<|lI!

IBM WebSphere Commerce

Payments Cassette Kit Programming Guide

Version 5.5

<|lI!

IBM WebSphere Commerce

Payments Cassette Kit Programming Guide

Version 5.5

Note

Before using this information and the product it supports, be sure to read the general information under

Seventh Edition (July 2003)

© Copyright International Business Machines Corporation 2000, 2003. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Welcome! . .

Conventions used in this book

Additional information
Using the online help .
Locating the printable documentatron
Viewing the WebSphere Commerce Web site for
product information .
Other WebSphere Commerce Payments
documents and Web sites .

What’s new for release 5.5 .

Chapter 1. Introducing WebSphere
Commerce Payments .

WebSphere Commerce Payments features and goals .

WebSphere Commerce Payments architecture

Chapter 2. Understanding the
WebSphere Commerce Payments
framework.
Framework object model
Administrative object model .
Financial objects and their states
Exported Data Model: The user’s view of
WebSphere Commerce Payments objects.
Framework commands
Command processing overview
Protecting sensitive data . .
Cassettes and command processing
Administrative API commands . .o
Administrative command sequence diagrams .
Payment API commands . .o
Payment command sequence diagrams .
Query command processing .
Responsibilities and services.
Access control .
Order and batch cachlng
Threading .
Synchronization .
Parameter validation . .
Background and timed operatlons
Receiving protocol messages from the outs1de
world .
Database access
Event notification .
Map your cassette AVS codes to the WebSphere
Commerce Payments common AVS result codes.
Asynchronous Auto Approve .
Account settings related to AcceptPayment and
ReceivePayment .
Configurable approval exprratron
Purchasing card support.
Error logging
Return code messages
Debug tracing .

© Copyright IBM Corp. 2000, 2003

N

. Vi
. vii
. il
. vii

. Vil

. vii
. viii

—_

~

— 00

.24
.25
.29
. 31
. 39
.41
. 61
. 67
.90
.91
.91
.91
.92
. 94
. 96
.99

. 102
. 102
. 105

105

. 107

. 109
. 111
. 112
. 115
. 116
. 119

User interface support 1238
Payment Server Presentation Language ..o 123
User’s guide to PSPL.128
PSPL reference133

Framework Javadoc154
Cassette view of framework classes P 17

Chapter 3. Designing your cassette 157

Design activities157
Name your cassette157
Consider internationalization 158
Design your extensions to the framework ob]ect
model 160
Map the WebSphere Commerce Payments API
to your payment protocol 164
Design your commit points. 165
Consider restart implications 165
Design ComPoints and ET111Connect10n R (Y4
Design financial state transitions 167
Create scenario diagrams 168
Write your cassette documentation 168

Chapter 4. Writing your cassette . . 171

Installation and uninstallation considerations and

steps 173

Installing and confrgurrng your cassette 173
Step 1: Create the directory structure 173
Elements in a cassette_properties.xml file . . . 176
Step 2: Determine if additional configuration is
required 178
Step 2A: (Optronal) Use custom extensmn class
if necessary . . . 179
Step 3: Deploy your flles to the target system 180
Typical installation examples 181

Migration considerations and steps 182
Using the migrate method 183
Running the paymentcassettemigrator script . . 183
Migrate interface in ICassetteConfiguratorjava 184

Database considerations and steps 184

Uninstall considerations 185

Build a working cassette skeleton 186

Build your administration objects. 187

Build your external view of administration ob]ects 187

Implement your core protocol function. 190

Implement the basic CassetteOrder 190

Implement basic cassette payments 192

Implement CassetteBatch193

Complete cassette payment. 195

Implement cassette credits 195

Complete the remaining transactional support . . 196

Create Cashier profiles (optional). 196

Understand platform-specific issues 197

Chapter 5. Testing your cassette . . 199

Configuring your cassette 199

iii

iv

Starting the WebSphere Commerce Payments
user interface e e e
Perform required configuration on the cassette
Creating a WebSphere Commerce Payments
Merchant and authorizing a cassette.

Logging in as the Merchant Administrator
Creating an account .

Managing payment processing .o
Using the Sale function to approve orders .
Depositing payments .

. 200

200

. 200
. 200
. 201
. 202
. 203
. 204

Settling batches.
Issuing a credit.

Viewing batch totals .

Appendix. Notices

Trademarks .

Index .

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

. 204
. 205
. 207

. 209
. 210

. 213

Welcome!

This book explains how to write payment cassettes for the Payments component of
IBM® WebSphelre® Commerce, Version 5.5. It describes the WebSphere Commerce
Payments cassette programming interface, cassette-specific programming or
administrative considerations, and shows how the cassette implements the
WebSphere Commerce Payments’ various interfaces.

Note: WebSphere Commerce Payments was previously known as IBM WebSphere
Payment Manager for Multiplatforms. Starting with version 3.1.3, the
payments application was renamed to WebSphere Commerce Payments and
references to the product were changed throughout this document.
References to the former product may still appear in this document (such as
in migration discussions) and apply to earlier releases of the product.

This book is for programmers who will develop payment cassettes for WebSphere
Commerce Payments. Cassette developers should be experienced Java'
programmers with a strong background in the field of electronic payment
processing.

Note: The Cassette Kit is provided "as-is” without warranties of any kind.

Payment cassettes process electronic payments using a specific payment protocol
under control of WebSphere Commerce Payments. Since WebSphere Commerce
Payments presents a single, well-defined payment processing application
programming interface (API), adding new cassettes allows existing WebSphere
Commerce Payments applications to process payments through new payment
protocols with little or no integration effort.

Before reading this book or writing a payment cassette, the programmer should be
very familiar with the material in the following documents:

* WebSphere Commerce Installation Guide
* WebSphere Commerce Administration Guide

* WebSphere Commerce Payments Programming Guide and Reference

Be sure to use the correct version of the documentation for the level of the
WebSphere Commerce Payments component you are using.

If you are not familiar with the WebSphere Commerce Payments merchant
administrative and programming interfaces, you should learn about them now.

This book is organized into these sections:

Chapter 1, “Introducing WebSphere Commerce Payments”, on page 1| provides a
high-level description of the WebSphere Commerce Payments goals and
architecture.

« |Chapter 2, “Understanding the WebSphere Commerce Payments framework”, on|
page 7] describes the WebSphere Commerce Payments framework in detail. The
framework provides the environment in which each cassette executes. A
description of the framework classes and interfaces used by cassettes is included.

« |Chapter 3, “Designing your cassette”, on page 157|describes the role,
responsibilities and components of a cassette.

© Copyright IBM Corp. 2000, 2003 \%

* |Chapter 4, “Writing your cassette”, on page 171| describes how to write a cassette.

* [Chapter 5, “Testing your cassette”, on page 199 describes ways you can test your
cassette.

Occasionally, you will find references in this document to Javadoc. The Javadoc is
located in the docs directory where you unzipped the Cassette Kit:
cassette kit unzip_dir:/docs/javadoc.

Conventions used in this book

This book uses the following highlighting conventions:

* Boldface type indicates commands or graphical user interface (GUI) controls
such as names of fields, icons, or menu choices.

* Monospace type indicates examples of text you enter exactly as shown, file
names, and directory paths and names.

* Italic type is used to emphasize words. Italics also indicate names for which you
must substitute the appropriate values for your system. When you see the
following names, substitute your system value as described.

AT indicates information specific to the Windows® operating environment.
LU indicates information specific to AIX®.
indicates information specific to the Solaris Operating Environment.

BT indicates information specific to the IBM iSeries " 400 (formerly called
AS/400%).

indicates information specific to Linux.

indicates information specific to UNIX® platforms (AIX, Solaris, Linux).

References in this book to workstation platforms apply to Windows, AIX, Solaris,
and Linux on Intel platforms (not iSeries).

References to Linux apply to both Linux on Intel workstations and also to Linux on
other platforms unless otherwise specified.

WC_installdir represents the following default installation paths for WebSphere
Commerce:

/usr/1pp/WebSphere/CommerceServernn
/opt/WebSphere/CommerceServernn
BT drive:\WebSphere\CommerceServernn

400 | /QIBM/ProdData/CommerceServernn

Payments_installdir represents the following default installation paths for
WebSphere Commerce Payments:

vi IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

/usr/1pp/WebSphere/CommerceServernn/payments
/opt/WebSphere/CommerceServernn/payments
> Windows | drive:\WebSphere\CommerceServernn\payments

BT /Q1BM/ProdData/CommercePayments/Vnn

Additional information

More information about WebSphere Commerce and the Payments component is
available from a variety of sources in different formats. The following are sources
of WebSphere Commerce information:

* Online help
* Portable document format (PDF) files
* Web sites

Using the online help

The WebSphere Commerce online information provides information about
customizing, administering, and reconfiguring WebSphere Commerce.

The WebSphere Commerce Payments online help provides information about how
to use the graphical user interfaces associated with the Payments component. The
Payments online help is available by clicking the question mark icon in the upper
right corner of the user interface panel.

Locating the printable documentation

Some of the WebSphere Commerce online information is also available on your
system in PDF files, which you can view and print using Adobe Acrobat Reader. In
addition, WebSphere Commerce Payments documents are provided as PDF files.
You can download the Acrobat Reader for free from the Adobe Web site at the
following Web address:

http:/ /www.adobe.com

PDF files can be accessed through the WebSphere Commerce online help and
through the WebSphere Commerce Web site for product information.

Viewing the WebSphere Commerce Web site for product
information

WebSphere Commerce product information is available at the WebSphere
Commerce technical library Web site:
http:/ /www.ibm.com/software /commerce/wscom/library /lit-tech.html.

Other WebSphere Commerce Payments documents and Web
sites

The following documents provide information related to the Payments component
of WebSphere Commerce:

* The WebSphere Commerce Installation Guide provides instructions on how to install
and configure WebSphere Commerce Payments for your platform.

Welcome! Vii

* The WebSphere Commerce Administration Guide contains conceptual information
and shows how to configure WebSphere Commerce Payments using the
Configuration Manager user interface.

» Cassette supplements are available for the various payment cassettes provided
by IBM.

All documents are provided in Portable Document Format (PDF).

This book is a guide and reference to the WebSphere Commerce Payments
framework and should be used in conjunction with the sample cassette LDBCard,
and its associated documentation. LDBCard is a fully-functioning cassette, and is
meant to serve as a skeleton upon which you can build your cassettes. The
LDBCard package includes a Cassette Developer Cookbook, which provides a
step-by-step approach to developing a cassette. Download the LDBCard package
from the Web site from which you downloaded this book (see

http:/ /www.ibm.com/software/webservers/commerce/payments/download.html
for the Cassette Developer’s Toolkit).

Visit the following Web sites for more information about WebSphere Commerce
Payments:

* http://www.ibm.com/software/webservers/commerce/payment/ provides
more information on the WebSphere Commerce payment-processing software,
including information about the payment cassettes that are available for use
with WebSphere Commerce Payments.

* http://www.ibm.com/software/webservers/commerce/payments/support.html
provides current WebSphere Commerce Payments technical information and
links to the latest WebSphere Commerce Payments documentation.

* http://www.ibm.com/software/webservers/commerce/payment/paymentcards.
html provides information about WebSphere Commerce Payments cassette
development.

WebSphere Commerce support and download information is available at the
following Web sites:

* http://www.ibm.com/software/commerce/wscom/support/index.html

* http://www.ibm.com/software/commerce/wscom/downloads/index.html

What’s new for release 5.5

All cassettes (IBM provided or third party) previously installed on WebSphere
Commerce Payments, Version 2.2 or higher should continue to function after
successfully installing WebSphere Commerce Payments, Version 5.5.

Before you install WebSphere Commerce Payments, refer to the WebSphere
Commerce Installation Guide for your platform.

Directory file structure changes
Some changes were made to WebSphere Commerce Payments directory file
structure. For example:

* The etillCal.zip and eTil1Classes.zip packages are now called
eTillCal.jar and eTil1Classes.jar respectively.

* The Payments_installdir/include subdirectory is now in
Payments_installdir/wc.mpf.ear/Payments.war/dtd.

* With the exception of the instances subdirectory, the directory structure
for iSeries now matches the structure for workstation platforms.

viii IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

¢ The SampleCheckout application is in its own WAR file inside the
WebSphere Commerce Payments EAR file. As a result, it is accessed
through hostname/webapp/SampleCheckout rather than
hostname /webapp/PaymentManager/SampleCheckout.

Installation and configuration changes
WebSphere Commerce Payments no longer has its own installation
program. As a component of WebSphere Commerece, it is installed through
the WebSphere Commerce installation program as described in the
WebSphere Commerce Installation Guide. After installation, you must
configure a Payments instance through the WebSphere Commerce
Configuration Manager.

Using the Configuration Manager, you can configure and manage
WebSphere Commerce instances, including instances of the Payments
component. The Configuration Manager enables you to create, update, and
delete Payments instances, start and stop them, change instance passwords,
and add and remove cassettes for an instance. For more information about
creating an instance, refer to the WebSphere Commerce Installation Guide. The
WebSphere Commerce Administration Guide provides additional information
about how to perform configuration tasks in WebSphere Commerce.

As a result of these changes, the way you install and configure cassettes
you create has changed significantly. See [“Installation and uninstallation|
fconsiderations and steps” on page 173 for revised installation and
configuration instructions for third-party cassettes.

Cassette migration
WebSphere Commerce Payments requires WebSphere Application Server
Version 5, and as a result, you must configure and deploy your cassette
differently than you did in the past. This document describes how to
produce new cassettes for use with WebSphere Commerce Payments, and
also describes how to migrate cassettes you have written in WebSphere
Payment Manager Version 2.2.x or later format to WebSphere Commerce
Payments Version 5.5 for use with WebSphere Application Server Version 5.
For more information about migrating third-party cassettes, see
kconsiderations and steps” on page 182} Migration information for
WebSphere Commerce is provided in the WebSphere Commerce Migration
Guide for your platform.

If you need to migrate a cassette written to an earlier Payments format
(such as Payment Server 1.2, or Payment Manager 2.1), you should contact
IBM for migration assistance.

IBM-provided cassettes
The Cassette for SET " and Cassette for CyberCash are no longer
supported. The cassettes provided with WebSphere Commerce Payments
consist of the following:
¢ OfflineCard Cassette
¢ CustomOffline Cassette
¢ Cassette for BankServACH
* Cassette for Paymentech
* Cassette for VisaNet
Default port removal
There is no longer a default port specified for WebSphere Commerce

Payments (formerly, it was 80). Ports are specified through the WebSphere
Commerce Configuration Manager.

Welcome! 1X

X

Message and trace facility changes

WebSphere Commerce Payments now uses WebSphere Application Server
message and trace facilities rather than its own facilities to generate system
message and trace output. This change provides problem determination
data in a more consistent fashion, making it easier for you to collect and
understand the data in a WebSphere environment.

* Message changes include the following:

Messages can be viewed in the WebSphere Application Server
administrative console and in the activity.log file in the
WAS_installdir/1ogs/instancename_CommercePayments directory.
Formerly, messages were written to the PMError file in the Payments
logpath directory (Payments_installdir/logs) by default. Messages can
be viewed with the WebSphere Log Analyzer.

Additionally, a WebSphere Commerce symptom database is available as
a problem determination aid. Using the WebSphere Log Analyzer, you
can view detailed information about Commerce system messages
(including Payments messages) and view detailed explanations about the
messages and suggested user response actions. More information about
using the Log Analyzer with WebSphere Commerce logs, and the
symptom database, is provided in the WebSphere Commerce Administration
Guide. Also, refer to the WebSphere Application Server InfoCenter for
complete details about the Log Analyzer.

* Trace changes include the following:

The Trace panel, which was formerly used to enable tracing, no longer
appears in the WebSphere Commerce Payments graphical user interface.

To control which file the trace text is written to, use the WebSphere
Application Server trace service to define where to output trace data,
instead of the PMTracel.log and PMTrace2.1og files in the Payments logs
directory. The PMTrace log files are no longer supported.

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Chapter 1. Introducing WebSphere Commerce Payments

This section provides a technical overview of the WebSphere Commerce Payments
framework for managing electronic payments. A complete solution is created
when:

* WebSphere Commerce and its Payments component (called WebSphere
Commerce Payments) is integrated with a business system requiring electronic
payments.

* One or more payment cassettes are configured for use with WebSphere
Commerce Payments.

Typically, we call the business system the Merchant Server, because the most
common type of application that uses WebSphere Commerce Payments is shopping
and catalog software for online merchants. However, it should be understood that
the business system could be something as simple as an application that presents a
shopper with a single "BUY" button to something as complex as an integrated
order management, shipping and inventory system for a large company.

Each payment cassette implements a particular payment protocol, which is a
predefined set of messages and processes that another online entity (often a
financial institution or its agent) has defined to facilitate electronic payment
processing. IBM currently offers these payment cassettes with WebSphere
Commerce Payments:

¢ The CustomOffline Cassette supports processing of custom payment transactions
such as COD, Bill-Me-Later or coupons that are often executed outside of
WebSphere Commerce Payments.

¢ The OfflineCard Cassette supports online collection of credit card information
for later use in manual execution and tracking of credit-card transactions.

* The Cassette for BankServACH supports processing of online electronic check
payments using the BankServ payment gateway that interfaces with the
Automated Clearing House Network (ACH).

* The Cassette for Paymentech supports online authorization and settlement of
credit card and non-PIN based debit card payments.

* The Cassette for VisaNet supports processing of credit card transactions using
the Vital Processing Services or First Horizon Merchant Services (FHMS)
financial network.

This guide describes how third parties can create new payment cassettes that
implement other electronic payment protocols.

WebSphere Commerce Payments features and goals

The WebSphere Commerce Payments framework provides the common function of
a middleware server so that payment cassettes can focus strictly on implementing
a particular payment protocol and the associated business logic. WebSphere
Commerce Payments handles threading, caching, synchronization and access
control. The framework also provides services to aid cassettes with
communications, database access, event notification, scheduled work items, and
error handling facilities.

© Copyright IBM Corp. 2000, 2003 1

The WebSphere Commerce Payments framework defines a payment application
programming interface (API) that allows merchant shopping software to use a
common mechanism for handling payments processed by diverse payment
protocols. Differences between payment methods are masked by the API as much
as possible. Where the differences cannot be masked, they are made easier to
handle by the existence of common mechanisms.

The WebSphere Commerce Payments framework also defines an object model for
payment-related data that provides the basic information and capabilities required
for processing any type of electronic payments. The WebSphere Commerce
Payments maintains persistent versions of each payment object in its SQL relational
database. The framework works closely with each of its cassettes to ensure that the
state of each framework object is correctly reflected in the database. This common
payment data supports follow-on payment processing, such as refunds and
settlement.

Payment cassettes built by third parties can be installed onto WebSphere
Commerce Payments so that they are started when WebSphere Commerce
Payments starts. Cassettes may also be dynamically stopped and started while
WebSphere Commerce Payments continues operating.

The goal of the framework is to minimize the effort required to integrate new
payment protocols with merchant software. Ideally, when a new cassette is added
to a WebSphere Commerce Payments installation, merchant applications will be
able to process payments through that cassette without any code changes for new
parameters, error codes or other cassette-specific characteristics or behaviors. The
framework provides a set of common functions, parameters and error codes for
this purpose.

The cassette writer’s job is to carefully map the functions and semantics defined by
the Payment framework onto those provided by their payment protocol.
Throughout this process, it is paramount to remember that the ultimate user of the
cassette will be merchant software, and that the merchant software’s view of the
function is the view presented by the Payment framework.

In the end, the effort required to integrate a new payment cassette into an online
merchant’s system depends on how the payment cassette is built. If the cassette
can implement its payment protocol using common command parameters and
error codes, it is likely that the integration effort will be very small (if not
eliminated altogether). If the cassette requires a lot of specialized parameters or
institutes its own conventions and behaviors, the merchant’s integration effort will
be larger. Because of this, it is very important that cassette designers think clearly
about the requirements that their cassette will place on merchant software and
make every attempt to minimize those requirements.

For a complete description of the WebSphere Commerce Payments merchant
programming interface, see the WebSphere Commerce Payments Programming Guide
and Reference. For a description of the WebSphere Commerce administration
policies and procedures, see the WebSphere Commerce Administration Guide.

WebSphere Commerce Payments architecture

WebSphere Commerce Payments consists of the following main components: the
Payment Servlet, the User Interface Servlet, and a WebSphere Commerce Payments
database as shown in [Figure 1 on page 3|

2 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Merchant
Web Browser
Web Server and
\ WebSphere Application Server
4
Merchant & | S WebSphere
Server Payment Servlet Commerce Payments
Framework Ul Servlet
D
Cassette | \4
Cassette’s
D PSPL
Cashier Cassette’s
<. ________
Cassette’s Data
Cashier
profile
Financial
Institution or
Agent

Figure 1. WebSphere Commerce Payments Architecture

Payment Servlet
The Payment Servlet performs the vast majority of the WebSphere
Commerce Payments work. All commands are processed here, as are all
protocol-specific messages between cassettes and the outside world. The
Payment Servlet, when processing these requests, must also maintain the
correct state of each object in the WebSphere Commerce Payments
database.

This component also provides the merchant programming interface, which
consists of a set of HTTP POST messages. The servlet runs under IBM’s
WebSphere Application Server’s servlet environment and uses several of its
services to communicate with client (merchant) software, authenticate each
client, and manage user IDs and roles on which WebSphere Commerce
Payments access controls are based.

Before sending commands to WebSphere Commerce Payments, an
application or user must log in with a valid WebSphere Commerce
Payments user ID. After logging in, the set of services available is
controlled by the role assigned to the user ID through WebSphere’s user
management interface. These access controls ensure that each merchant’s
payment data is protected from other merchants and unauthorized users
within the merchant site itself.

All of the WebSphere Commerce Payments API commands are built as
standard HTTP POST messages. When a new command message arrives at
the WebSphere Commerce Payments node, WebSphere receives and parses
the HTTP message and then invokes the Payment Servlet to service the
new request. All payment commands (AcceptPayment, Deposit, and so on),

Chapter 1. Introducing WebSphere Commerce Payments 3

administrative commands (for example, ModifyMerchant or CreateAccount)
and query commands (for example QueryOrders or QueryAccounts) are
processed within the servlet.

As each command is processed, an appropriate command response is built
in an XML document using the IBM XML Java parser provided by
WebSphere. Once the document is built, the servlet wraps it in an HTTP
response message and then sends it back to the requesting user.

Cassette
A cassette is a software component consisting of Java classes and interfaces
that support a particular form of payment protocol within the WebSphere
Commerce Payments framework. Cassettes have both a query component
and payment component. A cassette’s query component is used to expose
protocol-specific data to merchant applications. The protocol-specific data
is combined with the framework data using standard constructs so that
applications, including the WebSphere Commerce Payments user interface,
can easily identify and interpret the data. Most of a cassette’s work,
however, is done by its payment processing component that runs within
the Payment Servlet. For each type of request mentioned above, the
associated cassette must perform at least a portion of the processing to
complete the request.

User Interface Servlet
This servlet, which forms the WebSphere Commerce Payments user
interface, generates the payment management and administration HTML
pages that appear at a merchant’s web browser. Likewise, this servlet
processes the actions that are available through the HTML pages. The User
Interface Servlet uses standard WebSphere Commerce Payments API
commands to do its tasks, so to WebSphere Commerce Payments, it looks
like any other application program.

Cassette’s PSPL
Unlike the Payment Servlet, the User Interface Servlet never contains any
running cassette code. If a cassette needs to expose its own data or
administrative functions through the WebSphere Commerce Payments user
interface, it describes the data and functions to the User Interface Servlet
using a XML-based language, Payment Server Presentation Language (PSPL).
PSPL tells the User Interface Servlet:

* How to build the user interface screens

* What data to use

¢ The characteristics of the data

* How to present each data item

¢ How to process input data (for administrative tasks).

DB All of the WebSphere Commerce Payments’ configuration data and all of
its financial data is recorded in the WebSphere Commerce Payments
database. WebSphere Commerce Payments uses well-defined commit
points to ensure the integrity of all the data related to each financial

transaction and to allow for reliable checkpoint and restart operation of the
server.

Cassette’s Data
Because framework data only accounts for part of the complete
representation of each transaction, cassettes also record their financial and
configuration data in the WebSphere Commerce Payments database. The

4 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

cassette data is committed along with the framework data using the
commit points described above. In fact, the cassettes actually choose and
implement the commit points.

Cashier
The Cashier is WebSphere Commerce Payments code that can be invoked
by client applications (such as merchant software) to simplify the process
of creating WebSphere Commerce Payments orders and other WebSphere
Commerce Payments commands. The Cashier uses XML documents called
profiles that describe how commands such as orders should be created for
a given cassette. This allows the client code writer to concentrate on
integrating with WebSphere Commerce Payments in a generic way rather
than having to write code that deals with cassette-specific information.
WebSphere Commerce Payments orders can be created without using the
Cashier (programs can still use the AcceptPayment and ReceivePayment
APIs). The Cashier itself uses the Client API library (CAL) to send
AcceptPayment, ReceivePayment, and Deposit commands to WebSphere
Commerce Payments. The WebSphere Commerce Payments Programming Guide
and Reference describes the Cashier and cashier profiles in more detail.

Cashier profile
Cashier profiles are XML documents that describe how WebSphere
Commerce Payments commands should be created. Cashier profiles
contain required WebSphere Commerce Payments and cassette parameters
and specifications for how the Cashier supplies values for these
parameters. Cashier profiles are stored in the profiles subdirectory of
WebSphere Commerce Payments. Information about how to write a cashier
profile is available in the WebSphere Commerce Payments Programming Guide
and Reference.

Chapter 1. Introducing WebSphere Commerce Payments 5

6 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Chapter 2. Understanding the WebSphere Commerce
Payments framework

Before writing a WebSphere Commerce Payments cassette, you must understand
the WebSphere Commerce Payments framework, whose goal is to provide:

* A single merchant programming interface, which allows merchant software to
exploit new payment protocols with little or no change

e The internal structure into which cassettes must fit, function, and conform

To achieve this goal, the framework defines:

» |[“Framework object model”]

* |“Framework commands” on page 24|

both of which can be augmented with cassette-specific information, as necessary.

The framework also provides services and features for cassettes and cassette
developers that allow them to support the merchant programming interface and
support the framework’s internal structure, as transparently as possible. These
features are described in:

+ |[“Responsibilities and services” on page 91|

* [“Framework Javadoc” on page 154|

Framework object model

The WebSphere Commerce Payments framework defines the object model that is
visible to merchant software and within which cassettes must define their own
data. Because there is a very definite separation between the framework and
cassettes, framework objects only define the general data that would apply to any
electronic payment protocol. Cassettes may augment the framework objects with
their own unique data using a set of framework mechanisms designed for this
purpose.

The framework’s object model is divided into:

* The administrative object model, which defines the participants in financial
transactions (such as merchants), operational entities (such as cassettes and the
Payment Servlet itself) and relationships between the above types of objects.
These objects are maintained in the database as well as in the Payment Servlet’s
memory.

* The financial object model, which represents the transactions themselves (for
example, orders, payments, and batches). These objects are maintained in the
database as well as in the Payment Servlet memory.

* The merchant’s view of all of the above objects. This is a selective view of the
framework objects that includes (potentially) selected cassette-specific data.
These views are extracted from the database and assembled within the Payment
Servlet in response to the WebSphere Commerce Payments set of Query
commands.

Cassette writers must thoroughly understand this object model and must abide by

the framework’s rules for accessing and extending its objects. These rules will be
explained with the details of each portion of the object model.

© Copyright IBM Corp. 2000, 2003 7

8

The objects defined within this object model are created, updated, and deleted
through the WebSphere Commerce Payments API commands. Having read the
WebSphere Commerce Payments Programming Guide and Reference, you should already
be familiar with the API commands. To understand how cassettes participate in the
processing of each of these commands, see|“Framework commands” on page 24}

Administrative object model

As previously described, the administrative object model defines the participants in
financial transactions, operational entities and relationships between the above
types of objects. These objects exist in the database and in the Payment Servlet’s
memory. WebSphere Commerce Payments supports two different types of
administrative objects:

Primary administrative objects
(or simply primary objects) are those that define a separate configurable
entity. The framework defines several primary objects, such as PayServer,
CassetteAdmin, MerchantAdmin, AccountAdmin, EventListener and so on.
Cassettes may define their own primary objects, called
MerchantCassetteObjects and SystemCassetteObjects, as needed. For
example, many credit card-based cassettes choose to implement
MerchantCassetteObjects to represent the concept of a credit card brand,
because there is no analogous framework object.

The base class for all active instances of primary administrative objects is
com.ibm.etill.framework.admin.AdminObject.

Cassette extension objects
are objects that provide the cassette-specific extensions to some of the
framework’s primary administrative objects. For example, the framework’s
AccountAdmin class contains the framework information describing an
account, so the cassette extension to AccountAdmin contains the cassette’s
own information regarding that account.

The term "cassette extensions” should not be confused with the Java term
"extends”. Cassette extensions do not imply that a framework object
should be extended in the Java sense of the word. Rather, a Cassette
extension is a way for a cassette to define its own cassette-specific data to
augment framework administrative classes.

There is no predefined base class within the Payment Servlet for cassette
extensions. Nor are there any direct references within the framework’s
primary administrative objects to their associated cassette extensions.
Instead, administrative commands are forwarded to the cassette for
processing. From there, the cassette decides how to handle the request,
including which of its internal objects to update.

Primary administrative objects are created, modified and deleted through their
respective CreateXxx, ModifyXxx and DeleteXxx (where Xxx represents Account,
PaySystem, MerchantCassetteObject, or SystemCassetteObject) commands. The
remainder of this section lists each of the framework’s primary administrative
objects, beginning with the diagram below, which shows the relationships between
these and other key objects. Cassettes may access any of the framework objects to
obtain configuration information through the objects” getter methods, but they may
not modify any of them.

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

PayServer

1 1
) 1 1 n n
cassette extension |------
CassetteAdmin MerchantAdmin
1 . - I .
n n
PaySystemAdmin
1
1 1)
------- cassette extension
o1
n .
AccountAdmin 1 ________ .
1 : ? merchant
. 1 ' S R ELEEEY cassette
. object
cassette extension
2
merchant
2 system cassette
------------ P cassette object
object
~
grey boxes are
oy caseeti
Key 1N _ objecton left “has’ n adminClass -

of objects on the right
1 o adminClass
...... L cassette decides how

many, if any, of these

objects exist

/

Figure 2. Framework administrative object model

PayServer

The PayServer object represents the Payment Servlet process. Only one of
these objects exists in the servlet. This object contains server-wide

Chapter 2. Understanding the WebSphere Commerce Payments framework

9

10

configuration parameters such as port values, and so on. For more
information, see com.ibm.etill.framework.admin.PayServer.

CassetteAdmin

The CassetteAdmin object contains the framework’s configuration
information for a given cassette. There is one CassetteAdmin object for
each active cassette in the WebSphere Commerce Payments instance.
Cassettes may augment these objects with their own extensions. For more
details, see com.ibm.etill.framework.admin.Cassette Admin.

MerchantAdmin

The MerchantAdmin object contains the framework’s configuration
information for a given merchant. There is one MerchantAdmin object for
each active merchant in the WebSphere Commerce Payments instance. For
more details, see com.ibm.etill.framework.admin.MerchantAdmin.

AccountAdmin

Each Account object identifies a relationship between a merchant and a
financial institution for a particular payment protocol. The framework
maintains an AccountAdmin object that contains the relevant configuration
information concerning the Account. Accounts are uniquely identified
through the combination of the cassette name, the merchant number, and
the account number. Cassettes may augment these objects with their own
extensions. For more details, see

com.ibm.etill.framework.admin. AccountAdmin.

PaySystemAdmin (Merchant Cassette Settings)

PaySystemAdmin is an association object. This object represents the
association between a merchant and a cassette, which is called a "payment
system” within WebSphere Commerce Payments (although the WebSphere
Commerce Payments user interface calls this association the "Merchant
Cassette Settings”). You can think of this object as the entity that allows a
given merchant to use the services of a given cassette (hence, the
association). Therefore, there is one PaySystem Admin object for each
merchant-cassette association. Cassettes may augment these objects with
their own extensions. For more details, see
com.ibm.etill.framework.admin.PaySystem Admin.

Cassette Administrative Objects

The introductory material in this section already described the concept of
cassette-specific primary administrative objects. These are instances of
cassette-defined classes that extend

com.ibm.etill.framework.admin. AdminObject. Each of these cassette classes
is identified by a name that is used by merchant software and by the
cassette to identify objects of such classes. Merchant software uses this
name on the various CreateXxx, ModifyXxx and DeleteXxx commands that
manipulate cassette administrative objects. The cassette uses the name to
locate the appropriate object within its own internal data structures.

WebSphere Commerce Payments supports these types of cassette-specific
primary objects:

SystemCassetteObject
is an administrative object that contain properties that apply across
the cassette. SystemCassetteObjects are identified through a
combination of the ObjectName and cassette name.

MerchantCassetteObject
is an administrative object that contains properties that apply only

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

to one merchant. MerchantCassetteObjects are identified through a
combination of the merchant number, ObjectName and cassette
name.

While cassettes may implement both types of administrative objects as they
choose, there is no way for merchant software to directly query a
SystemCassetteObject or a MerchantCassetteObject. Instead, such objects
should be returned as ancillary data in support of queries for the
framework objects to which they are logically related (this logical
relationship is illustrated by the dotted lines in the diagram above).

For more details on how cassettes may expose their own administrative
objects through the Exported Data Model, see [“Exported Data Model: The|
user’s view of WebSphere Commerce Payments objects” on page 22| and
‘Query command processing” on page 90|

Financial objects and their states

As previously described, the financial object model defines the objects that
represent financial transactions themselves. These objects exist in the database and
in the Payment Servlet’s memory. Financial objects, upon which all
payment-oriented commands operate, supported by WebSphere Commerce
Payments include:

e Order
¢ Payment
* Credit
* Batch

The financial objects support follow-on payment processing such as refunds and
settlement, as well as any other required financial operations. The financial objects
allow merchant software to perform payment processing independent of any
specific payment protocol.

The framework creates a persistent version of each object in the WebSphere
Commerce Payments database that contains the initial data associated with the
object as received from the merchant through a ReceivePayment or AcceptPayment
command. From there, the state and contents of the objects change based on the
commands that are performed on them. Note: The cassette must maintain the
framework state of these objects, since only the cassette can understand when
the state has changed. The state constants for these financial objects are defined in
com.ibm.etill.framework.payapi.PaymentAPIConstants.

This diagram illustrates the relationship between the various framework financial
objects. Notice that, unlike the framework’s administrative objects, each framework
in-memory financial object contains a direct reference to the associated cassette
object.

Chapter 2. Understanding the WebSphere Commerce Payments framework 11

| Archivable | | Archivable |
7y 7Y
| Transaction | | Archivable | | Transaction | | Archivable |
ry 4 7y 7'y
4‘ Cassette Transaction Cassette Transaction
Payment X Credit A
|cassette-specific class| |cassette-specific classl
Archivable | | Archivable | Archivable | | Archivable |
ry T 4 T
4‘ Cassette Order | 4‘ Cassetf Order |
4 .
|cassette-specific class| |cassette-specmc classl
Order 4| Payment
4| Payment r
T Batch L
L
4' Credit
4' Credit I‘n : | h‘l
T L
L
Batch Totals Item
L
Archivable |
— ~ [
| Cassette Batch |
boldface boxes Y

are defined in greater
detail above |

= xextendsy
- -- = x implements y

cassette-specific class|

grey boxes are
implemented
by cassette

N— _/

Figure 3. Relationships between framework financial objects

These sections describe these framework objects and the valid states associated
with each framework object:

+ [“Orders” on page 13|

* |“Payments” on page 16|

* |“Credits” on page 1§

+ [“Batches” on page 20|

When a request arrives at WebSphere Commerce Payments, the framework locates
or creates all of the appropriate in-memory objects. The cassette participates in
object creation and retrieval by responding to requests from the framework. Once
all payment objects are created or located, the framework calls the cassette to

12 1BM WebSphere Commerce: Payments Cassette Kit Programming Guide

process the request using these objects. For example, the cassette will be given the
framework and cassette-specific order and payment data when asked to service a
Deposit request.

Cassette writers are responsible for understanding these framework objects, and
the framework data and states associated with each. Additionally, cassettes must be
very careful to ensure that they do not inadvertently subvert the framework’s
ability to deliver on its guarantees concerning in-memory financial objects.
Specifically, cassettes:

* Should not save references to these objects across requests

* Should not pass references to these objects to another thread, including service
threads

* Should not keep its own cache or lists of in-memory objects
* Should not make its own "copies” of any of these in-memory objects

Long-lived references are dangerous because the cassette has no way of knowing
when cached objects might be flushed from the cache or when administrative
objects might be deleted or replaced. Creating copies of the objects would violate
the framework’s guarantee of a single in-memory representation of the data and
the associated synchronization of operations on payment data.

Instead of keeping memory references or copies of these objects, cassettes should
always ask the framework for the in-memory objects that they need to process
each request. The framework provides all of the methods necessary to accomplish
this. See [“Order and batch caching” on page 91| for more information.

Orders

When discussing WebSphere Commerce Payments framework orders, it is
important to understand the difference between the accepted definition of the
word order (as it applies to commerce) and the WebSphere Commerce Payments
definition of its com.ibm.etill.framework.payapi.Order object. The WebSphere
Commerce Payments Order object signifies agreement by the consumer to make a
payment or payments using a single payment method. The Order object contains
payment information related to this agreement. It is important to understand there
may not be a one-to-one correlation between a WebSphere Commerce Payments
Order and what a merchant may consider to be an "order”.

Given the above distinction, an Order represents all the instructions and
information needed from the consumer (payer) in order for the merchant (payee)
to collect money. The merchant may collect that money all at once or over a period
of time, but the merchant never needs to go back to the consumer for additional
information. All required information is contained in the Order.

Order objects are created when a ReceivePayment or AcceptPayment command is
processed. Orders are uniquely identified by the combination of the merchant
number and order number. Therefore, all order numbers for a given merchant
number must be unique.

The Order Table (ETORDER) in the WebSphere Commerce Payments database
contains the persistent instances of each Order object. There is one Order Table per
WebSphere Commerce Payments instance and one row in the table per Order.
While cassettes should always access Order objects through their Java
representations (and not directly from the database), they must commit these
objects to the database at the appropriate times, according to the needs of their
payment protocol.

Chapter 2. Understanding the WebSphere Commerce Payments framework 13

14

For a detailed description of its data members and methods, see
com.ibm:.etill.framework.payapi.Order.

Order states: All Orders exist in one of these states:

ORDER_RESET
The Order has been instantiated but has not yet been processed.

No commands are allowed for an order in this state since the
ReceivePayment or AcceptPayment command for which the object was
instantiated has not yet completed. Once command processing completes,
the order will change to either ORDER_REQUESTED (for ReceivePayment)
or ORDER_ORDERED (for AcceptPayment). (However, if, the payment
cassette supports independent credit as described in [“Independent credit”]
the order will change to the ORDER_REFUNDABLE state for
AcceptPayment). If automatic approval was requested on an AcceptPayment

command, the order object will still pass through the ORDER_ORDERED
state before the cassette can perform the automatic approval.

ORDER_REQUESTED
This state only occurs when the order was created in response to a
ReceivePayment command. The payment protocol dictates whether or not
this state is ever entered for each cassette.

This state indicates that the command was received from the merchant
application and processed to the point of starting the purchase flows
between consumer and WebSphere Commerce Payments, but those flows
have not yet completed.

No commands are allowed for an order in this state. The cassette may
place the order into either ORDER_ORDERED or ORDER_REJECTED state,
once the purchase flows complete either successfully or unsuccessfully,
respectively.

ORDER_ORDERED
Cassettes place an order in this state once all of the consumer’s financial
information has been obtained and before any payments are closed.

Note: If the payment cassette is being designed to support independent
credit, this order state is not used. See|“Independent credit” on|
for more information.

For payment protocols that support this state, if the order was created
through an AcceptPayment command, the Order should enter this state
once the order has been successfully created. If the order was created
through a ReceivePayment command, then it should enter this state when
the consumer purchase flows (and any other processing required by the
payment protocol) complete successfully.

When an order is in this state, these operations are allowed:

* Payments can be created or modified using Approve and
ApproveReversal commands

* Existing approved payments can be captured using Deposit and
DepositReversal commands

* The order can be canceled using the CancelOrder command, if all
Payments and Credits are either in VOID or DECLINED state

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

ORDER_REFUNDABLE
An order is placed in this state by cassettes when either of the following
occurs:

* After a payment has entered the PAYMENT_CLOSED state.

* The pre-existing state of the order is either ORDER_RESET or
ORDER_REQUESTED and the cassette supports independent credit. This
enables a merchant to issue credit for the order even if there is no
payment.

The payment protocol dictates whether or not this state is ever entered for
each cassette. If the protocol does not support credits, the cassette should
not support this state. Otherwise, this state should be supported.

When an order is in this state, these operations are allowed:

¢ Assuming the payment protocol supports multiple payments per order,
payments can be created or modified using Approve and
ApproveReversal commands

¢ Assuming the payment protocol supports multiple payments per order,
existing payments can be captured using Deposit and DepositReversal
commands

* Credits can be created or modified using Refund and RefundReversal
commands

¢ If all payment and credit objects belonging to the order are in their
respective CLOSED states, then this order can be closed using the
CloseOrder command.

* An order in ORDER_REFUNDABLE state can be cancelled through the
CANCELORDER API command if there is no payment or credit for the
order. (An order is considered to have a payment if the payment object
associated with the order is in the APPROVED, DEPOSITED, PENDING,
or CLOSED state.)

ORDER_REJECTED
This state only occurs when the order was created in response to a
ReceivePayment command.

Cassettes should place an order in this state if an error occurs during the
purchase flows between consumer and merchant for this order.

CancelOrder is the only command allowed for Orders in this state.

ORDER_PENDING
This state indicates that the cassette is waiting for an internal or external
operation to complete for this Order.

The cassette must ensure that Order objects do not remain in pending state
indefinitely, even after the account, payment system, cassette, merchant or
payment server is stopped and restarted or after the system terminates
unexpectedly. Ideally, the operation for which a pending object is waiting
should be recovered or reinitiated when the account, payment system,
cassette, merchant or payment server is restarted. At the very least, such
pending objects should be placed into some other stable state during
restart scenarios.

No commands are allowed for an order in this state.

ORDER_CANCELED
This state indicates that the merchant program or the cassette has voided
this order before any payments or credits were completed. Orders are

Chapter 2. Understanding the WebSphere Commerce Payments framework 15

16

canceled using the CancelOrder command, but cassettes may also put
orders in this state if the payment protocol calls for it.

CancelOrder is the only command allowed for orders in this state.

ORDER_CLOSED
This state indicates that the merchant program has marked this order as no
longer accepting payments or credits. Orders are closed using the
CloseOrder command. For that command to succeed, the Order must have
at least one closed payment or closed credit, and all payments and credits
belonging to the order must be in their respective CLOSED states.

CloseOrder is the only command allowed for orders in this state.

Independent credit: Cassettes can be designed to support independent credit. The
merchant server software can issue the AcceptPayment APl command to create an
Order, and then issue the Refund API command to issue an independent credit
(that is, a credit that is not associated with a previous payment). For example, a
customer desires a refund on an order, and the payment for that order has not
been made. If the merchant decides to grant the customer a refund, the merchant
can use the same order that the customer placed to issue a credit or create a new
order.

When new orders are placed and the cassette supports independent credit, the
order is placed in the ORDER_REFUNDABLE state rather than the
ORDER_ORDERED state. Payment cassettes provided by WebSphere Commerce
Payments that support independent credit include: the OfflineCard Cassette,
CustomOffline Cassette, and Cassette for VisaNet.

Payments

A WebSphere Commerce Payments framework Payment object represents a "real
world” payment made by a consumer to pay for all or part of an order. Payments
are uniquely identified by the combination of the merchant number, order number,
and payment number. Therefore, all payment numbers for a given order must be
unique.

In many cases, all the money authorized for collection by the Order will be
collected in a single payment. Some payment systems may allow the money
authorized in one Order (that is, one set of Payment Instructions) to be collected in
multiple portions. This "split payment” facility supports real world concepts like
recurring payments and installment payments. The WebSphere Commerce
Payments payment API supports the concept of split payment.

A Payment object must be created when either of these occur:

* An Approve command is received from a merchant application. The framework
will create the payment prior to sending the approve request to the cassette.

* A ReceivePayment or AcceptPayment command is received with the autoApprove
option requested (that is, with APPROVEFLAG=1).

If the autoApprove option is requested, there will never be a call to the Approve
APL In this case, the cassette is expected to create a framework payment object
during the autoApprove processing.

The framework allows zero or more Payments per Order, but the cassette
ultimately determines the number of Payments allowed.

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

The Payment Table (ETPAYMENT) in the WebSphere Commerce Payments
database contains the persistent instances of each Payment object. There is one
Payment Table per WebSphere Commerce Payments instance and one row in the
table per Payment. While cassettes should always access Payment objects through
their Java representations (not directly from the database), they must commit these
objects to the database at the appropriate times, according to the needs of their
payment protocol.

For a detailed description of Payment’s data members and methods, see
com.ibm.etill.framework.payapi.Payment.

Payment states: All Payments exist in one of these states:

PAYMENT_RESET
This state indicates the payment has been instantiated, but has not yet been
processed.

No commands are allowed for a payment in this state since the Approve
command (or autoApprove processing) for which the object was
instantiated has not yet completed.

Once the command processing completes, the cassette may place the
payment into one of these states:

¢ PAYMENT_APPROVED, if the approve succeeds

* PAYMENT_DECLINED, if the financial institution or other approval
authority rejects the request

* PAYMENT_PENDING, if the cassette has to wait for a response from the
financial institution or retry the message before completing the request

PAYMENT_APPROVED
This state indicates some amount of funds have been approved, but those
funds have not yet been deposited. When a payment is in this state, these
operations are allowed:

* The approved amount may be modified using ApproveReversal
commands. The payment protocol determines whether and how to
support approval reversals. Choices are to not support such reversals at
all, to only support full reversals (called a void), or to support partial
reversals, in which the approval amount is changed to another non-zero
value.

* A portion or all of the funds may be captured using the Deposit
command (or through the automatic deposit processing option of the
Approve, AcceptPayment, or ReceivePayment commands). Again, the
decision to support complete or partial captures depends upon the
payment protocol and cassette implementation.

PAYMENT_DEPOSITED
This state indicates that funds have been captured for this Payment, but
the Batch to which the Payment belongs is not yet closed.

The payment protocol dictates whether or not this state is ever entered for
each cassette. If the protocol does not enforce formal batch semantics for
payments, the successful capture should move the payment directly into
PAYMENT_CLOSED state. Otherwise, this state should be supported.

When a payment is in this state, these operations are allowed:

¢ The deposit may be voided using the DepositReversal commands. The
payment protocol determines whether to support deposit reversals.
Partial deposit reversals are not supported by the framework.

Chapter 2. Understanding the WebSphere Commerce Payments framework 17

18

¢ The Payment may be closed through the successful closure of the batch
to which the payment belongs. Depending upon the payment protocol
and account or cassette configuration, batch closure may be explicitly
requested by the merchant, implicitly initiated by the cassette, or be
directed by the financial institution.

PAYMENT_CLOSED

This state indicates that the financial transaction is complete. Once a
Payment is in this state, it cannot be modified.

PAYMENT_DECLINED

This state indicates that a financial failure occurred. Typically, cassettes
only place payments into this state if an approval failed, but it may also be
used in other cases if the payment protocol requires it.

The operations allowed on Payments in this state depend upon the
payment protocol and the cassette implementation.

PAYMENT_VOID

Indicates that this Payment had been approved, but the full approval
amount was subsequently reversed. Cassettes should support this state if
the payment protocol allows for full approval reversals.

When a Payment is in this state, the only allowed operation is the Approve
command, which is used to generate a new approval for the Payment.

PAYMENT_PENDING

This state indicates that the cassette is waiting for an internal or external
operation to complete for this Payment. If a cassette places a Payment into
this state, it should place the associated Order object into
ORDER_PENDING state at the same time.

The cassette must ensure that Payment objects do not remain in
PAYMENT_PENDING state indefinitely, even after the account, payment
system, cassette, merchant or payment server is stopped and restarted, or
after the system terminates unexpectedly. Ideally, the operation for which a
pending object is waiting should be recovered or reinitiated when the
account, payment system, cassette, merchant or payment server is
restarted. At the very least, such pending objects should be placed into
some other stable state during restart scenarios.

No commands are allowed for a Payment in this state.

PAYMENT_EXPIRED

This state indicates that the Order had been approved, but the payment
subsequently expired. Cassettes should support this state if the payment
protocol allows authorizations to expire.

When a payment is in this state, the only allowed operation is the
APPROVEREVERSAL API command, which is used to generate a new
approval for the payment or to perform a full or partial reversal and place
the payment in the VOID state.

Credits

The Credit object represents one credit made against one of the existing Payment
objects belonging to the associated Order object. Credits are uniquely identified by
the combination of the merchant number, order number, and credit number.
Therefore, all credit numbers for a given order must be unique.

The framework creates a Credit object when a Refund command is received from a
merchant application. The framework allows zero or more Credits per Order, but

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

the cassette ultimately determines the number of Credits allowed. The general rule
is that the total amount of all Credits for a given Order must be less than or equal
to the total amount of the Payments associated with that Order. Again, it is up to
the cassette to enforce any rules imposed by the payment protocol regarding the
total amount of credits allowed against any given order.

The Credit Table (ETCREDIT) in the WebSphere Commerce Payments database
contains the persistent instances of each Credit object. There is one Credit Table per
WebSphere Commerce Payments instance and one row in the table per Credit.
While cassettes should always access Credit objects through their Java
representations (not directly from the database), they must commit these objects to
the database at the appropriate times, according to the needs of their payment
protocol.

For a detailed description of Credit’s data members and methods, see
com.ibm.etill.framework.payapi.Credit.

Credit states: All Credits exist in one of these states:

CREDIT_RESET
This state indicates credit has been instantiated, but has not yet been
processed.

No commands are allowed for an order in this state since the Refund
command for which the object was instantiated has not yet completed.

Once the command processing completes, the cassette may place the Credit
into one of these states:

 CREDIT_REFUNDED, if the refund succeeds and the Batch to which the
Credit belongs is still open

* CREDIT_CLOSED, if the refund succeeds and the Batch to which the
Credit belongs closed when this refund completed

¢ CREDIT_DECLINED, if the financial institution or other authority rejects
the request

* CREDIT_PENDING, if the cassette has to wait for a response from the
financial institution or retry the message before completing the request.

CREDIT_REFUNDED
This state indicates that the refund has been processed by the financial
institution, but the Batch to which the Credit belongs is not yet closed.

Note that the payment protocol dictates whether or not this state is ever
entered for each cassette. If the protocol does not enforce formal batch
semantics for Credits, the successful refund should move the Credit
directly into CREDIT_CLOSED state. Otherwise, this state should be
supported.

When a Credit is in this state, these operations are allowed:

* The refunded amount may be voided using RefundReversal commands.
The payment protocol determines whether to support refund reversals.
Partial refund reversals are not supported by the framework.

* The Credit may be closed through the successful closure of the Batch to
which the Credit belongs. Depending upon the payment protocol and
account or cassette configuration, batch closure may be explicitly
requested by the merchant, implicitly invoked by the cassette, or be
directed by the financial institution.

Chapter 2. Understanding the WebSphere Commerce Payments framework 19

20

CREDIT_CLOSED
This state indicates that the financial transaction is complete. Once a Credit
is in this state, it cannot be modified.

CREDIT_DECLINED
This state indicates that a financial failure occurred.

The operations allowed on Credits in this state depend upon the payment
protocol and the cassette implementation.

CREDIT_VOID
This state indicates that the refund had been issued, but the full refund
amount was subsequently reversed. Cassettes should support this state if
the payment protocol allows refund reversals.

When a Credit is in this state, the only allowed operation is the Refund
command, which is used to generate a new refund transaction under the
same credit number.

CREDIT_PENDING
This state indicates that the cassette is waiting for an internal or external
operation to complete for this Credit. If a cassette places a Credit into this
state, it should place the associated Order object into ORDER_PENDING
state at the same time.

The cassette must ensure that Credit objects do not remain in
CREDIT_PENDING state indefinitely, even after the account, payment
system, cassette, merchant or payment server is stopped and restarted, or
after the system terminates unexpectedly. Ideally, the operation for which a
pending object is waiting should be recovered or reinitiated when the
account, payment system, cassette, merchant or payment server is
restarted. At the very least, such pending objects should be placed into
some other stable state during restart scenarios.

No commands are allowed for a Credit in this state.

Batches

A Batch is a collection of Payments and Credits to be processed as a group by a
financial institution (much like multiple database operations can be grouped
together within a single work unit for an eventual commit or rollback operation).
When a Batch is closed, all of the transactions within the batch are completed and
made permanent.

Not all payment protocols support or require batch semantics. However, even in
these cases you are strongly encouraged to use the batch constructs provided by
WebSphere Commerce Payments. Doing so ensures a consistent programming and
user interface across all payment protocols for merchant software and end users.
Even when the payment protocol does not support batches, you can still build
your own "local” batches inside of WebSphere Commerce Payments to logically
group your transactions for some period of time that is either determined by the
user or specified somewhere into the cassette’s configuration. This will allow users
to perform their daily maintenance operations (such as closing the day’s batches)
and view their transaction data using the same WebSphere Commerce Payments
user interface totals and summary views as they do for all other payment
protocols.

Batches are uniquely identified by the combination of the merchant number and
batch number. Therefore, all batch numbers for a given merchant must be unique.

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Each Batch is further associated with a given account. The framework allows an
account to have zero or more Batches, but the actual number allowed is ultimately
up to the cassette.

The creation of Batch objects is ultimately the responsibility of cassettes since batch
policies vary for each payment protocol. With respect to the API, there are two
primary approaches to batch creation: explicit batch management or implicit batch
management.

