IBM WebSphere Payment M anager CassetteCookbook

IBM WebSphere Payment Manager

Cassette Developer Cookbook

Copyright © 2000, IBM Inc. All rights reserved

Lance D Bader
P.O. Box 12195
4025 South Miami Boulevard
Research Triangle Park, NC 27709
|dbader @us.ibm.com

Lance Bader/Raleigh/IBM@IBMUS
919-254-4461
T/L 444-4461

Revised on: 09/10/99 4:24 PM
Document ldentifier: CookBook.doc
Send Comments to:

IBM WebSphere Payment M anager Cassette Cookbook

Table of Contents

TABLE OF CONTENTS ... bbb Il
STAGE 1: CHOOSE A CASSETTE NAME ... ssssns 1
IF THE CASSETTE ISDEVELOPED BY IBM ..ottt nnns 2
IF THE CASSETTE ISDEVELOPED BY A COMPANY OTHER THAN IBM ... 2
STAGE 2: OBTAIN AND INSTALL DEVELOPMENT MATERIALS. ..., 5
A JAVA DEVELOPMENT KIT FOR VERSION 1. L.8...c.ciiiiriririiririneinene s se s sesesssssesesssssenenes 5

IBM WEBSPHERE PAYMENT MANAGER.......ccsunireenes
IBM DB2 UNIVERSAL DATABASE (UDB)
IBIM HTTP SERVER ..ottt stssessi sttt et b bbb
IBM WEBSPHERE APPLICATION SERVER
IBM WEBSPHERE PAYMENT MANAGER SERVICE PACKS
INTEGRATED DEVELOPMENT ENVIRONMENToucuttierirertreesersees s sesessessssssssssssesssssss s sssessssssssssssssssssseseens
THE IBM WEBSPHERE PAYMENT MANAGER CASSETTE DEVELOPER TOOLKIT
THE PAYGEN TEST COMMAND GENERATOR.....coutuuereseeesersesseesssssssesssssesssssssessesssssssssssssssssssssssessessesssssssnssssnssnees

STAGE 3: DESIGN YOUR CASSETTE

UNDERSTANDING THE FRAMEWORK........
UNDERSTANDING THE A SSUMPTIONS
AN EXisting Payment APPIIANCE.........ccvciririrererescri st tsesssssssse st sss st sssssessessssssssssssssesssssssssssssssssesasns
I dempotent Payment ApplianCe TranSACtIONS..........cccrrireerereseeresessesisesessssssssessss e sssssessessssssssessssssssssens
Automatic Synchronous Retry by the Payment Appliance
I 0T O PRRT
ONE ACCOUNE PEF MBI CNANE.......couieeirieerrieetr et
One Currency per Account......
A Tangible Batchcccooenieenirennee.
One Open Batch per Account..............
Required Authorization Protocols
S T ale =T NT= G @0l g1 1Ko U - 11 o g PR
Implicitly Open Batch with Automatic Close and Manual Close
MAPPING THE PAYMENT MANAGER APl TO YOUR PAYMENT APPLIANCE APoouieirrrensereeereeireeenee 19
DESIGNING YOUR PERSISTENT DATA.....tuiirtieiteeitieieisee et ssesss s ssssessisessbssss s bssss s ssessssesssssssssssssssssssssnas
Design Questions for Supplied Values
Design QUestions for RELUINEA VAIUES...........cvcieiniieeieieee st 22
A CCOUNE DALAL.....cuuererieiririeiris ettt sttt ettt e e e se b et e bbb e b E e b bt e b bt b bttt e st
Order Data............
Payment Data
Credit Data...........
Batch Data

CassetteQuery
Account..........cce....

Properties
F N YL o Yo [47= o | TR
UNDERSTANDING THE INCREMENTAL TASKS....ciiitiiiiiectitet st b s sbs s sassssbesssssstesssbesesssssessssssssnsans

