred. set Code(typedproperty.getString
("supplierCode", null));

suppl i er Cred. set CodeDonai n(typedproperty. getString
("supplierCodeType", null));

}
c. Customizing authentication

The authentication functionality provided with procurement integration
can be modified in one of the two ways:

i) Customizing the authentication type

The default authentication mechanism provided is the authentication
against credential information stored in the WebSphere Commerce
database. This authentication is performed by the
ProcurementDBAuthenticationCmd task command.

You have the option to customize authentication so that it will be
performed against a Lightweight Directory Access Protocol (LDAP)
directory by implementing the interface LdapAut hent i cati onCnd.
Alternately, you can choose to use a third-party authentication
mechanism by implementing the interface

Thi r dPar t yB2BAut hCnd.

i) Customizing the authentication level

In procurement integration, you are provided with four possible levels
of authentication. For a description of these authentication levels
please refer to the description of the

Pr ocur enent DBAut hent i cat i onCnd.

You may also specify a fifth level of authentication to customize the
authentication level. This must be specified in the database during
buyer registration. In addition, the authentication command, either

Pr ocur ement DBAut hent i cati onCnd,

LdapAut henti cati onCnd, or Thi rdPar t yAut henti cati onCnd
must be modified to handle the new authentication level.

d. Customizing registration

The controller command PunchQut Set upCrrd makes a call to the task
command Regi st er Requi si ti oner Cnd to register the requisitioning
buyer based on the session information stored in the sessi onl nf o
object. To add, remove, or modify registration information complete the
following steps:

i) Modify the tables in the database or any other persistent data
storage being used to reflect this change. If the WebSphere
Commerce database is being used, then modify the BUSPROF
table that stores the information about the requisitioning buyer.

i) Provide a custom implementation of the procurement integration
data interface to capture custom information about the

28 Procurement Integration Guide

requisitioning buyer from the XML message. Store the
information in the appropriate sessi onl nf o object variables, or
provide added class variables in the

regi st er Requi si ti oner Cd command with their appropriate
getter and setter methods. These variables will then be set
directly rather than being passed as members of the

sessi onl nf o object.

i) Modify the per f or nExecut e() method of the
regi st er Requi si ti oner Crd to update the persistent data
storage, the BUSPROF table for example, with the custom data.

e. Customizing store catalog display in PunchQut Set upCnd

Once a buyer organization is authenticated and the requisitioning buyer
has been registered, do the following in the per f or mExecut e()
method of the PunchQut Set upCnd:

i) All the parameters to be passed on to
PunchQut Cat al ogDi spl ayCnd are stored in the
Buyer Request | nf 0 object.

ii) The Buyer Request | nf o object is stored in the
SupplierCookieTable.

iii) PunchQut Set upCnd will return the URL of
PunchQut Cat al ogDi spl ayCnd, which will be invoked by the
procurement system along with the supplier cookie value as its
parameter.

Example:

The following is the code that performs this function in
PunchQut Set upCnd:

public void perfornExecute()throws ECException

{
Buyer Request I nfo buyerrequestinfo = new
Buyer Request | nfo() ;
buyerrequesti nfo. set Usersl d(userld);
§ .ri ng sl =
Suppl i er Cooki eTabl e. put (buyer requesti nfo);
get I nst ance()
responseProperties. put ("comrandNane",
PunchQut Cat al ogDi spl ayCmd?suppl i er Cooki e="
+ sl);
}

iv) The PunchQut Cat al ogDi spl ayCnrd will set the view name as
PunchQut Cat al ogVi e, which in turn will call
PunchQut Cat al ogDi spl ay. j sp.

v) The PunchCut Cat al ogDi spl ay. j sp will then call the command
invoked by the URL that will bring up the store’s home page.

Chapter 5 Customizing procurement integration 29

f. Customizing the store catalog display
Doing the following can customize the store catalog display:

i) Modify the parameters being passed on to the store catalog
display page. To do this add the parameter with its value to the
responseProperti es in the per f or nExecut e() method of
PunchQut Cat al ogDi spl ayCnd. These parameters can then
be captured in PunchCut Cat al ogDi spl ay. j sp.

i) Modify the target command from
PunchQut Cat al ogDi spl ay. j sp.

iii) Specify the new URL in place of the default URL provided in the
appropriate logon mode.

iv) Modify the target .JSP invoked from the URL command. To do
this change the appropriate value on the URLREG table in the
WebSphere Commerce database.

5. Customizing the order subsystem
The order subsystem can be customized in the following ways:
« Extend the controller and task commands.

¢ Add extension tables to the existing order subsystem schema or
modifying the existing tables.

« Add entity beans corresponding to the new tables or modify the existing
entity beans to reflect changes in the table schema.

¢ Implement new controller and task commands.

For instructions, refer to the WebSphere Commerce Programmers Guide
Version 5.4.

a. Customizing commands

You can extend any of the controller and task commands to provide
custom behavior by over-riding certain methods. For instructions, refer to
the WebSphere Commerce Programmers Guide Version 5.4. Each
command is based on an interface, and one way to customize a certain
command would be to provide a custom implementation of the required
interface. A default implementation class has been provided for each
interface.

The following is a list of all the order subsystem interfaces and their
default implementation classes:

Controller commands

Interface Default implementation
BatchOrderRequestCmd BatchOrderRequestCmdIimpl
ProcurementOrderPrepareCmd ProcurementorderPrepareCmdimpl

30 Procurement Integration Guide

Task commands

Interface Default implementation
AuthenticationHelperCmd AuthenticationHelperCmdImpl
ProcurementDBAuthenticationCmd ProcurementDBAuthenticationCmdImpl
ShipBillToAddressCmd ShipBillToAddressCmdimpl
LdapAuthenticationCmd

RegisterRequisitionerCmd RegisterRequisitionerCmdImpl
ThirdPartyB2BauthCmd

b. Customizing CIiData

The Bat chOr der Request Cnd uses the ClData object to store all the
XML parameters that it receives from the Or der Request message. A
default implementation of the CIData interface is provided in ClDatalmpl.
To customize ClData, provide a custom implementation of the ClData
class to capture custom information from the XML parser.

The Bat chOr der Request Cnd receives the XML parameters in the form
of a TypedPr oper t y data structure that extends the HashTable class. It
then passes the TypedPr oper t y object to the ClData object, which
then processes it using the method pr ocessHeader (). The

pr ocessHeader () method populates the following objects:

i) SupplierCred — Stores the supplier credentials for authentication.

ii) BuyerCred — Stores the buyer organization credentials for
authentication.

iii) MpCred — If PunchOutSetupRequest has come from an online
marketplace then this object stores the marketplace credentials
for authentication purposes.

iv) B2BAgent — Captures the information about the messaging
protocol.

v) Sessionlnfo — Stores information relevant to register the
requisitioning buyer.

vi) Any of the above may be modified to store information received
via custom elements in the XML message.

c. Customizing authentication

The authentication functionality provided with procurement integration
can be modified in one of the two ways:

i) Customizing the authentication type
The default authentication mechanism provided is authentication
against credential information stored in the WebSphere Commerce

database. This authentication is performed by DBAuthenticationCmd
task command.

Chapter 5 Customizing procurement integration 31

You have the option to customize authentication so that it is
performed against an LDAP directory by implementing the interface
LdapAut henti cati onCnd.

Add to above Alternately, you can choose to use a third-party
authentication mechanism by implementing the interface
ThirdPartyB2BAuthCmd.

i) Customizing authentication level

Procurement integration provides you with four possible levels of
authentication. For a description of these authentication levels,
please refer to the description of the DBAut hent i cati onCnd.

