
IBM Payment Manager
Cassette Development

Workshop

Jim ReachJim Reach
e-commerce e-commerce

ISV DevelopmentISV Development

Payment Manager
Introduction

The Payment Manager...

Manages the life cycle of electronic payments through cash
register-like functionality
Provides single programming and user interface for different
payment instruments
Is driven by and cooperates with business applications like

Catalog Systems
Fulfillment Systems
Accounting Systems.

Is extendable to new payment technologies through new
casettes with minimal change to application systems
Is composed of several Java servlets and Java applications

The Platforms

Windows/NT V4
Solaris Version 2.6
AIX Version 4.2.1, 4.3.2, or 4.3.3
AS/400
OS/390 coming soon (only with WebSphere
Commerce Suite)

Architecture

Main Components
Payment Servlet provides HTTP-based API and performs
API-based queries
Payment Engine maintains configuration and performs
financial transactions
User Interface Servlet provides HTML-based UI exclusively
through the Payment Manager API
A web server (IBM HTTP Server included)
IBM WebSphere Application Server (included)
A database (IBM DB2 Universal Database included)
Cassettes

IBM SET Cassette
IBM CyberCash Cassette
Soon we will be adding yours.

Overview of Framework

Data Model
Application Programming
Interface
Database Access
Memory management
Synchronization
Parameter Validation and
Conversion
Thread Management

Access control
Scheduling background and
timed tasks
Protocol message
management
Event notification
Exception Management
Tracing Internal Events
Logging Errors

The Data Model

Administration objects
PayServer
CassetteAdmin
MerchantAdmin
PaySystem
AccountAdmin
Cassette-specific objects

Cassette scope
Merchant scope

Financial objects
Order
Payment
Credit
Batch

Administration Model

PayServer

Cassette
Admin

Merchant
Admin

PaySystem

Account
Admin

Cassette
Extension

Cassette
Extension

Cassette
Extension

System
Cassette
Objects

Merchant
Cassette
Objects

Merchant
Cassette
Objects

Administration Model
(continued)

PayServer - represents the Payment Manager itself - only 1 of
these per Payment Manager
CassetteAdmin - describes a cassette - 1 per installed cassette
MerchantAdmin - describes a merchant - 1 per merchant
PaySystem - describes an association between 1 merchant and 1
cassette (UI calls this the "Merchant Cassette Settings")
AccountAdmin - describes the relationship between a merchant
and a finiancial institution under a given cassette - n per
PaySystem
Cassette-specific objects - defined by a cassette to describe a
protocol-specific administration object

SystemCassetteObject - cassette scope
MerchantCassetteObject - merchant scope (Brand is an
example)

Financial Model

Order

CassetteOrder

Payment

CassetteTransaction

Credit

CassetteTransaction

Batch

CassetteBatch

Payment

CassetteTransaction

Credit

CassetteTransaction

Order

Cassette
Order

Order

Cassette
Order

Account
Admin

Financial Model (continued)

Order - represents a buyer's agreement to pay using a specific
payment instrument (credit card, check, etc.)
Payment - one transfer of funds from the buyer to the seller using
the payment instrument identified by the owning Order. May be 0
or more of these per Order
Credit - one refund of funds from the seller to the buyer using the
payment instrument identified by the owning Order. May be 0 or
more of these per Order
Batch - a set of Payments and Credits to be settled as a group
with the financial institution represented by the associated
Account. These Payments and Credits typically belong to
different Orders.

The Application Programming
Interface

Financial
ReceivePayment
AcceptPayment
CloseOrder
CancelOrder
Approve
ApproveReversal
Deposit
DepositReversal
Refund
RefundReversal

BatchOpen
BatchClose
BatchPurge
DeleteBatch

Administration
CreateAccount
ModifyAccount
DeleteAccount
Others

Queries
XML formats

The framework defines these commands:

Memory Management for
Financial Objects

The framework guarantees a single in-memory copy of any given
financial object through its Order and Batch caches.
Order and Batch objects contain references to associated
Payment, Credits, CassetteOrder and CassetteBatch objects.
Only the framework constructs framework objects.
The framework will ask the cassette to create or resurrect cassette
objects as needed. Your cassette is responsible for constructing
and resurrecting cassette objects upon request.
Cassettes must adhere to the following rules to ensure the
integrity and effectiveness of the Order and Batch caches:

do not save references to financial objects across requests
do not pass references to these objects to another thread,
including service threads
do not keep your own cache or lists of in-memory objects
do not make "copies" of any of these in-memory objects

Memory Management for
Administration Objects

All administration objects are kept in memory full-time
No direct references from Framework administration objects to
cassette extensions - cassette is responsible for this association.
Cassettes may maintain their own collections which reference
their administration objects
Cassette extensions should implement the Archivable interface to
allow for storage to the database

Synchronization

Object synchronization
The Framework provides all synchronization necessary to
ensure data integrity and thread safety while allowing for as
much parallelism as possible. Cassettes should not have to
perform any synchronization for safe PM object access.
The Framework decides which locks to obtain based upon the
request type.
A hierarchical locking scheme ensures that multiple readers
can have access to objects but writers must be
single-threaded.