IBM WebSphere Payment M anager Cassette Cookbook

UNDERSTANDING THE AUTHOR' SCODING STYLE.......cutuirmermmneesererseesessersessssssessessssssssssssessessssssesssssssssessssens
Variable Naming CONVENLIONS..........cocverrinreenereseenesensssesssessssssesesssssesnens
Class and File Naming CONVENLIONS...........coveureeemnernensenesesneessesesseseenseenns
Database Table and Column Naming Conventions
STAGE 4. PREPARING THE BASE FILES ..ottt sss s ssssss s ssssssssssees 33
STAGE 5: IMPLEMENT YOUR DATA MODEL ...ootitririririineiseieeeeeeeseeseeseesessess s sssssssssssssssssees 39
STAGE 6: IMPLEMENT YOUR ACCOUNT CLASS. ...ttt ssssisss st ssssssssssssssssssseens 43
STAGE 7: IMPLEMENT YOUR BATCH CLASS ...ttt ssss s ssss s sssssseens 47
STAGE 8: IMPLEMENT YOUR ORDER CLASS.......cooimitntiniseineise st ssssiss st ssssssssssssssssesns 49
STAGE 9: IMPLEMENT YOUR PAYMENT CLASS.......oinnntineresiseiessssisesse st sessssissssssssesesssssseens 51
STAGE 10: IMPLEMENT YOUR CREDIT CLASS ...ttt ssssissssesssssssssssssessssssssneens 55
STAGE 11: TEST YOUR CASSETTE. ..t ssesisesse s st sssssss s sssssssssessssssssssssssssessssnesns 57
STAGE 12: PACKAGE YOUR CASSETTE.....oererreeenesnesssssssssessssssssessssssesssssssssessssssssssssssssesssssenns 59
APPENDIX A: INSTALLING THE JAVA DEVELOPMENT KIT.ooorirenererneeesessenesesessenseesseenes 61
APPENDIX B: INSTALLING THE PAYMENT MANAGER ...t 63
APPENDIX C: PRACTICE WITH LDBCARD.......ccvrrntintinirisie et 67
APPENDIX D: USING THE SAMPLE STORE.......oreere et e 69
APPENDIX E: LDBCARD CLASSDESCRIPTIONS. ...ttt 71
LDB CARDCASSETTE....uctuttueuseeseeseessessesseessessessssssessesssessesssessessesssessessssssessessssssessessssssessssssesssssssssessessssssesssssssssssssssaees
LDBCARDCONSTANTS......veeueen.
LDB CARDCASSETTEQUERY
LDB CARDA CCOUNTcooveervrneene
LDBCARDBATCHocovevenierirreene
LDBCARDORDER........ceveeereereens
LDBCARDPAYMENTccovvrrerreene
LDB CARDCREDIT ..ouuvuuttsteseesersesseessesesssessssesssssssssssssessessssssessessssssssssssessessssssessessssssesssssssssesssssessesssssessssssssesssesaens
APPENDIX F: TIPS AND TECHNIQUES.......ooirririreitinenesesee ettt 79
How TOADD MULTIPLE BRAND ADMINISTRATION OBJECTS......cuueeireinetseessissesesnessesssesssssssssssssssssssssseans 79
How TO CREATE SPECIALIZED PARAMETER VALIDATION OBJECTS.....c.iunuereereireenienesseeeessesse s ssssssessssesseans 81
APPENDIX G: WEBSPHERE COMMERCE SUITE V4. L.t 83
THE DEFAULT BEHAVIOR FOR CASSETTES THAT SUPPORT AWALLET ...vuuiueieeenetreessetsetseessessessssssssessessssenns
THE DEFAULT BEHAVIOR FOR CASSETTES THAT SUPPORT EXPLICIT SHOPPER INPUT
PLANNING QUESTIONSAND ANSWERS......ccurturiereererrsnteessessssssessssssssssesssssessesssssssssssssssssssnes
A VISION FOR A BETTER SYSTEM ...cutiuiuiumeuntesessesssesesssssessesssss st sssssss st ssesssssssssssssessesssssessesssssnns

IBM WebSphere Payment M anager Cassette Cookbook

Stage 1. Choose a Cassette Name

Although simple, this stage haswide ranging effects.

The merchant software passes the cassette name as a parameter on
- ReceivePayment

- AcceptPayment

- BatchOpen

- CassetteControl

- CreateA ccount

- CreateM erchantCassetteObject

- CreatePay System

- CreateSystemCassetteObject

- DeleteAccount

- DeleteM erchantCassetteObj ect

- DeletePay System

- DeleteSystemCassetteObject

- ModifyAccount

- ModifyCassette

- ModifyM erchantCassetteObject
- ModifyPaySystem

- Modify SystemCassetteObject

- QueryAccounts

- QueryBatches

- QueryCassette

- QueryCredits

- QueryOrders

- QueryPayments

- QueryPaySystems

- ReceivePayment

Each of these verbs has a parameter named PaymentType or a parameter named CassetteName whose

valueis acharacter string that contains the name of your cassette. The Payment Manager framework
will use this string to find your cassette class when routing API requests.

