
IBM® WebSphere® Commerce Version 5.4
Business Edition Integration Guide

 for the Ariba® Buyer System

2 Procurement Integration Guide

Note: Before using this information and the product it supports, read the information in “Notices and
trademarks”

First Edition (August 2002)

This edition applies to version 5, release 4 of IBM WebSphere Commerce Business Edition
(Program 5724 - A18) and to all subsequent releases and modifications until otherwise indicated
in new editions.

IBM welcomes your comments. You can send your comments by any one of the following
methods:

1. Electronically to the E-mail address listed below. Be sure to include your entire network
address if you wish a reply.

Internet:torrcf@ca.ibm.com

2. By regular mail to the following address:

IBM Canada Ltd. Laboratory
B3/KB7/8200/MKM
8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 2002. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

 IBM Corporation 2002 3

Contents
Contents..3
Chapter 1. Introduction..5

About this book ... 5
Who should read this book? ... 5
Software requirements.. 5
Conventions and terminology used in this book... 6

Chapter 2. Features of procurement integration ...7
General overview.. 7
Major capabilities .. 8
Business models enabled... 9

Chapter 3. Supported cXML messages ..11
Chapter 4. Configuring the reference application ...13

Configuring the buyer and supplier... 13
Creating and configuring your store ... 18

Chapter 5. Customizing procurement integration ...23
Enabling procurement integration for other procurement systems .. 23

Chapter 6. Use cases ...35
Appendix A: System_template.xml...39
Appendix B: Sample XML messages..45
Appendix C: LogonRequest in HTML format ...53
Appendix D: Sample buyer information form ..61
Notices and trademarks...63

4 Procurement Integration Guide

 IBM Corporation 2002 5

Chapter 1. Introduction

About this book
This book provides information about the features and the major capabilities of
the reference application for procurement integration between WebSphere
Commerce version 5.4, Business Edition and the Ariba Buyer version 7.1. It talks
about the business models enabled with this integration, creating and configuring
buyers and suppliers, creating and configuring a business-to-business (B2B)
store, and customizing procurement integration.

Procurement integration

The procurement integration subsystem is a generic framework that enables
WebSphere Commerce Version 5.4, Business Edition to handle B2B transactions
using industry-standard protocols. It provides an extensible and customizable
functionality on WebSphere Commerce that allows you to extend the message,
schema, or business logic.

Who should read this book?
This document is oriented towards WebSphere Commerce administrators,
programmers, and other experts. The following knowledge and experience is
assumed:

• Thorough knowledge of Java, and a working knowledge of VisualAge for
Java

• Experience with the Windows 2000 or Windows NT user interfaces and
the Internet Explorer V5.5 web browser.

• An understanding of creating content and programming for the Internet as
well as the World Wide Web environment.

• An understanding of HTML 3.2 syntax, including tables and forms.

• Experience with database programming using SQL.

• Experience with the IBM WebSphere Application Server.

• Experience with Java Servlets, Java Server Pages (JSPs), and Enterprise
Java Beans (EJBs).

• Familiarity with IBM WebSphere Commerce Version 5.4, Business Edition.

• Knowledge of e-procurement systems.

Software requirements
The following must be installed on your system:

6 Procurement Integration Guide

• IBM WebSphere Commerce Version 5.4, Business Edition on Windows NT
or Windows 2000 with the associated software stack.

• IBM DB2 Universal Database 7.2 (with Fixpack 5) or Oracle 8.1.7.2.

For more details on the software requirements, refer to the IBM WebSphere
Commerce Installation Guide.

Note: The hardware requirements will be the same as those for WebSphere
Commerce Version 5.4, Business Edition.

Conventions and terminology used in this book
Procurement integration

The procurement integration subsystem is a generic framework that enables
WebSphere Commerce to handle B2B transactions using industry-standard
protocols.

Reference application
A reference application is a set of system features combined or packaged
together as an offering that demonstrates to users a unique capability of the
system.

Member subsystem
The member subsystem is a component of WebSphere Commerce that
includes data for users, groups of users, and organizational entities.
Business logic provides registration, profile management, access control,
authentication, and session management services.

Catalog subsystem
The catalog subsystem is a component of WebSphere Commerce that
provides online catalog navigation, partitioning, categorization, and
associations. In addition, the catalog subsystem includes support for
personalized interest lists and customer display pages. The catalog
subsystem contains all logic and data relevant to an online catalog. This
includes categories, products, items, and any associations or relationships
among them.

Order subsystem
The order subsystem is a component of WebSphere Commerce that
provides shopping carts, order processing, and management functions
support. Related services such as pricing, taxation, payment, and fulfillment
are also part of the order subsystem. Order processing capabilities include
quick order or buy, scheduled orders, multiple pending orders, and reorders.

Contract
A contract is an arrangement between a seller and one or more buyers.
Through this contract, the buyers can purchase goods and services from the
seller, based on mutually agreed terms and conditions, for the specified
duration of time.

Note: A contract does not refer to a one-time purchase order. It is the agreement
on the terms of orders that the buyer may place during the validity period of the
contract.

 IBM Corporation 2002 7

Chapter 2. Features of procurement integration

This section details the features, major capabilities, and business models of
procurement integration.

General overview
Procurement integration is a component of WebSphere Commerce that enables
the functionality to integrate external buy-side systems. It allows registered buyer
organizations to connect from their procurement systems to interact with the
supplier’s catalog system and conduct B2B e-commerce transactions. This
results in increased sales and enhances the organization’s B2B presence on the
web.

Procurement integration provides the following benefits:

• Suppliers can maintain a single catalog within WebSphere Commerce and
use that catalog to enable their own web presence and participate in the
procurement system’s network.

• Reduces costs of order processing through WebSphere Commerce
connectivity to Supply Chain Management, Retail Business System, and
Order Management backend systems. These automate the flow of orders
from the procurement system’s buyer to your business systems.

• Uses the updated B2B features of WebSphere Commerce to use and
maintain buyer organizations, buyer-specific catalogs, price lists, and
contract pricing.

Procurement integration gives connective capabilities to the Ariba procurement
system. It has out-of-the-box Commerce XML (cXML) capability that enables two
different ways of shopping, through local catalogs and Internet catalogs.

Local catalog orders
In the local catalog mode, suppliers have their catalogs replicated on the
procurement systems. Buyers browse the catalog and construct their shopping
carts without connecting to WebSphere Commerce. When the requisitioning
buyer submits the order, an OrderRequest message is sent to WebSphere
Commerce (supplier) and batch processing of the order is performed. In this
mode, no approval function is executed as it is assumed that the incoming order
request is already approved. WebSphere Commerce sends a response
(OrderResponse) indicating the success or failure of the order request. Managing
the replication of the catalog is not within the scope of procurement integration.

Note: If there is a difference in the price of an item in the local catalog and the
supplier’s catalog, the price in the supplier’s catalog is used.

Internet catalog orders
In this mode, suppliers maintain a single catalog within WebSphere Commerce
and that catalog is used to enable their web presence and participation in the
procurement system’s network. When the buyer selects the supplier on the
procurement system, a connection is made to WebSphere Commerce through a
message, for example, PunchOutSetupRequest. After successful
authentication of the parties involved, WebSphere Commerce sends the

8 Procurement Integration Guide

appropriate CatalogDisplay URL and related information to bind the session back
to the procurement system.

The procurement system uses the URL to display the WebSphere Commerce
catalog in the browser. From this point until the shopping cart is prepared, the
requisitioning buyer uses normal browser-based shopping.

When the requisitioning buyer prepares the shopping cart, it is placed in an XML
message for example, PunchOutOrderMessage and is sent to the procurement
system for approval. When the approver on the procurement system approves
the order, an OrderRequest message (the same as in local catalog mode) is
sent to WebSphere Commerce to create the order.

Major capabilities
To enable procurement integration the different subsystems of WebSphere
Commerce such as the member subsystem, catalog subsystem, order
subsystem, and so on are modified. To support XML messaging in WebSphere
Commerce, XML messaging over HTTP is introduced. New controller
commands, task commands, and view commands are introduced to support B2B
functionality. The database schema is enhanced with new tables and
corresponding EJBs.

 The functionality included in the B2B sell-side extensions includes the following:

• Buyer organization registration.

• Buyer organization profile.

• Support for buyer and seller organization identification numbers, such as
DUNS.

• Product classification code support for catalog entries and products, such as
SPSC or UNSPSC.

• Unit of measure support for products, such as UNUOM.

• Contract support between buyers and sellers, where buyers can get specific
views and prices of products based on the contract.

• The ability of the shopping cart functionality to send the shopping cart to the
buyer systems for approval.

• The ability to process purchase orders sent from an external system.

• The buyer’s ability to change their shopping carts.

• The buyer’s ability to inspect the availability of a product before placing an
order.

• The buyer’s ability to obtain more information about a product from their
external procurement systems.

• The ability to process large orders from the external buyers.

Chapter 2 Features of procurement integration 9

• The ability to register requisitioning buyers from the external buyer
organizations during runtime.

• The ability to authenticate and validate requests from buyers from external
systems.

Business models enabled
The following business models are enabled by procurement integration::

• Suppliers can maintain a single catalog at the supplier’s site, and buyers can
do Internet catalog shopping at the supplier’s site.

• Suppliers can receive messages from external procurement systems like
Ariba, Commerce One , and so on.

• Many buyers can access a single supplier’s store.

• The shopping cart can be sent in the procurement system’s specific.

• Buyers can receive Internet catalog orders.

• You can receive unsolicited orders through local catalog shopping.

10 Procurement Integration Guide

 IBM Corporation 2002 11

Chapter 3. Supported cXML messages

Procurement integration uses five cXML messages (XML over HTTP) to integrate
with Ariba. There are two inbound messages to WebSphere Commerce from
Ariba, and three outbound response messages from WebSphere Commerce to
Ariba.

The following are the messages and commands directly invoked by the
messages (for inbound messages) or commands sending out the messages (for
outbound messages):

Message Name Command (ME) Direction Response

PunchOutSetupRequest PunchOutSetup IN PunchOutSetupResponse

OrderRequest BatchOrderRequest IN OrderResponse

PunchOutSetupResponse PunchOutSetup OUT

PunchOutOrderMessage PrepareOrder OUT

OrderResponse BatchOrderRequest OUT

Here, PunchOutOrderMessage is the shopping cart sent to Ariba for approval.
For sample messages see, “Appendix B: Sample XML messages”.

12 Procurement Integration Guide

 IBM Corporation 2002 13

Chapter 4. Configuring the reference application

This section covers how to configure the buyer and supplier settings. It also
provides information on creating a new store and enabling an existing store with
procurement integration.

