
IBM

WebSphere

Commerce

Programming

Guide

and

Tutorials

Version

5.5

���

IBM

WebSphere

Commerce

Programming

Guide

and

Tutorials

Version

5.5

���

Note:

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

information

under

“Notices”

on

page

385.

First

Edition,

Second

Revision

(December

2003)

This

edition

applies

to

IBM

WebSphere

Commerce

Business

Edition

Version

5.5,

IBM

WebSphere

Commerce

-

Express

Version

5.5,

IBM

WebSphere

Commerce

Professional

Edition

Version

5.5

(product

number

5724-A18),

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

Ensure

that

you

are

using

the

correct

edition

for

the

level

of

the

product.

Order

publications

through

your

IBM

representative

or

the

IBM

branch

office

serving

your

locality.

IBM

welcomes

your

comments.

You

can

send

your

comments

by

using

the

online

IBM

WebSphere

Commerce

documentation

feedback

form,

available

at

the

following

URL:

http://www.ibm.com/software/webservers/commerce/rcf.html

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

2000,

2003.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

http://www.ibm.com/software/genservers/commerce/rcf.html

Before

you

begin

The

WebSphere

Commerce

Programming

Guide

and

Tutorials

provides

information

about

the

WebSphere®

Commerce

architecture

and

programming

model.

In

particular,

it

provides

details

on

the

following

topics:

v

Component

interactions

v

Design

patterns

v

Persistent

object

model

v

Access

control

v

Error

handling

and

messages

v

Command

implementation

v

Development

tools

v

Deployment

of

customized

code

In

addition,

this

book

includes

the

following

tutorials:

v

Creating

new

business

logic

v

Modifying

an

existing

controller

command

v

Extending

the

object

model

and

modifying

an

existing

task

command

v

Extending

an

existing

WebSphere

Commerce

entity

bean

Updates

to

this

book

The

most

recent

version

of

this

document

is

available

as

a

PDF

file

from

the

Technical

Library

section

of

the

WebSphere

Commerce

Web

site:

http://www.ibm.com/software/commerce/library/

Updated

versions

of

this

document

are

also

available

from

the

WebSphere

Commerce

Zone

at

WebSphere

Developer

Domain:

http://www.ibm.com/websphere/developer/zones/commerce

For

additional

support

information,

see

the

WebSphere

Commerce

Support

site:

http://www.ibm.com/software/commerce/support/

Updates

from

earlier

versions

of

this

document

are

identified

in

the

text

of

the

document

as

follows:

©

Copyright

IBM

Corp.

2000,

2003

iii

*
*

http://www.ibm.com/software/genservers/commerce/library/
http://www.ibm.com/software/wsdd/zones/commerce/
http://www.ibm.com/software/genservers/commerce/support/

v

The

asterisk

character

(*)

in

the

margin

identifies

updates

that

have

been

made

in

the

current

revision

of

the

document.

v

The

2000Express

icon

(see

“Conventions

used

in

this

book”)

identifies

updates

that

were

made

in

the

previous

revision.

Conventions

used

in

this

book

This

book

uses

the

following

highlighting

conventions:

Boldface

type

indicates

commands

or

graphical

user

interface

(GUI)

controls

such

as

names

of

fields,

buttons,

or

menu

choices.

Monospaced

type

indicates

examples

of

text

you

enter

exactly

as

shown,

as

well

as

directory

paths.

Italic

type

is

used

for

emphasis

and

variables

for

which

you

substitute

your

own

values.

This

icon

marks

a

Tip

—

additional

information

that

can

help

you

complete

a

task.

2000400

indicates

information

specific

to

WebSphere

Commerce

for

the

IBM®

Eserver

iSeries™

400®

(formerly

called

AS/400®).

2000AIX

indicates

information

that

is

specific

to

WebSphere

Commerce

for

AIX®.

2000Linux

indicates

information

that

is

specific

to

WebSphere

Commerce

for

Linux.

2000Solaris

indicates

information

that

is

specific

to

WebSphere

Commerce

for

Solaris

Operating

Environment

software.

2000Windows

indicates

information

that

is

specific

to

WebSphere

Commerce

for

Windows®

2000.

2000DB2

indicates

information

specific

to

the

DB2

Universal

Database™

family

(hereafter

referred

to

simply

as

DB2®).

2000DB2

390

2000z/OS

indicates

information

specific

to

DB2

Universal

Database

for

OS/390®

and

z/OS®,

Version

7

(hereafter

referred

to

as

DB2

for

OS/390

and

z/OS).

iv

Programming

Guide

and

Tutorials

*
*

*
*

*
*

*
*
*

2000Oracle indicates

information

specific

to

Oracle.

You

can

use

Oracle

as

your

database

management

system

if

you

are

using

WebSphere

Commerce

Business

Edition

or

WebSphere

Commerce

Professional

Edition.

2000Business

indicates

information

specific

to

IBM

WebSphere

Commerce

Business

Edition.

2000Express

indicates

information

specific

to

IBM

WebSphere

Commerce

-

Express.

2000Professional

indicates

information

specific

to

IBM

WebSphere

Commerce

Professional

Edition.

2000Developer

indicates

information

specific

to

the

WebSphere

Commerce

development

environment.

For

WebSphere

Commerce

Business

Edition

and

WebSphere

Commerce

Professional

Edition,

your

development

environment

is

WebSphere

Commerce

Studio,

Version

5.5.

For

WebSphere

Commerce

-

Express,

the

development

environment

is

WebSphere

Commerce

-

Express

Developer

Edition,

Version

5.5

Knowledge

requirements

This

book

should

be

read

by

Store

Developers

that

need

to

understand

how

to

customize

a

WebSphere

Commerce

application.

Store

Developers

that

are

performing

programmatic

extensions

should

have

knowledge

in

the

following

areas:

v

Java™

v

Enterprise

JavaBeans

component

architecture

v

JavaServer

Pages

technology

v

HTML

v

Database

technology

v

2000Business

2000Professional

WebSphere

Studio

Application

Developer,

Version

5

2000Express

WebSphere

Studio

Application

Developer,

Version

5.1

Path

variables

This

guide

uses

the

following

variables

to

represent

directory

paths:

WC_installdir

This

is

the

installation

directory

for

WebSphere

Commerce.

The

following

are

the

default

installation

directories

for

WebSphere

Commerce

on

various

operating

systems:

Before

you

begin

v

v

2000400

/QIBM/ProdData/CommerceServer55

v

2000AIX

/usr/WebSphere/CommerceServer55

v

2000Linux

/opt/WebSphere/CommerceServer55

v

2000Solaris

/opt/WebSphere/CommerceServer55

v

2000Windows

C:\Program

Files\WebSphere\CommerceServer55

WC_userdir

The

directory

for

all

the

data

used

by

WebSphere

Commerce

which

can

be

modified

or

needs

to

be

configured

by

the

user.

v

2000400

/QIBM/UserData/CommerceServer55

WAS_installdir

This

is

the

installation

directory

for

WebSphere

Application

Server.

The

following

are

the

default

installation

directories

for

WebSphere

Application

Server

on

various

operating

systems:

v

2000400

/QIBM/ProdData/WebAs5/Base

v

2000AIX

/usr/WebSphere/AppServer

v

2000Linux

/opt/WebSphere/AppServer

v

2000Solaris

/opt/WebSphere/AppServer

v

2000Windows

C:\Program

Files\WebSphere\AppServer

WAS_userdir

The

directory

for

all

the

data

used

by

WebSphere

Application

Server

which

can

be

modified

or

needs

to

be

configured

by

the

user.

v

2000400

QIBM/UserData/WebAS5/Base/WAS_instancename

and

WAS_instance_name

represents

the

name

of

the

WebSphere

Application

Server

with

which

your

WebSphere

Commerce

instance

is

associated.

WCDE_installdir

The

installation

directory

for

the

WebSphere

Commerce

development

environment.

For

WebSphere

Commerce

Business

Edition

and

WebSphere

Commerce

Professional

Edition,

your

development

environment

is

WebSphere

Commerce

Studio,

Version

5.5.

The

following

is

the

default

installation

directory:
C:\WebSphere\CommerceStudio55.

For

WebSphere

Commerce

-

Express,

the

development

environment

is

WebSphere

Commerce

-

Express

Developer

Edition,

Version

5.5.

The

following

is

the

default

installation

directory:
C:\WebSphere\CommerceDev55

vi

Programming

Guide

and

Tutorials

Where

to

find

more

information

For

more

information

related

to

WebSphere

Commerce,

refer

to

the

following

Web

site:

http://www.ibm.com/software/commerce/library/

Before

you

begin

vii

http://www.ibm.com/software/genservers/commerce/library/

viii

Programming

Guide

and

Tutorials

Contents

Before

you

begin

.

.

.

.

.

.

.

.

.

. iii

Updates

to

this

book

.

.

.

.

.

.

.

.

. iii

Conventions

used

in

this

book

.

.

.

.

.

. iv

Knowledge

requirements

.

.

.

.

.

.

.

. v

Path

variables

.

.

.

.

.

.

.

.

.

.

.

. v

Where

to

find

more

information

.

.

.

.

. vii

Part

1.

Concepts

and

architecture

. 1

Chapter

1.

Overview

.

.

.

.

.

.

.

.

. 3

WebSphere

Commerce

software

components

. 3

WebSphere

Commerce

application

architecture

4

WebSphere

Commerce

run-time

architecture

. 7

Servlet

engine

.

.

.

.

.

.

.

.

.

.

. 9

Protocol

listeners

.

.

.

.

.

.

.

.

.

. 9

Adapter

manager

.

.

.

.

.

.

.

.

. 9

Adapters

.

.

.

.

.

.

.

.

.

.

.

. 10

Web

controller

.

.

.

.

.

.

.

.

.

. 11

Commands

.

.

.

.

.

.

.

.

.

.

. 12

WebSphere

Commerce

entity

beans

.

.

. 13

Data

beans

.

.

.

.

.

.

.

.

.

.

. 14

Data

bean

manager

.

.

.

.

.

.

.

. 14

JavaServer

Pages

templates

.

.

.

.

.

. 14

instance_name.xml

configuration

file

.

.

. 14

Summary

for

a

request

.

.

.

.

.

.

.

. 15

Part

2.

Programming

model

.

.

. 17

Chapter

2.

Design

patterns

.

.

.

.

.

. 19

Model-View-Controller

design

pattern

.

.

. 19

Command

design

pattern

.

.

.

.

.

.

. 20

Command

framework

.

.

.

.

.

.

.

. 21

Command

factory

.

.

.

.

.

.

.

.

. 23

Command

flow

.

.

.

.

.

.

.

.

.

. 26

Command

registration

framework

.

.

. 28

Display

design

pattern

.

.

.

.

.

.

.

. 37

JSP

templates

and

data

beans

.

.

.

.

. 38

Types

of

data

beans

.

.

.

.

.

.

.

. 38

Invoking

controller

commands

from

within

a

JSP

template

.

.

.

.

.

.

.

.

.

. 42

Lazy

fetch

data

retrieval

.

.

.

.

.

.

. 42

Setting

JSP

attributes

-

overview

.

.

.

.

. 43

Required

property

settings

.

.

.

.

.

. 45

Chapter

3.

Persistent

object

model

.

.

. 47

Implementation

of

WebSphere

Commerce

entity

beans

.

.

.

.

.

.

.

.

.

.

.

. 47

WebSphere

Commerce

entity

beans

-

overview

.

.

.

.

.

.

.

.

.

.

.

. 47

Deployment

descriptors

for

WebSphere

Commerce

enterprise

beans

.

.

.

.

.

. 48

Extending

the

WebSphere

Commerce

object

model

.

.

.

.

.

.

.

.

.

.

. 50

Object

life

cycles

.

.

.

.

.

.

.

.

. 77

Transactions

.

.

.

.

.

.

.

.

.

.

. 77

Other

considerations

for

entity

beans

.

. 78

Using

entity

beans

.

.

.

.

.

.

.

.

.

. 82

Database

considerations

.

.

.

.

.

.

.

. 82

Database

schema

object

naming

considerations

.

.

.

.

.

.

.

.

.

. 83

Database

column

data

type

considerations

85

Data

type

differences

among

databases

.

. 86

Chapter

4.

Access

control

.

.

.

.

.

.

. 89

Understanding

access

control

.

.

.

.

.

. 89

Overview

of

resource

protection

in

WebSphere

Application

Server

.

.

.

.

. 89

Security

consideration

for

URL

parameters

91

Introduction

to

WebSphere

Commerce

access

control

policies

.

.

.

.

.

.

.

. 92

Types

of

access

control

.

.

.

.

.

.

. 99

Access

control

interactions

.

.

.

.

.

. 101

Protectable

interface

.

.

.

.

.

.

.

. 104

Groupable

interface

.

.

.

.

.

.

.

. 104

Finding

more

information

about

access

control

.

.

.

.

.

.

.

.

.

.

.

. 105

Implementing

access

control

.

.

.

.

.

. 105

Identifying

protectable

resources

.

.

.

. 105

Implementing

access

control

in

enterprise

beans

.

.

.

.

.

.

.

.

.

.

.

.

. 106

Implementing

access

control

in

data

beans

.

.

.

.

.

.

.

.

.

.

.

.

. 108

Implementing

access

control

in

controller

commands

.

.

.

.

.

.

.

.

.

.

. 110

Implementing

access

control

policies

in

views

.

.

.

.

.

.

.

.

.

.

.

.

. 113

Modifying

access

control

on

existing

WebSphere

Commerce

resources

.

.

.

.

. 114

©

Copyright

IBM

Corp.

2000,

2003

ix

*

*

Adding

a

new

relationship

to

an

existing

WebSphere

Commerce

entity

bean

.

.

. 114

Adding

access

control

to

an

existing

WebSphere

Commerce

entity

bean

that

is

not

already

protected

.

.

.

.

.

.

. 116

Understanding

the

access

control

implications

when

a

controller

command

is

extended

.

.

.

.

.

.

.

.

.

.

. 116

Sample

access

control

policies

for

development

purposes

.

.

.

.

.

.

.

. 119

Sample

access

control

policy

for

new

views

.

.

.

.

.

.

.

.

.

.

.

.

. 119

Sample

command-level

access

control

policy

for

new

controller

commands

.

. 119

Sample

resource-level

access

control

policy

for

a

new

command

and

enterprise

bean

.

.

.

.

.

.

.

.

.

.

.

.

. 121

Chapter

5.

Error

handling

and

messages

123

Command

error

handling

.

.

.

.

.

.

. 123

Types

of

exceptions

.

.

.

.

.

.

.

. 123

Error

message

properties

files

.

.

.

.

. 124

Exception

handling

flow

.

.

.

.

.

. 124

Exception

handling

in

customized

code

126

Creating

messages

.

.

.

.

.

.

.

. 128

Execution

flow

tracing

.

.

.

.

.

.

. 130

JSP

template

error

handling

.

.

.

.

.

. 130

Chapter

6.

Command

implementation

.

. 133

New

commands

-

introduction

.

.

.

.

. 133

Packaging

customized

code

.

.

.

.

.

. 136

Command

context

.

.

.

.

.

.

.

.

. 137

Temporary

changes

to

contextual

information

for

URL

commands

.

.

.

.

. 138

New

controller

commands

.

.

.

.

.

.

. 139

isGeneric

method

.

.

.

.

.

.

.

.

. 139

isRetriable

method

.

.

.

.

.

.

.

. 140

setRequestProperties

method

.

.

.

.

. 140

validateParameters

method

.

.

.

.

. 141

getResources

method

.

.

.

.

.

.

. 141

performExecute

method

.

.

.

.

.

.

. 141

Long-running

controller

commands

.

.

. 142

Formatting

of

input

properties

to

view

commands

.

.

.

.

.

.

.

.

.

.

.

. 143

Flattening

input

parameters

into

a

query

string

for

HttpRedirectView

.

.

.

.

. 143

Handling

a

limited

length

redirect

URL

143

Setting

attributes

in

the

HttpServletRequest

object

for

HttpForwardView

.

.

.

.

.

.

.

.

. 145

Database

commits

and

rollbacks

for

controller

commands

.

.

.

.

.

.

.

.

. 145

Example

of

transaction

scope

with

a

controller

command

.

.

.

.

.

.

.

. 146

New

task

commands

.

.

.

.

.

.

.

.

. 148

Customization

of

existing

commands

.

.

. 149

Customizing

existing

controller

commands

.

.

.

.

.

.

.

.

.

.

. 149

Customizing

existing

task

commands

.

. 154

Data

bean

customization

.

.

.

.

.

.

. 156

Chapter

7.

Trading

agreements

and

business

policies

(Business

Edition)

.

. 157

Introduction

.

.

.

.

.

.

.

.

.

.

. 157

Business

policy

objects

and

commands

.

.

. 158

ToolTech

sample

contract

data

.

.

.

.

. 160

CONTRACT

table

sample

data

.

.

.

. 160

TERMCOND

table

sample

data

.

.

.

. 161

POLICYTC

table

sample

data

.

.

.

.

. 161

POLICY

table

sample

data

.

.

.

.

.

. 162

TRADEPOSCN

table

sample

data

.

.

. 162

SHIPMODE

table

sample

data

.

.

.

. 162

Extending

the

existing

contract

model

.

.

. 162

Creating

a

new

business

policy

.

.

.

.

. 163

Creating

a

new

business

policy

type

.

. 164

Writing

the

new

business

policy

command

.

.

.

.

.

.

.

.

.

.

. 165

Registering

the

new

business

policy

and

business

policy

command

.

.

.

.

.

. 168

Relating

a

terms

and

conditions

object

to

a

new

business

policy

.

.

.

.

.

.

.

.

. 168

Creating

new

terms

and

conditions

.

.

. 169

Invoking

the

new

business

policy

.

.

.

. 184

Creating

a

contract

.

.

.

.

.

.

.

.

. 185

Contract

customization

scenarios

.

.

.

.

. 185

Rebate

scenario

.

.

.

.

.

.

.

.

. 185

Part

3.

Development

environment

195

Chapter

8.

Development

environment

.

. 197

Typical

development

environment

.

.

.

. 197

WebSphere

Studio

Application

Developer

198

Development

environment

for

iSeries

.

.

. 198

Using

different

database

management

systems

for

development

and

production

.

. 199

Overview

of

the

WebSphere

Commerce

enterprise

bean

conversion

tool

.

.

.

.

. 199

Payment

options

within

the

development

environment

.

.

.

.

.

.

.

.

.

.

. 199

x

Programming

Guide

and

Tutorials

*

*

*

Chapter

9.

Deployment

details

.

.

.

.

. 201

User

permission

requirements

for

deployment

steps

.

.

.

.

.

.

.

.

.

. 201

Incremental

deployment

.

.

.

.

.

.

. 202

Deploying

enterprise

beans

.

.

.

.

.

. 202

Creating

the

EJB

JAR

file

.

.

.

.

.

. 202

Updating

the

EJB

JAR

file

on

the

target

WebSphere

Commerce

Server

.

.

.

.

. 206

Deploying

commands

and

data

beans

.

.

. 208

Creating

the

JAR

file

.

.

.

.

.

.

.

. 209

Updating

the

JAR

file

on

the

target

WebSphere

Commerce

Server

.

.

.

.

. 209

Deploying

store

assets

.

.

.

.

.

.

.

. 210

Exporting

store

assets

.

.

.

.

.

.

. 210

Transferring

store

assets

.

.

.

.

.

.

. 211

Updating

the

target

database

.

.

.

.

.

. 212

Access

control

updates

.

.

.

.

.

.

. 212

Part

4.

Tutorials

.

.

.

.

.

.

.

. 215

Chapter

10.

Tutorial:

Creating

new

business

logic

.

.

.

.

.

.

.

.

.

. 217

Locating

the

sample

code

.

.

.

.

.

.

. 218

Preparing

your

workspace

.

.

.

.

.

.

. 218

Creating

a

new

view

.

.

.

.

.

.

.

.

. 222

Registering

MyNewView

.

.

.

.

.

. 222

Creating

a

properties

file

for

the

tutorial

224

Creating

MyNewJSPTemplate

.

.

.

.

. 225

Creating

and

loading

access

control

policies

for

MyNewView

.

.

.

.

.

. 227

Testing

MyNewView

.

.

.

.

.

.

.

. 228

Creating

a

new

controller

command

.

.

. 230

Registering

MyNewControllerCmd

.

.

. 230

Creating

the

MyNewControllerCmd

interface

.

.

.

.

.

.

.

.

.

.

.

. 232

Creating

the

MyNewControllerCmdImpl

implementation

class

.

.

.

.

.

.

.

. 232

Creating

and

loading

access

control

policies

for

the

command

.

.

.

.

.

. 233

Testing

MyNewControllerCmd

.

.

.

. 234

Passing

information

from

MyNewControllerCmd

to

MyNewView

.

. 235

Passing

information

using

a

TypedProperties

object

.

.

.

.

.

.

. 235

Passing

information

using

a

data

bean

238

Parsing

and

validating

URL

parameters

in

MyNewControllerCmd

.

.

.

.

.

.

.

. 244

Adding

new

fields

to

MyNewControllerCmd

.

.

.

.

.

.

. 244

Passing

URL

parameters

to

the

view

.

. 245

Catching

missing

parameters

and

validating

values

.

.

.

.

.

.

.

.

. 246

Adding

new

fields

to

MyNewDataBean

247

Modifying

MyNewJSPTemplate

to

display

the

URL

parameters

.

.

.

.

.

.

.

. 248

Testing

URL

parameter

values

.

.

.

. 248

Creating

a

new

task

command

.

.

.

.

. 252

Creating

MyNewTaskCmd

.

.

.

.

.

. 253

Calling

the

task

command

.

.

.

.

.

. 255

Modifying

MyNewJSPTemplate

to

add

the

greetings

message

.

.

.

.

.

.

. 257

Testing

MyNewTaskCmd

.

.

.

.

.

. 257

Modifying

MyNewTaskCmd

.

.

.

.

.

. 258

Modifying

MyNewControllerCmdImpl

to

create

an

object

for

the

task

command

.

. 259

Modifying

the

new

task

command

for

user

name

validation

.

.

.

.

.

.

.

. 260

Modify

MyNewJSPTemplate

for

user

name

validation

.

.

.

.

.

.

.

.

. 261

Testing

user

name

validation

.

.

.

.

. 262

Creating

a

new

entity

bean

.

.

.

.

.

. 264

Creating

the

XBONUS

table

.

.

.

.

. 264

Creating

the

BonusBean

entity

bean

.

.

. 265

Integrating

the

Bonus

entity

bean

with

MyNewControllerCmd

.

.

.

.

.

.

. 275

Deploying

the

bonus

points

logic

.

.

.

. 289

Creating

the

command

and

data

bean

JAR

file

.

.

.

.

.

.

.

.

.

.

.

. 289

Creating

the

EJB

JAR

file

.

.

.

.

.

. 290

Exporting

store

assets

.

.

.

.

.

.

. 291

Packaging

access

control

policies

.

.

.

. 292

Transferring

assets

to

your

target

WebSphere

Commerce

Server

.

.

.

.

. 292

Stopping

your

target

WebSphere

Commerce

Server

.

.

.

.

.

.

.

.

. 292

Updating

the

database

on

your

target

WebSphere

Commerce

Server

.

.

.

.

. 292

Updating

store

assets

on

your

target

WebSphere

Commerce

Server

.

.

.

.

. 298

Updating

the

command

and

data

bean

JAR

file

on

your

target

WebSphere

Commerce

Server

.

.

.

.

.

.

.

.

. 298

Updating

the

EJB

JAR

file

on

your

target

WebSphere

Commerce

Server

.

.

.

.

. 299

Verifying

bonus

points

logic

on

the

target

WebSphere

Commerce

Server

.

.

.

.

. 300

Chapter

11.

Tutorial:

Modifying

an

existing

controller

command

.

.

.

.

. 303

Prerequisites

.

.

.

.

.

.

.

.

.

.

. 303

Contents

xi

Creating

the

new

MyOrderItemAddCmdImpl

class

.

.

.

. 304

Creating

message

information

.

.

.

.

.

. 306

Modifying

the

command

registry

.

.

.

. 308

Testing

the

MyOrderItemAddCmdImpl

command

.

.

.

.

.

.

.

.

.

.

.

. 309

Deploying

MyOrderItemAddCmdImpl

.

.

. 311

Creating

the

command

JAR

file

.

.

.

. 312

Exporting

the

message

properties

file

.

. 313

Transferring

assets

to

the

target

WebSphere

Commerce

Server

.

.

.

.

. 313

Stopping

your

target

WebSphere

Commerce

Server

.

.

.

.

.

.

.

.

. 313

Updating

the

database

on

the

target

WebSphere

Commerce

Server

.

.

.

.

. 314

Updating

the

command

JAR

file

on

the

target

WebSphere

Commerce

Server

.

.

. 315

Updating

the

message

properties

on

the

target

WebSphere

Commerce

Server

.

.

. 315

Verifying

the

MyOrderItemAddCmdImpl

logic

on

the

target

WebSphere

Commerce

Server

.

.

.

.

.

.

.

.

.

.

.

.

. 315

Chapter

12.

Tutorial:

Extending

the

object

model

and

modifying

an

existing

task

command

.

.

.

.

.

.

.

.

.

.

.

. 319

Prerequisites

.

.

.

.

.

.

.

.

.

.

. 320

Creating

and

populating

the

XORDGIFT

table

.

.

.

.

.

.

.

.

.

.

.

.

.

. 320

Creating

the

OrderGift

entity

bean

.

.

.

. 321

Integrating

the

OrderGift

entity

bean

into

the

shopping

flow

.

.

.

.

.

.

.

.

. 334

Creating

the

OrderGiftDataBean

.

.

.

. 334

Creating

the

MyExtOrderProcessCmdImpl

class

.

.

.

.

.

.

.

.

.

.

.

.

. 335

Compiling

changes

.

.

.

.

.

.

.

. 337

Modifying

display

pages

for

gift

messages

.

.

.

.

.

.

.

.

.

.

.

. 337

Testing

the

new

gift

message

functionality

340

Deploying

the

gift

message

functionality

.

. 343

Creating

the

command

and

data

bean

JAR

file

.

.

.

.

.

.

.

.

.

.

.

. 343

Creating

the

EJB

JAR

file

.

.

.

.

.

. 344

Exporting

store

assets

.

.

.

.

.

.

. 345

Transferring

assets

to

your

target

WebSphere

Commerce

Server

.

.

.

.

. 346

Stopping

your

target

WebSphere

Commerce

Server

.

.

.

.

.

.

.

.

. 346

Updating

the

database

on

your

target

WebSphere

Commerce

Server

.

.

.

.

. 346

Updating

store

assets

on

your

target

WebSphere

Commerce

Server

.

.

.

.

. 348

Updating

the

command

and

data

bean

JAR

file

on

your

target

WebSphere

Commerce

Server

.

.

.

.

.

.

.

.

. 349

Updating

the

EJB

JAR

file

on

your

target

WebSphere

Commerce

Server

.

.

.

.

. 349

Verifying

the

gift

message

functionality

on

the

target

WebSphere

Commerce

Server

.

.

.

.

.

.

.

.

.

.

.

.

. 350

Chapter

13.

Tutorial:

Extending

an

existing

WebSphere

Commerce

entity

bean

.

.

.

.

.

.

.

.

.

.

.

.

.

. 353

Prerequisites

.

.

.

.

.

.

.

.

.

.

. 353

Creating

and

populating

the

XHOUSING

table

.

.

.

.

.

.

.

.

.

.

.

.

.

. 353

Adding

new

fields

to

the

User

entity

bean

354

Updating

the

schema

and

table

mapping

information

.

.

.

.

.

.

.

.

.

.

.

. 356

Creating

the

table

definition

for

the

XHOUSING

table

.

.

.

.

.

.

.

.

. 356

Creating

the

XHOUSING

table

map

.

.

. 358

Updating

the

mapping

file

.

.

.

.

.

. 358

Generating

the

access

beans

and

deployed

code

.

.

.

.

.

.

.

.

.

. 359

Creating

the

MyPostUserRegistrationAddCmdImpl

implementation

.

.

.

.

.

.

.

.

.

. 359

Modifying

the

command

registry

.

.

. 362

Modifying

JSP

templates

to

collect

and

display

housing

information

.

.

.

.

.

. 363

Testing

the

modified

code

.

.

.

.

.

.

. 365

Deploying

the

housing

survey

logic

.

.

.

. 367

Creating

the

command

JAR

file

.

.

.

. 367

Creating

the

EJB

JAR

file

.

.

.

.

.

. 368

Exporting

store

assets

.

.

.

.

.

.

. 369

Transferring

assets

to

your

target

WebSphere

Commerce

Server

.

.

.

.

. 369

Stopping

your

target

WebSphere

Commerce

Server

.

.

.

.

.

.

.

.

. 370

Updating

the

database

on

your

target

WebSphere

Commerce

Server

.

.

.

.

. 370

Updating

store

assets

on

your

target

WebSphere

Commerce

Server

.

.

.

.

. 372

Updating

the

command

JAR

file

on

your

target

WebSphere

Commerce

Server

.

.

. 372

Updating

the

EJB

JAR

file

on

your

target

WebSphere

Commerce

Server

.

.

.

.

. 373

xii

Programming

Guide

and

Tutorials

Verifying

the

housing

survey

logic

on

the

target

WebSphere

Commerce

Server

.

.

. 374

Part

5.

Appendixes

.

.

.

.

.

.

. 377

Appendix

A.

Configuring

WebSphere

Commerce

component

tracing

in

the

WebSphere

Commerce

development

environment

.

.

.

.

.

.

.

.

.

.

. 379

Output

file

.

.

.

.

.

.

.

.

.

.

.

. 379

Appendix

B.

Where

to

find

more

information

.

.

.

.

.

.

.

.

.

.

. 381

WebSphere

Commerce

development

environment

information

.

.

.

.

.

.

. 381

WebSphere

Commerce

development

environment

online

help

.

.

.

.

.

. 381

WebSphere

Commerce

Web

site

.

.

.

. 382

WebSphere

Developer

Domain

.

.

.

. 382

IBM

Redbooks™

.

.

.

.

.

.

.

.

. 382

WebSphere

Studio

Application

Developer

information

.

.

.

.

.

.

.

.

.

.

.

. 382

WebSphere

Studio

Application

Developer

online

help

.

.

.

.

.

.

.

.

.

.

. 382

WebSphere

Studio

Application

Developer

Web

site

.

.

.

.

.

.

.

.

.

.

.

. 382

WebSphere

Developer

Domain

.

.

.

. 383

IBM

Redbooks

.

.

.

.

.

.

.

.

.

. 383

Notices

.

.

.

.

.

.

.

.

.

.

.

.

. 385

Trademarks

and

service

marks

.

.

.

.

. 388

Index

.

.

.

.

.

.

.

.

.

.

.

.

. 389

Contents

xiii

xiv

Programming

Guide

and

Tutorials

Part

1.

Concepts

and

architecture

©

Copyright

IBM

Corp.

2000,

2003

1

2

Programming

Guide

and

Tutorials

Chapter

1.

Overview

WebSphere

Commerce

software

components

Before

examining

how

the

WebSphere

Commerce

Server

functions,

it

is

useful

to

look

at

the

larger

picture

of

the

software

components

that

relate

to

WebSphere

Commerce.

The

following

diagram

shows

a

simplified

view

of

these

software

products:

The

Web

server

is

the

first

point

of

contact

for

incoming

HTTP

requests

for

your

e-commerce

application.

In

order

to

interface

efficiently

with

the

WebSphere

Application

Server,

it

uses

the

WebSphere

Application

Server

plug-in.

The

WebSphere

Commerce

Server

runs

within

the

WebSphere

Application

Server,

allowing

it

to

take

advantage

of

many

of

the

features

of

the

application

server.

The

database

server

holds

most

of

your

application’s

data,

including

product

and

shopper

data.

In

general,

extensions

to

your

application

are

made

by

modifying

or

extending

the

code

for

the

WebSphere

WebSphere Commerce
development environment

WebSphere Studio
Application Developer

Development
database

Web server

WebSphere Application
Server Plug-in

WebSphere
Application Server

WebSphere
Commerce Server

Database
server

Figure

1.

©

Copyright

IBM

Corp.

2000,

2003

3

Commerce

Server.

In

addition,

you

may

have

a

need

to

store

data

that

falls

outside

of

the

realm

of

the

WebSphere

Commerce

database

schema

within

your

database.

Developers

use

WebSphere

Studio

Application

Developer

to

perform

the

following

tasks:

v

create

and

customize

store

front

assets

such

as

JSP

templates

and

HTML

pages

v

create

new

business

logic

in

Java

v

modify

existing

business

logic

in

Java

v

test

code

and

store

front

assets

The

WebSphere

Commerce

development

environment

uses

a

development

database.

Developers

can

use

their

preferred

database

tools

(including

WebSphere

Studio

Application

Developer)

to

make

database

modifications.

WebSphere

Commerce

application

architecture

Now

that

you

have

seen

how

the

various

software

components

related

to

WebSphere

Commerce

fit

together,

it

is

important

to

understand

the

application

architecture.

This

will

help

you

to

understand

which

parts

are

foundation

layers

and

which

parts

you

can

modify.

The

following

diagram

shows

the

various

layers

that

comprise

the

application

architecture:

4

Programming

Guide

and

Tutorials

Each

layer

of

the

application

architecture

is

described

below:

Database

WebSphere

Commerce

uses

a

database

schema

designed

specifically

for

e-commerce

applications

and

their

data

requirements.

The

following

are

examples

of

tables

in

this

schema:

v

USERS

v

ORDERS

v

INVENTORY

Business

objects

Business

objects

represent

entities

within

the

commerce

domain

and

encapsulate

the

data-centric

logic

required

to

extract

or

interpret

information

contained

within

the

database.

These

entities

comply

with

the

Enterprise

JavaBeans™

specification.

These

entity

beans

act

as

an

interface

between

the

business

components

and

the

database.

In

addition,

the

entity

beans

are

easier

to

comprehend

than

complex

relationships

between

columns

in

database

tables.

Business

components

Business

components

are

units

of

business

logic.

They

perform

coarse-grained

procedural

business

logic.

The

logic

is

implemented

Models

Business processes

Controls and views

Business components

Business objects

Database

Figure

2.

Chapter

1.

Overview

5

using

the

WebSphere

Commerce

model

of

controller

commands

and

task

commands.

An

example

of

this

type

of

component

is

the

OrderProcess

controller

command.

This

particular

command

encapsulates

all

of

the

business

logic

required

to

process

a

typical

order.

The

e-commerce

application

calls

the

OrderProcess

command,

which

in

turn,

calls

several

task

commands

to

perform

individual

units

of

work.

For

example,

individual

task

commands

ensure

that

enough

inventory

is

available

to

meet

the

requirements

of

the

order,

process

the

payment,

update

the

status

of

the

order

and

when

the

process

has

completed,

decrement

the

inventory

by

the

appropriate

amount.

Controls

and

views

A

Web

controller

determines

the

appropriate

controller

command

implementation

and

view

to

be

used.

Implementations

can

be

store

specific.

Views

display

the

results

of

commands

and

user

actions.

They

are

implemented

using

JSP

templates.

Examples

of

views

include

ProductDisplayView

(returns

a

product

page

showing

relevant

information

for

the

shopper’s

selected

product)

and

OrderCancelView.

Business

processes

Sets

of

business

components

and

views

together

create

workflow

and

siteflow

processes

that

are

known

as

business

processes.

Examples

of

business

processes

include:

Create

an

e-mail

campaign

This

business

process

includes

the

business

components

and

views

related

to

all

steps

involved

in

the

process

of

creating

e-mail

campaigns.

Prepare

an

online

catalog

This

business

process

includes

the

business

components

and

sub-processes

related

to

creating

an

online

catalog.

This

includes

designing

the

catalog,

loading

catalog

data,

creating

merchandising

associations,

and

setting

pricing

information.

Models

When

gathered

together,

the

lower

layers

of

the

diagram

make

up

e-commerce

business

models.

One

example

of

an

e-commerce

business

model

is

the

consumer

direct

model

that

is

displayed

in

the

FashionFlow

sample

store.

2000Business

Another

example

is

the

B2B

direct

model

that

is

displayed

in

the

ToolTech

sample

store.

6

Programming

Guide

and

Tutorials

WebSphere

Commerce

run-time

architecture

The

previous

section

introduced

the

application

architecture,

which

depicts

the

various

layers

in

the

WebSphere

Commerce

application,

from

a

business

application

point-of-view.

This

section

describes

how

the

run-time

architecture

is

implemented.

The

major

components

of

the

WebSphere

Commerce

run-time

architecture

are:

v

Servlet

engine

v

Protocol

listeners

v

Adapter

manager

v

Adapters

v

Web

controller

v

Commands

v

Entity

beans

v

Data

beans

v

Data

bean

manager

v

Display

pages

v

XML

files

The

interactions

between

WebSphere

Commerce

components

are

shown

in

the

following

diagram.

More

detail

on

each

component

can

be

found

in

subsequent

sections.

Chapter

1.

Overview

7

Task
command

Task
command

Task
command

Controller
command

View
command

Program
adapter

Scheduler
adapter

Adapter manager

Command registry

PVC
adapter

Browser
adapter

Adapter
framework

Protocol listenersServlet engine

Thread

Thread

HTTP request servlet

instance_name.xml

MQ listener

Data bean
command

Database

JSP template

Data
bean

Web controller

Data bean
manager Entities

Figure

3.

8

Programming

Guide

and

Tutorials

Servlet

engine

The

servlet

engine

is

the

part

of

the

WebSphere

Application

Server

run-time

environment

that

acts

as

a

request

dispatcher

for

inbound

URL

requests.

The

servlet

engine

manages

a

pool

of

threads

to

handle

requests.

Each

inbound

request

is

executed

on

a

separate

thread.

Protocol

listeners

WebSphere

Commerce

commands

can

be

invoked

from

various

devices.

Examples

of

devices

that

can

invoke

commands

include:

v

Typical

Internet

browsers

v

Mobile

phones

using

Internet

browsers

v

Business-to-business

applications

sending

XML

messages

using

MQSeries®

v

Procurement

systems

sending

requests

using

XML

over

HTTP

v

The

WebSphere

Commerce

scheduler

that

executes

a

background

job

Devices

can

use

a

variety

of

communication

protocols.

A

protocol

listener

is

a

run-time

component

that

receives

inbound

requests

from

transports

and

then

dispatches

the

requests

to

the

appropriate

adapters,

based

upon

the

protocol

used.

The

protocol

listeners

include:

v

Request

servlet

v

MQSeries

listener

When

the

request

servlet

receives

a

URL

request

from

the

servlet

engine,

it

passes

the

request

to

the

adapter

manager.

The

adapter

manager

then

queries

the

adapter

types

to

determine

which

adapter

can

process

the

request.

Once

the

specific

adapter

is

determined,

the

request

is

passed

to

the

adapter.

When

the

request

servlet

is

initialized,

it

reads

the

instance_name.xml

configuration

file

(where

instance_name

is

the

name

of

the

WebSphere

Commerce

instance).

One

of

the

configuration

blocks

in

the

XML

file

defines

all

of

the

adapters.

The

init()

method

of

the

request

servlet

initializes

all

defined

adapters.

The

MQSeries

listener

receives

XML-based

MQSeries

messages

from

remote

programs

and

dispatches

the

requests

to

the

non-HTTP

adapter

manager.

The

Job

Scheduler

does

not

require

a

protocol

listener.

Adapter

manager

The

adapter

manager

determines

which

adapter

is

capable

of

handling

the

request

and

then

forwards

the

request

to

that

adapter.

Chapter

1.

Overview

9

Adapters

WebSphere

Commerce

adapters

are

device-specific

components

that

perform

processing

functions

before

passing

a

request

to

the

Web

controller.

Examples

of

processing

tasks

performed

by

an

adapter

include:

v

Instructing

the

Web

controller

to

process

the

request

in

a

manner

specific

to

the

type

of

device.

For

example,

a

pervasive

computing

(PvC)

device

adapter

can

instruct

the

Web

controller

to

ignore

HTTPS

checking

in

the

original

request.

v

Transforming

the

message

format

of

the

inbound

request

into

a

set

of

properties

that

WebSphere

Commerce

commands

can

parse.

v

Providing

device-specific

session

persistence.

The

following

diagram

shows

the

implementation

class

hierarchy

for

the

WebSphere

Commerce

adapter

framework.

As

displayed

in

the

preceding

diagram,

all

adapters

implement

the

DeviceFormatAdapter

interface.

The

following

are

the

adapters

that

are

used

by

the

WebSphere

Commerce

run-time

environment:

Program

adapter

The

program

adapter

provides

support

for

remote

programs

invoking

WebSphere

Commerce

commands.

The

program

adapter

receives

requests

and

uses

a

message

mapper

to

convert

the

request

into

a

Interface

Class ClassClass

implements implements implements

extends extends

Class Class

Figure

4.

10

Programming

Guide

and

Tutorials

CommandProperty

object.

After

the

conversion,

the

program

adapter

uses

the

CommandProperty

object

and

executes

the

request.

Scheduler

adapter

The

scheduler

adapter

provides

support

for

WebSphere

Commerce

commands

that

are

run

as

background

jobs.

HTTP

browser

adapter

The

HTTP

browser

adapter

provides

support

for

requests

to

invoke

WebSphere

Commerce

commands

that

are

received

from

HTTP

browsers.

HTTP

PvC

adapter

This

is

an

abstract

adapter

class

that

can

be

used

to

develop

specific

PvC

device

adapters.

For

example,

if

you

needed

to

develop

an

adapter

for

a

particular

cellular

phone

application,

you

would

extend

from

this

adapter.

If

required,

the

adapter

framework

can

be

extended

in

the

following

two

ways:

v

Create

an

adapter

for

a

specific

PvC

device

(for

example,

create

an

HttpIModePVCAdapterImpl

class

to

provide

support

for

i-mode

devices).

An

adapter

of

this

type

must

extend

the

AbstractHttpAdapterImpl

class.

v

Create

a

new

adapter

that

connects

to

a

new

protocol

listener.

This

new

adapter

must

implement

the

DeviceFormatAdapter

interface.

Web

controller

The

WebSphere

Commerce

Web

controller

is

an

application

container

that

follows

a

design

pattern

similar

to

that

of

an

EJB

container.

This

container

simplifies

the

role

of

commands,

by

providing

such

services

as

session

management

(based

upon

the

session

persistence

established

by

the

adapter),

transaction

control,

access

control

and

authentication.

The

Web

controller

also

plays

a

role

in

enforcing

the

programming

model

for

the

commerce

application.

For

example,

the

programming

model

defines

the

types

of

commands

that

an

application

should

write.

Each

type

of

command

serves

a

specific

purpose.

Business

logic

must

be

implemented

in

controller

commands

and

view

logic

must

be

implemented

in

view

commands.

The

Web

controller

expects

the

controller

command

to

return

a

view

name.

If

a

view

name

is

not

returned,

an

exception

is

thrown.

For

HTTP

requests,

the

Web

controller

performs

the

following

tasks:

v

Begins

the

transaction

using

the

UserTransaction

interface

from

the

javax.transaction

package.

v

Gets

session

data

from

the

adapter.

Chapter

1.

Overview

11

v

Determines

whether

the

user

must

be

logged

on

before

invoking

the

command.

If

required,

it

redirects

the

user’s

browser

to

a

logon

URL.

v

Checks

if

secure

HTTPS

is

required

for

the

URL.

If

it

is

required

but

the

current

request

is

not

using

HTTPS,

it

redirects

the

Web

browser

to

an

HTTPS

URL.

v

Invokes

the

controller

command

and

passes

it

the

command

context

and

input

properties

objects.

v

If

a

transaction

rollback

exception

occurs

and

the

controller

command

can

be

retried,

it

retries

the

controller

command.

v

A

controller

command

normally

returns

a

view

name

when

there

is

a

view

command

to

be

sent

back

to

the

client.

The

Web

controller

invokes

the

view

command

for

the

corresponding

view.

There

are

a

number

of

ways

to

form

a

response

view.

These

include

redirecting

to

a

different

URL,

forwarding

to

a

JSP

template

or

writing

an

HTML

document

to

the

response

object.

v

Saves

the

session

data.

v

Commits

the

session

data.

v

Commits

the

current

transaction

if

it

is

successful.

v

Rolls

back

the

current

transaction

in

case

of

failure

(depending

upon

circumstances).

Commands

WebSphere

Commerce

commands

are

beans

that

contain

the

programming

logic

associated

with

handling

a

particular

request.

There

are

four

main

types

of

WebSphere

Commerce

commands:

Controller

command

A

controller

command

encapsulates

the

logic

related

to

a

particular

business

process.

Examples

of

controller

commands

include

the

OrderProcessCmd

command

for

order

processing

and

the

LogonCmd

that

allows

users

to

log

on.

In

general,

a

controller

command

contains

the

control

statements

(for

example,

if,

then,

else)

and

invokes

task

commands

to

perform

individual

tasks

in

the

business

process.

Upon

completion,

a

controller

command

returns

a

view

name.

The

Web

controller

then

determines

the

appropriate

implementation

class

for

the

view

command

and

executes

the

view

command.

Task

command

A

task

command

implements

a

specific

unit

of

application

logic.

In

general,

a

controller

command

and

a

set

of

task

commands

together

implement

the

application

logic

for

a

URL

request.

A

task

command

is

executed

in

the

same

container

as

the

controller

command.

Data

bean

command

A

data

bean

command

is

invoked

by

the

data

bean

manager

when

a

12

Programming

Guide

and

Tutorials

data

bean

is

instantiated.

The

primary

function

of

a

data

bean

command

is

to

populate

the

data

bean

with

data.

View

command

A

view

command

composes

a

view

as

a

response

to

a

client

request.

There

are

three

types

of

view

commands:

Redirect

view

command

This

view

command

sends

the

view

using

a

redirect

protocol,

such

as

the

URL

redirect.

A

controller

command

should

return

a

view

command

in

this

view

type

to

return

a

view

using

a

redirect

protocol.

When

a

redirect

protocol

is

used,

it

changes

the

URL

stacks

in

the

browser.

When

a

reload

key

is

entered,

the

redirected

URL

executes

instead

of

the

original

URL.

Direct

view

command

This

view

command

sends

the

response

view

directly

to

the

client.

Forward

view

command

This

view

command

forwards

the

view

request

to

another

Web

component,

such

as

a

JSP

template.

There

are

three

ways

in

which

a

view

command

can

be

invoked:

v

A

controller

command

specifies

a

view

command

name

when

the

request

has

successfully

completed.

v

A

client

requests

a

view

directly.

v

A

command

detects

an

error

and

an

error

task

must

be

executed

to

process

the

error.

The

command

throws

an

exception

with

a

view

command

name.

When

the

exception

propagates

to

the

Web

controller,

it

executes

the

error

view

command

and

returns

the

response

to

the

client.

WebSphere

Commerce

entity

beans

Entity

beans

are

the

persistent,

transactional

commerce

objects

provided

by

WebSphere

Commerce.

If

you

are

familiar

with

the

commerce

domain,

entity

beans

represent

WebSphere

Commerce

data

in

an

intuitive

way.

That

is,

rather

than

having

to

understand

the

whole

the

database

schema,

you

can

access

data

from

an

entity

bean

which

more

closely

models

concepts

and

objects

in

the

commerce

domain.

You

can

extend

existing

entity

beans.

In

addition,

for

your

own

application-specific

business

requirements,

you

can

deploy

entirely

new

entity

beans.

Entity

beans

are

implemented

according

to

the

Enterprise

JavaBeans

(EJB)

component

model.

Chapter

1.

Overview

13

For

more

information

about

entity

beans,

refer

to

“Implementation

of

WebSphere

Commerce

entity

beans”

on

page

47.

Data

beans

Data

beans

are

Java

beans

that

are

primarily

used

by

Web

designers.

Most

commonly,

they

provide

access

to

a

WebSphere

Commerce

entity.

A

Web

designer

can

place

these

beans

on

a

JSP

template,

allowing

dynamic

information

to

be

populated

on

the

page

at

display

time.

The

Web

designer

need

only

understand

what

data

the

bean

can

provide

and

what

data

the

bean

requires

as

input.

Consistent

with

the

theme

of

separating

display

from

business

logic,

there

is

no

need

for

the

Web

designer

to

understand

how

the

bean

works.

Data

bean

manager

WebSphere

Commerce

data

beans

inserted

into

JSP

templates

allow

for

the

inclusion

of

dynamic

content

in

the

page.

The

data

bean

manager

activates

the

data

bean

so

that

its

values

are

populated

when

the

following

line

of

code

is

inserted

into

the

page:

com.ibm.commerce.beans.DataBeanManager.activate(data_bean,

request)

where

data_bean

is

the

data

bean

to

be

activated

and

request

is

an

HTTPServletRequest

object.

JavaServer

Pages

templates

JSP

templates

are

specialized

servlets

that

are

typically

used

for

display

purposes.

Upon

completion

of

a

URL

request,

the

Web

controller

invokes

a

view

command

that

invokes

a

JSP

template.

A

client

can

also

invoke

a

JSP

template

directly

from

the

browser

without

an

associated

command.

In

this

case,

the

URL

for

the

JSP

template

must

include

the

request

servlet

in

its

path,

so

that

all

of

the

data

beans

required

by

a

JSP

template

can

be

activated

within

a

single

transaction.

The

request

servlet

can

forward

a

URL

request

to

a

JSP

template

and

execute

the

JSP

template

within

a

single

transaction.

The

data

bean

manager

rejects

any

URL

for

a

JSP

template

that

does

not

include

the

request

servlet

in

its

path.

For

more

information

about

protecting

JSP

templates

and

other

resources,

refer

to

Chapter

4,

“Access

control,”

on

page

89.

instance_name.xml

configuration

file

The

instance_name.xml

configuration

file

(where

instance_name

is

the

name

of

the

WebSphere

Commerce

instance)

sets

configuration

information

for

the

WebSphere

Commerce

instance.

It

is

read

when

the

request

servlet

is

initialized.

14

Programming

Guide

and

Tutorials

Summary

for

a

request

This

section

provides

a

summary

of

the

interaction

flow

between

components

when

forming

a

response

to

a

request.

A

description

of

each

of

the

steps

follows

the

diagram.

The

following

information

corresponds

to

the

preceding

diagram.

1.

The

request

is

directed

to

the

servlet

engine

by

the

WebSphere

Application

Server

plug-in.

Task
command

Task
command

Task
command

Controller
commandView

command

Data bean
command

JSP template

Access
bean

Data
bean

Data bean
manager

Access
bean

Entities

Database

Adapter manager

Command registry

Adapter

Web controller

Servlet engine

Request
Thread

Protocol listener21

6

3

4

8b11

13

8a 8c

extends

12

14

10 79

5

Figure

5.

Chapter

1.

Overview

15

2.

The

request

is

executed

in

its

own

thread.

The

servlet

engine

dispatches

the

request

to

a

protocol

listener.

The

protocol

listener

can

be

the

HTTP

request

servlet

or

the

MQ

Listener.

3.

The

protocol

listener

passes

the

request

to

the

adapter

manager.

4.

The

adapter

manger

determines

which

adapter

is

capable

of

handling

the

request

and

then

forwards

the

request

to

the

appropriate

adapter.

For

example,

if

the

request

came

from

an

Internet

browser,

the

adapter

manager

forwards

the

request

to

the

HTTP

browser

adapter.

5.

The

adapter

passes

the

request

to

the

Web

controller.

6.

The

Web

controller

determines

which

command

to

invoke,

by

querying

the

command

registry.

7.

Assuming

that

the

request

requires

the

use

of

a

controller

command,

the

Web

controller

invokes

the

appropriate

controller

command.

8.

Once

a

controller

command

begins

execution,

there

are

multiple

possible

paths:

a.

The

controller

command

can

access

the

database

using

an

access

bean

and

its

corresponding

entity

bean.

b.

The

controller

command

can

invoke

one

or

more

task

commands.

Then

task

commands

can

access

the

database,

using

access

beans

and

their

corresponding

entity

beans

(shown

in

8c

in

figure

5).

9.

Upon

completion,

the

controller

command

returns

a

view

name

to

the

Web

controller.

10.

The

Web

controller

looks

up

the

view

name

in

the

VIEWREG

table.

It

invokes

the

view

command

implementation

that

is

registered

for

the

device

type

of

the

requester.

11.

The

view

command

forwards

the

request

to

a

JSP

template.

12.

Within

the

JSP

template,

a

data

bean

is

required

to

retrieve

dynamic

information

from

the

database.

The

data

bean

manager

activates

the

data

bean.

13.

The

data

bean

manager

invokes

a

data

bean

command,

if

required.

14.

The

access

bean

from

which

the

data

bean

is

extended

accesses

the

database

using

its

corresponding

entity

bean.

16

Programming

Guide

and

Tutorials

Part

2.

Programming

model

©

Copyright

IBM

Corp.

2000,

2003

17

18

Programming

Guide

and

Tutorials

Chapter

2.

Design

patterns

A

variety

of

design

patterns

and

mechanisms

are

used

to

develop

the

WebSphere

Commerce

framework.

WebSphere

Commerce

provides

a

high-level

design

pattern

to

which

each

WebSphere

Commerce

application

should

adhere.

The

following

design

patterns

are

discussed

in

this

chapter:

v

The

model-view-controller

design

pattern

v

The

command

design

pattern

v

The

display

design

pattern

Model-View-Controller

design

pattern

The

model-view-controller

(MVC)

design

pattern

specifies

that

an

application

consist

of

a

data

model,

presentation

information,

and

control

information.

The

pattern

requires

that

each

of

these

be

separated

into

different

objects.

The

model

(for

example,

the

data

information)

contains

only

the

pure

application

data;

it

contains

no

logic

describing

how

to

present

the

data

to

a

user.

The

view

(for

example,

the

presentation

information)

presents

the

model’s

data

to

the

user.

The

view

knows

how

to

access

the

model’s

data,

but

it

does

not

know

what

this

data

means

or

what

the

user

can

do

to

manipulate

it.

Finally,

the

controller

(for

example,

the

control

information)

exists

between

the

view

and

the

model.

It

listens

to

events

triggered

by

the

view

(or

another

external

source)

and

executes

the

appropriate

reaction

to

these

events.

In

most

cases,

the

reaction

is

to

call

a

method

on

the

model.

Since

the

view

and

the

model

are

connected

through

a

notification

mechanism,

the

result

of

this

action

is

then

automatically

reflected

in

the

view.

Most

applications

today

follow

this

pattern,

many

with

slight

variations.

For

example,

some

applications

combine

the

view

and

the

controller

into

one

class

because

they

are

already

very

tightly

coupled.

All

of

the

variations

strongly

encourage

separation

of

data

and

its

presentation.

This

not

only

makes

the

structure

of

an

application

simpler,

it

also

enables

code

reuse.

Since

there

are

many

publications

describing

the

pattern,

as

well

as

numerous

samples,

this

document

does

not

describe

the

pattern

in

great

detail.

©

Copyright

IBM

Corp.

2000,

2003

19

The

following

diagram

shows

how

the

MVC

design

pattern

applies

to

WebSphere

Commerce.

Command

design

pattern

The

WebSphere

Commerce

Server

accepts

requests

from

browser-based

thin-client

applications,

as

well

as

from

other

remote

applications.

For

example,

a

request

may

come

from

a

remote

procurement

system,

or

from

another

commerce

server.

Task
command

Task
command

Task
command

Controller
command

View
command

Entities

JSP template

Data
bean

Web
controller

invokes

Model

Controller

URL

View

data retrieval
& update

data retrieval
& update

data retrieval

Database

data retrieval
& update

forwards

invokes

invokes

Figure

6.

20

Programming

Guide

and

Tutorials

All

requests,

in

their

variety

of

formats,

are

translated

into

a

common

format

by

the

adapters

that

make

up

the

adapter

framework.

Once

the

requests

are

in

this

common

format,

they

can

be

understood

by

WebSphere

Commerce

commands.

Commands

are

beans

that

perform

business

logic.

They

represent

procedural

logic

either

in

the

form

of

high-level

process

logic

or

discrete

business

logic

tasks.

A

process-based

command

acts

as

a

controller

that

spans

multiple

entities

and

other

commands,

while

a

task

command

performs

a

specific

task

and

may

only

access

a

single

object.

Command

framework

Command

beans

follow

a

specific

design

pattern.

Every

command

includes

both

an

interface

class

(for

example,

CategoryDisplayCmd)

and

an

implementation

class

(for

example,

CategoryDisplayCmdImpl).

From

a

caller’s

perspective,

the

invocation

logic

involves

setting

input

properties,

invoking

an

execute()

method,

and

retrieving

output

properties.

From

the

perspective

of

the

command

implementer,

commands

follow

the

WebSphere

command

framework,

which

implements

the

standard

command

design

pattern

allowing

a

level

of

indirection

between

the

caller

and

the

implementation.

The

key

mechanisms

enabled

within

this

level

of

indirection

include:

1.

The

ability

to

invoke

an

access

control

policy

manager

that

determines

if

the

user

is

allowed

to

invoke

the

command.

2.

The

ability

to

execute

a

different

command

implementation

for

different

stores,

based

upon

the

store

identifier.

3.

The

ability

to

execute

a

different

view

implementation

based

upon

the

device

type

of

the

requester.

The

following

diagram

shows

a

conceptual

overview

of

the

interfaces

for

the

four

main

types

of

commands:

Chapter

2.

Design

patterns

21

Controller

command

A

controller

command

encapsulates

the

logic

related

to

a

particular

business

process.

Examples

of

controller

commands

include

the

OrderProcessCmd

command

for

order

processing

and

the

LogonCmd

that

allows

users

to

log

on.

In

general,

a

controller

command

contains

the

control

statements

(for

example,

if,

then,

else)

and

invokes

task

commands

to

perform

individual

tasks

in

the

business

process.

Upon

completion,

a

controller

command

returns

a

view

name.

Based

upon

the

view

name,

the

store

identifier,

and

the

device

type,

the

Web

controller

then

determines

the

appropriate

implementation

class

for

the

view

command

and

executes

the

view

command.

While

a

controller

command

is

a

targetable

command,

only

the

local

target

is

supported.

Task

command

A

task

command

implements

a

specific

unit

of

application

logic.

In

general,

a

controller

command

and

a

set

of

task

commands

together

implement

the

application

logic

for

a

URL

request.

A

task

command

is

executed

in

the

same

container

as

the

controller

command.

Command

Targetable
command ECCommand

Targetable
command

Controller
command

View command Task command
Data bean
command

Redirect
view command

Forward
view command

Direct
view command

Http redirect
view command

Http forward
view command

Http direct
view command

Figure

7.

22

Programming

Guide

and

Tutorials

Data

bean

command

A

data

bean

command

is

invoked

by

a

JSP

page

when

a

data

bean

is

instantiated.

The

primary

function

of

a

data

bean

command

is

to

populate

the

fields

of

the

data

bean.

While

a

data

bean

command

is

a

targetable

command,

only

the

local

target

is

supported.

View

command

A

view

command

composes

a

view

as

a

response

to

a

client

request.

There

are

three

ways

in

which

a

view

command

can

be

invoked:

v

A

controller

command

specifies

a

view

command

name

on

successful

completion

of

the

request.

v

A

client

can

request

a

view

directly.

v

A

controller

or

task

command

detects

an

error

and

decides

that

an

error

task

must

be

executed

to

process

the

error

and

throws

an

exception

with

a

view

command

name.

When

the

exception

propagates

to

the

Web

controller,

it

executes

the

view

command

and

returns

the

response

to

the

client.

There

are

three

types

of

view

commands:

Redirect

view

command

This

view

command

sends

the

view

using

a

redirect

protocol,

such

as

the

URL

redirect.

A

controller

command

should

return

a

view

command

of

this

view

type

when

a

redirect

protocol

is

required.

When

a

redirect

protocol

is

used,

it

changes

the

URL

stacks

in

the

browser.

When

a

reload

key

is

entered,

the

redirected

URL

executes

instead

of

the

original

URL.

Direct

view

command

This

view

command

sends

the

response

view

directly

to

the

client.

Forward

view

command

This

view

command

forwards

the

view

request

to

another

Web

component,

such

as

a

JSP

template.

Command

factory

In

order

to

create

new

command

objects,

the

caller

of

the

command

uses

the

command

factory.

The

command

factory

is

a

bean

that

is

used

to

instantiate

commands.

It

is

based

on

the

factory

design

pattern,

which

defers

instantiation

of

an

object

away

from

the

invoking

class,

to

the

factory

class

that

understands

which

implementation

class

to

instantiate.

Chapter

2.

Design

patterns

23

The

factory

provides

a

smart

way

to

instantiate

new

objects.

In

this

case,

the

command

factory

provides

a

way

to

determine

the

correct

implementation

class

when

creating

a

new

command

object,

based

upon

the

individual

store.

The

command

interface

name

and

the

particular

store

identifier

are

passed

into

the

new

command

object,

upon

instantiation.

There

are

two

ways

for

the

implementation

class

of

a

command

to

be

specified.

A

default

implementation

class

can

be

specified

directly

in

the

code

for

the

command

interface,

using

the

defaultCommandClassName

variable.

For

example,

the

following

code

exists

in

the

CategoryDisplayCmd

interface:

String

defaultCommandClassName

=

"com.ibm.commerce.catalog.commands.CategoryDisplayCmdImpl"

The

second

way

to

specify

the

implementation

class

is

to

use

the

WebSphere

Commerce

command

registry.

The

command

registry

should

always

be

used

when

the

implementation

class

varies

from

one

store

to

another.

More

information

about

the

command

registry

can

be

found

on

page

28.

In

the

case

where

a

default

implementation

class

is

specified

in

the

code

for

the

interface

and

a

different

implementation

class

is

specified

in

the

command

registry,

the

command

registry

takes

precedence.

The

syntax

for

using

the

command

factory

is

as

follows:

cmd

=

CommandFactory.createCommand(interfaceName,

storeId)

where

interfaceName

is

the

interface

name

for

the

new

command

bean

and

storeId

is

identifier

of

the

store

for

which

the

command

should

be

implemented.

Typically,

the

store

ID

can

be

retrieved

by

using

the

commandContext.getStoreId()

method.

Note:

The

syntax

for

using

the

command

factory

to

create

business

policy

commands

is

different

from

the

preceding

code

snippet.

For

more

information

about

using

the

command

factory

to

create

business

policy

commands,

refer

to

“Invoking

the

new

business

policy”

on

page

184.

Nested

controller

commands

You

will

most

often

use

the

command

factory

to

create

instances

of

task

commands,

however,

it

can

also

be

used

within

one

controller

command

to

create

an

instance

of

another

controller

command.

In

other

words,

it

is

used

when

calling

one

controller

command

from

within

another.

The

syntax

for

instantiating

task

commands

and

controller

commands

is

the

same.

That

is,

you

specify

the

name

of

the

command’s

interface

and

the

store

ID

in

both

scenarios.

If

you

nest

one

controller

command

within

another,

note

the

following

points:

24

Programming

Guide

and

Tutorials

v

Once

you

have

instantiated

the

nested

command,

call

its

setCommandContext

method

and

pass

in

the

current

command

context.

Note

that

if

you

are

passing

a

different

set

of

request

properties

to

the

nested

command

and

these

parameters

will

affect

the

command

context,

you

should

clone

the

command

context

before

instantiating

the

nested

command.

This

will

preserve

the

command

context

information

for

the

outer

command.

v

Ideally,

call

the

setRequestProperties

method

of

the

nested

command

and

pass

a

TypedProperties

object

containing

input

properties.

Otherwise,

you

can

use

the

individual

setter

methods

defined

on

the

interface

of

the

command

to

set

the

required

properties.

v

After

input

properties

have

been

set,

call

the

execute

method

of

the

nested

command.

v

Since

all

controller

commands

must

return

a

view

when

processing

has

completed,

the

outer

command

can

do

nothing

with

the

view

returned

by

the

nested

command.

v

The

nested

command

will

be

executed

within

the

transaction

scope

of

the

outer

command.

Consider

the

following

code

snippet

as

an

example

of

a

nested

controller

command.

This

example

shows

a

method

in

the

outer

command

and

how

it

can

use

the

command

factory

to

instantiate

a

second

controller

command.

yourControllerCmd

ctrlCmd

=

null;

public

void

processAndCallOtherCommand()

throws

ECException

{

ctrlCmd

=

(yourControllerCmd)CommandFactory.createCommand(

com.yourcompany.commands.yourControllerCmd,

this.getStoreId());

ctrlCmd.setCommandContext(this.getCommandContext());

ctrlCmd.setRequestProperties(this.getRequestProperties());

ctrlCmd.execute();

}

As

another

example,

consider

the

case

where

the

nested

command

is

being

executed

for

a

different

store

than

the

first.

In

this

case,

the

command

context

from

the

outer

command

must

be

preserved

so

that

it

does

not

get

overwritten

by

the

inner

command.

//

Make

a

clone

to

preserve

the

command

context

of

the

outer

commmand

CommandContext

cloneCmdCtx

=

(CommandContext)this.getCommandContext().clone();

//Now

pass

in

a

new

set

of

request

properties

to

the

cloned

command

context

cloneCmdCtx.setRequestProperties(reqProp);

yourControllerCmd

ctrlCmd

=

null;

public

void

processAndCallOtherCommandForOtherStore(int

aStoreId)

throws

ECException

Chapter

2.

Design

patterns

25

{

ctrlCmd

=

(yourControllerCmd)CommandFactory.createCommand(

com.yourcompany.commands.yourControllerCmd,

aStoreId;

ctrlCmd.setCommandContext(cloneCmdCtx);

ctrlCmd.setRequestProperties(reqProp);

ctrlCmd.execute();

}

Command

flow

This

section

provides

an

overview

of

the

logical

flow

between

commands

and

the

WebSphere

Commerce

database.

The

following

diagram

and

descriptions

depict

this

flow.

26

Programming

Guide

and

Tutorials

When

the

Web

controller

receives

a

request,

it

determines

whether

the

request

requires

the

invocation

of

a

controller

command

or

a

view

command.

In

either

case,

the

Web

controller

also

determines

the

implementation

class

for

the

command,

and

then

invokes

it.

First

examine

the

left

side

of

the

diagram.

Since

controller

commands

encapsulate

the

logic

for

a

business

process,

they

frequently

invoke

individual

task

commands

to

perform

specific

units

of

work

in

the

business

process.

Web controller

Task command

Access
bean

Entity
bean

Entity
bean

View command

JSP template

Access
bean

Data
bean

extends

invokes

invokes

invokes invokes

invokes

invokes

reads/
writes data

reads/
writes data

invokes

returns view name

Controller
command

WebSphere
Commerce database

Figure

8.

Chapter

2.

Design

patterns

27

Access

beans

are

invoked

when

information

in

the

database

must

be

retrieved

or

updated.

Either

a

task

or

controller

command

can

invoke

access

beans.

Requests

then

flow

from

access

beans

to

entity

beans

that

can

read

from,

and

write

to,

the

WebSphere

Commerce

database.

Now

examine

the

right

side

of

the

diagram.

A

view

command

is

invoked

by

the

Web

controller,

either

when

a

controller

command

has

completed

processing

and

it

returns

the

name

of

a

view

command

to

invoke,

or

when

an

error

occurs

and

an

error

view

must

be

displayed.

View

commands

typically

invoke

a

JSP

template

to

display

the

response

to

the

client.

Within

the

JSP

template,

data

beans

are

used

to

populate

dynamic

information

onto

the

page.

Data

beans

are

activated

by

the

data

bean

manager.

The

data

bean

(which

extends

from

an

access

bean)

invokes

its

corresponding

entity

bean.

When

accessed

indirectly

from

a

JSP

template,

an

entity

bean

typically

retrieves

information

from

the

database

(rather

than

writing

information

to

the

database).

Command

registration

framework

WebSphere

Commerce

controller

and

task

commands

are

registered

in

the

command

registry.

The

following

three

tables

comprise

the

command

registry:

v

URLREG

v

CMDREG

v

VIEWREG

Note:

2000Business

This

section

does

not

apply

to

the

registration

of

business

policy

commands.

For

information

about

registering

new

business

policy

commands,

refer

to

“Registering

the

new

business

policy

and

business

policy

command”

on

page

168.

URLREG

table

The

URLREG

table

maps

URIs

(Universal

Resource

Indicator)

to

controller

command

interfaces.

URIs

provide

a

simple

and

extensible

mechanism

for

resource

identification.

A

URI

is

a

relatively

short

string

of

characters

used

to

identify

an

abstract

or

physical

resource.

In

WebSphere

Commerce,

the

URI

contains

only

command

information.

In

the

following

URL,

the

URI

section

is

shown

in

bold:

http://hostname/webapp/wcs/stores/servlet/StoreCatalogDisplay?

storeId=store_Id&langId=-1

While

there

is

a

one-to-one

mapping

between

a

URI

and

an

interface

name,

each

store

can

specify

whether

HTTPS

or

AUTHENTICATION

is

required

for

the

command.

For

each

inbound

URL

request,

the

Web

controller

looks

up

the

28

Programming

Guide

and

Tutorials

interface

name

for

the

controller

command

and

then

uses

that

name

to

determine

the

correct

implementation

class,

as

registered

in

the

CMDREG

table.

The

following

table

describes

information

contained

in

the

URLREG

database

table.

Column

name

Description

Comments

URL

URI

name

For

example

MyNewCommand

or

com.ibm.commerce.catalog.

commands.ProductDisplayCmd

STOREENT_ID

Store

entity

identifier

This

can

be

set

to

0

to

use

the

command

for

all

stores,

or

to

a

unique

store

identifier

to

indicate

that

the

command

is

used

only

for

a

particular

store.

INTERFACENAME

Controller

command

interface

name

For

example

com.ibm.commerce.catalog.

commands.

ProductDisplayCmdImpl

HTTPS

Secure

HTTP

required

for

this

URL

request

Use

1

when

HTTPS

is

required

and

0

when

it

is

not.

DESCRIPTION

Description

of

URI

For

example,

This

command

is

used

for

testing

purposes.

AUTHENTICATED

User

log

on

is

required

for

this

URL

request

Use

1

when

authentication

is

required

and

0

when

it

is

not.

INTERNAL

Indicates

whether

or

not

the

command

is

internal

to

WebSphere

Commerce

Use

1

when

the

command

is

internal

and

0

when

it

is

external.

When

the

Web

controller

receives

a

URL

request,

it

retrieves

the

interface

name

for

the

requested

controller

command

and

uses

it

to

look

up

the

implementation

class

name

from

the

CMDREG

table.

It

also

determines

if

HTTPS

is

required

for

the

URL

request

by

checking

the

HTTPS

column

in

the

URLREG

table.

Only

commands

that

are

invoked

by

way

of

URL

requests

need

to

be

registered

in

the

URLREG

table.

Therefore,

only

controller

commands

must

be

registered

here,

not

task

or

view

commands.

The

following

SQL

statement

creates

an

entry

for

MyNewControllerCommand

which

is

used

by

a

particular

store

(whose

store

identifier

is

5):

Chapter

2.

Design

patterns

29

insert

into

URLREG

(URL,

STOREENT_ID,

INTERFACENAME,

HTTPS,

DESCRIPTION,

AUTHENTICATED)

values

(’MyNewControllerCommand’,

5,’com.ibm.commerce.commands.MyNewControllerCommand’,0,

’This

is

a

test

command.’,null)

The

generic

syntax

for

the

insert

statement

is

as

follows:
insert

into

table_name

(column_name1,column_name2,

...

,column_namen)

values

(column1_value,column2_value,...,columnn_value)

String

values

should

be

enclosed

in

single

quotes.

CMDREG

table

CMDREG

is

the

command

registration

table.

This

table

provides

a

mechanism

for

mapping

the

command

interface

to

its

implementation

class.

Multiple

implementations

of

an

interface

allow

for

command

customization

on

a

per

store

basis.

Only

controller

commands

and

task

commands

are

registered

in

the

CMDREG

table.

View

commands

are

registered

in

the

VIEWREG

table.

The

following

describes

information

contained

in

the

CMDREG

database

table.

Column

name

Description

Comments

STOREENT_ID

Store

entity

identifier

This

can

be

set

to

0

to

use

the

command

for

all

stores,

or

to

a

unique

store

identifier

to

indicate

that

the

command

is

used

only

for

a

particular

store.

INTERFACENAME

Command

interface

name

This

defines

the

interface;

use

the

same

name

as

you

did

in

the

URLREG

table.

DESCRIPTION

Description

of

this

command

For

example,

This

command

is

used

for

testing

purposes.

CLASSNAME

Command

implementation

class

name

Typically

the

interface

name

with

″Impl″

appended

to

end.

PROPERTIES

Default

name-value

pairs

set

as

input

properties

to

the

command

Format

is

same

as

URL

query

string.

For

example

″parm1=val1&parm2=val2″

LASTUPDATE

Last

update

on

this

command

entry

TARGET

Command

target

name.

This

is

where

the

command

is

actually

executed.

Only

local

target

is

supported.

30

Programming

Guide

and

Tutorials

In

general,

when

you

create

a

new

controller

or

task

command,

you

should

create

corresponding

entry

in

the

CMDREG

table.

For

example,

the

following

SQL

statement

creates

an

entry

for

MyNewCommand

which

is

used

by

a

particular

store

(whose

store

identifier

is

5):
insert

into

CMDREG

(STOREENT_ID,

INTERFACENAME,

DESCRIPTION,

CLASSNAME,

PROPERTIES,

LASTUPDATE,

TARGET)

values

(5,’com.mycompany.commands.MyNewCommand’,

’This

is

a

test

command’,

’com.mycompany.commands.MyNewCommandImpl’,

’myDefaulParm1=myDefaultVal1’,

’0000-12-01’,

’Local’)
String

values

should

be

enclosed

in

single

quotes.

If

the

command

you

are

writing

always

uses

the

same

implementation

class,

you

do

not

necessarily

have

to

register

the

command

in

the

CMDREG

table.

In

this

case,

you

can

use

the

defaultCommandClassName

attribute

in

the

interface

to

specify

the

implementation

class.

For

example,

in

the

code

for

the

interface,

you

would

include

the

following:

String

defaultCommandClassName

=

"com.ibm.commerce.command.MyNewCommandImpl"

If

you

specify

the

implementation

class

in

this

manner,

you

cannot

pass

default

properties

to

the

implementation

class

and

the

same

implementation

class

must

be

used

for

all

stores.

Example

of

a

registered

controller

command

Consider

a

scenario

in

which

your

site

has

two

stores:

StoreA

and

StoreB.

Each

store

has

different

security

requirements

for

the

MyUrl

controller

command

as

well

as

different

implementations

of

the

command.

This

section

shows

how

the

command

registry

is

used

to

enable

this

customization.

The

following

table

shows

the

entries

for

StoreA

and

StoreB

in

the

URLREG

table:

Column

name

Entry

for

StoreA

Entry

for

StoreB

URL

MyUrl

MyUrl

STOREENT_ID

11

22

INTERFACENAME

com.ibm.commerce.

mycommands.myUrl

com.ibm.commerce.

mycommands.myUrl

HTTPS

1

1

DESCRIPTION

Example

entry

in

the

URLREG

table.

Example

entry

in

the

URLREG

table.

AUTHENTICATED

1

0

INTERNAL

null

null

Chapter

2.

Design

patterns

31

Note:

The

spaces

in

values

for

INTERFACENAME

are

for

display

purposes

only.

Each

value

is

actually

one

continuous

string.

Based

upon

entries

in

the

URLREG

table,

the

Web

controller

determines

that

the

interface

name

for

the

MyURL

URI

is

com.ibm.commerce.mycommands.MyUrl.

It

also

determines

that

StoreA

requires

the

command

to

be

executed

using

both

HTTPS

and

authentication,

but

StoreB

requires

HTTPS

only.

The

values

for

HTTPS

and

authentication

are

used

by

the

Web

controller,

not

by

the

interface.

The

following

diagram

shows

this

flow:

The

following

table

shows

the

entries

in

the

CMDREG

table.

Only

columns

required

for

the

purpose

of

this

example

are

displayed:

Column

name

Entry

for

StoreA

Entry

for

StoreB

STOREENT_ID

11

22

INTERFACENAME

com.ibm.commerce.

mycommands.myUrl

com.ibm.commerce.

mycommands.myUrl

CLASSNAME

com.ibm.commerce.

mycommands.

myUrlStoreAImpl

com.ibm.commerce.

mycommands.myUrlStoreBImpl

Note:

The

spaces

in

values

for

INTERFACENAME

and

CLASSNAME

are

for

display

purposes

only.

Each

value

is

actually

one

continuous

string.
Based

upon

entries

in

the

CMDREG

table,

the

Web

controller

determines

that

URI

MyUrl

Interface

com.ibm.commerce.mycommands.MyUrl
used for

StoreA
StoreB

Figure

9.

32

Programming

Guide

and

Tutorials

for

StoreA,

the

implementation

class

for

the

com.ibm.commerce.mycommands.MyUrl

interface

is

com.ibm.commerce.mycommands.MyUrlStoreAImpl.

It

also

determines

for

StoreB,

the

implementation

class

for

the

same

interface

is

com.ibm.commerce.mycommands.MyUrlStoreBImpl.

The

following

diagram

shows

this

flow:

VIEWREG

table

The

VIEWREG

table

allows

registration

of

device-specific

and

store-specific

view

implementations.

Using

this

table,

multiple

implementations

of

a

view

can

be

registered.

The

command

framework

is

then

capable

of

returning

different

views

to

various

devices.

When

a

view

name

is

returned

from

a

controller

command

or

specified

in

an

exception,

the

Web

controller

determines

the

view

implementation

from

the

VIEWREG

table.

Multiple

view

names

can

be

mapped

to

the

same

implementation

class.

URI

Implementation class

Implementation class

Interface

used for
StoreA
StoreB

StoreA

StoreB

Figure

10.

Chapter

2.

Design

patterns

33

Column

name

Description

Comments

VIEWNAME

View

name

For

example,

AddressForm

DEVICEFMT_ID

Device

type

identifier

Available

options

include:

v

BROWSER

(default

value)

v

I_MODE

v

E-mail

v

MQXML

v

MQNC

STOREENT_ID

Store

entity

identifier

This

can

be

set

to

0

to

use

the

command

for

all

stores,

or

to

a

unique

store

identifier

to

indicate

that

the

command

is

used

only

for

a

particular

store.

INTERFACENAME

View

command

interface

name

Default

options

are

ForwardView,

DirectView

and

RedirectView.

CLASSNAME

View

command

implementation

class

name

Can

use

the

default

implementation.

PROPERTIES

Default

name-value

pairs

set

as

input

properties

to

the

command

If

the

same

page

is

always

displayed,

set

the

JSP

file

name

in

this

property

(docname=jsp_name.jsp).

If

the

same

JSP

template

is

used

for

all

stores,

set

storeDir=no

to

prevent

a

store

specific

directory

from

being

used.
If

a

generic

user

can

invoke

the

command,

set

isGeneric=true.

DESCRIPTION

Description

of

this

command

HTTPS

Secure

HTTP

required

for

this

URL

request

Use

1

when

HTTPS

is

required

and

0

when

it

is

not.

LASTUPDATE

Last

update

on

this

entry

INTERNAL

Indicates

whether

or

not

the

command

is

internal

to

WebSphere

Commerce

Use

1

when

the

command

is

internal

and

0

when

it

is

external.

When

you

create

a

new

view,

you

may

need

to

create

a

corresponding

entry

in

the

VIEWREG

table.

If

one

of

the

following

conditions

is

met,

the

view

must

be

registered

in

the

VIEWREG

table:

v

The

view

is

executed

under

access

control

34

Programming

Guide

and

Tutorials

v

There

are

multiple

implementations

of

the

view

command

v

Properties

are

set

in

the

PROPERTIES

column

Registered

views

can

either

be

accessed

through

the

view

registry

using

the

view

name,

or

directly

by

using

the

actual

display

file

name.

Views

that

are

not

registered

in

the

VIEWREG

table

can

only

be

accessed

when

a

client

uses

the

actual

display

file

name.

Consider

the

example

of

a

view

named

MyView,

with

the

VIEWREG

entry

as

follows:

Column

name

Entry

VIEWNAME

MyView

DEVICEFMT_ID

BROWSER

STOREENT_ID

0

INTERFACENAME

com.ibm.commerce.commands.ForwardViewCommand

CLASSNAME

com.ibm.commerce.commands.HTTPForwardViewCommandImp

PROPERTIES

docname=MyView.jsp

DESCRIPTION

An

example

for

calling

a

JSP

template

using

either

the

view

name

or

directly

from

a

URL.

HTTPS

0

LASTUPDATE

2000–11–30

INTERNAL

0

Since

MyView

is

a

registered

view,

a

client

can

access

the

view

either

by

using

the

view

name,

or

by

substituting

the

actual

display

file

name

for

the

view

name.

Using

the

view

name,

a

sample

URL

is:

http://hostname.com/webapp/wcs/stores/servlet/MyView

and

using

the

file

name,

a

sample

URL

is:

http://hostname.com/webapp/wcs/stores/servlet/MyView.jsp

If

there

is

a

possibility

that

a

client

will

invoke

a

registered

view

directly

(using

the

display

file

name),

you

must

register

the

view

using

the

same

name

for

the

view

as

the

actual

display

file

name,

as

shown

in

this

example

(MyView

and

MyView.jsp).

A

view

that

is

not

registered

in

the

table

can

only

be

invoked

using

the

display

file

name.

Therefore,

if

there

is

an

unregistered

view

that

uses

the

file

MyUnregisteredView.jsp,

the

URL

to

access

this

view

is

as

follows:

Chapter

2.

Design

patterns

35

http://hostname.com/webapp/wcs/stores/servlet/MyUnregisteredView.jsp

The

following

example

SQL

statement

creates

an

entry

for

MyNewView

which

is

used

by

one

particular

store:
insert

into

VIEWREG

(VIEWNAME,

DEVICEFMT_ID,

STOREENT_ID,

INTERFACENAME,

CLASSNAME,

PROPERTIES,

DESCRIPTION,HTTPS,

LASTUPDATE,

INTERNAL)

values

(’MyNewView’,

-1,

5,

’com.ibm.commerce.command.ForwardViewCommand’,

’com.ibm.commmerce.command.HttpForwardViewCommandImpl’,

’docname=MyNewView.jsp’,

’A

test

view.’,

0,

’0000-12-01’,

0)

The

following

table

provides

another

sample

VIEWREG

table

with

key

information:

VIEW

NAME

INTERFACE

-

NAME

CLASSNAME

PROPERTIES

ProductDisplay

View

Forward

View

Command

HttpForwardView

CommandImpl

docname=

UserArea/

ServiceSection/

InterestItemList

Subsection/

WishListDisplay.jsp

Generic

Application

Error

Forward

View

Command

HttpForwardView

CommandImpl

docname

=Generic

Application

Error.jsp&storeDir=no

GenericSystem

Error

Forward

View

Command

HttpForwardView

CommandImpl

docname

=

Generic

System

Error.jsp

&storeDir=no

LogonForm

Forward

View

Command

HttpForwardView

CommandImpl

docname

=

LoginForm.jsp

&generic=true

&storeDir=no

Note:

Any

spaces

in

the

values

for

VIEWNAME,

INTERFACENAME,

CLASSNAME

and

PROPERTIES

are

for

display

purposes

only.

Each

value

is

actually

one

continuous

string.

The

hyphens

in

the

column

names

are

also

for

display

purposes.

The

preceding

table

illustrates

the

following

scenarios:

v

The

ProductDisplayView

view

name

is

returned

to

the

Web

controller

by

a

controller

command

(ProductDisplay

in

this

case).

The

Web

controller

determines

the

view

command

interface

and

class

names

using

the

ProductDisplayView

view

command

name

and

its

device

identifier.

A

view

command

can

have

different

implementation

classes

for

different

stores

and

device

identifiers.

The

interface

name,

however,

should

remain

the

same,

since

it

defines

the

view

command

type.

36

Programming

Guide

and

Tutorials

v

If

a

controller

or

task

command

throws

an

ECApplication

exception

for

a

bad

user

parameter,

the

following

may

occur:

–

If

there

is

a

view

specified

within

the

controller

command

that

should

be

called

in

the

case

of

an

application

exception,

the

entry

for

that

view

is

retrieved

from

the

VIEWREG

table

and

processed

accordingly.

–

If

a

view

is

not

specified,

the

GenericApplicationError

command

is

called

and

the

JSP

template

registered

in

the

database

is

displayed.

Using

the

preceding

table

as

an

example,

this

would

result

in

the

display

of

the

GenericApplicationError.jsp

template.
v

If

a

controller

or

task

command

throws

an

ECSystem

exception

for

a

system

exception,

the

following

may

occur:

–

If

there

is

a

view

specified

within

the

controller

command

that

should

be

called

in

the

case

of

a

system

exception,

the

entry

for

that

view

is

retrieved

from

the

VIEWREG

table

and

processed

accordingly.

–

If

a

view

is

not

specified,

the

GenericSystemError

command

is

called

and

the

JSP

template

registered

in

the

database

is

displayed.

Using

the

preceding

table

as

an

example,

this

would

result

in

the

display

of

the

GenericSystemError.jsp

template.
v

Browser

clients

can

invoke

the

logon

page

by

entering

the

logon

URL.

Since

the

storeDir

property

is

set

to

“no”,

store-specific

information

is

not

included

in

the

path

for

the

JSP

template.

Hence,

the

same

logon

page

is

displayed

for

customers

at

all

stores.

Display

design

pattern

Display

pages

return

a

response

to

a

client.

Typically,

display

pages

are

implemented

as

JSP

templates

(the

recommended

method),

however,

they

can

be

written

directly

as

servlets.

In

order

to

support

multiple

device

types,

a

URL

access

to

a

view

command

should

use

the

view

name,

not

the

name

of

the

actual

JSP

file.

The

main

rationale

behind

this

level

of

indirection

is

that

the

JSP

template

represents

a

view.

The

ability

to

select

the

appropriate

view

(for

example,

based

on

locale,

device

type,

or

other

data

in

the

request

context)

is

highly

desirable,

especially

since

a

single

request

often

has

multiple

possible

views.

Consider

the

example

of

two

shoppers

requesting

the

home

page

of

a

store,

one

shopper

using

a

typical

Web

browser

and

the

other

using

a

cellular

phone.

Clearly,

the

same

home

page

should

not

be

displayed

to

each

shopper.

It

is

the

Web

controller’s

responsibility

to

accept

the

request,

then

based

upon

information

in

the

command

registration

framework,

determine

the

view

that

each

shopper

receives.

Chapter

2.

Design

patterns

37

JSP

templates

and

data

beans

A

data

bean

is

a

Java

bean

that

is

used

within

a

JSP

template

to

provide

dynamic

content.

A

data

bean

normally

provides

a

simple

representation

of

a

WebSphere

Commerce

entity

bean.

The

data

bean

encapsulates

properties

that

can

be

retrieved

from

or

set

within

the

entity

bean.

As

such,

the

data

bean

simplifies

the

task

of

incorporating

dynamic

data

into

JSP

templates.

A

data

bean

has

a

BeanInfo

class

that

defines

the

properties

that

can

be

used

on

the

display

page.

The

BeanInfo

class

also

enables

the

use

of

data

beans

in

multicultural

sites

by

providing

property

names

in

all

supported

languages

of

WebSphere

Commerce.

A

data

bean

is

activated

by

the

following

call:

com.ibm.commerce.beans.DataBeanManager.activate(data_bean,

request)

where

data_bean

is

the

data

bean

to

be

activated

and

request

is

an

HTTPServletRequest

object.

Store

developers

should

consider

properties

of

the

store

and

globalization

issues

when

developing

JSP

templates.

For

more

information

on

globalization,

refer

to

the

WebSphere

Commerce

Store

Development

Guide.

Data

beans

security

consideration

A

particular

coding

practice

for

the

use

of

data

beans

minimizes

the

chance

for

malicious

users

to

access

your

database

in

an

unauthorized

manner.

Insert,

select,

update

and

delete

parts

of

SQL

statements

should

be

created

at

development

time.

Use

parameter

inserts

to

gather

run-time

input

information.

An

example

of

using

a

parameter

insert

to

collect

run-time

input

information

follows:

select

*

from

Order

where

owner

=?

In

contrast,

you

should

avoid

using

input

strings

as

a

way

to

compose

the

SQL

statement.

An

example

of

using

an

input

string

follows:

select

*

from

Order

where

owner

=

“input_string”

Types

of

data

beans

A

data

bean

is

a

Java

bean

that

is

mainly

used

to

provide

dynamic

data

in

JSP

templates.

There

are

two

types

of

data

beans:

smart

data

beans

and

command

data

beans.

A

smart

data

bean

uses

a

lazy

fetch

method

to

retrieve

its

own

data.

This

type

of

data

bean

can

provide

better

performance

in

situations

where

not

all

data

from

the

access

bean

is

required,

since

it

retrieves

data

only

as

required.

Smart

data

beans

that

require

access

to

the

database

should

extend

from

the

access

38

Programming

Guide

and

Tutorials

bean

for

the

corresponding

entity

bean

and

implement

the

com.ibm.commerce.SmartDataBean

interface.

For

example,

the

ProductData

data

bean

extends

the

ProductAccessBean

access

bean,

which

corresponds

to

the

Product

entity

bean.

Some

smart

data

beans

do

not

require

database

access.

For

example,

the

PropertyResource

smart

data

bean

retrieves

data

from

a

resource

bundle,

rather

than

the

database.

When

database

access

is

not

required,

the

smart

data

bean

should

extend

the

SmartDataBeanImpl

class.

A

command

data

bean

relies

on

a

command

to

retrieve

its

data

and

is

a

more

lightweight

data

bean.

The

command

retrieves

all

attributes

for

the

data

bean

at

once,

regardless

of

whether

the

JSP

template

requires

them.

As

a

result,

for

JSP

templates

that

use

only

a

selection

of

attributes

from

the

data

bean,

a

command

data

bean

may

be

costly

in

terms

of

performance

time.

For

JSP

templates

that

require

most

or

all

attributes,

the

command

data

bean

is

very

convenient.

Command

data

beans

can

also

extend

from

their

corresponding

access

beans

and

implement

the

com.ibm.commerce.CommandDataBean

interface.

Data

bean

interfaces

Data

beans

implement

one

or

all

of

the

following

Java

interfaces:

v

com.ibm.commerce.SmartDataBean.

v

com.ibm.commerce.CommandDataBean

v

com.ibm.commerce.InputDataBean

(optional)

Each

Java

interface

describes

the

source

of

data

from

which

a

data

bean

is

populated.

By

implementing

multiple

interfaces,

the

data

bean

can

access

data

from

a

variety

of

sources.

More

information

about

each

of

the

interfaces

is

provided

below.

SmartDataBean

interface:

A

data

bean

implementing

the

SmartDataBean

interface

can

retrieve

its

own

data,

without

an

associated

data

bean

command.

A

smart

data

bean

usually

extends

from

the

access

bean

of

a

corresponding

entity

bean.

When

a

smart

data

bean

is

activated,

the

data

bean

manager

invokes

the

data

bean’s

populate

method.

Using

the

populate

method,

the

data

bean

can

retrieve

all

attributes,

except

attributes

from

associated

objects.

For

example,

if

the

data

bean

extends

from

an

access

bean

class

for

an

entity

bean,

the

data

bean

invokes

the

refreshCopyHelper

method.

All

the

attributes

from

the

corresponding

entity

bean

are

populated

into

the

smart

data

bean

automatically.

However,

if

the

entity

bean

has

associated

objects,

the

attributes

from

those

objects

are

not

retrieved.

The

main

advantages

of

using

smart

data

beans

are:

Chapter

2.

Design

patterns

39

v

Implementation

is

simple

and

there

is

no

need

to

write

a

data

bean

command.

v

When

new

fields

are

added

to

the

entity

bean,

changes

in

the

data

bean

are

not

required.

After

the

entity

bean

has

been

modified,

the

access

bean

must

be

regenerated

(using

the

tools

in

WebSphere

Studio

Application

Developer).

As

soon

as

the

access

bean

has

been

regenerated,

all

the

new

attributes

are

automatically

available

to

the

smart

data

bean.

v

Entity

beans

often

contain

attributes

representing

associated

objects.

For

performance

reasons,

the

smart

data

bean

does

not

automatically

retrieve

these

attributes.

Instead,

it

is

preferable

to

delay

retrieval

of

these

attributes

until

they

are

required,

as

shown

in

the

following

diagram:

For

more

information

about

implementing

a

lazy

fetch

retrieval,

refer

to

“Lazy

fetch

data

retrieval”

on

page

42.

CommandDataBean

interface:

A

data

bean

implementing

the

CommandDataBean

interface

retrieves

data

from

a

data

bean

command.

A

data

bean

of

this

type

is

a

lightweight

object;

it

relies

on

a

data

bean

Smart data bean Access bean

Entity bean B

A1
A2
get B (using

lazy fetch)

get A1
get A2

B1
B2

get B
automatic
retrieval of
A1 and A2

Table A
Table B
(associated)

Key BKey B B1B1 B2B2

Foreign key relationship

Entity bean A

A1
A2

B

Figure

11.

40

Programming

Guide

and

Tutorials

command

to

populate

its

data.

The

data

bean

must

implement

the

getCommandInterfaceName()

method

(as

defined

by

the

com.ibm.commerce.CommandDataBean

interface)

which

returns

the

interface

name

of

the

data

bean

command.

InputDataBean

interface:

A

data

bean

implementing

the

InputDataBean

interface

retrieves

data

from

the

URL

parameters

or

attributes

set

by

the

view

command.

Attributes

defined

in

this

interface

can

be

used

as

primary

key

fields

to

fetch

additional

data.

When

a

JSP

template

is

invoked,

the

generated

JSP

servlet

code

populates

all

the

attributes

that

match

the

URL

parameters,

and

then

activates

the

data

bean

by

passing

the

data

bean

to

the

data

bean

manager.

The

data

bean

manager

then

invokes

the

data

bean’s

setRequestProperties()

method

(as

defined

by

the

com.ibm.commerce.InputDataBean

interface)

to

pass

all

the

attributes

set

by

the

view

command.

It

should

be

noted

that

the

following

code

is

required

in

order

for

the

data

bean

to

be

activated:

com.ibm.commerce.beans.DataBeanManager.activate(data_bean,

request)

where

data_bean

is

the

data

bean

to

be

activated

and

request

is

an

HTTPServletRequest

object.

BeanInfo

class

A

data

bean

is

not

complete

without

a

BeanInfo

class

that

implements

the

java.lang.Object.BeanInfo

interface.

The

BeanInfo

class

is

used

to

provide

explicit

information

about

the

methods

and

properties

of

the

data

bean.

It

can

be

used

to

hide

public

run-time

methods

in

the

data

bean

implementation

class

from

the

Web

designer,

or

to

set

the

appropriate

display

string

for

each

of

the

data

bean’s

attributes.

For

more

information

on

implementing

a

BeanInfo

class,

refer

to

the

JavaBeans

specification

from

Sun

Microsystems.

Data

bean

activation

Data

beans

can

be

activated

using

either

the

activate

or

silentActivate

methods

that

are

found

in

the

com.ibm.commerce.beans.DataBeanManager

class.

The

activate

method

is

a

full

activation

method

in

which

the

activation

event

is

only

successful

if

all

attributes

are

available.

If

even

one

attribute

is

unavailable,

an

exception

is

thrown

for

the

whole

activation

process.

The

silentActivate

method

does

not

throw

exceptions

when

individual

attributes

are

unavailable.

Chapter

2.

Design

patterns

41

Invoking

controller

commands

from

within

a

JSP

template

Although

invoking

controller

commands

from

within

a

JSP

template

is

not

consistent

with

separating

logic

from

display,

you

may

encounter

a

situation

in

which

this

is

required.

If

so,

the

ControllerCommandInvokerDataBean

can

be

used

for

this

purpose.

Using

this

data

bean,

you

can

specify

the

interface

name

of

the

command

to

be

invoked,

or

you

can

directly

set

the

command

name

to

be

invoked.

You

can

also

set

the

request

properties

for

the

command.

When

this

data

bean

is

activated

by

the

data

bean

manager,

the

controller

command

is

executed

and

the

response

properties

are

available

to

the

JSP

template.