The framework uses the name to construct the fully qualified name of your cassette class when the
classisdynamically loaded during the initialization.

The framework uses the name to construct the fully qualified name of your cassette query class when
the classis dynamically loaded during initialization.

The framework uses the name to find the properties file used to construct your cassette
ResourceBundle.

The framework uses the name to find the file containing the XML document used to display and
modify cassette dependent information on the user interface panels. This document contains Payment
Server Presentation Language (PSPL) tags that are interpreted by the Payment Manager user interface.

IBM WebSphere Payment M anager Cassette Cookbook

The cassette uses the name to specify the resource bundle to be used when logging messages from the
resource bundle or when retrieving data from the resource bundle.

The cassette uses the name to identify the source of trace messages.

Important: Itisimportant to remember that DB2 identifiers (table names, view names, column names,
and so on) are limited to 18 characters. If you choose a cassette name that islonger than 8 characters, you
will need to manually abbreviate some of the table names that are automatically generated for you by the
cassette exercise.

This naming convention is based on Javarules to avoid name conflicts. These rules avoid naming conflicts
by utilizing the Internet domain name assigned to your company. The Javasystem is case sensitive and, by
convention, package names are always lower case and class names are mixed case with the first character
capitalized.

When applying the cassette naming conventions, there are two cases:

1. thecassetteisdeveloped by IBM
2. the cassette isnot developed by IBM.

If the Cassette Is Developed By IBM

Assume that you are devel oping a cassette for a payment protocol called FastPay. Then,

Y our company nameis|BM.

Y our cassette name isFastPay (mixed case). Merchants will use thiscase sensitive value to select your
cassette.

Y our cassette’s .JAR file will be named FastPayCassette.jar.

Y our Java package name iscom.ibm.etill.fastpaycassette (lower case).

Y our devel opment directory structure will be D:\!PM Cassette\com\ibm\etill\fastpaycassette where
D:\'PMCassetteis, by convention, the root directory

The name of your properties file is FastPay.properties (mixed case.

The name of your file containing the XML document used to display and modify cassette dependent
information on the user interface panels isFastPay.en.pspl.

The name of your cassette class isFastPayCassette (mixed case) or ,asafully qualified name,
com.ibm.etill .fastpaycassette. FastPay Cassette.

The name of your cassette query class isFastPayCassetteQuery (mixed case) or, asafully qualified
name, com.ibm.etill .fastpaycassette. FastPay CassetteQuery.

If the Cassette Is Developed By A Company Other than IBM

Assume that Y our Company name is A Better CashRegister and your World Wide Web site for your

company is WWW.abC.comand assume that you are devel oping a cassette for a payment protocol called
FastPay. Then,

Y our company nameis ABC.

Y our cassette name isFastPay (mixed case). Merchantswill use thiscase sensitive value to select your
cassette.
Your cassette’s .JAR file will be named FastPayCassette.jar.

Y our Java package name iscom.abc.ibmetill.fastpaycassette (lower case).

IBM WebSphere Payment M anager Cassette Cookbook

Y our development directory structure will be D:\!PM Cassette\com\abc\ibmetill\fastpaycassette where
D:\IPM Cassetteis, by convention the root directory

The name of your properties file is FastPay.properties (mixed case)

The name of your file containing the XML document used to display and modify cassette dependent
information on the user interface panels isFastPay.en.pspl.

The name of your cassette class is FastPayCassette (mixed case) or, asafully qualified name,
com.abc.ibmetill.fastpaycassette.FastPay Cassette.

The name of your cassette query class isFastPayCassetteQuery (mixed case) or, asafully qualified
name, com.abc.ibmetill.fastpaycassette. FastPay CassetteQuery.

IBM WebSphere Payment M anager Cassette Cookbook

Stage 2: Obtain and Install Development
Materials

In this chapter, you will obtain and install all the required components for your cassette devel opment
project.