Configuring the buyer and supplier

Configuring supplier settings

In the PISupplierConfig.xml file present in the
procurementintegration.zip modify the supplier information to configure a
new PISupplier as a member of WebSphere Commerce. A config.bat file is
provided to load the configuration data for the Windows environment only. This
file resides in the same directory as the configuration XML files. The
Config.txt file in this directory describes how to run the config.bat file. The
following is a code fragment from PISupplierConfig.xml:

<member

Member_id=”1”

Type=”O”

State=”1”

/>

<orgcode

orgcode_id="1"

orgentity_id=<StoreOwnerId>

codetype="DUNS"

code="sreed"

/>

<member

Member_id="1"

Type="O"

State="1"

/>

<viewreg
viewname="PunchOutAribaView"
devicefmt_id="-10000"
storeent_id="0"
interfacename="com.ibm.commerce.command.HttpForwardViewCommand”
classname="com.ibm.commerce.command.HttpForwardViewCommandImpl"
properties="docname=PunchOutSetupResponse.jsp"

/>

<viewreg
viewname="PunchOutAribaErrorView"
devicefmt_id="-10000"
storeent_id="0"
interfacename="com.ibm.commerce.command.HttpForwardViewCommand"
classname="com.ibm.commerce.command.HttpForwardViewCommandImpl"
properties="docname=PunchOutAribaError.jsp"

/>

14 Procurement Integration Guide

<viewreg
viewname="PunchOutCatalogView"
devicefmt_id="-1"
storeent_id="0"
interfacename="com.ibm.commerce.command.HttpForwardViewCommand"
classname="com.ibm.commerce.command.HttpForwardViewCommandImpl"
properties="docname=PunchOutCatalogDisplay.jsp"

/>

<viewreg
viewname="SubmitShoppingCartView"
devicefmt_id="-1"
storeent_id="0"
interfacename="com.ibm.commerce.command.HttpForwardViewCommand"
classname="com.ibm.commerce.command.HttpForwardViewCommandImpl"
properties="docname=SubmitShoppingCart.jsp"

/>

<viewreg
viewname="SubmitShoppingCartErrorView"
devicefmt_id="-1"
storeent_id="0"
interfacename="com.ibm.commerce.command.HttpForwardViewCommand"
classname="com.ibm.commerce.command.HttpForwardViewCommandImpl"
properties="docname=error.jsp"

/>

<viewreg
viewname="SendShoppingCartView"
devicefmt_id="-1"
storeent_id="0"
interfacename="com.ibm.commerce.command.HttpForwardViewCommand"
classname="com.ibm.commerce.command.HttpForwardViewCommandImpl"
properties="docname=ComposeShoppingCartAriba.jsp"

/>

<viewreg
viewname="SendShoppingCartErrorView"
devicefmt_id="-1"
storeent_id="0"
interfacename="com.ibm.commerce.command.HttpForwardViewCommand"
classname="com.ibm.commerce.command.HttpForwardViewCommandImpl"
properties="docname=error.jsp"

/>

<viewreg
viewname="PurchaseOrderResponseAribaView"
devicefmt_id="-10000"
storeent_id="0"
interfacename="com.ibm.commerce.command.HttpForwardViewCommand"
classname="com.ibm.commerce.command.HttpForwardViewCommandImpl"
properties="docname=PurchaseOrderResponseAriba.jsp"

/>

<viewreg
viewname="PunchOutCatalogEditView"
devicefmt_id="-1"
storeent_id="0"
interfacename="com.ibm.commerce.command.HttpForwardViewCommand"
classname="com.ibm.commerce.command.HttpForwardViewCommandImpl"
properties="docname=PunchOutCatalogDisplay.jsp"

/>

Chapter 4 Configuring the reference application 15

Getting buyer invitations and soliciting buyer information

To transact business with a buyer over the procurement system, a buyer must
invite you to become a supplier. Once invited, you must obtain some basic
information about the buyer and enter that information into WebSphere
Commerce. Information specific to the procurement system is collected through
new forms that are part of procurement integration.

See “Appendix D: Sample buyer information form” for a sample form You may
implement and deliver this form in any manner you wish – as a printed form, a file
sent as an e-mail attachment, a web-based form, and so on. Typically, you would
send this form to a buyer or have them complete the form on the Internet.

Once the buyer completes the form or you obtain the buyer information in some
other manner, you can proceed to register a new buyer organization.

Configuring buyer settings

A buyer organization or a buyer is any business organization that wants to
procure goods and services. There may be multiple buyer organizations within a
buyer’s enterprise. To create and configure the buyer, you must update the
database tables with the buyer information. You can do this by creating an XML
file.

In the PIBuyerConfig.xml file present in the
procurementintegration.zip modify the supplier information to configure
a new PIBuyer as a member of WebSphere Commerce. A config.bat file is
provided to load the configuration data. This file resides in the same directory as
the configuration XML files. The Config.txt file in this directory describes how
to run the config.bat file. The following is a code fragment from
PIBuyerConfig.xml:

<member
Member_id=“5000”
Type=”O”
State=”1”

/>

Type ‘O’ specifies that the member is an organization.

<orgentity
Orgentity_id=“5000”
Orgentitytype=”O”
Orgentityname=”Staples”

/>

Orgentitytype indicates that the type is an organization.

Orgentityname,is the name of the department or organization.

16 Procurement Integration Guide

<orgcode
orgcode_id=”2”
orgentity_id=”5000”
codetype=”AribaNetworkId”
code=”nkrishna@in.ibm.com”

/>

code and codetype represent the DUNS number or any other mutually agreed-
on number.

Add an address book entry to the address book and address tables.

<addrbook
addrbook_id="4000"
displayname="Staples address Book"
member_id="5000"

/>

<address
addrbook_id="4000"
address_id="3000"
member_id="5000"
nickname="Staples_NickName1"
selfaddress="1"
address1="Airport Road"
city="Bangalore"
country="India"
state="Karnataka"
zipcode="560008"
status="P"

/>

<mbrattrval
mbrattrval_id="790"
member_id="5000"
attrtype_id="INTEGER"
mbrattr_id="-21"
integervalue="1"

/>

<!-- Now register the protocol which the buyer supports -->

<procsys
procsysname=”Ariba”

/>

<procprotcl
procprotcl_id=”1”
procsysname=”Ariba”
protocolname=”cXML”
version=”1.0”
authtype=”1”
twostepmode=”Y”
classifdomain=”UNSPSC”
uomstandard=””

/>

Chapter 4 Configuring the reference application 17

<procmsgvw
procprotcl_id=”1”
orgentity_id=”5000”
msgname=”PunchOutSetup”
viewname=”PunchOutAribaView”

/>

<procmsgvw
procprotcl_id=”1”
orgentity_id=”5000”
msgname=”SendShoppingCart”
viewname=”SendShoppingCartView”

/>

<procmsgvw
procprotcl_id=”1”
orgentity_id=”5000”
msgname=”PurchaseOrderResponse”
viewname=”PurchaseOrderResponseAribaView”

/>

<procbuyprf
procprotcl_id=”1”
orgentity_id=”5000”
reqidparm=”User”
orgunitparm=<deptName>

/>

Creating member groups for buyers

A member group is a collection of buyers as defined by the supplier, who share a
common interest. Member groups are similar to the exclusive clubs offered by
large stores for their frequent or preferred buyers. Being part of a member group
can entitle buyers to discounts or other bonuses when purchasing products. For
example, if market research shows that certain buyers repeatedly purchase
certain products, you can assign these buyers to the same member group.
Alternatively, you can create a member group to reward frequent buyers for their
business. You can assign different prices to products for different member
groups. You can also customize the way products and categories are shown to
member groups.

A procurement integration buyer can belong to one member group, the default
group. Creating the procurement integration buyer group is similar to creating a
member group for buyers. The fontmbrgrp_id must be present in the
BUYSUPMAP table with the fontbuyorgunit_id and the fontsuporg_id to
form a unique index.

A sample XML file, PIBuyerConfig.xml is provided to create member groups
for buyers. The following is a code fragment from the file PIBuyerConfig.xml:

<member
Member_id=“101”
Type=“G”
State=”1”

/>

18 Procurement Integration Guide

<mbrgrp
Mbrgrp_id=“101”
mbrgrpname=“Store Requisitioners for BuyOrg”
Owner_id=“5000”

/>

This fragment creates a member with the type ‘O’, which represents the member
group.

The Owner_id is the Member_id that owns the group. If the buyer group will
apply site-wide, set this to zero. Otherwise, consider setting the ID to the
orgentity_id of the organization within which this buyer group is used.

<buysupmap
procprotcl_id=”1”
buyorgunit_id=”5000”
suporg_id=<StoreOwnerId>
catalog_id=”1”
mbrgrp_id=”101”

/>

The buyer and supplier must have access to execute the WebSphere Commerce
or procurement integration commands. The following XML fragment assigns
roles to the buyers and suppliers required to execute the commands.

<mbrole
member_id=”5000”
role_id=”-25”
orgentity_id=”-2001”

/>
<mbrrel

descendant_id=”5000”
ancestor_id=”-2001”
sequence=2

/>

Register a buyer with the Ariba NetworkUserId as the logonId and
SharedSecret as the password for the buyer organization from the
adminconsole. Assign the ‘Procurement Buyer Administrator’ role to this buyer.
This default buyer can now dynamically register other buyers from the
procurement system. Assign this buyer to the member group created previously.
For instructions on how to create a user refer to the WebSphere Commerce
online documentation

Note: Restart the instance after configuring the buyer and supplier.

Creating and configuring your store
To provide an Internet catalog, you can create a new store in your WebSphere
Commerce Installation or configure an existing store. Use the PIRefApp.sar
provided with this reference application as a template.

Note: You must disable the cache in the WebSphere Commerce instance that is
being used for this reference application.

1. Publish a new procurement – enabled store

Chapter 4 Configuring the reference application 19

a. Before you begin, make sure that the following services are running:

• IBM HTTP Server
• IBM WS AdminServer
• WebSphere Commerce Server instance

For more details on Starting and stopping services, refer to the WebSphere
Commerce Installation Guide.

b. From procurementintegration.zip copy PIRefApp.sar to the
WCBE_Install_Path\samples\stores\ToolTech directory.

c. Go to WCBE_Install_Path\xml\tools\devtools. Open the file
SARRegistry.xml. Append the following code to the end before
the last line, </SAR-properties>

<SampleSAR
fileName="PIRefApp.sar"
relativePath="ToolTech">
<html locale="en_US"
featureFile="ToolTech/Feature_refapp_en_US.html"
sampleSite="ToolTech/preview/en_US/index.html"/>

</SampleSAR>

d. Copy the file Feature_refapp_en_US.html from the
downloadable location to
WCBE_Install_Path\samplestores\ToolTech.

e. Edit the file store-all.dtd in WCBE_Install_Path\xml\sar.

You need to add the following to the <store-asset> element just before
the symbol “)*)>”

| clasifcode | clsfcodeds |catclsfcod

Add the following lines at the end:

<!ELEMENT clasifcode EMPTY>

<!ATTLIST clasifcode
clasifcode_id CDATA #REQUIRED
domain CDATA #REQUIRED
code CDATA #REQUIRED
parentcode CDATA #IMPLIED

>

<!ELEMENT clsfcodeds EMPTY>
<!ATTLIST clsfcodeds

language_id CDATA #REQUIRED
clasifcode_id CDATA #REQUIRED
description CDATA #REQUIRED

>

<!ELEMENT catclsfcod EMPTY>
<!ATTLIST catclsfcod

catentry_id CDATA #REQUIRED
domain CDATA #REQUIRED

20 Procurement Integration Guide

code CDATA #REQUIRED
>

f. Restart the WebSphere Commerce Server – instance_name by
selecting Start >> Programs >> IBM WebSphere >> Application
Server V3.5 >> Administrator’s Console. Expand your hostname,
and go to WebSphere Commerce Server – instance_name. Right
click, and select Stop. After it stops successfully, start it again.

g. Start Store Services: from the Start menu, select Programs >> IBM
WebSphere Commerce >> Store Services.

h. Click the New button on the right-hand pane. All the sample store
archives are listed in a list box named “sample.”

i. Provide the store archive and store directory name. Select the
Owner organization for this store and select the PIRefApp.sar file
from samples list. Click OK.

j. Select the store archive created in the previous step and click on
Publish. This may take some time. Click Refresh to see the Publish
Status change from ‘Not Published’ to ‘Publishing’ and then to
‘Publishing Completed Successfully’.

