
IBM WebSphere Commerce

Payments Cassette for KitCash Supplement
Version 5.5

���





IBM WebSphere Commerce

Payments Cassette for KitCash Supplement
Version 5.5

���



Note
Before using this information and the product it supports, be sure to read the general information under “Notices”, on
page 37.

Sixth Edition (July 2003)

This edition applies to a sample payment cassette, the KitCash Cassette, that can be used with version 5.5 of IBM
WebSphere Commerce. Make sure you are using the correct edition for the level of the product.

IBM welcomes your comments. You can send your comments by using the online IBM WebSphere Commerce
documentation feedback form, available at the followingURL: www.ibm.com/software/commerce/rcf.html

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000, 2003. All rights reserved Note to U.S.
Government users — Documentation related to restricted rights — Use, duplication, or disclosure is subject to
restrictions set forth in GSA ADP Schedule contract with IBM Corp.



Contents

Welcome! . . . . . . . . . . . . . . v
Conventions in this book . . . . . . . . . . v
Additional information . . . . . . . . . . vi

Chapter 1. Overview of Cassette for
KitCash . . . . . . . . . . . . . . . 1
Protocol overview . . . . . . . . . . . . 1

Chapter 2. KitCash and WebSphere
Commerce Payments Concepts . . . . 3
A KitCash example . . . . . . . . . . . . 3
WebSphere Commerce Payments object model
implementation . . . . . . . . . . . . . 4

Administrative objects . . . . . . . . . . 4
Financial objects . . . . . . . . . . . . 5

Cassette for KitCash payment command summary . 5
Summary of state changes . . . . . . . . . . 6

Chapter 3. Installing the Cassette for
KitCash . . . . . . . . . . . . . . . 7
Test harness . . . . . . . . . . . . . . 7
Before installing Cassette for KitCash . . . . . . 7
Installing the Cassette for KitCash . . . . . . . 7

Installing on WebSphere Commerce . . . . . 8
Installing on WebSphere Commerce Studio . . . 9

Post-installation optional tasks . . . . . . . . 13
Optional tasks for WebSphere Commerce Studio 13
Other optional tasks . . . . . . . . . . 14

Chapter 4. Cassette for KitCash
Cashier profiles . . . . . . . . . . . 17

Sample KitCash cashier profile . . . . . . . . 18

Chapter 5. Getting Started . . . . . . 19
Starting the KitCash sample test harness. . . . . 19
Configuring WebSphere Commerce Payments for
the test merchant . . . . . . . . . . . . 19
Open for business . . . . . . . . . . . . 20
Merchant Settlement . . . . . . . . . . . 21

Chapter 6. Cassette for KitCash Design 23
Finite state machine . . . . . . . . . . . 23
Javadoc. . . . . . . . . . . . . . . . 24
Cassette sequence diagrams . . . . . . . . . 25

Startup API sequence . . . . . . . . . . 26
ReceivePayment API sequence . . . . . . . 27
Protocol message API sequence. . . . . . . 28
BatchClose API sequence . . . . . . . . . 29
CloseOrder API sequence. . . . . . . . . 30

Chapter 7. Tools. . . . . . . . . . . 31
FSM editor and code generator . . . . . . . . 31

Finite state machine overview . . . . . . . 31
Finite state machine editor . . . . . . . . 33
Generating the Java source files . . . . . . 35
Using the finite state machine . . . . . . . 36

Appendix. Notices . . . . . . . . . . 37
Trademarks . . . . . . . . . . . . . . 38

Index . . . . . . . . . . . . . . . 39

iii



iv IBM WebSphere Commerce: Payments Cassette for KitCash Supplement



Welcome!

This book describes the Cassette for KitCash, a sample payment cassette that is
intended to illustrate the use of various features of the Payments component of
IBM® WebSphere®Commerce (hereafter referred to as WebSphere Commerce
Payments).

Note: IBM WebSphere Commerce Payments for Multiplatforms was previously
known as IBM WebSphere Payment Manager for Multiplatforms. Starting
with version 3.1.3, the payments application was renamed to WebSphere
Commerce Payments and references to the product were changed
throughout this document. References to the former product may still
appear in this document and apply to earlier releases of the product.

This book is for programmers who develop payment cassettes for WebSphere
Commerce Payments. The intended audience is experienced Java™ programmers
with a strong background in the field of electronic payment processing.

Before reading this book or writing a payment cassette, you should be very
familiar with the following information:
v IBM WebSphere Commerce Payments Programming Guide and Reference

v IBM WebSphere Commerce Payments Cassette Kit Programming Guide, provided in
the WebSphere Commerce Payments Cassette Kit Developer’s Toolkit.

If you are not familiar with WebSphere Commerce Payments programming
interfaces, you should learn about them now.

In addition, the following documents may be referenced in this document:
v IBM WebSphere Commerce Installation Guide

v IBM WebSphere Commerce Studio Installation Guide for WebSphere Commerce Studio

v IBM WebSphere Commerce Store Development Guide

v IBM WebSphere Commerce Administration Guide

Conventions in this book
This book uses the following highlighting conventions:
v Boldface type indicates commands or graphical user interface (GUI) controls

such as names of fields, icons, or menu choices.
v Monospace type indicates examples of text you enter exactly as shown, file

names, and directory paths and names.
v Italic type is used to emphasize words. Italics also indicate names for which you

must substitute the appropriate values for your system. When you see the
following names, substitute your system value as described.

2000Windows indicates information specific to the Windows® operating environment.

2000AIX indicates information specific to AIX®.

2000Solaris indicates information specific to the Solaris Operating Environment.

v



2000400 indicates information specific to the IBM iSeries™ 400® (formerly called
AS/400®).

2000Linux indicates information specific to Linux.

WC_installdir represents the following default installation paths for WebSphere
Commerce:

2000AIX /usr/lpp/WebSphere/CommerceServernn

2000Linux 2000Solaris /opt/WebSphere/CommerceServernn

2000Windows drive:\WebSphere\CommerceServernn

2000400 /QIBM/ProdData/CommerceServernn

Payments_installdir represents the following default installation paths for
WebSphere Commerce Payments:

2000AIX /usr/lpp/WebSphere/CommerceServernn/payments

2000Linux 2000Solaris /opt/WebSphere/CommerceServernn/payments

2000Windows drive:\WebSphere\CommerceServernn\payments

2000400 /QIBM/ProdData/CommercePayments/Vnn

WAS_installdir represents the following default installation path for WebSphere
Application Server:

2000AIX /usr/WebSphere/AppServer/

2000Linux 2000Solaris /opt/WebSphere/AppServer/

2000400 /QIBM/ProdData/WebAS5/Base/WAS_instancename/

2000Windows drive:\Program_Files\WebSphere\AppServer\

WAS_userdir represents the following default directory (for data that is used by
WebSphere Application Server which can be modified or needs to be configured by
the user):

2000400 /QIBM/UserData/WebAS5/Base/WAS_instancename/installedApps

Additional information
In addition to the information specified above, this book can also be used in
conjunction with the sample cassette LDBCard, and its associated documentation.
LDBCard is a fully-functioning cassette, and is meant to serve as a skeleton you
can use to build your cassettes. You can download the LDBCard package from the
same Web site you downloaded this book from.

Welcome

vi IBM WebSphere Commerce: Payments Cassette for KitCash Supplement



Chapter 1. Overview of Cassette for KitCash

The Cassette for KitCash is a sample payment cassette that implements a fictional
electronic cash (stored value) protocol. The Cassette for KitCash is designed to
show you how to use WebSphere Commerce Payments to support an internet
payment system.

KitCash is an example for cassette writers that covers several aspects of cassette
writing not covered by the LDBCard skeleton cassette. KitCash is not intended to
serve as a skeleton upon which cassette writers will typically build new cassettes.
You should use the LDBCard cassette for that purpose.