If

you

do

not

use

the

setRequestProperties

method

before

activating

this

data

bean,

the

parameters

from

the

request

object

will

be

passed

to

the

bean

and,

hence,

also

passed

to

the

controller

command.

If

you

do,

however,

call

the

setRequestProperties

method

before

activating

this

data

bean,

only

the

specified

properties

(those

passed

into

the

setRequestProperties

method)

and

any

default

properties

specified

in

the

PROPERTIES

column

of

the

CMDREG

table

will

be

made

available

to

the

command.

Once

the

controller

command

has

executed,

you

can

execute

the

view.

You

should

not

reuse

the

same

instance

of

the

data

bean

to

invoke

other

controller

commands,

as

it

will

contain

data

and

state

information

from

its

original

usage.

Lazy

fetch

data

retrieval

When

a

data

bean

is

activated,

it

can

be

populated

by

a

data

bean

command

or

by

the

data

bean’s

populate()

method.

The

attributes

that

are

retrieved

come

from

the

data

bean’s

corresponding

entity

bean.

An

entity

bean

may

also

have

associated

objects,

which

themselves,

have

a

number

of

attributes.

If,

upon

activation,

the

attributes

from

all

the

associated

objects

were

automatically

retrieved,

a

performance

problem

may

be

encountered.

Performance

may

degrade

as

the

number

of

associated

objects

increase.

Consider

a

product

data

bean

that

contains

a

large

number

of

cross-sell,

up-sell

or

accessory

products

(associated

objects).

It

is

possible

to

populate

all

associated

objects

as

soon

as

the

product

data

bean

is

activated.

However,

populating

in

this

manner

may

require

multiple

database

queries.

If

not

all

attributes

are

required

by

the

page,

multiple

database

queries

may

be

inefficient.

42

Programming

Guide

and

Tutorials

In

general,

not

all

attributes

are

required

for

a

page,

therefore,

a

better

design

pattern

is

to

perform

a

lazy

fetch

as

illustrated

below:

getCrossSellProducts

()

{

if

(crossSellDataBeans

==

null)

crossSellDataBeans=

getCrossSellDataBeans();

return

crossSellDataBean;

}

Setting

JSP

attributes

-

overview

The

WebSphere

Commerce

programming

model

promotes

the

MVC

design

pattern.

As

such,

the

presentation

for

the

result

of

a

URL

request

is

separated

from

controller

and

task

commands.

These

commands

are

device

independent.

They

implement

business

logic

and

produce

data

to

be

returned

to

the

client,

without

having

information

about

the

client.

Conversely,

a

view

command

is

device

specific.

While

the

controller

and

task

commands

do

not

directly

compose

the

view,

they

do

pass

information

to

the

view.

It

is

important

to

understand

how

information

is

passed

to

the

view.

The

following

diagram

demonstrates

how

properties

are

passed

between

the

Web

controller,

command

registry,

controller

command,

and

view

command:

Chapter

2.

Design

patterns

43

The

preceding

diagram

shows

the

following

interactions:

v

The

Web

controller

merges

the

input

properties

from

the

URL

parameters

(CCPu)

and

the

entry

in

the

CMDREG

table

for

the

controller

command

(CCPd).

This

creates

CCPi.

v

The

Web

controller

passes

the

merged

properties

(CCPi)

to

the

controller

command

and

executes

the

controller

command.

Web controller

Controller
command

HTTP
forward view
command

JSP
template

URL: http:// /webapp/wcs/stores/servlet/NewCommand?storeId=1&...hostname

CCPu: storeID=1&...

CCPi = merge(CCPd, CCPu)

setInputProperties(CCPi)

execute()

execute()

CCPo = getOutputProperties()

CCPov = getViewInputProperties()

VPi = merge(VPd, CCPo, CCPov)

setInputProperties(VPi) VPi

INTERFACENAME

CMREG

com.ibm.xxx. NewCommand

com.ibm.command.ForwardViewCommand

PROPERTIES

parm1=1&parm2=2

CCPd: parm1=1&parm2=2

INTERFACENAME

VIEWREG

PROPERTIES

docname=NewView.jsp

VPd: docName=NewView.jsp

Figure

12.

44

Programming

Guide

and

Tutorials

v

The

controller

command

sets

output

properties,

as

CCPo.

These

are

the

output

properties

produced

by

the

command

itself.

One

of

the

output

properties,

viewCommandName,

is

set

to

the

desired

view

command

name.

These

properties

are

retrieved

by

the

Web

controller

using

a

get

method.

v

The

controller

command

sets

another

set

of

output

properties,

as

CCPov.

By

default,

these

are

set

to

the

original

merged

input

properties

(CCPi).

It

is

possible

to

customize

these

properties.

For

example,

it

may

not

be

necessary

to

pass

all

input

parameters

to

the

view

command.

v

The

Web

controller

merges

the

three

sets

of

properties,

CCPo,

CCPov,

and

VPd

(the

properties

that

are

registered

in

the

VIEWREG

table)

into

the

input

properties

for

the

view

command

(VPi).

v

The

Web

controller

sets

the

merged

properties,

VPi,

and

executes

the

view

command.

v

The

view

command

sets

the

attributes

to

the

JSP

template

from

the

input

properties.

When

writing

new

commands,

you

do

not

have

explicitly

perform

the

merge

of

properties.

The

abstract

command

classes

include

a

mergeProperties

method.

For

more

information

about

this

method,

refer

to

the

“Reference”

topic

in

the

WebSphere

Commerce

Production

and

Development

online

help.

Required

property

settings

A

controller

command

must

set

the

following

properties

for

each

type

of

view

command.

If

the

properties

are

not

set

by

the

command,

they

must

be

defined

in

the

VIEWREG

table.

v

If

using

the

ForwardView

command,

set

docname

=

view_file_name

where

view_file_name

is

the

name

of

the

display

template.

For

example,

docname=SearchResult.jsp.

v

If

using

the

DirectView

command,

do

one

of

the

following:

–

Set

textDocument

=

xxx

where

xxx

is

a

java.io.InputStream

object

that

contains

the

document

in

text

form

–

Set

rawDocument

=

yyy

where

yyy

is

a

java.io.InputStream

object

that

contains

the

document

in

binary

form

When

using

the

DirectView

command,

it

is

optional

to

set

contentType

=

ttt

where

ttt

is

the

document

content

type

v

If

using

the

RedirectView

command,

set

url

=

uuu

where

uuu

is

the

redirect

URL.

Chapter

2.

Design

patterns

45

46

Programming

Guide

and

Tutorials

Chapter

3.

Persistent

object

model

WebSphere

Commerce

deals

with

a

large

amount

of

persistent

data.

There

are

numerous

tables

defined

in

the

current

database

schema.

Even

with

this

extensive

schema,

you

may

need

to

extend

or

customize

the

database

schema

for

your

particular

business

needs.

WebSphere

Commerce

uses

entity

beans

that

are

based

on

the

Enterprise

JavaBeans

(EJB)

Version

1.1

component

architecture

as

the

persistent

object

layer.

These

entity

beans

represent

WebSphere

Commerce

data

in

a

manner

that

models

concepts

and

objects

in

the

commerce

domain.

This

persistence

layer

provides

an

extensible

framework.

WebSphere

Studio

Application

Developer

provides

sophisticated

EJB

tools

and

a

unit

test

environment

that

supports

development

for

this

framework.

The

following

sections

are

within

the

context

of

the

implementation

of

the

WebSphere

Commerce

persistent

object

model

implementation,

which

is

at

the

EJB

1.1

specification.

Implementation

of

WebSphere

Commerce

entity

beans

WebSphere

Commerce

entity

beans

-

overview

As

mentioned

previously,

the

persistence

layer

within

the

WebSphere

Commerce

architecture

is

implemented

according

to

the

EJB

component

architecture.

The

EJB

architecture

defines

two

types

of

enterprise

beans:

entity

beans

and

session

beans.

Entity

beans

are

further

divided

into

container-managed

persistence

(CMP)

beans

and

bean-managed

persistence

(BMP)

beans.

Most

of

the

WebSphere

Commerce

entity

beans

are

CMP

entity

beans.

A

small

number

of

stateless

session

beans

are

used

to

handle

intensive

database

operations,

such

as

performing

a

sum

of

all

the

rows

in

a

particular

column.

One

advantage

of

using

CMP

entity

beans

is

that

developers

can

utilize

the

EJB

tools

provided

in

WebSphere

Studio

Application

Developer.

These

tools

allow

developers

to

define

Java

objects

and

their

database

table

mappings.

The

tools

automatically

generate

the

required

persisters

for

the

entity

beans.

Persisters

are

Java

objects

that

persist

Java

fields

to

the

database

and

populate

Java

fields

with

data

from

the

database.

WebSphere

Studio

Application

Developer

provides

two

extensions

to

the

EJB

1.1

specification:

EJB

inheritance

and

association.

EJB

inheritance

allows

an

©

Copyright

IBM

Corp.

2000,

2003

47

enterprise

bean

to

inherit

properties,

methods,

and

method-level

control

descriptor

attributes

from

another

enterprise

bean

that

resides

in

the

same

group.

An

association

is

a

relationship

that

exists

between

two

CMP

entity

beans.

Some

of

the

WebSphere

Commerce

entity

beans

exploit

the

EJB

inheritance

feature.

The

WebSphere

Commerce

entity

beans

do

not

use

the

associations

feature

provided

by

WebSphere

Studio

Application

Developer.

When

developing

your

own

entity

beans,

it

is

recommended

that

you

do

not

use

WebSphere

Studio

Application

Developer’s

association

feature.

This

recommendation

is

made

in

order

to

minimize

complexity

in

the

object

model.

Rather

than

using

the

association

feature

provided

by

WebSphere

Studio

Application

Developer,

an

object

relationship

between

enterprise

beans

can

be

established

by

adding

explicit

getter

methods

in

the

enterprise

beans.

WebSphere

Commerce

provides

two

sets

of

enterprise

beans:

private

and

public.

Private

enterprise

beans

are

used

by

the

WebSphere

Commerce

run-time

environment

and

tools.

You

must

not

use

or

modify

these

beans.

Public

enterprise

beans,

on

the

other

hand,

are

used

by

commerce

applications,

and

can

be

both

used

and

extended.

These

public

enterprise

beans

are

organized

into

the

following

EJB

modules:

v

Catalog-ProductManagementData

v

Enablement-RelationshipManagementData

v

Marketing-CampaignsAndScenarioMarketingData

v

Marketing-CustomerProfilingAndSegmentationData

v

Member-MemberManagementData

v

Merchandising-PromotionsAndDiscountsData

v

Order-OrderCaptureData

v

Order-OrderManagementData

v

Trading-AuctionsAndRFQsData

Some

of

the

EJB

modules

in

the

preceding

list

contain

session

beans.

In

order

to

simplify

migration

in

the

future,

you

should

not

modify

a

session

bean

class.

If

required,

you

can

create

a

new

session

bean

in

the

WebSphereCommerceServerExtensionsData

EJB

module.

For

more

information

on

creating

new

session

beans,

refer

to

“Writing

new

session

beans”

on

page

75.

Deployment

descriptors

for

WebSphere

Commerce

enterprise

beans

An

EJB

deployment

descriptor

contains

deployment

settings

for

enterprise

beans.

WebSphere

Studio

Application

Developer

provides

an

EJB

deployment

descriptor

editor

that

can

be

used

to

modify

this

deployment

information.

48

Programming

Guide

and

Tutorials

When

creating

new

enterprise

beans

(entity

or

session

beans),

the

deployment

descriptor

information

is

set

within

the

J2EE

Hierarchy

view

of

the

J2EE

perspective

in

WebSphere

Studio

Application

Developer.

You

can

view

an

EJB

deployment

descriptor

for

WebSphere

Commerce

beans

by

doing

the

following:

1.

Open

WebSphere

Studio

Application

Developer

and

switch

to

the

J2EE

perspective.

2.

Using

the

J2EE

Hierarchy

view,

locate

the

EJB

module

for

which

you

want

to

view

the

deployment

descriptor

information.

3.

Right-click

the

EJB_moduleName

EJB

module

and

select

Open

with

>

Deployment

Descriptor

Editor.
The

Deployment

Descriptor

Editor

opens.

4.

Select

the

Beans

tab

and

notice

the

following:

a.

From

the

list

of

beans,

select

a

bean.

Information

for

that

bean

is

populated

into

the

other

fields.

b.

The

bean

should

be

displayed

as

a

Container

Managed

Entity

1.x

bean.

c.

The

Reentrant

check

box

should

not

be

selected.

d.

In

the

WebSphere

Bindings

section,

the

default

value

for

the

JNDI

name

is

used.

e.

In

the

WebSphere

Extensions

section,

Enable

optimistic

locking

is

not

enabled

for

concurrency

control.

f.

Note

also

that

you

can

view

the

finders

for

the

bean

in

the

Finders

section.
5.

Select

the

Assembly

Descriptor

tab

and

notice

the

following:

a.

In

the

Method

Permissions

section,

the

WCSecurityRole

is

assigned

to

all

methods

in

the

enterprise

bean.

b.

In

the

Container

Transactions

section

“Required”

is

specified

for

all

methods

in

the

enterprise

bean.
6.

Select

the

Access

tab

and

notice

the

following:

a.

In

the

Access

Intent

for

Entities

1.x

section,

all

read-only

methods

are

defined.

For

example,

_copyFromEJB()

and

handcoded

getter

methods

are

assigned

to

be

read-only

methods.

When

you

create

your

own

entity

beans,

ensure

that

you

mark

the

appropriate

methods

to

be

read-only.

If

read-only

methods

are

not

marked

in

this

manner,

the

EJB

container

unnecessarily

attempts

to

update

the

database

at

the

end

of

a

transaction

and

causes

a

transaction

rollback

error

in

the

read-only

transaction.

This

causes

performance

problems.

b.

The

Isolation

Level

is

set

as

follows:

v

2000DB2

Repeatable

read

v

2000DB2

2000400

Read

committed

Chapter

3.

Persistent

object

model

49

*

v

2000Oracle

Read

committed

Extending

the

WebSphere

Commerce

object

model

The

WebSphere

Commerce

object

model

can

be

extended

in

the

following

ways:

v

Extend

the

WebSphere

Commerce’s

public

enterprise

beans

v

Write

a

new

entity

bean

v

Write

a

new

stateless

session

bean

Details

about

how

to

perform

these

extensions

are

contained

in

the

following

sections.

Object

model

extension

methodologies

Application

requirements

may

lead

to

you

extend

the

existing

WebSphere

Commerce

object

model.

One

example

of

such

a

requirement

is

adding

additional

attributes

to

your

application.

This

can

be

accomplished

by

one

of

the

following

ways:

Without

modifying

an

existing

WebSphere

Commerce

public

entity

bean

Create

a

new

database

table,

then

create

a

new

entity

bean

for

that

table.

Add

fields

and

methods

to

the

entity

bean

to

manipulate

the

new

attribute,

as

required.

Generate

deployed

code

and

an

access

bean

for

the

new

entity

bean.

When

the

application

requires

the

new

attribute,

it

instantiates

an

access

bean

object

and

uses

its

methods

to

retrieve,

set

or

manipulate

the

attribute.

By

modifying

an

existing

WebSphere

Commerce

public

entity

bean

Create

a

new

database

table,

and

create

a

table

join

between

the

new

table

and

the

existing

table

that

corresponds

to

the

existing

enterprise

bean

that

you

are

modifying.

Create

new

fields

in

the

existing

WebSphere

Commerce

public

entity

bean

and

map

the

fields

to

their

corresponding

columns

in

the

new

table,

using

a

secondary

table

map.

Add

any

methods

required.

Regenerate

the

deployed

code

and

access

bean

for

the

existing

entity

bean.

The

new

attributes

are

available

when

the

application

instantiates

the

access

bean

object.

There

are

trade-offs

between

these

two

approaches.

In

general,

the

trade-offs

relate

to

performance

and

effort

for

code

maintenance.

Extension

example:

Consider

an

example

in

which

your

application

requires

you

to

capture

the

type

of

home

that

a

customer

has.

You

create

a

table

called

USERRES

that

contains

the

customer’s

ID

and

type

of

residence,

where

residence

type

(resType)

may

be

a

freehold

home,

a

condominium

or

an

apartment.

This

type

of

information

is

demographic

information,

and

as

such,

is

related

to

the

existing

Commerce

Suite

USERDEMO

table.

In

examining

the

WebSphere

Commerce

code

repository,

you

find

that

the

Member-

50

Programming

Guide

and

Tutorials

MemberManagementData

EJB

module

contains

a

″Demographics″

enterprise

bean.

This

bean

has

the

getters

and

setters

for

demographic

information

stored

in

the

USERDEMO

table.

To

perform

your

customization,

there

are

two

options.

You

can

either

create

a

new

entity

bean

that

interacts

with

the

USERRES

table,

or

you

can

add

a

new

field

(plus

appropriate

getter

and

setter

methods)

to

the

Demographics

bean.

Using

the

first

approach

(creating

entirely

new

code),

you

create

a

new

Userres

entity

bean

and

map

its

fields

to

the

columns

of

the

USERRES

table.

When

the

application

requires

the

customer’s

residence

type,

it

must

instantiate

a

Userres

access

bean

object

and

retrieve

the

data.

If

the

application

requires

other

demographic

information

at

the

same

time,

it

must

also

instantiate

a

Demographics

access

bean

object

and

retrieve

any

other

required

attributes.

Any

parts

of

application

logic

that

attempt

to

retrieve

a

complete

set

of

demographic

information

for

a

customer

must

be

modified

to

instantiate

the

new

access

bean

as

well

as

the

original

one.

The

following

diagram

displays

this

approach

to

extending

the

object

model:

From

a

display

template

perspective,

a

data

bean

must

be

able

to

access

the

new

attribute,

so

that

the

information

is

available

to

JSP

templates.

In

order

to

present

a

unified

view

to

the

Web

developer

creating

the

JSP

templates,

you

should

create

a

new

data

bean

that

extends

the

access

bean

for

the

original,

existing

entity

bean.

The

data

bean

should

also

use

delegation

to

populate

the

attributes

from

the

new

access

bean.

The

following

diagram

displays

this

data

bean

implementation

scenario:

Demographics
entity bean

Userres
entity bean

USERDEMO table

USERRES table

Figure

13.

Chapter

3.

Persistent

object

model

51

Using

the

second

approach

(modifying

existing

code),

you

add

a

new

field

to

the

Demographics

entity

bean

and

create

a

secondary

table

map

between

the

new

field

and

the

appropriate

column

in

the

USERRES

table.

When

the

application

requires

the

customer’s

residence

type,

it

instantiates

a

Demographics

access

bean

object

and

retrieves

the

residence

type.

If

the

application

requires

any

other

demographic

information

about

the

customer,

it

is

available

in

the

same

call

to

the

bean.

The

following

diagram

displays

this

approach

to

for

enterprise

bean

modification:

DemographicsAccessBean

DemographicsAccessBean
• Inherits attributes from its superclass
• Must instantiate the UserresAccessBean
and populate the resType field

UserresAccessBean

extends

Figure

14.

52

Programming

Guide

and

Tutorials

From

a

display

template

perspective,

the

new

attribute

(resType)

is

automatically

available

in

the

data

bean,

as

soon

as

the

DemographicsAccessBean

is

regenerated.

Note

that

when

you

are

extending

the

object

model,

you

must

not

add

new

columns

to

existing

WebSphere

Commerce

database

tables.

You

must

create

a

new

table

for

the

new

attribute.

If

you

do

attempt

to

add

new

columns

to

existing

tables,

the

new

attribute

will

be

lost

when

you

migrate

to

future

releases

of

WebSphere

Commerce.

Performance

and

code

maintenance

implications:

The

second

approach

has

better

run-time

performance.

This

is

a

result

of

the

fact

that

getting

or

setting

the

new

attribute

only

requires

the

instantiation

of

a

single

entity

bean

and

a

single

fetch

is

used

to

retrieve

all

required

attributes.

Due

to

the

fact

that

the

second

approach

modifies

existing

WebSphere

Commerce

code,

a

migration

issue

arises

when

a

new

version

WebSphere

Commerce

of

is

released.

You

must

merge

your

customized

code

with

the

new

code,

but

when

importing

the

new

WebSphere

Commerce

workspace,

the

mapping

information

between

the

fields

you

added

to

the

enterprise

bean

and

the

new

table

is

not

preserved.

As

a

result,

when

migrating

to

a

new

release

of

WebSphere

Commerce

code,

the

following

steps

must

be

performed:

1.

Version

your

customized

EJB

code.

2.

Import

the

new

version

of

WebSphere

Commerce

code.

Modified Demographics
entity bean with new
CMP field for resType

USERDEMO table USERRES table

foreign key

get and set
attributes

Figure

15.

Chapter

3.

Persistent

object

model

53

3.

Using

the

tools

in

WebSphere

Studio

Application

Developer,

compare

the

customized

version

of

code

to

the

new

release

of

WebSphere

Commerce

code.

Merge

your

customized

code

back

into

your

workspace.

4.

Manually

remap

any

attributes

you

added

to

WebSphere

Commerce

public

enterprise

beans

to

the

appropriate

columns

in

your

database.

5.

Regenerate

deployed

code

and

access

beans

for

the

enterprise

beans

you

modified

in

step

4.

In

order

to

make

this

migration

simpler,

it

is

important

to

fully

document

your

object

model

extensions

at

development

time.

You

may

select

to

use

a

mix

of

the

two

approaches

when

making

many

extensions

to

the

object

model.

You

can

use

the

first

approach

for

areas

of

the

system

that

are

less

susceptible

to

a

degradation

in

performance

and

use

the

second

approach

were

performance

is

an

issue.

In

this

manner,

you

can

minimize

effort

for

future

migration,

while

still

maintaining

good

system

performance

levels.

Recommended

use

of

session

beans

One

of

the

strengths

of

WebSphere

Commerce

stems

from

its

ability

to

take

advantage

of

container-managed

persistence

(CMP)

entity

beans.

CMP

entity

beans

are

distributed,

persistent,

transactional,

server-side

Java

components

that

can

be

generated

by

the

tools

provided

by

WebSphere

Studio

Application

Developer.

In

many

cases,

CMP

entity

beans

are

an

extremely

good

choice

for

object

persistence

and

they

can

be

made

to

work

at

least

as

efficiently

or

even

more

efficiently

than

other

object-to-relational

mapping

options.

For

these

reasons,

WebSphere

Commerce

has

implemented

core

commerce

objects

using

CMP

entity

beans.

There

are,

however,

some

situations

in

which

it

is

recommended

to

use

a

session

bean

JDBC

helper.

These

situations

include

the

following:

v

A

case

where

a

query

returns

a

large

result

set.

This

is

referred

to

as

the

large

result

set

case.

v

A

case

where

a

query

retrieves

data

from

several

tables.

This

is

referred

to

as

the

aggregate

entity

case.

v

A

case

where

an

SQL

statement

performs

a

database

intensive

operation.

This

is

referred

to

as

the

arbitrary

SQL

case.

More

details

are

provided

in

the

following

sections.

Note

that

if

the

session

bean

is

being

used

as

a

JDBC

wrapper

to

retrieve

information

from

the

database,

it

becomes

more

difficult

to

implement

resource-level

access

control.

When

a

session

bean

is

used

in

this

manner,

the

54

Programming

Guide

and

Tutorials

developer

of

the

session

bean

must

add

the

appropriate

“where”

clauses

to

the

“select”

statement

in

order

to

prevent

unauthorized

users

from

accessing

resources.

Large

result

set

case:

There

are

cases

where

a

query

returns

a

large

result

set

and

the

data

retrieved

are

mainly

for

read

or

display

purpose.

In

this

case,

it

is

better

use

a

stateless

session

bean

and

within

that

session

bean,

create

a

finder

method

that

performs

the

same

functions

as

a

finder

method

in

an

entity

bean.

That

is,

the

finder

method

in

the

stateless

session

bean

should

do

the

following:

v

Perform

an

SQL

select

statement

v

For

each

row

that

is

fetched,

instantiate

an

access

bean

v

For

each

column

retrieved,

set

the

corresponding

attributes

in

the

access

bean

When

the

access

bean

is

returned,

the

command

is

unaware

of

whether

the

access

bean

was

returned

by

a

finder

method

in

a

session

bean

or

from

a

finder

method

in

an

entity

bean.

As

a

result,

using

a

finder

method

in

a

session

bean

does

not

cause

any

change

to

the

programming

model.

Only

the

calling

command

is

aware

of

whether

it

is

invoking

a

finder

method

in

a

session

bean

or

in

an

entity

bean.

It

is

transparent

to

all

other

parts

of

the

programming

model.

Aggregate

entity

case:

In

this

case,

one

view

combines

parts

of

several

objects

and

a

single

display

page

is

populated

with

pieces

of

information

that

come

from

several

database

tables.

For

example,

consider

the

concept

of

“My

Account”.

This

may

consist

of

information

from

table

of

customer

information

(for

example,

the

customer

name,

age

and

customer

ID)

and

information

from

an

address

table

(for

example,

an

address

made

up

of

a

street

and

city).

It

is

possible

to

construct

a

simple

SQL

statement

to

retrieve

all

of

the

information

from

the

various

tables

by

performing

an

SQL

join.

This

can

be

referred

to

as

performing

a

“deep

fetch”.

The

following

is

an

example

of

an

SQL

select

statement

for

the

“My

Account”

example,

where

the

CUSTOMER

table

is

T1

and

the

ADDRESS

table

is

T2:

select

T1.NAME,

T1.AGE,

T2.STREET,

T2.CITY

from

CUSTOMER

T1,

ADDRESS

T2

where

(T1.ID=?

and

T1.ID=T2.ID)

The

tools

in

WebSphere

Studio

Application

Developer

for

enterprise

beans

at

the

EJB

1.1

specification

do

not

support

this

notion

of

a

deep

fetch.

Instead,

it

does

a

lazy

fetch

that

results

in

an

SQL

select

for

each

associated

object.

This

is

not

the

preferred

method

for

retrieving

this

type

of

information.

Chapter

3.

Persistent

object

model

55

In

order

to

perform

a

deep

fetch,

it

is

recommended

that

you

use

a

session

bean.

In

that

session

bean,

create

a

finder

method

to

retrieve

the

required

information.

The

finder

method

should

do

the

following:

v

Perform

an

SQL

select

statement

for

the

deep

fetch

v

Instantiate

an

access

bean

for

each

row

in

the

main

table

as

well

as

for

each

associated

object.

v

For

each

column

fetched

and

for

each

associated

object

fetched,

set

the

corresponding

attribute

in

the

access

bean.

Note

that

an

access

bean

does

not

cache

a

getter

method

that

throws

an

exception.

In

this

case,

you

should

create

a

simple

wrapper

class

for

the

access

bean

using

the

following

pattern:

public

class

CustomerAccessBeanCopy

extends

CustomerAccessBean

{

private

AddressAccessBean

address=null;

/*

The

following

method

overrides

the

getAddress

method

in

the

CustomerAccessBean.

*/

public

AddressAccessBean

getAddress()

{

if

(address

==

null)

address

=

super.getAddress();

return

address;

}

/*

The

following

method

sets

the

address

to

the

copy.

*/

public

void

_setAddress(AddressAccessBean

aBean)

{

address

=

aBean;

}

}

Continuing

the

CUSTOMER

and

ADDRESS

example,

the

session

bean

finder

method

would

instantiate

a

CustomerAccessBean

for

each

row

in

the

CUSTOMER

table

and

an

AddressAccessBean

for

each

corresponding

row

in

the

ADDRESS

table.

Then,

for

each

column

in

the

ADDRESS

table,

it

sets

the

attributes

in

the

AddressAccessBean

(street

and

city).

For

each

column

in

the

ADDRESS

table,

it

sets

the

attributes

in

the

CustomerAccessBean

(name,

age

and

address).

This

is

shown

in

the

following

diagram.

CustomerAccessBean AddressAccessBean
• Name
• Age
• Address

• Street
• City

_setAddress

Figure

16.

56

Programming

Guide

and

Tutorials

Arbitrary

SQL

case:

In

this

case,

there

is

a

set

of

arbitrary

SQL

statements

that

perform

database

intensive

operations.

For

example,

the

operation

to

sum

all

the

rows

in

a

table

would

be

considered

a

database

intensive

operation.

It

is

possible

that

not

all

of

the

selected

rows

correspond

to

an

entity

bean

in

the

persistent

model.

An

example

that

could

result

in

the

creation

of

an

arbitrary

SQL

statement

is

a

when

a

customer

tries

to

browse

through

a

very

large

set

of

data.

For

example,

if

the

customer

wanted

to

examine

all

of

the

fasteners

in

an

online

hardware

store,

or

all

of

the

dresses

in

an

online

clothing

store.

This

creates

a

very

large

result

set,

but

out

of

this

result

set,

it

is

most

likely

that

only

a

few

fields

from

each

row

are

required.

That

is,

the

customer

may

only

initially

be

presented

with

a

summary

showing

the

item

name,

picture

and

price.

In

this

case,

create

a

session

bean

helper

method.

This

session

bean

helper

method

either

performs

a

read

or

a

write

operation.

When

performing

a

read

operation,

it

returns

a

read-only

value

object

that

is

used

for

display

purposes.

With

proper

data

modelling,

the

number

of

cases

of

arbitrary

SQL

statements

can

usually

be

minimized.

Extending

public

entity

beans

This

section

describes

the

design

pattern

of

the

WebSphere

Commerce

public

entity

beans.

This

design

pattern

enables

you

to

make

extensions

such

as

adding

new

persistent

fields,

new

business

methods,

or

new

finder

methods.

The

following

diagram

shows

the

implementation

classes

of

the

Catalog

entity

bean.

Chapter

3.

Persistent

object

model

57

The

preceding

diagram

also

applies

to

other

entity

beans

because

they

are

structured

in

a

similar

fashion

and

follow

the

same

naming

convention.

To

apply

the

diagram

to

another

entity

bean,

substitute

the

entity

bean’s

name

for

“Catalog”.

For

example,

the

InterestItemBean

class

extends

the

InterestItemBeanBase

class

and

the

InterestItem

interface

extends

the

InterestItemBase

interface.

The

diagram

shows

that

the

implementation

class

or

interface

for

the

public

enterprise

beans

has

been

separated

into

two

parts,

using

Java

inheritance.

The

superclass

or

interface

contains

the

WebSphere

Commerce

implementation

code.

All

of

these

superclasses

and

interfaces

are

defined

in

separate

Java

packages

from

the

child

classes

and

interfaces.

The

WebSphere

Commerce

workspace

contains

binary

code

for

all

of

these

superclasses

and

interfaces.

Modifications

can

be

made

to

the

child

classes

and

interfaces.

In

general,

modifications

can

be

made

in

the

com.ibm.commerce.xxx.objects

and

com.ibm.commerce.xxx.objsrc

packages

(where

xxx

is

a

component

name).

Enterprise Beans Implementation

Enterprise Beans

CatalogHomeBase

CatalogBeanBase

CatalogBean

CatalogBase

CatalogBeanFinderObjectBase

CatalogBeanFinderObject

Catalog

CatalogHome

Figure

17.

58

Programming

Guide

and

Tutorials

If

you

add

new

finder

methods

to

the

public

enterprise

beans,

you

must

follow

a

particular

naming

convention

for

the

methods.

Name

the

new

methods

findXa_description

where

a_description

is

a

description

of

your

choice.

Some

examples

of

names

are

findXByOwnerId

and

findXByOrderStatus.

Using

this

naming

convention

avoids

the

risk

of

name

collision

(duplicate

names)

with

WebSphere

Commerce

finder

methods.

The

deployment

descriptor

editor

is

used

when

adding

new

finders.

One

way

to

modify

an

existing

WebSphere

Commerce

public

entity

bean

is

to

add

additional

fields.

In

this

case,

after

adding

the

new

fields,

you

must

examine

each

finder

method

in

the

bean.

If

the

where

clause

portion

of

the

finder

methods

contain

any

database

aliases

(for

example,

T1.

or

T2.),

the

aliases

must

be

removed.

Public

entity

beans

that

contain

“findForUpdate”

types

of

finders:

If

a

WebSphere

Commerce

public

entity

bean

contains

any

“findForUpdate”

types

of

finders,

you

cannot

add

new

fields

to

the

bean

by

creating

a

secondary

map

to

a

new

table

that

you

have

created.

This

is

due

to

the

fact

that

if

you

do

create

a

secondary

map,

the

generated

SQL

statements

will

be

invalid,

and

the

bean

will

no

longer

function

as

desired.

If

you

want

to

extend

the

part

of

the

object

model

represented

by

such

a

bean,

you

must

create

a

new

entity

bean,

and

use

the

original

bean

and

along

with

the

new

bean

in

your

customized

code.

Creating

a

new

CMP

enterprise

bean

When

you

have

a

new

attribute

that

needs

to

be

added

to

the

WebSphere

Commerce

object

model,

you

can

create

a

new

database

table

with

a

column

for

the

required

attribute.

You

must

then

also

include

this

attribute

in

an

enterprise

bean,

so

that

WebSphere

Commerce

commands

can

access

the

information.

One

way

to

integrate

the

new

attribute

into

the

WebSphere

Commerce

object

model

is

to

create

a

new

CMP

enterprise

bean.

In

this

bean,

you

create

a

field

that

corresponds

to

the

attribute

in

the

new

database

table.

Due

to

the

fact

that

the

WebSphere

Commerce

workspace

provides

a

predefined

EJB

project

for

your

new

enterprise

beans,

you

do

not

need

to

create

an

additional

EJB

project.

Your

new

enterprise

beans

should

be

placed

into

the

WebSphereCommerceServerExtensionsData

EJB

project.

Later,

when

you

deploy

your

customized

beans,

you

create

a

WebSphereCommerceServerExtensionsData.jar

JAR

file

and

replace

the

existing

JAR

file

in

the

WebSphere

Commerce

enterprise

application

running

in

WebSphere

Application

Server.

By

using

this

packaging

convention,

deployment

is

greatly

simplified.

Chapter

3.

Persistent

object

model

59

To

create

a

new

CMP

enterprise

bean,

you

must

perform

the

following

steps

in

WebSphere

Studio

Application

Developer:

1.

Create

the

new

CMP

enterprise

bean,

using

the

Enterprise

Bean

Creation

wizard.

For

each

column

in

the

corresponding

database

table,

add

a

new

CMP

field

to

the

bean.

2.

Set

the

transaction

isolation

level

for

the

new

bean.

3.

Set

the

security

identity

of

the

new

bean.

4.

Modify

the

entity

context

methods.

5.

If

required,

define

new

finders

using

the

EJB

deployment

descriptor

editor.

6.

Create

a

new

ejbCreate

method,

if

required,

and

promote

the

ejbCreate

method

to

the

home

interface

of

the

enterprise

bean.

This

step

is

required

if

the

new

enterprise

bean

must

create

new

entries

in

its

corresponding

database

table.

7.

If

the

bean

is

protected

by

the

WebSphere

Commerce

access

control

system,

implement

the

required

access

control

methods

in

the

bean.

Refer

to

Chapter

4,

“Access

control,”

on

page

89

for

more

details

about

implementing

access

control

in

enterprise

beans.

Optionally,

you

can

implement

access

control

after

you

have

created

your

access

bean.

8.

Map

the

fields

in

the

enterprise

bean

to

the

columns

in

the

database

table.

9.

Generate

the

corresponding

access

bean

for

the

enterprise

bean.

10.

Generate

the

deployed

code

for

the

enterprise

bean.

11.

Test

the

bean

using

the

Universal

Test

Client

in

WebSphere

Studio

Application

Developer.

More

detail

on

each

of

these

steps

is

contained

in

the

following

sections.

When

reading

through

these

sections,

suppose

that

you

have

a

new

table

called

XUSERRES

that

specifies

some

information

about

the

type

of

residence

a

user

has.

This

table

contains

three

columns:

a

USERID

column,

a

HOME

column

that

specifies

the

type

of

home

and

a

ROOMS

column

that

specifies

the

number

of

bedrooms

in

the

residence.

Creating

the

new

CMP

enterprise

bean:

To

create

your

new

CMP

enterprise

bean,

you

can

use

the

Enterprise

Bean

Creation

wizard,

as

follows:

1.

Within

the

J2EE

Hierarchy

view,

expand

EJB

Modules.

2.

Right-click

the

WebSphereCommerceServerExtensionsData

module

and

select

New

>

Enterprise

Bean.
The

Enterprise

Bean

Creation

wizard

opens.

3.

From

the

EJB

Project

drop-down

list,

select

WebSphereCommerceServerExtensionsData

and

click

Next.

4.

In

the

Create

an

Enterprise

Bean

window,

do

the

following:

a.

Select

Entity

bean

with

container-managed

persistence

(CMP)

fields

60

Programming

Guide

and

Tutorials

b.

In

the

Bean

name

field,

enter

an

appropriate

name

for

your

bean.

Typically,

the

bean

name

matches

the

name

of

the

corresponding

database

table.

For

example,

you

would

name

the

bean

XUserRes

to

correspond

to

the

XUSERRES

table.

c.

In

the

Source

folder

field,

leave

the

default

value

that

is

specified

(ejbModule).

d.

In

the

Default

package

field,

enter

com.mycompany.mycomponent.objects.

e.

Click

Next.
5.

In

the

Enterprise

Bean

Details

window,

do

the

following:

a.

Click

Add

to

add

a

new

CMP

attributes

for

columns

in

your

database

table.
The

Create

CMP

Attribute

window

opens.

In

this

window,

do

the

following:

1)

In

the

Name

field,

enter

an

appropriate

name

for

the

new

CMP

field.

Note

that

if

you

want

to

use

the

Match

by

name

function

later

when

mapping

this

field

to

its

corresponding

column

in

the

database

table,

name

your

field

exactly

(case

insensitive)

to

the

name

of

the

column.

2)

In

the

Type

field,

enter

the

appropriate

data

type

for

the

field.

Note

that

you

should

use

the

wrapper

classes

for

primitive

data

types

(for

example,

use

the

java.lang.Long

data

type,

not

the

long

data

type

3)

If

the

field

is

the

primary

key,

select

the

Key

Field

check

box

and

click

Apply.

4)

If

the

field

is

not

the

primary

key,

select

the

Access

with

getter

and

setter

methods

check

box.

5)

If

the

field

is

not

the

primary

key,

clear

the

Promote

getter

and

setter

methods

to

remote

interface

check

box.

The

Make

getter

read-only

check

box

will

be

made

unavailable

and

then

click

Apply.

6)

Click

Add

again

and

repeat

steps

to

add

new

fields

for

each

column

in

the

database

table

that

requires

a

CMP

field.

7)

Click

Close

to

close

this

window.
b.

Clear

the

Use

the

single

key

attribute

type

for

the

key

class

check

box,

then

click

Next.
6.

In

the

EJB

Java

Class

Details

window,

do

the

following:

a.

To

select

the

bean’s

superclass,

click

Browse.
The

Type

Selection

window

opens.

b.

In

the

Select

a

class

using:

(any)

field,

enter

ECEntityBean

and

click

OK.

This

selects

the

com.ibm.commerce.base.objects.ECEntityBean

as

the

superclass.

Chapter

3.

Persistent

object

model

61

c.

If

the

new

enterprise

bean

is

to

be

protected

under

the

WebSphere

Commerce

access

control

framework,

specify

the

interfaces

that

the

remote

interface

should

extend

by

clicking

Add.

The

Type

Selection

window

opens.

d.

In

the

Select

a

class

using:

(any)

field,

enter

Protectable

and

click

OK.

This

selects

the

com.ibm.commerce.security.Protectable.

This

interface

is

required

in

order

to

protect

the

new

resource

under

access

control.

e.

Click

Finish.

In

the

bean

class,

WebSphere

Studio

Application

Developer

creates

the

private

field

called

EntityContext.

WebSphere

Commerce

provides

its

own

entity

context

field

in

the

ECEntityBean

and

your

new

entity

bean

should

use

that

field,

rather

than

the

generated

field.

As

such,

you

should

remove

the

generated

EntityContext

from

your

new

entity

bean.

This

is

described

in

a

subsequent

section.

When

you

specify

com.ibm.commerce.base.objects.ECEntityBean

as

the

superclass

your

bean

inherits

certain

functions.

The

following

example

of

code

demonstrates

these

functions:

public

class

myEJB

extends

com.ibm.commerce.base.objects.ECEntityBean

{

public

void

ejbLoad()

{

super.ejbLoad();--the

super

method

will

add

EJB

trace

--your

logic

--

}

public

void

ejbStore()

{

super.ejbStore();--the

super

method

will

add

EJB

trace

--your

logic

--

}

}

Setting

the

transaction

isolation

level:

You

must

set

the

transaction

isolation

level

for

the

bean

to

the

correct

value

for

your

development

database

type.

To

set

the

transaction

isolation

level,

do

the

following:

1.

In

the

J2EE

Hierarchy

view,

expand

EJB

Modules.

2.

Double-click

the

WebSphereCommerceServerExtensionsData

project

to

open

it

with

the

Deployment

Descriptor

Editor.

3.

Click

the

Access

tab.

4.

Click

Add

next

to

the

Isolation

Level

text

box.
The

Add

Isolation

Level

window

opens.

5.

2000DB2

Select

Repeatable

Read,

then

click

Next.
2000DB2

2000400

Select

Read

Committed,

then

click

Next.
2000Oracle

Select

Read

Committed,

then

click

Next.

6.

From

the

Beans

found

list,

select

the

yourNewBean

bean,

then

click

Next.

62

Programming

Guide

and

Tutorials

*

7.

From

the

Methods

found

list,

select

yourNewBean

to

select

all

of

its

methods,

and

click

Finish.

8.

Save

your

work

(Ctrl+S),

and

keep

the

editor

open.

Setting

the

security

identity

of

the

bean:

Next

set

the

security

identity

of

the

bean,

by

doing

the

following:

1.

In

the

Deployment

Descriptor

editor,

ensure

that

you

have

the

Access

tab

selected.

2.

Click

Add

next

to

the

Security

Identity

text

box.
The

Add

Security

Identity

window

opens.

3.

Select

Use

identity

of

EJB

server,

then

click

Next.

4.

From

the

Beans

found

list,

select

the

yourNewBean

bean,

then

click

Next.

5.

From

the

Methods

found

list,

select

yourNewBean

to

select

all

of

its

methods,

and

click

Finish.

6.

Save

your

work

(Ctrl+S).

Keep

the

editor

open.

Setting

the

security

role

of

the

bean:

Next,

set

the

security

role

for

the

methods

in

the

bean,

by

doing

the

following:

1.

In

the

Deployment

Descriptor

editor,

select

the

Assembly

Descriptor

tab.

2.

In

the

Method

permissions

section,

click

Add.

3.

Select

WCSecurityRole

as

the

security

role

and

click

Next.

4.

From

the

list

of

beans

found,

select

yourNewBean

and

click

Next.

5.

In

the

Method

elements

page,

click

Apply

to

All,

then

click

Finish.

6.

Save

your

work

(Ctrl+S)

and

then

close

the

Deployment

Descriptor

editor.

Deleting

the

entity

context

fields

and

methods:

The

next

step

is

to

remove

some

of

the

fields

and

methods

related

to

entity

context

that

WebSphere

Studio

Application

Developer

generates.

The

reason

that

these

fields

need

to

be

deleted

is

that

the

ECEntityBean

base

class

provides

its

own

implementation

of

these

methods.

To

delete

the

generated

entity

context

fields

and

methods,

do

the

following:

1.

In

the

J2EE

Hierarchy

view,

expand

the

WebSphereCommerceServerExtensionsData

project.

2.

Expand

Entity

Beans,

the

yourNewBean

bean,

and

then

double-click

the

yourNewBeanBean

class.

3.

In

the

Outline

view,

do

the

following:

Note:

2000Express

WebSphere

Studio

Application

Developer

5.1

prompts

you

to

delete

getEntityContext()

and

setEntityContext(EntityContext),

so

you

do

not

have

to

delete

them

manually

as

mentioned

below.

Ensure

that

you

select

you

delete

these.

a.

Right-click

the

myEntityCtx

field

and

select

Delete.

Chapter

3.

Persistent

object

model

63

b.

Right-click

the

getEntityContext()

method

and

select

Delete.

c.

Right-click

the

setEntityContext(EntityContext)

method

and

select

Delete.

d.

Right-click

the

unsetEntityContext()

method

and

select

Delete.
4.

Save

your

work

(Ctrl+S).

Adding

new

finders:

Introduction

to

working

with

finders:

The

use

of

finder

helper

interfaces

has

been

deprecated.

For

any

new

development

work,

it

is

required

that

you

use

the

EJB

deployment

descriptor

editor

rather

than

the

finder

helper

interface

to

define

your

queries

and

method

declarations.

For

detailed

information

about

the

use

of

the

EJB

query

language

for

creating

finders,

advantages

of

this

approach

over

other

approaches

to

finders

and

more

details

about

related

tools,

refer

to

the

WebSphere

Studio

Application

Developer

online

help.

Adding

a

new

finder

to

your

new

bean:

If

you

need

to

add

a

new

finder

to

your

enterprise

bean,

do

the

following:

1.

In

the

J2EE

Hierarchy

view,

expand

EJB

Modules.

2.

Double-click

the

WebSphereCommerceServerExtensionsData

project

to

open

the

EJB

Deployment

Descriptor

Editor.

3.

Click

the

Beans

tab.

4.

In

the

Beans

pane,

select

the

yourNewBean

bean,

then

in

the

pane

on

the

right,

scroll

down

and

expand

WebSphere

Extensions.

5.

Click

Add

next

to

the

Finders

text

box.
The

Add

Finder

Descriptor

window

opens.

6.

Select

New,

then

in

the

Name

field,

enter

findByXyourArg

(where

yourArg

is

the

name

of

the

argument

by

which

you

are

searching).

Use

the

“findXBy”

naming

convention

for

your

field

name

to

ensure

that

your

field

names

are

always

unique

from

WebSphere

Commerce

field

names.

7.

Click

Add

next

to

the

Parameters

text

box,

then

do

the

following

a.

In

the

Name

field,

enter

yourArg.

b.

In

the

Type

field

enter

the

appropriate

data

type.

c.

Click

OK.

8.

In

the

Return

Type

field,

enter

one

of

the

following

and

click

Next:

v

If

the

FinderHelper

method

uses

the

primary

key

to

query

the

database

and

the

method

should

return

a

unique

record,

specify

the

EJB

object

as

the

return

type.

For

example,

enter

UserRes.

v

If

the

FinderHelper

method

returns

a

result

set

instead

of

a

unique

record,

specify

the

return

type

as

java.util.Enumeration.

64

Programming

Guide

and

Tutorials

9.

From

the

Finder

type

drop-down

list,

select

WhereClauseFinderDescriptor.

10.

In

the

Finder

statement

field,

an

appropriate

finder.

For

example,

enter

T1.MEMBERID

=

?,

then

click

Finish.

11.

Save

your

work,

then

close

the

EJB

Deployment

Descriptor

editor.

For

security

reasons,

when

creating

FinderHelper

methods

for

a

new

entity

bean,

you

should

use

parameter

inserts

as

shown

in

the

preceding

steps.

The

reason

for

this

recommendation

is

that

it

protects

the

query

from

being

altered

by

users.

An

alternative

approach

would

be

to

use

a

construct

similar

to

the

following:

T1.MEMBERID

=

“input_string

”;

where

input_string

is

a

string

value

passed

in

from

a

URL.

This

is

not

desirable,

since

a

malicious

user

could

enter

a

value

such

as

“‘123’

OR

1=1”

which

changes

the

SQL

statement.

If

a

user

can

change

the

SQL

statement,

they

may

be

able

to

make

unauthorized

access

to

data.

Therefore,

the

recommended

approach

is

to

use

parameter

inserts.

If

you

cannot

use

a

parameter

insert

and

therefore,

have

to

use

an

input

string

to

compose

the

SQL

statement,

you

must

enforce

parameter

checking

on

the

input

string

to

ensure

that

the

input

parameter

is

not

a

malicious

attempt

to

access

data.

Creating

a

new

ejbCreate

method:

When

the

enterprise

bean

is

created,

the

ejbCreate

method

is

automatically

generated.

This

method

is

then

promoted

to

the

remote

interface,

so

that

it

is

available

in

the

access

bean.

The

default

ejbCreate

method

only

contains

parameters

that

are

either

the

primary

key,

or

part

of

the

primary

key.

This

means,

only

those

values

get

instantiated

upon

instantiation.

If

your

enterprise

bean

contains

fields

that

are

not

part

of

the

primary

key

and

are

non-nullable

fields,

you

must

create

a

new

ejbCreate

method

in

which

you

specifically

instantiate

those

fields.

By

doing

so,

each

time

a

new

record

is

created,

all

non-nullable

fields

will

be

populated

with

the

appropriate

data.

To

create

a

new

ejbCreate

method,

do

the

following:

1.

In

the

J2EE

Hierarchy

view,

double-click

the

yourNewBeanBean

class

to

open

it

and

view

its

source

code.

2.

You

must

modify

the

source

code

so

that

each

non-nullable

CMP

field

is

included

as

an

input

parameter

to

the

method,

and

so

each

CMP

field

is

instantiated

with

the

appropriate

value.

In

the

UserRes

example

where

the

UserId

is

the

primary

key,

the

source

code

initially

appears

as:

Chapter

3.

Persistent

object

model

65

public

void

ejbCreate(int

argUserId)

throws

javax.ejb.CreateException

{

_initLinks();

userId

=

argUserId;

}

But,

you

may

want

to

ensure

that

both

the

number

of

rooms

and

type

of

home

are

initialized.

In

this

case,

you

would

change

the

code

to

the

following:

public

void

ejbCreate(int

argUserId,

String

argHome,

byte

Rooms)

throws

javax.ejb.CreateException

{

_initLinks();

//

All

CMP

fields

should

be

initialized

here

userId

=

argUserId;

home

=

argHome;

rooms

=

argRooms;

}

Note:

If

you

want

to

use

a

system

generated

primary

key,

refer

to

“Primary

keys”

on

page

80

for

details.

3.

You

must

add

the

new

ejbCreate

method

to

the

home

interface.

This

makes

the

method

available

in

the

generated

access

bean.

To

add

the

method

to

the

home

interface,

do

the

following:

a.

Right-click

the

ejbCreate(yourParameters)

method

in

the

Outline

view

and

select

Enterprise

Bean

>

Promote

to

Home

Interface.

Creating

a

new

ejbPostCreate

method:

Next,

you

must

create

a

new

ejbPostCreate

method

that

has

the

same

input

parameters

as

the

new

ejbCreate

method.

To

create

this

new

method,

do

the

following:

1.

Double-click

the

yourNewBeanBean

class

to

open

it

and

view

its

source

code.

2.

Create

a

new

ejbPostCreate

method

with

the

same

input

parameters

that

were

used

in

the

new

ejbCreate

method.

To

continue

the

user

residence

example,

you

would

the

following

code

into

the

class:

public

void

ejbPostCreate(int

argUserId,

String

argHome,

byte

Rooms)

{

}

Save

the

code

changes.

Adding

access

control

methods

to

the

bean:

If

your

new

bean

is

to

be

protected

under

access

control,

you

must

add

the

getOwner

method.

Another

method

that

is

optional

for

access

control

purposes

is

the

fulfills

method.

For

details

about

required

and

optional

methods,

refer

to

“Implementing

access

control

in

enterprise

beans”

on

page

106.

To

add

access

control

methods

to

the

new

bean,

do

the

following:

66

Programming

Guide

and

Tutorials

1.

In

the

J2EE

Hierarchy

view,

double-click

the

yourNewBeanBean

class

to

open

it

and

view

its

source

code.

2.

Into

the

source

code,

add

a

getOwner

method

that

includes

logic

to

return

the

owner

of

this

resource.

For

example,

to

return

the

owner

of

the

UserRes

bean,

you

would

return

the

member

ID

of

the

user:

public

java.lang.Long

getOwner()

throws

java.lang.Exception

{

return

getMemberId();

}

3.

For

the

purpose

of

this

example,

you

would

add

a

fulfills

method

that

specifies

what

relationship

the

user

must

satisfy

before

they

are

allowed

to

act

upon

this

resource.

In

this

case,

you

would

specify

that

only

the

creator

of

this

UserRes

object

is

allowed

to

take

action.

In

other

words,

each

user

is

only

allowed

to

take

action

upon

their

own

UserRes

object.

This

relationship

requirement

is

shown

in

the

following

code

snip:

public

boolean

fulfills(Long

member,

String

relationship)

throws

java.lang.Exception

{

if

(relationship.equalsIgnoreCase("creator"))

{

return

member.equals(getMemberId());

}

return

false;

}

4.

Save

your

work.

Mapping

the

database

table

to

the

new

enterprise

bean:

Once

you

have

created

the

new

enterprise

bean,

you

must

create

a

mapping

between

the

CMP

fields

in

the

bean

and

the

columns

in

the

database

table.

When

both

the

enterprise

bean

and

its

corresponding

database

table

exist,

a

“Meet-in-the-middle”

type

of

mapping

is

used.

WebSphere

Studio

Application

Developer

provides

tools

to

simplify

this

task.

To

create

the

mapping,

do

the

following:

1.

In

the

J2EE

Hierarchy

view,

right-click

WebSphereCommerceServerExtensionsData

and

select

Generate

>

EJB

to

RDB

Mapping.
The

EJB

to

RDB

Mapping

Window

opens.

2.

Select

Meet

In

The

Middle

and

click

Next.

3.

In

the

Database

Connection

window,

do

the

following:

a.

In

the

Connection

name

field,

enter

WebSphereCommerceServerExtensionsData

b.

In

the

Database

field,

enter

developmentDB

c.

In

the

User

ID

field,

enter

dbuser

d.

In

the

Password

field,

enter

dbpassword

Chapter

3.

Persistent

object

model

67

e.

From

the

database

drop-down

list,

select

the

database

vendor

type

for

your

development

database.

v

2000DB2

DB2

Universal

Database

8.1

v

2000Oracle

Oracle

9i

f.

2000Oracle

In

the

Host

field,

enter

the

fully-qualified

host

name

of

your

database

server.

For

example,

enter

dbserver.yourcompany.com

g.

2000Oracle

In

the

Class

Location

field,

enter

the

location

of

the

classes12.zip

file.

For

example,

enter

D:\oracle\ora92\jdbc\lib\classes12.zip

h.

Click

Next.

Once

the

connection

is

established,

the

list

of

tables

in

the

database

is

displayed.

You

can

also

view

the

Connection

Document

later

by

looking

at

the

Database

Servers

view

in

the

Data

perspective.
4.

Select

the

yourNewTable

table

and

click

Next.

5.

Select

Match

By

Name

and

Type

and

then

click

Finish.

The

Mapping

Editor

now

opens.

6.

2000Oracle

If

any

columns

have

a

data

type

of

“NUMBER”,

you

must

modify

the

data

type.

Right-click

the

yourNewTable

table

and

select

Open

Table

Editor.

In

the

table

editor,

do

the

following:

a.

Select

the

Column

tab.

b.

Select

the

column

whose

data

type

requires

changing

and

change

the

column

type

from

NUMBER

to

a

more

specific

type.

For

example,

change

it

to

INTEGER.

c.

Save

your

changes.
7.

In

the

Enterprise

Beans

pane,

expand

the

yourNewBeanbean.

In

the

Tables

pane,

expand

the

yourNewTable

table.

8.

Map

the

fields

in

the

yourNewBean

bean

to

the

columns

in

the

yourNewTable

table,

by

doing

the

following:

a.

Right-click

the

yourNewBean

bean

and

select

Match

By

Name.
9.

Save

the

changes

made

to

the

Map.mapxmi

file

and

then

close

the

file.

10.

2000Oracle

You

must

edit

the

table

definition

using

a

text

editor,

as

follows:

a.

Open

the

yourNewBean.xmi

file

with

a

text

editor.

b.

Replace

all

occurrences

of

SQLNumeric6

to

SQLNumeric3.

c.

Save

your

changes

and

then

close

the

file.

Modifying

the

schema

name:

The

next

step

is

to

modify

the

schema

name

so

that

your

bean

will

be

portable

to

other

databases.

The

special

value

to

allow

a

bean

to

be

portable

in

this

manner

is

NULLID.

To

modify

the

schema

name,

do

the

following:

1.

In

the

J2EE

Perspective,

switch

to

the

J2EE

Hierarchy

view.

68

Programming

Guide

and

Tutorials

2.

Expand

Databases,

then

expand

WebSphereCommerceServerExtensionsData.

3.

Right-click

on

the

schema

node

(for

example,

db2user)

and

select

Rename.

4.

Set

the

value

to

NULLID.

Creating

the

access

bean:

An

access

bean

acts

as

a

wrapper

for

the

enterprise

bean

that

simplifies

how

other

components

interact

with

the

enterprise

bean.

You

must

create

an

access

bean

for

your

new

enterprise

bean.

The

tools

in

WebSphere

Studio

Application

Developer

are

used

to

generate

this

access

bean,

based

upon

the

entity

that

you

have

already

created

(in

particular,

only

methods

that

have

been

promoted

to

the

remote

interface

will

be

used

by

the

access

bean).

To

create

the

access

bean,

do

the

following:

1.

In

the

J2EE

Hierarchy

view,

expand

EJB

Modules,

then

right-click

WebSphereCommerceServerExtensionsData

and

select

New

>

Access

Bean.
The

Add

an

Access

Bean

window

opens.

2.

Select

Copy

Helper

and

click

Next.

3.

Select

the

yourNewBeanbean

and

click

Next.

4.

From

the

Constructor

method

drop-down

list,

select

findByPrimaryKey(yourPackageName.

yourNewBeanKey)

as

the

constructor

method.

5.

Select

all

attributes

in

the

Attribute

Helpers

section.

6.

Click

Finish.

7.

Save

your

work.

Generating

deployed

code:

The

code

generation

utility

analyzes

the

beans

to

ensure

that

Sun

Microsystems’

EJB

specifications

are

met

and

it

ensures

that

rules

specific

to

the

EJB

server

are

followed.

In

addition,

for

each

selected

enterprise

bean,

the

code-generation

tool

generates

the

home

and

EJBObject

(remote)

implementations

and

implementation

classes

for

the

home

and

remote

interfaces,

as

well

as

the

JDBC

persister

and

finder

classes

for

CMP

beans.

It

also

generates

the

Java

ORB,

stubs,

and

tie

classes

required

for

RMI

access

over

IIOP,

as

well

as

stubs

for

the

home

and

remote

interfaces

To

generate

the

deployed

code,

do

the

following:

1.

In

the

J2EE

Hierarchy

view,

expand

EJB

Modules,

then

right-click

WebSphereCommerceServerExtensionsData

and

select

Generate

>

Deploy

and

RMIC

Code.
The

Deploy

and

RMIC

Code

window

opens.

2.

Select

the

yourNewBean

bean

and

click

Finish.

Chapter

3.

Persistent

object

model

69

You

can

view

the

newly

generated

code

by

switching

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

You

will

find

the

following:

Table

1.

Type

of

code

Class

name

Container

implementation

generated

code

EJSCMPyourNewBeanHomeBean.java

EJSRemoteCMPyourNewBean.java

EJSRemoteCMPyourNewBeanHome.java

EJSFinderyourNewBeanBean.java

JDBC

access

code

EJSJDBCPersisterCMPyourNewBeanBean.java

RMI

tie

and

stub

code

_EJSRemoteCMPyourNewBean_Tie.java

_yourNewBean_Stub.java

_EJSRemoteCMPyourNewBeanHome_Tie.java

_yourNewBeanHome_Stub.java

Using

the

test

client

to

test

the

enterprise

bean:

WebSphere

Studio

Application

Developer

provides

a

test

client

that

can

be

used

to

test

enterprise

beans.

To

use

the

test

client

to

test

your

new

bean,

do

the

following:

1.

Switch

to

the

Servers

perspective.

2.

Double-click

the

WebSphereCommerceServer

server

and

click

the

Configuration

tab.

3.

Select

Enable

universal

test

client.

Save

the

changes.

4.

Right-click

the

WebSphereCommerceServer

server

and

select

Start.

5.

Right-click

the

WebSphereCommerceServerExtensionsData

and

select

Run

on

server.
The

Web

browser

opens

with

the

universal

test

client.

The

starting

place

for

testing

the

enterprise

bean

is

the

JNDI

Explorer

where

you

can

find

the

names

of

the

beans

that

run

in

the

EJB

container

on

this

server.

6.

Right-click

JNDI

Explorer

7.

Next

you

must

navigate

to

the

yourNewBeanHome

interface,

by

expanding

the

hierarchy

as

follows:

cell

>

nodes

>

localhost

>

servers

>

server1

>

ejb

>

yourPackageStructure.

8.

Click

the

yourNewBeanHome

interface.

In

the

References

pane,

select

EJB

References

>

yourNewBean

>

yourNewBeanHome.

Click

the

create

method.

9.

In

the

fields

in

the

right

pane

that

correspond

to

the

required

input

parameters

for

the

create

method,

enter

appropriate

values.

10.

Click

Invoke

and

the

result

is

shown

in

the

bottom

pane.

70

Programming

Guide

and

Tutorials

11.

Click

Work

with

Object

to

add

the

remote

interface

to

the

Reference

pane

and

you

will

see

the

values

you

entered

under

Object

Reference.

A

new

record

has

been

created

in

your

new

table.

12.

Test

other

methods,

as

appropriate.

13.

Close

the

test

client

and

stop

the

server.

Coding

Practices:

The

following

enterprise

bean

coding

practices

should

be

observed:

v

Do

not

use

either

the

BLOB

or

CLOB

data

type.

v

Enterprise

bean

code

should

not

reference

anything

outside

of

the

enterprise

bean

modules.

For

example,

you

should

not

reference

commands

or

data

beans

in

the

enterprise

bean

code

v

The

previous

sections

describe

how

to

include

access

control

in

a

new

bean

when

initially

creating

the

bean.

It

can

also

be

added

after

you

have

created

your

bean

by

adding

the

com.ibm.commerce.security.Protectable

interface.

If

required,

also

add

the

com.ibm.commerce.security.Groupable

interface

to

the

enterprise

bean’s

remote

interface.

Certain

methods

must

be

implemented

in

the

bean

as

well.

After

adding

these

interfaces

and

adding

required

methods,

regenerate

the

bean’s

deployed

code

and

access

bean.

For

more

information,

refer

to

“Implementing

access

control

in

enterprise

beans”

on

page

106.

Creating

a

simple

data

bean

A

data

bean

is

a

bean

that

is

used

in

JSP

templates

to

retrieve

information

from

the

enterprise

bean.

A

simple

data

bean

extends

its

corresponding

access

bean

and

implements

the

SmartDataBean

interface.

Most

code

for

the

data

bean

is

automatically

generated

by

WebSphere

Studio

Application

Developer.

New

data

beans

are

stored

in

the

WebSphereCommerceServerExtensionsLogic

project.

To

create

a

simple

data

bean,

you

must

perform

the

following

steps:

1.

Create

a

package

to

store

the

data

bean

code.

2.

Create

a

data

bean

that

extends

the

corresponding

access

bean

and

implements

the

appropriate

data

bean

interface.

3.

Create

the

set

methods

for

the

data

bean.

4.

Create

the

get

methods

for

the

data

bean.

Each

step

is

described

in

more

detail

in

subsequent

sections.

Creating

the

package

for

data

bean

code:

Creating

package

creates

a

place

in

which

your

data

bean

code

can

be

stored.

To

create

a

new

package,

do

the

following:

Chapter

3.

Persistent

object

model

71

1.

Open

WebSphere

Studio

Application

Developer

and

switch

to

the

Java

perspective.

2.

Right-click

the

WebSphereCommerceServerExtensionsLogic

project

select

New

>

Package.

The

New

Java

Package

wizard

opens.

3.

The

value

for

Source

Folder

is

prepopulated

with

WebSphereCommerceServerExtensionsLogic/src.

Keep

this

value.

4.

In

the

Name

field,

enter

an

appropriate

name

for

your

new

package.

For

example,

enter

com.mycompany.mydatabeans.

5.

Click

Finish.

Creating

a

data

bean:

A

data

bean

is

a

Java

bean

that

is

used

within

a

JSP

template

to

provide

dynamic

content

to

the

page.

It

normally

provides

a

simple

representation

(indirectly)

of

an

entity

bean

by

extending

an

access

bean.

The

data

bean

encapsulates

properties

that

can

be

retrieved

from

or

set

within

the

entity

bean.

To

create

a

data

bean,

do

the

following:

1.

Right-click

the

package

into

which

you

will

store

the

data

bean

and

select

New

>

Class.

The

New

Java

Class

wizard

opens.

2.

The

project

and

package

name

fields

are

already

populated.

3.

In

the

Name

field,

enter

a

name

for

your

new

data

bean.

For

example,

to

create

a

data

bean

that

extends

the

UserResAccessBean,

enter

UserResDataBean.

4.

From

the

Modifiers

list,

select

public.

5.

To

specify

the

superclass,

click

Browse,

then

in

the

pattern

field,

enter

the

name

of

the

corresponding

access

bean.

For

example,

enter

UserResAccessBean

and

click

OK.

6.

To

specify

the

interfaces

that

the

data

bean

should

implement,

click

Add.

In

the

Interface

window,

do

the

following:

a.

In

the

Pattern

field,

enter

com.ibm.commerce.beans.SmartDataBean

then

click

Add.

b.

In

the

Pattern

field,

enter

com.ibm.commerce.beans.InputDataBean

then

click

Add.

c.

Click

OK.
7.

Click

Finish.

Adding

required

fields

to

the

data

bean:

This

section

describes

how

to

modify

the

required

fields

in

your

new

data

bean.

The

two

required

fields

are

for

the

following

types

of

information:

v

command

context

v

request

properties

72

Programming

Guide

and

Tutorials

To

modify

the

iCommandContext

field,

do

the

following:

1.

Double-click

the

new

data

bean

(for

example,

UserResDataBean)

to

view

its

source

code.

2.

Locate

the

getCommandContext

method.

It

initially

appears

as

follows:

public

CommandContext

getCommandContext()

{

return

null;

}

Modify

the

source

code

so

that

it

appears

as

follows:

private

CommandContext

iCommandContext

=

null;

public

com.ibm.commerce.command.CommandContext

getCommandContext

()

{

return

iCommandContext;

}

3.

Locate

the

setCommandContext

method.

It

initially

appears

as

follows:

public

void

setCommandContext(CommandContext

arg0)

{

}

Modify

the

source

code

so

that

it

appears

as

follows:

public

void

setCommandContext(com.ibm.commerce.command.CommandContext

aCommandContext)

{

iCommandContext

=

aCommandContext;

}

4.

Save

your

work.

To

modify

the

iRequestProperties

field,

do

the

following:

1.

Double-click

the

new

data

bean

(for

example,

UserResDataBean)

to

view

its

source

code.

2.

Locate

the

getRequestProperties

method.

It

initially

appears

as

follows:

public

TypedProperty

getRequestProperties()

{

return

null;

}

Modify

the

source

code

so

that

it

appears

as

follows:

private

com.ibm.commerce.datatype.TypedProperty

requestProperties;

public

TypedProperty

getRequestProperties()

{

return

requestProperties;

}

3.

Locate

the

setRequestProperties

method.

It

initially

appears

as

follows:

public

void

setRequestProperties(TypedProperty

arg0)

throws

Exception

{

}

Chapter

3.

Persistent

object

model

73

Modify

the

source

code

so

that

it

appears

as

follows:

public

void

setRequestProperties(com.ibm.commerce.datatype.TypedProperty

aParam)

throws

Exception

{

//

copy

input

TypedProperties

to

local

requestProperties

=

aParam;

}

4.

Save

your

work.

Populating

the

primary

key

of

the

corresponding

access

bean:

Note

that

you

may

want

to

modify

the

source

code

to

populate

the

primary

key

of

the

corresponding

access

bean.

The

recommended

way

to

do

this

is

to

use

the

data

bean

manager

to

indirectly

set

this

value.

This

indirect

method

is

designed

to

ensure

that

a

primary

key

value

taken

from

the

URL

properties

will

not

override

the

primary

key,

if

it

has

previously

been

set.

To

have

your

setRequestProperties

method

follow

this

model,

code

it

in

a

fashion

that

is

similar

to

the

following

code

snippet.

Note

that

in

the

following

example,

the

primary

key

is

the

user

ID.

This

may

be

different,

depending

upon

the

situation

(as

such,

the

following

code

may

not

immediately

compile

in

your

application).

public

void

setRequestProperties(

com.ibm.commerce.datatype.TypedProperty

arg1)

throws

Exception

{

iRequestProperties

=

arg1;

try

{

if

(//

check

for

nulls

getDataBeanKeyUserId()

==

null)

{

super.setInitKey_UserId(aUserId);

}

}

catch

(com.ibm.commerce.exception.ParameterNotFoundException

e)

{

}

}

There

are

two

other

ways

in

which

the

primary

key

for

the

access

bean

can

be

set.

It

can

be

done

externally

from

the

data

bean,

for

example

in

the

JSP

template.

In

this

case,

before

activating

the

data

bean

in

the

JSP

template,

explicitly

call

the

data

bean’s

set

method

for

the

primary

key.

For

example,

the

JSP

could

include

code

similar

to

the

following

(where

db

is

the

data

bean

object):

db.setInitKey_UserId(/*input

parameter*/)

db.activate();

Alternatively,

the

primary

key

can

be

set

in

a

direct

way.

That

is,

the

JSP

template

only

contains

the

db.activate

method

and

then

the

data

bean

74

Programming

Guide

and

Tutorials

manager

explicitly

sets

the

primary

key

in

the

access

bean.

For

example,

the

code

for

the

setRequestProperties

method

of

the

data

bean

would

appear

similar

to

the

following:

public

void

setRequestProperties(

com.ibm.commerce.datatype.TypedProperty

arg1)

throws

Exception

{

iRequestProperties

=

arg1;

try

{

super.setInitKey_UserId(aUserId);

}

}

catch

(com.ibm.commerce.exception.ParameterNotFoundException

e)

{

}

}

Note

that

the

recommended

procedure

for

setting

the

primary

key

is

the

indirect

method.

Modify

the

populate()

method:

You

must

modify

the

populate

method,

by

doing

the

following:

1.

Expand

your

new

data

bean

to

view

its

fields

and

methods.

2.

In

the

Outline

view,

select

the

populate()

method

to

view

its

source

code.
It

initially

appears

as

follows:

public

void

populate

()

throws

Exception

{}

3.

Modify

the

source

code

so

the

method

appears

as

follows:

try

{

super.refreshCopyHelper();

}

catch

(javax.ejb.FinderException

e)

{

throw

new

ECSystemException(ECMessage._ERR_CREATE_EXCEPTION,

"UserResDataBean",

"populate");

Save

your

work

(Ctrl+S).

Note

that

if

the

new

data

bean

is

extending

an

access

bean

that

requires

additional

input

parameters

upon

instantiation,

you

must

also

set

those

values

in

the

populate

method

of

the

data

bean.

Writing

new

session

beans

When

creating

new

session

beans,

create

them

in

the

WebSphereCommerceServerExtensionsData

project.

Your

new

session

bean

should

extend

the

com.ibm.commerce.base.helpers.BaseJDBCHelper

class.

The

superclass

provides

methods

that

allow

you

to

obtain

a

JDBC

connection

object

from

the

data

source

object

used

by

the

WebSphere

Commerce

Server,

so

that

the

Chapter

3.

Persistent

object

model

75

session

bean

participates

in

the

same

transaction

as

the

other

entity

beans.

The

following

is

an

example

of

code

to

demonstrate

the

functions

provided

by

the

superclass:

public

class

mySessionBean

extends

com.ibm.commerce.base.helpers.BaseJDBCHelper

implements

SessionBean

{

public

Object

myMethod

()

throws

javax.naming.NamingException,

SQLException

{

///

//

--

your

logic,

such

as

initialization

--

//

///

try

{

//

get

a

connection

from

the

WebSphere

Commerce

data

source

makeConnection();

PreparedStatement

stmt

=

getPreparedStatement(

"your

sql

string");

//

//

--

your

logic

such

as

set

parameter

into

the

prepared

//

//

statement

--

//

//

ResultSet

rs

=

executeQuery(stmt,

false);

///

//

--

your

logic

to

process

the

result

set

--

//

//

}

finally

{

//

return

the

connection

to

the

WebSphere

Commerce

data

source

closeConnection();

}

///

//

--

your

logic

to

return

the

result

//

//

}

}

In

the

preceding

code

example,

the

executeQuery

method

takes

two

input

parameters.

The

first

is

a

prepared

statement

and

the

second

is

a

boolean

flag

related

to

a

cache

flush

operation.

Set

this

flag

to

true

if

you

need

the

container

to

flush

all

entity

objects

for

the

current

transaction

from

the

cache

before

executing

the

query.

This

would

be

required

if

you

have

performed

updates

on

some

entity

objects

and

you

need

the

query

to

search

through

these

updated

objects.

If

the

flag

were

set

to

false

those

entity

object

updates

would

not

be

written

to

the

database

until

the

end

of

the

transaction.

76

Programming

Guide

and

Tutorials

You

should

limit

the

use

of

this

flush

operation

and

generally

set

the

flag

to

false,

except

in

those

cases

where

it

is

really

required.

The

flush

operation

is

a

resource

intensive

operation.

Object

life

cycles

The

enterprise

beans

in

the

object

model

include

both

independent

and

dependent

objects.

An

independent

object

has

its

own

life

cycle,

controlled

directly

by

the

create

or

remove

requests

of

the

business

logic

invoking

the

object.

A

dependent

object

has

a

life

cycle

that

is

attached

to

another

object,

known

as

the

owner

object

(which

may

also

in

turn

be

a

dependent

object,

but

further

up

the

association

hierarchy,

an

independent

object

exists).

When

the

owner

object

is

deleted,

all

dependent

objects

are

also

deleted.

The

actual

deletes

are

controlled

by

cascading

delete

specifications

within

the

database.

For

example,

given

a

user

object

that

returns

an

address

book

object

and

a

list

of

order

objects,

if

the

user

object

is

deleted,

its

address

book

object

is

also

deleted

(since

the

book

is

owned

by

the

user),

and

so

are

all

the

address

objects

within

the

book

(since

the

addresses

are

owned

by

the

book).

However,

the

order

objects

are

not

deleted

because

the

owner

of

orders

is

a

store

object,

not

the

user

object.

A

specific

design

pattern

is

used

for

the

creation

of

dependent

objects.

The

create

method

of

a

dependent

object

must

supply

a

reference

to

its

owner

object;

therefore,

the

owner

object

must

exist

before

the

dependent

object

can

be

created.

Transactions

The

Enterprise

JavaBeans

Version

1.1

architecture

specifies

three

alternative

commit-time

options

with

respect

to

the

instance

state.

They

are

described

as

options

A,

B,

and

C

in

the

specification

document.

For

complete

details

on

these

options,

refer

to

Sun

Microystem’s

Enterprise

JavaBeans

version

1.1

specification

document.

Although

the

WebSphere

Application

Server

implements

options

A

and

C,

option

A

assumes

that

the

database

is

not

shared.

In

option

C,

the

enterprise

bean

container

does

not

cache

a

“ready”

instance

between

transactions.

As

soon

as

a

transaction

has

completed,

the

instance

is

returned

to

the

pool

of

available

instances.

WebSphere

Commerce

uses

option

C

because

the

database

is

shared

across

multiple

WebSphere

Commerce

applications.

In

this

implementation,

the

container

loads

persistent

data

for

entity

beans

at

the

start

of

each

transaction

and

the

entity

beans

are

only

cached

for

the

duration

of

the

transaction.

The

container

activates

multiple

instances

of

an

entity

bean,

one

for

each

transaction

in

which

the

entity

is

being

accessed.

Transaction

synchronization

is

performed

by

the

database.

Chapter

3.

Persistent

object

model

77

The

transaction

attribute

of

each

enterprise

bean

is

set

to

TX_REQUIRED.

Since

the

Web

controller

starts

a

transaction

before

executing

a

command

that

accesses

an

enterprise

bean

(through

its

corresponding

access

bean),

the

business

methods

of

the

enterprise

bean

are

invoked

within

the

context

of

this

transaction.

Other

considerations

for

entity

beans

Find

for

update

A

situation

in

which

multiple

applications

can

access

the

same

row

in

a

database

for

the

purpose

of

updating

the

row,

is

known

as

a

concurrent

update.

There

are

situations

in

which

concurrent

updates

may

be

allowed,

and

other

situations

where

they

are

definitely

not

desired.

If

the

database

update

is

an

overwrite,

where

the

new

value

has

no

relation

to

the

current

value

in

the

database,

concurrent

updates

may

be

allowed.

If

concurrent

update

is

allowed

and

multiple

applications

attempt

to

update

the

same

row

in

a

database,

the

last

attempt

is

the

one

that

gets

updated

in

the

database.

If

the

database

update

depends

upon

the

current

value

in

the

database,

a

concurrent

update

is

not

desired.

For

example,

if

an

application

is

updating

product

inventory,

only

one

application

should

be

allowed

to

update

the

inventory

at

a

time.

Factors

that

affect

whether

or

not

concurrent

update

is

permitted

include

database

locks

and

enterprise

bean

isolation

levels.

In

order

to

prevent

a

second

application

from

concurrently

updating

a

row,

the

first

application

accessing

the

row

must

fetch

the

row

using

the

“find

for

update”

option.

When

the

“for

update”

option

is

used,

a

write

lock

(also

known

as

an

exclusive

lock)

is

applied

to

the

row.

With

this

write

lock

applied

to

the

row,

any

application

that

attempts

to

access

the

row

using

the

“find

for

update”

is

blocked.

If

your

application

permits

concurrent

updates,

it

can

just

fetch

the

data,

without

locking

the

row.

Consider

the

OrderProcess

scenario

in

which

UpdateInventory

needs

to

find

all

the

products

included

in

an

order

and

update

the

inventory

accordingly.

Since

the

same

products

may

be

included

in

many

other

orders,

find

for

update

should

be

used,

and

it

should

be

used

as

early

as

possible

within

a

transaction

scope

to

reduce

the

possibility

of

deadlocks.

Therefore,

the

UpdateInventory

algorithm

may

be

represented

by

the

following

pseudo

code:

78

Programming

Guide

and

Tutorials

UpdateInventory

find

all

the

order

items

in

the

order

for

each

order

item

fetch

its

inventory

using

“find

for

update”

...

In

the

long-running

Business-to-Business

scenario,

where

an

order

may

have

many

items,

find

for

update

should

be

used

as

early

as

possible.

The

logic

may

become

the

following:

find

for

update

the

inventory

of

all

the

products

in

an

order

for

each

product

if

(total

quantity

ordered

for

that

product

<

inventory)

deduct

quantity

from

inventory

else

error

Flush

remote

method

Since

WebSphere

Application

Server

does

not

write

changes

made

on

the

entity

beans

to

the

database

until

the

transaction

commit

time,

the

database

may

get

temporarily

out

of

synchronization

with

the

data

cached

in

the

entity

bean’s

container.

A

flush

remote

method

is

provided

(in

the

com.ibm.commerce.base.helpers.BaseJDBCHelper

class)

that

writes

all

the

committed

changes

made

in

all

transactions

(that

is,

it

takes

information

from

the

enterprise

bean

cache)

and

updates

the

database.

This

remote

method

can

be

called

by

a

command.

Use

this

method,

only

when

absolutely

required,

since

it

is

expensive

in

terms

of

overhead

resources,

and

therefore,

has

a

negative

impact

on

performance.

Consider

a

logon

command

that

has

the

following

piece

of

code:
UserAccessBean

uab

=

...;

uab.setRegisteredTimestamp(currentTimestamp);

uab.commitCopyHelper();

Before

the

transaction

has

been

committed,

the

REGISTRATIONUPDATE

in

the

USERS

table

will

not

have

been

updated

with

the

current

time

stamp.

The

update

only

occurs

at

transaction

commit

time.

The

flush

method

has

to

be

used

so

that

any

direct

JDBC

query

(in

the

same

transaction),

for

example,

select

from

user

where

registeredstamp

...

returns

the

user

with

the

specified

registration

time

stamp.

Securing

enterprise

beans

If

you

are

using

the

WebSphere

Application

Server

for

securing

enterprise

beans,

you

must

assign

the

WCSecurityRole

role

to

the

methods

of

any

new

enterprise

beans.

The

WebSphere

Application

Server

Application

Assembly

Tool

is

used

to

perform

this

task.

Perform

this

step

when

you

are

deploying

the

new

enterprise

beans.

Additionally,

if

you

modify

existing

WebSphere

Chapter

3.

Persistent

object

model

79

Commerce

entity

beans,

you

must

assign

the

WCSecurityRole

role

to

each

method

in

each

of

the

entity

beans

in

the

modified

EJB

project.

For

a

description

of

the

deployment

process

for

customized

code,

refer

to

Chapter

9,

“Deployment

details,”

on

page

201.

Primary

keys

A

primary

key

is

a

unique

key

that

is

part

of

the

definition

of

a

table.

It

can

be

used

to

distinguish

one

record

from

others.

All

records

must

have

a

primary

key.

When

you

create

a

new

record

in

a

table,

you

may

need

to

generate

a

unique

primary

key

for

the

record.

In

the

WebSphere

Commerce

programming

model,

the

persistence

layer

includes

entity

beans

that

interact

with

the

database.

As

such,

database

records

may

be

created

when

an

entity

bean

is

instantiated.

Therefore,

the

ejbCreate

method

for

the

instantiation

of

an

entity

bean

may

need

to

include

logic

to

generate

a

primary

key

for

new

records.

When

an

application

requires

information

from

the

database,

it

indirectly

uses

the

entity

beans

by

instantiating

the

bean’s

corresponding

access

bean

and

then

getting

or

setting

various

fields.

An

access

bean

is

instantiated

for

a

particular

record

in

a

database

(for

example,

for

a

particular

user

profile)

and

it

uses

the

primary

key

to

select

the

correct

information

from

the

database.

The

following

sections

describe

how

to

create

a

unique

primary

key

and

how

to

select

by

primary

key.

Creating

primary

keys:

The

ejbCreate

method

is

used

to

instantiate

new

instances

of

an

entity

bean.

This

method

is

automatically

generated

but

the

generated

method

only

includes

logic

to

initialize

primary

keys

to

a

static

value.

You

may

need

to

ensure

that

the

primary

key

is

a

new,

unique

value.

In

this

case,

you

may

have

an

ejbCreate

method

similar

to

the

following

code

snippet:

public

void

ejbCreate(int

argMyOtherValue)

throws

javax.ejb.CreateException

{

//Initialize

CMP

fields

MyKeyValue

=

com.ibm.commerce.key.ECKeyManager.

singleton().getNextKey("table_name");

MyOtherValue

=

argMyOtherValue;

}

In

the

preceding

code

snippet,

the

getNextKey

method

generates

a

unique

integer

for

the

primary

key.

The

table_name

input

parameter

for

the

method

must

be

an

exact

match

to

the

TABLENAME

value

that

is

defined

in

the

KEYS

table.

Be

certain

to

match

the

characters

and

case

exactly.

80

Programming

Guide

and

Tutorials

In

addition

to

including

the

preceding

code

in

your

ejbCreate

method,

you

must

also

create

an

entry

in

the

KEYS

table.

The

following

is

an

example

SQL

statement

to

make

the

entry

in

the

KEYS

table:

insert

into

KEYS

(TABLENAME,

COUNTER,

KEYS_ID)

values

("table_name",

0,

1)

Note

that

with

the

preceding

SQL

statement

default

values

for

the

other

columns

in

the

KEYS

table

are

accepted.

The

value

for

COUNTER

indicates

the

value

at

which

the

count

should

start.

The

value

for

KEYS_ID

should

be

any

positive

value.

If

your

primary

key

is

defined

as

a

long

data

type

(BIGINT

for

DB2

or

NUMBER(38,

0)

for

Oracle),

use

the

getNextKeyAsLong

method.

Selecting

by

primary

key:

Within

an

access

bean,

you

must

select

the

appropriate

database

record

by

using

the

primary

key.

The

following

code

snip

demonstrates

how

to

perform

this

select.

It

also

includes

additional

logic,

that

is

explained

later.

UserProfileAccessBean

abUserProfile

=

new

UserProfileAccessBean();

abUserProfile.setInitKey_UserId(getUserId().toString());

abUserProfile.refreshCopyHelper();

The

first

line

in

the

preceding

code

snippet

instantiates

a

new

UserProfileAccessBean

that

is

called

″abUserProfile″.

The

second

line

sets

the

primary

key

in

the

access

bean.

The

setInitKey_xxx

(where

xxx

is

the

primary

key

field

name)

naming

convention

is

used

by

WebSphere

Studio

Application

Developer

to

name

the

set

methods

for

primary

keys.

When

instantiating

an

access

bean,

you

should

ensure

that

all

fields

set

by

a

setInitKey_xxx

method

are

initialized

before

using

the

refreshCopyHelper

method.

The

order

in

which

the

setInitKey_xxx

methods

are

called

is

not

important.

After

all

setInitKey_xxx

methods

have

been

called,

you

have

initialized

all

required

fields

and

can

use

the

refreshCopyHelper

method

to

retrieve

information

from

the

database.

If

you

update

values

in

the

local

cache

of

the

access

bean,

you

must

also

include

a

commitCopyHelper

call

to

update

the

database

with

the

updated

information.

For

example,

if

after

retrieving

data

using

the

refreshCopyHelper

method

you

update

a

customer’s

name

(by

setting

the

name

value)

you

must

then

call

abUserProfile.commitCopyHelper()

to

update

the

database

with

the

new

information.

Chapter

3.

Persistent

object

model

81

Using

entity

beans

A

program

that

uses

enterprise

beans

must

deal

with

the

Java

Naming

and

Directory

Interface

(JNDI)

as

well

as

the

home

and

remote

interfaces

of

enterprise

beans.

To

simplify

the

programming

model,

an

access

bean

for

each

enterprise

bean

is

generated.

When

creating

your

own

enterprise

beans,

use

the

tooling

in

WebSphere

Studio

Application

Developer

to

generate

this

access

bean.

WebSphere

Commerce

commands

interact

with

access

beans

rather

than

directly

with

the

entity

beans.

As

the

diagram

illustrates,

using

the

access

bean

provides

the

following

advantages:

v

A

simpler

programming

interface.

The

access

bean

behaves

like

a

Java

bean

and

hides

all

the

enterprise

bean

specific

programming

interfaces,

like

JNDI,

home

and

remote

interfaces

from

the

clients.

v

At

run

time

the

access

bean

caches

the

enterprise

bean

home

object

because

look

ups

to

the

home

object

are

expensive,

in

terms

of

time

and

resource

usage.

v

The

access

bean

implements

a

copyHelper

object

that

reduces

the

number

of

calls

to

the

enterprise

bean

when

commands

get

and

set

enterprise

bean

attributes.

Therefore,

only

a

single

call

to

the

enterprise

bean

is

required,

when

reading

or

writing

multiple

enterprise

bean

attributes.

The

following

diagram

displays

the

interaction

between

commands,

access

beans,

entity

beans

and

the

database.

Database

considerations

As

you

customize

your

e-commerce

application,

you

may

create

new

database

tables.

When

creating

these

tables,

it

is

recommended

that

you

follow

a

set

of

conventions,

so

that

your

tables

are

created

in

a

manner

consistent

with

the

WebSphere

Commerce

tables.

Access
bean

Entity
bean

x
y
z

x
y
z

Controller
command

Database

get x
get y
get z

get(x,y,z)
set(x,y,z)

Figure

18.

82

Programming

Guide

and

Tutorials

Database

schema

object

naming

considerations

Subsequent

sections

provide

guidance

for

the

naming

of

database

schema

objects.

Naming

conventions

for

tables

and

views

The

following

list

provides

guidance

for

the

naming

of

new

tables

and

views:

v

In

order

to

avoid

name

collision

(duplicate

names)

with

WebSphere

Commerce

tables

and

views

in

future

releases,

the

first

character

in

the

table

or

view

name

should

be

X.

For

example,

XMYTABLE.

v

The

table

or

view

name

should

be

no

more

than

10

characters

in

length.

If

the

desired

name

exceeds

this

limit,

shorten

the

length

by

removing

vowels

from

the

end

of

the

name,

until

only

10

characters

remain.

v

The

table

or

view

name

should

not

contain

any

special

characters,

such

as

“_”,

“+”,

“$”,

“%”,

or

blank

spaces.

v

Do

not

use

database

reserved

words

as

a

table

or

view

name.

v

View

names

should

end

with

VW.

v

The

table

and

view

names

should

be

singular

nouns.

Naming

conventions

for

columns

In

general,

when

you

create

new

tables

that

follow

the

preceding

conventions

for

table

names,

you

can

implement

your

own

naming

convention

for

columns

within

those

tables.

This

assumes

that

you

always

use

fully-qualified

column

names

in

SQL

statements.

If,

however,

you

wish

to

perform

joins

with

existing

WebSphere

Commerce

tables

and

you

do

not

want

to

use

fully-qualified

column

names,

then

you

must

follow

the

column

naming

conventions

described

in

this

section.

The

following

list

provides

guidance

for

the

naming

of

columns

in

new

tables:

v

In

order

to

avoid

name

collision

(duplicate

names)

with

columns

in

WebSphere

Commerce

tables

in

future

releases,

the

first

character

in

the

column

name

should

be

X.

For

example,

XMYCOLUMN.

v

The

column

name

should

be

no

more

than

18

characters

in

length.

If

the

desired

name

exceeds

this

limit,

shorten

the

length

by

removing

vowels

from

the

end

of

the

name,

until

there

are

only

18

characters.

v

Columns

names

(other

than

foreign

keys)

should

not

contain

any

special

characters,

such

as

“_”,

“+”,

“$”,

“%”,

or

blank

spaces.

v

Do

not

use

database

reserved

words

as

a

column

name.

v

Combined

words

may

be

used

as

column

names

using

the

active

voice

combination.

For

example,

COMBINERESULT.

v

The

generated

primary

key

columns

should

be

named

as

table_id.

For

example,

the

primary

key

for

the

USERS

table

is

USERS_ID.

v

The

generated

foreign

key

column

names

should

not

be

changed.

Chapter

3.

Persistent

object

model

83

v

If

reserving

any

columns

for

future

customization,

they

should

be

named

fieldx

where

x

is

a

numeric

digit

starting

from

1.

Naming

conventions

for

indexes

The

following

list

provides

guidance

for

the

naming

of

indexes

in

new

tables:

v

The

index

name

should

be

no

more

than

18

characters

in

length.

v

The

index

name

should

not

contain

blank

spaces.

v

The

index

name

should

not

contain

any

database

reserved

words.

v

A

non-unique

index

should

be

named

as

I_tablex

where

table

is

the

name

of

the

table

and

x

is

a

number,

beginning

at

1.

For

example,

a

non-unique

index

for

the

USERS

table

is

I_USERS1.

v

A

unique

index

should

be

named

as

UI_tablex

where

table

is

the

name

of

the

table

and

x

is

a

number,

beginning

at

1.

For

example,

a

unique

index

for

the

USERS

table

is

UI_USERS1.

v

The

total

size

of

the

index

should

be

no

larger

than

254

bytes.

v

The

index

name

must

be

unique

across

the

whole

database

schema.

Naming

conventions

for

primary

keys

The

following

list

provides

guidance

for

the

naming

of

primary

keys

for

new

tables:

v

The

primary

key

name

should

be

no

more

than

18

characters

in

length.

v

The

primary

key

name

should

not

contain

blank

spaces.

v

The

primary

key

name

should

not

contain

any

database

reserved

words.

v

The

primary

key

should

be

named

as

P_table

where

table

is

the

name

of

the

table.

For

example,

the

primary

key

for

the

USERS

table

is

P_USERS.

v

The

primary

key

name

must

be

unique

across

the

whole

database

schema.

Naming

conventions

for

foreign

keys

The

following

list

provides

guidance

for

the

naming

of

foreign

keys

for

new

tables:

v

The

foreign

key

name

should

be

no

more

than

18

characters

in

length.

v

The

foreign

key

name

should

not

contain

blank

spaces.

v

The

foreign

key

name

should

not

contain

any

database

reserved

words.

v

The

foreign

key

should

be

named

as

F_table

where

table

is

the

name

of

the

table.

For

example,

the

foreign

key

for

the

USERS

table

is

F_USERS1.

v

The

foreign

key

name

must

be

unique

across

the

whole

database

schema.

Naming

conventions

for

database

triggers

The

following

list

provides

guidance

for

the

naming

of

database

triggers:

v

The

database

trigger

name

should

be

no

more

than

18

characters

in

length.

v

The

database

trigger

name

should

not

contain

blank

spaces.

v

The

database

trigger

name

should

not

contain

any

database

reserved

words.

84

Programming

Guide

and

Tutorials

v

The

database

trigger

should

be

named

as

T_table

where

table

is

the

name

of

the

table.

For

example,

the

database

trigger

name

for

the

USERS

table

is

T_USERS1.

v

The

database

trigger

name

must

be

unique

across

the

whole

database

schema.

Database

column

data

type

considerations

This

section

introduces

column

data

types

that

can

be

used

when

creating

new

tables.

The

descriptions

of

the

various

data

types

use

DB2

terminology.

“Data

type

differences

among

databases”

on

page

86

describes

the

differences

if

you

are

using

a

different

database.

BIGINT

This

is

a

64-bit

signed

integer

that

has

a

range

from

-9223372036854775807

to

9223372036854775807.

Contrast

this

to

INTEGER,

which

is

only

half

the

size

of

BIGINT.

INTEGER

This

is

a

32-bit

signed

integer

that

has

a

range

from

-2147483647

to

2147483647.

In

general,

INTEGER

should

be

the

default

finite

numeric

data

type,

instead

of

BIGINT.

Unless

there

is

a

strong

business

reason

for

using

BIGINT,

for

performance

reasons

it

is

better

to

use

INTEGER

as

the

numeric

data

type.

A

common

user

of

the

BIGINT

data

type

is

a

system

generated

key.

The

use

of

either

SMALLINT

or

SHORT

data

types

is

strongly

discouraged

because

these

data

types

are

mapped

to

a

non-object

Java

data

type

and

these

non-object

data

types

will

cause

problems

in

some

enterprise

bean

object

instantiations.

TIMESTAMP

This

is

a

is

a

seven-part

value

(year,

month,

day,

hour,

minute,

second,

and

microsecond)

that

designates

a

date

and

time,

except

that

the

time

includes

a

fractional

specification

of

microseconds.

The

internal

representation

of

a

timestamp

is

a

string

of

10

bytes,

each

of

which

consists

of

2

packed

decimal

digits.

The

first

4

bytes

represent

the

date,

the

next

3

bytes

the

time,

and

the

last

3

bytes

the

microseconds.

CHAR

This

is

a

fixed-length

character

string

of

length

INTEGER,

which

may

range

from

1

to

254

characters.

If

the

length

specification

is

omitted,

a

length

of

1

character

is

assumed.

Since

CHAR

is

a

fixed

length

database

column,

any

unused

trailing

character

spaces

are

changed

into

white

spaces.

Unless

for

performance

reasons,

it

is

not

recommended

to

use

CHAR

data

type

because

CHAR

is

not

flexible

and

length

cannot

be

changed

at

a

later

time.

As

a

rule

of

thumb,

if

your

string

column

is

less

then

64

characters

in

length

and

is

regularly

retrieved

or

updated,

use

CHAR

instead

for

better

performance.

Chapter

3.

Persistent

object

model

85

VARCHAR

This

is

a

variable-length

character

string

of

maximum

length

integer,

which

may

range

from

1

to

32672.

However,

unlike

CHAR

where

the

column

data

is

stored

along

with

the

table,

VARCHAR

is

internally

represented

as

a

reference

pointer

inside

a

database

page.

Therefore,

length

of

a

VARCHAR

column

can

be

changed

at

any

time

after

creation.

LONG

VARCHAR

This

is

the

variable-length

character

string

that

can

be

used

if

VARCHAR

cannot

be

created

within

the

same

database

page.

LONG

VARCHAR

is

very

similar

to

VARCHAR

except

that

it

can

span

multiple

database

pages.

Restrict

the

use

of

the

LONG

VARCHAR

data

type

to

only

those

cases

when

it

is

absolutely

required

because

LONG

VARCHAR

objects

are

typically

expensive

in

terms

of

performance.