You may also specify a fifth level of authentication to customize the
authentication level. You must specify this in the database during
buyer registration. In addition, the authentication command

(DBAut hent i cati onCnd, LdapAut henti cati onCnd or

Thi r dPar t yAut hent i cat i onCnd) will have to be modified to
handle the new authentication level.

d. Customizing registration

The controller command Bat chOr der Request Crd makes a call to the
task command Regi st er Requi si ti oner Cnd to register the
requisitioning buyer based on the session information stored in the
sessi onl nf o object. To add, remove, or modify registration
information, do the following:

i) Modify the tables in the database or any other persistent data
storage being used to reflect this change. If the WebSphere
Commerce database is being used, then modify the
B2BRequisitioner table that stores the information about the
requisitioning buyer.

i) Provide a custom implementation of the ClData interface to
capture custom information about the requisitioning buyer from
the XML message and store the information in the appropriate
sessi onl nf o object variables, or provide added class variables
in the r egi st er Requi si ti oner Cnd command with their
appropriate getter and setter methods. These properties will then
be set directly, as opposed to being passed as members of the
sessi onl nf o object.

i) Modify the per f or nExecut e() method of the
regi st er Requi si ti oner Crd to update the persistent data
storage, the BUSPROF table for example, with the custom data.
6. Customizing the catalog subsystem

The catalog subsystem may be customized in the following ways:

« Add extension tables to the existing order subsystem schema or modify
the existing tables.

* Add entity beans corresponding to the new tables or modifying the
existing entity beans to reflect changes in the table schema.

32 Procurement Integration Guide

Implement new commands.

For instructions, refer to the WebSphere Commerce Programmers Guide
Version 5.4.

Extend the commands

0 You can extend any of the procurement integration controller and
task commands to provide custom behavior by over-riding certain
methods. For instructions, refer to the WebSphere Commerce
Programmers Guide Version 5.4.

o Each command is based on an interface, and one way to customize
a certain command is to provide a custom implementation of the
required interface. A default implementation class has been provided
for each interface.

Customizing the commands

Most of the business logic of the subsystem resides in the commands.
The following table shows the list of the commands in the catalog
subsystem, their interface names and the default implementation class
names.

Interface name Default implementation class
SendShopppingCartCmd SendShoppingCartCmdIimpl
SubmitShoppingCartCmd SubmitShoppingCartCmdImpl

To customize the commands or develop new business logic, override the
default implementation of the command interfaces.

Customizing the store catalog display

The catalog is displayed using a set of JSPs, some of which are common
to all the stores and the rest are specific to a particular store. The
common JSPs can be found in the directory

WCS installation_Directory\WCBE | nstall_Pat h\ WCS\ st or
es\ web, and store-specific JSPs can be found in the directory

WCS installation_Directory> WBE | nstall _Pat h\stores\
web\ st ore_nane.

Customizing the shopping cart
i) Customizing the quote

The ClQuote interface provides a generic interface to be implemented by
any quote class. ClQuotelmpl provides the default implementation for the
quote.

The quote interface consists of methods to authenticate a buyer,
populate the data into the quote object, and get the shopping cart items
from the quote object. The default implementation uses the
PROCPROTCL and USERREG table to authenticate the buyer, and it
retrieves the | ogon_i d and passwor d associated with the buyer from
that table. To customize the quote, override the respective methods in
ClQuotelmpl or give a new implementation to the ClQuote interface.

Chapter 5 Customizing procurement integration 33

i) Customizing the message format

Once the line items are populated into the quote object, the
ConposeShoppi ngCart Ari ba. j sp is invoked to generate the order
request message in the required format. The default implementation of
this view command generates the order request in the procurement
system specific XML format. To generate messages in other formats
replace this JSP file with another JSP file and then register it in the
VIEWREG table.

iii) Customizing database extensions

The database extensions consist of the tables CATCLSFCOD,
QTYUNITMAP, CLASIFCODE, and CLSFCODEDS as well as the
corresponding enterprise beans. The CATCLSFCOD table is an
extension to the WebSphere Commerce table CatEntry and relates a
catalog entry or product to its classification code. The CLASIFCODE and
CLSFCODEDS tables list the codes for different classification schemes
like SPSC and UNSPSC as well as their descriptions.

The QTYUNITMAP table contains the unit-of-measure information about
the products. This table links to the existing WebSphere Commerce base
tables QTYUNIT and CATENTSHIP. The QTYUNIT table lists all the UN
or CEFACT standard codes. CATENTSHIP gives the assignment of
these codes to catalog entries. The QTYUNITMAP table provides the
one-to-one mapping of codes between UN/CEFACT standard and any
NON-UN standards, for example, 1SO.

34 Procurement Integration Guide

Chapter 6. Use cases

The following use cases detail the flow of events when a buyer uses a procurement
system with WebSphere Commerce.

Use case 1: The requisitioning buyer selects a WebSphere Commerce
supplier to shop from Ariba

1.

10.

Ariba sends the PunchQut Set upRequest message to WebSphere Commerce with
operation= “create.” This includes buyer and supplier credentials and the
requisitioning buyer’s session ID in Ariba.

The message is mapped to the PunchQut Set up command.

The PunchCQut Set up command invokes the Aut hent i cat i onHel per task
command to authenticate the buyer and supplier credentials. The

Aut hent i cat i onHel per task command, depending on the configured
authentication mode (DB, LDAP or THIRD PARTY), calls the appropriate task
command to perform the authentication.

If the authentication is successful, then the PunchQut Set up command invokes the
Regi st er Requi si ti oner task command. This command checks if the
requisitioning buyer is already registered in the system. If so, it updates the relevant
requisitioning buyer information such as POSTBACK URL, SESSION_ID on Ariba. If
the requisitioning buyer does not exist, it registers the requisitioning buyer as a new
buyer and adds the buyer to the WebSphere Commerce member group specified in
the BUYSUPMARP table.

The supplier cookie is generated. This is the encrypted form of the information sent
through PunchQut Set upRequest message. It is sent to Ariba, and Ariba sends it
back to WebSphere Commerce for future HTTP requests.

The catalog that the buyer will view using the BUYSUPMAP table is determined, and
the URL that must be sent back to Ariba is constructed. This is the
B2BCat al ogDi spal y command URL, and the supplier cookie is the parameter.

The constructed URL is sent in the PunchQut Set upResponse XML message.
When Ariba receives this message it launches a new browser window with the
B2BCat al oghi spl ay command. This command retrieves the logon mode from the
supplier cookie and determines it as “CREATE” so that the CatalogDisplay page is
shown to the requisitioning buyer. The requisitioning buyer can now perform the
usual browsing and shopping using only HTTP.

The requisitioning buyer checks out the shopping cart in the browser. This invokes
the WebSphere Commerce Or der Pr epar e command. The order (shopping cart) is
changed to ‘P’ (pending) status.

The display result (view task) JSP page is customized for WebSphere Commerce to
call the Subni t Shoppi ngCart command. This command is invoked when the
requisitioning buyer presses the SUBMIT button on the JSP display page.

The Subni t Shoppi ngCart command changes the status of the order from ‘P’ to ‘I’
This differentiates it from the non-procurement WebSphere Commerce shopping
flow.

© IBM Corporation 2002 35

1.

The Subni t Shoppi ngCart command invokes the SendShoppi hgCart command.
This command composes the Pur chaseOr der Message XML message and sends it
to the POSTBACK URL in Ariba for approval. This ends the session.

Use case 2: The Approver on Ariba edits the order

1.

10.

If the Approver on Ariba is not satisfied with the shopping cart sent for approval, the
approver or any other requisitioning buyer tries to edit (modify) the shopping cart
(order).

Ariba sends the PunchQut Set upRequest message to WebSphere Commerce with
operation="edit.” It includes the buyer and supplier credentials, the requisitioning
buyer’s session ID in Ariba, and the ShoppingCartID (ORDERS_ID column value in
the ORDERS table).

The message is mapped to the PunchQut Set up command.

The PunchCQut Set up command invokes the Aut hent i cat i onHel per task
command to authenticate the buyer or supplier credentials.

If the authentication is successful, then the PunchQut Set up command invokes the
Regi st er Requi si ti oner task command. This command checks if the
requisitioning buyer is already registered in the system. If so, it updates information
such as POSTBACK URL and SESSION_ID on Ariba. If the requisitioning buyer
does not exist, it registers the requisitioning buyer as a new buyer and adds the
buyer to the WebSphere Commerce member group specified in the BUYSUPMAP
table.