KitCash illustrates these unique features:
v An example of a payment protocol that is not oriented towards credit cards. The

fictional KitCash stored value protocol supports a limited set of financial
transactions. For example, the KitCash protocol does not support reversals or
credits. As a result, the cassette supports a limited subset of the WebSphere
Commerce Payments API set to match the needs of the payment protocol.

v How to support the ReceivePayment command, including:
– The definition of protocol messages representing a set of associated protocol

flows from a buyer’s wallet.
– The use of ComPoints to manage the protocol messages.

v How to use CassetteWorkItems and the framework’s service thread queue.
v How to use the Finite State Machine (FSM) tools.
v An alternative cassette design. The alternative cassette design is possible because

the framework uses Java interfaces instead of abstract methods to define some of
the key cassette objects. Specifically, KitCash implements the CassetteOrder and
CassetteTransaction (representing a payment) interfaces in a single object named
KitCashPurchase.

KitCash provides full support for WebSphere Commerce Payments administration
commands and user interface according to the needs of the payment protocol. A
test harness is provided for the Cassette for KitCash. The test harness shows how
the cassette interacts with other components in an internet payment system.

Protocol overview
A bank that supports the KitCash payment scheme can issue KitCash cards to both
consumers and merchants. The bank assigns an account number for each card.
When a consumer uses a card to make an internet payment from a merchant,
money transfers from the consumer’s card onto the card the merchant selected. The
merchant can decide which KitCash card the money is transferred to by
designating an account number for each available product. At any time, the
merchant can transfer the money on their cards to the bank. The bank then credits
the merchant’s account with the appropriate funds.

When a consumer decides to use his KitCash card to buy a product, the payment
must be for the full purchase price of the product. Partial payments and refunds
are not supported by the KitCash payment scheme.

1



The following diagram illustrates the key components involved in KitCash
transactions.

Web Server & WebSphere
Application Server

WebSphere
Commerce Payments

Servlet

WebSphere
Commerce  Payments

UI Servlet

KitCash Bank

KitCash Wallet

Merchant Web Browser

Merchant Server

Data

Internet

Cassette for KitCash

ComPoint

Figure 1. Components in KitCash transactions

2 IBM WebSphere Commerce: Payments Cassette for KitCash Supplement



Chapter 2. KitCash and WebSphere Commerce Payments
Concepts

WebSphere Commerce Payments provides a unified interface through which
merchants can use multiple payment protocols in a common way. Each WebSphere
Commerce Payments cassette attempts to extract protocol-specific differences so
that merchants can ignore disparities between protocols.

This section describes how the Cassette for KitCash presents the fictional electronic
cash protocol through the WebSphere Commerce Payments object model and API
set.

The Cassette for KitCash implements the payment commands and the payment
processing model of the WebSphere Commerce Payments framework, using the
processing services of the KitCash test harness described in “Test harness” on
page 7. This implementation supports:
v Wallet-driven purchases only, ReceivePayment
v Traditional payment-oriented commands (see “Cassette for KitCash payment

command summary” on page 5 for more information)
v Multiple accounts per merchant
v A single batch for an account

A KitCash example
The following is an example of how a typical consumer purchase and merchant
acquisition of funds would take place using the Cassette for KitCash. For low level
details, refer to “Cassette sequence diagrams” on page 25.

KitCash Cassette

1

3

2
5 6 4 7

Consumer Browser

KitCash Wallet

Merchant Software

WebSphere
Commerce Payments

WebSphere
Commerce
Payments
Database

KitCash
Bank

1. A consumer has been shopping online at a merchant Web site. After choosing
several items to purchase, the consumer initiates a purchase, typically by
pressing a ″Buy″ button on the shopping page.

2. The merchant software creates an order and requests that the cassette and
consumer exchange additional information to confirm payment using the
consumer’s KitCash card.

3



3. The Cassette for KitCash receives the consumer’s KitCash card information via
protocol message exchanges with the consumer’s KitCash wallet.

4. The Cassette for KitCash marks the payment as approved and deposits the
payment in the appropriate batch. In addition, the Cassette for KitCash and
WebSphere Commerce Payments update status in the database.

5. At some point in time, the merchant settles open batches by sending a
BatchClose request to WebSphere Commerce Payments.

6. The Cassette for KitCash exchanges protocol messages with the KitCash bank.
7. The Cassette for KitCash closes the batch and updates the appropriate financial

objects. The Cassette for KitCash along with WebSphere Commerce Payments
updates status in the database and returns a success response to the merchant.

WebSphere Commerce Payments object model implementation
This section describes how the Cassette for KitCash supports the administrative
and financial object models that the WebSphere Commerce Payments framework
provides.

Administrative objects
WebSphere Commerce Payments administration objects are the entities that
comprise the system and merchant configuration under which all financial
transactions will be performed. Refer to the IBM WebSphere Commerce Payments
Cassette Kit Programming Guide for a description of WebSphere Commerce
Payments administration objects. The Cassette for KitCash augments two of the
framework administration objects with its own attributes.

Cassette Admin object
The CassetteAdmin object represents the cassette itself and contains attributes that
apply globally across the cassette. The Cassette for KitCash extends this object with
KitCashProfile. The KitCashProfile object contains a protocol port attribute used
when listening for incoming protocol messages from the consumer’s wallet.

Account Admin object
In the WebSphere Commerce Payments object model, the AccountAdmin object
represents a relationship between a given merchant and a given financial
institution. This is exactly the type of relationship that each KitCash merchant
account represents. The cassette extends the WebSphere Commerce Payments
AccountAdmin with KitCashAccount. The KitCashAccount object contains
attributes that identify and describe the corresponding merchant account, for
example Bank hostname and Bank port.

4 IBM WebSphere Commerce: Payments Cassette for KitCash Supplement



KitCashProfile KitCashAccount

implements
extends

Archivable

Financial objects
WebSphere Commerce Payments financial objects are used to represent the
financial transactions executed by merchants. As mentioned in the introduction, the
Cassette for KitCash implements a fictitious electronic cash protocol. The KitCash
protocol doesn’t support the concept of reversals or refunds. Since the protocol
doesn’t support refunds, the Credit object is not needed. The Cassette for KitCash
uses an alternative design in that it provides a single object, KitCashPurchase, to
provide extensions to the following financial objects:
v Order objects
v Payment objects

CassetteTransaction

KitCashPurchase

KitCashFSMUser

Cassette Batch

Kit Cash Batch

CassetteOrder

implements
extends

Archivable

Cassette for KitCash payment command summary
Table 1 summarizes the way the Cassette for KitCash handles each of the
WebSphere Commerce Payments payment commands (commands that carry out
financial transactions). Specifically, for each payment command, the table shows:
v How the cassette processes the command:

– ″Not supported by cassette″ means the cassette does not support that
particular command. These commands will always receive return codes
PRC_CASSETTE_ERROR, RC_NONE.

Chapter 2. KitCash and WebSphere Commerce Payments Concepts 5



– ″Handled by WebSphere Commerce Payments; no message sent″ means that
the command is processed completely within WebSphere Commerce
Payments without communicating with the KitCash bank.

Table 1. Cassette for KitCash. Summary of Payment API Commands

API command KitCash message

AcceptPayment Not supported by cassette.

Approve Not supported by cassette.

ApproveReversal Not supported by cassette.

BatchClose KitCash transaction with bank.

BatchOpen Not supported by cassette (cassette opens
batches internally as needed).

BatchPurge Not supported by cassette.

CancelOrder Not supported by cassette.

CloseOrder Handled by WebSphere Commerce
Payments; no message sent.

DeleteBatch Handled by WebSphere Commerce
Payments; no message sent.

Deposit Not supported by cassette (cassette
implicitly deposits when a ReceivePayment
is processed).

DepositReversal Not supported by cassette.

ReceivePayment Cassette and KitCash Wallet exchange
protocol messages.

Refund Not supported by cassette.

RefundReversal Not supported by cassette.

Summary of state changes
The following table summarizes the state changes that Order, Payment, and Batch
objects undergo as a result of successful completion of each payment command.
Only those objects whose states actually change as a result of the given operation
are shown. Any other existing object states remain unchanged.

API Command Object States

ReceivePayment ORDER_ORDERED

PAYMENT_DEPOSITED

BatchClose BATCH_CLOSED

PAYMENT_CLOSED

CloseOrder ORDER_CLOSED

6 IBM WebSphere Commerce: Payments Cassette for KitCash Supplement



Chapter 3. Installing the Cassette for KitCash

This chapter describes how to install the Cassette for KitCash on AIX, Linux,
Solaris, Windows, and iSeries platforms.