CLOB

This

another

variable-length

character

string

that

can

be

used

if

the

length

of

the

column

needs

to

exceed

the

32KB

limit

of

LONG

VARCHAR.

The

length

of

a

CLOB

object

can

reach

1

GB

without

modifying

the

database

configuration.

Text

data

that

is

stored

as

CLOB

is

converted

appropriately

when

moving

among

different

systems.

BLOB

This

is

a

variable-length

binary

character

string

that

stores

unstructured

data

in

the

database.

BLOB

objects

can

store

up

to

4

GB

of

binary

data.

In

general,

you

should

avoid

using

BLOB

as

a

column

data

type,

unless

it

is

absolutely

necessary.

In

terms

of

performance,

a

BLOB

object

is

considered

to

be

one

of

the

most

expensive

objects

in

any

database.

DECIMAL(20,5)

This

data

type

is

specially

defined

to

be

used

for

most

fixed

decimal

point

numbers,

such

as

currency

units.

For

other

floating

point

decimal

numbers,

FLOAT

can

be

used

instead.

Data

type

differences

among

databases

The

following

table

shows

the

correspondences

among

the

WebSphere

Commerce

database

schema

data

types

for

the

different

database

implementations

supported.

86

Programming

Guide

and

Tutorials

*

*
*
*

2000DB2 2000AIX

2000Linux

2000Solaris

2000Windows

2000DB2 2000400 2000DB2 390

2000z/OS

2000Oracle 2000AIX

2000Solaris

2000Windows

BLOB()

BLOB()

BLOB()

BLOB

TIMESTAMP

TIMESTAMP

TIMESTAMP

DATE

INTEGER

INTEGER

INTEGER

INTEGER

DECIMAL(,)

DECIMAL(,)

DECIMAL

DECIMAL(,)

BIGINT

BIGINT

DECIMAL

NUMBER(38,0)

FLOAT

FLOAT

DOUBLE

NUMBER(38,0)

CHAR()

GRAPHIC()

CCSID

13488

CHAR()

VARCHAR2()

CHAR()

for

bit

data

CHAR()

for

bit

data

BLOB()

RAW()

VARCHAR()

VARGRAPHIC()

CCSID

13488

VARCHAR()

VARCHAR2()

LONG

VARCHAR

VARGRAPHIC(4000)

ALLOCATE()

CCSID

13488

VARCHAR(4000)

VARCHAR2()

(See

notes

following

table

for

details.)

LONG

VARCHAR

for

bit

data

VARCHAR(8000)

ALLOCATE()

for

bit

data

BLOB()

LONG

RAW

CLOB()

DBCLOB()

CCSID

13488

CLOB()

CLOB()

Notes:

1.

As

a

result

of

inconsistent

rates

of

success

for

when

the

Oracle

JDBC

driver

handles

information

that

is

of

the

LONG

data

type,

it

is

recommended

that

you

avoid

using

the

LONG

data

type

whenever

possible.

The

most

commonly

reported

error

in

this

situation

is

the

“Stream

has

already

been

closed”

error.

2.

If

you

must

use

this

data

type,

you

can

only

have

one

column

per

database

table

that

uses

the

LONG

type.

In

addition,

when

constructing

a

select

statement,

do

not

put

the

LONG

column

as

either

the

first

or

last

element

in

the

select.

Another

workaround

for

operations

under

a

heavy

load

is

to

avoid

mapping

this

particular

column

to

a

CMP

field

in

an

entity

bean.

Instead,

use

a

session

bean

to

perform

retrieves

and

updates

on

this

column.

Chapter

3.

Persistent

object

model

87

*
*

*

*

*

**

*

*

*

*

**
*
**

**
*
**

**
*
*

**
*
*

*
*
*
*
*

**

**
*
**

*

*

*
*
*
*
*

*
*
*
*
*
*
*

88

Programming

Guide

and

Tutorials

Chapter

4.

Access

control

Understanding

access

control

The

access

control

model

of

a

WebSphere

Commerce

application

has

three

primary

concepts:

users,

actions

and

resources.

Users

are

the

people

that

use

the

system.

Resources

are

the

entities

that

are

maintained

in

or

by

the

application.

For

example,

resources

may

be

products,

documents,

or

orders.

User

profiles

that

represent

people

are

also

resources.

Actions

are

the

activities

that

users

can

perform

on

the

resources.

Access

control

is

the

component

of

the

e-commerce

application

that

determines

whether

a

given

user

can

perform

a

given

action

on

a

given

resource.

In

a

WebSphere

Commerce

application,

there

are

two

main

levels

of

access

control.

The

first

level

of

access

control

is

performed

by

the

WebSphere

Application

Server.

In

this

respect,

WebSphere

Commerce

uses

WebSphere

Application

Server

to

protect

enterprise

beans

and

servlets.

The

second

level

of

access

control

is

the

fine-grained

access

control

system

of

WebSphere

Commerce.

The

WebSphere

Commerce

access

control

framework

uses

access

control

policies

to

determine

if

a

given

user

is

permitted

to

perform

a

given

action

on

a

given

resource.

This

access

control

framework

provides

fine-grained

access

control.

It

works

in

conjunction

with,

but

does

not

replace

the

access

control

provided

by

the

WebSphere

Application

Server.

Overview

of

resource

protection

in

WebSphere

Application

Server

The

following

WebSphere

Commerce

resources

are

protected

under

access

control

by

WebSphere

Application

Server:

v

Entity

beans
These

beans

model

objects

in

an

e-commerce

application.

They

are

distributed

objects

that

can

be

accessed

by

remote

clients.

v

JSP

templates
WebSphere

Commerce

uses

JSP

templates

for

display

pages.

Each

JSP

template

can

contain

one

or

more

data

beans

that

retrieve

data

from

entity

beans.

Clients

can

request

JSP

pages

by

composing

a

URL

request.

v

Controller

and

view

commands
Clients

can

request

controller

and

view

commands

by

composing

URL

requests.

In

addition,

one

display

page

may

contain

a

link

to

another

by

using

the

JSP

file

name

or

the

view

name,

as

registered

in

the

VIEWREG

table.

©

Copyright

IBM

Corp.

2000,

2003

89

The

WebSphere

Commerce

Server

is

typically

configured

to

use

the

following

Web

paths:

v

/webapp/wcs/stores/servlet/*
This

is

used

for

requests

to

the

request

servlet.

v

/webapp/wcs/stores/*.jsp
This

is

used

for

requests

to

the

JSP

servlet.

The

following

diagram

shows

the

route

that

requests

could

potentially

follow

to

access

WebSphere

Commerce

resources,

for

the

preceding

Web

path

configuration.

All

the

legitimate

requests

should

be

directed

to

the

request

servlet,

which

then

directs

them

to

the

Web

controller.

The

Web

controller

implements

access

control

for

controller

commands

and

views.

The

Web

paths

shown

above

do,

however,

make

it

possible

for

malicious

users

to

directly

access

JSP

templates

(path

1)

and

entity

beans

(path

2).

In

order

to

prevent

these

malicious

attacks

from

being

successful,

they

must

be

rejected

at

run

time.

Controller
command

View
command

Entities

Request servlet
or

Web controller

JSP template

Data
bean

WebSphere
Commerce
access control

Path 1

Path 2CORBA client

Servlet
engine

Figure

19.

90

Programming

Guide

and

Tutorials

Direct

access

to

the

JSP

templates

and

entity

beans

can

be

prevented

by

using

one

of

the

following

approaches:

WebSphere

Application

Server

security

WebSphere

Application

Server

provides

a

number

of

security

features.

WebSphere

Commerce

uses

one

of

these

features

to

ensure

that

all

enterprise

bean

methods

and

JSP

templates

are

configured

to

be

invoked

only

by

a

chosen

identity.

To

access

these

WebSphere

Commerce

resources,

a

URL

request

must

be

routed

to

the

request

servlet.

The

request

servlet

sets

the

chosen

identity

on

the

current

thread

before

passing

it

to

the

Web

controller.

The

Web

controller

then

ensures

that

the

caller

has

the

required

authorization

before

passing

the

request

to

the

corresponding

controller

command

or

view.

Any

attempts

to

directly

access

JSP

templates

and

entity

beans

(that

is,

without

using

the

Web

controller)

are

rejected

by

the

WebSphere

Application

Server

security

component.

For

information

about

configuring

WebSphere

Application

Server

to

secure

WebSphere

Commerce

resources,

refer

to

the

WebSphere

Commerce

Security

Guide.

For

information

about

security

within

WebSphere

Application

Server,

refer

to

the

System

Administration

topic

in

the

WebSphere

Application

Server

documentation.

Firewall

protection

When

a

WebSphere

Commerce

Server

runs

behind

the

firewall,

Internet

clients

are

not

able

to

directly

access

the

entity

beans.

Using

this

approach,

protection

for

JSP

templates

is

provided

by

the

data

bean

that

is

included

in

the

page.

The

data

bean

is

activated

by

the

data

bean

manager.

The

data

bean

manager

detects

if

the

JSP

template

was

forwarded

by

a

view

command.

If

it

was

not

forwarded

by

a

view

command

an

exception

is

thrown

and

the

request

for

the

JSP

template

is

rejected.

Security

consideration

for

URL

parameters

URL

parameters

provide

a

useful

way

of

passing

request

specific

information.

In

order

to

minimize

the

chance

of

a

malicious

user

gaining

access

to

your

database

in

an

unauthorized

manner,

a

particular

coding

practice

should

be

followed.

Insert,

select,

update,

and

delete

parts

of

SQL

statements

should

be

created

at

development

time.

Parameter

inserts

should

be

used

to

gather

run-time

input

information.

An

example

of

using

a

parameter

insert

to

collect

run-time

input

information

follows:

select

*

from

Order

where

owner

=?

In

contrast,

you

should

avoid

using

input

strings

as

a

way

to

compose

the

SQL

statement.

An

example

of

using

an

input

string

follows:

Chapter

4.

Access

control

91

select

*

from

Order

where

owner

=

“input_string”

The

reason

for

avoiding

the

use

of

the

input

string

to

compose

the

select

is

that

the

input

string

is

easy

to

manipulate.

A

malicious

user

can

set

such

an

input

string

to

an

unexpected

value

and

potentially

gain

unauthorized

access,

or

perform

undesired

operations

against

the

database.

Introduction

to

WebSphere

Commerce

access

control

policies

This

section

provides

a

very

brief

introduction

to

the

main

components

of

the

WebSphere

Commerce

access

control

framework.

It

is

provided

so

that

some

of

the

access

control

related

programming

tasks

are

viewed

in

the

correct

context.

If

you

need

information

about

setting

up

access

control

on

a

production

system,

or

more

details

on

the

access

control

framework,

refer

to

the

WebSphere

Commerce

Security

Guide.

The

WebSphere

Commerce

access

control

model

is

based

upon

the

enforcement

of

access

control

policies.

Access

control

policies

allow

access

control

rules

to

be

externalized

from

business

logic

code,

thereby

removing

the

need

to

hard

code

access

control

statements

into

code.

For

example,

you

do

not

need

to

include

code

similar

to

the

following:

if

(user.isAdministrator())

then

{}

Access

control

policies

are

enforced

by

the

access

control

policy

manager.

In

general,

when

a

user

attempts

to

access

a

protected

resource,

the

access

control

policy

manager

first

determines

what

access

control

policies

are

applicable

for

that

protected

resource,

and

then,

based

upon

the

applicable

access

control

policies,

it

determines

if

the

user

is

allowed

to

access

the

requested

resources.

An

access

control

policy

is

a

4-tuple

policy

that

is

stored

in

the

ACPOLICY

table.

Each

access

control

policy

takes

the

following

form:

AccessControlPolicy

[UserGroup,

ActionGroup,

ResourceGroup,

Relationship]

The

elements

in

the

4-tuple

access

control

policy

specify

that

a

user

belonging

to

a

specific

user

group

is

permitted

to

perform

actions

in

the

specified

action

group

on

resources

belonging

to

the

specified

resource

group,

as

long

as

the

user

satisfies

the

conditions

specified

in

the

relationship

or

relationship

group,

with

respect

to

the

resource

in

question.

For

example,

[AllUsers,

UpdateDoc,

doc,

creator]

specifies

that

all

users

can

update

a

document,

if

they

are

the

creator

of

the

document.

The

user

group

is

a

specific

type

of

member

group

that

is

defined

in

the

MBRGRP

database

table.

A

user

group

must

be

associated

with

member

group

type

of

-2.

The

value

of

-2

represents

an

access

group

and

is

defined

in

92

Programming

Guide

and

Tutorials

the

MBRGRPTYPE

table.

The

association

between

the

user

group

and

member

group

type

is

stored

in

the

MBRGRPUSG

table.

The

membership

of

a

user

into

a

particular

user

group

may

be

stated

explicitly

or

implicitly.

An

explicit

specification

occurs

if

the

MBRGRPMBR

table

states

that

the

user

belongs

to

a

particular

member

group.

An

implicit

specification

occurs

if

the

user

satisfies

a

condition

(for

example,

all

users

that

fulfill

the

role

of

Product

Manager)

that

is

stated

in

the

MBRGRPCOND

table.

There

may

also

be

combined

conditions

(for

example,

all

users

that

fulfill

the

role

of

Product

Manager

and

that

have

been

in

the

role

for

at

least

6

months)

or

explicit

exclusions.

Most

conditions

to

include

a

user

in

a

user

group

are

based

upon

the

user

fulfilling

a

particular

role.

For

example,

there

could

be

an

access

control

policy

that

allows

all

users

that

fulfill

the

Product

Manager

role

to

perform

catalog

management

operations.

In

this

case,

any

user

that

has

been

assigned

the

Product

Manager

role

in

the

MBRROLE

table

is

then

implicitly

included

in

the

user

group.

For

more

details

about

the

member

group

subsystem,

refer

to

the

WebSphere

Commerce

Production

and

Development

online

help.

The

ActionGroup

element

comes

from

the

ACACTGRP

table.

An

action

group

refers

to

an

explicitly

specified

group

of

actions.

The

listing

of

actions

is

stored

in

the

ACACTION

table

and

the

relationship

of

each

action

to

its

action

group

(or

groups)

is

stored

in

the

ACACTACTGP

table.

An

example

of

an

action

group

is

the

″OrderWriteCommands″

action

group.

This

action

group

includes

the

following

actions

that

are

used

to

update

orders:

v

com.ibm.commerce.order.commands.OrderDeleteCmd

v

com.ibm.commerce.order.commands.OrderCancelCmd

v

com.ibm.commerce.order.commands.OrderProfileUpateCmd

v

com.ibm.commerce.order.commands.OrderUnlockCmd

v

com.ibm.commerce.order.commands.OrderScheduleCmd

v

com.ibm.commerce.order.commands.ScheduledOrderCancelCmd

v

com.ibm.commerce.order.commands.ScheduledOrderProcessCmd

v

com.ibm.commerce.order.commands.OrderItemAddCmd

v

com.ibm.commerce.order.commands.OrderItemDeleteCmd

v

com.ibm.commerce.order.commands.OrderItemUpdateCmd

v

com.ibm.commerce.order.commands.PayResetPMCmd

A

resource

group

is

a

mechanism

to

group

together

particular

types

of

resources.

Membership

of

a

resource

in

a

resource

group

can

be

specified

in

one

of

two

ways:

Chapter

4.

Access

control

93

v

Using

the

conditions

column

in

the

ACRESGRP

table

v

Using

the

ACRESGPRES

table

In

most

cases,

it

is

sufficient

to

use

the

ACRESGPRES

table

for

associating

resources

to

resource

groups.

Using

this

method,

resources

are

defined

in

the

ACRESCGRY

table

using

their

Java

class

name.

Then,

these

resources

are

associated

with

the

appropriate

resource

groups

(ACRESGRP

table)

using

the

ACRESGPRES

association

table.

In

cases

where

the

Java

class

name

alone

is

not

sufficient

to

define

the

members

of

a

resource

group

(for

example,

if

you

need

to

further

restrict

the

objects

of

this

class

based

on

an

attribute

of

the

resource),

the

resource

group

can

be

defined

entirely

using

the

conditions

column

of

the

ACRESGRP

table.

Note

that

in

order

to

perform

this

grouping

of

resources

based

on

an

attribute,

the

resource

must

also

implement

the

Groupable

interface.

The

following

diagram

shows

an

example

resource

grouping

specification.

In

this

example

resource

group

10023

includes

all

the

resources

that

are

associated

with

it

in

the

ACRESGPRES

table.

Resource

group

10070

is

defined

using

the

conditions

field

column

in

the

ACRESGRP

table.

This

resource

group

includes

instances

of

the

Order

remote

interface,

that

also

have

status

=

″Z″

(specifying

a

shared

requisition

list).

Note:

Details

about

the

XML

information

for

the

Conditions

column

of

the

ACRESGRP

table

are

found

in

the

WebSphere

Commerce

Security

Guide.

94

Programming

Guide

and

Tutorials

The

MEMBER_ID

column

of

the

ACACTGRP,

ACRESGRP,

and

ACRELGRP

tables

should

have

a

value

of

-2001

(Root

Organization).

The

access

control

policy

can

optionally

include

either

a

Relationship

or

RelationshipGroup

element

as

its

fourth

element.

If

your

access

control

policy

uses

a

Relationship

element,

this

comes

from

the

ACRELATION

table.

If,

on

the

other

hand,

it

includes

a

RelationshipGroup

element,

that

comes

from

the

ACRELGRP

table.

Note

that

neither

need

be

ACRESGRP

ACRESGRPES ACRESCGRY

AcResGrp_Id

AcResCgry_Id ResClassname

GrpName Conditions

10023

10023

10023

10023

10023

10023

10246 10246

10247

10248

10249

10250

com.ibm.commerce.contract.
commands.ContractCreateCmd

com.ibm.commerce.contract.
commands.ContractUpdateCmd

com.ibm.commerce.contract.
commands.ContractDeleteCmd

com.ibm.commerce.contract.
commands.ContractCancelCmd

com.ibm.commerce.contract.
commands.ContractCloseCmd

10247

10248

10249

10250

10070

AccountRepresentatives
CmdResourceGroup

SharedRequisitionList
ResourceGroup

null

<profile>
<andListCondition>
<simpleCondition>
<variable name="Status"/>
<operator name="="/>
<value data="Z"/>

</simpleCondition>
<simpleCondition>
<variable name="classname"/>
<operator name="="/>
<value data="com.ibm.commerce.order.
objects.Order"/>

</simpleCondition>
</andListCondition>

</profile>

AcResGrp_Id AcResCgry_Id

Figure

20.

Chapter

4.

Access

control

95

included,

but

if

you

include

one,

you

cannot

include

the

other.

A

RelationshipGroup

specification

from

the

ACRELGRP

table

takes

precedence

over

the

Relationship

information

from

the

ACRELATION

table.

The

ACRELATION

table

specifies

the

types

of

relationships

that

exist

between

users

and

resources.

Some

examples

of

types

of

relationships

include

creator,

submitter,

and

owner.

An

example

of

the

use

of

the

relationship

element

is

to

use

it

to

ensure

that

the

creator

of

an

order

can

always

update

the

order.

The

ACRELGRP

table

specifies

the

types

of

relationship

groups

that

can

be

associated

with

particular

resources.

A

relationship

group

is

a

grouping

of

one

or

more

relationship

chains.

A

relationship

chain

is

a

series

of

one

more

relationships.

An

example

of

a

relationship

group

is

to

specify

that

a

user

must

be

the

creator

of

the

resource

and

also

belong

to

the

buying

organizational

entity

that

is

referenced

in

the

resource.

The

relationship

group

(or

relationship)

specification

is

an

optional

part

of

the

access

control

policy.

It

is

commonly

used

if

you

have

created

your

own

commands

and

these

commands

are

not

restricted

to

certain

roles.

In

these

cases,

you

might

want

to

enforce

a

relationship

between

the

user

and

the

resource.

Typically,

if

commands

are

to

be

restricted

to

certain

roles,

it

is

accomplished

through

the

UserGroup

element

of

the

access

control

policy

rather

than

by

using

the

Relationship

element.

Another

important

concept

related

to

access

control

policies

is

the

concept

of

access

control

policy

groups.

WebSphere

Commerce

Version

5.5

supports

various

business

models,

and

each

business

model

has

its

own

set

of

access

control

policies.

In

order

to

group

the

sets

of

policies

within

the

models,

policy

groups

are

used.

Policies

are

explicitly

assigned

to

appropriate

policy

groups

and

then

organizations

can

subscribe

to

one

or

more

of

these

policy

groups.

In

previous

versions

of

WebSphere

Commerce,

a

policy

applied

to

all

resources

owned

by

the

descendants

of

that

policy’s

owner

organization.

In

WebSphere

Commerce

Version

5.5,

if

an

organization

subscribes

to

one

or

more

policy

groups,

only

the

policies

in

those

policy

groups

will

apply

to

the

resources

of

that

organization.

If

a

resource

is

owned

by

an

organization

that

does

not

subscribe

to

any

policy

groups,

the

access

control

policy

manager

will

search

up

the

organization

hierarchy

until

it

encounters

the

closest

ancestor

organization

that

subscribes

to

at

least

one

policy

group;

once

found,

it

will

apply

the

policies

belonging

to

those

policy

groups.

Consider

the

following

diagram:

96

Programming

Guide

and

Tutorials

For

any

resources

owned

by

the

Seller

Organization,

the

policies

in

the

Seller

Organization

policy

group

and

those

in

the

Root

Organization

policy

group

apply.

These

policies

are

applicable

because

the

Seller

Organization

explicitly

subscribes

to

those

two

policy

groups

(the

dotted

arrows

show

the

subscription).

In

total,

three

policies

apply

for

this

organization.

This

example

is

one

where

the

organization

that

owned

the

resource

explicitly

subscribes

to

policy

groups.

The

diagram

also

shows

an

example

where

the

organization

does

not

explicitly

subscribe

to

any

policy

groups,

so

the

access

control

framework

must

look

farther

up

in

the

hierarchy.

For

resources

that

are

owned

by

Default

Organization,

one

must

go

up

the

hierarchy

to

the

Root

Organization.

The

Root

Organization

only

subscribes

to

one

policy

group,

so

those

are

the

only

policies

(policies

1

and

2)

that

apply

to

the

resources

of

the

Default

Organization.

Relationship

groups

A

relationship

group

allows

you

to

specify

multiple

relationships.

A

relationship

can

be

directly

between

a

user

and

the

resource

in

question,

or

it

can

be

a

chain

of

relationships

that

indirectly

relate

the

user

to

the

resource.

ou= Division A Organizational Unit

o=Seller Organization o=Default Organization

Guest
User 1

Carol

Don
Approver

Billy

Emily

Abe
Approver

o=Root Organization• Policy 1
• Policy 2

• Policy 3

• Policy 4

Division A
Organizational Unit Policy Group

Root Organization Policy Group

Seller Organization Policy Group

Figure

21.

Chapter

4.

Access

control

97

Note:

2000Express

2000Professional

For

the

following

sections

related

to

relationship

groups,

it

is

important

to

recognize

that

the

only

organizations

available

in

WebSphere

Commerce

Professional

Edition

and

WebSphere

Commerce

-

Express

are

the

RootOrganization,

the

DefaultOrganization,

and

the

SellerOrganization.

2000Business

Examples

that

refer

to

other

organizations

only

apply

to

WebSphere

Commerce

Business

Edition.

Comparing

relationships

to

relationship

groups:

Access

control

policies

can

specify

that

a

user

must

fulfill

a

particular

relationship

with

respect

to

the

resource

being

accessed,

or

they

can

specify

that

a

user

must

fulfill

the

conditions

specified

in

a

relationship

group.

In

most

cases,

specifying

a

relationship

should

satisfy

the

access

control

requirements

for

your

application.

If,

however,

the

policy

is

such

that

you

must

specify

a

relationship

that

is

not

directly

between

the

user

and

the

resource,

but

that

is

actually

a

series

of

relationships

between

the

user

and

the

resource,

you

must

then

use

a

relationship

group.

For

example,

if

you

must

specify

an

association

between

a

user

and

a

buying

organization

where

the

relationship

requires

that

the

user

is

playing

a

particular

role

for

that

organization

or

that

the

user

is

a

member

of

the

buying

organization,

then

you

must

use

a

relationship

group

and

a

chain

of

relationships.

If

you

merely

need

to

enforce

an

association

that

is

directly

between

the

user

and

the

resource

in

question,

you

can

use

a

simple

relationship.

For

example,

this

would

be

the

case

if

you

need

to

enforce

that

the

user

must

be

the

creator

of

the

resource.

If

you

combine

multiple

simple

relationships,

for

example,

the

user

must

be

the

creator

or

the

submitter,

then

this

becomes

a

chain

of

relationships

and

you

must

use

a

relationship

group.

This

combination

of

simple

relationships

may

occur

when

using

either

WebSphere

Commerce

Professional

Edition

or

WebSphere

Commerce

Business

Edition.

General

information

about

relationship

groups:

A

relationship

chain

is

a

series

of

one

more

relationships.

The

length

of

a

relationship

chain

is

determined

by

the

number

of

relationships

that

it

contains.

This

can

be

determined

by

examining

the

number

of

<parameter

name=“aName”

value=“aValue”

/>

elements

in

the

XML

representation

of

the

relationship

chain.

Only

the

last

<parameter

name=“Relationship”

value=“aValue”

/>

element

must

be

handled

by

the

fulfills()

method

of

the

resource.

The

rest

are

handled

internally

by

the

access

control

policy

manager.

98

Programming

Guide

and

Tutorials

When

a

relationship

chain

has

a

length

of

2,

the

first

<parameter

name=“aName”

value=“aValue”

/>

element

is

between

a

user

and

an

organizational

entity.

The

last

<parameter

name=“aName”

value=“aValue”

/>

element

is

between

an

organizational

entity

and

the

resource.

If

you

need

to

define

relationship

groups,

you

must

do

so

by

defining

the

relationship

group

information

in

an

XML

file.

You

can

create

your

own

XML

file

based

on

the

defaultAccessControlPolicies.xml

file.

For

more

information

about

creating

this

XML-based

information,

refer

to

the

WebSphere

Commerce

Security

Guide.

Types

of

access

control

There

are

two

types

of

access

control,

both

of

which

are

policy-based:

command-level

access

control

and

resource-level

access

control.

Command-level

(also

known

as

“role-based”)

access

control

uses

a

broad

type

of

policy.

You

can

specify

that

all

users

of

a

particular

role

can

execute

certain

types

of

commands.

For

example,

you

can

specify

that

users

with

the

Account

Representative

role

can

execute

any

command

in

the

AccountRepresentativesCmdResourceGroup

resource

group.

Or,

as

depicted

in

the

following

diagram,

another

example

policy

is

to

specify

that

all

store

administrators

can

perform

any

action

specified

in

the

ExecuteCommandAction

Group

on

any

resource

that

is

specified

by

the

StoreAdminCmdResourceGrp.

Note:

The

XML

information

for

the

Conditions

column

of

the

MBRGRPCOND

table

is

generated

when

you

use

the

Administration

Console

to

set

up

your

access

groups.

For

information

about

using

the

Administration

Console

to

set

up

access

groups,

refer

to

the

WebSphere

Commerce

Production

online

help.

Chapter

4.

Access

control

99

A

command-level

access

control

policy

always

has

the

ExecuteCommandActionGroup

as

the

action

group

for

controller

commands.

For

views,

the

resource

group

is

always

ViewCommandResourceGroup.

All

controller

commands

must

be

protected

by

command-level

access

control.

In

addition,

any

view

that

can

be

called

directly,

or

that

can

be

launched

by

a

redirect

from

another

command

(in

contrast

to

being

launched

by

forwarding

to

the

view)

must

be

protected

by

command-level

access

control.

Command-level

access

control

does

not

consider

the

resource

that

the

command

would

act

upon.

It

merely

determines

if

the

user

is

allowed

to

execute

the

particular

command.

If

the

user

is

allowed

to

execute

the

ACPOLICY

MBRGRP

ACACTGRP

ACRESGRP

MBRGRPCOND

PolicyName

MbrGrpName

GroupName

GrpName

Conditions

Member_Id MbrGrp_Id

MbrGrp_Id

AcActGrp_Id

AcResGrp_Id

MbrGrp_Id

AcActGrp_id AcResGrp_Id AcRelGrp_Id

StoreAdministrators
ExecuteStore
CmdResourceGroup

Administrators

StoreAdministrators

ExecuteCommandActionGroup

Store CmdResourceGroupAdministrators

<profile>
<simpleCondition>
<variable name="role"/>
<operator name="="/>
<value data="Store Administrator"/>

</simpleCondition>
</profile>

-2001 -8

-8

10052

10018

-8

10052 10018 null

Figure

22.

100

Programming

Guide

and

Tutorials

command,

a

subsequent

resource-level

access

control

policy

could

be

applied

to

determine

if

the

user

can

access

the

resource

in

question.

Consider

when

a

store

administrator

attempts

to

perform

an

administrative

task.

The

first

level

of

access

control

checking

would

be

to

determine

if

this

user

is

allowed

to

execute

the

particular

store

administration

command.

Once

it

has

been

determined

that

the

user

is

in

fact

permitted

to

do

this

(because

store

administrators

are

allowed

to

execute

commands

in

the

storeAdminCmds

group),

a

resource-level

access

control

policy

may

be

invoked.

This

policy

may

state

that

store

administrators

are

only

permitted

to

perform

administrative

tasks

for

stores

that

are

owned

by

the

organization

for

which

the

user

is

a

store

administrator.

To

summarize,

in

command-level

access

control

the

“resource”

is

the

command

itself

and

the

“action”

is

merely

to

execute

the

command

(in

other

words,

to

instantiate

the

command

object).

The

access

control

check

determines

if

the

user

is

permitted

to

execute

the

command.

By

contrast,

in

resource-level

access

control

the

“resource”

is

any

protectable

resource

that

the

command

or

bean

accesses

and

the

“action”

is

the

command

itself.

Access

control

interactions

This

section

presents

an

interaction

diagram

showing

how

access

control

works

in

the

WebSphere

Commerce

access

control

policy

framework.

Chapter

4.

Access

control

101

The

preceding

diagram

shows

actions

that

are

performed

by

the

access

control

policy

manager.

The

access

control

policy

manager

is

the

access

control

component

that

determines

whether

or

not

the

current

user

is

allowed

to

execute

the

specified

action

on

the

specified

resource.

It

determines

this

by

searching

through

the

policies

in

groups

to

which

the

resource

owner

subscribes.

If

the

resource

owner

does

not

subscribe

to

any

policy

groups,

it

searches

through

the

policies

in

groups

to

which

the

resource

owner’s

closest

ancestor

subscribes.

If

at

least

one

policy

grants

access,

then

permission

is

granted.

The

following

list

describes

the

actions

from

the

preceding

interaction

diagram.

They

are

ordered

from

the

top

of

the

diagram

to

the

bottom.

1.

isAllowed()
The

run-time

components

determine

if

the

user

has

command-level

access

for

either

the

controller

command

or

view.

RunTime
Framework

PolicyManager Command Resource

isAllowed(User,Action,Resource) : Command level

isAllowed(User,Action,Resource) : Resource level

validateParameters()

getResources()

performExecute()

getOwner()

getOwner()

getAndApplyApplicablePolicies()

fulfills(Member, Relationship)

getAndApplyApplicablePolicies()

Figure

23.

102

Programming

Guide

and

Tutorials

2.

getOwner()
The

access

control

policy

manager

determines

the

owner

of

the

command-level

resource.

The

default

implementation

returns

the

member

identifier

(memberId)

of

the

owner

of

the

store

(

storeId)

that

is

in

the

command

context.

If

there

is

no

store

identifier

in

the

command

context,

then

the

root

organization

(-2001)

is

returned.

3.

getAndApplyApplicablePolicies()
The

access

control

policy

manager

finds

and

processes

the

applicable

policies,

based

on

the

specified

user,

action

and

resource.

If

at

least

one

applicable

policy

grants

access,

the

command-level

access

check

passes,

and

the

policy

manager

will

continue

to

the

next

step

to

begin

checking

for

resource-level

authorization.

Conversely,

if

none

of

the

applicable

policies

grant

command-level

access,

the

policy

manager

returns

at

this

point

and

denies

access.

4.

validateParameters()
Initial

parameter

checking

and

resolving.

5.

getResources()
Returns

an

access

vector

that

is

a

vector

of

resource-action

pairs.

If

nothing

is

returned,

resource-level

access

control

checking

is

not

performed.

If

there

are

resources

that

should

be

protected

an

access

vector

(consisting

of

resource-action

pairs)

should

be

returned.

Each

resource

is

an

instance

of

a

protectable

object

(an

object

that

implements

the

com.ibm.commerce.security.Protectable

interface).

In

many

cases,

the

resource

is

an

access

bean.

An

access

bean

may

not

implement

the

com.ibm.commerce.security.Protectable

interface,

however,

the

access

control

check

can

still

occur

as

long

as

the

corresponding

enterprise

bean

is

protected,

according

to

the

information

included

in

“Implementing

access

control

in

enterprise

beans”

on

page

106.

The

action

is

a

string

representing

the

operation

to

be

performed

on

the

resource.

In

most

cases,

the

action

is

the

interface

name

of

the

command.

6.

isAllowed()
The

run-time

components

determine

if

the

user

has

resource

level

access

to

all

of

the

resource-action

pairs

specified

by

getResources().

7.

getOwner()
The

resource

returns

the

memberId

of

its

owner.

This

determines

which

policies

apply.

8.

getAndApplyApplicablePolicies()
The

access

control

policy

manager

searches

for

applicable

policies

and

then

applies

them.

If

at

least

one

policy

per

resource-action

pair

that

grants

the

user

permission

to

access

the

resource

is

found,

then

access

is

granted,

otherwise

access

it

is

denied.

Chapter

4.

Access

control

103

9.

fulfills()
If

an

applicable

policy

has

a

relationship

or

relationship

group

specified,

a

check

is

done

on

the

resource

to

see

if

the

member

satisfies

the

specified

relationship,

with

respect

to

the

resource.

10.

performExecute()
The

business

logic

of

the

command.

Protectable

interface

A

key

factor

for

having

a

resource

protected

by

the

WebSphere

Commerce

access

control

policies,

is

that

the

resource

must

implement

the

com.ibm.commerce.security.Protectable

interface.

This

interface

is

most

commonly

used

with

enterprise

beans

and

data

beans,

but

only

those

particular

beans

that

require

protection

need

to

implement

the

interface.

With

the

Protectable

interface,

a

resource

must

provide

two

key

methods:

getOwner(),

and

fulfills(Long

member,

String

relationship).

Access

control

policies

are

owned

by

organizations

or

organizational

entities.

The

getOwner

method

returns

the

memberId

of

the

owner

of

the

protectable

resource.

After

the

access

control

policy

manager

determines

the

owner

of

the

resource,

it

also

gets

the

memberId

of

each

of

the

ancestors

for

the

owner

in

the

member

hierarchy.

All

access

control

policies

that

belong

to

the

owner

from

the

original

getOwner

request

as

well

as

all

access

control

policies

that

belong

to

any

of

the

owner’s

ancestors

are

then

applied.

Access

control

policies

that

apply

to

the

specified

owner,

as

well

as

access

control

policies

that

apply

to

any

of

the

owner’s

higher

level

ancestors

in

the

membership

hierarchy,

are

applied.

The

fulfills

method

only

returns

true

if

the

given

member

satisfies

the

required

relationship

with

respect

to

the

resource.

Typically

the

member

is

a

single

user,

however

it

can

also

be

an

organization.

It

would

be

an

organization

if

you

are

using

a

relationship

group

in

the

access

control

policy.

Groupable

interface

The

application

of

an

access

control

policy

is

specific

to

a

group

of

resources.

Resource

groupings

can

be

made

based

upon

attributes

such

as

the

class

name,

the

state

of

an

order

or

the

storeId

value.

If

a

resource

is

going

to

be

grouped

by

an

attribute

other

than

its

class

name

for

the

purpose

of

applying

access

control

policies,

it

must

implement

the

com.ibm.commerce.grouping.Groupable

interface.

The

following

code

snippet

represents

the

Groupable

interface:

104

Programming

Guide

and

Tutorials

Groupable

interface

{

Object

getGroupingAttributeValue

(String

attributeName,

GroupContext

context)

}

For

example,

to

implement

a

policy

that

only

applies

to

orders

that

are

in

the

pending

state

(status

=

P

(pending)),

the

remote

interface

of

the

Order

entity

bean

implements

the

Groupable

interface

and

the

value

for

attributeName

is

set

to

“status”.

Usage

of

the

Groupable

interface

is

rare.

Finding

more

information

about

access

control

For

more

information

about

the

WebSphere

Commerce

access

control

model,

refer

to

the

WebSphere

Commerce

Security

Guide.

This

guide

provides

a

detailed

overview

of

access

control

and

describes

how

to

use

the

Administration

Console

to

create

or

modify

policies,

action

groups,

and

resource

groups.

Implementing

access

control

This

section

describes

how

to

implement

access

control

in

customized

code.

Identifying

protectable

resources

In

general,

enterprise

beans

and

data

beans

are

resources

that

you

may

want

to

protect.

However,

not

all

enterprise

beans

and

data

beans

should

be

protected.

Within

the

existing

WebSphere

Commerce

application,

resources

that

require

protection

already

implement

the

protectable

interface.

Typically,

the

question

of

what

to

protect

comes

into

play

when

you

create

new

enterprise

beans

and

data

beans.

Deciding

which

resources

to

protect

depends

upon

your

application.

If

a

command

returns

an

enterprise

bean

in

the

getResources

method,

then

the

enterprise

bean

must

be

protected

because

the

access

control

policy

manager

will

call

the

getOwner

method

on

the

enterprise

bean.

The

fulfills

method

will

also

be

called

if

a

relationship

is

specified

in

the

corresponding

resource-level

access

control

policy.

If

you

were

to

implement

the

protectable

interface

(and

therefore,

put

the

resource

under

protection)

for

all

of

your

own

enterprise

beans

and

data

beans,

your

application

could

require

many

policies.

As

the

number

of

policies

increases,

performance

may

degrade

and

policy

management

becomes

more

challenging.

A

theoretical

distinction

is

made

between

primary

resources

and

dependent

resource.

A

primary

resource

can

exist

upon

its

own.

A

dependent

resource

exists

only

when

its

related

primary

resource

exists.

For

example,

in

the

out-of-the-box

WebSphere

Commerce

application

code,

the

Order

entity

bean

is

a

protectable

resource,

but

the

OrderItem

entity

bean

is

not.

The

reason

for

Chapter

4.

Access

control

105

this

is

that

the

existence

of

an

OrderItem

depends

upon

an

Order

--

the

Order

is

the

primary

resource

and

the

OrderItem

is

a

dependent

resource.

If

a

user

should

have

access

to

an

Order,

it

should

also

have

access

to

the

items

in

the

order.

Similarly,

the

User

entity

bean

is

a

protectable

resource,

but

the

Address

entity

bean

is

not.

In

this

case,

the

existence

of

the

address

depends

on

the

user,

so

anything

that

has

access

to

the

user,

should

also

have

access

to

the

address.

Primary

resources

should

be

protected,

but

dependent

resources

often

do

not

require

protection.

If

a

user

is

allowed

to

access

a

primary

resource,

it

makes

sense

that,

by

default,

the

user

should

also

be

allowed

to

access

its

dependent

resources.

Implementing

access

control

in

enterprise

beans

If

you

create

new

enterprise

beans

that

require

protection

by

access

control

policies,

you

must

do

the

following:

1.

Create

a

new

enterprise

bean,

ensuring

that

it

extends

from

com.ibm.commerce.base.objects.ECEntityBean.

2.

Ensure

that

the

remote

interface

of

the

bean

extends

the

com.ibm.commerce.security.Protectable

interface.

3.

If

a

resource

is

going

to

be

grouped

by

an

attribute

other

than

its

Java

class

name

for

the

purpose

of

applying

access

control

policies,

the

remote

interface

of

the

bean

must

also

extend

the

com.ibm.commerce.grouping.Groupable

interface.

4.

The

enterprise

bean

class

inherits

inherits

default

implementations

for

the

following

methods

from

com.ibm.commerce.base.objects.ECEntityBean:

v

getOwner

v

fulfills

v

getGroupingAttributeValue

Override

any

methods

that

you

need.

At

a

minimum,

you

must

override

the

getOwner

method.

The

fulfills

method

must

be

implemented

if

there

is

an

access

control

policy

that

includes

this

resource

in

its

resource

group,

and

also

specifies

a

relationship

or

relationship

group.

The

getGroupingAttributeValue

method

must

be

implemented

if

there

is

an

access

control

policy

with

an

implicit

resource

group

that

includes

certain

instances

of

this

resource,

based

on

specific

attribute

values

(for

example,

if

there

were

an

access

control

policy

that

pertains

only

pertains

to

Orders

with

status

=

’P’

(pending)).

106

Programming

Guide

and

Tutorials

Note

that

if

the

only

relationship

needed

is

“owner”,

then

you

do

not

need

to

override

the

fulfills

method.

In

this

case,

the

policy

manager

will

make

use

of

the

result

of

the

getOwner()

method.

The

default

implementations

of

these

methods

are

shown

in

the

following

code

snippets.

These

implementations

come

from

the

ECEntityBean

class.

**

public

Long

getOwner()

throws

Exception

{

return

null;

}

**

**

public

boolean

fulfills(Long

member,

String

relationship)

throws

Exception

{

return

false;

}

**

**

public

Object

getGroupingAttributeValue(String

attributeName,

GroupingContext

context)

throws

Exception

{

return

null;

}

**

The

following

are

sample

implementations

of

these

methods

based

on

the

implementations

used

in

the

OrderBean

bean:

v

For

the

getOwner

method,

the

logic

of

the

provided

method

is:

com.ibm.commerce.common.objects.StoreEntityAccessBean

storeEntAB

=

new

com.ibm.commerce.common.objects.StoreEntityAccessBean();

storeEntAB.setInitKey_storeEntityId(getStoreEntityId().toString());

return

storeEntAB.getMemberIdInEJBType();

v

For

the

fulfills

method,

the

logic

of

the

provided

method

is:

**

if

("creator".equalsIgnoreCase(relationship))

{

return

member.equals(bean.getMemberId());

}

else

if

("BuyingOrganizationalEntity".equalsIgnoreCase(relationship))

{

return

(member.equals(bean.getOrganizationId()));

}

else

if

("sameOrganizationalEntityAsCreator".

equalsIgnoreCase(relationship))

{

com.ibm.commerce.user.objects.UserAccessBean

creator

=

new

com.ibm.commerce.user.objects.UserAccessBean();

Chapter

4.

Access

control

107

creator.setInitKey_MemberId(bean.getMemberId().toString());

com.ibm.commerce.user.objects.UserAccessBean

ab

=

new

com.ibm.commerce.user.objects.UserAccessBean();

ab.setInitKey_MemberId(member.toString());

if

(ab.getParentMemberId().equals(creator.getParentMemberId()))

return

true;

}

return

false;

**

v

For

the

getGroupingAttributeValue

method,

the

logic

of

the

provided

method

is:

**

if

(attributeName.equalsIgnoreCase("Status"))

return

getStatus();

return

null;

**

5.

Create

(or

recreate)

the

enterprise

bean’s

access

bean

and

generated

code.

Note

that

if

you

examine

other

WebSphere

Commerce

public

entity

beans

to

understand

how

the

getOwner,

fulfills

and

getGroupingAttributeValue

methods

are

implemented,

you

will

notice

that

these

methods

are

implemented

in

the

access

helper

class

for

the

beans.

As

a

result

of

the

fact

that

the

methods

are

implemented

in

the

access

helper

classes

instead

of

directly

in

the

bean

class,

the

method

signatures

are

slightly

different.

In

particular,

for

the

methods

take

an

extra

input

parameter

for

the

object

itself

to

be

passed

into

the

access

helper.

You

must

ensure

that

when

you

create

new

beans,

you

implement

these

methods

directly

in

the

bean

class.

Additionally,

you

must

not

modify

any

of

those

methods

in

the

access

helper

classes

of

the

WebSphere

Commerce

public

entity

beans.

Implementing

access

control

in

data

beans

If

a

data

bean

is

to

be

protected,

it

can

either

be

directly,

or

indirectly

protected

by

access

control

policies.

If

a

data

bean

is

directly

protected,

then

there

exists

an

access

control

policy

that

applies

to

that

particular

data

bean.

If

a

data

bean

is

indirectly

protected,

it

delegates

protection

to

another

data

bean,

for

which

an

access

control

policy

exists.

To

determine

if

a

data

bean

should

be

protected,

consider

the

following:

1.

Is

the

information

in

the

data

bean

information

that

requires

protection?

For

example,

is

it

something

of

a

private

nature?

If

not,

direct

protection

by

access

control

is

not

required.

If

yes,

continue.

2.

Data

beans

are

instantiated

by

views.

Will

the

view

instantiate

the

data

bean

by

using

information

from

the

command

context

(or

some

other

108

Programming

Guide

and

Tutorials

predetermined

information)?

If

yes,

and

access

control

has

already

determined

that

access

is

allowed,

directly

protecting

this

data

bean

would

not

be

required.

If

no,

continue.

3.

Will

the

view

instantiate

the

data

bean

by

using

information

from

some

input

parameter?

In

this

case,

due

to

the

fact

that

you

are

not

certain

that

access

control

has

already

determined

whether

or

not

the

user

is

allowed

access

to

this

information,

you

should

protect

the

new

data

bean.

If

you

create

a

new

data

bean

that

is

to

be

directly

protected

by

an

access

control

policy,

the

data

bean

must

do

the

following:

1.

Implement

the

com.ibm.commerce.security.Protectable

interface.

As

such,

the

bean

must

provide

an

implementation

of

the

getOwner()

and

fulfills(Long

member,

String

relationship)

methods.

When

a

data

bean

implements

the

Protectable

interface,

the

data

bean

manager

calls

the

isAllowed

method

to

determine

if

the

user

has

the

appropriate

access

control

privileges,

based

upon

the

existing

access

control

policies.

The

isAllowed

method

is

described

by

the

following

code

snippet:

isAllowed(Context,

"Display",

protectable_databean);

where

protectable_databean

is

the

data

bean

to

be

protected.

2.

If

resources

that

the

bean

interacts

with

are

grouped

by

an

attribute

other

than

the

resource’s

Java

class

name,

the

bean

must

implement

the

com.ibm.commerce.grouping.Groupable

interface.

3.

Implement

the

com.ibm.commerce.security.Delegator

interface.

This

interface

is

described

by

the

following

code

snippet:

Interface

Delegator

{

Protectable

getDelegate();

}

Note:

In

order

to

be

directly

protected,

the

getDelegate

method

should

return

the

data

bean

itself

(that

is,

the

data

bean

delegates

to

itself

for

the

purpose

of

access

control).

The

distinction

between

which

data

beans

should

be

protected

directly

versus

which

should

be

protected

indirectly

is

similar

to

the

distinction

between

primary

and

dependent

resources.

If

the

data

bean

object

can

exist

on

its

own,

it

should

be

directly

protected.

If

the

existence

of

data

bean

depends

upon

the

existence

of

another

data

bean,

then

it

should

delegate

to

the

other

data

bean

for

protection.

An

example

of

a

data

bean

that

would

be

directly

protected

is

the

Order

data

bean.

An

example

of

a

data

bean

that

would

be

indirectly

protected

is

the

OrderItem

data

bean.

Chapter

4.

Access

control

109

If

you

create

a

new

data

bean

that

is

to

be

indirectly

protected

by

an

access

control

policy,

the

data

bean

must

do

the

following:

1.

Implement

the

com.ibm.commerce.security.Delegator

interface.

This

interface

is

described

by

the

following

code

snippet:

Interface

Delegator

{

Protectable

getDelegate();

}

Note:

The

data

bean

returned

by

getDelegate

must

implement

the

Protectable

interface.

If

a

data

bean

does

not

implement

the

Delegator

interface,

it

is

populated

without

the

protection

of

access

control

policies.

Implementing

access

control

in

controller

commands

When

creating

a

new

controller

command,

the

implementation

class

for

the

new

command

should

extend

the

com.ibm.commerce.commands.ControllerCommandImpl

class

and

its

interface

should

extend

the

com.ibm.commerce.command.ControllerCommand

interface.

For

command-level

accss

control

policies

for

controller

commands,

the

interface

name

of

the

command

is

specified

as

a

resource.

In

order

for

a

resource

to

be

protected,

it

must

implement

the

Protectable

interface.

According

to

the

WebSphere

Commerce

programming

model,

this

is

accomplished

by

having

the

command’s

interface

extend

from

com.ibm.commerce.command.ControllerCommand

interface,

and

the

command’s

implementation

extend

from

com.ibm.commerce.command.ControllerCommandImpl.

The

ControllerCommand

interface

extends

com.ibm.commerce.command.AccCommand

interface,

which

in

turn

extends

Protectable.

The

AccCommand

interface

is

the

minimum

interface

that

a

command

should

implement

in

order

to

be

protected

by

command

level

access

control.

If

the

command

accesses

resources

that

should

be

protected,

create

a

private

instance

variable

of

type

AccessVector

to

hold

the

resources.

Then

override

the

getResources

method

since

the

default

implementation

of

this

method

returns

a

null

value

and

therefore,

no

resource

checking

occurs.

In

the

new

getResources

method,

you

should

return

an

array

of

resources

or

of

resource-action

pairs

upon

which

the

command

can

act.

When

an

action

is

not

explicitly

specified,

the

action

defaults

to

the

interface

name

of

the

command

being

executed.

The

action

only

needs

to

be

specified

when

a

command

is

doing

both

a

read

and

write

operation

on

different

instances

of

the

same

resource

class.

For

example,

in

the

OrderCopy

command,

it

can

read

from

a

source

order

and

110

Programming

Guide

and

Tutorials

write

to

a

destination

order.

In

this

case,

a

differentiation

must

be

made

between

the

two

actions.

This

is

accomplished

by

specifying

the

“-Read”

action

for

the

source

order,

and

the

“-Write”

action

for

the

destination

order.

When

the

access

control

framework

detects

these

actions,

it

automatically

prepends

them

with

the

interface

name

of

the

command

before

searching

for

applicable

policies.

In

this

case,

the

actions

that

will

ultimately

be

used

in

the

policies

are

the

“com.ibm.commerce.order.commands.OrderCopyCmd-Read”

and

“com.ibm.commerce.order.commands.OrderCopyCmd-Write”

actions.

Additionally,

it

is

recommended

that

the

method

determines

if

it

must

instantiate

the

resource

or

if

it

can

use

the

existing

instance

variable

holding

the

reference

to

the

resource.

Checking

to

see

if

the

resource

object

already

exists

can

help

to

improve

system

performance.

You

can

then

use

the

same

instance

variable,

if

required,

in

the

performExecute

method

of

the

new

controller

command.

To

determine

if

you

must

override

the

getResources

method,

consider

the

following:

v

If

you

derive

the

resource

based

upon

a

predefined

source

of

information,

such

as

the

command

context,

you

would

not

need

to

override

the

getResources

method.

For

example,

the

WebSphere

Commerce

UserRegistrationUpdate

command

derives

the

user’s

ID

from

the

command

context.

In

this

case,

the

user

is

already

authorized

to

act

upon

their

own

registration

information,

so

the

getResources

method

does

not

need

to

be

overridden.

v

If

your

command

is

arbitrarily

specifying

a

new

resource

(and

this

resource

is

of

a

private

nature),

you

must

override

the

getResources

method.

As

an

example,

the

WebSphere

Commerce

OrderItemUpdate

command

takes

an

order

ID

as

an

input

parameter.

In

this

case,

when

the

order

resource

is

instantiated,

you

do

not

know

if

the

user

has

authority

to

take

action

upon

that

particular

resource.

In

this

case,

the

getResources

method

is

overridden.

The

following

is

an

example

of

the

getResources

method:

private

AccessVector

resources

=

null;

public

AccessVector

getResources()

throws

ECException

{

if

(resources

==

null)

{

OrderAccessBean

orderAB

=

new

OrderAccessBean();

orderAB.setInitKey_orderId(getOrderId().toString());

resouces

=

new

AccessVector(orderAB);

}

return

resources;

}

Chapter

4.

Access

control

111

As

an

example,

consider

the

OrderItemUpdate

command.

The

getResources

method

of

this

command

returns

one

or

more

Order

objects

(which

are

protectable),

when

it

is

updating

existing

orders.

Since

the

action

is

not

specified,

the

action

defaults

to

the

interface

for

the

OrderItemUpdate

command.

Multiple

resources

may

be

returned

by

the

getResources

method.

When

this

occurs,

a

policy

that

gives

the

user

access

to

all

of

the

specified

resources

must

be

found

if

the

action

is

to

be

carried

out.

If

a

user

had

access

to

two

out

of

three

resources,

the

action

may

not

proceed

(three

out

of

three

are

required).

If

you

need

to

perform

additional

parameter

checking

or

resolving

of

parameters

in

the

controller

command,

you

can

use

the

validateParameters()

method.

Use

of

this

method

is

optional.

Additional

resource

level

checking

It

is

not

always

possible

to

determine

all

of

the

resources

that

need

to

be

protected,

at

the

time

the

getResources

method

of

the

controller

command

is

called.

If

necessary,

a

task

command

can

also

implement

a

getResources

method

to

return

a

list

of

resources,

upon

which

the

command

can

act.

Another

way

to

invoke

resource

level

checking

is

to

make

direct

calls

to

the

access

control

policy

manager,

using

the

checkIsAllowed(Object

resource,

String

action)

method.

This

method

is

available

to

any

class

that

extends

from

the

com.ibm.commerce.command.AbstractECTargetableCommand

class.

For

example,

the

following

classes

extend

from

the

AbstractECTargetableCommand

class:

v

com.ibm.commerce.command.ControllerCommandImpl

v

com.ibm.commerce.command.DataBeanCommandImpl

The

checkIsAllowed

method

is

also

available

to

classes

that

extend

the

com.ibm.commerce.command.AbstractECCommand

class.

For

example,

the

following

class

extends

from

the

AbstractECCommand

class:

v

com.ibm.commerce.command.TaskCommandImpl

The

following

shows

the

signature

of

the

checkIsAllowed

method:

void

checkIsAllowed(Object

resource,

String

action)

throws

ECException

This

method

throws

an

ECApplicationException

if

the

current

user

is

not

allowed

to

perform

the

specified

action

on

the

specified

resource.

If

access

is

granted,

then

the

method

simply

returns.

112

Programming

Guide

and

Tutorials

Access

control

for

“create”

commands

Since

the

getResources

method

is

called

before

the

performExecute

method

in

a

command,

a

different

approach

must

be

taken

for

access

control

for

resources

that

are

not

yet

created.

For

example,

if

you

have

a

WidgetAddCmd,

the

getResources

method

cannot

return

the

resource

that

is

about

to

be

created.

In

this

case,

the

getResources

method

should

return

the

container

of

the

new

resource.

For

example,

if

an

order

is

being

created,

this

is

done

within

the

store

resource;

and

a

new

user

is

created

within

an

organization

resource.

Default

implementations

for

command-level

access

control

For

command-level

access

control,

the

default

implementation

of

the

getOwner()

method

returns

the

memberId

of

the

store

owner,

if

the

storeId

is

specified.

If

the

storeId

is

not

specified,

the

memberId

of

the

root

organization

is

returned

(memberId

=

-2001).

The

default

implementation

of

the

getResources()

method

returns

null.

The

default

implementation

of

the

validateParameters()

does

nothing.

Implementing

access

control

policies

in

views

Resource-level

access

control

for

views

is

performed

by

the

data

bean

manager.

The

data

bean

manager

is

invoked

in

the

following

cases:

1.

When

the

JSP

template

includes

the

<useBean>

tag

and

the

data

bean

is

not

in

the

attribute

list.

2.

When

the

JSP

template

includes

the

following

activate

method:

DataBeanManager.activate(xyzDatabean,

request);

Note:

Any

data

bean

that

is

to

be

protected

(either

directly

or

indirectly)

must

implement

the

Delegator

interface.

Any

data

bean

that

is

to

be

directly

protected

will

delegate

to

itself,

and

thus

must

also

implement

the

Protectable

interface.

Data

beans

that

are

indirectly

protected

should

delegate

to

a

data

bean

that

implements

the

Protectable

interface.

While

it

is

not

recommended,

a

bypass

of

the

access

control

checks

occurs

in

the

following

cases:

1.

If

the

JSP

template

makes

direct

calls

to

access

beans,

rather

than

using

data

beans.

2.

If

the

JSP

template

invokes

the

data

bean’s

populate()

method

directly.

If

the

results

of

a

controller

command

are

to

be

forwarded

to

a

view

(using

the

ForwardViewCommand),

then

command-level

access

control

is

not

performed

on

the

views.

Furthermore,

if

the

controller

command

puts

the

populated

data

beans

(that

are

used

in

the

view)

on

the

attribute

list

of

the

response

property

and

then

forwards

to

a

view,

the

JSP

template

can

access

Chapter

4.

Access

control

113

the

data

without

going

through

the

data

bean

manager.

This

does

require

that

the

<useBean>

tags

are

used

in

the

JSP

template.

This

can

be

a

way

to

make

a

JSP

template

more

efficient,

since

it

can

bypass

any

redundant

resource-level

access

control

checks

on

resources

(data

beans)

to

which

the

user

has

already

been

granted

access

via

the

controller

command.

Modifying

access

control

on

existing

WebSphere

Commerce

resources

This

section

provides

information

to

guide

you

through

modifying

access

control

on

existing

WebSphere

Commerce

resources.

In

particular,

the

following

scenarios

are

reviewed:

v

Adding

a

new

relationship

to

an

existing

WebSphere

Commerce

entity

bean

that

is

already

protected

under

access

control.

v

Adding

access

control

protection

to

an

existing

WebSphere

Commerce

entity

bean

that

is

not

already

protected

under

access

control.

v

Understanding

the

implications

to

access

control

when

extending

an

existing

controller

command.

Adding

a

new

relationship

to

an

existing

WebSphere

Commerce

entity

bean

WebSphere

Commerce

entity

beans

that

implement

the

Protectable

interface

are

already

protected

under

access

control.

The

terms

of

the

access

control

requirements

are

determined

by

the

way

that

the

bean

is

used

in

the

out-of-the-box

features

and

functions

of

WebSphere

Commerce.

You

may

encounter

situations

in

which

you

need

to

add

additional

relationships

to

access

control

for

such

beans.

For

example,

if

you

use

an

existing

bean

in

some

of

your

customized

code,

or

if

you

modify

an

existing

WebSphere

Commerce

public

entity

bean,

you

may

need

to

add

additional

relationships

to

the

bean.

The

following

list

provides

the

high-level

steps

to

add

new

relationships

to

an

existing

WebSphere

Commerce

entity

bean

that

is

already

protected

by

access

control:

1.

Examine

the

existing

fulfills

method

for

the

entity

bean.

This

is

located

in

the

bean’s

access

helper

class.

Do

not

modify

this

class,

use

it

only

to

determine

if

you

need

to

add

one

or

more

new

relationships

to

this

logic,

or

if

you

need

to

override

this

method.

For

example,

the

following

fulfills

method

appears

in

the

com.ibm.commerce.fulfillment.objsrc.FulfillmentCenterBeanAccessHelper

class:

public

boolean

fulfills(Object

obj,

Long

member,

String

relationship)

throws

Exception

{

FulfillmentCenterBean

bean

=

(FulfillmentCenterBean)

obj;

if

("ShippingArrangementOrganizationalEntity".

114

Programming

Guide

and

Tutorials

equalsIgnoreCase(relationship))

{

FulfillmentJDBCHelperAccessBean

ffmJDBCAB

=

new

FulfillmentJDBCHelperAccessBean();

int

count

=

ffmJDBCAB.

checkFulfillmentCenterByMemberIdAndFulfillmentCenterId(

member,bean.getFulfillmentCenterId());

if(count>0)

return

true;

}

return

false;

}

2.

The

next

step

is

to

create

a

new

fulfills

method

in

the

bean

class.

For

example,

you

could

create

a

new

fulfills

method

in

the

com.ibm.commerce.fulfillment.objects.FulfillmentBean.java

class.

The

declaration

for

the

method

should

appear

as:

public

boolean

fulfills(Long

member,

String

relationship)

throws

Exception

{

//

Place

holder

for

relationship

information

}

3.

If

you

are

adding

an

additional

relationship

to

the

existing

relationships,

the

first

line

in

your

method

should

be

to

call

the

fulfills

method

from

the

superclass.

Then,

if

that

method

returns

false,

then

check

for

your

new

relationships,

as

follows:

public

boolean

fulfills(Long

member,

String

relationship)

throws

Exception

{

if

(super.fulfills().equals(false))

{

//

Check

if

new

relationship

is

met

return

true;

}

return

false;

}

4.

If

you

are

replacing

the

relationships

from

the

original

implementation

entirely,

you

should

not

call

the

super.fulfills

method,

as

follows:

public

boolean

fulfills(Long

member,

String

relationship)

throws

Exception

{

//

Check

if

new

relationship

is

met

//

If

it

is,

then

return

true;

//

If

the

relationship

is

not

met,

return

false;

}

5.

Save

your

changes.

Regenerate

the

deployed

and

RMIC

code

for

the

bean,

as

well

as

the

corresponding

access

bean.

Chapter

4.

Access

control

115

Adding

access

control

to

an

existing

WebSphere

Commerce

entity

bean

that

is

not

already

protected

If

you

are

using

an

existing

WebSphere

Commerce

entity

bean

and

your

application

requires

that

the

bean

be

protected

by

access

control,

you

can

add

this

protection.

The

following

list

provides

the

high-level

steps

protect

an

existing

WebSphere

Commerce

entity

bean

under

the

WebSphere

Commerce

access

control

system:

1.

Open

the

BeanName.java

class.

This

is

the

remote

interface.

Modify

this

so

that

it

extends

the

com.ibm.commerce.security.Protectable

interface.

2.

If

a

resource

is

going

to

be

grouped

by

an

attribute

other

than

its

Java

class

name

for

the

purpose

of

applying

access

control

policies,

the

remote

interface

of

the

bean

must

also

extend

the

com.ibm.commerce.grouping.Groupable

interface.

3.

Save

your

changes

to

the

remote

interface.

4.

Open

the

BeanNameBean.java

class,

where

BeanName

is

the

name

of

the

entity

bean

to

which

you

are

adding

access

control

protection.

5.

The

enterprise

bean

class

inherits

default

implementations

for

the

following

methods

from

com.ibm.commerce.base.objects.ECEntityBean:

v

getOwner

v

fulfills

v

getGroupingAttributeValue

Override

any

methods

that

you

need.

At

a

minimum,

you

must

override

the

getOwner

method.

Refer

to

“Implementing

access

control

in

enterprise

beans”

on

page

106

for

more

information

about

these

methods.

6.

Save

your

changes.

Regenerate

the

deployed

and

RMIC

code

for

the

bean,

as

well

as

the

corresponding

access

bean.

Understanding

the

access

control

implications

when

a

controller

command

is

extended

According

to

the

WebSphere

Commerce

programming

model,

you

can

create

your

own

implementations

of

existing

controller

commands.

In

this

case,

you

create

a

new

implementation

class

and

then

associate

the

new

implementation

class

to

the

existing

interface

by

updating

the

command

registry.

There

are

three

potential

access

control-related

implications

of

performing

such

an

extension:

1.

Effect

on

the

getResources

method.

2.

Effect

on

the

command-level

access

control

policies

3.

Effect

on

the

resource-level

access

control

policies

Each

of

these

points

is

described

in

more

detail

in

subsequent

sections.

116

Programming

Guide

and

Tutorials

Effect

on

the

getResources

method

If

you

are

extending

an

existing

controller

command,

meaning

that

the

existing

logic

of

the

command

will

be

performed

as

well

as

your

new

customized

logic,

your

new

command

will

subclass

from

the

existing

command.

The

performExecute

method

of

the

new

implementation

calls

the

performExecute

method

of

the

superclass.

If

your

new

command

does

not

access

any

new

resources

that

require

protection,

you

do

not

have

to

override

the

getResources

method.

However,

if

new

protectable

resources

are

accessed,

the

new

command

should

implement

its

own

getResources

method

and

in

this

method

call

the

getResources

method

from

the

superclass,

before

implementing

your

own

getResources

logic.

The

results

of

the

getResources

method

from

the

superclass

should

be

stored

in

a

private

instance

variable

of

type

AccessVector.

The

results

of

the

local

getResources

method

should

then

be

appended

to

the

end

of

this

vector.

For

example,

the

new

implementation

class

would

contain

code

similar

to

the

following

pseudocode:

private

AccessVector

resources

=

null;

public

AccessVector

getResources()

throws

ECException

{

//

First,

get

the

resources

from

the

original

implementation

resources

=

super.getResources();

//

Now,

append

the

new

resources

//

//

Logic

for

getting

new

resources

//

//

and

appending

to

the

vector.

//

///

return

resources;

}

If

you

are

not

extending

the

logic

of

an

existing

controller

command,

but

instead

you

are

replacing

the

logic

completely,

you

would

not

call

the

super.performExecute

method

in

your

new

implementation.

You

would

then

not

need

to

call

the

super.getResources

method

from

within

your

own

implementation.

Instead,

just

implement

your

own

getResources

method,

as

appropriate.

Effect

on

the

command-level

access

control

policies

Command-level

policies

for

controller

commands

consist

of

the

“Execute”

action

operating

on

the

command

resource.

The

command

resource

is

specified

by

its

interface

name.

When

you

extend

an

existing

command,

the

command

still

implements

the

original

interface,

and

as

such,

the

existing

command-level

policy

is

sufficient

to

maintain

the

previous

command-level

access

control.

Therefore,

no

changes

are

required.

Chapter

4.

Access

control

117

Effect

on

the

resource-level

access

control

policies

If

you

have

created

a

new

implementation

of

an

existing

command

and

associated

this

implementation

to

the

interface

of

that

existing

command,

changes

are

not

required

in

the

resource-level

access

control

policies.

If

instead

you

create

a

new

implementation

class

that

extends

an

existing

implementation

and

in

this

class

you

call

the

super.performExecute

method

and

you

also

implement

a

new

interface,

then

changes

are

required

in

resource-level

access

control

policies.

In

this

latter

case,

if

the

new

command

implements

the

getResources

method

or

inherits

a

non-trivial

implementation

of

the

getResources

method

from

the

base

command,

resource-level

policy

changes

are

required.

Typically,

resource-level

policies

consist

of

the

command

action

operating

on

the

business

object

resource.

Since

the

action

is

simply

a

string

representation

of

the

command’s

interface,

the

new

command

generally

needs

to

be

added

to

the

action

groups

of

the

base

command.

However,

if

the

new

command

overrides

the

base

implementation

of

getResources

method

by

simply

returning

null,

then

no

access

control

check

will

be

done

for

this

new

command.

Be

aware

that

if

this

is

not

done

carefully,

this

could

potentially

result

in

opening

up

the

new

command

to

malicious

users.

When

modifying

the

resource-level

access

control

policies,

the

following

are

the

high-level

steps:

1.

Locate

the

defaultAccessControlPolicies.xml

file,

which

is

found

in

the

following

directory:

v

2000Developer

WCDE_installdir\Commerce\xml\policies\xml
2.

Make

a

copy

of

this

file.

As

an

example,

name

the

file

myDefaultAccessControlPolicies.xml.

3.

In

this

new

file,

you

must

define

the

new

interface

as

a

new

action.

For

example,

you

would

add

the

following:

<Action

Name="yourNewInterface"

CommandName="yourNewInterface">

</Action>

where

yourNewInterface

is

the

name

of

the

new

interface.

4.

Next,

you

must

search

through

the

file

to

locate

all

of

the

action

groups

to

which

the

original

action

belonged

and

then

add

in

your

new

action.

5.

If

the

new

command

is

operating

on

resources

that

were

not

previously

specified

by

the

base

command,

then

the

resource

group

of

the

corresponding

access

control

policies

must

also

be

changed

to

accomodate

the

new

resources.

118

Programming

Guide

and

Tutorials

6.

Once

you

have

completed

your

changes

to

the

XML

file,

you

can

remove

sections

that

you

have

not

modified.

Ensure

that

you

keep

the

text

before

the

<Policies>

tag.

7.

Load

the

new

policy

information

into

the

database,

according

to

the

instructions

contained

in

the

WebSphere

Commerce

Security

Guide.

Sample

access

control

policies

for

development

purposes

This

section

provides

some

very

simple

access

control

policies

that

can

be

used

in

the

development

environment,

so

that

you

can

quickly

test

new

resources.

They

are

not

designed

to

be

used

on

any

WebSphere

Commerce

production

environment,

as

they

do

not

provide

adequate

resource

protection.

For

information

about

how

to

load

these

policies,

refer

to

the

WebSphere

Commerce

Security

Guide.

Sample

access

control

policy

for

new

views

If

you

create

a

new

view,

you

can

use

the

following

access

control

policy

so

that

you

will

be

able

to

test

the

new

view

in

your

development

environment

(modify

the

policy

for

your

environment

and

load

it

using

the

acpload

command):

<?xml

version="1.0"

encoding="ISO-8859-1"

standalone="no"

?>

<!DOCTYPE

Policies

SYSTEM

"../dtd/accesscontrolpolicies.dtd">

<Policies>

<Action

Name="YourNewView"

CommandName="YourNewView">

</Action>

<ActionGroup

Name="AllSiteUsersViews"

OwnerID="RootOrganization">

<ActionGroupAction

Name="YourNewView"/>

</ActionGroup>

</Policies>

where

YourNewView

is

the

name

of

the

newly

created

view.

The

preceding

access

control

policy

adds

the

new

view

to

the

existing

AllSiteUsersViews

action

group.

This

policy

allows

any

user

to

access

the

new

view.

Sample

command-level

access

control

policy

for

new

controller

commands

Controller

commands

require

access

control

policies

in

order

to

meet

the

requirements

of

the

access

control

framework.

If

you

create

a

new

controller

command,

the

name

of

the

command’s

interface

is

specified

as

a

resource.

The

following

XML

snip

can

be

modified

for

your

new

command

and

loaded

using

the

acpload

command:

<?xml

version="1.0"

encoding="ISO-8859-1"

standalone="no"

?>

<!DOCTYPE

Policies

SYSTEM

"../dtd/accesscontrolpolicies.dtd">

Chapter

4.

Access

control

119

<Policies>

<Action

Name="ExecuteCommand"

CommandName="Execute">

</Action>

<ResourceCategory

Name="com.yourcompany.yourpackage.commands.

YourControllerCmdResourceCategory"

ResourceBeanClass="com.yourcompany.yourpackage.commands.

YourControllerCmd">

<ResourceAction

Name="ExecuteCommand"/>

</ResourceCategory>

<ResourceGroup

Name="AllSiteUserCmdResourceGroup"

OwnerID="RootOrganization">

<ResourceGroupResource

Name="com.yourcompany.yourpackage.commands.

YourControllerCmdResourceCategory"

/>

</ResourceGroup>

</Policies>

where:

v

com.yourcompany.yourpackage.commands

represents

your

packaging

structure

v

YourControllerCmd

represents

the

name

of

your

new

controller

command

As

an

example,

the

following

XML

file

is

used

to

load

the

access

control

policy

for

a

new

controller

command

that

is

created

in

a

tutorial

contained

in

this

book.

<?xml

version="1.0"

encoding="ISO-8859-1"

standalone="no"

?>

<!DOCTYPE

Policies

SYSTEM

"../dtd/accesscontrolpolicies.dtd">

<Policies>

<Action

Name="ExecuteCommand"

CommandName="Execute">

</Action>

<ResourceCategory

Name="com.ibm.commerce.sample.commands.

MyNewControllerCmdResourceCategory"

ResourceBeanClass="com.ibm.commerce.sample.commands.

MyNewControllerCmd">

<ResourceAction

Name="ExecuteCommand"/>

</ResourceCategory>

<ResourceGroup

Name="AllSiteUserCmdResourceGroup"

OwnerID="RootOrganization">

<ResourceGroupResource

Name="com.ibm.commerce.sample.commands.

MyNewControllerCmdResourceCategory"

/>

</ResourceGroup>

</Policies>

120

Programming

Guide

and

Tutorials

Sample

resource-level

access

control

policy

for

a

new

command

and

enterprise

bean

The

following

XML

file

is

taken

from

a

tutorial

contained

in

this

guide.

It

can

act

as

a

template

for

access

control

requirements

when

you

create

new

entity

beans.

In

the

case

of

the

following

file,

the

new

entity

bean

is

called

the

Bonus

bean,

it

corresponds

to

the

XBONUS

database

table,

and

it

gets

used

by

the

MyNewControllerCmd

controller

command.

In

this

access

control

policy,

only

the

creator

of

a

bonus

bean

object

can

perform

the

MyNewControllerCmd

action

upon

that

object.

<?xml

version="1.0"

encoding="ISO-8859-1"

standalone="no"

?>

<!DOCTYPE

Policies

SYSTEM

"../dtd/accesscontrolpolicies.dtd">

<Policies>

<Action

Name="MyNewControllerCmd"

CommandName="com.ibm.commerce.sample.commands.MyNewControllerCmd">

</Action>

<ResourceCategory

Name="com.ibm.commerce.extension.objects.

BonusResourceCategory"

ResourceBeanClass="com.ibm.commerce.extension.objects.Bonus"

>

<ResourceAction

Name="MyNewControllerCmd"

/>

</ResourceCategory>

<ActionGroup

Name="MyNewControllerCmdActionGroup"

OwnerID="RootOrganization">

<ActionGroupAction

Name="MyNewControllerCmd"/>

</ActionGroup>

<ResourceGroup

Name="BonusResourceGroup"

OwnerID="RootOrganization"

>

<ResourceGroupResource

Name="com.ibm.commerce.extension.objects.

BonusResourceCategory"

/>

</ResourceGroup>

<Policy

Name="AllUsersUpdateBonusResourceGroup"

OwnerID="FashionFlowMemberId"

UserGroup="AllUsers"

UserGroupOwner="RootOrganization"

ActionGroupName="MyNewControllerCmdActionGroup"

ResourceGroupName="BonusResourceGroup"

RelationName="creator"

PolicyType="groupableStandard">

</Policy>

<PolicyGroup

Name="ManagementAndAdministrationPolicyGroup"

OwnerID="RootOrganization">

<!--

Define

policies

in

this

policy

group

-->

<PolicyGroupPolicy

Name="AllUsersUpdateBonusResourceGroup"

PolicyOwnerID="FashionFlowMemberId"

/>

</PolicyGroup>

</Policies>

Chapter

4.

Access

control

121

where

FashionFlowMemberId

is

the

member

ID

of

the

store

in

which

the

new

resource

is

being

used.

In

the

preceding

access

control

policy,

the

interface

name

of

the

controller

command

is

specified

as

the

action,

without

fully-qualifying

it

with

its

package

name.

If

your

application

has

multiple

interfaces

with

the

same

name,

you

must

fully-qualify

them

with

their

package

names

when

specifying

them

as

actions

in

access

control

policies.

As

an

example,

if

there

was

ambiguity

with

the

interface

names,

the

preceding

access

control

policy

would

require

changes,

as

follows

(note,

only

changed

lines

are

displayed

and

the

modifications

are

shown

in

bold):

<Action

Name="com.ibm.commerce.sample.commands.MyNewControllerCmd"

CommandName="com.ibm.commerce.sample.commands.MyNewControllerCmd">

.

.

.

<ResourceAction

Name="com.ibm.commerce.sample.commands.MyNewControllerCmd"

/>

.

.

.

<ActionGroupAction

Name="com.ibm.commerce.sample.commands.MyNewControllerCmd"/>

122

Programming

Guide

and

Tutorials

Chapter

5.

Error

handling

and

messages

Command

error

handling

WebSphere

Commerce

uses

a

well-defined

command

error

handling

framework

that

is

simple

to

use

in

customized

code.

By

design,

the

framework

handles

errors

in

a

manner

that

supports

multicultural

stores.

The

following

sections

describe

the

types

of

exceptions

that

a

command

can

throw,

how

the

exceptions

are

handled,

how

message

text

is

stored

and

used,

how

the

exceptions

are

logged,

and

how

to

use

the

provided

framework

in

your

own

commands.

Types

of

exceptions

A

command

can

throw

one

of

the

following

exceptions:

ECApplicationException

This

exception

is

thrown

if

the

error

is

related

to

the

user.

For

example,

when

a

user

enters

an

invalid

parameter,

an

ECApplicationException

is

thrown.

When

this

exception

is

thrown,

the

Web

controller

does

not

retry

the

command,

even

if

it

is

specified

as

a

retriable

command.

ECSystemException

This

exception

is

thrown

if

a

run-time

exception

or

a

WebSphere

Commerce

configuration

error

is

detected.

Examples

of

this

type

of

exception

include

null-pointer

exceptions

and

transaction

rollback

exceptions.

When

this

type

of

exception

is

thrown,

the

Web

controller

retries

the

command

if

the

command

is

retriable

and

the

exception

was

caused

by

either

a

database

deadlock

or

database

rollback.

Both

of

the

above

listed

exceptions

are

classes

that

extend

from

the

ECException

class,

which

is

found

in

the

com.ibm.commerce.exception

package.

In

order

to

throw

one

of

these

exceptions,

the

following

information

must

be

specified:

v

Error

view

name

The

Web

controller

looks

up

this

name

in

the

VIEWREG

table.

v

ECMessage

object

This

value

corresponds

to

the

message

text

contained

within

a

properties

file.

v

Error

parameters

These

name-value

pairs

are

used

to

substitute

information

into

the

error

message.

For

example,

a

message

may

contain

a

parameter

to

hold

the

©

Copyright

IBM

Corp.

2000,

2003

123

name

of

the

method

which

threw

the

exception.

This

parameter

is

set

when

the

exception

is

thrown,

then

when

the

error

message

is

logged,

the

log

file

contains

the

actual

method

name.

v

Error

data
These

are

optional

attributes

that

can

be

made

available

to

the

JSP

template

through

the

error

data

bean.

Exception

handling

is

tightly

integrated

with

the

logging

system.

When

a

system

exception

is

thrown,

it

is

automatically

logged.

Error

message

properties

files

In

order

to

simplify

the

maintenance

of

error

messages

and

to

support

multilingual

stores,

the

text

for

error

messages

is

stored

in

properties

files.

WebSphere

Commerce

message

text

is

stored

in

the

ecServerMessages_XX_XX.properties

file,

where

_XX_XX

is

the

locale

indicator

(for

example,

_en_US).

The

command

context

returns

an

identifier

to

indicate

the

language

used

by

the

client.

When

a

message

is

required,

the

Web

controller

determines

which

properties

file

to

use

based

upon

the

language

identifier.

There

are

two

types

of

messages

defined

in

the

ecServerMessagesXX_XX.properties

file:

user

messages

and

system

messages.

User

messages

are

displayed

to

customers

in

their

browsers.

Both

system

and

user

messages

are

captured

automatically

in

the

message

log.

When

an

error

is

thrown,

one

of

the

required

parameters

is

a

message

object.

For

ECSystemExceptions,

the

message

object

must

contain

two

keys,

one

for

the

system

message

and

one

for

the

user

message.

For

ECApplicationExceptions,

the

message

object

contains

the

key

for

the

user

message

(system

messages

are

not

used).

All

system

messages

are

predefined.

You

cannot

create

your

own

system

messages.

Therefore,

when

customized

code

throws

an

ECSystemException,

it

must

specify

a

message

key

for

one

of

the

predefined

system

messages.

Customized

user

messages

can

be

created.

New

user

messages

must

be

stored

in

a

separate

properties

file.

Exception

handling

flow

The

following

diagram

shows

the

flow

of

information

when

an

exception

is

caught.

A

description

of

each

step

follows.

124

Programming

Guide

and

Tutorials

1.

The

Web

controller

invokes

a

controller

command.

2.

The

command

throws

an

exception

that

is

caught

by

the

Web

controller.

This

can

be

either

an

ECApplicationException,

or

an

ECSystemException.

The

exception

object

contains

the

following

information:

v

Error

view

name

v

ECMessage

object

v

Error

parameters

v

(optional)

Error

data
3.

The

Web

controller

determines

the

error

view

name

from

the

VIEWREG

table

and

invokes

the

specified

error

view

command.

When

invoking

the

command,

the

Web

controller

composes

a

set

of

properties

from

the

ECException

object

and

sets

it

to

the

view

command

using

the

view

command’s

setInputProperties

method.

4.

The

view

command

invokes

an

error

JSP

template

(Error.jsp

in

this

case)

and

the

name-value

pairs

are

passed

to

the

JSP

template.

Web
controller

Controller
command

Error view
command

Error
data bean

Message helper
Resource
bundles

1. execute()

3. setInputProperties(NVPs)
execute()

2. ECApplicationException
or

ECSystemException

6.

4. Name-value pairs (NVPs)

5. (error_code, NVPs) 7. message

Error.jsp

Figure

24.

Chapter

5.

Error

handling

and

messages

125

5.

The

ErrorDataBean

passes

the

error

parameters

to

the

message

helper

object.

6.

The

message

helper

object

gets

the

required

message

(using

the

message

object

and

the

error

parameters)

from

the

appropriate

properties

file.

7.

The

error

data

bean

returns

the

message

to

the

JSP

template.

Exception

handling

in

customized

code

When

creating

new

commands,

it

is

important

to

include

appropriate

exception

handling.

You

can

take

advantage

of

the

error

handling

and

messaging

framework

provided

in

WebSphere

Commerce,

by

specifying

the

required

information

when

catching

an

exception.

Writing

your

own

exception

handling

logic,

involves

the

following

steps:

1.

Catching

the

exceptions

in

your

command

that

require

special

processing.

2.

Constructing

either

an

ECApplicationException

or

ECSystemException,

based

upon

the

type

of

exception

caught.

3.

If

the

ECApplicationException

uses

a

new

message,

defining

the

message

in

a

new

properties

file.

Catching

and

constructing

exceptions

To

illustrate

the

first

two

steps,

the

following

code

snippet

shows

an

example

of

catching

a

system

exception

within

a

command:

try

{

//

your

business

logic

}

catch(FinderException

e)

{

throw

new

ECSystemException

(ECMessage._ERR_FINDER_EXCEPTION,

className,

methodName,

new

Object

[]

{e.toString()},

e);

}

The

preceding

_ERR_FINDER_EXCEPTION

ECMessage

object

is

defined

as

follows:

public

static

final

ECMessage

_ERR_FINDER_EXCEPTION

=

new

ECMessage

(ECMessageSeverity.ERROR,

ECMessageType.SYSTEM,

ECMessageKey._ERR_FINDER_EXCEPTION);

The

_ERR_FINDER_EXCEPTION

message

text

is

defined

within

the

ecServerMessages_xx_XX.properties

file

(where

_xx_XX

is

a

locale

indicator

such

as

_en_US),

as

follows:

_ERR_FINDER_EXCEPTION

=

The

following

Finder

Exception

occurred

during

processing:

"{0}".

When

catching

a

system

exception,

there

is

a

predefined

set

of

messages

that

can

be

used.

These

are

described

in

the

following

table:

126

Programming

Guide

and

Tutorials

Message

Object

Description

_ERR_FINDER_EXCEPTION

Thrown

when

an

error

is

returned

from

an

EJB

finder

method

call.

_ERR_REMOTE_EXCEPTION

Thrown

when

an

error

is

returned

from

an

EJB

remote

method

call.

_ERR_CREATE_EXCEPTION

Thrown

when

an

error

occurs

creating

an

EJB

instance.

_ERR_NAMING_EXCEPTION

Thrown

when

an

error

is

returned

from

the

name

server.

_ERR_GENERIC

Thrown

when

an

unexpected

system

error

occurs.

For

example,

a

null

pointer

exception.

When

catching

an

application

exception,

you

can

either

use

an

existing

message

that

is

specified

in

the

appropriate

ecServerMessages_xx_xx.properties

file,

or

create

a

new

message

that

is

stored

in

a

new

properties

file.

As

specified

previously,

you

must

not

modify

any

of

the

ecServerMessages_xx_XX.properties

files.

The

following

code

snippet

shows

an

example

of

catching

an

application

exception

within

a

command:

try

{

//

your

business

logic

}

//

catch

some

new

type

of

application

exception

catch(//your

new

exception)

{

throw

new

ECApplicationException

(MyMessages._ERR_CUSTOMER_INVALID,

className,

methodName,

errorTaskName,

someNVPs);

}

The

preceding

_ERR_CUSTOMER_INVALID

ECMessage

object

is

defined

as

follows:

public

static

final

ECMessage

_ERR_CUSTOMER_INVALID

=

new

ECMessage

(ECMessageSeverity.ERROR,

ECMessageType.USER,

MyMessagesKey._ERR_CUSTOMER_INVALID,

"ecCustomerMessages");

When

constructing

new

user

messages,

you

should

assign

them

with

a

type

of

USER,

as

follows:

ECMessageType.USER

The

text

for

the

_ERR_CUSTOMER_INVALID

message

is

contained

in

the

ecCustomerMessages.properties

file.

This

file

must

reside

in

a

directory

that

is

in

the

class

path.

The

text

is

defined

as

follows:

_ERR_CUSTOMER_INVALID

=

Invalid

ID

"{0}"

Chapter

5.

Error

handling

and

messages

127

Creating

messages

If

your

command

throws

an

ECApplicationException

that

uses

a

new

message,

you

must

create

this

new

message.

Creating

a

new

message

involves

the

following

steps:

1.

Creating

a

new

class

that

contains

the

message

keys.

2.

Creating

a

new

class

that

contains

the

ECMessage

objects.

3.

Creating

a

resource

bundle.

Details

about

each

step

are

found

in

the

following

sections.

Creating

a

class

for

message

keys

The

first

step

in

creating

new

user

messages

is

to

create

a

class

that

contains

the

new

message

keys.

A

message

key

is

a

unique

indicator

that

is

used

by

the

logging

service

to

locate

the

corresponding

message

text

in

a

resource

bundle.

This

new

class

should

be

created

within

your

own

package

and

stored

in

the

WebSphereCommerceServerExtensionsLogic

project.

Consider

an

example,

called

MyNewMessages,

in

which

you

create

a

new

class,

called

MyMessageKeys

that

contains

the

_ERR_CUSTOMER

and

_ERR_CUSTOMER_INVALID_ID

message

keys

and

you

put

this

class

in

the

com.mycompany.messages

package.

In

this

case,

the

class

definition

appears

as

follows:

public

class

MyMessageKeys

{

public

static

String

_ERR_CUSTOMER="_ERR_CUSTOMER";

public

static

String

_ERR_CUSTOMER_INVALID_ID="_ERR_CUSTOMER_INVALID_ID";

}

Providing

String

wrappers

for

message

keys

allows

the

compiler

to

check

their

validity.

Creating

a

class

for

ECMessage

objects

Within

the

same

package

that

you

created

the

class

for

your

message

keys,

create

another

class

that

contains

the

ECMessage

objects.

The

ECMessage

class

defines

the

structure

of

a

message

object.

It

is

used

to

retrieve

and

persist

locale-sensitive

text

messages.

The

message

object

has

the

following

attributes:

severity,

type,

key,

resource

bundle

and

associated

resource

bundle.

There

are

several

constructor

methods

for

this

class.

Refer

to

the

“Reference”

section

of

the

WebSphere

Commerce

online

help

for

complete

details.

Following

the

MyNewMessages

example,

create

a

new

class

called

MyMessages

within

the

com.mycompany.messages

package,

as

follows:

128

Programming

Guide

and

Tutorials

import

com.ibm.commerce.ras.*;

public

class

MyMessages

{

static

String

myResourceBundle

=

"ecCustomerMessages";

public

static

ECMessage

_ERR_CUSTOMER

=

new

ECMessage

(ECMessageSeverity.ERROR,ECMessageType.USER,

MyMessageKeys._ERR_CUSTOMER,

myResourceBundle);

public

static

ECMessage

_ERR_CUSTOMER_INVALID_ID

=

new

ECMessage

(ECMessageSeverity.ERROR,

ECMessageType.USER,

MyMessageKeys._ERR_CUSTOMER_INVALID_ID,

myResourceBundle);

}

In

the

preceding

code

snippet,

the

import

statement

is

required

for

the

creation

of

the

ECMessage

object.

The

object

MyMessage._ERR_CUSTOMER

is

a

user

message

of

severity

ERROR.

The

MyMessageKeys._ERR_CUSTOMER

is

used

by

the

WebSphere

Commerce

logging

service

to

find

the

message

text

contained

in

the

ecCustomerMessages

properties

file.

Creating

a

user

message

resource

bundle

You

must

create

a

new

resource

bundle,

in

which

the

message

keys

with

corresponding

message

text

are

stored.

This

resource

bundle

can

be

implemented

either

as

a

Java

object,

or

as

a

properties

file.

It

is

recommended

that

you

use

properties

files,

since

they

are

easier

to

translate

and

maintain.

Properties

files

are

used

for

WebSphere

Commerce

messages.

To

continue

the

MyNewMessages

example,

create

a

text

file

by

the

name

of

ecCustomerMessages.properties.

If

the

messages

are

to

be

used

by

a

single

store

servlet,

place

this

file

in

the

following

directory:
2000Developer

workspace_dir\Stores\Web

Content\WEB-INF\classes\storeDir
where

storeDir

is

the

name

of

your

store.

If

the

messages

are

to

be

used

by

the

WebSphere

Commerce

Accelerator,

place

this

file

in

the

following

directory:

2000Developer

workspace_dir\CommerceAccelerator\Web

Content\WEB-INF\classes

If

the

messages

are

to

be

used

by

the

Administration

Console,

place

this

file

in

the

following

directory:

2000Developer

workspace_dir\SiteAdministration\Web

Content\WEB-INF\classes

2000Business

If

the

messages

are

to

be

used

by

the

Organization

Administration

Console,

place

this

file

in

the

following

directory:

2000Developer

workspace_dir\OrganizationAdministration\Web

Content\WEB-
INF\classes

Chapter

5.

Error

handling

and

messages

129

If

the

messages

are

to

be

used

globally

by

any

servlet

in

the

enterprise

application,

place

this

file

in

the

following

directory:

2000Developer

workspace_dir\WebSphereCommerceServer\properties

The

preceding

directories

are

specified

within

the

context

of

the

development

environment.

Once

you

have

completed

testing

in

that

environment,

refer

to

Chapter

9,

“Deployment

details,”

on

page

201

for

information

about

deploying

to

the

target

WebSphere

Commerce

Server.

Since

the

properties

file

contains

pairs

of

message

keys

and

the

corresponding

message

text,

the

ecCustomerMessages.properties

file

contains

the

following

lines:

_ERR_CUSTOMER_MESSAGE

=

The

customer

message

"{0}".

_ERR_CUSTOMER_INVALID_ID

=

Invalid

ID

"{0}".

Execution

flow

tracing

When

you

need

to

trace

the

flow

of

execution

through

your

commerce

application,

you

should

use

the

WebSphere

Application

Server

JRas

facility.

This

is

a

message

logging

and

diagnostic

trace

API

that

can

be

used

by

applications.

For

information

about

how

to

use

this

facility

in

your

customized

code,

refer

to

the

WebSphere

Application

Server

InfoCenter.

For

information

about

configuring

component

tracing

in

the

development

environment,

refer

to

Appendix

A,

“Configuring

WebSphere

Commerce

component

tracing

in

the

WebSphere

Commerce

development

environment,”

on

page

379.

JSP

template

error

handling

Error

handling

for

JSP

templates

can

be

performed

in

various

ways:

v

Error

handling

from

within

the

page
For

JSP

files

that

require

more

intricate

error

handling

and

recovery,

the

file

can

be

written

to

directly

handle

errors

from

the

data

bean.

The

JSP

file

can

either

catch

exceptions

thrown

by

the

data

bean

or

it

can

check

for

error

codes

set

within

each

data

bean,

depending

on

how

the

data

bean

was

activated.

The

JSP

file

can

then

take

an

appropriate

recovery

action

based

on

the

error

received.

Note

that

a

JSP

file

can

use

any

combination

of

the

following

error

handling

scopes.

v

Error

JSP

at

the

page

level
A

JSP

file

can

also

specify

its

own

default

error

JSP

template

from

an

exception

occurring

within

itself

through

the

JSP

error

tag.

This

enables

a

JSP

program

to

specify

its

own

handling

of

an

error.

A

JSP

file

which

does

not

specify

a

JSP

error

tag

will

have

an

error

fall

through

to

the

application

130

Programming

Guide

and

Tutorials

level

JSP

error

template.

In

the

page

level

error

JSP,

it

must

call

the

JSP

helper

class

(com.ibm.server.JSPHelper)

to

rollback

the

current

transaction.

v

Error

JSP

at

the

application

level
An

application

under

WebSphere

can

specify

a

default

error

JSP

template

when

an

exception

from

within

any

of

its

servlets

or

JSP

files

occur.

The

application

level

error

JSP

template

can

be

used

as

a

mall

level

or

store

level

(for

a

single

store

model)

error

handler.

In

the

application

level

error

JSP

template,

a

call

must

be

made

to

the

servlet

helper

class

to

roll

back

the

current

transaction.

This

is

because

the

Web

controller

will

not

be

in

the

execution

path

to

roll

back

the

transaction.

Whenever

possible,

you

should

rely

on

the

preceding

two

types

of

JSP

error

handling.

Use

the

application

level

error

handling

strategy

only

when

required.

Chapter

5.

Error

handling

and

messages

131

132

Programming

Guide

and

Tutorials

Chapter

6.

Command

implementation

This

section

provides

information

about

how

to

write

new

controller,

task,

and

data

bean

commands.

It

also

describes

how

to

extend

existing

controller,

task,

and

data

bean

commands.

Note:

2000Business

This

chapter

does

not

describe

business

policy

commands.

For

information

about

business

policy

commands,

refer

to

Chapter

7,

“Trading

agreements

and

business

policies

(Business

Edition),”

on

page

157.

New

commands

-

introduction

The

WebSphere

Commerce

programming

model

defines

four

types

of

commands:

controller,

task,

view

and

data

bean

commands.

When

creating

new

business

logic

for

your

e-commerce

application,

it

is

expected

that

you

may

need

to

create

new

controller,

task

and

data

bean

commands.

You

should

not

need

to

create

new

view

commands.

More

information

on

view

commands

is

found

later

in

this

section.

New

commands

must

implement

their

corresponding

interface

(which

in

turn

should

extend

from

an

existing

interface).

To

simplify

command

writing,

WebSphere

Commerce

includes

an

abstract

implementation

class

for

each

type

of

command.

New

commands

should

extend

from

these

classes.

As

an

overview,

the

following

table

provides

information

about

which

implementation

class

a

new

command

should

extend

from,

and

which

interface

it

should

implement:

Command

type

Example

command

name

Extends

from

Implements

example

interface

Controller

command

MyControllerCmdImpl

com.ibm.commerce.

command.

ControllerCommandImpl

MyControllerCmd

Task

command

MyTaskCmdImpl

com.ibm.commerce.

command.

TaskCommandImpl

MyTaskCmd

Data

bean

command

MyDataBeanCmdImpl

com.ibm.commerce.

command.

DataBeanCommandImpl

MyDataBean

©

Copyright

IBM

Corp.

2000,

2003

133

Note:

Any

spaces

in

names

of

implementation

classes

are

for

presentation

purposes

only.

The

following

diagram

illustrates

the

relationship

between

the

interface

and

implementation

class

of

a

new

controller

command

with

the

existing

abstract

implementation

class

and

interface.

The

abstract

class

and

interface

are

both

found

in

the

com.ibm.commerce.command

package.

The

following

diagram

illustrates

the

relationship

between

the

interface

and

implementation

class

of

a

new

task

command

with

the

existing

abstract

implementation

class

and

interface.

The

abstract

class

and

interface

are

both

found

in

the

com.ibm.commerce.command

package.

Implementation Classes

New controller command

Interfaces

ControllerCommandImpl

MyControllerCmdImpl

ControllerCommand

extends extends

MyControllerCmdimplements

Figure

25.

134

Programming

Guide

and

Tutorials

The

following

diagram

illustrates

the

relationship

between

the

interface

and

implementation

class

of

a

new

data

bean

command

with

the

existing

abstract

implementation

class

and

interface.