Enabling an existing store with procurement integration

The procedures in this section assume that you have already published a store
using Store Services. This process creates stores with a standard structure.
Since stores created by means other than Store Creator can vary dramatically in
organization, capability, and layout, there is no standard set of instructions that
can explain how to enable these stores.

Note: You must disable the cache in the WebSphere Commerce instance.

To enable a store that already exists in WebSphere Commerce, do the following:

1. Make a backup of the web directory for your existing WebSphere Commerce
catalog,
WebSphereAppServer_Installation_PathInstalledApps/WC_Ent
erprise_App_instance_name ear/wcstores.war/. Where,
instance_name is the name of the WebSphere Commerce instance in
your installation.

2. Navigate to the
WebSphereAppServer_Installation_Path/InstalledApps/WC_En
terprise_App_instance_name.ear/wcstores.war/. Where,
instance_name is the name of the WebSphere Commerce instance in
your installation and <storedirectory> directory where
store_directory contains all the pages of your website. Open the
shoppingcart.jsp in any editor.

3. Extract PIRefApp.sar into a temporary directory and open
shoppingcart.jsp.

4. Make the necessary changes to the shoppingcart.jsp in your store to
call the SubmitShoppingCartCmd during checkout (or) addToOrder by
comparing it with the PIRefApp’s shoppingcart.jsp.

Chapter 4 Configuring the reference application 21

5. Copy PunchoutSetupResponse.jsp, PunchoutCatalogDisplay.jsp,
PunchoutOutAribaError.jsp, SubmitShoppingCart.jsp,
PurchaseOrderResponse.jsp, and
ComposeShoppingCartAriba.jsp into your
WebSphereAppServer_Installation_Path/InstalledApps/WC_En
terprise_App_<instance_name>.ear\wcstores.war/directory.

6. From PIRefApp.sar, extract data/refapp.dtd and data/refapp.xml
into any temporary directory. Edit refapp.xml to change the element from
<refapp-asset> to <import> and the closing tag from </refapp-asset> to
</import>. Edit refapp.dtd and change the element type from refapp to
import. Change the corresponding catentry_id values to those of the
existing store catalog’s catentry_ids. Add more or delete some if
required. Set the classpath to contain the following jar or zip files.

classpath=%classpath%;
WCBE_Install_Path\lib\loader\jgl2.0.0.jar;
WCBE_Install_Path\lib\loader\jlog.jar;
WCBE_Install_Path\lib\loader\wcmxmlp.jar;
WCBE_Install_Path\loader\wcmxslt.jar;
WCBE_Install_Path\lib\loader\Logger.zip;
WCBE_Install_Path\lib\loader\WCALogger.zip;
WCBE_Install_Path\lib\loader\SAFServ.zip;
WCBE_Install_Path\lib\loader\IdResGen.zip;
WCBE_Install_Path\lib\loader\MassLoader.zip;
WCBE_Install_Path\lib\loader\WCMCommon.zip;
WCBE_Install_Path\lib\loader\db2\dbconnect.zip;
WCBE_Install_Path\commerce\xml\loader;

Run the following command from the command window:

java com.ibm.wca.MassLoader.MassLoad -dbname <dbname>
-dbuser <dbuser> -dbpwd <dbpwd> -infile refapp.xml
-method sqlimport

This will insert the required classification code for the respective catentries.

7. Restart the WebSphere Commerce instance.

Note: When buyers access your catalog though a remote session, they see a
slightly different navigation sequence than when viewing your store directly
through WebSphere Commerce. This is normal. Message extensions replace
certain standard operations such as the checkout process with applications that
incorporate message extension order processing workflow in place of the
standard WebSphere Commerce flow.

Business account for the supplier and buyer

1. Create a business account

For instructions on how to create a business account refer to the WebSphere
Commerce online documentation. When creating a business account note
the following:

• Don’t select the Allow customers to purchase under the terms and
conditions of store's default contract checkbox in the Customer page.

22 Procurement Integration Guide

• Don’t select the Purchase order number may be specified at the time of
the order checkbox in the Purchase Order page.

• Specify the credit line account number in the Credit Line page.

2. Create a contract for the business account created previously.

For instructions on how to create a contract for the business account refer to
WebSphere Commerce online documentation. When creating a contract note
the following:

• Select the Allow the payment using the account’s credit line checkbox.

• Don’t specify any contract shipping addresses. This is required only if
shipping is necessary for various shipping addresses.

3. Modify the payment method information for the store using the following sql:

update cmdreg set
classname=’com.ibm.commerce.payment.commands.DoPaymentMP
FCmdImpl’ where storeent_id=<SupplierOrgStoreID> and
interfacename=’com.ibm.commerce.payment.DoPaymentCmd’

Your store is now enabled with procurement integration.

 IBM Corporation 2002 23

Chapter 5. Customizing procurement integration

Procurement integration provides an extensible and customizable framework to
support B2B transactions on top of WebSphere Commerce so that one can
extend the message, schema, or business logic. This component is built over
WebSphere Commerce in order to enable the functionality to integrate external
buy-side systems.

Enabling procurement integration for other procurement
systems

To enable procurement integration for different procurement systems such as
Ariba, mySAP, Commerce One, and so on, means supporting the system with
the functionality to handle different protocols such as cXML, OCI, and XCBL.

Procurement integration provides out-of-the-box cXML support. It can also
support any other protocol as long as it receives XML over HTTP. To support
new protocols, you need to customize procurement integration. This
customization involves the following:

• Registering the new protocol with procurement integration.

• Creating the configuration file (that is, mapping protocol-specific XML to
procurement integration specific variables).

• Customizing the procurement integration specific Java Server Pages (JSP).

• Customizing the different subsystems like member subsystem, catalog
subsystem, and order subsystem.

1. Registering a new protocol with procurement integration

This includes creating an entry for the new protocol in the database and
associating it with the suppliers and buyers by doing the following:

a. Populate the procurement system information into the PROCSYS table
for the new procurement system.

b. Populate the protocol-specific information like protocol name, version,
format, and so on into the PROCPROTCL table.

c. Populate the view task name for the specific protocol. Each procurement
integration command (PunchOutSetup, BatchOrderRequest,
SendShoppingCart) that needs to compose a response message to be
sent to the procurement system will look up the PROCMSGVW table to
get the correct view task name.

d. Populate the PROCBUYPRF table that contains the buyer organization’s
profile information such as the requisition id, department name, and so
on.

e. Associate the buying organization unit with the supplier. Populate the
BUYSUPMAP table that will contain the protocol id, catalog id,

24 Procurement Integration Guide

and the member group id created for the buyer.

See, “Configuring the buyer and supplier” for sample XML files to
populate these tables.

2. Creating configuration files

To let procurement integration understand the incoming XML message, the
message must be mapped to a WebSphere Commerce or procurement
integration command and the elements of the message must be mapped to
the parameters of that command. For instance, map the logon request,
order request, and other messages to their respective commands using
a system template or user template. Refer to “Appendix A:
System_template.xml” for more information.

To receive XML over HTTP enable the HTTP adapter in
WCBE_Install_Path\instances\instance_name\xml\<instance_
name>.xml by changing enabled="true" in the following section of the XML
file.

Note: Where instance_name is the name of the instance in your WebSphere
Commerce installation.

<HttpAdapters display="false">
<HttpAdapter deviceFormatTypeId="-10000"

enabled="true"
deviceFormatType="XmlHttp"
deviceFormatId="-10000"
name="XML/HTTP"
factoryClassname="com.ibm.commerce.programadapter.

HttpProgramAdapterImpl">
<ProgramAdapter>

<SessionContext
class="com.ibm.commerce.messaging.programadapter.security.

CredentialsSpecifiedProgramAdapterSessionContextImpl">
<SessionContextConfig />

</SessionContext>
<Configuration supportedMessageMappers="WCS.INTEGRATION"

supportedContentTypes="text/xml, text/xml;charset=UTF-8,
text/xml-SOAP"

supportedMethods="POST, M-POST"
supportedCharacterEncoding="ISO8859-1, UTF-8" />

</ProgramAdapter>
</HttpAdapter>

</HttpAdapters>

You can configure the XML or HTTP adapter support using a separate
template XML file for each procurement system. To do this, add the following
section to the message-mapper group section for each message mapper in
demo.xml.
The path is:
<drive>:\WCBE_Install_Path\instances\instance_name\xml.
Where instance_name is the name of the instance in your WebSphere
Commerce Installation.

<MessageMapper
messageMapperId="1"
classname="com.ibm.commerce.messaging.programadapter.
messagemapper.ecsax.ECSAXMessageMapper"

enable="true"

Chapter 5 Customizing procurement integration 25

name="WCS.INTEGRATION">
<configuration

/>

Add the following lines under the configuration element before the end tag, in
the code given above.

,
EcSystemTemplateFile="ariba_sys_template.xml"
EcTemplatePath="C:\WebSphere\Commerce\xml\messaging"
EcInboundMessageDtdFiles="cXML.dtd"
cInboundMessageDtdPath="C:\WebSphere\Commerce\xml\mes
saging"

/>

EcSystemTemplateFile="ariba_sys_template.xml"
EcTemplatePath="/usr/WebSphere/CommerceServer/xml/mes
saging"
EcInboundMessageDtdFiles="cXML.dtd"
cInboundMessageDtdPath="/usr/WebSphere/CommerceServer
/xml/messaging"

/>

EcSystemTemplateFile="ariba_sys_template.xml"
EcTemplatePath="/opt/WebSphere/CommerceServer/xml/mes
saging"
EcInboundMessageDtdFiles="cXML.dtd"
cInboundMessageDtdPath="/opt/WebSphere/CommerceServer/xml/m

essaging"

/>

Note: Some e-procurement protocols use HTML as the transport format instead
of XML. Procurement integration can support such messages. Refer to
“Appendix C: LogonRequest in HTML format” to configure an HTML message.

3. Customizing JSPs

JSPs generate the messages that need to be transferred to different
procurement systems. To generate messages in any format specific to a
protocol, customize the following JSPs:

• Logon Response JSP
• Shopping Cart JSP
• Purchase Order Request JSP
• Order Response JSP

For protocol specific messages, modify the following JSPs and then update
the VIEWREG table accordingly:

• PunchOutCatalogDisplay.jsp
• PunchOutSetupResponse.jsp
• OrderItemDisplay.jsp
• SubmitShoppingCart.jsp

26 Procurement Integration Guide

• ComposeShoppingCartAriba.jsp
• PurchaseOrderResponseAriba.jsp

4. Customizing the member subsystem

The member subsystem may be customized in the following ways:

• Adding extension tables to the existing member subsystem schema or
modifying the existing tables.

• Adding entity beans corresponding to the new tables or modifying the
existing entity beans to reflect changes in the table schema.

• Implementing new controller and task commands.

For instructions, refer to the WebSphere Commerce Programmers Guide
Version 5.4.

• Extending the controller and task commands.

• Receiving LogonRequest in HTML format.