Test harness
The KitCash card is implemented in software by a KitCashDriver class. No special
hardware is required to run the sample code. The KitCash test harness allows you
to see how the cassette interacts with other internet payment software. The
KitCash test harness includes:
v KitCash wallet (Java applet)
v KitCash bank (Java application) to receive deposits from a merchant

Before installing Cassette for KitCash
Before installing the Cassette for KitCash, ensure that you have done the following:
v Installed WebSphere Commerce Version 5.5 with the WebSphere Commerce

Payments component
v Created a WebSphere Commerce Payments instance

WebSphere Commerce and the Payments component must be installed before the
Cassette for KitCash can be installed. The minimum Payments framework level
supported by the cassette is 5.5. For detailed information on the installation of
WebSphere Commerce and the Payments component, refer to the WebSphere
Commerce Installation Guide, Version 5.5, for your platform.

The Payments instance you intend to use with the Cassette for KitCash should not
be started or running when you install this cassette.

Installing the Cassette for KitCash
You can install the Cassette for Kitcash as a sample cassette for use with:
v WebSphere Commerce: WebSphere Commerce Professional Edition or Business

Edition
v WebSphere Commerce Studio: WebSphere Commerce Studio Professional Edition

and Business Developer Edition for Windows 2000 (for development use and
modification)

Use the correct installation instructions for your environment.

7



Installing on WebSphere Commerce

To install the Cassette for KitCash on WebSphere Commerce Professional Edition
or Business Edition, do the following:
1. Uncompress the kitCashCassette55.zip file to the following directory:

2000Windows 2000AIX 2000Solaris 2000Linux

WC_installdir/payments/cassettes

2000400

Payments_installdir/cassettes

2. Start the WebSphere Commerce Configuration Manager. Because you
uncompressed the zip file in the cassettes directory shown previously, the
Configuration Manager will locate the appropriate files to add to your
Payments configuration. For information about how to start the Configuration
Manager, refer to the WebSphere Commerce Installation Guide.

3. Select the Payments instance to which you want to add the Cassette for
KitCash (select WebSphere Commerce > host_name > Payments >InstanceList.

4. Use the Cassettes page of the Configuration Manager to add the Cassette for
KitCash to the Payments instance.

5. Restart the Payments instance (right-click on the Payments instance and select
Start Payments Instance). For complete instructions on starting and stopping a
WebSphere Commerce Payments instance, refer to the WebSphere Commerce
Installation Guide.

See “Installing the KitCash wallet” for additional mandatory installation tasks.

Installing the KitCash wallet
The Cassette for KitCash supports order creation through a wallet, and therefore
uses the Payments ReceivePayment API command. In the Cassette for KitCash, the
wallet is implemented through an applet (KitCashWallet.jar) which is
downloaded into a the Web browser when the ReceivePayment transaction occurs.
As part of your cassette installation, you must copy the KitCashWallet.jar file into
the merchant directory in the PaymentRuntime.war directory to be able to create
orders through a wallet.

To install a KitCash wallet in WebSphere Commerce, follow these procedures:
1. Create a folder called ’merchant’ in the following directory:

WAS_installdir/installedApps/host_name/payments_instance_Commerce_Payments_App.ear/
Payments.war

2000400

WAS_userdir/installedApps/node_name/payments_instance_Commerce_Payments_App.ear/
Payments.war

2. Copy the following file:
WC_installdir/payments/cassettes/KitCash/lib/KitCashWallet.jar

to the following directory:
WAS_installdir/installedApps/host_name/payments_instance_Commerce_Payments_App.ear/

Payments.war/merchant

2000400 Copy the following file:
Payments_installdir/cassettes/KitCash/lib/KitCashWallet.jar

8 IBM WebSphere Commerce: Payments Cassette for KitCash Supplement



to the following directory:
WAS_userdir/installedApps/node_name/payments_instance_Commerce_Payments_App.ear/

Payments.war/merchant

The KitCash wallet is now installed in the proper location.

Proceed with “Using the Cassette for KitCash with a sample store” on page 14 for
optional post-installation tasks before moving on to Chapter 5, “Getting Started”,
on page 19.

Installing on WebSphere Commerce Studio
To install the Cassette for KitCash on WebSphere Commerce Studio Professional
Edition or Business Developer Edition for use in a test environment, follow these
procedures.

2000Windows

1. Uncompress the kitCashCassette55.zip file to the following directory:
WC_installdir/payments/cassettes

After the zip file is uncompressed, you should see the following in the cassettes
directory:
cassette_properties.xml
KitCashFSM.prj
readme.kitcash.html
WC55KitCashSupplement.pdf
/bin
/javadoc
/lib
/Payments-KitCashCassette
/pspl
/SampleCheckout
/schema

The Payments-KitCashCassette directory contains the project file for the
Cassette for KitCash.

2. Import the .project file into the WebSphere Commerce workspace containing
the Payments component:
a. Start WebSphere Commerce Studio.
b. Open the J2EE perspective. Select Window > Open Perspective > J2EE. Go

to the J2EE Navigator view.
c. Import the KitCash project into the WebSphere Commerce workspace by

doing the following:
1) Select File > Import. The Import Wizard starts.
2) Select Existing Project into Workspace and click Next.
3) On the Import Project page of the wizard, click Browse.
4) In the Browse for Folder dialog, locate the folder with the KitCash

project. Select the folder and click OK.
The default workspace directory for WebSphere Commerce is:
c:\WebSphere\workspace_db2 or
c:\WebSphere\workspace_oracle

depending on the target database type you chose in the WebSphere
Commerce Studio installation wizard.

5) Click Finish.

Chapter 3. Installing the Cassette for KitCash 9



After the project is imported, you must complete additional steps to add the
Cassette for KitCash assets to the WebSphere Studio Application Developer
environment as described in the following sections:
v Add the eTillKitCashClasses.jar file to the list of modules.
v Set JAR dependencies.
v Add the KitCash.PSPL file to the PSPL folder.
v Import the KitCash Cashier profile.
v Import the SampleCheckoutKitCash.properties file.
v Enable the SampleCheckout application to run the Cassette for KitCash.
v Import the KitCash wallet

After assets are added, you can then add the cassette to a Payments instance.

Adding the eTillKitCashClasses.jar file
To add the eTillKitCashClasses.jar file to WebSphere Commerce Studio, do the
following:
1. Start WebSphere Commerce Studio.
2. Open the J2EE perspective. Select Window > Open Perspective > J2EE. Go to

the J2EE Hierarchy view.
3. Expand Enterprise Applications and right-click on

WebSphereCommercePaymentsServer.
4. Select Open with > Deployment Descriptor Editor in the pop-up menu.
5. Click the Module tab.
6. In the Project Utility JARs section, click Add.
7. Click Payments-KitCashCassette. In the URI field, enter:

lib/eTillKitCashClasses.jar

and click Finish.

The eTillKitCashClasses.jar file is added to the project utility JARs list. Proceed
with the next section.

Setting JAR dependencies
In the J2EE Hierarchy view of WebSphere Commerce Studio, do the following to
set the JAR dependencies for WebSphere Commerce Payments and the Sample
Checkout application:
1. Expand Web Modules and right-click on

WebSphereCommercePaymentsServerRuntime.
2. Select Open with > JAR Dependency Editor in the pop-up menu.
3. Select the check box for lib/eTillKitCashClasses.jar and save the editor

contents.
4. Expand Web Modules and right-click on

WebSphereCommercePaymentsSampleCheckout.
5. Select Open with > JAR Dependency Editor in the pop-up menu..
6. Select the check box for lib/eTillKitCashClasses.jar and save the editor

contents.

The JAR dependencies are now defined. Proceed with the next section.

10 IBM WebSphere Commerce: Payments Cassette for KitCash Supplement



Adding the KitCash PSPL file
In the J2EE Navigator view of WebSphere Commerce Studio, do the following:
1. Expand WebSphereCommercePaymentsServerRuntime.
2. Expand Web Content.
3. Right-click the pspl folder.
4. Click File system and then click Next.
5. In the Browse for Folder dialog, select WebSphere > Commerce Studio 55>

Commerce > Payments > Cassettes > KitCash > pspl.
6. On the Import dialog, click Finish.