The order status changes from 'l' to 'P".
The supplier cookie is generated.

The B2BCat al ogDi spl ay command URL that must be sent back to Ariba is
constructed, with the supplier cookie as its parameter.

The constructed URL is sent in the PunchQut Set upResponse XML message.
When Ariba receives this message, it launches a new browser window with the

B2BCat al oghi spl ay command. This command retrieves the logonmode from the
supplier cookie, based on which the Edit Shopping Cart page displays.

Use case 3: The shopping cart is approved on Ariba

1.

Ariba sends the Or der Request message to WebSphere Commerce with the buyer
or supplier credentials. It also sends details about the shopping cart as well as the
BILL TO and payment information.

The message is mapped to the Bat chOr der Request command. This command
detects if the shopping cart is already in the ORDERS table using the unique
PAYLOADID in the message, and it changes the existing shopping cart (order) status
to ‘R’. It also creates a fresh order in batch processing by calling a series of order-
related commands.

At the end of the processing, the Or der Response message that gives the status
code and status message is sent back to Ariba.

36 Procurement Integration Guide

Use case 4: The requisitioning buyer builds the shopping cart using the
local catalog and completes the order

1.

Ariba sends the Or der Request message to WebSphere Commerce with the buyer
or supplier credentials. It also sends details of the shopping cart as well as the BILL
TO and payment information.

The message is mapped to the Bat chOr der Request command. This command
detects if the shopping cart is already in the ORDERS table using the unique
PAYLOADID. It creates a fresh order in batch processing by calling a series of order-
related commands.

At the end of processing, the Or der Response message that gives the status code
and status message is sent back to Ariba.

Chapter 6 Use cases 37

38 Procurement Integration Guide

Appendix A: System_template.xml

The sample below shows an example of syst em t enpl at e. xml . This maps the
PunchQut Set upRequest to the PunchQut Set up command and the Or der Request
to the Bat chOr der Request command.

<ECTenpl at e>
<Tenpl at eDocunent >
<Docunent Type versi on='1.0' >cXM.</ Docunent Type>
<Start El ement >cXM_</ St art El enent >
<Tenpl at eTagName>CXM_Map</ Tenpl at eTagName>
<ComrandMappi ng>
<Conmmand ConmmandNane=' PunchQut Set up' Condi ti on=' PunchQut Req' >
<Const ant Fi el d=' pr ot ocol Nane' >cXM_</ Const ant >
<Const ant Fi el d=' protocol Versi on' >1. 0</ Const ant >
</ Conmand>
<Conmand ComrandNane=' Bat chOr der Request' Conditi on=' Order Req' >
<Const ant Fi el d=' pr ot ocol Nane' >cXM_</ Const ant >
<Const ant Fi el d=' protocol Versi on' >1. 0</ Const ant >
</ Command>
</ CommandMappi ng>
</ Tenpl at eDocunent >
<Tenpl at eTag nanme=' CXM_Map' >
<Tag XPat h=" Request/PunchQut Set upRequest"
Fi el d=' PunchQut Req' Fi el dl nf o=' Conmand' / >
<Tag XPat h=" Request/ Or der Request' Fi el d=' Order Req'
Fi el dl nf o=' Command' / >
<Tag XPat h=" @ersion' Fiel d='"agent MessageVersion' />
<!-- Unique Message Id which is used to check Duplicate Orders -->
<Tag XPat h=' @ayl oadl D Fi el d=' nessagel d' />
<l —
Map Buyer /Market Pl ace Credentials |ike O ganization code,
code type. to conmand vari abl es buyer Code, buyer CodeType etc.,

<Tag XPat h='" Header/ From Credenti al @omai n' Fi el d=' buyer CodeType' / >
<Tag XPat h="Header/From Credential/ldentity' Field=" buyerCode'/>
<Tag XPat h=' Header/ Fronf Credenti al @ype' XPathType="ATTRI BUTE' />
<Tag XPat h=' Header/ Fronl Credenti al @ype[@ype="nar ket pl ace"]"'
Fi el d=' buyer Type' />
<Tag XPat h=' Header/ Fronf Cr edenti al @omai n[@ ype="nar ket pl ace"]"'
Fi el d=" mar ket Pl aceType' />
<Tag XPat h=' Header/ From Credenti al [@ype="mar ket pl ace"]/ldentity'
Fi el d=" nar ket Pl aceCode' />
<I—
Map Supplier Credentials |ike Oganization code, code type.
to command vari abl es supplier Code, supplierCodeType etc.,

<Tag XPat h=' Header/ To/ Credenti al @omai n' Fi el d=' suppl i er CodeType' />
<Tag XPat h='"Header/ To/ Credential/ldentity' Field="supplierCode' />
<Tag XPat h=" Header/ Sender/ Credenti al @omai n’'

Fi el d=" suppl i erUser| DType' />
<Tag XPat h='" Header/ Sender/ Credenti al /Il dentity' Field="1ogonld

Fi el dl nf o=" CONTROL' />

© IBM Corporation 2002 39

<Tag

<Tag
<--

<Tag

<l--

<Tag

<l--

<Tag

<l--

<Tag

<l

<Tag

<l

<Tag
<Tag
<Tag
<Tag
<l--
-->

<l--
<Tag
<Tag

<Tag

XPat h=' Header / Sender/ Cr edent i al / Shar edSecr et
Fi el d=" | ogonPassword' Fi el dl nfo=" CONTROL' />
XPat h='" Header/ Sender/ User Agent' Fi el d=" agent Nane' />

Map PunchQut Set upRequest message operation node to | ogonhode.
This operation’s can be ‘create’,’edit’, and ‘inspect

XPat h=' Request / PunchQut Set upRequest @per ati on
Fi el d=' | ogonMode' / >

Map AribaBuyer’s BuyerCookie to sessionld. This is included
in the Shopping cart nessage which is sent to procurenent
system

XPat h="' Request / PunchQut Set upRequest / Buyer Cooki e
Fi el d=" sessionld' />

User |d and Departnent nane is sent using Extrinsics. This
information is configured during Buyer Organization registration.

XPat h=' Request / PunchQut Set upRequest/ Extrinsic
XPat hType=" USERDATA' / >

order Approval URL is the Ul in the procurenent systemto which
shopping cart is sent

XPat h=" Request / PunchQut Set upRequest / Br owser For nPost / URL'
Fi el d=' or der Approval URL' / >

quot eNunber is the WCS order id which was created when the
shopping cart was created

XPat h="' Request / PunchQut Set upRequest /I tenmQut/Item OJ
Suppl i erPart Auxiliaryl D Field="quoteNunber'/>

Map Buyer Orderld which is created at procurenment system side.

XPat h=' Request / Or der Request/ Or der Request Header @ ype'

Fi el d=' or der Mode' / >

XPat h="' Request/ Or der Request / Or der Request Header @r der | D

Fi el d=" buyerOrderI D />

XPat h="' Request / Or der Request/ Or der Request Header @r der Dat e
Fi el d=' buyer OrderDate' />

XPat h=" Request / Or der Request/ Or der Request Header / Tot al / Money
Fi el d='t ot al Amount' />

Map the Requisitioner ship to address to appropriate fields in
t he command

Shi pTo Address at the Order Level -->

XPat h="' Request / Or der Request/ Or der Request Header / Shi pTo
XPat hType=' VECTOR Fi el d=' order _shi pTo_vector' />

XPat h="' Request / Or der Request/ Or der Request Header / Shi pTo/
Addr ess/ Nane' Fi el d=' name' />

XPat h="' Request / Or der Request/ Or der Request Header / Shi pTo/
Addr ess/ Post al Addr ess/ Del i ver To' Fi el d='deliverTo' />

<Tag XPat h=' Request/ Or der Request/ Or der Request Header / Shi pTo/ Addr ess/