The

abstract

class

and

interface

are

both

found

in

the

com.ibm.commerce.command

package.

A

view

command

has

two

main

functions:

to

format

a

response

and

to

send

the

response

to

the

client.

A

number

of

generic

view

commands

are

provided

that

send

the

response

to

clients,

using

different

protocols.

The

formatting

function

is

typically

handled

by

the

view

command

invoking

a

JSP

template.

Implementation Classes

New task command

Interfaces

TaskCommandImpl

MyTaskCmdImpl

TaskCommand

MyTaskCmdimplements

extends extends

Figure

26.

Implementation Classes

New data bean command

Interfaces

DataBeanCommandImpl

MyDataBeanCmdImpl

DataBeanCommand

MyDataBeanCmd

extends extends

implements

Figure

27.

Chapter

6.

Command

implementation

135

For

example,

the

RedirectViewCommand

view

command

directs

the

client

to

a

URL

to

get

the

response

(the

response

is

then

formatted

by

a

specified

JSP

template).

The

ForwardViewCommand

view

command

forwards

the

request

to

the

JSP

template

for

formatting

and

the

page

is

displayed

to

the

client.

Using

this

view

command

model,

you

can

create

new

views

(the

response

to

the

client)

by

creating

new

JSP

templates.

The

JSP

template

should,

however,

be

invoked

by

one

of

the

existing

view

commands.

Packaging

customized

code

When

creating

customized

code,

you

must

follow

a

particular

code

organization

structure.

In

general,

customized

code

is

maintained

in

projects

in

the

WebSphere

Commerce

workspace

that

are

predefined

for

your

customized

code.

Two

predefined

projects

are

provided;

the

WebSphereCommerceServerExtensionsLogic

project

and

the

WebSphereCommerceServerExtensionsData

project.

The

first

project

is

for

command

and

data

bean

logic,

and

the

second

is

for

any

enterprise

beans

that

you

create.

When

creating

new

commands,

you

must

place

them

in

a

package

named

appropriately

for

your

business

requirements.

That

is,

if

the

commands

apply

to

a

particular

store,

package

them

in

a

package

that

is

unique

to

the

store.

If

they

apply

to

more

than

one

store,

package

them

accordingly.

For

example,

you

might

have

the

following

packages:

v

com.bigbusiness.storeA.commands

v

com.bigbusiness.storeB.commands

v

com.bigbusiness.commands

The

preceding

packaging

structure

allows

for

differentiation

between

business

logic

at

a

store

level.

When

creating

new

data

beans,

they

must

be

kept

in

a

package

that

is

separate

from

command

logic,

however,

this

package

should

be

kept

within

the

project

(WebSphereCommerceServerExtensionsLogic)

that

stores

the

command

packages.

From

the

preceding

example,

you

would

then

place

the

com.bigbusiness.databeans

package

within

the

WebSphereCommerceServerExtensionsLogic

project.

When

creating

new

entity

beans,

they

should

be

stored

in

the

WebSphereCommerceServerExtensionsData

project.

Therefore,

you

might

have

the

WebSphereCommerceServerExtensionsData

project

that

contains

the

com.bigbusiness.objects

package.

This

packaging

strategy

is

required

for

code

deployment

purposes.

136

Programming

Guide

and

Tutorials

Command

context

Commands

can

obtain

information

from

the

Web

controller

using

the

command

context.

Examples

of

information

available

include

the

user’s

ID,

the

user

object,

the

language

identifier,

and

the

store

identifier.

When

writing

a

command,

you

have

access

to

the

command

context

by

calling

the

getCommandContext()

method

of

the

command’s

superclass.

The

command

context

is

set

to

the

controller

command

when

the

command

is

invoked

by

the

Web

controller.

A

controller

command

should

propagate

the

command

context

to

any

task

or

controller

commands

that

are

invoked

during

processing.

A

command

can

get

the

following

key

information

from

the

command

context:

getUserId()

and

getUser()

Gets

the

current

user

ID

or

user

object.

The

user

ID

for

the

current

session

is

saved

in

a

session

context.

The

session

context

can

be

persisted

in

one

of

two

ways:

using

the

WebSphere

Commerce

cookie

or

a

WebSphere

Application

Server

persistent

session

object.

The

command

context

hides

the

complexity

of

session

management

from

a

command.

getStoreId(),

getStore(),

and

getStore(storeId)

Gets

the

store

associated

with

the

current

request.

The

Web

controller

returns

the

store

ID

in

the

URL.

If

the

store

ID

is

not

specified

in

the

URL,

it

can

be

retrieved

from

the

session

object

that

is

saved

from

the

previous

request.

The

WebSphere

Commerce

run-time

environment

maintains

a

set

of

objects

that

are

frequently

accessed.

For

example,

it

maintains

the

set

of

store

objects.

A

command

should

always

get

the

store

object

from

the

command

context

to

take

advantage

of

the

object

cache

in

the

Web

controller.

You

can

get

the

current

store

by

calling

the

getStore()

method

or

get

a

specific

store

object

by

calling

the

getStore(storeId)

method

from

the

command

context.

getLanguageId()

Returns

the

language

ID

that

should

be

used

for

the

current

request.

The

Web

controller

implements

a

Globalization

Framework.

The

concept

behind

this

framework

is

to

determine

a

language

that

is

preferred

by

the

user

and

supported

by

the

store.

If

the

URL

contains

a

language

ID,

the

Web

controller

determines

if

this

language

is

supported

by

the

store,

if

so,

this

is

the

language

ID

that

gets

returned

by

getLanguageId()

method.

If

no

language

ID

were

included

in

the

URL,

then

the

Web

controller

goes

through

a

decision

tree

to

determine

if

there

is

a

language

ID

(that

is

supported

by

the

store)

in

the

current

session

object,

or

in

the

user’s

registered

preferences,

or

lastly

it

will

return

the

default

language

ID

for

the

store.

Chapter

6.

Command

implementation

137

getCurrency()

Returns

the

currency

to

be

used

for

the

current

request.

Since

currency

is

part

of

the

Globalization

Framework,

logic

behind

this

method

is

similar

to

that

of

the

getLanguageId()

method.

getCurrentTradingAgreements()

and

getTradingAgreement(tradingAgreementId)

Returns

the

set

of

trading

agreements

that

are

used

for

the

current

session.

This

set

may

be

all

of

the

trading

agreements

to

which

the

user

is

entitled,

or

it

can

be

a

subset

that

was

defined

by

the

ContractSetInSession

command.

A

command

should

always

get

the

trading

agreement

object

from

the

command

context

to

take

advantage

of

the

object

cache

in

the

Web

controller.

You

can

get

the

current

trading

agreement

by

calling

the

getCurrentTradingAgreements()

method

or

get

a

specific

trading

agreement

object

by

calling

the

getTradingAgreement(tradingAgreementId)

method

from

the

command

context.

The

command

context

should

be

used

as

a

read-only

object.

You

should

not

call

its

setter

methods.

The

setter

methods

are

reserved

for

use

by

the

WebSphere

Commerce

run-time

environment

and

they

may

be

deprecated

in

future

releases.

For

complete

details

on

the

command

context

API

(application

programming

interface),

refer

to

the

“Reference”

topic

in

the

WebSphere

Commerce

Production

and

Development

online

help.

Temporary

changes

to

contextual

information

for

URL

commands

It

is

possible

to

override

some

of

the

command

context

information

and

execute

URL

commands

within

the

context

of

another

store,

or

on

behalf

of

another

user.

URL

commands

have

the

following

URL

input

parameters

that

allow

for

this

temporary

switch

in

command

context:

v

forStoreId

v

forUser

v

forUserId

The

forStoreId

URL

input

parameter

allows

you

to

specify

the

store

ID

to

be

used

for

this

particular

URL

request.

This,

in

effect,

temporarily

changes

the

storeId

value

in

the

command

context

to

that

of

the

specified

store,

but

this

change

is

only

valid

for

the

duration

of

the

URL

command.

Both

the

forUser

and

forUserId

URL

input

parameters

allow

you

to

specify

that

the

command

be

executed

for

the

specified

user,

even

though

the

user

that

is

currently

logged

in

may

be

different.

This

is

particularly

useful

when

a

138

Programming

Guide

and

Tutorials

customer

service

representative

needs

to

assist

a

customer.

For

example,

the

customer

service

representative

is

able

to

update

a

customer’s

address

information

on

behalf

of

that

customer,

by

specifying

the

customer’s

user

name

or

user

ID

by

using

the

URL

input

parameters.

This

change

in

user

information

is

only

valid

for

the

duration

of

the

URL

request

for

which

it

was

specified.

New

controller

commands

As

previously

stated,

a

new

controller

command

should

extend

from

the

abstract

controller

command

class

(com.ibm.commerce.command.ControllerCommandImpl).

When

writing

a

new

controller

command,

you

should

override

the

following

methods

from

the

abstract

class:

v

isGeneric()

v

isRetriable()

v

setRequestProperties(com.ibm.commerce.datatype.TypedProperty

reqParms)

v

validateParameters()

v

getResources()

v

performExecute()

More

information

on

each

of

the

preceding

methods

is

found

in

the

following

sections.

isGeneric

method

In

the

standard

WebSphere

Commerce

implementation

there

are

multiple

types

of

users.

These

include

generic,

guest,

and

registered

users.

Within

the

grouping

of

registered

users

there

are

customers

and

administrators.

The

generic

user

has

a

common

user

ID

that

is

used

across

the

entire

system.

This

common

user

ID

supports

general

browsing

on

the

site

in

a

manner

that

minimizes

system

resource

usage.

It

is

more

efficient

to

use

this

common

user

ID

for

general

browsing,

since

the

Web

controller

does

not

need

to

retrieve

a

user

object

for

commands

that

can

be

invoked

by

the

generic

user.

The

isGeneric

method

returns

a

boolean

value

which

specifies

whether

or

not

the

command

can

be

invoked

by

the

generic

user.

The

isGeneric

method

of

a

controller

command’s

superclass

sets

the

value

to

false

(meaning

that

the

invoker

must

be

either

a

registered

user

or

a

guest

user).

If

your

new

controller

command

can

be

invoked

by

generic

users,

override

this

method

to

return

true.

You

should

override

this

method

to

return

true

if

your

new

command

does

not

fetch

or

create

resources

associated

with

a

user.

An

example

of

a

command

that

can

be

invoked

by

a

generic

user

is

the

ProductDisplay

Chapter

6.

Command

implementation

139

command.

It

is

sensible

to

allow

any

user

to

be

able

to

view

products.

An

example

of

a

command

for

which

a

user

must

be

either

a

guest

or

registered

user

(and

hence,

isGeneric

returns

false)

is

the

OrderItemAdd

command.

When

isGeneric

returns

a

value

of

true,

the

Web

controller

does

not

create

a

new

user

object

for

the

current

session.

As

such,

commands

that

can

be

invoked

by

the

generic

user

run

faster,

since

the

Web

controller

does

not

need

to

retrieve

a

user

object.

The

syntax

for

using

this

method

to

enable

generic

users

to

invoke

a

command

is

as

follows:

public

boolean

isGeneric()

{

return

true;

}

isRetriable

method

The

isRetriable

method

returns

a

boolean

value

which

specifies

whether

or

not

the

command

can

be

retried

on

a

transaction

rollback

exception.

The

isRetriable

method

of

the

new

controller

command’s

superclass

returns

a

value

of

false.

You

should

override

this

method

and

return

a

value

of

true,

if

your

command

can

be

retried

on

a

transaction

rollback

exception.

An

example

of

a

command

that

should

not

be

retried

in

the

case

of

a

transaction

exception

is

the

OrderProcess

command.

This

command

invokes

the

third

party

payment

authorization

process.

It

cannot

be

retried,

since

that

authorization

cannot

be

reversed.

An

example

of

a

command

that

can

be

retried

is

the

ProductDisplay

command.

The

syntax

for

enabling

the

command

to

be

retried

in

the

case

of

a

transaction

rollback

exception

is

as

follows:

public

boolean

isRetriable()

{

return

true;

}

setRequestProperties

method

The

setRequestProperties

method

is

invoked

by

the

Web

controller

to

pass

all

input

properties

to

the

controller

command.

The

controller

command

must

parse

the

input

properties

and

set

each

individual

property

explicitly

within

this

method.

This

explicit

setting

of

properties

by

the

controller

command

itself

promotes

the

concept

of

type

safe

properties.

The

syntax

for

using

this

method

is

as

follows:

public

void

setRequestProperties(

com.ibm.commerce.datatype.TypedProperty

reqParms)

{

140

Programming

Guide

and

Tutorials

//

parse

the

input

properties

and

explicitly

set

each

parameter

}

validateParameters

method

The

validateParameters

method

is

used

to

do

initial

parameter

checking

and

any

necessary

resolution

of

parameters.

For

example,

it

could

be

used

to

resolve

orderId=*.

This

method

is

called

before

both

the

getResources

and

performExecute

methods.

Refer

to

“Access

control

interactions”

on

page

101

for

more

details

about

this

sequence.

getResources

method

This

method

is

used

to

implement

resource-level

access

control.

It

returns

a

vector

of

resource-action

pairs

upon

which

the

command

intends

to

act.

If

nothing

is

returned,

no

resource-level

access

control

is

performed.

For

more

information

about

access

control,

refer

to

Chapter

4,

“Access

control,”

on

page

89.

performExecute

method

The

performExecute

method

contains

the

business

logic

for

your

command.

It

should

invoke

the

performExecute

method

of

the

command’s

superclass

before

any

new

business

logic

is

executed.

At

the

end,

it

must

return

a

view

name.

The

following

shows

example

syntax

for

the

performExecute

method

in

a

new

controller

command.

In

this

case,

the

response

uses

a

redirect

view

command,

it

could,

however,

use

a

forward

view

command

or

direct

view

command:

public

void

performExecute()

throws

ECException

{

super.performExecute();

///

//

your

business

logic

//

///

//

Create

a

new

TypedProperty

for

response

properties.

TypedProperty

rspProp

=

new

TypedProperty();

//

set

response

properties

rspProp.put(ECConstants.EC_VIEWTASKNAME,

"MyView");

///

//

The

following

line

is

optional.

The

VIEWREG

//

//

table

can

specify

the

redirect

URL.

//

///

rspProp.put(ECConstants.EC_REDIRECTURL,

MyURL);

//

//

If

you

are

using

a

forward

view,

you

can

set

the

//

//

response

properties

as

follows:

//

Chapter

6.

Command

implementation

141

//

TypedProperty

rspProp

=

new

TypedProperty();

//

//

rspProp.put(ECConstants.EC_VIEWTASKNAME,

"MyView");

//

//

rspProp.put(ECConstants.EC_DOCPATHNAME,

"MyJSP.jsp");

//

//

//

//

Again,

it

is

optional

to

explicitly

set

the

name

of

the

JSP

template.//

//

The

VIEWREG

table

can

specify

the

JSP

template.

//

//

setResponseProperties(rspProp);

}

If

you

specify

the

redirect

URL

within

the

performExecute

method

and

an

entry

exists

in

the

VIEWREG

table,

the

value

specified

in

the

code

takes

precedence

over

the

value

in

the

VIEWREG

table.

The

same

order

of

precedence

holds

true

for

specification

of

a

JSP

template

within

code.

Long-running

controller

commands

If

a

controller

command

takes

a

long

time

to

execute,

you

can

split

the

command

into

two

commands.

The

first

command,

which

is

executed

as

the

result

of

a

URL

request,

simply

adds

the

second

command

to

the

Scheduler,

so

that

it

runs

as

a

background

job.

This

is

illustrated

in

the

following

diagram:

The

flow

shown

in

the

preceding

diagram

is

as

follows:

1.

ControllerCommand1

is

executed

as

a

result

of

a

URL

request.

2.

ControllerCommand1

adds

a

job

to

the

Scheduler.

The

job

is

ControllerCommand2.

ControllerCommand1

returns

a

view,

immediately

after

adding

the

job

to

the

Scheduler.

3.

The

Scheduler

executes

ControllerCommand2

as

a

background

job.

In

this

scenario,

the

client

typically

polls

the

result

from

ControllerCommand2.

ControllerCommand2

should

write

the

job

state

to

the

database.

ControllerCommand1

ControllerCommand2

Scheduler

AddJob(ControllerCommand2)

execute

Figure

28.

142

Programming

Guide

and

Tutorials

Formatting

of

input

properties

to

view

commands

When

a

controller

command

completes,

it

returns

the

name

of

a

view

that

should

be

executed.

This

view

may

require

that

several

input

properties

get

passed

to

it.

There

can

be

three

sources

for

these

input

parameters,

as

described

in

the

following

list:

v

Default

properties

that

are

stored

in

the

PROPERTIES

column

of

the

CMDREG

table

v

Default

properties

from

the

PROPERTIES

column

of

the

VIEWREG

table

v

Input

properties

from

the

URL

For

more

information

about

how

these

properties

are

merged

and

set

in

the

attributes

for

the

JSP

template,

refer

to

“Setting

JSP

attributes

-

overview”

on

page

43.

This

section

describes

how

the

input

properties

to

a

view

command

may

be

formatted.

For

redirect

view

commands,

two

topics

are

examined:

v

Flattening

a

query

string

to

support

URL

redirection

v

Dealing

with

a

limit

on

the

length

of

the

redirect

URL

For

forward

view

commands,

the

topic

of

enumeration

of

input

parameters

and

setting

them

as

attributes

in

the

HttpServletRequestObject

is

examined.

Flattening

input

parameters

into

a

query

string

for

HttpRedirectView

All

input

parameters

that

are

passed

to

a

redirect

view

command

are

flattened

into

a

query

string

for

URL

redirection.

For

example,

suppose

that

the

input

to

the

redirect

view

command

contains

the

following

properties:

URL

=

"MyView?p1=v1&p2=v2";

ip1

=

"iv1";

//

input

to

orginal

controller

command

ip2

=

"iv2"

;

//

input

to

original

controller

command

op1

=

"ov1";

op2

=

"ov2";

Based

upon

the

preceding

input

parameters,

the

final

URL

is

MyView?p1=v1&p2=v2&ip1=iv1&ip2=iv2&op1=ov1&op2=ov2

Note

that

if

the

command

is

to

use

SSL,

then

the

parameters

are

encrypted

and

the

final

URL

appears

as

MyView?krypto=encrypted_value_of“p1=v1&p2=v2&ip1=iv1&ip2=iv2&op1=ov1&op2=ov2”

Handling

a

limited

length

redirect

URL

By

default,

all

input

parameters

to

the

controller

command

are

propagated

to

the

redirect

view

command.

If

there

is

a

limit

on

the

number

of

characters

in

the

redirect

URL,

this

may

cause

a

problem.

An

example

of

when

the

length

may

be

limited

is

if

the

client

is

using

the

Internet

Explorer

browser.

For

this

browser,

the

URL

cannot

exceed

2083

bytes.

If

the

URL

does

exceed

this

limit,

Chapter

6.

Command

implementation

143

the

URL

gets

truncated.

As

such,

you

can

encounter

a

problem

if

there

are

a

large

number

of

input

parameters,

or

if

you

are

using

encryption,

because

an

encrypted

string

is

typically

two

to

three

times

longer

than

a

string

that

is

not

encrypted.

There

are

two

approaches

for

handling

a

limited

length

redirect

URL:

1.

Override

the

getViewInputProperties

method

in

the

controller

command

to

return

only

the

sets

of

parameters

that

are

required

to

be

passed

to

the

redirect

view

command.

2.

Use

a

specified

special

character

in

the

URL

parameters

to

indicate

which

parameters

can

be

removed

from

the

input

parameter

string.

To

demonstrate

each

of

the

preceding

approaches,

consider

the

following

set

of

input

parameters

to

the

controller

command:

URL="MyView";

//

All

of

the

following

are

inputs

to

the

original

controller

command.

ip1="ipv1";

ip2="ipv2";

ip3="ipv3";

iq1="iqv1";

iq2="iqv2";

ir1="ipr1";

ir2="ipr2";

is="isv";

If

you

are

overriding

the

getViewInputProperties

method,

the

new

method

can

be

written

so

that

only

the

following

parameters

are

passed

to

the

view

command:

ir2="ipr2";

is="isv";

Using

the

second

approach,

the

view

command

can

be

invoked

using

special

parameters

to

indicate

that

certain

input

parameters

should

be

removed.

For

example,

you

can

achieve

the

same

result

by

specifying

the

following

as

the

URL

parameter:

URL="MyView?ip*=&iq*=&ir1="

This

URL

parameter

instructs

the

WebSphere

Commerce

run-time

framework

of

the

following:

v

The

ip*=

specification

means

that

all

parameters

whose

names

start

with

ip

should

be

removed.

v

The

iq*=

specification

means

that

all

parameters

whose

names

start

with

iq

should

be

removed.

v

The

ir1=

specification

means

that

the

ir1

parameter

should

be

removed.

144

Programming

Guide

and

Tutorials

Setting

attributes

in

the

HttpServletRequest

object

for

HttpForwardView

The

default

HttpForwardViewCommandImpl

enumerates

all

of

the

parameters

passed

to

the

command

and

sets

them

as

attributes

in

the

HttpServletRequest

object.

For

example,

suppose

that

the

requestProperties

object

passed

to

the

forward

view

command

contains

the

following

parameters:

p1="pv1";

p2="pv2";

p3=pv3;

//

pv3

is

an

object

Then

the

following

attributes

are

passed

to

the

JSP

template

using

the

request.setAttribute()

method.

request.setAttribute("p1",

"pv1");

request.setAttribute("p2",

"pv2");

request.setAttribute("p1",

pv1);

request.setAttribute("RequestProperties",

requestProperties);

request.setAttribute("CommandContext",

commandContext);

where

requestProperties

is

the

TypedProperty

object

that

is

passed

to

the

command,

commandContext

is

the

command

context

object

that

is

passed

to

the

command,

and

p1,

p2,

and

p3

are

parameters

defined

in

the

requestProperties

object.

Database

commits

and

rollbacks

for

controller

commands

Throughout

the

execution

of

a

controller

command,

data

is

often

created

or

updated.

In

many

cases,

the

database

must

be

updated

with

the

new

information

at

the

end

of

the

transaction.

The

transaction

is

managed

by

the

Web

controller.

The

Web

controller

marks

the

beginning

of

the

transaction

before

calling

the

controller

command.

When

the

execution

of

the

controller

command

is

complete,

the

controller

command

returns

a

view

name

to

the

Web

controller.

The

Web

controller

is

responsible

for

marking

the

end

of

the

transaction.

The

actual

point

at

which

the

transaction

ends

(before

or

after

invoking

the

view)

is

dependent

upon

the

type

of

view

used.

There

are

three

types

of

view

commands:

v

Forward

view

command

v

Redirect

view

command

v

Direct

view

command

The

Web

controller

determines

the

view

command

to

be

used

for

the

view,

by

looking

up

the

view

name

in

the

VIEWREG

table.

Chapter

6.

Command

implementation

145

If

the

entry

in

the

VIEWREG

table

specifies

the

use

of

the

ForwardViewCommand,

then

the

Web

controller

forwards

the

results

of

the

controller

command

to

the

corresponding

ForwardViewCommand

implementation

class

(also

specified

in

the

VIEWREG).

The

view

command

executes

within

the

context

of

the

current

transaction.

In

this

case,

the

database

commit

or

rollback

does

not

occur

until

the

view

command

completes.

If

the

entry

in

the

VIEWREG

table

specifies

the

use

of

the

RedirectViewCommand,

then

the

Web

controller

forwards

the

results

of

the

controller

command

to

the

corresponding

RedirectViewCommand

implementation

class.

The

view

command

then

operates

outside

of

the

scope

of

the

current

transaction

and

the

database

commit

or

rollback

occurs

before

the

redirected

view

command

is

called.

If

the

entry

in

the

VIEWREG

table

specifies

the

use

of

the

DirectViewCommand,

then

the

Web

controller

forwards

the

results

of

the

controller

command

to

the

corresponding

DirectViewCommand

implementation

class.

The

view

command

executes

within

the

context

of

the

current

transaction.

In

this

case,

the

database

commit

or

rollback

does

not

occur

until

the

view

command

completes.

(Note

that

ForwardViewCommand

and

DirectViewCommand

are

similar.

The

ForwardViewCommand

forwards

the

results

to

a

JSP

template.

In

contrast,

the

DirectViewCommand

receives

the

results

as

input

stream

and

passes

them

on

as

an

output

stream.

It

uses

either

the

getRawDocument

method

that

treats

the

data

as

bytes,

or

the

getTextDocument

that

treats

the

data

as

text.)

In

the

cases

where

the

view

command

executes

under

the

same

transaction

scope

as

the

controller

command,

an

error

in

the

view

command

causes

a

rollback

of

the

entire

transaction.

This

may

or

may

not

be

the

desired

outcome,

depending

upon

your

business

logic.

Example

of

transaction

scope

with

a

controller

command

To

illustrate

the

differences

in

transaction

scope

for

a

controller

command,

depending

upon

the

type

of

view

command

used,

consider

the

following

examples.

Case

1:

Executing

the

view

within

the

scope

of

the

controller

command

transaction

Suppose

that

you

have

created

a

new

controller

command

called

YourControllerCmdA.

The

command’s

performExecute

method

would

then

include

the

following:

.

.

//

Create

a

new

TypedProperty

object

for

output.

TypedProperty

rspProp

=

new

TypedProperty();

146

Programming

Guide

and

Tutorials

//////////////////////

//

Business

logic

//

//////////////////////

//

Return

the

view

rspProp.put(ECConstants.EC_VIEWTASKNAME,

"YourView");

SetResponseProperties(rspProp);

In

the

preceding

code

snippet,

the

controller

command

returns

“YourView”

as

the

view.

YourView

is

registered

in

the

VIEWREG

table.

The

following

is

an

example

insert

statement

to

register

YourView.

insert

into

VIEWREG

(ViewName,

DeviceFmt_id,

storeEnt_id,

interfacename,

classname,

properties)

values

(’YourView’,

-1,

XX,’com.ibm.commerce.command.ForwardViewCommand’,

’com.ibm.commerce.command.HttpForwardViewCommandImpl’,’docname=YourView.jsp’);

where

XX

is

the

store

identifier.

Since

the

view

uses

the

com.ibm.commerce.command.HttpForwardViewCommandImpl

implementation

class,

the

Web

controller

uses

the

generic

forward

view

command.

Based

upon

the

preceding

command

registration,

the

Web

controller

launches

the

YourView.jsp

file

within

the

scope

of

the

controller

command

transaction.

If

an

error

occurs

in

YourView.jsp,

the

transaction

fails

and

a

database

rollback

occurs.

As

a

result,

the

entire

controller

command

fails.

Case

2:

Executing

the

view

outside

of

the

scope

of

the

controller

command

transaction

Suppose

that

you

would

prefer

to

have

information

committed

to

the

database,

even

in

the

case

when

an

error

may

occur

in

the

view.

In

order

to

have

the

view

execute

outside

the

scope

of

the

controller

command’s

transaction,

the

view

must

be

executed

as

a

redirect.

To

execute

the

view

as

a

redirect,

the

performExecute

method

of

the

controller

command

returns

the

view

in

the

following

manner:

.

.

//

Create

a

new

TypedProperty

object

for

output.

TypedProperty

rspProp

=

new

TypedProperty();

//////////////////////

//

Business

logic

//

//////////////////////

//

Return

the

view

rspProp.put(ECConstants.EC_VIEWTASKNAME,

EC_GENERIC_REDIRECTVIEW);

rspProp.put(EC_Constants.EC_REDIRECTURL,

"YourView2");

The

following

example

SQL

statement

supports

the

redirect

strategy:

Chapter

6.

Command

implementation

147

insert

into

VIEWREG

(ViewName,

DeviceFmt_id,

storeEnt_id,

interfacename,

classname,

properties)

values

(’YourView2’,

-1,

XX,’com.ibm.commerce.command.ForwardViewCommand’,

’com.ibm.commerce.command.HttpForwardViewCommandImpl’,’docname=YourView2.jsp’);

where

XX

is

the

store

identifier.

Since

the

command

passes

the

EC_GENERIC_REDIRECTVIEW

value

as

a

response

property

parameter,

the

Web

controller

uses

the

generic

redirect

view

command.

The

generic

redirect

view

is

registered

in

the

VIEWREG

table

with

the

following

information:

v

ViewName

=

RedirectView

v

DeviceFmt_Id

=

-1

v

InterfaceName

=

com.ibm.commerce.command.RedirectViewCommand

v

ClassName

=

com.ibm.commerce.command.HttpRedirectViewCommandImpl

The

Web

controller

invokes

the

generic

redirect

view

command,

which

takes

the

redirect

URL

as

an

input

property.

The

response

is

the

redirected

to

the

redirect

URL.

After

the

redirect

occurs,

the

YourView2

is

invoked.

This

is

then

implemented

as

a

generic

forward

view.

New

task

commands

A

new

task

command

should

extend

from

the

abstract

task

command

class

(com.ibm.commerce.command.TaskCommandImpl)

and

implement

an

interface

that

extends

the

com.ibm.commerce.command.TaskCommand

interface.

As

shown

in

the

diagram

on

page

135,

the

new

task

command

should

be

defined

as

follows:

public

class

MyTaskCmdImpl

extends

com.ibm.commerce.command.TaskCommandImpl

implements

MyTaskCmd

{

}

All

the

input

and

output

properties

for

the

task

command

must

be

defined

in

the

command

interface,

for

example

MyTaskCmd.

The

caller

programs

to

the

task

command

interface,

rather

than

the

task

command

implementation

class.

This

enables

you

to

have

multiple

implementations

of

the

task

command

(one

for

each

store),

without

the

caller

being

concerned

about

which

implementation

class

to

call.

All

the

methods

defined

in

the

interface

must

be

implemented

in

the

implementation

class.

Since

the

command

context

should

be

set

by

the

caller

(a

controller

command),

the

task

command

does

not

need

to

set

the

command

148

Programming

Guide

and

Tutorials

context.

The

task

command

can,

however,

obtain

information

from

the

Web

controller

by

using

the

command

context.

In

addition

to

implementing

the

methods

defined

in

the

task

command

interface,

you

should

override

the

performExecute

method

from

the

com.ibm.commerce.command.TaskCommandImpl

class.

The

performExecute

method

contains

the

business

logic

for

the

particular

unit

of

work

that

the

task

command

performs.

It

should

invoke

the

performExecute

method

of

the

task

command’s

superclass,

before

performing

any

business

logic.

The

following

code

snippet

shows

an

example

performExecute

method

for

a

task

command.

public

void

performExecute()

throws

ECException

{

super.performExecute();

//

Include

your

business

logic

here.

//

Set

output

properties

so

the

controller

command

//

can

retrieve

the

result

from

this

task

command.

}

The

run-time

framework

calls

the

getResources

method

of

the

controller

command

to

determine

which

protectable

resources

the

command

will

access.

It

may

be

the

case

that

a

task

command

is

executed

during

the

scope

of

a

controller

command

and

it

attempts

to

access

resources

that

were

not

returned

by

the

getResources

method

of

the

controller

command.

If

this

is

the

case,

the

task

command

itself

can

implement

a

getResources

method

to

ensure

that

access

control

is

provided

for

protectable

resources.

Note

that

by

default,

getResources

returns

null

for

a

task

command

and

resource-level

access

control

checking

is

not

performed.

Therefore,

you

must

override

this

if

the

task

command

accesses

protectable

resources.

Customization

of

existing

commands

This

section

describes

the

various

ways

in

which

you

can

customize

existing

controller,

task

and

data

bean

commands.

Customizing

existing

controller

commands

A

controller

command

encapsulates

the

business

logic

for

a

business

process.

Individual

units

of

work

within

the

business

process

may

be

performed

by

task

commands.

As

such,

there

are

several

ways

in

which

a

controller

command

can

be

customized,

some

of

which

involve

customizing

task

commands.

When

customizing

a

controller

command,

you

can

accomplish

the

following:

Chapter

6.

Command

implementation

149

v

Add

additional

processing

and

logic

to

an

existing

controller

command.

This

can

be

added

before

existing

business

logic,

after

existing

logic,

or

both

before

and

after.

v

Replace

one

or

more

task

commands.

This

allows

you

to

modify

how

a

particular

step

in

the

business

process

is

performed.

v

Replace

the

view

called

by

the

controller

command.

The

following

sections

provide

details

on

how

to

make

the

preceding

modifications.

Adding

new

business

logic

to

a

controller

command

Suppose

there

is

an

existing

WebSphere

Commerce

controller

command,

called

ExistingControllerCmd.

Following

the

WebSphere

Commerce

naming

conventions,

this

controller

command

would

have

an

interface

class

named

ExistingControllerCmd

and

an

implementation

class

named

ExistingControllerCmdImpl.

Now

assume

that

a

business

requirement

arises

and

you

must

add

new

business

logic

to

this

existing

command.

One

portion

of

the

logic

must

be

executed

before

the

existing

command

logic

and

another

portion

must

be

executed

after

the

existing

command

logic.

The

first

step

in

adding

the

new

business

logic

is

to

create

a

new

implementation

class

that

extends

the

original

implementation

class.

In

this

example,

you

would

create

a

new

ModifiedControllerCmdImpl

class

that

extends

the

ExistingControllerCmdImpl

class.

The

new

implementation

class

should

implement

the

original

interface

(ExistingControllerCmd).

In

the

new

implementation

class

you

must

create

a

new

performExecute

method

to

override

the

performExecute

of

the

existing

command.

Within

the

new

performExecute

method,

there

are

two

ways

in

which

you

can

insert

your

new

business

logic:

you

can

either

include

the

code

directly

in

the

controller

command,

or

you

can

create

a

new

task

command

to

perform

the

new

business

logic.

If

you

create

a

new

task

command

then

you

must

instantiate

the

new

task

command

object

from

within

the

controller

command.

The

following

code

snippet

demonstrates

how

to

add

new

business

logic

to

the

beginning

and

end

of

an

existing

controller

command

by

including

the

logic

directly

in

the

controller

command:

public

class

ModifiedControllerCmdImpl

extends

ExistingControllerCmdImpl

implements

ExistingControllerCmd

{

public

void

performExecute

()

throws

com.ibm.commerce.exception.ECException

{

/*

Insert

new

business

logic

that

must

be

executed

before

the

original

command.

*/

150

Programming

Guide

and

Tutorials

//

Execute

the

original

command

logic.

super.performExecute();

/*

Insert

new

business

logic

that

must

be

executed

after

the

original

command.

*/

}

}

The

following

code

snippet

demonstrates

how

to

add

new

business

logic

to

the

beginning

of

an

existing

controller

command

by

instantiating

a

new

task

command

from

within

the

controller

command.

In

addition,

you

would

also

create

the

new

task

command

interface

and

implementation

class

and

register

the

task

command

in

the

command

registry.

//

Import

the

package

with

the

CommandFactory

import

com.ibm.commerce.command.*;

public

class

ModifiedControllerCmdImpl

extends

ExistingControllerCmdImpl

implements

ExistingControllerCmd

{

public

void

performExecute

()

throws

com.ibm.commerce.exception.ECException

{

MyNewTaskCmd

cmd

=

null;

cmd

=

(MyNewTaskCmd)

CommandFactory.createCommand(

"com.mycompany.mycommands.MyNewTaskCommand",

getStoreId());

/*

Set

task

command’s

input

parameters,

call

its

execute

method

and

retrieve

output

parameters,

as

required.

*/

super.performExecute();

}

}

Regardless

of

whether

you

include

the

new

business

logic

in

the

controller

command,

or

create

a

task

command

to

perform

the

logic,

you

must

also

update

the

CMDREG

table

in

the

WebSphere

Commerce

command

registry

to

associate

the

new

controller

command

implementation

class

with

the

existing

controller

command

interface.

The

following

SQL

statement

shows

an

example

update:

update

CMDREG

set

CLASSNAME=’ModifiedControllerCmdImpl’

where

INTERFACENAME=’ExistingControllerCmd’

Chapter

6.

Command

implementation

151

Replacing

task

commands

called

by

a

controller

command

A

controller

command

often

calls

several

task

commands

that

perform

individual

tasks.

Collectively,

these

tasks

make

up

the

business

process

represented

by

the

controller

command.

You

may

need

to

change

the

way

in

which

a

particular

step

in

the

process

is

performed,

rather

than

adding

new

business

logic

to

the

beginning

or

end

of

the

controller

command.

In

this

case,

you

must

replace

the

implementation

of

the

task

command

that

you

wish

to

override,

with

the

implementation

of

a

new

task

command

that

performs

the

task

in

your

desired

manner.

As

a

result

of

the

design

of

the

WebSphere

Commerce

programming

model,

you

do

not

need

to

create

a

new

controller

command

implementation

class

to

replace

the

task

command.

The

controller

command

instantiates

the

task

command

by

calling

the

command

factory’s

createCommand

method.

The

command

factory

uses

the

task

command’s

interface

name

and

then

determines

the

correct

implementation

class,

based

upon

the

command

registry.

As

such,

to

replace

the

task

command

that

gets

instantiated,

you

must

create

a

new

task

command

implementation

class

and

then

update

the

command

registry

so

that

the

original

task

command

interface

name

is

associated

with

the

new

task

command

implementation

class.

Refer

to

“Customizing

existing

task

commands”

on

page

154

for

more

information.

Replacing

the

view

called

by

a

controller

command

To

replace

the

view

that

is

called

by

a

controller

command,

you

create

a

new

implementation

class

for

the

controller

command.

For

example,

create

a

new

ModifiedControllerCmdImpl

that

extends

ExistingControllerCmdImpl

and

implements

the

ExistingControllerCmd

interface.

Within

the

ModifiedControllerCmdImpl

class,

override

the

performExecute

method.

In

the

new

performExecute

method,

call

super.performExecute

to

ensure

that

all

command

processing

occurs.

After

the

command

logic

is

executed,

you

can

use

the

response

properties

to

override

the

view

called.

The

following

code

snippet

displays

how

to

override

the

view

when

the

view

is

executed

as

a

redirect:

//

Import

the

packages

containing

TypedProperty,

and

ECConstants.

import

com.ibm.commerce.datatype.*;

import

com.ibm.commerce.server.*;

public

class

ModifiedControllerCmdImplImpl

extends

ExistingControllerCmdImpl

implements

ExistingControllerCmd

{

public

void

performExecute

()

throws

com.ibm.commerce.exception.ECException

{

//

Execute

the

original

command

logic.

super.performExecute();

152

Programming

Guide

and

Tutorials

//

Create

a

new

TypedProperty

for

response

properties.

TypedProperty

rspProp

=

new

TypedProperty();

//

set

response

properties

rspProp.put(ECConstants.EC_VIEWTASKNAME,

"MyView");

///

//

The

following

line

is

optional.

The

VIEWREG

//

//

table

can

specify

the

redirect

URL.

//

///

rspProp.put(ECConstants.EC_REDIRECTURL,

MyURL);

setResponseProperties(rspProp);

}

}

The

following

code

snippet

displays

how

to

override

the

view

when

the

view

is

executed

as

a

forward

view:

//

Import

the

packages

containing

TypedProperty,

and

ECConstants.

import

com.ibm.commerce.datatype.*;

import

com.ibm.commerce.server.*;

public

class

ModifiedControllerCmdImplImpl

extends

ExistingControllerCmdImpl

implements

ExistingControllerCmd

{

public

void

performExecute

()

throws

com.ibm.commerce.exception.ECException

{

//

Execute

the

original

command

logic.

super.performExecute();

//

Create

a

new

TypedProperty

for

response

properties.

TypedProperty

rspProp

=

new

TypedProperty();

//

set

response

properties

rspProp.put(ECConstants.EC_VIEWTASKNAME,

"MyView");

///

//

It

is

optional

to

explicitly

set

the

name

//

//

of

the

JSP

template.

The

VIEWREG

table

can

//

//

specify

the

JSP

template.

//

//

rspProp.put(ECConstants.EC_DOCPATHNAME,

"MyJSP.jsp");

setResponseProperties(rspProp);

}

}

Chapter

6.

Command

implementation

153

To

determine

which

view

is

used

by

an

existing

controller

command,

refer

to

the

“Reference”

topic

of

the

WebSphere

Commerce

Production

and

Development

online

help.

Customizing

existing

task

commands

There

are

two

standard

ways

to

modify

existing

WebSphere

Commerce

task

commands.

With

these

methods

of

modification,

you

can

accomplish

the

following:

v

Add

additional

processing

and

logic

to

an

existing

task

command.

This

can

be

added

before

existing

business

logic,

after

existing

logic,

or

both

before

and

after.

v

Completely

replace

the

existing

business

logic

with

your

own

business

logic.

To

accomplish

the

above

modifications,

you

actually

create

a

new

task

command

implementation

class.

More

detail

is

provided

in

the

following

sections.

Adding

new

business

logic

to

a

task

command

Suppose

there

is

an

existing

WebSphere

Commerce

task

command,

called

ExistingTaskCmd.

Following

the

WebSphere

Commerce

naming

conventions,

this

task

command

would

have

an

interface

class

named

ExistingTaskCmd

and

an

implementation

class

named

ExistingTaskCmdImpl.

Now

assume

that

a

business

requirement

arises

and

you

must

add

new

business

logic

to

this

existing

command.

One

portion

of

the

logic

must

be

executed

before

the

existing

command

logic

and

another

portion

must

be

executed

after

the

existing

command

logic.

The

first

step

in

adding

the

new

business

logic

is

to

create

a

new

implementation

class

that

extends

the

original

implementation

class.

In

this

example,

you

would

create

a

new

ModifiedTaskCmdImpl

class

that

extends

the

ExistingTaskCmdImpl

class.

The

new

implementation

class

should

implement

the

original

interface

(ExistingTaskCmd).

Within

the

new

command,

you

override

the

existing

performExecute

method

and

include

the

new

logic

before

and

after

calling

the

super.performExecute

method.

The

following

code

snippet

demonstrates

how

to

add

new

business

logic

to

an

existing

task

command:

public

class

ModifiedTaskCmdImpl

extends

ExistingTaskCmdImpl

implements

ExistingTaskCmd

{

/*

Insert

new

business

logic

that

must

be

executed

before

the

original

command.

*/

154

Programming

Guide

and

Tutorials

//

Execute

the

original

command

logic.

super.performExecute();

/*

Insert

new

business

logic

that

must

be

executed

after

the

original

command.

*/

}

You

must

also

update

the

CMDREG

table

to

associate

the

new

implementation

class

with

the

existing

interface.

The

following

SQL

statement

shows

an

example

update:

update

CMDREG

set

CLASSNAME=’ModifiedTaskCmdImpl’

where

INTERFACENAME=’ExistingTaskCmd’

Replacing

business

logic

of

an

existing

task

command

To

replace

the

business

logic

of

an

existing

task

command,

you

must

create

a

new

implementation

class

for

the

task

command.

This

new

implementation

class

must

extend

from

the

existing

task

command

but

it

should

not

implement

the

existing

interface.

Additionally,

in

the

new

implementation

class,

do

not

call

the

performExecute

method

of

the

superclass.

While

extending

from

the

exact

command

that

you

are

replacing

may

seem

counterintuitive,

the

reason

for

taking

this

approach

is

related

to

support

for

future

versions

of

WebSphere

Commerce.

This

approach

shields

your

code

from

changes

that

may

be

made

to

command

interfaces

in

future

versions

of

WebSphere

Commerce.

As

an

example,

suppose

you

wanted

to

replace

the

business

logic

of

the

OrderNotifyCmdImpl

task

command.

In

this

case,

you

would

create

a

new

task

command

called

CustomizedOrderNotifyCmdImpl.

This

command

extends

OrderNotifyCmdImpl.

In

the

new

CustomizedOrderNotifyCmdImpl,

you

create

the

new

business

logic,

but

do

not

call

the

performExecute

method

from

the

superclass.

If

a

future

version

of

WebSphere

Commerce

then

introduces

a

new

method,

called

newMethod

in

the

interface,

the

corresponding

version

of

the

OrderNotifyCmdImpl

command

will

include

a

default

implementation

of

the

newMethod

method.

Then,

since

your

new

command

extends

from

OrderNotifyCmdImpl,

the

compiler

will

find

the

default

implementation

of

this

new

method

in

the

OrderNotifyCmdImpl

command

and

your

new

command

is

shielded

from

the

interface

change.

Refer

to

the

“Reference”

topic

of

the

WebSphere

Commerce

Production

and

Development

online

help

to

ensure

that

the

new

implementation

class

provides

the

same

external

behavior

as

the

existing

class.

Chapter

6.

Command

implementation

155

Data

bean

customization

A

data

bean

normally

extends

an

access

bean.

The

access

bean,

which

can

be

generated

by

WebSphere

Studio

Application

Developer,

provides

a

simple

way

to

access

information

from

an

entity

bean.

When

modifications

are

made

to

an

entity

bean

(for

example,

adding

a

new

field,

a

new

business

method

or

a

new

finder),

the

update

is

reflected

in

the

access

bean

as

soon

as

the

access

bean

is

regenerated.

Since

the

data

bean

extends

the

access

bean,

it

automatically

inherits

the

new

attributes.

As

a

result

of

this

relationship,

no

coding

is

required

to

enable

the

data

bean

to

use

new

attributes

from

the

entity

bean.

If

you

need

to

add

new

attributes

to

a

data

bean

that

are

not

derived

from

an

entity

bean,

you

can

extend

the

existing

data

bean

using

Java

inheritance.

For

example,

if

you

want

to

add

a

new

field

to

the

OrderDataBean,

define

MyOrderDataBean

as

follows:

public

class

MyOrderDataBean

extends

OrderDataBean

{

public

String

myNewField

()

{

//

implement

the

new

field

here

}

}

The

new

data

bean

must

also

have

a

BeanInfo

class.

A

sample

of

the

declaration

for

this

class

follows:

public

class

MyOrderDataBeanInfo

extends

java.beans.SimpleBeanInfo

{

}

WebSphere

Studio

Application

Developer

provides

a

tool

that

allows

you

to

generate

this

BeanInfo

class.

156

Programming

Guide

and

Tutorials

Chapter

7.

Trading

agreements

and

business

policies

(Business

Edition)

This

chapter

only

applies

to

WebSphere

Commerce

Business

Edition.

Introduction

One

of

the

key

elements

of

B2B

(business-to-business)

commerce

is

relationship

management.

A

trading

agreement

is

used

to

manage

a

business

relationship

between

a

buyer

and

a

seller

organization.

The

trading

agreement

model

used

by

WebSphere

Commerce

Business

Edition

supports

various

types

of

trading

agreements,

such

as

Contract

and

RFQ

(request

for

quote).

The

main

element

of

a

trading

agreement

is

a

set

of

terms

and

conditions.

Each

term

and

condition

defines

a

specific

business

rule

to

be

used

during

trading.

Using

WebSphere

Commerce

Business

Edition,

a

set

of

terms

and

conditions

can

be

negotiated

using

an

RFQ

online

process,

or

negotiated

offline

and

then

captured

using

the

business

relationship

management

interfaces

in

WebSphere

Commerce

Accelerator.

There

are

several

ways

to

model

a

term

and

condition:

v

A

term

and

condition

that

selects

one

of

the

predefined

business

policies,

such

as

a

Price

list

and

a

Return

policy.

Or

it

can

select

a

business

policy

that

you

have

created.

One

term

and

condition

object

can

also

refer

to

multiple

business

policy

objects.

v

A

term

and

condition

that

applies

a

specific

adjustment

to

the

business

policy,

such

as

an

adjustment

to

the

standard

pricing.

v

A

term

and

condition

that

defines

a

set

of

parameters

that

govern

a

business

process.

For

example,

it

could

specify

that

a

particular

fulfillment

center

is

to

be

used

by

a

specific

contract.

A

contract

is

made

up

of

a

set

of

terms

and

conditions.

This

is

shown

in

the

following

diagram.

©

Copyright

IBM

Corp.

2000,

2003

157

From

the

preceding

diagram,

note

the

following:

v

The

term

“adjustment”

refers

to

a

modification

to

the

business

policy.

As

an

example,

it

can

be

used

to

apply

a

discount

to

the

result

of

a

business

policy

such

that

a

10%

discount

gets

applied

to

the

standard

price.

It

can

also

be

used

to

influence

the

business

policy

with

a

set

of

parameters.

v

As

an

example,

in

the

diagram

the

TermCondition

object

A

may

represent

a

shipping

term

and

condition

object.

In

this

case,

the

business

policy

A

may

represent

a

shipping

mode

business

policy

and

the

business

object

A

represents

the

shipping

mode

“A3”

of

shipping

carrier

XYZ.

v

An

another

example,

in

the

diagram

the

TermCondition

object

B

may

represent

a

price

term

and

condition

object

that

applies

a

50%

discount

of

the

price

defined

by

business

policy

B.

In

this

case,

business

policy

B

is

a

price

policy

and

business

object

B

is

a

trading

position

container

that

defines

the

trading

position

for

the

master

catalog.

This

chapter

provides

guidelines

for

programmers

on

how

to

create

new

business

policies

and

new

terms

and

conditions.

The

ToolTech

sample

store

demonstrates

a

shipping

term

and

condition

object

and

a

price

term

and

condition

object

in

its

business

flow.

For

more

information

about

the

contract

data

that

supports

these

examples,

refer

to

“ToolTech

sample

contract

data”

on

page

160.

Business

policy

objects

and

commands

A

business

policy

object

contains

the

following

information:

Terms and conditions Business policies

Contract

refers
and applies
adjustment to

refers to
Business
object A

Business
object B

refers to

refers to

Business
policy B

Business
policy A

TermCondition
object B

TermCondition
object C

parameterA
parameterB

TermCondition
object A

Figure

29.

158

Programming

Guide

and

Tutorials

v

Policy

ID
This

is

the

primary

key

for

the

business

policy

object.

v

Policy

type
This

defines

the

business

policy

type.

Price

and

ProductSet

are

examples

of

policy

types.

v

Policy

name
Each

business

policy

must

have

a

unique

name.

v

Store

entity
The

store

or

store

group

in

which

the

business

policy

is

deployed.

v

Properties
A

set

of

default

properties

that

can

be

passed

to

the

business

policy

command.

The

commands

associated

with

the

business

policy

object

are

stored

in

the

BusinessPolicyCmd

table.

v

Effective

period
The

period

for

which

the

business

policy

object

is

effective.

v

Business

policy

command
Zero

or

more

business

policy

commands

that

implement

the

business

policy.

A

business

policy

command

is

typically

invoked

by

a

business

process

that

can

be

either

a

task

command

or

a

controller

command.

For

example,

the

getContractPrice()

command

gets

the

price

for

a

term

and

condition.

This

price

term

and

condition

refers

to

a

particular

price

policy

command

and

this

price

policy

command

is

used

to

calculate

the

price.

Multiple

business

policy

commands

can

be

associated

with

a

single

business

policy

object.

Each

business

policy

command

must

implement

the

same

interface

defined

by

the

business

policy

type

object.

The

structure

of

a

new

business

policy

command

is

depicted

in

the

following

diagram:

Chapter

7.

Trading

agreements

and

business

policies

(Business

Edition)

159

As

shown

in

the

preceding

diagram,

in

order

to

create

a

new

business

policy

command,

you

create

a

new

implementation

class

that

extends

the

WebSphere

Commerce

BusinessPolicyCmdImpl

implementation

class.

You

also

create

a

new

interface

that

extends

the

BusinessPolicyCmd

interface.

ToolTech

sample

contract

data

This

section

provides

an

introduction

to

some

of

the

contract

data

that

is

used

in

the

ToolTech

sample

store.

The

sample

data

in

the

following

sections

is

organized

by

database

table.

Only

the

relevant

rows

and

columns

are

displayed.

Also

note

that

when

the

sample

is

installed

any

unique

identifiers

(such

as

CONTRACT_ID)

may

have

different

values

than

what

is

shown

here.

CONTRACT

table

sample

data

The

following

table

shows

relevant

sample

data

from

the

CONTRACT

database

table.

Note

that

for

display

purposes,

the

database

column

headings

are

shown

the

first

column

and

the

row

of

sample

data

from

the

table

is

shown

in

the

second

column.

Column

name

Sample

data

CONTRACT_ID

10007

MAJORVERSION

1

MINORVERSION

0

Implementation classes

New business policy command

Interfaces

BusinessPolicyCommandImpl

MyNewBusinessPolicyCommandImpl

BusinessPolicyCommand

extends extends

MyNewBusinessPolicyCommand

implements

Figure

30.

160

Programming

Guide

and

Tutorials

Column

name

Sample

data

NAME

ToolTechContractNumber

4567

MEMBER_ID

-2001

ORIGIN

0

STATE

3

USAGE

1

MARKFORDELETE

0

TERMCOND

table

sample

data

The

following

table

shows

relevant

sample

data

from

the

TERMCOND

database

table.

Note

that

for

display

purposes,

the

database

column

headings

are

shown

the

first

column

and

the

rows

of

sample

data

from

the

table

are

shown

in

the

second

and

third

columns.

Column

name

Sample

data

row

1

Sample

data

row

2

TERMCOND_ID

10025

10030

TCSUBTYPE_ID

PriceTCPriceListWith

SelectiveAdjustment

ShippingTCShippingMode

TRADING_ID

10007

10007

STRINGFILED1

ProductSet2

INTEGERFIELD2

10002

INTEGERFIELD3

1

BIGINTFIELD1

10051

FLOATFIELD1

-50.0

SEQUENCE

1

6

POLICYTC

table

sample

data

The

following

table

shows

relevant

sample

data

from

the

POLICYTC

database

table.

This

table

establishes

the

relationship

between

a

policy

and

a

terms

and

conditions

object.

Column

name

POLICY_ID

TERMCOND_ID

Sample

data

row

1

10053

10025

Sample

data

row

2

10056

10030

Chapter

7.

Trading

agreements

and

business

policies

(Business

Edition)

161

POLICY

table

sample

data

The

following

table

shows

relevant

sample

data

from

the

POLICY

database

table.

Column

name

Sample

data

row

1

Sample

data

row

2

POLICY_ID

10053

10056

POLICYNAME

MasterCatalogPriceList

A3

POLICYTYPE_ID

Price

ShippingMode

STOREENT_ID

10051

10051

PROPERTIES

name=ToolTech&

member_id=-2001

shippingMode=A3

STARTTIME

null

null

ENDTIME

null

null

TRADEPOSCN

table

sample

data

The

following

table

shows

relevant

sample

data

from

the

TRADEPOSCN

database

table.

Column

name

TRADEEPOSCN_ID

MEMBER_ID

NAME

TYPE

Sample

data

row

10051

-2001

ToolTech

S

SHIPMODE

table

sample

data

The

following

table

shows

relevant

sample

data

from

the

SHIPMODE

database

table.

Column

name

SHIPMODE_ID

STOREENTITY_ID

CODE

CARRIER

Sample

data

row

10053

10051

A3

XYZ

Carrier

Extending

the

existing

contract

model

A

contract

can

be

made

up

of

one

or

more

terms

and

conditions

objects,

each

of

which

refers

to

a

policy.

As

such,

the

subsequent

sections

describe

the

steps

necessary

for

creating

a

new

business

policy

and

integrating

this

into

your

business

flow.

As

a

brief

overview,

the

following

are

the

high-level

steps

for

performing

this

task:

162

Programming

Guide

and

Tutorials

1.

Creating

a

new

business

policy.
The

following

tasks

are

related

to

creating

a

new

business

policy

command:

a.

Create

a

new

business

policy

type

(if

required).
Several

business

policy

types

are

provided,

but

if

the

standard

types

do

not

suit

your

business

requirements,

create

a

new

business

policy

type.

b.

Creating

a

new

business

policy

command.

c.

Register

the

new

business

policy

and

business

policy

command.
2.

Relate

a

terms

and

conditions

object

to

the

new

business

policy.
This

can

be

done

by

relating

an

existing

terms

and

conditions

object

to

the

new

business

policy,

or

by

creating

a

new

terms

and

condition

object.

If

you

create

a

new

terms

and

conditions

object,

then

you

must

perform

the

following

steps:

a.

Register

the

new

term

and

condition

in

the

database

b.

Register

the

new

term

and

condition

in

the

contract

XSD

(XML

schema

definition)

c.

Creating

a

new

CMP

enterprise

bean

for

the

term

and

condition

d.

Updating

WebSphere

Commerce

Accelerator

to

reflect

the

new

term

and

condition
3.

Invoking

the

new

business

policy

during

the

business

flow.

WebSphere

Commerce

Version

5.5

introduces

new

types

of

contracts.

For

information

about

the

types

of

contracts

available,

refer

to

the

“Business

accounts”

subtopic

of

the

the

“Concepts”

topic

in

the

WebSphere

Commerce

Production

online

help.

The

following

sections

use

the

BuyerContract

as

the

contract

type

in

the

extension

example.

Similar

extension

methodologies

are

used

for

the

other

contract

types.

Creating

a

new

business

policy

Creating

a

new

business

policy

typically

involves

registering

a

unique

business

policy

in

the

database,

as

well

as

creating

a

new

business

policy

command.

Creating

a

new

business

policy

command

involves

the

following

high-level

steps:

1.

Creating

a

new

business

policy

type

(if

required).

2.

Writing

the

new

business

policy

command.

3.

Registering

the

new

business

policy

and

business

policy

command

in

the

database.

Chapter

7.

Trading

agreements

and

business

policies

(Business

Edition)

163

Each

of

the

preceding

steps

is

described

in

more

detail

in

the

subsequent

sections.

Creating

a

new

business

policy

type

This

section

describes

how

to

create

a

new

business

policy

type.

A

business

policy

type

indicates

the

realm

of

the

transaction

to

which

a

policy

applies.

Examples

of

business

policy

types

include:

v

Price

v

ProductSet

v

ShippingMode

v

ShippingCharge

v

Payment

v

ReturnCharge

v

ReturnApproval

v

ReturnPayment

v

InvoiceFormat

If

the

existing

business

policy

types

do

not

satisfy

your

business

requirements,

you

should

create

a

new

business

policy

type.

Creating

the

new

business

policy

type

consists

of

defining

and

registering

the

business

policy

type.

When

defining

and

registering

a

new

policy

type,

you

must

update

the

following

database

tables:

v

POLICYTYPE

v

PLCYTYCMIF

v

PLCYTYPDSC

The

POLICYTYPE

table

specifies

the

type

of

business

policy

that

you

are

creating.

It

contains

a

single

column,

POLICYTYPE_ID,

that

is

the

primary

key.

An

example

value

is

Price.

If

you

create

a

new

business

policy

type,

ensure

that

you

specify

a

unique

POLICYTYPE_ID.

The

PLCYTYCMIF

table

is

the

business

policy

type

to

command

interface

relationship

specification

table.

That

is,

for

each

business

policy

type,

it

specifies

the

Java

command

interface

for

the

business

policy

object.

While

there

can

be

zero

or

more

business

policy

commands

that

implement

a

business

policy,

each

of

the

business

policy

commands

must

implement

the

interface

specified

here.

The

PLCYTYPDSC

table

specifies

a

description

of

the

business

policy

type.

It

includes

a

language

identifier

of

the

description

and

the

description

of

the

business

policy

type.

164

Programming

Guide

and

Tutorials

To

create

a

new

business

policy

type,

create

an

entry

in

each

of

these

tables

for

the

new

business

policy

type.

The

following

SQL

statements

provides

an

example:

insert

into

POLICYTYPE

(POLICYTYPE_ID)

values

(’MyNewPolicyType’);

insert

into

PLCYTYCMIF

(POLICYTYPE_ID,

BUSINESSCMDIF)

values

(’MyNewPolicyType’,

’com.mycompany.mybusinesspolicycommands.MyNewPolicy’);

insert

into

PLCYTYPDSC

(POLICYTYPE_ID,

LANGUAGE_ID,

DESCRIPTION)

values

(’MyNewPolicyType’,

-1,

’My

new

policy

type

for

example

purposes.’);

As

the

final

step

of

creating

the

new

business

policy

type,

you

may

code

one

or

more

new

business

policy

type

interfaces.

These

interfaces

are

then

implemented

by

any

business

policy

command

that

falls

under

the

realm

of

this

business

policy

type.

For

example,

in

the

ToolTech

sample

store,

Price

is

defined

as

a

business

policy

type.

As

such,

there

are

the

com.ibm.commerce.price.commands.ResolvePriceListsCmd

and

com.ibm.commerce.price.commands.RetrievePricesCmd

interfaces

that

are

implemented

by

all

price-related

business

policy

commands.

If

you

will

not

have

a

business

policy

command

that

performs

operations

on

the

new

business

policy

type,

then

you

are

not

required

to

create

a

new

interface.

This

is

rare,

and

in

most

cases

when

creating

a

new

business

policy

type,

you

must

create

a

new

business

policy

type

interface

as

well.

When

you

create

a

business

policy

type

interface,

the

new

interface

must

extend

the

com.ibm.commerce.command.BusinessPolicyCommand

interface.

Writing

the

new

business

policy

command

To

create

a

new

business

policy

command,

you

must

create

a

new

command

that

implements

the

interface

of

the

business

policy

type

to

which

the

command

relates.

The

new

command

must

also

extend

com.ibm.commerce.command.BusinessPolicyCommandImpl

implementation

class.

This

is

very

similar

to

creating

a

new

controller

or

task

command.

There

are

two

different

approaches

by

which

you

can

pass

input

properties

to

a

business

policy

command.

The

first

way

is

to

have

default

input

properties

specified

in

the

PROPERTIES

column

of

the

POLICY

table.

For

more

information

about

this

table,

refer

to

the

following

section.

The

second

approach

is

to

create

a

new

field

in

the

command

for

each

of

the

input

properties.

For

each

field,

create

a

new

pair

of

getter

and

setter

methods.

Setting

requestProperties

in

business

policy

commands

There

are

two

ways

in

which

requestProperties

are

set

in

a

business

policy

command

object.

The

first

way

uses

the

PROPERTIES

column

of

the

POLICY

Chapter

7.

Trading

agreements

and

business

policies

(Business

Edition)

165

table

to

set

the

default

properties.

This

is

accomplished

by

the

setRequestProperties

method.

The

second

way

to

set

properties

is

to

have

the

command

(controller

or

task)

that

calls

the

business

policy

command

explicitly

set

other

required

properties.

When

creating

a

new

business

policy

command,

you

should

override

the

default

setRequestProperties

method

to

include

the

logic

to

explicitly

set

each

of

the

parameters

that

are

included

in

the

requestProperties

object.

Consider

an

example

of

a

new

business

policy

command

that

has

an

interface

name

of

MyNewBusinessPolicyCmd

and

implementation

class

name

of

MyNewBusinessPolicyCmdImpl.

Assume

that

the

entry

in

the

POLICY

table

for

this

new

business

policy

command

includes

the

following

values

in

the

PROPERTIES

column:

v

defaultProperty1=apple

v

defaultProperty2=orange

v

defaultProperty3=banana

The

interface

for

this

new

business

policy

command

is

defined

as

follows:

public

interface

MyNewBusinessPolicyCmd

extends

com.ibm.commerce.command.BusinessPolicyCmd

{

java.lang.String

defaultCommandClassName

=

’com.mycompany.mycommands.MyNewBusinessPolicyCmdImpl’;

public

void

setProperty1();

public

void

setProperty2();

}

The

implementation

class

for

this

new

business

policy

command

is

defined

as

follows:

public

class

MyNewBusinessPolicyCmdImpl

extends

com.ibm.commerce.command.BusinessPolicyCmdImpl

implements

com.mycompany.mycommands.MyNewBusinessPolicyCmd

{

//

Establish

default

properties

that

are

stored

in

the

POLICY

table

private

java.lang.String

defaultProperty1;

private

java.lang.String

defaultProperty2;

private

java.lang.String

defaultProperty3;

//

Begin

to

establish

properties

that

must

be

set

//

by

the

calling

command.

//

property1

private

java.lang.String

property1;

public

java.lang.String

getProperty1()

{

return

property1;

}

public

void

setProperty1(java.lang.String

newProperty1)

{

property1

=

newProperty1;

166

Programming

Guide

and

Tutorials

}

//

property2

private

java.lang.String

property2;

public

java.lang.String

getProperty2()

{

return

property2;

}

public

void

setProperty1(java.lang.String

newProperty2)

{

property2

=

newProperty2;

}

//

End

establishing

properties

that

must

be

set

//

by

the

calling

command.

/*

Upon

instantiation

the

business

policy

command

sets

all

default

properties

from

the

POLICY

table

into

the

requestProperties

object.

The

calling

command

is

responsible

for

setting

any

other

required

properties.

*/

public

void

setRequestProperties(com.ibm.commerce.datatype.TypedProperty

requestProperties)

{

//

Get

the

default

properties

defined

in

the

POLICY

table

setDefaultProperty1(requestProperties.get("defaultProperty1"));

setDefaultProperty2(requestProperties.get("defaultProperty2"));

setDefaultProperty3(requestProperties.get("defaultProperty3"));

}

}

The

command

that

calls

the

new

business

policy

command

could

be

defined

in

a

manner

similar

to

the

following:

public

class

MyCallerCommandImpl

extends

com.ibm.commerce.command.TaskCommandImpl

implements

com.mycompany.mycommands.MyCallerCommand

{

/*

Include

all

elements

and

processing

required

for

the

task

command.

*/

//

Determine

the

policy

ID

and

setPolicyId

//

Call

the

business

policy

command.

cmd

=

(MyNewBusinessPolicyCmd)

CommandFactory

createPolicyCommand(policyId);

//

Set

required

properties

cmd.setProperty1("Fruit

salad");

cmd.setProperty2("Favorite

food");

cmd.execute();

}

Chapter

7.

Trading

agreements

and

business

policies

(Business

Edition)

167

Registering

the

new

business

policy

and

business

policy

command

After

you

have

created

the

new

business

policy

command,

you

must

register

both

the

business

policy

and

the

business

policy

command

in

the

database.

Business

policies

are

registered

in

the

POLICY

table.

This

table

contains

the

following

columns:

v

POLICY_ID

The

primary

key.

This

is

the

policy

identifier.

v

POLICYNAME
A

unique

policy

name.

v

POLICYTYPE_ID

The

policy

type

identifier.

This

is

the

foreign

key

to

the

POLICYTYPE

table.

v

STOREENT_ID
The

store

or

store

group

to

which

the

policy

applies.

v

PROPERTIES
Default

properties

that

can

be

set

to

the

business

policy

command.

Specified

as

name-value

pairs,

for

example,

parm1=val1&parm2=val2.

v

STARTDATE
The

starting

date

(specified

as

a

timestamp)

of

the

policy.

If

NULL,

the

starting

date

is

immediate.

v

ENDDATE
The

ending

date

(specified

as

a

timestamp)

of

the

policy.

If

NULL,

there

is

no

end

date.

Once

the

new

policy

is

registered

in

the

POLICY

table,

you

must

register

a

relationship

between

the

policy

and

the

business

policy

command

that

implements

the

business

policy.

The

POLICYCMD

table

is

used

for

this

purpose.

The

POLICYCMD

table

contains

the

following

columns:

v

POLICY_ID

Foreign

key

reference

to

the

POLICY

table.

v

BUSINESSCMDCLASS
The

business

policy

command

that

implements

the

policy.

v

PROPERTIES
Default

properties

that

can

be

set

to

the

business

policy

command.

Specified

as

name-value

pairs,

for

example,

parm1=val1&parm2=val2.

Relating

a

terms

and

conditions

object

to

a

new

business

policy

In

the

WebSphere

Commerce

contracts

and

policies

framework,

terms

and

conditions

(also

referred

to

as

terms)

provide

a

way

to

describe

an

agreement

between

a

buyer

and

a

seller.

Terms

and

conditions

can

be

used

in

various

types

of

trading

agreements,

such

as

contract

and

RFQ

(request

for

quotation).

Terms

and

conditions

objects

usually

refer

to

business

policies

with

an

168

Programming

Guide

and

Tutorials

optional

adjustment.

For

example,

a

price

terms

and

conditions

object

is

created

by

choosing

one

of

the

price

policy

objects.

In

the

price

term,

an

account

manager

can

make

adjustments

to

the

store

standard

price,

such

as:

v

A

percentage

discount

over

the

standard

price

list

v

A

percentage

discount

on

a

specified

set

of

the

products

Each

of

the

adjustments

is

specified

as

a

term

and

condition.

When

you

create

a

new

business

policy,

there

must

be

at

least

one

terms

and

conditions

object

that

refers

to

this

business

policy,

if

the

policy

is

to

be

used

in

a

contract.

You

can

either

relate

an

existing

term

and

condition

object

to

the

new

business

policy

(this

is

done

by

capturing

the

relationship

between

the

existing

terms

and

conditions

object

and

the

new

business

policy

in

the

XSD

(XML

schema

definition)

files),

or

you

can

create

a

new

terms

and

conditions

object

that

is

related

to

the

new

business

policy.

Creating

new

terms

and

conditions

Within

the

WebSphere

Commerce

architecture,

new

terms

and

conditions

objects

are

created

by

performing

the

following

steps:

1.

Updating

the

database

schema

to

include

the

new

term

and

condition.

2.

Updating

XSD

files

to

reflect

the

new

term

and

condition.

3.

Creating

a

new

enterprise

bean

for

the

term

and

condition.

4.

Updating

WebSphere

Commerce

Accelerator

to

reflect

the

new

term

and

condition,

or

using

the

contract

load

command

to

create

a

new

contract

using

the

new

term

and

condition.

In

the

following

sections,

the

example

of

MyTC

is

the

new

term

and

condition

object.

Registering

the

new

term

and

condition

in

the

database

When

you

are

creating

a

new

terms

and

condition

object,

you

must

update

the

database

schema

to

include

this

object.

The

database

tables

that

must

be

updated

are

TCTYPE

and

TCSUBTYPE.

The

following

SQL

statement

shows

an

example

of

how

to

register

the

new

term

and

condition

in

the

database:

insert

into

TCTYPE

(TCTYPE_ID)

values

(’MyTC’);

insert

into

TCSUBTYPE

(TCSUBTYPE_ID,

TCTYPE_ID,

ACCESSBEANNAME,

DEPLOYCOMMAND)

values

(’MySubTC’,

’MyTC’,

’com.ibm.commerce.contract.objects.MySubTCAccessBean’,

’packagename.MySubTCDeployCmd’);

Register

the

new

term

and

condition

in

the

contract

XSD

To

make

the

new

term

and

condition

available

in

contracts,

you

must

create

a

new

XSD

file

that

defines

the

new

term

and

condition.

You

must

also

update

the

Package.xsd

file

to

include

the

new

XSD

file.

Chapter

7.

Trading

agreements

and

business

policies

(Business

Edition)

169

To

create

the

new

XSD

file,

do

the

following:

1.

Navigate

to

the

following

directory:

v

2000400

WC_userdir/instances/instanceName/xml/trading/xsd

v

2000AIX

2000Linux

2000Solaris

WC_installdir/xml/trading/xsd

v

2000Windows

WC_installdir\xml\trading\xsd

where

instanceName

is

the

name

of

your

WebSphere

Commerce

instance.

2.

In

this

directory,

create

a

new

XSD

file.

The

following

shows

the

XSD

that

would

be

used

for

the

example

MyTC.

The

file

is

CustomizedBuyerContract.xsd:

<?xml

version="1.0"?>

<schema

targetNamespace="http://www.ibm.com/WebSphereCommerce"

xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:wc="http://www.ibm.com/WebSphereCommerce"

elementFormDefault="qualified"

attributeFormDefault="unqualified">

<!--

include

basic

trading

agreement

xsd

-->

<include

schemaLocation="BuyerContract.xsd"

/>

<complexType

name="MyTCType">

<complexContent>

<extension

base="wc:TermConditionType"/>

</complexContent>

</complexType>

<element

name="MySubTC"

substitutionGroup="wc:AbstractCustomizedTC">

<complexType>

<complexContent>

<extension

base="wc:MyTCType">

<sequence>

<element

ref="wc:ProductSetPolicyRef"/>

</sequence>

<attribute

name="attr1"

type="normalizedString"

use="required"/>

<attribute

name="attr2"

type="int"

use="required"/>

</extension>

</complexContent>

</complexType>

</element>

</schema>

3.

Save

the

new

file.

Next,

you

must

update

the

Package.xsd

file

to

remove

the

BuyerContract.xsd

file

and

instead

include

the

CustomizedBuyerContract.xsd

file

,

as

follows:

1.

Navigate

to

the

following

directory:

v

2000Windows

WC_installdir\xml\trading\xsd

v

2000AIX

2000Solaris

2000Linux

WC_installdir/xml/trading/xsd

170

Programming

Guide

and

Tutorials

v

2000400

WC_userdir/instances/instanceName/xml/trading/xsd

where

instanceName

is

the

name

of

your

WebSphere

Commerce

instance.

2.

Open

the

Package.xsd

file

in

a

text

editor.

3.

Locate

the

section

about

the

BuyerContract.xsd

and

modify

it

as

follows:

<!--include

schemaLocation="BuyerContract.xsd"/-->

<include

schemaLocation="CustomizedBuyerContract.xsd"/>

Creating

a

new

CMP

enterprise

bean

for

the

term

and

condition

You

must

create

a

new

CMP

enterprise

bean

for

the

term

and

condition

object.

The

bean

is

created

for

the

term

and

condition

subtype.

Note

that

typically

when

creating

new

enterprise

beans,

you

would

place

the

beans

into

the

WebSphereCommerceServerExtensionsData

project,

rather

than

including

them

into

one

of

the

EJB

groups

that

contain

WebSphere

Commerce

entity

beans.

In

this

case

however,

since

all

new

entity

beans

for

terms

and

conditions

must

inherit

from

the

WebSphere

Commerce

TermCondition

bean,

you

must

place

your

new

term

and

condition

beans

into

the

Enablement-RelationshipManagementData

project.

The

following

sections

describe

how

to

create

the

new

enterprise

bean,

using

the

tools

in

WebSphere

Studio

Application

Developer.

Create

a

new

enterprise

bean:

To

create

the

new

CMP

enterprise

bean

for

the

new

term

and

condition,

do

the

following:

1.

Within

the

J2EE

Hierarchy

view,

expand

EJB

Modules.

2.

Right-click

the

Enablement-RelationshipManagementData

module

and

select

New

>

Enterprise

Bean.
The

Enterprise

Bean

Creation

wizard

opens.

3.

From

the

EJB

Project

drop-down

list,

the

Enablement-
RelationshipManagementData

is

already

selected.

Click

Next.

4.

In

the

Create

an

Enterprise

Bean

window,

do

the

following:

a.

Select

Entity

bean

with

container-managed

persistence

(CMP)

fields

b.

In

the

Bean

name

field,

enter

an

appropriate

name

for

your

bean.

For

this

example,

enter

MySubTC

c.

In

the

Source

folder

field,

leave

the

default

value

that

is

specified

(ejbModule).

d.

In

the

Default

package

field,

enter

com.ibm.commerce.contract.objects.

e.

Click

Next.
5.

In

the

Enterprise

Bean

Details

window,

do

the

following:

a.

From

the

Bean

supertype

drop-down

list,

select

TermCondition.

Chapter

7.

Trading

agreements

and

business

policies

(Business

Edition)

171

b.

Click

Add

to

add

a

new

CMP

attributes.
The

Create

CMP

Attribute

window

opens.

In

this

window,

do

the

following:

1)

In

the

Name

field,

enter

an

appropriate

name

for

the

new

CMP

field.

For

this

example,

enter

attr1.

2)

In

the

Type

field,

enter

the

appropriate

data

type

for

the

field.

For

this

example,

enter

String.

3)

Select

the

Access

with

getter

and

setter

methods

check

box.

4)

Select

Promote

getter

and

setter

methods

to

remote

interface

check

box.

5)

Clear

the

Make

getter

read-only

check

box.

6)

Click

Apply.

7)

Create

another

attribute.

In

the

Name

field,

enter

attr2.

8)

In

the

Type

field,

enter

the

appropriate

data

type

for

the

field.

For

this

example,

enter

Integer.

9)

Clear

the

Make

getter

read-only

check

box.

10)

Click

Apply.

11)

Click

Close

to

close

this

window.
6.

Click

Finish.

Map

the

fields

from

the

new

bean

into

the

TERMCOND

table:

The

next

step

is

to

map

the

fields

from

the

new

bean

to

columns

in

the

TERMCOND

table.

To

create

this

mapping,

do

the

following:

1.

Switch

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

2.

Expand

the

following

folders:

Enablement-RelationshipManagementData

>

ejbModule

>

META-INF.

3.

Double-click

the

Map.mapxmi

file.

4.

In

the

Enterprise

Beans

pane,

expand

the

TermCondition

bean,

then

expand

the

MySubTC

bean,

so

that

its

attributes

can

be

viewed.

5.

In

the

Tables

pane,

expand

the

TERMCOND

table

so

that

its

columns

can

be

viewed.

6.

Drag

the

attr1

field

from

the

MySubTC

onto

the

STRINGFIELD3

column

in

the

TERMCOND

table.

7.

Drag

the

attr2

field

from

the

MySubTC

onto

the

INTEGERFIELD3

column

in

the

TERMCOND

table.

8.

Save

your

changes.

Adding

a

new

ejbCreate

method:

In

this

step,

you

add

a

new

ejbCreate

method

to

the

MySubTC

bean,

by

doing

the

following:

172

Programming

Guide

and

Tutorials

1.

In

the

J2EE

Hierarchy

view,

double-click

the

MySubTCBean

class

to

open

it

and

view

its

source

code.

2.

Create

a

new

ejbCreate(Long,

Element)

method,

by

adding

the

following

code

into

the

class:

public

com.ibm.commerce.contract.objects.TermConditionKey

ejbCreate(java.lang.Long

argTradingId,

org.w3c.dom.Element

argElement)

throws

javax.ejb.CreateException,

javax.ejb.FinderException,

javax.naming.NamingException,

javax.ejb.RemoveException

{

_initLinks();

super.ejbCreate

(argTradingId,

argElement);

this.attr1=

null;

this.attr2

=

null;

return

null;

}

Save

the

code

changes.

3.

You

must

add

the

new

ejbCreate(Long,

Element)

method

to

the

home

interface.

This

makes

the

method

available

in

the

generated

access

bean.

To

add

the

method

to

the

home

interface,

do

the

following:

a.

Right-click

the

ejbCreate(Long,

Element)

method

in

the

Outline

view

and

select

Enterprise

Bean

>

Promote

to

Home

Interface.

Adding

a

new

ejbPostCreate

method:

Next

create

a

new

ejbPostCreate(Long,

Element)

method

so

that

it

has

the

same

parameters

as

the

ejbCreate(Long,

Element)

method,

by

doing

the

following:

1.

Double-click

the

MySubTCBean

class

to

open

it

and

view

its

source

code.

2.

Create

a

new

ejbPostCreate(Long,

Element)

method,

by

adding

the

following

code

into

the

class:

public

void

ejbPostCreate(java.lang.Long

argTradingId,

org.w3c.dom.Element

argElement)

throws

javax.ejb.CreateException,

javax.ejb.FinderException,

javax.naming.NamingException,

javax.ejb.RemoveException

{

parseXMLElement(argElement);

}

Save

the

code

changes.

Adding

a

parseXMLElement

method:

In

this

step,

you

must

create

the

parseXMLElement

method

in

the

MySubTCBean,

as

follows:

1.

Double-click

the

MySubTCBean

class

to

open

it

and

view

its

source

code.

2.

Update

the

method

as

follows:

Chapter

7.

Trading

agreements

and

business

policies

(Business

Edition)

173

public

void

parseXMLElement(org.w3c.dom.Element

argElement)

throws

javax.ejb.CreateException,

javax.ejb.FinderException,

javax.naming.NamingException,

javax.ejb.RemoveException

{

super.parseXMLElement(argElement);

if

(argElement

==

null)

return;

String

nodeName

=

argElement.getNodeName();

if

(nodeName.equals("TCCopy"))

return;

this.attr1

=

argElement

.getAttribute("attr1").trim();

this.attr2

=

new

Integer

(argElement.

getAttribute("attr2").trim());

//

get

element

"ProductSetPolicyRef"

from

"MySubTC"

Element

ePolicyReference

=

null;

ePolicyReference

=

ContractUtil.getElementByTag(

argElement,

"ProductSetPolicyRef");

parseElementPolicyReference(ePolicyReference);

}

3.

Save

your

work.

Adding

a

createNewVersion

method:

In

this

step

you

must

create

a

new

createNewVersion

method

in

the

MySubTCBean,

as

follows:

1.

Double-click

the

MySubTCBean

class

to

open

it

and

view

its

source

code.

2.

Update

the

method

as

follows:

public

Long

createNewVersion(Long

argNewTradingId)

throws

javax.ejb.CreateException,

javax.ejb.FinderException,

javax.naming.NamingException,

javax.ejb.RemoveException,

org.xml.sax.SAXException,

java.io.IOException

{

//

Contract

a

seqElement

since

tcSequence

can

not

be

null

Element

seqElement

=

ContractUtil.

getSeqElementFromTCSequence(this.tcSequence);

MySubTCAccessBean

newTC

=

new

MySubTCAccessBean(

argNewTradingId,

seqElement);

Long

newTCId

=

newTC.getReferenceNumberInEJBType();

newTC.setInitKey_referenceNumber(newTCId);

newTC.setMandatoryFlag(this.mandatoryFlag);

newTC.setChangeableFlag(this.changeableFlag);

//

set

columns

for

this

specific

TC

newTC.setAttr1(this.attr1);

newTC.setAttr2(this.attr2);

newTC.commitCopyHelper();

return

newTCId;

}

174

Programming

Guide

and

Tutorials

3.

Save

your

work.

Adding

a

getXMLString

method:

In

this

step

you

must

create

a

new

getXMLString

method

in

the

MySubTCBean,

as

follows:

1.

Double-click

the

MySubTCBean

class

to

open

it

and

view

its

source

code.

2.

Override

the

method

as

follows:

public

String

getXMLString()

throws

javax.ejb.CreateException,

javax.ejb.FinderException,

javax.naming.NamingException

{

return

getXMLString(false);

}

public

String

getXMLString(boolean

tcdata)

throws

javax.ejb.CreateException,

javax.ejb.FinderException,

javax.naming.NamingException

{

String

xmlTC

=

"

<MySubTC

%TC_DATA%

"

+

"

attr1=\""

+

this.attr1

+

"\"

attr2=\""

+

this.attr2.toString()

+

"\">"

+

"%TC_DESC%"

+

"%PARTICIPANT%"

+

"%XML_POLICYREFERENCE%"

+

"

</MySubTC>";

xmlTC

=

ContractUtil.replace(

xmlTC,

"%TC_DATA%",

getXMLStringForTCData(tcdata));

String

xmlPolicy

=

getXMLStringForElementPolicyReference(

"ProductSet");

xmlTC

=

ContractUtil.replace(

xmlTC,

"%XML_POLICYREFERENCE%",

xmlPolicy);

xmlTC

=

ContractUtil.replaceAll(

xmlTC,

"%POLICY_REF_TYPE%",

"ProductSetPolicyRef");

return

xmlTC;

}

3.

Save

your

work.

Adding

a

markForDelete

method:

In

this

step

you

must

create

a

new

markForDelete

method

in

the

MySubTCBean,

as

follows:

1.

Double-click

the

MySubTCBean

class

to

open

it

and

view

its

source

code.

2.

Override

the

method

as

follows:

public

void

markForDelete()

throws

javax.ejb.CreateException,

javax.ejb.FinderException,

javax.naming.NamingException

{

//

code:

remove

entries

from

associated

tables

which

//

cannot

be

deleted

though

delete

cascade

}

Chapter

7.

Trading

agreements

and

business

policies

(Business

Edition)

175

3.

Save

your

work.

Updating

the

remote

interface:

You

must

ensure

that

the

following

methods

have

been

added

to

the

remote

interface,

as

follows:

1.

Switch

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

2.

Expand

the

Enablement-RelationshipManagementData

project.

3.

Expand

the

com.ibm.commerce.contract.objects

package.

4.

Double-click

the

MySubTCBean

bean.

5.

In

the

Outline

view,

right-click

the

getXMLString()

method

and

select

Enterprise

Bean

>

Promote

to

Remote

Interface

6.

In

the

Outline

view,

right-click

the

getXMLString(boolean

tcdata)

method

and

select

Enterprise

Bean

>

Promote

to

Remote

Interface

7.

In

the

Outline

view,

right-click

the

parseXMLElement(org.w3c.dom.Element

argElement)

method

and

select

Enterprise

Bean

>

Promote

to

Remote

Interface

8.

In

the

Outline

view,

right-click

the

createNewVersion(Long

argNewTradingId)

method

and

select

Enterprise

Bean

>

Promote

to

Remote

Interface

9.

In

the

Outline

view,

right-click

the

markForDelete()

method

and

select

Enterprise

Bean

>

Promote

to

Remote

Interface

10.

Save

your

changes.

Creating

an

access

bean

for

MySubTC:

To

create

the

access

bean,

do

the

following:

1.

In

the

J2EE

Hierarchy

view,

expand

EJB

Modules,

then

right-click

Enablement-RelationshipManagementData

and

select

New

>

Access

Bean.
The

Add

an

Access

Bean

window

opens.

2.

Select

Copy

Helper

and

click

Next.

3.

Select

the

MySubTCbean

and

click

Next.

4.

From

the

Constructor

method

drop-down

list,

select

findByPrimaryKey(com.ibm.commerce.contract.objects.MySubTCKey)

as

the

constructor

method.

5.

Select

all

attributes

in

the

Attribute

Helpers

section.

6.

Click

Finish.

7.

Save

your

work.

Adding

new

string

converters:

You

must

add

new

string

converters,

as

follows:

176

Programming

Guide

and

Tutorials

1.

In

the

J2EE

Hierarchy

view,

expand

EJB

Modules

>

Enablement-
RelationshipManagementData

>

ejbModule

>

META-INF.

2.

Double-click

the

ibm-ejb-access-bean.xmi

file.

3.

Locate

the

section

about

MySubTC.

4.

For

each

copyHelperProperties

element,

add

the

following

attribute:

converterClassName=“com.ibm.commerce.base.objects.WCSStringConverter”

5.

Save

your

work.

6.

Next

you

must

regenerate

the

access

bean

for

MySubTC,

as

follows:

a.

Right-click

Enablement-RelationshipManagementData

and

select

Access

Beans

>

Regenerate

Access

Beans.

b.

Select

MySubTC

and

click

Finish.

Generating

deployed

code:

You

must

generate

the

deployed

code

for

both

the

MySubTC

bean

as

well

as

the

TermCondition

bean,

as

follows:

1.

In

the

J2EE

Hierarchy

view,

expand

EJB

Modules

.

2.

Right-click

Enablement-RelationshipManagementData

and

select

Generate

>

Deploy

and

RMIC

Code.

3.

Select

MySubTC

and

click

Finish.

4.

Right-click

Enablement-RelationshipManagementData

and

select

Generate

>

Deploy

and

RMIC

Code.

5.

Click

Select

All

and

click

Finish.

Note:

Technically,

you

must

regenerate

the

deployed

code

for

the

parent

bean

(the

TermCondition

bean)

and

all

of

the

sibling

beans

(all

of

the

other

beans

in

the

Enablement-RelationshipManagementData

group

that

contain

“TC”

in

their

names).

Note

that

if

you

had

added

a

new

field

or

modified

the

remote

interface

of

the

existing

TermCondition

bean,

then

you

would

have

to

regenerate

the

access

beans

for

itself

and

all

of

its

child

beans

as

well.

For

simplicity,

the

preceding

instructions

select

all

of

the

beans

in

this

project.

Overriding

methods

in

the

validateContract

task

command:

The

next

step

is

to

override

methods

that

are

in

the

ValidateContractCmd

task

command.

In

this

command,

there

are

three

methods

that

you

may

want

to

override

to

support

the

new

term

and

condition

object.

They

are:

v

validateTCType()
This

method

checks

what

type

of

term

can

be

in

a

contract.

For

example,

the

InvoiceTC

belongs

to

account

and

therefore,

it

cannot

appear

in

a

contract.

v

validateTCOccurrence()
This

method

checks

the

occurrence

of

the

terms.

For

example,

in

the

default

implementation

of

this

method,

a

contract

has

to

have

at

least

one

PriceTC.

Chapter

7.

Trading

agreements

and

business

policies

(Business

Edition)

177

v

otherValidateCheck()
The

default

implementation

of

this

method

is

empty.

You

can

add

any

additional

validation

that

does

not

fall

into

the

first

two

methods.

For

details

about

how

to

make

this

modification,

refer

to

“Customizing

existing

task

commands”

on

page

154.

Creating

a

new

deployment

command:

If

the

term

and

condition

must

be

deployed,

you

must

create

a

new

deployment

command

and

register

this

command

in

the

database.

If

required,

do

the

following:

1.

In

this

example,

the

new

deployment

command

interface

is

called

MySubTCDeployedCmd

and

the

implementation

class

is

called

MySubTCDeployedCmdImpl.

In

addition,

the

command

is

packaged

in

the

packagename

package.

To

register

this

command,

issue

the

following

SQL

command:

insert

into

CMDREG

(STOREENT_ID,

INTERFACENAME,

CLASSNAME,

TARGET)

values

(0,

’packagename.MySubTCDeployCmd’,

’packagename.MySubTCDeployCmdImpl’,

’Local’);

2.

In

the

packagename

package,

create

the

new

MySubTCDeployedCmd

interface.

This

interface

must

extend

the

com.ibm.commerce.contract.commands.DeployTCCmd

command

interface.

The

following

describes

the

new

command

interface:

public

interface

MySubTCDeployCmd

extends

com.ibm.commerce.contract.commands.DeployTCCmd

{

//

customized

code

}

There

is

a

protected

parameter

abTC

and

a

method

called

getTargetStoreId()

in

DeployTCCmd.

The

value

of

abTC

is

MySubTCAccessBean

and

the

getTargetStoreId()

method

returns

the

identifier

of

the

store

to

which

the

contract

is

being

deployed.

3.

In

the

same

package,

create

the

MySubTCDeployCmdImpl

implementation

class.

This

implementation

class

must

extend

com.ibm.commerce.contract.commands.DeployTCCmdImpl.

The

following

describes

the

new

command

implementation

class:

public

class

MySubTCDeployCmdImpl

extends

com.ibm.commerce.contract.commands.DeployTCCmdImpl

implements

MySubTCDeployCmd

{

//

customer

code

}

Updating

WebSphere

Commerce

Accelerator

to

use

a

new

term

and

condition

Once

you

have

created

new

terms

and

conditions,

you

can

update

WebSphere

Commerce

Accelerator

so

that

it

can

be

used

to

create

new

contracts

that

178

Programming

Guide

and

Tutorials

include

those

new

terms

and

conditions.

Updating

WebSphere

Commerce

Accelerator

for

this

purpose

includes

the

following

steps:

1.

Creating

a

new

JavaScript™

file

for

the

new

terms

and

conditions.

For

the

purpose

of

the

example

in

this

section,

this

file

is

referred

to

as

Extensions.js.

2.

Creating

a

new

JSP

template

that

includes

an

HTML

section

in

which

a

user

can

enter

required

information

for

the

new

terms

and

conditions.

For

the

purpose

of

the

example

in

this

section,

this

file

is

referred

to

as

ContractMyTC.jsp.

3.

Creating

a

new

data

bean

for

the

new

terms

and

conditions.

For

the

purpose

of

the

example

in

this

section,

this

file

is

referred

to

as

MyTCDataBean.

4.

Registering

the

new

view

in

the

VIEWREG

table.

5.

Updating

the

ContractRB_locale.properties

file

to

include

the

new

resources.

6.

Editing

the

ContractNotebook.xml

file

to

include

the

new

page.

Each

of

these

steps

is

described

in

more

detail

in

the

following

sections.

Creating

the

new

JavaScript

file:

The

first

step

to

updating

the

WebSphere

Commerce

Accelerator

to

use

new

terms

and

conditions

is

to

create

a

new

JavaScript

file

for

them.

For

reference,

you

can

refer

to

the

following

sample

file:

v

2000400

2000AIX

2000Linux

2000Solaris

WC_installdir/samples/contract/Extensions.js

v

2000Windows

WC_installdir\samples\contract\Extensions.js

v

2000Developer

WCDE_installdir\samples\contract\Extensions.js

In

order

to

use

this

sample

file,

copy

it

to

the

following

directory:

v

2000400

WAS_userdir/installedApps/cell_name/WC_instanceName.ear/

CommerceAccelerator.war/tools/contract

v

2000AIX

2000Linux

2000Solaris

WAS_installdir/installedApps/cell_name/

WC_instanceName.ear/CommerceAccelerator.war/tools/contract

v

2000Windows

WAS_installdir\installedApps\cell_name\

WC_instanceName.ear\CommerceAccelerator.war\tools\contract

v

2000Developer

workspace_dir\CommerceAccelerator\Web

Content\tools\contract

where

instanceName

is

the

name

of

your

WebSphere

Commerce

instance

and

cell_name

is

the

WebSphere

Application

Server

cell

name.

In

this

new

file,

you

must

create

a

JavaScript

object

to

store

the

data

for

the

new

term

and

condition.

This

is

shown

in

the

following

code

snip:

Chapter

7.

Trading

agreements

and

business

policies

(Business

Edition)

179

function

ContractMyTCModel()

{

this.tcReferenceNumber

=

"";

this.policyReferenceNumber

=

"";

this.attr1

=

"";

this.attr2

=

"";

this.policyList

=

new

Array();

this.selectedPolicyIndex

=

"0";

}

You

should

also

create

a

new

JavaScript

object

to

submit

the

new

term

and

condition.

This

must

be

done

in

a

manner

consistent

with

the

extensions

that

you

made

to

the

XSD

files.

This

is

shown

in

the

following

code

snip:

function

submitMyTC(contract)

{

var

tcModel

=

get("ContractMyTCModel");

if

(tcModel

!=

null)

{

var

myTC

=

new

Object();

myTC.attr1

=

tcModel.attr1;

myTC.attr2

=

tcModel.attr2;

myTC.ProductSetPolicyRef

=

new

Object();

myTC.ProductSetPolicyRef.policyName

=

tcModel.policyList[

tcModel.selectedPolicyIndex].policyName;

myTC.ProductSetPolicyRef.StoreRef

=

new

Object();

myTC.ProductSetPolicyRef.StoreRef.name

=

tcModel.policyList[

tcModel.selectedPolicyIndex].storeIdentity;

myTC.ProductSetPolicyRef.StoreRef.Owner

=

new

Object();

myTC.ProductSetPolicyRef.StoreRef.Owner

=

tcModel.policyList[

tcModel.selectedPolicyIndex].member;

if

(tcModel.tcReferenceNumber

!=

"")

{

//

Change

the

term

and

condition

myTC.action

=

"update";

myTC.referenceNumber

=

tcModel.tcReferenceNumber;

}

else

{

//

Create

a

new

term

and

condition

myTC.action

=

"new";

}

contract.MySubTC

=

myTC;

}

return

true;

}

180

Programming

Guide

and

Tutorials

Creating

the

new

JSP

template:

The

next

step

is

to

create

a

new

JSP

template

that

includes

an

HTML

section

in

which

the

user

can

enter

information

required

by

the

new

term

and

condition.

For

reference,

you

can

refer

to

the

following

sample

file:

v

2000400

2000AIX

2000Linux

2000Solaris

WC_installdir/samples/contract/ContractMyTC.jsp

v

2000Windows

WC_installdir\samples\contract\ContractMyTC.jsp

v

2000Developer

WCDE_installdir\samples\contract\ContractMyTC.jsp

In

order

to

use

this

sample

file,

copy

it

to

the

following

directory:

v

2000400

WAS_userdir/installedApps/cell_name/WC_instanceName.ear/

CommerceAccelerator.war/javascript/tools/contract

v

2000AIX

2000Linux

2000Solaris

WAS_installdir/installedApps/cell_name/

WC_instanceName.ear/CommerceAccelerator.war/

javascript/tools/contract

v

2000Windows

WAS_installdir\installedApps\cell_name\

WC_instanceName.ear\CommerceAccelerator.war\

javascript\tools\contract

v

2000Developer

workspace_dir\CommerceAccelerator\Web

Content\tools\contract

where

instanceName

is

the

name

of

your

WebSphere

Commerce

instance

and

cell_name

is

the

name

of

the

WebSphere

Application

Server

cell.