The KitCash.PSPL is added to the pspl folder. Proceed with the next section.

Importing the KitCash Cashier profile
In the J2EE Navigator view of WebSphere Commerce Studio, do the following:
1. Select WebSphereCommercePaymentsSampleCheckout > Web Content >

profiles.
2. Right-click the profiles folder and then click import.
3. In the Import dialog, click File system, then Next.
4. Browse to find

WC_installdir/payments/cassettes/KitCash/SampleCheckout/profiles.

5. Select the checkbox for select the profile.
6. Click Finish.

The KitCash Cashier profile (SampleCheckoutKitCash.profile) is added. Proceed
with the next section.

Importing the SampleCheckoutKitCash.properties file
In the J2EE Navigator view of WebSphere Commerce Studio, do the following:
1. Select WebSphereCommercePaymentsSampleCheckout > WEB-INF.
2. Right-click the classes folder and then click import.
3. In the Import dialog, click File system, then Next.
4. Browse to find

WC_installdir/payments/cassettes/KitCash/SampleCheckout/properties.
5. Select the checkbox for SampleCheckoutKitCash.properties.
6. Click Finish.

The SampleCheckoutKitCash.properties file is added. Proceed with the next
section.

Enabling the SampleCheckout application to run the Cassette for
KitCash
In the J2EE Navigator view of WebSphere Commerce Studio, do the following:
1. Select WebSphereCommercePaymentsSampleCheckout > Web Content.
2. Open the SampleCheckout.xml file.
3. Edit the SampleCheckout.xml file and add the following line to the

PaymentOptionList element:
<PaymentOption id="KitCash" profile="SampleCheckoutKitCash">KitCash</PaymentOption>

4. Save the updates to the XML file (save editor contents).

The SampleCheckout application is now enabled to run the Cassette for KitCash.

Chapter 3. Installing the Cassette for KitCash 11



Importing the KitCash wallet to the merchant directory
The Cassette for KitCash supports order creation through a wallet, and therefore
uses the Payments ReceivePayment API command. In the Cassette for KitCash, the
wallet is implemented through an applet (KitCashWallet.jar) which is
downloaded into a the Web browser when the ReceivePayment transaction occurs.
As part of your cassette installation, you must copy the KitCashWallet.jar file into
the merchant directory in the PaymentRuntime.war file to be able to create orders
through a wallet.

To install a KitCash wallet in WebSphere Commerce Studio, follow these
procedures. In the J2EE Navigator view of WebSphere Commerce Studio, do the
following:
1. Expand WebSphereCommercePaymentsServerRuntime.
2. Right-click Web Content.
3. Select New > Folder.
4. Enter the folder name: merchant, and then click Finish.
5. Right-click the merchant folder.
6. Select Import.
7. Click File system and then click Next.
8. In the Browse for Folder dialog, select WebSphere > Commerce Studio 55 >

Commerce > Payments > Cassettes > KitCash > lib > KitCashWallet.jar.
9. Click Finish.

The KitCash wallet is now installed in the proper location.

After you complete this last step, you have completed adding code assets to
WebSphere Commerce Studio. You can proceed with adding the cassette to a
Payments instance.

Adding the cassette to a Payments instance
After all Cassette for KitCash assets have been added to WebSphere Commerce
Studio, you can add the Cassette for KitCash to a Payments instance and start the
Payments server. Follow these procedures to add the cassette to a Payments
instance:
1. In WebSphere Commerce Studio, select Windows > Open Perspective > Server.
2. Select Windows > Show View > Other. In the Show View dialog, expand

Other.
3. Select WebSphere Commerce and click OK.
4. In the WebSphere Commerce view, right-click Configuration Manager Server,

and then click Start Server from the pop-up menu.
5. After the Configuration Manager server is started, right-click the server again

and click Run Client from the pop-up menu. The Configuration Manager client
displays.

6. Expand WebSphere Commerce Payments > Instance List > wpm > Instance
Properties> Cassettes.

7. Select the KitCash Cassette in the list of Available Cassettes and add it. Click
Apply.

8. Close the Configuration Manager.
9. In the Server view, start the WebSphere Commerce Payments server.

The WebSphere Commerce Payments server should start successfully with the
addition of the Cassette for KitCash.

12 IBM WebSphere Commerce: Payments Cassette for KitCash Supplement



Post-installation optional tasks

Optional tasks for WebSphere Commerce Studio

Compiling KitCash code in WebSphere Commerce Studio
A sample Java project is provided in the Cassette for KitCash zip file for cassette
writers to use with WebSphere Commerce Studio Professional Edition or Business
Developer Edition. As previously described, you can install the Cassette for
KitCash in WebSphere Commerce Studio and import the KitCash project into the
WebSphere Commerce workspace so that you can:
v Understand how payments cassettes can be used with WebSphere Commerce

Payments in an internet payment system.
v Learn about the structure of the cassette.
v Experiment with and manipulate cassette assets.

If you are building a new cassette, it is recommended that you not base your new
cassette on the KitCash model; but rather, review the KitCash Cassette to
understand its unique features. (Features were described in Chapter 1, “Overview
of Cassette for KitCash”, on page 1.)

If you are installing and using the Cassette for KitCash in WebSphere Commerce
Studio, and make changes to any of the cassette assets in Studio, you must compile
the cassette code before attempting to run the cassette in WebSphere Commerce. To
compile the cassette code, do the following:
1. In the J2EE Navigator view of WebSphere Commerce Studio, select the KitCash

cassette project.
2. Select Project > Build project to compile the cassette. A successful build should

result in no messages being displayed. If the build was unsuccessful, refer to
the resulting error messages to investigate and resolve the error.

After the project builds successfully, you can then add the revised cassette to the
Payments instance. If you have not already added the cassette to a Payments
instance, follow the procedures outlined in “Adding the cassette to a Payments
instance” on page 12. If the cassette has already been added to the instance, it is
not necessary to delete it from the instance before re-adding it.

Exporting the cassette from WebSphere Commerce Studio for
use on other WebSphere Commerce platforms
You can export the Cassette for KitCash resources from WebSphere Commerce
Studio, and add them to the WebSphere Commerce Professional Edition or
Business Edition if desired by following this procedure:
1. In WebSphere Commerce Studio, select the Java view.
2. Select the PaymentsKitCashCassette project.
3. Right-click the project and select Export from the pop-up menu.
4. Select Jar file, and then click Next.
5. In the JAR Export dialog, select the resource to export to the library and save

the resources to the folllowing location if the cassette was not already added to
WebSphere Commerce Professional Edition or Business Edition:
WC_installdir\payments\cassettes\KitCash\lib\eTillKitCashClasses.jar

If the cassette was already added, export the resources to this location:
WAS_installdir\installedApps\host_name\payments_instance_Commerce_Payments_App.ear\lib

Chapter 3. Installing the Cassette for KitCash 13



After the cassette resources are exported to the JAR file, you can then add the JAR
file to the WC_installdir/payments/cassettes directory and follow procedures in
“Installing on WebSphere Commerce” on page 8 (starting with step 2) to add the
cassette to your Payments instance.

Other optional tasks

Using the Cassette for KitCash with a sample store
If you would like to use the Cassette for KitCash with one of the sample stores
WebSphere Commerce provides, you must customize the WebSphere Commerce
environment for the Cassette for KitCash. Customization tasks include:
v Including a payment asset file (paymentinfo.xml) in the store archive.
v Modifying the sample store .jsp file to include the name of the Cassette for

KitCash.
v Modifying the Cassette for KitCash Cashier profile (optional).

Refer to the Payments instruments chapter in the WebSphere Commerce Store
Development Guide for complete instructions on how to do this customization. More
information about the Cassette for KitCash cashier profile is also provided in
Chapter 4, “Cassette for KitCash Cashier profiles”, on page 17.