Refer to “Appendix C: LogonRequest in HTML format” to customize
PunchOutSetupCmd.

a. Customizing commands

You can extend any of the procurement integration controller and task
commands to provide custom behavior by over-riding certain methods.
For instructions, refer to the Programmers Guide for WebSphere
Commerce Version 5.4. Each command is based on an interface; and
one way to customize a certain command would be to provide a custom
implementation of the required interface. A default implementation class
has been provided for some interfaces.

The following is a list of all the membership subsystem interfaces and
their default implementation classes:

Controller commands

Interface Default Implementation

PunchOutSetupCmd PunchOutSetupCmdImpl

PunchOutCatalogDisplayCmd PunchOutCatalogDisplayCmdImpl

Task commands

Interface Default Implementation

AuthenticationHelperCmd AuthenticationHelperCmdImpl

ProcurementDBAuthenticationCmd ProcurementDBAuthenticationCmdImpl

LdapAuthenticationCmd

RegisterRequisitionerCmd RegisterRequisitionerCmdImpl

ThirdPartyB2BauthCmd

Chapter 5 Customizing procurement integration 27

b. Customizing CIData

The PunchOutSetupCmd uses the CIData object to store all the XML
parameters that it receives from the PunchOutSetupRequest
message. A default implementation of the CIData interface is provided in
CIDataImpl. To customize CIData, the buyer can provide a custom
implementation of the CIData class. This captures custom information
from the XML parser.

The PunchOutSetupCmd receives the XML parameters in the form of a
TypedProperty data structure that extends the HashTable class. It
then passes the TypedProperty object to the CIData object in the
setRequestProperties() method as follows:

Example:
public void setRequestProperties(TypedProperty
typedproperty)throws ECException
{

String s = "setRequestProperties";
ECTrace.entry (ECTraceIdentifiers.COMPONENT_USER,
getClass().getName(), s);
requestProperties = typedproperty;
ciData.setLogonData(typedproperty);
ECTrace.exit(16L, getClass().getName(), s);

}

The procurement integration data then processes the TypedProperty,
that is typedproperty in the method processHeader(). The
processHeader() method in turn populates the following objects:

i) SupplierCred – Stores the supplier credentials for authentication
purposes.

ii) BuyerCred – Stores the buyer organization credentials for
authentication purposes.

iii) MpCred – If the PunchOutSetupRequest comes from an
online marketplace, then this object stores the marketplace
credentials for authentication purposes.

iv) B2BAgent – Captures the information about the messaging
protocol.

v) SessionInfo – Stores information relevant to register the
requisitioning buyer.

Any of these may be modified to store information received through
custom elements in the XML message. The following example shows
how some of the supplier credentials are set.

Example:
private void processHeader(TypedProperty
typedproperty)

{
String s = "processHeader";
supplierCred = new Credentials();

28 Procurement Integration Guide

supplierCred.setCode(typedproperty.getString
("supplierCode", null));

supplierCred.setCodeDomain(typedproperty.getString
("supplierCodeType", null));

.

.

.
}

c. Customizing authentication

The authentication functionality provided with procurement integration
can be modified in one of the two ways:

i) Customizing the authentication type

The default authentication mechanism provided is the authentication
against credential information stored in the WebSphere Commerce
database. This authentication is performed by the
ProcurementDBAuthenticationCmd task command.

You have the option to customize authentication so that it will be
performed against a Lightweight Directory Access Protocol (LDAP)
directory by implementing the interface LdapAuthenticationCmd.
Alternately, you can choose to use a third-party authentication
mechanism by implementing the interface
ThirdPartyB2BAuthCmd.

ii) Customizing the authentication level

In procurement integration, you are provided with four possible levels
of authentication. For a description of these authentication levels
please refer to the description of the
ProcurementDBAuthenticationCmd.

You may also specify a fifth level of authentication to customize the
authentication level. This must be specified in the database during
buyer registration. In addition, the authentication command, either
ProcurementDBAuthenticationCmd,
LdapAuthenticationCmd, or ThirdPartyAuthenticationCmd
must be modified to handle the new authentication level.

d. Customizing registration

The controller command PunchOutSetupCmd makes a call to the task
command RegisterRequisitionerCmd to register the requisitioning
buyer based on the session information stored in the sessionInfo
object. To add, remove, or modify registration information complete the
following steps:

i) Modify the tables in the database or any other persistent data
storage being used to reflect this change. If the WebSphere
Commerce database is being used, then modify the BUSPROF
table that stores the information about the requisitioning buyer.

ii) Provide a custom implementation of the procurement integration
data interface to capture custom information about the

Chapter 5 Customizing procurement integration 29

requisitioning buyer from the XML message. Store the
information in the appropriate sessionInfo object variables, or
provide added class variables in the
registerRequisitionerCmd command with their appropriate
getter and setter methods. These variables will then be set
directly rather than being passed as members of the
sessionInfo object.

iii) Modify the performExecute() method of the
registerRequisitionerCmd to update the persistent data
storage, the BUSPROF table for example, with the custom data.

e. Customizing store catalog display in PunchOutSetupCmd

Once a buyer organization is authenticated and the requisitioning buyer
has been registered, do the following in the performExecute()
method of the PunchOutSetupCmd:

i) All the parameters to be passed on to
PunchOutCatalogDisplayCmd are stored in the
BuyerRequestInfo object.

ii) The BuyerRequestInfo object is stored in the
SupplierCookieTable.

iii) PunchOutSetupCmd will return the URL of
PunchOutCatalogDisplayCmd, which will be invoked by the
procurement system along with the supplier cookie value as its
parameter.

Example:

The following is the code that performs this function in
PunchOutSetupCmd:

public void performExecute()throws ECException
{

BuyerRequestInfo buyerrequestinfo = new
BuyerRequestInfo();

buyerrequestinfo.setUsersId(userId);
...
String s1 =
SupplierCookieTable.put(buyerrequestinfo);

getInstance()

responseProperties.put("commandName",
PunchOutCatalogDisplayCmd?supplierCookie="
+ s1);

...
}

iv) The PunchOutCatalogDisplayCmd will set the view name as
PunchOutCatalogVie, which in turn will call
PunchOutCatalogDisplay.jsp.

v) The PunchOutCatalogDisplay.jsp will then call the command
invoked by the URL that will bring up the store’s home page.

30 Procurement Integration Guide

f. Customizing the store catalog display

Doing the following can customize the store catalog display:

i) Modify the parameters being passed on to the store catalog
display page. To do this add the parameter with its value to the
responseProperties in the performExecute() method of
PunchOutCatalogDisplayCmd. These parameters can then
be captured in PunchOutCatalogDisplay.jsp.

ii) Modify the target command from
PunchOutCatalogDisplay.jsp.

iii) Specify the new URL in place of the default URL provided in the
appropriate logon mode.

iv) Modify the target .JSP invoked from the URL command. To do
this change the appropriate value on the URLREG table in the
WebSphere Commerce database.

5. Customizing the order subsystem

The order subsystem can be customized in the following ways:

• Extend the controller and task commands.

• Add extension tables to the existing order subsystem schema or
modifying the existing tables.

• Add entity beans corresponding to the new tables or modify the existing
entity beans to reflect changes in the table schema.

• Implement new controller and task commands.

For instructions, refer to the WebSphere Commerce Programmers Guide
Version 5.4.

a. Customizing commands

You can extend any of the controller and task commands to provide
custom behavior by over-riding certain methods. For instructions, refer to
the WebSphere Commerce Programmers Guide Version 5.4. Each
command is based on an interface, and one way to customize a certain
command would be to provide a custom implementation of the required
interface. A default implementation class has been provided for each
interface.

The following is a list of all the order subsystem interfaces and their
default implementation classes:

Controller commands

Interface Default implementation

BatchOrderRequestCmd BatchOrderRequestCmdImpl

ProcurementOrderPrepareCmd ProcurementorderPrepareCmdImpl

Chapter 5 Customizing procurement integration 31

Task commands

Interface Default implementation

AuthenticationHelperCmd AuthenticationHelperCmdImpl

ProcurementDBAuthenticationCmd ProcurementDBAuthenticationCmdImpl

ShipBillToAddressCmd ShipBillToAddressCmdImpl

LdapAuthenticationCmd

RegisterRequisitionerCmd RegisterRequisitionerCmdImpl

ThirdPartyB2BauthCmd

b. Customizing CIData

The BatchOrderRequestCmd uses the CIData object to store all the
XML parameters that it receives from the OrderRequest message. A
default implementation of the CIData interface is provided in CIDataImpl.
To customize CIData, provide a custom implementation of the CIData
class to capture custom information from the XML parser.

The BatchOrderRequestCmd receives the XML parameters in the form
of a TypedProperty data structure that extends the HashTable class. It
then passes the TypedProperty object to the CIData object, which
then processes it using the method processHeader(). The
processHeader() method populates the following objects:

i) SupplierCred – Stores the supplier credentials for authentication.

ii) BuyerCred – Stores the buyer organization credentials for
authentication.

iii) MpCred – If PunchOutSetupRequest has come from an online
marketplace then this object stores the marketplace credentials
for authentication purposes.

iv) B2BAgent – Captures the information about the messaging
protocol.

v) SessionInfo – Stores information relevant to register the
requisitioning buyer.

vi) Any of the above may be modified to store information received
via custom elements in the XML message.

c. Customizing authentication

The authentication functionality provided with procurement integration
can be modified in one of the two ways:

i) Customizing the authentication type

The default authentication mechanism provided is authentication
against credential information stored in the WebSphere Commerce
database. This authentication is performed by DBAuthenticationCmd
task command.

32 Procurement Integration Guide

You have the option to customize authentication so that it is
performed against an LDAP directory by implementing the interface
LdapAuthenticationCmd.

Add to above Alternately, you can choose to use a third-party
authentication mechanism by implementing the interface
ThirdPartyB2BAuthCmd.

ii) Customizing authentication level

Procurement integration provides you with four possible levels of
authentication. For a description of these authentication levels,
please refer to the description of the DBAuthenticationCmd.

You may also specify a fifth level of authentication to customize the
authentication level. You must specify this in the database during
buyer registration. In addition, the authentication command
(DBAuthenticationCmd, LdapAuthenticationCmd or
ThirdPartyAuthenticationCmd) will have to be modified to
handle the new authentication level.

d. Customizing registration

The controller command BatchOrderRequestCmd makes a call to the
task command RegisterRequisitionerCmd to register the
requisitioning buyer based on the session information stored in the
sessionInfo object. To add, remove, or modify registration
information, do the following:

i) Modify the tables in the database or any other persistent data
storage being used to reflect this change. If the WebSphere
Commerce database is being used, then modify the
B2BRequisitioner table that stores the information about the
requisitioning buyer.

ii) Provide a custom implementation of the CIData interface to
capture custom information about the requisitioning buyer from
the XML message and store the information in the appropriate
sessionInfo object variables, or provide added class variables
in the registerRequisitionerCmd command with their
appropriate getter and setter methods. These properties will then
be set directly, as opposed to being passed as members of the
sessionInfo object.

iii) Modify the performExecute() method of the
registerRequisitionerCmd to update the persistent data
storage, the BUSPROF table for example, with the custom data.

6. Customizing the catalog subsystem

The catalog subsystem may be customized in the following ways:

• Add extension tables to the existing order subsystem schema or modify
the existing tables.