A Java Development Kit for Version 1.1.8

By definition, a cassette for the IBM WebSphere Payment Manager is developed in Java. Evenif you usea
different language for devel oping the payment protocols used by your cassette, the cassette itself must be
written in Javain order to plug into the Payment Manager framework. It isimportant to note that the IBM
WebSphere Payment Manager does not support Javaversion 1.2. Other Java 1.1 versions better than
Version 1.1.7 are supported, but the instructions in this cookbook assume that you are using Version 1.1.8.

Follow the directionsin Appendix A to obtain and properly install a Java development kit for cassette
development.

IBM WebSphere Payment Manager

In order to develop and test a cassette, you will need to obtain and install the IBM WebSphere Payment
Manager. It provides both the classfiles for your development plus the framework necessary to exercise
your cassette. Furthermore, it includes the database manager, the web server, and the servlet engine
required to create a Payment Manager installation.

To obtain your development copy of the IBM WebSphere Payment Manager, first register to be a member
of IBM’s Partnerworld for Developers Program.

1. Start your favorite browser and go to
http://www.devel oper.ibm.com/member/register/register.html .

2. Using one of the following methods, register to become a member of IBM’s Partnerworld for
Developers program. Be sureto select the Inter net specialty when registering.

- If you are an IBM employee, make sure you are connected to IBM’ sintranet, press the Register an
IBM Employee link, and follow the directions.

- If your company has not registered, press the Commer cial M ember shipbutton and follow the
directions.

- If your company has already registered, obtain your company’s member ID from the person in your

company responsible for keeping it, pressthe I ndividual M ember shipbutton, and follow the
directions.

3. Record your member ID and password.

Once you are a member of IBM’sPartnerworld for Developers program, order your software from the IBM
Software Mall. Generally, thefirst copy of any IBM software product sold in this mall can be purchased
for the cost of the media plus a modest charge for shipping and handling. Additional copies aretypically
50% of thelist price.

IBM WebSphere Payment M anager Cassette Cookbook

1. Start your favorite browser and go to
http://www.devel oper.ibm.com/wel come/softmall .html .

2. Ontheright hand side of the panel, thereis a navigation pane. Look for alink to the Software Mall
under the heading L ogin Required. Follow that link.

3. Enter the membership ID and password you recorded when you registered. Press Enter.
4. Ontheresulting panel, find the link to the Internet products. Follow that link.

5. Ontheresulting panel, find the products you wish to order and add them to the cart. For developing
your cassette, you will only need the IBM WebSphere Payment Manager for Windows/NT. To find
this product, you may need to use the All tab and use the Next button at the very bottom of the panel.
Note: This cookbook assumes that you will be developing your cassette on aWindows NT
workstation. Be sure to order the Payment Manager for Windows NT. Thereis no need to order any
of the Payment Manager cassettes.

6. PressView Contents to check your order. Correct the order if necessary and then press Checkout and
follow the directions to complete your order.

Once you have received your copy of the IBM WebSphere Payment Manager for Windows/NT, follow the
directions Appendix B to install the product on your workstation.

IBM DB2 Universal Database (UDB)

TheIBM DB2 Universal Database is required by the IBM WebSphere Payment Manager and some of the
tools provided by this cookbook. The database is used to store configuration information and transaction

data. Although there are other database managers supported by the Payment Manager, the instructionsin

this cookbook assume that you are using IBM DB2.

Conveniently, the IBM WebSphere Payment Manager includes DB2. For cassette development, thereisno
need to obtain this product separately. This database manager will be installed properly if you follow the
installation directionsin Appendix B.

IBM HTTP Server

TheBM HTTP Server isrequired to run the Payment Manager user interface aswell asthe simulated
merchant environment provided by this cookbook. Both static web pages and Java servlets are used to
configure and test your cassette during development. Although other web servers could be used, the
instructionsin this cookbook assume that you are using the IBM HTTP Server.

Conveniently, the IBM WebSphere Payment Manager includesthe HTTP Server. For cassette
development, thereis no need to obtain this product separately. Thisweb server will beinstalled properly if
you follow the installation directionsin Appendix B .

IBM WebSphere Application Server

The IBM WebSphere Application Server isrequired by the IBM WebSphere Payment Manager and some
of thetools provided by this cookbook. The Payment Manager uses Java servlets to service merchant
commands and to build dynamic web pages for the user interface. Furthermore, this cookbook includes
servletsthat help you test your cassette during devel opment.

IBM WebSphere Payment M anager Cassette Cookbook

Conveniently, the IBM WebSphere Payment Manager includes the Application Server. For cassette
development, there is no need to obtain this product separately. This Application Server will beinstalled
properly if you follow the installation directionsin Appendix B.