When modifying the store’s .jsp file, use the following name for the payment
policy:
KitCash

For example:
if (info[i].getPolicyName().trim().equals("KitCash"))

The Cashier profile which is used to create orders in the Payments component for
the Cassette for KitCash is called
SampleCheckoutKitCash.profile

and can be found in this location:
WC_installdir/payments/cassettes/KitCash/SampleCheckout/profiles

2000400

Payments_installdir/cassettes/KitCash/SampleCheckout/profiles

If the sample store you are using supports Quick Checkout, there are other files to
update besides this .jsp file. Follow the instructions in the Payments instruments
chapter of the WebSphere Commerce Store Development Guide to update other possible
files, and to store the profile in the proper directory location in WebSphere
Commerce.

Updating the Payments port number in the
SampleCheckoutKitCash profile
If you are installing the Cassette for KitCash on WebSphere Commerce and intend
to use the SampleCheckout application to place an order, you must update the
SampleCheckoutKitCash.profile file with the correct value of the port on which
Payments will run on. If the port is not set correctly, the result page is not
displayed properly after the ″buy″ process completes in SampleCheckout.

14 IBM WebSphere Commerce: Payments Cassette for KitCash Supplement



By default, the value for the $PORT parameter is set to 9081 in the profile;
however, 9081 is the default port for Payments in WebSphere Commerce Studio.
This value must be changed to use the SampleCheckout application in WebSphere
Commerce.

To update the port value, locate the SampleCheckoutKitCash.profile. If the Cassette
for KitCash has already been added to WebSphere Commerce Professional Edition
or Business Edition, the SampleCheckoutKitCash.profile is in the following
location:
WAS_installdir/installedApps/host_name/payments_instance_Commerce_Payments_App.ear/

SampleCheckout.war/profiles/SampleCheckoutKitCash.profile

2000400

WAS_userdir/installedApps/node_name/payments_instance_Commerce_Payments_App.ear/
SampleCheckout.war/profiles/SampleCheckoutKitCash.profile

If the Cassette for KitCash has not been added already, the profile is in this
location:
WC_installdir/payments/cassettes/KitCash/SampleCheckout/profiles/

SampleCheckout.profile

2000400

Payments_installdir/cassettes/KitCash/SampleCheckout/profiles/SampleCheckout.profile

Edit the file and change the port value from 9081 to 5432 or the correct port value
for Payments in your environment:
<Parameter name="$PORT"><CharacterText>5432</CharacterText></Parameter>

If you are using the cassette in WebSphere Commerce Studio, there should be no
need to change the default port value in the profile.

Chapter 3. Installing the Cassette for KitCash 15



16 IBM WebSphere Commerce: Payments Cassette for KitCash Supplement



Chapter 4. Cassette for KitCash Cashier profiles

The Cashier is WebSphere Commerce Payments software that can be invoked by
client applications (such as merchant software) to simplify the process of creating
WebSphere Commerce Payments orders and payments. The Cashier uses XML
documents called profiles that describe how orders should be created for a given
cassette. This allows the client code writer to concentrate on integrating with
WebSphere Commerce Payments in a generic way rather than having to write code
that deals with cassette-specific information.

It is still possible to create WebSphere Commerce Payments orders without using
the Cashier; programs can use the client access library or the HTTP/XML interface
to use the API commands. However, the use of the Cashier is preferred since it
allows the potential for new cassettes to be introduced to the system without the
need for rewriting any code. For more information on the Cashier, see the
WebSphere Commerce Payments Programming Guide and Reference.

A Cashier profile represents a description of how WebSphere Commerce Payments
orders should be created for a particular payment method. Profiles are XML
documents that contain all the information needed by the Cashier to create
WebSphere Commerce Payments API requests to create orders for a cassette
supporting that payment method. All profiles must include the following data:
v An indication of whether a wallet is used. This flag will be used to determine

whether the Cashier should use the AcceptPayment or ReceivePayment
command.

v Required WebSphere Commerce Payments parameters.
v Required cassette parameters.
v Specifications for how the Cashier should supply values for each of the above

parameters.

In addition, profiles may also contain the following optional data:
v An indication of which WebSphere Commerce Payments instance to use for each

profile.
v Optional WebSphere Commerce Payments parameters.
v Optional cassette parameters.
v Buy page information that specifies how client code should build buy pages to

collect buyer information. For example, the buy page information might contain
an HTML form that collects credit card information required by a specific
cassette.

v An indication of whether diagnostic information is to be enabled for the profile.

Cashier profiles allow parameter values to be specified in four different ways:
1. Hard-coded as constants in the profile.
2. Passed as an environment variable on the CollectPayment() call.
3. Specified as originating from a relational database field.
4. Specified as being calculated by Cashier extension code.

17



Sample KitCash cashier profile
A sample cashier profile, SampleCheckoutKitCash.profile, is provided with the
Cassette for KitCash. This profile can be used by the SampleCheckout order entry
system (sample application) provided with WebSphere Commerce Payments. For
details on designing and tailoring Cashier profiles, see the Cashier chapter of the
WebSphere Commerce Payments Programming Guide and Reference.

If you are installing and using the Cassette for KitCash in either the WebSphere
Commerce Professional or Business Edition, or the WebSphere Commerce Studio
environment, you must edit the SampleCheckout.xml file provided with the
Payments component. Add the KitCash payment option as a SampleCheckout
payment option before using the SampleCheckout application.

To add the KitCash payment option, follow these procedures:
v (In a WebSphere Commerce environment) Edit the following XML file:

WAS_installdir/installedApps/host_name/payments_instance_Commerce_Payments_App.ear/
SampleCheckout.war/SampleCheckout.xml

2000400 For iSeries, the path is:
WAS_userdir/node_name/payments_instance_Commerce_Payments_App.ear/

SampleCheckout.war/SampleCheckout.xml

v Find the PaymentOptionList element and add the following to the list:
<PaymentOption id="KitCash" profile="SampleCheckoutKitCash">KitCash</PaymentOption>

v To use the Sample Checkout application, point your browser to
http://<host_name:port>/webapp/SampleCheckout.

18 IBM WebSphere Commerce: Payments Cassette for KitCash Supplement



Chapter 5. Getting Started

In this chapter, you’ll configure the Cassette for KitCash and execute transactions
through the test harness by purchasing items from the test merchant. At this point,
you should have completed the following:
v Created a Payments instance
v Installed the Cassette for KitCash
v Configured the Cassette for KitCash using Configuration Manager (added the

cassette to the Payments instance)
v Started the Payments instance (refer to the WebSphere Commerce Installation Guide

for instructions)
v Defined a WebSphere Commerce Payments user with Merchant Administrator

authority. For more information on performing this task, refer to the tutorial in
the WebSphere Commerce Administration Guide.

Starting the KitCash sample test harness
After you have installed and configured the Cassette for KitCash, you can see the
cassette interacting with WebSphere Commerce Payments, your Web server, the
test wallet, and KitCash bank. To do this, you need to run WebSphere Commerce
Payments and sample KitCash bank programs as follows:
1. Start the WebSphere Commerce Payments instance if it is not already started.
2. Start the sample KitCash bank program. From the

WC_installdir/payments/cassettes/KitCash/bin directory, enter the following
at a command prompt:

v 2000AIX 2000Solaris 2000Linux ./KitCashBank.sh

v 2000Windows KitCashBank.bat

v 2000400 Install and run the sample KitCash bank program on your
workstation (Windows, AIX, etc.). Uncompress the KitCash zip file to a
directory on your workstation and start the KitCash bank program at a
command prompt from the KitCash/bin directory, as directed above.

The sample bank program will open a Java console window and show a startup
value of five thousand KitCash dollars. The bank will listen for deposit requests
from the Cassette for KitCash.

Configuring WebSphere Commerce Payments for the test merchant
Before your test merchant can receive and process orders, you must configure the
merchant in WebSphere Commerce Payments. It is important for the KitCash test
harness that Web pages are generated every time they are displayed so that you
can be sure that you are seeing up-to-date data. To do this, you should turn off the
caching support of your browser while you are using the test harness.

Then, in WebSphere Commerce Payments, do the following:
v Add a new merchant:

– Merchant Name: Intangible Incorporated
– Merchant Number: 123

19



– KitCash Cassette
v Add an account for the new merchant:

– Account Name: Complements department
– Account Number: 457
– Financial Institution Name: ACME Bank
– hostname: your_server_hostname

– Bank port: 47820
v Add a second account.