Explicit style: Explicit style can only be used when the merchant controls the
batch (that is, the merchant is responsible for opening and closing of batches). All
of the merchant decisions (opening and closing batches, assigning payments and
credits to batches) are exported through the API to the merchant software. The
merchant opens batches using the BatchOpen command, closes batches using the
BatchClose command, and must specify a batch number on all deposit and refund
commands.

If at all possible, avoid using this style because it does not work well with the
WebSphere Commerce Payments user interface and because it burdens the
merchant software with details that can most likely be avoided.

Implicit style: Implicit style can be used whether the merchant controls the batch
or the financial institution controls the batch. The merchant does not issue
BatchOpen commands and does not specify a batch number on Deposit or Refund
commands. If the financial institution controls the batch, WebSphere Commerce
Payments forwards requests to the financial institution, which in turn manages the
batches. If the merchant controls the batch, WebSphere Commerce Payments
manages the batches, as necessary. When implicit style is used:

1. WebSphere Commerce Payments framework receives a Deposit command and
forwards it to the cassette using service().

2. Cassette determines if there is currently a batch open for the specified account.
3. If there is, then deposit the payment in the existing open batch.

4. If there is not, then ask the framework to create a batch
(Supervisor.createBatch()) and deposit the payment in the newly created
batch. The framework will generate a batch number for the batch. This
framework creation of the batch is considered an implicit BatchOpen.

You are strongly encouraged to use the Implicit style. As noted above, implicit
batch management can be used regardless of which entity (merchant or financial
institution) the payment protocol indicates is in control of the batch. This style
works well with the WebSphere Commerce Payments user interface and hides
details from merchant software that it would otherwise never need to consider.

The Batch Table (ETBATCH) in the WebSphere Commerce Payments database
contains the persistent instances of each Batch object. There is one Batch Table per
WebSphere Commerce Payments instance and one row in the table per Batch.
While cassettes should always access Batch objects through their Java
representations (not directly from the database), they must commit these objects to
the database at the appropriate times, according to the needs of their payment
protocol.

For a detailed description of Batch’s data members and methods, see
com.ibm.etill.framework.payapi.Batch.

Batch states: All Batches exist in one of these states:

Chapter 2. Understanding the WebSphere Commerce Payments framework 21

22

BATCH_OPENING
This state indicates that the Batch object has been instantiated, but has not
yet completed open processing. This occurs in response to a BatchOpen
command (if this is a merchant-controlled batch) or when a batch is
opened implicitly by the cassette.

No operations are allowed against a Batch in this state.

Once the open processing completes successfully, the cassette will place
this Batch into BATCH_OPEN state.

BATCH_OPEN
Batches exist in this state between the time that the batch opens (either
explicitly or implicitly) successfully and when the batch close processing
begins.
When a Batch is in this state, these operations are allowed:
¢ Payments may be added in response to Deposit commands,
¢ Payments may be removed in response to DepositReversal commands,
* Credits may be added in response to Refund commands,
¢ Credits may be removed in response to RefundReversal commands,

¢ the Batch may be closed, either in response to a BatchClose command or
as a result of conditions in the cassette or at the financial institution.

BATCH_CLOSING
This state indicates that the batch close process has begun, but is not yet
complete. This occurs in response to a BatchClose command or when
conditions inside the cassette or at the financial institution require that the
Batch be closed.

The cassette must ensure that Batch objects do not remain in closing state
indefinitely, even after the account, payment system, cassette, merchant or
payment server is stopped and restarted or after the system terminates
unexpectedly. Ideally, the operation for which a pending object is waiting
should be recovered or reinitiated when the account, payment system,
cassette, merchant or payment server is restarted. At the very least, such
pending objects should be placed into some other stable state during
restart scenarios.

No operations are allowed on a Batch in this state. The Batch will remain
in this state until batch settlement completes.

BATCH_CLOSED
This state indicates that the batch closing procedure has completed
successfully. In general, this will be when the settlement phase completes.

DeleteBatch is the only command allowed for Batches in this state.

Exported Data Model: The user’s view of WebSphere
Commerce Payments objects

Now that we’ve looked at the basic types of objects that WebSphere Commerce
Payments maintains, we’ll examine the mechanism through which these objects are
exposed to applications and end users.

Applications need to view the WebSphere Commerce Payments objects in order to
manage not only their own transactions, but also WebSphere Commerce Payments
itself. However, in exposing this data to applications, several important points
must be considered:

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

* While the WebSphere Commerce Payments framework and its cassettes maintain
all of their data in the WebSphere Commerce Payments database, not all of that
data is suitable for exposure to applications. Therefore, the framework and
cassettes must be able to selectively expose only the data that is essential to
applications” ability to accomplish their tasks.

* When dealing with financial data or configuration data that applies to only a
single merchant, only the data belonging to that merchant should be exposed.
Stated another way, access controls must be enforced on requests for
merchant-specific data.

¢ The schema of the WebSphere Commerce Payments database must be able to
change without impacting the application’s view of that data. This is essential to
ensure compatibility across service updates and new releases of the framework
and cassettes. Therefore, applications should never be required or allowed to
access the WebSphere Commerce Payments database directly.

To facilitate this selective, secure, and database-independent view of WebSphere
Commerce Payments data, WebSphere Commerce Payments provides an Exported
Data Model (XDM). The XDM is accessed through the WebSphere Commerce
Payments’s Query commands that return XML documents that contain
representations of the requested object or objects. These Query commands are
processed completely within the Payment Servlet. For a complete description of the
XML representation of WebSphere Commerce Payments objects, see the WebSphere
Commerce Payments Programming Guide and Reference.

As previously mentioned, cassettes may also export portions of their data through
XDM. To do this, the cassette writer must first decide which of its data items needs
to be exposed to merchant applications in order to adequately perform payment
processing and then methods need to be written to expose this data and convert it
into predefined XML elements. The cassette must then provide a set of classes that
will run under the Payment Servlet under control of the framework in that process.
For each object the cassette will expose through the query commands, it must
implement:

* A class that extends com.ibm.etil1.framework.xdm.QueryRequest. This class
contains the methods required to efficiently extract all of the associated cassette
extension objects associated with a given set of related framework objects. This
class also contains methods that combine the cassette-specific query results with
those of their corresponding framework objects.

A QueryRequest method is also available to indicate whether the query should
return sensitive data to the user based on the user’s minimum role, or hide it by
masking the data with asterisks (see [‘Protecting sensitive data” on page 29 for
more information).

¢ A class that represents the (selective) external view of the cassette object. The
constructor for this class should take a JDBC ResultSet as input as each instance
of this class will be the Java representation of one retrieved cassette object.
"View" classes that represent MerchantCassetteObjects and
SystemCassetteObjects extend PSServerAdminObject. For objects that simply
extend framework objects, there is no common base class.

For a description of the internal control flow that takes place for query commands,
see [“Query command processing” on page 26|

Another important point to remember is that the objects in the exported object
model contain various attributes that are intended specifically for use by the

Chapter 2. Understanding the WebSphere Commerce Payments framework 23

WebSphere Commerce Payments user interface. Many of these attributes can be set
or modified by the cassette to affect the eventual presentation of its data through
the user interface.

Framework commands

24

The WebSphere Commerce Payments framework defines a payment application
programming interface (API) that allows merchant software to use a common
mechanism for handling all payment methods. Differences between payment
methods are masked by the API as much as possible. Where the differences cannot
be masked, they are made easier to handle by the existence of common
mechanisms.

The WebSphere Commerce Payments API is documented from the merchant
software’s point of view in the WebSphere Commerce Payments Programming Guide
and Reference. Study the Programming Guide and Reference to thoroughly understand
the commands and the corresponding data provided with each command. These
commands and data will be forwarded to your cassette after the framework has
performed the associated framework actions.

After completing your study of the API commands, you must create a meaningful
mapping between the WebSphere Commerce Payments command set and the
functions available in the target payment protocol. During this process, and during
the entire cassette development process, remember that the user of the cassette is
merchant software, and the merchant software’s view of the protocol is through the
framework’s WebSphere Commerce Payments payment APL. Therefore, it is
important to create this mapping from the viewpoint of the WebSphere Commerce
Payments payment API, rather than trying to expose each and every feature of the
payment protocol through the framework. For example, ask the question "what
should happen if a DepositReversal is made to my cassette?” instead of "how can I
expose my protocol’s voidAndRepurchase function through the WebSphere
Commerce Payments API?"

The key point is that since the merchant software will be coded to the single
WebSphere Commerce Payments API, the cassette must attempt to work within the
framework rather than attempting to change the look and feel of the framework to
expose every possible feature of the protocol. Stated another way, just because a
function is available in the protocol does not necessarily mean that it has to be
used. Conversely, in many cases, the functions provided by the WebSphere
Commerce Payments API will not have an analog in the payment protocol (for
example, not all protocols will support the concept of a deposit reversal). For these
cases, the payment cassette should not support the WebSphere Commerce
Payments API call and should return an error code that indicates that the function
is not supported. See [“Protocol data: Cassette-specific command parameters” on|
for more information about return code constants that should be returned
in the case of errors.

Attention must also be paid to the command parameters upon which the cassette
will operate. Cassette writers should make every attempt to operate completely on
the data provided by the framework parameters defined for each framework
command. Again, given the wide variety of existing and potential payment
protocols, it is clear that some protocol-specific parameters will be required at
various times. Where a cassette does require its own unique parameters, the
framework provides a simple, yet powerful, mechanism called protocol data.

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

IBM actively promotes the coordination of cassette-specific parameters and error
codes across payment cassettes to provide the most consistent merchant
programming interface possible, while still allowing cassettes to obtain
protocol-specific data as needed. This is done by working with cassette developers
to maintain a well-known (and frequently updated) list of commonly-used protocol
data parameters and error codes.

Command processing overview
WebSphere Commerce Payments provides three "classes” of commands:
* Administrative commands (the "admin API")
¢ Payment processing commands (the "payment API"), and
* Query commands (the "query API")

Query commands provide read-only access to WebSphere Commerce Payments
data. Payment and administrative commands can change the values of WebSphere
Commerce Payments data. All WebSphere Commerce Payments results are
returned in XML-based PSApiResult documents. If you are not using the Java CAL
API, you will need an XML parser (a validating parser is preferred) and access to
the IBMPaymentServer.dtd Document Type Definition (DTD) to process these
documents. The DTD can be obtained from a WebSphere Commerce Payments
installation. The XML parser can be obtained from the WebSphere Application
Server installation.

Payment and Administrative command processing
The main interface class between the framework and a cassette in the Payment
Servlet is the following abstract class:

com.ibm.etill.framework.cassette.Cassette

In Java terms, each cassette extends this class to provide the basic services that the
framework expects from a cassette. When the framework loads the cassette, one
instance of the cassette’s Cassette subclass is created and this becomes the object to
which all inbound requests to that cassette are routed. Specifically, the framework
calls the cassette object’s service method to process inbound requests.

To process a payment or administrative command, these events occur:

1. An application program builds a command in a URL encoded HTTP POST
message and sends it to the WebServer on the WebSphere Commerce
Payments host.

2. The WebSphere Application Server (Application Server) receives the HTTP
POST message and parses the keyword-value pairs into
com.ibm.etil1.payapi.ParameterTable (a Java hash table), performing any
necessary URL decoding along the way. The Application Server then invokes
the Payment Servlet with the new request.

3. The Payment Servlet determines if the user is authorized for the specified
command.

4. The Payment Servlet routes control to the framework’s command processor.

5. For payment commands, the framework command processor builds an
appropriate API Request (or derivative) object that represents the command.
For administrative commands, the framework command processor builds an
appropriate AdminRequest (or derivative) object that represents the command.

6. The framework performs its own processing for the command. This typically
involves operations only on framework-owned objects.

Chapter 2. Understanding the WebSphere Commerce Payments framework 25

26

7. Once the framework-level processing is complete, the framework locks a
specific set of objects in order to ensure thread safety and data integrity while
the cassette performs its responsibilities for the request. The choice of objects
to lock and the type of lock obtained for each object is determined by the
command type.

8. Once all of the object locks are obtained, the framework calls the appropriate
Cassette object’s service method to perform the necessary cassette-specific
processing for the request. Depending upon which command is being
processed, the cassette will operate on any number of cassette-owned and
possibly framework-owned objects, and may assist in directing any other
operations required to complete the processing of the request.

9. When the cassette completes its processing, it returns to the framework with
success or failure codes as appropriate.

10. The framework returns the response to the Payment Servlet, which puts the
response information into an XML document, encapsulates the XML document
response within an HTTP response message, and sends the message back to
the merchant application.

Query command processing
The main interface class between the framework and a cassette in the Payment

Servlet is the following class:
com.ibm.etill.framework.cassette.query.CassetteQuery

In Java terms, each cassette extends this class to provide the basic services that the
framework expects from a cassette. When the framework loads the cassette, one
instance of the cassette’s CassetteQuery subclass is created and this becomes the
object to which all inbound query requests to that cassette are routed. Specifically,
the framework calls the cassette object’s query method to process inbound query
requests.

To process a Query command, these events occur:

1. A merchant application builds a command message and sends it to the
WebSphere Commerce Payments host’s web server in a URL encoded HTTP
POST message.

2. The WebSphere Application Server (Application Server) receives the HTTP
POST message and parses the keyword-value pairs into
com.ibm.eti11.payapi.ParameterTable (a Java hash table), performing any
necessary URL decoding along the way. Application Server then invokes the
Payment Servlet with the new request.

3. The Payment Servlet determines if the user is authorized for the specified
command.

4. The Payment Servlet routes control to the framework’s command processor.

5. The Payment Servlet creates an appropriate QueryRequest (or derivative)
framework object that represents the command. The QueryRequest contains the
criteria for the query. It also specifies whether data, considered sensitive by the
cassette, should be returned to the user or hidden (masked) through the use of
asterisks. (See ['Protecting sensitive data” on page 29| for a description of this
processing.) The QueryRequest will build and execute the appropriate SQL
query against the WebSphere Commerce Payments database (framework tables)
to fulfill the query request.

6. Once the framework-level processing is complete, the Payment Servlet then
asks the QueryRequest to issue the query to the appropriate cassette(s) through
the cassette query, so that the cassette(s) can add cassette-specific fields to the

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

result. Cassettes should build and execute the appropriate SQL query against
the WebSphere Commerce Payments database (Cassette tables) to fulfill the
request.

7. When the cassette completes its processing, the Payment Servlet creates an
appropriate QueryResponse (or derivative) framework object that represents the
results from the query command.

8. An XML document is then created based on the results that are in the
QueryResponse. The XML document is returned to the Payment Servlet, which
then encapsulates the XML document within an HTTP response message and
sends the message back to the merchant application.

Request classes and their hierarchy

As described in the previous sections, the framework calls a central method in the
cassette (the Cassette object’s service method and the CassetteQuery object’s
query method) to process each command. The form in which the commands are
passed to the cassette is that of a request object.

All Payment and Administrative request objects extend from the
com.ibm.etill.framework.cassette.CassetteRequest base class.

The framework calls the Cassette object’s service method to process each API
Request. The service method can be considered the cassette’s main "entry point”
for processing user- or cassette-initiated requests. The framework calls the Cassette
object’s service method to process these types of requests:

* API requests, which represent an API command that was issued by merchant or
administrative software. Each payment-oriented command is represented
through its own request class. Administrative requests are represented by a
single common request class. All commands extend the
com.ibm.etill.framework.cassette.APIRequest subclass of CassetteRequest.

* Protocol requests, which are messages defined by the cassette to support its
payment protocol. Since these are defined by the cassette, the framework
supports a single class, ProtocolRequest, to represent them, which cassettes
subclass as necessary.

* CassetteWorkItem requests, which are work items scheduled by the cassette (as

necessary). As with protocol requests, the framework supports a single
CassetteWorkltem class, which cassettes subclass as necessary.

While the majority of our discussion here will be centered around commands (that
is, APIRequest objects), we will also discuss ProtocolRequests and
CassetteWorkItems so that you are familiar enough with each to understand how
to apply them to your cassette. The request class hierarchy is as follows:

java.lang.0Object
+--com.ibm.etill.framework.cassette.CassetteRequest
+--com.ibm.etill.framework.cassette.APIRequest

+--com.ibm.etill.framework.cassette.AdminRequest
+--com.ibm.etill.framework.cassette.BatchRequest

+--com.ibm.etill.framework.cassette.BatchCloseRequest
+--com.ibm.etill.framework.cassette.BatchOpenRequest
+--com.ibm.etill.framework.cassette.BatchPurgeRequest
+--com.ibm.etill.framework.cassette.DeleteBatchRequest

+--com.ibm.etill.framework.cassette.OrderRequest

Chapter 2. Understanding the WebSphere Commerce Payments framework 27

+--com.ibm.etill.framework.cassette.AcceptPaymentRequest
+--com.ibm.etil1.framework.cassette.CancelOrderRequest
+--com.ibm.etill.framework.cassette.CloseOrderRequest
+--Tom.1bm.eti11.framework.cassette.PaymentTransactionRequest
+--com.ibm.etil1.framework.cassette.ApproveRequest
+--com.ibm.etill.framework.cassette.ApproveReversalRequest
+--com.ibm.etill.framework.cassette.DepositRequest
+--com.ibm.etil1.framework.cassette.DepositReversalRequest
+--com.ibm.etill.framework.cassette.RefundRequest
+--com.ibm.etil1.framework.cassette.RefundReversalRequest

+--com.ibm.etill.framework.cassette.ReceivePaymentRequest

+--com.ibm.etill.framework.cassette.CassetteWorkItem
+--com.ibm.etill.framework.cassette.ProtocolRequest

Cassettes you write must use command tokens to validate and process
administrative requests. The tokens identify the type of administrative request that
is being made. lists the command tokens used in the API request objects
passed to the Cassette object’s service method.

Table 1. Command tokens used in WebSphere Commerce Payments APl requests. When
debugging your cassette, you can find the meaning of a command token value from this list,
or refer to com.ibm.etill.framework.payapi.PaymentAPIConstants.

Command token Value
ABOUT_TOKEN 1280
ACCEPTPAYMENT_TOKEN 1209
APPROVE_TOKEN 1201
APPROVEREVERSAL_TOKEN 1204
BATCHCLOSE_TOKEN 1208
BATCHOPEN_TOKEN 1207
BATCHPURGE_TOKEN 1224
CANCELORDER_TOKEN 1222
CASSETTECONTROL_TOKEN 1219
CLOSEORDER_TOKEN 1221
CREATE_ACCOUNT_TOKEN 1259
CREATE_MERCHANT_TOKEN 1253
CREATE_MERCHANTCASSETTEOBJECT_TOKEN 1265
CREATE_MEREVENTLISTENER_TOKEN 1268
CREATE_PAYSYSTEM_TOKEN 1256
CREATE_SNMEVENTLISTENER_TOKEN 1306
CREATE_SYSTEMCASSETTEOBJECT_TOKEN 1262
DELETE_ACCOUNT_TOKEN 1261
DELETE_MERCHANT_TOKEN 1255
DELETE_MERCHANTCASSETTEOBJECT_TOKEN 1267
DELETE_MEREVENTLISTENER_TOKEN 1270
DELETE_PAYSYSTEM_TOKEN 1258
DELETE_SNMEVENTLISTENER_TOKEN 1308
DELETE_SYSTEMCASSETTEOBJECT_TOKEN 1264

28 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Table 1. Command tokens used in WebSphere Commerce Payments API

requests (continued). When debugging your cassette, you can find the meaning of a
command token value from this list, or refer to
com.ibm.etill.framework.payapi.PaymentAPIConstants.

Command token Value
DELETEBATCH_TOKEN 1223
DEPOSIT_TOKEN 1202
DEPOSITREVERSAL_TOKEN 1205
MODIFY_ACCOUNT_TOKEN 1260
MODIFY_CASSETTE_TOKEN 1252
MODIFY_MERCHANT_TOKEN 1254
MODIFY_MERCHANTCASSETTEOBJECT_TOKEN 1266
MODIFY_MEREVENTLISTENER_TOKEN 1269
MODIFY_PAYSERVER_TOKEN 1251
MODIFY_PAYSYSTEM_TOKEN 1257
MODIFY_SNMEVENTLISTENER_TOKEN 1307
MODIFY_SYSTEMCASSETTEOBJECT_TOKEN 1263
MODIFY_USERSTATUS_TOKEN 1279
RECEIVEPAYMENT_TOKEN 1200
REFUND_TOKEN 1203
REFUNDREVERSAL_TOKEN 1206
SET_USERACCESSRIGHTS_TOKEN 1277

Query command requests extend the com.ibm.eti11.framework.xdm.QueryRequest
base class. The query request class hierarchy is as follows:

java.lang.0Object
+--com.ibm.etill.framework.xdm.QueryRequest

+--com.ibm.etill.framework.xdm.AccountQueryRequest
+--com.ibm.etil1.framework.xdm.CassetteQueryRequest
+--com.ibm.etill.framework.xdm.FinancialObjectQueryRequest

+--com.ibm.etill.framework.xdm.BatchQueryRequest
+--com.ibm.etill.framework.xdm.TransactionQueryRequest

+--com.ibm.etill.framework.xdm.CreditQueryRequest
+--com.ibm.etill.framework.xdm.OrderQueryRequest
+--com.ibm.etill.framework.xdm.PaymentQueryRequest

+--com.ibm.etill.framework.xdm.PaymentSystemQueryRequest

Protecting sensitive data

If the payment cassette you are writing contains sensitive data, you should be
aware that you can configure a Payment Servlet initialization parameter (a JVM
system parameter), wpm.MinSensitiveAccessRole, to restrict users from accessing
the data in query command results. Sensitive data could be credit card numbers,
buyer bank account numbers, verification codes or data, or anything you would
consider to be sensitive enough to warrant encryption before storage in the
WebSphere Commerce Payments database.

Chapter 2. Understanding the WebSphere Commerce Payments framework 29

Through the WebSphere Commerce Configuration Manager, you can define a
minimum sensitive access role by setting the Minimum Access Role field for the
Payments instance. This field defines what minimum role a user should have to be
allowed access to the data returned when query commands are entered. Role
values are clerk, supervisor, madmin (Merchant Administrator), psadmin
(Payments Administrator), or none. If a parameter value is not specified, a value of
clerk is assumed, allowing all users to see sensitive data.

For each query command, the framework verifies the user’s role against the
minimum role specified by this parameter, and sets an indicator in the
QueryRequest object to indicate whether sensitive data should be returned in full
view or if it should be masked out with asterisks. The following methods are
available to cassette writers for supporting the wpm.MinSensitiveAccessRole
property: QueryRequest.getShowSensitiveData() and
QueryResponse.maskSensitiveData(). These methods enable you to check the value
of this indicator and also to mask sensitive data in a standardized way.

If you use this masking function, note the following:

* As a cassette writer, you need to discern what data is sensitive. Currently, the
WebSphere Commerce Payments framework does not maintain any sensitive
data that can be returned through a query command. Typically, sensitive data is
the same set of data that a cassette encrypts before storing it to the WebSphere
Commerce Payments database.

* The following methods are available to support the masking function:

— For the com.ibm.eti11.framework.xdm.QueryRequest class, you can use the
getShowSensitiveData method. This method indicates whether the query
request should return the cassette’s sensitive data to the user or hide it by
masking with asterisks.

— For the com.ibm.eti11.framework.xdm.QueryReponse class, you can use the
maskSensitiveData method. This method masks all or part of a string of
sensitive data up to 80 characters long with asterisks so that it can be safely
returned in a query command response. When calling the method, specify the
string containing the data to be masked, and an integer value to indicate how
many characters to show and whether they should be leading or trailing
characters. For example:

- A negative integer value of -n causes the first n characters of the actual
value to be inserted in the string. (For instance, if the sensitive data string
is 1111222233334444, a value of -3 means that the first three characters are

included and all remaining characters are masked. The resulting string is
T11**kkkrkkhkrkkh®)

- A positive value of n causes the last n characters of the actual value to be
included in the string. Using the previous string example, a value of 3
means that the resulting string would be: **¥##*xxxxx*+x444

- A value of 0 indicates the entire value should be replaced with asterisks. In
this example, the resulting string is *#wssxxsxsrsdnns

- If the value is greater than the length of the input string, the entire string is
returned unmasked.

Refer to the Javadoc for more information about using these classes to define the
methods used by your cassette:

* com.ibm.etill.framework.xdm.QueryRequest

* com.ibm.etill.framework.xdm.QueryResponse

30 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Cassettes and command processing
This section describes:

¢ The facilities available to cassettes for tailoring the command interface for their
own needs

* The impact of customized interfaces on merchant software,

* The strategies and tactics for minimizing the impact on merchant software.

Protocol data: Cassette-specific command parameters
As mentioned above, given the wide variety of existing and potential payment

protocols, it is certain that cassettes will need to define their own command
parameters in certain cases. To address this need, the framework allows cassettes to
define protocol data parameters. Protocol data parameters are keyword/value
pairs, just like the framework command parameters. Protocol data keywords must
be in the form:

$keyword

The maximum keyword length (excluding the ‘$’ symbol) is 254 characters and all
of the characters must be valid ISO 8859-1 characters. The legal parameter values
vary with each parameter - this is part of the parameter’s definition and is the
responsibility of the person that creates the parameter.

Cassette writers should define new protocol data parameters for a given Payment
command only after they have done the following:

¢ Determined that none of the framework command parameters contain the data
that their payment protocol requires to process the command

* Examined the list of common protocol data parameters in the table below and
determined that none of those parameters will suit their needs

* Checked with IBM’s payment cassette development support group so the new
parameter can be evaluated for inclusion to the list of common protocol data
parameters.

Using this process, cassette writers will ensure that the merchant software view of
their cassette is as consistent as it can be with all other payment cassettes. In order
to determine if the list of common protocol data defined by the framework is
sufficient for your cassette’s needs, the following table provides a list of all
common protocol data defined by the framework. It is important that you follow
the guidelines in the table so that merchant server software can expect consistent
behavior across all cassettes for these common pieces of data. The table contains:

* Protocol data constant (as defined in
com.ibm.etill.framework.payapi.PaymentAPIConstants).

* The actual string value of the protocol data.

* The associated return code constant that should be returned by the cassette (as

defined in com.ibm.etill.framework.payapi.FrameworkReturnCodes) in the case
of an error.

" |u

* Which Validatorltem to use (see "Parameter Validation” [“Parameter validation”]

for details)

* If your cassette stores the protocol data value in the database, what the database
type should be. An "*" in the column indicates that the data is sensitive and
should be encrypted.

Chapter 2. Understanding the WebSphere Commerce Payments framework 31

* The corresponding XML attribute for the protocol data (see "Exported Data
Model: The user’s view of WebSphere Commerce Payments objects” ["Exported]
Data Model: The user’s view of WebSphere Commerce Payments objects” on|

page 22| for details).

32 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Table 2. Protocol Data Chart

Protocol data constant Protocol data value Return code Validation Item Database XML Attribute
Type
PD_AUTHCODE $SAUTHCODE RC_CASSETTE_AUTHCODE StringValidator VARCHAR | authCode
PD_AUXILLARY1 $SAUXILLARY1 RC_CASSETTE_AUXILLARY1 StringValidator VARCHAR | auxillary1
PD_AUXILLARY2 SAUXILLARY2 RC_CASSETTE_AUXILLARY2 StringValidator VARCHAR | auxillary2
PD_AVS_CITY $AVS_CITY RC_CASSETTE_AVS_CITY StringValidator VARCHAR | avsCity
PD_AVS_COUNTRYCODE $AVS_COUNTRYCODE RC_CASSETTE_AVS_COUNTRYCODE IntegerValidator INTEGER avsCountryCode
PD_AVS_LOCATIONID $AVS_LOCATIONID RC_CASSETTE_AVS_LOCATIONID StringValidator VARCHAR | avsLocationID
PD_AVS_POSTALCODE $AVS_POSTALCODE RC_CASSETTE_AVS_POSTALCODE StringValidator VARCHAR | avsPostalCode
PD_AVS_STATE_PROVINCE $AVS_STATE_PROVINCE | RC_CASSETTE_AVS_STATE_PROVINCE StringValidator VARCHAR | avsStateProvince
PD_AVS_STREETADDRESS $AVS_STREETADDRESS RC_CASSETTE_AVS_STREETADDRESS StringValidator VARCHAR | avsStreetAddress
PD_AVS_CODE $AVS_CODE RC_CASSETTE_AVS_CODE StringValidator VARCHAR | avsCode
PD_BATCHCLOSETIME $BATCHCLOSETIME RC_CASSETTE_BATCHCLOSETIME IntegerValidator SMALLINT | batchCloseTime
PD_BILL_CITY SBILL_CITY RC_CASSETTE_BILL_CITY StringValidator VARCHAR | billCity
PD_BILL_COUNTRYCODE $BILL_COUNTRYCODE RC_CASSETTE_BILL_COUNTRYCODE IntegerValidator INTEGER billCountryCode
PD_BILL_POSTALCODE $BILL_POSTALCODE RC_CASSETTE_BILL_POSTALCODE StringValidator VARCHAR | billPostalCode
PD_BILL_STATEPROVINCE $BILL_STATEPROVINCE RC_CASSETTE_BILL_STATEPROVINCE StringValidator VARCHAR | billStateProvince
PD_BILL_STREETADDRESS $BILL_STREETADDRESS RC_CASSETTE_BILL_STREETADDRESS StringValidator VARCHAR | billStreetAddress
PD_BRAND $BRAND RC_CASSETTE_BRAND RestrictedStringValidator | VARCHAR | brand
PD_CARDHOLDERNAME $CARDHOLDERNAME RC_CASSETTE_CARDHOLDERNAME StringValidator VARCHAR | cardHolderName
PD_CARDVERIFYCODE $CARDVERIFYCODE RC_CASSETTE_CARDVERIFYCODE NumericStringValidator VARCHAR* | cardVerifyCode
PD_CITY $CITY RC_CASSETTE_CITY StringValidator VARCHAR | city
PD_COUNTRYCODE $COUNTRYCODE RC_CASSETTE_COUNTRYCODE IntegerValidator INTEGER countrycode
PD_CURRENCY $CURRENCY RC_CASSETTE_CURRENCY NumericStringValidator SMALLINT | currency
PD_DECLINECODE $DECLINECODE RC_CASSETTE_DECLINECODE StringValidator VARCHAR | declineCode
PD_DECLINEREASON $DECLINEREASON RC_CASSETTE_DECLINECODE StringValidator VARCHAR | declineReason
PD_EXPIRY SEXPIRY RC_CASSETTE_EXPIRY NumericStringValidator | VARCHAR* | expiry
PD_FIBATCHID $FIBATCHID RC_CASSETTE_FIBATCHID NumericTokenValidator INTEGER fiBatchld
PD_ITEM_COMMODITYCODE | SITEM.COMMODITYCODE | RC_CASSETTE_ITEM_COMMODITYCODE StringValidator VARCHAR | commodityCode.n
PD_ITEM_PRODUCTCODE $ITEM.PRODUCTCODE RC_CASSETTE_ITEM_PRODUCTCODE StringValidator VARCHAR | productCode.n
PD_ITEM_DESCRIPTOR SITEM.DESCRIPTOR RC_CASSETTE_ITEM_DESCRIPTOR StringValidator VARCHAR | descriptor.it
PD_ITEM_QUANTITY SITEM.QUANTITY RC_CASSETTE_ITEM_QUANTITY StringValidator VARCHAR | quantity.n
PD_ITEM_SKU SITEM.SKU RC_CASSETTE_ITEM_SKU StringValidator VARCHAR | SKU.n
PD_ITEM_UNITCOST SITEM.UNITCOST RC_CASSETTE_ITEM_UNITCOST StringValidator VARCHAR | unitCost.n
PD_ITEM_UNITOFMEASURE SITEM.UNITOFMEASURE | RC_CASSETTE_ITEM_UNITOFMEASURE StringValidator VARCHAR | unitOfMeasure.n
PD_ITEM_NETCOST SITEM.NETCOST RC_CASSETTE_ITEM_NETCOST StringValidator VARCHAR | netCost.n
PD_ITEM_DISCOUNTAMOUNT | $ITEM.DISCOUNTAMOUNT RC_CASSETTE_ITEM_DISCOUNTAMOUNT StringValidator VARCHAR | discountAmount.n
PD_ITEM_DISCOUNTINDICATOR SITEM. RC_CASSETTE_ITEM_DISCOUNTINDICATOR StringValidator VARCHAR | discountIndicator.n
DISCOUNTINDICATOR
PD_ITEM_NATIONALTAXAMOUNJIITEM.NATIONALTAXAMQUR(T CASSETTE_ITEM_NATIONALTAXAMOUNT StringValidator VARCHAR | nationalTaxAmount.n
PD_ITEM_NATIONALTAXRATE | $ITEM.NATIONALTAXRATE RC_CASSETTE_ITEM_NATIONALTAXRATE StringValidator VARCHAR | nationalTaxRate.n
PD_ITEM_NATIONALTAXTYPE | SITEM.NATIONALTAXTYPH RC_CASSETTE_ITEM_NATIONALTAXTYPE StringValidator VARCHAR | nationalTaxType.n
PD_ITEM_LOCALTAXAMOUNT | $ITEM.LOCALTAXAMOUNT RC_CASSETTE_ITEM_LOCALTAXAMOUNT StringValidator VARCHAR | localTaxAmount.n
PD_ITEM_LOCALTAXRATE SITEM.LOCALTAXRATE RC_CASSETTE_LOCALTAXRATE StringValidator VARCHAR | localTaxRate.n
PD_ITEM_OTHERTAXAMOUNT | $ITEM.OTHERTAXAMOUNT RC_CASSETTE_ITEM_OTHERTAXAMOUNT StringValidator VARCHAR | otherTaxAmount.n
PD_ITEM_TOTALCOST SITEM.TOTALCOST RC_CASSETTE_ITEM_TOTALCOST StringValidator VARCHAR | totalCost.n
PD_MAXBATCHSIZE SMAXBATCHSIZE RC_CASSETTE_MAXBATCHSIZE IntegerValidator INTEGER maxBatchSize
PD_METHOD $SMETHOD RC_CASSETTE_METHOD StringValidator VARCHAR | method
PD_PAN SPAN RC_CASSETTE_PAN NumericStringValidator | VARCHAR* | pan
PD_PCARD_SHIPPINGAMOUNT| $PCARD.SHIPPINGAMOUNTRC_CASSETTE_PCARD_SHIPPINGAMOUNT StringValidator VARCHAR | shippingAmount
PD_PCARD_DUTYAMOUNT $PCARD.DUTYAMOUNT | RC_CASSETTE_PCARD_DUTYAMOUNT StringValidator VARCHAR | dutyAmount
PD_PCARD_DUTYREFERENCE | $PCARD.DUTYREFERENCE| RC_CASSETTE_PCARD_DUTYREFERENCE StringValidator VARCHAR | dutyReference
PD_PCARD_ $PCARD. RC_CASSETTE_PCARD_NATIONALTAXAMOUNT StringValidator VARCHAR | nationalTaxAmount
NATIONAL NATIONALTAXAMOUNT
TAXAMOUNT
PD_PCARD_NATIONALTAXRATH $PCARD. RC_CASSETTE_PCARD_NATIONALTAXRATE StringValidator VARCHAR | nationalTaxRate
NATIONALTAXRATE
PD_PCARD_LOCALTAXAMOUNT $PCARD. RC_CASSETTE_PCARD_LOCALTAXAMOUNT StringValidator VARCHAR | localTaxAmount
LOCALTAXAMOUNT
PD_PCARD_ $PCARD. RC_CASSETTE_PCARD_OTHERTAXAMOUNT StringValidator VARCHAR | otherTaxAmount
OTHERTAXAMOUNT OTHERTAXAMOUNT
PD_PCARD_ $PCARD. RC_CASSETTE_PCARD_TOTALTAXAMOUNT StringValidator VARCHAR | totalTaxAmount
TOTALTAXAMOUNT TOTALTAXAMOUNT
PD_PCARD_MERCHANTTAXID | $PCARD.MERCHANTTAXIIp RC_CASSETTE_PCARD_MERCHANTTAXID StringValidator VARCHAR | merchantTaxId
PD_PCARD_ALTERNATETAXID | $PCARD.ALTERNATETAXII) RC_CASSETTE_PCARD_ALTERNATETAXID StringValidator VARCHAR | alternateTaxId
PD_PCARD_ $PCARD. RC_CASSETTE_PCARD_TAXEXEMPTINDICATOR StringValidator VARCHAR | taxExemptIndicator
TAXEXEMPTINDICATOR TAXEXEMPTINDICATOR
PD_PCARD_ $PCARD. RC_CASSETTE_PCARD_MERCHANTDUTYTARIFFREFERENCE StringValidator VARCHAR | merchantDutyTariffReferenc
MERCHANTDUTY MERCHANTDUTY
TARIFFREFERENCE TARIFFREFERENCE
PD_PCARD_ S$PCARD. RC_CASSETTE_PCARD_CUSTOMERDUTYTARIFFREFERENCE StringValidator VARCHAR | customerDutyTariffReferencd
CUSTOMERDUTYTARIFF CUSTOMERDUTYTARIFF
REFERENCE REFERENCE
PD_PCARD_ S$PCARD. RC_CASSETTE_PCARD_SUMMARYCOMMODITYCODE StringValidator VARCHAR | summaryCommodityCode
SUMMARYCOMMODITYCODE | SUMMARYCOMMODITY
CODE

Chapter 2. Understanding the WebSphere Commerce Payments framework 33

Table 2. Protocol Data Chart (continued)

Protocol data constant Protocol data value Return code Validation Item Database XML Attribute
Type

PD_PCARD_MERCHANTTYPE | $PCARD.MERCHANTTYPE| RC_CASSETTE_PCARD_MERCHANTTYPE StringValidator VARCHAR | merchantType
PD_PCARD_ $PCARD. RC_CASSETTE_PCARD_MERCHANTCOUNTRYCODE StringValidator VARCHAR | merchantCountryCode
MERCHANTCOUNTRYCODE MERCHANTCOUNTRYCODE
PD_PCARD_ $PCARD. RC_CASSETTE_PCARD_MERCHANTCITYCODE StringValidator VARCHAR | merchantCityCode
MERCHANTCITYCODE MERCHANTCITYCODE
PD_PCARD_ $PCARD. RC_CASSETTE_PCARD_MERCHANTSTATEPROVINCE StringValidator VARCHAR | merchantStateProvince
MERCHANTSTATEPROVINCE MERCHANT

STATEPROVINCE
PD_PCARD_ $PCARD. RC_CASSETTE_PCARD_MERCHANTPOSTALCODE StringValidator VARCHAR | merchantPostalCode
MERCHANTPOSTALCODE MERCHANTPOSTALCODE
PD_PCARD_ $PCARD. RC_CASSETTE_PCARD_MERCHANTLOCATIONID StringValidator VARCHAR | merchantLocationld
MERCHANTLOCATIONID MERCHANTLOCATIONID
PD_PCARD_MERCHANTNAME | $PCARD.MERCHANTNAME RC_CASSETTE_PCARD_MERCHANTNAME StringValidator VARCHAR | merchantName
PD_PCARD_ $PCARD. RC_CASSETTE_PCARD_SHIPFROMCOUNTRYCODE StringValidator VARCHAR | shipFromCountryCode
SHIPFROMCOUNTRYCODE SHIPFROMCOUNTRYCODH
PD_PCARD_ $PCARD. RC_CASSETTE_PCARD_SHIPFROMCITYCODE StringValidator VARCHAR | shipFromCityCode
SHIPFROMCITYCODE SHIPFROMCITYCODE
PD_PCARD_ $PCARD. RC_CASSETTE_PCARD_SHIPFROMSTATEPROVINCE StringValidator VARCHAR | shipFromStateProvince
SHIPFROMSTATEPROVINCE SHIPFROM

STATEPROVINCE
PD_PCARD_ $PCARD. RC_CASSETTE_PCARD_SHIPFROMPOSTALCODE StringValidator VARCHAR | shipFromPostalCode
SHIPFROMPOSTALCODE SHIPFROMPOSTALCODE
PD_PCARD_ $PCARD. RC_CASSETTE_PCARD_SHIPFROMLOCATIONID StringValidator VARCHAR | shipFromLocationld
SHIPFROMLOCATIONID SHIPFROMLOCATIONID
PD_PCARD_ $PCARD. RC_CASSETTE_PCARD_SHIPTOCOUNTRYCODE StringValidator VARCHAR | shipToCountryCode
SHIPTOCOUNTRYCODE SHIPTOCOUNTRYCODE
PD_PCARD_ $PCARD. RC_CASSETTE_PCARD_SHIPTOCITYCODE StringValidator VARCHAR | shipToCityCode
SHIPTOCITYCODE SHIPTOCITYCODE
PD_PCARD_ $PCARD. RC_CASSETTE_PCARD_SHIPTOSTATEPROVINCE StringValidator VARCHAR | shipToStateProvince
SHIPTOSTATEPROVINCE SHIPTOSTATEPROVINCE
PD_PCARD_ $PCARD. RC_CASSETTE_SHIPTOPOSTALCODE StringValidator VARCHAR | shipToPostalCode
SHIPTOPOSTALCODE SHIPTOPOSTALCODE
PD_PCARD_ $PCARD. RC_CASSETTE_SHIPTOLOCATIONID StringValidator VARCHAR | shipToLocationld
SHIPTOLOCATIONID SHIPTOLOCATIONID
PD_PCARD_ $PCARD. RC_CASSETTE_MERCHANTORDERNUMBER StringValidator VARCHAR | merchantOrderNumber
MERCHANTORDER MERCHANTORDERNUMBHER
NUMBER
PD_PCARD_ $PCARD. RC_CASSETTE_PCARD_CUSTOMERREFERENCENUMBER StringValidator VARCHAR | customReferenceNumber
CUSTOMERREFERENCE CUSTOMERREFERENCE
NUMBER NUMBER
PD_PCARD_ORDERSUMMARY | $PCARD.ORDERSUMMARY| RC_CASSETTE_PCARD_ORDERSUMMARY StringValidator VARCHAR | orderSummary
PD_PCARD_ $PCARD. RC_CASSETTE_PCARD_CUSTOMERSERVICEPHONE StringValidator VARCHAR | customerServicePhone
CUSTOMERSERVICE CUSTOMERSERVICE
PHONE PHONE
PD_PCARD_ $PCARD. RC_CASSETTE_PCARD_DISCOUNTAMOUNT StringValidator VARCHAR | discountAmount
DISCOUNTAMOUNT DISCOUNTAMOUNT
PD_PCARD_ $PCARD. RC_CASSETTE_PCARD_SHIPPINGNATIONALTAXRATE StringValidator VARCHAR | shippingNationalTaxRate
SHIPPINGNATIONALTAXRATE | SHIPPINGNATIONAL

TAXRATE
PD_PCARD_ $PCARD. RC_CASSETTE_PCARD_SHIPPINGNATIONALTAXAMOUNT StringValidator VARCHAR | shippingNationalTaxAmoun
SHIPPINGNATIONAL SHIPPINGNATIONAL
TAXAMOUNT TAXAMOUNT
PD_PCARD_ $PCARD. RC_CASSETTE_PCARD_NATIONALTAXINVOICEREFERENCE StringValidator VARCHAR | nationalTaxInvoiceReference!
NATIONALTAX NATIONALTAX
INVOICEREFERENCE INVOICEREFERENCE
PD_PCARD_ $PCARD. RC_CASSETTE_PCARD_PRINTCUSTOMERSERVICEPHONENUMBER | StringValidator VARCHAR | printCustomerServicePhone
PRINTCUSTOMER PRINTCUSTOMER Number
SERVICEPHONENUMBER SERVICEPHONENUMBER
PD_POSTALCODE $POSTALCODE RC_CASSETTE_POSTALCODE StringValidator VARCHAR | postalCode
PD_SHIP_CITY $SHIP_CITY RC_CASSETTE_SHIP_CITY StringValidator VARCHAR | shipCity
PD_SHIP_COUNTRYCODE $SHIP_COUNTRYCODE RC_CASSETTE_SHIP_COUNTRYCODE IntegerValidator INTEGER shipCountryCode
PD_SHIP_POSTALCODE $SHIP_POSTALCODE RC_CASSETTE_SHIP_POSTALCODE StringValidator VARCHAR | shipPostalCode
PD_SHIP_STATEPROVINCE $SHIP_STATEPROVINCE RC_CASSETTE_SHIP_STATEPROVINCE StringValidator VARCHAR | shipStateProvince
PD_SHIP_STREETADDRESS $SHIP_STREETADDRESS RC_CASSETTE_SHIP_STREETADDRESS StringValidator VARCHAR | shipStreetAddress
PD_STREETADDRESS $STREETADDRESS RC_CASSETTE_STREETADDRESS StringValidator VARCHAR | streetAddress
PD_STATEPROVINCE $STATEPROVINCE RC_CASSETTE_STATEPROVINCE StringValidator VARCHAR | stateProvince

34

& = data is sensitive and should be encrypted by your cassette if stored in the

atabase)

If you do end up defining protocol data parameters, here are some guidelines to
follow to ensure consistency for the merchant software interface:

* Keyword names should be descriptive. For example, $USERACCOUNTINDEX, instead
of $UAX. In some cases, where acronyms are well-known in the payment
community, the acronym may be suitable (for example, $PAN, for personal

account

number).

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

* When multiple related parameters are being defined, they should all begin with
a common prefix (for example, $AVS.xxx for all of the Address Verification
Service-related parameters). This concept can be carried into multiple levels (for
example, $SD.CCARD.xxx for Sale Detail, and so on).

* As already illustrated, when multiple qualifiers are used within a parameter
name, the qualifiers should be separated by ’.” (dot) characters.

* A single keyword should represent a single value. Don’t pass complex structures
or sets of values as a single parameter value if at all possible. Doing so can
cause compatibility problems for other cassette writers.

* Previous versions of this document recommended that multiple values (i.e., a
collection of values) required for a common parameter type should be indicated
by appending an index to the keyword and separate the two with a ’.” (dot)
character. For example, $SD.CCARD.ITEM.QUANTITY.1. This process is
acceptable; however, you will want to consider the following:

1. If the framework has already defined a standard protocol data parameter
keyword suitable for the collection, choose that parameter keyword for your
cassette’s collection of values. If not, define a new parameter keyword. If you
believe that the new keyword may be valuable as a standard for other
cassettes, propose it as a standard protocol data parameter keyword to be
supplied by the framework. If the collection will be passed as elements in an
Extensible Markup Language (XML) document, the parameter name should
begin with $XML followed by a period followed by the XML document type.

2. As much as possible, choose a universal format that allows the merchant
software to pass the collection of values as a string of characters.

— If there is an industry standard format for the string, choose that format.

In the Cassette Kit Programmer’s Guide, version 2.2, we recommended that
the merchant supply line item detail in an XML document using tags
approved by an e-commerce standards committee. We suggested two
alternatives: Common Business Language (xCBL) proposed by
CommerceOne (see http://www.commerceone.com/xml/index.html for
specifications) and Commerce Extensible Markup Language (cXML) (see
http:/ /www.cxml.org for endorsements and specifications). Due to
compatability conflicts with these standards, we are no longer making this
recommendation.

— If there is no industry standard, consider defining an XML document to
contain the collection. If justified, build a document type definition (DTD)
that defines the XML tags that the merchant will use.

— If a new XML document type is not justified, use a simple format. For
example, you could use comma separated character strings and, if
necessary, semicolons to separate collections within collections. If you find
yourself defining a format with keyword value pairs, reconsider using an
XML format. Typically, XML provides a more robust definition and an
XML document will be easier for the cassette to parse.

3. To facilitate automatic parameter value validation and conversion, implement
a subclass that extends the StringValidator class. Use the parent’s methods to
convert the collection of values into a Java String and then, if necessary,
parse the string to validate and convert the values in the collection. If the
string is an XML document, you can use the XML parser that is provided by
the framework.

 If you are writing your cassette to process purchasing card data, you can take
advantage of the WebSphere Commerce Payments framework services available
to process the repeating line item detail associated with purchasing card data
(for example, $ITEM.QUANTITY.1, $ITEM.QUANTITY.2, SITEM.QUANTITY.3,

Chapter 2. Understanding the WebSphere Commerce Payments framework 35

36

and so on). Refer to [‘Purchasing card support” on page 112 for a description of
purchasing cards and more information about these framework services.

Remember, the framework is going to use a com.ibm.etil1.payapi.ParameterTable
(Java hash table) to pass the result to the cassette and the protocol data parameter
keyword will be the key. Your new validation class will need to return a single
object that contains all the values in the collection. Consider returning a hash table
or a vector. If neither are suitable, implement a new class to contain the collection
with methods that simplify the cassette’s logic when it needs to process the
collection.

Although the framework will allow protocol data parameters on any API
command, you should try to limit them to the Administrative commands and the
financial commands that create Order objects (that is, the AcceptPayment and
ReceivePayment commands). Since the vast majority of data items required by a
specific payment protocol can easily be considered attributes of the order itself, it
makes sense to pass those attributes into WebSphere Commerce Payments when
the Order is created. The only time you should define a protocol data parameter
for a command other than those mentioned here is when this statement does not
apply to the parameter.

Ignore or reject?

Cassette writers will find themselves faced with the question "ignore or reject?” at
several times throughout the design and development process. Use the following
answers as guidelines on how to answer that question. These answers are intended
to encourage common semantics through the WebSphere Commerce Payments AP,
regardless of the underlying cassette, which fosters the ability to write payment
protocol-independent merchant software.

Q. When an unsupported command is received, should my cassette ignore it (return
"success") or reject it (veturn "command not supported”)?

A. If a command is not directly supported by your payment protocol but can be
simulated, then accept it. For example, you may be able to simulate an
ApproveReversal by voiding an authorization and making a new authorization. If
the unsupported command cannot be simulated, then reject it with
PRC_COMMAND_NOT_SUPPORTED, RC_NONE instead of ignoring its existence. Merchant
software writers should expect and tolerate this return code pair as a likely
possibility and handle it accordingly.

Q. Assume that my payment protocol automatically deposits and closes payments as part
of the approval process. Should my cassette require that the DEPOSITFLAG=1 parameter be
specified on the Approve command, or should it ignore the flag completely?

A. Your cassette should require such parameters even when a behavior is implied
by the payment protocol. For more details on this, see [‘Supporting framework|

|command parameters” on page 371

Q. What should my cassette do if it receives an unrecognized protocol data parameter?

A. Your cassette should ignore these. If cassettes were to reject unrecognized
protocol data parameters, the merchant software would have to ensure that every
protocol data parameter passed on every payment command is supported by the
cassette that will eventually handle the request (in other words, the merchant
software writer would have to be very sensitive to the underlying payment
protocol). By ignoring unrecognized protocol data parameters, cassettes allow

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

merchant software to code their payment commands once with all relevant
parameters. The cassette can then process only the subset of those parameters that
it understands.

Supporting framework command parameters

Framework command parameters that require cassette-specific logic are described
here. To preserve a predictable and consistent merchant programming view,
cassette writers should support these parameters as defined by the framework’s
programming documentation:

Command Parameter Description

AcceptPayment APPROVEFLAG If requested, approval should be performed after
the Order object is successfully created. If the
approval step fails, the Order object should remain
in existence and a primary return code of
PRC_AUTOAPPROVE_FAILED should be returned
with a suitable secondary return code. If the
APPROVEFLAG equals 0 or 2, an approval should
not be performed.

DEPOSITFLAG May only be requested if AUTOAPPROVE was
also requested. If requested, then a deposit should
be performed after successful approval. If the
deposit step fails, the Order and Payment objects
should remain in existence and a primary return
code of PRC_AUTODEPOSIT_FAILED should be
returned with a suitable secondary return code.
Note that even if your payment protocol already
automatically captures funds when approvals are
executed, your cassette should still require this
parameter. In such cases, return codes
PRC_PARAMETER_NOT_FOUND,
RC_DEPOSITFLAG should be returned if
AUTOAPPROVE is specified without
AUTODEPOSIT.

Approve DEPOSITFLAG If requested, then a deposit should be performed
after successful approval. If the deposit step fails,
the Order and Payment objects should remain in
existence and a primary return code of
PRC_AUTODEPOSIT_FAILED should be returned
with a suitable secondary return code. Note that
even if your payment protocol already
automatically captures funds when approvals are
executed, your cassette should still require this
parameter. In such cases, return codes
PRC_PARAMETER_NOT_FOUND,
RC_DEPOSITFLAG should be returned if
AUTODEPOSIT is not specified.

CloseOrder DELETEORDER If specified, the cassette should delete the Order
and all of its Payments and Credits (which can be
done via call to Supervisor.pruneOrder) after the
Order is successfully closed.

CancelOrder DELETEORDER If specified, the cassette should delete the Order
and all of its Payments and Credits (which can be
done via call to Supervisor.pruneOrder) after the
Order is successfully canceled.

ReceivePayment APPROVEFLAG Same as for AcceptPayment
DEPOSITFLAG Same as for AcceptPayment

Chapter 2. Understanding the WebSphere Commerce Payments framework 37

Error handling
WebSphere Commerce Payments uses the conventions and facilities described here
for reporting errors. Cassette writers should use these as described:

General runtime errors - ETillAbortOperation
The most common type of error case will be non-fatal errors detected while
a command is being processed. Non-fatal means that the requested
operation cannot complete successfully, but WebSphere Commerce
Payments and the cassette are still able to function normally and continue
to process new commands. From the merchant software point of view, such
errors will result in a command response that contains a primary and
secondary return code that indicate the type of failure that took place. To
generate these codes and the associated response, cassettes must throw a
com.ibm.eti11.framework.payapi.ETi1TAbortOperation exception. This
exception object allows you to specify a primary and secondary return
code. If it is thrown while a command is being processed, the framework
will automatically generate a command response that contains the specified
error codes. Cassettes should only use the primary return codes defined in
com.ibm.etill.framework.payapi.FrameworkReturnCodes. Where there is no
primary return code that directly relates to the error, the cassette should
use PRC_CASSETTE_ERROR with an appropriate secondary return code.
Cassettes should never define their own primary return code values!