The

following

code

snip

shows

an

example

HTML

section

of

a

JSP

template

that

can

be

used

for

MyTC.

<!--

///////////////////////////////////////

//

HTML

SECTION

///////////////////////////////////////

-->

<BODY

onLoad="onLoad()"

class="content">

<H1>

<%=

contractsRB.get("MyTCHeading")

%>

</H1>

<FORM

NAME="MyTCForm">

<%=

contractsRB.get("MyTCAttr1Label")

%>

<INPUT

type=text

name=Attr1

value=""

size=10

maxlength=10>

<%=

contractsRB.get("MyTCAttr2Label")

%>

<INPUT

type=text

name=Attr2

value=""

size=10

maxlength=10>

Chapter

7.

Trading

agreements

and

business

policies

(Business

Edition)

181

<%=

contractsRB.get("MyTCPolicyLabel")

%>

<SELECT

NAME="PolicyList"

SIZE="1">

</SELECT>

</FORM>

Creating

the

new

data

bean:

In

this

step,

you

create

a

new

data

bean

that

loads

the

necessary

data

from

the

MySubTC

access

bean.

The

relevant

sections

of

code

are

shown

in

the

following

code

snip:

public

class

MyTCDataBean

extends

MySubTCAccessBean

implements

SmartDataBean,

Delegator

{

private

java.lang.Long

contractId;

private

boolean

hasMyTC

=

false;

private

CommandContext

iCommandContext;

/**

*

MyTCDataBean

default

constructor.

*/

public

MyTCDataBean()

{

}

/**

*

MyTCDataBean

constructor.

*/

public

MyTCDataBean(Long

newContractId)

{

contractId

=

newContractId;

}

/*

*

populate

the

attributes

from

TermConditionAccessBean

*/

public

void

populate()

throws

Exception

{

Enumeration

myTCEnum

=

new

TermConditionAccessBean().

findByTradingAndTCSubType(contractId,

"MySubTC");

if

(myTCEnum

!=

null)

{

//

assume

a

contract

only

has

one

MyTC

for

this

example

setEJBRef(((TermConditionAccessBean)

myTCEnum.nextElement()).getEJBRef());

refreshCopyHelper();

hasMyTC

=

true;

}

}

Registering

the

new

view

in

the

VIEWREG

table:

You

must

register

your

newly

created

view

in

the

VIEWREG

table.

The

following

is

an

example

SQL

statement

to

register

the

new

view.

182

Programming

Guide

and

Tutorials

insert

into

VIEWREG(VIEWNAME,DEVICEFMT_ID,STOREENT_ID,

INTERFACENAME,

CLASSNAME,

PROPERTIES,

HTTPS,

INTERNAL)

values

(’ContractMyTCPanelView’,

-1,

0,

’com.ibm.commerce.tools.command.ToolsForwardViewCommand’,

’com.ibm.commerce.tools.command.ToolsForwardViewCommandImpl’,

’docname=tools/contract/ContractMyTC.jsp’,

1,

1)

Updating

the

ContractRB_locale.properties

file:

You

must

update

the

following

properties

file

with

information

specific

to

the

new

term

and

condition:

v

2000400

WAS_userdir/installedApps/cell_name/WC_instanceName.ear/

properties/com/ibm/commerce/tools/contract/properties/

ContractRB_locale.properties

v

2000AIX

2000Linux

2000Solaris

WAS_installdir/installedApps/cell_name/

WC_instanceName.ear/properties/

com/ibm/commerce/tools/contract/properties/

ContractRB_locale.properties

v

2000Windows

WAS_installdir\installedApps\cell_name\

WC_instanceName.ear\properties\

com\ibm\commerce\tools\contract\properties\

ContractRB_locale.properties

v

2000Developer

workspace_dir\WebSphereCommerceServer\properties\com\ibm\

commerce\tools\contract\properties\ContractRB_locale.properties

where

instanceName

is

the

name

of

your

WebSphere

Commerce

instance

and

cell_name

is

the

name

of

the

WebSphere

Application

Server

cell.

The

following

is

an

example

of

the

information

that

you

would

add

to

the

file.

MyTCHeading=My

TC

attr1Empty=Attribute

One

must

be

entered.

attr2Empty=Attribute

Two

must

be

entered.

attr1TooLong=Attribute

One

is

too

long.

attr2TooLong=Attribute

Two

is

too

long.

MyTCAttr1Label=Attribute

One

(required)

MyTCAttr2Label=Attribute

Two

(required)

MyTCPolicyLabel=Policy

Editing

the

ContractNotebook.xml

file:

The

last

step

for

including

new

terms

and

conditions

in

the

WebSphere

Commerce

Accelerator

is

to

update

the

following

file

to

include

the

new

page.

v

2000400

WC_installdir/xml/tools/contract/ContractNotebook.xml

v

2000AIX

2000Linux

2000Solaris

WC_installdir/xml/tools/contract/

ContractNotebook.xml

v

2000Windows

WC_installdir\xml\tools\contract\ContractNotebook.xml

Chapter

7.

Trading

agreements

and

business

policies

(Business

Edition)

183

v

2000Developer

WCDE_installdir\Commerce\xml\tools\

contract\ContractNotebook.xml

The

following

is

an

example

snip

of

code

that

is

used

to

include

the

new

page

in

this

example.

<panel

name="MyTCHeading"

url="ContractMyTCPanelView"

parameters="contractId,accountId"

helpKey="MC.contract.MyTCPanel.Help"

/>

Importing

the

new

contract

using

the

new

term

and

condition

As

an

alternative

to

updating

the

WebSphere

Commerce

tools

to

use

a

new

term

and

condition,

you

can

use

the

contract

import

command

(refer

to

the

WebSphere

Commerce

online

help

for

information

about

this

command)

to

import

a

new

contract

that

includes

this

new

term

and

condition.

After

importing,

the

relevant

section

in

the

Contract.xml

file

appears

as

follows:

<MySubTC

attr1="abc"

attr2="123">

<ProductSetPolicyRef

policyName

=

"Product

Set

1">

<StoreRef

name

=

"StoreGroup1">

<Owner>

<OrganizationRef

distinguishName

=

"o=Root

Organization"/>

</Owner>

</StoreRef>

</ProductSetPolicyRef>

</MySubTC>

Invoking

the

new

business

policy

Once

you

have

created

a

new

business

policy

and

this

business

policy

has

been

associated

with

at

least

one

terms

and

conditions

object,

you

can

must

update

your

application

logic

to

invoke

the

new

business

policy

commands.

Business

policy

commands

are

invoked

from

within

controller

and

task

commands.

The

command

factory

is

used

to

invoke

business

policy

commands.

There

are

two

create

methods

that

can

be

used

to

invoke

business

policy

commands.

The

first

is

used

to

invoke

a

business

policy

command

when

there

is

only

one

business

policy

command

associated

with

the

business

policy.

This

is

shown

in

the

following

code

snippet:

CommandFactory

createBusinessPolicyCommand(Long

policyId);

The

second

method

is

used

to

invoke

a

business

policy

command

when

there

is

more

than

one

business

policy

command

associated

with

the

business

policy.

This

is

shown

in

the

following

code

snippet:

CommandFactory

createBusinessPolicyCommand(Long

policyId,

String

cmdIfName);

184

Programming

Guide

and

Tutorials

In

the

preceding

example,

cmdIfName

is

used

to

specify

the

interface

name

of

the

business

policy

command

to

be

created.

The

command

factory

looks

up

the

policy

object

in

the

POLICYCMD

table

to

determine

the

command

that

implements

this

policy.

It

also

fetches

any

default

properties

from

the

table

and

sets

them

as

requestProperties

in

the

business

policy

command.

The

following

code

snippet

shows

an

example

of

invoking

a

refund

policy:

RefundPolicyCmd

cmd;

///

//

Get

the

refund

policy

id

from

the

refundTC

object

//

//

and

use

it

to

create

the

policy

command.

//

///

cmd

=

(RefundPolicyCmd)

CommandFactory

createPolicyCommand

(refundTC.getRefundPolicy);

cmd.execute()

Creating

a

contract

The

next

step

to

fully

integrate

the

extension

to

the

contract

model

into

your

business

process

is

to

create

a

contract

that

includes

the

terms

and

condition

which

refers

to

the

new

business

policy.

A

contract

can

be

created

using

the

WebSphere

Commerce

Accelerator

or

by

using

one

of

the

contract

URL

commands

(ContractImportApprovedVersion

and

ContractImportDraftVersion).

For

more

information

about

creating

contracts,

refer

to

the

WebSphere

Commerce

Production

and

Development

online

help.

Contract

customization

scenarios

This

section

provides

an

overview

of

the

steps

involved

for

the

following

contract

customization

scenario:

v

Enabling

a

rebate

Rebate

scenario

In

this

example

scenario,

a

flat

rate

rebate

is

created.

Since

the

ToolTech

sample

store

includes

neither

a

term

and

condition

nor

a

policy

type

that

matches

the

rebate

scenario,

these

must

be

created.

Additionally,

a

new

business

policy

must

be

created,

as

well

as

a

database

table

to

store

the

rebate

codes.

Implementing

this

rebate

scenario

includes

the

following

high-level

steps:

1.

Creating

the

XREBATECODE

database

table

and

a

corresponding

XRebateCodeBean

entity

bean

that

is

used

to

access

information

from

this

table.

Chapter

7.

Trading

agreements

and

business

policies

(Business

Edition)

185

2.

Creating

a

new

5DollarRebate

business

policy

by

performing

the

following

sub-tasks:

a.

Create

the

corresponding

new

business

policy

type.

This

defines

the

interface

(RebatePolicyCmd)

that

the

new

business

policy

command

will

implement.

b.

Create

the

new

CalculateRebateCmdImpl

business

policy

command.

c.

Register

the

new

business

policy

command

and

business

policy

type

in

the

database.
3.

Create

a

new

term

and

condition

(RebateTC)

for

the

rebate

by

performing

the

following

sub-tasks:

a.

Register

the

RebateTC

term

and

condition

in

the

database.

b.

Update

the

XSD

files

to

reflect

the

new

RebateTC.

c.

Create

a

new

enterprise

bean

for

the

RebateTC.

d.

Update

WebSphere

Commerce

Accelerator

to

reflect

the

new

RebateTC.
4.

Create

a

new

contract

that

uses

the

RebateTC.

5.

Integrating

the

new

business

policy

into

the

shopping

flow.

Each

of

these

steps

is

described

in

more

detail

in

subsequent

sections.

Step

1:

Creating

the

new

table

and

enterprise

bean

Since

the

existing

database

schema

does

not

include

the

specification

of

a

rebate

amount

and

code,

a

new

table

must

be

created.

In

general,

when

a

new

table

is

created,

a

new

entity

bean

is

also

created

that

is

used

to

when

accessing

information

contained

in

this

table.

For

the

purpose

of

this

example,

assume

that

the

following

XREBATECODE

database

table

is

created.

Table

2.

XREBATECODE

database

table

Column

name

REBATECODE_ID

AMOUNT

CURRENCY

Sample

data

201

5

CAD

202

10

CAD

Additionally,

a

new

CMP

entity

bean

(XRebateCodeBean)

would

be

created.

For

detailed

information

about

creating

this

bean,

refer

to

“Creating

a

new

CMP

enterprise

bean”

on

page

59.

Step

2:

Creating

the

“5DollarRebate”

business

policy

In

order

to

create

this

new

business

policy,

you

must

perform

the

following

steps:

186

Programming

Guide

and

Tutorials

1.

Create

the

new

business

policy

type

interface.

This

is

the

RebatePolicyCmd

interface

that

the

CalculateRebateCmdImpl

will

implement.

2.

Create

the

new

CalculateRebateCmdImpl

business

policy

command.

3.

Register

the

new

business

policy

and

business

policy

command

in

the

database.

Creating

the

“Rebate”

business

policy

type:

Since

there

is

not

an

existing

business

policy

type

that

corresponds

to

rebates,

a

new

one

must

be

created.

Creating

a

new

business

policy

type

involves

defining

and

registering

a

policy

type

in

the

database.

The

following

tables

must

be

updated:

v

POLICYTYPE

v

PLCYTYCMIF

v

PLCYTYPDSC

For

this

scenario,

to

create

the

new

REBATE

policy

type,

the

following

SQL

statements

would

be

used:

insert

into

POLICYTYPE

(POLICYTYPE_ID)

values

(’Rebate’);

insert

into

PLCYTYCMIF

(POLICYTYPE_ID,

BUSINESSCMDIF)

values

(’Rebate’,

’com.mycompany.mybusinesspolicycommands.RebatePolicyCmd’);

insert

into

PLCYTYPDSC

(POLICYTYPE_ID,

LANGUAGE_ID,

DESCRIPTION)

values

(’Rebate’,

-1,

’Rebate

policy

type.’);

As

a

result,

the

following

table

shows

the

relevant

columns

of

the

PLCYTYCMIF

table

that

shows

the

relationship

between

the

policy

type

and

the

business

policy

command

to

which

it

is

related.

Table

3.

Updates

made

to

the

PLCYTYCMIF

table

Column

name

POLICYTYPE_ID

BUSINESSCMDIF

Sample

data

Rebate

com.mycompany.mybusinesspolicycommands.

RebatePolicyCmd

You

must

also

code

the

new

RebatePolicyCmd

interface.

This

interface

must

extend

the

com.ibm.commerce.command.BusinessPolicyCommand

interface.

As

suggested

by

the

previous

table,

package

this

interface

into

your

own

package.

Creating

the

CalculateRebateCmdImpl

business

policy

command:

To

create

the

new

business

policy

command,

you

must

create

a

new

command

called

CalculateRebateCmdImpl

that

extends

the

Chapter

7.

Trading

agreements

and

business

policies

(Business

Edition)

187

com.ibm.commerce.command.BusinessPolicyCommandImpl

implementation

class.

This

command

should

implement

the

RebatePolicyCmd

interface

created

in

the

previous

step.

Note

that

in

this

example,

the

interface

name

and

the

command

name

are

dissimilar.

These

names

were

chosen

to

intentionally

show

that

there

may

be

many

business

policy

commands

that

implement

the

rebate

type

of

business

policy.

Each

implementation

(that

is,

each

business

policy

command)

would

then

implement

the

rebate

in

a

unique

manner.

The

logic

of

the

command

depends

upon

the

particular

implementation

of

how

the

customer

is

to

pick

up

the

goods.

Additionally,

this

CalculateRebateCmdImpl

should

be

invoked

by

a

separate

controller

or

task

command

in

your

application.

Registering

the

new

business

policy

and

new

business

policy

command:

The

new

business

policy

must

be

registered

in

the

database.

You

must

also

register

the

relationship

between

the

new

business

policy

and

the

new

business

policy

command.

To

register

this

information,

you

can

use

the

com.ibm.commerce.contract.commands.PolicyAddCmd

command.

The

following

shows

an

example

usage

of

the

PolicyAdd

command

for

this

scenario:

http://localhost:8080/webapp/wcs/stores/servlet/PolicyAdd?

type=Rebate&name=5DollarRebate&plcyStoreId=-1

&cmd_1=com.mycompany.mybusinesspolicycommands.CalculateRebateCmdImpl

&startDate=2002-05-08%2000:00:00&endDate=2003-05-09%2000:00:00

&commonProps=rebatecode_id%3D501&URL=aRedirectURL

Note

that

URL

reserved

characters

must

be

replaced

by

their

ASCII

codes

for

input

properties.

As

such,

the

typical

=

(equals)

symbol

is

replaced

with

“%3D”,

the

&

(ampersand)

is

replaced

by

“%26”,

and

the

space

character

is

replaced

by

“%20”.

The

date

format

used

in

the

preceding

example

is

yyyy-mm-dd

hh:mm:ss,

with

ASCII

code

replacing

URL

reserved

characters.

The

following

tables

show

the

relevant

columns

of

the

affected

database

tables,

after

performing

the

updates.

Table

4.

Updates

made

to

the

POLICY

table

Column

name

POLICY

_ID

POLICY

NAME

POLICYTYPE

_ID

STOREENT

_ID

PROPERTIES

Sample

data

301

5Dollar

Rebate

Rebate

-1

rebatecode_id=

201

Note

that

it

is

also

presumed

that

the

start

date

and

end

date

values

are

set

to

188

Programming

Guide

and

Tutorials

null.

Table

5.

Updates

made

to

the

POLICYCMD

table

Column

name

POLICY

_ID

BUSINESS

CMDCLASS

PROPERTIES

Sample

data

301

com.mycompany.

mybusinesspolicycommands.

CalculateRebateCmdImpl

null

As

a

result,

you

now

have

a

new

business

policy

called

“5DollarRebate”

that

is

related

to

the

CalculateRebateCmd

business

policy

command.

Step

3:

Creating

the

“RebateTC”

term

and

condition

Creating

the

“RebateTC”

term

and

condition

requires

that

the

following

steps

be

performed:

1.

Register

the

RebateTC

term

and

condition

in

the

database.

2.

Update

the

XSD

files

to

reflect

the

new

RebateTC.

3.

Create

a

new

enterprise

bean

for

the

RebateTC.

4.

Update

the

WebSphere

Commerce

Accelerator

to

reflect

the

new

RebateTC.

Registering

the“RebateTC”

term

and

condition

in

the

database:

When

you

are

creating

a

new

terms

and

condition

object,

you

must

update

the

database

schema

to

include

this

object.

The

database

tables

that

must

be

updated

are

TCTYPE

and

TCSUBTYPE.

The

following

SQL

statement

shows

an

example

of

how

to

register

the

RebateTC

in

the

database:

insert

into

TCTYPE

(TCTYPE_ID)

values

(’RebateTC’);

insert

into

TCSUBTYPE

(TCSUBTYPE_ID,

TCTYPE_ID,

ACCESSBEANNAME,

DEPLOYCOMMAND)

values

(’RebateTC’,

’RebateTC’,

’com.ibm.commerce.contract.objects.RebateTCAccessBean’,

null);

The

following

tables

show

an

extract

of

the

relevant

columns

in

the

TCTYPE

and

TCSUBTYPE

tables.

Table

6.

Updates

made

to

the

TCTYPE

table

Column

name

TCTYPE_ID

Sample

data

RebateTC

Chapter

7.

Trading

agreements

and

business

policies

(Business

Edition)

189

Table

7.

Updates

made

to

the

TCSUBTYPE

table

Column

name

TCSUBTYPE

_ID

TCTYPE

_ID

ACCESSBEAN

NAME

DEPLOY

COMMAND

Sample

data

RebateTC

RebateTC

com.ibm.commerce.

contract.objects.

RebateTCAccessBean

null

Register

the

rebate

term

and

condition

in

the

contract

document

type

definition:

To

make

the

rebate

term

and

condition

available

in

contracts,

you

must

create

a

new

XSD

file

that

defines

the

new

term

and

condition.

You

must

also

update

the

Package.xsd

file

to

include

the

new

XSD

file.

To

create

the

new

XSD

file,

do

the

following:

1.

Navigate

to

the

following

directory:

v

2000Windows

WC_installdir\xml\trading\xsd

v

2000AIX

2000Solaris

2000Linux

WC_installdir/xml/trading/xsd

v

2000400

WC_userdir/instances/instanceName/xml/trading/xsd

where

instanceName

is

the

name

of

your

WebSphere

Commerce

instance.

2.

In

this

directory,

create

a

new

XSD

file.

The

following

shows

the

XSD

that

would

be

used

for

the

example

RebateTC.

The

file

is

RebateCustomizedBuyerContract.xsd:

<?xml

version="1.0"?>

<schema

targetNamespace="http://www.ibm.com/WebSphereCommerce"

xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:wc="http://www.ibm.com/WebSphereCommerce"

elementFormDefault="qualified"

attributeFormDefault="unqualified">

<!--

include

basic

trading

agreement

xsd

-->

<include

schemaLocation="BuyerContract.xsd"

/>

<complexType

name="RebateTCType">

<complexContent>

<extension

base="wc:TermConditionType"/>

</complexContent>

</complexType>

<element

name="RebateTC"

substitutionGroup="wc:AbstractCustomizedTC">

<complexType>

<complexContent>

<extension

base="wc:RebateTCType">

<sequence>

<element

ref="wc:RebatePolicyRef"/>

</sequence>

</extension>

190

Programming

Guide

and

Tutorials

</complexContent>

</complexType>

</element>

<element

name="RebatePolicyRef"

type="wc:BusinessPolicyRef"

/>

</schema>

3.

Save

the

new

file.

Next,

you

must

update

the

Package.xsd

to

remove

the

BuyerContract.xsd

and

instead

include

the

RebateCustomizedBuyerContract.xsd,

as

follows:

1.

Navigate

to

the

following

directory:

v

2000Windows

WC_installdir\xml\trading\xsd

v

2000AIX

2000Solaris

2000Linux

WC_installdir/xml/trading/xsd

v

2000400

WC_userdir/instances/instanceName/xml/trading/xsd

where

instanceName

is

the

name

of

your

WebSphere

Commerce

instance.

2.

Open

the

Package.xsd

file

in

a

text

editor.

3.

Locate

the

section

about

the

BuyerContract.xsd

and

modify

it

as

follows:

<!--include

schemaLocation="BuyerContract.xsd"/-->

<include

schemaLocation="RebateCustomizedBuyerContract.xsd"/>

Creating

a

new

enterprise

bean

for

the

RebateTC:

You

must

create

a

new

enterprise

bean

for

the

new

RebateTC.

This

new

bean

should

inherit

from

the

WebSphere

Commerce

TermCondition

bean.

A

new

enterprise

bean

for

a

term

and

condition

is

typically

named

after

the

subtype.

Note

that

in

this

case,

the

term

and

condition

subtype

is

the

same

as

the

term

and

condition

type,

and

as

such,

the

name

of

the

bean

is

the

same

as

the

term

and

condition

type.

The

following

table

shows

some

of

the

general

information

about

the

new

bean

that

must

be

created.

For

more

details

about

the

bean,

including

which

methods

to

override,

refer

to

“Creating

a

new

CMP

enterprise

bean

for

the

term

and

condition”

on

page

171.

Table

8.

Attribute

Value

EJB

Project

Enablement-RelationshipManagementData

Bean

type

Entity

bean

with

container-managed

persistence

fields

Bean

name

RebateTC

Package

com.ibm.commerce.contract.objects

Chapter

7.

Trading

agreements

and

business

policies

(Business

Edition)

191

Table

8.

(continued)

Attribute

Value

Bean

supertype

TermCondition

Bean

class

RebateTCBean

In

the

new

bean,

create

three

CMP

fields

that

are

used

for

the

following

values:

v

rebate

code

ID

v

amount

v

currency

Updating

WebSphere

Commerce

Accelerator

to

include

the

RebateTC:

Once

you

have

created

new

terms

and

conditions,

you

can

update

WebSphere

Commerce

Accelerator

so

that

it

can

be

used

to

create

new

contracts

that

include

those

new

terms

and

conditions.

For

information

about

how

to

update

this

tool,

refer

to

“Updating

WebSphere

Commerce

Accelerator

to

use

a

new

term

and

condition”

on

page

178.

Step

4:

Creating

a

new

contract

You

must

create

a

new

contract

that

includes

the

“RebateTC”

term

and

condition

and

that

refers

to

the

“5DollarRebate”

business

policy.

You

can

use

either

the

WebSphere

Commerce

Accelerator

or

XML

to

create

a

new

contract.

Each

of

these

methods

for

creating

new

contracts

are

described

in

the

WebSphere

Commerce

Production

and

Development

online

help.

The

following

tables

show

the

updates

to

the

relevant

columns

of

the

TERMCOND

and

POLICYTC

database

tables,

after

the

contract

has

been

created.

Table

9.

Updates

made

to

the

TERMCOND

table

Column

name

TRADING

_ID

TERMCOND

_ID

TCSUBTYPE

_ID

Sample

data

25

901

RebateTC

Table

10.

Updates

made

to

the

POLICYTC

table

Column

name

POLICY

_ID

TERMCOND_ID

Sample

data

301

901

192

Programming

Guide

and

Tutorials

Step

5:

Integrating

the

new

business

policy

into

the

shopping

flow

In

this

scenario,

it

is

presumed

that

a

new

page

is

added

to

the

store

that

allow

customers

to

log

on

and

claim

their

rebates.

When

the

customer

would

click

to

claim

the

rebate,

a

command

that

invokes

the

new

RebatePolicyCmd

interface

should

be

invoked.

For

example,

there

could

be

a

new

ClaimRebateCmd

controller

command

that

invokes

the

RebatePolicyCmd.

The

correct

business

policy

is

then

found

and

(in

this

case)

the

“5DollarRebate”

business

policy

is

applied.

Chapter

7.

Trading

agreements

and

business

policies

(Business

Edition)

193

194

Programming

Guide

and

Tutorials

Part

3.

Development

environment

©

Copyright

IBM

Corp.

2000,

2003

195

196

Programming

Guide

and

Tutorials

Chapter

8.

Development

environment

This

chapter

introduces

the

main

development

tools

used

for

customizing

a

WebSphere

Commerce

application.

Typical

development

environment

2000Business

The

recommended

development

package

for

creating

customized

code

to

be

used

with

WebSphere

Commerce

Business

Edition

is

the

WebSphere

Commerce

Studio,

Business

Developer

Edition

product.

2000Professional

The

recommended

development

package

for

creating

customized

code

to

be

used

with

WebSphere

Commerce

Professional

Edition

is

the

WebSphere

Commerce

Studio,

Professional

Developer

Edition

product.

2000Express

The

recommended

development

package

for

creating

customized

code

to

be

used

with

WebSphere

Commerce

-

Express

is

the

WebSphere

Commerce

-

Express

Developer

Edition

product.

All

of

these

packages

include

the

tools

you

require

to

create

customized

code

and

perform

Web

development

tasks.

In

general,

this

book

refers

to

these

products

collectively

as

the

WebSphere

Commerce

development

environment.

There

are

four

main

components

to

the

WebSphere

Commerce

development

environment:

1.

The

WebSphere

Commerce

workspace

that

is

used

within

WebSphere

Studio

Application

Developer

2.

The

development

database

3.

File

system

assets

4.

WebSphere

Commerce

plug-ins

to

WebSphere

Studio

Application

Developer

With

this

development

environment,

you

can

create

customized

code

and

test

it

within

the

context

of

the

WebSphere

test

environment.

To

create

stores

in

the

development

environment,

you

simply

launch

the

Administration

Console

running

on

the

locally

defined

WebSphereCommerceServer

test

server

in

WebSphere

Studio

Application

Developer

and

use

that

tool

to

publish

a

store

based

on

one

of

the

sample

stores.

Alternatively,

you

can

create

your

own

store.

In

addition

to

the

WebSphere

Commerce

workspace

that

is

provided,

the

WebSphere

Commerce

development

environment

provides

additional

tools

and

plug-ins.

The

following

plug-ins

are

provided:

©

Copyright

IBM

Corp.

2000,

2003

197

v

A

Configuration

Manager

plug-in

that

assists

with

managing

your

WebSphere

Commerce

(and

WebSphere

Commerce

Payments)

instances.

v

A

WebSphere

Commerce

online

help

plug-in

allows

you

to

access

the

WebSphere

Commerce

online

help

from

within

WebSphere

Studio

Application

Developer.

Additionally,

with

this

plug-in,

the

WebSphere

Commerce

context-sensitive

online

help

can

be

launched

by

pressing

F1

when

WebSphere

Commerce

tools

(for

example,

the

Administration

Console)

are

running.

v

A

WebSphere

Commerce

API

reference

information

plug-in

that

allows

you

to

access

the

WebSphere

Commerce

API

reference

information

from

within

WebSphere

Studio

Application

Developer.

A

WebSphere

Commerce

enterprise

bean

conversion

tool

is

also

provided.

Using

this

tool,

you

can

develop

enterprise

beans

using

a

development

database

that

is

different

from

your

target

production

database.

For

example,

this

tool

allows

you

to

use

a

local

DB2

database

for

development,

yet

use

a

DB2

database

on

the

iSeries

platform,

a

DB2

for

OS/390

and

z/OS

database,

or

even

an

Oracle

database

for

production.

WebSphere

Studio

Application

Developer

The

WebSphere

Commerce

development

environment

package

includes

WebSphere

Studio

Application

Developer

which

is

the

core

development

environment

from

IBM.

It

helps

you

to

optimize

and

simplify

Java

2

Enterprise

Edition

(J2EE)

and

Web

services

development

by

offering

best

practices,

templates,

code

generation,

and

the

most

comprehensive

development

environment

in

its

class.

This

sophisticated

integrated

development

environment

(IDE)

includes

integrated

support

for

Java

components,

enterprise

beans,

servlets,

JSP

files,

HTML,

XML,

and

Web

services

all

in

one

development

environment.

Amongst

many

other

exciting

features,

it

also

includes

local

test

tools

that

allow

you

to

quickly

generate

test

clients.

It

also

includes

a

full

WebSphere

Application

Server

test

environment

that

allows

you

to

test

your

code

end-to-end

in

a

local

environment.

Development

environment

for

iSeries

2000400

In

short,

a

special

development

environment

is

not

required

in

order

to

create

customized

code

for

iSeries.

The

development

workstation

is

set

up

following

the

same

procedure

that

is

outlined

in

the

2000Business

2000Professional

WebSphere

Commerce

Studio

Installation

Guide

or

2000Express

WebSphere

Commerce

-

Express

Developer

Edition

Installation

Guide.

The

local

development

database

used

should

be

DB2.

Using

this

configuration,

customized

code

can

be

created

and

tested

using

the

local

DB2

database

and

local

WebSphereCommerceServer

test

server.

198

Programming

Guide

and

Tutorials

*
*
*
*
*
*

After

testing

determines

that

the

customized

code

functions

to

your

satisfaction

within

the

context

of

the

test

server,

you

must

then

deploy

it

to

a

target

WebSphere

Commerce

Server

running

on

the

iSeries

platform.

In

order

to

account

for

differences

between

the

database

on

the

Windows

and

iSeries

platforms,

a

WebSphere

Commerce

enterprise

bean

conversion

tool

is

provided.

More

information

about

this

tool

is

provided

in

“Overview

of

the

WebSphere

Commerce

enterprise

bean

conversion

tool.”

Using

different

database

management

systems

for

development

and

production

It

is

possible

for

developers

to

use

a

local

DB2

database

on

their

development

machines

even

though

the

database

for

the

production

environment

will

be

a

DB2

for

OS/390

and

z/OS

or

Oracle

database.

In

this

case,

the

WebSphere

Commerce

enterprise

bean

conversion

tool

is

used

to

convert

the

meta-data

of

the

beans

from

the

DB2

format

to

the

DB2

for

OS/390

and

z/OS

or

Oracle

format.

More

information

about

this

tool

is

provided

in

“Overview

of

the

WebSphere

Commerce

enterprise

bean

conversion

tool.”

Overview

of

the

WebSphere

Commerce

enterprise

bean

conversion

tool

In

general,

there

are

three

scenarios

in

which

the

enterprise

bean

conversion

tool

is

used:

v

If

the

target

production

environment

runs

on

the

iSeries

platform

v

If

the

target

production

database

is

a

DB2

for

OS/390

and

z/OS

database

while

the

development

machines

use

local

DB2

databases

v

If

the

target

production

database

is

an

Oracle

database

while

the

development

machines

use

local

DB2

databases

This

WebSphere

Commerce-specific

tool

allows

you

to

develop

against

one

database

type

and

later

deploy

to

another

database

type.

Using

this

tool,

the

meta-data

for

the

enterprise

beans

is

converted

to

the

appropriate

format

and

information

for

the

target

database,

and

the

deployed

code

is

also

generated

using

this

new

meta-data.

For

step-by-step

details

on

how

to

use

this

tool,

refer

to

“Creating

an

EJB

JAR

file

with

conversion”

on

page

204.

Payment

options

within

the

development

environment

In

previous

versions

of

the

WebSphere

Commerce

development

environment,

a

test

payment

method

was

provided

to

allow

developers

to

complete

a

purchase

within

the

test

environment

store,

without

calling

out

to

a

remote

payment

provider.

Now,

with

the

WebSphere

Commerce

development

environment

Version

5.5,

the

WebSphere

Commerce

Payments

component

can

run

within

the

test

environment.

Chapter

8.

Development

environment

199

*

*
*
*
*
*
*
*

*
*

*

*
*

*
*

This

means

that

you

now

have

the

option

of

using

either

the

local

WebSphere

Commerce

Payments

instance,

or

you

can

configure

your

WebSphere

Commerce

development

instance

to

use

a

remote

WebSphere

Commerce

Payments

instance.

By

default,

the

local

WebSphere

Commerce

Payments

instance

is

created

when

you

install

the

WebSphere

Commerce

development

environment.

Additionally,

if

this

instance

is

running

at

the

time

you

publish

a

sample

store,

the

store

is

automatically

configured

to

use

that

local

WebSphere

Commerce

Payments

instance.

Information

about

configuring

the

payments

options

is

provided

in

the

WebSphere

Commerce

development

environment

Installation

Guide.

200

Programming

Guide

and

Tutorials

Chapter

9.

Deployment

details

After

you

have

created

customized

code

in

the

WebSphere

Commerce

development

environment

and

have

tested

it

within

the

WebSphere

test

environment,

you

must

deploy

it

to

a

target

WebSphere

Commerce

Server

running

outside

of

the

WebSphere

test

environment.

This

target

WebSphere

Commerce

Server

can

run

locally

on

your

development

machine,

or

it

can

be

on

another

machine

(using

the

same,

or

a

different

operating

system).

This

chapter

describes

the

steps

required

for

deployment

of

customized

code

to

a

target

WebSphere

Commerce

Server

running

outside

of

the

WebSphere

test

environment.

This

chapter

is

divided

into

sections

that

describe

how

to

deploy

the

various

types

of

code

that

your

customized

application

may

contain.

The

following

tasks

are

described:

v

Deploying

enterprise

beans

v

Deploying

commands

and

data

beans

v

Deploying

store

assets

v

Updating

the

target

database

Each

of

the

preceding

tasks

are

described

in

more

detail

in

subsequent

sections.

User

permission

requirements

for

deployment

steps

2000AIX

2000Linux

2000Solaris

You

should

perform

all

of

the

deployment

steps

(except

for

the

access

control

updates)

on

the

target

WebSphere

Commerce

Server

using

the

non-root

user

ID

that

you

created

in

preparation

for

the

WebSphere

Commerce

installation

process.

In

addition,

ensure

that

your

file

assets

(for

example,

JAR

files)

and

directories

into

which

these

assets

are

placed

have

read,

write

and

execute

file

permissions

granted

for

this

user.

For

information

about

user

permissions

that

are

required

for

performing

access

control

updates,

refer

to

the

“Loading

your

XML

changes

into

the

database”

topic

in

the

WebSphere

Commerce

Security

Guide.

©

Copyright

IBM

Corp.

2000,

2003

201

Incremental

deployment

The

type

of

deployment

described

in

this

chapter

is

an

incremental

deployment.

In

an

incremental

deployment,

you

must

already

have

a

WebSphere

Commerce

enterprise

application

installed

on

the

target

WebSphere

Commerce

Server.

Then

in

the

deployment

process,

you

only

deploy

those

assets

(commands,

data

beans,

enterprise

beans

and

more)

to

the

existing

enterprise

application.

To

create

the

initial

enterprise

application

on

your

target

WebSphere

Commerce

Server,

you

must

install

WebSphere

Commerce

and

then

use

the

Configuration

Manager

to

create

your

WebSphere

Commerce

instance

(and

hence,

create

the

WebSphere

Commerce

enterprise

application).

Deploying

enterprise

beans

This

section

describes

how

to

deploy

enterprise

beans.

These

beans

may

be

either

new

enterprise

beans

that

you

have

created

for

your

e-commerce

application,

or

they

may

be

WebSphere

Commerce

entity

beans

that

you

have

modified.

In

either

case,

the

deployment

steps

are

basically

the

same.

One

of

the

key

factors

to

understanding

the

deployment

process

for

the

WebSphere

Commerce

application

is

understanding

the

packaging

scheme

that

is

used

for

customized

WebSphere

Commerce

code.

In

particular,

you

do

not

need

to

create

a

new

EJB

project

within

the

WebSphere

Commerce

workspace.

New

enterprise

beans

are

placed

into

the

WebSphereCommerceServerExtensionsData

project

and

the

customized

code

for

modified

WebSphere

Commerce

entity

beans

remains

in

the

original

WebSphere

Commerce

EJB

project.

There

are

two

main

steps

in

this

deployment

process:

v

Creating

the

EJB

JAR

file

v

Updating

the

EJB

JAR

file

in

the

target

WebSphere

Commerce

Server

Creating

the

EJB

JAR

file

There

are

two

different

approaches

to

creating

the

EJB

JAR

file,

depending

upon

your

deployment

scenario,

as

follows:

v

If

you

are

creating

an

EJB

JAR

file

that

is

being

deployed

to

a

target

WebSphere

Commerce

Server

that

uses

the

same

type

of

database

as

your

development

environment,

follow

the

instructions

contained

in

“Creating

an

EJB

JAR

file

without

conversion”

on

page

203.

v

If

you

are

creating

an

EJB

JAR

file

that

is

being

deployed

to

target

WebSphere

Commerce

Server

that

uses

a

different

type

of

database

from

your

development

environment,

follow

the

instructions

contained

in

“Creating

an

EJB

JAR

file

with

conversion”

on

page

204.

202

Programming

Guide

and

Tutorials

Creating

an

EJB

JAR

file

without

conversion

To

create

the

EJB

JAR

file,

do

the

following:

1.

Open

the

WebSphere

Commerce

development

environment

(Start

>

Programs

>

IBM

WebSphere

Commerce

development

environment

>

WebSphere

Commerce

development

environment)

and

switch

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

2.

Expand

the

EJB

project

that

contains

the

bean

or

beans

that

you

are

deploying,

as

follows:

v

If

you

have

created

new

enterprise

beans,

expand

the

WebSphereCommerceServerExtensionsData

EJB

project.

v

If

you

have

modified

WebSphere

Commerce

entity

beans,

expand

the

project

that

contains

the

modified

bean.

For

example,

if

you

have

modified

the

User

bean,

expand

the

Member-MemberManagementData

EJB

project.
3.

Double-click

EJB

Deployment

Descriptor.

4.

With

the

Overview

tab

selected,

scroll

to

the

bottom

of

the

pane,

to

locate

the

WebSphere

Bindings

section.

5.

In

the

DataSource

JNDI

name

field,

enter

the

data

source

JNDI

name

of

the

target

WebSphere

Commerce

Server.

The

following

is

an

example

value:
2000DB2

jdbc/WebSphere

Commerce

DB2

DataSource

demo
where

the

target

WebSphere

Commerce

Server

is

using

a

DB2

database,

and

the

WebSphere

Commerce

instance

name

is

“demo”

2000Oracle

jdbc/WebSphere

Commerce

Oracle

DataSource

demo
where

the

target

WebSphere

Commerce

Server

is

using

an

Oracle

database,

and

the

WebSphere

Commerce

instance

name

is

“demo”.

The

value

for

the

DataSource

JNDI

name

is

created

by

adding

“jdbc/”

to

the

data

source

name

of

the

target

WebSphere

Commerce

Server.

You

can

verify

the

data

source

name

by

opening

the

instanceName.xml

file

on

the

target

WebSphere

Commerce

Server

and

searching

for

DatasourceName=

in

the

file.

6.

Save

your

deployment

descriptor

changes

(Ctrl+S).

7.

In

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view,

right-click

the

EJB

project

(either

WebSphereCommerceServerExtensionsData

or

the

project

that

contains

the

modified

WebSphere

Commerce

entity

bean)

and

select

Export.
The

Export

wizard

opens.

8.

In

the

Export

wizard,

do

the

following:

a.

Select

EJB

JAR

file

and

click

Next.

Chapter

9.

Deployment

details

203

b.

2000Business

2000Professional

The

value

for

What

resources

do

you

want

to

export?

is

prepopulated

with

the

name

of

the

EJB

project.

2000Express

The

EJB

project

name

is

prepopulate.

Leave

this

value

as

is.

c.

2000Business

2000Professional

In

the

Where

do

you

want

to

export

resources

to?

field,

enter

the

fully-qualified

JAR

file

name

to

use.

2000Express

For

the

destination,

enter

the

fully-qualified

JAR

file

name

to

use.

For

example,

enter

C:\ExportTemp\JarFileName.jar

where

JarFileName

is

the

name

of

your

JAR

file.

If

you

have

created

new

enterprise

beans,

you

should

enter

yourDir\WebSphereCommerceServerExtensionsData.jar.

If

you

have

modified

an

existing

WebSphere

Commerce

public

entity

bean,

you

must

use

the

predefined

JAR

file

name

for

this

EJB

group.

For

example,

if

your

modification

was

in

the

Member-MemberManagementData

EJB

module,

enter

yourDir\Member-MemberManagementData.jar.

d.

Ensure

that

Export

source

files

is

not

selected.

e.

Click

Finish.
9.

After

the

JAR

file

has

been

created,

open

the

EJB

deployment

descriptor

and

restore

the

modifications

that

were

made

in

step

5,

back

to

the

setting

that

is

required

for

your

local

test

server.

Save

your

changes.

Creating

an

EJB

JAR

file

with

conversion

To

convert

the

meta-data

and

create

the

EJB

JAR

file,

do

the

following:

1.

Open

the

WebSphere

Commerce

development

environment

(Start

>

Programs

>

IBM

WebSphere

Commerce

development

environment

>

WebSphere

Commerce

development

environment)

and

switch

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

2.

Expand

the

EJB

project

that

contains

the

bean

or

beans

that

you

are

deploying,

as

follows:

v

If

you

have

created

new

enterprise

beans,

expand

the

WebSphereCommerceServerExtensionsData

project.

v

If

you

have

modified

WebSphere

Commerce

entity

beans,

expand

the

project

that

contains

the

modified

bean.

For

example,

if

you

have

modified

the

User

bean,

expand

the

Member-
MemberManagementData

EJB

project.

3.

Double-click

EJB

Deployment

Descriptor.

4.

With

the

Overview

tab

selected,

scroll

to

the

bottom

of

the

pane,

to

locate

the

WebSphere

Bindings

section.

5.

In

the

DataSource

JNDI

name

field,

enter

the

data

source

JNDI

name

of

the

target

WebSphere

Commerce

Server.

The

following

is

an

example

value:

204

Programming

Guide

and

Tutorials

2000DB2 jdbc/WebSphere

Commerce

DB2

DataSource

demo
where

the

target

WebSphere

Commerce

Server

uses

a

DB2

database

and

the

WebSphere

Commerce

instance

name

is

demo
2000Oracle

jdbc/WebSphere

Commerce

Oracle

DataSource

demo
where

the

target

WebSphere

Commerce

Server

uses

an

Oracle

database

and

the

WebSphere

Commerce

instance

name

is

demo

The

value

for

the

DataSource

JNDI

name

is

created

by

adding

“jdbc/”

to

the

data

source

name

of

the

target

WebSphere

Commerce

Server.

You

can

verify

the

data

source

name

by

opening

the

instanceName.xml

file

on

the

target

WebSphere

Commerce

Server

and

searching

for

DatasourceName=

in

the

file.

6.

Save

your

deployment

descriptor

changes

(Ctrl+S).

7.

Close

WebSphere

Studio

Application

Developer.

8.

At

a

command

prompt,

navigate

to

the

following

directory:

WCStudio_installdir\Commerce\bin

9.

Enter

the

following

command:

ejbDeploy.bat

projName

outputJarName

mapFile

workspace_dir

eclipseDir

ejbDeployXmlFile

WCStudio_commercedir

2000DB2

390

2000z/OS

ejbDeploy.bat

projName

outputJarName

mapFile

workspace_dir

eclipseDir

ejbDeployXmlFile

WCStudio_commercedir

zOS

where:

v

projName

is

the

name

of

the

EJB

project

that

is

to

be

converted

v

outputJarName

is

the

fully-qualified

name

of

the

output

JAR

file.

Note

that

you

should

be

using

the

name

of

the

JAR

file

that

already

exists

in

the

WebSphere

Commerce

enterprise

application.

The

following

is

an

example:

C:\ExportTemp\WebSphereCommerceServerExtensionsData.jar

v

mapFile

is

the

name

of

the

mapping

file.

Examples

of

this

are

the

following

files:

WCDE_installdir\Commerce\properties\com\ibm\commerce\

metadata\conversion\oracle.mapping

WCDE_installdir\Commerce\properties\com\ibm\commerce\

metadata\conversion\as400.mapping

WCDE_installdir\Commerce\properties\com\ibm\commerce\

metadata\conversion\zSeries.mapping

v

workspace_dir

is

the

directory

for

your

current

development

workspace.

v

eclipseDir

is

the

path

to

the

eclipse

directory.

By

default,

this

is

WCDE_installdir\Studio5

Chapter

9.

Deployment

details

205

*

*
*

*
*
*
*
*
*

v

ejbDeployXmlFile

is

the

fully-qualified

ejbDeploy.xml

file.

By

default,

this

is

WCDE_installdir\Commerce\xml\ejbDeploy.xml

Note:

When

you

run

this

command,

you

may

see

errors

indicating

that

it

was

unable

to

expand

some

files.

This

is

not

a

concern.

v

WCStudio_commercedir

is

the

path

to

the

Commerce

directory

that

is

created

when

the

WebSphere

Commerce

development

environment

is

installed.

By

default,

this

is

WCDE_installdir\Commerce

or

more

specifically

C:\WebSphere\CommerceDev55

The

following

is

an

example

usage

of

this

command

with

all

values

specified:
ejbDeploy.bat

WebSphereCommerceServerExtensionsData

WebSphereCommerceServerExtensionsData.jar

C:\WebSphere\CommerceStudio55\Commerce\properties\com\ibm\

commerce\metadata\conversion\oracle.mapping

C:\WebSphere\workspace_db2

C:\WebSphere\Studio5

C:\WebSphere\CommerceStudio55\Commerce\xml\ejbDeploy.xml

C:\WebSphere\CommerceStudio55\Commerce

Note

that

line

breaks

are

for

presentation

purposes

only.

10.

Open

the

WebSphere

Commerce

development

environment

and

open

the

EJB

deployment

descriptor

and

restore

the

modifications

that

were

made

in

step

5,

back

to

the

setting

that

is

required

for

your

local

test

server.

Save

your

changes.

11.

If

you

are

collecting

all

assets

to

be

deployed

into

a

single

directory

(for

example

C:\ExportTemp),

copy

the

newly

created

EJB

JAR

file

into

that

directory.

Updating

the

EJB

JAR

file

on

the

target

WebSphere

Commerce

Server

The

next

step

is

to

copy

the

newly

created

EJB

JAR

file

into

the

appropriate

place

on

the

target

WebSphere

Commerce

Server.

To

update

the

EJB

JAR

file

on

the

target

WebSphere

Commerce

Server,

do

the

following:

1.

Stop

the

WebSphere

Commerce

instance

that

is

running

within

WebSphere

Application

Server.

Refer

to

the

WebSphere

Commerce

Installation

Guide

for

your

platform

and

database

for

details

about

how

to

stop

this

instance.

2.

Locate

the

original

EJB

JAR

file

in

the

WebSphere

Commerce

instance.

For

example,

locate

the

following

file:

206

Programming

Guide

and

Tutorials

v

2000400

WAS_userdir/installedApps/WAS_node_name/

WC_instance_name.ear/JarFileName.jar

v

2000AIX

2000Linux

2000Solaris

WAS_installdir/installedApps/cellName/

WC_instance_name.ear/JarFileName.jar

v

2000Windows

WAS_installdir\installedApps\cellName\

WC_instance_name.ear\JarFileName.jar

where

v

instance_name

is

the

name

of

your

WebSphere

Commerce

instance.

v

2000400

WAS_node_name

represents

the

iSeries

system

where

the

WebSphere

Application

Server

product

is

installed.

v

JarFileName

is

the

name

of

the

JAR

file

containing

the

customized

code
3.

Make

a

copy

of

the

original

EJB

JAR

file.

4.

Copy

the

new

EJB

JAR

file

from

the

development

machine

into

the

location

from

step

2.

5.

If

you

have

modified

EJB

deployment

descriptors,

do

the

following:

a.

Locate

the

deployment

repository

(META-INF

directory)

for

this

WebSphere

Application

Server

cell.

This

typically

takes

the

following

form:

v

2000400

WAS_userdir/config/cells/WAS_node_name/applications/

WC_instance_name.ear/deployments/WC_instance_name/

EJBModuleName.jar/META-INF

v

2000AIX

2000Linux

2000Solaris

WAS_installdir/config/

cells/cellName/applications/WC_instance_name.ear/

deployments/WC_instance_name/EJBModuleName.jar/META-INF

v

2000Windows

WAS_installdir\config\cells\cellName

\applications\WC_instance_name.ear\deployments\

WC_instance_name\EJBModuleName.jar\META-INF

where

v

instance_name

is

the

name

of

your

WebSphere

Commerce

instance.

v

2000400

WAS_node_name

represents

the

iSeries

system

where

the

WebSphere

Application

Server

product

is

installed.

v

EJBModuleName

is

the

name

of

the

EJB

module

that

has

been

modified

The

following

are

platform

specific

examples

of

the

META-INF

directory:

v

2000400

WAS_userdir/config/cells/myNode/applications/

WC_demo.ear/deployments/WC_demo/Member-
MemberManagementData.jar/META-INF

Chapter

9.

Deployment

details

207

v

2000AIX

2000Linux

2000Solaris

WAS_installdir/config/cells/

myCell/applications/WC_demo.ear/deployments/WC_demo/

Member-MemberManagementData.jar/META-INF

v

2000Windows

WAS_installdir\config\cells\myCell\applications\

WC_demo.ear\deployments\WC_demo\Member-
MemberManagementData.jar\META-INF

where

v

myCell

is

the

name

of

the

WebSphere

Application

Server

cell

v

demo

is

the

name

of

the

WebSphere

Commerce

instance

v

Member-MemberManagementData

is

the

name

of

the

EJB

module

that

has

been

modified

v

2000400

myNode

is

the

name

of

the

WebSphere

Application

Server

node
b.

Backup

all

of

the

files

in

the

preceding

directory.

c.

Use

a

tool

to

open

the

JarFileName.jar

file

and

view

its

contents.

d.

Extract

the

contents

of

the

META-INF

directory

from

the

JarFileName.jar

file

into

the

directory

from

step

5a.
6.

Restart

the

WebSphere

Commerce

instance

as

described

in

the

WebSphere

Commerce

Installation

Guide

for

your

platform

and

database.

Deploying

commands

and

data

beans

When

you

do

any

of

the

following

tasks,

the

customized

code

should

be

packaged

into

the

WebSphereCommerceServerExtensionsLogic

project:

v

Create

new

commands

v

Create

new

data

beans

v

Modify

existing

WebSphere

Commerce

commands

v

Modify

existing

WebSphere

Commerce

data

beans

You

are

not

permitted

to

make

modifications

directly

into

an

existing

class

(or

into

the

project

containing

the

existing

class)

for

commands

or

data

beans.

Deploying

customized

commands

and

data

beans

involves

the

following

steps:

v

Creating

the

JAR

file

v

Updating

the

JAR

file

in

the

target

WebSphere

Commerce

Server

The

preceding

steps

are

described

in

more

detail

in

subsequent

sections.

Ensure

that

you

refer

to

“Updating

the

target

database”

on

page

212

if

your

customized

code

requires

updates

to

the

command

registry,

new

access

control

policies,

or

other

database

updates.

208

Programming

Guide

and

Tutorials

Creating

the

JAR

file

To

create

the

JAR

file,

do

the

following:

1.

Open

the

WebSphere

Commerce

development

environment

(Start

>

Programs

>

IBM

WebSphere

Commerce

development

environment

>

WebSphere

Commerce

development

environment)

and

switch

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

2.

Right-click

the

WebSphereCommerceServerExtensionsLogic

project

and

select

Export.
The

Export

wizard

opens.

3.

In

the

Export

wizard,

do

the

following:

a.

Select

JAR

file

and

click

Next.

b.

The

left

pane

under

Select

the

resources

to

export?

is

prepopulated

with

the

name

of

the

project.

Leave

this

value

as

is.

c.

In

the

right

pane

under

Select

the

resources

to

export?

ensure

that

only

the

following

resources

are

selected:

v

.classpath

v

.project

v

.serverPreference
d.

Ensure

that

Export

generated

class

files

and

resources

is

selected.

e.

Do

not

select

Export

Java

source

files

and

resources.

f.

In

the

Select

the

export

destination

field,

enter

the

fully-qualified

JAR

file

name

to

use.

For

example,

enter

C:\ExportTemp\WebSphereCommerceServerExtensionsLogic.jar.

Note

that

the

JAR

file

name

must

be

WebSphereCommerceServerExtensionsLogic.jar.

g.

Click

Finish.

Once

the

JAR

file

has

been

successfully

created,

the

next

step

is

to

transfer

the

file

into

the

appropriate

location

on

your

target

WebSphere

Commerce

Server.

Updating

the

JAR

file

on

the

target

WebSphere

Commerce

Server

The

next

step

is

to

copy

the

newly

created

JAR

file

into

the

appropriate

place

on

the

target

WebSphere

Commerce

Server.

To

update

the

JAR

file,

do

the

following:

1.

Stop

the

WebSphere

Commerce

instance

that

is

running

within

WebSphere

Application

Server.

Refer

to

the

WebSphere

Commerce

Installation

Guide

for

your

platform

and

database

for

details

about

how

to

stop

this

instance.

2.

Locate

the

original

EJB

JAR

file

in

the

WebSphere

Commerce

instance.

For

example,

locate

the

following

file:

v

2000400

WAS_userdir/installedApps/WAS_node_name/

WC_instance_name.ear/WebSphereCommerceServerExtensionsLogic.jar

Chapter

9.

Deployment

details

209

v

2000AIX

2000Linux

2000Solaris

WAS_installdir/installedApps/cellName/

WC_instance_name.ear/WebSphereCommerceServerExtensionsLogic.jar

v

2000Windows

WAS_installdir\installedApps\cellName\

WC_instance_name.ear\WebSphereCommerceServerExtensionsLogic.jar

where

v

instance_name

is

the

name

of

your

WebSphere

Commerce

instance.

v

2000400

WAS_node_name

represents

the

iSeries

system

where

the

WebSphere

Application

Server

product

is

installed.
3.

Make

a

copy

of

the

original

JAR

file

to

a

backup

location.

4.

Copy

the

JAR

file

from

the

development

machine

into

the

location

from

step

2.

5.

Restart

the

WebSphere

Commerce

instance

as

described

in

the

WebSphere

Commerce

Installation

Guide

for

your

platform

and

database.

Deploying

store

assets

Store

assets

include

assets

such

as

the

following:

v

JSP

templates

v

HTML

files

v

Image

files

v

XML

files

v

Properties

files

and

resource

bundles

These

assets

must

be

deployed

from

your

development

environment

onto

your

target

WebSphere

Commerce

Server.

This

includes

the

following

steps:

v

Exporting

store

assets

from

WebSphere

Studio

Application

Developer

v

Transferring

assets

to

the

target

WebSphere

Commerce

Server

The

preceding

steps

are

described

in

more

detail

in

subsequent

sections.

Exporting

store

assets

To

export

the

store

assets

from

the

development

environment,

do

the

following:

1.

Open

the

WebSphere

Commerce

development

environment

(Start

>

Programs

>

IBM

WebSphere

Commerce

development

environment

>

WebSphere

Commerce

development

environment)

and

switch

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

2.

Expand

the

Stores

folder.

3.

Right-click

the

Web

Content

folder

and

select

Export.
The

Export

Wizard

opens.

4.

In

the

Export

wizard,

do

the

following:

210

Programming

Guide

and

Tutorials

a.

Select

File

system

and

click

Next.

b.

Select

all

of

the

resources

that

you

want

to

deploy.

That

is,

select

all

of

the

JSP

templates,

HTML

files,

images,

property

files

and

other

store

assets

that

need

to

be

deployed.

c.

Select

Create

directory

structure

for

selected

files.

d.

In

the

Directory

field,

enter

a

temporary

directory

into

which

these

resources

will

be

placed.

For

example,

enter

C:\ExportTemp\StoreAssets

e.

Click

Finish.

The

next

step

is

to

copy

these

resources

into

the

appropriate

location

on

your

target

WebSphere

Commerce

Server.

Transferring

store

assets

To

transfer

store

assets

from

your

development

machine

to

your

target

WebSphere

Commerce

Server,

do

the

following:

1.

Depending

upon

the

types

of

assets

you

are

deploying

and

your

specific

configuration

details,

you

may

need

to

stop

the

WebSphere

Commerce

instance

that

is

running

within

WebSphere

Application

Server.

If

you

are

uncertain

about

whether

a

restart

will

be

required

for

your

particular

deployment

scenario,

you

should

stop

the

instance.

Refer

to

theWebSphere

Commerce

Installation

Guide

for

your

platform

and

database

for

details

about

how

to

stop

this

instance.

2.

On

the

target

machine,

locate

the

Stores.war

directory.

The

following

is

an

example

of

this

directory:

v

2000400

WAS_userdir/installedApps/WAS_node_name/

WC_instance_name.ear/Stores.war

v

2000AIX

2000Linux

2000Solaris

WAS_installdir/installedApps/cellName/

WC_instance_name.ear/Stores.war

v

2000Windows

WAS_installdir\installedApps\cellName\

WC_instance_name.ear\Stores.war

where

v

instance_name

is

the

name

of

your

WebSphere

Commerce

instance.

v

2000400

WAS_node_name

represents

the

iSeries

system

where

the

WebSphere

Application

Server

product

is

installed.
3.

Copy

the

files

exported

in

“Exporting

store

assets”

into

the

Stores.war

directory.

4.

If

you

previously

stopped

your

WebSphere

Commerce

instance,

start

the

instance.

Refer

to

theWebSphere

Commerce

Installation

Guide

for

your

platform

and

database

for

details

about

how

to

start

this

instance.

Chapter

9.

Deployment

details

211

Updating

the

target

database

As

your

target

WebSphere

Commerce

Server

uses

a

different

database

than

your

development

machine,

you

must

perform

all

updates

that

were

done

to

the

development

database

on

the

database

that

is

used

by

the

target

WebSphere

Commerce

Server.

This

includes

any

updates

for

the

registration

of

new

or

modified

commands

or

views,

additional

tables

that

have

been

created,

and

the

creation

of

access

control

policies

for

any

new

resources

that

have

been

created.

2000400

You

are

responsible

for

having

a

utility

for

executing

SQL

statements.

One

way

to

do

this

is

to

use

IBM

iSeries

Access

for

Windows.

To

open

this

utility,

do

the

following:

1.

Open

the

iSeries

Navigator.

2.

After

the

operations

navigator

opens,

you

are

required

to

sign

onto

a

particular

system.

Ensure

that

you

select

the

target

iSeries

machine

and

use

the

WebSphere

Commerce

instance

user

profile

and

password.

This

ensures

that

the

WebSphere

Commerce

instance

user

profile

owns

all

new

tables

that

are

created.

3.

In

the

panel

on

the

left,

expand

your

iSeries

system

and

then

DATABASES.

Right-click

on

the

Relational

Database

and

select

Run

SQL

Scripts

from

the

drop-down

list

list.

The

Run

SQL

Scripts

window

opens.

Using

this

window,

you

can

cut

and

paste

in

SQL

statements

or

open

an

SQL

script.

You

can

set

your

default

schema

by

using

the

JDBC

Setup

option

under

the

Connection

selection.

2000DB2

390

2000z/OS

To

log

on

to

the

z/OS

system

in

order

to

perform

operations

on

the

target

database,

such

as

checking

the

table

space

status

or

executing

SQL

statements

using

SPUFI,

you

may

use

the

IBM

Personal

Communications

package.

To

utilize

this

package,

do

the

following:

1.

Install

IBM

Personal

Communications

and

configure

it

to

connect

to

z/OS.

2.

Log

on

to

TSO

using

the

user

ID

provided

by

your

z/OS

system

administrator.

3.

Perform

the

operations.

Access

control

updates

While

access

control

information

is

contained

in

the

database,

this

is

a

special

type

of

information

that

may

not

necessarily

be

a

straight

replication

from

the

development

environment

to

the

target

environment.

In

particular,

in

the

development

environment,

you

may

decide

to

use

very

liberal

access

control

policies

that

are

not

appropriate

for

a

production

(or

next

level

of

testing)

environment.

As

an

example,

within

the

confines

of

the

development

environment,

policies

for

new

commands

could

be

set

such

that

all

users

can

execute

the

command,

but

this

may

not

be

appropriate

elsewhere.

212

Programming

Guide

and

Tutorials

*
*
*
*

*

*
*

*

As

a

result,

before

copying

access

control

information

from

the

development

to

target

environment,

you

should

give

consideration

to

the

access

control

requirements

in

the

new

environment

and

adjust

your

policies

accordingly.

For

information

about

loading

access

control

policies

(including

command

syntax

for

various

platforms

and

directory

permission

requirements),

refer

to

the

WebSphere

Commerce

Security

Guide.

Chapter

9.

Deployment

details

213

214

Programming

Guide

and

Tutorials

Part

4.

Tutorials

The

following

tutorials

are

designed

to

introduce

the

various

tasks

related

to

creating

customized

code

for

WebSphere

Commerce

applications.

The

development-related

steps

are

to

be

performed

in

either

a

WebSphere

Commerce

Business

Edition,

a

WebSphere

Commerce

-

Express

development

environment,

or

a

WebSphere

Commerce

Studio,

Professional

Developer

Edition.

The

deployment

steps

are

to

be

performed

on

WebSphere

Commerce

(either

Business,

Express,

or

Professional

edition,

corresponding

to

your

development

environment)

running

on

Windows

2000.

©

Copyright

IBM

Corp.

2000,

2003

215

216

Programming

Guide

and

Tutorials

Chapter

10.

Tutorial:

Creating

new

business

logic

This

tutorial

is

designed

to

show

you

the

steps

involved

in

creating

new

business

logic.

The

types

of

assets

created

include

a

new

view,

a

new

controller

command,

a

new

task

command,

new

data

beans,

and

a

new

entity

bean.

This

tutorial

uses

the

scenario

of

developing

a

small

interface

to

let

users

modify

a

balance

of

bonus

points.

It

is

for

demonstration

purposes

only

and

does

not

reflect

the

logic

required

to

build

a

loyalty

program

application.

Instead,

from

this

tutorial,

you

will

learn

the

development

steps

that

are

common

to

creating

each

of

the

previously

listed

types

of

code

assets.

This

tutorial

is

divided

into

the

following

sub-tasks:

1.

Preparing

your

workspace

2.

Creating

a

new

view

3.

Creating

a

new

controller

command

4.

Passing

information

from

the

controller

command

to

the

view

5.

Parsing

and

validating

URL

parameters

in

the

controller

command

6.

Creating

a

new

task

command

7.

Modifying

the

new

task

command

8.

Creating

a

new

enterprise

bean:

a.

Creating

a

new

table

b.

Creating

a

new

CMP

enterprise

bean

c.

Mapping

the

new

bean

to

the

table

and

creating

the

schema

d.

Creating

an

associated

access

bean

e.

Generating

deployed

code

f.

Testing

the

bean

with

the

universal

test

client

9.

Integrating

the

Bonus

bean

into

MyNewControllerCmd

a.

Modifying

the

performExecute

method

of

the

MyNewTaskCmdImpl

class

to

calculate

the

new

bonus

points

and

save

the

points

to

the

XBONUS

table.

b.

Adding

a

getResources

method

to

the

MyNewControllerCmdImpl

class

to

return

a

list

of

resources

that

the

command

uses.

This

method

is

included

for

access

control

purposes.

c.

Creating

the

BonusDataBean

so

that

bonus

points

can

be

easily

displayed

on

a

JSP

template.

d.

Creating

a

new

access

control

policy

for

the

new

resources.

e.

Modifying

the

MyNewJSPTemplate.jsp

file

to

allow

users

to

enter

bonus

points

and

display

results.

©

Copyright

IBM

Corp.

2000,

2003

217

f.

Testing

the

integrated

code.
10.

Deploying

all

of

the

preceding

code,

access

control

policies,

JSP

templates,

images,

and

resource

bundles

to

a

target

WebSphere

Commerce

Server

running

in

WebSphere

Application

Server.

Each

of

the

preceding

steps

is

described

in

step-by-step

details

in

subsequent

sections.

Locating

the

sample

code

Before

beginning

this

tutorial,

download

the

WC_SAMPLE_55.zip

package

that

contains

the

starting

point

for

these

programming

tutorials.

Save

this

file

onto

your

development

machine.

As

an

example,

you

might

save

the

file

into

the

WCDE_installdir

directory:

This

package

is

located

with

the

WebSphere

Commerce

Programming

Guide

and

Tutorials

on

the

following

Web

site:

http://www.ibm.com/software/commerce/library/

Preparing

your

workspace

In

this

step,

you

import

sample

code

into

your

WebSphere

Commerce

workspace.

This

sample

code

is

the

starting

point

for

the

tutorial.

To

prepare

your

workspace,

do

the

following:

1.

Ensure

that

you

have

installed

the

WebSphere

Commerce

development

environment

Version

5.5

and

that

you

have

completed

configuring

your

development

environment.

You

should

have

also

published

a

store

based

upon

the

FashionFlow

sample

store

(which

is

an

example

of

the

consumer

direct

model)

within

your

development

environment.

Instructions

on

how

to

publish

a

store

are

found

in

the

WebSphere

Commerce

Production

and

Development

online

help.

2.

Import

the

sample

code

into

your

workspace,

by

doing

the

following:

a.

Start

WebSphere

Commerce

development

environment

as

follows:

v

2000Business

2000Professional

Start

>

Programs

>

IBM

WebSphere

Commerce

Studio

>

WebSphere

Commerce

development

environment

v

2000Express

2000Express

Start

>

Programs

>

IBM

WebSphere

-

Express

Developer

Edition

>

WebSphere

Commerce

development

environment

b.

Switch

to

the

J2EE

Perspective

(Window

>

Open

Perspective

>

J2EE)

and

then

select

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

218

Programming

Guide

and

Tutorials

http://www.ibm.com/software/genservers/commerce/library/

c.

Expand

the

WebSphereCommerceServerExtensionsLogic

project.

d.

Right-click

the

src

folder

and

select

Import.

The

Import

wizard

opens.

e.

From

the

Select

an

import

source

list,

select

Zip

file

and

click

Next.

f.

Click

Browse

(beside

the

Zip

file

field)

and

navigate

to

the

sample

code.

This

file

is

located

as

follows:
yourDirectory\WC_SAMPLE_55.zip
where

yourDirectory

is

the

directory

into

which

you

downloaded

the

package.

g.

Click

Deselect

All,

then

expand

the

directories

and

select

to

import

the

following

files:

v

com\ibm\commerce\sample\commands\

MyNewControllerCmd.java

v

com\ibm\commerce\sample\commands\

MyNewControllerCmdImpl.java

v

com\ibm\commerce\sample\commands\MyNewTaskCmd.java

v

com\ibm\commerce\sample\commands\MyNewTaskCmdImpl.java

v

com\ibm\commerce\sample\databeans\MyNewDataBean.java
h.

In

the

Folder

field,

the

WebSphereCommerceServerExtensionsLogic/src

folder

is

already

specified.

Keep

this

value.

i.

Click

Finish.
3.

Right-click

the

WebSphereCommerceServerExtensionsLogic

project

and

select

Rebuild

project.

4.

Import

the

JSP

template

for

the

tutorials

into

the

appropriate

directory,

by

doing

the

following:

a.

In

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view,

expand

the

Stores

project.

Then

expand

Web

Content

>

FashionFlow_name

where

FashionFlow_name

is

the

name

of

your

store

based

upon

the

FashionFlow

sample

store.

If

you

just

published

your

store,

the

FashionFlow_name

directory

may

not

be

displayed.

If

this

is

the

case,

right-click

the

Stores

project

and

select

Refresh.

The

FashionFlow_name

directory

will

now

be

available

in

the

workspace.

b.

Right-click

the

FashionFlow_name

directory

and

select

Import.
The

Import

wizard

opens.

c.

From

the

Select

an

import

source

list,

select

Zip

file

and

click

Next.

d.

Click

Browse

(beside

the

Zip

file

field)

and

navigate

to

the

sample

code.

This

file

is

located

as

follows:

Chapter

10.

Tutorial:

Creating

new

business

logic

219

yourDirectory\WC_SAMPLE_55.zip
where

yourDirectory

is

the

directory

into

which

you

downloaded

the

package.

e.

Click

Deselect

All,

then

select

the

MyNewJSPTemplate_All.jsp

file.

f.

In

the

Folder

field,

the

Stores/Web

Content/FashionFlow_name

folder

is

already

specified.

Keep

this

value.

g.

Click

Finish.
5.

Import

the

properties

file

for

the

tutorial

into

the

appropriate

directory,

by

doing

the

following:

a.

In

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view,

expand

the

following

directories:
Stores

>

Web

Content>

WEB-INF>

classes

>

FashionFlow_name

directory.

b.

Right-click

the

FashionFlow_name

directory

and

select

Import.
The

Import

wizard

opens.

c.

From

the

Select

an

import

source

list,

select

Zip

file

and

click

Next.

d.

Click

Browse

(beside

the

Zip

file

field)

and

navigate

to

the

sample

code.

This

file

is

located,

as

follows:
yourDirectory\WC_SAMPLE_55.zip
where

yourDirectory

is

the

directory

into

which

you

downloaded

the

package.

e.

Click

Deselect

All,

then

select

the

Tutorial_All_en_US.properties

file.

f.

In

the

Folder

field,

the

Stores/Web

Content/WEB-
INF/classes/FashionFlow_name

folder

is

already

specified.

Keep

this

value.

g.

Click

Finish.
6.

There

are

four

files

that

are

used

to

load

access

control

policies

for

new

resources

that

are

created

in

the

tutorials.

These

are:

v

MyNewViewACPolicy.xml

—

This

XML

file

contains

the

access

control

policy

used

when

a

new

view

is

created.

v

MyNewControllerCmdACPolicy.xml—

This

XML

file

contains

the

access

control

policy

used

when

a

new

controller

command

is

created.

v

SampleACPolicy_template.xml—

This

XML

file

contains

the

access

control

policy

used

when

a

new

enterprise

bean

is

created.

v

SampleACPolicy_template_en_US.xml—

This

XML

file

contains

the

access

control

policy

description

when

a

new

enterprise

bean

is

created.

Copy

the

preceding

files

into

the

appropriate

directory,

by

doing

the

following:

a.

On

the

file

system,

navigate

to

the

following

directory:
yourDirectory\WC_SAMPLE_55.zip.

220

Programming

Guide

and

Tutorials

b.

Expand

the

ZIP

file

and

extract

the

preceding

four

files

into

the

following

directory:
WCDE_installdir\Commerce\xml\policies\xml

7.

Test

your

environment

to

ensure

you

are

ready

to

start

the

tutorials,

by

doing

the

following:

a.

In

WebSphere

Studio

Application

Developer,

switch

to

the

Server

perspective.

b.

Start

your

payment

server.

If

you

are

running

a

local

payment

server,

right-click

WebSphereCommercePaymentsServer

and

select

Start

(or

Restart).

c.

Right-click

WebSphereCommerceServer

and

select

Start

(or

Restart).

d.

Watch

the

console

to

see

when

the

WebSphereCommerceServer

server

has

finished

its

startup

process.

You

will

see

information

similar

to

the

following

when

the

server

has

started:

[4/2/03

12:56:06:286

EST]

66adf8d1

ApplicationMg

A

WSVR0221I:

Application

started:

WebSphereCommerceServer

[4/2/03

12:56:06:777

EST]

66adf8d1

HttpTransport

A

SRVE0171I:

Transport

http

is

listening

on

port

9,080.

[4/2/03

12:56:10:742

EST]

66adf8d1

HttpTransport

A

SRVE0171I:

Transport

https

is

listening

on

port

9,443.

[4/2/03

12:56:10:762

EST]

66adf8d1

HttpTransport

A

SRVE0171I:

Transport

http

is

listening

on

port

8,080.

[4/2/03

12:56:10:762

EST]

66adf8d1

HttpTransport

A

SRVE0171I:

Transport

http

is

listening

on

port

80.

[4/2/03

12:56:11:123

EST]

66adf8d1

HttpTransport

A

SRVE0171I:

Transport

https

is

listening

on

port

443.

[4/2/03

12:56:11:183

EST]

66adf8d1

HttpTransport

A

SRVE0171I:

Transport

https

is

listening

on

port

9,043.

[4/2/03

12:56:11:653

EST]

66adf8d1

RMIConnectorC

A

ADMC0026I:

RMI

Connector

available

at

port

2809

[4/2/03

12:56:12:575

EST]

66adf8d1

WsServer

A

WSVR0001I:

Server

server1

open

for

e-business

e.

In

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view,

expand

the

Stores

project.

Then

expand

Web

Content

>

FashionFlow_name.

f.

Right-click

the

index.jsp

file

and

select

Run

on

Server.
The

sample

store

opens.

g.

Select

a

product

and

ensure

that

you

can

purchase

it.

You

are

now

ready

to

proceed

with

the

tutorials.

Chapter

10.

Tutorial:

Creating

new

business

logic

221

Creating

a

new

view

The

first

step

of

this

tutorial

is

to

create

a

new

view.

This

new

view

is

called

MyNewView

and

has

a

corresponding

JSP

template,

MyNewJSPTemplate.jsp.

In

this

section

of

the

tutorial,

you

will

learn

the

following:

v

Where

to

place

JSP

templates

and

graphic

files

that

apply

to

a

specific

store.

v

How

to

use

WebSphere

Studio

Application

Developer

to

create

the

JSP

template.

v

How

to

create

the

properties

file

that

contains

the

text

for

the

JSP

template.

v

How

to

update

the

view

registry

(VIEWREG

table)

with

the

new

″MyNewView″

v

How

to

set

up

access

control

for

the

new

view.

v

How

to

use

the

WebSphere

test

environment

(WTE)

to

test

the

new

view.

In

general,

creating

a

new

view

includes

the

following

steps:

1.

Naming

the

view

and

registering

it

in

the

view

registry.

2.

Creating

new

properties

files

in

which

translatable

text

for

JSP

templates

are

stored.

3.

Creating

a

new

JSP

template

for

the

new

view.

4.

Creating

and

loading

access

control

policies

for

the

view.

Registering

MyNewView

In

this

scenario,

the

view

you

create

is

called

MyNewView.

This

view

must

be

registered

in

the

VIEWREG

table,

which

is

part

of

the

command

registry.

To

register

a

new

view,

you

only

need

to

use

a

simple

SQL

statement

to

create

a

new

entry

in

the

VIEWREG

table.

Before

proceeding

with

this

step,

you

must

know

the

unique

identifier

for

your

store.

You

can

determine

this

by

running

the

following

SQL

query

against

your

development

database:

select

STOREENT_ID

from

STOREENT

where

IDENTIFIER

=

’FashionFlow_name’

where

FashionFlow_name

is

the

name

of

your

store.

Make

note

of

the

value

here,

as

it

is

required

in

the

next

section:

2000DB2

If

you

are

using

a

DB2

database,

do

the

following

to

register

MyNewView:

1.

Open

the

DB2

Command

Center

(Start

>

Programs

>IBM

DB2

>

Command

Line

Tools

>

Command

Center).

2.

From

the

Tools

menu,

select

Tools

Settings.

3.

Select

the

Use

statement

termination

character

check

box

and

ensure

the

character

specified

is

a

semicolon

(;)

4.

Close

the

tools

settings.

222

Programming

Guide

and

Tutorials

5.

With

the

Script

tab

selected,

create

the

required

entry

in

the

VIEWREG

table,

by

entering

the

following

information

in

the

script

window:
connect

to

developmentDB

user

dbuser

using

dbpassword;

insert

into

VIEWREG

(VIEWNAME,

DEVICEFMT_ID,

STOREENT_ID,

INTERFACENAME,

CLASSNAME,

PROPERTIES,

DESCRIPTION,

HTTPS,

LASTUPDATE)

values

(’MyNewView’,

-1,

FF_storeent_ID,

’com.ibm.commerce.command.ForwardViewCommand’,

’com.ibm.commerce.command.HttpForwardViewCommandImpl’,

’docname=MyNewJSPTemplate.jsp’,

’This

is

my

new

view

for

tutorial

one’,

0,

null)

where

v

developmentDB

is

the

name

of

your

development

database

v

dbuser

is

the

database

user

v

dbpassword

is

the

password

for

your

database

user

v

FF_storeent_ID

is

the

unique

identifier

for

your

store

that

is

based

on

the

FashionFlow

sample

store.

Click

the

Execute

icon.

You

should

see

a

message

indicating

that

the

SQL

command

completed

successfully.

2000Oracle

If

you

are

using

an

Oracle

database,

do

the

following

to

register

your

view

in

the

database:

1.

Open

the

Oracle

SQL

Plus

command

window

(Start

>

Programs

>

Oracle

>

Application

Development

>

SQL

Plus).

2.

In

the

User

Name

field,

enter

your

Oracle

user

name.

3.

In

the

Password

field,

enter

your

Oracle

password.

4.

In

the

Host

String

field,

enter

your

connect

string.

5.

In

the

SQL

Plus

window,

enter

the

following

SQL

statement:

insert

into

VIEWREG

(VIEWNAME,

DEVICEFMT_ID,

STOREENT_ID,

INTERFACENAME,

CLASSNAME,

PROPERTIES,

DESCRIPTION,

HTTPS,

LASTUPDATE)

values

(’MyNewView’,-1,

FF_storeent_ID,

’com.ibm.commerce.command.ForwardViewCommand’,

’com.ibm.commerce.command.HttpForwardViewCommandImpl’,

’docname=MyNewJSPTemplate.jsp’,’This

is

my

new

view

for

tutorial

1’,

0,

null);

where

v

FF_storeent_ID

is

the

unique

identifier

for

your

store

that

is

based

on

the

FashionFlow

sample

store.

Press

Enter

to

run

the

SQL

statement.

6.

Enter

the

following

to

commit

your

database

changes:

commit;

Chapter

10.

Tutorial:

Creating

new

business

logic

223

and

press

Enter

to

run

the

SQL

statement.

MyNewView

is

now

registered.

Creating

a

properties

file

for

the

tutorial

In

this

step,

you

create

the

new

properties

file

to

hold

any

translatable

text

that

is

used

in

the

JSP

template.

Separating

translatable

text

from

the

JSP

template

itself

makes

the

task

of

translation

much

simpler

and

is

also

key

to

having

a

globalized

Web

site.

To

create

the

properties

file,

do

the

following

in

WebSphere

Studio

Application

Developer:

1.

Open

the

Web

perspective

(Window

>

Open

Perspective

>

Web).

2.

Within

the

Stores

Web

project,

expand

the

Web

Content

>

WEB-INF

>

classes

>

FashionFlow_name

folders.

You

will

find

the

Tutorial_All_en_US.properties

file.

3.

Right-click

Tutorial_All_en_US.properties

and

select

Open

With

>

Properties

File

Editor.

4.

Right-click

the

FashionFlow_name

folder

and

select

New

>

Other

>

Simple

>

File

>

Next

to

create

a

new

properties

file.
The

New

File

window

opens.

5.

In

the

File

name

field,

enter

TutorialNLS_en_US.properties,

then

click

Finish.
The

new

empty

file

opens.

6.

Copy

section

1

from

the

Tutorial_All_en_US.properties

file

into

the

new

TutorialNLS_en_US.properties

file.

This

introduces

the

following

name-value

pairs

into

the

TutorialNLS_en_US.properties

file:

#

--

SECTION

1

--

#

ProgrammerGuide=Programmer’s

Guide

Tutorial=Tutorial:

Creating

new

business

logic

ParametersFromCmd=

List

of

parameter-value

pairs

sent

from

the

controller

command

CalledByControllerCmd=MyNewView

was

called

by

a

controller

command

CalledByWhichControllerCmd=MyNewView

was

called

by

the

controller

command

which

is

-

ControllerParm1=ControllerParm1=

ControllerParm2=ControllerParm2=

Example=This

is

an

example

of

using

the

<if>

tag

from

JSP

Standard

Tag

Library

(JSTL)

UserName=UserName=

Points=Points=

Greeting=Greeting=

UserId=UserId=

FirstInput=Your

first

input

parameter

RegisteredUser=is

a

registered

user

ReferenceNumber=The

member

refernce

number

of

this

user

is

NotRegisteredUser=is

not

a

registered

user

224

Programming

Guide

and

Tutorials

BonusAdmin=Bonus

Administration

PointBeforeUpdate=The

bonus

point

before

update

is

PointAfterUpdate=The

bonus

point

after

update

is

EnterPoint=Please

enter

the

points,

then

submit

it

to

the

controller

command

#

--

END

OF

SECTION

1

--

#

Note

that

line

breaks

within

a

value

are

for

presenation

purposes

only.

7.

Save

the

TutorialNLS_en_US.properties

file

(Ctrl+S).

The

new

TutorialNLS_en_US.properties

file

is

saved

under

the

Stores\Web

Content\WEB-INF\classes\FashionFlow_name

directory

and

will

be

used

as

a

resource

bundle

by

your

new

JSP

template.

Note:

When

the

content

of

a

properties

file

is

changed,

the

server

must

be

restarted

before

the

changes

can

be

seen

in

testing.

Creating

MyNewJSPTemplate

In

this

step,

you

use

the

Page

Designer

tool

in

WebSphere

Studio

to

create

a

new

JSP

template.

In

particular,

you

create

MyNewJSPTemplate.jsp

that

is

used

with

MyNewView.

When

creating

this

template,

you

create

a

new

blank

JSP

template

and

then

add

appropriate

sections

from

another

JSP

template

(MyNewJSPTemplate_All.jsp).

To

create

your

new

JSP

template,

do

the

following:

1.

In

the

Web

perspective,

switch

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

2.

Right-click

the

Stores

Web

project

and

select

Properties.

3.

2000Business

2000Professional

Select

Web

in

the

left

pane

and

then

from

the

list

of

Available

Web

Project

Features,

select

Include

the

JSP

Standard

Tag

Library.

2000Express

Select

Web

Project

Features

in

the

left

pane

and

then

from

the

list

of

Available

Web

Project

Features,

select

JSP

Standard

Tag

Library.

Click

Apply.

When

the

update

is

complete,

click

OK

to

close

the

properties

editor.

4.

Expand

the

Web

Content\FashionFlow_name

directory.

5.

Right-click

MyNewJSPTemplate_All.jsp

file

and

select

Open

With

>

Page

Designer.

6.

Right-click

the

FashionFlow_name

folder

and

select

New

>

JSP

File

to

create

the

new

JSP

template

in

this

folder.
The

New

JSP

File

window

opens.

7.

Specify

values

for

the

new

file,

as

follows:

a.

In

the

File

name

field,

enter

MyNewJSPTemplate.jsp.

Chapter

10.

Tutorial:

Creating

new

business

logic

225

b.

From

the

Markup

Language

drop-down

list,

select

XHTML

and

click

Next.

c.

2000Business

2000Professional

Click

Add

Tag

Library.
The

Select

a

Tag

Library

window

opens..

2000Express

Select

Configure

advance

options

>

click

Next

>

click

Add

(next

to

the

Tag

Libraries

table).

d.

Select

the

following

tag

libraries:

v

http://java.sun.com/jstl/core

v

http://java.sun.com/jstl/fmt

Click

OK,

then

Next.

e.

Click

Next.

f.

Clear

the

(Use

workbench

default)

Workbench

Encoding

check

box.

g.

From

the

Encoding

drop-down

list,

select

ISO

Latin

-1.

h.

From

the

Document

Type

drop-down

list,

select

XHTML

1.0

Transitional.

i.

Click

Finish.
The

MyNewJSPTemplate.jsp

file

opens.

Click

the

Design,

Source,

and

Preview

tabs

for

different

views

of

the

file.

8.

With

the

Design

tab

selected,

click

on

the

Place

MyNewJSPTemplate.jsp’s

content

here

text.

Replace

this

text

with

Hello

world!.

9.

Switch

to

the

Source

and

then

Preview

tabs.

Notice

that

the

text

has

changed.

10.

Now

you

must

copy

a

preparation

section

from

the

MyNewJSPTemplate_All.jsp

file

into

your

new

MyNewJSPTemplate.jsp

file.

This

section

sets

the

place

holders

for

updates

you

will

make

to

the

file.

Copy

the

text

between

the

<%--PREPARATION

SECTION

and

END

OF

PREPARATION

SECTION

--%>

markers

into

your

new

JSP

template.

When

copying

this

text

into

your

JSP

template,

overwrite

the

following

text:

<title>

MyNewJSPTemplate.jsp

</title>

</head>

<body>

<p>

Hello

World!

</p>

</body>

</html>

Note:

Do

not

copy

the

<%--PREPARATION

SECTION

and

END

OF

PREPARATION

SECTION

--%>

markers

into

your

new

JSP

template.

Only

copy

the

text

contained

between

those

markers.

11.

Copy

sections

1A

and

2

from

MyNewJSPTemplate_All.jsp

file

into

your

new

MyNewJSPTemplate.jsp

file.

Place

the

new

text

between

the

<!--

226

Programming

Guide

and

Tutorials

SECTION

1A

-->,

<!--

END

OF

SECTION

1A

-->,

<!--

SECTION

2

-->,

and

<!--

END

OF

SECTION

2

-->

markers.

This

introduces

the

following

text

into

MyNewJSPTemplate.jsp:

<!--

SECTION

1A

-->

<%@

include

file="include/EnvironmentSetup.jsp"%>

<!--

END

OF

SECTION

1A

-->

<!--

SECTION

2

-->

<fmt:setLocale

value="${CommandContext.locale}"

/>

<fmt:setBundle

basename="${sdb.directory}/TutorialNLS"

var="tutorial"

/>

<!--

END

OF

SECTION

2-->

The

first

section

includes

the

EnvironmentSetup.jsp

file

that

is

used

to

set

up

environment

variables.

The

second

section

is

used

to

create

the

resource

bundle

object

that

is

used

to

retrieve

information

from

the

properties

file

and

it

sets

the

locale.

12.

Now

add

a

graphic

and

text

to

the

JSP

template.

Again,

this

step

is

accomplished

by

copying

text

from

the

MyNewJSPTemplate_All.jsp

file

into

the

MyNewJSPTemplate.jsp

file.

This

time,

copy

section

3

from

MyNewJSPTemplate_All.jsp

file

into

the

MyNewJSPTemplate.jsp

file.

This

introduces

the

following

text

into

the

JSP

template:

<!--

SECTION

3

-->

<table

cellpadding="0"

cellspacing="0"

border="0">

<tr>

<td

bgcolor="#ff2d2d"

>

<img

src="<c:out

value="${sdb.jspStoreDirFilePath}

images/male_blueshirt.gif"

/>"

border="0"/>

</td>

</tr>

</table>

<h1><fmt:message

key="ProgrammerGuide"

bundle="${tutorial}"

/>

</h1>

<h2><fmt:message

key="Tutorial"

bundle="${tutorial}"

/>

</h2>

<!--

END

OF

SECTION

3

-->

Section

3

introduces

an

image

that

is

located

in

the

store-specific

image

sub-folder

(Stores\Web

Content\FashionFlow_name\images).

It

also

retrieves

text

from

the

properties

file.

13.

Save

the

changes

you

made

to

the

MyNewJSPTemplate.jsp

file

(Ctrl+S).

Creating

and

loading

access

control

policies

for

MyNewView

Command-level

access

control

must

be

specified

for

the

new

view.

In

this

case,

the

command-level

access

control

policy

specifies

that

all

users

are

Chapter

10.

Tutorial:

Creating

new

business

logic

227

allowed

to

execute

the

view.

Note

that

this

type

of

access

control

policy

is

acceptable

for

the

development

environment,

but

it

may

not

be

suitable

for

other

circumstances.

For

more

advanced

access

control

requirements,

refer

to

the

WebSphere

Commerce

Security

Guide.

The

access

control

policy

is

defined

by

the

MyNewViewACPolicy.xml

file,

which

you

placed

into

the

following

directory,

as

part

of

the

preparatory

steps:
WCDE_installdir\Commerce\xml\policies\xml

To

load

the

new

policy,

do

the

following:

1.

At

a

command

prompt,

navigate

to

the

following

directory:
WCDE_installdir\Commerce\bin

2.

You

must

issue

the

acpload

command,

which

has

the

following

form:

acpload

db_name

db_user

db_password

inputXMLFile

where

v

db_name

is

the

name

of

your

development

database.

v

db_user

is

the

name

of

the

database

user.

v

db_password

is

the

password

for

your

database

user.

v

inputXMLFile

is

the

XML

file

containing

the

access

control

policy

specification.

In

this

case,

specify

MyNewViewACPolicy.xml.

The

following

is

an

example

of

the

command,

with

variables

specified:

acpload

Demo_Dev

db2user

db2user

MyNewViewACPolicy.xml

Testing

MyNewView

The

final

step

of

creating

a

new

view

is

to

test

the

new

view

in

the

WebSphere

test

environment.

Note

that

when

testing

the

new

view

(and

later

when

testing

the

new

commands)

you

must

first

launch

the

home

page

of

your

store.

The

reason

that

launching

the

store

is

required

is

because

the

new

view

is

registered

specifically

to

your

store.

As

a

result,

you

first

launch

the

store

home

page

to

set

the

store

ID

value

in

the

command

context,

before

attempting

to

access

the

new

view.

Similarly,

the

controller

command

you

create

later

is

also

registered

specifically

to

your

store

and

requires

the

store

ID

from

the

command

context.

To

test

your

new

view,

do

the

following:

1.

In

WebSphere

Studio

Application

Developer,

open

the

Server

Perspective

(Window

>

Open

Perspective

>

Server).

2.

Right-click

the

WebSphereCommerceServer

server

and

select

Start

(or

Restart).

228

Programming

Guide

and

Tutorials

3.

Right-click

index.jsp

under

the

Stores\Web

Content\FashionFlow_name

directory

and

select

Run

on

Server.
The

store

home

page

is

displayed

in

the

Web

browser.

4.

In

the

Web

browser

enter

the

following

URL:

http://localhost/webapp/wcs/stores/servlet/MyNewView

After

a

few

seconds,

the

new

JSP

template

is

displayed,

as

shown

in

the

following

screen

shot:

Figure

31.

Chapter

10.

Tutorial:

Creating

new

business

logic

229

Creating

a

new

controller

command

In

this

step,

you

create

a

new

controller

command,

called

MyNewControllerCmd.

Initially,

this

command

only

returns

the

MyNewView

view.

In

this

section

of

the

tutorial,

you

will

learn

the

following:

v

The

minimum

requirements

for

code

contained

in

a

controller

command

v

How

to

create

the

new

controller

command

interface

and

implementation

class

v

How

to

set

up

a

controller

command

to

return

a

view

v

How

to

register

a

controller

command

in

the

command

registry

v

How

to

set

up

access

control

for

a

controller

command

In

general,

creating

a

new

controller

command

involves

the

following

steps:

1.

Registering

the

new

command

in

the

command

registry.

2.

Creating

an

interface

for

the

command.

3.

Creating

an

implementation

class

for

the

command.

4.

Creating

and

loading

access

control

policies

for

the

command.

5.

Testing

the

command.

Registering

MyNewControllerCmd

In

this

part

of

the

tutorial,

you

create

a

new

controller

command

called

MyNewControllerCmd.

This

command

must

be

registered

in

the

command

registry.

In

particular,

the

interface

must

be

registered

in

the

URLREG

table,

and

the

association

between

the

interface

and

its

implementation

class

gets

registered

in

the

CMDREG

table.

2000DB2

If

you

are

using

a

DB2

database,

do

the

following

to

register

MyNewControllerCmd:

1.

Open

the

DB2

Command

Center

(Start

>

Programs

>IBM

DB2

>

Command

Line

Tools

>

Command

Center).

2.

With

the

Script

tab

selected,

create

the

required

entry

in

the

URLREG

table,

by

entering

the

following

information

in

the

script

window:
connect

to

developmentDB

user

dbuser

using

dbpassword;

insert

into

URLREG

(URL,

STOREENT_ID,

INTERFACENAME,

HTTPS,

DESCRIPTION,

AUTHENTICATED)

values

(’MyNewControllerCmd’,FF_storeent_ID,

’com.ibm.commerce.sample.commands.MyNewControllerCmd’,

0,

’This

is

a

new

controller

command

for

tutorial

one.’,null);

insert

into

CMDREG

(STOREENT_ID,

INTERFACENAME,

DESCRIPTION,

CLASSNAME,

TARGET)

values

(FF_storeent_ID,

’com.ibm.commerce.sample.commands.MyNewControllerCmd’,

’This

is

a

new

controller

command

for

tutorial

one.’,

’com.ibm.commerce.sample.commands.MyNewControllerCmdImpl’,

’local’);

230

Programming

Guide

and

Tutorials

where

v

developmentDB

is

the

name

of

your

development

database

v

dbuser

is

the

database

user

v

dbpassword

is

the

password

for

your

database

user

v

FF_storeent_ID

is

the

unique

identifier

for

your

store

that

is

based

on

the

FashionFlow

sample

store.

Click

the

Execute

icon.

You

should

see

a

message

indicating

that

the

SQL

command

completed

successfully.

2000Oracle

If

you

are

using

an

Oracle

database,

do

the

following

to

register

MyNewControllerCmd:

1.

Open

the

Oracle

SQL

Plus

command

window

(Start

>

Programs

>

Oracle

>

Application

Development

>

SQL

Plus).

2.

In

the

User

Name

field,

enter

your

Oracle

user

name.

3.

In

the

Password

field,

enter

your

Oracle

password.

4.

In

the

Host

String

field,

enter

your

connect

string.

5.

In

the

SQL

Plus

window,

enter

the

following

SQL

statement:

insert

into

URLREG

(URL,

STOREENT_ID,

INTERFACENAME,

HTTPS,

DESCRIPTION,

AUTHENTICATED)

values

(’MyNewControllerCmd’,FF_storeent_ID,

’com.ibm.commerce.sample.commands.MyNewControllerCmd’,

0,

’This

is

a

new

controller

command

for

tutorial

one.’,null);

insert

into

CMDREG

(STOREENT_ID,

INTERFACENAME,

DESCRIPTION,

CLASSNAME,

TARGET)

values

(FF_storeent_ID,

’com.ibm.commerce.sample.commands.MyNewControllerCmd’,

’This

is

a

new

controller

command

for

tutorial

one.’,

’com.ibm.commerce.sample.commands.MyNewControllerCmdImpl’,’local’);

where

v

FF_storeent_ID

is

the

unique

identifier

for

your

store

that

is

based

on

the

FashionFlow

sample

store.

Press

Enter

to

run

the

SQL

statement.

6.

Enter

the

following

to

commit

your

database

changes:

commit;

and

press

Enter

to

run

the

SQL

statement.

Note

that

the

second

insert

statement

into

the

CMDREG

table

is

not

absolutely

necessary.

In

this

scenario,

the

interface

will

use

the

default

implementation,

and

as

such,

this

association

between

the

interface

and

Chapter

10.

Tutorial:

Creating

new

business

logic

231

implementation

class

does

not

really

need

to

be

specified

in

the

command

registry.

It

is

included

here

for

the

purpose

of

completeness.

Creating

the

MyNewControllerCmd

interface

According

to

the

WebSphere

Commerce

programming

model,

all

new

controller

commands

must

have

an

interface,

as

well

as

an

implementation

class.

For

this

tutorial,

a

base

for

the

interface

is

provided

in

the

sample

code.

It

is

split

into

a

number

of

different

sections

that

are

currently

in

the

code

as

comments.

As

you

progress

through

the

tutorial,

you

uncomment

various

sections

of

the

code.

To

create

the

MyNewControllerCmd

interface,

do

the

following:

1.

In

WebSphere

Studio

Application

Developer,

open

the

Java

perspective

(Window

>

Open

Perspective

>

Java).

2.

Expand

the

WebSphereCommerceServerExtensionsLogic

project.

3.

Navigate

to

the

src

directory

and

then

expand

the

com.ibm.commerce.sample.commands

package.

4.