– Account Name: Inspirations department
– Account Number: 456
– Financial Institution Name: ACME Bank
– hostname: your_server_hostname

– Bank port: 47820

2000400 your_server_hostname should be the host name of the workstation where
you are running the sample KitCash bank program.

Open for business
To make purchases, use the SampleCheckout sample application program to enter
an order. The Sample Checkout tool provides a user interface you can use to create
sample orders to test your cassette implementation. (The WebSphere Commerce
Payments Programming Guide and Reference provides more information about
SampleCheckout.)

To access the WebSphere Commerce Payments Sample Checkout and create orders,
do the following:
1. Open the SampleCheckout.xml file in the following directory:

WAS_installdir/installedApps/host_name/payments_instance_Commerce_Payments_App.ear/
SampleCheckout.war

2000400 For iSeries, the directory path is
WAS_userdir/installedApps/node_name/payments_instance_Commerce_Payments_App.ear/
SampleCheckout.war

2. At the SampleCheckout element, change the following attribute values:
pmHostName="fully_qualified_host_name"
pmPort="port"
default userid="wc_userid"
password="wc_password"

For pmHostName, enter the fully qualified host name for the WebSphere
Commerce Payments Web server. For pmPort, enter the port number WebSphere
Commerce Payments is running on as shown in the Configuration Manager
WebServer information for your Payments instance. For the userid and
password, enter the user ID and password associated with the WebSphere
Commerce user.

3. Save the file.
4. Point your browser to http://host_name:port/webapp/SampleCheckout/, where

host_name is the host name of the machine running the Web Server for
Payments, and port refers to the port number Payments is running on as shown
in the Configuration Manager WebServer information for your Payments
instance.

20 IBM WebSphere Commerce: Payments Cassette for KitCash Supplement



5. At the Sample Checkout page enter the following:

Table 1. Sample Checkout fields for Cassette for KitCash

Field Description

Merchant number Enter 123, the number used when creating the merchant, to
represent the merchant number. (Required)

Order number Enter any unique number to represent an Order number.
(Required)

Amount Enter 5 to represent the total numeric amount of the order.
(Required)

Currency Select US dollar. The currency used to place this order.
(Required)

Payment method Select KitCash as the payment method. (Required)

6. Click Buy.

Merchant Settlement
v Point your browser at the following URL:

http://your_server:port/webapp/PaymentManager
v Select the Settle link on the Navigation pane. Assuming you only made the one

purchase, you should see a single batch to settle.
v Select the Batch Number link to view batch information.
v Select the Settle button to officially transfer funds from the consumer’s bank

account to the merchant’s bank account. If everything is working correctly, the
settlement page should display The Batch was successfully settled message.
The KitCash bank screen should also display the conversation between the
Cassette for KitCash and itself.

Chapter 5. Getting Started 21



22 IBM WebSphere Commerce: Payments Cassette for KitCash Supplement



Chapter 6. Cassette for KitCash Design

As mentioned in the introduction, the Cassette for KitCash was created to illustrate
the following features:
v An example of a payment protocol that is not oriented towards credit cards.
v How to support the ReceivePayment command, including:

– The definition of protocol messages representing a set of associated protocol
flows from a buyer’s wallet.

– The use of ComPoints to manage the protocol messages.
v How to use CassetteWorkItems and the Framework’s service thread queue.
v Use of the Finite State Machine.
v An alternative cassette design.

This chapter is intended to provide enough detail for you to understand high level
flows and the source that implements the key features. All of the source is located
in KitCash/Payments-KitCashCassette/java/com/ibm/etill/kitcashcassette.

WebSphere Commerce Payments provides a finite state machine (FSM) editor and
code generator you can use to help design your cassette. You should start by
reviewing the Cassette for KitCash finite state machine (FSM) section that follows
to understand cassette input and transition states. A detailed description of the
FSM editor and code generator is provided in Chapter 7, “Tools”, on page 31.

The Framework’s FSM Editor should be used to identify actions that are called in
KitCashPurchase. Once you understand the high level states and actions, you
should review the “Cassette sequence diagrams” on page 25 to understand object
interaction. The source code and Javadoc can be referenced for lower level details.

Finite state machine
The KitCash finite state machine (FSM), which is contained in
WC_installdir/payments/cassettes/KitCash/kitcashfsm.prj, provides a model
with a set of inputs that define what action the Cassette for KitCash should take
for its current state and what the next state should be. The table below shows the
six KitCash states and the corresponding inputs, actions, and next states.

Table 2. KitCash Finite State Machine

Project

Name KitCash

ProjectFileName WC_installdir/payments/cassettes/KitCash/kitcashfsm.prj

ProjectDescription Cash based protocol for Cassette Kit V2.2

PackageName com.ibm.etill.kitcashcassette

Imports

com.ibm.etill.framework.supervisor.FSM

com.ibm.etill.framework.payapi.ETillAbortOperation

com.ibm.etill.framework.payapi.PaymentAPIConstants

com.ibm.etill.kitcashcassette.test.card.KitCashConstants

23



Matrix

Name KitCash

MatrixDescription Purchase flow for KitCash

Table 3. KitCash finite state machine. When viewing the KitCash finite state machine in kitcashfsm.prj, a Condition
column appears between Input and Start. Because no data appears in that column, it was deleted here to facilitate
printing.

Input Start
Payment
Requested

Payment
Pending

Payment
Received

Payment
Added To
Batch

Payment
Complete Error State

Receive
Payment

Send
Initiation
Msg

Payment
Requested

KitCash Msg Start
Payment

Payment
Pending

Continue
Payment

Payment
Pending

End Of
Consumer
Flow

Mark
Payment As
Received

Payment
Received

Deposit Mark
PaymentFor
Deposit

Payment
Added To
Batch

Batch Closed Mark
Payment As
Complete

Payment
Complete

Order Closed CloseOrder
Payment
Complete

Error Report Error

Error State

Report Error

Error State

Report Error

Error State

Report Error

Error State

Report Error

Error State

Report Error

Error State

Report
Error

Error State

Javadoc
Javadoc for KitCash is provided in
WC_installdir/payments/cassettes/KitCash/javadoc.

24 IBM WebSphere Commerce: Payments Cassette for KitCash Supplement



Cassette sequence diagrams
WebSphere Commerce Payments responds to events from the outside world.
Scenarios describe the processing that occurs as a result of the receipt of a
particular event. Sequence diagrams visually describe the sequence of interactions
between the major players for a particular scenario. The sequence diagrams here
describe success scenarios for the sample Cassette for KitCash.

The details in the sequence diagrams are not intended to be absolutely precise. For
instance, method calls will use the real name of the Java method, but will not
precisely define the parameters to that method. The diagrams are intended to give
a logical idea of the responsibilities of the framework and the Cassette for KitCash
for each scenario.

Chapter 6. Cassette for KitCash Design 25



Startup API sequence
The KitCash startup API sequence diagram shows the interactions that occur when
the Cassette for KitCash is started.

Framework KitCashCassette KitCashAccountsKitCashProfile

Framework KitCashCassette KitCashCleanUp KitCashAccountKitCashComPoint

readCassetteConfig()

retrieveConfigRecords()

ETill.tillTimerThread(). addItemToList()

initializeCassette()

for each open Batch:

ressurectCassetteBatch()

KitCashBatch object

verifyConfig()

Vector containing single KitCashComPoint object

start pool of threads each listening to the KitCashComPoint

For each thread; establishConnection()

• compose AdminRequest with Start Cassette Token

Service (AdminRequest, API response,
validationMode=false)

new KitCashComPoint object()

new KitCashCleanUp(60)

retrieve Accounts

doYourWork()

new KitCashCleanUp object

createCompoints()

new KitCashComPoint()

26 IBM WebSphere Commerce: Payments Cassette for KitCash Supplement



ReceivePayment API sequence
The ReceivePayment sequence diagram shows the interactions between the
WebSphere Commerce Payments framework and the Cassette for KitCash when a
ReceivePayment API command is sent to WebSphere Commerce Payments.