Additionally, a large number of common secondary return codes are
defined in com.ibm.etil11.framework.payapi.FrameworkReturnCodes . Use
these codes before defining your own. If a suitable code is not found there,
follow the procedure described above for protocol data.

Again, IBM is very interested in maintaining as much commonality across
error codes as possible. If, after following the procedures above, you define
your own cassette-specific return codes, use a numeric value greater than
10000. The range between 0 and 9999 is reserved for IBM-defined return
codes, which will include the common cassette return codes that are
created over time. Also, you must describe any new return codes that you
define in your cassette documentation.

Handling unsupported commands
As previously described, cassette writers must make conscious decisions
about which commands their cassette will support. To provide a consistent
interface for merchant software, cassettes should always respond to
unsupported commands by throwing an ETi11AbortOperation exception
with:
e Primary return code = PRC_CASSETTE_ERROR and
* Secondary return code = RC_COMMAND_NOT_SUPPORTED

Both of these codes are defined in
com.ibm.etill.framework.payapi.FrameworkReturnCodes.

Fatal errors
In extreme cases where errors occur that make it impossible for the cassette
to reliably continue operation, the cassette should throw a
com.ibm.eti11.framework.log.ETi11CassetteException exception. This
exception will cause the framework to stop and disable the cassette.

Errors while processing protocol messages
Each payment protocol that supports its own protocol messages will most
likely have its own mechanism for reporting errors to the entity with

38 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

which protocol messages are being exchanged. Therefore, the framework
does not attempt to solve this problem other than providing the tracing
and logging facilities through which cassettes can record error events as
they occur. The use of these facilities, of course, is left to the discretion of
the cassette writer.

Cassette-specific commands: CassetteControl
The CassetteControl command is a more extreme case of defining cassette-specific

behavior. This is more extreme because each use of this command effectively
defines a new protocol-specific command with which merchant software must
contend. While there will be cases where CassetteControl is required, its use
should only be a last resort. Again, if your payment protocol requires a new
command, please consult with IBM’s payment cassette development support group
to discuss the requirement and agree on an approach that will minimize the impact
to merchant software.

Administrative APl commands

The administrative API commands create, modify and delete the administrative
objects that represent the main participants in financial transactions (such as
merchants and accounts) as well as major components of WebSphere Commerce
Payments itself (such as cassettes and event listeners).

There are a few basic differences between the way the cassette is expected to
handle administrative and payment commands:

* All administrative commands are represented by an instance of the AdminRequest
class. That is, this class is not subclassed for the various different types of
administrative commands. Every payment command, on the other hand, has its
own class that is derived from APIRequest.

* For payment commands, the cassette’s service method is called by the
framework only once for each payment command. For administrative
commands, the service method is called twice but only for non-merchant
cassette objects and non-system cassette objects:

— The first call is a request for the cassette to validate any protocol data
parameters (in this case, the request is considered to be in "validation mode”).
Note that when validation mode calls are made to the service method, the
associated AdminRequest object does not yet exist.

— The second call is a request for the cassette to actually process the command.

Both calls are made using the same AdminRequest object: the cassette determines
whether the request is in validation mode by calling the validationMode()
method on the AdminRequest object.

For merchant cassette objects and system cassette objects, there is no call for
validation. There is only a call to process the command.

* The cassette is asked to participate in the processing of every payment
command, whereas it is only asked to participate for the subset of administrative
commands for which cassette extensions are allowed (that is, CassetteAdmin,
MerchantAdmin, AccountAdmin and PaySystemAdmin objects) and for
cassette-defined primary administrative objects (that is, merchant cassette objects
and system cassette objects).

Administrative commands reflect the Administrative Object hierarchy. The

Administrative object hierarchy determines what the administrative commands
must do. For example, if an object in the middle of the hierarchy is stopped, all

Chapter 2. Understanding the WebSphere Commerce Payments framework 39

objects beneath that object must also be stopped. The administrative commands
invoke internal functions, as shown in the subsequent diagrams.

Because of the well-defined hierarchy between the various framework
administrative objects the internal operation of the administrative commands has a
very similar hierarchy. For example, AccountAdmin objects are "contained in” a
PaySystemAdmin object. Therefore, if you start (enable) a payment system, the
command must also start all of that payment system’s accounts. To clearly and
accurately reflect these relationships, the administrative command flows include
two different types of diagrams:

* Internal sequence diagrams, which illustrate the internal flows required to
perform a specific action (start, stop or delete). These sequences may be invoked
from multiple places within the framework.

* API sequence diagrams, which show how a particular command is received and
routed within the Payment Servlet. These flows will eventually invoke one or
more of the internal sequences.

Sequence diagrams for administrative commands include:

+ [“System start sequence” on page 41

+ [“ModifyCassette API sequence” on page 42|

+ |“StartCassette internal sequence” on page 43|

+ |“StopCassette internal sequence” on page 44

+ |“CreateAccount API sequence” on page 45|

* [“ModifyAccount API sequence” on page 46|

+ |[“DeleteAccount API sequence” on page 47]

+ |“StartAccount internal sequence” on page 48

* [“StopAccount internal sequence” on page 48|

* |"DeleteAccount internal sequence” on page 49|

* |“CreatePaySystem API sequence” on page 50|

* [“ModifyPaySystem API sequence” on page 51|

+ |“DeletePaySystem API sequence” on page 52

* |“StartPaySystem internal sequence” on page 53|

+ |“StopPaySystem internal sequence” on page 53|

* |"DeletePaySystem internal sequence” on page 54|

« |“CreateMerchant API sequence” on page 55|

« ["ModifyMerchant API sequence” on page 56|

* |"DeleteMerchant API sequence” on page 57|

+ [“ModifyMerchantCassetteObject API sequence” on page 58|

+ [“ModifySystemCassetteObject API sequence” on page 59

+ [“CassetteControl API sequence” on page 60|

40 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Administrative command sequence diagrams

System start sequence

The Start sequence diagram shows the interactions between WebSphere Commerce
Payments framework and cassette resulting from the Payment Servlet being started
by the system administrator. The Start sequence only happens once. Note the call

to |”StartCassette internal sequence” on page 43l

Merchant Server

Framework Cassette

start (DBDriver, jdbcURL, DBOwner
DBUserID, DBPassword

® Read Framework configuration
from database

For each configured cassette:

o Dynamically load casette class
using Class . for Name() and
Class . newlInstance()

setMessagelD()

® Save messagelD for use in
all trace and error logging calls

readCassetteConfig()
® Read cassette specific
configuration from the
Payment Server databse
verifyConfig()

® Verify correctness of cassette
configuration

o execute start cassette internal sequence
for each installed cassette

Chapter 2. Understanding the WebSphere Commerce Payments framework 41

42

ModifyCassette APl sequence
The ModifyCassette API sequence diagram shows the interactions between the

WebSphere Commerce Payments framework and cassette when a WebSphere
Commerce Payments administrator sends a ModifyCassette command. Note the

calls to[“StopCassette internal sequence” on page 44| and [“StartCassette internal|

lequence” on page 43

Merchant Server

Framework Cassette

Modify Cassette

APIResponse.returnCodes

compose AdminRequest
with MODIFY_CASSETTE_TOKEN

obtain locks:

Cassette (write)
PayServer (read)

ensure required objects exist

service (AdminRequest, APIResponse, validationMode = true)

® validate request
parameters
APIResponse . returnCodes

If validation successful

® update Framework CassetteAdmin object

service (AdminRequest, APIResponse, validationMode = false)

® process cassette
extension to
CassetteAdmin
object

o add all changes
to CommitPoint
APIResponse.returnCodes

commit changes to database

if CassetteAdmin object is active and ENABLED =0
® execute StopCassette internal sequence

® commit changes to database

else if CassetteAdmin is not active and ENABLED = 1
® execute StartCassette internal sequence
® commit changes to database

release locks

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

StartCassette internal sequence

The StartCassette internal sequence diagram shows the interaction that occurs
when a cassette is started. This sequence is initiated when either the framework is
initialized or when a cassette is enabled through a ModifyCassette command.
When the framework is initialized, the ModifyCassette call is done.

Framework Cassette

initializeCassette()

® perform any cassette initialization needed
for remaining steps

For each open batch that belongs to
this cassette:

resurrectCassetteBatch()

@ build in-memory instance of CassetteBatch
object for this batch

CassetteBatch

createComPoints()

® create one ComPoint for each “listening point”

Vector of ComPoint objects

® Start a pool of threads for each ComPoint in the vector
® On each thread call ComPoint.establishConnection()
® compose AdminRequest with START_CASSETTE_TOKEN

service (AdminRequest, APIResponse, validationMode=false

® do any required startup or restart processing

® start any SystemCassette associated
with this cassette

o initialize any timed work items

® start CassetteAdmin object

start()

® exists for historical reasons, can be used
as a “final startup” step

® generate a Network Manager event to tell any interested
network managers that the cassette has started

® For each payment system belonging to this cassette:

® execute StartPaySystem internal sequence

Chapter 2. Understanding the WebSphere Commerce Payments framework 43

StopCassette internal sequence

The StopCassette sequence diagram shows the interactions between the WebSphere
Commerce Payments framework and cassette resulting from WebSphere Commerce
Payments being stopped by the system administrator.

Framework Cassette

® Stop cassette’s threads

destroyComPoints()

® close all of the cassette’s ComPoints

® Remove all of this cassette’s Workltems
from the timer and service thread queues

® compose AdminRequest with STOP_CASSETTE_TOKEN

service (AdminRequest, APIResponse, validationMode = false)

® perform any required stop/cleanup stops

® stop any system cassette objects associated
with this cassette

shutdown()

® exists for historical reasons, can be used as
a “final shutdown” step

® generate a Network Management event to tell any interested
network managers that the cassette is stopping

o for each payment system belonging to this cassette:

® execute the StopPaySystem internal sequence

44 1BM WebSphere Commerce: Payments Cassette Kit Programming Guide

CreateAccount APl sequence
This sequence diagram shows the interaction between the WebSphere Commerce
Payments framework and cassette when an account is created. Note the calls to

[‘StopAccount internal sequence” on page 48| and |“StartAccount internal sequence”]

|0n page 4§|.

Merchant Server

Framework Cassette

CreateAccount

® compose AdminRequest with
CREATE_ACCOUNT_TOKEN

® obtain locks:

Cassette (read)
MerchantAdmin (write)
PayServer (read)

service (AdminRequest, APIResponse, ValidationMode = true)

o validate request

parameters
APIResponse.returnCodes

If validation successful:

® create a FrameworkAccountAdmin object
using information passed in AdminRequest

e add object to CommitPoint createList

service (AdminRequest, APIResponse, ValidationMode = false)

® create cassette extension
to AccountAdmin object

e add object to CommitPoint
createList
APIResponse.returnCodes

® commit changes to database
® execute Start Account Internal sequence
® commit changes to database

® release locks

Chapter 2. Understanding the WebSphere Commerce Payments framework 45

ModifyAccount APl sequence

This sequence diagram shows the interaction between the WebSphere Commerce
Payments framework and cassette when an account is modified. Note the calls to
[‘StopAccount internal sequence” on page 48| and |“StartAccount internal sequence”]

|on page 4§|.

Merchant Server Framework Cassette

Modify Account

® compose AdminRequest
with MODIFY_ACCOUNT_TOKEN

® obtain locks:

MerchantAdmin (write)
Cassette (read)
PayServer (read)

e ensure required objects exist

service (AdminRequest, APIResponse, validationMode = true)

® validate request

parameters
APIResponse . returnCodes

If validation successful
® update Framework AccountAdmin object

service (AdminRequest, APIResponse, validationMode = false)

® process cassette
extension to
AccountAdmin object

e add all changes

to CommitPoint
APIResponse . returnCodes

® commit changes to database

® if AccountAdmin is active and ENABLED =0
® execute StopAccount internal sequence
® commit changes to database

® else if AccountAdmin is not active and ENABLED = 1
® execute StartAccount internal sequence
® commit changes to database

® release locks

APIResponse . returnCodes

46 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

DeleteAccount API sequence
This sequence diagram shows the interaction between the WebSphere Commerce

Payments framework and cassette when an account is deleted. Note that this
sequence includes calls to [’StopAccount internal sequence” on page 48/ and
[‘DeleteAccount internal sequence” on page 49

Merchant Server Framework Cassette

DeleteAccount

® compose AdminRequest with DELETE_ACCOUNT_TOKEN
® obtain locks:

MerchantAdmin (write)
Cassette (read)
PayServer (read)

® ensure required objects exist

service (AdminRequest, APIResponse, validationMode=true)

® validate request
parameters

If validation successful:
® execute StopAccount internal sequence
® execute DeleteAccount interal sequence
® commit changes to database

® release locks

APIResponse.returnCodes

Chapter 2. Understanding the WebSphere Commerce Payments framework 47

StartAccount internal sequence
This sequence diagram shows the interaction between the WebSphere Commerce
Payments framework and cassette when an account is started.

Framework Cassette

o start AccountAdmin object

e compose AdminRequest with START_ACCOUNT_TOKEN

service (AdminRequest, APIResponse, validationMode = false)

® start cassette extension to
AccountAdmin object

e start any MerchantCassette objects
associated with this account

® add all updates to CommitPoint

StopAccount internal sequence
This sequence diagram shows the interaction between the WebSphere Commerce
Payments framework and cassette when an account is stopped.

Framework Cassette

® stop AccountAdmin object

e compose AdminRequest with STOP_ACCOUNT_TOKEN

service (AdminRequest, APIResponse, validationMode = false)

® stop cassette extension to
AccountAdmin object

e stop any MerchantCassette objects
associated with this account

® add all updates to CommitPoint

48 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

DeleteAccount internal sequence
This sequence diagram shows the interaction between the WebSphere Commerce
Payments framework and cassette when an Account is deleted.

Framework Cassette

® For each Order belonging to this Account
e remove Order from the cache

o add Order to CommitPoint delete list
(will cause Order and all associated
Payments, Credits, and related
cassette-specific objects to be
deleted at commit time)

® For each Batch belonging to this Account
e remove Batch from the cache

e add Batch to CommitPoint delete list
(will cause Batch and CassetteBatch
objects to be deleted at commit time)

For every 10th Batch, commit to database
® commit to database
® add AccountAdmin object to CommitPoint Delete list

e compose AdminRequest with DELETE_ACCOUNT_TOKEN

service (AdminRequest, APIResponse, validationMode = false)

® add cassette extension to
AccountAdmin object and
to CommitPoint delete list

e delete all Merchant Cassette objects
associated with this account by adding
to the CommitPoint delete list

Chapter 2. Understanding the WebSphere Commerce Payments framework 49

50

CreatePaySystem API sequence
This sequence diagram shows the interaction between the WebSphere Commerce

Payments framework and cassette when a PaySystem is created. Note the calls to

“StopPaySystem internal sequence” on page 53| and [“StartPaySystem internall

sequence” on page 53|

Merchant Server

Framework Cassette

Create PaySystem

® compose AdminRequest
with CREATE_PAYSYSTEM_TOKEN

® obtain locks:

Cassette (write)
MerchantAdmin (write)
PayServer (read)

service (AdminRequest, APIResponse, ValidationMode = true)

® validate request
parameters
APIResponse . returnCodes

If validation successful

® create FrameworkPaySystem object using
information passed in AdminRequest

® add object to CommitPoint createList

service (AdminRequest, APIResponse, ValidationMode = false)

® create cassette
extension to
PaySystem object

e add object to
CommitPoint
createList

APIResponse . returnCodes

® commit changes to database
® execute Start PaySystem Internal sequence

® commit changes to database

® release locks

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

ModifyPaySystem APl sequence

This sequence diagram shows the interaction between the WebSphere Commerce
Payments framework and cassette when a PaySystem is modified. Note the calls to
“StopPaySystem internal sequence” on page 53| and [“StartPaySystem internall
sequence” on page 53|

Merchant Server Framework Cassette

Modify PaySystem

® compose AdminRequest
with MODIFY_PAYSYSTEM_TOKEN

® obtain locks:

MerchantAdmin (write)
Cassette (write)
PayServer (read)

e ensure required objects exist

service (AdminRequest, APIResponse, validationMode = true)

® validate request
parameters
APIResponse . returnCodes

If validation successful
® update Framework PaySystemAdmin object

service (AdminRequest, APIResponse, validationMode = false)

® process cassette
extension to
PaysystemAdmin
object

e add all changes
to CommitPoint
APIResponse . returnCodes

® commit changes to database

e if PaySystemAdmin is active and ENABLED =0
® execute StopPaySystem internal sequence
® commit changes to database

® else if PaySystemAdmin is not active and ENABLED = 1
® execute StartPaySystem internal sequence

® commit changes to database
® release locks

APIResponse . returnCodes

Chapter 2. Understanding the WebSphere Commerce Payments framework 51

DeletePaySystem API sequence
This sequence diagram shows the interaction between the WebSphere Commerce

Payments framework and cassette when a PaySystem is deleted. Note the calls to
“StopPaySystem internal sequence” on page 53| and [“StartPaySystem internall
sequence” on page 53|

Merchant Server Framework Cassette

Delete PaySystem

® compose AdminRequest
with DELETE_PAYSYSTEM_TOKEN

® obtain locks:

MerchantAdmin (write)
Cassette (write)
PayServer (read)

e ensure required objects exist

service (AdminRequest, APIResponse, validationMode = true)

® validate request
parameters
APIResponse . returnCodes

If validation successful
® execute StopPaySystem internal sequence
® execute DeletePaySystem internal sequence

® commit changes to database

® release locks

APIResponse . returnCodes

52 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

StartPaySystem internal sequence
This sequence diagram shows the interaction between the WebSphere Commerce
Payments framework and cassette when a PaySystem is started.

Framework Cassette

e start PaySystemAdmin object

e compose AdminRequest with START_PAYSYSTEM_TOKEN

service (AdminRequest, APIResponse, validationMode = false)

® start cassette extension to
PaySystemAdmin object

e start any MerchantCassette objects
associated with this payment system

® add database updates to CommitPoint

® For each Account belonging to this Payment System

e execute the StartAccount internal sequence

StopPaySystem internal sequence
This sequence diagram shows the interaction between the WebSphere Commerce
Payments framework and cassette when a PaySystem is stopped.

Framework Cassette

® stop PaySystemAdmin object
e compose AdminRequest with STOP_PAYSYSTEM_TOKEN

service (AdminRequest, APIResponse, validationMode = false)

® stop cassette extension to
PaySystemAdmin object

e stop any MerchantCassette objects
associated with this payment system

® add database updates to CommitPoint

® For each Account belonging to this Payment System

e execute the StopAccount internal sequence

Chapter 2. Understanding the WebSphere Commerce Payments framework 53

DeletePaySystem internal sequence
This sequence diagram shows the interaction between the WebSphere Commerce
Payments framework and cassette when a PaySystem is deleted.

Framework Cassette

® For each Account belonging to this Payment System

e execute Delete Account internal sequence
® add PaySystemAdmin object to CommitPoint Delete list
e compose AdminRequest with DELETE_PAYSYSTEM_TOKEN

service (AdminRequest, APIResponse, validationMode = false)

® add cassette extension to
PaySystemAdmin object and
to CommitPoint delete list

e add any Merchant Cassette objects
associated with this Payment System
to the CommitPoint delete list

54 1BM WebSphere Commerce: Payments Cassette Kit Programming Guide

CreateMerchant API sequence
This sequence diagram shows the interaction between the WebSphere Commerce

Payments framework and cassette when a Merchant is created. Note the calls to
“StopPaySystem internal sequence” on page 53| and [“StartPaySystem internall
sequence” on page 53|

Merchant Server Framework

Create Merchant

® compose AdminRequest with CREATE_MERCHANT_TOKEN

® obtain locks:
PayServer (write)

® create FrameworkMerchantAdmin object using information
passed in AdminRequest

® add changes to CommitPoint createList

® commit changes to database

® For each PaySystem associated with this Merchant

® execute Start PaySystem Internal sequence

® release locks

Chapter 2. Understanding the WebSphere Commerce Payments framework 55

ModifyMerchant APl sequence

This sequence diagram shows the interaction between the WebSphere Commerce
Payments framework and cassette when a Merchant is modified. Note the calls to
“StopPaySystem internal sequence” on page 53| and [“StartPaySystem internall
sequence” on page 53|

Merchant Server Framework

Modify Merchant

® compose AdminRequest with MODIFY_MERCHANT_TOKEN
@ obtain locks:

PayServer (read)
MerchantAdmin (write)

® ensure required objects exist
® update MerchantAdmin object
® commit changes to database
o if MerchantAdmin object is active and ENABLED =0

® for each payment system belonging to this merchant:
® execute Stop PaySystem internal sequence

® commit changes to database

® else if MerchantAdmin object is not active and ENABLED = 1

o for each payment system belonging to this merchant:
® execute Start PaySystem internal sequence

® commit changes to database

® release locks

APIResponse.returnCodes

56 1BM WebSphere Commerce: Payments Cassette Kit Programming Guide

DeleteMerchant APl sequence
This sequence diagram shows the interaction between the WebSphere Commerce

Payments framework and cassette when a Merchant is deleted. Note the calls to
“StopPaySystem internal sequence” on page 53| and [“StartPaySystem internall
sequence” on page 53|

Merchant Server Framework Cassette

Delete Merchant

e compose AdminRequest with DELETE_MERCHANT_TOKEN

® obtain locks:

PayServer (write)

e ensure required objects exist

e ensure there are no users for this merchant

e ensure there are no event listeners for this merchant

e for each Payment System belonging to this merchant:

o compose AdminRequest with DELETE_PAYSYSTEM_TOKEN

e ensure required objects exist

service (AdminRequest, APIResponse, validationMode = true)

® validate request

parameters
APIResponse . returnCodes

If validation successful

® stop MerchantAdmin object

® for each Payment System belonging to this merchant:

e execute Stop PaySystem Internal sequence

® for each Payment System belonging to this merchant:

e execute Delete PaySystem Internal sequence
e add merchant to CommitPoint deleteList

e commit changes to database

® release locks

APIResponse . returnCodes

Chapter 2. Understanding the WebSphere Commerce Payments framework

57

ModifyMerchantCassetteObject APl sequence

This sequence diagram shows the interaction between the WebSphere Commerce
Payments framework and cassette when a MerchantCassetteObject is created,
modified, or deleted. The interactions are the same for all three, except for the
token being different.

Merchant Server Framework Cassette

Create
Modify pMerchantCassetteObject
Delete

® compose AdminRequest with
CREATE_MERCHANTCASSETTEOBJECT_TOKEN or
MODIFY_MERCHANTCASSETTEOBJECT_TOKEN or
DELETE_MERCHANTCASSETTEOBJECT_TOKEN, as appropriate

® obtain locks:
Cassette (write)

PayServer (read)

service (AdminRequest, APIResponse, validationMode = false)

® create/modify/delete
MerchantCassetteObject
as appropriate

® add to CommitPoint
® update database

APIResponse.returnCodes

® release locks

APIResponse.returnCodes

58 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

ModifySystemCassetteObject APl sequence

This sequence diagram shows the interaction between the WebSphere Commerce
Payments framework and cassette when a SystemCassetteObject is created,
modified, or deleted. The interactions are the same for all three, except for the
token being different.

Merchant Server Framework Cassette

Create
Modify ¢ SystemCassetteObject
Delete

® compose AdminRequest with
CREATE_SYSTEMCASSETTEOBJECT_TOKEN or
MODIFY_SYSTEMCASSETTEOBJECT_TOKEN or
DELETE_SYSTEMCASSETTEOBJECT_TOKEN, as appropriate

® obtain locks:

Cassette (read)
MerchantAdmin (write)
PayServer (read)

service (AdminRequest, APIResponse, validationMode = false)

® create/modify/delete
SystemCassetteObject
as appropriate

® add to CommitPoint

® update database

APIResponse.returnCodes

® release locks

APIResponse.returnCodes

Chapter 2. Understanding the WebSphere Commerce Payments framework 59

CassetteControl API sequence
This sequence diagram shows the interaction between the WebSphere Commerce

Payments framework and the cassette when a CassetteControl command is
received from the merchant software.

Merchant Server Framework Cassette

Cassette Control ()

® compose AdminRequest with
protocol data

® obtain locks:

Cassette (write)
PayServer (read)

service (AdminRequest, APIResponse

® do function

APIResponse.returnCodes

® release locks

APIResponse.returnCodes

60 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Payment APl commands

These commands request operations on financial objects. Not all commands need
to cause action within your payment cassette; however every payment cassette
must process either ReceivePayment, AcceptPayment, or both to initiate payment
processing in the WebSphere Commerce Payments framework. All other payment
commands are optional.

Note: This section describes the effect that each command has on the WebSphere
Commerce Payments framework financial objects. When you map these
commands onto your payment protocol, you will be able to provide a
complete description of what each command means for your cassette.

As mentioned earlier in this chapter, if a command is not directly supported by
your payment protocol but can be simulated, you should accept it. For example,
you may be able to simulate an ApproveReversal by voiding an authorization and
making a new authorization. If the unsupported command cannot be simulated,
then reject it with PRC_COMMAND_NOT_SUPPORTED, RC_NONE instead of ignoring its
existence. You should expect and tolerate this return code pair as a likely
possibility and handle it accordingly.

ReceivePayment

ReceivePayment causes an order to be created. The framework will create the Order
object and initialize it with the data received across the API. The data received with
this command is not sufficient to provide all payment instructions, so it is assumed that
additional data will be exchanged between consumer and cassette (using protocol
messages) to fully define the payment. The semantics of this API require return of
a complete HTTP response. The merchant server is expected to forward this
response as is to the consumer. After creating and initializing the Order, the
framework will ask the cassette to create a CassetteOrder object, then ask the
cassette to service the ReceivePayment request. When successful processing of
ReceivePayment is complete, the Order should be in ORDER_REQUESTED state.

The ReceivePayment command may be modified by the AUTOAPPROVE and
AUTODEPOSIT flags. When AUTOAPPROVE equals 1, the cassette is expected to
perform approve processing before completing the ReceivePayment command.
When AUTODEPOSIT is true, the cassette is expected to perform deposit
processing before completing the command. Unlike the Approve and Deposit
commands, the framework will not create a Payment object when AUTOAPPROVE
or AUTODEPOSIT flags are true on the ReceivePayment command. The cassette is
expected to create a framework payment by calling the framework’s
Supervisor.createPayment method. This method will call the Cassette’s
newCassettePayment method.

AcceptPayment

AcceptPayment causes an Order to be created. The framework will create the Order
object and initialize it with the data received across the API. The data received with
this command is sufficient to fully describe the payment method. A cassette should
respond to AcceptPayment rather than ReceivePayment when no further
communication with the consumer is required to identify the complete payment
instructions. After creating and initializing the Order, the framework will ask the
cassette to create a CassetteOrder object and then ask the cassette to service the
AcceptPayment request. When successful processing of AcceptPayment is complete,
the Order should be in ORDER_ORDERED state, or the ORDER_REFUNDABLE
state if the cassette supports independent credit.

Chapter 2. Understanding the WebSphere Commerce Payments framework 61

62

The framework will not create a Payment object when the AUTOAPPROVE flag
equals 1 or the AUTODEPOSIT flag is true on the AcceptPayment call. The cassette
is expected to create a framework payment by calling the framework’s
Supervisor.createPayment method. This method will call the Cassette’s
newCassettePayment method. In addition, the cassette must commit the order to the
database.

Approve

Approve causes a Payment object to be created. The framework will create and
initialize the Payment and then ask the cassette to create a cassette-specific
payment (type is derived from CassetteTransaction). The cassette will then be
asked to service the Approve request. When an Approve command is processed
successfully, the cassette must commit the framework Payment object to the
database with a state of PAYMENT_APPROVED, PAYMENT_DEPOSITED, or
PAYMENT_CLOSED, depending upon the payment protocol and cassette
implementation.

ApproveReversal

ApproveReversal either voids an approval or replaces the amount of an approval
with the amount on the ApproveReversal command. If this amount is zero, the
approval is voided (that is, a full reversal). Otherwise, the command operates as an
approve adjustment (a partial reversal). The framework will look up the Order and
Payment and then ask the cassette to service the ApproveReversal request. Cassette
writers must decide whether or not their cassettes should support the
ApproveReversal command. If they do support the command, they must also
decide whether to support full reversals, partial reversals, or both. All of these
decisions should be based upon the needs of their payment protocol and the needs
of the merchant software that will eventually use the cassette:

* If approve reversals are not supported by the payment protocol, then the
cassette should determine if it wants to support the command as a local
operation (i.e., local in the sense that there is no communication to a payment
processor). Depending on the payment protocol, this may be necessary since it
allows the merchant server software to indicate that the payment should be in
PAYMENT_VOID state. Not supporting ApproveReversal will leave the payment
in PAYMENT_APPROVED state, and leave the order in a state that does not
allow it to be cancelled via the CancelOrder command. If the determination is
made that the cassette will not support approve reversals, local or otherwise,
then the cassette should throw an ETillAbortOperation exception with primary
and secondary return codes set to PRC_COMMAND_NOT_SUPPORTED and
RC_NONE, respectively.

* If the reversal is supported, the cassette must take whatever action is necessary
to modify or void the associated approval, and it must commit the Payment
object with a state of PAYMENT_VOID (if voided) or PAYMENT_APPROVED (if
partially reversed). If the reversal cannot be completed successfully due to some
error, the state of the Payment object should revert back to
PAYMENT_APPROVED.

* If the reversal is declined by the bank, the state of the Payment object should go
to PAYMENT_DECLINED.

Deposit

Deposit arranges for the deposit of funds against a previously approved Payment.
The framework will look up the Order and Payment and then ask the cassette to
service the Deposit request. Cassette writers must decide whether or not their
cassettes should support the Deposit command. This decision should be based on
the needs of their payment protocol:

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

 If Deposit is not supported then the cassette should throw an
ETi11AbortOperation exception with primary and secondary return codes set to
PRC_COMMAND_NOT_SUPPORTED and RC_NONE, respectively.

 If Deposit is supported, then the cassette must take whatever action is necessary
to process the deposit request, including any necessary associations with batches
if the cassette supports batch processing. Upon successful completion of this
request, the cassette must commit the framework Payment object with a state of
Payment_Deposit or PAYMENT_CLOSED, depending upon the payment
protocol and the cassette implementation. If the Deposit cannot be completed
successfully due to some error, the state of the Payment object should revert
back to PAYMENT_APPROVED.

DepositReversal

DepositReversal voids a deposit that was issued for the associated Payment object
in PAYMENT_DEPOSITED state. When a DepositReversal command is received,
the framework will look up the Order and Payment and then ask the cassette to
service the DepositReversal request. The cassette makes the final decision
concerning whether such reversals are supported at all:

* If deposit reversals are not supported then the cassette should throw an
ETi11AbortOperation exception with primary and secondary return codes set to
PRC_COMMAND_NOT_SUPPORTED and RC_NONE, respectively.

e If the reversal is supported, then the cassette must take whatever action is
necessary to void the associated deposit, and it must commit the Payment object
with a state of PAYMENT_VOID. If the reversal cannot be completed
successfully due to some error, the state of the Payment object should revert
back to PAYMENT_DEPOSITED.

* Only full reversals are supported. Partial reversals are not allowed.

Refund

Refund creates a Credit object for an Order that is in ORDER_REFUNDABLE state.
The framework will create and initialize the Credit and then ask the cassette to
create a cassette-specific credit (type is derived from CassetteTransaction). The
cassette will then be asked to service the Refund request. Cassette writers must
decide whether or not their cassettes should support the Refund command. This
decision should be based on the needs of their payment protocol:

* If Refund is not supported then the cassette should throw an
ETi11AbortOperation exception with primary and secondary return codes set to
PRC_COMMAND_NOT_SUPPORTED and RC_NONE, respectively.

* If Refund is supported, then the cassette must take whatever action is necessary
to process the refund request, including any necessary associations with batches
if the cassette supports batch processing. Upon successful completion of this
request, the cassette must commit the framework Credit object with a state of
CREDIT_REFUNDED or CREDIT_CLOSED, depending upon the payment
protocol and the cassette implementation. If the Refundcannot be completed
successfully due to some error, the state of the Payment object should be set to
CREDIT_DECLINED (for financial rejection). Use CREDIT_VOID for other
errors.

RefundReversal
RefundReversal voids a refund that was issued for the associated Credit object (in

CREDIT_REFUNDED state). When a RefundReversal command is received, the
framework will look up the Order and Credit and then ask the cassette to service
the RefundReversal request. The cassette makes the final decision concerning
whether such reversals are supported at all:

Chapter 2. Understanding the WebSphere Commerce Payments framework 63

* If refund reversals are not supported then the cassette should throw an
ETi1TAbortOperation exception with primary and secondary return codes set to
PRC_COMMAND_NOT_SUPPORTED and RC_NONE, respectively.

* If the reversal is supported, then the cassette must take whatever action is
necessary to void the associated refund and it must commit the Credit object
with a state of either CREDIT_PENDING (if the request was forwarded on to
some third party and the result has not yet been received) or CREDIT_VOID (if
the reversal is complete). If the reversal cannot be completed successfully due to
some error, the state of the Credit object should revert back to
CREDIT_REFUNDED.

* Refund reversals are only allowed if the Order object is in
ORDER_REFUNDABLE state and the Credit object is in CREDIT_REFUNDED
state.

* Only full reversals are supported. Partial reversals are not allowed.

CloseOrder

CloseOrder causes an Order that owns at least one closed Payment or one closed
Credit to become unavailable for any further financial transactions. If the
DELETEORDER option was specified, then the Order object and all of its related
ancillary objects are purged from the database. When a CloseOrder command is
received, the framework will look up the Order and then ask the cassette to service
the CloseOrder request. Every cassette should support CloseOrder.

 If DELETEORDER is not specified, then the only thing required of the cassette is
that the Order object be committed with a state of ORDER_CLOSED.

 If DELETEORDER is specified, then the cassette must also delete the framework
Order object by calling the
com.ibm.etill.framework.supervisor.Supervisor.removeOrder method. This
method will cause several cassette methods to be called in order to delete all of
the cassette objects associated with the Order and its Payment and Credit
objects.

CancelOrder

CancelOrder makes an Order that has either (1) no Payments or Credits, or (2) all
associated Payments or Credits in their respective RESET, VOID or DECLINED
state unavailable for any further financial transactions. If the DELETEORDER option
was specified, then the Order object and all of its related ancillary objects are
purged from the database. When a CancelOrder command is received, the
framework will look up the Order and then ask the cassette to service the
CancelOrder request. Every cassette that maintains the PAYMENT_DEPOSITED
state for Payments should support CancelOrder.

 If DELETEORDER is not specified, then the only thing required of the cassette is
that the Order object be committed with a state of ORDER_CANCELED.

 If DELETEORDER is specified, then the cassette must also delete the framework
Order object by calling the
com.ibm.etill.framework.supervisor.Supervisor.removeOrder method. This
method will cause several cassette methods to be called in order to delete all of
the cassette objects associated with the Order and its Payment and Credit
objects.

* CancelOrders are allowed only if the object is in ORDER_ORDERED,
ORDER_REJECTED, ORDER_REFUNDABLE, or ORDER_CANCELED states.

BatchOpen

BatchOpen causes a Batch to be created. The framework will create and initialize a
Batch and then ask the cassette to create a cassette-specific Batch object. The
cassette is then asked to service the BatchOpen request. After successful processing

64 1BM WebSphere Commerce: Payments Cassette Kit Programming Guide

of the BatchOpen request, a Batch is in Open state. Cassette writers must decide
whether or not their cassettes should support the BatchOpen command. This
decision should be based on the needs of their payment protocol:

 If BatchOpen is not supported, the cassette should throw an ETi11AbortOperation
exception with primary and secondary return codes set to
PRC_COMMAND_NOT_SUPPORTED and RC_NONE, respectively.

 If BatchOpen is supported, then the cassette must take whatever action is
necessary to process the open request, including any necessary communications
with an external financial processor. Upon successful completion of this request,
the cassette must commit the framework Batch object with a state of
BATCH_OPEN. If the request cannot be completed successfully due to some
error, the Batch object should be deleted from the database.

BatchClose

BatchClose causes an open Batch to be closed. It is not required that an explicit
BatchOpen command be issued to be able to issue BatchClose.

The framework will locate the Batch and then ask the cassette to process the
request. The cassette is then asked to service the BatchClose request. After
successful processing of the BatchClose request, a Batch is in BATCH_CLOSED
state. Again, cassette writers must decide whether or not their cassettes should
support the BatchClose command. This decision should be based on the needs of
their payment protocol:

 If BatchClose is not supported, the cassette should throw an
ETi1TAbortOperation exception with primary and secondary return codes set to
PRC_COMMAND_NOT_SUPPORTED and RC_NONIE, respectively.

 If BatchClose is supported, then the cassette must take whatever action is
necessary to close the Batch, including any necessary communications with an
external financial processor. Upon successful completion of this request, the
cassette must:

— Commit the framework Batch object with a state of BATCH_CLOSED, as well
as with the appropriate batch status value.

— Close associated Payments and Credits.

— If the request cannot be completed successfully due to some error, the Batch
object should revert back to BATCH_OPEN.

DeleteBatch

DeleteBatch removes a closed Batch and all of its associated ancillary objects from
the WebSphere Commerce Payments database. When DeleteBatch is received, the
framework will look up the Batch and then ask the cassette to service the request.
If the cassette supports batch operations, then it should support this request:

 If DeleteBatch is not supported, the cassette should throw an
ETi1TAbortOperation exception with primary and secondary return codes set to
PRC_COMMAND_NOT_SUPPORTED and RC_NONE, respectively.

* If DeleteBatch is supported, the cassette must delete the Batch object by calling
the com.ibm.etil1.framework.supervisor.Supervisor.removeBatch method. This
method will cause one or more cassette methods to be called in order to delete
all of the cassette objects associated with the Batch.

BatchPurge

BatchPurge removes all Payments and Credits from a batch. The Batch object is
returned to Open state. The Payment objects are returned to Approved state and
the Credit objects are returned to Void state. Deposits and Refunds can then be
issued to reconstruct the batch. When BatchPurge is received, the framework will

Chapter 2. Understanding the WebSphere Commerce Payments framework 65

look up the Batch and then ask the cassette to service the request. If the cassette

supports batch operations, then it should support this request
e If BatchPurge is not supported, the cassette should throw an

ETillAbortOperation exception with primary and secondary return codes set to
PRC_COMMAND_NOT_SUPPORTED and RC_NONE, respectively.

* If BatchPurge is supported, the cassette must remove all Payments and Credits

from the batch.

Payment protocol mapping
How your payment protocol maps to the WebSphere Commerce Payments
payment API will depend very much on the type of payment protocol:

e cash
e check
e credit/debit

* micro-payment

This table shows the possible mappings to the WebSphere Commerce Payments
API for each category of payment protocol.

Table 3. Payment APl commands. An asterisk identifies commands not currently implemented by WebSphere

Commerce Payments.

API command Credit/Debit Check Cash Micro Payment
AcceptPayment initiate an order with |process an e-check not used process a payment
all necessary received using e-mail, received as part of
consumer data. Used |or other source resolving a hypertext
when no response to link
consumer is required.

Approve authorize not used, except if not used obtain guarantee
third party guarantee from consumer’s
is implemented billing server

ApproveReversal authorize reversal not used, except if not used not used
third party guarantee
is implemented

*Authenticate possibly used to not used exchange not used

authenticate authentication data
purchasing cards with consumer

BatchOpen open a batch open a batch open a batch open a batch
("deposit”)

BatchClose close a batch close a batch and close a batch and close a batch and
send a "deposit” to transmit all received | transmit all received
the bank funds to the bank payments to the bank

Control not used control local control local cash not used
checkbook functions | functions

Deposit capture endorse a check and | not used assign a payment to a
add it to a deposit batch
batch

CloseOrder close the order in the |close the order in the |close the order in the |close the order in the

local database local database local database local database

CancelOrder cancel the order in cancel the order in cancel the order in cancel the order in

the local database the local database the local database the local database

DeleteBatch delete the batch from |delete the batch from |delete the batch from |delete the batch from

the local database the local database the local database the local database

66 1BM WebSphere Commerce: Payments Cassette Kit Programming Guide

Table 3. Payment APl commands (continued).

WebSphere Commerce Payments.

An asterisk identifies commands not currently implemented by

API command

Credit/Debit

Check

Cash

Micro Payment

DepositReversal capture reversal remove a check from |remove a payment remove a payment
a deposit batch from a batch from a batch
*Pay initiate an generate an e-check | make a payment to generate a credit to
"independent credit” someone someone
*PayReversal reverse an cancel an e-check not used reverse a credit
"independent credit”

Refund credit not used make a payment as a | generate a credit
refund for a payment |against a payment
previously received | previously received

RefundReversal credit reversal not used not used reverse a refund

ReceivePayment initiate an order not used start a payment and | not used

when consumer data generate a wallet
still needs to be kickoff message
acquired. Used when
an initiation message
must be returned to
the consumer.
*Withdraw not used not used obtain e-cash from a |not used

bank (that is, to
provide funds for
payments)

Payment command sequence diagrams

WebSphere Commerce Payments responds to events from the outside world.
Scenarios describe the processing that occurs as a result of the receipt of a

particular event. We use sequence diagrams to visually describe the sequence of
interactions between the major participants for a particular scenario. The sequence
diagrams here describe the success scenarios for each of the events that WebSphere
Commerce Payments handles.

For all of the Payment commands, the main interface between the framework and
the cassette is the Cassette object’s service method.

The details in the sequence diagrams are not intended to be absolutely precise. For
instance, method calls will use the real name of the Java method, but will not
precisely define the parameters to that method. The diagrams are intended to give
a logical idea of the responsibilities of the framework and cassette for each
scenario.

* [“ReceivePayment API sequence” on page 69|

* |“Deposit API sequence” on page 74|

+ |"DepositReversal API sequence” on page 75

[“Refund API sequence” on page 76|

[“RefundReversal API sequence” on page 77|

[“BatchOpen API sequence” on page 78|

[“DeleteBatch API sequence” on page 80|

[“BatchPurge API sequence” on page 81|

[“CloseOrder API control sequence” on page 82|

Chapter 2. Understanding the WebSphere Commerce Payments framework 67

* |"CancelOrder API sequence” on page 83

* |"Protocol message API sequence” on page 84|

* Key internal sequences:

- [‘CreateBatch internal sequence” on page 85|

— [“RetrieveBatch internal sequence” on page 86

— [‘RetrieveOrder internal sequence” on page 87

— [“Service queue internal sequence” on page 8§

— [“Timer queue internal sequence” on page 89

68 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

ReceivePayment API sequence
The ReceivePayment sequence diagram shows the interactions between the

WebSphere Commerce Payments framework and cassette resulting from a
ReceivePayment command from the merchant shopping software to WebSphere
Commerce Payments.

If the cassette supports independent credit, the cassette changes the state of the
framework order to REFUNDABLE (rather than ORDERED) if processing is
successful.

Merchant Server Framework Cassette

Ready to Buy

ReceivePayment (order information)

® Create Framework Order

newCassetteOrder (Framework Order)

® C(Create
CassetteOrder CassetteOrder

® obtain locks:

Order (write)
MerchantAdmin (read)
Cassette (read)
PayServer (read)

e ensure cassette, merchant and account objects are active

service (ReceivePaymentRequest, APIResponse)

o Build initiation
msg/redirection form/
applet as required
to be sent to consumer.
Put it in the
APIResponse.message
field.

® Change state of
Framework order
to ORDERED (or
REFUNDABLE) or
REQUESTED
if processing is
successful

® Commit persistent
order information to

APIResponse.returnCodes the database
APIResponse.message

® release locks

APIResponse.returnCodes
APIResponse.message

message

—

Chapter 2. Understanding the WebSphere Commerce Payments framework 69

If the cassette supports independent credit, the cassette changes the state of the
framework order to REFUNDABLE (rather than ORDERED) if processing is
successful.

Completion of the ReceivePayment sequence (sending the message at the end)
causes subsequent protocol message flows between the consumer (or some other
agent) and the cassette. During these flows (before the order enters the ORDERED
state), the cassette must fill in the correct account number in the generic order.

70 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

AcceptPayment API sequence
The AcceptPayment sequence diagram shows the interactions between the
WebSphere Commerce Payments framework and cassette resulting from a

AcceptPayment command from the merchant shopping software to WebSphere

Commerce Payments.

Consumer

Merchant Server

Framework Cassette

Ready to Buy

message

—

(Done)

If the cassette supports independent credit, the cassette changes the state of the

AcceptPayment
(order information)

® Create Framework Order

newCassetteOrder (Framework Order)

® Create CassetteOrder

CassetteOrder

® compose AcceptPaymentRequest
@ obtain locks:

Order (write)
MerchantAdmin (read)
Cassette (read)
PayServer (read)

® ensure cassette, merchant and account objects are active

service (AcceptPaymentRequest, APIResponse)

e Change state of Framework

order to ORDERED
(or REFUNDABLE)

if processing is successful

® commit persistent order
information to database
APIResponse.returnCodes

® release locks

APIResponse.returnCodes

framework order to REFUNDABLE (rather than ORDERED) if processing is

successful.

Chapter 2. Understanding the WebSphere Commerce Payments framework

71

Approve API sequence

The Approve sequence diagram shows the interactions between WebSphere
Commerce Payments framework and cassette resulting from an Approve command
from the merchant shopping software to WebSphere Commerce Payments.

Merchant Server Framework Cassette

Approve (order and payment info)

® Retrieve order from cache

e create Framework payment

newCassettePayment (Framework payment)

® create Cassette Payment

CassettePayment

® bind cassette payment to Framework payment
compose ApproveRequest with order and payment

obtain locks:
Order (write)
MerchantAdmin (read)

Cassette (read)
PayServer (read)

® ensure cassette, merchant and account objects
are active

service (ApproveRequest, APIResponse)

® perform approval

e update Framework
payment and Framework
order states as needed

® commit persistent order
and payment information
to the database

APIResponse.returnCodes

® release locks

APIResponse.returnCodes

72 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

ApproveReversal APl sequence
The ApproveReversal sequence diagram shows the interactions between the

WebSphere Commerce Payments framework and cassette resulting from an
ApproveReversal command from the merchant shopping software to WebSphere
Commerce Payments.

Merchant Server Framework Cassette

ApproveReversal (order and payment info)

® Retrieve order, related payment from cache

e compose ApproveReversalRequest
with order and payment

® obtain locks:
Order (write)
MerchantAdmin (read)

Cassette (read)
PayServer (read)

e ensure cassette, merchant and account
objects are active

service (ApproveReversalRequest, APIResponse)

® perform
ApproveReversal

e update Framework
payment state

APIResponse.returnCodes ® commit persistent
order and payment
information to database

® release locks

APIResponse.returnCodes

Chapter 2. Understanding the WebSphere Commerce Payments framework 73

Deposit APl sequence
The Deposit sequence diagram shows the interactions between the WebSphere

Commerce Payments framework and cassette resulting from a Deposit command
from the merchant shopping software to WebSphere Commerce Payments.

Merchant Server Framework Cassette

Deposit (order and payment info)

® Retreive order, related payment from cache
e compose DepositRequest

with order and credit
® obtain locks:

Order (write)
AccountAdmin (read)
MerchantAdmin (read)
Cassette (read)
PayServer (read)

® ensure cassette, merchant and account
objects are active

service (DepositRequest, APIResponse)

® perform Deposit

e update Framework
payment state
batch.addPayment()

® commit persistent
order and payment

information to database
APIResponse.returnCodes

® release locks

APIResponse.returnCodes

74 1BM WebSphere Commerce: Payments Cassette Kit Programming Guide

DepositReversal APl sequence
The DepositReversal sequence diagram shows the interactions between the

WebSphere Commerce Payments framework and cassette resulting from a
DepositReversal command from the merchant shopping software to WebSphere
Commerce Payments.

Merchant Server Framework Cassette

DepositReversal (order and payment info)

® Retrieve order, related payment from cache
e compose DepositReversalRequest
with order and credit

® obtain locks:

Order (write)
AccountAdmin (read)
MerchantAdmin (read)
Cassette (read)
PayServer (read)

e ensure cassette, merchant and account
objects are active

service (DepositReversalRequest, APIResponse)

® perform DepositReversal

e update Framework
payment state
batch.removePayment()

® commit persistent
order and payment

information to database

APIResponse.returnCodes

® release locks

APIResponse.returnCodes

Chapter 2. Understanding the WebSphere Commerce Payments framework

75

76

Refund API sequence

The Refund sequence diagram shows the interactions between the WebSphere
Commerce Payments framework and cassette resulting from a Refund command
from the merchant shopping software to WebSphere Commerce Payments.

Merchant Server Framework Cassette

Refund (order and credit info)

® Retrieve order from cache

e create Framework credit

newCassetteCredit (Framework credit)

CassetteCredit

® bind cassette credit to Framework credit
e compose RefundRequest with order, credit

® obtain locks:

Order (write)
AccountAdmin (read)
MerchantAdmin (read)
Cassette (read)
PayServer (read)

® ensure cassette, merchant and account objects are active

service (RefundRequest.APIResponse)

L[]
L[]

batch.addCredit()

APIResponse.returnCodes

® release locks

APIResponse.returnCodes

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

perform refund

update Framework credit state

commit persistent
order and credit
information to database

RefundReversal APl sequence

The RefundReversal sequence diagram shows the interactions between the
WebSphere Commerce Payments framework and cassette resulting from a
RefundReversal command from the merchant shopping software to WebSphere

Commerce Payments.

Merchant Server Framework Cassette
RefundReversal
(order and payment info)
® Retrieve order, related credit from cache

APIResponse.returnCodes

°

compose RefundReversalRequest
with order and credit

obtain locks:

Order (write)

Account (read)
MerchantAdmin (read)
CassetteAdmin (read)
PayServer (read)

ensure cassette, merchant and account
objects are active

service (RefundReversalRequest, APIResponse)

o perform RefundReversal

e update Framework
credit state

batch.removeCredit()

® commit persistent
order and credit
information to database

APIResponse.returnCodes

release locks

Chapter 2. Understanding the WebSphere Commerce Payments framework 77

78

BatchOpen API sequence

The BatchOpen sequence diagram shows the interactions between the WebSphere
Commerce Payments framework and cassette resulting from a BatchOpen command
from the merchant shopping software to WebSphere Commerce Payments.

Merchant Server Framework Cassette
BatchOpen(batch data)

e create Framework batch

newCassetteBatch (Framework batch)

CassetteBatch

e bind cassette batch to Framework batch
e compose BatchOpenRequest with batch
® obtain locks:

Batch (write)

Account (write)
MerchantAdmin (read)
CassetteAdmin (read)
PayServer (read)

service (BatchOpenRequest, APIResponse)

e perform batch open
o update Framework batch state

e commit persistent batch
information to database

APIResponse.returnCodes

e if errors, destroy Framework batch
e else add batch to cache

e release locks

APIResponse.returnCodes

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

BatchClose API sequence

The BatchClose sequence diagram shows the interactions between the WebSphere
Commerce Payments framework and cassette resulting from a BatchClose
command from the merchant shopping software to WebSphere Commerce

Payments.

Merchant Server Framework

Cassette

BatchClose(batch data)

® retrieve batch from batch cache

e compose BatchCloseRequest
with batch

® obtain locks:

Batch (write)

Account (write)
MerchantAdmin (read)
Cassette (read)
PayServer (read)
Order (write)

® ensure cassette, merchant and
account objects active

service (BatchCloseRequest, APIResponse

APIResponse.returnCodes

® release locks

APIResponse.returnCodes

close batch
update Framework batch state
update Framework batch status

update state of all Payments,
Credits and Orders as needed

commit updated objects to
database

Chapter 2. Understanding the WebSphere Commerce Payments framework

79

DeleteBatch API sequence
This DeleteBatch sequence diagram shows the interactions between the WebSphere

Commerce Payments framework and cassette resulting from a DeleteBatch
command from the merchant shopping software to WebSphere Commerce
Payments.

Merchant Server Framework Cassette

DeleteBatch(batch data)

® retrieveBatch
® compose DeleteBatchRequest with Batch
® obtain locks:

Batch (write)

Account (read)
MerchantAdmin (read)
Cassette (read)
PayServer (read)

e ensure cassette, merchant, and account
objects are active

service (DeleteBatchRequest, APIResponse)

® ensure delete batch
is allowed

® remove batch
from cache

® delete batch from
database

APIResponse . returnCodes

o release locks

APIResponse . returnCodes

80 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

BatchPurge API sequence

This BatchPurge sequence diagram shows the interactions between the WebSphere

Commerce Payments framework and cassette resulting from a BatchPurge
command from the merchant shopping software to WebSphere Commerce
Payments.

Merchant Server Framework Cassette

BatchPurge(batch data)

® retrieveBatch
® compose BatchPurgeRequest with batch
® obtain locks:

Batch (write)

Account (write)

Order (write)
MerchantAdmin (read)
Cassette (read)
PayServer (read)

e ensure cassette, merchant, and account
objects are active

service (BatchPurgeRequest, APIResponse)

® ensure purge batch
is allowed

® remove payments
and credits from
the batch

® update the batch
state and reinitialize
state variables

APIResponse . returnCodes

e release locks
APIResponse . returnCodes

Chapter 2. Understanding the WebSphere Commerce Payments framework

81

CloseOrder API control sequence
The CloseOrder sequence diagram shows the interaction between the WebSphere

Commerce Payments framework and cassette resulting from a CloseOrder
command from the merchant shopping software to WebSphere Commerce
Payments.

Merchant Server Framework Cassette

Close Order (order)

® Retrieve order from cache

e compose CloseOrderRequest
with order

@ obtain locks:
Order (write)
MerchantAdmin (read)

Cassette (read)
PayServer (read)

e ensure cassette, merchant and account
objects are active

service (CloseOrderRequest, APIResponse)

o if delete specified, delete
all associated payments
and credits as well as
Framework order object

e else update Framework
order state

e commit to database
APIResponse.returnCodes

® release locks

APIResponse.returnCodes

82 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

CancelOrder API sequence
The CancelOrder sequence diagram shows the interaction between the WebSphere

Commerce Payments framework and cassette resulting from a CancelOrder
command from the merchant shopping software to WebSphere Commerce
Payments.