40 Procurement Integration Guide

Post al Addr ess/ Street' XPat hType=' REPEAT' />
<Tag XPat h=" Request/ Order Request/ Or der Request Header / Shi pTo/
Addr ess/ Post al Address/ Street[1]' Fiel d='street Addressl' />
<Tag XPat h=" Request/ Or der Request / Or der Request Header / Shi pTo/ Addr ess/
Post al Address/ Street[2]' Fi el d=' street Address2' />
<Tag XPat h=" Request/ Order Request/ Or der Request Header / Shi pTo/
Addr ess/ Post al Address/ Street[3]' Field="street Address3' />
<Tag XPat h=' Request/ Or der Request/ Or der Request Header / Shi pTo/
Addr ess/ Post al Address/ City' Field="city' />
<Tag XPat h=' Request/ Or der Request/ Or der Request Header / Shi pTo/
Addr ess/ Post al Address/ State' Field="state' />
<Tag XPat h=' Request/ Or der Request/ Or der Request Header / Shi pTo/
Addr ess/ Post al Addr ess/ Post al Code' Fi el d=' post al Code' />
<Tag XPat h=' Request/ Or der Request/ Or der Request Header / Shi pTo/
Addr ess/ Post al Addr ess/ Country' Field=' country' />
<Tag XPat h=' Request/ Or der Request/ Or der Request Header / Shi pTo/
Addr ess/ Phone@ane' Fiel d='tel ephoneType' />
<Tag XPat h=' Request/ Or der Request/ Or der Request Header / Shi pTo/
Addr ess/ Phone/ Tel ephoneNunber / Count r yCode'
Fi el d=' phoneCount ryCode' />
<Tag XPat h=' Request/ Or der Request/ Or der Request Header / Shi pTo/
Addr ess/ Phone/ Tel ephoneNunber/ Ar eaOr Ci t yCode'
Fi el d=' phoneAr eaCode' />
<Tag XPat h=' Request/ Or der Request/ Or der Request Header / Shi pTo/
Addr ess/ Phone/ Tel ephoneNunber / Nunber' Fi el d=' phoneNunber' />
<Tag XPat h=' Request/ Order Request/ Or der Request Header / Shi pTo/
Addr ess/ Fax@ane' Fi el d=' f axType' />
<Tag XPat h=' Request/ Or der Request/ Or der Request Header / Shi pTo/
Addr ess/ Fax/ Tel ephoneNunber/ Count r yCode'
Fi el d=' f axCount ryCode' />
<Tag XPat h=' Request/ Or der Request/ Or der Request Header / Shi pTo/
Addr ess/ Fax/ Tel ephoneNunber/ AreaOr Ci t yCode'
Fi el d=' f axAr eaCode' />
<Tag XPat h='" Request/ Order Request/ Or der Request Header / Shi pTo/
Addr ess/ Fax/ Tel ephoneNunber / Nunber' Fi el d=' f axNunber' />
<Tag XPat h=' Request/ Order Request/ Or der Request Header / Shi pTo/
Address/Email' Field="email' />
<Tag XPat h=' Request/ Order Request/ Or der Request Header / Shi pTo/
Addr ess/ Emai | @ame' Fiel d=' erai | Type' />
<!-- BillTo Address at the Order Level -->
<Tag XPat h=' Request/ Or der Request/ Or der Request Header/Bi | | To'
XPat hType="' VECTOR Fi el d=' order _bi | | To_vector' />
<Tag XPat h='" Request/ Or der Request/ Or der Request Header/ Bi | | To/
Address/ Nane' Fi el d=' nane' />
<Tag XPat h=' Request/ Or der Request/ Or der Request Header/ Bi | | To/
Addr ess/ Post al Addr ess/ Del i ver To' Fi el d=' del i ver To' />
<Tag XPat h=' Request/ Or der Request/ Or der Request Header/ Bi | | To/
Addr ess/ Post al Addr ess/ St reet' XPat hType=' REPEAT' />
<Tag XPat h=' Request/ Order Request/ Or der Request Header/ Bi | | To/
Addr ess/ Post al Address/ Street[1]' Field="streetAddressl' />
<Tag XPat h='" Request/ Or der Request/ Or der Request Header/ Bi | | To/
Addr ess/ Post al Address/ Street[2]' Fiel d="street Address2' />
<Tag XPat h='" Request/ Or der Request/ Or der Request Header/ Bi | | To/
Addr ess/ Post al Address/ Street[3]' Field="street Address3' />
<Tag XPat h='" Request/ Order Request/ Or der Request Header/ Bi | | To/
Addr ess/ Post al Address/ City' Field="city' />
<Tag XPat h=' Request/ Or der Request/ Or der Request Header/ Bi | | To/

Appendix A System_template.xml 41

<Tag
<Tag
<Tag

<Tag

<Tag

<Tag
<Tag

<Tag

<Tag

<Tag
<Tag
<Tag

<l--
<Tag

<Tag
<Tag
<Tag
<Tag

<l--
<Tag

<l--
<Tag

<Tag
<Tag

<Tag
<Tag
<Tag

<Tag

Addr ess/ Post al Address/ State' Field="state' />
XPat h=" Request / Or der Request / Or der Request Header / Bi | | To/
Addr ess/ Post al Addr ess/ Post al Code' Fi el d=' post al Code' />
XPat h=" Request / Or der Request / Or der Request Header / Bi | | To/
Addr ess/ Post al Address/ Country' Field=' country' />

XPat h=" Request / Or der Request / Or der Request Header / Bi | | To/
Addr ess/ Phone@ane' Fiel d='tel ephoneType' />

XPat h="' Request/ Or der Request/ Or der Request Header/ Bi | | To/
Addr ess/ Phone/ Tel ephoneNunber / Count r yCode'

Fi el d=' phoneCount ryCode' />

XPat h=" Request/ Or der Request/ Or der Request Header/ Bi | | To/
Addr ess/ Phone/ Tel ephoneNunber/ AreaOr Ci t yCode'

Fi el d=' phoneAr eaCode' />

XPat h=' Request/ Or der Request/ Or der Request Header/ Bi | | To/
Addr ess/ Phone/ Tel ephoneNunber / Nunber' Fi el d=' phoneNunber' />
XPat h="' Request/ Or der Request/ Or der Request Header/ Bi | | To/
Addr ess/ Fax@ane' Fiel d='faxType' />
XPat h="' Request/ Or der Request/ Or der Request Header/ Bi | | To/
Addr ess/ Fax/ Tel ephoneNunber/ Count r yCode

Fi el d=' f axCount r yCode' />
XPat h=" Request/ Or der Request/ Or der Request Header/ Bi | | To/
Addr ess/ Fax/ Tel ephoneNunber/ AreaOr Ci t yCode'

Fi el d=' f axAr eaCode' />
XPat h=" Request/ Or der Request / Or der Request Header/ Bi | | To/
Addr ess/ Fax/ Tel ephoneNunber/ Nunber' Fi el d='f axNunber' />
XPat h="' Request/ Or der Request/ Or der Request Header/ Bi | | To/
Address/Enumil' Field="email"' />
XPat h="' Request/ Or der Request/ Or der Request Header/ Bi | | To/
Addr ess/ Emai | @ame' Fiel d=' ermai | Type' />
Shipping Info -->
XPat h=" Request / Or der Request / Or der Request Header / Shi ppi ng
XPat hType="' VECTOR Fi el d=' shi ppi nglnfo' />
XPat h="' Request / Or der Request / Or der Request Header / Shi ppi ng/ Money
Fi el d=' shi ppi ngCharge' />
XPat h="' Request/ Or der Request/ Or der Request Header /
Shi ppi ng/ Money@urrency' Fiel d='currency' />
XPat h=" Request / Or der Request/ Or der Request Header /
Shi ppi ng/ Descri ption' Field="discription' />
XPat h=" Request / Or der Request / Or der Request Header / Comment s
Fi el d=' coment"' />

Extrinisics at the Order level -->
XPat h=" Request / Or der Request/ Or der Request Header/ Extri nsi c
XPat hType=' USERDATA' />