Merchant Framework KitCashPurchaseKitCashCassette KitCashFSM

KitCashPurchase object

newCassetteOrder(order)

new KitCashPurchase(cassette,order)

service(ReceivePaymentRequest,
APIResponse)

process event(ReceivePaymentRequest,
APIResponse)

process event
(token=RECEIVE PAYMENT)

sendinitiationMsg()

Return codes + KitCash wallet
applet tag

ReceivePayment

KitCashPurchase object

Chapter 6. Cassette for KitCash Design 27



Protocol message API sequence
This sequence diagram shows the interaction between the WebSphere Commerce
Payments framework and the Cassette for KitCash when a protocol message
specific to the cassette is received from the outside world.

Consumer KitCashComPoint KitCashComPoint KItCashPurchase KitCashFSMFramework
establishConnection()

KitCash protocol message

new KitCashConnection
object

look up order and add to
KitCashPurchaseRequest

object

createProtocolRequest
(KitCashConnection)

new
KitCashPaymentlRequest

object

service
(KitCashPaymentRequest

ProtocolResponse)

processEvent
(KitCashPaymentRequest,

ProtocolResponse)

processEvent
(token=CASHMSG TOKEN)

startPayment() or
continuePayment()

KitCash protocol response message

28 IBM WebSphere Commerce: Payments Cassette for KitCash Supplement



BatchClose API sequence
The BatchClose sequence diagram shows the interactions between the WebSphere
Commerce Payments framework and the Cassette for KitCash when a BatchClose
command is sent.

Framework KitCashBatch KitCashFSMKitCashPurchase

BatchClose

create(BatchCloseRequest)

service(BatchCloseRequest, APIResponse)

close(APIResponse)

KitCash protocol mesages will be sent to and received
from the bank until the merchant’s KitCash card driver

indicates that the protocol flow is complete

add markOrdersAsComplete() method to the service thread (see *
below)

Merchant KitCashCassette KitCashAccountFramework Bank

Return codes

markOrdersAsComplete()*

build Vector of KitCash purchases to complete

for each order: processEvent(token=BATCH CLOSED TOKEN)

processEvent(token=BATCH CLOSED TOKEN)

markPaymentAsCompleted()

getAccount
(Merchant Number, Account Number)

returns.Account

Note: If the number of orders in a batch exceeds fifty (50), a service thread (as
shown above) is spawned or else ″markOrdersAsComplete″ is handled in the same
thread.

Chapter 6. Cassette for KitCash Design 29



CloseOrder API sequence
The CloseOrder API sequence diagram shows the interactions between the
WebSphere Commerce Payments framework and the Cassette for KitCash when a
CloseOrder API command is sent to WebSphere Commerce Payments.

Merchant Server Framework KitCashCassette KitCashPurchase KitCashFSM

Close order

Return codes

• retrieve order from cache

processEvent

processEvent

closeOrder()

(token=CLOSEORDER_TOKEN)

• compose CloseOrderRequest with order

service (CloseOrderRequest, APIResponse)

30 IBM WebSphere Commerce: Payments Cassette for KitCash Supplement



Chapter 7. Tools

This section describes the FSM editor and code generator.

FSM editor and code generator
WebSphere Commerce Payments provides a finite state machine (FSM) editor and
code generator you can use to help design your cassette.

Finite state machine overview
A finite state machine is a model of a system whereby a set of inputs defines what
action the system should take for its current state and what the next state should
be. It is recommended that you use finite state machines to control the processing
performed on payment transactions for any given input from the merchant or
elsewhere. There are several benefits of using finite state machines:
v Because it is not possible to guarantee what state a transaction will be in on

receiving a given input, using a finite state machine forces you to be rigorous
about defining actions for all inputs in all states (including exception conditions).

v Separating the state transaction logic from the payment method processing
allows changes to be made to one without necessarily affecting the other.

v Debugging is much easier when the state transition logic and payment logic are
separated.

Finite state machines can be represented by state transition diagrams, such as:

The nodes represent all possible states of the machine. The arrows indicate which
inputs (I=) will trigger which actions (A=) and what the next state of the machine
will be. You can also specify conditions (C=) to qualify each input.

An alternative representation of the finite state machine uses a matrix
representation. In this table, each row indicates what effect the input specified in
the first two columns has on each state. The top half of each cell indicates the
action (A) to be taken; the bottom half indicates the next state (NS) of the machine.

Figure 2. Finite state transitions

31



Empty cells indicate a ″should not occur″ state. Error processing should be
performed.

Table 4. Finite state machine matrix

Input Condition Start OrderStarted
ConfirmPayment
Pending

Receive
Payment

Action: send
init message

Next State:
OrderStarted

Tender
Payment

Action: send
confirm request

Next State:
ConfirmPayment
Pending

Receive
Response

Response OK:
true

Action: send OK
message

Next State:
PaymentConfirmed

Confirm
Payment

Response OK:
false

Action: send reject
message

Next State:
PaymentRejected

32 IBM WebSphere Commerce: Payments Cassette for KitCash Supplement



Finite state machine editor
The Cassette Kit contains an editor that allows you to create finite state machines
for your cassette. You can start the editor using this command:
c:\CassetteKit\tools> FSMEdit [project_name]

where project_name is the name of an existing .prj file.

Creating a new finite state machine
To create a new finite state machine project:
1. Select New from the File menu.
2. Select Project from the Properties menu to enter details of the new finite state

machine:

Figure 3. FSD data model

Chapter 7. Tools 33



Field Description

Name the name of the finite state machine. The names of the generated Java
class files will be based on this name, so it should contain no white
space characters and follow Java naming conventions (for example,
Test)

Description a description for the finite state machine

Filename the name of the file that will hold the finite state machine (for
example, c:\eTill\testfsm.prj)

Import the package name of your cassette (for example,
com.acme.ibmetill.acmecardcassette).

3. You should also set the name of the matrix to be the same as the project name
above by selecting Matrix from the Properties menu. Currently only one matrix
per project file is supported.

Creating HTML from your FSM matrix
To document your FSM matrix, you can create an HTML table from your finite
state machine project:
1. Select Save Project as HTML from the File menu.

Adding inputs, conditions, actions and states
From the Windows menu, select from Inputs, Conditions, Actions and States to
add, edit or delete the inputs, conditions, actions and states of the finite state
machine. As an example, for the above state machine, the following values would
be set:

Inputs Conditions Actions States

ReceivePayment ResponseOK SendInitiationMsg Start

TenderPayment SendConfirmRqst OrderStarted

ConfirmPayment SendOKMsg ConfirmPaymentPending

SendRejectMsg PaymentConfirmed

PaymentRejected

For each setting, you can also provide a description and a code fragment. The code
has different meanings depending on which of the inputs, conditions, actions and
states it is associated with.

For inputs, the code specifies a Java constant uniquely identifying the token for the
input. For example, PaymentAPIConstants.RECEIVEPAYMENT_TOKEN for
ReceivePayment and ACMECardCassette.TenderPayment_Token for TenderPayment.

The code fragment is not applicable for states.

For conditions, the code fragment specifies the Java method name that will be
invoked to determine whether the condition is true or false. This method must be
defined by the Java class that implements the FSMUser interface, for example:
responseOK for ResponseOK.

For actions, the code fragment specifies the Java method name that will be invoked
to perform the action. This method must be defined by the Java class that
implements the FSMUser interface. For example sendOKMsg for SendOKMsg.

34 IBM WebSphere Commerce: Payments Cassette for KitCash Supplement



Building the finite state machine matrix
The editor displays the matrix representation of the finite state machine. To add
rows and columns to this matrix, select Add InputRow and Add StateColumn from
the Matrix menu, and select the inputs and states that you have defined.

Setting inputs and input conditions
When you added a new row to the matrix, you were asked to choose an input
name. If you need to change the input name, choose a different input from the list
available in the input name field.

There can be multiple matrix rows with the same input name. Input conditions are
used to further qualify an input. An input condition is usually a condition that
cannot be checked until a new input has been received. For instance, when the
input represents an Approve API command, the amount of the request may affect
the action to be performed. The amount would be checked as an input condition.

Note that it is perfectly legitimate to check multiple conditions for a single input.
But the FSMEdit tool only allows a single input condition to be specified per row.
If you need to use multiple inputs conditions per row, create a single method that
checks all the conditions for the input row. Use this method as the condition.