Double-click

the

MyNewControllerCmd.java

interface

to

open

the

file.

5.

In

the

source,

uncomment

section

1

(delete

the

“/*”

before

the

section

and

the

“*/”after

the

section).

This

introduces

the

following

code

into

the

interface:

///

Section

1

//

//

set

default

command

implement

class

static

final

String

defaultCommandClassName

=

"com.ibm.commerce.sample.commands.MyNewControllerCmdImpl";

///

End

of

section

1//

This

section

of

code

specifies

that

by

default,

the

interface

should

use

the

MyNewControllerCmdImpl

implementation

class.

6.

Save

the

change

to

the

interface

(Ctrl+S).

Creating

the

MyNewControllerCmdImpl

implementation

class

Once

the

interface

is

created,

the

next

step

is

to

create

the

implementation

class

for

the

command.

For

this

tutorial,

a

base

for

the

implementation

class

is

provided

in

the

sample

code.

It

is

split

into

a

number

of

different

sections

that

are

currently

in

the

code

as

comments.

As

you

progress

through

the

tutorial,

you

uncomment

various

sections

of

the

code.

To

create

the

MyNewControllerCmdImpl

implementation

class,

do

the

following:

1.

Double-click

the

MyNewControllerCmdImpl.java

class

to

open

it.

232

Programming

Guide

and

Tutorials

2.

In

the

Outline

view,

select

the

performExecute

method

to

view

its

source

code.

3.

In

the

source

code

for

the

performExecute

method,

uncomment

Section

1.

This

introduces

the

following

code

into

the

method:

///

Section

1

//

///

create

a

new

TypedProperties

for

output

purpose.

TypedProperty

rspProp

=

new

TypedProperty();

///

End

of

section

1

///

This

creates

a

new

TypedProperty

object

that

is

used

to

hold

the

command’s

response

properties.

4.

In

the

source

code

for

the

performExecute

method,

uncomment

Section

5.

This

introduces

the

following

code

into

the

method:

///

Section

5

///

///

see

how

controller

command

call

a

JSP

rspProp.put(ECConstants.EC_VIEWTASKNAME,

"MyNewView");

setResponseProperties(rspProp);

///

End

of

section

5///

This

section

of

code

accomplishes

two

main

tasks.

First,

it

is

a

requirement

of

the

WebSphere

Commerce

programming

model

that

all

controller

commands

return

a

view.

In

this

section,

it

specifies

that

the

view

to

be

returned

is

the

MyNewView,

that

you

previously

created.

Additionally,

it

sets

the

command’s

response

properties

to

be

the

new

rspProp

object.

5.

Save

your

changes

(Ctrl+S).

6.

In

order

to

compile

the

changes

you

have

made

to

your

code,

right-click

the

WebSphereCommerceServerExtensionsLogic

project

and

select

Build

Project.

Creating

and

loading

access

control

policies

for

the

command

Command-level

access

control

must

be

specified

for

the

new

command.

In

this

case,

the

command-level

access

control

policy

specifies

that

all

users

are

allowed

to

execute

the

command.

Note

that

this

type

of

access

control

policy

is

acceptable

for

the

development

environment,

but

it

may

not

be

suitable

for

other

circumstances.

For

more

advanced

access

control

requirements,

refer

to

the

WebSphere

Commerce

Security

Guide.

The

access

control

policy

is

defined

by

the

MyNewControllerCmdACPolicy.xml

file,

which

you

placed

into

the

following

directory,

as

part

of

the

preparatory

steps:
WCDE_installdir\Commerce\xml\policies\xml

Chapter

10.

Tutorial:

Creating

new

business

logic

233

To

load

the

new

policy,

do

the

following:

1.

At

a

command

prompt,

navigate

to

the

following

directory:
WCDE_installdir\Commerce\bin

2.

You

must

issue

the

acpload

command,

which

has

the

following

form:

acpload

db_name

db_user

db_password

inputXMLFile

where

v

db_name

is

the

name

of

your

development

database.

v

db_user

is

the

name

of

the

database

user.

v

db_password

is

the

password

for

your

database

user.

v

inputXMLFile

is

the

XML

file

containing

the

access

control

policy

specification.

In

this

case,

specify

MyNewControllerCmdACPolicy.xml.

The

following

is

an

example

of

the

command,

with

variables

specified:

acpload

Demo_Dev

db2user

db2user

MyNewControllerCmdACPolicy.xml

Testing

MyNewControllerCmd

Now

that

the

interface,

implementation

class,

command

registration,

and

access

control

information

have

all

been

created,

you

can

test

the

new

controller

command.

When

Java

code

has

been

modified,

the

test

server

must

be

restarted

before

changes

are

recognized.

To

test

your

new

code,

do

the

following:

1.

Switch

to

the

Server

perspective

(Window

>

Open

Perspective

>

Server).

2.

Right-click

the

WebSphereCommerceServer

server

and

select

Start

(or

Restart).

3.

Right-click

index.jsp

under

the

Stores\Web

Content\FashionFlow_name

directory

and

select

Run

on

Server.
The

store

home

page

is

displayed

in

the

Web

browser.

4.

In

the

Web

browser

enter

the

following

URL:

http://localhost/webapp/wcs/stores/servlet/MyNewControllerCmd

After

a

few

seconds,

the

new

JSP

template

is

displayed,

as

shown

in

the

following

screen

shot:

234

Programming

Guide

and

Tutorials

Passing

information

from

MyNewControllerCmd

to

MyNewView

In

this

step,

you

modify

MyNewControllerCmd

so

that

it

passes

information

to

MyNewView.

Two

different

ways

of

passing

information

to

the

view

are

shown.

First,

you

will

learn

how

to

use

the

TypedProperties

object

for

response

properties

and

how

to

extract

information

from

this

object

onto

the

JSP

template.

Second,

you

will

learn

how

to

create

a

new

data

bean

that

is

used

to

pass

information

to

the

JSP

template.

Passing

information

using

a

TypedProperties

object

In

this

section,

you

modify

MyNewControllerCmdImpl

to

pass

information

to

the

JSP

template.

In

particular,

you

modify

the

command

to

add

additional

name-value

pairs

into

the

existing

rspProp

TypedProperties

object

that

is

used

for

response

properties

from

the

command.

Within

the

JSP

template,

you

use

Figure

32.

Chapter

10.

Tutorial:

Creating

new

business

logic

235

the

JSTL

expression

language

to

extract

the

information

from

the

response

properties.

In

this

section

of

the

tutorial,

you

will

learn

the

following:

v

How

to

modify

the

controller

command

to

include

additional

response

properties

in

the

TypedProperty

v

How

to

modify

the

JSP

template

to

retrieve

information

from

the

response

properties

using

the

JSTL

expression

language

To

enable

the

display

of

information

from

the

TypedProperties

object

in

your

JSP

template,

do

the

following:

1.

The

first

step

is

to

modify

the

MyNewControllerCmdImpl

class,

as

follows:

a.

Switch

to

the

Java

perspective.

b.

Expand

these

directories:

WebSphereCommerceServerExtensionsLogic

>

src

>

com.ibm.commerce.sample.commands.

c.

Double-click

MyNewControllerCmdImpl.java

and

select

its

performExecute

method

in

the

Outline

view.

d.

In

the

source

code

for

the

performExecute

method,

uncomment

Section

2.

This

introduces

the

following

code

into

the

method:

///

Section

2

//

///

see

how

the

controller

command

pass

in

variables

to

JSP

///

add

additional

parameters

in

controller

command

to

rspProp

///

for

response

String

message1

=

"Hello

from

IBM!";

rspProp.put("controllerParm1",

message1);

rspProp.put("controllerParm2",

"Have

a

nice

day!");

///

End

of

section

2///

The

preceding

code

snippet

creates

two

new

parameters

that

are

put

into

the

response

properties

object.

This

object

is

eventually

passed

to

the

view.

e.

Save

your

changes.

f.

Compile

the

command

by

right-clicking

the

WebSphereCommerceServerExtensionsLogic

project

and

selecting

Build

Project.
2.

Next

you

must

update

the

MyNewJSPTemplate.jsp

file,

by

doing

the

following:

a.

If

the

JSP

template

files

are

not

already

open,

do

the

following:

236

Programming

Guide

and

Tutorials

1)

In

the

Web

perspective,

switch

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view

and

expand

the

Stores

Web

project.

2)

Navigate

to

the

Web

Content\FashionFlow_name

directory.

3)

Right-click

MyNewJSPTemplate_All.jsp

and

select

Open

With

>

Page

Designer.

4)

Right-click

MyNewJSPTemplate.jsp

and

select

Open

With

>

Page

Designer.
b.

Copy

section

4

from

MyNewJSPTemplate_All.jsp

file

into

your

new

MyNewJSPTemplate.jsp

file.

Place

the

new

text

between

the

<!--

SECTION

4

-->

and

<!--

END

OF

SECTION

4

-->

markers.

This

introduces

the

following

text

into

MyNewJSPTemplate.jsp:

<!--

SECTION

4

-->

<h3><fmt:message

key="ParametersFromCmd"

bundle="${tutorial}"

/>

</h3>

<fmt:message

key="ControllerParm1"

bundle="${tutorial}"

/>

<c:out

value="${controllerParm1}"/>

<fmt:message

key="ControllerParm2"

bundle="${tutorial}"

/>

<c:out

value="${controllerParm2}"/>

<!--

END

OF

SECTION

4

-->

This

section

uses

the

JSTL

expression

language

to

get

and

display

the

values

that

were

passed

in

from

the

controller

command.

c.

Save

your

changes.
3.

The

next

step

is

to

test

the

modifications

to

the

controller

command

and

to

the

JSP

template,

by

doing

the

following:

a.

Switch

to

the

Server

Perspective

(Window

>

Open

Perspective

>

Server).

b.

Right-click

the

WebSphereCommerceServer

server

and

select

Start

(or

Restart).

c.

Right-click

index.jsp

under

the

Stores\Web

Content\FashionFlow_name

directory

and

select

Run

on

Server.
The

store

home

page

is

displayed

in

the

Web

browser.

d.

In

the

Web

browser

enter

the

following

URL:

http://localhost/webapp/wcs/stores/servlet/MyNewControllerCmd

After

a

few

seconds,

the

new

JSP

template

is

displayed,

as

shown

in

the

following

screen

shot:

Chapter

10.

Tutorial:

Creating

new

business

logic

237

Passing

information

using

a

data

bean

In

this

section,

you

add

code

to

determine

if

the

view

was

called

directly,

or

if

it

was

called

by

the

controller

command.

In

the

latter

case,

the

JSP

template

should

also

display

the

name

of

the

command

that

called

it.

In

order

to

pass

this

information

to

the

view,

a

new

data

bean,

called

MyNewDataBean

is

created.

The

MyNewJSPTemplate

is

also

modified

so

that

it

can

display

the

new

information.

Figure

33.

238

Programming

Guide

and

Tutorials

The

MyNewDataBean

is

used

strictly

for

making

information

available

from

the

controller

command

to

the

JSP

template.

Contrast

this

to

making

information

available

from

the

database.

Later

in

the

tutorial,

you

will

learn

how

to

create

a

new

data

bean

whose

purpose

is

to

make

information

from

the

database

available

to

the

JSP

template.

You

may

wonder

why

this

tutorial

is

using

a

data

bean

just

to

make

information

available

from

the

controller

command.

There

are

two

reasons

for

creating

this

bean:

first,

it

is

a

good

programming

practice

that

allows

a

logical

grouping

of

attributes,

and

second

it

makes

it

simpler

for

Web

page

developers

to

add

information

to

the

Web

page

using

a

data

bean,

rather

than

by

using

the

TypedProperties

response

properties

object.

In

this

section

of

the

tutorial,

you

will

learn

the

following:

v

How

to

create

a

new

data

bean

v

How

to

modify

the

controller

command

to

instantiate

a

data

bean

v

How

to

set

attributes

in

a

data

bean,

using

the

controller

command

v

How

to

pass

the

instantiated

data

bean

to

the

JSP

template

v

How

to

modify

the

JSP

template

to

retrieve

information

from

the

data

bean

v

See

an

example

of

using

the

<if>

tag

in

the

JSP

template

Creating

MyNewDataBean

The

MyNewDataBean

is

used

to

pass

information

to

the

MyNewJSPTemplate.jsp

page.

As

with

other

sections

of

the

tutorial,

a

base

for

the

data

bean

is

provided

in

the

sample

code.

It

is

split

into

a

number

of

different

sections

that

are

currently

in

the

code

as

comments.

As

you

progress

through

the

tutorial,

you

uncomment

various

sections

of

the

code.

To

create

MyNewDataBean,

do

the

following:

1.

Open

the

Java

perspective

and

use

the

Package

Explorer

view.

2.

Expand

these

directories:

WebSphereCommerceServerExtensionsLogic

>

src

>

com.ibm.commerce.sample.databeans.

3.

Double-click

MyNewDataBean.java

to

view

its

source

code.

4.

In

source

code

for

the

main

class,

uncomment

Section

1.

This

introduces

the

following

code

into

the

class:

///

Section

1

///

///

create

fields

and

accessors

(setter/getter

methods)

private

java.lang.String

callingCommandName

=

null;

private

boolean

calledByControllerCmd

=

false;

public

java.lang.String

getCallingCommandName()

{

return

callingCommandName;

}

Chapter

10.

Tutorial:

Creating

new

business

logic

239

public

void

setCallingCommandName(java.lang.String

newCallingCommandName)

{

callingCommandName

=

newCallingCommandName;

}

public

boolean

getCalledByControllerCmd()

{

return

calledByControllerCmd;

}

public

void

setCalledByControllerCmd(boolean

newCalledByControllerCmd)

{

calledByControllerCmd

=

newCalledByControllerCmd;

}

///

End

of

Section

1

////////////////////////////////////

The

preceding

code

introduces

two

variables

that

are

used

to

display

information

when

the

view

was

returned

by

a

controller

command,

rather

than

being

called

directly

by

the

URL

for

the

view.

5.

Save

your

changes.

Instantiating

MyNewDataBean

and

setting

its

attributes

using

MyNewControllerCmd

In

this

step

you

modify

MyNewControllerCmdImpl

to

instantiate

MyNewDataBean

and

set

the

attributes

of

this

bean.

To

modify

MyNewControllerCmdImpl,

do

the

following:

1.

In

the

Java

perspective,

expand

these

directories:

WebSphereCommerceServerExtensionsLogic

>

src

>

com.ibm.commerce.sample.commands

.

2.

Double-click

MyNewControllerCmdImpl.java

to

view

its

source

code.

3.

In

the

code

for

the

main

class,

uncomment

Import

Section

1

to

make

the

new

data

bean

available

in

this

class.

This

introduces

the

following

code

into

the

class:

///

Import

Section

1

///////////////////////////////

import

com.ibm.commerce.sample.databeans.*;

///

End

of

Import

Section

1

////////////////////////

4.

In

the

Outline

view,

select

its

performExecute

method.

5.

In

the

source

code

for

the

performExecute

method,

uncomment

Sections

3A

and

3B.

This

introduces

the

following

code

into

the

method:

///

Section

3A///

///

instantiate

the

MyNewDataBean

databean

and

set

the

properties,

///

then

add

the

instance

to

resProp

for

response

MyNewDataBean

mndb

=

new

MyNewDataBean();

mndb.setCallingCommandName(this.getClass().getName());

mndb.setCalledByControllerCmd(true);

240

Programming

Guide

and

Tutorials

///

end

of

section

3A///

///

Section

3B///

rspProp.put("mndbInstance",

mndb);

///

end

of

section

3B///

The

preceding

code

snippet

instantiates

the

MyNewDataBean

object,

sets

two

parameters

in

the

object

(indicating

that

it

was

called

by

a

controller

command

and

which

command

called

it),

and

it

then

puts

the

data

bean

object

into

the

response

properties

so

that

it

will

be

made

available

to

the

JSP

template.

6.

Save

your

changes.

7.

Compile

the

code

changes

by

right-clicking

on

the

WebSphereCommerceServerExtensionsLogic

project

and

selecting

Build

Project.

Using

MyNewDataBean

in

MyNewJSPTemplate

In

this

section,

you

modify

MyNewJSPTemplate

to

indicate

whether

or

not

the

view

was

returned

by

a

controller

command.

If

it

was

returned

by

a

controller

command,

it

should

also

display

the

name

of

that

controller

command.

The

JSP

template

uses

JSTL

tags

for

the

conditional

logic

to

determine

this,

based

upon

values

from

MyNewDataBean.

To

modify

the

JSP

template,

do

the

following:

1.

If

the

JSP

template

files

are

not

already

open,

do

the

following:

a.

In

the

Web

perspective,

switch

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view

and

expand

the

Stores

Web

project.

b.

Navigate

to

the

Web

Content\FashionFlow_namedirectory.

c.

Highlight

both

the

MyNewJSPTemplate_All.jsp

and

MyNewJSPTemplate.jsp

files,

right-click

and

select

Open

With

>

Page

Designer.
2.

Copy

Section

5

from

the

MyNewJSPTemplate_All.jsp

file

into

the

MyNewJSPTemplate.jsp

file.

This

introduces

the

following

text

into

the

JSP

template:

<!--

SECTION

5

-->

<c:if

test="${mndbInstance.calledByControllerCmd}">

<fmt:message

key="Example"

bundle="${tutorial}"

/>

<fmt:message

key="CalledByControllerCmd"

bundle="${tutorial}"

/>

<fmt:message

key="CalledByWhichControllerCmd"

bundle="${tutorial}"

/>

<c:out

value="${mndbInstance.callingCommandName}"

/>

Chapter

10.

Tutorial:

Creating

new

business

logic

241

</c:if>

<!--

END

OF

SECTION

5

-->

This

section

of

code

uses

the

JSTL

<if>

tag

to

determine

whether

to

display

information

about

the

calling

controller

command.

It

also

retrieves

translatable

text

from

the

resource

bundle

for

the

tutorial.

3.

Save

your

changes.

Testing

the

modified

JSP

template

To

test

the

modified

JSP

template,

do

the

following:

1.

Switch

to

the

Server

perspective

(Window

>

Open

Perspective

>

Server).

2.

Right-click

the

WebSphereCommerceServer

server

and

select

Start

(or

Restart).

3.

Right-click

index.jsp

under

the

Stores\Web

Content\FashionFlow_name

directory

and

select

Run

on

Server.
The

store

home

page

is

displayed

in

the

Web

browser.

4.

In

the

Web

browser

enter

the

following

URL:

http://localhost/webapp/wcs/stores/servlet/MyNewControllerCmd

After

a

few

seconds,

the

JSP

template

is

displayed,

as

shown

in

the

following

screen

shot:

242

Programming

Guide

and

Tutorials

5.

Next,

enter

the

URL

to

call

the

view

directly,

and

notice

the

difference

in

the

information

displayed:

http://localhost/webapp/wcs/stores/servlet/MyNewView

Figure

34.

Chapter

10.

Tutorial:

Creating

new

business

logic

243

Parsing

and

validating

URL

parameters

in

MyNewControllerCmd

In

this

step,

you

modify

the

controller

command

to

make

use

of

parameters

that

are

passed

in

via

the

URL

that

calls

the

controller

command.

Validation

logic

is

also

included

in

the

command

to

ensure

that

required

parameters

are

included,

as

well

as

ensuring

appropriate

values

are

used

for

these

parameters.

The

validateParameters

method

that

is

currently

in

your

new

command

is

actually

just

a

command

stub.

It

consists

of

the

following

code:

public

void

validateParameters()

throws

ECApplicationException

{

}

You

must

now

add

customized

parameter

checking

to

the

command

and

pass

the

URL

parameters

to

the

JSP

template.

When

modifying

the

validateParameters

method,

you

add

new

fields

that

correspond

to

the

URL

parameters.

In

this

section

of

the

tutorial,

you

will

learn

the

following:

v

How

to

add

new

fields

to

a

command

to

correspond

to

the

URL

parameters

v

How

to

use

the

getRequestProperties

method

to

enable

populating

these

fields

with

the

URL

input

parameters

v

How

to

catch

missing

parameter

exceptions

v

The

appropriate

way

to

pass

URL

parameters

to

a

view

v

See

examples

of

various

test

cases

of

missing

or

incorrect

parameter

values

Adding

new

fields

to

MyNewControllerCmd

In

this

step,

you

create

two

new

fields

for

the

URL

parameters.

They

are

added

to

both

the

command

interface

and

implementation

class.

One

URL

parameter

is

a

string

value

that

holds

a

user

name

and

the

second

is

an

integer

that

will

be

used

to

accept

an

input

value

of

bonus

points.

To

add

these

new

fields,

do

the

following:

1.

Switch

to

the

Java

perspective.

2.

Expand

these

directories:

WebSphereCommerceServerExtensionsLogic

>

src

>

com.ibm.commerce.sample.commands.

3.

Double-click

the

MyNewControllerCmd.java

interface

to

view

its

source

code.

4.

Uncomment

Section

2

to

add

the

new

fields

and

corresponding

getter

methods

to

the

interface.

This

introduces

the

following

code

to

the

class:

///

Section

2

//

//

set

interface

methods

244

Programming

Guide

and

Tutorials

public

java.lang.Integer

getPoints()

;

public

java.lang.String

getUserName()

;

public

void

setPoints(java.lang.Integer

newPoints)

;

public

void

setUserName(java.lang.String

newUserName)

;

///

End

of

section

2//

5.

Save

your

changes.

6.

Double-click

the

MyNewControllerCmdImpl.java

class

to

view

its

source

code.

7.

Uncomment

Section

1

in

the

main

class

to

add

the

new

fields

as

well

as

their

corresponding

getter

and

setter

methods

to

the

class.

This

introduces

the

following

code

into

the

class:

///

Section

1

//

///

create

and

implement

controller

command’s

fields

and

accessors

///

(setter/getter

methods)

private

java.lang.String

userName

=

null;

private

java.lang.Integer

points;

public

java.lang.Integer

getPoints()

{

return

points;

}

public

java.lang.String

getUserName()

{

return

userName;

}

public

void

setPoints(java.lang.Integer

newPoints)

{

points

=

newPoints;

}

public

void

setUserName(java.lang.String

newUserName)

{

userName

=

newUserName;

}

///

End

of

Section

1

///

8.

Save

your

changes.

Passing

URL

parameters

to

the

view

In

this

step,

you

include

the

code

to

pass

the

input

parameters

to

the

JSP

template.

This

is

done

by

setting

fields

in

the

data

bean

with

the

values

of

the

input

parameters.

To

pass

the

URL

parameters,

do

the

following:

1.

Double-click

MyNewControllerCmdImpl.java.

Chapter

10.

Tutorial:

Creating

new

business

logic

245

2.

In

the

Outline

view,

select

the

performExecute

method.

3.

In

the

source

code

of

the

performExecute

method,

uncomment

Section

3C.

This

introduces

the

following

code

into

the

method:

///

Section

3C///

//

pass

the

input

information

to

the

databean

mndb.setUserName(this.getUserName());

mndb.setPoints(this.getPoints());

///

end

of

section

3C///

This

code

sets

the

values

in

the

data

bean

object

so

that

they

will

be

available

to

the

JSP

template.

4.

Save

your

changes.

Catching

missing

parameters

and

validating

values

In

this

step,

you

modify

the

validateParameters

method

to

introduce

error

checking

and

parameter

validation

logic.

Once

modified,

the

code

checks

for

the

following:

v

If

the

first

input

parameter

is

not

provided,

a

“parameter

not

found”

exception

is

thrown.

This

is

due

to

the

fact

that

the

first

input

parameter

is

a

required

parameter.

In

this

case,

the

generic

error

page

is

displayed

to

the

customer.

v

The

second

input

parameter

is

optional.

As

such,

if

the

second

input

parameter

is

not

provided,

a

“parameter

not

found

exception”

is

not

thrown.

Instead,

the

value

for

the

second

input

parameter

is

defaulted

to

zero

and

the

customer

is

not

affected

by

the

error.

Processing

continues.

To

add

this

error

checking,

do

the

following:

1.

Double-click

MyNewControllerCmdImpl.java.

2.

In

the

Outline

view,

select

its

validateParameters

method.

3.

In

the

source

code

of

the

validateParameters

method,

uncomment

Section

1.

This

introduces

the

following

code

into

the

method:

///

Section

1

///

///

uncomment

to

check

parameters

final

String

strMethodName

=

"validateParameters";

TypedProperty

prop

=

getRequestProperties();

///

retrieve

required

parameters

try

{

setUserName(prop.getString("input1"));

}

catch

(ParameterNotFoundException

e)

{

///

the

next

exception

uses

_ERR_CMD_MISSING_PARAM

ECMessage

object

246

Programming

Guide

and

Tutorials

///

defined

in

ECMessage

class

throw

new

ECApplicationException(ECMessage._ERR_CMD_MISSING_PARAM,

this.getClass().getName(),

strMethodName,

ECMessageHelper.generateMsgParms(e.getParamName()));

}

///

retrieve

optional

Integer

//

set

input2

=

0

if

no

input

value

setPoints(prop.getInteger("input2",0));

///

End

of

section

1///

The

preceding

code

snippet

checks

the

two

input

parameters.

The

try

block

determines

if

the

first

parameter

exists;

if

not,

an

exception

is

thrown.

Since

the

second

parameter

is

optional,

this

code

sets

the

value

to

zero

if

it

is

either

missing

or

an

incorrect

value.

4.

Save

your

changes.

Adding

new

fields

to

MyNewDataBean

In

this

step,

you

add

new

fields

and

their

associated

getter

methods

to

the

MyNewDataBean

data

bean,

so

that

the

URL

parameters

will

be

available

to

the

JSP

template.

To

modify

MyNewDataBean,

do

the

following:

1.

Double-click

MyNewDataBean.java

to

view

its

source

code.

2.

Uncomment

Section

2

to

introduce

the

following

code

into

the

class:

///

Section

2

///

private

java.lang.String

userName

=

null;

private

java.lang.Integer

points;

public

String

getUserName()

{

return

userName;

}

public

void

setUserName(java.lang.String

newUserName)

{

userName

=

newUserName;

}

public

Integer

getPoints()

{

return

points;

}

public

void

setPoints(java.lang.Integer

newPoints)

{

points

=

newPoints;

}

///

End

of

Section

2

////////////////////////////////////

Chapter

10.

Tutorial:

Creating

new

business

logic

247

3.

Save

your

changes.

4.

Compile

the

code

changes

by

right-clicking

the

WebSphereCommerceServerExtensionsLogic

and

selecting

Build

Project.

Modifying

MyNewJSPTemplate

to

display

the

URL

parameters

In

this

step,

you

modify

the

MyNewJSPTemplate.jsp

file

to

add

a

new

section

that

displays

the

URL

input

parameters,

by

doing

the

following:

1.

If

the

JSP

template

files

are

not

already

open,

do

the

following:

a.

In

the

Web

perspective,

switch

to

the 2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view

and

expand

the

Stores

Web

project.

b.

Navigate

to

the

Web

Content\FashionFlow_name

sub-folder.

c.

Highlight

both

the

MyNewJSPTemplate_All.jsp

and

MyNewJSPTemplate.jsp

files,

right-click

and

select

Open

With

>

Page

Designer.
2.

Copy

Section

6

from

the

MyNewJSPTemplate_All.jsp

file

into

the

MyNewJSPTemplate.jsp

file.

This

introduces

the

following

text

into

the

JSP

template:

<!--

SECTION

6

-->

<fmt:message

key="UserName"

bundle="${tutorial}"

/>

<c:out

value="${mndbInstance.userName}"/>

<fmt:message

key="Points"

bundle="${tutorial}"

/>

<c:out

value="${mndbInstance.points}"/>

<!--

END

OF

SECTION

6

-->

3.

Save

your

changes.

Testing

URL

parameter

values

The

next

step

is

to

test

if

the

new

error

checking

is

working

properly,

by

doing

the

following:

1.

Switch

to

the

Server

perspective

(Window

>

Open

Perspective

>

Server).

2.

Right-click

the

WebSphereCommerceServer

server

and

select

Start

(or

Restart).

3.

Right-click

index.jsp

under

the

Stores\Web

Content\FashionFlow_name

directory

and

select

Run

on

Server.
The

store

home

page

is

displayed

in

the

Web

browser.

4.

Case

1:

The

first

test

case

will

be

to

exclude

both

parameters

from

the

URL.

After

the

store

home

page

is

displayed,

enter

the

following

URL:

http://localhost/webapp/wcs/stores/servlet/MyNewControllerCmd

248

Programming

Guide

and

Tutorials

Since

no

parameters

are

passed

to

the

command,

a

generic

application

error

is

shown.

The

console

in

WebSphere

Studio

Application

Developer

shows

information

similar

to

the

following:
timeStamp

6730e546

CommerceSrvr

E

com.ibm.commerce.sample.commands.MyNewControllerCmdImpl

validateParameters

CMN0206E

Please

check

all

fields.

"input1"

is

a

required

field.

5.

Case

2:

The

next

test

case

is

to

use

a

valid

first

parameter,

but

omit

the

second

parameter.

In

this

case,

you

expect

that

no

error

should

be

detected,

since

by

default,

a

zero

value

will

be

used

for

the

missing

second

parameter.

Enter

the

following

URL:

http://localhost/webapp/wcs/stores/servlet/MyNewControllerCmd?input1=abc

The

result

of

this

command

is

that

the

MyNewJSPTemplate

page

is

displayed

and

a

zero

value

is

shown

for

input2.

Figure

35.

Chapter

10.

Tutorial:

Creating

new

business

logic

249

6.

Case

3:

In

this

test

case,

a

valid

parameter

is

provided

for

the

first

input

parameter,

and

an

invalid

parameter

is

provided

for

the

second

parameter

(a

string

is

used

rather

than

an

integer).

Similar

to

the

last

case,

you

should

not

see

an

error,

since

the

error

handline

changes

the

second

input

parameter

to

a

zero.

Enter

the

following

URL:

http://localhost/webapp/wcs/stores/servlet/MyNewControllerCmd?

input1=abc&input2=abc

The

result

of

this

command

is

that

the

MyNewJSPTemplate

page

is

displayed

and

a

zero

value

is

shown

for

input2.

Figure

36.

250

Programming

Guide

and

Tutorials

7.

Case

4:

In

this

case,

valid

parameters

are

used

for

both

of

the

URL

input

parameters.

Enter

the

following

URL:

http://localhost/webapp/wcs/stores/servlet/MyNewControllerCmd?

input1=abc&input2=1000

The

result

of

this

command

is

that

the

MyNewJSPTemplate

page

is

displayed

and

1000

points

are

displayed

for

the

user.

Figure

37.

Chapter

10.

Tutorial:

Creating

new

business

logic

251

Creating

a

new

task

command

A

controller

command

typically

represents

a

business

process

or

complex

function.

For

example,

all

of

the

business

logic

related

to

processing

orders

is

encapsulated

in

the

OrderProcessCmd

controller

command.

A

business

process

can

often

be

divided

up

into

smaller,

more

specific

tasks.

For

example,

within

the

OrderProcessCmd

controller

command,

there

are

several

task

commands

that

get

called

to

perform

individual

units

of

work.

MyNewControllerCmdImpl

does

not

currently

call

any

task

commands.

This

section

is

divided

into

two

steps.

In

the

first

step,

you

create

the

new

task

command.

In

the

second

step,

you

modify

the

performExecute

method

of

the

controller

command

to

call

the

new

task

command.

Figure

38.

252

Programming

Guide

and

Tutorials

In

this

step,

you

create

a

new

task

command

interface

and

its

associated

implementation

class.

Initially,

the

new

task

command

does

very

little

except

handle

view

parameters.

It

only

has

fields

for

defaultCommandClassName,

URL

parameters,

and

the

current

value

of

bonus

points.

It

has

a

method

for

getting

the

current

value

of

bonus

points.

In

this

step

of

the

tutorial,

you

will

learn

the

following:

v

How

to

create

a

new

task

command

interface

and

its

associated

implementation

class

v

The

minimum

amount

of

code

that

is

required

in

a

task

command

v

How

to

add

fields

and

methods

to

the

task

command

Creating

MyNewTaskCmd

This

step

shows

you

how

to

write

a

new

task

command.

Creating

a

completely

new

task

command

involves

creating

an

interface

and

an

implementation

class.

When

creating

a

task

command,

the

interface

should

extend

com.ibm.commerce.commands.TaskCommand.

The

implementation

class

should

extend

com.ibm.commerce.command.TaskCommandImpl.

Upon

completion

of

this

exercise,

you

will

have

a

task

new

command,

called

MyNewTaskCmd.

This

command

is

used

by

a

your

store

that

is

based

upon

the

FashionFlow

sample.

To

create

MyNewTaskCmd,

do

the

following:

1.

Switch

to

the

Java

perspective

and

select

the

WebSphereCommerceServerExtensionsLogic

project.

2.

Expand

the

src

directory,

and

then

the

com.ibm.commerce.sample.commands

directory.

3.

Double-click

the

MyNewTaskCmd.java

interface

to

view

its

source

code.

4.

In

the

source

code

for

this

interface,

uncomment

Section

1

to

create

a

field

that

specifies

the

default

implementation

class

to

be

used

by

the

interface.

This

introduces

the

following

code

into

the

interface:

///

Section

1

///

//

set

default

command

implement

class

static

final

String

defaultCommandClassName=

"com.ibm.commerce.sample.commands.MyNewTaskCmdImpl";

///

End

of

section

1//

Since

the

same

implementation

class

is

used

for

the

entire

site

and

no

default

properties

are

passed

to

the

command,

you

can

specify

the

default

implementation

right

in

the

code.

If

you

have

a

command

that

Chapter

10.

Tutorial:

Creating

new

business

logic

253

either

has

multiple

implementations,

or

has

default

properties

(which

are

stored

in

the

CMDREG

table),

you

must

register

the

command

in

the

CMDREG

table

to

create

the

mapping

between

the

interface

and

implementation

class.

5.

Next,

uncomment

Section

2

to

create

getter

and

setter

methods

that

will

be

used

in

the

MyNewTaskCmdImpl

implementation

class.

These

methods

are

for

fields

corresponding

to

the

following

types

of

information:

v

A

customer’s

user

ID.

v

A

value

of

bonus

points

v

A

greeting

message

By

uncommenting

Section

2,

the

following

code

is

introduced

into

the

interface:

///

Section

2

//

//

set

interface

methods

public

void

setInputUserName(java.lang.String

inputUserName);

public

void

setInputPoints(Integer

inputPoints);

public

void

setGreetings(java.lang.String

greeting);

public

java.lang.String

getInputUserName();

public

java.lang.Integer

getInputPoints();

public

java.lang.String

getGreetings();

///

End

of

section

2//

6.

Save

your

changes.

7.

Double-click

the

MyNewTaskCmdImpl.java

implementation

class

to

view

its

source

code.

8.

Uncomment

Sections

1A

and

1B

to

create

fields

and

their

corresponding

getter

and

setter

methods

in

the

implementation

class.

This

introduces

the

following

code

into

the

class:

////

Section

1A

//

private

java.lang.String

inputUserName;

private

java.lang.String

greetings;

private

java.lang.Integer

inputPoints;

////End

of

Section

1A

///

////

Section

1B

//

public

void

setInputUserName(java.lang.String

newInputUserName)

{

inputUserName

=

newInputUserName;

}

254

Programming

Guide

and

Tutorials

public

void

setInputPoints(Integer

newInputPoints)

{

inputPoints

=

newInputPoints;

}

public

void

setGreetings(java.lang.String

newGreetings)

{

greetings

=

newGreetings;

}

public

java.lang.String

getInputUserName()

{

return

inputUserName;

}

public

Integer

getInputPoints()

{

return

inputPoints;

}

public

java.lang.String

getGreetings()

{

return

greetings;

}

////End

of

Section

1B

///

Save

your

work.

9.

In

the

Outline

view,

select

the

performExecute

method

of

the

MyNewTaskCmdImpl

class.

10.

In

the

source

code

of

this

performExecute

method,

uncomment

Section

1

to

introduce

the

following

code

into

the

method:

///

Section

1

//

///

modify

the

greetings

and

see

it

in

the

NVP

list

setGreetings(

"Hello

!

"

+

getInputUserName()

);

///

End

of

section

1

///

This

updates

the

greetings

value.

The

greetings

value

is

then

made

available

then

to

other

objects

via

the

getGreetings()

method.

It

will

be

added

to

the

name-value

pair

(NVP)

list.

11.

Save

your

work.

Calling

the

task

command

Once

you

have

created

your

task

command,

you

need

to

call

the

command

from

within

your

controller

command.

The

following

steps

show

how

to

modify

your

controller

command

in

this

manner:

1.

In

the

Java

perspective,

double-click

the

MyNewControllerCmdImpl.java

class

2.

In

the

Outline

view,

select

its

performExecute

method.

3.

In

the

source

code

for

the

performExecute

method,

navigate

to

Area

4.

Chapter

10.

Tutorial:

Creating

new

business

logic

255

4.

Uncomment

Sections

4A,

4B,

and

4C

to

introduce

the

following

code

into

the

method:

///

Section

4A

///

see

how

the

controller

command

call

a

task

command

MyNewTaskCmd

cmd

=

null;

try

{

cmd

=

(MyNewTaskCmd)

CommandFactory.createCommand(

"com.ibm.commerce.sample.commands.MyNewTaskCmd",

getStoreId());

//

this

is

required

for

all

commands

cmd.setCommandContext(getCommandContext());

///

set

input

parameters

to

task

command

cmd.setInputUserName(getUserName());

cmd.setInputPoints(getPoints());

//

change

to

Integer

///

End

Section

4A

///////////////////////////////////////

///

Section

4B

///////////////////////////////////

///

invoke

the

command’s

performExecute

method

cmd.execute();

///

retrieve

output

parameter

from

task

command,

then

put

it

to

///

response

properties

rspProp.put("taskOutputGreetings",

cmd.getGreetings());

///

End

Section

4B

/////////////////////////////////////

///

Start

Section

4C

////////////////////////////////////

}

catch

(ECException

ex)

{

///

throw

the

exception

as

is

throw

(ECException)

ex;

}

///

End

Section

4C

//////////////////////////////////////

Section

4A

creates

the

new

task

command

object

using

the

command

factory.

It

then

sets

the

command

context,

and

sets

the

input

parameters

of

the

task

command.

Section

4B

calls

the

validateParameters

method

for

access

control

purposes,

before

invoking

the

execute

method

of

the

task

command.

It

then

retrieves

the

greetings

value

from

the

task

command.

Section

4C

is

a

simple

catch

block

for

exceptions.

5.

Save

your

changes.

6.

Compile

the

code

changes

by

right-clicking

the

WebSphereCommerceServerExtensionsLogic

project

and

selecting

Build

Project.

256

Programming

Guide

and

Tutorials

Modifying

MyNewJSPTemplate

to

add

the

greetings

message

In

this

step,

you

modify

the

MyNewJSPTemplate.jsp

file

to

add

a

new

section

that

displays

the

greetings

message,

by

doing

the

following:

1.

If

the

JSP

template

files

are

not

already

open,

do

the

following:

a.

In

the

Web

perspective,

switch

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view

and

expand

the

Stores

Web

project.

b.

Navigate

to

the

Web

Content\FashionFlow_name

sub-folder.

c.

Highlight

both

the

MyNewJSPTemplate_All.jsp

and

MyNewJSPTemplate.jsp

files,

right-click

and

select

Open

With

>

Page

Designer.
2.

Copy

Section

7

from

the

MyNewJSPTemplate_All.jsp

file

into

the

MyNewJSPTemplate.jsp

file.

This

introduces

the

following

text

into

the

JSP

template:

<!--

SECTION

7

-->

<fmt:message

key="Greeting"

bundle="${tutorial}"

/>

<c:out

value="${taskOutputGreetings}"/>

<!--

END

OF

SECTION

7

-->

3.

Save

your

changes.

Testing

MyNewTaskCmd

The

next

step

is

to

test

if

the

new

task

command

is

working

properly,

by

doing

the

following:

1.

Switch

to

the

Server

perspective

(Window

>

Open

Perspective

>

Server).

2.

Right-click

the

WebSphereCommerceServer

server

and

select

Start

(or

Restart).

3.

Right-click

index.jsp

under

the

Stores\Web

Content\FashionFlow_name

directory

and

select

Run

on

Server.
The

store

home

page

is

displayed

in

the

Web

browser.

4.

Next,

enter

the

following

URL:

http://localhost/webapp/wcs/stores/servlet/MyNewControllerCmd?

input1=abc&input2=1000

The

MyNewJSPTemplate

is

displayed.

It

includes

the

greeting

message

that

was

created

by

the

task

command.

Chapter

10.

Tutorial:

Creating

new

business

logic

257

Modifying

MyNewTaskCmd

In

this

step

of

the

tutorial,

you

modify

MyNewTaskCmd

to

determine

if

the

user

name

included

in

the

URL

is

that

of

a

registered

user.

MyNewDataBean

is

also

modified

to

handle

fields

from

the

task

command

(for

example,

the

user

name).

Correspondingly,

MyNewJSPTemplate

is

modified

to

display

whether

or

not

the

user

is

registered.

In

this

section

of

the

tutorial,

you

will

learn

the

following:

v

How

to

use

URL

parameters

and

access

existing

WebSphere

Commerce

information

from

within

your

own

customized

code

Figure

39.

258

Programming

Guide

and

Tutorials

Modifying

MyNewControllerCmdImpl

to

create

an

object

for

the

task

command

In

order

to

promote

the

efficient

use

of

objects,

the

controller

command

creates

a

UserRegistryAccessBean

object

instance

variable.

As

a

result,

this

object

is

also

available

to

the

task

command.

By

taking

this

approach,

the

task

command

does

not

need

to

create

a

separate

instance

of

the

object.

This

UserRegistryAccessBean

object

is

used

later

(in

the

task

command)

to

determine

if

the

shopper

is

a

registered

user.

To

modify

MyNewControllerCmdImpl,

do

the

following:

1.

In

the

Java

perspective,

double-click

the

MyNewControllerCmdImpl.java

class

to

view

its

source

code.

2.

In

the

main

body

of

this

class,

uncomment

Section

2,

to

introduce

the

following

code

into

the

class:

///

Section

2

//

///

create

a

user

registry

accessbean

resource

instance

variable

private

UserRegistryAccessBean

rrb

=

null;

///

End

of

Section

2

///

3.

In

the

Outline

view,

select

the

performExecute

method.

4.

In

the

source

code

for

the

performExecute

method

uncomment

Sections

4D

and

4F

to

pass

the

instance

variable

to

the

task

command

and

then

make

the

returned

user

ID

available

in

the

response

properties.

This

introduces

the

following

code

into

the

method:

//

Section

4D

////////////////////////////////////

///

pass

rrb

instance

variable

to

the

task

command

cmd.setUserRegistryAccessBean(rrb);

//

End

of

section

4D

/////////////////////////////

//

Section

4F

///////////////////////////////////////

///using

access

bean

to

get

information

from

database

if

(cmd.getFoundUserId()

!=

null)

{

rspProp.put("taskOutputUserId",

cmd.getFoundUserId());

}

//

End

of

section

4F

/////////////////////////////

You

will

receive

an

error

indicating

that

some

of

the

methods

are

undefined,

but

this

will

be

resolved

in

the

next

step

when

you

modify

your

task

command.

5.

Save

your

work.

Chapter

10.

Tutorial:

Creating

new

business

logic

259

Modifying

the

new

task

command

for

user

name

validation

Next

you

must

modify

the

new

task

command

to

validate

if

the

user

name

input

in

the

URL

is

that

of

a

registered

user,

as

follows:

1.

Double-click

the

MyNewTaskCmd.java

interface

to

view

its

source

code.

2.

Uncomment

Section

3,

to

introduce

the

following

code

into

the

interface:

///

Section

3

//

public

void

setFoundUserId(java.lang.String

inputUserId);

public

java.lang.String

getFoundUserId();

public

void

setUserRegistryAccessBean(UserRegistryAccessBean

rrb);

///

End

of

section

3//

3.

Save

your

work.

4.

Double-click

the

MyNewTaskCmdImpl.java

class

to

view

its

source

code.

Uncomment

Import

section

1

to

introduce

the

following

two

import

statements

into

the

code:

///

Import

section

1

///////////////////////////////////////

import

com.ibm.commerce.user.objects.*;

import

com.ibm.commerce.sample.databeans.*;

///

End

of

Import

section

1

///////////////////////////////

5.

Uncomment

Sections

2A

and

2B

to

create

the

new

fields

and

getter

and

setter

methods

that

correspond

to

the

methods

added

into

the

interface.

This

introduces

the

following

code

into

the

class:

////

Section

2A

//

private

java.lang.String

foundUserId

=

null;

private

UserRegistryAccessBean

rrb

=

null;

////End

of

Section

2A

///

////

Section

2B

//

public

void

setUserRegistryAccessBean(UserRegistryAccessBean

newRRB)

{

rrb

=

newRRB;

}

public

void

setFoundUserId(java.lang.String

newFoundUserId)

{

foundUserId

=

newFoundUserId;

}

public

java.lang.String

getFoundUserId()

{

return

foundUserId;

}

///

End

of

section

2B

///

260

Programming

Guide

and

Tutorials

6.

In

the

Outline

view,

select

the

validateParameters

method

and

examine

its

source

code.

Uncomment

Section

1,

to

introduce

the

following

code

into

the

method:

//

section

1

///

//

use

UserRegistryAccessBean

to

check

user

Id

try

{

if

(rrb!=null){

setFoundUserId(rrb.getUserId());

}

else

{

rrb

=new

UserRegistryAccessBean();

rrb=rrb.findByUserLogonId(getInputUserName());

setFoundUserId(rrb.getUserId());

}

}

catch

(javax.ejb.FinderException

e)

{

return;

}

catch

(java.rmi.RemoteException

e)

{

throw

new

ECSystemException(ECMessage._ERR_REMOTE_EXCEPTION,

this.getClass().getName(),

"validateParameters");

}

catch

(javax.naming.NamingException

e)

{

throw

new

ECSystemException(ECMessage._ERR_NAMING_EXCEPTION,

this.getClass().getName(),

"validateParameters");

}

catch

(javax.ejb.CreateException

e)

{

throw

new

ECSystemException(ECMessage._ERR_CREATE_EXCEPTION,

this.getClass().getName(),

"validateParameters");

}

//

end

of

section

1

///

7.

Save

your

work.

8.

Compile

the

code

changes

by

right-clicking

the

WebSphereCommerceServerExtensionsLogic

project

and

selecting

Build

Project.

Modify

MyNewJSPTemplate

for

user

name

validation

The

current

JSP

template

must

be

modified

in

order

to

display

the

user

name

validation

information.

To

modify

this

file,

do

the

following:

1.

Switch

to

the

Web

perspective.

2.

Open

both

the

MyNewJSPTemplate_All.jsp

and

MyNewJSPTemplate.jsp

files.

3.

Copy

Section

8

from

the

MyNewJSPTemplate_All.jsp

file

into

the

MyNewJSPTemplate.jsp

file.

This

introduces

the

following

text

into

the

JSP

template:

<!--

SECTION

8

-->

<c:if

test="${!empty

taskOutputUserId}">

Chapter

10.

Tutorial:

Creating

new

business

logic

261

<fmt:message

key="UserId"

bundle="${tutorial}"

/>

<c:out

value="${taskOutputUserId}"/>

<fmt:message

key="FirstInput"

bundle="${tutorial}"

/>

<c:out

value="${userName}"/>

<fmt:message

key="RegisteredUser"

bundle="${tutorial}"

/>

<fmt:message

key="ReferenceNumber"

bundle="${tutorial}"

/>

<c:out

value="${taskOutputUserId}"/>

</c:if>

<c:if

test="${empty

taskOutputUserId}">

<fmt:message

key="FirstInput"

bundle="${tutorial}"

/>

<c:out

value="${userName}"/>

<fmt:message

key="NotRegisteredUser"

bundle="${tutorial}"

/>

</c:if>

<!--

END

OF

SECTION

8

-->

4.

Save

the

changes

made

to

the

MyNewJSPTemplate.jsp

file.

Testing

user

name

validation

To

test

the

user

name

validation

logic,

do

the

following:

1.

Switch

to

the

Server

perspective

(Window

>

Open

Perspective

>

Server).

2.

Right-click

the

WebSphereCommerceServer

server

and

select

Start

(or

Restart).

3.

Right-click

index.jsp

under

the

Stores\Web

Content\FashionFlow_name

directory

and

select

Run

on

Server.
The

store

home

page

is

displayed

in

the

Web

browser.

4.

Create

a

new

registered

user,

by

doing

the

following:

a.

Click

Register.

b.

Click

Register

again

to

create

a

new

customer.

c.

In

the

registration

form,

enter

appropriate

values

into

all

of

the

mandatory

fields.

For

example,

in

the

e-mail

field,

enter

tester@mycompany.

Make

note

of

the

value

for

the

e-mail

address:

_________________________.

d.

Once

the

values

have

been

entered,

click

Submit.
5.

Next,

enter

a

valid

user

name

as

the

value

for

input1.

Enter

the

following

URL:

http://localhost/webapp/wcs/stores/servlet/MyNewControllerCmd?

input1=new_e-mail&input2=1000

where

new_e-mail

is

the

e-mail

address

for

the

user

created

in

step

4.

The

MyNewJSPTemplate

is

displayed.

It

should

now

indicate

that

the

value

for

input1

is

a

valid

user

name.

262

Programming

Guide

and

Tutorials

6.

Next,

enter

the

following

URL

in

which

the

value

for

the

user

name

is

invalid:

http://localhost/webapp/wcs/stores/servlet/MyNewControllerCmd?

input1=abc&input2=1000

A

generic

exception

is

displayed.

If

you

view

the

source

of

the

page,

you

find

that

a

_ERR_FINDER_EXCEPTION

occurred.

This

is

due

to

the

fact

that

the

user

name

provided

does

not

correspond

to

a

registered

user.

Figure

40.

Chapter

10.

Tutorial:

Creating

new

business

logic

263

Creating

a

new

entity

bean

This

section

describes

how

to

create

a

new

entity

bean.

In

this

example

scenario,

you

have

a

business

requirement

to

include

a

tally

of

bonus

points

for

each

user

in

the

commerce

application.

The

WebSphere

Commerce

database

schema

does

not

contain

this

information,

so

you

need

to

create

a

new

database

table

to

hold

this

information.

In

accordance

with

the

WebSphere

Commerce

programming

model,

once

the

database

table

is

created,

you

must

create

an

entity

bean

to

access

the

data.

Creating

the

XBONUS

table

In

preparation

for

creating

the

entity

bean,

you

must

first

create

the

new

database

table.

The

table

to

be

created

is

called

XBONUS.

2000DB2

If

you

are

using

a

DB2

database,

do

the

following

to

create

the

table:

1.

Open

the

DB2

Command

Center

(Start

>

Programs

>

IBM

DB2

>

Command

Line

Tools

>

Command

Center)

and

click

the

Scripting

tab.

2.

In

the

Script

window,

enter

the

following:

connect

to

developmentDB

user

dbuser

using

dbpassword;

create

table

XBONUS

(MEMBERID

BIGINT

NOT

NULL,

BONUSPOINT

INTEGER

NOT

NULL,

constraint

p_xbonus

primary

key

(MEMBERID),

constraint

f_xbonus

foreign

key

(MEMBERID)

references

users

(users_id)

on

delete

cascade)

where

v

developmentDB

is

the

name

of

your

development

database

v

dbuser

is

the

database

user

v

dbpassword

is

the

password

for

your

database

user

Click

the

Execute

icon.
You

should

see

a

message

indicating

that

the

SQL

statement

completed

successfully.

2000Oracle

If

you

are

using

an

Oracle

database,

do

the

following

to

create

the

table:

1.

Open

the

Oracle

SQL

Plus

command

window

(Start

>

Programs

>

Oracle

>

Application

Development

>

SQL

Plus).

2.

In

the

User

Name

field,

enter

your

Oracle

user

name.

3.

In

the

Password

field,

enter

your

Oracle

password.

4.

In

the

Host

String

field,

enter

your

connect

string.

5.

In

the

SQL

Plus

window,

enter

the

following

SQL

statement:

264

Programming

Guide

and

Tutorials

create

table

XBONUS

(MEMBERID

NUMBER

NOT

NULL,

BONUSPOINT

INTEGER

NOT

NULL,

constraint

p_xbonus

primary

key

(MEMBERID),

constraint

f_xbonus

foreign

key

(MEMBERID)

references

users

(users_id)

on

delete

cascade);

and

press

Enter

to

run

the

SQL

statement.

The

XBONUS

table

is

now

created.

6.

Enter

the

following

to

commit

your

database

changes:

commit;

and

press

Enter

to

run

the

SQL

statement.

Creating

the

BonusBean

entity

bean

Once

the

table

has

been

created,

you

are

ready

to

begin

creating

the

new

entity

bean.

The

next

steps

use

WebSphere

Studio

Application

Developer

to

create

this

bean.

Next

you

create

the

new

Bonus

bean,

by

doing

the

following:

1.

In

WebSphere

Studio

Application

Developer,

switch

to

the

J2EE

perspective.

2.

Within

the

J2EE

Hierarchy

view,

expand

EJB

Modules.

3.

Right-click

the

WebSphereCommerceServerExtensionsData

module

and

select

New

>

Enterprise

Bean.
The

Enterprise

Bean

Creation

wizard

opens.

4.

From

the

EJB

Project

drop-down

list,

select

WebSphereCommerceServerExtensionsData

and

click

Next.

5.

In

the

Create

an

Enterprise

Bean

window,

do

the

following:

a.

Select

Entity

bean

with

container-managed

persistence

(CMP)

fields

b.

In

the

Bean

name

field,

enter

Bonus.

c.

In

the

Source

folder

field,

leave

the

default

value

that

is

specified

(ejbModule).

d.

In

the

Default

package

field,

enter

com.ibm.commerce.extension.objects.

e.

Click

Next.
6.

In

the

Enterprise

Bean

Details

window,

do

the

following:

a.

Click

Add

to

add

new

CMP

attributes

for

the

MEMBERID

and

BONUSPOINT

columns

in

the

BONUS

table.
The

Create

CMP

Attribute

window

opens.

In

this

window,

do

the

following:

1)

In

the

Name

field,

enter

memberId.

2)

In

the

Type

field,

enter

java.lang.Long.

Chapter

10.

Tutorial:

Creating

new

business

logic

265

Note:

You

must

use

the

java.lang.Long

data

type,

not

the

long

data

type.

3)

Select

the

Key

Field

check

box.

4)

Click

Apply.

5)

In

the

Name

field,

enter

bonusPoint.

6)

In

the

Type

field,

enter

java.lang.Integer.

Note:

You

must

use

the

java.lang.Integer

data

type,

not

the

integer

data

type.

7)

Select

the

Access

with

getter

and

setter

methods

check

box.

8)

Clear

the

Promote

getter

and

setter

methods

to

remote

interface

check

box.

The

Make

getter

read-only

check

box

will

be

made

unavailable.

9)

Click

Apply.

10)

Click

Close

to

close

this

window.
b.

Clear

the

Use

the

single

key

attribute

type

for

the

key

class

check

box,

then

click

Next.
7.

In

the

EJB

Java

Class

Details

window,

do

the

following:

a.

To

select

the

bean’s

superclass,

click

Browse.
The

Type

Selection

window

opens.

b.

In

the

Select

a

class

using:

(any)

field,

enter

ECEntityBean

and

click

OK.

This

selects

the

com.ibm.commerce.base.objects.ECEntityBean

as

the

superclass.

c.

Specify

the

interfaces

that

the

remote

interface

should

extend

by

clicking

Add.

The

Type

Selection

window

opens.

d.

In

the

Select

a

class

using:

(any)

field,

enter

Protectable

and

click

OK.

This

selects

com.ibm.commerce.security.Protectable.

This

interface

is

required

in

order

to

protect

the

new

resource

under

access

control.

e.

Click

Finish.

Set

the

isolation

level

for

the

new

bean,

by

doing

the

following:

1.

In

the

J2EE

Hierarchy

view,

expand

EJB

Modules.

2.

Double-click

the

WebSphereCommerceServerExtensionsData

project

to

open

it

with

the

Deployment

Descriptor

Editor.

As

an

alternative

way

to

open

this

file

in

this

editor,

you

could

do

the

following:

a.

In

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view,

expand

WebSphereCommerceServerExtensionsData

>

ejbModule

>

META-INF.

b.

Right-click

ejb-jar.xml

and

select

Open

With

>

Deployment

Descriptor

Editor)
3.

Click

the

Access

tab.

266

Programming

Guide

and

Tutorials

4.

Click

Add

next

to

the

Isolation

Level

text

box.
The

Add

Isolation

Level

window

opens.

5.

2000DB2

Select

Repeatable

Read,

then

click

Next.
2000DB2

2000400

Select

Read

Committed,

then

click

Next.
2000Oracle

Select

Read

Committed,

then

click

Next

6.

From

the

Beans

found

list,

select

the

Bonus

bean,

then

click

Next.

7.

From

the

Methods

found

list,

select

Bonus

to

select

all

of

its

methods,

and

click

Finish.

8.

Save

your

work

(Ctrl+S),

and

keep

the

editor

open.

Next,

set

the

security

identity

of

the

bean,

by

doing

the

following:

1.

In

the

Deployment

Descriptor

editor,

ensure

that

you

have

the

Access

tab

selected.

2.

Click

Add

next

to

the

Security

Identity

text

box.
The

Add

Security

Identity

window

opens.

3.

Select

Use

identity

of

EJB

server,

then

click

Next.

4.

From

the

Beans

found

list,

select

the

Bonus

bean,

then

click

Next.

5.

From

the

Methods

found

list,

select

Bonus

to

select

all

of

its

methods,

and

click

Finish.

6.

Save

your

work

(Ctrl+S)

and

keep

the

editor

open.

Next,

set

the

security

role

for

the

methods

in

the

bean,

by

doing

the

following:

1.

In

the

Deployment

Descriptor

editor,

select

the

Assembly

Descriptor

tab.

2.

In

the

Method

permissions

section,

click

Add.

3.

Select

WCSecurityRole

as

the

security

role

and

click

Next.

4.

From

the

list

of

beans

found,

select

Bonus

and

click

Next.

5.

In

the

Method

elements

page,

click

Apply

to

All,

then

click

Finish.

6.

Save

your

work

(Ctrl+S)

and

close

the

deployment

descriptor

editor.

The

next

step

is

to

remove

some

of

the

fields

and

methods

related

to

the

entity

context

that

are

generated

by

WebSphere

Studio

Application

Developer.

The

reason

that

these

fields

need

to

be

deleted

is

that

the

ECEntityBean

base

class

provides

its

own

implementation

of

these

methods.

To

delete

the

generated

entity

context

fields

and

methods,

do

the

following:

1.

In

the

J2EE

Hierarchy

view,

expand

the

WebSphereCommerceServerExtensionsData

project.

2.

Expand

the

Bonus

bean

and

then

double-click

the

BonusBean

class.

3.

In

the

Outline

view,

do

the

following:

a.

Right-click

the

myEntityCtx

field

and

select

Delete.

Chapter

10.

Tutorial:

Creating

new

business

logic

267

*

b.

Right-click

the

getEntityContext()

method

and

select

Delete.

c.

Right-click

the

setEntityContext(EntityContext)

method

and

select

Delete.

d.

Right-click

the

unsetEntityContext()

method

and

select

Delete.
4.

Save

your

work

(Ctrl+S).

Keep

the

BonusBean

class

open.

Next,

add

a

new

getMemberId

method

to

the

enterprise

bean,

by

doing

the

following:

1.

View

the

source

code

of

the

BonusBean

class.

2.

Add

the

following

code

to

the

end

of

this

class

(still

within

the

class):

public

java.lang.Long

getMemberId()

{

return

memberId;

}

3.

You

must

add

the

new

method

to

the

remote

interface,

by

doing

the

following:

a.

In

the

Outline

view,

right-click

the

getMemberId

method

and

select

Enterprise

Bean

>

Promote

to

Remote

Interface.

Once

this

is

complete,

a

small

R

icon

is

displayed

next

to

the

method,

indicating

that

it

has

been

promoted

to

the

remote

interface.
4.

Save

your

work.

5.

Close

the

BonusBean

editor.

Next,

add

new

FinderHelper

methods

to

the

BonusHome

interface,

by

doing

the

following:

1.

In

the

J2EE

Hierarchy

view,

expand

EJB

Modules.

2.

Double-click

the

WebSphereCommerceServerExtensionsData

project

to

open

the

EJB

Deployment

Descriptor

Editor.

3.

Click

the

Beans

tab.

4.

In

the

Beans

pane,

select

the

Bonus

bean,

then

in

the

pane

on

the

right,

scroll

down

and

expand

WebSphere

Extensions.

5.

Click

Add

next

to

the

Finders

text

box.
The

Add

Finder

Descriptor

window

opens.

6.

Select

New,

then

in

the

Name

field,

enter

findByMemberId.

7.

Click

Add

next

to

the

Parameters

text

box,

then

do

the

following

a.

In

the

Name

field,

enter

memberId.

b.

In

the

Type

field

enter

java.lang.Long.

c.

Click

OK.

8.

From

the

Return

Type

drop-down

list,

select

com.ibm.commerce.extension.objects.Bonus,

then

click

Next.

9.

From

the

Finder

type

drop-down

list,

select

WhereClauseFinderDescriptor.

268

Programming

Guide

and

Tutorials

10.

In

the

Finder

statement

field,

enter

T1.MEMBERID

=

?,

then

click

Finish.

11.

Save

your

work,

then

close

the

EJB

Deployment

Descriptor

editor.

Next,

add

a

new

ejbCreate

method

to

the

Bonus

bean,

by

doing

the

following:

1.

In

the

J2EE

Hierarchy

view,

double-click

the

BonusBean

class

to

open

it

and

view

its

source

code.

2.

Create

a

new

ejbCreate(Long,

Integer)

method,

by

adding

the

following

code

into

the

class:

public

com.ibm.commerce.extension.objects.BonusKey

ejbCreate(

java.lang.Long

memberId,java.lang.Integer

bonusPoint)

throws

javax.ejb.CreateException

{

_initLinks();

this.memberId=memberId;

this.bonusPoint=bonusPoint;

return

null;

}

3.

Save

the

code

changes.

4.

You

must

add

the

new

ejbCreate(Long,

Integer)

method

to

the

home

interface.

This

makes

the

method

available

in

the

generated

access

bean.

To

add

the

method

to

the

home

interface,

do

the

following:

a.

In

the

Outline

view,

right-click

the

ejbCreate(Long,

Integer)

method

and

select

Enterprise

Bean

>

Promote

to

Home

Interface.

Next

create

a

new

ejbPostCreate(Long,

Integer)

method

so

that

it

has

the

same

parameters

as

the

ejbCreate(Long,

Integer)

method,

by

doing

the

following:

1.

Double-click

the

BonusBean

class

to

open

it

and

view

its

source

code.

2.

Create

a

new

ejbPostCreate(Long,

Integer)

method,

by

adding

the

following

code

into

the

class:

public

void

ejbPostCreate(java.lang.Long

memberId,

java.lang.Integer

bonusPoint)

throws

javax.ejb.CreateException

{

}

3.

Save

the

code

changes.

The

next

steps

add

new

methods

to

the

Bonus

bean

so

that

it

can

be

protected

by

the

WebSphere

Commerce

access

control

system.

The

getOwner

and

fulfills

methods

are

be

added

to

the

bean,

by

doing

the

following:

1.

Double-click

the

BonusBean

class

to

open

it

and

view

its

source

code.

2.

Add

the

new

getOwner

method

to

the

BonusBean

class,

by

adding

the

following

code

into

the

end

of

the

class:

public

java.lang.Long

getOwner()

throws

java.lang.Exception

{

return

getMemberId();

}

Chapter

10.

Tutorial:

Creating

new

business

logic

269

3.

Save

your

work.

4.

Add

the

new

fulfills

method,

by

adding

the

following

code

to

the

end

of

the

class:

public

boolean

fulfills(Long

member,

String

relationship)

throws

java.lang.Exception

{

if

(relationship.equalsIgnoreCase("creator"))

{

return

member.equals(getMemberId());

}

return

false;

}

5.

Save

your

work

and

close

the

bonus

bean

editor.

The

next

step

is

to

map

the

XBONUS

table

to

the

BonusBean

entity

bean.

Meet-in-the-middle

mapping

is

used.

To

create

the

mapping,

do

the

following:

2000Business

2000Professional

1.

In

the

J2EE

Hierarchy

view,

right-click

WebSphereCommerceServerExtensionsData

and

select

Generate

>

EJB

to

RDB

Mapping.
The

EJB

to

RDB

Mapping

Window

opens.

2.

Select

Meet

In

The

Middle

and

click

Next.

3.

In

the

Database

Connection

window,

do

the

following:

a.

In

the

Connection

name

field,

enter

WebSphereCommerceServerExtensionsData

b.

In

the

Database

field,

enter

the

name

of

your

development

database.

c.

In

the

User

ID

field,

enter

the

database

user

ID.

d.

In

the

Password

field,

enter

the

password

for

the

database

user.

e.

From

the

Database

vendor

type

drop-down

list,

select

the

database

vendor

type

for

your

development

database.

v

2000DB2

DB2

Universal

Database

8.1

v

2000Oracle

Oracle

9i

f.

2000Oracle

In

the

Host

field,

enter

the

fully-qualified

host

name

of

your

database

server.

For

example,

enter

dbserver.yourcompany.com

g.

2000Oracle

In

the

Class

Location

field,

enter

the

location

of

the

classes12.zip

file.

For

example,

enter

D:\oracle\ora92\jdbc\lib\classes12.zip

h.

Click

Next.

Once

the

connection

is

established,

the

list

of

tables

in

the

database

is

displayed.

You

can

also

view

the

Connection

Document

later

by

looking

at

the

Database

Servers

view

in

the

Data

perspective.
4.

Select

the

XBONUS

table

and

click

Next.

270

Programming

Guide

and

Tutorials

5.

Select

Match

By

Name

and

Type

and

then

click

Finish.

The

Mapping

Editor

now

opens.

6.

2000Oracle

Right-click

the

XBONUS

table

and

select

Open

Table

Editor.

In

the

table

editor,

do

the

following:

a.

Select

the

Column

tab.

b.

Select

the

BONUSPOINT

column

and

change

the

column

type

from

NUMBER

to

INTEGER

c.

Save

your

changes.
7.

In

the

Enterprise

Beans

pane,

expand

the

Bonus

bean.

In

the

Tables

pane,

expand

the

XBONUS

table.

8.

Map

the

fields

in

the

Bonus

bean

to

the

columns

in

the

XBONUS

table,

by

doing

the

following:

a.

Right-click

the

Bonus

bean

and

select

Match

By

Name.
9.

Save

the

Map.mapxmi

file

(Ctrl+S)

and

close

the

file.

10.

2000Oracle

You

must

edit

the

table

definition

using

a

text

editor,

as

follows:

a.

Open

the

XBONUS.xmi

file

with

a

text

editor.

b.

Replace

all

occurances

of

SQLNumeric6

to

SQLNumeric3.

c.

Save

your

changes.

2000Express

1.

Open

the

Data

perspective

and

switch

to

the

Data

Definition

view.

2.

Navigate

to

the

following

directory:
WebSphereCommerceServerExtensionsData

>

ejbModule

>

META-INF.

3.

Right-click

META-INF

and

select

New

database

definition.

The

New

Database

Definition

wizard

opens.

4.

In

the

Database

name

field,

enter

the

name

of

your

development

database.

For

example,

enter

Demo_Dev.

5.

From

the

Database

vendor

type

drop-down

list,

select

DB2

Universal

Database

Express

V8.1

and

click

Finish.

The

new

database

definition

is

now

created.

6.

Navigate

to

the

following

directory:
WebSphereCommerceServerExtensionsData

>

ejbModule

>

META-INF

>

Schema

>

DevelopmentDB.

7.

Right-click

DevelopmentDB

and

select

New

>

New

schema

definition.

The

New

Schema

Definition

window

displays.

8.

In

the

Schema

name

field,

enter

NULLID

and

click

Finish.

9.

Navigate

to

the

following

directory:
WebSphereCommerceServerExtensionsData

>

ejbModule

>

META-INF

>

Schema

>

DevelopmentDB

>

NULLID

and

select

New

>

New

database

definition.

The

New

Table

Definition

wizard

opens.

Chapter

10.

Tutorial:

Creating

new

business

logic

271

10.

In

the

Table

name

field,

type

XBONUS

and

click

on

Next.

11.

Add

the

key

column

to

your

table

definition,

as

follows:

a.

Click

Add

Another

to

add

the

MEMBERID

column.

b.

In

the

Column

name

field,

enter

MEMBERID.

c.

Select

Key

column.

d.

From

the

Column

type

drop-down

list,

select

the

following:
2000DB2

BIGINT
2000Oracle

NUMBER

12.

Click

Add

Another

to

add

the

BONUSPOINT

column.

13.

In

the

Column

name

field,

enter

BONUSPOINT.

14.

From

the

Column

type

drop-down

list,

select

INTEGER

and

click

Finish.

15.

Switch

to

J2EE

Perspective

and

in

the

J2EE

Hierarchy

view,

select

EJB

Modules

>

WebSphereCommerceServerExtensionsData.

16.

Right-click

WebSphereCommerceServerExtensionsData

and

select

New

>

Access

Bean.

The

Add

an

Access

Bean

window

displays.

17.

Select

Copy

helper

and

click

Next.

18.

Select

the

Bonus

bean

and

click

Next.

19.

From

the

Constructor

Method

selection

box,

select

findByPrimaryKey(com.ibm.commerce.extension.objects.Bonus)

and

click

Finish.

20.

In

the

J2EE

Hierarchy

view,

select

EJB

Modules

>

WebSphereCommerceServerExtensionsData.

21.

Right-click

WebSphereCommerceServerExtensionsData

and

select

Open

With

>

Deployment

Descriptor

Editor.

22.

Scoll

down

to

the

JNDI

-

Default

section

and

ensure

that

the

value

for

DataSource

JNDI

name

is

blank.

If

the

value

is

jdbc/Default,

delete

jdbc/Default

and

press

Crtl+S

to

save

your

changes.

23.

In

the

J2EE

Hierarchy

view,

expand

EJB

Modules,

then

right-click

WebSphereCommerceServerExtensionsData

and

select

Generate

>

Deployment

and

RMIC

Code.

24.

Select

the

Bonus

bean

and

click

Finish.

The

next

step

is

to

fix

the

schema

name

so

that

your

new

bean

will

be

portable

to

other

databases.

To

make

this

modification,

do

the

following:

1.

In

the

J2EE

Perspective,

switch

to

the

J2EE

Hierarchy

view.

2.

Expand

Databases,

then

expand

WebSphereCommerceServerExtensionsData.

3.

Right-click

on

the

schema

node

(for

example,

DB2USER)

and

select

Rename.

4.

Set

the

value

to

NULLID.

272

Programming

Guide

and

Tutorials

Once

the

BonusBean

entity

has

been

created

and

the

schema

is

correctly

mapped,

you

must

create

an

access

bean

for

the

entity

bean.

This

access

bean

makes

it

simpler

for

applications

to

access

information

contained

in

the

Bonus

entity

bean.

The

tools

in

WebSphere

Studio

Application

Developer

are

used

to

generate

this

access

bean,

based

upon

the

entity

bean

that

you

have

already

created

(in

particular,

only

methods

that

have

been

promoted

to

the

remote

interface

will

be

used

by

the

access

bean).

To

create

the

access

bean

for

the

Bonus

entity

bean,

do

the

following:

1.

In

the

J2EE

Hierarchy

view,

expand

EJB

Modules,

then

right-click

WebSphereCommerceServerExtensionsData

and

select

New

>

Access

Bean.
The

Add

an

Access

Bean

window

opens.

2.

Select

Copy

Helper

and

click

Next.

3.

Select

the

Bonus

bean

and

click

Next.

4.

From

the

Constructor

method

drop-down

list,

select

findByPrimaryKey(com.ibm.commerce.extension.objects.BonusKey)

as

the

constructor

method.

5.

Select

all

attributes

in

the

Attribute

Helpers

section.

6.

Click

Finish.

You

can

view

the

newly

generated

code

by

switching

to

the

2000Business

2000Professional

J2EE

Navigator

tab

2000Express

Project

Navigator

tab,

by

expanding

the

following:

WebSphereCommerceServerExtensionsData

>

ejbModule

>

com.ibm.commerce.extension.objects

A

new

class

called

BonusAccessBean

and

a

new

interface

called

BonusAccessBeanData

are

created

and

displayed

inside

the

package.

The

next

step

is

to

generate

the

deployed

code.

The

code

generation

utility

analyzes

the

beans

to

ensure

that

Sun

Microsystems’

EJB

specifications

are

met

and

it

ensures

that

rules

specific

to

the

EJB

server

are

followed.

In

addition,

for

each

selected

enterprise

bean,

the

code-generation

tool

generates

the

home

and

EJBObject

(remote)

implementations

and

implementation

classes

for

the

home

and

remote

interfaces,

as

well

as

the

JDBC

persister

and

finder

classes

for

CMP

beans.

It

also

generates

the

Java

ORB,

stubs,

and

tie

classes

required

for

RMI

access

over

IIOP,

as

well

as

stubs

for

the

home

and

remote

interfaces

To

generate

the

deployed

code,

do

the

following: 2000Business

2000Professional

1.

In

the

J2EE

Hierarchy

view,

expand

EJB

Modules,

then

right-click

WebSphereCommerceServerExtensionsData

and

select

Generate

>

Deploy

and

RMIC

Code.

2.

Select

the

Bonus

bean

and

click

Finish.

Chapter

10.

Tutorial:

Creating

new

business

logic

273

2000Express

1.

In

the

J2EE

Hierarchy

view,

expand

EJB

Modules

>

WebSphereCommerceServerExtensionsData.

2.

Right-click

WebSphereCommerceServerExtensionsData

and

select

Open

With

>

Deployment

Descriptor

Editor.

3.

Scoll

down

to

the

JNDI

-

Default

section

and

ensure

that

the

value

for

DataSource

JNDI

name

is

blank.

If

the

value

is

jdbc/Default,

delete

jdbc/Default

and

press

Crtl+S

to

save

your

changes.

You

can

view

the

newly

generated

code

by

switching

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

You

will

find

the

following:

Table

11.

Type

of

code

Class

name

Container

implementation

generated

code

EJSCMPBonusHomeBean.java

EJSRemoteCMPBonus.java

EJSRemoteCMPBonusHome.java

EJSFinderBonusBean.java

JDBC

access

code

EJSJDBCPersisterCMPBonusBean.java

RMI

tie

and

stub

code

_EJSRemoteCMPBonus_Tie.java

_Bonus_Stub.java

_EJSRemoteCMPBonusHome_Tie.java

_BonusHome_Stub.java

The

next

step

is

to

use

the

universal

test

client

to

test

the

new

enterprise

bean,

by

doing

the

following:

1.

Switch

to

the

Servers

perspective.

2.

In

the

Server

Configuration

view,

double-click

the

WebSphereCommerceServer

server

and

click

the

Configuration

tab.

3.

Select

Enable

universal

test

client.

Save

the

changes.

4.

In

the

Servers

view,

right-click

the

WebSphereCommerceServer

server

and

select

Start.

5.

In

the

J2EE

Hierarchy,

expand

EJB

Modules

>

WebSphereCommerceServerExtensionsData.

6.

Right-click

the

Bonus

bean

and

select

Run

on

Server.
The

IBM

Universal

Test

Client

opens.

7.

In

the

left

pane,

click

Bonus,

then

click

Bonus

Home.

8.

Click

the

Bonus

create(Long,

Integer)

method.

274

Programming

Guide

and

Tutorials

9.

In

the

Long

field

in

the

right

pane,

enter

-1000

and

in

the

Integer

field,

enter

1000.

10.

Click

Invoke

and

the

result

is

shown

in

the

bottom

pane.

11.

Click

Work

with

Object

to

add

the

remote

interface

to

the

Reference

pane

and

you

will

see

the

values

you

entered

under

EJB

Reference.

A

new

record

has

been

created

in

the

BONUS

table.

12.

Select

the

getMemberId

method

and

click

Invoke

and

the

result

of

-1000

is

displayed

in

the

bottom

pane.

13.

Close

the

test

client

and

stop

the

server.

Integrating

the

Bonus

entity

bean

with

MyNewControllerCmd

In

the

previous

section,

you

tested

the

new

Bonus

entity

bean

using

the

test

client

that

was

generated

within

WebSphere

Studio

Application

Developer.

In

doing

so,

you

determined

that

you

can

successfully

update

database

information.

Now,

you

integrate

the

Bonus

entity

bean

with

the

MyNewControllerCmd

logic.

Once

the

Java

code

is

updated,

the

MyNewJSPTemplate.jsp

file

is

updated

to

create

an

interface

that

allows

a

customer’s

balance

of

bonus

points

to

be

updated.

Integrating

the

Bonus

entity

bean

involves

the

following

high-level

steps:

1.

Modifying

the

MyNewTaskCmd

task

command

to

include

fields

and

methods

for

bonus

points,

updating

the

validateParameters

method,

and

adding

logic

to

update

a

user’s

balance

of

bonus

points.

2.

Adding

a

getResources

method

to

the

MyNewControllerCmdImpl

class

to

return

a

list

of

the

resources

that

the

command

uses.

This

method

is

included

for

access

control

purposes.

3.

Creating

a

new

BonusDataBean

so

that

bonus

points

can

be

displayed

in

a

JSP

template.

4.

Creating

a

new

access

control

policy

for

the

new

resources.

5.

Modifying

the

MyNewJSPTemplate.jsp

template

to

allow

you

to

enter

bonus

points

for

a

user

and

then

display

that

user’s

new

balance

of

bonus

points.

Modifying

the

MyNewTaskCmd

interface

to

include

bonus

points

In

this

step,

you

modify

the

MyNewTaskCmd

interface

to

specify

the

required

fields

and

methods

for

bonus

points,

by

doing

the

following:

1.

Switch

to

the

Java

perspective

and

expand

the

WebSphereCommerceServerExtensionsLogic

project.

2.

Expand

the

com.ibm.commerce.sample.commands\src

directory.

3.

Double-click

the

MyNewTaskCmd

interface

to

view

its

source

code.

4.

Uncomment

Import

section

2

to

include

the

following

package:

Chapter

10.

Tutorial:

Creating

new

business

logic

275

///

Import

section

2

/////////////////////////////////////

import

com.ibm.commerce.extension.objects.*;

///

End

of

import

section

2

//////////////////////////////

5.

Uncomment

Section

4

to

introduce

the

following

code

into

the

method:

///

Section

4

//

public

java.lang.Integer

getOldBonusPoints();

public

Integer

getTotalBonusPoints();

public

void

setBonusAccessBean(BonusAccessBean

bb);

public

BonusAccessBean

getBonusAccessBean();

///

End

of

section

4//

6.

Save

the

changes.

Modifying

MyNewTaskCmdImpl

to

calculate

bonus

points

The

MyNewTaskCmdImpl

is

used

as

the

point

of

integration

between

the

Bonus

entity

bean

and

the

MyNewControllerCmd

(since

MyNewControllerCmd

invokes

the

MyNewTaskCmd).

To

modify

MyNewTaskCmdImpl

to

calculate

bonus

points,

do

the

following:

1.

Select

the

MyNewTaskCmdImpl

class

to

view

its

source

code.

2.

Uncomment

Import

section

2

to

introduce

the

following

package:

///

Import

section

2

//////////////////////////////////////

import

com.ibm.commerce.extension.objects.*;

///

End

of

Import

section

2

///////////////////////////////

3.

Uncomment

Sections

3A

and

3B

to

introduce

the

following

code

into

the

class:

////

Section

3A

//

private

java.lang.Integer

oldBonusPoints;

private

java.lang.Integer

totalBonusPoints;

private

BonusAccessBean

bb

=

null;

////End

of

Section

3A

///

////

Section

3B

//

public

void

setBonusAccessBean(BonusAccessBean

newBB)

{

bb

=

newBB;

}

public

BonusAccessBean

getBonusAccessBean(){

return

bb;

}

public

java.lang.Integer

getOldBonusPoints()

{

276

Programming

Guide

and

Tutorials

return

oldBonusPoints;

}

public

Integer

getTotalBonusPoints(){

return

totalBonusPoints;

}

///

End

of

section

3B

///

4.

In

the

Outline

view,

select

the

validateParameters

method

and

uncomment

Section

2,

to

introduce

the

following

code

into

the

method:

//

section

2

///

try

{

oldBonusPoints

=

bb.getBonusPoint();

}

catch

(javax.ejb.FinderException

e)

{

try

{

//

If

bb

is

null,

create

a

new

instance

bb

=

new

BonusAccessBean(new

Long(foundUserId),

new

Integer(0));

oldBonusPoints

=

new

Integer(0);

}

catch

(javax.ejb.CreateException

ec)

{

throw

new

ECSystemException(ECMessage._ERR_CREATE_EXCEPTION,

this.getClass().getName(),

"validateParameters");

}

catch

(javax.naming.NamingException

ec)

{

throw

new

ECSystemException(ECMessage._ERR_NAMING_EXCEPTION,

this.getClass().getName(),

"validateParameters");

}

catch

(java.rmi.RemoteException

ec)

{

throw

new

ECSystemException(ECMessage._ERR_REMOTE_EXCEPTION,

this.getClass().getName(),

"validateParameters");

}

}

catch

(javax.naming.NamingException

e)

{

throw

new

ECSystemException(ECMessage._ERR_NAMING_EXCEPTION,

this.getClass().getName(),

"validateParameters");

}

catch

(java.rmi.RemoteException

e)

{

throw

new

ECSystemException(ECMessage._ERR_REMOTE_EXCEPTION,

this.getClass().getName(),

"validateParameters");

}

catch

(javax.ejb.CreateException

e)

{

throw

new

ECSystemException(ECMessage._ERR_CREATE_EXCEPTION,

this.getClass().getName(),

"validateParameters");

}

//

end

of

section

2

///

5.

In

the

Outline

view,

select

the

performExecute

method.

6.

In

the

source

code

for

this

performExecute

method,

uncomment

Section

2.

This

introduces

the

following

code

into

the

method:

///

use

BonusAccessBean

to

update

new

bonus

point

///

Section

2

///

int

newBP

=

oldBonusPoints.intValue()

+

getInputPoints().intValue();

totalBonusPoints

=

new

Integer

(newBP);

bb.setBonusPoint(totalBonusPoints)

;

Chapter

10.

Tutorial:

Creating

new

business

logic

277

try

{

bb.commitCopyHelper();

}

catch

(javax.ejb.FinderException

e)

{

throw

new

ECSystemException(ECMessage._ERR_FINDER_EXCEPTION,

this.getClass().getName(),

"performExecute");

}

catch

(javax.naming.NamingException

e)

{

throw

new

ECSystemException(ECMessage._ERR_NAMING_EXCEPTION,

this.getClass().getName(),

"performExecute");

}

catch

(java.rmi.RemoteException

e)

{

throw

new

ECSystemException(ECMessage._ERR_REMOTE_EXCEPTION,

this.getClass().getName(),

"performExecute");

}

catch

(javax.ejb.CreateException

e)

{

throw

new

ECSystemException(ECMessage._ERR_CREATE_EXCEPTION,

this.getClass().getName(),

"performExecute");

}

///

End

of

section

2

//

7.

Save

your

changes.

Adding

a

getResources

method

to

the

MyNewControllerCmdImpl

class

In

this

section,

you

add

a

new

getResources

method

to

the

MyNewControllerCmdImpl.

This

method

returns

a

list

of

resources

that

the

command

uses

during

processing.

This

method

is

required

for

resource

level

access

control.

To

add

the

getResources

method,

do

the

following:

1.

Double-click

the

MyNewControllerCmdImpl

class

to

open

and

view

its

source

code.

2.

In

the

source

code,

uncomment

Import

Section

2

to

introduce

the

following

package

into

the

class:

///

Import

Section

2

///////////////////////////////

import

com.ibm.commerce.extension.objects.*;

///

End

of

Import

Section

2

////////////////////////

3.

Uncomment

Section

3,

to

introduce

the

following

code

into

the

class:

///

Section

3

//

///

Create

an

instance

variable

of

type

AccessVector

to

hold

///

the

resources

and

a

BonusAccessBean

instance

variable

for

///

access

control

purposes.

private

AccessVector

resources

=

null;

private

BonusAccessBean

bb

=

null;

///

End

of

Section

3

///

4.

In

the

source

code,

uncomment

the

Access

Control

Section.

This

section

appears

as

shown

in

the

following

code

snippet:

///

AccessControl

Section

////////////////////////////////////

public

AccessVector

getResources()

throws

ECException{

278

Programming

Guide

and

Tutorials

if

(resources

==

null

)

{

///

use

UserRegistryAccessBean

to

check

user

reference

number

String

refNum

=

null;

String

methodName

=

"getResources";

rrb

=

new

UserRegistryAccessBean();

try

{

rrb

=

rrb.findByUserLogonId(getUserName());

refNum

=

rrb.getUserId();

}

catch

(javax.ejb.FinderException

e)

{

throw

new

ECSystemException(ECMessage._ERR_FINDER_EXCEPTION,

this.getClass().getName(),methodName,e);

}

catch

(javax.naming.NamingException

e)

{

throw

new

ECSystemException(ECMessage._ERR_NAMING_EXCEPTION,

this.getClass().getName(),

methodName,e);

}

catch

(java.rmi.RemoteException

e)

{

throw

new

ECSystemException(ECMessage._ERR_REMOTE_EXCEPTION,

this.getClass().getName(),

methodName,e);

}

catch

(javax.ejb.CreateException

e)

{

throw

new

ECSystemException(ECMessage._ERR_CREATE_EXCEPTION,

this.getClass().getName(),

methodName,e);

}

///

find

the

bonus

bean

for

this

registered

user

bb

=

new

com.ibm.commerce.extension.objects.BonusAccessBean();

try

{

if

(refNum

!=

null)

{

bb.setInitKey_memberId(new

Long(refNum));

bb.refreshCopyHelper();

resources

=

new

AccessVector(bb);

}

}

catch

(javax.ejb.FinderException

e)

{

///doesn’t

have

a

bonus

object

so

return

the

container

that

///will

hold

the

bonus

object

when

it’s

created

resources

=

new

AccessVector(rrb);

return

resources;

}

catch

(javax.naming.NamingException

e)

{

throw

new

ECSystemException(ECMessage._ERR_NAMING_EXCEPTION,

this.getClass().getName(),

methodName);

}

catch

(java.rmi.RemoteException

e)

{

throw

new

ECSystemException(ECMessage._ERR_REMOTE_EXCEPTION,

this.getClass().getName(),

methodName);

}

catch

(javax.ejb.CreateException

e)

{

throw

new

ECSystemException(ECMessage._ERR_CREATE_EXCEPTION,

this.getClass().getName(),

methodName);

}

}

Chapter

10.

Tutorial:

Creating

new

business

logic

279

return

resources;

}

///

End

of

AccessControl

Section

//////////////////////////////////

5.

Save

your

changes.

Modifying

the

performExecute

method

of

the

MyNewControllerCmdImpl

class

In

this

step

you

modify

the

code

in

the

performExecute

method

of

the

MyNewControllerCmdImpl

to

include

code

related

to

the

new

bonus

bean,

as

follows:

1.

Double-click

the

MyNewControllerCmdImpl

class.

2.

In

the

Outline

view,

select

the

performExecute

method.

3.

In

the

source

code,

uncomment

Sections

4E,

4G,

and

4H

to

introduce

the

following

code

into

the

method:

//

Section

4E

////////////////////////////////////

///

pass

bb

instance

variable

to

the

task

command

cmd.setBonusAccessBean(bb);

//

End

of

section

4E

/////////////////////////////

//

Section

4G

///////////////////////////////////////

if

(cmd.getOldBonusPoints()

!=

null)

{

rspProp.put("oldBonusPoints",

cmd.getOldBonusPoints());

}

//

End

of

section

4G

/////////////////////////////

//

Section

4H

///////////////////////////////////////

///Instantiate

the

bonus

data

bean

,

then

put

it

to

response

properties

BonusDataBean

bdb

=

new

com.ibm.commerce.sample.databeans.BonusDataBean(

cmd.getBonusAccessBean());

rspProp.put("bdbInstance",

bdb

);

//

End

of

section

4H

////////////////////////////////

4.

Save

your

changes.

Note:

You

will

see

errors

because

the

BonusDataBean

has

not

yet

been

defined.

These

will

be

fixed

in

the

next

section.

Creating

the

BonusDataBean

data

bean

In

keeping

with

the

programming

model,

you

should

create

a

new

data

bean

that

corresponds

to

the

new

Bonus

entity

bean.

While

not

all

entity

beans

are

required

to

have

a

corresponding

data

bean,

if

you

want

to

be

able

to

display

information

from

the

entity

bean

in

a

JSP

template,

you

should

create

a

new

data

bean

for

this

purpose.

In

this

scenario,

you

are

required

to

create

a

new

BonusDataBean

data

bean

that

extends

the

BonusAccessBean.

As

with

other

parts

of

the

tutorial,

the

base

code

is

provided

and

you

need

to

uncomment

various

sections

of

code.

280

Programming

Guide

and

Tutorials

To

introduce

the

BonusDataBean

into

your

code,

do

the

following:

1.

The

first

step

is

to

import

the

base

code

for

the

new

data

bean,

as

follows:

a.

Switch

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view

in

the

Java

Perspective.

b.

Expand

the

WebSphereCommerceServerExtensionsLogic

project.

c.

Right-click

the

src

folder

and

select

Import.
The

Import

wizard

opens.

d.

From

the

Select

an

import

source

list,

select

Zip

file

and

click

Next.

e.

Click

Browse

(beside

the

Zip

file

field)

and

navigate

to

the

sample

code.

This

file

is

located,

as

follows:
yourDirectory\WC_SAMPLE_55.zip
where

yourDirectory

is

the

directory

into

which

you

downloaded

the

package.

f.

Click

Deselect

All,

then

expand

the

directories

and

select

the

following

file

to

import.

v

com\ibm\commerce\sample\databeans\BonusDataBean.java
g.

In

the

Folder

field,

the

WebSphereCommerceServerExtensionsLogic/src

folder

is

already

specified.

Keep

this

value.

h.

Click

Finish.
2.

Double

click

the

BonusDataBean

class

to

view

its

source

code.

3.

In

the

source

code,

uncomment

Section

1,

to

introduce

the

following

code

into

the

bean:

///

Section

1

///

//

create

fields

and

accessors

(setter/getter

methods)

private

java.lang.String

userId;

private

java.lang.Integer

totalBonusPoints;

public

java.lang.String

getUserId()

{

return

userId;

}

public

void

setUserId(java.lang.String

newUserId)

{

userId

=

newUserId;

///////////////////////////////////////

///

Section

A

:

instantiate

BonusAccessbean

if

(userId

!=

null)

this.setInitKey_memberId(new

Long(newUserId));

///////////////////////////////////////

}

Chapter

10.

Tutorial:

Creating

new

business

logic

281

public

java.lang.Integer

getTotalBonusPoints()

{

return

totalBonusPoints;

}

public

void

setTotalBonusPoints(java.lang.Integer

newTotalBonusPoints)

{

totalBonusPoints=

newTotalBonusPoints;

}

////

End

of

section

1

//

4.

Next,

uncomment

Section

2,

to

introduce

the

following

section

of

code

into

the

bean:

///

Section

2///

//

create

a

new

constructor

for

passing

access

bean

into

databean

//

so

that

JSP

can

work

with

the

access

bean

public

BonusDataBean(BonusAccessBean

bb)

throws

com.ibm.commerce.exception.ECException

{

try

{

super.setEJBRef(bb.getEJBRef());

}

catch

(javax.ejb.FinderException

e)

{

throw

new

ECSystemException(ECMessage._ERR_CREATE_EXCEPTION,

"BonusDataBean",

"BonusDataBean(bb)");

}

catch

(javax.naming.NamingException

e)

{

throw

new

ECSystemException(ECMessage._ERR_NAMING_EXCEPTION,

"BonusDataBean",

"BonusDataBean(bb)");

}

catch

(java.rmi.RemoteException

e)

{

throw

new

ECSystemException(ECMessage._ERR_REMOTE_EXCEPTION,

"BonusDataBean",

"BonusDataBean(bb)");

}

catch

(javax.ejb.CreateException

e)

{

throw

new

ECSystemException(ECMessage._ERR_CREATE_EXCEPTION,

"BonusDataBean",

"BonusDataBean(bb)");

}

}

////

End

of

section

2

//

5.

Next,

uncomment

Section

3,

to

introduce

the

following

code

into

the

bean:

////

Section

3

///

//

set

additional

data

field

that

is

used

for

instantiating

BonusAccessbean

try

{

setUserId(getRequestProperties().getString("taskOutputUserId"));

try

{

super.refreshCopyHelper();

}

catch

(javax.ejb.FinderException

e)

{

throw

new

ECSystemException(ECMessage._ERR_CREATE_EXCEPTION,

"BonusDataBean",

"populate");

}

catch

(javax.naming.NamingException

e)

{

282

Programming

Guide

and

Tutorials

throw

new

ECSystemException(ECMessage._ERR_NAMING_EXCEPTION,

"BonusDataBean",

"populate");

}

catch

(java.rmi.RemoteException

e)

{

throw

new

ECSystemException(ECMessage._ERR_REMOTE_EXCEPTION,

"BonusDataBean",

"populate");

}

catch

(javax.ejb.CreateException

e)

{

throw

new

ECSystemException(ECMessage._ERR_CREATE_EXCEPTION,

"BonusDataBean",

"populate");

}

}

catch

(ParameterNotFoundException

e){}

/////

End

of

Section

3

///

}

6.

Next,

uncomment

Section

4

to

introduce

the

following

code

into

the

bean:

///

Section

4

///

//

copy

input

TypedProperteis

to

local

requestProperties

=

aParam;

///

End

of

section

4

////////////////////////////////////

7.

Save

your

changes.

8.

Compile

the

changed

code

by

right-clicking

the

WebSphereCommerceServerExtensionsLogic

project

and

selecting

Rebuild

Project.

Creating

the

access

control

policy

for

the

new

entity

bean

A

sample

access

control

policy

is

provided.

This

policy

creates

the

following

access

control

objects:

An

action

The

action

that

is

created

is

com.ibm.commerce.sample.commands.MyNewControllerCmd

An

action

group

The

action

group

that

is

created

is

MyNewControllerCmdActionGroup.

This

action

group

contains

only

one

action;

com.ibm.commerce.sample.commands.MyNewControllerCmd

A

resource

category

The

resource

category

that

is

created

is

com.ibm.commerce.sample.objects.BonusResourceCategory.

This

resource

category

is

for

the

Bonus

entity

bean.

A

resource

group

The

resource

group

that

is

created

is

BonusResourceGroup.

This

resource

group

only

contains

the

preceding

resource

category.

Chapter

10.

Tutorial:

Creating

new

business

logic

283

A

policy

The

policy

that

is

created

is

AllUsersUpdateBonusResourceGroup.

This

policy

allows

users

to

perform

the

MyNewControllerCmd

action

on

the

Bonus

bean

only

if

the

user

is

the

“owner”

of

the

bonus

object.

For

example,

if

the

user

is

logged

on

as

the

tester@mycompany

user,

the

user

can

only

modify

their

own

bonus

points.

Setting

up

the

AllUsersUpdateBonusResourceGroup

policy

involves

the

following

steps:

1.

Modifying

the

access

control

policies

to

reflect

your

environment.

2.

Loading

the

SampleACPolicy.xml

file

using

the

acpload

command.

3.

Loading

the

SampleACPolicy_en_US.xml

description

using

the

acpnlsload

command.

To

customize

the

access

control

policies

for

your

environment,

do

the

following:

1.

Determine

the

member

ID

value

for

your

FashionFlow

store,

as

follows:

v

2000DB2

If

you

are

using

a

DB2

database,

do

the

following:

a.

Connect

to

your

development

database.

b.

Issue

the

following

SQL

statement:

select

member_id

from

storeent

where

storeent_id=FF_storeent_ID

where

FF_storeent_ID

is

the

store

entity

ID

for

your

FashionFlow

store.