• Add entity beans corresponding to the new tables or modifying the
existing entity beans to reflect changes in the table schema.

Chapter 5 Customizing procurement integration 33

• Implement new commands.

For instructions, refer to the WebSphere Commerce Programmers Guide
Version 5.4.

• Extend the commands

o You can extend any of the procurement integration controller and
task commands to provide custom behavior by over-riding certain
methods. For instructions, refer to the WebSphere Commerce
Programmers Guide Version 5.4.

o Each command is based on an interface, and one way to customize
a certain command is to provide a custom implementation of the
required interface. A default implementation class has been provided
for each interface.

a. Customizing the commands

Most of the business logic of the subsystem resides in the commands.
The following table shows the list of the commands in the catalog
subsystem, their interface names and the default implementation class
names.

Interface name Default implementation class

SendShopppingCartCmd SendShoppingCartCmdImpl

SubmitShoppingCartCmd SubmitShoppingCartCmdImpl

To customize the commands or develop new business logic, override the
default implementation of the command interfaces.

b. Customizing the store catalog display

The catalog is displayed using a set of JSPs, some of which are common
to all the stores and the rest are specific to a particular store. The
common JSPs can be found in the directory
WCS_installation_Directory\WCBE_Install_Path\WCS\stor
es\web, and store-specific JSPs can be found in the directory
WCS_installation_Directory>\WCBE_Install_Path\stores\
web\store_name.

c. Customizing the shopping cart

i) Customizing the quote

The CIQuote interface provides a generic interface to be implemented by
any quote class. CIQuoteImpl provides the default implementation for the
quote.

The quote interface consists of methods to authenticate a buyer,
populate the data into the quote object, and get the shopping cart items
from the quote object. The default implementation uses the
PROCPROTCL and USERREG table to authenticate the buyer, and it
retrieves the logon_id and password associated with the buyer from
that table. To customize the quote, override the respective methods in
CIQuoteImpl or give a new implementation to the CIQuote interface.

34 Procurement Integration Guide

ii) Customizing the message format

Once the line items are populated into the quote object, the
ComposeShoppingCartAriba.jsp is invoked to generate the order
request message in the required format. The default implementation of
this view command generates the order request in the procurement
system specific XML format. To generate messages in other formats
replace this JSP file with another JSP file and then register it in the
VIEWREG table.

iii) Customizing database extensions

The database extensions consist of the tables CATCLSFCOD,
QTYUNITMAP, CLASIFCODE, and CLSFCODEDS as well as the
corresponding enterprise beans. The CATCLSFCOD table is an
extension to the WebSphere Commerce table CatEntry and relates a
catalog entry or product to its classification code. The CLASIFCODE and
CLSFCODEDS tables list the codes for different classification schemes
like SPSC and UNSPSC as well as their descriptions.

The QTYUNITMAP table contains the unit-of-measure information about
the products. This table links to the existing WebSphere Commerce base
tables QTYUNIT and CATENTSHIP. The QTYUNIT table lists all the UN
or CEFACT standard codes. CATENTSHIP gives the assignment of
these codes to catalog entries. The QTYUNITMAP table provides the
one-to-one mapping of codes between UN/CEFACT standard and any
NON-UN standards, for example, ISO.

 IBM Corporation 2002 35

Chapter 6. Use cases

The following use cases detail the flow of events when a buyer uses a procurement
system with WebSphere Commerce.

Use case 1: The requisitioning buyer selects a WebSphere Commerce
supplier to shop from Ariba

1. Ariba sends the PunchOutSetupRequest message to WebSphere Commerce with
operation= “create.” This includes buyer and supplier credentials and the
requisitioning buyer’s session ID in Ariba.

2. The message is mapped to the PunchOutSetup command.

3. The PunchOutSetup command invokes the AuthenticationHelper task
command to authenticate the buyer and supplier credentials. The
AuthenticationHelper task command, depending on the configured
authentication mode (DB, LDAP or THIRD PARTY), calls the appropriate task
command to perform the authentication.

4. If the authentication is successful, then the PunchOutSetup command invokes the
RegisterRequisitioner task command. This command checks if the
requisitioning buyer is already registered in the system. If so, it updates the relevant
requisitioning buyer information such as POSTBACK URL, SESSION_ID on Ariba. If
the requisitioning buyer does not exist, it registers the requisitioning buyer as a new
buyer and adds the buyer to the WebSphere Commerce member group specified in
the BUYSUPMAP table.

5. The supplier cookie is generated. This is the encrypted form of the information sent
through PunchOutSetupRequest message. It is sent to Ariba, and Ariba sends it
back to WebSphere Commerce for future HTTP requests.

6. The catalog that the buyer will view using the BUYSUPMAP table is determined, and
the URL that must be sent back to Ariba is constructed. This is the
B2BCatalogDispaly command URL, and the supplier cookie is the parameter.

7. The constructed URL is sent in the PunchOutSetupResponse XML message.
When Ariba receives this message it launches a new browser window with the
B2BCatalogDisplay command. This command retrieves the logon mode from the
supplier cookie and determines it as “CREATE” so that the CatalogDisplay page is
shown to the requisitioning buyer. The requisitioning buyer can now perform the
usual browsing and shopping using only HTTP.

8. The requisitioning buyer checks out the shopping cart in the browser. This invokes
the WebSphere Commerce OrderPrepare command. The order (shopping cart) is
changed to ‘P’ (pending) status.

9. The display result (view task) JSP page is customized for WebSphere Commerce to
call the SubmitShoppingCart command. This command is invoked when the
requisitioning buyer presses the SUBMIT button on the JSP display page.

10. The SubmitShoppingCart command changes the status of the order from ‘P’ to ‘I’.
This differentiates it from the non-procurement WebSphere Commerce shopping
flow.

36 Procurement Integration Guide

11. The SubmitShoppingCart command invokes the SendShoppingCart command.
This command composes the PurchaseOrderMessage XML message and sends it
to the POSTBACK URL in Ariba for approval. This ends the session.

Use case 2: The Approver on Ariba edits the order

1. If the Approver on Ariba is not satisfied with the shopping cart sent for approval, the
approver or any other requisitioning buyer tries to edit (modify) the shopping cart
(order).

2. Ariba sends the PunchOutSetupRequest message to WebSphere Commerce with
operation=”edit.” It includes the buyer and supplier credentials, the requisitioning
buyer’s session ID in Ariba, and the ShoppingCartID (ORDERS_ID column value in
the ORDERS table).

3. The message is mapped to the PunchOutSetup command.

4. The PunchOutSetup command invokes the AuthenticationHelper task
command to authenticate the buyer or supplier credentials.

5. If the authentication is successful, then the PunchOutSetup command invokes the
RegisterRequisitioner task command. This command checks if the
requisitioning buyer is already registered in the system. If so, it updates information
such as POSTBACK URL and SESSION_ID on Ariba. If the requisitioning buyer
does not exist, it registers the requisitioning buyer as a new buyer and adds the
buyer to the WebSphere Commerce member group specified in the BUYSUPMAP
table.

6. The order status changes from 'I' to 'P'.

7. The supplier cookie is generated.

8. The B2BCatalogDisplay command URL that must be sent back to Ariba is
constructed, with the supplier cookie as its parameter.

9. The constructed URL is sent in the PunchOutSetupResponse XML message.

10. When Ariba receives this message, it launches a new browser window with the
B2BCatalogDisplay command. This command retrieves the logonmode from the
supplier cookie, based on which the Edit Shopping Cart page displays.

Use case 3: The shopping cart is approved on Ariba

1. Ariba sends the OrderRequest message to WebSphere Commerce with the buyer
or supplier credentials. It also sends details about the shopping cart as well as the
BILL TO and payment information.

2. The message is mapped to the BatchOrderRequest command. This command
detects if the shopping cart is already in the ORDERS table using the unique
PAYLOADID in the message, and it changes the existing shopping cart (order) status
to ‘R’. It also creates a fresh order in batch processing by calling a series of order-
related commands.

3. At the end of the processing, the OrderResponse message that gives the status
code and status message is sent back to Ariba.

 Chapter 6 Use cases 37

Use case 4: The requisitioning buyer builds the shopping cart using the
local catalog and completes the order

1. Ariba sends the OrderRequest message to WebSphere Commerce with the buyer
or supplier credentials. It also sends details of the shopping cart as well as the BILL
TO and payment information.

2. The message is mapped to the BatchOrderRequest command. This command
detects if the shopping cart is already in the ORDERS table using the unique
PAYLOADID. It creates a fresh order in batch processing by calling a series of order-
related commands.

3. At the end of processing, the OrderResponse message that gives the status code
and status message is sent back to Ariba.

38 Procurement Integration Guide

 IBM Corporation 2002 39

Appendix A: System_template.xml

The sample below shows an example of system_template.xml. This maps the
PunchOutSetupRequest to the PunchOutSetup command and the OrderRequest
to the BatchOrderRequest command.

<ECTemplate>

<TemplateDocument>

<DocumentType version='1.0'>cXML</DocumentType>

<StartElement>cXML</StartElement>

<TemplateTagName>CXMLMap</TemplateTagName>

<CommandMapping>

<Command CommandName='PunchOutSetup' Condition='PunchOutReq'>

<Constant Field='protocolName'>cXML</Constant>

<Constant Field='protocolVersion'>1.0</Constant>

</Command>

<Command CommandName='BatchOrderRequest' Condition='OrderReq'>

<Constant Field='protocolName'>cXML</Constant>

<Constant Field='protocolVersion'>1.0</Constant>

</Command>

</CommandMapping>

</TemplateDocument>

<TemplateTag name='CXMLMap'>

<Tag XPath='Request/PunchOutSetupRequest'

Field='PunchOutReq' FieldInfo='Command'/>

<Tag XPath='Request/OrderRequest' Field='OrderReq'

FieldInfo='Command'/>

<Tag XPath='@version' Field='agentMessageVersion' />

<!-- Unique Message Id which is used to check Duplicate Orders -->

<Tag XPath='@payloadID' Field='messageId' />

<!—

Map Buyer /MarketPlace Credentials like Organization code,

code type. to command variables buyerCode, buyerCodeType etc.,

-->

<Tag XPath='Header/From/Credential@domain' Field='buyerCodeType'/>

<Tag XPath='Header/From/Credential/Identity' Field='buyerCode'/>

<Tag XPath='Header/From/Credential@type' XPathType='ATTRIBUTE'/>

<Tag XPath='Header/From/Credential@type[@type="marketplace"]'

Field='buyerType' />

<Tag XPath='Header/From/Credential@domain[@type="marketplace"]'

Field='marketPlaceType' />

<Tag XPath='Header/From/Credential[@type="marketplace"]/Identity'

Field='marketPlaceCode' />

<!—

Map Supplier Credentials like Organization code, code type.

to command variables supplierCode, supplierCodeType etc.,

-->

<Tag XPath='Header/To/Credential@domain' Field='supplierCodeType' />

<Tag XPath='Header/To/Credential/Identity' Field='supplierCode' />

<Tag XPath='Header/Sender/Credential@domain'

Field='supplierUserIDType' />

<Tag XPath='Header/Sender/Credential/Identity' Field='logonId'

FieldInfo='CONTROL' />

40 Procurement Integration Guide

<Tag XPath='Header/Sender/Credential/SharedSecret'

Field='logonPassword' FieldInfo='CONTROL' />

<Tag XPath='Header/Sender/UserAgent' Field='agentName' />

<!--

Map PunchOutSetupRequest message operation mode to logonMode.