Oder Items -->
XPat h=" Request/ Or der Request /I temCut' XPat hType=' VECTOR
Fi el d=" order_items_vector' />
XPat h=" Request/ Order Request/ | tenut @uantity' Field=' quantity’
XPat h=" Request/ Or der Request/ | t enDut @ equest edDel i ver yDat e
Fi el d=' request Del i veryDate' />
XPat h=" Request/ Or der Request/ItemCut /| tem D/ Suppl i er Part| D
Field="itemD />
XPat h=" Request/ Order Request/Itenut/ I tem D/
SupplierPartAuxiliaryl D Field="quoteNunber'/>
XPat h=" Request/ Order Request/Itenfut/ I tenmDetail/
Uni t Price/ Money@urrenty' Field=' currency' />
XPat h=" Request/ Or der Request/ItenmCut /| tenmDet ail /
UnitPrice/ Mbney' Field="itenPrice' />

42 Procurement Integration Guide

/>

<Tag
<Tag
<Tag
<Tag

<l--
<Tag

<Tag
<Tag
<Tag
<Tag
<Tag
<Tag
<Tag
<Tag
<Tag
<Tag
/>

<l--
<Tag

XPat h=" Request/ Or der Request/ | tenout/|tenmDet ai | / Descri ption'

Fi el d="itenDescription />

XPat h=" Request/ Or der Request /I temCut /|t enmDet ai | / Uni t Of Measur e’
Fi el d=" uni t Of Measure' />

XPat h=" Request/ Or der Request/ItemCut /I tenmDetail /

Cl assificati on@onmain' Field='classificationDomain' />

XPat h="' Request/ Order Request/Itenut/ItenDetail/C assification'
Fi el d="cl assi ficati onCode' />

Shipto at the Oder Itemlevel -->

XPat h="' Request/ Or der Request /|t enOut / Shi pTo' XPat hType=' VECTOR
Fi el d=" order _Item shi pTo' />

XPat h=" Request/ Or der Request /| t enOut / Shi pTo/ Addr ess/ Nane'
Fi el d=' name' />

XPat h=" Request/ Or der Request/ | t enQut / Shi pTo/ Addr ess/

Post al Addr ess/ Del i ver To' Fi el d=" del i ver To' />

XPat h=" Request/ Or der Request/ | t enut / Shi pTo/ Addr ess/

Post al Address/ Street' XPat hType=' REPEAT' />

XPat h=" Request/ Or der Request/ | t enut / Shi pTo/ Addr ess/

Post al Address/ Street[1]' Field="streetAddressl' />

XPat h=" Request/ Or der Request/ | t enut / Shi pTo/ Addr ess/

Post al Address/ Street[2]' Fiel d="street Address2' />

XPat h="' Request/ Or der Request/ | t enut / Shi pTo/ Addr ess/

Post al Address/ Street[3]' Field="street Address3' />

XPat h=" Request/ Or der Request /| t enDut / Shi pTo/ Addr ess/

Post al Address/City' Field="city' />

XPat h=" Request/ Or der Request /| t enut / Shi pTo/ Addr ess/

Post al Address/ State' Field="state' />

XPat h=" Request/ Or der Request/ | t enDut / Shi pTo/ Addr ess/

Post al Addr ess/ Post al Code' Fi el d=' post al Code' />

XPat h=" Request/ Or der Request /| t enDut / Shi pTo/ Addr ess/

Post al Addr ess/ Country' Fiel d='country’

Extrinisics at the Order Itemlevel -->
XPat h="' Request/ Or der Request/ |t enut/ Extrinsic'
XPat hType=' USERDATA' />

</ Tenpl at eTag>
</ ECTenpl at e>

Note: If the protocol has different versions and procurement integration is to support that
protocol, you must add the TemplateDocument for that version as given below:

<Tenpl at eDocunent >
<Docunent Type version='1.1. 008" >cXM.</ Docunent Type>
<Start El ement >cXM.</ St art El enent >
<Tenpl at eTagNane>CXM_Map</ Tenpl at eTagNanme>
<ConmandMappi ng>
<Conmand CommrandName="' PunchCQut Set up'
Condi ti on=' PunchCQut Req' >
<Const ant Fi el d=' prot ocol Nane' >cXM.</ Const ant >
<Const ant Fi el d=' protocol Versi on' >1. 0</ Const ant >
</ Conmand>
<Conmand ComrandNamne=' Bat chOr der Request' Conditi on=" Order Req' >
<Const ant Fi el d=' prot ocol Nane' >cXM.</ Const ant >
<Const ant Fi el d=' protocol Versi on' >1. 0</ Const ant >
</ Command>
</ CommandMappi ng>
</ Tenpl at eDocunent >

Appendix A System_template.xml 43

44 Procurement Integration Guide

Appendix B: Sample XML messages

1. PunchQut Set upRequest

This message initiates the interaction from Ariba to WebSphere Commerce. It refers
to use cases 1 and 2.

The WebSphere Commerce messaging subsystem maps this message to the
PunchQut Set up command.

The following are other commands triggered by this message:

e« Aut henti cat onHel per Crd

e DBAut henti cati onCnd

¢ LdapAut henti cati onCnd

e ThirdPartyB2BAut hCnd

* Regi sterRequisitionerCrd

Sample message:

<?xm version="1.0"?>
<! DOCTYPE cXM. SYSTEM "cXM.. dt d" >
<cXM. version="1.0" payl oadl D="992114492875. 591694834@andbox21"
ti mestanp="2001- 06-09T12: 21: 32-07: 00" >
<Header >
<Fr on»
<Credential domai n="AribaNetworkl d">
<l dentity>nkrishna@n.ibm conx/|dentity>
</ Credenti al >
</ Fron»
<To>
<Credential domai n="DUNS">
<l dentity>9143470144</|dentity>
</ Credenti al >
</ To>
<Sender >
<Credential domai n="AribaNetworkUserl|d">
<l dentity>nkrishna@n.ibm conx/Identity>
<Shar edSecr et >cat al og</ Shar edSecr et >
</ Credenti al >
<User Agent >Ari ba ORM5S 6. 1</ User Agent >
</ Sender >
</ Header >
<Request >
<PunchQut Set upRequest operation="create">
<Buyer Cooki e>V8UE19ALWII L</ Buyer Cooki e>
<Extrinsi c nane="Cost Cent er">610</ Extrinsi c>
<Extrinsic nane="User">vl o</ Extrinsic>
<Br owser For nPost >
<URL>ht t p: // sandbox?21: 3377/ punchout </ URL>
</ Br owser For mPost >
<Suppl i er Set up>

© IBM Corporation 2002 45

<URL>ht t p: / / budhoo. hawt hor ne. i bm conl webapp/ ci b2b/ PunchQut </ URL>
</ Suppl i er Set up>
<Shi pTo>
<Addr ess addressl| D="1000487">
<Narme xmn :|ang="en">Los Gat os</ Nane>
<Post al Addr ess>
<Del i ver To>Vi ncent Lo</Del i ver To>
<Street>15 Cami no del Cerro</Street>
<City>Los Gatos</City>
<St at e>CA</ St at e>
<Post al Code>95032</ Post al Code>
<Country i soCountryCode="US">United States</Country>
</ Post al Addr ess>
</ Addr ess>
</ Shi pTo>
</ PunchQut Set upRequest >
</ Request >
</ cXM.>

2. Order Request

This message is sent from Ariba to WebSphere Commerce to create an approved order. It
refers to use cases 3 and 4.

The WebSphere Commerce messaging subsystem maps this message to the
Cl Pur chaseOr der command.