Database serialization (ETillArchive lock)- exists for historical
reasons.

Parameter Validation and
Conversion

Framework parses and syntax checks the cassette-specific API
parameters based on parameter validation rules supplied by the
cassette
Converts from byte-array to the specified Java formats
Does not provide:

Existence checks
Context checks
Semantic checks
Consistency checks

Casettes can extend ParameterValidationItem (for example, card
account number validation)

Thread Management

The framework provides all threads and controls the scheduling of
cassette processing. Several Framework services are dependent
upon these threads:

Database commit points
Object synchronization
Cache management

Cassettes should not create their own threads
Cassette software should be written in a way that any function can
run at any time in any thread (thread safe).

Payment Engine thread model

Database Access

ETillArchive final class manages access to the database using
JDBC calls.

used to store and retrieve persistent information
used to resurrect objects
used to read the configuration
used to protect the cassette from platform and database
manager inconsistencies

CommitPoint object (one per Payment Manager thread) is used to
ensure that all associated Framework and cassette database
updates occur as a single unit of work.
Archivable interface defines methods needed to save an object to
the database under control of a CommitPoint using the
ETillArchive class.

Access Control

Restricted access to function
Managed completely within the Payment Servlet
Cassettes never have to worry about this
Only authorized users can view or update merchant data
Merchant can restrict users to specific roles:

Clerk
Supervisor
Merchant Administrator

Payment Manager Administrator authority used for managing
multiple merchants

Scheduling Background and
Timed Tasks

Not used in our LDBCard cassette, but is illustrated in KitCash
cassette. Useful for asynchronous retries and long running
processes.
Framework maintains a pool of service threads to service a
CassetteWorkItem queue.
Framework maintains a timer thread to service a Timeable
CassetteWorkItem queue.
Used by cassettes to schedule future work and to offload work
from the running thread.
CassetteWorkItems are cassette-generated objects
Since CassetteWorkItem construction is based upon a particular
xxxRequest object, the Framework ensures that the correct object
locks are obtained before passing the work item to the cassette for
processing.

Not used in LDBCard cassette, but is illustrated by the KitCash
cassette.
Used for "server-side" processing of new inbound protocol
messages, typically from a Wallet or browser plug-in. NOT for
"client-side" messages.
ComPoint and ETillconnection interfaces can be used to create
cassette classes to exchange protocol messages with "outside
world".
Framework provides threads dedicated to listening for these
incoming messages.
ComPoint represents the "listening point". It waits for notification
of an incoming message and return an EtillConnection object.
The ETillConnection object is passed to the cassette responsible
for handling the incoming message.
The ComPoint object waits for the next incoming message.

Protocol Message Management

Event Notification

Asynchronous Notification of significant events to
registered event listener applications
Main event of interest is the object state change.
Cassette manages object state. No other cassette
action necessary
The framework notifies external business systems
listening for the state changes
Cassettes can provide their own events if necessary

Exception Management

A cassette is required to catch each Exception and each routine
abnormal condition
If a cassette encounters an unrecoverable error, it must throw a
framework exception:

ETillAbortOperation : terminates the current operation
Merchant application gets return codes
Used for parameter errors
Used for usage errors
Used for execution failures

ETillCassetteException : stops the cassette
A subclass of RuntimeException
Used for assertion failures

Tracing Internal Events

Granular trace facility. Some examples are
Function Entry and Exit
Database Read, Write and Commit
Error occurred
Debug

Used during development and test
Validation that the cassette is operating correctly
Assistance with debugging efforts
Trace is usually turned off for production

Use error log for production errors and runtime information
In production, trace facility used as a last resort

Tracing Internal Events
(continued)

Sample Trace call:

 if (Trace.isAnyoneTracing()) {
 Trace.traceFunctionEntry(
 TRACE_ID,
 "LdbCardAccount.connect()"
);
 }

Logging Errors
The framework provides a logging facility for

Informational messages
Error messages

Cassette dependent properties file used for messages facilitates
easy translation
Cassettes should capture critical data when errors are detected or
when key events occur in order to reduce service costs and
problem identification effort
Should not be used for

routine or expected conditions that occur frequently
reporting syntax errors on inbound API commands (return
codes notify the offending application of the errors)

Logging Errors (continued)

Sample Error Log:

 ErrorLog.logError(
 RB_ID,
 MSG_ACCOUNT_ICV_FAILURE,
 varException,
 this.getMerchant(),
 this.getAccountNumber(),
 this.getUser(),
 this.getObscurePassword(),
 this.getUrl()
);