Merchant Server Framework Cassette

Cancel Order (order)

® Retrieve order from cache

e compose CancelOrderRequest
with order

® obtain locks:
Order (write)
MerchantAdmin (read)

Cassette (read)
PayServer (read)

@ ensure cassette, merchant and account
objects are active

service (CancelOrderRequest, APIResponse)

o if delete specified, delete
all associated payments
and credits as well as
Framework order object

e else update Framework
order state

® commit to database
APIResponse.returnCodes

® release locks

APIResponse.returnCodes

Chapter 2. Understanding the WebSphere Commerce Payments framework 83

Protocol message API sequence
This sequence diagram shows the interaction between the WebSphere Commerce

Payments framework and cassette when a protocol message specific to the cassette
is received from the outside world.

Outside World ComPoint Framework Cassette
establishConnection()

Cassette-specific
protocal message
T e,

® Create cassette connection
object derived from
ETillConnection

(ETillConnection) Cassette Connection

createProtocolRequest(Etill COnnection)

e Decode/parse
protocol messages

® Create cassette
request object
derived from
ProtocolRequest
(ProtocolRequest) CassetteRequest object

® Look up order using order and merchant
numbers from ProtocolRequest object

e Put order object in Request

® obtain locks:

Cassette (read)
PayServer (read)
Order (write)
Merchant (read)
AccountAdmin (read)

service (ProtocolRequest,
ProtocolResponse)

® Protocol specific
processing of
incoming message

e Update persistent
information as
appropriate

® Database commits
as necessary

® release locks

optional protocol response message

84 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

CreateBatch internal sequence
This sequence illustrates the internal flows required to create a new batch. A batch

can be created by the framework or the cassette. For example, a cassette would
create a new batch for a payment or credit that doesn’t fit into an existing batch.
This internal sequence can be invoked by either the framework (typically as the
result of a BatchOpen command as shown in |”BatchOpen API sequence” on|

or by the cassette when a batch must be created using the implicit style.

Framework or Cassette Framework Cassette

supervisor.createBatch(merchantNumber, accountNumber, paymentType)

® jnitialize batch number and batch ID
® create the FrameworkBatch object

new CassetteBatch(Batch, ParameterTable)

® create new
CassetteBatch

CassetteBatch

® put the complete Batch in the batchCollection

FrameworkBatch

Chapter 2. Understanding the WebSphere Commerce Payments framework 85

RetrieveBatch internal sequence
This sequence is invoked by the framework or the cassette to gain access to a given
Batch object.

Framework or Cassette Framework Cassette

Supervisor.retrieveBatch(merchantNumber, batchNumber)

® retrieve the batch from the cache

® |f batch not found in cache:
® query the database for the batch
® add the batch to the cache
® get payment and credit transaction
details known to the Framework

resurrectCassetteBatch(Batch)

® create new
CassetteBatch

® populate the
CassetteBatch
from the database

CassetteBatch

CassetteBatch

86 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

RetrieveOrder internal sequence
The RetrieveOrder internal sequence is invoked by the framework or the cassette
to gain access to a given Order object.

Framework or Cassette

Framework Cassette

Supervisor.retrieveOrder(merchantNumber, orderNumber)

Order

check order cache for the Order.
If it is not found:

® retrieve the Framework Order
object from the database and
build the in-memory object

resurrectCassetteOrder(FrameworkOrder)

® retrieve the cassette’s
CassetteOrder object
from the database and

. build the in-memory object
CassetteOrder object

bind the CassetteOrder object with
the Framework Order

add the Order to the Order cache

Chapter 2. Understanding the WebSphere Commerce Payments framework 87

Service queue internal sequence
The Service Queue sequence is invoked by the cassette to schedule a work item to
be executed on one of the framework’s service threads.

Framework Cassette

® construct a CassetteWorkltem

Supervisor.addltemToServiceQueue(CassetteWorkltem)

® add item to service queue in first in, first out order

® continue processing, eventually
moving on to other requests

Service thread:
® when the queued item reaches the front of

the queue, an available service thread pulls
it off of the queue for processing

® obtain locks associated with the CassetteWorkltem

CassetteWorkltem.doYourWork()

® process the work item

® release locks

® move on to next item on queue

88 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Timer queue internal sequence

The Timer queue internal sequence is invoked by the cassette to schedule a work

item to be executed on one of the framework’s service threads after a specified

amount of time.

Framework Cassette

® construct a CassetteWorkltem

® construct a TimetableTransaction
containing the CassetteWorkltem

Supervisor.addltemToTimerQueue(TimetableTransaction)

® add item to Timer queue in order of
expiration time

® continue processing, eventually
moving on to other requests

Timer thread:
® when timer for queued TimetableTransaction
expires, the item is removed from the timer
queue and placed in the service queue

Service thread:

® when the queued item reaches the front of
the queue, an available service thread pulls
it off of the queue for processing

® obtain locks associated with the CassetteWorkltem

CassetteWorkltem.doYourWork()

® process the work item

® release locks

® move on to next item on queue

Chapter 2. Understanding the WebSphere Commerce Payments framework

89

90

Query command processing

For all Query commands, the main interface between the framework and the

cassette is the CassetteQuery object’s query method.

Query API sequence

The Query sequence diagram shows the interactions between the WebSphere
Commerce Payments framework and the cassette resulting from any of the Query

API commands.

Application Web Server & Web Sphere Payment Servlet Framework

Servlet Engine

Cassette

QUERYxxx

doPost(request, response) ® parse and validate command

e validate user access rights

e route command based on command

name

® prepare and execute single SQL
query for all requested Framework
objects

e build set of in-memory Framework objects
from result set

e for each cassette associated with the set
of Framework objects:

e build vector of only the Framework
objects associated with this cassette

® build PSApiResult XML document
with results and wrap in response

response

HTTP response
with XML document

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

cassetteQuery.query(QueryRequest, vector)

® prepare and execute

singleSQL query to

retrieve all of the cassette’s
extension objects associated
with the input Framework
objects. For queries of
administration objects,

also retrieve any required
MerchantCassetteObjects
or SystemCassetteObjects
from the database

for each cassette object,
createa Java object

that contains the data
items to be exposed to
applications

combine the cassette
objects with their respective
Framework objects.
Cassette extensions are
combined as
CassetteExtensionObjects
and any related
xxxCassetteObjects

are represented as
CassetteConfigObjects

vector with combined results

Responsibilities and services

Framework responsibilities include:

* [“Access control”|
+ |“Order and batch caching”|
* |“Threading” on page 92

+ |“Synchronization” on page 94

+ [“Parameter validation” on page 96|

+ [“Background and timed operations” on page 99

» |“Receiving protocol messages from the outside world” on page 102

* [“Database access” on page 102

* [“Event notification” on page 10€|

2

* [“Error logging” on page 115
. "’Debug tracing” on page 119-|

Access control

One of the key security features provided by WebSphere Commerce Payments for
hosted payment services (a WebSphere Commerce Payments that supports many
different merchants) is access control. The access control feature of the framework
works in conjunction with WebSphere Application Server’s user authentication
services to ensure that each merchant is only allowed to view or manipulate his or
her own data.

Because all of the WebSphere Commerce Payments access control facilities operate
transparently to the cassette, cassette writers do not have to worry about this issue.
However, as new functionality is added to WebSphere Commerce Payments, access
control services may be added to the cassette programming interface if it becomes
necessary for cassettes to validate specific operations to the roles maintained for
the requesting user or application. For example, if your cassette processes sensitive
data, you may want to restrict who should view data returned in query command
results. See ["Protecting sensitive data” on page 29| for more information.

For more information on access control, see the WebSphere Commerce Administration
Guide.

Order and batch caching

The framework ensures that there is only one in-memory object representing an
Order and all associated data in existence at any given time. It does this by
managing a cache of framework Order objects. Order objects are placed into this
cache when they are first created and as a result of an internal call to the
Supervisor.retrieveOrder method and they will remain in the cache until they are
no longer being referenced by any cassettes. The framework tracks references
internally, so it knows when it is safe to flush Orders from the cache without any
explicit input from the cassette.

The framework also ensures that there is only one in-memory object representing
each Batch by maintaining a cache of framework Batch objects. Batch objects are
placed into the Batch cache when they are created and when the
Supervisor.retrieveBatch method is called inside of WebSphere Commerce
Payments. Batches remain in this cache as long as they are open. Batch objects
contain lists of framework Payment and Credit objects. There are a number of
abstract methods defined in com.ibm.etill.framework.cassette.Cassette to support

Chapter 2. Understanding the WebSphere Commerce Payments framework 91

92

the framework’s caching. These methods either create or reinstantiate (resurrect)
the cassette-specific counterparts to the Order, Payment, Credit and Batch objects.
It is important to note that the cassette must not create or resurrect any of these
objects unless it is asked to do so by the framework.

The framework will ask the cassette to create new objects, as they are needed
based on incoming API commands. The framework will ask the cassette to
resurrect objects when operations on those objects are requested but the objects are
not found in the cache. Cassettes should not attempt to maintain any of these
objects in-memory across service calls. The framework will retrieve the required
objects from the cache, or resurrect them using a call to the cassette. The
framework will hand the necessary objects to the cassette using the service call.
These objects may be safely used by the cassette until the service call returns but
must not be held beyond the return of the service call.

Cassettes must be very careful to ensure that they do not inadvertently subvert the
framework’s ability to deliver on its guarantees concerning in-memory objects.
Specifically, cassettes:

* Should not save references to these objects across service calls

* Should not pass references to these objects to another thread, including service
threads

* Should not keep their own cache or lists of in-memory objects
* Should not make their own "copies” of any of these in-memory objects

Long-lived references are dangerous because the cassette has no way of knowing
when cached objects might be flushed from the cache or when administrative
objects might be deleted or replaced. Creating copies of the objects would violate
the framework’s guarantee of a single in-memory representation of the data and
the associated synchronization of operations on payment data.

As mentioned above, the framework hands the objects necessary to process each
service call to the cassette when the service call is made. However, if the cassette
needs to access any objects that are not passed with the service request, it should
always ask the framework for the in-memory objects. The framework provides all
of the methods necessary to accomplish this.

Threading

Threading is an important part of the middleware server function provided by the
WebSphere Commerce Payments framework. The framework provides all of the
WebSphere Commerce Payments threads and controls the scheduling of cassette
processing on those threads. By assuming control over the threading model, the
framework ensures that it can change over time to improve performance and it
protects the cassette writer from some of the complexities of writing a middleware
server.

WebSphere Commerce Payments starts a fixed number of threads per cassette. The
number of threads started is configurable, as described in the performance tuning
parameters section of the WebSphere Commerce Administration Guide. The
architecture of WebSphere Commerce Payments, however, ensures that processing
can vary independently from the number of threads. As performance data becomes
available, future versions of WebSphere Commerce Payments will be modified to
provide improved performance by varying the number of threads, or even by

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

changing the thread model. A correctly-written cassette will benefit from these
performance improvements and will not have to be modified if the thread model is
changed.

Cassettes should never create or start a thread. This is very important! Violating
this rule could thwart the framework’s ability to provide performance
improvements, synchronization, and guaranteed-unique, in-memory copies of data.
Where cassettes need to move work to another thread, they should use the
framework-provided service threads. The framework also allows cassettes to delay
work until some future point in time, where it will run on a service thread. These
capabilities are described in [“Background and timed operations” on page 99|

Because the framework provides these services, any desire to start a thread
probably indicates a misunderstanding of the Cassette interface and the framework
functionality. Cassette function should be written with the basic assumption that
any piece of function can run at any time on any thread. Another way to think
about this is that any piece of cassette function can be running simultaneously
with any other piece. Examples of a "piece of function” are a single call to the
cassette’s service() method by the framework and a single call to one of the
cassette’s caching support functions, such as newCassetteOrder().

The synchronization, service thread, and timer thread sections in this guide
provide related information.

Chapter 2. Understanding the WebSphere Commerce Payments framework 93

Payment

API
Port
ComPoint — Vel or
created
by a
Payment
cassette API

Protocol
Threads

ComPoint
created
by a
cassette
Protocol Payment Servlet
Threads
Work
ltem
¢ oo Service
~a B Protocol Threads

Threads

= Queue

=
Q = Thread
O

= Connections to the outside world

e o o - The actual number of ComPoints depends
on which cassette points are configured

Figure 4. Payment Servlet thread model

Synchronization

The framework makes certain promises to the cassette when a service call is
made. The first is that there is one, and only one, in-memory copy of the
framework and cassette objects as defined in the framework payment data model.
This promise results from the object caching provided by the framework and
depends on the cassette’s cooperation in following the caching rules.

94 1BM WebSphere Commerce: Payments Cassette Kit Programming Guide

The second promise is that no other thread will modify (or, if necessary, even
access) those objects for the duration of the service call. This promise results from
the framework’s synchronization policy that also depends on the cassette’s
cooperation in following the caching rules. As long as the cassette follows the
caching rules, all synchronization is done within the framework without requiring
any action from the cassette.

The goal of the framework’s synchronization policy is first to ensure data integrity
and thread safety within the Payment Servlet and second to minimize the
granularity of the locks in order to provide for the best possible concurrency
between all of the threads in the Payment Servlet.

The framework’s synchronization policy is based on a list of rules that is
maintained with each request object. That is, each request object tells the
framework which objects need to be locked, and which type of lock to obtain for
each. Two different types of locks are supported:

Read lock
allows the holder to read data from the object with the guarantee that the
values contained in the object will not change while the lock is held.
Multiple threads may concurrently hold a read lock on an object. This is a
direct analogy to a shared read-only lock on a file.

Write lock
allows the holder to modify the contents of the object with the guarantee
that no other thread in the system is currently accessing the object. This is
a direct analogy to an exclusive write lock on a file.

The list of objects locked for each request varies, but always includes some subset
of the following:

Framework lock
controls access to the Payment Servlet itself. For all service requests, a
read lock is obtained on this object to ensure that the Payment Servlet is
not shut down before the cassette can finish processing the service call.

Cassette lock
controls access to the cassette. A read lock ensures that the cassette is not
stopped before it can finish processing the service call. A write lock allows
the cassette to modify its own runtime properties, start itself up or shut
itself down without adversely impacting any other request that is being
processed by the cassette.

MerchantAdmin lock
controls access to the merchant. A read lock ensures that the merchant is
not disabled or modified before the cassette can finish processing the
service call. A write lock allows the cassette to modify its
merchant-specific configuration information without adversely impacting
any other request that is being processed anywhere within the Payment
Servlet.

Account lock
controls access to the Account. A read lock ensures that the Batch with
which the service call is associated will not begin CLOSE processing
before the cassette can finish processing the service call. If communication
with an external entity (like a financial institution) is required, this lock
also ensures that messages can be exchanged with that entity in parallel
with other such messages from other Payment Servlet threads. A write lock

Chapter 2. Understanding the WebSphere Commerce Payments framework 95

96

prevents any other activity from taking place on the Account object. This
type of lock is obtained when a batch is being opened or closed.

Order lock
controls access to a given Order and all of its associated objects (that is,
framework Payments and Credits and cassette’s Order, Payment and
Credit objects). A read lock ensures that the Order or its associated objects
will not be modified before the cassette can finish processing the service
call. A write lock allows the cassette to modify the Order or any of its
associated objects without adversely impacting any other request that is
being processed anywhere within the Payment Servlet.

Batch lock
controls access to a given Batch object. A read lock ensures that the Batch
object will not be modified before the cassette can finish processing the
service call. A write lock allows the cassette to modify the Batch without
adversely impacting any other request that is being processed anywhere
within the Payment Servlet.

For a detailed description of the locking performed for each request, see the
Javadoc for OrderRequest, ProtocolRequest, and CassetteWorkltem. The class
description for each of these (except CassetteWorkItem - see method descriptions)
contains a table that presents this information.

Parameter validation

The framework provides cassette developers with the ability to provide the parsing
syntax rules for the cassette’s protocol data parameters. These rules are supplied
by the cassette through a Name parameter validation table. A cassette’s Name
parameter validation table should be built during cassette initialization. The table
should contain the parsing rules, expressed in terms of the various subclasses of
com.ibm.etill.framework.payapi.validator.SimpleValidator, for every protocol
data parameter that the cassette supports.

Note: Previous versions of WebSphere Commerce Payments used the
ParameterValidationItem class and its associated subclasses. If you used this
approach, you should now use the Validator classes.

Note that only one such table should exist for the cassette.

Each time the framework parses an incoming command that is directed toward the
cassette, it will call the following method on the cassette’s
com.ibm.etill.framework.cassette.Cassette object to access the cassette’s
validation table:

public Hashtable getParameterValidationTable()

After accessing the cassette’s table, the framework parses the protocol data
parameters according to the rule defined in the table.

The framework has a default parameter validation table that it will use if this
method is not overridden by the cassette developer. The default table is empty,
thus the default behavior is to not perform any parameter validation. If a cassette
developer wishes to do parameter validation in this way then a fully-populated,
cassette-defined Hashtable should be returned in the method
getParameterValidationTable() that is called by the framework whenever an API
command is received.

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

The cassette must create its own parameter validation Hashtable and populate it
with key-value pairs that correspond to each parameter it wishes to do validation
on. The key is a protocol data parameter keyword on an API command and the
value for that key is the appropriate subclass of the SimpleValidator class (for
example, StringValidator). The
com.ibm.etill.framework.payapi.validation.SimpleValidator class is the abstract
base class for all validation item classes. At a minimum, each of the validation item
classes take this information in the constructor:

* The parameter name
¢ The return code to return in the API response if parameter fails validation
* A boolean that indicates if null parameter values are allowed.

The following validation item classes are provided by the framework (and are
subclasses of ParameterValidatorItem):

Aliasing
allows you to define an alias for another protocol data keyword. This is
especially useful for defining keywords that are accessible from applications
that are coded to the Payment Server Version 1.2 compatibility interface, which
limits protocol data keywords to 16 characters (including the '$’). In version
3.1, the AliasValidationltem class is no longer needed. Everything can be
accomplished through the validator classes. For example, to allow
$AVS.STREETADDR to act as an alias for $AVS.STREETADDRESS, you would
code the following:
IParameterValidator val = // $AVS.STREETADDRESS

new StringValidator(

PD_AVS_STREETADDRESS,
RC_CASSETTE_AVS_STREETADDRESS, // 1053

false, // No null values

1, // Minimum length

24, // Maximum length

1508859 1 // ASCII (for now)
validationTable.put(PD_AVS STREETADDRESS, val); // $AVS.STREETADDRESS
validationTable.put(PD_AVS_STREETADDR, val) // $AVS.STREETADDR alias

BooleanValidator
does validation for boolean parameters.

ByteArrayValidator
does validation for byte array parameters. In addition to the required
parameters, a maximum length parameter must also be specified on the
constructor.

IntegerValidator
does validation for integer parameters. In addition to the required parameters,
a minimum value and maximum value must also be specified on the
constructor.

LongValidator
does validation for long parameters. In addition to the required parameters, a
minimum value and maximum value must also be specified on the constructor.

NumericStringValidator
does validation for numeric string parameters. This class is a subclass of
StringValidator. A numeric string parameter is a String parameter that always
represents a number (for example, 9876). In addition to the required
parameters, a minimum length, maximum length, minimum value and
maximum value must also be specified on the constructor.

Chapter 2. Understanding the WebSphere Commerce Payments framework 97

NumericTokenValidator
does validation for numeric token parameters. This class is a subclass of
StringValidator. A numeric token parameter is a String parameter that
represents a number with the following constraints: a null value is not allowed,
the numeric string cannot contain leading zeros, the numeric string cannot be
negative, the string has a minimum length of 1 and a maximum length of 9. In
addition to the required parameters, a minimum value and maximum value
must also be specified on the constructor.

NumericTokensValidator
does validation for a Vector of numeric token parameters. This class is a
subclass of StringValidator. A numeric token parameter is a String parameter
that represents a number with the following constraints: a null value is not
allowed, the numeric string cannot contain leading zeros, the numeric string
cannot be negative, the string has a minimum length of 1 and a maximum
length of 9. In addition to the required parameters, a minimum value and
maximum value must also be specified on the constructor.

PathValidator
does validation for path parameters. The validation will ensure that the
specified path is a valid directory name with write permission. In addition to
the required parameters, a maximum length must also be specified on the
constructor.

RestrictedStringValidator
does validation for string parameters that have character(s) that are not
allowed to be in the string. This class is a subclass of StringValidator. In
addition to the required parameters, a minimum length, a maximum length,
the encoding to use, and a string that indicates characters that must be
excluded from the string must also be specified on the constructor.

StringValidator
does validation for string parameters. In addition to the required parameters, a
minimum length, maximum length, and the encoding to use must also be
specified on the constructor.

Timestamp Validator
does validation for time stamp parameters. The passed in String parameter is
converted to a long (using 8859_1 encoding) and then converted into a
java.sql.Timestamp object using the public Timestamp(long time) constructor.
The cassette developer can use these framework classes as is, or can create
their own parameter validation classes by creating a subclass of the
appropriate framework validation item class.

Each validation item class has a method called:
protected Object validateAndInsertValue(string value, ParameterTable resultTable)

that does the validation of the parameter and, if valid, inserts it into a
ParameterTable. If the parameter is not valid, then an ETillAbortOperation
exception is thrown, using the return code that was specified in the constructor of
the ValidationItem class. Thus, the framework will detect those validation errors
that the cassette specified in the parameter validation table before control is ever
passed to the cassette. If all framework level parameter validation succeeds, then
the populated ParameterTable is passed from the framework to the cassette when
an API command needs to be processed. The ParameterTable contains key-value
pairs, where the key is the parameter name and the value is the value of the
protocol data that was passed in the API command.

98 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Examples:

public class SampleCassette extends Cassette

{

public static final String
public static final String
public static final String
public static final String
public static final String
public static final String
public static final String
public static final String

public static final short
public static final short
public static final short
public static final short
public static final short
public static final short
public static final short

public SampleCassette()

PD_ACCOUNTNUMBER

PD_ORDERFIELD1
PD_ORDERFIELD2
PD_ORDERFIELD3
PD_ORDERFIELD4
PD_ORDERFIELD5
PD_ORDERFIELD6

PD_ORDERFIELD6_ALIA

RC_ACCOUNTNUMBER

RC_ORDERFIELD1
RC_ORDERFIELD2
RC_ORDERFIELD3
RC_ORDERFIELD4
RC_ORDERFIELD5
RC_ORDERFIELD6

// Initialize the parameter mapping hashtable.

typeMapping.put (PD_ACCOUN

new NumericTokenValidator(PD_ACCOUNTNUMBER,RC_ACCOUNTNUMBER));
typeMapping.put (PD_ORDERFIELD1, new StringValidator(PD_ORDERFIELDI,
RC_ORDERFIELD1, false, 1, 32, "UTF8"));
typeMapping.put (PD_ORDERFIELDZ,

RC_ORDERFIELDZ, fals

typeMapping.put (PD_ORDERFIELD3,

RC_ORDERFIELD3, fals

typeMapping.put (PD_ORDERFIELD4,

RC_ORDERFIELD4, fals

typeMapping.put (PD_ORDERFIELD5,

RC_ORDERFIELD5, fals

typeMapping.put (PD_ORDERFIELD6,

TNUMBER,

"$ACCOUNTNUMBER"

"$ORDERFIELD1";
"$ORDERFIELD2";
"$ORDERFIELD3";
"$ORDERFIELDA";
"$ORDERFIELD5";
"$ORDERFIELD6";

= "$ORDERFIELD6_ALIAS";

(short) 10000;
(short) 10001;
(short) 10002;
(short) 10003;
(short) 10004,
(short) 10005;
(short) 10006;

new IntegerValidator(PD_ORDERFIELD2,

e, new Integer(0), null));

e));
e));

new TimestampValidator(PD_ORDERFIELD3,
new BooleanValidator(PD_ORDERFIELDA4,

new ByteArrayValidator(PD_ORDERFIELD5,

e, new Integer(32000)));

RC_ORDERFIELD6, false, 1, 32, "8859 1"));
typeMapping.put (PD_ORDERFIELD6 ALIAS, new AliasValidator(PD_ORDERFIELD6 ALIAS,

PD_ORDERFIELDS,));

public Hashtable getParameterValidationTable() { return typeMapping;}

}

Background and timed operations

The framework maintains a timer thread and a pool of service threads that can be

used by cassettes to schedule future work and to off-load work from the running

new StringValidator(PD_ORDERFIELDS6,

thread. There is a single service queue that is served by the pool of service threads.
The service queue is a queue of objects that implement the

Chapter 2. Understanding the WebSphere Commerce Payments framework

99

100

com.ibm.etill.framework.supervisor.WorkItem interface. Service threads take
one of these objects off the queue and call WorkItem.doYourWork()

There is a single timer queue served by a single timer thread. The timer queue is a
queue of TimeableTransaction objects (that is, timeable WorkItems). The timer
thread removes TimeableTransactions from the queue when their waiting period
has expired. The WorkItem is removed from the TimeableTransaction and queued to
the service queue where the work will actually be performed by one of the Service
threads. All objects in the service queue must implement the WorkItem interface.
There is no synchronization performed when Workltems are executed on a Service
Thread unless the WorkItem implementation itself ensures data integrity and
thread safety.

The framework defines a WorklItem that is useful for cassettes, called
CassetteWorkItem (com.ibm.etill.framework.cassette.CassetteWorkItem).
CassetteWorkItems must be used very carefully since they represent new entry
points into the cassette. CassetteWorkItems are essentially internally-generated
requests. The issues regarding assurance of object uniqueness (one in-memory
representation of the data) and synchronization are similar to those encountered
for externally-generated events, such as API and protocol requests. As with any
other subclass of the CassetteRequest class, each CassetteWorkItem contains a list
of locks that need to be obtained before asking the cassette to process the request.
This allows synchronization to occur, thus ensuring data integrity and thread
safety for the CassetteWorkltem. This list may be formed in one of three ways
(CassetteWorklItem has a different constructor for each):

1. If the CassettelWorkItem is constructed based on an existing instance of a
CassetteRequest object, then the list of locks will be copied from that object.

2. If the CassetteWorkItem is constructed only with a request token, then the list
of locks will consist of:

* A Write lock on the CassetteAdmin object
* A Read lock on the PayServer object

Note that these are rather coarse-grained locks (all other activity under the
Cassette will be blocked during the eventual processing of this request).

3. If the CassettelWorkItem is constructed with a request token and a merchant
number, then the list of locks will consist of:

* A Write lock on the MerchantAdmin object
* A Read lock on the CassetteAdmin object
* A Read lock on the PayServer object

Note that these are rather coarse-grained locks. All other activity under the
Merchant will be blocked during the eventual processing of this request.

What this means is that for most CassetteWorkItems (those constructed based on
APIRequest objects), the framework will obtain the same set of locks when
processing the workitem as it did for the original API request object.

Finally, it is important for cassettes to remove CassetteWorkItem objects that are
pending on the framework’s Service Queue or Timer Queue when the
administrative object with which the work item is associated is stopped (disabled).
For example, assume this scenario:

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

* While processing a Deposit command, a cassette builds a CassetteWorkItem
based on the input PaymentTransactionRequestltem and adds this work item to
the Timer Queue by calling Supervisor.addItemToTimerQueue, requesting a
timer interval of 15 minutes.

¢ Three minutes later, the AccountAdmin object under which the Deposit
command was being processed is disabled by the merchant administrator.

In this example, when the cassette’s service method is called with the
STOP_ACCOUNT_TOKEN, it must remove the CassetteWorklItem from the Timer
queue by calling Supervisor.removeltemFromTimerQueue. Leaving work items on
either of these queues after stopping the associated administrative object will cause
an error to occur when the framework attempts to process them.

This example shows how to use a CassetteWorkltem and the framework’s timer
queue to write a record to the trace files every ten minutes:

// An example of putting a debug trace entry in the trace file every
// ten minutes.

e —
] —
// Code implemented by a cassette writer to add a work item.
/= e e e e e
// Set the first time for this work item to execute in 10 minutes from now.
long timeBetweenWorkItems = 1000 * 60 * 10;
long nextWorkItem = System.currentTimeMillis() + timeBetweenWorkItems;
// Create a TimeableTransaction and add it to the timer queue.
TimeableTransaction timeableTrx = new TimeableTransaction(this,nextWorkItem);
Supervisor.addItemToTimerQueue(timeableTrx);
A —
// Work item class implemented by a cassette writer.
= e e e

public class ExampleWorkItem extends CassetteWorkItem

{

private void queueWorkItem()

{
// set the time for this work item to execute again in 10 minutes from now.
long timeBetweenWorkItems = 1000 * 60 * 10;
long nextWorkItem = System.currentTimeMillis() + timeBetweenWorkItems;

// Create a TimeableTransaction and add it to the timer queue.
TimeableTransaction timeableTrx = new TimeableTransaction(this,nextWorkItem);
Supervisor.addItemToTimerQueue(timeableTrx);

}

// The method necessary to implement when extending CassetteWorkItem.
// This is the method called when this WorkItem gets executed.
public void doYourWork()
{

// Do the necessary work.

Trace.traceDebug("CASSET", "ExampleWorkItem.doYourWork");

Chapter 2. Understanding the WebSphere Commerce Payments framework 101

102

//put the item back on the queue.
queueWorkItem();

}
}

Receiving protocol messages from the outside world

The framework provides a communications hierarchy that must be subclassed, or
used directly, to create Java classes that know how to send and receive your
payment protocol’s protocol messages. ComPoint is a Java interface that represents
the "listening port” to the outside world. In Java Socket terms, a ComPoint would
be a ServerSocket. In e-mail terms, this could be an e-mail acceptor. In file terms,
this could be an object that watches for new files in a particular location.

ETil1Connection is an interface that represents a single connection received by the
ComPoint. In Java Socket terms, an ETi11Connection would be a Socket. In e-mail
terms, this would represent a single piece of e-mail. In file terms, this would be a
single file.

To receive payment-protocol specific messages, threads must be dedicated to
listening and incoming messages must be parsed. The framework provides the
dedicated threads. Cassettes parse incoming messages, using objects of types
derived from ComPoint and ETillConnection and defined by the cassette. The
actual mechanics of listening (socket, e-mail, change to a file, etc.) are known only
by the cassette. The cassette provides ComPoints that the framework plugs
together with ProtocolThreads to provide the function of receiving protocol
messages from the outside world.

Database access

The framework provides several very flexible and powerful database mechanisms:

* The Archivable interface allows cassettes to enable any of its objects for storage
and retrieval in the WebSphere Commerce Payments database.

Archivable defines methods through which the object can be created, updated
and deleted in the database. These methods must include the appropriate JDBC
calls to perform the requested function. When a commit point is reached, the
thread’s CommitPoint object will call these methods as appropriate.

All of the framework’s financial and administrative objects implement the
Archivable interface, because they are all persistent objects. In addition, the
primary cassette object interfaces CassetteOrder, CassetteTransaction, and
CassetteBatch. All implement Archivable. However, any class that you decide
should be represented in its own database table may implement Archivable. For
more detail, see com.ibm.etill.framework.archive.Archivable.

* The Restorable interface allows cassettes to enable any of its objects to restore
itself from data in the WebSphere Commerce Payments database. Restorable
defines the method public void restoreRecord() that would be implemented
by the cassette developer for any class that implements the Restorable interface.
This method must include the appropriate JDBC calls to obtain the record to be
restored from the database and populate the corresponding object with the data
obtained from the database. When a commit point is reached, the thread’s
CommitPoint object will call this method as appropriate.

For more information, see com.ibm.etill.framework.archive.Restorable.

* The thread’s CommitPoint collects objects to be added to, updated in, restored
from, and deleted from the WebSphere Commerce Payments database and later
executes those operations within a single atomic commit point.

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

The framework ensures that each thread always has an open CommitPoint object
through which database operations can be performed. This object is accessed
through the Supervisor.getThreadCommitPoint method.

A CommitPoint provides methods to add Archivable objects to any of three lists
of operations to be performed the next time the CommitPoint is instructed to
perform a commit operation:

— A list of objects to be added to the WebSphere Commerce Payments database

— Alist of objects to be updated in the WebSphere Commerce Payments
database

— Alist of objects to be deleted from the WebSphere Commerce Payments
database

CommitPoint also provides a commit method. When this is called, each of the
lists is traversed. First, some optimizations are performed to minimize the
amount of JDBC calls. For example, if the same object is on both the "add” and
"delete” lists, then both entries are simply removed from the lists. Once the
optimizations are complete, then a method is called for each Archivable object
on every list:

— For the "add” list, the createRecord method is called
— For the "update” list, the updateRecord method is called
— For the "delete” list, the deleteRecord method is called

Once all of these method calls have completed, then the CommitPoint commits
the transaction to the database.

A CommitPoint also provides a method to add Restorable objects to a restore
list. The restore list is a list of objects whose contents are to be restored from the
database if the CommitPoint’s noCommit method is called. In this case, the
in-memory objects are refreshed to reflect what is in currently in the database.

The noCommit method clears all of the add, update and delete lists without
performing any of the JDBC calls. This is roughly analogous to a "rollback,”
although in this case, the database never gets involved. For more detail, see
com.ibm etill.framework.archive. CommitPoint.

Cassette-specific financial objects (for example, CassetteOrder, CassetteBatch)
should never be added directly to any of the CommitPoint’s lists. Only the
framework financial objects (for example, Order, Batch) should be added to these
lists. When the CommitPoint eventually calls the framework objects’
createRecord, updateRecord, or deleteRecord methods, those methods will
subsequently call that method on the corresponding cassette object’s.

Binary Fields are arbitrary lengths (potentially very large) of data that a cassette
must record as part of one of its records. Because different database products
have different characteristics and behaviors where it comes to large binary fields,
the framework provides methods that will break the field up into as many
segments as required by the underlying database product. The framework will
also handle any other idiosyncrasies that exist. The cassette writer only has to
treat the data as a single binary field. Here’s how it works:

— All binary fields are stored in a framework-supplied table named
ETBINARYDATA.

— Cassettes never access ETBINARYDATA directly. Rather, all access to the data
in this table is made through the framework’s access methods on the
ETi1TArchive class. These are ETi11Archive.createBinaryField,

Chapter 2. Understanding the WebSphere Commerce Payments framework 103

ETi11Archive.readBinaryField and ETi11Archive.deleteBinaryField. Note
that no "updateBinaryField” method exists. To update an existing binary field,
you must create a new one and delete the old one.

— All binary fields are uniquely identified with a "uniqueKey"” that is generated
by the Supervisor.getUniquekey method.

— Since the binary fields reside in a dedicated database table, references to these
fields from other tables must be made using the uniqueKey. Note that
ETil1Archive.addExternalField is a convenience method that will allocate
the uniqueKey and perform the association as a single operation.

* The ETillArchive class provides several other methods that:
— Begin and complete transactions through JDBC
— Simplify the assembly of prepared statements within Archivable methods
— Build and execute SQL query commands through JDBC

— Provide other useful functions related to the WebSphere Commerce Payments
database.

For more detail, see ETillArchive.

All access to JDBC through ETi11Archive must be synchronized using the
ETi1TArchive.getArchivelLock method. This gross level lock protects against a
variety of concurrency problems that have existed in JDBC drivers for different
database products. In addition, the cassette must ensure that no other locks are
obtained while the database lock is held. This means that the cassette must not call
framework services that perform other synchronization calls when the archive lock
is held. Doing so risks a deadlock situation.

Note: Gross level locking is necessary due to deadlock encountered with some
JDBC drivers.

The following example shows how to add, update, and delete objects from a
database:

// Code example adding, updating and deleting objects from a database.
S

//When a new batch is opened, it is added to the database
Supervisor.getThreadCommitPoint().addToCreateList (fwkBatch);

// And when the cassette is sure it wants to keep this change
// a commit is called
Supervisor.getThreadCommitPoint().commit();

// An update is needed if the batch changes in some

// significant way, for example its state.
Supervisor.getThreadCommitPoint().addToUpdatelList(fwkBatch);
Supervisor.getThreadCommitPoint().commit();

// 1f deleting a batch is allowed by your protocol, a

// cassette writer would want to remove the batch from

// the Database.
Supervisor.getThreadCommitPoint().addToDeletelList(fwkBatch);

// 1f the cassette goes down an error path and decides
// to erase the last DB operations since the last commit

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

// a noCommit is called and the objects on the restorelList
// are restored from the database.
Supervisor.getThreadCommitPoint().noCommit();

Event notification

Events are external asynchronous notifications of a change that has occurred within
WebSphere Commerce Payments or one of its cassettes. When they are generated,
the framework’s Event Notification service sends the event to each event listener
application that has registered for this type of event. See the WebSphere Commerce
Payments Programming Guide and Reference for a more complete description of the
framework events, Event Notification service, and the Event Listener.

Most cassettes will never need to take any explicit action with respect to events
since the most common types of events (state change events and network
management events) are generated automatically by the framework. However, it is
possible for cassettes to define and generate their own events using these steps:

1. Instantiate and initialize an appropriate
com.ibm.eti11.framework.eventmgr.CassetteEvent object,

2. Add any cassette-specific parameters to the event object using the
setCassetteData method

3. Add the new event object to the thread’s CommitPoint through that object’s
addEventTolist method

4. Call (eventually) the CommitPoint object’s commit method.

When the commit call executes, the CommitPoint passes all of the events on its event
list to the framework’s Event Notification service for delivery to the appropriate
event listeners.

Here is an example of the code to perform these steps:

// create cassetteEvent object
CassetteEvent ce = new CassetteEvent(this, cassetteName, merchantNumber);
// Create a hashtable and load it with our event data
Hashtable cassetteHashtable = new Hashtable();
cassetteHashtable.put("csKeywordl", "csValuel");
cassetteHashtable.put("csKeyword2", "csValue2");
// Reference hashtable from the event object
ce.setCassetteData(cassetteHashtable);

// Commit this object to the database and send our event to registered
// event listeners
Supervisor.getThreadCommitPoint().commit();

For more detail, see CassetteEvent.

Map your cassette AVS codes to the WebSphere Commerce
Payments common AVS result codes

One of the WebSphere Commerce Payments merchant integration goals is that the
installation of new cassettes into a merchant environment involves minimal work
for the merchant. One framework service that supports this goal is the definition of
common Address Verification Service (AVS) result codes. AVS is a primarily
US-specific credit card fraud detection mechanism that may be implemented by a
cassette if the payment protocol supports it. Since AVS result codes are not
standardized, the framework has designed a common set of AVS result codes that
all cassettes utilizing AVS should use. Thus, the merchant software will only have
to understand one set of AVS codes.

Chapter 2. Understanding the WebSphere Commerce Payments framework 105

If you have an existing cassette or are writing a new one, you should determine
how to map your cassette-specific AVS codes to the common AVS results codes.
The table below shows the framework defined common AVS result codes. The

constants are defined in com.ibm.etil1.framework.payapi.PaymentAPIConstants

106 1BM WebSphere Commerce: Payments Cassette Kit Programming Guide

Table 4. Framework defined AVS result codes

Common AVS code PM constant name Explanations

0 AVS_COMPLETE_MATCH Both the 5-digit and 9-digit
postal code and street address
are exact matches.

1 AVS_STREETADDRESS_MATCH | The street address matches
but the postal code does not
match.

2 AVS_POSTALCODE_MATCH The 5-digit or 9-digit postal

code matches but the street
address does not match.

3 AVS_NO_MATCH Neither the street address nor
the postal code matches.
4 AVS_OTHER_RESPONSE This constant maps the

following: address
information unavailable,
system unavailable maybe
due to timeout, card type not
supported, or transaction
ineligible AVS return codes.

The following table contains suggested text messages that correspond to the AVS
result code constants. To provide consistency across all cassettes, you are
encouraged to use these messages when displaying the common AVS code in the
UL These message strings are not supplied by the framework, and are the
responsibility of the cassette developer to supply in the appropriate properties file.

Table 5. Suggested text messages

Constant Message text

AVS_COMPLETE_MATCH The street address and postal code
completely match.

AVS_STREETADDRESS_MATCH The street address matches but the postal
code does not.

AVS_POSTALCODE_MATCH The postal code matches but the street
address does not.

AVS_NO_MATCH No match in street address and postal code.

AVS_OTHER_RESPONSE Request cannot be processed at this time due
to one of the following: address information
is unavailable, system unavailable, maybe
due to timeout, card type not supported,
data not available.

Asynchronous Auto Approve

Prior to WebSphere Payment Manager Version 2.2, when the Merchant Server
software issued an AcceptPayment command or a ReceivePayment command with
the "autoApprove” flag (APPROVEFLAG=1), the cassette was expected to perform
approval processing before completing the request and returning the APIResponse.
The APPROVEFLAG keyword on the AcceptPayment and ReceivePayment API
commands now allows the specification of asynchronous approvals. The
APPROVEFLAG keyword can be specified as 0 (indicating that automatic approval
should not occur), 1 (indicating that automatic approval should occur, or 2
(indicating that an automatic approval should occur asynchronously).

Chapter 2. Understanding the WebSphere Commerce Payments framework 107

108

Unlike their synchronous counterpart, asynchronous automatic approvals are
implemented completely within the framework Therefore, when asynchronous
approval is specified in the APPROVEFLAG, the cassette should treat the order
creation step (the AcceptPayment or ReceivePayment) as if no automatic approval
processing were specified at all; that is, the APIResponse should be returned once
the order creation process has completed. The framework will then schedule the
Approve to occur on a separate thread, thus, the approval process is initiated
asynchronously. One of the benefits of doing the approval asynchronously, is that
the buyer (or some other agent) does not have to wait for the approval to occur
before receiving a response from the original purchase request (that is, the
AcceptPayment or ReceivePayment command that was issued on behalf of the
buyer). It should be noted that if autoDeposit is also specified (through the
DEPOSITFLAG), the deposit is done in a synchronous manner after the approval;
that is, there is no concept of asynchronous autoDeposit.

Because asynchronous automatic approvals are implemented in the framework, no
cassette changes should typically be required to support this feature. From a
cassette perspective, the asynchronous approval initiated by the framework will
appear to the cassette as an ApprovalRequest, and should be serviced in the same
way an ApprovalRequest is when the Approve APl command is issued. The
cassette can determine if it should perform a synchrounous automatic approval in
the following ways:

* For the AcceptPayment command, if the method
com.ibm.etill.framework.cassette.AcceptPaymentRequest.getApproveFlag()
returns true. Note that this method will return true ONLY if synchronous
automatic approval was requested. For asynchronous autoApprove, this method
returns false.

* For the ReceivePayment command, the method
com.ibm.etil1.framework.payapi.Order.getApproveFlag() returns 1. Note that
this method will return the effective numeric value of the APPROVEFLAG value
(0, 1 or 2) in all cases.

The following table illustrates what action should be taken by the cassette on the
AcceptPayment and ReceivePayment APl commands:

APPROVEFLAG DEPOSITFLAG Cassette action

0 0 order creation process.

0 1 order creation process. Value of 1 for
DEPOSITFLAG should be ignored.

1 0 perform approval processing after order
creation.

1 1 perform approval processing and deposit
processing after order creation.

2 0 order creation process

2 1 order creation process

For both asynchronous and synchronous auto-approves, the following conventions
are used:

* Approval amount is the amount of purchase if PAYMENTAMOUNT is not
specified in the API command.

e Payment number is 1 if PAYMENTNUMBER is not specified in the API
command.

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

* If auto-deposit is specified, the deposit amount is the same as the approval
amount.

Account settings related to AcceptPayment and
ReceivePayment

The AcceptPayment and ReceivePayment API commands allow the specification of
autoApprove and autoDeposit flags that indicate whether approvals and deposits
should be attempted automatically. In Payment Manager versions 2.1.5.0 or higher,
a new feature for specifying autoApprove and autoDeposit is introduced. This
feature provides merchants with an option, based on their relationship with their
acquirers, to specify autoApprove or autoApprove with autoDeposit on an account
basis rather than on an API basis. For example, if a particular acquirer only
supports Sales transactions (autoApprove with autoDeposit), then the account
settings associated with that acquirer can be specified accordingly. This allows the
merchant server software to not have to pass the autoApprove and autoDeposit
flags (APPROVEFLAG and DEPOSITFLAG) on each
AcceptPayment/ReceivePayment command; the account settings will determine
the values for those flags based on what an acquirer requires.

Since an Account represents a relationship between a merchant and an acquirer,
the flags that indicate whether a purchase should be automatically approved and,
optionally, deposited, are associated with the
com.ibm.etill.framework.admin.AccountAdmin object. As a result, during creation
and modification of an Account (via the API commands CreateAccount and
ModifyAccount), these flags can be specified. The new framework keywords for
the CreateAccount and ModifyAccount API commands are:

¢ APAPPROVEFLAG - autoApprove flag for AcceptPayment command
* APDEPOSITFLAG - autoDeposit flag for AcceptPayment command
¢ RPAPPROVEFLAG - autoApprove flag for ReceivePayment command
* RPDEPOSITFLAG - autoDeposit flag for ReceivePayment command

The APAPPROVEFLAG and RPAPPROVEFLAG can have the following values:
* 0 - no auto-approval (default)
¢ 1 - synchronous auto-approval

* 2 - asynchronous auto-approval (see the section [“Asynchronous Auto Approve”]
for details)

Since both the AcceptPayment and ReceivePayment API commands and the
Account object can indicate auto-approval and autoDeposit, the precedence rules
are as follows:

* If the value of the API flag is not 0, use the value from the APL

* If the value of the API flag is 0 or not specified, use the value in the account
object.

For example, for an AcceptPayment command, if the APPROVEFLAG is 0, and the
corresponding account object’'s APAPPROVEFLAG is 1, then a synchronous
autoApprove should occur.

Cassette changes required for AcceptPayment

If your cassette only supports AcceptPayment, then the code you write to handle
autoApprove and autoDeposit from the command line will automatically handle
the account-based flags. This is due to the fact that the framework ensures that the
autoApprove and autoDeposit flags in the AcceptPaymentRequest contain the
appropriate value based on the precedence rules stated above. The framework can
achieve this because of the following sequence of events:

Chapter 2. Understanding the WebSphere Commerce Payments framework 109

* When the AcceptPayment command comes in, the framework creates a
framework Order object (com.ibm.eti11.payapi.Order), and then calls the
cassette method newCassetteOrder().

* The cassette creates a cassette-specific order object. It is the cassette’s
responsibility at this point to associate an account with the newly created
cassette order.

e The framework obtains the account number from the cassette order and retrieves
the associated AccountAdmin object so that the account settings for the
APAPPROVEFLAG and APDEPOSITFLAG can be determined.

* The framework then asks the framework Order object to adjust its values for the
approve flag and deposit flag based on and the precedence rules. The method
used to accomplish this is

com.ibm.etil1.framework.payapi.Order.adjustAutoFlagsBasedOnAccountSettings(AccountAdmin, boolean)

The AccountAdmin object obtained in the previous step is the first parameter to
this method. The boolean parameter is an indication if the command being
processed is an AcceptPayment command.

* The framework creates an AcceptPaymentRequest, populating it with the newly
determined values for autoApprove and autoDeposit. The request is sent to the
cassette via the service() method.

* As always, the cassette can ascertain whether an autoApprove or autoApprove
with autoDeposit should be performed by calling the following methods:

com.ibm.etil11.framework.cassette.AcceptPaymentRequest.getApproveFlag()
com.ibm.etill.framework.cassette.AcceptPaymentRequest.getDepositFlag()

Cassette changes required for ReceivePayment

If your cassette supports ReceivePayment, then cassette-specific code is required
since the cassette cannot determine which account is associated with the order
until all protocol-specific events have occurred (i.e., until the cassette has received
all of the payment instructions from the consumer). Once the cassette has
determined which account is associated with the order, it must do the following:

* Obtain a reference to the framework’s account object
(com.ibm.etill.framework.admin.AccountAdmin) that is associated with the
order.

* Call the following:

com.ibm.etil1.framework.payapi.Order.adjustAutoFlagsBasedOnAccountSettings(AccountAdmin, boolean)

passing in the Account object that was obtained in the previous step, and false
(which indicates that this is not an AcceptPaymentRequest). This causes the
framework Order object to adjust it’s values for the approve flag and deposit
flag based on and the precedence rules.

* From this point forward, the cassette should determine if an autoApprove or
autoApprove with autoDeposit should be performed by calling the following
methods:

com.ibm.etill.framework.payapi.Order.getApproveFlag()
com.ibm.etill.framework.payapi.Order.getDepositFlag()

Telling the framework which order creation commands are

supported by the cassette
The WebSphere Commerce Payments user interface allows the setting of the

account-based autoApprove and autoDeposit flags in the Advanced Settings
section of the Account Settings window. By default, options are displayed for both
the AcceptPayment APl command and the ReceivePayment API command. If your
cassette only supports one of these commands, then you can ensure that these

110 1BM WebSphere Commerce: Payments Cassette Kit Programming Guide

options will be displayed only for the supported commands in the user interface
by overriding the following methods and returning true or false, as appropriate:

framework.cassette.Cassette.isAcceptPaymentSupported()
framework.cassette.Cassette.isReceivePaymentSupported()

Configurable approval expiration

Configurable approval expiration provides a cost-saving option to merchants. It is
not uncommon for an order to be delayed enough such that the original approval
authorization expires. In this case, the merchant may incur charges when trying to
deposit the funds. Configurable approval expiration support allows the merchant

application to recognize this situation and avoid it entirely.

ApprovalExpiration parameter

An ApprovalExpiration parameter is provided with the CreateAccount and
ModifyAccount commands to specify the period of time after which a given
approval should be considered expired. A payment in the Approved state will
enter the ApprovalExpired state after the specificed period of time has elapsed. A
merchant application can use the ApproveReversal command either to put a
Payment back in the Approved state or to void it. For more merchant application
details, see the WebSphere Commerce Payments Programming Guide and Reference. Each
cassette is responsible for specifying whether or not it supports approval
expiration.

Cassette enablement

The WebSphere Commerce Payments framework assumes that the cassette does
not support approval expiration. To enable approval expiration, your cassette must
do the following:

* Indicate that the cassette supports approval expiration. This is done by
overriding
com.ibm.etill.framework.cassette.Cassette.isApproval ExpirationSupported()
and returning true.

* Handle payments that have expired. The cassette must process the
ApprovalExpirationRequest sent by the framework. Like all requests sent by the
framework, the ApprovalExpirationRequest is sent to the cassette through the
service() method. The cassette should do whatever is required to put the
payment in PAYMENT_APPROVALEXPIRED state.

* Allow an ApproveReversal when the payment is in the
PAYMENT_APPROVALEXPIRED state.

e Put the payment in PAYMENT_APPROVALEXPIRED state if a deposit fails
because it expired.

When a cassette supports approval expiration, the framework does the following:

* Enables the Approval Expiration field on the Account Advanced Settings screen
in the WebSphere Commerce Payments user interface

* Manages the framework account approval expiration value
* Manages the expiration time of the payment:

— If the framework finds that the value has been filled in by the cassette, it will
use the cassette’s value rather than compute one by adding the account’s
expiration delta to the payment’s authorization time. This allows cassettes to
provide the real expiration time.

— If a payment expires, the framework will send an ApprovalExpirationRequest
to the cassette.

Chapter 2. Understanding the WebSphere Commerce Payments framework 111

Purchasing card support

Purchasing cards (also knowns as procurement cards) are credit cards that a
business can offer its departments or employees to allow them to buy business
related items. Typically, a business will make arrangements with the card issuer to
govern the purchases that cardholders can make. For example, maximum limits
can be imposed and the cards can be restricted to allow purchases of certain items
only (for example, only stationery goods). Purchasing cards can also have
pre-programmed limits for purchase amounts. Purchase-related details (such as the
tax amount, and merchant category code) and the details of the items being
ordered through a purchasing card are passed to the financial network so that the
authorization of the purchase can be influenced by the details of the goods being
ordered. Purchasing cards are a form of payment commonly used by many
businesses because it streamlines the corporate purchasing process.

Three levels of purchasing card information are supported in WebSphere
Commerce Payments and are generally known in the industry as Level L, II, and III
data:

* Level I data includes standard commercial transaction data for the purchase
which may include the total purchase amount, the date of purchase, commodity
code, the merchant’s name, and other data elements as defined by the credit
card associations or similar entity.

* Level II data adds additional data to Level I data about each purchase, including
the merchant category code, sales tax amount, and other data.

* Level III data includes full line-item detail in addition to the data in Level II
which includes unit cost, quantities, unit of measure, product codes, product
descriptions and other data elements.

lists the purchasing card data entities defined by the WebSphere
Commerce Payments framework that are commonly used. If your cassette needs to
support additional purchasing card data, you can define additional data entities for
your use.

Table 6. Purchasing card parameters

Purchasing card parameter

Description

$PCARD.SHIPPINGAMOUNT Total shipping/freight amount for the order.
$PCARD.DUTYAMOUNT Total amount of duties or tariff for the order.
$PCARD.DUTYREFERENCE Reference number assigned to the duties or tariff for the

order.

$PCARD.NATIONALTAXAMOUNT

Total amount of national tax (sales or VAT) applied to

the order.

$PCARD.NATIONALTAXRATE

National tax (sales or VAT) rate applied to the order.

$PCARD.LOCALTAXAMOUNT Total amount of local tax applied to the order.
$PCARD.OTHERTAXAMOUNT Total amount of other taxes applied to the order.
$PCARD.TOTALTAXAMOUNT Total amount of all taxes applied to the order.
$PCARD.MERCHANTTAXID Tax identification number of the merchant.
$PCARD.ALTERNATETAXID Alternate tax ID number of the merchant.

$PCARD.TAXEXEMPTINDICATOR

The tax exempt indicator for the order.

$PCARD.MERCHANTDUTYTARIFFREFERENCE

Duty or tariff reference number assigned to the
merchant.

$PCARD.CUSTOMERDUTYTARIFFREFERENCE

Duty or tariff reference number assigned to the
cardholder.

$PCARD.SUMMARYCOMMODITYCODE

Commodity code that applies to the entire order.

$PCARD.MERCHANTTYPE

Type of merchant.

$PCARD.MERCHANTCOUNTRYCODE

The ISO country code portion of the merchant’s
location.