This operation’s can be ‘create’,’edit’, and ‘inspect’

-->

<Tag XPath='Request/PunchOutSetupRequest@operation'

Field='logonMode'/>

<!--

Map AribaBuyer’s BuyerCookie to sessionId. This is included

in the Shopping cart message which is sent to procurement

system.

-->

<Tag XPath='Request/PunchOutSetupRequest/BuyerCookie'

Field='sessionId'/>

<!--

User Id and Department name is sent using Extrinsics. This

information is configured during Buyer Organization registration.

-->

<Tag XPath='Request/PunchOutSetupRequest/Extrinsic'

XPathType='USERDATA'/>

<!--

orderApprovalURL is the Url in the procurement system to which

shopping cart is sent

-->

<Tag XPath='Request/PunchOutSetupRequest/BrowserFormPost/URL'

Field='orderApprovalURL'/>

<!--

quoteNumber is the WCS order id which was created when the

shopping cart was created.

-->

<Tag XPath='Request/PunchOutSetupRequest/ItemOut/ItemID/

SupplierPartAuxiliaryID' Field='quoteNumber'/>

<!--

Map BuyerOrderId which is created at procurement system side.

-->

<Tag XPath='Request/OrderRequest/OrderRequestHeader@type'

Field='orderMode'/>

<Tag XPath='Request/OrderRequest/OrderRequestHeader@orderID'

Field='buyerOrderID' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader@orderDate'

Field='buyerOrderDate' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/Total/Money'

Field='totalAmount' />

<!--

Map the Requisitioner ship to address to appropriate fields in

the command.

-->

<!-- ShipTo Address at the Order Level -->

<Tag XPath='Request/OrderRequest/OrderRequestHeader/ShipTo'

XPathType='VECTOR' Field='order_shipTo_vector' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/ShipTo/

Address/Name' Field='name' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/ShipTo/

Address/PostalAddress/DeliverTo' Field='deliverTo' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/ShipTo/Address/

 Appendix A System_template.xml 41

PostalAddress/Street' XPathType='REPEAT' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/ShipTo/

Address/PostalAddress/Street[1]' Field='streetAddress1' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/ShipTo/Address/

PostalAddress/Street[2]'Field='streetAddress2' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/ShipTo/

Address/PostalAddress/Street[3]' Field='streetAddress3' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/ShipTo/

Address/PostalAddress/City' Field='city' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/ShipTo/

Address/PostalAddress/State' Field='state' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/ShipTo/

Address/PostalAddress/PostalCode' Field='postalCode' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/ShipTo/

Address/PostalAddress/Country' Field='country' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/ShipTo/

Address/Phone@name' Field='telephoneType' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/ShipTo/

Address/Phone/TelephoneNumber/CountryCode'

Field='phoneCountryCode' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/ShipTo/

Address/Phone/TelephoneNumber/AreaOrCityCode'

Field='phoneAreaCode' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/ShipTo/

Address/Phone/TelephoneNumber/Number' Field='phoneNumber' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/ShipTo/

Address/Fax@name'Field='faxType' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/ShipTo/

Address/Fax/TelephoneNumber/CountryCode'

Field='faxCountryCode' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/ShipTo/

Address/Fax/TelephoneNumber/AreaOrCityCode'

Field='faxAreaCode' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/ShipTo/

Address/Fax/TelephoneNumber/Number' Field='faxNumber' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/ShipTo/

Address/Email' Field='email' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/ShipTo/

Address/Email@name' Field='emailType' />

<!-- BillTo Address at the Order Level -->

<Tag XPath='Request/OrderRequest/OrderRequestHeader/BillTo'

XPathType='VECTOR'Field='order_billTo_vector' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/BillTo/

Address/Name' Field='name' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/BillTo/

Address/PostalAddress/DeliverTo'Field='deliverTo' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/BillTo/

Address/PostalAddress/Street'XPathType='REPEAT' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/BillTo/

Address/PostalAddress/Street[1]' Field='streetAddress1' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/BillTo/

Address/PostalAddress/Street[2]' Field='streetAddress2' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/BillTo/

Address/PostalAddress/Street[3]' Field='streetAddress3' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/BillTo/

Address/PostalAddress/City' Field='city' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/BillTo/

42 Procurement Integration Guide

Address/PostalAddress/State' Field='state' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/BillTo/

Address/PostalAddress/PostalCode' Field='postalCode' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/BillTo/

Address/PostalAddress/Country' Field='country' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/BillTo/

Address/Phone@name' Field='telephoneType' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/BillTo/

Address/Phone/TelephoneNumber/CountryCode'

Field='phoneCountryCode' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/BillTo/

Address/Phone/TelephoneNumber/AreaOrCityCode'

Field='phoneAreaCode' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/BillTo/

Address/Phone/TelephoneNumber/Number' Field='phoneNumber' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/BillTo/

Address/Fax@name' Field='faxType' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/BillTo/

Address/Fax/TelephoneNumber/CountryCode'

Field='faxCountryCode' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/BillTo/

Address/Fax/TelephoneNumber/AreaOrCityCode'

Field='faxAreaCode' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/BillTo/

Address/Fax/TelephoneNumber/Number' Field='faxNumber' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/BillTo/

Address/Email' Field='email' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/BillTo/

Address/Email@name' Field='emailType' />

<!-- Shipping Info -->

<Tag XPath='Request/OrderRequest/OrderRequestHeader/Shipping'

XPathType='VECTOR'Field='shippingInfo' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/Shipping/Money'

Field='shippingCharge' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/

Shipping/Money@currency' Field='currency' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/

Shipping/Description' Field='discription' />

<Tag XPath='Request/OrderRequest/OrderRequestHeader/Comments'

Field='comment' />

<!-- Extrinisics at the Order level -->

<Tag XPath='Request/OrderRequest/OrderRequestHeader/Extrinsic'

XPathType='USERDATA' />

<!-- Order Items -->

<Tag XPath='Request/OrderRequest/ItemOut' XPathType='VECTOR'

Field='order_items_vector' />

<Tag XPath='Request/OrderRequest/ItemOut@quantity' Field='quantity' />

<Tag XPath='Request/OrderRequest/ItemOut@requestedDeliveryDate'

Field='requestDeliveryDate' />

<Tag XPath='Request/OrderRequest/ItemOut/ItemID/SupplierPartID'

Field='itemID' />

<Tag XPath='Request/OrderRequest/ItemOut/ItemID/

SupplierPartAuxiliaryID' Field='quoteNumber'/>

<Tag XPath='Request/OrderRequest/ItemOut/ItemDetail/

UnitPrice/Money@currenty' Field='currency' />

<Tag XPath='Request/OrderRequest/ItemOut/ItemDetail/

UnitPrice/Money' Field='itemPrice' />

 Appendix A System_template.xml 43

<Tag XPath='Request/OrderRequest/Itemout/ItemDetail/Description'

Field='itemDescription' />

<Tag XPath='Request/OrderRequest/ItemOut/ItemDetail/UnitOfMeasure'

Field='unitOfMeasure' />

<Tag XPath='Request/OrderRequest/ItemOut/ItemDetail/

Classification@domain' Field='classificationDomain' />

<Tag XPath='Request/OrderRequest/ItemOut/ItemDetail/Classification'

Field='classificationCode' />

<!-- Shipto at the Order Item level -->

<Tag XPath='Request/OrderRequest/ItemOut/ShipTo' XPathType='VECTOR'

Field='order_Item_shipTo' />

<Tag XPath='Request/OrderRequest/ItemOut/ShipTo/Address/Name'

Field='name' />

<Tag XPath='Request/OrderRequest/ItemOut/ShipTo/Address/

PostalAddress/DeliverTo'Field='deliverTo' />

<Tag XPath='Request/OrderRequest/ItemOut/ShipTo/Address/

PostalAddress/Street' XPathType='REPEAT' />

<Tag XPath='Request/OrderRequest/ItemOut/ShipTo/Address/

PostalAddress/Street[1]' Field='streetAddress1' />

<Tag XPath='Request/OrderRequest/ItemOut/ShipTo/Address/

PostalAddress/Street[2]' Field='streetAddress2' />

<Tag XPath='Request/OrderRequest/ItemOut/ShipTo/Address/

PostalAddress/Street[3]' Field='streetAddress3' />

<Tag XPath='Request/OrderRequest/ItemOut/ShipTo/Address/

PostalAddress/City' Field='city' />

<Tag XPath='Request/OrderRequest/ItemOut/ShipTo/Address/

PostalAddress/State' Field='state' />

<Tag XPath='Request/OrderRequest/ItemOut/ShipTo/Address/

PostalAddress/PostalCode' Field='postalCode' />

<Tag XPath='Request/OrderRequest/ItemOut/ShipTo/Address/

PostalAddress/Country' Field='country'

/>

<!-- Extrinisics at the Order Item level -->

<Tag XPath='Request/OrderRequest/ItemOut/Extrinsic'

XPathType='USERDATA' />

</TemplateTag>

</ECTemplate>

Note: If the protocol has different versions and procurement integration is to support that
protocol, you must add the TemplateDocument for that version as given below:

<TemplateDocument>

<DocumentType version='1.1.008'>cXML</DocumentType>

<StartElement>cXML</StartElement>

<TemplateTagName>CXMLMap</TemplateTagName>

<CommandMapping>

<Command CommandName='PunchOutSetup'

Condition='PunchOutReq'>

<Constant Field='protocolName'>cXML</Constant>

<Constant Field='protocolVersion'>1.0</Constant>

</Command>

<Command CommandName='BatchOrderRequest' Condition='OrderReq'>

<Constant Field='protocolName'>cXML</Constant>

<Constant Field='protocolVersion'>1.0</Constant>

</Command>

</CommandMapping>

</TemplateDocument>

44 Procurement Integration Guide

 IBM Corporation 2002 45

Appendix B: Sample XML messages

1. PunchOutSetupRequest

This message initiates the interaction from Ariba to WebSphere Commerce. It refers
to use cases 1 and 2.

The WebSphere Commerce messaging subsystem maps this message to the
PunchOutSetup command.

The following are other commands triggered by this message:

• AuthenticatonHelperCmd
• DBAuthenticationCmd
• LdapAuthenticationCmd
• ThirdPartyB2BAuthCmd
• RegisterRequisitionerCmd

Sample message:

<?xml version="1.0"?>

<!DOCTYPE cXML SYSTEM "cXML.dtd">

<cXML version="1.0" payloadID="992114492875.591694834@sandbox21"

timestamp="2001-06-09T12:21:32-07:00">

<Header>

<From>

<Credential domain="AribaNetworkId">

<Identity>nkrishna@in.ibm.com</Identity>

</Credential>

</From>

<To>

<Credential domain="DUNS">

<Identity>9143470144</Identity>

</Credential>

</To>

<Sender>

<Credential domain="AribaNetworkUserId">

<Identity>nkrishna@in.ibm.com</Identity>

<SharedSecret>catalog</SharedSecret>

</Credential>

<UserAgent>Ariba ORMS 6.1</UserAgent>

</Sender>

</Header>

<Request>

<PunchOutSetupRequest operation="create">

<BuyerCookie>V8UE19ALU9IL</BuyerCookie>

<Extrinsic name="CostCenter">610</Extrinsic>

<Extrinsic name="User">vlo</Extrinsic>

<BrowserFormPost>

<URL>http://sandbox21:3377/punchout</URL>

</BrowserFormPost>

<SupplierSetup>

46 Procurement Integration Guide

<URL>http://budhoo.hawthorne.ibm.com/webapp/cib2b/PunchOut</URL>

</SupplierSetup>

<ShipTo>

<Address addressID="1000487">

<Name xml:lang="en">Los Gatos</Name>

<PostalAddress>

<DeliverTo>Vincent Lo</DeliverTo>

<Street>15 Camino del Cerro</Street>

<City>Los Gatos</City>

<State>CA</State>

<PostalCode>95032</PostalCode>

<Country isoCountryCode="US">United States</Country>

</PostalAddress>

</Address>

</ShipTo>

</PunchOutSetupRequest>

</Request>

</cXML>

2. OrderRequest

This message is sent from Ariba to WebSphere Commerce to create an approved order. It
refers to use cases 3 and 4.