For

example,

you

could

enter:

select

member_id

from

storeent

where

storeent_id=10001

Make

note

of

the

member

ID

value:

v

2000Oracle

If

you

are

using

an

Oracle

database,

do

the

following:

a.

Open

the

Oracle

SQL

Plus

command

window

and

connect

to

your

development

database.

b.

Enter

the

following:
column

member_id

format

99999999999999999999999999999999999

(thiry-five

9’s)

This

sets

the

display

of

the

member_id

column

wide

enough

to

view

the

entire

value.

c.

Issue

the

following

SQL

statement:

select

member_id

from

storeent

where

storeent_id=FF_storeent_ID

where

FF_storeent_ID

is

the

store

entity

ID

for

your

FashionFlow

store.

For

example,

you

could

enter:

select

member_id

from

storeent

where

storeent_id=10001

284

Programming

Guide

and

Tutorials

Make

note

of

the

member

ID

value:

d.

Reset

the

display

width

of

the

member_id

column

by

entering

the

following:

column

member_id

clear

2.

Using

a

text

editor,

open

the

SampleACPolicy_template.xml

file

(in

the

WCDE_installdir\Commerce\xml\policies\xml

directory)

and

replace

FashionFlowMemberId

with

the

member

ID

value

for

your

Fashion

Flow

store,

as

determined

in

step

1.

Save

your

modified

file

as

SampleACPolicy.xml

(within

the

same

directory).

3.

Using

a

text

editor,

open

the

SampleACPolicy_template_en_US.xml

file

(in

the

WCDE_installdir\Commerce\xml\policies\xml

directory)

and

replace

FashionFlowMemberId

with

the

member

ID

value

for

your

Fashion

Flow

store,

as

determined

in

step

1.

Save

your

modified

file

as

SampleACPolicy_en_US.xml

(within

the

same

directory).

4.

At

a

command

prompt,

switch

to

the

following

directory:
WCDE_installdir\commerce\bin

5.

To

load

the

SampleACPolicy.xml

file,

you

must

issue

the

acpload

command,

which

has

the

following

form:

acpload

db_name

db_user

db_password

inputXMLFile

where

v

db_name

is

the

name

of

your

database

v

db_user

is

your

database

user

name

v

db_password

is

your

database

password

v

inputXMLFile

is

the

name

of

the

XML

file

containing

the

policy.

In

this

case,

enter

SampleACPolicy.xml

For

example,

you

may

issue

the

following

command:

acpload

Demo_dev

db2user

db2user

SampleACPolicy.xml

6.

To

load

the

policy

description,

you

must

issue

the

acpnlsload

command,

which

has

the

following

form:

acpnlsload

db_name

db_user

db_password

inputXMLFile

For

example,

you

may

issue

the

following

command:

acpnlsload

Demo_dev

db2user

db2user

SampleACPolicy_en_US.xml

7.

If

the

server

for

the

test

environment

is

currently

running,

you

can

use

the

registry

refresh

option

in

the

WebSphere

Commerce

Administration

Console

to

update

the

access

control

registry,

as

follows:

a.

Open

a

Web

browser

and

enter

the

following

URL:

https://localhost/webapp/wcs/admin/servlet/ToolsLogon?XMLFile=

adminconsole.AdminConsoleLogon

b.

When

prompted,

log

in

using

a

site

administrator

ID.

Chapter

10.

Tutorial:

Creating

new

business

logic

285

c.

Select

to

work

on

the

Site

and

click

OK.

d.

From

the

Configuration

menu,

select

Registry.

e.

Click

Update

All,

then

after

a

moment,

click

Refresh

to

verify

that

the

updates

have

been

made.

f.

Logout

and

close

the

Administration

Console

windows.

Modifying

the

MyNewJSPTemplate.jsp

template

to

include

bonus

points

To

modify

the

display

page,

do

the

following:

1.

In

WebSphere

Studio

Application

Developer,

switch

to

the

Web

perspective.

2.

Open

both

the

MyNewJSPTemplate_All.jsp

and

MyNewJSPTemplate.jsp

files.

3.

Copy

Section

9

from

the

MyNewJSPTemplate_All.jsp

file

into

the

MyNewJSPTemplate.jsp

file.

This

introduces

the

following

text

into

the

JSP

template:

<!--

SECTION

9

-->

<h2><fmt:message

key="BonusAdmin"

bundle="${tutorial}"

/>

</h2>

<c:if

test="${!empty

taskOutputUserId}">

<fmt:message

key="PointBeforeUpdate"

bundle="${tutorial}"

/>

<c:out

value="${oldBonusPoints}"/>

<fmt:message

key="PointAfterUpdate"

bundle="${tutorial}"

/>

<c:out

value="${bdbInstance.bonusPoint}"

/>

</c:if>

<fmt:message

key="EnterPoint"

bundle="${tutorial}"

/><p

/>

<form

name="Bonus"

action="MyNewControllerCmd">

<table>

<tr>

<td>

Logon

ID

</td>

<td>

<input

type="text"

name="input1"

value="<c:out

value="${userName}"/>"

/>

286

Programming

Guide

and

Tutorials

</td>

</tr>

<tr>

<td>

Bonus

Point

</td>

<td>

<input

type="text"

name="input2"

/>

</td>

</tr>

<tr>

<td

colspan="2">

<input

type="submit"

/>

</td>

</tr>

</table>

</form>

<!--

END

OF

SECTION

9

-->

4.

Save

the

MyNewJSPTemplate.jsp

file.

Testing

the

integrated

Bonus

bean

Since

the

new

Bonus

bean

is

protected

under

access

control

and

users

can

only

execute

the

MyNewControllerCmd

action

on

a

bean

that

they

own,

the

user

must

log

in.

As

such,

you

will

use

the

login

feature

in

your

sample

store

to

allow

the

user

to

log

in.

To

test

the

new

logic,

do

the

following:

1.

Switch

to

the

Server

view.

2.

Right-click

the

WebSpherCommerceServer

server

and

select

Start

(or

Restart).

3.

Right-click

the

index.jsp

file

for

your

store

and

select

Run

on

Server.
The

store

home

page

is

displayed.

4.

Log

on

as

a

registered

user,

by

doing

the

following:

a.

Click

the

Register

link.
The

Register

page

is

displayed.

b.

In

the

E-mail

address

field,

enter

the

e-mail

address

for

the

user

that

you

created

in

“Testing

user

name

validation”

on

page

262.

c.

In

the

Password

field,

enter

the

password

for

this

user

and

then

click

Login.

d.

Once

the

login

has

completed,

enter

the

following

URL

in

the

same

browser:

http://localhost/webapp/wcs/stores/servlet/MyNewControllerCmd?

input1=user_e-mail&input2=1000

where

user_e-mail

is

the

e-mail

address

for

the

user

that

you

created

in

“Testing

user

name

validation”

on

page

262.

You

are

presented

with

a

Chapter

10.

Tutorial:

Creating

new

business

logic

287

page

that

contains

all

of

the

previous

output

parameters

as

well

as

a

new

form

that

allows

you

to

update

the

balance

of

bonus

points

for

the

user.

e.

Now,

into

the

Logon

ID

field

enter

the

user’s

e-mail

address

and

in

the

Bonus

Point

field,

enter

500.

Click

Submit.

You

are

presented

with

a

page

similar

to

the

following

that

shows

that

the

balance

of

bonus

points

is

updated.

Figure

41.

Figure

42.

288

Programming

Guide

and

Tutorials

Deploying

the

bonus

points

logic

This

section

describes

how

to

deploy

your

new

business

logic

into

a

store

running

on

a

remote

WebSphere

Commerce

Server.

You

must

have

created

a

store

(based

upon

the

FashionFlow

sample

store)

on

the

remote

WebSphere

Commerce

Server

before

starting

these

deployment

steps.

The

deployment

process

includes

steps

that

are

performed

on

the

development

machine,

as

well

as

steps

that

are

performed

on

the

target

WebSphere

Commerce

Server.

There

are

a

number

of

different

types

of

assets

that

must

be

deployed

to

the

target

WebSphere

Commerce

Server.

These

include:

v

Controller

command,

task

command

and

data

bean

logic

v

Enterprise

bean

logic

v

A

JSP

template

and

image

file

v

A

properties

file

and

resource

bundles

v

Database

updates

including

schema

updates

(new

table)

as

well

as

command

registry

updates

v

Access

control

updates

This

section

describes

how

to

deploy

all

of

these

assets,

incrementally

to

the

target

WebSphere

Commerce

Server.

This

is

done

as

an

incremental

deployment,

in

contrast

to

a

deployment

of

the

entire

EAR

file.

Creating

the

command

and

data

bean

JAR

file

This

section

describes

how

to

create

the

JAR

file

that

contains

the

controller

command,

task

command,

and

data

bean

logic.

To

create

this

JAR

file,

perform

the

following

steps

on

your

development

machine:

1.

Create

a

directory

on

your

local

file

system

called

drive:\ExportTemp.

2.

In

WebSphere

Studio

Application

Developer,

switch

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

3.

Right-click

the

WebSphereCommerceServerExtensionsLogic

project

and

select

Export.
The

Export

wizard

opens.

4.

In

the

Export

wizard,

do

the

following:

a.

Select

JAR

file

and

click

Next.

b.

The

left

pane

under

Select

the

resources

to

export

is

prepopulated

with

the

name

of

the

project.

Leave

this

value

as

is.

c.

In

the

right

pane

ensure

that

only

the

following

resources

are

selected:

v

.classpath

Chapter

10.

Tutorial:

Creating

new

business

logic

289

v

.project

v

.serverPreference
d.

Ensure

that

Export

generated

class

files

and

resources

is

selected.

e.

Do

not

select

Export

Java

source

files

and

resources.

f.

In

the

Select

the

export

destination

field,

enter

the

fully-qualified

JAR

file

name

to

use.

In

this

case,

enter

drive:\ExportTemp\WebSphereCommerceServerExtensionsLogic.jar.

Note

that

the

JAR

file

name

must

be

WebSphereCommerceServerExtensionsLogic.jar.

g.

Click

Finish.

Creating

the

EJB

JAR

file

To

create

the

EJB

JAR

file,

do

the

following:

1.

Open

WebSphere

Studio

Application

Developer

and

switch

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

2.

Expand

the

WebSphereCommerceServerExtensionsData

project.

3.

Double-click

EJB

Deployment

Descriptor.

4.

With

the

Overview

tab

selected,

scroll

to

the

bottom

of

the

pane,

to

locate

the

WebSphere

Bindings

section.

5.

In

the

DataSource

JNDI

name

field,

enter

the

datasource

JNDI

name

of

the

target

WebSphere

Commerce

Server.

The

following

is

an

example

value:
2000DB2

jdbc/WebSphere

Commerce

DB2

DataSource

demo
where

the

target

WebSphere

Commerce

Server

is

using

a

DB2

database,

and

the

WebSphere

Commerce

instance

name

is

“demo”

2000Oracle

jdbc/WebSphere

Commerce

Oracle

DataSource

demo
where

the

target

WebSphere

Commerce

Server

is

using

an

Oracle

database,

and

the

WebSphere

Commerce

instance

name

is

“demo”.

The

value

for

the

DataSource

JNDI

name

is

created

by

adding

“jdbc/”

to

the

data

source

name

of

the

target

WebSphere

Commerce

Server.

You

can

verify

the

data

source

name

by

opening

the

instanceName.xml

file

on

the

target

WebSphere

Commerce

Server

and

searching

for

DatasourceName=

in

the

file.

6.

Save

your

deployment

descriptor

changes

(Ctrl+S).

7.

In

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view,

right-click

the

WebSphereCommerceServerExtensionsData

project

and

select

Export.
The

Export

wizard

opens.

8.

In

the

Export

wizard,

do

the

following:

a.

Select

EJB

JAR

file

and

click

Next.

290

Programming

Guide

and

Tutorials

b.

2000Business

2000Professional

The

value

for

What

resources

do

you

want

to

export?

is

prepopulated

with

the

name

of

the

EJB

project.

2000Express

The

EJB

project

name

is

prepopulate.

Leave

this

value

as

is.

c.

2000Business

2000Professional

In

the

Where

do

you

want

to

export

resources

to?

field,

enter

the

fully-qualified

JAR

file

name

to

use.

2000Express

For

the

destination,

enter

the

fully-qualified

JAR

file

name

to

use.

In

this

case,

enter

drive:\ExportTemp\WebSphereCommerceServerExtensionsData.jar.

d.

Click

Finish.
9.

After

the

JAR

file

has

been

created,

undo

the

changes

to

the

local

deployment

descriptor

that

was

made

in

step

5,

to

restore

the

setting

that

is

required

for

your

local

test

server.

Note:

This

tutorial

assumes

that

your

development

database

and

the

database

used

by

the

target

WebSphere

Commerce

Server

are

the

same

type.

If

you

were

deploying

to

a

different

database

type,

you

would

follow

the

instructions

contained

in

“Creating

an

EJB

JAR

file

with

conversion”

on

page

204.

Exporting

store

assets

To

export

the

store

assets,

do

the

following:

1.

Switch

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

2.

Expand

the

Stores

folder.

3.

Right-click

the

Web

Content

folder

and

select

Export.
The

Export

Wizard

opens.

4.

In

the

Export

wizard,

do

the

following:

a.

Select

File

system

and

click

Next.

b.

Click

Deselect

All.

c.

Select

to

export

the

following

resources:

v

Web

Content\FashionFlow_name\MyNewJSPTemplate.jsp

v

Web

Content\FashionFlow_name\images\male_blueshirt.gif

v

Web

Content\WEB-INF\classes\FashionFlow_name\

Tutorial_NLS_en_US.properties

v

Web

Content\WEB-INF\lib\jstl.jar

v

Web

Content\WEB-INF\lib\standard.jar
d.

Select

Create

directory

structure

for

files.

Chapter

10.

Tutorial:

Creating

new

business

logic

291

e.

In

the

Directory

field,

enter

a

temporary

directory

into

which

these

resources

will

be

placed.

For

example,

enter

C:\ExportTemp

f.

Click

Finish.

Packaging

access

control

policies

In

this

section,

you

copy

the

access

control

policies

that

were

created

for

your

new

resources

into

the

drive:\ExportTemp

directory,

as

follows:

1.

Navigate

to

the

WCDE_installdir\Commerce\xml\policies\xml

directory.

2.

Copy

the

following

files

into

the

drive:\ExportTemp\ACPolicies

directory:

v

MyNewViewACPolicy.xml

v

MyNewControllerCmdACPolicy.xml

v

SampleACPolicy_template.xml

v

SampleACPolicy_template_en_US.xml

Transferring

assets

to

your

target

WebSphere

Commerce

Server

In

this

step,

you

create

a

temporary

directory

on

the

target

WebSphere

Commerce

Server

and

then

copy

your

bonus

point

assets

into

this

directory.

In

subsequent

steps,

you

will

place

the

different

types

of

code

into

the

appropriate

place

within

your

WebSphere

Commerce

application.

To

copy

the

files

from

your

development

machine

to

your

target

WebSphere

Commerce

Server,

do

the

following:

1.

On

the

target

WebSphere

Commerce

Server,

create

a

temporary

directory

called

drive:\ImportTemp.

2.

Determine

how

you

will

copy

your

files

from

one

computer

to

another.

You

can

do

this

by

mapping

a

drive

on

the

target

WebSphere

Commerce

Server

to

the

development

machine,

or

by

using

an

FTP

application,

if

you

have

that

configured.

3.

From

the

development

machine,

copy

the

contents

of

drive:\ExportTemp

into

drive:\ImportTemp

on

the

target

WebSphere

Commerce

Server.

Stopping

your

target

WebSphere

Commerce

Server

Before

starting

the

deployment

steps,

you

should

stop

your

target

WebSphere

Commerce

Server.For

details

about

stopping

the

WebSphere

Commerce

Server,

refer

to

the

2000Business

2000Professional

WebSphere

Commerce

Studio

Installation

Guide

or

2000Express

WebSphere

Commerce

-

Express

Developer

Edition

Installation

Guide.

Updating

the

database

on

your

target

WebSphere

Commerce

Server

Before

updating

the

target

database,

verify

the

store

entity

ID

for

the

store

to

which

you

are

deploying

the

customized

logic.

The

following

SQL

statement

can

be

used

to

determine

this

value:

select

STOREENT_ID

from

STOREENT

where

IDENTITY=’FashionFlow_name’

292

Programming

Guide

and

Tutorials

where

FashionFlow_name

is

the

name

of

the

store

to

which

you

are

deploying

the

code.

Registering

the

view

2000DB2

If

you

are

using

a

DB2

database,

do

the

following

to

register

MyNewView:

1.

Open

the

DB2

Command

Center

(Start

>

Programs

>IBM

DB2

>

Command

Line

Tools

>

Command

Center).

2.

From

the

Tools

menu,

select

Tools

Settings.

3.

Select

the

Use

statement

termination

character

check

box

and

ensure

the

character

specified

is

a

semicolon

(;)

4.

Close

the

tools

settings.

5.

With

the

Script

tab

selected,

create

the

required

entry

in

the

VIEWREG

table,

by

entering

the

following

information

in

the

script

window:
connect

to

targetDB

user

dbuser

using

dbpassword;

insert

into

VIEWREG

(VIEWNAME,

DEVICEFMT_ID,

STOREENT_ID,

INTERFACENAME,

CLASSNAME,

PROPERTIES,

DESCRIPTION,

HTTPS,

LASTUPDATE)

values

(’MyNewView’,-1,

FF_storeent_ID,

’com.ibm.commerce.command.ForwardViewCommand’,

’com.ibm.commerce.command.HttpForwardViewCommandImpl’,

’docname=MyNewJSPTemplate.jsp’,’This

is

my

new

view

for

tutorial

1’,

0,

null);

where

v

targetDB

is

the

name

of

the

target

database

v

dbuser

is

the

database

user

v

dbpassword

is

the

password

of

the

database

user

v

FF_storeent_ID

is

the

unique

identifier

for

your

store

that

is

based

on

the

FashionFlow

sample

store

Click

the

Execute

icon.

Keep

the

Command

Center

open.

2000Oracle

If

you

are

using

an

Oracle

database,

do

the

following

to

register

your

view

in

the

database:

1.

Open

the

Oracle

SQL

Plus

command

window

(Start

>

Programs

>

Oracle

>

Application

Development

>

SQL

Plus).

2.

In

the

User

Name

field,

enter

your

Oracle

user

name.

3.

In

the

Password

field,

enter

your

Oracle

password.

4.

In

the

Host

String

field,

enter

your

connect

string.

5.

In

the

SQL

Plus

window,

enter

the

following

SQL

statement:

insert

into

VIEWREG

(VIEWNAME,

DEVICEFMT_ID,

STOREENT_ID,

INTERFACENAME,

CLASSNAME,

PROPERTIES,

DESCRIPTION,

HTTPS,

LASTUPDATE)

values

(’MyNewView’,-1,

FF_storeent_ID,

Chapter

10.

Tutorial:

Creating

new

business

logic

293

’com.ibm.commerce.command.ForwardViewCommand’,

’com.ibm.commerce.command.HttpForwardViewCommandImpl’,

’docname=MyNewJSPTemplate.jsp’,’This

is

my

new

view

for

tutorial

1’,

0,

null);

where

v

FF_storeent_ID

is

the

unique

identifier

for

your

store

that

is

based

on

the

FashionFlow

sample

store.

Press

Enter

to

run

the

SQL

statement.

6.

Enter

the

following

to

commit

your

database

changes:

commit;

and

press

Enter

to

run

the

SQL

statement.

MyNewView

is

now

registered.

Registering

the

new

controller

command

To

register

MyNewControllerCmd,

do

the

following:

1.

2000DB2

If

you

are

using

a

DB2

database,

do

the

following

to

register

MyNewControllerCmd:

a.

In

the

Command

Center,

with

the

Script

tab

selected,

create

the

required

entry

in

the

URLREG

table,

by

entering

the

following

information

in

the

script

window:
insert

into

URLREG

(URL,

STOREENT_ID,

INTERFACENAME,

HTTPS,

DESCRIPTION,

AUTHENTICATED)

values

(’MyNewControllerCmd’,FF_storeent_ID,

’com.ibm.commerce.sample.commands.MyNewControllerCmd’,

0,

’This

is

a

new

controller

command

for

tutorial

one.’,null);

insert

into

CMDREG

(STOREENT_ID,

INTERFACENAME,

DESCRIPTION,

CLASSNAME,

TARGET)

values

(FF_storeent_ID,

’com.ibm.commerce.sample.commands.MyNewControllerCmd’,

’This

is

a

new

controller

command

for

tutorial

one.’,

’com.ibm.commerce.sample.commands.MyNewControllerCmdImpl’,

’local’);

where

v

targetDB

is

the

name

of

the

target

database

v

dbuser

is

the

database

user

v

dbpassword

is

the

password

of

the

database

user

v

FF_storeent_ID

is

the

unique

identifier

for

your

store

that

is

based

on

the

FashionFlow

sample

store.

Click

the

Execute

icon.

Keep

the

Command

Center

open.

2.

2000Oracle

If

you

are

using

an

Oracle

database,

do

the

following

to

register

MyNewControllerCmd:

294

Programming

Guide

and

Tutorials

a.

Open

the

Oracle

SQL

Plus

command

window

(Start

>

Programs

>

Oracle

>

Application

Development

>

SQL

Plus).

b.

In

the

User

Name

field,

enter

your

Oracle

user

name.

c.

In

the

Password

field,

enter

your

Oracle

password.

d.

In

the

Host

String

field,

enter

your

connect

string.

e.

In

the

SQL

Plus

window,

enter

the

following

SQL

statement:

insert

into

URLREG

(URL,

STOREENT_ID,

INTERFACENAME,

HTTPS,

DESCRIPTION,

AUTHENTICATED)

values

(’MyNewControllerCmd’,FF_storeent_ID,

’com.ibm.commerce.sample.commands.MyNewControllerCmd’,

0,

’This

is

a

new

controller

command

for

tutorial

one.’,null);

insert

into

CMDREG

(STOREENT_ID,

INTERFACENAME,

DESCRIPTION,

CLASSNAME,

TARGET)

values

(FF_storeent_ID,

’com.ibm.commerce.sample.commands.MyNewControllerCmd’,

’This

is

a

new

controller

command

for

tutorial

one.’,

’com.ibm.commerce.sample.commands.MyNewControllerCmdImpl’,’local’);

where

v

FF_storeent_ID

is

the

unique

identifier

for

your

store

that

is

based

on

the

FashionFlow

sample

store.

Press

Enter

to

run

the

SQL

statement.

f.

Enter

the

following

to

commit

your

database

changes:

commit;

and

press

Enter

to

run

the

SQL

statement.

Creating

the

XBONUS

table

In

this

step,

you

create

the

XBONUS

table

in

the

database

used

by

your

target

WebSphere

Commerce

Server.

2000DB2

If

you

are

using

a

DB2

database,

do

the

following

to

create

the

table:

1.

In

the

Script

window,

enter

the

following:

create

table

XBONUS

(MEMBERID

BIGINT

NOT

NULL,

BONUSPOINT

INTEGER

NOT

NULL,

constraint

p_xbonus

primary

key

(MEMBERID),

constraint

f_xbonus

foreign

key

(MEMBERID)

references

users

(users_id)

on

delete

cascade)

where

v

targetDB

is

the

name

of

the

target

database

v

dbuser

is

the

database

user

v

dbpassword

is

the

password

of

the

database

user

Click

the

Execute

icon.
The

XBONUS

table

is

now

created.

Chapter

10.

Tutorial:

Creating

new

business

logic

295

2000Oracle If

you

are

using

an

Oracle

database,

do

the

following

to

create

the

table:

1.

Open

the

Oracle

SQL

Plus

command

window

(Start

>

Programs

>

Oracle

>

Application

Development

>

SQL

Plus).

2.

In

the

User

Name

field,

enter

your

Oracle

user

name.

3.

In

the

Password

field,

enter

your

Oracle

password.

4.

In

the

Host

String

field,

enter

your

connect

string.

5.

In

the

SQL

Plus

window,

enter

the

following

SQL

statement:

create

table

XBONUS

(MEMBERID

NUMBER

NOT

NULL,

BONUSPOINT

INTEGER

NOT

NULL,

constraint

p_xbonus

primary

key

(MEMBERID),

constraint

f_xbonus

foreign

key

(MEMBERID)

references

users

(users_id)

on

delete

cascade);

and

press

Enter

to

run

the

SQL

statement.

The

XBONUS

table

is

now

created.

6.

Enter

the

following

to

commit

your

database

changes:

commit;

and

press

Enter

to

run

the

SQL

statement.

Loading

access

control

policies

on

your

target

WebSphere

Commerce

Server

In

this

step,

you

load

the

access

control

policies

for

your

new

resources

onto

your

target

WebSphere

Commerce

Server.

To

load

the

new

policy,

do

the

following:

1.

Update

the

access

control

policies

to

reflect

the

values

specific

to

your

target

WebSphere

Commerce

Server,

as

follows:

a.

Determine

the

member

ID

value

for

your

FashionFlow

store,

as

follows:

v

2000DB2

If

you

are

using

a

DB2

database,

do

the

following:

1)

Connect

to

your

development

database.

2)

Issue

the

following

SQL

statement:

select

member_id

from

storeent

where

storeent_id=FF_storeent_ID

where

FF_storeent_ID

is

the

store

entity

ID

for

your

FashionFlow

store.

For

example,

you

could

enter:

select

member_id

from

storeent

where

storeent_id=10001

Make

note

of

the

member

ID

value:

v

2000Oracle

If

you

are

using

an

Oracle

database,

do

the

following:

296

Programming

Guide

and

Tutorials

1)

Open

the

Oracle

SQL

Plus

command

window

and

connect

to

your

development

database.

2)

Enter

the

following:
column

member_id

format

99999999999999999999999999999999999

(thiry-five

9’s)

This

sets

the

display

of

the

member_id

column

wide

enough

to

view

the

entire

value.

3)

Issue

the

following

SQL

statement:

select

member_id

from

storeent

where

storeent_id=FF_storeent_ID

where

FF_storeent_ID

is

the

store

entity

ID

for

your

FashionFlow

store.

For

example,

you

could

enter:

select

member_id

from

storeent

where

storeent_id=10001

Make

note

of

the

member

ID

value:

4)

Reset

the

display

width

of

the

member_id

column

by

entering

the

following:

column

member_id

clear

b.

Navigate

to

the

following

directory:
drive:\ImportTemp\ACPolicies

c.

Using

a

text

editor,

open

the

SampleACPolicy_template.xml

file

and

replace

FashionFlowMemberId

with

the

member

ID

value

for

your

Fashion

Flow

store,

as

determined

in

step

1a.

Save

your

modified

file

as

SampleACPolicy.xml.

d.

Using

a

text

editor,

open

the

SampleACPolicy_template_en_US.xml

file

and

replace

FashionFlowMemberId

with

the

member

ID

value

for

your

Fashion

Flow

store,

as

determined

in

step

1a.

Save

your

modified

file

as

SampleACPolicy_en_US.xml.
2.

Copy

the

following

access

control

policies

into

the

WC_installdir\xml\policies\xml

directory:

v

MyNewViewACPolicy.xml

v

MyNewControllerCmdACPolicy.xml

v

SampleACPolicy.xml

v

SampleACPolicy_en_US.xml
3.

At

a

command

prompt,

navigate

to

the

following

directory:
WC_installdir\bin

4.

You

must

issue

the

acpload

command,

which

has

the

following

form:

acpload

targetDB

dbuser

dbpassword

inputXMLFile

where

v

targetDB

is

the

name

of

your

development

database.

v

dbuser

is

the

name

of

the

database

user.

Chapter

10.

Tutorial:

Creating

new

business

logic

297

v

dbpassword

is

the

password

for

your

database

user.

v

inputXMLFile

is

the

XML

file

containing

the

access

control

policy

specification.

In

this

case,

specify

MyNewViewACPolicy.xml.

The

following

is

an

example

of

the

command,

with

variables

specified:

acpload

Demo_Dev

db2admin

db2admin

MyNewViewACPolicy.xml

5.

Repeat

step

4

for

each

of

the

following

access

control

policies:

v

MyNewControllerCmdACPolicy.xml

v

SampleACPolicy.xml
6.

To

load

the

policy

description

(which

is

contained

in

the

SampleACPolicy_en_US.xml

file),

you

must

issue

the

acpnlsload

command,

which

has

the

following

form:

acpnlsload

db_name

db_user

db_password

inputXMLFile

For

example,

you

may

issue

the

following

command:

acpnlsload

Demo_dev

user

password

SampleACPolicy_en_US.xml

7.

Check

the

WC_installdir\xml\policies\xml

directory

for

any

error

logs

that

might

have

been

generated

while

the

access

control

policies

were

loaded.

Updating

store

assets

on

your

target

WebSphere

Commerce

Server

In

this

step,

you

update

the

store

with

your

modified

store

assets,

as

follows:

1.

Backup

your

WAS_installdir\installedApps\cellName\WC_instanceName.ear\Stores.war

directory

(where

cellName

is

often

the

host

name

of

your

machine

and

instanceName

is

the

name

of

your

WebSphere

Commerce

instance).

2.

Navigate

to

the

drive:\ImportTemp\Stores\Web

Content

directory.

3.

Copy

the

FashionFlow_name

and

WEB-INF

folders

into

the

following

directory:
WAS_installdir\installedApps\cellName\WC_instanceName.ear\Stores.war

Updating

the

command

and

data

bean

JAR

file

on

your

target

WebSphere

Commerce

Server

In

this

step

you

update

the

target

WebSphere

Commerce

Server

to

use

the

new

command

and

data

bean

JAR

file,

as

follows:

1.

You

should

make

a

backup

copy

of

the

existing

JAR

file,

as

follows:

a.

Navigate

to

the

WAS_installdir\installedApps\cellName\WC_instanceName.ear

directory.

b.

Make

a

copy

of

the

WebSphereCommerceServerExtensionsLogic.jar

file

and

save

it

in

a

backup

location.
2.

Copy

the

new

WebSphereCommerceServerExtensionsLogic.jar

file

from

the

drive:\ImportTemp

directory

into

the

WAS_installdir\installedApps\cellName\WC_instanceName.ear

directory.

where

instanceName

is

the

name

of

your

WebSphere

Commerce

instance.

298

Programming

Guide

and

Tutorials

Updating

the

EJB

JAR

file

on

your

target

WebSphere

Commerce

Server

In

this

step

you

update

the

target

WebSphere

Commerce

Server

to

use

the

new

EJB

JAR

file,

as

follows:

1.

You

should

make

a

backup

copy

of

the

existing

JAR

file,

as

follows:

a.

Navigate

to

the

WAS_installdir\installedApps\cellName\WC_instanceName.ear

directory.

b.

Make

a

copy

of

the

WebSphereCommerceServerExtensionsData.jar

file

and

save

it

in

a

backup

location.
2.

Copy

the

new

WebSphereCommerceServerExtensionsData.jar

file

from

the

drive:\ImportTemp

directory

into

the

WAS_installdir\installedApps\cellName\WC_instanceName.ear

directory

3.

Next,

you

must

modify

the

EJB

deployment

descriptor

information,

as

follows:

a.

Locate

the

deployment

repository

(META-INF

directory)

for

this

WebSphere

Application

Server

cell.

This

typically

takes

the

following

form:
WAS_installdir\config\cells\cellName

\applications\WC_instance_name.ear\deployments\

WC_instance_name\EJBModuleName.jar\META-INF.

The

following

is

a

specific

example

of

this:
D:\WebSphere\AppServer\config\cells\myCell\applications\

WC_demo.ear\deployments\WC_demo\

WebSphereCommerceServerExtensionsData.jar\META-INF

b.

The

directory

contains

the

following

files:

v

ejb-jar.xml

v

ibm-ejb-access-bean.xmi

v

ibm-ejb-jar-bnd.xmi

v

ibm-ejb-jar-ext.xmi

v

MANIFEST.MF

Backup

all

of

these

files.

c.

Use

a

tool

to

open

the

new

WebSphereCommerceServerExtensionsData.jar

file

and

view

its

contents.

d.

Extract

the

contents

of

the

meta-inf

directory

(the

preceding

listed

files)

from

this

WebSphereCommerceServerExtensionsData.jar

file

into

the

directory

from

step

3a.

Ensure

that

the

directory

structure

remains

correct

after

you

have

extracted

the

files.
4.

Using

the

WebSphere

Application

Server

startServer

command

at

the

command

line,

restart

your

WebSphere

Commerce

instance.

Refer

to

the

WebSphere

Commerce

Installation

Guide

for

your

platform

and

database

for

more

information

about

starting

and

stopping

this

instance.

Chapter

10.

Tutorial:

Creating

new

business

logic

299

Verifying

bonus

points

logic

on

the

target

WebSphere

Commerce

Server

In

this

step,

you

verify

that

the

bonus

points

logic

has

been

successfully

deployed

to

the

target

WebSphere

Commerce

Server,

by

doing

the

following:

1.

Open

a

Web

browser

and

enter

the

URL

to

launch

your

store

that

is

based

on

the

FashionFlow

sample

store.

2.

Create

a

new

registered

user,

by

doing

the

following:

a.

Click

Register.

b.

Click

Register

again

to

create

a

new

customer.

c.

In

the

registration

form,

enter

appropriate

values

into

all

of

the

mandatory

fields.

For

example,

in

the

e-mail

field,

enter

tester@mycompany.

Make

note

of

the

value

for

the

e-mail

address:

_________________________.

d.

Once

the

values

have

been

entered,

click

Submit.
3.

Once

the

login

has

completed,

enter

the

following

URL

in

the

same

browser:

http://hostname/webapp/wcs/stores/servlet/MyNewControllerCmd?

input1=user_e-mail&input2=1000

where

hostname

is

the

host

name

and

user_e-mail

is

the

e-mail

address

for

the

user

that

you

created

in

step

2.

You

are

presented

with

a

page

that

contains

all

of

the

previous

output

parameters

as

well

as

a

new

form

that

allows

you

to

update

the

balance

of

bonus

points

for

the

user.

4.

Now,

into

the

Logon

ID

field

enter

the

user’s

e-mail

address

and

in

the

Bonus

Point

field,

enter

500.

Click

Submit.

You

are

presented

with

a

page

Figure

43.

300

Programming

Guide

and

Tutorials

similar

to

the

following

that

shows

that

the

balance

of

bonus

points

points

is

updated.

Figure

44.

Chapter

10.

Tutorial:

Creating

new

business

logic

301

302

Programming

Guide

and

Tutorials

Chapter

11.

Tutorial:

Modifying

an

existing

controller

command

The

purpose

of

this

tutorial

is

to

demonstrate

the

process

used

to

modify

an

existing

controller

command.

In

this

tutorial,

you

restrict

the

number

of

items

in

a

customer’s

shopping

cart

to

be

five

or

less.

To

implement

this

solution,

you

override

the

OrderItemAddCmdImpl

with

your

own

implementation

that

includes

logic

to

check

for

the

number

of

items

in

the

cart.

If

a

customer

attempts

to

add

a

sixth

item

to

the

shopping

cart,

an

exception

is

thrown.

This

exception

uses

a

new

error

message.

Note

that

the

purpose

of

this

tutorial

is

to

demonstrate

the

development

process

used

for

modifying

existing

command

logic.

It

is

not

meant

to

be

an

all

encompassing

example

of

restricting

items

in

the

shopping

cart.

The

logic

used

in

this

tutorial

is

simplified

for

the

sake

of

the

tutorial.

In

this

tutorial,

you

will

learn

the

following:

v

How

to

create

a

new

implementation

for

an

existing

controller

command

v

How

to

update

the

command

registry

so

that

the

new

implementation

gets

used

in

your

application

v

How

to

deploy

a

modified

controller

command

to

an

existing

WebSphere

Commerce

application

Prerequisites

This

tutorial

does

not

require

that

you

have

completed

Chapter

10,

“Tutorial:

Creating

new

business

logic,”

on

page

217.

If

you

have

completed

that

tutorial,

there

is

no

harm

in

leaving

the

code

in

your

workspace,

as

it

will

not

conflict

with

this

tutorial.

Before

starting

this

tutorial,

you

must

have

published

a

store

based

upon

the

FashionFlow

sample

store.

Within

this

store,

you

must

be

able

to

complete

a

purchase

(for

example,

browse

the

catalog,

add

items

to

the

shopping

cart,

checkout

and

see

the

order

confirmation).

In

order

to

complete

the

deployment

steps,

the

store

must

also

exist

on

the

target

WebSphere

Commerce

Server.

©

Copyright

IBM

Corp.

2000,

2003

303

Creating

the

new

MyOrderItemAddCmdImpl

class

In

this

step

in

the

tutorial,

you

create

a

new

MyOrderItemAddCmdImpl

class.

To

create

this

class,

do

the

following:

1.

In

WebSphere

Studio

Application

Developer,

open

the

Java

perspective

(Window

>

Open

Perspective

>

Java).

2.

Navigate

to

the

WebSphereCommerceServerExtensionsLogic

project.

3.

Navigate

to

the

src

directory.

4.

If

you

have

not

completed

Chapter

10,

“Tutorial:

Creating

new

business

logic,”

on

page

217,

right-click

the

src

directory

and

select

New

>

Package.
The

New

Java

Package

wizard

opens.

In

this

wizard,

do

the

following:

a.

In

the

Name

field,

enter

com.ibm.commerce.sample.commands.

b.

Click

Finish.
5.

Right-click

the

com.ibm.commerce.sample.commands

package.

Select

New

>

Class.
The

New

Java

Class

wizard

opens.

6.

In

the

New

Java

Class

wizard,

do

the

following:

a.

In

the

Name

field,

enter

MyOrderItemAddCmdImpl.

b.

To

specify

the

superclass,

click

the

Browse

button

beside

the

Superclass

field

and

then

enter

OrderItemAddCmdImpl.

Click

OK.

c.

To

specify

which

interface

to

implement,

click

Add,

then

enter

OrderItemAddCmd

and

click

OK.

d.

Click

Finish.

The

source

code

for

the

MyOrderItemAddCmdImpl

class

is

displayed.

The

next

step

is

to

update

the

import

statements

in

this

class,

as

follows:

1.

In

the

Outline

view,

select

and

open

import

declarations.

You

will

find

that

there

are

two

import

statements

already

created.

2.

Into

the

source

code

for

the

import

statements,

add

the

following

import

statements:

import

com.ibm.commerce.exception.ECApplicationException;

import

com.ibm.commerce.exception.ECException;

import

com.ibm.commerce.exception.ECSystemException;

import

com.ibm.commerce.order.objects.OrderAccessBean;

import

com.ibm.commerce.ras.ECMessage;

import

com.ibm.commerce.sample.messages.MyNewMessages;

3.

Save

your

changes.

The

next

step

is

to

add

the

business

logic

and

exception

handling

to

determine

if

there

are

more

than

five

items

in

the

customer’s

shopping

cart

before

adding

any

more

order

items.

Update

the

code,

as

follows:

304

Programming

Guide

and

Tutorials

1.

In

the

Outline

view,

select

the

MyOrderItemAddCmdImpl

class

and

view

its

source

code.

It

currently

only

has

the

following:

public

class

MyOrderItemAddCmdImpl

extends

OrderItemAddCmdImpl

implements

OrderItemAddCmd

{

}

2.

You

must

add

a

new

performExecute

method

to

this

class.

This

method

contains

the

logic

to

check

the

number

of

items

in

the

shopping

cart,

and

if

the

number

is

less

than

five,

the

regular

performExecute

method

of

the

superclass

(OrderItemAddCmdImpl)

will

be

called,

as

normal.

If

there

are

five

or

more

items,

an

exception

is

thrown

and

the

user

cannot

add

more

items

to

the

cart.

To

add

this

method,

copy

the

following

source

code

into

the

class

(ensure

that

it

is

included

before

the

last

closing

brace

“}”

denoting

the

end

of

the

class):

public

void

performExecute()

throws

ECException

{

//

Get

a

list

of

order

ids

String[]

orderIds

=

getOrderId();

//

Check

to

make

sure

that

an

id

exists

at

all

//

if

order

id

exists

then

get

number

of

items

in

the

order

//

else

if

no

order

id

exists

then

execute

normal

code

if

(orderIds

!=

null

&&

orderIds.length

>

0)

{

//

An

exception

should

be

thrown

when

trying

to

add

a

sixth

item

//

to

the

cart.

Since

this

code

is

run

before

any

items

are

added

//

throw

and

exception

if

there

are

5

or

more

items

in

the

cart

if

(itemsInOrder(orderIds[0])

>=

5)

{

throw

new

ECApplicationException(

MyNewMessages._ERR_TOO_MANY_ITEMS,

this.getClass().getName(),

"performExecute");

}

//else

perform

normal

flow

}

super.performExecute();

}

//get

number

of

items

in

the

order

protected

int

itemsInOrder(String

orderId)

throws

ECException

{

try

{

OrderAccessBean

order

=

new

OrderAccessBean();

order.setInitKey_orderId(orderId);

order.refreshCopyHelper();

return

order.getOrderItems().length;

}

catch

(javax.ejb.FinderException

e)

{

throw

new

ECSystemException(

ECMessage._ERR_FINDER_EXCEPTION,

this.getClass().getName(),

"itemsInOrder");

}

catch

(javax.naming.NamingException

e)

{

throw

new

ECSystemException(

ECMessage._ERR_NAMING_EXCEPTION,

this.getClass().getName(),

Chapter

11.

Tutorial:

Modifying

an

existing

controller

command

305

"itemsInOrder");

}

catch

(java.rmi.RemoteException

e)

{

throw

new

ECSystemException(

ECMessage._ERR_REMOTE_EXCEPTION,

this.getClass().getName(),

"itemsInOrder");

}

catch

(javax.ejb.CreateException

e)

{

throw

new

ECSystemException(

ECMessage._ERR_CREATE_EXCEPTION,

this.getClass().getName(),

"itemsInOrder");

}

}

After

you

have

pasted

the

new

code

into

the

class,

right-click

in

the

source

code

and

select

Format

to

format

the

code.

3.

Save

your

work.

Note:

There

are

warnings

indicating

that

message

information

is

missing.

This

will

be

corrected

in

subsequent

steps.

Creating

message

information

The

new

command

implementation

uses

a

new

error

message:

_ERR_TOO_MANY_ITEMS.

In

this

section,

you

create

the

code

for

that

new

message

and

its

associated

properties

file.

To

import

this

code,

do

the

following:

1.

Expand

the

WebSphereCommerceServerExtensionsLogic

project.

2.

Right-click

the

src

directory

and

select

New

>

Package.
The

New

Java

Package

wizard

opens.

In

this

wizard,

do

the

following:

a.

In

the

Name

field,

enter

com.ibm.commerce.sample.messages.

b.

Click

Finish.
3.

Right-click

the

com.ibm.commerce.sample.messages

package.

Select

New

>

Class.
The

New

Java

Class

wizard

opens.

4.

In

the

New

Java

Class

wizard,

do

the

following:

a.

In

the

Name

field,

enter

MyNewMessages.

b.

Click

Finish.
5.

Double-click

the

MyNewMessages

class

to

view

its

source

code.

6.

Immediately

preceding

the

public

class

MyNewMessages

line

of

code,

add

the

following

import

statements:

import

com.ibm.commerce.ras.ECMessage;

import

com.ibm.commerce.ras.ECMessageSeverity;

import

com.ibm.commerce.ras.ECMessageType;

306

Programming

Guide

and

Tutorials

7.

Within

the

class,

add

the

following

code:

//

Resouce

bundle

used

to

extract

the

text

for

an

exception

static

final

String

errorBundle

=

"MyNewErrorMessages";

//

An

ECMessage

is

used

to

describe

an

ECException

and

is

passed

//

into

the

ECException

when

thrown

public

static

final

ECMessage

_ERR_TOO_MANY_ITEMS

=

new

ECMessage(ECMessageSeverity.ERROR,

ECMessageType.USER,

MyNewMessageKeys._ERR_TOO_MANY_ITEMS,

errorBundle);

8.

Save

your

changes.

9.

Right-click

the

com.ibm.commerce.sample.messages

package.

Select

New

>

Class.
The

New

Java

Class

wizard

opens.

10.

In

the

New

Java

Class

wizard,

do

the

following:

a.

In

the

Name

field,

enter

MyNewMessageKeys.

b.

Click

Finish.
11.

Define

the

code

in

the

class

to

be

the

following:

public

class

MyNewMessageKeys

{

//

This

class

defines

the

keys

used

to

create

new

exceptions

that

are

//

thrown

by

customized

code.

public

static

final

String

_ERR_TOO_MANY_ITEMS

=

"_ERR_TOO_MANY_ITEMS";

}

12.

Save

your

changes.

13.

Compile

your

code,

by

right-clicking

the

WebSphereCommerceServerExtensionsLogic

project

and

selecting

Build

Project.

14.

Create

the

new

properties

file

that

will

contain

the

message

information,

as

follows:

a.

Open

the

Web

perspective

(Window

>

Open

Perspective

>

Web).

b.

Within

the

Stores

Web

project,

expand

the

Web

Content

>

WEB-INF

>

classes

folders.

c.

Right-click

the

classes

folder

and

select

New

>

Other

>

Simple

>

File

>

Next

to

create

a

new

properties

file.
The

New

File

window

opens.

d.

In

the

File

name

field,

enter

MyNewErrorMessages.properties,

then

click

Finish.
The

new

empty

file

opens.

e.

Into

the

new

file,

copy

the

following

text:

_ERR_TOO_MANY_ITEMS=You

are

trying

to

place

too

many

different

items

in

one

shopping

cart.

Note:

The

line

break

in

the

preceding

code

is

for

presentation

purposes

only.

Enter

your

text

on

a

single

line.

f.

Save

your

changes.

Chapter

11.

Tutorial:

Modifying

an

existing

controller

command

307

Modifying

the

command

registry

In

this

step,

you

modify

the

command

registry

so

that

the

new

MyOrderItemAddCmdImpl

implementation

class

gets

used

instead

of

the

original

OrderItemAddCmdImpl

implementation

class.

The

only

table

in

the

command

registry

that

needs

to

be

modified

is

the

CMDREG

table.

In

this

case,

the

new

implementation

class

is

used

for

all

stores.

To

modify

the

command

registry,

do

the

following:

1.

2000DB2

If

you

are

using

a

DB2

database,

do

the

following

to

register

MyOrderItemAddCmdImpl:

a.

Open

the

DB2

Command

Center

(Start

>

Programs

>IBM

DB2

>

Command

Center).

b.

From

the

Tools

menu,

select

Tools

Settings.

c.

Select

the

Use

statement

termination

character

check

box

and

ensure

the

character

specified

is

a

semicolon

(;)

d.

With

the

Script

tab

selected,

create

the

required

entry

in

the

URLREG

table,

by

entering

the

following

information

in

the

script

window:
connect

to

developmentDB

user

dbuser

using

dbpassword;

update

CMDREG

set

CLASSNAME=‘com.ibm.commerce.sample.commands.MyOrderItemAddCmdImpl’

WHERE

INTERFACENAME=

‘com.ibm.commerce.orderitems.commands.OrderItemAddCmd’

and

storeent_Id=0;

where

v

developmentDB

is

the

name

of

your

development

database

v

dbuser

is

the

database

user

v

dbpassword

is

the

password

for

your

database

user

Click

the

Execute

icon.

2.

2000Oracle

If

you

are

using

an

Oracle

database,

do

the

following

to

register

MyOrderItemAddCmdImpl:

a.

Open

the

Oracle

SQL

Plus

command

window

(Start

>

Programs

>

Oracle

>

Application

Development

>

SQL

Plus).

b.

In

the

User

Name

field,

enter

your

Oracle

user

name.

c.

In

the

Password

field,

enter

your

Oracle

password.

d.

In

the

Host

String

field,

enter

your

connect

string.

e.

In

the

SQL

Plus

window,

enter

the

following

SQL

statement:

update

CMDREG

set

CLASSNAME=‘com.ibm.commerce.sample.commands.MyOrderItemAddCmdImpl’

WHERE

INTERFACENAME=

‘com.ibm.commerce.orderitems.commands.OrderItemAddCmd’

and

storeent_Id=0;

308

Programming

Guide

and

Tutorials

Press

Enter

to

run

the

SQL

statement.

f.

Enter

the

following

to

commit

your

database

changes:

commit;

and

press

Enter

to

run

the

SQL

statement.

Testing

the

MyOrderItemAddCmdImpl

command

The

next

step

is

to

test

to

ensure

the

new

logic

is

functioning

well.

To

test

this,

you

should

be

able

to

successfully

add

five

items

to

the

shopping

cart,

but

expect

an

error

to

be

thrown

when

you

attempt

to

add

a

sixth

item

to

the

cart.

To

test

your

new

business

logic,

do

the

following:

1.

Switch

to

the

Server

perspective

(Window

>

Open

Perspective

>

Server).

2.

Right-click

the

WebSphereCommerceServer

server

and

select

Start

(or

Restart).

3.

Right-click

index.jsp

under

the

Stores\Web

Content\FashionFlow_name

directory

and

select

Run

on

Server.
The

store

home

page

is

displayed

in

the

Web

browser.

4.

Shop

through

the

store

and

add

five

items

to

the

shopping

cart.

After

adding

the

fifth

item,

you

will

have

a

shopping

cart

that

is

similar

to

the

following:

Chapter

11.

Tutorial:

Modifying

an

existing

controller

command

309

5.

Click

Continue

Shopping

and

select

another

item.

For

this

selected

item,

click

Add

to

shopping

cart.

You

are

presented

with

the

following

error

page:

Figure

45.

310

Programming

Guide

and

Tutorials

View

the

source

for

the

error

page.

In

the

source,

scroll

down

to

find

the

following

error

information:

Message

Key:

_ERR_TOO_MANY_ITEMS

Message:

You

are

trying

to

place

too

many

different

items

in

one

shopping

cart

Deploying

MyOrderItemAddCmdImpl

In

this

step,

you

deploy

the

modified

business

logic

to

a

target

WebSphere

Commerce

Server.

In

this

case,

deployment

consists

of

the

following

high-level

steps:

1.

Creating

the

JAR

file

that

contains

the

command

logic

and

error

classes.

2.

Exporting

the

error

message

properties

file.

3.

Transferring

the

assets

to

the

target

WebSphere

Commerce

Server.

Figure

46.

Chapter

11.

Tutorial:

Modifying

an

existing

controller

command

311

4.

Updating

the

command

registry

on

the

target

WebSphere

Commerce

Server.

5.

Validating

the

new

logic

on

the

target

WebSphere

Commerce

Server.

Creating

the

command

JAR

file

Following

the

WebSphere

Commerce

code

customization

strategy,

customized

commands

and

data

beans

are

placed

in

the

WebSphereCommerceServerExtensionsLogic

project.

As

a

result,

when

it

comes

time

to

deploy

customized

code,

you

will

notice

that

you

include

previously

customized

code

in

your

JAR

file.

For

example,

if

you

have

completed

the

Chapter

10,

“Tutorial:

Creating

new

business

logic,”

on

page

217,

you

will

notice

that

when

you

create

the

JAR

file

to

deploy

the

MyOrderItemAddCmdImpl

class,

you

include

the

previously

created

MyNewControllerCmd

and

other

classes.

To

create

the

JAR

file

that

contains

the

MyOrderItemAddCmdImpl

class,

perform

the

following

steps

on

your

development

machine:

1.

Create

a

directory

on

your

local

file

system

called

drive:\ExportTemp2.

2.

Open

WebSphere

Studio

Application

Developer

and

switch

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

3.

Right-click

the

WebSphereCommerceServerExtensionsLogic

project

and

select

Export.
The

Export

wizard

opens.

4.

In

the

Export

wizard,

do

the

following:

a.

Select

JAR

file

and

click

Next.

b.

The

left

pane

under

Select

the

resources

to

export

is

prepopulated

with

the

name

of

the

project.

Leave

this

value

as

is.

c.

In

the

right

pane

ensure

that

only

the

following

resources

are

selected:

v

.classpath

v

.project

v

.serverPreference
d.

Ensure

that

Export

generated

class

files

and

resources

is

selected.

e.

Do

not

select

Export

Java

source

files

and

resources.

f.

In

the

Select

the

export

destination

field,

enter

the

fully-qualified

JAR

file

name

to

use.

In

this

case,

enter

drive:\ExportTemp2\WebSphereCommerceServerExtensionsLogic.jar.

Note

that

the

JAR

file

name

must

be

WebSphereCommerceServerExtensionsLogic.jar.

g.

Click

Finish.

312

Programming

Guide

and

Tutorials

Exporting

the

message

properties

file

In

this

section,

you

export

the

properties

file

that

contains

the

text

for

the

new

message,

as

follows:

1.

Switch

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

2.

Expand

the

Stores

folder.

3.

Right-click

the

Web

Content

folder

and

select

Export.
The

Export

Wizard

opens.

4.

In

the

Export

wizard,

do

the

following:

a.

Select

File

system

and

click

Next.

b.

Click

Deselect

All.

c.

Select

to

export

the

following

resource:

Web

Content\WEB-INF\classes\MyNewErrorMessages.properties

d.

Select

Create

directory

structure

for

files.

e.

In

the

Directory

field,

enter

a

temporary

directory

into

which

these

resources

will

be

placed.

For

example,

enter

C:\ExportTemp2

f.

Click

Finish.

Transferring

assets

to

the

target

WebSphere

Commerce

Server

In

this

step,

you

create

a

temporary

directory

on

the

target

WebSphere

Commerce

Server

and

then

copy

your

MyOrderItemAddCmdImpl

assets

into

this

directory.

To

copy

the

files

from

your

development

machine

to

your

target

WebSphere

Commerce

Server,

do

the

following:

1.

On

the

target

WebSphere

Commerce

Server,

create

a

temporary

directory

called

drive:\ImportTemp2.

2.

Determine

how

you

will

copy

your

files

from

one

computer

to

another.

You

can

do

this

by

mapping

a

drive

on

the

target

WebSphere

Commerce

Server

to

the

development

machine,

or

by

using

an

FTP

application,

if

you

have

that

configured.

3.

From

the

development

machine,

copy

the

contents

of

drive:\ExportTemp2

into

drive:\ImportTemp2

on

the

target

WebSphere

Commerce

Server.

Stopping

your

target

WebSphere

Commerce

Server

Before

starting

the

deployment

steps,

you

should

stop

your

target

WebSphere

Commerce

Server.

For

details

about

stopping

your

target

WebSphere

Commerce

Server,

refer

to

the

2000Business

2000Professional

WebSphere

Commerce

Studio

Installation

Guide

or

2000Express

WebSphere

Commerce

-

Express

Developer

Edition

Installation

Guide.

Chapter

11.

Tutorial:

Modifying

an

existing

controller

command

313

Updating

the

database

on

the

target

WebSphere

Commerce

Server

In

this

step,

you

modify

the

command

registry

so

that

it

will

use

your

new

MyOrderItemAddCmdImpl

implementation

class.

2000DB2

If

you

are

using

a

DB2

database,

do

the

following

to

register

MyOrderItemAddCmdImpl:

1.

Open

the

DB2

Command

Center

(Start

>

Programs

>IBM

DB2

>

Command

Center).

2.

From

the

Tools

menu,

select

Tools

Settings.

3.

Select

the

Use

statement

termination

character

check

box

and

ensure

the

character

specified

is

a

semicolon

(;)

4.

Close

the

tools

settings.

5.

With

the

Script

tab

selected,

create

the

required

entry

in

the

CMDREG

table,

by

entering

the

following

information

in

the

script

window:
connect

to

targetDB

user

dbuser

using

dbpassword;

update

CMDREG

set

CLASSNAME=‘com.ibm.commerce.sample.commands.MyOrderItemAddCmdImpl’

WHERE

INTERFACENAME=

‘com.ibm.commerce.orderitems.commands.OrderItemAddCmd’

and

storeent_Id=0;

where

v

targetDB

is

the

name

of

the

database

used

by

your

target

WebSphere

Commerce

Server

v

dbuser

is

the

database

user

v

dbpassword

is

the

database

password

Click

the

Execute

icon.

2000Oracle

If

you

are

using

an

Oracle

database,

do

the

following

to

register

MyOrderItemAddCmdImpl:

1.

Open

the

Oracle

SQL

Plus

command

window

(Start

>

Programs

>

Oracle

>

Application

Development

>

SQL

Plus).

2.

In

the

User

Name

field,

enter

your

Oracle

user

name.

3.

In

the

Password

field,

enter

your

Oracle

password.

4.

In

the

Host

String

field,

enter

your

connect

string.

5.

In

the

SQL

Plus

window,

enter

the

following

SQL

statement:

update

CMDREG

set

CLASSNAME=‘com.ibm.commerce.sample.commands.MyOrderItemAddCmdImpl’

WHERE

INTERFACENAME=

‘com.ibm.commerce.orderitems.commands.OrderItemAddCmd’

and

storeent_Id=0;

Press

Enter

to

run

the

SQL

statement.

314

Programming

Guide

and

Tutorials

6.

Enter

the

following

to

commit

your

database

changes:

commit;

and

press

Enter

to

run

the

SQL

statement.

Updating

the

command

JAR

file

on

the

target

WebSphere

Commerce

Server

In

this

step

you

update

the

target

WebSphere

Commerce

Server

to

use

the

JAR

file

that

contains

the

new

MyOrderItemAddCmdImpl,

as

follows:

1.

Using

the

WebSphere

Application

Server

stopServer

command

at

a

command

line,

stop

your

WebSphere

Commerce

instance.

Refer

to

the

WebSphere

Commerce

Installation

Guide

for

your

platform

and

database

for

information

about

starting

and

stopping

this

instance,

if

required.

2.

You

should

make

a

backup

copy

of

the

existing

JAR

file,

as

follows:

a.

Navigate

to

the

WAS_installdir\installedApps\cellName\WC_instanceName.ear

directory,

where

cellName

is

usually

the

host

name

of

the

machine

b.

Make

a

copy

of

the

WebSphereCommerceServerExtensionsLogic.jar

file

and

save

it

in

a

backup

location.
3.

Copy

the

new

WebSphereCommerceServerExtensionsLogic.jar

file

from

the

drive:\ImportTemp2

directory

into

the

WAS_installdir\installedApps\cellName\WC_instanceName.ear

directory.

where

instanceName

is

the

name

of

your

WebSphere

Commerce

instance.

Updating

the

message

properties

on

the

target

WebSphere

Commerce

Server

In

this

step,

you

add

the

new

message

properties

file

to

the

application,

as

follows:

1.

Backup

your

WAS_installdir\installedApps\cellName\WC_instanceName.ear\Stores.war

directory

(where

cellName

is

often

the

host

name

of

your

machine

and

instanceName

is

the

name

of

your

WebSphere

Commerce

instance).

2.

Navigate

to

the

drive:\ImportTemp\Stores\Web

Content

directory.

3.

Copy

the

WEB-INF

folder

into

the

following

directory:
WAS_installdir\installedApps\cellName\WC_instanceName.ear\Stores.war

4.

Using

the

WebSphere

Application

Server

startServer

command

at

a

command

line,

restart

your

WebSphere

Commerce

instance.

where

instanceName

is

the

name

of

your

WebSphere

Commerce

instance.

Verifying

the

MyOrderItemAddCmdImpl

logic

on

the

target

WebSphere

Commerce

Server

In

this

step,

you

perform

a

quick

check

to

verify

that

the

code

is

working

well,

once

it

has

been

deployed.

Chapter

11.

Tutorial:

Modifying

an

existing

controller

command

315

To

verify

the

code,

do

the

following:

1.

Open

a

Web

browser

and

launch

your

FashionFlow

store.

For

example,

enter

the

following

URL

to

launch

the

store:

http://hostname/webapp/wcs/stores/servlet/FashionFlow/index.jsp

where

hostname

is

the

host

name

for

your

instance.

2.

Shop

through

the

store

and

add

five

items

to

the

shopping

cart.

After

adding

the

fifth

item,

you

will

have

a

shopping

cart

that

is

similar

to

the

following:

316

Programming

Guide

and

Tutorials

3.

Click

Continue

Shopping

and

select

another

item.

For

this

selected

item,

click

Add

to

shopping

cart.

You

are

presented

with

the

following

error

page:

Figure

47.

Chapter

11.

Tutorial:

Modifying

an

existing

controller

command

317

View

the

source

for

the

error

page.

Scroll

down

in

the

source

and

you

will

find

that

the

message

key

for

the

error

is

_ERR_TOO_MANY_ITEMS.

Figure

48.

318

Programming

Guide

and

Tutorials

Chapter

12.

Tutorial:

Extending

the

object

model

and

modifying

an

existing

task

command

In

this

tutorial,

you

address

a

requirement

to

collect

gift

card

information

for

orders.

The

information

that

must

be

collected

includes

the

name

of

the

recipient,

the

name

of

the

sender

and

two

messages.

The

information

is

to

be

collected

when

the

customer

submits

the

order.

As

the

information

for

the

gift

card

must

be

stored

in

the

database,

it

is

clear

that

a

new

database

table

is

required.

Since

this

is

an

extension

to

the

order

process,

there

are

two

possible

ways

that

the

object

model

can

be

modified.

Typically,

you

could

either

modify

an

existing

WebSphere

Commerce

public

entity

bean

and

map

new

fields

in

the

modified

bean

to

the

new

table,

or

you

can

create

a

new

entity

bean

that

maps

directly

to

the

new

table.

As

this

approach

would

require

you

to

extend

the

Order

entity

bean

and

this

bean

uses

a

″find

for

update″

type

of

SQL

query,

you

cannot

extend

the

bean

in

this

manner.

As

such,

this

is

a

case

in

which

you

must

create

a

new

entity

bean

that

maps

to

the

new

table.

In

addition

to

the

new

entity

bean,

the

existing

ExtOrderProcessCmdImpl

task

command

is

extended.

The

extension

is

used

to

instantiate

a

new

data

bean

that

corresponds

to

the

new

table

and

it

is

used

to

update

the

gift

information

in

the

database.

This

tutorial

includes

the

following

high-level

tasks:

1.

Creating

and

populating

the

new

XORDGIFT

table

2.

Creating

the

new

OrderGift

entity

bean

3.

Creating

the

XORDGIFT

schema

4.

Creating

the

table

definition

and

mapping

the

fields

in

the

OrderGift

entity

bean

to

the

columns

in

the

XORDGIFT

table

5.

Generating

the

deployed

code

and

access

bean

for

the

OrderGift

bean

6.

Creating

the

new

OrderGiftDataBean

7.

Creating

the

new

MyExtOrderProcessCmdImpl

task

command

implementation

8.

Modifying

the

OrderSubmitForm.jsp

to

collect

the

message

information

and

modifying

the

OrderDetailDisplayForm.jsp

to

display

the

message

information.

9.

Testing

the

modified

code

©

Copyright

IBM

Corp.

2000,

2003

319

Prerequisites

This

tutorial

does

not

require

that

you

have

completed

tutorials.

If

you

have

completed

those

tutorials,

there

is

no

harm

in

leaving

the

code

in

your

workspace,

as

it

will

not

conflict

with

this

tutorial.

Before

starting

this

tutorial,

you

must

have

published

a

store

based

upon

the

FashionFlow

sample

store.

Within

this

store,

you

must

be

able

to

complete

a

purchase

(for

example,

browse

the

catalog,

add

items

to

the

shopping

cart,

checkout

and

see

the

order

confirmation).

Creating

and

populating

the

XORDGIFT

table

In

this

step,

you

create

the

XORDGIFT

table.

2000DB2

If

you

are

using

a

DB2

database,

do

the

following

to

create

the

table:

1.

Open

the

DB2

Command

Center

(Start

>

Programs

>

IBM

DB2

>

Command

Line

Tools

>

Command

Center)

and

click

the

Script

tab.

2.

In

the

Script

window,

enter

the

following:

connect

to

developmentDB

user

dbuser

using

dbpassword;

create

table

XORDGIFT

(ORDERSID

bigint

not

null,

RECEIPTNAME

varchar(50),

SENDERNAME

varchar(50),

MSGFIELD1

varchar(50),

MSGFIELD2

varchar(50),

constraint

p_xordgift

primary

key

(ORDERSID),

constraint

f_xordgift

foreign

key

(ORDERSID)

references

ORDERS(ORDERS_ID)

on

delete

cascade);

insert

into

XORDGIFT

(ORDERSID)

(select

ORDERS_ID

from

ORDERS);

where

v

developmentDB

is

the

name

of

your

development

database

v

dbuser

is

the

database

user

v

dbpassword

is

the

password

for

your

database

user

Click

the

Execute

icon.
The

XORDGIFT

table

is

now

created.

2000Oracle

If

you

are

using

an

Oracle

database,

do

the

following

to

create

the

table:

1.

Open

the

Oracle

SQL

Plus

command

window

(Start

>

Programs

>

Oracle

>

Application

Development

>

SQL

Plus).

2.

In

the

User

Name

field,

enter

your

Oracle

user

name.

3.

In

the

Password

field,

enter

your

Oracle

password.

4.

In

the

Host

String

field,

enter

your

connect

string.

5.

In

the

SQL

Plus

window,

enter

the

following

SQL

statements:

320

Programming

Guide

and

Tutorials

create

table

XORDGIFT

(ORDERSID

NUMBER

NOT

NULL,

RECEIPTNAME

VARCHAR(50),

SENDERNAME

VARCHAR(50),

MSGFIELD1

VARCHAR(50),

MSGFIELD2

VARCHAR(50),

constraint

p_xordgift

primary

key

(ORDERSID),

constraint

f_xordgift

foreign

key

(ORDERSID)

references

ORDERS(ORDERS_ID)

on

delete

cascade);

insert

into

XORDGIFT

(ORDERSID)

(select

ORDERS_ID

from

ORDERS);

and

press

Enter

to

run

the

SQL

statement.

The

XORDGIFT

table

is

now

created.

Note:

You

must

issue

the

following

command

before

creating

the

XORDGIFT

table,

if

anyone

has

previously

run

this

example

using

this

database:

drop

table

XORDGIFT;

6.

Enter

the

following

to

commit

your

database

changes:

commit;

and

press

Enter

to

run

the

SQL

statement.

Creating

the

OrderGift

entity

bean

Once

the

database

table

has

been

created,

you

are

ready

to

begin

creating

the

new

entity

bean.

The

next

steps

use

WebSphere

Studio

Application

Developer

to

create

this

bean.

Next

you

create

the

new

OrderGift

bean,

by

doing

the

following:

1.

Start

WebSphere

Commerce

development

environment

as

follows:

v

2000Business

2000Professional

Start

>

Programs

>

IBM

WebSphere

Commerce

Studio

>

WebSphere

Commerce

development

environment

v

2000Express

2000Express

Start

>

Programs

>

IBM

WebSphere

-

Express

Developer

Edition

>

WebSphere

Commerce

development

environment

2.

Open

the

J2EE

Perspective.

3.

Within

the

J2EE

Hierarchy

view,

expand

EJB

Modules.

4.

Right-click

the

WebSphereCommerceServerExtensionsData

module

and

select

New

>

Enterprise

Bean.
The

Enterprise

Bean

Creation

wizard

opens.

5.

From

the

EJB

Project

drop-down

list,

select

WebSphereCommerceServerExtensionsData

and

click

Next.

6.

In

the

Create

an

Enterprise

Bean

window,

do

the

following:

a.

Select

Entity

bean

with

container-managed

persistence

(CMP)

fields

b.

In

the

Bean

name

field,

enter

OrderGift.

c.

In

the

Source

folder

field,

leave

the

default

value

that

is

specified

(ejbModule).

Chapter

12.

Tutorial:

Extending

the

object

model

and

modifying

an

existing

task

command

321

d.

In

the

Default

package

field,

enter

com.ibm.commerce.extension.objects.

e.

Click

Next.
7.

In

the

CMP

Attributes

window,

do

the

following:

a.

Click

Add

to

add

new

fields

for

the

following

columns

in

the

table:

v

ORDERSID

v

RECEIPTNAME

v

SENDERNAME

v

MSGFIELD1

v

MSGFIELD2

The

Create

CMP

Attribute

window

opens.

In

this

window,

do

the

following:

1)

Create

the

ordersId

field,

as

follows:

Table

12.

Parameter

Name

Parameter

Value

Name

ordersId

Type

java.lang.Long

Note:

You

must

use

the

java.lang.Long

data

type,

not

the

long

data

type.

Key

Field

Select

Click

Apply.

2)

Create

the

receiptName

field,

as

follows:

Table

13.

Parameter

Name

Parameter

Value

Name

receiptName

Type

java.lang.String

Access

with

getter

and

setter

methods

Select

Promote

getter

and

setter

methods

to

remote

interface

Clear

Click

Apply.

3)

Create

the

senderName

field,

as

follows:

Table

14.

Parameter

Name

Parameter

Value

Name

senderName

Type

java.lang.String

322

Programming

Guide

and

Tutorials

Table

14.

(continued)

Parameter

Name

Parameter

Value

Access

with

getter

and

setter

methods

Select

Promote

getter

and

setter

methods

to

remote

interface

Clear

Click

Apply.

4)

Create

the

msgField1

field,

as

follows:

Table

15.

Parameter

Name

Parameter

Value

Name

msgField1

Type

java.lang.String

Access

with

getter

and

setter

methods

Select

Promote

getter

and

setter

methods

to

remote

interface

Clear

Click

Apply.

5)

Create

the

msgField2

field,

as

follows:

Table

16.

Parameter

Name

Parameter

Value

Name

msgField2

Type

java.lang.String

Access

with

getter

and

setter

methods

Select

Promote

getter

and

setter

methods

to

remote

interface

Clear

Click

Apply.

6)

Click

Close

to

close

this

window.
b.

Clear

the

Use

the

single

key

attribute

type

for

the

key

class

check

box,

then

click

Next.
8.

In

the

EJB

Java

Class

Details

window,

do

the

following:

a.

To

select

the

bean’s

superclass,

click

Browse.
The

Type

Selection

window

opens.

b.

In

the

Select

a

class

using:

(any)

field,

enter

ECEntityBean

and

click

OK.

This

selects

the

com.ibm.commerce.base.objects.ECEntityBean

as

the

superclass.

c.

Click

Finish.

Set

the

isolation

level

for

the

new

bean,

by

doing

the

following:

Chapter

12.

Tutorial:

Extending

the

object

model

and

modifying

an

existing

task

command

323

1.

In

the

J2EE

Hierarchy

view,

expand

EJB

Modules.

2.

Double-click

the

WebSphereCommerceServerExtensionsData

project

to

open

it

with

the

Deployment

Descriptor

Editor.

3.

Click

the

Access

tab.

4.

Click

Add

next

to

the

Isolation

Level

text

box.
The

Add

Isolation

Level

window

opens.

5.

2000DB2

Select

Repeatable

Read,

then

click

Next.
2000DB2

2000400

Select

Read

Committed,

then

click

Next.
2000Oracle

Select

Read

Committed,

then

click

Next

6.

Select

the

OrderGift

bean,

then

click

Next.

7.

Select

OrderGift

to

select

all

of

its

methods,

and

click

Finish.

8.

Save

your

work

(Ctrl+S).

Next

set

the

security

identity

of

the

bean,

by

doing

the

following:

1.

In

the

Deployment

Descriptor

editor,

select

the

Access

tab.

2.

Click

Add

next

to

the

Security

Identity

(Method

level)

text

box.
The

Add

Security

Identity

window

opens.

3.

Select

Use

identity

of

EJB

server,

then

click

Next.

4.

Select

the

OrderGift

bean,

then

click

Next.

5.

Select

OrderGift

to

select

all

of

its

methods,

and

click

Finish.

6.

Save

your

work

(Ctrl+S)

and

keep

the

editor

open.

Next,

set

the

security

role

for

the

methods

in

the

bean,

by

doing

the

following:

1.

In

the

Deployment

Descriptor

editor,

select

the

Assembly

Descriptor

tab.

2.

In

the

Method

permissions

section,

click

Add.

3.

Select

WCSecurityRole

as

the

security

role

and

click

Next.

4.

From

the

list

of

beans

found,

select

OrderGift

and

click

Next.

5.

In

the

Method

elements

page,

click

Apply

to

All,

then

click

Finish.

6.

Save

your

work

(Ctrl+S)

and

close

the

deployment

descriptor

editor.

The

next

step

is

to

remove

the

fields

and

methods

related

to

the

entity

context

that

are

generated

by

WebSphere

Studio

Application

Developer.

The

reason

that

these

fields

need

to

be

deleted

is

that

the

ECEntityBean

base

class

provides

its

own

implementation

of

these

methods.

To

delete

the

generated

entity

context

fields

and

methods,

do

the

following:

1.

In

the

J2EE

Hierarchy

view,

expand

the

WebSphereCommerceServerExtensionsData

project.

2.

Expand

the

OrderGift

EJB

module,

then

double-click

OrderGiftBean.

3.

In

the

Outline

view,

do

the

following:

324

Programming

Guide

and

Tutorials

*

Note:

2000Express

WebSphere

Studio

Application

Developer

5.1

prompts

you

to

delete

getEntityContext()

and

setEntityContext(EntityContext),

so

you

do

not

have

to

delete

them

manually

as

mentioned

below.

Ensure

that

you

select

you

delete

these.

a.

Right-click

the

myEntityCtx

field

and

select

Delete.

b.

Right-click

the

getEntityContext()

method

and

select

Delete.

c.

Right-click

the

setEntityContext(EntityContext)

method

and

select

Delete.

d.

Right-click

the

unsetEntityContext()

method

and

select

Delete.
4.

Save

your

work

(Ctrl+S).

You

should

modify

the

generated

ebjCreate

method

so

that

all

of

the

parameters

are

explicitly

set

when

a

new

OrderGift

bean

is

created,

as

follows:

1.

In

the

J2EE

Hierarchy

view,

double-click

the

OrderGiftBean

class

to

open

it

and

view

its

source

code.

2.

In

the

Outline

view,

select

the

ejbCreate(Long)

method.

Its

source

code

appears

as

follows:

public

com.ibm.commerce.extension.objects.OrderGiftKey

ejbCreate(java.lang.Long

ordersId)

throws

javax.ejb.CreateException

{

_initLinks();

this.ordersId

=

ordersId;

return

null;

}

3.

Modify

the

code

so

that

it

appears

as

follows:

public

com.ibm.commerce.extension.objects.OrderGiftKey

ejbCreate(java.lang.Long

ordersId)

throws

javax.ejb.CreateException

{

_initLinks();

this.ordersId

=

ordersId;

this.senderName

=

null;

this.receiptName

=

null;

this.msgField1

=

null;

this.msgField2

=

null;

return

null;

}

4.

Save

the

code

changes.

Next,

add

a

new

ejbCreate

method

to

the

OrderGift

bean,

by

doing

the

following:

1.

In

the

J2EE

Hierarchy

view,

double-click

the

OrderGiftBean

class

to

open

it

and

view

its

source

code.

2.

Create

a

new

ejbCreate(Long,

String,

String,

String,

String)

method,

by

adding

the

following

code

into

the

class:

Chapter

12.

Tutorial:

Extending

the

object

model

and

modifying

an

existing

task

command

325

public

com.ibm.commerce.extension.objects.OrderGiftKey

ejbCreate(java.lang.Long

ordersId,

java.lang.String

receiptName,

java.lang.String

senderName,

java.lang.String

msgField1,

java.lang.String

msgField2)

throws

javax.ejb.CreateException

{

_initLinks();

this.ordersId

=

ordersId;

this.senderName

=

senderName;

this.receiptName

=

receiptName;

this.msgField1

=

msgField1;

this.msgField2

=

msgField2;

return

null;

}

3.

Save

the

code

changes.

4.

You

must

add

this

new

ejbCreate

method

to

the

home

interface.

This

makes

the

method

available

in

the

generated

access

bean.

To

add

the

method

to

the

home

interface,

do

the

following:

a.

In

the

Outline

view,

right-click

the

ejbCreate(Long,

String,

String,

String,

String)

method

and

select

Enterprise

Bean

>

Promote

to

Home

Interface.

Next

create

a

new

ejbPostCreate(Long,

String,

String,

String,

String)

method

so

that

it

has

the

same

parameters

as

the

ejbCreate(Long,

String,

String,

String,

String)

method,

by

doing

the

following:

1.

Double-click

the

OrderGiftBean

class

to

open

it

and

view

its

source

code.

2.

Create

a

new

ejbPostCreate(Long

ordersId,

String

receiptName,

String

senderName,

String

msgField1,

String

msgField2)

method,

by

adding

the

following

code

into

the

class:

public

void

ejbPostCreate(

java.lang.Long

ordersId,

java.lang.String

receiptName,

java.lang.String

senderName,

java.lang.String

msgField1,

java.lang.String

msgField2)

throws

javax.ejb.CreateException

{

}

3.

Save

the

code

changes.

Next

you

must

create

the

definition

for

the

XORDGIFT

table.If

you

have

not

completed

Chapter

10,

“Tutorial:

Creating

new

business

logic,”

on

page

217,

do

the

following

to

create

the

XORDGIFT

table

definition

1.

Open

the

Data

perspective

and

switch

to

the

Data

Definition

view.

2.

Navigate

to

the

following

directory:
WebSphereCommerceServerExtensionsData

>

ejbModule

>

META-INF

326

Programming

Guide

and

Tutorials

3.

Right-click

META-INF

and

select

New

database

definition.
The

New

Database

Definition

wizard

opens.

4.

In

the

Database

name

field,

enter

the

name

of

your

development

database.

For

example,

enter

Demo_Dev.

5.

From

the

Database

vendor

type

drop-down

list,

select

the

appropriate

database

type

for

your

development

environment:
2000DB2

v

2000Business

2000Professional

DB2

Universal

Database

V8.1

v

2000Express

DB2

Universal

Database

V8.1

Express

2000Oracle

Oracle

9i

6.

Click

Finish.

The

new

database

definition

is

now

created.

7.

Navigate

to

the

following

directory:
WebSphereCommerceServerExtensionsData

>

ejbModule

>

META-INF

>

Schema

>

developmentDB.

8.

Right-click

developmentDB

and

select

New

>

New

schema

definition.
The

New

Schema

Definition

wizard

opens.

9.

In

the

Schema

name

field,

enter

NULLID

click

Finish.

10.

Navigate

to

the

WebSphereCommerceServerExtensionsData

>

ejbModule

>

META-INF

>

Schema

>

developmentDB

>

NULLID

>Tables.

11.

Right-click

Tables

and

select

New

table

definition.
The

New

Table

Definition

wizard

opens.

12.

In

the

Table

name

field,

enter

XORDGIFT

and

click

Next.

13.

Add

the

key

column

to

your

table

definition,

as

follows:
2000Business

2000Professional

a.

Click

Add

Another.

b.

In

the

Column

name

field,

enter

ORDERSID.

c.

From

the

Column

type

drop-down

list,

select

the

following:
2000DB2

BIGINT
2000Oracle

NUMBER

d.

Select

Key

column.

e.

2000Oracle

In

the

Numeric

precision

field,

enter

38.

f.

2000Oracle

Leave

the

value

for

Numeric

Scale

at

0.

2000Express

a.

Click

Add

Another.

b.

In

the

Column

name

field,

enter

ORDERSID.

c.

Select

Key

column.

Chapter

12.

Tutorial:

Extending

the

object

model

and

modifying

an

existing

task

command

327

d.

From

the

Column

type

drop-down

list,

select

the

following:
2000DB2

BIGINT
2000Oracle

NUMBER

e.

2000Oracle

In

the

Numeric

precision

field,

enter

38.

f.

2000Oracle

Leave

the

value

for

Numeric

Scale

at

0.
14.

Add

additional

columns

to

the

table

definition,

as

follows:

a.

Click

Add

Another

and

create

a

column

with

the

following

properties:

Table

17.

Property

Value

Column

name

RECEIPTNAME

Column

type

2000DB2

VARCHAR

2000Oracle

VARCHAR2

Nullable

Select

String

length

50

For

bit

data

Clear

b.

Click

Add

Another

and

create

a

column

with

the

following

properties:

Table

18.

Property

Value

Column

name

SENDERNAME

Column

type

2000DB2

VARCHAR

2000Oracle

VARCHAR2

Nullable

Select

String

length

50

For

bit

data

Clear

c.

Click

Add

Another

and

create

a

column

with

the

following

properties:

Table

19.

Property

Value

Column

name

MSGFIELD1

Column

type

2000DB2

VARCHAR

2000Oracle

VARCHAR2

328

Programming

Guide

and

Tutorials

Table

19.

(continued)

Property

Value

Nullable

Select

String

length

50

For

bit

data

Clear

d.

Click

Add

Another

and

create

a

column

with

the

following

properties:

Table

20.

Property

Value

Column

name

MSGFIELD2

Column

type

2000DB2

VARCHAR

2000Oracle

VARCHAR2

Nullable

Select

String

length

50

For

bit

data

Clear

e.

Click

Finish.

f.

2000Oracle

You

must

edit

the

table

definition

using

a

text

editor,

as

follows:

1)

Switch

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

2)

Expand

the

WebSphereCommerceServerExtensionsData

project.

3)

Expand

the

following:

ejbModule

>

META-INF

>Schema.

4)

Right-click

the

WebSphereCommerceServerExtensionsData_NULL_XORDGIFT.

xmi

file

and

select

Open

With

>

Text

Editor.

5)

Replace

all

occurances

of

SQLNumeric_6

to

SQLNumeric_3.

6)

Save

your

changes

and

close

the

text

editor.

If

you

have

completed

Chapter

10,

“Tutorial:

Creating

new

business

logic,”

on

page

217,

do

the

following

to

create

the

XORDGIFT

table

definition:

1.

Open

the

Data

perspective

and

switch

to

the

Data

Definition

view.

2.

Navigate

to

the

following

directory:
WebSphereCommerceServerExtensionsData

>

ejbModule

>

META-INF

>

Schema

>

developmentDB

>

NULLID

>

Tables

3.

Right-click

the

Tables

directory

and

select

New

>

New

Table

Definition.
The

New

Table

Definition

wizard

opens.

Chapter

12.

Tutorial:

Extending

the

object

model

and

modifying

an

existing

task

command

329

4.

In

the

Table

name

field,

enter

XORDGIFT

and

click

Next.

5.

Add

the

key

column

to

your

table

definition,

as

follows:
2000Business

2000Professional

a.

Click

Add

Another.

b.

In

the

Column

name

field,

enter

ORDERSID.

c.

From

the

Column

type

drop-down

list,

select

the

following:
2000DB2

BIGINT
2000Oracle

NUMBER

d.

Select

Key

column.

e.

2000Oracle

In

the

Numeric

precision

field,

enter

38.

f.

2000Oracle

Leave

the

value

for

Numeric

Scale

at

0.

2000Express

a.

Click

Add

Another.

b.

In

the

Column

name

field,

enter

ORDERSID.

c.

Select

Key

column.

d.

From

the

Column

type

drop-down

list,

select

the

following:
2000DB2

BIGINT
2000Oracle

NUMBER

e.

2000Oracle

In

the

Numeric

precision

field,

enter

38.

f.

2000Oracle

Leave

the

value

for

Numeric

Scale

at

0.
6.

Add

additional

columns

to

the

table

definition,

as

follows:

a.

Click

Add

Another

and

create

a

column

with

the

following

properties:

Table

21.

Property

Value

Column

name

RECEIPTNAME

Column

type

2000DB2

VARCHAR

2000Oracle

VARCHAR2

Nullable

Select

String

length

50

For

bit

data

Clear

330

Programming

Guide

and

Tutorials

b.

Click

Add

Another

and

create

a

column

with

the

following

properties:

Table

22.

Property

Value

Column

name

SENDERNAME

Column

type

2000DB2

VARCHAR

2000Oracle

VARCHAR2

Nullable

Select

String

length

50

For

bit

data

Clear

c.

Click

Add

Another

and

create

a

column

with

the

following

properties:

Table

23.

Property

Value

Column

name

MSGFIELD1

Column

type

2000DB2

VARCHAR

2000Oracle

VARCHAR2

Nullable

Select

String

length

50

For

bit

data

Clear

d.

Click

Add

Another

and

create

a

column

with

the

following

properties:

Table

24.

Property

Value

Column

name

MSGFIELD2

Column

type

2000DB2

VARCHAR

2000Oracle

VARCHAR2

Nullable

Select

String

length

50

For

bit

data

Clear

e.

Click

Finish.

7.

2000Oracle

You

must

edit

the

table

definition

using

a

text

editor,

as

follows:

a.

Switch

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

b.

Expand

the

WebSphereCommerceServerExtensionsData

project.

Chapter

12.

Tutorial:

Extending

the

object

model

and

modifying

an

existing

task

command

331

c.

Expand

the

following:

ejbModule

>

META-INF

>Schema.

d.

Right-click

the

WebSphereCommerceServerExtensionsData_NULL_XORDGIFT.xmi

file

and

select

Open

With

>

Text

Editor.

e.

Replace

all

occurances

of

SQLNumeric_6

to

SQLNumeric_3.

f.

Save

your

changes

and

close

the

text

editor.

The

next

step

is

to

map

the

XORDGIFT

table

to

the

OrderGiftBean

entity

bean.

Due

to

the

fact

that

your

development

database

and

the

XORDGIFT

table

already

exist,

Meet-in-the-middle

mapping

is

used.

If

you

have

not

completed

Chapter

10,

“Tutorial:

Creating

new

business

logic,”

on

page

217,

do

the

following

to

create

the

mapping:

1.

In

the

J2EE

Hierarchy

view,

right-click

the

WebSphereCommerceServerExtensionsData

project

and

select

Generate

>

EJB

to

RDB

Mapping.
Create

new

EJB/RDB

Mapping

wizard

opens.

2.

Select

Meet

In

The

Middle

and

click

Next.

3.

Select

Match

By

Name,

and

Type

and

click

Finish.
The

Map.mapxmi

editor

opens.

4.

In

the

Enterprise

Beans

pane,

expand

the

OrderGift

bean.

In

the

Tables

pane,

expand

the

XORDGIFT

table.

5.

Map

the

fields

in

the

Bonus

bean

to

the

columns

in

the

XORDGIFT

table,

by

doing

the

following:

a.

Right-click

the

OrderGift

bean

and

select

Match

By

Name.
6.

Save

the

Map.mapxmi

file

by

hitting

Ctrl+S.

Close

the

file.

If

you

have

completed

Chapter

10,

“Tutorial:

Creating

new

business

logic,”

on

page

217,

do

the

following

to

create

the

mapping:

1.

In

the

J2EE

Hierarchy

view,

right-click

the

WebSphereCommerceServerExtensionsData

project

and

select

Generate

>

EJB

to

RDB

Mapping.
The

Map.mapxmi

editor

opens.

2.

In

the

Enterprise

Beans

pane,

expand

the

OrderGift

bean.

In

the

Tables

pane,

expand

the

XORDGIFT

table.

3.

Map

the

fields

in

the

Bonus

bean

to

the

columns

in

the

XORDGIFT

table,

by

doing

the

following:

a.

Right-click

the

OrderGift

bean

and

select

Match

By

Name.
4.

Save

the

Map.mapxmi

file

by

hitting

Ctrl+S.

Close

the

file.

Once

the

OrderGiftBean

entity

has

been

created

and

the

schema

is

correctly

mapped,

you

can

create

an

access

bean

for

the

entity

bean.

This

access

bean

332

Programming

Guide

and

Tutorials

makes

it

simpler

for

applications

to

access

information

contained

in

the

OrderGift

entity

bean.

The

tools

in

WebSphere

Studio

Application

Developer

are

used

to

generate

this

access

bean,

based

upon

the

entity

that

you

have

already

created

(in

particular,

only

methods

that

have

been

promoted

to

the

remote

interface

will

be

used

by

the

access

bean).

To

create

the

access

bean

for

your

OrderGift

entity

bean,

do

the

following:

1.

In

the

J2EE

Hierarchy

view,

expand

EJB

Modules,

then

right-click

WebSphereCommerceServerExtensionsData

and

select

New

>

Access

Bean.
The

Add

an

Access

Bean

window

opens.

2.

Select

Copy

Helper

and

click

Next.

3.

Select

the

OrderGift

bean

and

click

Next.

4.

From

the

Constructor

method

drop-down

list,

select

findByPrimaryKey(com.ibm.commerce.extension.objects.OrderGiftKey).

5.

Select

all

attributes

in

the

Attribute

Helpers

section.

6.

Click

Finish.

You

can

view

the

newly

generated

code

by

switching

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view,

expand

the

WebSphereCommerceServerExtensionsData

project,

and

expand

ejbModule

sub-folder,

then

expand

com.ibm.commerce.extension.objects.

A

new

class

called

OrderGiftAccessBean

and

a

new

interface

called

OrderGiftAccessBeanData

are

created

and

displayed

inside

the

package.

The

next

step

is

to

generate

the

deployed

code.

The

code

generation

utility

analyzes

the

beans

to

ensure

that

Sun

Microsystems’

EJB

specifications

are

met

and

it

ensures

that

rules

specific

to

the

EJB

server

are

followed.

In

addition,

for

each

selected

enterprise

bean,

the

code-generation

tool

generates

the

home

and

EJBObject

(remote)

implementations

and

implementation

classes

for

the

home

and

remote

interfaces,

as

well

as

the

JDBC

persister

and

finder

classes

for

CMP

beans.

It

also

generates

the

Java

ORB,

stubs,

and

tie

classes

required

for

RMI

access

over

IIOP,

as

well

as

stubs

for

the

home

and

remote

interfaces

To

generate

the

deployed

code,

do

the

following:

1.

In

the

J2EE

Hierarchy

view,

expand

EJB

Modules,

then

right-click

WebSphereCommerceServerExtensionsData

and

select

Generate

>

Deploy

and

RMIC

Code.
The

Deploy

and

RMIC

Code

window

opens.

2.

Select

OrderGift

and

click

Finish.

You

can

view

the

newly

generated

code

by

switching

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

.

You

will

Chapter

12.

Tutorial:

Extending

the

object

model

and

modifying

an

existing

task

command

333

find

the

following:

Table

25.

Type

of

code

Class

name

Container

implementation

generated

code

EJSCMPOrderGiftHomeBean.java

EJSRemoteCMPOrderGift.java

EJSRemoteCMPOrderGiftHome.java

EJSFinderOrderGiftBean.java

JDBC

access

code

EJSJDBCPersisterCMPOrderGiftBean.java

RMI

tie

and

stub

code

_EJSRemoteCMPOrderGift_Tie.java

_OrderGift_Stub.java

_EJSRemoteCMPOrderGiftHome_Tie.java

_OrderGiftHome_Stub.java

Integrating

the

OrderGift

entity

bean

into

the

shopping

flow

In

this

section,

you

integrate

the

OrderGift

entity

bean

into

the

regular

shopping

flow

of

your

sample

store,

by

doing

the

following:

1.

Creating

a

new

OrderGiftDataBean

data

bean

2.

Creating

a

new

MyExtOrderProcessCmdImpl

task

command

3.

Modifying

the

OrderSubmitForm.jsp

display

page

Each

of

the

preceding

steps

are

described

in

detail

in

subsequent

sections.

Creating

the

OrderGiftDataBean

You

must

create

the

OrderGiftDataBean

so

that

attributes

from

the

OrderGift

entity

bean

can

be

displayed

on

a

JSP

display

page.

As

with

other

parts

of

the

tutorial,

the

base

code

is

provided

and

you

need

to

uncomment

various

sections

of

code.

To

create

the

OrderGiftDataBean,

do

the

following:

1.

The

first

step

is

to

import

the

base

code

for

the

new

data

bean,

as

follows:

a.

Ensure

that

you

have

completed

the

steps

in

“Locating

the

sample

code”

on

page

218.

b.

Switch

to

the

J2EE

Perspective

and

then

select

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

.

c.

Expand

the

WebSphereCommerceServerExtensionsLogic

project.

d.

Right-click

the

src

folder

and

select

Import.
The

Import

wizard

opens.

e.

From

the

Select

an

import

source

list,

select

Zip

file

and

click

Next.

334

Programming

Guide

and

Tutorials

f.

Click

Browse

(beside

the

Zip

file

field)

and

navigate

to

the

sample

code.

This

file

is

located,

as

follows:
yourDirectory\WC_SAMPLE_55.zip
where

yourDirectory

is

the

directory

into

which

you

downloaded

the

package.

g.

Click

Deselect

All,

then

expand

the

directories

and

select

the

following

file

to

import.

v

com\ibm\commerce\sample\databeans\OrderGiftDataBean.java
h.

In

the

Folder

field,

the

WebSphereCommerceServerExtensionsLogic/src

folder

is

already

specified.

Keep

this

value.

i.

Click

Finish.

Once

you

have

imported

the

code

for

the

bean,

examine

the

code.

Creating

the

MyExtOrderProcessCmdImpl

class

In

this

section,

you

add

new

logic

at

the

end

of

the

OrderProcess

business

process

so

that

information

related

to

the

gift

order

will

be

updated

in

the

XORDGIFT

database

table.

The

ExtOrderProcessCmdImpl

command

is

provided

as

the

extension

point

to

this

business

process.

Following

the

programming

model,

to

extend

this

logic,

you

create

a

new

implementation

class

of

the

task

command

and

include

the

new

logic

in

this

class.

You

must

then

update

the

command

registry

to

associate

the

new

implementation

class

with

the

ExtOrderProcessCmd

interface.

To

create

the

MyExtOrderProcessCmdImpl

class,

do

the

following:

1.

The

first

step

is

to

import

the

base

code

for

the

new

command,

as

follows:

a.

Expand

the

WebSphereCommerceServerExtensionsLogic

project.

b.

Right-click

the

src

folder

and

select

Import.
The

Import

wizard

opens.

c.

As

the

import

source,

select

Zip

file

and

click

Next.

d.

From

the

Select

an

import

source

list,

select

Zip

file

and

click

Next.

e.

Click

Browse

(beside

the

Zip

file

field)

and

navigate

to

the

sample

code.

This

file

is

located,

as

follows:
yourDirectory\WC_SAMPLE_55.zip
where

yourDirectory

is

the

directory

into

which

you

downloaded

the

package.

f.

Click

Deselect

All,

then

expand

the

directories

and

select

the

following

file

to

import.

v

com\ibm\commerce\sample\commands\

MyExtOrderProcessCmdImpl.java
g.

In

the

Folder

field,

the

WebSphereCommerceServerExtensionsLogic/src

folder

is

already

specified.

Keep

this

value.

h.

Click

Finish.

Chapter

12.

Tutorial:

Extending

the

object

model

and

modifying

an

existing

task

command

335

Once

you

have

imported

the

code

for

this

new

command,

you

can

examine

the

source

to

see

what

the

command

does.

Notice

that

the

command

calls

the

performExecute()

method

of

its

superclass

to

ensure

that

any

processing

from

that

command

is

executed.

It

then

includes

the

logic

to

set

the

gift

order

information

into

the

new

data

bean.

In

this

step,

you

modify

the

command

registry

so

that

the

new

MyExtOrderProcessCmdImpl

implementation

class

gets

used

instead

of

the

original

ExtOrderProcessCmdImpl

implementation

class.

The

only

table

in

the

command

registry

that

needs

to

be

modified

is

the

CMDREG

table.

In

this

case,

the

new

implementation

class

is

used

for

all

stores.

To

modify

the

command

registry,

do

the

following:

2000DB2

If

you

are

using

a

DB2

database,

do

the

following

to

register

MyExtOrderProcessCmdImpl:

1.

Open

the

DB2

Command

Center

(Start

>

Programs

>IBM

DB2

>

Command

Line

Tools

>

Command

Center).

2.

From

the

Tools

menu,

select

Tools

Settings.

3.

Select

the

Use

statement

termination

character

check

box

and

ensure

the

character

specified

is

a

semicolon

(;)

4.

Close

the

tools

settings.

5.

With

the

Script

tab

selected,

create

the

required

entry

in

the

URLREG

table,

by

entering

the

following

information

in

the

script

window:
connect

to

developmentDB

user

dbuser

using

dbpassword;

insert

into

CMDREG

(STOREENT_ID,

INTERFACENAME,

DESCRIPTION,

CLASSNAME,

TARGET)

values

(FashionFlow_storeent_ID,

’com.ibm.commerce.order.commands.ExtOrderProcessCmd’,

’This

is

a

new

task

command

for

tutorial

two.’,

’com.ibm.commerce.sample.commands.MyExtOrderProcessCmdImpl’,

’local’);

where

v

developmentDB

is

the

name

of

your

development

database

v

dbuser

is

the

database

user

v

dbpassword

is

the

password

of

your

database

user

v

FashionFlow_storeent_ID

is

the

store

identifier

for

your

sample

store

Click

the

Execute

icon.