112 1BM WebSphere Commerce: Payments Cassette Kit Programming Guide

Table 6. Purchasing card parameters (continued)

Purchasing card parameter

Description

$PCARD.MERCHANTCITYCODE

City name portion of the merchant’s location.

$PCARD.MERCHANTSTATEPROVINCE

Name or abbreviation of the state or province of the
merchant’s location.

$PCARD.MERCHANTPOSTALCODE

Postal code of the merchant’s location.

$PCARD.MERCHANTLOCATIONID

Identifier that the merchant uses to specify one of its
locations.

$PCARD.MERCHANTNAME

Name of the merchant.

$PCARD.SHIPFROMCOUNTRYCODE

The ISO country code portion of the location where the
goods are shipped from.

$PCARD.SHIPFROMCITYCODE

City name portion of the location where the goods are
shipped from.

$PCARD.SHIPFROMSTATEPROVINCE

Name or abbreviation of the state or province of the
location where the goods are shipped from.

$PCARD.SHIPFROMPOSTALCODE

Postal code of the location where the goods are shipped
from.

$PCARD.SHIPFROMLOCATIONID

An identifier that the merchant uses to specify one of
its locations where the goods are shipped from.

$PCARD.SHIPTOCOUNTRYCODE

The ISO country code portion of the location where the
goods are shipped to.

$PCARD.SHIPTOCITYCODE

City name portion of the location where the goods are
shipped to.

$PCARD.SHIPTOSTATEPROVINCE

Name or abbreviation of the state or province of the
location where goods are shipped to.

$PCARD.SHIPTOPOSTALCODE

Postal code of the location where the goods are shipped
to.

$PCARD.SHIPTOLOCATIONID

An identifier that the merchant uses to specify the
location where the goods are shipped to.

$PCARD.MERCHANTORDERNUMBER

Merchant order number.

$PCARD.CUSTOMERREFERENCENUMBER

Reference number assigned to the order by the

cardholder.
$PCARD.ORDERSUMMARY Summary description of the order.
$PCARD.CUSTOMERSERVICEPHONE Merchant’s customer service telephone number.
$PCARD.DISCOUNTAMOUNT The discount amount applied to the order.

$PCARD.SHIPPINGNATIONALTAXRATE

The national (sales or VAT) tax rate applied to the
shipping amount.

$PCARD.SHIPPINGNATIONALTAXAMOUNT

The national (sales or VAT) tax applied to the shipping
amount.

$PCARD.NATIONALTAXINVOICEREFERENCE

The national (sales or VAT) tax invoice reference
number for the order.

$PCARD.PRINTCUSTOMERSERVICEPHONENUMBER

Specifies if the issuer may print the merchant’s
customer service phone number on the cardholder’s
statement.

Line item data

$ITEM.COMMODITYCODE Commodity code for the line item.
$ITEM.PRODUCTCODE Product code for the line item.
$ITEM.DESCRIPTOR A description of the line item.
$SITEM.QUANTITY The quantity for the line item.

$ITEM.SKU The stock keeping unit (SKU) of the line item.
$ITEM.UNITCOST Unit cost of the line item.
$ITEM.UNITOFMEASURE Unit of measure for the line item.
$SITEM.NETCOST Net cost per unit of the line item.
$ITEM.DISCOUNTAMOUNT Amount of discount applied to the line item.

$ITEM.DISCOUNTINDICATOR

Required only if any other line item information is
present. Indicates if a discount was applied.

SITEM.NATIONALTAXAMOUNT

Amount of national tax (sales or VAT) applied to the
line item.

$SITEM.NATIONALTAXRATE

National tax (sales or VAT) rate applied to the line item.

Chapter 2. Understanding the WebSphere Commerce Payments framework 113

Table 6. Purchasing card parameters (continued)

Purchasing card parameter Description

SITEM.NATIONALTAXTYPE Type of national tax applied to the line item.
SITEM.LOCALTAXAMOUNT Amount of local tax applied to the line item.
SITEM.LOCALTAXRATE Local tax rate applied to the line item.
SITEM.OTHERTAXAMOUNT Amount of other taxes applied to the line item.
$SITEM.TOTALCOST The total cost of the line item.

Framework and cashier support of purchasing cards
To support the passing of purchase-related details to a financial network, the
WebSphere Commerce Payments framework does the following;:

* It defines the protocol data that represents the purchasing card information, and
associated secondary return codes. For example:
— $PCARD.SHIPPINGAMOUNT — This parameter represents the total shipping/freight
amount for the order.
RC_CASSETTE_PCARD_SHIPPING_AMOUNT — The associated secondary return code
for this parameter.
— $ITEM.QUANTITY — This parameter specifies the quantity for the line item.

RC_CASSETTE_ITEM_QUANTITY — The associated secondary return code for this
line item parameter.

[Table 6 on page 112|lists the protocol data you should use for consistency. If,
however, your cassette has special requirements and you must process other
types of data beyond that which is provided, you can add your own.

* It provides the following class to help your cassette manipulate the purchasing
card data passed in on an API command. For more information about this class,
refer to the Javadoc:

— com.ibm.etill.framework.cassette. PurchaseCardData

* It allows repeating protocol data to be passed in on API commands through the
".n" convention (for example, $ITEM.QUANTITY.3) so that the existing cassette
parameter validation still works. The framework command processing strips the
".n" portion of the protocol data keyword before passing it to the cassette. The
cassette then does parameter validation on $ITEM.QUANTITY.

To support the line item detail of purchasing card data, the WebSphere Commerce

Payments cashier supports the possibility of multiple values for a single parameter.
For example, suppose that one of the line item protocol data is $SITEM.QUANTITY,
and a purchase is being made that includes four line items:

$SITEM.QUANTITY.1
$ITEM.QUANTITY.2
$ITEM.QUANTITY.3
$ITEM.QUANTITY.4

The cashier allows multiple rows to be returned when using a database parameter.
(Prior to version 3.1, only one row could be returned when using a database
parameter.) In the previous example, the cashier can issue a database query, and
for the $ITEM.QUANTITY database parameter, generate the protocol data for each
of the four rows returned from the database query.

To illustrate the concept of allowing multiple rows to be returned, note the
following example. The Cashier allows multiple rows to be returned for the
SITEM.QUANTITY database parameter:

114 1BM WebSphere Commerce: Payments Cassette Kit Programming Guide

<SelectStatement id="5" allowMultiples="true">
SELECT * FROM ... WHERE ...

<Parameter name="$ITEM.QUANTITY">
<DatabaseValue statementID="5" columnName="ITEMQTY"/>
</Parameter>

The cashier also supports the issuing of the Deposit command in the event a
cassette needs to pass purchasing card data during a deposit.

Guidelines when passing data in on commands

As a cassette developer, you need to decide the appropriate WebSphere Commerce
Payments commands that will support the passing of purchasing card data. Here
are some guidelines:

¢ If the payment processor you are interfacing with accepts purchasing card data
at authorization, then consider allowing purchasing card data to be sent on the
AcceptPayment and Approve commands.

¢ If the payment processor you are interfacing with accepts purchasing card data
at the settlement phase, then consider allowing purchasing card data to be sent
on the AcceptPayment, Approve, and/or Deposit commands.

You must also decide what financial object should be associated with the
purchasing card data. Obvious logical choices are the Order object and/or the
Payment object. If you decide to use the Order object, be careful about associating
multiple payments with the order. It usually does not make sense to associate the
same set of purchasing card data (especially line item detail) with two different
payments.

Error logging

WebSphere Commerce Payments provides cassette developers with the ability to
generate informational and error messages that can easily be translated to provide
support for foreign languages. The com.ibm.eti11.framework.log.ErrorlLog class
provides a set of methods that retrieve the cassette’s messages from its properties
file (described below), includes any substitutions, and logs them to the
activity.log file for the Payments instance (accessible through the WebSphere
Application Server logs directory). This error logging facility is available within the
Payment Servlet. For details, see com.ibm.eti11.framework.Tog.ErrorLog.

Each cassette must provide its own properties file that defines all the error
messages that the cassette can produce. The directory that contains this file must

be specified in the CLASSPATH when starting WebSphere Commerce Payments.

The naming convention for the properties file is:
cassetteName .properties

where cassetteName is the name of your cassette as defined in the
PAYMENTSYSTEMNAME field of the ETCASSETTECFG database table.

The use of this file simplifies the process of internationalizing the code since the
messages are retrieved by a key (the message number). Different versions of the

.properties file can be provided for different languages.

Each message should be defined in the properties file in the following format:
<messageNumber> = <messageText>

where:

Chapter 2. Understanding the WebSphere Commerce Payments framework 115

messageNumber
is an alphanumeric identification of the error message that is unique within
your cassette. When the error message is displayed, WebSphere Commerce
Payments constructs a new message identifier as follows:

CEP<cassetteName><messageNumber>

messageText
is the error description that can optionally contain parameters provided by
your cassette. WebSphere Commerce Payments uses the Java
MessageFormat format to parse the message text.

You can also use the .properties file to contain translatable phrases or strings that
may later be used as message substitution values. For example:

text_welcome = Wilkommen

The text from such an entry can be retrieved using the ErrorLog.getMessageText
method. Note that this example also shows that the keys in the properties file do
not have to be numeric. While this practice is acceptable for short phrases and
keywords as illustrated, you should follow the convention of using the numeric
message number values as the keys for your informational and error messages.

This example shows how to use the ErrorLog object to write error messages to the
error log. In this example, the error is a database access error.

// Code example of using the ErrorlLog object

S —

catch(SQLException e)
{

// Example of a logError() call without any substitutions
ErrorLog.logError("ExampleCassette", "0205", e);

// Example of a logError() call with two substitutions
ErrorLog.logError("ExampleCassette", "001122", e,
"Substitute Text 1", "Substitute Text 2");

// ExampleCassette.properties file entry example

S —

0205 = An SQL exception occured while accessing the database.

001122 = An SQL exception occured.
Substitution textl: {0} and Substitution text2: {1}

Note: Currently WebSphere Commerce does not support the viewing of
third-party cassette messages in the WebSphere Commerce symptom
database. The symptom database is described in the WebSphere Commerce
Administration Guide.

Return code messages

One of the WebSphere Commerce Payments merchant integration goals is that the
installation of new cassettes into a merchant environment involves minimal work
for the merchant. One requirement to support this goal is that merchant software
should not have to translate each WebSphere Commerce Payments return code pair

116 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

into a message that can be displayed to the buyer. Thus, in addition to the Error
Logging support described above, WebSphere Commerce Payments provides
cassette developers with the ability to add textual descriptions to the return codes
associated with the AcceptPayment and ReceivePayment API commands.

Every cassette will have its own collection of protocol data that is needed on the
AcceptPayment and/or ReceivePayment API commands. Some of this data may be
entered by the buyer on the checkout/buy page, for example, credit card number.
If the buyer enters data that fails WebSphere Commerce Payments validation, the
API response will contain non-zero primary and secondary return codes indicating
the error. In a number of cases, the merchant software will want to display a
message directly to the buyer. For example, "The credit card number is not valid”.
As new cassettes are employed, it is unreasonable to expect the merchant software
to have to map each potential return code pair into a message that can be
displayed to the buyer.

Both the framework and the cassette can return non-zero primary/secondary
return code pairs that are generated as a result of the AcceptPayment and
ReceivePayment API commands. Each of these return code pairs that are generated
by the framework are mapped to a message that resides in the same framework
properties file that is used for Error Logging. That message will be returned along
with the primary and secondary return codes in the PSAPIResult document. Two
new optional attributes to the PSAPIResult XML element have been added:
"buyerMessage”, which contains a message appropriate to be displayed to the
shopper and "merchantMessage” which contains a message for the merchant to
resolve. It is important to note that either a buyerMessage or merchantMessage can
be returned, but not both. In order to allow the merchant server software to
determine which messages should be displayed to the buyer, and which messages
it needs to resolve itself, the message number will be flagged with a "B” for buyer
or an "M" for merchant to indicate which party should receive the message.

Just as the framework does, cassette developers should also provide messages
associated with return code pairs that can be returned on AcceptPayment and
ReceivePayment. These messages should be added to the cassette’s properties file.
Return codes that are generated as a result of autoApprove and autoDeposit
processing of AcceptPayment and ReceivePayment should also result in return
code messages.

Payment Servlet processing

For each non-zero return code generated during the AcceptPayment or
ReceivePayment API commands, the Payment Servlet attempts to retrieve the
associated message text as follows:

* Format the primary and secondary return code into the message number. For
example, if the primary return code is 3 and the secondary return code is 13,
then the message number would be PRC3SRC13.

* Look in the cassette properties file for a buyer message with a number of
PRC3SRC13B. If found, return the text as a buyerMessage in the PSAPIResult
document. If not found, look for a merchant message with a number of
PRC3SRC13M. If found, return the text as a merchantMessage in the
PSAPIResult document.

* If the message number is not found in the cassette properties file, look in the
framework properties file for the buyer message (PRC3SRC13B). If found, return
the text as a buyerMessage. If not found, look for the merchant message
(PRC3SRC13M). If found, return it as a merchantMessage.

Chapter 2. Understanding the WebSphere Commerce Payments framework 117

118

* If the text was not found, the buyerMessage and merchantMessage fields are not
returned in the PSAPIResult document.

Return code message syntax:
Each messageNumber that is associated with a return code message should have
the following format in the cassette’s properties file:

PRCxxxxSRCyyyy [B|M]

where "xxxx" is the primary return code and "yyyy” is the secondary return code.
The suffix of "B” or "M" indicates who should receive the message. The "B”
indicates buyer and the buyer and the "M" indicates the merchant. The xxxx and
yyyy values are not padded with zeroes. For example, a message with a primary
return code of 3 and a secondary return code of 13 destined for the buyer would
be coded as PRC3SRC13B.

Example

Using the previous example from the Error Logging section, the cassette unique
return code messages are added at the end of the properties file. Let’s assume that
our sample cassette requires a credit card number, expiration date, order
description, and success URL to be passed into the AcceptPayment command.
Also, let’s assume that the credit card number and expiration date are entered by
the buyer, and the order description and success URL are provided by the
merchant. The cassette properties file would contain:

0205
00112

n SQL exception occurred while accessing the database.
An SQL exception occurred.

N
n =

PRC3SRC1015B = A credit card number was not specified.
PRC3SRC1016B = The expiration date was not specified.
PRC3SRC10001M = The order description was not specified.

PRC3SRC10002M = The Success URL was not specified.

The cassette developer only needs to add entries for those error messages not
defined in the framework’s properties file (PMFramework.properties). The
framework’s properties file contains some messages for all of the common protocol
data parameters that are defined in
com.ibm.etill.framework.payapi.PaymentAPIConstants. The cassette developer
must add return code messages to the cassette’s properties file for cassette-specific
protocol data that is not defined in
com.ibm.etill.framework.payapi.PaymentAPIConstants and for common protocol
data parameters that do not have the necessary message specified in the
framework’s properties file. In addition, if the cassette developer can override
messages defined in the framework’s properties file if it chooses, since the cassette
properties file is searched first. To look at the framework’s properties file to
determine the return code messages that are defined, do the following;:

* In the WebSphere Commerce Payments installation directory, find the file
eTillClasses.jar:

Payments_installdir/wc.mpf.ear/1ib/eTil1Classes.jar

* Copy eTillClasses.jar to a directory of your choice and then extract the files
from the archive via the jar command: jar xvf eTillClasses.jar (note that this
command will expand the entire contents of the eTil1Classes.jar into the
current directory, so you should not do this in the WebSphere Commerce
Payments installation directory).

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

* The file PMFramework xx.properties (where xx=locale) contains the error
messages defined by the framework. For example PMFramework_en.properties
contains the english messages.

Debug tracing
Through the use of the WebSphere JRas trace service, WebSphere Commerce
Payments provides a flexible trace facility for recording internal events of various
types, including;:
* Communication events (for example, connection established /dropped, data
read /write)
* Function entry and exit
* Database read, write andcCommit (generated by framework)
* Debug (a catch-all for any type of debug tracing you want to do)
¢ Command received (generated by framework)
* Financial object state change (generated by framework)
* Error occurred
* Start work item (generated by framework)
* Trace information (generated by framework)

* Cassette-specific messages

For a complete description of how administrators or users can use the trace facility,
see the WebSphere Commerce Administration Guide.

As indicated, most of these trace entries are generated within the framework, but a
few are of particular interest to cassette writers:

Communication events
If your cassette implements any ComPoints with their own communication
support (that is, actually sending and receiving data across some
communication medium), you should generate the appropriate trace entries
to ensure that a support person gains a full understanding of when and
how much data was sent and received by the ComPoint.

Function entry and exit
Most of your methods should implement these trace points. Trivial
methods, such as simple getters and setters, can probably bypass these.

Debug
This is a catch-all category for any type of information you find useful for
debugging your cassette.

Error occurred
Captures failure information at the point where the failure occurred. This is
often the first type of entry a support person will search for since it can
pinpoint where a failure was first detected.

Cassette-specific messages
Four different trace events are available for cassettes to define for their
own purposes. If you choose to do so, your documentation should describe
how each of the cassette events are used by your cassette.

Tracing is controlled completely through the com.ibm.etil11.framework.log.Trace
class, which is available within the Payment Servlet. This class provides methods

Chapter 2. Understanding the WebSphere Commerce Payments framework 119

120

to set and examine the current trace selectivity for the cassette and to generate
each of the various types of trace entries. For more detail, see
com.ibm:.etill.framework.log.Trace.

Trace methods take strings and do not look up messages in resource bundles.
There is no support for translation of trace messages.

Enabling trace
You can enable tracing through the WebSphere trace service which is available
through the WebSphere Application Server administrative console:

1. From the WebSphere Application Server administrative console, click Problem
Determination > Logging and Tracing in the console navigation tree, then click
the WebSphere Commerce Payments application server > Diagnostic Trace.

2. If the server is running, select the Runtime tab. If the server is stopped, select
the Configuration tab.

3. Click Enable Trace. In the Trace Specification field, enter the following trace
string. (You can enter the trace string directly, or generate it using the graphical
trace interface. Click Modify to start the graphical trace interface if desired.)

Payments_JRAS_component .=all=enabled

where Payments_JRas_component is the component you want to trace:

com.ibm.websphere.commerce.payments.MPF

com. ibm.websphere.commerce.payments.MPFUI
com.ibm.websphere.commerce.payments.SampleCheckout
com.ibm.websphere.commerce.payments.IBM cassetteName
com.ibm.websphere.commerce.payments.third-party_cassetteName

Examples of other trace specification strings follow:

com.ibm.websphere.commerce.payments.MPF=all=enabled

com. ibm.websphere.commerce.payments.MPFUI=all=enabled

com. ibm.websphere.commerce.payments.MPF=entryExit=enabled
com.ibm.websphere.commerce.payments.MPF=debug=enabled
com.ibm.websphere.commerce.payments.*=all=enabled
com.ibm.websphere.commerce.payments.my_Cassette=all=enabled,event=disabled

In the fifth example (com.ibm.websphere.commerce.payments.*=all=enabled),
tracing is enabled for all component names starting with
com.ibm.websphere.commerce.payments.

In the last example, trace is enabled for a third-party cassette component, and then
event tracing is disabled for that component.

Debug tracing is considered JRas trace level 3. [Table 8 on page 122 shows the JRas
trace levels for WebSphere Commerce Payments trace types.

For more information about tracing WebSphere Commerce Payments JRas
components, refer to the WebSphere Commerce Administration Guide. For more
information about using the trace facility or the grammar involved in entering
trace specification strings, refer to the "Enabling trace” information in the
WebSphere Application Server Info Center.

Trace output
You can control which file the trace text is written in WebSphere Application

Server by specifying the appropriate trace output information on the Configuration
tab of the WebSphere trace service. (Prior to WebSphere Commerce Payments
version 5.5, the PMTracel.log and PMTrace2.1og files in the WebSphere Commerce
Payments log directory were used to store trace output.) The trace output can be

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

written directly to an output file, or stored in memory and written to a file on
demand. The trace output files can be read with a text editor and do not require
any special formatting utility.

The following is an example of the trace format:
[02.01.14 16:26:45.025 EDT] 53ccc3c5 MPF E * ** Framework version: 5.5.0.0

Timestamp
Timestamp in modified ISO format, controlled by WebSphere.

Thread ID
A hexadecimal ID for the thread (for example, 53ccc3c5).

Component ID mapping
The component name (com.ibm.websphere.commerce.*); for example, MPE.

com.ibm.websphere.commerce.payments.MPF
com.ibm.websphere.commerce.payments.MPFUI
com.ibm.websphere.commerce.payments.SampleCheckout
com.ibm.websphere.commerce.payments.IBM _cassetteName
com.ibm.websphere.commerce.payments.third-party cassetteName

EventType
A one-character field that indicates the type of the trace event. Possible
values include:

* > —a trace entry of type method entry

* e — a trace entry of type event

* d - a trace entry of type debug

For more information about other possible EventType values, refer to the

WebSphere Application Server InfoCenter lists trace types and
shows how they map to JRas trace levels.

Class name*
Only collected for function entry/exit calls. For other calls, this field is
blank.

Method name**
Only collected for function entry/exit calls. For other calls, this field is
blank.

Text The actual trace data.

For more information about how to interpret trace output, refer to the WebSphere
Application Server InfoCenter.

Table 7. Trace type descriptions

Trace type (level) JRas trace level Description of trace
performed

all Performs tracing of all types
(event, entryExit, debug)

event 1(E) API usage
Error occurred

entryExit 2 (>) Database access
Communications

Function entry/exit

debug 3(D) Communications data
Debug

Realm

Other

Chapter 2. Understanding the WebSphere Commerce Payments framework 121

122

The following table shows the JRas trace levels for WebSphere Commerce
Payments trace types and shows the relationship of these trace types to the trace
parameters used in earlier versions of WebSphere Commerce Payments.

Table 8. Relationship of Payments trace parameters to WebSphere JRas parameters

Former trace parameter (prior to WebSphere JRas parameter (for WebSphere
WebSphere Commerce Payments | Commerce Payments Version 5.5)

Version 5.5)

Component ID: JRas component ID:

PMTSRV com.ibm.websphere.commerce.payments.MPF

Ul com. ibm.websphere.commerce.payments.MPFUI
SampleCheckout com.ibm.websphere.commerce.payments.SampleCheckout
IBM cassette name com.ibm.websphere.commerce.payments.cassetteName
Third party cassette name com. ibm.websphere.commerce.payments.cassetteName
Trace type: JRas trace level

API 1 (E)

Object state 1 (E)

Error 1 (E)

System Info 1 (E)

Cassette level 1 1 (E)

Cassette level 2 2 (>)

TCP Connection established 2 (>)

TCP Connection dropped 2 (>)

Entry 2 (>)

Exit 2 (>)

DB Read 2 (>)

DB Write 2 (>)

DB Commit 2 (>)

Debug 3 (D)

Realm 3 (D)

TCP Read 3 (D)

TCP Write 3 (D)

Performance 3 (D)

Start work item 3 (D)

Cassette level 3 3 (D)

Cassette level 4 3 (D)

Text Text (prefixed with the former trace type)

Trace example

The following example shows how to initialize and add trace entries. Note that the
cassetteName ("CASSET" in the example) is used as the trace ID in the WebSphere
Commerce Payments trace log.

// Code example - initializing and adding trace entries.

S

// Initialize the path names and maximum sizes of two files. 1In the case that the
// first trace file becomes too large, the second will begin.
Trace.initializeTrace(strTracePathNamel, strTracePathName2, MAXTRACE1, MAXTRACE2);

//Set Trace to record all debug trace entries.
Trace.setTraceSettings("CASSET", Trace.DEBUG);

// Set Trace to echo trace entries to the system standard output as well if desired.
Trace.setEchoOnStdOutput (true);

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

public void someMethod
{

// Trace entry when entering a method.
// This trace Tine will not be displayed in the trace file because
// traceFunctionEntry was not set above.
// To set traceFunctionEntry for tracing, the following line is needed:
// Trace.setTraceSettings("CASSET", Trace.FUNC_ENTRY);
if (Trace.isAnyoneTracing())

Trace.traceFunctionEntry("CASSET", "Example.someMethod");

// This trace line will be displayed in the trace file

// because traceDebug was set above.

if (Trace.isAnyoneTracing())
Trace.traceDebug("CASSET","ExComp.someMethod: Example successful.");

// Trace entry when exiting a method.
// This trace line will not be displayed in the trace file
// because traceFunctionExit was not set above.
// To set traceFunctionExit for tracing, the following line is needed:
// Trace.setTraceSettings("CASSET", Trace.FUN_EXIT);
if (Trace.isAnyoneTracing())
Trace.traceFunctionExit("CASSET", "Example.someMethod");

User interface support

Administrators and merchants should use the WebSphere Commerce Payments
User Interface Servlet to perform administrative and payment processing tasks. The
user interface organizes and displays data to users through an HTML "wrapper”
around WebSphere Commerce Payments HTTP requests and XML responses. The
WebSphere Commerce Payments framework allows cassette writers to customize
the user interface screens to display payment protocol-specific attributes. The
mechanism that allows such customization is the Payment Server Presentation
Language (PSPL).

Note: To display payment protocol-specific attributes in the user interface, these
attributes must be defined in PSPL and externalized through the XDM, as
described in the following sections of this topic.

Payment Server Presentation Language

PSPL is an XML-based language that defines the structure of HTML documents
presented by the user interface. PSPL documents are divided into multiple screens,
each representing a different panel in the user interface. Each user interface screen
is created using specifications defined in PSPL format. The figure below illustrates
how the user interface servlet uses PSPL. As shown in the figure, the user interface
retrieves PSPL documents and uses these to construct an HTML document for
presentation to the user. The appearance of this HTML document is defined by the

Chapter 2. Understanding the WebSphere Commerce Payments framework 123

PSPL.

WebSphere PSPL Document
Application Server <PSPL component="A">
® <screen id="B">
WebSphere >| <fieldGroup id="C">
Commerce <field id="C">
Payments <name textid= id="A.B.C.D.NAME"/>
Ul Serviet [€ </field>
@ </fieldGroup>
</screen>
@ ®
</PSPL> ©)
Vv Vv
Ul Properties file Vv
UseriD | A.B.C.D.NAME=User ID

@ The browser sends a request to the WebSphere Commerce Payments user interface.

@ The user interface finds the PSPL document and requests a particular screen.

@ Text for the PSPL is looked up in the corresponding Ul properties file.

@ All information to build a panel is returned to the user interface.

@ The user interface formats the PSPL information into an HTML document, and returns it to the web brower.

PSPL document overview
The structure of a PSPL document is defined in the pspl.dtd file located in the

pspl directory under WC_installdir/payments/wc.mpf.ear/payments.war/. The user
interface (UI) draws on multiple PSPL documents, both framework and cassette,
when constructing an HTML document to be presented to the user. There are three
framework PSPL documents: payment.PSPL, admin.PSPL and reports.PSPL. These
framework PSPL documents determine how framework attributes are displayed in
the U, regardless of which cassettes are installed. A cassette writer must provide a
PSPL document for their cassette in order to identify cassette-specific attributes to
be displayed in the UL These cassette-specific attributes can be associated with
extensions to existing framework screens, or with new cassette defined screens.
The following is a table of the framework’s user interface files, where they are
located, and what they provide. Payments_installdir indicates the location of the
installed WebSphere Commerce Payments component (WC_installdir/payments)

Filename Location Description

admin.PSPL Payments_installdir/wc.mpf.ear/payments.war/pspl Defines the layout for framework
Adminstration screens.

payment.PSPL Payments_installdir/wc.mpf.ear/payments.war/pspl | Defines the layout for framework
Payment screens.

reports.PSPL Payments_installdir/wc.mpf.ear/payments.war/pspl | Defines the layout of the reports in

the user interface.

124 1BM WebSphere Commerce: Payments Cassette Kit Programming Guide

Filename Location Description
PMULproperties Payments installdir/eTi11UI.jar Contains the content used in
- framework admin, payments and
reports PSPL (there is one of these
for each supported language).
pspldtd Payments_installdir/wc.mpf.ear/payments.war/pspl This file is the XML definition of all

PSPL files.

When a cassette that you have written is added to a Payments instance through
the WebSphere Configuration Manager, its PSPL files are also added to the
WC_installdir/payments/wc.mpf.ear/payments.war/pspl directory.

The UI servlet searches for PSPL files in the directories which are listed in the
CLASSPATH environment variable. Therefore, your cassette’s PSPL files must
reside in a directory which is a member of the WebSphere Application Server’s
CLASSPATH. For recommendations on where PSPL files should be placed during
cassette installation, see [“Installation and uninstallation considerations and steps”]

fon page 173

General structure
A cassette PSPL document consists of:

* Header information such as the cassette name and the associated help file

* One or more screens which describe extensions and configurations to the
framework screens

» Zero or more screens which describe new cassette-specific screens associated with
MerchantCassetteObjects or SystemCassetteObjects

* Each screen in turn can contain a header, a trailer, one or more field groups, and
messages

* A field group is a logical grouping of data and contains a header, trailer, one or
more fields, and messages

* The field then describes the display attributes of the data to be presented to the
end user

* One or more message elements which describe messages to be displayed.

Each of the above elements is identified by a unique identifier and associated
attributes. See ["PSPL reference” on page 133| for further detail about these elements.

Here is an example skeleton of a cassette PSPL file:

<?xml version="1.0" encoding="1S0-8859-1"?>
<IDOCTYPE PSPL SYSTEM "pspl.dtd">

<l--
kkhkkkkhkhkkkhhkkhkhhkkhkhkkhhkkhhkhhhkkhhkkhhhkkhhkhhhkkhhhkhhkkhhkhdhkkhhhkhhkhkkhhkkhkhkkhkhkkhkx,kx
* The PSPL element is the top-Tevel element of all PSPL
* documents. The component attribute identifies the cassette

* to the framework, in this case "MyCassette".
KhkAkhAhhhhhhhhhhhhhrhhhhhhhhhddhdrhhhhhhdhhdrhhhhhhdhhkdrhdhrhdrrdhx

-
<PSPL component="MyCassette" ...>

<l--
Khkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhhhhkhhhhhhhhhhhhhhhhhdhhdhdhhhdhdhhdhhhhhhhhdkx
* The screen element "MyCassetteAccount" extends the
* framework screen PSMerchantAccount. Here, the cassette
* defines it's extensions to the AccountAdmin object,
* specifically, "accountFieldl" and "accountField2". In

Chapter 2. Understanding the WebSphere Commerce Payments framework 125

* addition, all messages associated with this screen that

* can be displayed in the UI are defined.
kkhkkkkkkhkkhkkkhhkkkhhkkhhkkhhkkhhkkhkhhkkhhkkhhkkhhkhkhkkhkhkkhhkhkhkkhkkhkkhkhkkhkkhkhkkkhkxkkx*%

-
<screen id="MyCassetteAccount" extends="PSMerchantAccount">
<fieldGroup id="MyCassetteAccountDetails" advanced="0">

<field id="accountFieldl" ...>
</field>
<field id="accountField2" ...>
</field>

</fieldGroup>

<message id="PRC=5-SRC=11008" type="error" ...>
<message id="PRC=6-SRC=11008" type="error" ...>

</screen>
<l--
kkhkkkkhkkhkkhkkhkkhkkhhkkhhkkhhkkhhkhkhhkkhhkhkkhhkkhhkhkhkkhkhkhkkhhkkhkkhkhkkhkhkkhkkhkhkkhkhkkkkx*%
* The screen element "MyCassetteBrand" configures the
* framework screen PSMerchantAccount. "configures" is used
* when the cassette has defined additional cassette-specific
* objects which are associated with framework objects. Here,
* the cassette defines a MerchantCassetteObject called "brand"
* that is associated with an account.
kkhkkkkhkkhkkhkkhkkhkkhhkkhhkkhhkkhhkkhkhhkkhkhkhkkhhkkhhkhkhkkhkhkhkkhhkhkkhkkhkhkkhkhkkhkkhkhkkkhkkkx*%
-
<screen id="brand" updateID="BRAND" configures="PSMerchantAccount">
<fieldGroup id="MyCassetteBrand">
<field id="brandID" updateID=$BRANDID ...>
</field>
</fieldGroup>
<message id="PRC=5-SRC=11009" type="error" ...>
<message id="PRC=6-SRC=11009" type="error" ...>
</screen>
<l--

R R R R R R o e e e R T T T T

The screen element "MyCassetteOrder" extends the
framework screen PSOrder. Here, the cassette

defines it's extensions to the Order object,
specifically, "pan" and "expirationDate". In

addition, all messages associated with this screen that

can be displayed in the UI are defined.
dhkkhkkhkhkhkhhkhkhhhhhhhhhhhhhdhdhdhdhdhhdhhhdhhhhhhhhhhhhhhhhhhhhhhhdhdxkx

L

<screen id="MyCassetteOrder" extends="PSOrder">
<fieldGroup id="MyCassetteOrderDetails" advanced="0">

;%%e1d id="pan" ...>

</f%éid>

<field id="expirationDate" ...>
</field>

</fieldGroup>

<message id="PRC=14-SRC=11010" type="error" ...>

126 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

<message id="PRC=14-SRC=11011" type="error" ...>
</screen>
</PSPL>

As the example shows, framework screens can be either extended or configured to
add cassette-specific data to the user interface. It is important to note that not all
framework screens defined in the framework’s PSPL files can be extended. See
[“Identify and name your cassette screens” on page 12§ for details.

PSPL document styles
When writing your cassette’s PSPL, there are two ways to identify the text that is
displayed to the end user:

* In-line in the PSPL file itself. In this situation, you must have a separate PSPL
file for each language your cassette supports.

* In an associated properties file. In this situation, you have only one PSPL file,
but multiple Java properties files for each language your cassette supports.

The in-line design was used for WebSphere Payment Manager Version 2.1 and is
still supported for WebSphere Commerce Payments. If the in-line design is used,
the cassette-specific information for a given cassette is specified in the file
cassetteName.language. PSPL, where cassetteName is the name of the cassette and
language identifies the language used for translatable text in the file.

Payment Manager Version 2.2 introduced the properties file approach for all of the
framework screens. The properties file approach is available to cassette writers
using Payment Manager Version 2.2 or later. In the properties file approach, screen
definitions and layouts for a given cassette are contained in the cassette’s PSPL file,
while Properties files (one for each language) are defined to hold the actual text
that is displayed on the user interface. See [’Create your cassette’s Ul properties|
ffile” on page 131] for a list of valid language identifiers.

A general tag in the in-line designed PSPL may look like the following;:
<tagl>Displayed Text Goes Here</tagl>

For the properties file based PSPL, a textid attribute is used as a key to look up a
value in the cassette’s Ul properties file. The following is an example of how a
general tag inside the PSPL will look.

<tagl textid= "cassetteName.id.TAGl/">

And the corresponding properties file entry would look like this:
cassetteName.id.TAGl=Displayed Text Goes Here

The properties file approach to designing PSPL is suggested for all cassette PSPL
documents and, therefore, will be discussed in greater detail than the in-line
approach. The reason this is the suggested approach is that it provides for the
separation of the screen definitions from the actual text that is displayed in the UL
The advantages of this are:

* If your cassette supports multiple languages, then the translation of the UI will
be accomplished by translating only the properties file. In the in-line approach,
the PSPL file itself must be translated. This is due to the fact that in the in-line
approach, the PSPL elements and attributes are mixed in with translatable text.
This makes the job of translation both difficult and error prone. If, for example,

Chapter 2. Understanding the WebSphere Commerce Payments framework 127

128

during the course of translation any of the elements or attributes are changed by
mistake, the cassette extension to the user interface will no longer work.

* If your cassette supports multiple languages, then in order to make a change to
the look and feel of the cassette’s Ul, only one PSPL document has to change
(and, optionally, the properties file(s) if a textual change is made). In the in-line
approach, all look and feel changes have to be made to each language’s PSPL
document.

User’s guide to PSPL

The following steps are provided as a guideline to be used to help write your
cassette’s PSPL.

Identify your cassette’s extensions.

Determine which of your cassette extensions should be displayed.
Identify and name your cassette screens.

Identify and name the fields.

Group the fields.

Define the field attributes.

Write messages for your cassette’s specific return codes.

No ook owbd

8. Create your cassette’s Ul properties file(s).

Identify your cassette’s extensions

Before writing the PSPL for your cassette, you should design your cassette’s
extensions to the framework object model. This consists of identifying those
elements that extend a framework object and those that create a new object. Refer
td“Identify all of your cassette’s extensions” on page 160|for additional
information.

Determine which of your cassette extensions should be
displayed

Once you have identified your cassette’s extensions, you need to determine which
extensions you wish to be exposed to the end user. Refer to "Design the external

view of your extensions” [‘Design your extensions to the framework object model”|
for additional information.

Identify and name your cassette screens
Your PSPL will correlate very closely to the external view of your cassette’s
extension objects. In general, your PSPL file will contain the following;:

¢ One screen definition for each of the framework objects that your cassette
extends.

The framework object model has Administration objects and Payment objects. Each
framework object is represented in the user interface by a screen. Your cassette
may have additional data associated with these framework objects that you wish to
display in the user interface. This is accomplished by the definition of a separate
PSPL screen that "extends” an existing framework screen. For example, if you have
a cassette-specific extension to the AccountAdmin object, you need to create a
screen in your cassette’s PSPL which "extends” the PSMerchantAccount screen. By
extending framework screens, the cassette-specific parameters will appear seamless
in the user interface. The following table shows a list of all framework screens that
can be extended, their associated framework object, and a description of the data
each one of these screens represent:

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Framework screen name Framework object Represents

PSCassette CassetteAdmin Configuration information
for a cassette

PSMerchantCassetteSettings | PaySystem Configuration information
for the association between a
Merchant and a Cassette

PSMerchantAccount AccountAdmin Configuration information
for an Account

PSOrder Order Order information

PSBatch Batch Batch information

PSPayment Payment Payment information

PSCredit Credit Credit information

PSBatchSettle N/A Information needed to settle
a Batch

PSOrderApprove N/A Information needed to
Approve an Order

PSOrderSale N/A Information needed to do a
"Sale” on an Order

PSOrderRefund N/A Information needed to do a

Refund on an Order

PSPaymentDeposit N/A Information needed to
Deposit a Payment

* One screen definition for each new object your cassette defines in the form of a
MerchantCassetteObject or SystemCassetteObject.

Your cassette may also have implemented other administrative objects that are not
part of the framework object model. These objects are known as
MerchantCassetteObjects or SystemCassetteObjects. In this case, it is not
appropriate to extend a framework screen. Instead you will create a new screen by
"configuring” a framework screen (usually the screen that is associated with the
object). It is possible for a cassette to "extend” and "configure” the same screen. For
example, if your cassette is credit card based, you may want to define a Brand
object. Brand objects are not in the framework object model; however, they could
be implemented by the cassette as a MerchantCassetteObject. Let’s say your
cassette wants to associate each of these cassette-defined Brand objects with an
Account. In this case, you would have a screen definition that "configures” the
PSMerchantAccount screen, and potentially a separate screen definition that
"extends” the PSMerchantAccount screen if you have AccountAdmin extensions.

The name of each screen is specified by the id attribute of the screen tag. For
screens that "extend” a framework screen, this can be any unique name but it
should be meaningful. A recommended approach is to use the cassette name as the
prefix and the last part of the framework screen as the suffix. For example, if you
are extending the "PSOrder” screen for the "MyCassette” cassette, name the screen
"MyCassetteOrder”. For screens that "configure” a framework screen use the lower
case name of the object for the id, for example "brand”. These screens should also
have an updatelD with an uppercase name of the object, for example, "BRAND".

Identify and name the fields
When designing your cassette extensions to the framework object model, you

decided which cassette-specific data you wanted to externalize. All cassette data
that is to be externalized on the user interface must be returned by the cassette as

Chapter 2. Understanding the WebSphere Commerce Payments framework 129

130

Query command output. There are two types of objects that a cassette can return
on a Query command: a CassetteExtensionObject that represents cassette-specific
extensions to the framework’s primary object model, or a CassetteConfigObject that
represents a cassette’s own administrative object as implemented by a
MerchantCassetteObject or a SystemCassetteObject (such as the Brand object
mentioned above).

For example, say your cassette extends the PSMerchantAccount screen and
externalizes two cassette-specific pieces of data: "accountFiled1” and
"accountField2". In addition, say your cassette "configures” the PSMerchantAccount
screen with it’s own "Brand” screen which contains a "brandID” attribute. When
your cassette processes the QueryAccounts API command, it must:

* Create and populate a
com.ibm.etill.framework.cassette.query.CassetteExtensionObject with a
property id and its associated value for each cassette extension. Specifically, you
would add a property for both accountFieldl and accountField2 into the
CassetteExtensionObject. The property id must match the field id in the PSPL.

* Create and populate a
com.ibm.etill.framework.cassette.query.CassetteConfigObject with a
property id and its associated value for each cassette attribute. Specifically, you
would add a property for "brandID" into the CassetteExtensionObject. The
property id must match the field id in the PSPL.

To summarize, when a screen is displayed, the data for the screen is provided by
the XML returned by the Payment Servlet (using the CassetteExtensionObject
and/or CassetteConfigObject created by your cassette’s query code). In the Ul a
single unit of data is represented by a Field element in the PSPL. In the XML a
single unit of data is represented by a CassetteProperty element. The propertyld
attribute of the CassetteProperty element must match the id attribute of the PSPL
Field element.

The user interface provides support for the creation, deletion, and modification of
both framework and cassette objects. For example, when you are viewing a single
account in the user interface, you will see a button labeled "Update”. When this
button is pressed, a ModifyAccount API command is sent to WebSphere Commerce
Payments. The parameters for this command consist of the fields of the
PSMerchantAccount screen and any fields which you have included in your
cassette’s account extension. The name of these parameters come from either the
field’s id attributes in the PSPL screens, or the optionally provided updatelD
attribute. If the data on the screen is used to change values in the cassette, you will
need to provide the updatelD attribute on your cassette’s fields. This is the name
your cassette is expecting in the form of a "$"-prepended protocol data parameter
on the API calls. This may be different than the field id parameters returned by
your XML query code for output. The associated values for the parameters come
from the values of the fields (which may be text boxes, drop-down lists, etc.) as
entered by the user.

Group the fields

Fields can be logically grouped using the fieldGroup tag. You should identify
related fields and place them in a field group. This provides a logical separation of
information on a given screen, and provides the ability to optionally display a
name, header information and trailer information for each field group on the
screen. If you have a large number of fields, or some fields that are rarely
configured, consider splitting the fields into multiple screens. This can be done by
using the "Advanced” tag as described in the PSPL Reference section. Advanced
field groups are displayed on a separate screen. Each field group requires a unique

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

id. Each group should have a name to identify the text to be displayed above the
field group. This is specified by the name element. If you need any additional
explanatory text for the group, you can specify it using the heading and trailer
elements.

Define the field attributes

Once you have identified, grouped, and specified the id of each field, you need to
specify the remaining field attributes. Some items influencing the field attributes
are:

* Visibility of the data (e.g., passwords should be hidden)

* Whether or not the data is a single value or a choice

* The number of choices for choice data

* Whether or not multiple choices are allowed

* Whether or not the data can be modified by the user

* Whether or not the data is required to be entered by the user

¢ Whether or not data modification is allowed any time or only when the object is
created

* Whether or not the field should be passed in an API command if it has no data

Refer to the "PSPL Field element type attribute” section [“PSPL field element type|
lttribute” on page 145 for a description of the various choices.

Each of the fields have attributes for name, shorthelp, default value, preferred
width, preferred height, and maximum length. You only need to define those that
you want to specify in the associated properties file. It is recommended that you
specify all of these for each field so that the information can later be provided by
simply modifying the properties file.

Write messages for your cassette’s specific return codes

The next step is to include message elements in your cassette’s PSPL for each
cassette generated return code pair that is returned as a result of your cassette
processing an APl command. Message elements can be defined within the PSPL
element, within Screen elements, within FieldGroup elements, or within Field
elements. If a message can be associated with multiple screens, define it within the
PSPL element. If a message is associated with multiple FieldGroup elements, define
it within the Screen element. If a message is associated only with Fields within a
FieldGroup, define it within the FieldGroup element. If a message is unique to a
Field, define it within the Field element. Messages require an id tag that indicates
the primary return code and the secondary return code. For example, <message
id="PRC=14-SRC=22001">. Return codes identified by the framework will still
work on cassette extended screens. Messages should be classified as an error, a
warning, or informational.

Create your cassette’s Ul properties file

As mentioned earlier, the properties file approach for PSPL documents was
introduced in WebSphere Payment Manager Version 2.2. If your cassette is utilizing
this style of PSPL, then a cassette Ul properties file must be defined for each
language your cassette supports. Each properties file contains the cassette-specific
text that is displayed on the Ul The naming convention for these files is

cassetteNameUI_language.properties

where cassetteName is the name of the cassette and language identifies the language
used for translatable text in the file. The file cassetteNameUI.properties (without a
language identifier) will also need to be created as a base reference for text if a
user of an unsupported language tries to use the WebSphere Commerce Payments

Chapter 2. Understanding the WebSphere Commerce Payments framework 131

132

user interface. Usually this base properties file is a copy of one of the other
language’s properties file. This provides a convenient way to show the user
interface in a default language for those languages your cassette does not support.
For example, in the WebSphere Commerce Payments framework it is a copy of the
English properties file.

The textid attribute is the most important aspect of properties-based PSPL. The
textid specified in the PSPL must match the key in the properties file. This textid in
the PSPL file must be unique so that there are no duplicate keys in the properties
file. To meet these requirements, there is a textid naming convention that will
make each textid unique and easy to find in the PSPL document.

There are four levels of textids that go into the construction of a unique name. The
first is the component level. This defines content that can be seen on all the
cassette-specific panels in the WebSphere Commerce Payments user interface. The
component is then made up of screens. The screen level defines attributes that can
be seen in the user interface on one panel. Fieldgroup is the next level. This
identifies a group of fields in the user interface. The lowest level is the field. This
level identifies attributes per cassette field in the user interface.

Below is the naming convention for textid’s in WebSphere Commerce Payments.
Note that anything inside brackets needs to be substituted by the actual value of
the identifiers you will create in the PSPL document. Refer back to this table when
writing your PSPL.

Level |textid naming convention

Component <cassetteName>.shortHelp
<cassetteName>.NAME
<cassetteName>.HEADER
<cassetteName>.TRAILER
<cassetteName>.HELPFILE
<cassetteName><messagelD> MESSAGE

Screen <cassetteName>.<screenlD>.NAME
<cassetteName>.<screenlD>.HEADER
<cassetteName>.<screenlD>.TRAILER
<cassetteName>.<screenlD>.EMPTYLIST
<cassetteName>.<screenID>.<messagel D> MESSAGE*
<cassetteName>.<screenlD>.<actionID>.ACTION

Field <cassetteName>.<screenID>.<fieldgroupID>NAME
Group <cassetteName>.<screenID>.<fieldgroupID>HEADER
<cassetteName>.<screenID>.<fieldgroupID>.TRAILER

Field <cassetteName>.<screenlD>.<fieldgroupID>.<fieldID>.NAME
<cassetteName>.<screenID>.<fieldgroupID>.<fieldID>.SHORTHELP
<cassetteName>.<screenID>.<fieldgroupID>.<fieldID>.DEFAULTVALUE
<cassetteName>.<screenlD>.<fieldgroupID>.<fieldID>PREFERREDWIDTH
<cassetteName>.<screenlD>.<fieldgroupID>.<fieldID>.PREFERREDHEIGHT
<cassetteName>.<screenID>.<fieldgroupID>.<fieldID> MAXIMUMLENGTH
<cassetteName>.<screenlD>.<fieldgroupID>.<fieldID>.<optionID>.OPTION

*messagelD attributes can sometimes contains the "=" character. When this
happens, the "=" should be left out of the textid because of the problems it can
create in properties files. For example, a message element that has a message id of
"PRC=4-SRC=617" should use "PRC4-SRC617" when constructing the textid. For
example:

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

<message id=" PRC=4-SRC=617 " type="error"
textid="admin.PSMerchantAccount. PRC4-SRC617 .MESSAGE"/>.

There are three additional keys that must be added to every cassette user interface
properties file. They are:

* The cassette’s help file, as specified by the key <cassetteName>.helpFile.The help
file, must be set to the location of the help file located under the web publish
directory.

* The Encoding, as specified by the key encoding. The encoding must be set to the
code page of the properties file language locale. Below is a table of
countries/regions, locales, and corresponding encodings to use in your
properties file:

Country/region Locale Encoding
Germany de UTE-8
Spain es UTE-8
USs en UTF-8
France fr UTEF-8
Italy it UTE-8
Japan ja UTF-8
Korea ko UTE-8
Brazil pt UTEF-8
Chinese Simplified zh UTE-8
Chinese Traditional zh_ TW UTE-8

* The list of supported languages (a mandatory value that must be written in the
UI properties file). You must create a
cassetteNameUI.Lang=Language_locales_separated by_commas property in the
base cassette Ul properties file. For example, if the cassette named "MoneyCard”
supported English, French, Japanese, and Korean languages, the property would
look like MoneyCardUI.Lang=en,fr,ja, ko in the base MoneyCardUI.properties
file.

PSPL reference

A PSPL document is made up of elements, each of which is composed of attributes
and other elements. The following sections describe those elements and attributes
used by cassette developers. Review of the psp1.dtd will show additional
attributes and elements. Those elements are used primarily by the framework’s
PSPL files and are not described here.

Some of the attributes are only used for properties based PSPL, some are only used
for in-line PSPL, and most are common to both. Attributes and elements apply to
both unless otherwise indicated. All attributes and elements are optional unless
otherwise indicated.

The examples are based on the OfflineCard Cassette and CustomOffline Cassette.
In the examples shown, many of the tag names are split onto separate lines. This is
done for readability. These tag names should be coded on a single line.

The attributes and elements are described in tabular form using the following
conventions:

¢ Name - the name of the attribute or element

Chapter 2. Understanding the WebSphere Commerce Payments framework 133

* Description - a description of the element

* R/O - an indication of wether the attribute or element is required (R) or optional
©).

PSPL element
The PSPL element is the top-level element in every PSPL document. Its attributes
include:

Name Description R/O

component Identifies the cassette to the framework. Must match R
the name of your cassette.

locale Identifies the language for the HTML page. Only used (@)
for in-line PSPL. For properties based PSPL it should
be coded in the associated properties file.

encoding Identifies the character encoding of the HTML page. (@)
Only used for in-line PSPL. For properties based
PSPL it should be coded in the associated properties
file.

helpFile Specifies the document containing context-sensitive (@)
help for the cassette. Only used for in-line PSPL. For
properties based PSPL it should be coded in the
associated properties file.

In addition to the above attributes, the PSPL element in a cassette PSPL document
contains the elements which identify extensions to framework user interface
screens as well as other structural information. These elements include:

Name Description

name Identifies the cassette name to be displayed on the cassette specific screens
that have been reached via the Merchant Setting navigation menu.

vendor Specifies the name and URLs of the cassette vendor. This information is
displayed on the PMCassette screen. The vendor element attributes are
described in PSPL element vendor attributes.

shortHelp Contains a brief description of the cassette which is displayed on the
PMCassette screen.

header Contains text or other well formed HTML elements to display at the top of
cassette-specific user interface screens.

trailer Element contains text or other well formed HTML elements to display at
the bottom of cassette-specific user interface screens.

screen List of screens describing either a new object, or extensions to a related
framework object. Refer to the "PSPL Screen element” section.

message List of messages to be displayed in certain circumstances. These are
messages that apply to more than one of the defined screens. If the
message is unique to a screen, it should be definited with that screen.

The vendor element describes the vendor data to be displayed. Attributes are:

PSPL element vendor attributes

Name Description

URL A link to the vendor’s page.

134 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

PSPL element vendor attributes

Name Description

brandURL A link to an image to be displayed as part of the header on the cassette
specific screens that have been reached via the Merchant Settings
navigation menu. If not specified, the framework defined image is
shown.

textid The key into the properties file. Only used for properties based PSPL.

shows the WebSphere Commerce Payments Cassette screen with the
location of some of these elements. Note that the image displayed is the
framework’s image, and not the cassette specified image. Because this is the a
framework screen, the image is the framework’s image. If this were one of the
screens reached via the Merchant Settings navigation menu, the image would be
the cassette’s defined image.

isM WebS |:'}h(: re

Commerce Payments

header

Cassettes

component shortHelp vendor
R = (2

This tabel ligts currently installed\cassettes and indicates whether they have been
correctly copfigured. Click on a cagsette name to edit a casssite’s settings

Cassette Description
|3§§| OfflineCard | The OfflineCard Cassette allows you to collect

and store credit card information from online
buyers. This information can then be used to

Figure 5. Element location

Properties based example:
+ PSPL file:

<?xml version="1.0" encoding="I1S0-8859-1"7>
<IDOCTYPE PSPL SYSTEM "pspl.dtd">
<PSPL component="0fflineCard">
<name textid="0fflineCard.NAME"/>
<header textid="0fflineCard.HEADER"/>
<shortHelp textid="0fflineCard.SHORTHELP"/>
<trailer textid="OfflineCard.TRAILER"/>
<vendor URL="http://www.ibm.com/payment"
brandURL="/webapp/PaymentManager/images/ibm.gif">IBM</vendor>

</PSPL>
* Properties file:

Chapter 2. Understanding the WebSphere Commerce Payments framework 135

136

encoding=UTF-8

0fflineCardUI.Lang=de,en,es,fr,it,ja,ko,pt,zh,zh_TW
0fflineCard.helpFile=/webapp/PaymentManager/{0}/0fflineCardframe.html
0ffTineCard.NAME=0fflineCard Cassette

0fflineCard.HEADER=<IMG SRC="/webapp/PaymentManager/images/paymgr.gif"
BORDER="0" ALT="IBM WebSphere Commerce Payments">
0fflineCard.SHORTHELP=The OfflineCard Cassette allows you to collect \
and store credit card information from online buyers. \

This information can then be used to \

e\

Cassette documentation is provided in \

<a target="helpFrame"
href="/webapp/PaymentManager/{0}/paymgradmin.html#HDROFFCARDSUPP">HTML.