The WebSphere Commerce messaging subsystem maps this message to the
CIPurchaseOrder command.

The following are other commands that are indirectly invoked by this message:

• B2BOrderPrepareCmd
• CreatePurchaseOrderCmd
• CreateBatchOrderItemCmd
• OrderCompleteCmd
• ShipBillToAddressCmd

Sample message:
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE cXML SYSTEM

"http://xml.cxml.org/schemas/cXML/1.1.006/cXML.dtd">

<cXML version="1.1"

payloadID="991013064000.1@sandbox21.nkrishna@in.ibm.com"

timestamp="2001-05-27T18:24:24-07:00">

<Header>

<From>

<Credential domain="AribaNetworkId">

<Identity>nkrishna@in.ibm.com</Identity>

</Credential>

</From>

<To>

<Credential domain="DUNS">

<Identity>9143470144</Identity>

</Credential>

</To>

<Sender>

<Credential domain="AribaNetworkUserId">

<Identity>nkrishna@in.ibm.com</Identity>

 Appendix B Sample XML messages 47

<SharedSecret>catalog</SharedSecret>

</Credential>

<UserAgent>Ariba Network V1.1 </UserAgent>

</Sender>

</Header>

<Request>

<OrderRequest>

<OrderRequestHeader orderID="DO1452"

orderDate="2001-05-27T18:24:24-07:00" type="new" >

<Total>

<Money currency="USD" >1,222</Money>

</Total>

<ShipTo>

<Address isoCountryCode="US" addressID="1000487">

<Name xml:lang="en">Los Gatos</Name>

<PostalAddress name="default">

<DeliverTo>Vincent Lo</DeliverTo>

<DeliverTo>Los Gatos</DeliverTo>

<Street>15 Camino del Cerro </Street>

<City>Los Gatos</City>

<State>CA</State>

<PostalCode>95032</PostalCode>

<Country isoCountryCode="US">United States</Country>

</PostalAddress>

<Email name="default">tvlo@<YourSmtpDomainName></Email>

<Phone name="work">

<TelephoneNumber>

<CountryCode isoCountryCode="US">1</CountryCode>

<AreaOrCityCode>408</AreaOrCityCode>

<Number>3582000</Number>

</TelephoneNumber>

</Phone>

<Fax name="work">

<TelephoneNumber>

<CountryCode isoCountryCode="US">1</CountryCode>

<AreaOrCityCode>408</AreaOrCityCode>

<Number>3582100</Number>

</TelephoneNumber>

</Fax>

</Address>

</ShipTo>

<BillTo>

<Address isoCountryCode="US" addressID="15">

<Name xml:lang="en">Ariba Headquarters</Name>

<PostalAddress name="default">

<Street>1314 Chesapeake Terrace</Street>

<City>Sunnyvale</City>

<State>CA</State>

<PostalCode>94089</PostalCode>

<Country isoCountryCode="US">United States</Country>

</PostalAddress>

</Address>

</BillTo>

<Shipping>

<Money currency="USD">6</Money>

<Description

xml:lang="en">International mail</Description>

48 Procurement Integration Guide

</Shipping>

</OrderRequestHeader>

<ItemOut quantity="1" lineNumber="1">

<ItemID>

<SupplierPartID>6565E2U</SupplierPartID>

<SupplierPartAuxiliaryID>15051</SupplierPartAuxiliaryID>

</ItemID>

<ItemDetail>

<UnitPrice>

<Money currency="USD">1,222</Money>

</UnitPrice>

<Description xml:lang="en">PC 300PL

(with Pentium III processors)

</Description>

<UnitOfMeasure>EA</UnitOfMeasure>

<Classification domain="Not Available">

Not Available

</Classification>

<ManufacturerPartID>6565E2U</ManufacturerPartID>

<ManufacturerName>IBM</ManufacturerName>

<URL>http://budhoo.hawthorne.ibm.com/webapp/cib2b/PunchOut</URL>

<Extrinsic name="PR No.">PR6150</Extrinsic>

<Extrinsic name="Requester">Vincent Lo</Extrinsic>

</ItemDetail>

<Distribution>

<Accounting name="DistributionCharge">

<Segment type="Cost Center"

id="Engineering Management"

description="Department Name"/>

<Segment type="Account" id="Office Supplies"

description="Account Name"/>

</Accounting>

<Charge>

<Money currency="USD">40</Money>

</Charge>

</Distribution>

</ItemOut>

</OrderRequest>

</Request>

</cXML>

3. PunchOutSetupResponse

This message initiates the interaction from WebSphere Commerce to Ariba. It refers
to use case 3.

The WebSphere Commerce messaging subsystem maps this message to the
PunchOutSetup command.

The following are other commands triggered by this message:

• AuthenticatonHelperCmd
• DBAuthenticationCmd
• LdapAuthenticationCmd
• ThirdPartyB2BAuthCmd
• RegisterRequisitionerCmd

 Appendix B Sample XML messages 49

Sample message
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE cXML SYSTEM

"http://xml.cXML.org/schemas/cXML/1.1.008/cXML.dtd" >

<cXML version="1.1.008"

payloadID = "992444231515.1@budhoo.hawthorne.ibm.com"

timestamp = "2001-06-13T10:57:11-5.00"

xml:lang = "en-US" >

<Response>

<Status code="200" text="OK"></Status>

<PunchOutSetupResponse>

<StartPage>

<URL>

https://budhoo.hawthorne.ibm.com/webapp/wcs/stores/

servlet/PunchOutCatalogDisplay?

supplierCookie=

gUZK0k6PWNDOAYKLrUKKwR/ZTUjPwxI14/6fTVP5IDQ=

</URL>

</StartPage>

</PunchOutSetupResponse>

</Response>

</cXML>

4. PunchOutOrderMessage

This message initiates the interaction from WebSphere Commerce to Ariba. It refers
to use cases 1 and 2.

The WebSphere Commerce messaging subsystem maps this message to the
SendShoppingCartCmd command.

Sample message:
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE cXML SYSTEM

"http://xml.cXML.org/schemas/cXML/1.1.008/cXML.dtd">

<cXML timestamp = "2001-06-13T11:07:27-5.00"

payloadID = "992444847906.1@sreed.in.ibm.com"

version = "1.1.008" >

<Header>

<From>

<Credential domain="DUNS">

<Identity>9143470144</Identity>

</Credential>

</From>

<To>

<Credential domain="AribaNetworkId">

<Identity>nkrishna@in.ibm.com</Identity>

</Credential>

</To>

<Sender>

<Credential domain="AribaNetworkUserId">

<Identity>nkrishna@in.ibm.com</Identity>

</Credential>

<UserAgent>IBM WCS 5.1</UserAgent>

</Sender>

</Header>

50 Procurement Integration Guide

<Message>

<PunchOutOrderMessage>

<BuyerCookie>5FP3YIRS6U1T</BuyerCookie>

<PunchOutOrderMessageHeader operationAllowed="edit">

<Total>

<Money currency="USD">35.00000</Money>

</Total>

<Shipping trackingDomain="-">

<Money currency="USD">6.00000</Money>

<Description xml:lang="en-US">

International mail

</Description>

</Shipping>

</PunchOutOrderMessageHeader>

<ItemIn quantity="1">

<ItemID>

<SupplierPartID>1161210</SupplierPartID>

<SupplierPartAuxiliaryID> 15551

</SupplierPartAuxiliaryID>

</ItemID>

<ItemDetail>

<UnitPrice>

<Money currency="USD">35.00000</Money>

</UnitPrice>

<Description xml:lang="en-US">

ThinkPad i Series 1200

</Description>

<UnitOfMeasure>EA</UnitOfMeasure>

<Classification domain="null"></Classification>

<ManufacturerPartID>1161210</ManufacturerPartID>

<ManufacturerName>IBM</ManufacturerName>

<Extrinsic name ="User">kitty</Extrinsic>

</ItemDetail>

</ItemIn>

</PunchOutOrderMessage>

</Message>

</cXML>

5. OrderResponse

This message initiates the interaction from WebSphere Commerce to Ariba. It refers
to use cases 3 and 4.

The WebSphere Commerce messaging subsystem maps this message to the
BatchOrderRequestCmd command.

 Appendix B Sample XML messages 51

Sample message:
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE cXML SYSTEM

"http://xml.cXML.org/schemas/cXML/1.1.008/cXML.dtd">

<cXML timestamp = "2001-06-13T11:07:27-5.00"

payloadID = "992444847906.1@sreed.in.ibm.com"

version = "1.1.008" >

<Response>

<Status code="200" text="OK"> </Status>

</Response>

</cXML>

52 Procurement Integration Guide

 IBM Corporation 2002 53

Appendix C: LogonRequest in HTML format

Some procurement systems send a LogonRequest message in HTML format as a set
of name-value pairs either in the query string or as a part of post data. Procurement
integration expects XML to be the message transport format; as a result, additional
configuration is necessary to handle HTTP requests.

For example, Open Catalog Interface (OCI) is a protocol that supports a logon request to
the supplier’s site in HTML format. OCI is used by the mySap e-Procurement system and
the Commerce One BuySite e-Procurement system. Consider an OCI request coming in
from the procurement system to WebSphere Commerce with the following parameters:

HOOK_URL The URL to which the
shopping cart is to be
submitted

OCI Mandatory parameter. The URL used to return to the SAP
Business-to-Business Procurement application from the catalog
application. It is automatically filled at runtime by the procurement
application.

SUPPLIER_CODE Additional parameter for the supplier credential. The supplier
requires this.

SUPPLIER_CODE_DOMAIN Additional parameter for supplier credential. The supplier requires
this.

BUYER_CODE Additional parameter for buyer credential. The supplier requires this.

BUYER_CODE_DOMAIN Additional parameter for buyer credential. The supplier requires this.

USERNAME Additional parameter, the buyer’s group user id is registered with
the supplier. The supplier requires this.

PASSWORD Additional parameter, the buyer’s group password is registered with
the supplier. The supplier requires this.

REQID Additional parameter, unique requisitioner id used for dynamic
registration of the buyers. The supplier requires this.

COST_CENTER Additional parameter, indicating the buyers cost center. This is
optional.

~OkCode ADDI OCI mandatory parameter. Contains the transaction code indicating
that the function Add Items to SAP shopping basket is to be
performed. Must be set to ADDI for SAP Business-to-Business
Procurement.

~CALLER CTLG OCI mandatory parameter. Indicates that the data was sent by an
external catalog. The content must be set to CTLG.