IBM WebSphere Payment Manager Service Packs

At thisinstant, it is very important to use Version 2.1.4 or better while developing your cassette. Version
2.1.4 contains important defect fixes. In addition, it containsimportant enhancements, including

The new AliasValidationltem class which makesit easy for a cassette to support the protocol data
keywords used by the IBM Payment Server Version 1.2 and so provide a smooth migration for
merchants who have business systems written to support this early version of the WebSphere Payment
Manager

New protocol data keywordsfor Version 1.2 compatibility aswell as new keywords for billing address
and shipping address

New secondary return codes for conditions that should be reported the same way by all cassettes.

Astimegoeson, | expect defects to be removed and small enhancements (for example, new protocol data
keywords and new return codes) to be added. To benefit from these changes, you will need to obtain and
install a service pack.

To obtain a service pack, start your favorite browser and navigate to
http://www.ibm.com/software/webservers/paymar/support/sbull.html . Follow the directionsto
find, download, and install the desired service pack.

Integrated Development Environment

Strictly speaking, an Integrated Development Environment (IDE) is not required to develop a cassette.
However, your fundamental task isto develop the Java classes used to implement your Payment Manager
cassette and your productivity can be enhanced with a good Java devel opment environment.

This author cannot endorse any of the popular products that claim to provide a productive Java
development environment. In my opinion, the best environment employs Visual SlickEdit O by
MicroEdge, Inc (http://www.slickedit.com) and the Java Development Kit Version 1.1.8. Visual
SlickEdit project files and tag files, created when | devel oped the exampl e cassette, areincluded in this
cookbook.

If you choose to use some other IDE, be sureit will allow you to use JavaVersion 1.1.8. While not the
latest Javaversion, it isthe version compatible with the IBM WebSphere Payment Manager. If you
accidentally use some feature or function that isnot in Java Version 1.1.8, it will not be available when the
merchant installs your cassette in the field.

The IBM WebSphere Payment Manager Cassette Developer Toolkit

Although this cookbook contains the information needed by most cassette devel opers, The IBM
WebSphere Payment Manager Cassette Developer Toolkit is still avital resource. It contains more detailed
information about the Payment Manager framework, Javadoc for the Payment Manager framework classes,
and a sample cassette that is different from the LdbCard sample included in this cookbook. Whenever your
cassette has requirements contrary to the simplifying assumptions used to devel op the cookbook, the
Cassette Developer Toolkit will provide information you need.

7 |

IBM WebSphere Payment M anager Cassette Cookbook

1. Start your favorite web browser and navigate to
http://www.ibm.com/software/webservers/commerce/payment/downl oad.html .

2. Ontheresulting panel, find the link to the Cassette Developer Toolkits on theright side. Follow the
link.

3. Ontheresulting panel, find the link to the US English version of the toolkit for PM 2.1. Follow the
link.

4. Unfortunately, the member 1D and password you used for the IBM Partnerworld for Developers
Program cannot be used at this site. If you have not registered previously, usethelink to 1. | have not
registered before, follow the directions to register, record your user 1D and password, and then return
to this step. Otherwise, enter your user ID and password and press Continue.

5. Ontheresulting panel, enter all the required information using pslcdt (all lower case) as the download
key, review the license agreement, and press| accept licenseif you agree.

6. Ontheresulting panel, follow the cassetteKit2.1.ziplink and save the file on your workstation disk.

7. Useyour favorite utility to extract the filesin the cassetteKit2.1.zip file. Although you can place these
files anywhere, subsequent steps assume that the are extracted to D:\Kit.

The PayGen Test Command Generator

The PayGen test command generator is avery powerful test tool. Using your favorite text editor, you can

build test scriptsthat contain any of the WebSphere Payment Manager application program interface (API)
commands and verify the data values returned. The cookbook tool kit contains sample test scripts that can
easily be modified to test your cassette.

Although the WebSphere Payment Manager user interface can be used to send commands to your cassette
during development, there are a number of thingsit will not do. For example, it will not omit required
parameters and verify that the correct return codes are returned. It will not run automatically nor guarantee
that atest scenario is repeated exactly the same way every time. PayGen test scriptswill.

1. Start your favorite web browser and navigate to
http://www.ibm.com/software/webservers/commerce/payment/download.html .