In-line example

<?xml version="1.0" encoding="1S0-8859-1"7?>
<IDOCTYPE PSPL SYSTEM "pspl.dtd">
<pspl component="0fflineCard">
<locale="en">
<encoding="1S0-8859-1">
<helpFile="/webapp/PaymentManager/en/0fflineCard.html"
<styleSheet="/webapp/PaymentManager/style.css">
<name>0fflineCard Cassette</name>
<vendor URL="http://www.ibm.com/payment"
<brandURL="/webapp/PaymentManager/images/ibm.gif">IBM</vendor>
<shortHelp>The O0fflineCard Cassette defines a credit card payment
cassette for testing and example purposes. </shortHelp>
<header><! [CDATA[<IMG SRC="/webapp/PaymentManager/images/paymgr.gif"
BORDER="0" ALT="IBM WebSphere Commerce Payments"></header>

< / [.);p] >
PSPL — screen elements
Screen elements allow cassettes to specify protocol-specific content and layout. A
PSPL document may contain multiple screen elements which control how objects

are displayed in the user interface. A given screen may either "extend” a
framework screen or "configure” a framework screen.

* "Extends” is used when there is a one to one relationship between the cassette
screen and the framework screen. The underlying cassette object provides
additional attributes for the framework object (e.g., additional field for an
account). The information from the framework screen is shown, followed by the
information from the cassette screen. [Figure 6 on page 137 shows an example of
an "extended” screen. The data above the "Account Details” group heading, and
the buttons, is framework data. The "Account Details” group heading is cassette
data.

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Accounts
Sample Account Framework generated

Account Settiny / Cassette generated
L]

i Basic settings | Advanced settings]

Account number 222222222

Financial Institution |Samp|e Bahk of Raleigh
Name

Status Enabled

Account Details
Enter this information as instrficted by your financial institution.
Currency
Batch Close Time

The minutes past
midnight that cassette
will try ...

Disable Accounts

Figure 6. Extended screen

* "Configures” is used when there is a many to one relationship between the
cassette screen and the framework screen. This occurs when the cassette has
defined additional objects which are associated with the framework object (eg
brands for an account). The framework automatically modifies the associated
framework screen with a reference to the screen being configured and displays
an intermediate screen to list the defined objects as shown in
[page 138| and [Figure 8 on page 138} The actual content is displayed on a separate
screen as shown in [Figure 9 on page 139}

Chapter 2. Understanding the WebSphere Commerce Payments framework 137

Accounts
Sample account

Settings

Description

Account Settings Create, update or delete accounts

Brands

Add or delete brands for this account.

Added by framework

Figure 7. Framework-generated screen #1

Accounts

Sample Account
Brands

Click on a brand to view its current status.

M Gold Card

Brand Name

Add a Brand...

Delete Selected Brands...

Figure 8. Framework-generated screen #2

138 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Framework generated

Accounts
Sample account
Brands
Silver Card

Brand Name Silver Card
Status Enabled —— (Cassette generated

Figure 9. Content screen

A screen element has the following attributes:

Name Description R/O

id Acts as a identifier for the screen. The value must be R
unique and is used as a reference to the properties file
(properties based PSPL) containing screen text.

updatelD Identifies the Merchant Cassette object associated with (@)
this screen. Must match the name in you cassette code.
This attribute is used when screens are configured.

extends (see note) Indicates that a screen in the cassette PSPL has a (@)
one-to-one relationship with the framework screen and
describes the additional data to be shown. The value
of this attribute is the id of the framework screen
being extended.

configures (see note) |Indicates that a screen in the cassette PSPL has a (@)
many-to-one relationship with a framework screen
such that an intermediate screen is displayed to list
the defined objects. The value of this attribute is the id
of the framework screen being configured.

Note: Either extends or configures is used but not both. One of them is required.
A given screen may be both extended and configured. To do this, two
screens are defined in the cassette’s PSPL.

In addition to the above attributes, screens can contain zero or more of the
following elements:

Name Description
name Title to be displayed at the top of the page.
header Information to be displayed after the name but before the data. This can

be any well formed HTML tags such as a paragraph, table, or list.

trailer Information to be displayed after the name but before the data. This can
be any well formed HTML tags such as a paragraph, table, or list.

Chapter 2. Understanding the WebSphere Commerce Payments framework 139

Name Description

emptyList Text to be displayed when no data is returned.
shortHelp Text to be displayed to the right of the screen when it is shown in a list.
fieldGroup See [“PSPL - fieldGroup element” on page 141 for information on logical

groupings of individual fields.

action See [“PSPL - action element” on page 150|for information on buttons that
appear in the user interface.

message See [“PSPL - message element” on page 152| for information on messages
specific to this screen.

Examples showing the "OfflineCard Account” describing a cassette extension to the
AccountAdmin object which extends the 'PSMerchantAccount” screen.

Properties Based example:
» PSPL file:

<screen id="0fflineCardAccount" extends="PSMerchantAccount" >
<name textid="0fflineCard.0fflineCardAccount.NAME"/>

<header textid="O0fflineCard.0fflineCardAccount.HEADER"/>
<shortHelp textid="0fflineCard.0fflineCardAccount.SHORTHELP"/>
<trailer textid="0fflineCard.0fflineCardAccount.TRAILER"/>
<emptylList textid="0fflineCard.0fflineCardAccount.EMPTYLIST"/>
<fieldGroup id="OfflineCardAccountDetails" ...>

</fieldGroup>

Associated properties file:

0ffTineCard.O0fflineCardAccount.NAME=Account Settings
0fflineCard.0fflineCardAccount.SHORTHELP=Create, update or delete accounts.

Note: In the above example, not all fields in the PSPL file have an entry in the
properties file. Only those that have an entry in the file will be displayed.
The additional fields in the PSPL file are there in case the merchant wants to
add customization text via the properties file.

In-line format example:

<screen id="0fflineCardAccount" extends="PSMerchantAccount">
<name>Account Settings</name>
<shortHelp>Create, update or delete accounts.</shorthelp>
<fieldGroup id="OfflineCardAccountDetails" ... >

</fieldGroup>
<message id="PRC=3-SRC=1060" ...</message>

</screen>

Examples showing the ‘brand’ screen describing a cassette-defined
MerchantCassetteObject which configures the 'PSMerchantAccount’
screen:Properties Based example:

» PSPL File

<screen id="brand" updateID="BRAND" configures="PSMerchantAccount">
<name textid="0fflineCard.brand.NAME"/>
<header textid="O0fflineCard.brand.HEADER"/>
<shortHelp textid="0fflineCard.brand.SHORTHELP"/>
<trailer textid="OfflineCard.brand.TRAILER"/>
<emptylList textid="0fflineCard.brand.EMPTYLIST"/>
<fieldGroup id="brand">

140 1BM WebSphere Commerce: Payments Cassette Kit Programming Guide

</fieldGroup>
</screen>

* Associated properties file:

Screen: O0fflineCard.brand

0fflineCard.brand.NAME=Brands

0fflineCard.brand.HEADER=Click on a brand to view its current status.
0fflineCard.brand.SHORTHELP=Add or delete brands for this account.
OfflineCard.brand.EMPTYLIST= To create a brand, click on Add a Brand.

In-line format example:

<screen id="brand" updateID="BRAND" configures="PSMerchantAccount">
<name>Brands</name>
<shortHelp>Add, edit, or delete brands for this account.</shorthelp>
<header><![CDATA[Click on a brand to edit or delete the brand.</header>
<emptyList>No brands exist for this account. Create a brand by clicking
Add a Brand.</emptyList>
<fieldGroup id="brand">

</fieldGroup>
</screen>

PSPL - fieldGroup element

A fieldGroup is a logically-related collection of fields within a screen. Field groups
can be configured to display on a single page or on multiple pages which are
linked together. There is one page for "basic settings” and one for "advanced
settings” When multiple pages are linked, the links are placed at the top of the
page as shown in |Ei§ure 10| below:

Accounts
Sample Account
Account Settings

[Basic settings | Advanced settings

Account number 222222222

Account name amplo accout |
Financial Institution Name |Sample Bank of Raleigh

Status Enabled

Figure 10. fieldGroup element, advanced settings

The fieldGroup element has the following attributes:

Name Description R/O
id A unique identifier. R
advanced Indicates how groups are to be displayed. If not (@)

provided, all groups are displayed on a single page. If
provided, the groups are split between two pages.
Valid values are 0 or 1 where 0 identifies the "basic
settings” while "1" identifies the "advanced settings”.

In addition to the above attributes, a fieldGroup may contain zero or more of the
following elements:

Chapter 2. Understanding the WebSphere Commerce Payments framework 1471

Name Description

name Text that will be displayed in the user interface centered in a shaded area
above the group’s fields.

header Text, or other well formed HTML elements, that is displayed left aligned
above the fields in the group.

trailer Text, or other well formed HTML elements, that is displayed left aligned
below the fields in the group

message One or more messages associated with this group. Refer to the ["PSPL field
llement type attribute” on page 145|for additional information.

field A list of “field” elements to be displayed as a group. Refer to the [“PSPL

ffield element type attribute” on page 145|for additional information.

Properties based example

e PSPL file:
<screen id="0fflineCardAccount" extends="PSMerchantAccount" >

<fieldGroup id="O0fflineCardAccountDetails" advanced="0">
<name textid="0fflineCard.O0fflineCardAccount.
0fflineCardAccountDetails.NAME"/>
<header textid="0fflineCard.OfflineCardAccount.
0fflineCardAccountDetails.HEADER"/>
<trailer textid="0fflineCard.0fflineCardAccount.
0fflineCardAccountDetails.TRAILER"/>

<field id="Currency" ...>
</field>
<field id="BatchCloseTime" ... >
</field>

</fieldGroup>

</screen>
* Associated properties file:
Screen: O0fflineCard.O0fflineCardAccount

0fflineCard.0fflineCardAccount.0fflineCardAccountDetails.HEADER=
Enter this information as instructed by your financial institution.
0fflineCard.0fflineCardAccount.0fflineCardAccountDetails.NAME=
Account Details

In-line example
e PSPL file:
<screen id="0fflineCardAccount" extends="PSMerchantAccount">

<fieldGroup id="OfflineCardAccountDetails" advanced="0">
<name>0fflineCard Account Details.</NAME>
<header ![CDATA[Enter this information as instructed
by your financial institution.</i>]].</HEADER>
<field id="Currency" ...>

</fiel d>. B
</fieldGroup>

</screen>

142 1BM WebSphere Commerce: Payments Cassette Kit Programming Guide

PSPL - field element

A field element partially defines how a payment server datum can be presented.
Each field element contains the following attributes:

Name

Description

R/O

id

The unique identifier for this field which
must match the name specified in your
cassette code.

R

updatelD

Identifies the protocol specific keyword for
the data being updated. Must match the
name in you cassette code.

type

The type of information described by the
field (e.g., text, date, or amount). These types
are described in [“PSPL field element type|
[attribute” on page 145

columnPosition

Defines the relative position of the element
on the panel when displayed in tabular
format. The fields are laid out in ascending
order based on the number.

sortOrder

Defines the relative position of the element
for sorting purposes when displayed in
tabular format. The numbers represent the
sorting significance of the field with the
lowest value representing the most
significant sort field.

sortDirection

Indicates whether the fields are sorted in
ascending or descending sequence. 0
indicates ascending, 1 indicates descending.

linkField

Indicate that this file is to be displayed as a
link. Clicking on the link causes the details
screen for the object to be displayed.

keyField

Used on screens that "configure” framework
screens to identify the field that represents a
key into the database. Valid values are "full”
and "partial”. Use "full” if the field, in
combination with the keys of the
corresponding framework object, allows for
selection of a unique object (e.g. Brand).
When Brand is combined with Merchant and
Account from the framework, a unique
object is identified. Use "partial” if the field
does not allow for selection of a unique
ojbect, For example, if there was a many to
one relationship of some object to a brand
(e.g. issuing bank), the brand would have a
"partial” key. When Brand is combined with
Merchant and Account from the framework,
a unique object is not "issuing bank” field to
identify the object.

sendEmptyValue

Indicates whether or not a field that has not
been filled in is returned. 0 indicates no, 1
indicates yes.

required

Indicates whether or not the field is
required. Valid values are 0 and 1. If set to 1,
a red asterisk is displayed to the left of the
field.

Chapter 2. Understanding the WebSphere Commerce Payments framework

143

144

Name

Description R/O

multipleValues

Identifies whether or not multiple selections (@)
are allowed. A "0" indicates a single selection
while a "1” indicates multiple selections.
This, in conjunction with the displayList
attribute, determines how the field is shown.
A"0" indicates the use of either a radio
button or a drop down list. A "1” indicates
the use of either a check box or a list box.

displayList

Indicates whether or not this field represents (@]
a list. A "0” indicates no and a "1" indicates
yes. This, in conjunction with the
multipleValues attribute, indentifies how the
associated options are displayed. A "0"
indicates the use of either a check box or a
radio button, based on the value of the
multipleValues tag. A "1” indicates the use of
a list box or drop down list, based on the
value of the multipleValues tag. See
for more information on
displayList values.

column]Justification

Indicates how text is displayed in the field. (@)

non "o

Valid values are "left”, "right”, "centered”.

displayType

Indicates whether or not data can be entered (@]
in the field.

Whether the fields are laid out vertically (details view) or horizontally (tabular
view) is controlled by the code. In general queries result in a tabular view while
access to a particular object (e.g., account 1234) result in a details view.

In addition to the above attributes, a Field can also contain zero or more of the

following elements:

Name Description

name Text that will be displayed in a shaded area to the left of the fields
data in detail form, or above the column in tabular form.

shortHelp The text to be displayed to the right of the field.

columnWidth The width of the data column when data is presented in tabular
form.

preferredWidth The width of the field in pixels or percent.

preferredHeight The height of the field in pixels or percent.

maximumLength The maximum number of characters allowed in the field.

defaultValue The data used to initialize the field. This is either a text value or an
index into an options list.

option List of options associated with the field as described in|“PSPL -
[option element” on page 149

message List of messages associated with this field as described in|“PSPL
[message element” on page 152}

Properties based example

» PSPL File:

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

<screen id="0fflineCardAccount" extends="PSMerchantAccount">

<fieldGroup id="0fflineCardAccountDetails" advanced="0">

<fi

eld id="BatchCloseTime" updateID="$BATCHCLOSETIME"

sendEmptyValue="1" type="text" displayType="readWrite">

<name textid="O0fflineCard.0fflineCardAccount.
0fflineCardAccountDetails.BatchCloseTime.NAME"/>

<shortHelp textid="0fflineCard.OfflineCardAccount.
0fflineCardAccountDetails.BatchCloseTime.SHORTHELP"/

<defaultValue textid="0fflineCard.0fflineCardAccount.

0fflineCardAccountDetails.BatchCloseTime.DEFAULTVALUE"/>

<columnWidth textid="0fflineCard.0fflineCardAccount.

0fflineCardAccountDetails.BatchCloseTime.COLUMNWIDTH" />

<preferredWidth textid="0fflineCard.O0fflineCardAccount.

0fflineCardAccountDetails.BatchCloseTime.PREFERREDWIDTH" />

<preferredHeight textid="0fflineCard.0fflineCardAccount.

0fflineCardAccountDetails.BatchCloseTime.PREFERREDHEIGHT" />

<maximumLength textid="0fflineCard.OfflineCardAccount.

0fflineCardAccountDetails.BatchCloseTime.MAXIMUMLENGTH" />

</field>

</fieldGroup>

</screen>

* Associated properties file:
0fflineCard.OfflineCardAccount.0fflineCardAccountDetails.

BatchCloseTime.

NAME=

Batch Close Time
0fflineCard.0fflineCardAccount.0fflineCardAccountDetails.

BatchCloseTime.

SHORTHELP=

The minutes past midnight that cassette will try \
to automatically close open batches. A value of \

0 (zero) represents midnight and 1439 is maximum value \
allowed. A null value disables automatic batch closing.

0fflineCard.OfflineCardAccount.0fflineCardAccountDetails.

BatchCloseTime.PREFERREDWIDTH=10

0fflineCard.OfflineCardAccount.0fflineCardAccountDetails.

BatchCloseTime.MAXIMUMLENGTH=10

PSPL field element type attribute
This attribute defines how the field is displayed. The valid types are:

Name Description

text A standard text input field.

untrimmedText An input field used if your cassette needs data that has leading or
trailing spaces.
The "text” field type truncates any white spaces before the start of the
text and any white spaces after the text, whereas the "untrimmedText"
accepts exactly what is entered by the user.

integer A text field limited to numeric values.

date A field that accepts a date as input in a format specific to the
operating system locale. For English, the correct format would be:
mm/dd/yy. A field that has this type and does not have shortHelp
will be given an example date in the shortHelp section by default.

dateTime Text field that displays receives a timestamp and displays it as a date,
based on the locale.

password A standard text input field that shows asterisks (*) instead of text.

Chapter 2. Understanding the WebSphere Commerce Payments framework 145

146

Name Description

messagelD A text field that displays a message based on the field content. The
message associated with a given content is defined in the properties
file. For example, the order state is defined in the PSPL file as:
<field id="state" type="messageID" displayType="readOnly">
</field>
The associated properties file contains:
payment.stateorder_requested.MESSAGE=Requested
payment.stateorder_ordered.MESSAGE=Ordered
payment.stateorder_refundable.MESSAGE=Refundable
payment.stateorder_rejected.MESSAGE=Rejected
payment.stateorder_pending.MESSAGE=Pending
payment.stateorder_canceled.MESSAGE=Canceled
payment.stateorder_closed.MESSAGE=CTlosed
If the cassette supports independent credit, the file does not contain
payment.stateorder_ordered.MESSAGE=Ordered.

boolean A text input field in the form of a check box.

currency A field that shows a drop down selection list of currencies defined by
the framework.

merchant A field that appears as either a standard input field or a list field,
depending on the number of merchants.

cassette A list of cassette names.

amount Text input field limited to numeric data and which automatically
displays default short help if none is provided.

account A field that appears as either a standard input field or a list field,
depending on the number of merchants.

status A text field that displays the status of an administration object based
on the combination of the objects pending, enabled, active, and valid
flags as shown in the following table. The result string determines the
text of the message to be displayed. The returned value consists of
the result string prefixed by "xxx=" where xxx is the field ID. See
Table 10 on page 147 for the order in which tests are made. See
Figure 11 on page 147 for an example of the property based PSPL to
show the status.

sortedSelection A selection list containing the values defined by the options element
which is sorted into ascending order.

customSelection A field that acts as a text field by default but can be made to act as a
selection list by defining values in the associated properties file.

fieldOrder Defines the order in which the fields are displayed on the screen. This
is only valid for properties based PSPL in version 2.2.0.1 or later.

selection An unsorted selection list containing the values defined by the
options element.

URL Displays a link to the value contained by this field. If your cassette

returns a value that is always a URL, this type of field displays a
clickable link instead of displaying the URL in the user interface. The
link that is created is shown by a small arrow in this field. This image
can be changed by setting payment.IURLICON.MESSAGE to point to a
new image in the PMCustomUI.properties file.

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Table 9. Display List Values

displayList multipleValues how shown
0 0 Radio button
0 1 Check Box
1 0 Drop down list
1 1 List Box

Table 10. Status Processing Values

pending enabled active valid result string
— — — No invalid

— — No Yes stopped

— No Yes Yes stopping
Yes Yes Yes Yes pending

No Yes Yes Yes started

<field id="brandStatus" type="status" >

<name textid="0fflineCard.brand.brand.brandStatus.NAME"/>

</field>

<message id="brandStatus=started" type="info"

textid="0fflineCard.brand.brand.brandStatusstarted.MESSAGE"/>

<message id="brandStatus=pending" type="info"

textid="0fflineCard.brand.brand.brandStatuspending.MESSAGE"/
<message id="brandStatus=stopped"
type="info" textid="0fflineCard.brand.brand.brandStatusstopped.MESSAGE"/>
<message id="brandStatus=invalid"
type="info" textid="0fflineCard.brand.brand.brandStatusinvalid.MESSAGE"/>

Figure 11. Status Example

PSPL - displayType attribute
The displayType attribute defines whether or not data may be entered in the field.

The following display types are used:

Name Description

createOnly Data for this field is editable at object creation, but will be displayed as
readOnly after that time.

readOnly Data for this field will be displayable only (not editable).

readWrite Data for this field will always be editable.

hidden Data for this field will not be displayed through the UL

This example shows a definition of a property based read-write field:
<field id="BatchCloseTime" updateID="$BATCHCLOSETIME"
type="text" displayType="readWrite">
<name textid="0fflineCard.0fflineCardAccount.0fflineCardAccountDetails.

</field>

BatchCloseTime.NAME" />

Chapter 2. Understanding the WebSphere Commerce Payments framework 147

PSPL - Name element
The name element identifies text to be displayed. Its attributes are:

Name Description R/O
textid Identifies the key used to access the text in the PSPL (@)
file. Only used for properties based PSPL.

PSPL - Header element
The header element identifies text to be displayed before the data. Its attributes are:

Name Description R/O
textid Identifies the key used to access the text in the PSPL file. (@)
Only used for properties based PSPL.

PSPL - Trailer element
The trailer element identifies text to be displayed after the data. Its attributes are:

Name Description R/O
textid Identifies the key used to access the text in the PSPL file. (@)
Only used for properties based PSPL.

PSPL - shortHelp element
The shortHelp element identifies text to be displayed with a field. Its attributes are:

Name Description R/O
textid Identifies the key used to access the text in the PSPL file. (@)
Only used for properties based PSPL.

PSPL - emptyList element

The emptyList element identifies text to be displayed when no data is returned. Its
attributes are:

Name Description R/O
textid Identifies the key used to access the text in the PSPL file. (@)
Only used for properties based PSPL.

PSPL - fieldPosition element
The fieldPosition element defines the position of a field in relation to other fields in

the same field group in which the field is displayed on the screen. A field can
contain zero or one fieldPosition element, with a value of 0 to 39. A fieldPosition
value greater or equal to 40 does not display the field on the screen. This attribute
may be useful when your cassette needs to display a different order of fields
depending on a language locale. For example, some regions display addresses in a
different order than others. In this case, the locale’s property file indicates the
order in which the fields should appear.

Its attributes are:

Name Description R/O
textid Identifies the key used to access the text in the PSPL (@)
file. Only used for properties based PSPL.

148 1BM WebSphere Commerce: Payments Cassette Kit Programming Guide

PSPL - preferredWidth element
The preferredWidth element identifies the width of the data to be displayed. Its

attributes are:

Name

Description

R/O

textid

Identifies the key used to access the text in the PSPL file.
Only used for properties based PSPL.

(@)

PSPL - preferredHeight element
The preferredHeight element identifies the height of data to be displayed. Its

attributes are:

Name

Description

R/O

textid

Identifies the key used to access the text in the PSPL file.

Only used for properties based PSPL.

(@)

PSPL - maximumLength element
The maximumLength element identifies the length of data to be entered. Its

attributes are:

Name

Description

R/O

textid

Identifies the key used to access the text in the PSPL file.
Only used for properties based PSPL.

(@)

PSPL - defaultValue element
The defaultValue element identifies text to be displayed before the data. Its

attributes are:

Name

Description

R/O

textid

Identifies the key used to access the text in the PSPL file.
Only used for properties based PSPL.

(@)

PSPL - columnWidth element
The columnWidth element identifies the width of column used to display text. Its

attributes are:

Name

Description

R/O

textid

Identifies the key used to access the text in the PSPL file.
Only used for properties based PSPL.

(@)

PSPL - option element

An option element defines the choices for a selection field. These values are shown
in a list, as the label of a radio button, or as the label of a check box based on the

type attribute of the field. Option elements have the following attributes:

Name Description R/O

id Unique identifier for the option which is passed to R
WebSphere Commerce Payments on the request.

default A flag indicating that this option is to be chosen when @]
the page is loaded. Valid values are "0"” and "1" with "1"
indicating that this is the default.

Chapter 2. Understanding the WebSphere Commerce Payments framework

Name Description R/O

textid Properties file key of the text to be displayed. This (@)
attribute is only used for properties based PSPL.

Properties based example
» PSPL File:
<screen id="currency">

<fieldGroup id="currency" type="currency">
<option id="004" textid="payment.currency.currency.currency.004.0PTION">

<option id"840" textid="payment.currency.currency.currency.840.0PTION">
</field>

</fieldGroup>
</screen>
* Associated properties file:

payment.currency.currency.currency.004.0PTION=Afghanistan Afghani
payment.currency.currency.currency.840.0PTION=US Dollar

PSPL - action element

An action element defines a button that submits a form. It is only used on those

screens that "configure” a framework screen. For those screens that "extend” a

framework screen, the actions are defined on the framework screen. There are two

types of actions to consider:

+ Standard actions provided on the framework screen being "configured”. The
framework has certain standard actions which must be defined by the cassette.
These are:

- add

— Create
— delete
— update

* Cassette unique actions. These are any additional actions needed by your
cassette.

Action elements have the following attributes:

Name Description R/O

id Unique identifier for the action. For standard R
framework actions, the valid values are "add”,
"create”, "delete”, and "update.” For cassette unique
actions, the value is whatever is recognized by your
cassette.

updatelD Identifier to be passed in on the request. When this (@)
value is omitted, it defaults to the id value. For
framework actions this should be omitted. For
cassette unique actions, this should be the protocol
data keyword recognized by your cassette(eg
$CONTINUE).

150 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Name

Description

R/O

default

A flag indicating that this button is the default button
which will get the input focus when the page is
loaded. Valid values are "0” and "1", with "1”
indicating the button should get the focus.

safe

Indicates that clicking this button does not update the
database and therefore the screen will be placed in
the navigation history. Clicking back on the
subsequent screen will return you to this window. If a
button is not safe, the this screen is not placed in the
history. Clicking back on the subsequent screen will
return you the window that invoked this window.
This is to prevent double updates of the database.
Buttons that only navigate to another screen (eg add)
should be designated as safe. Buttons that initiate a
query may also be designated as safe. Valid values
are "0" and "1".

sendNoData

Indicates that data from those fields containing a
updatelD will not be sent with this button. Valid
values are "0” and "1". This could be used in the case
of an abort or cancel request.

textid

The text to be displayed on the button. Only used on
properties based PSPL.

Properties based example:

» PSPL file:

<screen id="brand" updateID="BRAND" configures="PSMerchantAccount">

<action id="add" safe="1" textid="admin.PSMerchantAccount.add.ACTION"/>

<action id="create" textid="admin.PSMerchantAccount.create.ACTION"/>
<action id="delete" textid="admin.PSMerchantAccount.delete.ACTION"/>
<action id="update" textid="admin.PSMerchantAccount.update.ACTION"/>
<action id="cancel" updateID="$CANCEL" sendNoData="1"

</screen>

textid= "admin.PSMerchantAccount.cancel.ACTION"/>

* Associated properties file:

admin.PSMerchantAccount.add.ACTION=Add an Account...
admin.PSMerchantAccount.create.ACTION=Create Account
admin.PSMerchantAccount.delete.ACTION=Delete Selected Accounts...
admin.PSMerchantAccount.update.ACTION=Update
admin.PSMerchantAccount.cancel.ACTION=Cancel

In-line example:
» PSPL file:

<screen id="brand" updateID="BRAND" configures="PSMerchantAccount">

<action id="add" safe="1">Add an Account...</action>
<action id="create">Create Account</action>

<action id="delete">Delete Selected Accounts...</action>
<action id="update">Update</action>

<action id="abort"

</screen>

updateID="$CANCEL" sendNoData="1">Cancel</action>

Chapter 2. Understanding the WebSphere Commerce Payments framework

151

PSPL - message element
All error codes and messages are defined in the PSPL files by specifying a ‘message’

element inside the PSPL, screen, fieldGroup or field elements. These messages are
displayed just above the details information as shown in .

'@=*Invalid userid or password. Message

User ID |
Password |

Logon

Figure 12. Message element

The "message” element attributes are:

Name Description

id Identifies the message. This is the name known by the cassette. There are
two forms of the id:

* aaaaa- where aaaaa is any value understood by the cassette.

* PRC=xx-SRC=yyy where xx is the primary return code and yy is the
secondary return code associated with the command.

type Identifies the type of message. This attribute determines the color of the
message and its associated image. Valid values are "warning”, "error”, or
"info".

textld Key to be used to lookup the message in the associated properties file. Only

valid for properties based PSPL.

Properties based example:

e PSPL file:
<screen id="0fflineCardAccount" extends="PSMerchantAccount">

<fieldGroup id="OfflineCardAccountDetails" advanced="0">

<field id="Currency" ...>
</field>
<field id="BatchCloseTime" ... >
</field>

</fieldGroup>

<message id="PRC=3-SRC=1060" type="error"
textid="0fflineCard.0fflineCardAccount.PRC3-SRC1060.MESSAGE" />

152 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

<message id="PRC=3-SRC=1096" type="error"
textid="0fflineCard.0fflineCardAccount.PRC3-SRC1096.MESSAGE"/>

</screen>

* Properties file:

0fflineCard.OfflineCardAccount.PRC3-SRC1060.MESSAGE=

Error: A 3 digit ISO Currency Code is required but was not specified.
0fflineCard.O0fflineCardAccount.PRC3-SRC1092.MESSAGE=

Error: A password is required but was not specified. ...

In-line example:
e PSPL file:
<screen id="0fflineCardAccount" extends="PSMerchantAccount">

<message id="PRC=3-SRC=1060" type="error">
Error: A 3 digit ISO Currency Code is required but was not specified.
</message>
<message id="PRC=3-SRC=1096" type="error">
Error: A password is required but was not specified.
</message>

</screen>

Debugging user interface problems
The following facilities are available to help you trace or debug problems:
 Tracing:

— The WebSphere trace service, available through the WebSphere Application
Server administrative console, enables you to locate syntax errors in your
PSPL files. The Ul Servlet (and Payment Servlet) can write trace entries into a
trace output file. See [“Enabling trace” on page 120| for more information.

* On-screen debug:

— wpmui.Debug parameter: This debug parameter enables you to direct the Ul
Servlet to display intermediate results, statistics, and error information in red
color on the generated HTML pages displayed in your browser.

To enable the on-screen debug facility, do the following;:
1. Open the WebSphere Application Server administrative console.

2. Click Servers > Application Servers in the console navigation tree. On the
Application Server page, click the name of the server whose JVM settings you
want to configure (the Payments instance name).

3. On the settings page for the selected application server, click Process
Definition.

4. On the Process Definition Page, click Java Virtual Machine.
5. Select Custom Properties.

6. The Property page lists the Java system properties for the Payments instance.
Click the wpmui.Debug property.

7. Specify the value for the debug parameter: 0 (if you want debug off), or 1
(debug on; be sure to enter 1 with no minus sign). Click Apply.

8. Restart WebSphere Commerce Payments.

Once the WebSphere Commerce Payments application server is restarted, trace
entries will be written into the log file specified for the trace service.

Chapter 2. Understanding the WebSphere Commerce Payments framework 153

Note: Prior to WebSphere Commerce Payments Version 5.5, you had to format the
trace output to read it. Formatting of trace output is no longer required.

Framework Javadoc

154

page 171]

The WebSphere Commerce Payments Cassette Programming Reference is
documented in the Javadoc. For more information, see the Javadoc packages file.

Cassette view of framework classes

After seeing the large number of framework classes and interfaces that cassette
writers must work with, it is time to sort them in terms of how the cassette uses
each class or interface. As you will see, there are a relatively small number of these
classes and interfaces that you will work with on a regular basis. In fact, you will
probably never have to directly reference the majority of the framework classes!

Classes and interfaces can be sorted into these categories:

* [“Classes cassettes extend”} used to develop your cassette’s infrastructure.

+ [“Interfaces cassettes implement’} used to develop your cassette’s financial data
model and implement the majority of the cassette’s payment processing logic.

* |“Classes that provide framework services” on page 155} used to define the
service methods that the cassette can use to do its work.

+ |“Classes on which cassettes operate” on page 155} used to identify the cassette
data objects for payment processing.

Classes cassettes extend
Use these classes to develop your cassette’s infrastructure:

* com.ibm.etill.framework.admin. AdminObject - you will extend this only if you
need to define your own primary administrative objects.

* com.ibm.etill. framework.cassette.Cassette - every cassette must extend this class.
Here is where you build your cassette infrastructure for the WebSphere
Commerce Payments.

* com.ibm.etill. framework.cassette.query.CassetteQuery - you will extend this class
if you augment query API command results with cassette-specific data. Here is
where you build your cassette infrastructure for the Payment Servlet.

For more information on these interfaces, see [Chapter 4, “Writing your cassette”, on|

Interfaces cassettes implement
Cassette’s key financial objects are defined as interfaces to provide flexibility to

accommodate the needs of different payment protocols. Each cassette writer must
decide not only which objects their payment protocol supports, but also whether
there is a one-to-one or many-to-one relationship between the order and the other
various objects. In one-to-one cases, a single object may implement more than one
of these interfaces.

* com.ibm.etill.framework.cassette.CassetteBatch - you will implement this

interface if your cassette supports batches. This is the Framework’s view of a
cassette-specific batch object.

* com.ibm.etill.framework.cassette.CassetteOrder - every cassette must implement
interface. This is the framework’s view of a cassette-specific order object.

* com.ibm.etill.framework.cassette.CassetteTransaction - every cassette must
implement interface to handle payment-related events. Additionally, if your

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

cassette supports refunds, you will also have to implement this interface to
handle credit-related events. This is the framework’s view of a cassette-specific
payment and credit object.

* com.ibm.etill.framework.io.ComPoint - if your cassette must support inbound
protocol messages, such as messages from a wallet, then you must implement a
ComPoint object to handle those messages.

* com.ibm.etill.framework.io.ETillConnection - depending upon your payment
protocol and the communication methods on which it is based, you may need to
implement your own ETillConnection class. Note that if your cassette only uses
basic sockets-based messaging, you may be able to use existing
framework-supplied ETillConnection classes instead of writing your own.

For more information on these interfaces, see [Chapter 4, “Writing your cassette”, on|

poge 171

Classes that provide framework services
Use these classes to define the service methods used by your cassette. Note that

both Java classes and Java interfaces are included in this list:

* Core services (heavily used):
— class com.ibm.etill.framework.archive.CommitPoint
— class com.ibm.etill.framework.archive.ETill Archive
— class com.ibm.etill.framework.log.ErrorLog
— class com.ibm.etill.framework.log.Trace
— class com.ibm.etill.framework.supervisor.Supervisor
* Framework communication support (optional):
— class com.ibm.etill.framework.io.FrameworkDataStream
— class com.ibm.etill.framework.io.FrameworkServerComPoint
— interface com.ibm.etill.framework.io. HTTPConst
— class com.ibm.etill.framework.io. HTTPInputStream
— class com.ibm.etill.framework.io. HTTPOutputStream
— interface com.ibm.etill.framework.io.MimeConst
— class com.ibm.etill.framework.io.MimelnputStream
— class com.ibm.etill.framework.io.MimeOutputStream
— class com.ibm.etill.framework.io.ServerSocketComPoint
— class com.ibm.etill.framework.io.SocketComPoint
— class com.ibm.etill.framework.io.SyncSocketComPoint
— class com.ibm.etill.framework.io.TimeOutInputStream

Classes on which cassettes operate
The remaining framework classes and interfaces represent the short-lived and

long-lived objects on which your cassette operates. The (many) classes and
interfaces can be grouped into these categories:

* Framework financial objects
* Framework administration objects
* Request and response objects

¢ Framework keys, identifiers, and other miscellaneous objects

Chapter 2. Understanding the WebSphere Commerce Payments framework 155

156 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Chapter 3. Designing your cassette

After you understand the WebSphere Commerce Payments framework, you can
begin designing your cassette. Read this section and look at the LDBCard cassette.
LDBCard is a complete and functional cassette infrastructure upon which most
other cassettes can be built. LDBCard is designed specifically for credit card
processing and it is especially useful when developing other cassettes in this
category.

You can retrieve the LDBCard cassette and its accompanying documentation from
the same Web site from which you downloaded this Cassette Kit Guide. The
LDBCard code is packaged with a detailed "cookbook” that walks you through the
process of modifying the LDBCard code to implement your own cassette. For
many people, this documentation will provide most of what you need. In other
cases, however, LDBCard’s simplifying assumptions may not apply to the given
payment protocol. Yet other cassettes may need to use framework features that are
not used in LDBCard. In these cases, you should still use LDBCard’s infrastructure
as your starting point, augmenting its design as necessary to suit your needs.

In any case, LDBCard is a complete and fully-functioning cassette upon which you
can build your own cassette. The number of extensions and modifications to the
LDBCard design will vary according to the needs of your cassette.

Design activities

While there are many approaches to software design, the following steps are
essential to building a complete payment cassette design. Although these steps are
presented in a sequence, portions of each will occur in parallel:

1. ["Name your cassette”]

[“Consider internationalization” on page 158

[‘Design your extensions to the framework object model” on page 160|

oD

“Map the WebSphere Commerce Payments API to your payment protocol” onl|

page 164]

[‘Design your commit points” on page 165|

[‘Consider restart implications” on page 165

['Design ComPoints and ETillConnection” on page 167|

“Design financial state transitions” on page 167|

“Create scenario diagrams” on page 168

©C o0 NOO

10. [“Write your cassette documentation” on page 168|

Name your cassette

The first thing you will do is choose a name for your cassette (throughout this
section, XXX = your cassette name). To do this, it is important to understand
where and how this name will be used by the framework. The cassette name is
configured in the Cassette profile (ETCASSETTECFG) and will be used to:

* Build the name of the Java class loaded for the cassette - XXXCassette

* Build the package name for the cassette (in conjunction with the configured
company name)

 Find the properties file for the cassette - XXX.properties

© Copyright IBM Corp. 2000, 2003 157

158

1. Name your cassette. The naming convention for the cassette (including package
name) is:

com.co_name.ibmetill.ps_namecassette.PSNameCassette

Where:

e co_name is in lower case and is taken from the COMPANYPKGNAME field
of the ETCASSETTECFG table

* ps_name is taken from the PAYMENTSYSTEMNAME field of the
ETCASSETTECEG table and converted to lower case

¢ PSName is taken from the PAYMENTSYSTEMNAME field of the
ETCASSETTECFG table

For example, a valid cassette name would be:
com.acme.ibmetill.acmecardcassette.ACMECardCassette

IBM-developed cassettes use this convention:
com.ibm.etill.ps_namecassette.PSNameCassette

The Cassette name should be descriptive, because this is how your cassette will
be known to the public. For example:

e VisaNetCassette
* AcmeCardCassette

Consider internationalization

Internationalization is the process of designing an application so that it can be
adapted to various languages and regions without having to make code changes.
An internationalized program has the following characteristics:

e With the addition of localization data, the same executable can run worldwide.

¢ Textual elements, such as status messages and the GUI component labels, are not
hardcoded in the program. Instead they are stored outside the source code and
retrieved dynamically.

* Support for new languages can be easily added and does not require
recompilation.

¢ Culture-dependent data, such as dates and currencies, appear in formats that
conform to the end user’s region and language.

* It can be localized quickly.

Error messages

Error messages are logged in the activity.log file for the cassette. For each
language the cassette developer wishes to support, a properties file should exist
with the following name: cassetteName_lang_country.properties, where
cassettelName is the name of your cassette, lang is the language, and country is the
optional country if there are different resources for the same country. During
Cassette initialization, a java.util.ResourceBundle object for the cassette is created
by com.ibm.etill.framework.log.ErrorLog. ResourceBundle objects know how to
obtain locale-specific resources. When the cassette attempts to log an error message
using the com.ibm.etil11.framework.log.ErrorLog object, the ErrorLog object will
find the cassette’s ResourceBundle, which in turn uses the current locale to
determine which properties file to use.

User interface
In WebSphere Commerce Payments, text that is displayable through the user
interface as well as and that text’s associated attributes are specified in a properties

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

file that is separate from the PSPL file. A user interface properties file should exist
for each language you intend to support in the UIL The properties file should
named as follows:

* cassetteNameUI_lang country.properties, where cassetteName is the name of
your cassette, lang is the language, and country is the optional country if there
are different resources for the same country.

The following lists the languages that are supported by the WebSphere Commerce
Payments framework. If you want your cassette to support a specified language,
you should create the appropriate cassette properties file. For more information
about creating a cassette Ul properties file, see|“Create your cassette’s Ull
[properties file” on page 131|

Table 11. Languages supported by WebSphere Commerce Payments

Language Error message properties file name UI properties file locale Locale
Brazilian Portuguese | cassetteName_pt.properties cassetteNameUI_pt.properties pt_BR
English cassetteName_en.properties cassetteNameUI_en.properties en_US
French cassetteName_fr.properties cassetteNameUI_fr.properties fr_FR
German cassetteName_de.properties cassetteNameUI_de.properties de_DE
Italian cassetteName_it.properties cassetteNameUI_it.properties it_IT
Japanese cassetteName_ja.properties cassetteNameUI_ja.properties Ja_JP
Korean cassetteName_ko.properties cassetteNameUI_ko.properties ko_KR
Simplified Chinese | cassetteName_zh_CN.properties cassetteNameUI_zh_CN.properties |zh_CN
Spanish cassetteName_es.properties cassetteNameUI_es.properties es_ES
Traditional Chinese |cassetteName_zh_TW.properties cassetteNameUI_zh_TW.properties | Zh_TW

Data types: The cassette developer should determine if there is any
cassette-specific data that can potentially hold translated data. One instance in
which this could be the case is for cassette protocol data that comes from the
Buyer. For example, if a cassette expects protocol data on the AcceptPayment API
command that contains the Buyer’s name, then the java.lang.String object in the
cassette that represents that data should support the appropriate encoding (such as
UTES8) so that the Buyer’s name can be specified in any language supported by the
cassette.

Database tables: All translatable data that is stored in the cassette-specific
database tables should be defined as VARCHAR FOR BIT DATA. For example, the
following cassette database table supports translatable data for the Buyer’s name
and address (location) data:

SampleCassetteOrder

MerchantNumber VARCHAR(9) NOT NULL,
OrderNumber VARCHAR(9) NOT NULL,
AccountNumber VARCHAR(9) NOT NULL,

Pan VARCHAR(64) NOT NULL,
Expiry VARCHAR(64) NOT NULL,
Brand VARCHAR (40) NOT NULL,
StreetAddress VARCHAR(128) FOR BIT DATA,
City VARCHAR(50) FOR BIT DATA,
StateProvince VARCHAR(50) FOR BIT DATA,
Country VARCHAR(50) FOR BIT DATA,
PostalCode VARCHAR(14) FOR BIT DATA,
CardHolderName VARCHAR(64) FOR BIT DATA,
PRIMARY KEY (MerchantNumber, OrderNumber)

Chapter 3. Designing your cassette 159

160

In general, the only translated data that should be stored in the cassette-specific
database tables is data that has been supplied as values on protocol data
parameters. Do not store translated strings if they can be represented as non-string
data, for example, as an enumerated type. In such cases, store the enumerated
value and then associate it with a displayable string in a properties file upon
display through the user interface. For example, if your cassette uses a parameter
called $COLOR and the possible values are red and green then use the value 1 to
represent red and 2 to represent green, and store this value in your database table.
Then when displaying this value through the UlI, set up your PSPL file to associate
the value 1 and 2 with a locale-appropriate strings meaning "red” and "green”
respectively in the UI properties file.

Design your extensions to the framework object model

The next step is to design your cassette’s persistent data (that is, data that your
cassette will store in the database). Aspects to this activity include:

* Identifying all of the cassette’s extensions to the framework’s object model

* Designing the external view of your extensions (that is, decide which of your
extensions should be exposed to applications and users)

* Designing the database tables and views required to support your extensions

Identify all of your cassette’s extensions

To begin this activity, you must identify all of the protocol-specific data items that
your cassette will need to save as extensions to the framework’s objects. Remember
that two of the primary divisions of the framework object model are:

* The administrative model, which maintains all of the configuration information
upon which your financial transactions will be based

* The financial model, which represents the financial data that comprise your
transactions

Cassettes should extend framework administrative objects when they have
protocol-specific data to attach to those objects. A common example is the
attachment of some protocol-specific information to the AccountAdmin object
(typically through the cassette’s Account object) that will tell the cassette how to
forward financial transactions to financial processors and which processor to use
for each given account. The mapping of cassette-specific configuration and
administration data to the framework objects should be based upon the scope of
the data and the relationship the data represents. To review the role of each
administrative object within WebSphere Commerce Payments, see
fobject model” on page 7|

Cassettes may also need to define their own primary administrative objects. These
are implemented as MerchantCassetteObjects or SystemCassetteObjects. An
example of such an object is the MerchantCassetteObject named Brand, which the
former IBM Cassette for SET supported. Brand is a central concept within the SET
protocol; there is no framework object that represents this concept.

Cassettes must also define classes that extend the framework financial object
model. The payment protocol supported by the cassette will ultimately determine
which of the financial objects need to be reflected in the cassette’s model, but every
cassette must support the Order and Payment objects. Credit and Batch objects are
optional, but you are strongly encouraged to present some form of Batches even if
the payment protocol does not have such a concept to facilitate easy management of
daily (or other periodic) Payment and Credit totals for merchants.

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

More often than not, credit/debit card-based cassettes tend to have one class that
correspond to each of the framework financial classes (that is, Order, Payment,
Credit and Batch). This method is recommended and is illustrated in the LDBCard
cassette.

Design the external view of your extensions

After identifying all of the cassette-specific extensions to the various framework
objects and any required cassette-specific primary administration objects (that is,
MerchantCassetteObjects or SystemCassetteObjects), you must carefully decide
which parts of these should be exposed to application programs and users through
the Query commands and WebSphere Commerce Payments user interface.
Remember that not all of your cassette-specific data should be exposed. Essentially,
if the merchant software or end user requires access to a particular cassette-specific
data item to adequately perform their duties, that item should be exposed. If access
is not required, the data item should probably remain internalized within the
cassette.

One important point about exposing MerchantCassetteObjects and
SystemCassetteObjects: Since the Query commands always operate upon
framework objects, the cassette’s primary administration objects must be exposed
as an attachment (called a CassetteConfigObject) to some framework
administration object with which the cassette object is somehow associated. Using
the example of the former SET Brand objects, each SET Brand was associated with
a given Account. Therefore, SET Brands were exposed as CassetteConfigObjects
through the results of the QueryAccounts command.

Design your database tables and views
When designing your cassette’s database tables and views, remember the key

points discussed here, which are also illustrated in setupTestTables.txt, found in
the cassette kit install directory. As a sample database setup script,
setupTestTables.txt shows how to set up a cassette’s database tables and views;
not only for cassette extension objects, but also for a MerchantCassetteObject
named Brand. Each of the cassette’s extensions contain four to five sample fields,
each of a different datatype. All of these fields are made available through the
VIEWS for exposure through the Query API set.

* To ensure compatibility with all of the database products supported by
WebSphere Commerce Payments, limit the length of your cassette’s table and
view names to 18 characters or less.

* Typically, a cassette maintains one table for each type of framework object that it
extends. Use this naming scheme for your cassette tables (where "xxx" represents
your cassette’s PaymentSystemName in the ETCASSETTECFG table):

Extensions to... Table name Primary Key

Order xxx0rder MerchantNumber, OrderNumber

Batch xxxBatch MerchantNumber, BatchNumber

Payment xxxPayment MerchantNumber, OrderNumber, PaymentNumber
Credit xxxCredit MerchantNumber, OrderNumber, CreditNumber
AccountAdmin xxxAccount MerchantNumber, AccountNumber
PaySystemAdmin xxxPaySys MerchantNumber

CassetteAdmin xxxCfg no recommendation (typically contains only

one record)

¢ The column names of the primary key fields in your cassette’s tables should
match the names of those columns in the corresponding framework tables. This
becomes important in building the VIEWSs required by the query infrastructure.

* Tables that represent your MerchantCassetteObjects and SystemCassette objects
should have keys that will allow you to do a single SQL QUERY that will

Chapter 3. Designing your cassette 161

retrieve all of the records related to a given framework object. In addition, each
of these tables must support the following columns to support the framework’s
administration infrastructure:

Column Name Datatype
Enabled SMALLINT
Active SMALLINT
Valid SMALLINT
Pending SMALLINT

MessagesKey VARCHAR (40)

* For each cassette-specific extension that will be at all visible through the Query
API set, you should provide an SQL VIEW definition that joins the framework
table with the associated cassette table. This allows the cassette to use the
methods built into the com.ibm.etil1.framework.xdm.QueryRequest class to
execute the SQL QUERY necessary to retrieve the set of cassette objects related
to a given framework object.

The following view would be used in the xxx cassette’s QueryOrders processing
logic:
CREATE VIEW xxxOrderView
AS SELECT ETORDERVIEW31.x,
xxx0Order.Fieldl as xxxOrderFieldl,
xxx0Order.Field2 as xxxOrderField2,
xxxOrder.Field3 as xxxOrderField3,
FROM xxxOrder, ETORDERVIEW31
WHERE ETORDERVIEW31.MerchantName
AND ETORDERVIEW31.OrderNumber

xxx0rder.MerchantNumber
xxx0rder.OrderNumber ;

By issuing an SQL QUERY against this view, the cassette can extract all of its
CassetteOrder objects that are associated with the requested framework Order
objects. Each of its own field names will be accessible by the names assigned in
the SELECT clause. This assignment is made to avoid any potential name
collisions between the column names in the framework’s table and those in the
cassette’s table. Additionally, the framework method in the QueryRequest class
will be able to access any of the framework fields that it requires (the
ETORDERVIEW31.* in the SELECT clause is required for the QueryRequest
method to work correctly).

Note: Prior to WebSphere Commerce Payments version 3.1, the
ETORDERVIEW31 view was called ETORDERVIEW. If you are migrating
a cassette to this release of WebSphere Commerce Payments, please note
the migration considerations described in ["Migration considerations and|
[steps” on page 182

For more information, examine the remaining views in setupTestTables.txt. In
particular, the Payment and Credit extension objects are defined with two
different VIEWs:

— One VIEW for QueryPayments and QueryCredits commands

— The other VIEW for QueryBatches commands that request payment and credit
detail.

For more examples, see setupTestTables.txt, which is in the cassette kit install
directory.

* Consider adding growth fields to each of your cassette tables to allow table
additions during the life of your cassette. Once your cassette is in production, it
is usually not possible to make changes to your database tables. The growth
fields allow changes to be made for things such as bug fixes and functional

162 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

enhancements. In addition, using growth fields for table additions needed for a
new release of your cassette will minimize future database table migration
efforts. Suggested growth fields are:

Growthl INTEGER
Growth2 INTEGER
Growth3 VARCHAR(150) FOR BIT DATA

PersistFdsKey VARCHAR(40)

The Growth fields should be used as efficiently as possible. For example, the
Growth3 field could hold several 20 character pieces of data since it is 150
characters in length. When storing multiple pieces of data into one field, you
must have some sort of index in the field that indicates which pieces of data are
present and their length. The PersistFdsKey (persistent fields key) should be
used as a key into the ETBINARYDATA table.

* Datatype guidelines:

When defining fields to reflect or match fields in any of the framework tables,
use the same datatypes as the framework table definitions. Some of the more
frequently-used fields are:

Column Name/content Datatype
MerchantNumber VARCHAR(9)
OrderNumber VARCHAR(9)
BatchNumber VARCHAR(9)
PaymentNumber VARCHAR(9)
CreditNumber VARCHAR(9)
AccountNumber VARCHAR(9)
Amount INTEGER
ReferenceNumber VARCHAR (64)
CardholderID VARCHAR(64)
any time stamp TIMESTAMP
any boolean SMALLINT
state variables INTEGER
keys into ETBINARYDATA table VARCHAR(40)
IP hostnames VARCHAR (256)
TCP, UDP port values INTEGER

strings that will potentially VARCHAR FOR BIT DATA(length as needed)
contain international characters
any other strings VARCHAR(1ength as needed)

Define commonly-used cassette-specific fields consistently across cassettes.
Recommended types for common credit/debit card-specific fields include:

Column Name Datatype
Brand VARCHAR (40)
PAN VARCHAR (64)
Expiry VARCHAR (64)
CardVerifyCode VARCHAR(4)
AVSStreetAddr VARCHAR (128)
AVSCity VARCHAR (50)
AVSStateProvince VARCHAR(50)
AVSCountry VARCHAR (50)
AVSPostalCode VARCHAR(14)
CardHolderName VARCHAR(64)

* Consider if any of the data in the database should be encrypted.

For security reasons, sensitive data, such as credit card numbers and checking
account numbers should not be stored in the database in the clear. The framework
does not provide encryption/decryption services. Encryption and decryption
support must be provided by the cassette developer.

Chapter 3. Designing your cassette 163

164

Map the WebSphere Commerce Payments API to your
payment protocol

Mapping your payment protocol to the WebSphere Commerce Payments API
requires a thorough understanding of both. Once you understand the central data
in your payment system and how it relates to the framework’s data, you are ready
to design this mapping.

Mapping your payment protocol to the WebSphere Commerce Payments API
means defining which actions occur within your cassette in response to each API
command received from the merchant or administrator. To do this, you also need
to understand what actions will occur within your cassette in response to your
own payment protocol messages received from the outside world. Mapping your
payment protocol to the generic payment API means defining which actions occur
within your payment system in response to each API command received from the
merchant. To do this, you also need to understand what actions will occur within
your payment system in response to your own payment protocol messages
received from the outside world.

During this mapping process (and, for that matter, during the entire cassette
development process), remember that the user of the cassette is merchant software,
and that the merchant software views your payment protocol through the
WebSphere Commerce Payments API. Therefore, it is important to create this
mapping from the viewpoint of the WebSphere Commerce Payments API rather
than trying to figure out how to expose each and every feature of the payment
protocol through the API For example, ask the question "what should happen if a
DepositReversal call is made to my cassette?” instead of "how can I expose my
protocol’s voidAndRepurchase function into the generic API?.” For more

suggestions and conventions for cross-cassette compatibility, see[’Cassettes and

ffommand processing” on page 31|

Start your API mapping by deciding how Orders will be first created for your
cassette. There are two choices, via the ReceivePayment API command or via the
AcceptPayment API command. To understand the distinction and choose which
command your cassette will respond to, study the ["Framework commands” on|
page 24 It is legitimate to respond to both, if they both make sense in your
payment system.