The following are other commands that are indirectly invoked by this message:

e B2BOr der PrepareCnd

e CreatePurchaseOr derCnd
e CreateBatchOrderltentCnd
e Order Compl eteCnd

e ShipBill ToAddr essCrd

Sample message:
<?xm version="1.0" encodi ng="UTF-8"?>
<I DOCTYPE cXM. SYSTEM
"http://xm .cxm .org/schemas/ cXM./ 1. 1. 006/ cXM.. dt d" >
<cXM. version="1.1"
payl oadl D="991013064000. 1@andbox?21. nkri shna@n. i bm cont
ti mest anp="2001-05-27T18: 24: 24-07: 00" >
<Header >
<Fr on»
<Credenti al domai n="Ari baNet wor kl d">
<l dentity>nkrishna@n.i bm conx/|dentity>
</ Credenti al >
</ Fron»
<To>
<Credenti al domai n="DUNS" >
<l dentity>9143470144</|dentity>
</ Credenti al >
</ To>
<Sender >
<Credenti al donmai n="Ari baNet wor kUser| d" >
<l dentity>nkri shna@n.i bm conx/|dentity>

46 Procurement Integration Guide

<Shar edSecr et >cat al og</ Shar edSecr et >
</ Credenti al >
<User Agent >Ari ba Network V1.1 </User Agent >
</ Sender >
</ Header >
<Request >
<Or der Request >
<Or der Request Header order| D="DO0O1452"
or der Dat e="2001- 05- 27T18: 24: 24-07: 00" type="new' >
<Tot al >
<Money currency="USD"' >1, 222</ Money>
</ Tot al >
<Shi pTo>
<Addr ess i soCountryCode="US" addressl D="1000487" >
<Nane xnl : | ang="en" >Los Gat os</ Nane>
<Post al Addr ess nanme="defaul t">
<Del i ver To>Vi ncent &*#032; Lo</ Del i ver To>
<Del i ver To>L0s Gat os</ Del i ver To>
<Street>15 Camino del Cerro </Street>
<Ci ty>L0s Gatos</ City>
<St at e>CA</ St at e>
<Post al Code>95032</ Post al Code>
<Country isoCountryCode="US">Unit ed St at es</ Count ry>
</ Post al Addr ess>
<Emai | nane="defaul t">tvl o@l t; Your Snt pDonmai nNane> ; </ Emai | >
<Phone nane="wor k" >
<Tel ephoneNunber >
<Count ryCode i soCountryCode="US">1</ CountryCode>
<AreaOr Ci t yCode>408</ AreaOr G t yCode>
<Nurber >3582000</ Nunber >
</ Tel ephoneNunber >
</ Phone>
<Fax name="wor k" >
<Tel ephoneNunber >
<Count ryCode i soCountryCode="US">1</ CountryCode>
<AreaOr Ci t yCode>408</ AreaOr G t yCode>
<Nurber >3582100</ Nunber >
</ Tel ephoneNunber >
</ Fax>
</ Addr ess>
</ shi pTo>
<Bill To>
<Addr ess i soCountryCode="US" addressl D="15">
<Name xnl : | ang="en">Ari ba Headquart er s</ Nanme>
<Post al Addr ess nane="defaul t">
<Street >1314 Chesapeake Terrace</ Street>
<Ci ty>Sunnyval e</ Ci ty>
<St at e>CA</ St at e>
<Post al Code>94089</ Post al Code>
<Country isoCountryCode="US">Unit ed St at es</ Count ry>
</ Post al Addr ess>
</ Addr ess>
</Bill To>
<Shi ppi ng>
<Mboney currency="USD"'>6</ Money>
<Descri ption
xm : [ang="en">| nt er nati onal &t032; mai | </ Descri pti on>

Appendix B Sample XML messages 47

</ Shi ppi ng>
</ Or der Request Header >
<ltemQut quantity="1" |ineNunber="1">
<ltem D>
<Suppl i er Part | D>6565E2U</ Suppl i er Part | D>
<Suppl i erPart Auxi | i aryl D>15051</ Suppl i er Part Auxi | i aryl D>

</ltem D>
<lItenmDetail >
<UnitPrice>

<Money currency="USD"'>1, 222</ Money>
</ UnitPrice>
<Description xm : I ang="en" >PC 300PL
(wi t h Pent i um | | | &*032; pr ocessors)
</ Descri ption>
<Uni t OF Measur e>EA</ Uni t OF Measur e>
<Cl assi fication domai n="Not Avail abl e">
Not Avail abl e
</ O assification>
<Manuf act ur er Par t | D>6565E2U</ Manuf act ur er Part | D>
<Manuf act ur er Nane>| BVk/ Manuf act ur er Nanme>
<URL>ht t p: / / budhoo. hawt hor ne. i bm coml webapp/ ci b2b/ PunchQut </ URL>
<Extrinsi c nane="PR&*#032; No. ">PR6150</ Extri nsi c>
<Extrinsi c nane="Requester">Vi ncent &032; Lo</ Extrinsi c>
</ltenDetail >
<Di stri bution>
<Accounti ng nanme="Di stri buti onCharge">
<Segment type="Cost Center"
i d="Engi neeri ng Managenent "
descri pti on="Depart nment &032; Nane"/ >
<Segnent type="Account" id="Ofice Supplies”
descri pti on="Account Nane"/ >
</ Account i ng>
<Char ge>
<Money currency="USD"'>40</ Money>
</ Char ge>
</ Distribution>
</l tentut >
</ Or der Request >
</ Request >
</ cXM.>

3. PunchQut Set upResponse

This message initiates the interaction from WebSphere Commerce to Ariba. It refers
to use case 3.

The WebSphere Commerce messaging subsystem maps this message to the
PunchQut Set up command.

The following are other commands triggered by this message:

e« Aut henti cat onHel per Cnd

e« DBAut henti cati onCrd

e« LdapAut henti cati onCnd

e ThirdPartyB2BAut hCd

* RegisterRequisitionerCnd

48 Procurement Integration Guide

Sample message
<?xm version="1.0" encodi ng="UTF-8"?>
<I DOCTYPE cXM. SYSTEM
"http://xm .cXM. org/schemas/ cXM./ 1. 1. 008/ cXM.. dt d" >
<cXM. version="1.1. 008"
payl oadl D = "992444231515. 1@udhoo. hawt hor ne. i bm cont
timestanp = "2001-06-13T10: 57: 11-5. 00"
xm:lang = "en-US" >
<Response>
<Status code="200" text="0OK"></Status>
<PunchQut Set upResponse>
<St ar t Page>
<URL>
htt ps:// budhoo. hawt hor ne. i bm com webapp/ wcs/ st or es/
servl et/ PunchQut Cat al ogDhi spl ay?
suppl i er Cooki e=
gUZKOk 6 PWNDQAYKLr UKKWR/ ZTUj Pwx| 14/ 6f TVP5I DQ=
</ URL>
</ St art Page>
</ PunchQut Set upResponse>
</ Response>
</ cXM.>

4. PunchCut Or der Message

This message initiates the interaction from WebSphere Commerce to Ariba. It refers
to use cases 1 and 2.

The WebSphere Commerce messaging subsystem maps this message to the
SendShoppi ngCar t Cnd command.

Sample message:
<?xm version="1.0" encodi ng="UTF-8"?>
<I DOCTYPE cXM. SYSTEM
"http://xm .cXM. org/schemas/ cXM./ 1. 1. 008/ cXM.. dt d" >
<cXM. tinestanp = "2001-06-13T11:07:27-5. 00"
payl oadl D = "992444847906. 1@r eed. i n. i bm conf
version = "1.1.008" >
<Header >
<Fr on»
<Credential domai n="DUNS">
<l dentity>9143470144</|1dentity>
</ Credenti al >
</ Fron»
<To>
<Credential domai n="Ari baNet wor kl d">
<l dentity>nkrishna@n.ibm conx/|dentity>
</ Credenti al >
</ To>
<Sender >
<Credenti al domai n="Ari baNet wor kUser | d">
<l dentity>nkri shna@n.i bm conx/|dentity>
</ Credenti al >
<User Agent >I BM WCS 5. 1</ User Agent >
</ Sender >
</ Header >

Appendix B Sample XML messages 49

<Message>
<PunchQut Or der Message>
<Buyer Cooki e>5FP3Yl RS6ULT</ Buyer Cooki e>
<PunchQut Or der MessageHeader operationAl | owed="edit">
<Tot al >
<Money currency="USD"'>35. 00000</ Money>
</ Tot al >
<Shi ppi ng tracki ngbomai n="-">
<Mboney currency="USD"'>6. 00000</ Mbney>
<Description xm : I ang="en-US">
International nail
</ Descri ption>
</ Shi ppi ng>
</ PunchQut Or der MessageHeader >
<lItem n quantity="1">
<ltem D>
<Suppl i erPart1 D>1161210</ Suppl i erPart | D>
<Suppl i erPart Auxi l i aryl D> 15551
</ Suppl i erPart Auxi liaryl D>
</Item D>
<ltemDetail >
<Uni tPrice>
<Money currency="USD"'>35. 00000</ Mbney>
</ UnitPrice>
<Description xm: I ang="en-US">
Thi nkPad i Series 1200
</ Descri ption>
<Uni t OF Measur e>EA</ Uni t OF Measur e>
<O assification domai n="nul | "></d assi fication>
<Manuf act urerPart | D>1161210</ Manuf act ur er Part | D>
<Manuf act ur er Narre>| BWk/ Manuf act ur er Nane>
<Extrinsic name ="User">kitty</Extrinsic>
</ltenDetail >
</lItem n>
</ PunchQut Or der Message>
</ Message>
</ cXM.>

5. Order Response

This message initiates the interaction from WebSphere Commerce to Ariba. It refers
to use cases 3 and 4.