~TARGET _top OCI mandatory parameter. Specifies the frame to which a catalog is
to return in a frame-based environment. If this field is not set, the
catalog application must provide a default target of _top.

OCI_VERSION 2 OCI mandatory parameter. SAP B2B Procurement system version.

Note: For more details about the OCI parameters, refer to the Open Catalog Interface,
release 2.0B specification document.

The additional functions supported by OCI include the following:

54 Procurement Integration Guide

1. Product details

The following are the name and value pairs that will be an additional transfer to the
catalog:

a. FUNCTION="DETAIL"
b. PRODUCTID="database key of product in the catalog"

2. Product validation

The following are the name and value pairs that will be an additional transfer to the
catalog:

a. FUNCTION="VALIDATE”
b. PRODUCTID="database key of product in the catalog"

3. Product sourcing

The following are the name and value pairs that will be an additional transfer to the
catalog:

a. FUNCTION="VALIDATE”
b. SEARCHSTRING="string to directly start the catalog search" and
c. VENDOR="vendor number in the buyer's system"

Note: The functions "DETAIL" and "VALIDATE" will only work if the parameter
NEW_ITEM-EXT_PRODID[n] was filled from the catalog in a previous call.

Modifications in PunchOutSetupCmd

The PunchOutSetupCmd instantiates the CIData class and receives the B2B logon
requests. You must modify the implementation of the CIData class to parse and return
the HTML parameters as represented in OCI. Once CIData is implemented to do this,
modify the PunchOutSetupCmd to instantiate the new implementation of CIData. To
achieve this override the PunchOutSetupCmd and register it with the CMDREG table
within WebSphere Commerce. For more information on how to override a command,
refer to the WebSphere Commerce Programmer’s Guide Version 5.4.

The following is a sample implementation of the setRequestProperties method of the
PunchOutSetupCmd that is invoked to set the parameters to the command. Here, this
method is modified to instantiate the new CIDataImpl.
public void
setRequestProperties(com.ibm.commerce.datatype.TypedProperty p)
throws com.ibm.commerce.exception.ECException

{
final String strMethodName = "setRequestProperties";
ECTrace.entry(ECTraceIdentifiers.COMPONENT_USER,
GetClass().getName(), strMethodName);
this.requestProperties = p;

// now set the properties in the new ciData object
CiData = new NewCIData();
ciData.setLogonData(p);
ECTrace.exit(ECTraceIdentifiers.COMPONENT_USER,

GetClass().getName(), strMethodName);

 Appendix C LogonRquest in HTML format 55

Modifications in the CIData

The PunchOutSetupCmd instantiates the CIData implementation class to parse and
return the input parameters from the request. In this case, the input parameters are as
per the OCI specifications. This section describes a different implementation for the
CIData interface.

The CIData class encapsulates the login data and the purchase order data. The default
implementation of CIData is CIDataImpl, which enables the implementation for cXML
protocol. Refer to the WebSphere Commerce documentation for details of the methods in
the CIData interface.

For an HTML request, a new implementation of CIData that implements the methods of
the interface by parsing the HTML query string and then returning the respective data is
necessary. The following is a sample implementation of CIData to parse the OCI-specific
data.

package com.ibm.commerce.ci.oci.objects;

import com.ibm.commerce.me.datatype.SessionInfo;

import com.ibm.commerce.me.datatype.Credentials;

import com.ibm.commerce.me.datatype.Agent;

import com.ibm.commerce.me.datatype.PurchaseOrderHeader;

public class newCIData implements CIData

{

// the parameters coming in as the logon request

com.ibm.commerce.datatype.TypedProperty p;

/**

* get the bill to address

*

* @return com.ibm.commerce.me.datatype.Address

*/

Address getBillTo()

{

// no billTo is available with OCI Protocol

return null;

}

/**

* get the department name

*

* @return java.lang.String

*/

String getDepartment()

{

// in OCI the cost center indicates the

// department name. The key is the HTTP

// request parameter (COST_CENTER)

return p.getString("COST_CENTER", null);

}

/**

* get the logon data

56 Procurement Integration Guide

*

* @return com.ibm.commerce.datatype.TypedProperty

*/

com.ibm.commerce.datatype.TypedProperty getLogonData

{

return p;

}

/**

* get the purchase order data

*

* @return com.ibm.commerce.datatype.TypedProperty

*/

com.ibm.commerce.datatype.TypedProperty getPOData()

{

// no POData is available with OCI logon request

return null;

}

/**

* get the line items in the purchase order request

*

* @return java.util.Vector

*/

java.util.Vector getPOItems()

{

// no line items is available with OCI logon request

return null;

}

/**

* get the name of the requisitioner

*

* @return java.lang.String

*/

String getRequisitioner()

{

return p.getString("REQID", null);

}

/**

* set the logon data

*

* @param props com.ibm.commerce.datatype.TypedProperty

*/

void setLogonData(com.ibm.commerce.datatype.TypedProperty props)

{

this.p = props;

}

/**

* set the purchase order data

*

* @param props com.ibm.commerce.datatype.TypedProperty

*/

void setPOData(com.ibm.commerce.datatype.TypedProperty props)

{

 Appendix C LogonRquest in HTML format 57

// no need to implement...

}

/**

* get the buyer's software agent

*

* @return com.ibm.commerce.me.datatype.Agent

*/

Agent getAgent()

{

// not available

return null;

}

/**

* get the buyer credentials

*

* @return com.ibm.commerce.me.datatype.Credentials

*/

Credentials getBuyerCredentials()

{

if (buyerCred == null)

{

// set the buyer credentials

buyerCred = new Credentials();

buyerCred.setCode(p.getString("BUYER_CODE", null));

buyerCred.setCodeDomain(p.getString("BUYER_CODE_DOMAIN", null));

buyerCred.setUserId(p.getString("USERNAME", null));

buyerCred.setUserIdType(null);

buyerCred.setPassword(p.getString("PASSWORD", null));

}

return buyerCred;

}

/**

* get the marketPlace credentials

*

* @return com.ibm.commerce.me.datatype.Credentials

*/

Credentials getMarketPlaceCredentials()

{

// not available

return null;

}

/**

* get the purchase order request header

*

* @return com.ibm.commerce.me.datatype.PurchaseOrderHeader

*/

PurchaseOrderHeader getPOHeader()

{

// not available

return null;

}

/**

58 Procurement Integration Guide

* get the session information

*

* @return com.ibm.commerce.me.datatype.SessionInfo

*/

SessionInfo getSessionInfo()

{

if (this.sessionInfo == null)

{

sessionInfo = new SessionInfo();

sessionInfo.setReqId(p.getString("REQID", null));

sessionInfo.setReqName(null);

sessionInfo.setSessionId(null);

sessionInfo.setSessionType(null);

sessionInfo.setDeptName(p.getString("COST_CENTER", null););

sessionInfo.setPostBackURL(p.getString("HOOK_URL", null));

sessionInfo.setOrderStatusUrl(null);

// OCI can support functions like EDIT and DETAIL

String s = p.getString("FUNCTION", null)

if (s != null & s.equalsIgnoreCase("DETAIL"))

{

//detail function. see the details of a product.

sessionInfo.setLogonMode(B2BMemberConstants.DISPLAY_MODE);

Long l = p.getLong("PRODUCTID", null);

if (l != null)

{

sessionInfo.setItemId(l.longValue());

}

}

else if (s != null & s.equalsIgnoreCase("VALIDATE"))

{

//Validate function. validate a product.

sessionInfo.setLogonMode(B2BMemberConstants.INSPECT_MODE);

Long l = p.getLong("PRODUCTID", null);

sessionInfo.setItemId(l.longValue());

String searchString = p.getString("SEARCHSTRING", null);

if (searchString != null)

{

// validate mode with search, not supported.

String vendor = p.getString("VENDOR", null);

}

}

else

{

sessionInfo.setLogonMode(B2BMemberConstants.CREATE_MODE);

}

}

return sessionInfo;

}

/**

* get the supplier credentials

*

* @return com.ibm.commerce.me.datatype.Credentials

*/

Credentials getSupplierCredentials()

 Appendix C LogonRquest in HTML format 59

{

if (supplierCred == null)

{

supplierCred = new Credentials();

supplierCred.setCode(p.getString("SUPPLIER_CODE", null));

supplierCred.setCodeDomain(p.getString("SUPPLIER_CODE_DOMAIN", null));

supplierCred.setUserId(null);

supplierCred.setUserIdType(null);

supplierCred.setPassword(null);

}

return supplierCred;

}

}

60 Procurement Integration Guide

 IBM Corporation 2002 61

Appendix D: Sample buyer information form

The following is the sample buyer information form provided in the BuyerInfo.txt file:

Please fill out the form below and email it to merchant_admin@your_company.com
or fax it to (914) 555 0000.

Please fill out the following information about your organization:

Buyer Organization Name: ___

Organization Code (test): __

Organization Code (production: ___

Organization Code Domain: __

Department Extrinsics Name: __

User/Requisitioner Extrinsic Name: _______________________________________

Phone Number: __________________ Fax Number: _____________________

Email Address: ___

Fax Number: __

Address:
Street: ___

City: ___
State: ___

ZIP/Postal Code: ___
Country: ___

Contact Information:
Title: ___

First Name: ___
Middle: ___

Last Name: ___
Primary Phone Number: ______________ Alt Phone Number: ______________

Fax Number: _________________________________
Email Address: _____________________________________

Alt Email Address: _____________________________________

62 Procurement Integration Guide

 IBM Corporation 2002 63

Notices and trademarks

This information was developed for products and services offered in the U.S.A. IBM may
not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services
currently available in your area. Any reference to an IBM product, program, or service is
not intended to state or imply that only that IBM product, program, or service may be
used. Any functionally equivalent product, program, or service that does not infringe any
IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described
in this document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated in
new editions of the publication. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this publication at any time without notice.

64 Procurement Integration Guide

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Canada Ltd.
Department 071
1150 Eglinton Avenue East
North York, Ontario, M3C 1H7
Canada

Such information may be available, subject to appropriate terms and conditions, including
in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it
are provided by IBM under terms of the IBM Customer Agreement, IBM International
Program License Agreement or any equivalent agreement between us.

This document may contain information about other companies' products, including
references to such companies' Internet sites. IBM has no responsibility for the accuracy,
completeness, or use of such information.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM, for the
purposes of developing, using, marketing or distributing application programs conforming
to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. You may copy, modify, and distribute these sample programs in any
form without payment to IBM for the purposes of developing, using, marketing, or
distributing application programs conforming to IBM's application programming interfaces.

Trademarks

The following terms are trademarks of International Business Machines Corporation in
the United States or other countries or both:

IBM DB2 Extenders

AIX DB2 Universal Database

DB2 MQSeries

Microsoft, Windows and Windows NT are trademarks or registered trademarks of
Microsoft Corporation.

Solaris, Java, and all Java-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc.

Lotus and Domino are trademarks or registered trademarks of Lotus Development
Corporation.

SAP is a registered trademark of SAP AG.

Notices and trademarks 65

Commerce One is a registered trademark of Commerce One Operations, Inc.

Other company, product, or service names, which may be denoted by a double asterisk
(**), may be trademarks or service marks of others.

Credit card images, trademarks, and trade names provided in this product should be
used only by merchants authorized by the credit card mark’s owner to accept payment
via that credit card.