2. Ontheresulting panel, find the link to the Cassette Developer Toolkits on theright side. Follow the
link.

3. Ontheresulting panel, find the link to the US English version of thetoolkit for PM 2.1. Follow the
link.

4. Enter the same user 1D and password you used in the last step and press Continue.

5. Ontheresulting panel, enter all the required information using pslcdt (all lower case) as the download
key, review the license agreement, and press| accept licenseif you agree.

6. Ontheresulting panel, follow the PayGen.exe link and save the file on your workstation disk.

7. RunPayGen.exeto extract thefiles. Although you can place these files anywhere, subsequent steps
assume that they are extracted to D:\!PM Cassette.

IBM WebSphere Payment M anager Cassette Cookbook

8. For convenience, you may want to make a hardcopy of the file D:\PM Cassette\PayGen\Readme.txt. |
Thisfile contains all the PayGen documentation.

IBM WebSphere Payment M anager Cassette Cookbook

Stage 3: Design Your Cassette

This chapter describes the framework responsibilities, the objects you will be creating, and the tasks
included in subsequent chapters of this cookbook.

Understanding the Framework

The IBM WebSphere Payment Manager multi-payment framework provides the environment for your
cassette. Itisresponsible for

The Data Model: The framework defines the payment objects and the administration objects that

your cassette must implement. In particular, this cookbook demonstrates how to implement the
following objects.

- A Cassette represents a component that provides cassette dependent process for framework

administration and payment requests. It plugsinto the framework and services requests sent to the
framework and routed to the cassette by the framework.

- A Cassette Query represents a component that provides an external view of the cassette dependent

information. It plugsinto the framework’s query facility and services query requests sent to the
framework. Using criteria supplied on the request, it extracts cassette dependent information and
combines it with framework information in a reply document built with eXtended Markup Language
(XML) tags.

- An Order represents a shopper’ s transaction with the merchant system. It contains information that
defines the order (the description and the amount, for example) as well as the information provided by
the shopper to pay for the order (the credit card brand and account number, for example).

- A Payment represents a payment processor interaction that collects money from the shopper. Since
the merchant can split an order into separate shipments, there may be more than one payment for each
order.

- A Credit represents a payment processor interaction that returns money to the shopper. Sincethe
shopper may return several items at different times, there may be more than one credit for each order.

- A Batch represents a collection of payments and credits deposited by the merchant system. When the
batch is settled, an interaction with a payment processor will trigger the transfer of fundsinto the
merchant’ s account.

- An Account represents the merchant’ s account at a payment processor.

The Application Program Interface for Payments: The framework defines the application program
interface (API) between the merchant system and your cassette. In particular, this cookbook
demonstrates how to implement the following payment commands.

- ReceivePayment is used to create a new order when your cassette must receive its payment
information from an electronic wallet.

- AcceptPayment is used to create a new order when the shopper has already provided the payment
information required by your cassette.

11

IBM WebSphere Payment M anager Cassette Cookbook

12

- CloseOrder is used to mark the order as complete and to prune the order, including all its payments
and credits, from the database.

- Cancel Order is used to remove an order that was created incorrectly so that the order number can be
reused by the merchant system (presumably when the shopper reissues the order from the same virtual
shopping cart).

- Approveis used to create a new payment.

- ApproveReversal is used to modify an Approval amount when an amount is entered incorrectly or
when the merchant system modifies the contents of a shipment (for example, when inventory requires
that a single shipment be split into multiple shipments).

- Deposit is used to capture a payment into the batch.

- DepositReversal isused to void a Deposit.

- Credit is used to create anew credit.

- CreditReversal is used to void a Credit.

- BatchOpen is used to create a new batch.

- BatchClose is used to settle a batch and trigger the transfer of funds.

- BatchPurge is used to reverse al the payments and credits currently inan open batch, presumably to
recover from conditions that prevent a batch from settling.

- DeleteBatch is used to prune the batch from the database.

The Application Program Interface for Administration: The framework defines that application
program interface (API) for the administration of the Payment Manager. Although there are many
administration commands, it istypically not necessary for the cassette to participatein all of them.
This cookbook demonstrates how to implement the following administration commands.

- CreateAccount is used to create an account object that contains the cassette dependent information
necessary to process payment commands for a given merchant.

- ModifyAccount is used to modify the merchant’ s information in an account.
- DeleteAccount is used to delete an account.