The WebSphere Commerce messaging subsystem maps this message to the
Bat chOr der Request Cnd command.

50 Procurement Integration Guide

Sample message:
<?xm version="1.0" encodi ng="UTF-8"?>
<I DOCTYPE cXM. SYSTEM
"http://xm .cXM. org/schemas/ cXM./ 1. 1. 008/ cXM.. dt d" >
<cXM. tinestanp = "2001-06-13T11:07:27-5. 00"
payl oadl D = "992444847906. 1@reed. i n.i bm conf
version = "1.1.008" >
<Response>
<Status code="200" text="CK"> </ Status>
</ Response>
</ cXM.>

Appendix B Sample XML messages 51

52 Procurement Integration Guide

Appendix C: LogonRequest in HTML format

Some procurement systems send a LogonRequest message in HTML format as a set
of name-value pairs either in the query string or as a part of post data. Procurement
integration expects XML to be the message transport format; as a result, additional
configuration is necessary to handle HTTP requests.

For example, Open Catalog Interface (OCI) is a protocol that supports a logon request to
the supplier’s site in HTML format. OCl is used by the mySap e-Procurement system and
the Commerce One BuySite e-Procurement system. Consider an OCI request coming in
from the procurement system to WebSphere Commerce with the following parameters:

HOOK_URL

The URL to which the
shopping cart is to be
submitted

OCI Mandatory parameter. The URL used to return to the SAP
Business-to-Business Procurement application from the catalog
application. It is automatically filled at runtime by the procurement
application.

SUPPLIER_CODE

Additional parameter for the supplier credential. The supplier
requires this.

SUPPLIER_CODE_DOMAIN

Additional parameter for supplier credential. The supplier requires
this.

BUYER_CODE

Additional parameter for buyer credential. The supplier requires this.

BUYER_CODE_DOMAIN

Additional parameter for buyer credential. The supplier requires this.

USERNAME

Additional parameter, the buyer’s group user id is registered with
the supplier. The supplier requires this.

PASSWORD Additional parameter, the buyer’s group password is registered with
the supplier. The supplier requires this.
REQID Additional parameter, unique requisitioner id used for dynamic

registration of the buyers. The supplier requires this.

COST_CENTER

Additional parameter, indicating the buyers cost center. This is
optional.

~OkCode

ADDI

OCI mandatory parameter. Contains the transaction code indicating
that the function Add Items to SAP shopping basket is to be
performed. Must be set to ADDI for SAP Business-to-Business
Procurement.

~CALLER

CTLG

OCI mandatory parameter. Indicates that the data was sent by an
external catalog. The content must be set to CTLG.

~TARGET

_top

OCI mandatory parameter. Specifies the frame to which a catalog is
to return in a frame-based environment. If this field is not set, the
catalog application must provide a default target of _top.

OCI_VERSION

OCI mandatory parameter. SAP B2B Procurement system version.

Note: For more details about the OCI parameters, refer to the Open Catalog Interface,
release 2.0B specification document.

The additional functions supported by OCI include the following:

© IBM Corporation 2002

53

1. Product details

The following are the name and value pairs that will be an additional transfer to the
catalog:

a. FUNCTION="DETAIL"
b. PRODUCTID="database key of product in the catalog"

2. Product validation

The following are the name and value pairs that will be an additional transfer to the
catalog:

a. FUNCTION="VALIDATE”
b. PRODUCTID="database key of product in the catalog"

3. Product sourcing

The following are the name and value pairs that will be an additional transfer to the
catalog:

a. FUNCTION="VALIDATE”
b. SEARCHSTRING="string to directly start the catalog search" and
c. VENDOR="vendor number in the buyer's system"

Note: The functions "DETAIL" and "VALIDATE" will only work if the parameter
NEW_ITEM-EXT_PRODID[n] was filled from the catalog in a previous call.

Modifications in PunchQut Set upCnd

The PunchCQut Set upCnd instantiates the ClData class and receives the B2B logon
requests. You must modify the implementation of the ClData class to parse and return
the HTML parameters as represented in OCI. Once ClData is implemented to do this,
modify the PunchQut Set upCnd to instantiate the new implementation of ClData. To
achieve this override the PunchCQut Set upCnd and register it with the CMDREG table
within WebSphere Commerce. For more information on how to override a command,
refer to the WebSphere Commerce Programmer’s Guide Version 5.4.

The following is a sample implementation of the setRequestProperties method of the
PunchQut Set upCnd that is invoked to set the parameters to the command. Here, this
method is modified to instantiate the new ClDatalmpl.

public void
set Request Properties(com i bm commer ce. dat at ype. TypedProperty p)
throws comibm commrerce. excepti on. ECExcepti on
{
final String strMethodNane = "set Request Properties”;
ECTr ace. entry(ECTracel denti fi ers. COMPONENT _USER,
Get d ass() . get Nanme(), strMethodNane);
this.request Properties = p;
/1 now set the properties in the new ci Data obj ect
Ci Data = new NewCl Dat a() ;
ci Dat a. set LogonDat a(p) ;
ECTrace. exi t (ECTracel denti fi ers. COMPONENT_USER,
Get d ass().get Nane(), strMethodNane);

54 Procurement Integration Guide

Modifications in the CIData

The PunchQut Set upCnd instantiates the ClData implementation class to parse and
return the input parameters from the request. In this case, the input parameters are as
per the OCI specifications. This section describes a different implementation for the
ClData interface.

The ClData class encapsulates the login data and the purchase order data. The default
implementation of ClData is ClDatalmpl, which enables the implementation for cXML
protocol. Refer to the WebSphere Commerce documentation for details of the methods in
the ClData interface.

For an HTML request, a new implementation of ClData that implements the methods of
the interface by parsing the HTML query string and then returning the respective data is
necessary. The following is a sample implementation of CIData to parse the OCl-specific
data.

package com i bm commrerce. ci.oci.objects;

i mport
i mport
i mport
i mport

public

{

com i bm comrer ce.
com i bm comrer ce.
com i bm comrer ce.
com i bm comrer ce.