Next decide how the autoApprove and autoDeposit flags on the Receive and
AcceptPayment commands will be handled in your cassette:

* Are these flags used?

* Is one or both flags required to be true for all calls to your cassette?

Remember, autoApprove should behave as an approve in terms of the framework
and cassette specific objects which must be created. AutoApprove should cause a
payment to be created and change to an appropriate post-Approve state - see
[“Financial objects and their states” on page 11} AutoDeposit should cause the
payment to change to an appropriate post-Deposit state.

Implementation of the rest of the API commands is optional. The cassette can
return a "command not supported” code (PRC_CASSETTE_ERROR,
RC_COMMAND_NOT_SUPPORTED) for any API command which does not make
sense for your payment protocol. It is critical to consider the effect of each API
command on the state and existence of framework data model objects. The
mapping of command to cassette function depends on both a) the mapping of the
data object state changes and b) the name of the API command.

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Design your commit points

The cassette is responsible for committing all financial data (for example, Order
and Payment), including framework data, to the database. The framework will
create and update the framework financial objects in memory, using framework
objects” methods which do the updates. However, committing the framework
financial objects to the database must be coordinated with the commitment of
cassette-specific financial objects to the database to prevent inconsistent data in the
database due to errors occurring between the commit of the framework financial
objects and the commit of the cassette objects. This means that the cassette is
responsible for actually invoking the commit operations for Payment commands.

In general, all related financial objects should be committed to the database when
their state is consistent and a potentially long wait period is about to be entered.
This will ensure that the objects’ states are preserved in case of a cassette or system
shutdown and will allow the cassette to resume the operation from the point
where it left off when the cassette is eventually restarted.

For administration data, the cassette is responsible for committing all Merchant
Cassette objects and System Cassette objects, to the database in response to Create,
Modify, or DeleteMerchantCassetteObject commands and Create, Modify, or
Delete or DeleteSystemCassetteObject commands. In these cases, there are no
corresponding framework objects to be committed to the database. For Cassette
Extension objects, such as a cassette-specific extension of the framework’s
AccountAdmin object, the framework will commit the changes to the database. In
these cases, the cassette is responsible for adding new, updated, or deleted cassette
extension objects to the appropriate commit point list, but the framework will
inovke the commit operations when command processing is complete. An example
of a command in this category is the CreateAccount command.

The LDBCard cassette includes well-defined commit points. Not only does it show
how to use the Archivable interface and the thread’s CommitPoint object, but it
also shows you when objects should be committed.

Consider restart implications

Before you go any farther, you should think about what type of restart capabilities
you will want to build into your cassette:

* For example, if your cassette must communicate with some sort of "back end”
system (an acquiring institution, for example), then how will your cassette
handle the case where you send a request to the back end, and then the cassette
is stopped (either intentionally or unintentionally)?

* Will you save the state of the back-end request so that it can be restarted once
the cassette is restarted, or should you simply not update any database entries
until the back-end response is received?

* What will the back-end system do if you reissue a request that it has already
processed? Does that system maintain idempotent semantics?

* What data needs to be saved to restart a back-end operation?

* What type of state information should be saved with your financial objects
before sending back-end requests?

* How will you handle new requests against the objects for which the pending
operation was issued? Should any new states be included in your FSM to
account for this?

Chapter 3. Designing your cassette 165

166

As you can see, the answers to these questions can significantly affect your
cassette’s overall design. While we cannot offer concrete answers to these
questions, we can offer some important suggestions to make your overall cassette
design more elegant, robust and maintainable:

* Most cassettes will have to handle communication failures and situations created
by the fact that the account, payment system, cassette, or WebSphere Commerce
Payments have been stopped or shut down while waiting for a response
message from the back end. If your cassette is one of these, it is imperative that
you build your cassette architecture and design to handle restart scenarios. Do
not wait until you have a working cassette to "fit in" restart logic later. Because
of the different commit points and potential points of failure involved in such a
system, it quickly becomes very difficult to force this type of restart recovery
over an existing architecture.

* You must clearly understand your payment protocol’s capabilities concerning the
handling of duplicate messages. If the protocol is idempotent, then you can
safely issue duplicate messages to the back end without fear of causing an action
to occur more than one time. If it is not, you may need to use other capabilities
of the protocol (for example, queries to establish the state of a transaction at the
back end) before reissuing messages.

* Maintain a clear separation between the generation of outbound messages, the
processing of inbound messages, and the actual act of sending or receiving those
messages. This is an integral part of an architecture that allows for restart
scenarios.

* Try to limit the amount of time it will take for a given API request to complete.
Remember that there are a fixed number of API threads and service threads in
the Payment Servlet, so every time you send a message and wait for a response,
you are suspending one of those threads and making it unavailable to other
users of WebSphere Commerce Payments. Therefore, you should try to limit the
amount of time that any of these thread will spend waiting for a response
message. If the response time limit is reached, then build a
com.ibm.etill.framework.cassette.CassetteWorkItem for the request, add it to
the framework’s timer queue using the
com.ibm.etill.framework.supervisor.Supervisor.addItemToTimerQueue method
to process the work item after some period of time, and then throw an
ETi11AbortOperation with PRC_OPERATION_PENDING and a secondary return code
that indicates which framework object is being operated upon (for example,
RC_ORDER or RC_PAYMENT).

To aid the cassette developer with restart, WebSphere Commerce Payments request
objects (that is, the com.ibm.eti11.framework.cassette.CassetteRequest object
hierarchy) are serializable, so the request can be serialized and saved to the
database. It is important to note that all WebSphere Commerce Payments classes
that implement the java.io.Serializable interface contain their own definition of
a serial version ID. A serial version ID is a secure hash of the full class name,
superinterfaces, and members -- the facts about the class that, if they change, signal
a possible class incompatibility. Defining our own serial version ID is needed to
protect us in the situation where a serializable class’s implementation changes
between the time an object is serialized and stored in the database and the time the
object is retrieved from the database and deserialized. Since each class defines its
own serial version ID, when the ObjectInputStream attempts to deserialize an
object and compares the actual serial version ID with the serial version ID defined
in the class, the IDs will be the same even though the implementation may have
changed. If you find a need to create your own serializable objects for storage to
and reinstantiation from the database, you need to do define a serial version ID for
the class as well. Obtaining serial version IDs is accomplished by using the java

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

command serialver. Once you have ther serial version ID, define it in your class.
Here’s an example of how to do that from the
com.ibm.etill.framework.cassette.AcceptPaymentRequest class:

public class AcceptPaymentRequest extends OrderRequest

{
static final long serialVersionUID = -3273221806051804609L;

Design ComPoints and ETillConnection

Many cassettes will expect to receive inbound protocol messages that are not from
the merchant. For example, any protocol that relies on a wallet application at the
consumer workstation will receive such messages. Because the messages are
protocol-specific, only the cassette knows their form and content.

The framework will provide threads dedicated to listening for these incoming
messages on your cassette’s behalf. For each "place” messages may arrive, the
cassette must provide an object of a type derived from ComPoint which waits for
notification of an incoming message. This object must return an object of a type
derived from ETillConnection that represents the connection (or pipe) to the source
of the incoming message. The ETillConnection object will be passed to the cassette
as it is asked to handle the incoming message. The ComPoint object will return to
waiting for the next incoming message.

To view the information in the JavaDoc, see:
* com.ibm.etill.framework.io.ETillConnection

¢ com.ibm.etill.framework.io.ComPoint

Design financial state transitions

The goal of this step is to understand the framework object states and then design
how your cassette will perform the transitions between those states. To achieve this
design, you must understand, in a fair amount of detail, what your cassette will do
in response to each type of incoming financial request. The financial requests your
cassette will have to handle include, but are not limited to:

¢ The full set of payment commands (administrative and query commands are
not included here)

* All protocol messages (if any)

* Any financial events that the cassette schedules internally. These events are
typically queued onto the framework’s timer queue. When the event is
eventually generated, the associated requests are driven through the cassette’s
service method on one of the framework’s service threads.

* All events that might occur during a restart of your cassette. This typically
involves the resumption of operations that were in progress when the cassette
was shut down. Because the cassette is responsible for resurrecting each of these
pending operations, the exact nature of the event is up to the discretion of the
cassette writer. Whatever that event’s nature, though, each such event must be
handled by a cassette FSM.

For each of these requests, you must decide:

* What actions should occur in your payment cassette?

Chapter 3. Designing your cassette 167

168

* How should the completion of each request be reflected in the framework
financial object states?

While the cassette may not define its own states for the framework financial
objects, it may define its own intermediate states for its own objects as necessary.
This is typically required when the receivePayment command is supported (to
track the exchange of protocol messages to complete the order creation phase) or
when more than one protocol message is required between the cassette and the
protocol’s "back end” to complete a single API command. In such cases, the
cassette should maintain the affected framework financial objects in a "pending”
state while its own objects’ intermediate states change as a result of processing a
sequence of protocol messages.

A key point to understand here is that merchant software should never be required
to understand any object states other than those defined by the framework. The
use of intermediate cassette-specific states should at best be completely internalized
within the cassette and at worst, be reflected as informational extensions through
the query command output.

Create scenario diagrams

Scenario diagrams show the processing that results from the receipt of a request.
By creating a scenario diagram for every request that your cassette will handle,
you ensure that you have considered all the basic issues. The scenario diagram will
pull together your design work on the object model, API mapping, ComPoint
design, and state transitions.

To create your scenario diagrams:

1. Start with the framework diagrams, shown in |[Chapter 2, “Understanding the|
[WebSphere Commerce Payments framework”, on page 7}

2. Add your major Cassette objects across the top of the diagram.

3. Expand the flows to your cassette to show how the processing is handled
within your cassette.

Write your cassette documentation

Document your own cassette as a guide for the merchants who will be using it:

* Describe the general concepts behind your cassette and its payment protocol.
That is, what is the "big picture” when your cassette is involved?

¢ Document your object model, including the attribute names by which your data
elements are exposed through the query API commands. Also include a
discussion on how the cassette’s object model "fits into” the framework object
model. For example, what does the Account object represent in cassette terms?
What is the relationship between a framework Batch object and the batches in
the cassette’s world? This section will serve as a foundation for the remainder of
your documentation.

For an example of cassette object documentation, see the WebSphere Commerce
Payments Cassette for VisaNet Supplement .

* Document the installation and configuration requirements and procedures. You
are encouraged to use the tutorial approach that is used in the WebSphere
Commerce Payments cassette supplements to be consistent with documentation
for other cassettes.

* Thoroughly document how every WebSphere Commerce Payments API command
is supported by your cassette. Include information such as:

— Whether your cassette supports the command or not

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

— If the command behaves differently in different situations, describe the
various behaviors. For example, "DEPOSIT causes Payment objects to enter

PAYMENT_DEPOSITED state in situation X and PAYMENT_CLOSED state in
situation Y".

— If it is not obvious or "standard,” describe how the various framework
command parameters are treated by your cassette.

— Fully describe any protocol data parameters, including the keywords, the
parameter value formats, whether the parameter is optional or required, and
how the cassette treats or uses the parameter data.

— Describe all of the return codes that your cassette will generate. If there are
any cassette-specific return codes (that is, secondary codes with a value
greater than 10000), be sure to precisely define the conditions that will cause
the error to occur.

— For Query commands, describe in detail the XML representation of all of the
cassette-specific extensions to the framework objects (that is, each
CassetteExtension element) and all of the cassette’s MerchantCassetteObjects
and SystemCassetteObjects (represented as CassetteConfigObject elements).
For each attribute (CassetteProperty element) within each of these elements,
provide:

- The attribute name (propertyld)

What the attribute represents

A description of the data type, if appropriate

An example of the XML representation of such an object
Explain error messages and actions that can be taken to resolve errors.

Provide a tutorial to guide new users through the setup and use of your
cassette. You should also provide a mechanism to create the orders that you will
use in this tutorial. WebSphere Commerce Payments provides a Sample
Checkout application, which is a simple order entry system that supports
multiple payment methods. Each payment method is supported by a Cashier
profile, which is an XML document that describes how orders should be created
for that payment method. See section [‘Create Cashier profiles (optional)” on|
for details on how to create a Cashier profile for your cassette. In
addition, see the WebSphere Commerce Payments Programming Guide and Reference
for details on the Sample Checkout application. Providing a tutorial may require
that you provide access to a common test account (if such a thing is available) to
which test transactions can be sent.

Chapter 3. Designing your cassette 169

170 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Chapter 4. Writing your cassette

After you have completed the cassette design activities, you are ready to get down
to the business of writing the code.

You are strongly encouraged to use the LDBCard cassette as the skeleton upon
which you code your cassette. If you are doing this, then you should use the
LDBCard "cookbook” for very specific instructions that will guide you through the
source code modifications necessary to build your cassette on top of LDBCard.

This chapter serves as a general guideline for the order in which you should
implement your cassette source code. Use an iterative process that first builds the
cassette in this order:

* Basic infrastructure
* Administration objects, including external views

* Core protocol function (this makes up the internal cassette classes that interact
with the financial institution or other "back end” processor)

* Basic order and payment processing
* Batch processing
* All remaining transactional support

* Installation and packaging

This implementation order is chosen because:
* It produces functional, testable code very quickly.

* It allows you to experience the "look and feel” that users will see very early in
the development process. This facilitates early validation of your administration
model and assumptions.

* It allows for compartmentalized testing of functional components of your
cassette, rather than requiring you to write the majority of your code before ever
attempting to execute it.

* Experience shows that this order is very effective in building robust and reliable
cassettes.

A payment cassette for WebSphere Commerce Payments is similar to a Java servlet.
Just as a servlet provides a service to a server framework, a payment cassette
provides payment processing services to the WebSphere Commerce Payments
framework. In the same way a servlet services a ServletRequest using a
ServletResponse, a payment cassette services a CassetteRequest using a
CassetteResponse.

Within WebSphere Commerce Payments, there are two categories of cassette
requests that a payment cassette will be asked to handle. The first category is the
administrative and payment API command requests. The second category contains
protocol message requests, which are defined by the cassette itself. When
WebSphere Commerce Payments receives a protocol message for a payment
cassette, it will first ask the cassette to decode the message and create the
appropriate protocol message request. Then the cassette will be asked to service
the protocol request.

© Copyright IBM Corp. 2000, 2003 171

172

When servicing these requests from the framework, the payment cassette must
maintain the state of framework payment objects. For an explanation of these
states, see|“Financial objects and their states” on page 11} For an understanding of
when state updates need to be performed for a "typical” cassette (that is, one
whose object model closely reflects that of the framework, see the LDBCard
cassette).

There are several mandatory Java classes and interfaces that each cassette must
extend or implement. These classes and interfaces are:

* com.ibm.etill.framework.cassette.CassetteOrder
* com.ibm.etill.framework.cassette.CassetteTransaction (for payments)

Next, there is a set of classes and interfaces that are technically optional, but which
must be implemented to build a robust cassette whose interface is consistent with
that expected by a WebSphere Commerce Payments application program or user.
These are:

¢ com.ibm.etill.framework.cassette.CassetteBatch

* com.ibm.etill.framework.cassette.query.CassetteQuery

Finally, depending upon the payment protocol and the complexity of the cassette
implementation, you may choose to implement some or all of:

e com.ibm.etill.framework.cassette.CassetteTransaction
* com.ibm.etill.framework.cassette. ProtocolRequest
* com.ibm.etill.framework.admin. AdminObject

The Javadoc documentation for the framework cassette interface classes and the
framework Scenario Diagrams are essential resources for understanding how to
write your cassette. The Scenario Diagrams will give you the overall picture of the
processing that needs to happen for each incoming event/Request. The Javadoc
describes in detail the responsibilities and requirements of each method you need
to implement.

The rest of this chapter provides a high level look at what you will be doing in the
sequence described above. The only exception is that we will discuss installation
issues first because you will need much of this information to test your code
during your development phase. Specifically, the following topics are described:

—

. ["Installation and uninstallation considerations and steps” on page 173]

2. |"Build a working cassette skeleton” on page 186

[“Build your administration objects” on page 187]

“Build your external view of administration objects” on page 187

“Implement your core protocol function” on page 190|

“Implement the basic CassetteOrder” on page 190

“Implement basic cassette payments” on page 192

© N oA

“Implement CassetteBatch” on page 193

9. [“Complete cassette payment” on page 195|

10. [“Implement cassette credits” on page 195

11. |[“Complete the remaining transactional support” on page 196

12. [“Understand platform-specific issues” on page 197

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Installation and uninstallation considerations and steps

Before we start coding, we will discuss the basic steps required as well as the
information that’s available to you to successfully install a payment cassette under
an existing WebSphere Commerce Payments framework. Unfortunately, there is
currently no prepackaged installation procedure skeleton that we can provide to
you. Therefore, you must choose and build your own installation and
uninstallation procedures.

Your cassette’s installation process should:
1. Use the WebSphere Commerce Payments framework installation information.
2. Perform initial checks.

3. Copy the cassette files to the target system. Supported platforms include: AILX,
Solaris, Linux, Windows 2000, and iSeries™". z/OS™ installation information is
provided upon request.

4. Perform migration if necessary.

Multiple WebSphere Commerce Payments instances are supported using a single
code installation, so you should provide separate procedures for installing your
cassette (the above steps 1 to 3) and migrating or adding your cassette to an
existing WebSphere Commerce Payments instance (step 4).

Cassette configuration beyond this should be performed using the WebSphere
Commerce Payments user interface.

Installing and configuring your cassette

WebSphere Commerce Payments Version 5.5 requires WebSphere Application
Server Version 5. Under WebSphere Application Server Version 5, the WebSphere
Commerce Payments directory structure changed along with the configuration of
WebSphere Application Server relative to that of earlier releases of WebSphere
Commerce Payments. As a result of these changes, the way you install and
configure your cassette under WebSphere Application Server is different than
before. This section describes how to install and configure a cassette for a
WebSphere Commerce Payments environment.

Step 1: Create the directory structure
On the machine where you have installed WebSphere Commerce Payments Version
5.5, create the following directory structure for your cassette:
WC _installdir/payments/cassettes/cassetteName

The WC_installdir/payments/cassettes directory should already exist on the
system.

In the cassetteName directory, create this structure:

<cassetteName>/cassette_properties.xml
schema/
createTables.db2
dropTables.db2
Oracle files...

1ib/

JAR files
properties/ (optional)

properties files
pspl/

*.pspl

Chapter 4. Writing your cassette 173

profiles/ (optional)
*.profiles

OnlineHelp/ (optional, include locales for desired languages)
en/*.html
de/*.html

Documentation/ (optional, include locales for desired languages)
en/*.pdf
de/*.pdf

Dynamic_Library/ (optional)
*.a
*.d11
*.50

In this directory structure, do the following:

1. In the 1ib directory, supply the JAR file containing the cassette code you have
written.

2. In the pspl directory, supply at least one PSPL file.

3. In the schema directory, supply the database scripts to create and drop database
tables for the database you are using (DB2 or Oracle). If you are migrating your
cassette, you can also place migration scripts in this directory.

4. Create a file called cassette_properties.xml and place it in the cassetteName
directory. Ensure that the XML file follows the schema shown in the
Cassette.xsd file in the WC_installdir/payments/cassettes directory.

Example of a cassette_properties.xml file

An example of a cassette_properties.xml file follows. In the example xxxCassette
represents the name of a cassette. The example also shows the use of markup for
optional configuration elements. For example, these are optional configuration
elements:

* Cassette:RequiredParameterInfo
* Cassette:SystemPropertyInfo

* Cassette:ConfigClass

* Cassette:MigrateScript

174 1BM WebSphere Commerce: Payments Cassette Kit Programming Guide

<?xml version="1.0" encoding="UTF-8" ?>

<Cassette:CassetteProperties xmins:Cassette="http://www.ibm.com/websphere/commerce/payments" xmins:xsi="
http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalLocation="http://www.ibm.com Cassette.xsd">

<Cassette:CassetteInfo>
<Cassette:CassetteName>xxxCassette</Cassette:CassetteName>
<Cassette:CassetteVersion>2.8.0.0</Cassette:CassetteVersion>
<Cassette:CassetteMinFrameworkVersion>5.5.0.0</Cassette:CassetteMinFrameworkVersion>
<Cassette:CassetteVendor>MyCompany</Cassette:CassetteVendor>
</Cassette:CassetteInfo>

<Cassette:ConfigInfo>
<Cassette:ArchiveName>xxxCassetteClasses.jar</Cassette:ArchiveName>
<Cassette:PSPL>xxxCassette_1l.pspl</Cassette:PSPL>
<Cassette:PSPL>xxxCassette_2.pspl</Cassette:PSPL>
<Cassette:ConfigClass>com.myCompany.xxxCassetteConfigurator<Cassette:ConfigClass>
</Cassette:ConfigInfo>

<Cassette:DatabaseInfo>
<Cassette:DatabaseType>DB2</Cassette:DatabaseType>
<Cassette:CreateScript>createXxxCassetteTables.db2</Cassette:CreateScript>
<Cassette:DeleteScript>dropXxxCassetteTables.db2</Cassette:DeleteScript>
<Cassette:MigrateScript>migrateXxxCassetteTables.db2</Cassette:MigrateScript>
</Cassette:DatabaseInfo>

<Cassette:DatabaseInfo>
<Cassette:DatabaseType>0Oracle</Cassette:DatabaseType>
<Cassette:CreateScript>createXxxCassetteTables.oracle</Cassette:CreateScript>
<Cassette:DeleteScript>dropXxxCassetteTables.oracle</Cassette:DeleteScript>
<Cassette:MigrateScript>migrateXxxCassetteTables.oracle</Cassette:MigrateScript>
</Cassette:DatabaseInfo>

<Cassette:RequiredParameterInfo>
<Cassette:RequiredParameterID>1</Cassette:RequiredParameterID>
<Cassette:RequiredParameterName>CassetteEncryptionKey</Cassette:RequiredParameterName>
</Cassette:RequiredParameterInfo>

<Cassette:RequiredParameterInfo>
<Cassette:RequiredParameterID>2</Cassette:RequiredParameterID>
<Cassette:RequiredParameterName>CreateSSLTables</Cassette:RequiredParameterName>
</Cassette:RequiredParameterInfo>

<Cassette:SystemPropertyInfo>
<Cassette:PropertyID>1</Cassette:PropertyID>
<Cassette:PropertyName>HostName</Cassette:PropertyName>
<Cassette:PropertyValue>mycomputer.city.company.com</Cassette:PropertyValue>
</Cassette:SystemPropertyInfo>

<Cassette:SystemPropertyInfo>
<Cassette:PropertyID>2</Cassette:PropertyID>
<Cassette:PropertyName>PortNumber</Cassette:PropertyName>
<Cassette:PropertyValue>20</Cassette:PropertyValue>
</Cassette:SystemPropertyInfo>

</Cassette:CassetteProperties>

Figure 13. Example of a cassette_properties.xml file. See the Cassette.xsd file for all rules applied to the
cassette properties.xml file. The Cassette.xsd file exists in the WC_installdir/payments/cassettes directory.

For an explanation of the elements contained in the cassette_properties.xml file,
see [Table 12 on page 176

Chapter 4. Writing your cassette 175

Elements in a cassette_properties.xml file

Table 12. Elements in the cassette_properties. XML file

Element name

Re-
quired
ele-
ment?

Multi-
ple
ele-
ments
al-

lowedP?

Exists in element

?

Details

Cassette:CassetteProperties

Yes

No

main section

The main element for this XML
document.

Cassette:Cassettelnfo

Yes

Cassette:CassetteProperties

Section that contains general
cassette information.

Cassette:CassetteName

Yes

Cassette:CassetteInfo

The name of the cassette.

Cassette:CassetteVersion

Yes

Cassette:CassetteInfo

The version of the installed
cassette.

Cassette:MinFrameworkVersion

Yes

Cassette:Cassettelnfo

The minimum version of the
WebSphere Commerce Payments
component that must be
installed for this cassette to run.

Cassette:CassetteVendor

Yes

Cassette:CassetteInfo

The name of the company that
has written the cassette.

Cassette:ConfigInfo

Yes

Cassette:CassetteProperties

Section that contains general
cassette configuration
information.

Cassette:ArchiveName

Yes

Yes

Cassette:ConfigInfo

The name of the JAR files that
are shipped by the cassette
which contain the cassette code.
Specifically, these are the JAR
files that must go into the
Payments instance EAR file.
Each JAR file should be listed in
its own Cassette:ArchiveName
element.

Cassette:PSPL

Yes

Yes

Cassette:ConfigInfo

The name of the PSPL files that
are shipped by the cassette. Each
PSPL file should be listed in its
own Cassette:PSPL element.

Cassette:ConfigClass

Cassette:ConfigInfo

The ConfigClass is the name of a
custom extension class that
implements the
ICassetteConfigurator interface
that any cassette can provide.
(The ICassetteConfigurator
interface is described in the
Javadoc in
cassette kit _unzip dir/docs/
Jjavadoc/configuration.

Cassette:DatabaseInfo

Yes

Cassette:CassetteProperties

This section contains information
about scripts to manage database
tables. Each Databaselnfo section
describes the scripts for one type
of database.

176

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Table 12. Elements in the cassette_properties. XML file (continued)

Element name

Re-
quired
ele-
ment?

Multi-
ple
ele-
ments
al-

lowedP?

Exists in element

?

Details

Cassette:DatabaseType

No

Cassette:Databaselnfo

The type of the database to
which the scripts apply. The only
valid values are DB2 and Oracle.

Cassette:CreateScript

Cassette:Databaselnfo

The name of the script used to
create database tables.

Cassette:DeleteScript

Cassette:DatabaseInfo

The name of the script used to
delete database tables.

Cassette:MigrateScript

Cassette:DatabaseInfo

The name of the script used to
migrate the database tables.

Cassette:RequiredParameterInfo

Yes

Cassette:CassetteProperties

Parameters required for the
cassette. In |Figure 13 OH

|p_age l7§l you will notice XML
elements for required
parameters. There are no
required parameters for
IBM-provided cassettes, nor are
they required for any cassette
you write. You may have a need
for required parameters if you
must collect information from
your cassette users before the
cassette is added to a Payments
instance. For example, suppose
you needed to gather bootstrap
data that must be in the cassette
database tables for the cassette
servlet to initialize, or you
needed to obtain a password for
the cassette. You could specify
these items as required
parameters in your cassette’s
XML file. The information would
then be collected from the
administrator before the cassette
is added to the instance.

Cassette:Required ParameterID

No

Cassette:RequiredParameterInfo

A unique ID number associated
with each
RequiredParameterInfo element.

Cassette:RequiredParameterName

No

Cassette:RequiredParameterInfo

The name of the parameter
needed.

Chapter 4. Writing your cassette

177

Table 12. Elements in the cassette_properties. XML file (continued)

Element name

Re-
quired
ele-
ment?

Multi-
ple
ele-
ments
al-

lowedP?

Exists in element

?

Details

Cassette:SystemPropertyInfo No

Yes

Cassette:CassetteProperties

System property information. In
[Figure 13 on page 175| the use of
elements for specifying system
properties is not shown.
However, as shown in the
Cassette.xsd file, you can
specify Java system properties in
WebSphere for the cassette code
to run. The WebSphere
Configuration Manager handles
the setting of the Java system
properties in WebSphere. After
properties are set, they are all
treated as instance properties.
They can be updated through
the PaymentsConfigurator
update() method. System
properties must use the
following notation:

cassette.cassetteName.<property name>

Cassette:PropertylD

Cassette:SystemPropertyInfo

A unique ID number associated
with each SystemPropertyIlnfo
element.

Cassette:PropertyName

Cassette:SystemPropertyInfo

The name of the system
property.

Cassette:PropertyValue

Cassette:SystemPropertyInfo

An optional default value for the
system property.

[“Step 2: Determine if additional configuration is required”|walks you through

what you should consider before using these elements.

Step 2: Determine if additional configuration is required

Determine if you need to implement the ICassetteConfigurator

interface

After setting up the directory structure for your cassette, determine if it will need
to write a class that implements the ICassetteConfigurator interface. Cassettes that
you write may need to do more configuration than what the

PaymentsConfigurator class will handle.

To determine if your cassette needs to write an extension class, consider the

following:

* Does your cassette need to configure the database outside of the createTables
script? If it does, you may want to implement the add method to configure the
database. A connection to the database is provided (see the IDatabase interface
description that follows in “Step 2A: (Optional) Use custom extension class if

178 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

. If the cassette implements the add method, the createTables script is

not run for the cassette. The cassette is responsible for creating its own tables.

Does your cassette need any special parameters to be entered when the cassette
is added to a Payments instance? If it does, you should implement the add
method and list the parameters needed in the Cassette:RequiredParameterInfo
section of the cassette properties.xml file. (See[Table 12 on page 176|for a
description of the RequiredParameterInfo element in the XML file.) The
Configuration Manager will prompt the user for the parameters before the
addition, and pass the values collected to the cassette on the add method
through the Map object.

Also, as cassette writer, you should ensure that your cassette’s database tables
are set up to include any special parameter data.

Does your cassette need to set any Java system properties in WebSphere for the
cassette code to run? If it does, you should implement the getSystemProperties
method and pass back a Map object that contains the system property names
and values to be set for the instance. (See [Table 12 on page 176| for a description
of the SystemPropertyInfo element in the XML file.)

Configuration Manager handling of your cassette’s configuration
The WebSphere Commerce Configuration Manager does the following when your

cassette is added or removed:

It determines if the cassette is installed properly by checking for the existence of
the following files:

— cassette_properties.xml

— JAR file listed in the XML file in the 1ib directory

— Any PSPL files in the psp1 directory

It collects data for any required parameters listed in the XML file.

It determines if a ConfigClass value was provided in the XML file:

— If no ConfigClass was provided, the PaymentsConfigurator will create the

cassette tables by running the database script for the database type used by
the instance.

- If a ConfigClass is provided, the class will be loaded by the
PaymentsConfigurator and the add() method implemented from
ICassetteConfigurator will be called. If the add() method is overwritten, it will
be expected to create its own database tables.

It updates the cassette configuration (etCassetteCfg) table with the appropriate
information.

It updates the WebSphere configuration for the instance by adding the cassette’s
Java archive file to the wc.mpf.ear file, PSPL, and documentation files. It then
redeploys the EAR file, if necessary, for the instance to which the cassette is
being added.

It sets or removes any Java system properties required by the cassette in the
WebSphere configuration for the Payments instance.

Step 2A: (Optional) Use custom extension class if necessary

The custom extension class allows a cassette writer to configure a cassette beyond
what the PaymentsConfigurator is capable of doing. This class should exist in one
of the JAR files listed in the Cassette:ArchiveName elements of the
cassette_properties.xml file. The class will be loaded by the
PaymentsConfigurator at run time if the custom class is listed in the
Cassette:ConfigClass element. To compile your code, ensure that the
WC_installdir/payments/1ib/eTi11Config.jar file is provided in your classpath.

Chapter 4. Writing your cassette 179

180

ICassetteConfigurator interface

A custom class must implement the ICassetteConfigurator interface. If the custom
class only extends this interface, all the methods must be implemented. The
PaymentsConfigurator has provided two classes that fully or partially implement
these methods to make writing a custom class easier. They are the
GenericCassetteConfigurator and CassetteConfiguratorAdaptor. Javadoc for the
ICassetteConfigurator class is provided in

cassette _kit_unzip_dir:/docs/javadoc/configuration.

GenericCassetteConfigurator class: The custom class may extend the
GenericCassetteConfigurator class. The GenericCassetteConfigurator has already
implemented all ICassetteConfigurator methods. The custom class may override
only the methods it needs to customize. If the add() or remove() methods are
overridden, the custom class will be responsible for creating or deleting the
cassette’s database tables.

CassetteConfigurator Adaptor: The custom class may extend the abstract class
CassetteConfiguratorAdaptor. The CassetteConfiguratorAdaptor has implemented
some of the ICassette Configurator methods. The custom class will be required to
implement all of the following methods:

public void add (IDatabase db, Properties properties) throws CassetteCannotBeAddedException;
public void remove (IDatabase db) throws CassetteCannotBeRemovedException;
public void migrate (IDatabase db) throws CassetteCannotBeMigratedException;

IDatabase class

The IDatabase class is a "helper” class used by the ConfigClass to access the

Payments instance database. The IDatabase interface is passed to the cassette in the

add, remove, and migrate methods. The IDatabase interface represents a Payments

instance database and does the following:

* It gets the type of the Payments instance database (DB2 or Oracle).

* It gets the user ID of the owner of the Payments instance database tables.

* It gets the user ID of the database user currently connected to the instance
database.

* It gets the name of the Payments instance database.

* It connects to the Payments instance database.

To compile your code with this class, use the IDatabase.class file located in the
WC installdir/payments/1ib/eTi11Config.jar file. Javadoc for the class file is also
provided with the Cassette Kit.

Step 3: Deploy your files to the target system

After you have created the final directory structure for your cassette (complete
with any customizations if needed), do the following:

1. Compress the cassette directory structure into a ZIP or JAR file.
2. Uncompress the file to the following directory on your target system:
WC _installdir/payments/cassettes/cassetteName

where cassetteName is the name of your cassette.

3. Use the WebSphere Commerce Configuration Manager to add your cassette to
the Payments instance.

To see an example of what a cassette file structure looks like, refer to the cassette
file structure for one of the IBM-supplied cassettes in the
WC_installdir/payments/cassettes directory.

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Typical installation examples

The following examples illustrate the steps to take to install and add your cassette
to WebSphere Commerce Payments.

Scenario for a plain vanilla installation

In this example, the cassette you've written does not require any special Java

system properties, required parameters, or any other advanced configuration. To

install and add your cassette, ensure that your cassette installation does the

following:

1. It creates a cassetteName/ directory under the Payments_installdir/cassettes/
directory. The cassette name directory reflect the name of your cassette.

2. It creates the following directories under the cassetteName directory:

1ib/

pspl/

schema/

It provides the cassette_properties.xml file in the cassetteName directory.

It provides a JAR file with cassette classes in the 1ib/ directory.

It provides a PSPL file in the psp1/ directory.

oo kW

It provides create and drop database table scripts in the schema/ directory.

This is all your cassette has to do to get installed. With this information in the
appropriate directories, the WebSphere Commerce Configuration Manager can add
your cassette to any instance.

Scenario for a more complex installation
In this scenario, your cassette requires both system properties and required
parameters, and must also modify the database tables after they are created for the
instance. Ensure that your cassette installation does the following:
1. It creates a cassetteName/ directory under the Payments_installdir/cassettes/
directory. The cassette name directory reflect the name of your cassette.
2. It creates the following directories under the cassetteName directory:
Tib/
pspl/
schema/
3. It provides the cassette_properties.xml file in the cassetteName directory. In
this example, the XML file includes elements for ConfigClass and
RequiredParameters objects.
It provides a JAR file with cassette classes in the 1ib/ directory.
It provides a PSPL file in the psp1/ directory.

It provides create and drop database table scripts in the schema/ directory.

No o~

It contains a class that extends the GenericCassetteConfigurator class. The
following example illustrates this extension:

public class ExampleCassetteConfigurator extends GenericCassetteConfigurator
{

//This is an example of how you can implement the add method

//This cassette needs to encrypt the database with a key provided by the user
public void add(IDatabase db, Map requiredParms){

//This method is written by you

createDatabaseTables(db.getType(), db.getConnection);

String encryptionKey = requiredParms.get("CassetteEncryptionKey");

//This method is written by you
encryptDatabase(encryptionKey);

Chapter 4. Writing your cassette 181

//This is an example of how you can implement the getSystemProperties() method
public Map getSystemProperties() {

Properties props = new Properties();
props.add("cassette.ExampleCassette.UseSSL", "1");
props.add("cassette.ExampleCassette.CassetteTestMode, "0");

return(props);

}

This is all your cassette needs to do to install with a custom extension class. With this
information in the appropriate directories, the WebSphere Commerce Configuration
Manager can add your cassette to any instance.

Migration considerations and steps

182

In former versions, WebSphere Commerce Payments provided its own migration
mechanism. Starting with version 5.5, migration of cassettes is handled through the
WebSphere Commerce Instance Migrator (WCIM). The WCIM migrates an old
Payments instance to a new Payments instance. Refer to the WebSphere Commerce
Migration Guide for a description of the WCIM and for instructions on how to
migrate to version 5.5 of WebSphere Commerce Payments.

To migrate a third-party cassette or a cassette that you have written, you must
implement the migrate() method. The migrate method can be used before or after a
WebSphere Commerce Payments migration:

* Before a Payments migration:

After installing WebSphere Commerce Payments Version 5.5, your cassette can
be installed in the cassettes directory
(WC_installdir/payments/cassettes/cassetteName). Then, when a migration of
WebSphere Commerce Payments is performed, your cassette will be migrated.

In addition to having your cassette in the proper directory structure before the
migration, you must ensure that you do the following:

— You should ensure that your cassette_properties.xml file contains a
Cassette:MigrateScript element, complete with the name of the migrate script
that will be used to migrate the cassette tables. If your cassette has database
table changes, you should include a Cassette:MigrateScript element.

- If you provide a ConfigClass class, it should implement the migrate method
for anything not covered in the migrate script.

— You must implement the migrate interface in the ICassetteConfigurator.java
program to migrate your cassette. See|“Migrate interface in|
[CassetteConfiguratorjava” on page 184 for more information.

e After a Payments migration:

If a Payments migration has already occurred, you can still install and migrate
your cassette. The cassette installer should run the paymentcassettemigrator
script after the Payments migration occurred. For information on how to run the
paymentcassettemigrator script, seel”Running the paymentcassettemigratod
[script” on page 183] This script migrates the cassette by calling the migrate
method you provide as the cassette writer. The migrate method is described in
[“Using the migrate method” on page 183}

Before running the paymentcassettemigrator script, you must ensure that you do
the following:

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

— You should ensure that your cassette_properties.xml file contains a
Cassette:MigrateScript element, complete with the name of the migrate script
that will be used to migrate the cassette tables. If your cassette has database
table changes, you should include a Cassette:MigrateScript element.

— If you provide a ConfigClass class, it should implement the migrate method
for anything not covered in the migrate script.
— You must implement the migrate interface in the ICassetteConfiguratorjava

program to migrate your cassette. See|”Migrate interface in|
[[CassetteConfiguratorjava” on page 184] for more information.

General information about migration events can be viewed in the Instance
Migrator log file (wcim_dir/wcim.1og). In addition, Payments-level logging of
migration activity is recorded in the wcim_dir/Payments.Tog file.

Using the migrate method

The migrate method is an API that is called by the migration process. It is used to
migrate a cassette that you have written for use with Payment Manager Version
2.2.x, 3.1.2, or WebSphere Commerce Payments Version 3.1.3. It is also used to
migrate new versions of IBM-provided payment cassettes.

If you create a ConfigClass class (rather than use the GenericCassetteConfigurator
class), you must be familiar with the syntax for using the migrate method. The
syntax for using the migrate method is as follows:

migrate(IDatabase database, String curentVersion) throws CassetteDoesNotExistException,
InvalidMigrationException, MigrationErrorException, DatabaseOperationFailedException;

If the migrate method is not found during migration, the
GenericCassetteConfigurator class is used instead. The
GenericCassetteConfigurator class configures the cassette by running the database
migration script for the database type used by the instance.

Running the paymentcassettemigrator script

If an installation and migration of WebSphere Commerce Payments has already
occurred, the paymentcassettemigrator script can be used to migrate a new version
of your cassette. For example, you might need to migrate a cassette you have
updated which did not have database table changes. The script migrates the
cassette by calling the migrate method previously described. The script is located
in the Payments_installdir/bin directory and is run from the command line.

Note: Do not attempt to run this script if the WebSphere Commerce Payments
installation and migration has not occurred. Your cassette will not be
migrated or function properly.

The paymentcassettemigrator script does the following;:

* It places the cassette’s files in their correct location in the WebSphere Commerce
Payments environment.

* It executes the ConfigClass class if provided as well as the migrate script if
provided. The migrate script is used only if you use or extend the
GenericCassetteConfigurator class.

Before running this script, ensure that your cassette files are installed into the
followinr directory as described in [‘Step 1: Create the directory structure” on|

WC installdir/payments/cassettes/cassetteName

Chapter 4. Writing your cassette 183

To run the paymentcassettemigrator script, do the following:

1. From an command prompt for your platform, enter the following from the
WC_installdir/payments/cassettes/cassetteName directory:

paymentcassettemigrator cassetteName instance passwOrd

cassetteName
The name of the cassette as shown in the cassette_properties.xml file
for the cassette. See the
<Cassette:CassetteName>xxxxx</Cassette:CassetteName> tag for the
value.

instance
The name of the Payments instance where the cassette currently
resides.

password
The instance password for updating the cassette information.

After running the script, you should receive a message indicating the success or
failure of the script. If the script does not run successfully, the cassette is
considered unloadable and the WebSphere Commerce Payments framework will
ignore the cassette. The framework is still available to work with other cassettes,
however.

Migrate interface in ICassetteConfigurator.java

As a cassette writer, you will need to implement the migrate interface in the
ICassetteConfigurator.java program to migrate your cassette. You can extend the
following classes as your needs dictate:

* ICassetteConfigurator.class
* CassetteConfiguratorAdapter.class
* GenericCassetteConfigurator.class

Database considerations and steps

The WebSphere Commerce Configuration Manager creates database tables for your
cassette when these conditions are met:

* A createTables script is provided in the proper location.
* The addCassette() method is not extended by custom code.

If you implement the add() method to configure the database, the createTables
script is not run for the cassette. Instead, your cassette must create its own tables.

To accomplish this, you must access the WebSphere Commerce Payments database
directly and issue the necessary SQL calls to create your tables as well as any
views required to support the query commands. At this point, you may also
populate your administrative tables with any appropriate default values so they
will appear during the cassette configuration step later on.

B For iSeries, your cassette’s database tables should be created in the
database collection named in the PaymentsInstance.properties file. In addition,
user QPYMSVR must be given *ALL authority to the tables you create and
*PUBLIC authority should be set to *EXCLUDE for security.

184 I1BM WebSphere Commerce: Payments Cassette Kit Programming Guide

Each cassette should provide its own database setup script similar to that provided
with the sample cassettes. These scripts can be executed using the java TableMgr
class from within your installation program as follows:

java TableMgr <yourScriptName> <jdbcURL> <jdbcDriver> <dbOwner> <dbPassword>

For example, see the files in the Payments_installdir/archive directory
(/QIBM/ProdData/PymSvr/Java directory for iSeries). Note that different databases
support slightly different SQL syntax. The WebSphere Commerce Payments
installation programs use syntax in these scripts that is supported by DB2 UDB
and then converts it to the appropriate syntax when using other databases. Your
installation program will need to do this as well. Alternatively, you can provide a
separate script per database product.

If your cassette has database table changes and you need to migrate your cassette,
be sure to include a Cassette:MigrateScript element in your
cassette_properties.xml file.

Finally, to tell WebSphere Commerce Payments that your cassette exists and should
be loaded, your installation procedure must add your cassette to the framework’s
cassette configuration table, ETCASSETTECFG. The format of this table is as
follows:

Table 13. Cassette configuration table (ETCASSETTECFG)

Field name Syntax Description

MessagesKey Character string | This value may be used in the future to
support the user interface’s display of your
cassette-specific information. For now, set
this field to NULL.

This is an optional field.

Prior to WebSphere Commerce Payments Version 5.5, there were other fields in this
table such as PaymentSystemName, CompanyPkgName, and so on. These fields
are now handled automatically.

Uninstall considerations

While the majority of uninstall activities are simply the reversal of install steps,
there are a couple of non-obvious steps that are critical to protecting the integrity
of the WebSphere Commerce Payments environment:

* Drop all of the cassette-specific database tables if you do not provide a delete
script.

* Delete all of the cassette’s records from the framework tables using these SQL
statements:

delete from ETPAYMENT where PaymentType='<<cassetteName>>';
delete from ETCREDIT where PaymentType='<<cassetteName>>';
delete from ETORDER where PaymentType = '<<cassetteName>>';
delete from ETBATCH where PaymentType = '<<cassetteName>>';
delete from ETCASSETTECFG where PaymentSystemName = '<<cassetteName>>';

delete from ETPAYSYSCFG where PaymentSystemName = '<<cassetteName>>';

Chapter 4. Writing your cassette 185

delete from ETACCOUNTCFG where CassetteName = '<<cassetteName>>';
delete from ETEVENTLISTENER where CassetteName = '<<cassetteName>>';

delete from ETBINARYDATA where PaymentType = '<<cassetteName>>';

* Your uninstall process must make sure that the cassette structure directory is
removed

Note: This deletes not only the cassette’s configuration but also all of the financial
data that it recorded. Leaving financial data in the database without valid cassette
configuration could cause errors in WebSphere Commerce Payments once it is
restarted.

Build a working cassette skeleton

186

The first step is to build enough of the cassette’s WebSphere Commerce Payments
infrastructure so you can load, start and stop the cassette. For this step you must

* Determine your cassette name and Java package name using the guidelines
described in [“Name your cassette” on page 157} For the remainder of this
chapter, we will use the name "xxx".

* Create your cassette’s "mainline” class for WebSphere Commerce Payments. This
class will extend com.ibm.eti11.framework.cassette.Cassette and will be
named your_cassette's package_name.XxxCassette. For now, you only need to
write:

— The constructor

— The initialization and termination methods called in the |”System startl
[sequence” on page 41| and |’StartCassette internal sequence” on page 43|

— Enough of the service method to handle
com.ibm.etil1.framework.cassette.AdminRequest objects that contain
START_CASSETTE_TOKEN and STOP_CASSETTE_TOKEN. Any other type of request
object or token type should cause the service method to throw an
com.ibm.etil1.framework.payapi.ETi11AbortOperation exception with
PRC_COMMAND_NOT_SUPPORTED, RC_NONE. The last step of your
START_CASSETTE_TOKEN handling code should issue a console message (using
one of the methods from the com.ibm.etil1.framework.log.ErrorLog class) to
indicate that your cassette has started successfully. Any other abstract
methods should be created as empty methods for now.

* Build a small xxxCassette.properties file which will eventually contain your
cassette’s console messages and return code messages. At this point, this file
should only contain the message that indicates that the cassette has started
successfully.

Once you've implemented the above, compile the code, make the necessary
configuration changes in the WebSphere Commerce Payments database and
environment, and then start WebSphere Commerce Payments with your cassette
configured in. WebSphere Commerce Payments should start successfully with no
Java exceptions and you should see your console message appear in the
activity.log file.

Complete this step before continuing on to the next.

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Build your administration objects

Now that you have a working cassette skeleton, the next thing to do is build your
administrative objects as they will exist and be used in WebSphere Commerce
Payments. These objects will contain all of your cassette’s active configuration
information.

Use an iterative approach where you develop and test each of your administration
objects one at a time, rather than writing all of the code before attempting to test
any of it. In addition, you should develop the external view of each of your
administration objects in conjunction with its Payment Servlet counterpart (this
will allow you to use the WebSphere Commerce Payments user interface to test
your administration code). Therefore, you will find yourself moving back and forth
between this step and the subsequent step for each administration object.

In this step, you will:

1. Add code to your XxxCassette class to handle the CREATE, MODIFY, START, STOP
and DELETE commands associated with the framework administration objects
that you will be augmenting. For example, if your cassette will be augmenting
com.ibm.eti11.framework.admin.AccountAdmin objects, then it should be
prepared to handle com.ibm.eti11.framework.cassette.AdminRequest objects
that contain CREATE_ACCOUNT_TOKEN, MODIFY_ACCOUNT_TOKEN,

START_ACCOUNT TOKEN, STOP_ACCOUNT TOKEN and DELETE_ACCOUNT_TOKEN.
Additionally, if your cassette defines its own primary administration objects
(MerchantCassetteObjects or SystemCassetteObjects), then your service method
should also handle AdminRequest objects with the tokens associated with those
objects.

2. Create Java classes that contain the extension information for the framework
administration objects that you want to augment. Note that these classes do not
subclass (extend) any of the framework classes. Rather, they are standalone
classes that your cassette will create, modify and delete as required by the
inbound AdminRequest objects.

3. If your cassette defines its own primary administration objects
(MerchantCassetteObjects or SystemCassetteObjects), create one Java class for
each such object. These classes will extend the
com.ibm.etil1.framework.admin.AdminObject class in order to inherit all of the
basic operational attributes of a primary administration object. These objects
will be created, updated and deleted as required by the inbound AdminRequest
objects containing tokens related to Merchant and System CassetteObjects.

For the most part, the framework will manage the hierarchy of administration
objects when starting, stopping or deleting any of its objects. In other words, when
a PaySystemAdmin object is stopped, the framework ensures that all of its
AccountAdmin objects are stopped too. For each of the AccountAdmin objects, the
cassette will be called to stop its own corresponding object. However, if the
cassette has defined any MerchantCassetteObjects or SystemCassetteObjects that
"belong to” a given framework administration object, it is the cassette’s
responsibility to stop and start each of these when it receives the corresponding
START or STOP token for the framework object.

Build your external view of administration objects

As stated above, we suggest that you perform this step for each administration
object as soon as you've completed the object’s implementation for the Payment
Servlet.

Chapter 4. Writing your cassette 187

188

This is the only time we will discuss the implementation of classes that represent
the external view of your cassette’s data separately from the implementation of
those objects within the Payment Servlet, because you will typically develop both
classes at about the same time.

There are actually two aspects to this step:

* Developing the code which will provide the view of your administration data
through WebSphere Commerce Payments Query commands

* Developing the Payment Server Presentation Language for your data so that the
WebSphere Commerce Payments user interface can display and manipulate the
data.

The best approach to writing this code is to copy the corresponding code in the
sample cassette and modify it to fit your needs. The Payment Servlet code and
PSPL are particularly well-suited to this type of "pattern matching,” which you are
strongly encouraged to do.

To support the Query commands, do the following:

* Add code to your XxxCassetteQuery class to handle the Query commands
associated with the framework administrative objects that you will be
augmenting. Using the example from the previous step, if your cassette will be
augmenting com.ibm.etil1.framework.admin.AccountAdmin objects, then it
should be prepared to handle
com.ibm.etil1.framework.xdm.QueryAccountRequest objects. Note that Query
commands only operate on framework objects, there are no
QueryMerchantCassetteObject or QuerySystemCassetteObject commands. This
means any of the cassette’s MerchantCassetteObjects or SystemCassetteObjects
must be exposed along with the framework administration object with which
they are associated. For example, if your cassette defines a set of
MerchantCassetteObjects named Brand within each account, then the external
view of those objects should be generated and returned as part of the cassette
output for the QueryAccounts command. To understand the interactions between
the framework and cassette for Query commands, see [‘“Query API sequence” on|
[page 90

* Create Java classes that represent the external view of your cassette’s data which
augments each framework administration object:

— The constructor for these classes should take a java.sql.ResultSet object as
input.

— The class should also have a method which translates the cassette object into
a com.ibm.etill.framework.cassette.query.CassetteExtensionObject. Each
data item in the external view will be represented as a
com.ibm.etill.framework.cassette.query.CassetteProperty object.

— This class should have a method that will combine the various
CassetteExtensionObjects and any associated
com.ibm.etill.framework.cassette.query.CassetteConfigObjects (see below)
with the associated framework external view object (for example, the
com.ibm.etil1.framework.xdm.PSServerAccount, or
com.ibm.etill.framework.xdm.PSServerPaymentSystem).

That these classes do not subclass (extend) any of the framework classes. Rather,
they are standalone internal classes that your cassette uses to generate the
appropriate CassetteExtensionObjects and CassetteConfigObjects.

 If your cassette defines its own primary administration objects
(MerchantCassetteObjects or SystemCassetteObjects), then create one Java class

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

to represent the external view of each such object. These classes will subclass
(extend) com.ibm.eti11.framework.xdm.PSServerAdminObject to pick up the
basic framework attributes and methods for generating the external view of
primary administration objects. Aside from that, these classes are much like
those described in the bullet above, but they generate CassetteConfigObjects
instead of CassetteExtensionObjects.

» Create one class that subclasses (extends)
com.ibm.etil1.framework.xdm.QueryRequest for each type of cassette object for
which you will need to execute an SQL QUERY. The superclass here contains
methods which your subclass will override in order to provide the correct
database TABLE or VIEW name, FROM clause, SELECT statement and WHERE
clause for the SQL QUERY command which the superclass’es query method will
issue.

Also, if you are protecting sensitive data, note that you can use the
getShowSensitiveData() method to indicate whether the query request should
return the cassette’s sensitive data to the user. See [“Protecting sensitive data” on|
for more information.

Remember, you should pattern match all of this code from the sample cassette
source code.

Once you've completed this code, your cassette should be prepared to handle
Query commands for the associated administrative objects. If you prefer, you can
immediately test this code from a small WebSphere Commerce Payments
application program that uses the Java Client API Library, as shown in the
WebSphere Commerce Payments Programming Guide and Reference. However, before
you can issue these Query commands or view their results through the WebSphere
Commerce Payments user interface, you will have to describe the data to the
WebSphere Commerce Payments user interface servlet. This description is provided
through the cassettes’s PSPL file.

The sample cassette provides a PSPL file that most cassette writers will find
contains examples of the most common types of data descriptions. With this
information, you should find it fairly easy to build your own PSPL file. Before
testing, this file should be copied into the WebSphere Commerce Payments pspl
directory.

In general, your PSPL file will contain:

* One screen definition for each of the framework objects that your cassette
augments. Each CassetteExtensionObject that your cassette returns as Query
command output will be described by a separate PSPL screen tag with an
extends parameter. The value of this parameter contains the name of the
framework PSPL screen to which the cassette screen is attached.

* One screen definition for each CassetteConfigObject that your cassette defines
(recall that these objects represent the external view of MerchantCassetteObjects
and SystemCassetteObjects). Each CassetteConfigObject that your cassette
returns as Query command output will be described by a separate PSPL screen
tag with a configures parameter. The value of this parameter contains the name
of the framework PSPL screen to which the cassette screen is attached.