2000Oracle

If

you

are

using

an

Oracle

database,

do

the

following

to

register

MyOrderItemAddCmdImpl:

336

Programming

Guide

and

Tutorials

1.

Open

the

Oracle

SQL

Plus

command

window

(Start

>

Programs

>

Oracle

>

Application

Development

>

SQL

Plus).

2.

In

the

User

Name

field,

enter

your

Oracle

user

name.

3.

In

the

Password

field,

enter

your

Oracle

password.

4.

In

the

Host

String

field,

enter

your

connect

string.

5.

In

the

SQL

Plus

window,

enter

the

following

SQL

statement:

insert

into

CMDREG

(STOREENT_ID,

INTERFACENAME,

DESCRIPTION,

CLASSNAME,

TARGET)

values

(FashionFlow_storeent_ID,

’com.ibm.commerce.order.commands.ExtOrderProcessCmd’,

’This

is

a

new

task

command

for

tutorial

two.’,

’com.ibm.commerce.sample.commands.MyExtOrderProcessCmdImpl’,

’local’);

Press

Enter

to

run

the

SQL

statement.

6.

Enter

the

following

to

commit

your

database

changes:

commit;

and

press

Enter

to

run

the

SQL

statement.

Compiling

changes

Important:

Ensure

that

you

do

not

rebuild

the

Stores

web

project.

In

this

section,

you

compile

the

changes

you

have

made

to

your

code,

as

follows:

1.

In

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view,

select

the

following

projects:

v

WebSphereCommerceServerExtensionsData

v

WebSphereCommerceServerExtensionsLogic
2.

With

the

preceding

projects

highlighted,

right-click

and

select

Build

project.

Modifying

display

pages

for

gift

messages

In

this

step,

you

modify

the

OrderSubmitForm

and

OrderDetailDisplay

templates

so

that

the

customer

can

input

message

information

for

the

gift

order

as

well

as

view

the

information

in

a

summary

page.

The

strategy

for

modifying

these

pages

is

to

include

additional

JSP

templates

that

specify

the

new

information

for

the

page.

These

new

pages

(OrderSubmitFormInclude.jsp

and

OrderDetailDisplayInclude.jsp)

use

the

JSTL

to

display

the

new

information.

Chapter

12.

Tutorial:

Extending

the

object

model

and

modifying

an

existing

task

command

337

To

modify

the

display

pages,

do

the

following:

1.

Switch

to

the

Web

perspective

and

use

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

2.

If

you

have

not

completed

Chapter

10,

“Tutorial:

Creating

new

business

logic,”

on

page

217,

you

must

modify

the

properties

of

the

Stores

web

project,

as

follows:

a.

Right-click

the

Stores

Web

project

and

select

Properties.

b.

2000Business

2000Professional

Select

Web

in

the

left

pane

and

then

from

the

list

of

Available

Web

Project

Features,

select

Include

the

JSP

Standard

Tag

Library.

2000Express

Select

Web

Project

Features

in

the

left

pane

and

then

from

the

list

of

Available

Web

Project

Features,

select

JSP

Standard

Tag

Library.

Click

Apply.

When

the

update

is

complete,

click

OK

to

close

the

properties

editor.

3.

Expand

to

the

following

directory:
Stores\Web

Content\FashionFlow_name.

4.

Create

a

backup

copy

of

the

OrderSubmitForm.jsp

file,

by

doing

the

following:

a.

Expand

the

ShoppingArea>CheckoutSection>StandardCheckoutSubsection

directories.

b.

Right-click

the

OrderSubmitForm.jsp

file

and

select

Rename.

c.

In

the

Rename

window,

enter

OrderSubmitForm_bak.jsp

and

click

OK.

d.

When

prompted

if

you

would

like

to

update

links

to

this

file,

click

No.

5.

Create

a

backup

copy

of

the

OrderDetailDisplay.jsp

file,

by

doing

the

following:

a.

Expand

the

UserArea>ServiceSection>TrackOrderStatusSubsection

directories.

b.

Right-click

the

OrderDetailDisplay.jsp

file

and

select

Rename.

c.

In

the

Rename

window,

enter

OrderDetailDisplay_bak.jsp

and

click

OK.

d.

When

prompted

if

you

would

like

to

update

links

to

this

file,

click

No.

6.

Right-click

the

FashionFlow_name

directory

and

select

Import.
The

Import

wizard

opens.

7.

From

the

Select

an

import

source

list,

select

Zip

file

and

click

Next.

8.

Click

Browse

(beside

the

Zip

file

field)

and

navigate

to

the

sample

code.

This

file

is

located,

as

follows:

338

Programming

Guide

and

Tutorials

yourDirectory\WC_SAMPLE_55.zip
where

yourDirectory

is

the

directory

into

which

you

downloaded

the

package.

9.

Click

Deselect

All,

then

expand

the

directories

and

select

the

following

files

to

import.

v

ShoppingArea\CheckoutSection\StandardCheckoutSubsection\

OrderSubmitForm.jsp

v

ShoppingArea\CheckoutSection\StandardCheckoutSubsection\

OrderSubmitFormInclude.jsp

v

UserArea\ServiceSection\TrackOrderStatusSubsection\

OrderDetailDisplay.jsp

v

UserArea\ServiceSection\TrackOrderStatusSubsection\

OrderDetailDisplayInclude.jsp
10.

In

the

Folder

field,

the

Stores/Web

Content/FashionFlow_name

folder

is

already

specified.

Keep

this

value.

11.

Click

Finish.

If

you

examine

the

OrderSubmitForm.jsp

file,

you

will

find

that

includes

the

following:

<!--

tutorial

start-->

<jsp:include

page="OrderSubmitFormInclude.jsp"

flush="true"

/>

<!--

tutorial

done

-->

This

is

the

way

that

the

new

OrderSubmitFormInclude.jsp

file

is

incorporated

into

the

existing

JSP

template.

Examine

the

OrderSubmitFormInclude.jsp

for

an

example

of

how

to

use

the

JSTL

in

your

templates.

Similarly,

examine

the

OrderDetailDisplay.jsp

and

OrderDetailDisplayInclude.jsp

files.

You

must

also

import

the

properties

file

that

contains

the

string

values

used

in

the

modified

JSP

templates.

This

file

is

called

ordergift.properties.

To

import

this

file,

do

the

following:

1.

In

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view,

expand

the

following

directories:
Stores

>

Web

Content>

WEB-INF

>classes

>

FashionFlow_name

directory.

2.

Right-click

the

FashionFlow_name

directory

and

select

Import.
The

Import

wizard

opens.

3.

From

the

Select

an

import

source

list,

select

Zip

file

and

click

Next.

4.

Click

Browse

(beside

the

Zip

file

field)

and

navigate

to

the

sample

code.

This

file

is

located,

as

follows:
yourDirectory\WC_SAMPLE_55.zip
where

yourDirectory

is

the

directory

into

which

you

downloaded

the

package.

Chapter

12.

Tutorial:

Extending

the

object

model

and

modifying

an

existing

task

command

339

5.

Click

Deselect

All,

then

expand

the

directories

and

select

the

following

file

to

import.

v

ordergift.properties
6.

In

the

Folder

field,

the

Stores/Web

Content/WEB-
INF/classes/FashionFlow_name

folder

is

already

specified.

Keep

this

value.

7.

Click

Finish.

Testing

the

new

gift

message

functionality

In

this

section,

you

test

the

new

gift

message

functionality,

as

follows:

1.

Switch

to

the

Server

perspective

(Window

>

Open

Perspective

>

Server).

2.

Start

your

payments

server.

3.

Right-click

the

WebSphereCommerceServer

server

and

select

Start

(or

Restart).

4.

Open

a

Web

browser

and

enter

the

following

URL:

http://localhost/webapp/wcs/stores/servlet/FashionFlow/index.jsp

5.

Logon

as

a

new

user.

For

example,

click

Register

and

then

create

a

new

user,

or

logon

as

an

existing

user.

6.

As

the

new

registered

user,

browse

through

the

store,

add

an

item

to

the

shopping

cart,

and

then

complete

the

purchase.

You

will

be

able

to

add

a

gift

message

to

your

order,

as

shown

in

the

following

screen

shot:

340

Programming

Guide

and

Tutorials

Note

the

order

number

associated

with

this

order.

Figure

49.

Chapter

12.

Tutorial:

Extending

the

object

model

and

modifying

an

existing

task

command

341

7.

Click

My

Account.

8.

Click

View

orders.

9.

Select

the

order

that

you

created

in

step

6.

You

will

see

a

screen

similar

to

the

following:

Figure

50.

342

Programming

Guide

and

Tutorials

Deploying

the

gift

message

functionality

This

section

describes

how

to

deploy

your

new

business

logic

into

a

store

running

on

a

remote

WebSphere

Commerce

Server.

You

must

have

created

a

store

(based

upon

the

FashionFlow

sample

store)

on

the

remote

WebSphere

Commerce

Server

before

starting

these

deployment

steps.

Within

that

store,

you

must

be

able

to

complete

a

purchase.

The

deployment

process

includes

steps

that

are

performed

on

the

development

machine,

as

well

as

steps

that

are

performed

on

the

target

WebSphere

Commerce

Server.

There

are

a

number

of

different

types

of

assets

that

must

be

deployed

to

the

target

WebSphere

Commerce

Server.

These

include:

v

Task

command

and

data

bean

logic

v

Enterprise

bean

logic

v

Updated

JSP

templates

v

Database

updates

including

schema

updates

(new

table)

as

well

as

command

registry

updates

This

section

describes

how

to

deploy

all

of

these

assets,

incrementally

to

the

target

WebSphere

Commerce

Server.

This

is

done

as

an

incremental

deployment,

in

contrast

to

a

deployment

of

the

entire

EAR

file.

Creating

the

command

and

data

bean

JAR

file

This

section

describes

how

to

create

the

JAR

file

that

contains

the

controller

command,

task

command,

and

data

bean

logic.

To

create

this

JAR

file,

perform

the

following

steps

on

your

development

machine:

1.

Create

a

directory

on

your

local

file

system

called

\ExportTemp3.

2.

Open

WebSphere

Studio

Application

Developer

and

switch

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

3.

Right-click

the

WebSphereCommerceServerExtensionsLogic

project

and

select

Export.
The

Export

wizard

opens.

4.

In

the

Export

wizard,

do

the

following:

a.

Select

JAR

file

and

click

Next.

b.

The

left

pane

under

Select

the

resources

to

export

is

prepopulated

with

the

name

of

the

project.

Leave

this

value

as

is.

c.

In

the

right

pane,

ensure

that

only

the

following

resources

are

selected:

v

.classpath

v

.project

Chapter

12.

Tutorial:

Extending

the

object

model

and

modifying

an

existing

task

command

343

v

.serverPreference
d.

Ensure

that

Export

generated

class

files

and

resources

is

selected.

e.

Do

not

select

Export

Java

source

files

and

resources.

f.

In

the

Select

the

export

destination

field,

enter

the

fully-qualified

JAR

file

name

to

use.

In

this

case,

enter

drive:\ExportTemp3\WebSphereCommerceServerExtensionsLogic.jar.

Note

that

the

JAR

file

name

must

be

WebSphereCommerceServerExtensionsLogic.jar.

g.

Click

Finish.

Creating

the

EJB

JAR

file

To

create

the

EJB

JAR

file,

do

the

following:

1.

Open

WebSphere

Studio

Application

Developer

and

switch

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

2.

Expand

the

WebSphereCommerceServerExtensionsData

project.

3.

Double-click

EJB

Deployment

Descriptor.

4.

With

the

Overview

tab

selected,

scroll

to

the

bottom

of

the

pane,

to

locate

the

WebSphere

Bindings

section.

5.

In

the

DataSource

JNDI

name

field,

enter

the

datasource

JNDI

name

of

the

target

WebSphere

Commerce

Server.

The

following

is

an

example

value:
2000DB2

jdbc/WebSphere

Commerce

DB2

DataSource

demo
where

the

target

WebSphere

Commerce

Server

is

using

a

DB2

database,

and

the

WebSphere

Commerce

instance

name

is

“demo”

2000Oracle

jdbc/WebSphere

Commerce

Oracle

DataSource

demo
where

the

target

WebSphere

Commerce

Server

is

using

an

Oracle

database,

and

the

WebSphere

Commerce

instance

name

is

“demo”.

The

value

for

the

DataSource

JNDI

name

is

created

by

adding

“jdbc/”

to

the

data

source

name

of

the

target

WebSphere

Commerce

Server.

You

can

verify

the

data

source

name

by

opening

the

instanceName.xml

file

on

the

target

WebSphere

Commerce

Server

and

searching

for

DatasourceName=

in

the

file.

6.

Save

your

deployment

descriptor

changes

(Ctrl+S).

7.

In

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view,

right-click

the

WebSphereCommerceServerExtensionsData

project

and

select

Export.
The

Export

wizard

opens.

8.

In

the

Export

wizard,

do

the

following:

a.

Select

EJB

JAR

file

and

click

Next.

344

Programming

Guide

and

Tutorials

b.

2000Business

2000Professional

The

value

for

What

resources

do

you

want

to

export?

is

prepopulated

with

the

name

of

the

EJB

project.

2000Express

The

EJB

project

name

is

prepopulate.

Leave

this

value

as

is.

c.

2000Business

2000Professional

In

the

Where

do

you

want

to

export

resources

to?

field,

enter

the

fully-qualified

JAR

file

name

to

use.

2000Express

For

the

destination,

enter

the

fully-qualified

JAR

file

name

to

use.

In

this

case,

enter

drive:\ExportTemp3\WebSphereCommerceServerExtensionsData.jar.

d.

Click

Finish.
9.

After

the

JAR

file

has

been

created,

undo

the

changes

to

the

local

deployment

descriptor

that

was

made

in

step

5,

to

restore

the

setting

that

is

required

for

your

local

test

server.

Exporting

store

assets

To

export

the

OrderSubmitForm

and

OrderDetailDisplay

display

templates

from

WebSphere

Studio

Application

Developer,

do

the

following:

1.

Open

WebSphere

Studio

Application

Developer

and

switch

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

2.

Expand

the

Stores

folder.

3.

Right-click

the

Web

Content

folder

and

select

Export.
The

Export

Wizard

opens.

4.

In

the

Export

wizard,

do

the

following:

a.

Select

File

system

and

click

Next.

b.

Select

the

following

resources

to

deploy:

v

Web

Content\FashionFlow_name\ShoppingArea\

CheckoutSection\StandardCheckoutSubsection\

OrderSubmitForm.jsp

v

Web

Content\FashionFlow_name\ShoppingArea\

CheckoutSection\StandardCheckoutSubsection\

OrderSubmitFormInclude.jsp

v

Web

Content\FashionFlow_name\UserArea\

ServiceSection\TrackOrderStatusSubsection\OrderDetailDisplay.jsp

v

Web

Content\FashionFlow_name\UserArea\

ServiceSection\TrackOrderStatusSubsection\

OrderDetailDisplayInclude.jsp

v

Web

Content\WEB-INF\lib\jstl.jar

v

Web

Content\WEB-INF\lib\standard.jar

Chapter

12.

Tutorial:

Extending

the

object

model

and

modifying

an

existing

task

command

345

v

Web

Content\WEB-
INF\classes\FashionFlow_name\ordergift.properties

c.

Select

Create

directory

structure

for

files.

d.

In

the

Directory

field,

enter

a

temporary

directory

into

which

these

resources

will

be

placed.

For

example,

enter

C:\ExportTemp3

e.

Click

Finish.

Transferring

assets

to

your

target

WebSphere

Commerce

Server

In

this

step,

you

create

a

temporary

directory

on

the

target

WebSphere

Commerce

Server

and

then

copy

your

gift

order

assets

into

this

directory.

In

subsequent

steps,

you

will

place

the

different

types

of

code

into

the

appropriate

place

within

your

WebSphere

Commerce

application.

To

copy

the

files

from

your

development

machine

to

your

target

WebSphere

Commerce

Server,

do

the

following:

1.

On

the

target

WebSphere

Commerce

Server,

create

a

temporary

directory

called

drive:\ImportTemp3.

2.

Determine

how

you

will

copy

your

files

from

one

computer

to

another.

You

can

do

this

by

mapping

a

drive

on

the

target

WebSphere

Commerce

Server

to

the

development

machine,

or

by

using

an

FTP

application,

if

you

have

that

configured.

3.

From

the

development

machine,

copy

the

contents

of

\ExportTemp3

into

\ImportTemp3

on

the

target

WebSphere

Commerce

Server.

Stopping

your

target

WebSphere

Commerce

Server

Before

starting

the

deployment

steps,

you

should

stop

your

target

WebSphere

Commerce

Server

by

issuing

the

stopServer

command

at

the

command

line.

For

details

about

this

command,

refer

to

the

2000Business

2000Professional

WebSphere

Commerce

Studio

Installation

Guide

or

2000Express

WebSphere

Commerce

-

Express

Developer

Edition

Installation

Guide.

Updating

the

database

on

your

target

WebSphere

Commerce

Server

Registering

the

task

command

implementation

To

modify

the

command

registry,

do

the

following:

1.

2000DB2

If

you

are

using

a

DB2

database,

do

the

following

to

register

MyExtOrderProcessCmdImpl:

a.

Open

the

DB2

Command

Center

(Start

>

Programs

>IBM

DB2

>

Command

Line

Tools

>

Command

Center).

b.

From

the

Tools

menu,

select

Tools

Settings.

c.

Select

the

Use

statement

termination

character

check

box

and

ensure

the

character

specified

is

a

semicolon

(;)

d.

Close

the

tools

settings.

346

Programming

Guide

and

Tutorials

e.

With

the

Script

tab

selected,

create

the

required

entry

in

the

URLREG

table,

by

entering

the

following

information

in

the

script

window:
connect

to

targetDB

user

dbuser

using

dbpassword;

insert

into

CMDREG

(STOREENT_ID,

INTERFACENAME,

DESCRIPTION,

CLASSNAME,

TARGET)

values

(FashionFlow_storeent_ID,

’com.ibm.commerce.order.commands.ExtOrderProcessCmd’,

’This

is

a

new

task

command

for

tutorial

two.’,

’com.ibm.commerce.sample.commands.MyExtOrderProcessCmdImpl’,

’local’);

where

v

targetDB

is

the

name

of

your

target

database

v

dbuser

is

database

user

v

dbpassword

is

the

password

of

the

database

user

v

FashionFlow_storeent_ID

is

the

store

identifier

for

your

sample

store

Click

the

Execute

icon.

Keep

the

Command

Center

open.

2.

2000Oracle

If

you

are

using

an

Oracle

database,

do

the

following

to

register

MyOrderItemAddCmdImpl:

a.

Open

the

Oracle

SQL

Plus

command

window

(Start

>

Programs

>

Oracle

>

Application

Development

>

SQL

Plus).

b.

In

the

User

Name

field,

enter

your

Oracle

user

name.

c.

In

the

Password

field,

enter

your

Oracle

password.

d.

In

the

Host

String

field,

enter

your

connect

string.

e.

In

the

SQL

Plus

window,

enter

the

following

SQL

statement:

insert

into

CMDREG

(STOREENT_ID,

INTERFACENAME,

DESCRIPTION,

CLASSNAME,

TARGET)

values

(FashionFlow_storeent_ID,

’com.ibm.commerce.order.commands.ExtOrderProcessCmd’,

’This

is

a

new

task

command

for

tutorial

two.’,

’com.ibm.commerce.sample.commands.MyExtOrderProcessCmdImpl’,

’local’);

Press

Enter

to

run

the

SQL

statement.

f.

Enter

the

following

to

commit

your

database

changes:

commit;

and

press

Enter

to

run

the

SQL

statement.

Creating

the

XORDGIFT

table

In

this

step,

you

create

the

XORDGIFT

table.

2000DB2

If

you

are

using

a

DB2

database,

do

the

following

to

create

the

table:

1.

In

the

Script

window,

enter

the

following:

Chapter

12.

Tutorial:

Extending

the

object

model

and

modifying

an

existing

task

command

347

create

table

XORDGIFT

(ORDERSID

bigint

not

null,

RECEIPTNAME

varchar(50),

SENDERNAME

varchar(50),

MSGFIELD1

varchar(50),

MSGFIELD2

varchar(50),

constraint

p_xordgift

primary

key

(ORDERSID),

constraint

f_xordgift

foreign

key

(ORDERSID)

references

ORDERS(ORDERS_ID)

on

delete

cascade);

insert

into

XORDGIFT

(ORDERSID)

(select

ORDERS_ID

from

ORDERS);

where

v

targetDB

is

the

name

of

your

target

database

v

dbuser

is

database

user

v

dbpassword

is

the

password

of

the

database

user

Click

the

Execute

icon.
The

XORDGIFT

table

is

now

created.

2000Oracle

If

you

are

using

an

Oracle

database,

do

the

following

to

create

the

table:

1.

Open

the

Oracle

SQL

Plus

command

window

(Start

>

Programs

>

Oracle

>

Application

Development

>

SQL

Plus).

2.

In

the

User

Name

field,

enter

your

Oracle

user

name.

3.

In

the

Password

field,

enter

your

Oracle

password.

4.

In

the

Host

String

field,

enter

your

connect

string.

5.

In

the

SQL

Plus

window,

enter

the

following

SQL

statements:

create

table

XORDGIFT

(ORDERSID

NUMBER

NOT

NULL,

RECEIPTNAME

VARCHAR(50),

SENDERNAME

VARCHAR(50),

MSGFIELD1

VARCHAR(50),

MSGFIELD2

VARCHAR(50),

constraint

p_xordgift

primary

key

(ORDERSID),

constraint

f_xordgift

foreign

key

(ORDERSID)

references

ORDERS(ORDERS_ID)

on

delete

cascade);

insert

into

XORDGIFT

(ORDERSID)

(select

ORDERS_ID

from

ORDERS);

and

press

Enter

to

run

the

SQL

statement.

The

XORDGIFT

table

is

now

created.

6.

Enter

the

following

to

commit

your

database

changes:

commit;

and

press

Enter

to

run

the

SQL

statement.

Updating

store

assets

on

your

target

WebSphere

Commerce

Server

In

this

step,

you

update

the

store

with

your

modified

store

assets,

as

follows:

1.

Backup

your

WAS_installdir\installedApps\cellName\WC_instanceName.ear\

Stores.war

directory.

2.

Navigate

to

the

\ImportTemp3\Stores\Web

Content

directory.

3.

Copy

the

FashionFlow_name

folder

into

the

following

directory:
WAS_installdir\installedApps\cellName\WC_instanceName.ear\

Stores.war

348

Programming

Guide

and

Tutorials

where

instanceName

is

the

name

of

your

WebSphere

Commerce

instance.

Updating

the

command

and

data

bean

JAR

file

on

your

target

WebSphere

Commerce

Server

In

this

step

you

update

the

target

WebSphere

Commerce

Server

to

use

the

new

command

and

data

bean

JAR

file,

as

follows:

1.

You

should

make

a

backup

copy

of

the

existing

JAR

file,

as

follows:

a.

Navigate

to

the

WAS_installdir\installedApps\cellName\WC_instanceName.ear

directory.

b.

Make

a

copy

of

the

WebSphereCommerceServerExtensionsLogic.jar

file

and

save

it

in

a

backup

location.
2.

Copy

the

new

WebSphereCommerceServerExtensionsLogic.jar

file

from

the

\ImportTemp3

directory

into

the

WAS_installdir\nstalledApps\cellName\WC_instanceName.ear

directory

where

instanceName

is

the

name

of

your

WebSphere

Commerce

instance.

Updating

the

EJB

JAR

file

on

your

target

WebSphere

Commerce

Server

In

this

step

you

update

the

target

WebSphere

Commerce

Server

to

use

the

new

EJB

JAR

file,

as

follows:

1.

You

should

make

a

backup

copy

of

the

existing

JAR

file,

as

follows:

a.

Navigate

to

the

WAS_installdir\installedApps\cellName\WC_instanceName.ear

directory.

b.

Make

a

copy

of

the

WebSphereCommerceServerExtensionsData.jar

file

and

save

it

in

a

backup

location.

where

instanceName

is

the

name

of

your

WebSphere

Commerce

instance.

2.

Copy

the

new

WebSphereCommerceServerExtensionsData.jar

file

from

the

\ImportTemp3

directory

into

the

WAS_installdir\installedApps\cellName\WC_instanceName.ear

directory

3.

Next,

you

must

modify

the

EJB

deployment

descriptor

information,

as

follows:

a.

Locate

the

deployment

repository

(META-INF

directory)

for

this

WebSphere

Application

Server

cell.

This

typically

takes

the

following

form:
WAS_installdir\config\cells\cellName

\applications\WC_instance_name.ear\deployments\

WC_instance_name\EJBModuleName.jar\META-INF

The

following

is

a

specific

example

of

this:
D:\WebSphere\AppServer\config\cells\myCell\applications\

WC_demo.ear\deployments\WC_demo\

WebSphereCommerceServerExtensionsData.jar\META-INF
where

v

mycell

is

the

name

of

the

WebSphere

Application

Server

cell

Chapter

12.

Tutorial:

Extending

the

object

model

and

modifying

an

existing

task

command

349

v

demo

is

the

name

of

the

WebSphere

Commerce

instance
b.

The

directory

contains

the

following

files:

v

ejb-jar.xml

v

ibm-ejb-access-bean.xmi

v

ibm-ejb-jar-bnd.xmi

v

ibm-ejb-jar-ext.xmi

v

MANIFEST.MF

Backup

all

of

these

files.

c.

Use

a

tool

to

open

the

new

WebSphereCommerceServerExtensionsData.jar

file

and

view

its

contents.

d.

Extract

the

contents

of

the

meta-inf

directory

from

this

WebSphereCommerceServerExtensionsData.jar

file

into

the

directory

from

step

3a.
4.

Using

the

WebSphere

Application

Server

startServer

command

at

the

command

line,

restart

your

WebSphere

Commerce

instance.

Verifying

the

gift

message

functionality

on

the

target

WebSphere

Commerce

Server

In

this

section,

you

verify

that

the

gift

message

logic

is

functioning

correctly

on

the

target

WebSphere

Commerce

Server

by

doing

the

following:

1.

Open

a

browser

and

enter

the

URL

for

your

store

that

is

based

on

the

FashionFlow

sample

store.

2.

Logon

as

a

new

user.

For

example,

click

″Register″

and

then

create

the

user

″shopper″.

3.

As

the

new

registered

user,

browse

through

the

store,

add

an

item

to

the

shopping

cart,

and

then

complete

the

purchase.

You

will

be

able

to

add

a

gift

message

to

your

order,

as

shown

in

the

following

screen

shot:

350

Programming

Guide

and

Tutorials

Note

the

order

number

associated

with

this

order.

Figure

51.

Chapter

12.

Tutorial:

Extending

the

object

model

and

modifying

an

existing

task

command

351

4.

Click

My

Account.

5.

Click

View

orders.

6.

Select

the

order

that

you

created

in

step

3.

You

will

see

a

screen

similar

to

the

following:

Figure

52.

352

Programming

Guide

and

Tutorials

Chapter

13.

Tutorial:

Extending

an

existing

WebSphere

Commerce

entity

bean

In

this

tutorial,

you

learn

the

process

used

to

modify

an

existing

WebSphere

Commerce

entity

bean.

It

uses

the

scenario

of

adding

an

additional

housing

information

survey

to

the

user

registration

process.

In

this

case,

the

User

entity

bean

is

modified

to

include

additional

fields

that

store

a

user’s

housing

type

value

and

a

location

value.

A

new

database

table

is

created

(called

XHOUSING)

and

the

existing

mapping

information

for

the

User

bean

is

modified

to

include

this

new

table.

In

addition

to

the

new

table

and

entity

bean

changes,

a

new

MyPostUserRegistrationAddCmdImpl

implementation

class

is

created.

This

contains

the

logic

that

processes

the

housing

survey

information

and

updates

the

database

with

the

new

information.

In

order

to

be

able

to

collect

the

housing

information

and

then

later,

display

the

results,

the

UserRegistrationAddForm.jsp

and

UserRegistrationUpdateForm.jsp

files

are

modified.

Prerequisites

This

tutorial

does

not

require

that

you

have

completed

tutorials.

If

you

have

completed

those

tutorials,

there

is

no

harm

in

leaving

the

code

in

your

workspace,

as

it

will

not

conflict

with

this

tutorial.

Before

starting

this

tutorial,

you

must

have

published

a

store

based

upon

the

FashionFlow

sample

store.

Within

this

store,

you

must

be

able

to

complete

a

purchase

(for

example,

browse

the

catalog,

add

items

to

the

shopping

cart,

checkout

and

see

the

order

confirmation).

Creating

and

populating

the

XHOUSING

table

In

preparation

for

creating

the

entity

bean,

you

must

first

create

and

populate

a

new

database

table.

The

table

to

be

created

is

called

XHOUSING.

2000DB2

If

you

are

using

a

DB2

database,

do

the

following

to

create

the

table:

1.

Open

the

DB2

Command

Center

(Start

>

Programs

>

IBM

DB2

>

Command

Line

Tools

>

Command

Center)

and

click

the

Scripting

tab.

2.

In

the

Script

window,

enter

the

following:

©

Copyright

IBM

Corp.

2000,

2003

353

connect

to

developmentDB

user

dbuser

using

dbpassword;

create

table

XHOUSING

(MEMBERID

bigint

not

null,

HOUSINGTYPE

integer,

LOCATION

integer,

constraint

p_xhousing

primary

key

(MEMBERID),

constraint

f_xhousing

foreign

key

(MEMBERID)

references

USERS

(USERS_ID)

on

delete

cascade);

insert

into

XHOUSING

(MEMBERID)

(select

USERS_ID

from

USERS);

where

v

developmentDB

is

the

name

of

your

development

database

v

dbuser

is

the

database

user

v

dbpassword

is

the

password

for

your

database

user

Click

the

Execute

icon.
You

should

see

a

message

indicating

that

the

SQL

statement

completed

successfully.

2000Oracle

If

you

are

using

an

Oracle

database,

do

the

following

to

create

the

table:

1.

Open

the

Oracle

SQL

Plus

command

window

(Start

>

Programs

>

Oracle

>

Application

Development

>

SQL

Plus).

2.

In

the

User

Name

field,

enter

your

Oracle

user

name.

3.

In

the

Password

field,

enter

your

Oracle

password.

4.

In

the

Host

String

field,

enter

your

connect

string.

5.

In

the

SQL

Plus

window,

enter

the

following

SQL

statement:

create

table

XHOUSING

(MEMBERID

number

not

null,

HOUSINGTYPE

integer,

LOCATION

integer,

constraint

p_xhousing

primary

key

(MEMBERID),

constraint

f_xhousing

foreign

key

(MEMBERID)

references

USERS

(USERS_ID)

on

delete

cascade);

insert

into

XHOUSING

(MEMBERID)

(select

USERS_ID

from

USERS);

and

press

Enter

to

run

the

SQL

statement.

The

XHOUSING

table

is

now

created.

6.

Enter

the

following

to

commit

your

database

changes:

commit;

and

press

Enter

to

run

the

SQL

statement.

Adding

new

fields

to

the

User

entity

bean

In

this

section,

you

add

two

new

fields

to

the

User

entity

bean

that

are

used

to

capture

housing

information.

The

new

fields

are

called

housingType

and

location.

These

fields

are

eventually

mapped

to

the

HOUSINGTYPE

and

LOCATION

columns

of

the

XHOUSING

table.

354

Programming

Guide

and

Tutorials

To

add

these

new

fields,

do

the

following:

1.

Start

WebSphere

Commerce

development

environment

as

follows:

v

2000Business

2000Professional

Start

>

Programs

>

IBM

WebSphere

Commerce

Studio

>

WebSphere

Commerce

development

environment

v

2000Express

2000Express

Start

>

Programs

>

IBM

WebSphere

-

Express

Developer

Edition

>

WebSphere

Commerce

development

environment

2.

Switch

to

the

Server

perspective

and

ensure

that

the

WebSphereCommerceServer

test

server

is

stopped.

3.

Switch

to

the

J2EE

perspective

and

select

the

J2EE

Hierarchy

view.

4.

Expand

EJB

Modules

and

then

double-click

the

Member-
MemberManagementData

EJB

project.

This

opens

the

EJB

Deployment

Descriptor

editor.

5.

Click

the

Beans

tab

and

select

the

User

bean

from

the

list

of

beans

displayed.

6.

Click

Add

beside

the

CMP

fields

text

box.
The

Create

CMP

attribute

window

opens.

7.

Create

a

CMP

field

with

the

following

properties:

a.

In

the

Name

field,

enter

housingType.

b.

In

the

Type

field,

enter

java.lang.Integer.

c.

Enable

Access

with

getter

and

setter

methods.

d.

Clear

the

Promote

getter

and

setter

to

remote

interface

check

box.

(This

automatically

clears

the

option

to

make

the

getter

a

read-only

option.)

e.

Click

OK.
8.

Click

Add

again

to

create

another

CMP

field

with

the

following

properties:

a.

In

the

Name

field,

enter

location.

b.

In

the

Type

field,

enter

java.lang.Integer.

c.

Enable

Access

with

getter

and

setter

methods.

d.

Clear

the

Promote

getter

and

setter

to

remote

interface

check

box.

(This

automatically

clears

the

option

to

make

the

getter

a

read-only

option.)

e.

Click

OK.

The

new

fields

are

displayed

in

the

list

of

CMP

fields.

9.

Save

your

changes

and

then

close

the

EJB

Deployment

Descriptor

editor.

Chapter

13.

Tutorial:

Extending

an

existing

WebSphere

Commerce

entity

bean

355

Updating

the

schema

and

table

mapping

information

In

the

following

sections,

you

update

the

User

schema

with

the

new

XHOUSING

table,

create

the

foreign

key

relationship

for

the

new

table,

and

create

a

table

map

between

the

fields

of

the

User

entity

bean

and

the

columns

of

the

XHOUSING

table.

By

taking

this

approach

to

extending

the

object

model,

it

appears

to

code

as

if

new

columns

have

been

added

directly

to

the

USERS

table.

Creating

the

table

definition

for

the

XHOUSING

table

To

create

the

XHOUSING

table

definition

and

create

the

foreign

key

relationship

between

the

USERS

and

XHOUSING

tables,

do

the

following:

1.

In

the

J2EE

Hierarchy

view,

expand

Databases.

2.

Expand

the

Member-MemberManagementData

database,

then

expand

the

NULLID

schema.

3.

Right-click

Tables

and

select

New

>

New

table

definition.
The

Table

Definition

window

opens.

4.

In

the

Table

name

field,

enter

XHOUSING

and

click

Next.

5.

Add

the

key

column

to

your

table

definition,

as

follows:
2000Business

2000Professional

a.

Click

Add

Another.

b.

In

the

Column

name

field,

enter

ORDERSID.

c.

From

the

Column

type

drop-down

list,

select

the

following:
2000DB2

BIGINT
2000Oracle

NUMBER

d.

Select

Key

column.

e.

2000Oracle

In

the

Numeric

precision

field,

enter

38.

f.

2000Oracle

Leave

the

value

for

Numeric

Scale

at

0.

2000Express

a.

Click

Add

Another.

b.

In

the

Column

name

field,

enter

ORDERSID.

c.

Select

Key

column.

d.

From

the

Column

type

drop-down

list,

select

the

following:
2000DB2

BIGINT
2000Oracle

NUMBER

e.

2000Oracle

In

the

Numeric

precision

field,

enter

38.

f.

2000Oracle

Leave

the

value

for

Numeric

Scale

at

0.
6.

Add

additional

columns

to

the

table

definition,

as

follows:

356

Programming

Guide

and

Tutorials

a.

Click

Add

Another

and

create

a

column

with

the

following

properties:

Table

26.

Property

Value

Column

name

HOUSINGTYPE

Column

type

INTEGER

Nullable

Select

b.

Click

Add

Another

and

create

a

column

with

the

following

properties:

Table

27.

Property

Value

Column

name

LOCATION

Column

type

INTEGER

Nullable

Select

c.

Click

Next.
7.

In

the

Primary

key

name

field

enter

p_xhousing

and

click

Next.

8.

Click

Add

another

to

add

the

foreign

key.

Specify

the

following

values:

a.

In

the

Foreign

key

name

field,

enter

f_xhousing.

b.

From

the

On

Delete

drop-down

list,

select

CASCADE

c.

From

the

Target

Table

drop-down

list,

select

NULLID.USERS

d.

In

the

Source

Columns

pane,

click

MEMBERID

and

then

click

>

to

add

the

foreign

key.
9.

Click

Finish.

10.

2000Oracle

You

must

edit

the

table

definition

using

a

text

editor,

as

follows:

a.

Switch

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

b.

Expand

the

Member-MemberManagementData

project.

c.

Expand

the

following:

ejbModule

>

META-INF

>Schema.

d.

Right-click

the

Member-
MemberManagementData_NULL_XHOUSING.xmi

file

and

select

Open

With

>

Text

Editor.

e.

Replace

all

occurrences

of

SQLNumeric_6

to

SQLNumeric_3.

f.

Save

your

changes

and

close

the

text

editor.

The

new

Member-MemberManagementData_NULL_XHOUSING

table

definition

can

be

seen

by

expanding

the

Tables

folder

under

Member-MemberManagementData/NULLID.

Chapter

13.

Tutorial:

Extending

an

existing

WebSphere

Commerce

entity

bean

357

Creating

the

XHOUSING

table

map

In

this

section,

you

create

the

mapping

between

the

two

columns

(HOUSINGTYPE

and

LOCATION)

in

the

XHOUSING

table

and

the

two

fields

(housingType

and

location)

in

the

User

entity

bean.

To

create

this

mapping,

do

the

following:

1.

Switch

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

2.

Expand

the

following

folders:

Member-MemberManagementData

>

ejbModule

>META-INF.

3.

Double-click

the

Map.mapxmi

file.

4.

2000Express

In

the

Enterprise

Beans

pane,

expand

the

Member

group,

then

right-click

the

User

entity

bean.

5.

In

the

Tables

pane,

highlight

the

following

tables:

v

MEMBER

v

USERS

v

XHOUSING

(Hold

the

Ctrl

key

to

select

multiple

tables

at

once.)

6.

2000Business

2000Professional

In

the

Enterprise

Beans

pane

(at

the

top

of

editor),

expand

the

Member

group,

then

right-click

the

User

entity

bean

and

select

Create

Mapping.

2000Express

In

the

Enterprise

Beans

pane

(at

the

top

of

editor),

right-click

the

User

entity

bean

and

select

Create

Mapping.

7.

Expand

the

User

entity

bean.

8.

In

the

Tables

pane,

expand

the

XHOUSING

table,

so

that

its

columns

can

be

viewed.

9.

Highlight

the

housingType

bean

attribute

and

drag

it

onto

the

HOUSINGTYPE

column

to

create

the

mapping.

10.

Highlight

the

location

bean

attribute

and

drag

it

onto

the

LOCATION

column

to

create

the

mapping.

11.

Save

your

changes,

then

close

the

Map.mapxmi

file.

Updating

the

mapping

file

1.

Expand

the

following

folders:

Member-MemberManagementData

>

ejbModule

>META-INF.

2.

Right-click

the

Map.mapxmi

file

and

select

Open

With

>

Text

Editor.

3.

Locate

the

following

string:

User_EJB

Two

lines

below

this,

you

may

find:

358

Programming

Guide

and

Tutorials

<discriminatorValues>User</discriminatorValues>

If

you

find

the

preceding

line,

then

you

must

change

it

to

<discriminatorValues>‘U’</discriminatorValues>

4.

Save

your

change.

Generating

the

access

beans

and

deployed

code

Since

you

have

modified

the

User

entity

bean,

you

must

regenerate

its

access

bean

and

its

deployed

code.

To

regenerate

the

access

bean,

do

the

following:

1.

In

the

J2EE

Hierarchy

view,

expand

EJB

Modules.

2.

Right-click

the

Member-MemberManagementData

EJB

module

and

select

Access

Beans>

Edit

Access

Beans.

3.

Select

CopyHelper

and

click

Next.

4.

In

the

Select

EJB

Project

window,

click

Next.

5.

In

the

Copy

Helper

Access

Bean

window,

do

the

following:

a.

From

the

Enterprise

beans

drop-down

list,

select

User.

b.

From

the

Constructor

method

drop-down

list,

select

findByPrimaryKey(com.ibm.commerce.user.objects.MemberKey).

c.

From

the

Attribute

Helpers

list,

ensure

that

the

housingType

and

location

attributes

are

selected

along

with

all

of

the

other

attributes.
6.

Click

Finish.

7.

Right-click

the

Member-MemberManagementData

EJB

module

and

select

Access

Beans>

Regenerate

Access

Beans.

8.

Click

Select

All

and

then

click

Finish.

To

regenerate

the

deployed

code,

do

the

following:

1.

Right-click

the

Member-MemberManagementData

EJB

module

and

select

Generate

>

Deploy

and

RMIC

Code.

2.

Click

Select

All

and

then

click

Finish.

Creating

the

MyPostUserRegistrationAddCmdImpl

implementation

In

this

step,

you

extend

the

UserRegistrationAddCmd

controller

command

to

include

new

logic

that

is

used

to

parse

the

new

housing

information

that

gets

collected

on

the

registration

form.

The

extension

is

made

by

creating

a

new

MyPostUserRegistrationAddCmdImpl

implementation

class

that

implements

the

PostUserRegistrationCmd

interfaces.

After

creating

this

new

implementation

class,

you

must

update

the

command

registry

to

reflect

this

change.

As

with

other

tutorials,

the

code

for

this

new

command

is

provided.

Chapter

13.

Tutorial:

Extending

an

existing

WebSphere

Commerce

entity

bean

359

To

create

the

new

MyPostUserRegistrationAddCmdImpl

implementation

class,

do

the

following:

1.

Ensure

that

you

have

completed

the

steps

in

“Locating

the

sample

code”

on

page

218.

2.

In

WebSphere

Studio

Application

Developer,

open

the

Java

perspective

(Window

>

Open

Perspective

>

Java).

3.

Expand

the

WebSphereCommerceServerExtensionsLogic

project.

4.

Right-click

the

src

folder

and

select

Import.
The

Import

wizard

opens.

5.

From

the

Select

an

import

source

list,

select

Zip

file

and

click

Next.

6.

Click

Browse

(beside

the

Zip

file

field)

and

navigate

to

the

sample

code.

This

file

is

located,

as

follows:
yourDirectory\WC_SAMPLE_55.zip
where

yourDirectory

is

the

directory

into

which

you

downloaded

the

package.

7.

Click

Deselect

All,

then

expand

the

directories

and

select

to

import

the

following

file:

v

com\ibm\commerce\sample\commands\

MyPostUserRegistrationAddCmdImpl.java

8.

In

the

Folder

field,

the

WebSphereCommerceServerExtensionsLogic/src

folder

is

already

specified.

Keep

this

value.

9.

Click

Finish.

10.

Expand

the

com.ibm.commerce.sample.commands

package.

11.

Double-click

the

new

MyPostUserRegistrationAddCmdImpl

class.

12.

Uncomment

Section

1.

This

code

sets

up

variables

and

creates

getters

and

setters

for

these

variables:

///

Section

1

////////////////

Integer

housingType

=

null;

Integer

location

=

null;

public

Integer

getHousingType()

{

return

housingType;

}

public

Integer

getLocation()

{

return

location;

}

public

void

setHousingType(Integer

newHousingType)

{

housingType

=

newHousingType;

}

public

void

setLocation(Integer

newLocation)

{

location

=

newLocation;

}

///

End

of

Section

1

////////////////

360

Programming

Guide

and

Tutorials

13.

Uncomment

Section

2.

This

introduces

the

following

code

into

the

class:

///

Section

2

////////////////

public

void

performExecute()

throws

ECException

{

super.performExecute();

//

Set

the

needed

fields

before

processing

the

survey

setHousingType(requestProperties.getInteger("housingType",

0));

setLocation(requestProperties.getInteger("location",

0));

processSurvey();

}

///

End

of

Section

2

////////////////

The

preceding

code

calls

the

performExecute

method

of

the

superclass

so

that

the

regular

logic

of

the

PostUserRegistrationAddCmdImpl

is

executed.

Once

that

has

completed,

the

new

processSurvey

method

is

called.

14.

Uncomment

Section

3

to

introduce

the

following

code

into

the

class:

///

Section

3

////////////////

private

void

processSurvey()

throws

ECException

{

try

{

//

load

up

the

user

data

UserAccessBean

abUser

=

new

UserAccessBean();

abUser.setInitKey_MemberId(commandContext.getUserId().toString());

abUser.refreshCopyHelper();

//

store

the

new

attributes

abUser.setHousingType(getHousingType());

abUser.setLocation(getLocation());

abUser.commitCopyHelper();

}

catch

(javax.ejb.FinderException

e)

{

throw

new

ECSystemException(

ECMessage._ERR_FINDER_EXCEPTION,

this.getClass().getName(),

"processSurvey");

}

catch

(javax.naming.NamingException

e)

{

throw

new

ECSystemException(

ECMessage._ERR_NAMING_EXCEPTION,

this.getClass().getName(),

"processSurvey");

}

catch

(java.rmi.RemoteException

e)

{

throw

new

ECSystemException(

ECMessage._ERR_REMOTE_EXCEPTION,

this.getClass().getName(),

"processSurvey");

}

catch

(javax.ejb.CreateException

e)

{

throw

new

ECSystemException(

ECMessage._ERR_CREATE_EXCEPTION,

this.getClass().getName(),

Chapter

13.

Tutorial:

Extending

an

existing

WebSphere

Commerce

entity

bean

361

"processSurvey");

}

}

///

End

of

Section

3

////////////////

15.

Save

your

changes.

16.

Right-click

the

WebSphereCommerceServerExtensionsLogic

project

and

select

Build

Project.

Modifying

the

command

registry

You

must

modify

the

command

registry

so

that

the

new

implementation

class

is

used

in

the

shopping

flow.

To

modify

the

command

registry,

do

the

following:

1.

2000DB2

If

you

are

using

a

DB2

database,

do

the

following

to

register

MyPostUserRegistrationAddCmdImpl:

a.

Open

the

DB2

Command

Center

(Start

>

Programs

>IBM

DB2

>

Command

Center).

b.

From

the

Tools

menu,

select

Tools

Settings.

c.

Select

the

Use

statement

termination

character

check

box

and

ensure

the

character

specified

is

a

semicolon

(;)

d.

With

the

Script

tab

selected,

create

the

required

entry

in

the

URLREG

table,

by

entering

the

following

information

in

the

script

window:
connect

to

developmentDB

user

dbuser

using

dbpassword;

insert

into

CMDREG

values

(FashionFlow_storeent_Id,

‘com.ibm.commerce.usermanagement.commands.PostUserRegistrationAddCmd’

‘Command

for

modified

user

bean

tutorial’,

‘com.ibm.commerce.sample.commands.MyPostUserRegistrationAddCmdImpl’,

null,

null,

‘Local’);

where

v

developmentDB

is

the

name

of

your

development

database

v

dbuser

is

the

database

user

v

dbpassword

is

the

password

for

your

database

user

v

FashionFlow_storeent_Id

is

the

unique

store

entity

identifier

for

your

store.

Click

the

Execute

icon.

2.

2000Oracle

If

you

are

using

an

Oracle

database,

do

the

following

to

register

MyPostUserRegistrationAddCmdImpl:

a.

Open

the

Oracle

SQL

Plus

command

window

(Start

>

Programs

>

Oracle

>

Application

Development

>

SQL

Plus).

b.

In

the

User

Name

field,

enter

your

Oracle

user

name.

c.

In

the

Password

field,

enter

your

Oracle

password.

362

Programming

Guide

and

Tutorials

d.

In

the

Host

String

field,

enter

your

connect

string.

e.

In

the

SQL

Plus

window,

enter

the

following

SQL

statement:

insert

into

CMDREG

values

(FashionFlow_storeent_Id,

‘com.ibm.commerce.usermanagement.commands.PostUserRegistrationAddCmd’

‘Command

for

modified

user

bean

tutorial’,

‘com.ibm.commerce.sample.commands.MyPostUserRegistrationAddCmdImpl’,

null,

null,

‘Local’);

Press

Enter

to

run

the

SQL

statement.

f.

Enter

the

following

to

commit

your

database

changes:

commit;

and

press

Enter

to

run

the

SQL

statement.

Modifying

JSP

templates

to

collect

and

display

housing

information

In

this

step,

you

modify

the

UserRegistrationAddForm

and

UserRegistrationUpdateForm

templates

so

that

the

customer

can

input

housing

information

when

logging

in,

as

well

as

view

the

housing

information

in

a

summary

page.

The

strategy

for

modifying

these

pages

is

to

include

additional

JSP

templates

that

specify

the

new

information

for

the

page.

These

new

pages

(UserRegistrationAddFormInclude.jsp

and

UserRegistrationUpdateFormInclude.jsp)

use

the

JSTL

to

display

the

new

information.

To

modify

these

pages,

do

the

following:

1.

Switch

to

the

Web

perspective.

2.

If

you

have

not

completed

Chapter

10,

“Tutorial:

Creating

new

business

logic,”

on

page

217,

you

must

modify

the

properties

of

the

Stores

web

project,

as

follows:

a.

Right-click

the

Stores

Web

project

and

select

Properties.

b.

2000Business

2000Professional

Select

Web

in

the

left

pane

and

then

from

the

list

of

Available

Web

Project

Features,

select

Include

the

JSP

Standard

Tag

Library.

2000Express

Select

Web

Project

Features

in

the

left

pane

and

then

from

the

list

of

Available

Web

Project

Features,

select

JSP

Standard

Tag

Library.

Click

Apply.

When

the

update

is

complete,

click

OK

to

close

the

properties

editor.

3.

Expand

to

the

following

directory:
Stores\Web

Content\FashionFlow_name.

4.

Create

a

backup

copy

of

the

UserRegistrationAddForm.jsp

file,

by

doing

the

following:

Chapter

13.

Tutorial:

Extending

an

existing

WebSphere

Commerce

entity

bean

363

a.

Expand

the

UserArea>AccountSection>RegistrationSubsection

directories.

b.

Right-click

the

UserRegistrationAddForm.jsp

file

and

select

Rename.

c.

In

the

Rename

window,

enter

UserRegistrationAddForm_bak.jsp

and

click

OK.

d.

When

prompted

if

you

would

like

to

update

links

to

this

file,

click

No.

5.

Create

a

backup

copy

of

the

UserRegistrationUpdateForm.jsp

file,

by

doing

the

following:

a.

Expand

the

UserArea>AccountSection>RegistrationSubsection

directories.

b.

Right-click

the

UserRegistrationUpdateForm.jsp

file

and

select

Rename.

c.

In

the

Rename

window,

enter

UserRegistrationUpdateForm_bak.jsp

and

click

OK.

d.

When

prompted

if

you

would

like

to

update

links

to

this

file,

click

No.

6.

Right-click

the

FashionFlow_name

directory

and

select

Import.
The

Import

wizard

opens.

7.

From

the

Select

an

import

source

list,

select

Zip

file

and

click

Next.

8.

Click

Browse

(beside

the

Zip

file

field)

and

navigate

to

the

sample

code.

This

file

is

located,

as

follows:
yourDirectory\WC_SAMPLE_55.zip
where

yourDirectory

is

the

directory

into

which

you

downloaded

the

package.

9.

Click

Deselect

All,

then

expand

the

directories

and

select

the

following

files

to

import.

v

UserArea\AccountSection\RegistrationSubsection\

UserRegistrationAddForm.jsp

v

UserArea\AccountSection\RegistrationSubsection\

UserRegistrationAddFormInclude.jsp

v

UserArea\AccountSection\RegistrationSubsection\

UserRegistrationUpdateForm.jsp

v

UserArea\AccountSection\RegistrationSubsection\

UserRegistrationUpdateFormInclude.jsp
10.

In

the

Folder

field,

the

Stores/Web

Content/FashionFlow_name

folder

is

already

specified.

Keep

this

value.

11.

Click

Finish.

If

you

examine

the

UserRegistrationAddForm.jsp

file,

you

will

find

that

the

following

section

has

been

added

for

this

tutorial:

364

Programming

Guide

and

Tutorials

<%--

Add

for

tutorial

--%>

<tr>

<td

colspan="3">

<jsp:include

page="UserRegistrationAddFormInclude.jsp"

flush="true"

/>

</td>

</tr>

<%--

End

of

tutorial

--%>

You

can

also

examine

the

UserRegistrationAddFormInclude.jsp

file

to

see

how

the

new

information

is

collected,

using

JSTL.

Similarly,

examine

the

UserRegistrationAddForm.jsp

and

UserRegistrationAddFormInclude.jsp

files.

You

must

also

import

the

properties

file

that

contains

the

string

values

used

in

the

modified

JSP

templates.

This

file

is

called

Housing.properties.

To

import

this

file,

do

the

following:

1.

In

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view,

expand

the

following

directories:
Stores

>

Web

Content>

WEB-INF

>classes

>

FashionFlow_name

directory.

2.

Right-click

the

FashionFlow_name

directory

and

select

Import.
The

Import

wizard

opens.

3.

From

the

Select

an

import

source

list,

select

Zip

file

and

click

Next.

4.

Click

Browse

(beside

the

Zip

file

field)

and

navigate

to

the

sample

code.

This

file

is

located,

as

follows:
yourDirectory\WC_SAMPLE_55.zip
where

yourDirectory

is

the

directory

into

which

you

downloaded

the

package.

5.

Click

Deselect

All,

then

expand

the

directories

and

select

the

following

file

to

import.

v

Housing.properties
6.

In

the

Folder

field,

the

Stores/Web

Content/WEB-
INF/classes/FashionFlow_name

folder

is

already

specified.

Keep

this

value.

7.

Click

Finish.

Testing

the

modified

code

Next

you

must

test

the

modified

registration

information,

by

doing

the

following:

1.

Switch

to

the

Servers

perspective.

2.

Right-click

the

WebSphereCommerceServer

test

server

and

select

Start.

3.

Right-click

index.jsp

under

the

Stores\Web

Content\FashionFlow_name

directory

and

select

Run

on

Server.

4.

When

the

home

page

for

the

store

opens,

click

Register.

5.

Click

Register

again

to

create

a

new

user.

Chapter

13.

Tutorial:

Extending

an

existing

WebSphere

Commerce

entity

bean

365

6.

You

are

presented

with

a

modified

registration

page,

that

now

has

the

housing

survey,

as

shown

in

the

following

screen

shot:

7.

Enter

information

for

the

new

user,

as

appropriate

and

click

Submit.

8.

After

the

information

has

been

submitted,

click

Change

Personal

Information

to

verify

that

the

housing

information

has

been

captured.

You

are

presented

with

a

screen

that

shows

a

summary

of

your

survey

responses,

as

follows:

Figure

53.

Figure

54.

366

Programming

Guide

and

Tutorials

Deploying

the

housing

survey

logic

This

section

describes

how

to

deploy

your

new

business

logic

into

a

store

running

on

a

remote

WebSphere

Commerce

Server.

You

must

have

created

a

store

(based

upon

the

FashionFlow

sample

store)

on

the

remote

WebSphere

Commerce

Server

before

starting

these

deployment

steps.

The

deployment

process

includes

steps

that

are

performed

on

the

development

machine,

as

well

as

steps

that

are

performed

on

the

target

WebSphere

Commerce

Server.

There

are

a

number

of

different

types

of

assets

that

must

be

deployed

to

the

target

WebSphere

Commerce

Server.

These

include:

v

Command

logic

v

Modified

enterprise

bean

logic

v

JSP

templates

v

A

properties

file

v

Database

updates

including

schema

updates

(new

table)

as

well

as

command

registry

updates

This

section

describes

how

to

deploy

all

of

these

assets,

incrementally

to

the

target

WebSphere

Commerce

Server.

Creating

the

command

JAR

file

This

section

describes

how

to

create

the

JAR

file

that

contains

the

new

MyPostUserRegistrationAddCmdImpl

logic.

To

create

this

JAR

file,

perform

the

following

steps

on

your

development

machine:

1.

Create

a

directory

on

your

local

file

system

called

\ExportTemp4.

2.

Open

WebSphere

Studio

Application

Developer

and

switch

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

3.

Right-click

the

WebSphereCommerceServerExtensionsLogic

project

and

select

Export.
The

Export

wizard

opens.

4.

In

the

Export

wizard,

do

the

following:

a.

Select

JAR

file

and

click

Next.

b.

The

left

pane

under

Select

the

resources

to

export

is

prepopulated

with

the

name

of

the

project.

Leave

this

value

as

is.

c.

In

the

right

pane

ensure

that

only

the

following

resources

are

selected:

v

.classpath

v

.project

v

.serverPreference

Chapter

13.

Tutorial:

Extending

an

existing

WebSphere

Commerce

entity

bean

367

d.

Ensure

that

Export

generated

class

files

and

resources

is

selected.

e.

Do

not

select

Export

Java

source

files

and

resources.

f.

In

the

Select

the

export

destination

field,

enter

the

fully-qualified

JAR

file

name

to

use.

In

this

case,

enter

drive:\ExportTemp4\WebSphereCommerceServerExtensionsLogic.jar.

Note

that

the

JAR

file

name

must

be

WebSphereCommerceServerExtensionsLogic.jar.

g.

Click

Finish.

Creating

the

EJB

JAR

file

To

create

the

EJB

JAR

file,

do

the

following:

1.

Open

WebSphere

Studio

Application

Developer

and

switch

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

2.

Expand

the

Member-MemberManagementData

project.

3.

Double-click

EJB

Deployment

Descriptor.

4.

With

the

Overview

tab

selected,

scroll

to

the

bottom

of

the

pane,

to

locate

the

WebSphere

Bindings

section.

5.

In

the

DataSource

JNDI

name

field,

enter

the

datasource

JNDI

name

of

the

target

WebSphere

Commerce

Server.

The

following

is

an

example

value:
2000DB2

jdbc/WebSphere

Commerce

DB2

DataSource

demo
where

the

target

WebSphere

Commerce

Server

is

using

a

DB2

database,

and

the

WebSphere

Commerce

instance

name

is

“demo”

2000Oracle

jdbc/WebSphere

Commerce

Oracle

DataSource

demo
where

the

target

WebSphere

Commerce

Server

is

using

an

Oracle

database,

and

the

WebSphere

Commerce

instance

name

is

“demo”.

6.

Save

your

deployment

descriptor

changes

(Ctrl+S).

7.

In

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view,

right-click

the

Member-MemberManagementData

project

and

select

Export.
The

Export

wizard

opens.

8.

In

the

Export

wizard,

do

the

following:

a.

Select

EJB

JAR

file

and

click

Next.

b.

2000Business

2000Professional

The

value

for

What

resources

do

you

want

to

export?

is

prepopulated

with

the

name

of

the

EJB

project.

2000Express

The

EJB

project

name

is

prepopulate.

Leave

this

value

as

is.

c.

2000Business

2000Professional

In

the

Where

do

you

want

to

export

resources

to?

field,

enter

the

fully-qualified

JAR

file

name

to

use.

2000Express

For

the

destination,

enter

the

fully-qualified

JAR

file

name

to

368

Programming

Guide

and

Tutorials

use.

In

this

case,

enter

drive:\ExportTemp4\Member-
MemberManagementData.jar.

d.

Click

Finish.
9.

After

the

JAR

file

has

been

created,

undo

the

changes

to

the

local

deployment

descriptor

that

was

made

in

step

5,

to

restore

the

setting

that

is

required

for

your

local

test

server.

Exporting

store

assets

To

export

the

modified

JSP

templates

and

the

new

properties

file,

do

the

following:

1.

Open

WebSphere

Studio

Application

Developer

and

switch

to

the

2000Business

2000Professional

J2EE

Navigator

view

2000Express

Project

Navigator

view.

2.

Expand

the

Stores

folder.

3.

Right-click

the

Web

Content

folder

and

select

Export.
The

Export

Wizard

opens.

4.

In

the

Export

wizard,

do

the

following:

a.

Select

File

system

and

click

Next.

b.

Select

the

following

resources

to

deploy:

v

Web

Content\FashionFlow_name\UserArea\AccountSection\

RegistrationSubsection\UserRegistrationAddForm.jsp

v

Web

Content\FashionFlow_name\UserArea\AccountSection\

RegistrationSubsection\UserRegistrationAddFormInclude.jsp

v

Web

Content\FashionFlow_name\UserArea\AccountSection\

RegistrationSubsection\UserRegistrationUpdateForm.jsp

v

Web

Content\FashionFlow_name\UserArea\AccountSection\

RegistrationSubsection\UserRegistrationUpdateFormInclude.jsp

v

Web

Content\WEB-INF\lib\jstl.jar

v

Web

Content\WEB-INF\lib\standard.jar

v

Web

Content\WEB-
INF\classes\FashionFlow_name\Housing.properties

c.

Select

Create

directory

structure

for

selected

files.

d.

In

the

Directory

field,

enter

a

temporary

directory

into

which

these

resources

will

be

placed.

For

example,

enter

C:\ExportTemp4

e.

Click

Finish.

Transferring

assets

to

your

target

WebSphere

Commerce

Server

In

this

step,

you

create

a

temporary

directory

on

the

target

WebSphere

Commerce

Server

and

then

copy

your

housing

survey

assets

into

this

directory.

In

subsequent

steps,

you

will

place

the

different

types

of

code

into

the

appropriate

place

within

your

WebSphere

Commerce

application.

Chapter

13.

Tutorial:

Extending

an

existing

WebSphere

Commerce

entity

bean

369

To

copy

the

files

from

your

development

machine

to

your

target

WebSphere

Commerce

Server,

do

the

following:

1.

On

the

target

WebSphere

Commerce

Server,

create

a

temporary

directory

called

\ImportTemp4.

2.

Determine

how

you

will

copy

your

files

from

one

computer

to

another.

You

can

do

this

by

mapping

a

drive

on

the

target

WebSphere

Commerce

Server

to

the

development

machine,

or

by

using

an

FTP

application,

if

you

have

that

configured.

3.

From

the

development

machine,

copy

the

contents

of

\ExportTemp4

into

\ImportTemp4

on

the

target

WebSphere

Commerce

Server.

Stopping

your

target

WebSphere

Commerce

Server

Before

starting

the

deployment

steps,

you

should

stop

your

target

WebSphere

Commerce

Server

by

issuing

the

stopServer

command

at

the

command

line.

For

details

about

this

command,

refer

to

the

2000Business

2000Professional

WebSphere

Commerce

Studio

Installation

Guide

or

2000Express

WebSphere

Commerce

-

Express

Developer

Edition

Installation

Guide.

Updating

the

database

on

your

target

WebSphere

Commerce

Server

Creating

the

XHOUSING

table

2000DB2

If

you

are

using

a

DB2

database,

do

the

following

to

create

the

table:

1.

Open

the

DB2

Command

Center

(Start

>

Programs

>

IBM

DB2

>

Command

Line

Tools

>

Command

Center)

and

click

the

Scripting

tab.

2.

In

the

Script

window,

enter

the

following:

connect

to

developmentDB

user

dbuser

using

dbpassword;

create

table

XHOUSING

(MEMBERID

bigint

not

null,

HOUSINGTYPE

integer,

LOCATION

integer,

constraint

p_xhousing

primary

key

(MEMBERID),

constraint

f_xhousing

foreign

key

(MEMBERID)

references

USERS

(USERS_ID)

on

delete

cascade);

insert

into

XHOUSING

(MEMBERID)

(select

USERS_ID

from

USERS);

where

v

developmentDB

is

the

name

of

your

development

database

v

dbuser

is

the

database

user

v

dbpassword

is

the

password

for

your

database

user

Click

the

Execute

icon.
You

should

see

a

message

indicating

that

the

SQL

statement

completed

successfully.

2000Oracle

If

you

are

using

an

Oracle

database,

do

the

following

to

create

the

table:

370

Programming

Guide

and

Tutorials

1.

Open

the

Oracle

SQL

Plus

command

window

(Start

>

Programs

>

Oracle

>

Application

Development

>

SQL

Plus).

2.

In

the

User

Name

field,

enter

your

Oracle

user

name.

3.

In

the

Password

field,

enter

your

Oracle

password.

4.

In

the

Host

String

field,

enter

your

connect

string.

5.

In

the

SQL

Plus

window,

enter

the

following

SQL

statement:

create

table

XHOUSING

(MEMBERID

number

not

null,

HOUSINGTYPE

integer,

LOCATION

integer,

constraint

p_xhousing

primary

key

(MEMBERID),

constraint

f_xhousing

foreign

key

(MEMBERID)

references

USERS

(USERS_ID)

on

delete

cascade);

insert

into

XHOUSING

(MEMBERID)

(select

USERS_ID

from

USERS);

and

press

Enter

to

run

the

SQL

statement.

The

XHOUSING

table

is

now

created.

6.

Enter

the

following

to

commit

your

database

changes:

commit;

and

press

Enter

to

run

the

SQL

statement.

Registering

the

task

command

To

modify

the

command

registry,

do

the

following:

1.

2000DB2

If

you

are

using

a

DB2

database,

do

the

following

to

register

MyPostUserRegistrationAddCmdImpl:

a.

Open

the

DB2

Command

Center

(Start

>

Programs

>IBM

DB2

>

Command

Center).

b.

From

the

Tools

menu,

select

Tools

Settings.

c.

Select

the

Use

statement

termination

character

check

box

and

ensure

the

character

specified

is

a

semicolon

(;)

d.

With

the

Script

tab

selected,

create

the

required

entry

in

the

URLREG

table,

by

entering

the

following

information

in

the

script

window:
connect

to

developmentDB

user

dbuser

using

dbpassword;

insert

into

CMDREG

values

(FashionFlow_storeent_Id,

‘com.ibm.commerce.usermanagement.commands.PostUserRegistrationAddCmd’

‘Description’,

‘com.ibm.commerce.sample.commands.MyPostUserRegistrationAddCmdImpl’,

null,

null,

‘Local’);

where

v

developmentDB

is

the

name

of

your

development

database

v

dbuser

is

the

database

user

v

dbpassword

is

the

password

for

your

database

user

v

FashionFlow_storeent_Id

is

the

unique

store

entity

identifier

for

your

store.

Chapter

13.

Tutorial:

Extending

an

existing

WebSphere

Commerce

entity

bean

371

Click

the

Execute

icon.

2.

2000Oracle

If

you

are

using

an

Oracle

database,

do

the

following

to

register

MyPostUserRegistrationAddCmdImpl:

a.

Open

the

Oracle

SQL

Plus

command

window

(Start

>

Programs

>

Oracle

>

Application

Development

>

SQL

Plus).

b.

In

the

User

Name

field,

enter

your

Oracle

user

name.

c.

In

the

Password

field,

enter

your

Oracle

password.

d.

In

the

Host

String

field,

enter

your

connect

string.

e.

In

the

SQL

Plus

window,

enter

the

following

SQL

statement:

insert

into

CMDREG

values

(FashionFlow_storeent_Id,

‘com.ibm.commerce.usermanagement.commands.PostUserRegistrationAddCmd’

‘Description’,

‘com.ibm.commerce.sample.commands.MyPostUserRegistrationAddCmdImpl’,

null,

null,

‘Local’);

Press

Enter

to

run

the

SQL

statement.

f.

Enter

the

following

to

commit

your

database

changes:

commit;

and

press

Enter

to

run

the

SQL

statement.

Updating

store

assets

on

your

target

WebSphere

Commerce

Server

In

this

step,

you

update

the

store

with

your

modified

store

assets,

as

follows:

1.

Backup

your

WAS_installdir\installedApps\cellName\WC_instanceName.ear\

Stores.war

directory

(where

cellName

is

often

the

host

name

of

your

machine).

2.

Navigate

to

the

:\ImportTemp4\Stores\Web

Content

directory.

3.

Copy

the

FashionFlow_name

and

WEB-INF

folders

into

the

following

directory:
WAS_installdir\installedApps\cellName\WC_instanceName.ear\Stores.war

where

instanceName

is

the

name

of

your

WebSphere

Commerce

instance.

Updating

the

command

JAR

file

on

your

target

WebSphere

Commerce

Server

In

this

step

you

update

the

target

WebSphere

Commerce

Server

to

use

the

new

command

JAR

file,

as

follows:

1.

You

should

make

a

backup

copy

of

the

existing

JAR

file,

as

follows:

a.

Navigate

to

the

WAS_installdir\installedApps\cellName\WC_instanceName.ear

directory.

b.

Make

a

copy

of

the

WebSphereCommerceServerExtensionsLogic.jar

file

and

save

it

in

a

backup

location.

372

Programming

Guide

and

Tutorials

2.

Copy

the

new

WebSphereCommerceServerExtensionsLogic.jar

file

from

the

\ImportTemp4

directory

into

the

WAS_installdir\installedApps\cellName\WC_instanceName.ear

directory

where

instanceName

is

the

name

of

your

WebSphere

Commerce

instance.

Updating

the

EJB

JAR

file

on

your

target

WebSphere

Commerce

Server

In

this

step

you

update

the

target

WebSphere

Commerce

Server

to

use

the

new

EJB

JAR

file,

as

follows:

1.

You

should

make

a

backup

copy

of

the

existing

JAR

file,

as

follows:

a.

Navigate

to

the

WAS_installdir\installedApps\cellName\WC_instanceName.ear

directory.

b.

Make

a

copy

of

the

Member-MemberManagementData.jar

file

and

save

it

in

a

backup

location.
2.

Copy

the

new

Member-MemberManagementData.jar

file

from

the

\ImportTemp4

directory

into

the

WAS_installdir\installedApps\cellName\WC_instanceName.ear

directory

3.

Next,

you

must

modify

the

EJB

deployment

descriptor

information,

as

follows:

a.

Locate

the

deployment

repository

(META-INF

directory)

for

this

WebSphere

Application

Server

cell.

This

typically

takes

the

following

form:
WAS_installdir\config\cells\cellName

\applications\WC_instance_name.ear\deployments\

WC_instance_name\EJBModuleName.jar\META-INF.

The

following

is

a

specific

example

of

this:
D:\WebSphere\AppServer\config\cells\myCell\applications\

WC_demo.ear\deployments\WC_demo\

Member-
MemberManagementData.jar\META-INF
where

v

myCell

is

the

name

of

the

WebSphere

Application

Server

cell

v

demo

is

the

name

of

the

WebSphere

Commerce

instance

v

Member-MemberManagementData

is

the

name

of

the

customized

EJB

module
b.

The

directory

contains

the

following

files:

v

ejb-jar.xml

v

ibm-ejb-access-bean.xmi

v

ibm-ejb-jar-bnd.xmi

v

ibm-ejb-jar-ext.xmi

v

MANIFEST.MF

Backup

all

of

these

files.

Chapter

13.

Tutorial:

Extending

an

existing

WebSphere

Commerce

entity

bean

373

c.

Use

a

tool

to

open

the

new

Member-MemberManagementData.jar

file

and

view

its

contents.

d.

Extract

the

contents

of

the

meta-inf

directory

from

this

Member-MemberManagementData.jar

file

into

the

directory

from

step

3a.
4.

Using

the

WebSphere

Application

Server

startServer

command

at

the

command

line,

restart

your

WebSphere

Commerce

instance.

Verifying

the

housing

survey

logic

on

the

target

WebSphere

Commerce

Server

In

this

step,

you

verify

that

the

housing

survey

logic

has

been

successfully

deployed

to

the

target

WebSphere

Commerce

Server

by

doing

the

following:

1.

Open

a

Web

browser

and

enter

the

URL

to

launch

your

store

that

is

based

on

the

FashionFlow

sample

store.

2.

When

the

home

page

for

the

store

opens,

click

Register.

3.

Click

Register

again

to

create

a

new

user.

4.

You

are

presented

with

a

modified

registration

page,

that

now

has

the

housing

survey,

as

shown

in

the

following

screen

shot:

5.

Enter

information

for

the

new

user,

as

appropriate

and

click

Submit.

Figure

55.

374

Programming

Guide

and

Tutorials

6.

After

the

information

has

been

submitted,

click

Change

Personal

Information

to

verify

that

the

housing

information

has

been

captured.

You

are

presented

with

a

screen

that

shows

a

summary

of

your

survey

responses,

as

follows:

Figure

56.

Chapter

13.

Tutorial:

Extending

an

existing

WebSphere

Commerce

entity

bean

375

376

Programming

Guide

and

Tutorials

Part

5.

Appendixes

©

Copyright

IBM

Corp.

2000,

2003

377

378

Programming

Guide

and

Tutorials

Appendix

A.

Configuring

WebSphere

Commerce

component

tracing

in

the

WebSphere

Commerce

development

environment

This

appendix

describes

how

to

enable

tracing

for

the

various

WebSphere

Commerce

components,

when

running

in

the

WebSphere

Commerce

development

environment.

To

enable

component

tracing,

do

the

following:

1.

If

required,

open

the

WebSphere

Commerce

development

environment

(Start

>

Programs

>

IBM

WebSphere

Commerce

development

environment

>

WebSphere

Commerce

development

environment).

2.

Switch

to

the

Server

perspective.

3.

In

the

Servers

view,

right-click

WebSphereCommerceServer

and

select

Stop

(if

the

server

is

currently

running).

4.

In

the

Server

Configuration

view,

expand

the

Server

Configurations

folder.

5.

Double-click

WebSphereCommerceServer.
The

WebSphereCommerceServer

editor

opens.

6.

Select

the

Trace

tab.

7.

Select

Enable

trace.

8.

In

the

Trace

string

text

box,

specify

the

components

for

which

tracing

should

be

enabled.

Use

the

WebSphere

JRas

extensions

trace

logger

identifier

value,

followed

by

“=all=enabled”.

For

a

complete

list

of

these

values,

refer

to

the

“Configuration”

topic

of

the

WebSphere

Commerce

Administration

Guide.

Multiple

components

should

be

separated

by

a

colon

(:).

As

an

example,

to

enable

tracing

for

both

the

SERVER

and

RAS

components,

specify

the

trace

string

as

follows:

com.ibm.websphere.commerce.WC_SERVER=all=enabled:

com.ibm.websphere.commerce.WC_RAS=all=enabled

Note

the

line

break

is

for

presentation

purposes

only.

9.

Save

your

changes

(Ctrl+S).

Output

file

The

output

log

file

is

called

activity.log

by

default.

This

file

is

located

in

the

following

directory:
workspace_dir\.metadata\.plugin\com.ibm.etools.server.core\tmp0\logs

©

Copyright

IBM

Corp.

2000,

2003

379

Due

to

the

fact

that

the

activity.log

file

is

a

binary

file,

Log

Analyzer

is

used

to

read

this

file.

Once

you

have

enabled

component

tracing,

WebSphere

JRas

will

also

write

the

log

entries

in

plain

text

format

into

the

trace

output

file

along

with

the

trace

entries.

For

information

about

configuring

the

Log

Analyzer

tool

in

the

WebSphere

Commerce

development

environment,

refer

to

the

2000Business

2000Professional

WebSphere

Commerce

Studio

Installation

Guide

or

2000Express

WebSphere

Commerce

-

Express

Developer

Edition

Installation

Guide.

Additionally,

messages

are

displayed

in

the

Console

view

of

WebSphere

Studio

Application

Developer.

380

Programming

Guide

and

Tutorials

Appendix

B.

Where

to

find

more

information

More

information

about

the

WebSphere

Commerce

development

environment

system

and

its

components

is

available

from

a

variety

of

sources

in

different

formats.

The

following

sections

indicate

what

information

is

available

and

how

to

access

it.

WebSphere

Commerce

development

environment

information

The

following

are

the

sources

of

the

WebSphere

Commerce

development

environment

information:

v

“WebSphere

Commerce

development

environment

online

help”

v

“WebSphere

Commerce

Web

site”

on

page

382

v

“WebSphere

Developer

Domain”

on

page

382

v

“IBM

Redbooks™”

on

page

382

WebSphere

Commerce

development

environment

online

help

The

WebSphere

Commerce

development

environment

online

information

is

your

primary

source

of

information

for

creating

and

publishing

stores

in

the

WebSphere

Commerce

development

environment.

To

view

the

WebSphere

Commerce

development

environment

online

help,

do

the

following:

1.

Start

the

WebSphere

Commerce

development

environment

by

selecting

Start

→

Programs

→

IBM

WebSphere

Commerce

Studio

→

WebSphere

Commerce

development

environment.

2.

From

the

Help

menu,

select

Help

Contents.

Note:

If

you

refer

to

instructions

for

multiple

platforms

in

the

“WebSphere

Commerce

development

environment

online

help,”

ensure

you

follow

the

instructions

for

the

WebSphere

Commerce

development

environment.

When

a

help

page

contains

information

for

multiple

platforms,

information

specific

to

the

WebSphere

Commerce

development

environment

is

indicated

with

the

following

icon:

Studio

If

information

specific

to

the

WebSphere

Commerce

development

environment

is

not

available,

ensure

you

follow

instructions

specific

to

Windows,

When

a

help

page

contains

instructions

for

multiple

platforms,

instructions

for

Windows

are

indicated

with

the

following

©

Copyright

IBM

Corp.

2000,

2003

381

icon:

2000Windows

WebSphere

Commerce

Web

site

WebSphere

Commerce

development

environment

product

information

is

available

at

the

WebSphere

Commerce

Web

site.

Refer

to

the

following

URLs

for

more

product

information:

http://www.ibm.com/software/webservers/commerce/library/

WebSphere

Developer

Domain

Additional

information

on

the

WebSphere

Commerce

development

environment

and

WebSphere

Commerce

is

also

available

in

the

WebSphere

Commerce

Zone

at

WebSphere

Developer

Domain:

http://www.ibm.com/websphere/developer/zones/commerce/

IBM

Redbooks™

WebSphere

Commerce

development

environment

and

WebSphere

Commerce

information

is

available

at

the

IBM

Redbooks

Web

site:

http://www.ibm.com/redbooks

WebSphere

Studio

Application

Developer

information

The

following

are

sources

of

information

for

WebSphere

Studio

Application

Developer:

v

“WebSphere

Studio

Application

Developer

online

help”

v

“WebSphere

Studio

Application

Developer

Web

site”

v

“WebSphere

Developer

Domain”

on

page

383

v

“IBM

Redbooks”

on

page

383

WebSphere

Studio

Application

Developer

online

help

The

WebSphere

Studio

Application

Developer

online

help

is

your

primary

source

of

information

on

how

to

perform

tasks

within

WebSphere

Studio

Application

Developer.

To

view

the

WebSphere

Studio

Application

Developer

online

help,

do

the

following:

1.

Start

the

WebSphere

Commerce

development

environment

by

selecting

Start

→

Programs

→

IBM

WebSphere

Studio

→

Application

Developer

5.0.

2.

From

the

Help

menu,

select

Help

Contents.

WebSphere

Studio

Application

Developer

Web

site

WebSphere

Studio

Application

Developer

product

information

is

available

on

the

WebSphere

Studio

Application

Developer

Web

site:

http://www.ibm.com/software/ad/studioappdev/library/

382

Programming

Guide

and

Tutorials

http://www.ibm.com/software/genservers/commerce/library/
http://www.ibm.com/software/wsdd/zones/commerce/
http://www.ibm.com/redbooks/
http://www.ibm.com/software/ad/studioappdev/library/

WebSphere

Developer

Domain

Additional

information

on

WebSphere

Studio

Application

Developer

is

available

on

the

WebSphere

Studio

Application

Developer

page

of

the

WebSphere

Studio

Zone

of

WebSphere

Developer

Domain:

http://www.ibm.com/websphere/developer/zones/studio/appdev/

IBM

Redbooks

WebSphere

Studio

Application

Developer

information

is

available

at

the

IBM

Redbooks

Web

site:

http://www.ibm.com/redbooks

Appendix

B.

Where

to

find

more

information

383

http://www.ibm.com/websphere/developer/zones/studio/appdev/
http://www.ibm.com/redbooks/

384

Programming

Guide

and

Tutorials

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing
IBM

Corporation
500

Columbus

Avenue
Thornwood,

NY

10594
U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation
Licensing
2-31

Roppongi

3-chome,

Minato-ku
Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

″AS

IS″

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

©

Copyright

IBM

Corp.

2000,

2003

385

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Canada

Ltd.
Office

of

the

Lab

Director
8200

Warden

Avenue,

Markham,

Ontario

L6G

1C7
Canada

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurement

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

386

Programming

Guide

and

Tutorials

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

All

IBM

prices

shown

are

IBM’s

suggested

retail

prices,

are

current

and

are

subject

to

change

without

notice.

Dealer

prices

may

vary.

This

information

is

for

planning

purposes

only.

The

information

herein

is

subject

to

change

before

the

products

described

become

available.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work,

must

include

a

copyright

notice

as

follows:

©Copyright

International

Business

Machines

Corporation

2000,

2003.

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©Copyright

IBM

Corp.

2000,

2003.

All

rights

reserved.

If

you

are

viewing

this

information

softcopy,

the

photographs

and

color

illustrations

may

not

appear.

Notices

387

Trademarks

and

service

marks

The

IBM

logo

and

the

following

terms

are

trademarks

or

registered

trademarks

of

International

Business

Machines

Corporation

in

the

United

States

or

other

countries

or

both:

400

IBM

AIX

iSeries

AS/400

OS/390

DB2

WebSphere

DB2

Universal

Database

z/OS

Windows

is

a

trademark

or

registered

trademark

of

Microsoft®

Corporation

in

the

United

States,

other

countries,

or

both.

Java

and

all

Java-based

trademarks

and

logos

are

trademarks

or

registered

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Other

company,

product,

and

service

names

may

be

the

trademarks

or

service

marks

of

others.

388

Programming

Guide

and

Tutorials

Index

A
access

control

89

command-leval

99

Groupable

interface

104

policies

92

Protectable

interface

104

protecting

resources

105

resource-leval

99

adapters

10

application

architecture

4

C
CMDREG

30

command

design

pattern

20

command

flow

26

command

registry

28

commands
command

context

137

customize

existing

149

factory

23

framework

21

implementation

133

interfaces

22

registration

28

types

12

writing

new

business

policy

commands

163

writing

new

controller

commands

139

writing

new

task

commands

148

controller

command

invoker

data

bean

42

controller

commands
customize

existing

149

long-running

142

writing

new

139

customized

code
packaging

136

D
data

beans
activating

41

BeanInfo

41

customize

existing

156

description

14

interfaces

39

command

data

bean

40

input

data

bean

41

data

beans

(continued)
interfaces

(continued)
smart

data

bean

39

types

38

database

commits

145

database

considerations
datatype

85

naming

83

database

locks

78

deployment

descriptors

48

design

patterns

19

command

20

display

37

model-view-controller

19

display

design

pattern

37

E
entity

beans
cache

79

deployment

descriptors

48

description

13

extending

50

overview

47

transactions

77

using

82

error

handling

123

command

123

exception

types

123

flow

124

in

custom

code

126

JSP

130

trace

130

F
flushRemote

method

79

J
JSP

templates

14

setting

attributes

43

M
messages

creating

messages

128

properties

files

124

model-view-controller

design

pattern

19

O
object

life

cycles

77

object

model

extension

methodologies

50

P
packaging

customized

code

136

persistence

47

protocol

listeners

9

R
relationship

groups

97

run-time

architecture

7

S
servlet

engine

9

session

beans
recommended

use

54

writing

new

75

software

components

3

T
task

commands
customize

existing

154

writing

new

148

terms

and

conditions

169

tracing

execution

flow

130

trading

agreements

157

transaction

scope

145

U
URLREG

28

V
view

commands
format

input

properties

to

143

required

properties

45

VIEWREG

33

W
Web

controller

11

©

Copyright

IBM

Corp.

2000,

2003

389

390

Programming

Guide

and

Tutorials

����

Printed

in

USA

	Before you begin
	Updates to this book
	Conventions used in this book
	Knowledge requirements
	Path variables
	Where to find more information

	Contents
	Part 1. Concepts and architecture
	Chapter 1. Overview
	WebSphere Commerce software components
	WebSphere Commerce application architecture
	WebSphere Commerce run-time architecture
	Servlet engine
	Protocol listeners
	Adapter manager
	Adapters
	Web controller
	Commands
	WebSphere Commerce entity beans
	Data beans
	Data bean manager
	JavaServer Pages templates
	instance_name.xml configuration file

	Summary for a request

	Part 2. Programming model
	Chapter 2. Design patterns
	Model-View-Controller design pattern
	Command design pattern
	Command framework
	Command factory
	Nested controller commands

	Command flow
	Command registration framework
	URLREG table
	CMDREG table
	Example of a registered controller command
	VIEWREG table

	Display design pattern
	JSP templates and data beans
	Data beans security consideration

	Types of data beans
	Data bean interfaces
	BeanInfo class
	Data bean activation

	Invoking controller commands from within a JSP template
	Lazy fetch data retrieval

	Setting JSP attributes - overview
	Required property settings

	Chapter 3. Persistent object model
	Implementation of WebSphere Commerce entity beans
	WebSphere Commerce entity beans - overview
	Deployment descriptors for WebSphere Commerce enterprise beans
	Extending the WebSphere Commerce object model
	Object model extension methodologies
	Recommended use of session beans
	Extending public entity beans
	Creating a new CMP enterprise bean
	Creating a simple data bean
	Writing new session beans

	Object life cycles
	Transactions
	Other considerations for entity beans
	Find for update
	Flush remote method
	Securing enterprise beans
	Primary keys

	Using entity beans
	Database considerations
	Database schema object naming considerations
	Naming conventions for tables and views
	Naming conventions for columns
	Naming conventions for indexes
	Naming conventions for primary keys
	Naming conventions for foreign keys
	Naming conventions for database triggers

	Database column data type considerations
	Data type differences among databases

	Chapter 4. Access control
	Understanding access control
	Overview of resource protection in WebSphere Application Server
	Security consideration for URL parameters
	Introduction to WebSphere Commerce access control policies
	Relationship groups

	Types of access control
	Access control interactions
	Protectable interface
	Groupable interface
	Finding more information about access control

	Implementing access control
	Identifying protectable resources
	Implementing access control in enterprise beans
	Implementing access control in data beans
	Implementing access control in controller commands
	Additional resource level checking
	Access control for “create” commands
	Default implementations for command-level access control

	Implementing access control policies in views

	Modifying access control on existing WebSphere Commerce resources
	Adding a new relationship to an existing WebSphere Commerce entity bean
	Adding access control to an existing WebSphere Commerce entity bean that is not already protected
	Understanding the access control implications when a controller command is extended
	Effect on the getResources method
	Effect on the command-level access control policies
	Effect on the resource-level access control policies

	Sample access control policies for development purposes
	Sample access control policy for new views
	Sample command-level access control policy for new controller commands
	Sample resource-level access control policy for a new command and enterprise bean

	Chapter 5. Error handling and messages
	Command error handling
	Types of exceptions
	Error message properties files
	Exception handling flow
	Exception handling in customized code
	Catching and constructing exceptions

	Creating messages
	Creating a class for message keys
	Creating a class for ECMessage objects
	Creating a user message resource bundle

	Execution flow tracing

	JSP template error handling

	Chapter 6. Command implementation
	New commands - introduction
	Packaging customized code
	Command context
	Temporary changes to contextual information for URL commands
	New controller commands
	isGeneric method
	isRetriable method
	setRequestProperties method
	validateParameters method
	getResources method
	performExecute method
	Long-running controller commands

	Formatting of input properties to view commands
	Flattening input parameters into a query string for HttpRedirectView
	Handling a limited length redirect URL
	Setting attributes in the HttpServletRequest object for HttpForwardView

	Database commits and rollbacks for controller commands
	Example of transaction scope with a controller command
	Case 1: Executing the view within the scope of the controller command transaction
	Case 2: Executing the view outside of the scope of the controller command transaction

	New task commands
	Customization of existing commands
	Customizing existing controller commands
	Adding new business logic to a controller command
	Replacing task commands called by a controller command
	Replacing the view called by a controller command

	Customizing existing task commands
	Adding new business logic to a task command
	Replacing business logic of an existing task command

	Data bean customization

	Chapter 7. Trading agreements and business policies (Business Edition)
	Introduction
	Business policy objects and commands
	ToolTech sample contract data
	CONTRACT table sample data
	TERMCOND table sample data
	POLICYTC table sample data
	POLICY table sample data
	TRADEPOSCN table sample data
	SHIPMODE table sample data

	Extending the existing contract model
	Creating a new business policy
	Creating a new business policy type
	Writing the new business policy command
	Setting requestProperties in business policy commands

	Registering the new business policy and business policy command

	Relating a terms and conditions object to a new business policy
	Creating new terms and conditions
	Registering the new term and condition in the database
	Register the new term and condition in the contract XSD
	Creating a new CMP enterprise bean for the term and condition
	Updating WebSphere Commerce Accelerator to use a new term and condition
	Importing the new contract using the new term and condition

	Invoking the new business policy
	Creating a contract
	Contract customization scenarios
	Rebate scenario
	Step 1: Creating the new table and enterprise bean
	Step 2: Creating the “5DollarRebate” business policy
	Step 3: Creating the “RebateTC” term and condition
	Step 4: Creating a new contract
	Step 5: Integrating the new business policy into the shopping flow

	Part 3. Development environment
	Chapter 8. Development environment
	Typical development environment
	WebSphere Studio Application Developer

	Development environment for iSeries
	Using different database management systems for development and production
	Overview of the WebSphere Commerce enterprise bean conversion tool
	Payment options within the development environment

	Chapter 9. Deployment details
	User permission requirements for deployment steps
	Incremental deployment
	Deploying enterprise beans
	Creating the EJB JAR file
	Creating an EJB JAR file without conversion
	Creating an EJB JAR file with conversion

	Updating the EJB JAR file on the target WebSphere Commerce Server

	Deploying commands and data beans
	Creating the JAR file
	Updating the JAR file on the target WebSphere Commerce Server

	Deploying store assets
	Exporting store assets
	Transferring store assets

	Updating the target database
	Access control updates

	Part 4. Tutorials
	Chapter 10. Tutorial: Creating new business logic
	Locating the sample code
	Preparing your workspace
	Creating a new view
	Registering MyNewView
	Creating a properties file for the tutorial
	Creating MyNewJSPTemplate
	Creating and loading access control policies for MyNewView
	Testing MyNewView

	Creating a new controller command
	Registering MyNewControllerCmd
	Creating the MyNewControllerCmd interface
	Creating the MyNewControllerCmdImpl implementation class
	Creating and loading access control policies for the command
	Testing MyNewControllerCmd

	Passing information from MyNewControllerCmd to MyNewView
	Passing information using a TypedProperties object
	Passing information using a data bean
	Creating MyNewDataBean
	Instantiating MyNewDataBean and setting its attributes using MyNewControllerCmd
	Using MyNewDataBean in MyNewJSPTemplate
	Testing the modified JSP template

	Parsing and validating URL parameters in MyNewControllerCmd
	Adding new fields to MyNewControllerCmd
	Passing URL parameters to the view
	Catching missing parameters and validating values
	Adding new fields to MyNewDataBean
	Modifying MyNewJSPTemplate to display the URL parameters
	Testing URL parameter values

	Creating a new task command
	Creating MyNewTaskCmd
	Calling the task command
	Modifying MyNewJSPTemplate to add the greetings message
	Testing MyNewTaskCmd

	Modifying MyNewTaskCmd
	Modifying MyNewControllerCmdImpl to create an object for the task command
	Modifying the new task command for user name validation
	Modify MyNewJSPTemplate for user name validation
	Testing user name validation

	Creating a new entity bean
	Creating the XBONUS table
	Creating the BonusBean entity bean
	Integrating the Bonus entity bean with MyNewControllerCmd
	Modifying the MyNewTaskCmd interface to include bonus points
	Modifying MyNewTaskCmdImpl to calculate bonus points
	Adding a getResources method to the MyNewControllerCmdImpl class
	Modifying the performExecute method of the MyNewControllerCmdImpl class
	Creating the BonusDataBean data bean
	Creating the access control policy for the new entity bean
	Modifying the MyNewJSPTemplate.jsp template to include bonus points
	Testing the integrated Bonus bean

	Deploying the bonus points logic
	Creating the command and data bean JAR file
	Creating the EJB JAR file
	Exporting store assets
	Packaging access control policies
	Transferring assets to your target WebSphere Commerce Server
	Stopping your target WebSphere Commerce Server
	Updating the database on your target WebSphere Commerce Server
	Registering the view
	Registering the new controller command
	Creating the XBONUS table
	Loading access control policies on your target WebSphere Commerce Server

	Updating store assets on your target WebSphere Commerce Server
	Updating the command and data bean JAR file on your target WebSphere Commerce Server
	Updating the EJB JAR file on your target WebSphere Commerce Server
	Verifying bonus points logic on the target WebSphere Commerce Server

	Chapter 11. Tutorial: Modifying an existing controller command
	Prerequisites
	Creating the new MyOrderItemAddCmdImpl class
	Creating message information
	Modifying the command registry
	Testing the MyOrderItemAddCmdImpl command
	Deploying MyOrderItemAddCmdImpl
	Creating the command JAR file
	Exporting the message properties file
	Transferring assets to the target WebSphere Commerce Server
	Stopping your target WebSphere Commerce Server
	Updating the database on the target WebSphere Commerce Server
	Updating the command JAR file on the target WebSphere Commerce Server
	Updating the message properties on the target WebSphere Commerce Server
	Verifying the MyOrderItemAddCmdImpl logic on the target WebSphere Commerce Server

	Chapter 12. Tutorial: Extending the object model and modifying an existing task command
	Prerequisites
	Creating and populating the XORDGIFT table
	Creating the OrderGift entity bean
	Integrating the OrderGift entity bean into the shopping flow
	Creating the OrderGiftDataBean
	Creating the MyExtOrderProcessCmdImpl class
	Compiling changes
	Modifying display pages for gift messages
	Testing the new gift message functionality

	Deploying the gift message functionality
	Creating the command and data bean JAR file
	Creating the EJB JAR file
	Exporting store assets
	Transferring assets to your target WebSphere Commerce Server
	Stopping your target WebSphere Commerce Server
	Updating the database on your target WebSphere Commerce Server
	Registering the task command implementation
	Creating the XORDGIFT table

	Updating store assets on your target WebSphere Commerce Server
	Updating the command and data bean JAR file on your target WebSphere Commerce Server
	Updating the EJB JAR file on your target WebSphere Commerce Server
	Verifying the gift message functionality on the target WebSphere Commerce Server

	Chapter 13. Tutorial: Extending an existing WebSphere Commerce entity bean
	Prerequisites
	Creating and populating the XHOUSING table
	Adding new fields to the User entity bean
	Updating the schema and table mapping information
	Creating the table definition for the XHOUSING table
	Creating the XHOUSING table map
	Updating the mapping file
	Generating the access beans and deployed code

	Creating the MyPostUserRegistrationAddCmdImpl implementation
	Modifying the command registry

	Modifying JSP templates to collect and display housing information
	Testing the modified code
	Deploying the housing survey logic
	Creating the command JAR file
	Creating the EJB JAR file
	Exporting store assets
	Transferring assets to your target WebSphere Commerce Server
	Stopping your target WebSphere Commerce Server
	Updating the database on your target WebSphere Commerce Server
	Creating the XHOUSING table
	Registering the task command

	Updating store assets on your target WebSphere Commerce Server
	Updating the command JAR file on your target WebSphere Commerce Server
	Updating the EJB JAR file on your target WebSphere Commerce Server
	Verifying the housing survey logic on the target WebSphere Commerce Server

	Part 5. Appendixes
	Appendix A. Configuring WebSphere Commerce component tracing in the WebSphere Commerce development environment
	Output file

	Appendix B. Where to find more information
	WebSphere Commerce development environment information
	WebSphere Commerce development environment online help
	WebSphere Commerce Web site
	WebSphere Developer Domain
	IBM Redbooks™

	WebSphere Studio Application Developer information
	WebSphere Studio Application Developer online help
	WebSphere Studio Application Developer Web site
	WebSphere Developer Domain
	IBM Redbooks

	Notices
	Trademarks and service marks

	Index