. dat at ype. Sessi onl nf o;
.dat atype. Credenti al s;
. dat at ype. Agent ;

ne
ne
ne
me. dat at ype. Pur chaseOr der Header ;

cl ass newCl Data i npl ements Cl Data

/1l the paraneters coming in as the | ogon request
com i bm commer ce. dat at ype. TypedProperty p;

/**

* get the bill to address

*

* @eturn comibm conmmerce. ne. dat at ype. Addr ess

*/

Address getBill To()

{

/**

/! no billTo is available with OC Protocol
return null;

* get the departnent nanme

*

* @eturn java.lang. String

*/

String getDepartnent()

{

}

/**

in OCl the cost center indicates the
/1 departnment nanme. The key is the HTTP
request paraneter (COST_CENTER)

return p.getString("COST_CENTER', null);

* get the |ogon data

Appendix C LogonRquest in HTML format 55

*

* @eturn comibm conmerce. dat at ype. TypedPr operty
*/
com i bm commer ce. dat at ype. TypedProperty get LogonDat a

{

return p;

}

/**

* get the purchase order data

*

* @eturn comibm conmer ce. dat at ype. TypedPr operty
*/
com i bm conmer ce. dat at ype. TypedProperty get PODat a()

{
/1 no POData is available with OCl |ogon request

return null;

}

/**

* get the line itens in the purchase order request

*

* @eturn java.util.Vector

*/

java.util.Vector getPOtens()

{
/1 noline itenms is available with OCl |ogon request
return null;

}

/**

* get the name of the requisitioner

*

* @eturn java.lang. String

*/
String getRequisitioner()
{
return p.getString("REQ D', null);
}
/**

* set the |ogon data

* @aram props com i bm comerce. dat at ype. TypedProperty
*/
voi d set LogonDat a(com i bm comer ce. dat at ype. TypedProperty props)

{
this.p = props;
}

/**

* set the purchase order data

*

* @aram props com i bm comerce. dat at ype. TypedProperty

*/
voi d set PODat a(com i bm commer ce. dat at ype. TypedProperty props)
{

56 Procurement Integration Guide

/1 no need to inplenent...

}

/**
* get the buyer's software agent
*
* @eturn comibm conmer ce. ne. dat at ype. Agent
*/
Agent get Agent ()
{
/'l not avail able
return null;

}

/**

* get the buyer credentials
* @eturn comibm conmerce. ne. dat at ype. Credenti al s
*/
Credential s get Buyer Credenti al s()
{
if (buyerCred == null)
{
/] set the buyer credentials
buyer Cred = new Credenti al s();
buyer Cr ed. set Code(p. get String("BUYER_CODE", null));
buyer Cr ed. set CodeDorai n(p. get Stri ng("BUYER_CODE_DOMAI N, null));
buyer Cred. set User 1 d(p. get Stri ng("USERNAVE", null));
buyer Cred. set User | dType(nul |);
buyer Cr ed. set Passwor d(p. get Stri ng(" PASSWORD', null));
}

return buyer Cred;

}

/**

* get the market Place credentials

*

* @eturn comibm conmer ce. nme. dat at ype. Credenti al s

*/
Credential s get Market Pl aceCredenti al s()
{
/1 not avail abl e
return null;
}
/**

* get the purchase order request header

*

* @eturn comibm comrerce. ne. dat at ype. Pur chaseOr der Header

*/
Pur chaseOr der Header get PCHeader ()
{
/1 not avail abl e
return null;
}
/**

Appendix C LogonRquest in HTML format 57

* get the session infornation

*

* @eturn comibm conmerce. ne. dat at ype. Sessi onl nfo

*/
Sessi onl nfo get Sessi onl nfo()
{
if (this.sessionlnfo == null)
{
sessionl nfo = new Sessionl nfo();
sessi onl nfo. setReql d(p.getString("REQ D', null));
sessi onl nfo. set RegNane(nul |) ;
sessi onl nfo. set Sessionld(null);
sessi onl nfo. set Sessi onType(nul I');
sessi onl nfo. set Dept Nane(p. get Stri ng(" COST_CENTER', null););
sessi onl nfo. set Post BackURL(p. get Stri ng("HOOK_URL", null));
sessionl nfo.setOrderStatusUrl (nul |);
/1 OCl can support functions |ike EDI T and DETAI L
String s = p.getString("FUNCTION', null)
if (s !=null & s.equalslgnoreCase("DETAIL"))
{
/ldetail function. see the details of a product.
sessi onl nf o. set LogonMbde(B2BMenber Const ant s. DI SPLAY_MODE) ;
Long | = p.getLong("PRODUCTID', null);
if (I '=null)
{
sessionl nfo.setltem d(l.|ongValue());
}
}
else if (s !'= null & s.equal sl gnoreCase("VALI DATE"))
{
//Validate function. validate a product.
sessi onl nf o. set LogonMbde(B2BMenber Const ant s. | NSPECT_MODE) ;
Long | = p.getLong("PRODUCTID', null);
sessionl nfo.setltem d(l.longValue());
String searchString = p.getString("SEARCHSTRI NG', null);
if (searchString !'= null)
{
/1 validate node with search, not supported.
String vendor = p.getString("VENDOR', null);
}
}
el se
{
sessi onl nf 0. set LogonMbde(B2BMenber Const ant s. CREATE_MODE) ;
}
}
return sessionlnfo;
}
/**

* get the supplier credentials

*

* @eturn comibm conmerce. ne. dat at ype. Credenti al s
*/
Credential s get SupplierCredential s()

58 Procurement Integration Guide

if (supplierCred == null)
{
supplierCred = new Credential s();
suppl i er Cred. set Code(p. get String("SUPPLI ER_ CODE", null));
suppl i er Cred. set CodeDonai n(p. get Stri ng(" SUPPLI ER_CODE_DOVAI N', null));
suppl i erCred. setUserld(null);
suppl i er Cred. set User I dType(nul I');
suppl i er Cred. set Password(nul I);

}

return supplierCred;

Appendix C LogonRquest in HTML format 59

60 Procurement Integration Guide

Appendix D: Sample buyer information form

The following is the sample buyer information form provided in the Buyer | nf o. t xt file:

Pl ease fill out the formbelow and email it to merchant_adm n@our_conpany.com
or fax it to (914) 555 0000.

Pl ease fill out the follow ng informati on about your organi zation:

Buyer Organi zation Nane:

Organi zation Code (test):

Organi zati on Code (production:

Organi zati on Code Donai n:

Department Extrinsics Nane:

User/ Requi sitioner Extrinsic Nare:

Phone Number : Fax Nunber:

Emai | Address:

Fax Number:

Addr ess:
Street:

Cty:

St at e:

Zl P/ Post al Code:
Country:

Cont act Information:
Title:
First Nane:
M ddl e:
Last Nane:
Pri mary Phone Nunber: Al't Phone Nunber:
Fax Nunber:
Emai | Address:
At Email Address:

© IBM Corporation 2002 61

62 Procurement Integration Guide

Notices and trademarks

This information was developed for products and services offered in the U.S.A. IBM may
not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services
currently available in your area. Any reference to an IBM product, program, or service is
not intended to state or imply that only that IBM product, program, or service may be
used. Any functionally equivalent product, program, or service that does not infringe any
IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described
in this document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated in
new editions of the publication. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this publication at any time without notice.

© IBM Corporation 2002 63

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Canada Ltd.

Department 071

1150 Eglinton Avenue East
North York, Ontario, M3C 1H7
Canada

Such information may be available, subject to appropriate terms and conditions, including
in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it
are provided by IBM under terms of the IBM Customer Agreement, IBM International
Program License Agreement or any equivalent agreement between us.

This document may contain information about other companies' products, including
references to such companies' Internet sites. IBM has no responsibility for the accuracy,
completeness, or use of such information.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM, for the
purposes of developing, using, marketing or distributing application programs conforming
to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. You may copy, modify, and distribute these sample programs in any
form without payment to IBM for the purposes of developing, using, marketing, or
distributing application programs conforming to IBM's application programming interfaces.

Trademarks

The following terms are trademarks of International Business Machines Corporation in
the United States or other countries or both:

IBM DB2 Extenders
AIX DB2 Universal Database
DB2 MQSeries

Microsoft, Windows and Windows NT are trademarks or registered trademarks of
Microsoft Corporation.

Solaris, Java, and all Java-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc.

Lotus and Domino are trademarks or registered trademarks of Lotus Development
Corporation.

SAP is a registered trademark of SAP AG.

64 Procurement Integration Guide

Commerce One is a registered trademark of Commerce One Operations, Inc.

Other company, product, or service names, which may be denoted by a double asterisk
(**), may be trademarks or service marks of others.

Credit card images, trademarks, and trade names provided in this product should be

used only by merchants authorized by the credit card mark’s owner to accept payment
via that credit card.

Notices and trademarks 65