* Each data item (that is, CassetteProperty) within each CassetteExtensionObject
and CassetteConfigObject will be defined as a separate PSPL field tag within
the corresponding screen element. Each of these tags contains parameters that
identify the property name, its display attributes, and if the property can be
modified through the user interface, the protocol data keyword to use when
issuing the MODIFY command.

Chapter 4. Writing your cassette 189

* Messages to display for the different error situations that may be encountered.

A list of possible action buttons which can be enabled for the screen. This list
must be a subset of the actions that the User Interface Servlet supports.

See the sample cassette’s PSPL file and the PSPL reference information in this book
for more detailed information.

For a typical cassette, if you are pattern matching from the sample cassette source
code and if you have a well-defined cassette administration model, you should be
able to build and test a working administration infrastructure, complete with full

user interface support in a day or two.

Implement your core protocol function

In this step, we assume that your cassette will contain some central class or set of
classes that encapsulate (or provide access to) the core logic for interacting with the
Financial institution or other back-end processor. Because of the very "customized”
nature of this logic, this guide nor the sample cassette code can tell you how to
communicate or process the messages that you exchange with the back end. We
can, however, offer some advice:

* In this step you will implement many of the design decisions you made to
accommodate restart scenarios. For example, the generation, exchange and
processing of protocol messages will most likely occur through calls to different
methods on these objects.

* These classes should focus primarily on the payment protocol, not the business
logic involved in managing WebSphere Commerce Payments objects, which
should be left to the cassette’s financial object classes. In other words, use
object-oriented design principles to ensure the correct encapsulation of the
various functions of your cassette.

To test this core function, you can either write scaffolding code within the cassette
to drive requests or move on to the next steps to allow the cassette’s financial
objects to drive actual WebSphere Commerce Payments requests through. In many
cases, both approaches can be used for different portions of the code.

Implement the basic CassetteOrder

190

Now you can begin building your cassette’s financial objects by creating a basic
cassette-specific order object. This is a Java class, typically named xxxOrder that
impTements the com.ibm.etil1.framework.cassette.CassetteOrder interface. This
class will contain your cassette-specific order information. The primary
responsibilities of this class are to:

* Process the request objects which operate directly on Orders, which are:
— AcceptPayment
— ReceivePayment
— CloseOrder
— CancelOrder
— any protocol requests related to ReceivePayment (if supported)

— Manage the database and in-memory versions of the cassette-specific order
information. The database versions are supported through the
com.ibm.etil1.framework.archive.Archivable interface, which CassetteOrder
implements.

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

* Manage the state of its associated framework
com.ibm.etil1.framework.payapi.Order object as well as the committal of that
object to the database using the thread’s
com.ibm.etil1.framework.archive.CommitPoint object.

* Provide essential information to the framework through the abstract methods
defined by the CassetteOrder interface.

In this step, you will build enough of the order processing code to be able to
successfully handle valid and invalid AcceptPayment or ReceivePayment commands
(at least one of these commands must be supported by every cassette). You will
complete the development of this class in a later step.

To support the AcceptPayment and ReceivePayment requests:
* Add code to your XxxCassette class to:

— Support the com.ibm.eti11.framework.cassette.AcceptPaymentRequest or
com.ibm.etill.framework.cassette.ReceivePaymentRequest (or both,
depending upon your cassette design) including the validation and storage of
any protocol data that your payment protocol requires. This data is typically
kept in the com.ibm.etil11.framework.cassette.CassetteOrder object. For
now, your code should ignore the APPROVEFLAG and DEPOSITFLAG parameters.

— Support the newCassetteOrder and resurrectCassetteOrder methods

* Create the xxxOrder Java class as described above. You will need to implement
the constructor and all abstract methods, including those defined by the
Archivable interface.

* At this point, you will probably also need to develop the code that chooses an
account for each order. For AcceptPayment, this should be a fairly
straightforward process. For ReceivePayment, it may be a bit more involved.
Again, this all depends upon your payment protocol.

* If you are handling ReceivePayment, you must also choose or build your
com.ibm.eti11.framework.io.ComPoint subclasses and
com.ibm.etil1.framework.cassette.ProtocolRequest subclasses, writing the
code to handle the asynchronous flows involved with these ComPoint and
managing the intermediate cassette-specific states that go along with this
process. The protocol request management will most likely occur within your
CassetteOrder class.

For more information on the internal sequence that occurs for these commands, see
[‘ReceivePayment API sequence” on page 69

In addition to the code described above, it is now time to write the classes that will
support the QueryOrders command, as well as any PSPL updates you may need to
display any cassette-specific data items on the user interface Order Details screens.
Use the same approach as you did for returning and displaying your
administrative objects.

After completing the code for this step, test your code by writing some simple
WebSphere Commerce Payments application programs using the Java Client API
Library. Your code should successfully handle valid and invalid AcceptPayment or
ReceivePayment calls. Valid calls should cause a new Order object to be created
along with an instance of your xxxOrder object and both of these should be
committed to the database in the appropriate state.

For more information on the framework’s Order object, its state values and the
cassette’s responsibilities in maintaining its state, see [“Orders” on page 13

Chapter 4. Writing your cassette 191

Implement basic cassette payments

192

Now that you can create orders through the WebSphere Commerce Payments AP,
it’s time to move on to payments and your first interaction between your core
protocol processor and the WebSphere Commerce Payments objects. For this step,
we will implement basic cassette payment support. Here you will create a Java
class, typically named xxxPayment that implements the
com.ibm.etill.framework.cassette.CassetteTransaction interface. This class will
contain your cassette-specific payment information. The primary responsibilities of
this class are to:

* Process the request objects that operate on Payments, which are:

Approve

ApproveReversal

Deposit
— DepositReversal

* Interact with the cassette’s core protocol logic to cause the exchange of any
protocol messages that may be required to handle the above commands.

* Handle any communication failures or pending conditions in a manner that
allows for timely response to the WebSphere Commerce Payments application’s
original API request and, if appropriate, later retries of the protocol messages
through the use of com.ibm.etil11.framework.cassette.CassetteWorkItem objects
and the framework’s timer queue.

* Manage the database and in-memory versions of the cassette-specific payment
information. The database versions are supported through the
com.ibm.eti11.framework.archive.Archivable interface which
CassetteTransaction implements.

* Manage the state of its associated framework
com.ibm.etil1.framework.payapi.Payment object and, if appropriate, the
com.ibm.etill.framework.payapi.Order object as well as the committal of those
objects to the database using the thread’s
com.ibm.etill.framework.archive.CommitPoint object. In addition, any
necessary intermediate cassette-specific states should be maintained within the
xxxPayment object. Remember that while any of these internal states are in effect,
the framework Payment and Order must still be maintained with one of their
own state values (for example, PAYMENT_PENDING, and so on).

* Provide any necessary services to the framework through the abstract methods
defined by the CassetteTransaction interface.

In this step, you will build enough of the payment processing code to be able to
successfully handle valid and invalid Approve commands. You will also add
support for ApproveReversal if your cassette design calls for it. You will complete
the remainder of this class in a later step.

Some of the things you will need to do to support the Approve request:
* Add code to your XxxCassette class to:

— Support the com.ibm.eti11.framework.cassette.ApproveRequest including the
validation of framework parameters as they apply to your payment protocol.
Once validated, this request is typically forwarded to the xxxPayment object
for processing.

— Support the newCassettePayment and resurrectCassettePayment methods

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

¢ Create the xxxPayment Java class as described above. You will need to implement
the constructor and all abstract methods, including those defined by the
Archivable interface.

For more information on the framework’s Payment object, its state values and the
cassette’s responsibilities in maintaining its state, see |”Payments” on page 1d

In addition to the code described above, you should now to write the classes that
will support the QueryPayments command in the Payment Servlet as well as any
PSPL updates you may need to display any cassette-specific data items on the user
interface Payment Details screens. Use the same approach as you did for returning
and displaying your cassette’s order data.

After completing the code for this step, test your code either by writing some
simple WebSphere Commerce Payments application programs using the Java Client
API Library or by using the Approve screens of the WebSphere Commerce
Payments user interface. Your code should successfully handle valid and invalid
Approve calls. Valid calls should cause a new Payment object to be created along
with an instance of your xxxPayment object and both of these should be committed
to the database in the appropriate state. In addition, all necessary protocol
messages should be exchanged with the back end per the payment protocol. In all
likelihood, you will have to write some scaffolding code to simulate error
conditions, including communication failures and pending conditions at the back
end.

Once you have the above functions working as described, you can add support for
the ApproveReversal command, as well as the APPROVEFLAG parameter of the
AcceptPayment and ReceivePayment commands (if your cassette design supports
them).

Implement CassetteBatch

At this point, you have built most of the infrastructure that you will need to build.
It is now time to complete the financial object model and command set. You won't
be able to test the code you write in this step yet, but you will need to write this
code before you can move on to the remaining steps.

In this step, we will build enough of the cassette’s batch support to handle the
most commonly-accessed batch functions. Here you will create a Java class,
typically named xxxBatch that implements the
com.ibm.eti11.framework.cassette.CassetteBatch interface. This class will contain
your cassette-specific batch information. The primary responsibilities of this class
are to:

¢ Process the request objects which operate on Batches, which are:
— BatchClose
— DeleteBatch
— BatchPurge
— BatchOpen (we recommend that you do not support this request)

In addition, this class must handle:
— Implicit batch creation

— Any batch-oriented functions related to processing Payments and Credits.

Chapter 4. Writing your cassette 193

* Interact with the cassette’s core protocol logic in order to cause the exchange of
whatever protocol messages may be required for handling the above commands
and functions.

* Handle any communication failures or pending conditions in a manner that
allows for timely response to the WebSphere Commerce Payments application’s
original API request and, if appropriate, later retries of the protocol messages
through the use of com.ibm.eti11.framework.cassette.CassetteWorkItem objects
and the framework’s timer queue.

* Manage the database and in-memory versions of the cassette-specific batch
information. The database versions are supported through the
com.ibm.eti11.framework.archive.Archivable interface which CassetteBatch
implements.

* Manage the state of its associated framework
com.ibm.etill.framework.payapi.Batch object and, if appropriate, the related
com.ibm.etill.framework.payapi.Payment and
com.ibm.etill.framework.payapi.Credit objects including the committal of
those objects to the database using the thread’s
com.ibm.etil1.framework.archive.CommitPoint object. In addition, any
necessary intermediate cassette-specific states should be maintained within the
xxxBatch object. Remember that while any of these internal states are in effect,
the framework Payment and Order must still be maintained with one of their
own state values (for example, BATCH_CLOSING, and so on).

* Provide any necessary services to the framework through the abstract methods
defined by the CassetteBatch interface.

Write the code necessary to successfully handle the most commonly accessed batch
functions. You will complete this class later. Here are some of the things you will
need to do to support these functions:

* Add code to your XxxCassette class to:

— Support the BatchClose request as described above, including the validation
of framework parameters as they apply to your payment protocol. Once
validated, this request is typically forwarded to the xxxBatch object for
processing.

— Support the newCassetteBatch and resurrectCassetteBatch methods.

* Create the xxxBatch Java class as described above. Implement the constructor
and all abstract methods, including those defined by the Archivable interface.

* Write a method that performs implicit batch creation as needed according to the
requirements of your payment protocol.

* Write any batch-oriented functions your payment protocol requires when
executing Payment- or Credit-oriented commands.

For more information on the internal sequence that occurs for these commands, see
[“BatchClose API sequence” on page 79

You should also write the classes which will support the QueryBatches command
in the Payment Servlet as well as any PSPL updates you may need to display any
cassette-specific data items on the user interface Batch Details screens. Use the
same approach as you did for returning and displaying your cassette’s order data.

After you have written and compiled this code, move on to the next step.

194 1BM WebSphere Commerce: Payments Cassette Kit Programming Guide

Complete cassette payment

With your batch class is in place, you can add the remaining code to your
xxxPayment class to support:

e Deposit
* DepositReversal

These commands typically affect the contents of a batch through the
com.ibm.etill.framework.payapi.Batch object’s addPayment and removePayment
methods, respectively.

Some of the things you will need to do to support the remaining payment-oriented
requests:

¢ Add code to your XxxCassette class to support the
com.ibm.etill.framework.cassette.DepositRequest and
com.ibm.etil1.framework.cassette.DepositReversalRequest requests, including
the validation of framework parameters as they apply to your payment protocol.
Like previous payment-oriented requests, these requests are typically forwarded
to the xxxPayment object for processing once they have been validated.

* Update the xxxPayment Java class to handle these requests.

For more information on the internal sequence that occurs for these commands, see
“Deposit API sequence” on page 74| and [“DepositReversal API sequence” on|

page 75.

After completing the code for this step, test your code either by writing some
simple WebSphere Commerce Payments application programs using the Java Client
API Library or by using the Payment or Deposit screens of the WebSphere
Commerce Payments user interface. Your code should successfully handle valid
and invalid Deposit and DepositReversal calls. Valid calls should cause the
appropriate state changes in the framework’s Payment object as well as in the
associated Batch. All updated objects should be committed to the database in the
appropriate states. In addition, all necessary protocol messages should be
exchanged with the back end per the payment protocol. In all likelihood, you will
have to write some scaffolding code to simulate error conditions, including
communication failures and pending conditions at the back end.

For more information on the framework’s Payment object, its state values and the
cassette’s responsibilities in maintaining its state, see [‘Payments” on page 16|

Implement cassette credits

At this point, you have a fully-functioning cassette from the Payment perspective.
Now it’s time to add Credit support. Credits typically reflect Payments very
closely, with this difference: Credit objects are created during a Refund command
(the analog of Deposit for Payments) and have no analog to the Approve command.

Because of the close similarities between these two types of objects, use your
now-complete xxxPayment java class as the model for your xxxCredit.java class.

For more information on the internal sequence that occurs for these commands, see
“Refund API sequence” on page 76| and [“RefundReversal API sequence” on|

page 72] For more information on the framework’s Credit object, its state values
and the cassette’s responsibilities in maintaining its state, seq”Credits” on page 18]

Chapter 4. Writing your cassette 195

Complete the remaining transactional support

Go back and write the code to support the remaining API commands that your
cassette design supports, but that you have not yet implemented. For all
commands that your cassette design does not support, the cassette should throw a
com.ibm.etill.framework.payapi.ETi1TAbortOperation exception with
PRC_COMMAND_NOT_SUPPORTED, RC_NONE. (Recall the recommendation made earlier. If
a command is not directly supported by your payment protocol but can be
simulated, then accept it. If the unsupported command cannot be simulated, then
reject it with PRC_COMMAND_NOT_SUPPORTED, RC_NONE instead of ignoring its
existence. You should expect and tolerate this return code pair as a likely
possibility and handle it accordingly.)

It is now time for more extensive reliability and data integrity testing. Some areas
to cover are:

* More heavy testing of your logic to restart requests that were pending when the
account, payment system, cassette or WebSphere Commerce Payments was
stopped.

* Stress testing with multiple concurrent API commands from multiple application
threads.

* Reliability of work items that are queued on to the framework’s service or timer
queues.

* Stress testing batch closure logic (by sending a lot of Payment- and
Credit-oriented commands to WebSphere Commerce Payments and frequently
close batches).

You should also ensure that you provide a means to create orders with your
cassette so that new users of your cassette can easily verify that it was installed
correctly. In WebSphere Commerce Payments this can be accomplished by creating
a Cashier profile and using the SampleCheckout application that is provided with
the WebSphere Commerce Payments framework.

Create Cashier profiles (optional)

196

Cashier profiles make your cassette more easily usable by merchant server
software (catalog systems, etc.). A Cashier profile is an XML document that
describes how orders should be created for a given cassette. This allows the
merchant software writer to concentrate on integrating with WebSphere Commerce
Payments in a generic way rather than having to write code that deals with
cassette-specific information. Creating a Cashier profile is optional; you can still
create WebSphere Commerce Payments orders without using the Cashier via the
AcceptPayment and ReceivePayment API commands. The use of the Cashier,
however, is preferred since it allows the potential for the merchant to introduce
new cassettes to the system without the need for rewriting any code. To learn
about the Cashier component of WebSphere Commerce Payments, please refer to
the WebSphere Commerce Payments Programming Guide and Reference. This section
assumes that you have read the Cashier chapter of the Programming Guide and are
familiar with the basics of the Cashier.

As a cassette writer, you should provide profiles which illustrate the way(s) in
which your cassette can be used. This means that you must come up with
meaningful combinations of framework and cassette parameters. If your cassette
has multiple groups of protocol-data parameters which are independently
meaningful together, you should write a profile for each grouping. For example, if
your cassette can use two mutually exclusive fraud-detection mechanisms, you

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

would write one profile for each mechanism. Similarly, if your cassette supports
both wallet-based and merchant-originated purchases, you should write one profile
for each of these modes of operation. You should name your profile file in
accordance with the guidelines in the WebSphere Commerce Payments Programming
Guide and Reference.

For example:
MerchantSoftwareNameMyCassette.profile, or
MerchantSoftwareNameMyCassetteFraudl.profile, or
MerchantSoftwareNameMyCassetteFraud2.profile.

To use the Sample Checkout application described in the WebSphere Commerce
Payments Programming Guide and Reference, your Cashier profiles should be installed
into the following directory:
Payments_installdir/cassettes/cassetteName/profiles.

You will want to write profiles for any merchant server which has a published
profile interface. For example, if IBM WebSphere Commerce products publish their
profile interface, you will want to take that and tailor it to your cassette. This will
involve taking a meaningful set of framework and cassette-specific parameters and
filling in the values for these parameters based on the published profile interface.

You will also want to provide profiles which are "generic” (merchant
server-neutral). These profiles will be templates which describe the sets of
parameters to use with your cassette. These generic Cashier profiles will aid
authors of "home-grown” merchant software to write profiles for your cassette.
Additionally, you should provide a profile for the WebSphere Commerce Payments
SampleCheckout application. The SampleCheckout application’s interface is
defined in the WebSphere Commerce Payments Programming Guide and Reference.

It will be extremely helpful if you provide comments in your profiles which
indicate what values are expected for each protocol data parameter. For example:

<!-- $MyCassetteParm is a four-digit integer value provided by your bank. -->

<Parameter
name="§MyCassetteParm"><CharacterText>xxxx</CharacterText></Parameter>

is preferable to:

Parameter
name="$MyCassetteParm"><CharacterText>xxxx</CharacterText></Parameter>

If any of your protocol data parameters need information to be supplied by the
shopper, you will need to make changes to the BuyPagelnformation element of the
profile. The specifics of this step are defined by the merchant server for which you
are writing the profile. The mechanics of the BuyPagelnformation element should
be defined as part of the merchant server’s profile interface. If you are writing a
generic Cashier profile you may skip this step and simply document in the profile
what information is needed from the shopper.

Understand platform-specific issues

Using Java minimizes platform-specific issues, but you should remember:

Chapter 4. Writing your cassette 197

* WebSphere Commerce Payments is provided on Windows 2000, AIX, Solaris,
Linux, iSeries, and z/OS. Which of these platforms do you want your cassette to
run on?

* Is the install and configure process different for different platforms?
* Do you have any native code?
* Will you be building and packaging this code for other platforms?

The framework provides some platform-specific methods that might vary by
platform. However, all of these methods are hidden behind the methods in the
com.ibm.etill.framework.supervisor.Supervisor class. The most notable of these
methods is Supervisor.loadLibrary, which is a method for loading system
libraries. Cassettes are required to use this method rather than using the Java
System.loadLibrary() method.

In addition to operating system differences, there are database differences to
consider. WebSphere Commerce Payments supports DB2 and Oracle. JDBC can't
mask all the differences. You will need to make plans for testing your cassette with
each of the databases you intend to support.

198 I1BM WebSphere Commerce: Payments Cassette Kit Programming Guide

Chapter 5. Testing your cassette

This chapter discusses the steps you should take to do a very basic test of your
cassette. It includes information on how to configure, process payments and
process batches with your cassette. These steps serve two purposes:

* They define a general guide for testing the basic cassette functionality. Because
your cassette design may not support all of the WebSphere Commerce Payments
commands or objects (or may support them, but with slightly different
behaviors), every cassette writer will have to walk through the sequence and
tailor the steps to fit their cassette implementation.

* They serve as a template for the tutorial in your cassette documentation. For
more information on cassette documentation and the tutorial, see
[“Writing your cassette”, on page 171}

Configuring your cassette

Use the information here to configure your cassette. At this point, you should
have:

* Installed and configured the WebSphere Commerce Payments component

* Added your cassette to a Payments instance

* Started WebSphere Commerce Payments

* Started WebSphere Application Server

e Started the Web server

* Defined a WebSphere Commerce Payments user with administrative authority
* Created a merchant and Merchant Administrator for that merchant

To authorize a merchant to use a cassette, you must log onto WebSphere
Commerce Payments as a Merchant Administrator or Payments Administrator. For
information about administrative tasks, see the WebSphere Commerce Administration
Guide.

After installing your cassette, you must configure the cassette before you can
process customer transactions. This tutorial will show you how to configure your
cassette. For detailed information on administration, configuration, and payment
functions, see the online Help for the WebSphere Commerce Payments user
interface.

Using the tutorial software as a model, this chapter demonstrates everything you
must do to achieve a fully functioning cassette. This information walks you
through fictitious scenarios that simulate real-world functions. And while you need
not complete the entire walk-through, it is important that you complete these tasks
to become familiar with the common cassette tasks:

1. Create an account.

2. Create any MerchantCassette or System Cassette objects that your cassette has
defined, as necessary.

In addition to the required configuration tasks above, we will walk through
common payment-processing tasks.

© Copyright IBM Corp. 2000, 2003 199

Starting the WebSphere Commerce Payments user interface

Our first task is enabling a merchant to use your cassette. This must be done by a
user with Payments Administrator access.

To start the WebSphere Commerce Payments user interface:

1. Point your browser to http:/ /host_name:port /webapp/PaymentManager/,
where host_name is the host name of the machine running the Web Server for
Payments, and port refers to the port number Payments is running on as shown
in the Configuration Manager WebServer information for your Payments
instance.

2. On the WebSphere Commerce Payments Logon window, type the Payments
Administrator’s user ID and password and click Logon.

Perform required configuration on the cassette

If you have defined any cassette extensions to the CassetteAdmin object, click the
Cassettes link in the navigation frame, and then click link to your cassette. This
will bring you to the cassette configuration screen, where you will see the fields
representing your extensions. Fill these in as appropriate and then click the
"Update” button.

Creating a WebSphere Commerce Payments Merchant and
authorizing a cassette

If you haven’t already created a merchant, you must do that first and authorize
that merchant to use a payment cassette. To create a merchant, you must log into
the WebSphere Commerce Payments as an administrator:

1. From the navigation frame, click Merchant Settings.

2. From the Merchant Settings page, click Add a Merchant or create a new
merchant with merchant number 123456789.

3. At the next window, you will be prompted to authorize use of your cassette:

Field name Description

Merchant name Enter Test Store. This is the name that you
assign to the merchant. Its only function is to
provide display information in the user
interface.

Merchant number Enter 123456789. This is a number that you
assign which uniquely identifies the merchant in
all transaction data.

Authorized cassettes Check the box next to xxxCassette. Checking
this box authorizes the merchant to use the
xxxCassette.

4. Click CreateMerchant to save the merchant configuration.

5. You will also have to give the user ID Merchant Administrator authority for
this merchant.

Logging in as the Merchant Administrator
To log off and log in again:

* From the navigation frame, click Logoff admin to return to the main WebSphere
Commerce Payments Logon page.

200 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

* Type the user ID (with Merchant Administrator authority) and the password and
click OK.

You are now logged in to the WebSphere Commerce Payments user interface with
Merchant administrator authority for the Test Store merchant. For the remainder of
the tutorial, you will act as the Merchant administrator. Notice that your view of
the WebSphere Commerce Payments user interface is now limited to merchant
administration functions, whereas as the WebSphere Commerce Payments
administrator, you had a global view of both merchant and WebSphere Commerce
Payments administration.

Creating an account

So far, you have enabled one merchant, the Test Store, to use your cassette. Now,
you need to establish an account for your cassette.

An account is a relationship between the merchant and the financial institution
which processes transactions for that merchant. There can be multiple accounts for
each payment cassette. But for the purposes of this tutorial, you will create one
account for your cassette.

To create an account:
1. From the navigation frame, click Merchant Cassette Settings.

2. From the Merchant Cassette Settings page, click the xxxCassette icon in the Test
Store.

3. From xxxCassette window, click Accounts.
4. Click Add an Account on the Accounts window.

5. At the next window, you will be prompted to enter the following information
(note that the italicized text must be entered in these fields for the tutorial):

Field name Description

Account name Enter xxxCassette Account. This is the name that
you assign to the account. Its only function is to
provide display information in the user interface.

Account number Enter 1. This is a number that you (that is, the
hosting service provider or the merchant
administrator) assign to uniquely identify this
account in all transaction data. Note that if
account number 1, is already defined for the Test
Store merchant, then you may choose another
number. We will assume for the remainder of
this tutorial, however, that you are using account
number 1.

any cassette-specific fields Fill in your cassette-specific fields, as required.

6. Click Create account to create the new account.

Creating cassette-specific objects

Now that the account has been created, you may need to create any required
MerchantCassetteObjects that will "belong” to the account. Each type of
MerchantCassetteObject will be listed as a separate choice following "Account
Settings” under the "Settings” column of each individual account’s summary
screen. Your cassette is responsible for providing the PSPL to manage the user
interface for these cassette-defined objects.

Chapter 5. Testing your cassette 201

202

If you have defined MerchantCassetteObjects or SystemCassetteObjects under the
"Merchant Cassette Settings” screen (that is, the screen that contains the "Accounts”
link under the "Settings” column), you will see a similar list of choices for each
such object. In this case, create and configure each such object as necessary.

Managing payment processing

As the Merchant Administrator, you have global merchant authority, which means
that you can perform:

1. Merchant-specific administration functions
2. All payment processing functions

In a real business scenario, you may choose to delegate payment processing tasks
to other merchant-defined users who possess limited payment processing
authorities (such as, Supervisor and Clerk). In this tutorial, you, as the Merchant
Administrator, will perform these tasks.

Having completed all of the WebSphere Commerce Payments and merchant
administration tasks necessary to begin payment processing, you are now ready to
start:

* Approving orders

* Depositing payments

* Settling batches

* Issuing credits

* Viewing daily batch totals

For the purposes of this tutorial, you will need to provide a mechanism to create
sample orders as needed. WebSphere Commerce Payments provides a
SampleCheckout application, which is a simple order entry system that supports
multiple payment methods. Each payment method is supported by a Cashier
profile, which is an XML document that describes how orders should be created
for that payment method. See [“Create Cashier profiles (optional)” on page 196 for
details on how to create a Cashier profile for your cassette. In addition, see the
WebSphere Commerce Payments Programming Guide and Reference for details on the
SampleCheckout application.

Creating orders using the SampleCheckout application

A real business environment features a customer who creates orders using a
merchant’s Internet storefront and a merchant who processes payments for those
orders using WebSphere Commerce Payments. In order for you to walk through
the WebSphere Commerce Payments payment processing functions, you need to
create orders that require payment processing. To simulate a merchant’s Internet
storefront, and facilitate order creation, use the SampleCheckout application in
conjunction with your cassette’s Cashier profile. To access the SampleCheckout
application and create orders:

1. Point your browser to http:/ /host_name:port/webapp /SampleCheckout/, where
host_name is the host name of the machine running the Web Server for
Payments, and port refers to the port number Payments is running on as shown
in the Configuration Manager WebServer information for your Payments
instance.

2. At the SampleCheckout window that appears, enter the data that your Cashier
profile indicates is pertinent for the creation of orders.

3. Click Buy.

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Repeat these steps two more times so that you have three orders for which to
process payments.

Approving orders

Once you have created three orders using the SampleCheckout application, return
to the browser window, where the WebSphere Commerce Payments user interface
is displayed.

Note: If you used the same browser window to access the Sample Checkout
application, you will need to point your browser once again to the
WebSphere Commerce Payments URL (that is,
http:/ /host_name:port /webapp/PaymentManager/) and login with merchant
authority.

To approve an order:
1. From the navigation frame, click Approve.

2. From the Approve window, select the check box next to the order that you
want to approve and click Approve.

3. Click Approve Selected. The Approve Results page displays the status of your
approve request.

4. When your approval is complete, click Return to the Approve Screen.

Two orders are still awaiting approval. You could have approved them all
simultaneously (for their full amounts), by clicking Approve All from the Approve
page. Instead, you will work with each order individually to better demonstrate
the many facets of the Approve function.

Approving orders from the Order page
In this section, you will approve an order from the Order page (rather than from

the Approve page), but you will approve only part of the total order amount.

1. From the Approve page, click the Order number for one of the remaining
orders awaiting approval. If your cassette exposes any of its extensions to
Orders, you should see them listed in the bottom half of the Order detail
screen.

2. From the Order page, you can view order details. Click Approve to approve
and deposit this order.

3. From the Order Approve window, change the sale amount to 3.00 and click
Approve to approve this order for three dollars.

When approval processing is complete, the Order page refreshes and displays
approval status.

Using the Sale function to approve orders

Because you approved only part of the last order you worked with, you still have
two order entries in the Approve window. In this exercise, you will use the sale
function to approve the remaining orders.

The sale function allows you to approve an order and move it directly into
deposited state, bypassing approved state. The sale function automatically
performs an approve and a deposit on your order payment. (Thus, you can think
of sale as Approve with AutoDeposit).

Do the following to approve an order with the sale function:

1. From the navigation frame, click Approve.

Chapter 5. Testing your cassette 203

204

2. From the Approve page, click Sale All. When processing is complete, the
approval status is displayed for each order submitted for sale.

3. When your sale is complete, click Return to the Approve Screen.

Depositing payments

Deposit allows you to deposit order payments. A single order number can have
multiple payments associated with it. You may see the same order number appear
multiple times in the same list, each time with different payment information.

To deposit a payment, do the following;:
1. From the navigation frame, click Deposit.

2. Select a box for one of the payments listed and click Deposit Selected. If your
cassette exposes any of its extensions to Payments, you should see them listed
in the bottom half of the Payment detail screen. When processing is complete,
success or failure status will appear in the Deposit Results page next to the
payment submitted for deposit.

3. When your sale is complete, click Return to the Deposit Screen.

Tip: You can deposit part of a payment. To deposit part of a payment, do the
following:

1. From the Deposit page, click the Payment number for one of the payments
awaiting deposit.
2. From the Payment page, click Deposit.

3. In the Order Payment page, change the deposit amount from 5.00 to 3.00 and
click Deposit to deposit this payment for three dollars.

Settling batches

A batch is a collection of payments and credits that are processed as a unit by a
financial institution. A batch is associated with a merchant and an account. The
payments that you deposited in the previous exercise will now appear in a batch.
You must settle this batch to initiate processing by the financial institution. The
financial institution is responsible for the transfer of funds once settlement is
complete.

To settle a batch, do the following:
1. From the navigation frame, click Batch Search.

2. In the Batch Search page, you can enter the following information to narrow
your search:

Field name Description

Merchant The name of the merchant whose batch you
are searching for. If there are less than 500
merchants in WebSphere Commerce
Payments database, select the merchant
name from the drop-down list. If there are
more than 500 merchants in the database,
type the name of a merchant.

Batch Number The number that uniquely identifies the
batch within the merchant.

State The state of the batch:
* Open
* Closed

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Field name Description

Balance Status The balance status of this batch:
* Balanced: the batch has been successfully
balanced (that is, all totals agree).

* Out of balance: an unsuccessful attempt
has been made to balance this batch (that
is, all totals do not agree).

Payment Type Identifies the payment cassette or protocol
used to place the order. Select the payment
type implemented by your cassette.

Batch Open Date Use the after and before fields below to
search for batches opened during the
specified range in time:

* After: Specify a date to search for all
batches opened on and after this date.

* Before: Specify a date to search for all
batches opened on and before this date.

Batch Closed Date Use the before and after fields below to
search for batches closed during the
specified range in time:

* After: Specify a date to search for all
batches closed on and after this date.

* Before: Specify a date to search for all
batches closed on and before this date.

3. Click Search to initiate a batch search.
4. Click the batch number to view information about the batch.

5. From the Batch window, you can view useful batch information, including the
total number and amount of both payments and credits in the batch. If your
cassette exposes any of its extensions to Batches, you should see them listed on
the Batch screen. Click Batch Details to see a detailed listing of all payments
and credits in this batch. You will see the four payments you just created and
no credits.

6. Click Settle to settle the batch. When processing is complete, settle status is
displayed in the Settle Results page.

Issuing a credit

Credits are issued against orders and can be given for any amount.

To issue a credit, do the following:

1. To find the order for which you want to issue credit, from the navigation
frame, click Order Search.

2. At the Order Search page, you can enter the following information (note that
for this tutorial, you will not be entering any parameter information in the
fields to narrow your search):

Chapter 5. Testing your cassette 205

206

Field name

Description

Merchant

The name of the merchant whose order you
are searching for. If there are less than 500
merchants in WebSphere Commerce
Payments database, select the merchant
name from the drop-down list. If there are
more than 500 merchants in the database,
type the name of a merchant.

Order Number

A number assigned by the merchant that
uniquely identifies the order.

State

The state of the order:
* Ordered

* Refundable

» Canceled

* Closed

Payment Type

Identifies the payment cassette or protocol
used to place the order.

Order Date

Use the after and before fields below to

search for orders opened during the

specified range in time:

* After: Specify a date to search for all
orders opened on and after this date.

* Before: Specify a date to search for all
orders opened on and before this date.

Order Amount

* Currency: The currency used to place this
order. Select the currency type from the
drop-down list.

* Greater than: Specify a value to retrieve
all orders with order amounts that are
greater than or equal to the value you
specify.

* Less than: Specify a value to retrieve all
orders with order amounts that are less
than or equal to the value you specify.

3. Click Search.

4. From the Order Search Results page, click an order number for an order in
Refundable state, to view the details of that order.

5. From the Order page, click Credit to create a credit against this order.

6. At the Create Credit page, the following information displays:

Field name

Description

Currency

The type of currency used to place this
order. This is a read-only field.

Order Amount

The total amount of the order expressed in
the currency used to place the order. This is
a read-only field.

Approved Amount

This field displays the approved amount.
This is a read-only field.

Deposited Amount

This field displays the deposited amount.
This is a read-only field.

IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Field name Description

Credit Amount This is the total amount of the order.

Enter the credit amount (any amount up to the deposited amount of the order)
and click Credit.

When credit processing has completed, the Order page refreshes and displays the
credit status. The newly created credit appears under Credits.

Viewing batch totals

The last step in this tutorial is viewing daily batch totals. The WebSphere
Commerce Payments Reports function allows you to view daily totals for batches
in a closed state. To generate a daily batch totals report, do the following:

1. From the navigation frame, click Reports.
2. From the Reports page, click Daily Batch Totals.

3. In the Batch Totals Report page, type the date for which you would like a batch
totals report. Leave this field blank to generate a report for the current date.

4. Type or select the Merchant name. If you do not type a Merchant name, a list
of all of the batches for the specified date will be displayed. If there are more
than 500 batches, only the first 500 batches will be displayed.

5. Click Search to generate the batch totals report.

The Daily Batch Totals report computes the totals for all batches that were closed
on the date specified on the Search page. These totals are computed on a
per-currency basis, so there is one line per currency. Note that these totals cover all
payments and credits, not just those made through your cassette.

You have just completed a day in the life of a Payments Administrator and a
Merchant Administrator. While individual business models may vary, this tutorial
outlines the basic path to establishing a working WebSphere Commerce Payments
and demonstrates fundamental payment processing implemented through your
cassette. For more information on specific fields in the WebSphere Commerce
Payments user interface, see the online help.

Chapter 5. Testing your cassette 207

208 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Appendix. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION AND CASSETTE KIT “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement
may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2000, 2003 209

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

Department TL3B/Building 503

PO Box 12195

3039 Cornwallis Road

Research Triangle Park, NC 27709-2195

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

s AIX

« DB2

+ IBM

e IBM Payment Server
* iSeries

+ 0S/390

* WebSphere

* z/0S

210 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

e zSeries

Microsoft, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned
by SET Secure Electronic Transaction LLC.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix. Notices 211

212 1BM WebSphere Commerce: Payments Cassette Kit Programming Guide

Index
A

AcceptPayment
API sequence diagram 71
description 61

access control 91

account
lock 95

administrative API commands 39

administrative object model
cassette extension objects 8
primary objects 8

administrative objects
AccountAdmin 10
Cassette 10
CassetteAdmin 10
description 7
MerchantAdmin 10
MerchantCassetteObject 10
model 8
PayServer 9
PaySystemAdmin 10
primary 8
SystemCassetteObject 10

API commands

administrative
sequence diagrams 39
payment 61
sequence diagrams 67
Approve

API sequence diagram 72

description 62
ApproveReversal

API sequence diagram 73

description 62
Archivable interface 102

Background and timed operations 99
Batch
lock 96
management
Explicit style 21
implicit style 21
object description 20
states
BATCH_CLOSED 22
BATCH_CLOSING 22
BATCH_OPEN 22
BATCH_OPENING 22
BatchClose
API sequence diagram 79
description 65
BatchOpen
API sequence diagram 78
description 64
BatchPurge
API sequence diagram 81
description 65

© Copyright IBM Corp. 2000, 2003

C

caching, Order and batch 91
CancelOrder
API sequence diagram 83
description 64
Cashier 5
Cashier profiles 5
cassette
lock 95
cassette design 157
activities 157
commit points 165

ComPoints and ETillConnection 167

Create scenario diagrams 168
documenting 168
extensions to framework object
model 160
database tables 161
external view 161
identifying 160
financial state transitions 167
mapping WebSphere Commerce
Payments API 164
naming your cassette 157
restart implications 165
cassette properties XML file 174
cassette, writing 171
administration objects 187
basic cassette payment 192
basic CassetteOrder 190
cassette credits 195
CassetteBatch 193
completing cassette payment 195
configuration 175
core function 190
database setup 184
directory structure 173
external view administration
objects 187
installation considerations 173
platform-specific issues 197
skeleton 186
uninstall considerations 185

CassetteConfiguratorAdaptor class 180

CassetteControl
API sequence diagram 60
description 39

classes, configuration related 178
CassetteConfiguratorAdapter 180
ICassetteConfigurator 180
IDatabase 180

CloseOrder
API sequence diagram 82
description 64

command
CassetteControl 39
Ignore or reject 36
parameters, cassette-specific 31
parameters, framework 37
Payment API

AcceptPayment 61

command (continued)
Payment API (continued)
Approve 62
ApproveReversal 62
BatchClose 65
BatchOpen 64
BatchPurge 65
CancelOrder 64
CloseOrder 64
DeleteBatch 65
Deposit 62
ReceivePayment 61
Refund 63
RefundReversal 63
processing 31
processing,
Query 90
processing, overview 25
query, overview 26
command processing
payment and administrative,
overview 25
commands
administrative API
sequence diagrams 39
framework 24
payment API 61
sequence diagrams 67
Payment API
DepositReversal 63
commit points, designing 165
CommitPoint 102
ComPoints and ETillConnection
designing 167
Configuration Manager
adding cassettes 125
handling of cassette 179
setting minimum access role 29
configuring cassettes 178

considerations, restart implications 165

control, access 91
create scenario diagrams
designing 168
CreateAccount
API sequence diagram 45
CreateBatch
internal sequence diagram 85
CreateMerchant
API sequence diagram 55
CreateMerchantCassetteObject
API sequence diagram 58
CreatePaySystem
API sequence diagram 50
CreateSystemCassetteObject sequence
API sequence diagram 59
Credit
object description 18
states
CREDIT_CLOSED 20
CREDIT_DECLINED 20
CREDIT_PENDING 20

213

Credit (continued)
states (continued)
CREDIT_REFUNDED 19
CREDIT_RESET 19
CREDIT_VOID 20
custom extension class 179

D

data model, exported 22
Database access 102
database setup 184
debug tracing 119
DeleteAccount
API sequence diagram 47
internal sequence diagram 49
DeleteBatch
API sequence diagram 80
description 65
DeleteMerchant
API sequence diagram 57
DeleteMerchantCassetteObject
API sequence diagram 58
DeletePaySystem
API sequence diagram 52
internal sequence diagram 54
DeleteSystemCassetteObject sequence
API sequence diagram 59
deploying cassettes 180
Deposit
API sequence diagram 74
description 62
DepositReversal
API sequence diagram 75
description 63
designing your cassette 157
diagnostic trace 120
documenting cassette design 168

E

encoding 133
error handling
fatal errors 38
General runtime errors 38
unsupported commands 38
while processing protocol
messages 38
Error logging 115
event notification 105
explicit batch management
See implicit batch management
exported data model 22

F

financial object
Batches 20
Credits 18
description 7
Orders 13
Payments 16
states 11

financial state transitions
designing 167

framework
command parameters, supporting 37
commands 24
Javadoc 154
lock 95
object model 7
responsibilities 91

G

GenericCassetteConfigurator class 179

H

help file 133
hierarchy, Request classes 27

ICassetteConfigurator class 178, 180
IDatabase class 180
implicit batch management

See explicit batch management
independent credit 14, 16
installation

considerations 173

examples 181

steps 173

uninstall considerations 185
interface, Archivable 102
interface, Restorable 102
internal sequence diagram 86, 87, 88, 89
internationalization 133, 158

J

Javadoc
classes cassettes extend 154
classes operated on by cassettes 155
classes providing framework
services 155
framework 154
framework classes, cassette view
of 154
interfaces cassettes implement 154
JRas components 120

L

languages 133

lock
Account 95
Batch 96
cassette 95
framework 95
MerchantAdmin 95
Order 96
read 95
write 95

logging, Error 115

214 1BM WebSphere Commerce: Payments Cassette Kit Programming Guide

M

MerchantAdmin lock 95
messages, Receiving protocol 102
migrate method 183
migrating cassettes 182
model
administrative object 8
exported data 22
framework object 7
Modify Account
API sequence diagram 46
ModifyCassette
API sequence diagram 42
ModifyMerchant
API sequence diagram 56
ModifyMerchantCassetteObject
API sequence diagram 58
ModifyPaySystem
API sequence diagram 51
ModifySystemCassetteObject sequence
API sequence diagram 59

N

Notices 209
notification, event 105

(0

object
Batch, description 20
Credit, description 18
model
administrative 7, 8
administrative, cassette
extensions 8
administrative, primary objects 8
financial 7
framework 7
Order, description 13
Payment, description 16
operations, Background and timed 99
Order
lock 96
object description 13
states
ORDER_CANCELED 15
ORDER_CLOSED 16
ORDER_ORDERED 14
ORDER_PENDING 15
ORDER_REFUNDABLE 15
ORDER_REJECTED 15
ORDER_REQUESTED 14
ORDER_RESET 14
order and batch caching 91
overview
command processing 25

P

parameter

supporting framework command 37
parameters

validation 96

Payment
API commands 61
sequence diagrams 67
object description 16
protocol mapping 66
states
PAYMENT_APPROVED 17
PAYMENT_CLOSED 18
PAYMENT_DECLINED 18
PAYMENT_DEPOSITED 17
PAYMENT_EXPIRED 18
PAYMENT_PENDING 18
PAYMENT_RESET 17
PAYMENT_VOID 18
paymentcassettemigrator script 183

sequence diagram (continued)
CloseOrder 82
CreateAccount 45
CreateBatch (internal) 85
CreateMerchant 55
CreateMerchantCassette object 58
CreatePaySystem 50
CreateSystemCassette object 59
DeleteAccount 47
DeleteAccount (internal) 49
DeleteBatch 80
DeleteMerchant 57
DeleteMerchantCassette object 58
DeletePaySystem 52
DeletePaySystem (internal) 54

states (continued)

Order (continued)
ORDER_REQUESTED 14
ORDER_RESET 14

Payment
PAYMENT_APPROVED 17
PAYMENT_CLOSED 18
PAYMENT_DECLINED 18
PAYMENT_DEPOSITED 17
PAYMENT_EXPIRED 18
PAYMENT_PENDING 18
PAYMENT_RESET 17
PAYMENT_VOID 18

StopAccount

internal sequence diagram 48

profiles, Cashier 5
protecting sensitive data 29
protocol mapping, payment 66
Protocol message

API sequence diagram 84

protocol messages, Receiving 102

publications, related vii
purchasing cards 112

Q

Query
API sequence diagram 90
command processing 90

R

Read lock 95
realms
tracing 120
ReceivePayment
API sequence diagram 69
description 61

Receiving protocol messages 102

Refund

API sequence diagram 76

description 63
RefundReversal

API sequence diagram 77

description 63
request classes

hierarchy 27

overview 27
responsibilities, framework 91
restart implications 165
Restorable interface 102
RetrieveBatch 86
RetrieveOrder 87

S

sensitive data, hiding 23

sequence diagram
AcceptPayment 71
Approve 72
ApproveReversal 73
BatchClose 79
BatchOpen 78
BatchPurge 81
CancelOrder 83
CassetteControl 60

DeleteSystemCassette object 59
Deposit 74

DepositReversal 75
ModifyAccount 46
ModifyCassette 42
ModifyMerchant 56

ModifyMerchantCassette object 58

ModifyPaySystem 51
ModifySystemCassette object 59
Protocol message 84

Query 90

ReceivePayment 69

Refund 76

RefundReversal 77
RetrieveBatch (internal) 86
RetrieveOrder (internal) 87
Service queue (internal) 88
StartAccount (internal) 48
StartCassette (internal) 43
StartPaySystem (internal) 53
StopAccount (internal) 48
StopCassette (internal) 44
StopPaySystem (internal) 53
System start 41

Timer queue (internal) 89

Service queue 88
StartAccount

internal sequence diagram 48

StartCassette

internal sequence diagram 43

StartPaySystem

internal sequence diagram 53

states

Batch
BATCH_CLOSED 22
BATCH_CLOSING 22
BATCH_OPEN 22
BATCH_OPENING 22

Credit
CREDIT_CLOSED 20
CREDIT_DECLINED 20
CREDIT_PENDING 20
CREDIT_REFUNDED 19
CREDIT_RESET 19
CREDIT_VOID 20

Order
ORDER_CANCELED 15
ORDER_CLOSED 16
ORDER_ORDERED 14
ORDER_PENDING 15
ORDER_REFUNDABLE 15
ORDER_REJECTED 15

StopCassette

internal sequence diagram 44
StopPaySystem

internal sequence diagram 53
synchronization 94
System start

sequence diagram 41

T

threading 92
timed operations 99
Timer queue 89
tracing, debug 119
trademarks 210

U

uninstalling cassettes 185

\'

validation, parameter 96

w

Web sites viii
wpm.MinSensitiveAccessRole
parameter 29
write lock 95
writing your cassette 171
administration objects 187
basic cassette payment 192
basic CassetteOrder 190
cassette credits 195
CassetteBatch 193

completing cassette payment 195

core function 190

database setup 184

external view administration
objects 187

installation considerations 173

platform-specific issues 197
skeleton 186

uninstall considerations 185

Index

215

216 IBM WebSphere Commerce: Payments Cassette Kit Programming Guide

Printed in U.S.A.

	Contents
	Welcome!
	Conventions used in this book
	Additional information
	Using the online help
	Locating the printable documentation
	Viewing the WebSphere Commerce Web site for product information
	Other WebSphere Commerce Payments documents and Web sites

	What's new for release 5.5

	Chapter 1. Introducing WebSphere Commerce Payments
	WebSphere Commerce Payments features and goals
	WebSphere Commerce Payments architecture

	Chapter 2. Understanding the WebSphere Commerce Payments framework
	Framework object model
	Administrative object model
	Financial objects and their states
	Orders
	Payments
	Credits
	Batches

	Exported Data Model: The user's view of WebSphere Commerce Payments objects

	Framework commands
	Command processing overview
	Payment and Administrative command processing
	Query command processing
	Request classes and their hierarchy

	Protecting sensitive data
	Cassettes and command processing
	Protocol data: Cassette-specific command parameters
	Ignore or reject?
	Supporting framework command parameters
	Error handling
	Cassette-specific commands: CassetteControl

	Administrative API commands
	Administrative command sequence diagrams
	System start sequence
	ModifyCassette API sequence
	StartCassette internal sequence
	StopCassette internal sequence
	CreateAccount API sequence
	ModifyAccount API sequence
	DeleteAccount API sequence
	StartAccount internal sequence
	StopAccount internal sequence
	DeleteAccount internal sequence
	CreatePaySystem API sequence
	ModifyPaySystem API sequence
	DeletePaySystem API sequence
	StartPaySystem internal sequence
	StopPaySystem internal sequence
	DeletePaySystem internal sequence
	CreateMerchant API sequence
	ModifyMerchant API sequence
	DeleteMerchant API sequence
	ModifyMerchantCassetteObject API sequence
	ModifySystemCassetteObject API sequence
	CassetteControl API sequence

	Payment API commands
	ReceivePayment
	AcceptPayment
	Approve
	ApproveReversal
	Deposit
	DepositReversal
	Refund
	RefundReversal
	CloseOrder
	CancelOrder
	BatchOpen
	BatchClose
	DeleteBatch
	BatchPurge
	Payment protocol mapping

	Payment command sequence diagrams
	ReceivePayment API sequence
	AcceptPayment API sequence
	Approve API sequence
	ApproveReversal API sequence
	Deposit API sequence
	DepositReversal API sequence
	Refund API sequence
	RefundReversal API sequence
	BatchOpen API sequence
	BatchClose API sequence
	DeleteBatch API sequence
	BatchPurge API sequence
	CloseOrder API control sequence
	CancelOrder API sequence
	Protocol message API sequence
	CreateBatch internal sequence
	RetrieveBatch internal sequence
	RetrieveOrder internal sequence
	Service queue internal sequence
	Timer queue internal sequence

	Query command processing
	Query API sequence

	Responsibilities and services
	Access control
	Order and batch caching
	Threading
	Synchronization
	Parameter validation
	Background and timed operations
	Receiving protocol messages from the outside world
	Database access
	Event notification
	Map your cassette AVS codes to the WebSphere Commerce Payments common AVS result codes
	Asynchronous Auto Approve
	Account settings related to AcceptPayment and ReceivePayment
	Cassette changes required for AcceptPayment
	Cassette changes required for ReceivePayment
	Telling the framework which order creation commands are supported by the cassette

	Configurable approval expiration
	ApprovalExpiration parameter
	Cassette enablement

	Purchasing card support
	Framework and cashier support of purchasing cards
	Guidelines when passing data in on commands

	Error logging
	Return code messages
	Payment Servlet processing
	Return code message syntax:
	Example

	Debug tracing
	Enabling trace
	Trace output
	Trace example

	User interface support
	Payment Server Presentation Language
	PSPL document overview
	General structure
	PSPL document styles

	User's guide to PSPL
	Identify your cassette's extensions
	Determine which of your cassette extensions should be displayed
	Identify and name your cassette screens
	Identify and name the fields
	Group the fields
	Define the field attributes
	Write messages for your cassette's specific return codes
	Create your cassette's UI properties file

	PSPL reference
	PSPL element
	PSPL — screen elements
	PSPL - fieldGroup element
	PSPL - field element
	PSPL field element type attribute
	PSPL - displayType attribute
	PSPL - Name element
	PSPL - Header element
	PSPL - Trailer element
	PSPL - shortHelp element
	PSPL - emptyList element
	PSPL - fieldPosition element
	PSPL - preferredWidth element
	PSPL - preferredHeight element
	PSPL - maximumLength element
	PSPL - defaultValue element
	PSPL - columnWidth element
	PSPL - option element
	PSPL - action element
	PSPL - message element
	Debugging user interface problems

	Framework Javadoc
	Cassette view of framework classes
	Classes cassettes extend
	Interfaces cassettes implement
	Classes that provide framework services
	Classes on which cassettes operate

	Chapter 3. Designing your cassette
	Design activities
	Name your cassette
	Consider internationalization
	Error messages
	User interface

	Design your extensions to the framework object model
	Identify all of your cassette's extensions
	Design the external view of your extensions
	Design your database tables and views

	Map the WebSphere Commerce Payments API to your payment protocol
	Design your commit points
	Consider restart implications
	Design ComPoints and ETillConnection
	Design financial state transitions
	Create scenario diagrams
	Write your cassette documentation

	Chapter 4. Writing your cassette
	Installation and uninstallation considerations and steps
	Installing and configuring your cassette
	Step 1: Create the directory structure
	Example of a cassette_properties.xml file

	Elements in a cassette_properties.xml file
	Step 2: Determine if additional configuration is required
	Determine if you need to implement the ICassetteConfigurator interface
	Configuration Manager handling of your cassette's configuration

	Step 2A: (Optional) Use custom extension class if necessary
	ICassetteConfigurator interface
	IDatabase class

	Step 3: Deploy your files to the target system
	Typical installation examples
	Scenario for a plain vanilla installation
	Scenario for a more complex installation

	Migration considerations and steps
	Using the migrate method
	Running the paymentcassettemigrator script
	Migrate interface in ICassetteConfigurator.java

	Database considerations and steps
	Uninstall considerations
	Build a working cassette skeleton
	Build your administration objects
	Build your external view of administration objects
	Implement your core protocol function
	Implement the basic CassetteOrder
	Implement basic cassette payments
	Implement CassetteBatch
	Complete cassette payment
	Implement cassette credits
	Complete the remaining transactional support
	Create Cashier profiles (optional)
	Understand platform-specific issues

	Chapter 5. Testing your cassette
	Configuring your cassette
	Starting the WebSphere Commerce Payments user interface
	Perform required configuration on the cassette
	Creating a WebSphere Commerce Payments Merchant and authorizing a cassette
	Logging in as the Merchant Administrator
	Creating an account
	Creating cassette-specific objects

	Managing payment processing
	Creating orders using the SampleCheckout application
	Approving orders
	Approving orders from the Order page

	Using the Sale function to approve orders
	Depositing payments
	Settling batches
	Issuing a credit
	Viewing batch totals

	Appendix. Notices
	Trademarks

	Index