Setting actions and next states
Having defined the matrix rows and columns, you can specify the actions and next
states by clicking one of the buttons in each and selecting the action and next state
that you want for the given input and current state.

Saving the finite state machine
To save the finite state machine you have built, select Save from the File menu.
This will create a .prj file that contains the definitions of all inputs, conditions,
actions and states you have defined, as well as a representation of the finite state
machine matrix itself.

You can also build an HTML representation of the matrix by selecting Save HTML
from the File menu.

Generating the Java source files
To generate Java source code from the finite state machine .prj file, use this
command:

c:\CassetteKit\tools> FSMGen [project_name]

where project_name is the .prj file name of your finite state machine.

Assuming the names of the project and matrix are both Test, the following three
files will be created:

File Description

TestFSMConstants.java a Java interface containing constant definitions for
the states and inputs used in the finite state
machine.

TestFSM.java a Java class containing the controlling logic for the
finite state machine.

TestFSMUser.java a Java interface containing signatures for the action
methods and conditions methods that must be
implemented by a cassette using this finite state
machine.

Chapter 7. Tools 35



Using the finite state machine
Having created the Java finite state machine code, you can then use this in a class
in your cassette by implementing the FSMConstants and FSMUser interfaces you
have created, and by including an FSM object as a member variable of the class:

public class TestOrder implements CassetteOrder, TestFSMConstants, TestFSMUser {
private TestFSM fsm;
...

Implementing the TestFSMConstants interface allows you to access the constant
values for the inputs and states of the finite state machine. Implementing the
TestFSMUser interface ensures that your class includes all the methods to handle
the actions and conditions specified in the finite state machine.

The FSM object must be initialized in your constructor as follows:
fsm = new TestFSM(this, Start);

where Start is the state in which the finite state machine should begin.

To use the finite state machine you have created, you can write code as follows:
while (token != null) {

token = fsm.processEvent(token.intValue());
}

This code assumes that token is an Integer identifying a valid input accepted by
the finite state machine. The processEvent() method determines what the next
state should be and which action is dictated by the finite state machine. It invokes
the action by calling the transaction’s performAction() method passing the relevant
action constant as its parameters.

The performAction() method can be coded in your class as follows:
public Integer performAction(int action) throws ETillAbortOperation {

Integer token = null;
switch (action) {

case SendInitiationMsg:
token = sendInitiationMsg();
break;

case SendOKMsg:
token = sendOKMsg();
break;

case SendRejectMsg:
token = sendRejectMsg();
break;

case SendConfirmRqst:
token = sendConfirmRqst();
break;

default:
}
return token;

}

Note that for future versions of WebSphere Commerce Payments, this method may
be generated automatically rather than needing to be written by hand as at
present.

36 IBM WebSphere Commerce: Payments Cassette for KitCash Supplement



Appendix. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

37



Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Department TL3B/Building 062
PO Box 12195
3039 Cornwallis Road
Research Triangle Park, NC 27709-2195

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement
or any equivalent agreement between us.

All statements regarding IBM’ss future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v AIX
v AS/400
v IBM
v iSeries
v WebSphere
v 400

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

38 IBM WebSphere Commerce: Payments Cassette for KitCash Supplement



Index

A
Account Admin object 4
adding KitCash cassette to a Payments

instance 12

C
Cashier profiles 17
Cassette for KitCash, payment command

summary 5
code generator and FSM editor 31
compiling KitCash code in Studio 13
Configuration Manager 8, 12
configuring WebSphere Commerce

Payments for the test merchant 19

E
editor, Finite state machine 33
eTillKitCashClasses.jar file 10
example

KitCash cassette 3
exporting KitCash cassette 13

F
financial objects 5
finite state machine

KitCash 23
overview 31

Finite state machine
editor 33
generating Java source 35
using 36

FSM editor and code generator 31

G
getting started 19

I
installing

post-installation tasks 13
installing cassette

on WebSphere Commerce 8
on WebSphere Commerce Studio 9
pre-installation tasks 7

instance, adding cassette to 12

J
JAR dependencies 10
Javadoc 24

K
KitCash

API sequence diagram
BatchClose 29
CloseOrder 30
introduction 25
protocol message 28
ReceivePayment 27
startup 26

description 1
eTillKitCashClasses.jar file 10
example 3
finite state machine 23
Javadoc 24
protocol overview 1
PSPL file 11
SampleCheckoutKitCash.profile

file 11
SampleCheckoutKitCash.properties

file 11
using with sample stores 14

N
new merchant’s account 19
Notices 37

O
object model implementation

WebSphere Commerce Payments 4
overview, finite state machine 31
overview, KitCash protocol 1

P
payment command summary 5

Cassette for KitCash 5
port number, Payments 14
post-installation tasks 13
PSPL file, KitCash 11

S
sample store, using cassette with 14
SampleCheckout, starting 18
SampleCheckout.xml file 11, 18
sequence diagram

introduction 25
KitCash BatchClose 29
KitCash CloseOrder 30
KitCash protocol message 28
KitCash ReceivePayment 27
KitCash startup 26

starting
KitCash sample test harness 19
SampleCheckout 18

T
test harness 7
trademarks 38

W
wallet, installation 8, 12
WebSphere Commerce

installing a wallet 8
WebSphere Commerce Payments, object

model implementation 4
WebSphere Commerce Studio

adding cassette to Payments
instance 12

adding eTillKitCash Classes.jar 10
adding KitCash PSPL file 11
compiling cassette code 13
enabling SampleCheckout

application 11
exporting cassette 13
importing KitCash Cashier profile 11
importing KitCash project 9
importing SampleCheckoutKitCash

properties 11
installing on 9
setting JAR dependencies 10

39



40 IBM WebSphere Commerce: Payments Cassette for KitCash Supplement





����

Printed in U.S.A.


	Contents
	Welcome!
	Conventions in this book
	Additional information

	Chapter 1. Overview of Cassette for KitCash
	Protocol overview

	Chapter 2. KitCash and WebSphere Commerce Payments Concepts
	A KitCash example
	WebSphere Commerce Payments object model implementation
	Administrative objects
	Cassette Admin object
	Account Admin object

	Financial objects

	Cassette for KitCash payment command summary
	Summary of state changes

	Chapter 3. Installing the Cassette for KitCash
	Test harness
	Before installing Cassette for KitCash
	Installing the Cassette for KitCash
	Installing on WebSphere Commerce
	Installing the KitCash wallet

	Installing on WebSphere Commerce Studio
	Adding the eTillKitCashClasses.jar file
	Setting JAR dependencies
	Adding the KitCash PSPL file
	Importing the KitCash Cashier profile
	Importing the SampleCheckoutKitCash.properties file
	Enabling the SampleCheckout application to run the Cassette for KitCash
	Importing the KitCash wallet to the merchant directory
	Adding the cassette to a Payments instance


	Post-installation optional tasks
	Optional tasks for WebSphere Commerce Studio
	Compiling KitCash code in WebSphere Commerce Studio
	Exporting the cassette from WebSphere Commerce Studio for use on other WebSphere Commerce platforms

	Other optional tasks
	Using the Cassette for KitCash with a sample store
	Updating the Payments port number in the SampleCheckoutKitCash profile



	Chapter 4. Cassette for KitCash Cashier profiles
	Sample KitCash cashier profile

	Chapter 5. Getting Started
	Starting the KitCash sample test harness
	Configuring WebSphere Commerce Payments for the test merchant
	Open for business
	Merchant Settlement

	Chapter 6. Cassette for KitCash Design
	Finite state machine
	Javadoc
	Cassette sequence diagrams
	Startup API sequence
	ReceivePayment API sequence
	Protocol message API sequence
	BatchClose API sequence
	CloseOrder API sequence


	Chapter 7. Tools
	FSM editor and code generator
	Finite state machine overview
	Finite state machine editor
	Creating a new finite state machine
	Creating HTML from your FSM matrix
	Adding inputs, conditions, actions and states
	Building the finite state machine matrix
	Setting inputs and input conditions
	Setting actions and next states
	Saving the finite state machine

	Generating the Java source files
	Using the finite state machine


	Appendix. Notices
	Trademarks

	Index