The Application Program | nterface for Query Operations: The framework defines the application
program interface (API) for query operations and the XML documents returned. This cookbook
demonstrates how to implement the classes necessary to return cassette dependent data for a query
operation.

Access Control: The framework automatically limits access to the functions provided by a cassette.

It ensures that only users authorized by a merchant can view or manipulate the merchant’s data.
Furthermore, the merchant can restrict each of these usersto a particular role:

IBM WebSphere Payment M anager Cassette Cookbook

- A clerk who can create orders, payments, and batches, deposit payments, and query merchant data

- A supervisor who can do everything a clerk can do plus refund money and void payments and
refunds.

- A merchant administrator who can do everything a supervisor can do plus administrate the
merchant’ s configuration.

Memory management: The framework manages a memory cache for the order, payment, credit, and
batch objects.

Synchronization: The framework automatically ensures dataintegrity and thread safety for most of
the objects used by the cassette while servicing arequest. Although the cassette must still provideits
own protection for an object (typically contained in the cassette’ s account object) that can be accessed
by multiple threads operating on otherwise independent requests, the framework uses read and write
locks to prevent multiple threads from modifying or accessing the same payment objects.

Parameter Validation and Conversion: Using a parameter validation table provided by the cassette,
the framework will automatically validate cassette dependent parameter values and convert them from
the byte array supplied by the data stream into the fundamental Java types expected by the cassette.

Thread Management: The framework manages a pool of threads. For example, when arequest is
received from the merchant system, athread is removed from the pool and used to process the request.
When the request is completed, the thread is returned to the pool so it can be reused.

Database Access: The framework provides facilities for JDBC connections.

Scheduling Background and Timed Tasks: Although not used by the sample included in this
cookbook, the framework provides atimer facility and a pool of threads that a cassette can useto
schedule future work.

Protocol M essage Management: Although not used by the sample included in this cookbook, the
framework provides facilities to send and receive protocol messages using TCP/IP connections.

Event Notification: For business systems that need asynchronous notification when a payment event
has occurred, the framework provides a notification service without explicit actions by the cassette.
The cassette merely manages the state of each payment object and the framework automatically
notifies the systems listening for the change.

Error Logging: Using acassette dependent properties file that can easily be translated for foreign
languages, the framework provides facilities that allow the cassette to generate informational and error
messages that are recorded in an error log. By capturing critical datawhen an error is detected, the
cassette and reduce the effort required to find the cause of a defect and provide service to customers
that encounter it.

Tracing Internal Events: The framework provides a granular trace facility for recording internal
events, including eventsin a cassette. During development, the trace facility provides the information
necessary to prove that the cassette is operating correctly and to aid perform problem determination
whenitisn't. Notethat it isabad practiceto require trace information to perform problem
determination for a problem discovered at an installation in production. The error log should be used
instead because no customer wants to turn on trace and recreate an error. However, the trace facility
can be used as alast resort.

For more information on the facilities provided by the framework, see the Cassette Kit Programmer’s
Guideinthe IBM WebSphere Payment Manager Cassette Developer Toolkit.

13

IBM WebSphere Payment M anager Cassette Cookbook

Understanding the Assumptions

This cookbook makes some assumptions about the cassette you will be developing. If any of these
assumptions are not valid for your cassette, you will need to make appropriate adjustmentsto the
instructions provided here.

An Existing Payment Appliance

This cookbook assumes that you have previously developed alibrary, an application or an Internet gateway
that acts as a payment appliance for some payment processor. This payment appliance implements all the
protocols necessary to interact with the payment processor and has an API that can be used by your
cassette.

The LdbCard example included in this cookbook use Java Remote Method Invocation (RMI) to
communicate with a payment appliance, but your cassette can exploit other methods just as easily. For
example, it can exchange data with your payment appliance using

File1/0

Pipes

XML, HTTP, or any other format carried by a TCP/IP socket
Database tables

JavaNative Interface (INI) callsto adynamic link library
Java Remote Method Invocation (RM1).

If thisassumption is not valid for your cassette, you have additional responsibilities to determine the
payment protocols required by the payment processor you wish to support and to implement the software
necessary to perform those protocols. Start with this cookbook, but implement the necessary protocolsin
your cassette account class plus any additional objects referenced by the cassette account object.

I dempotent Payment Appliance Transactions

This cookbook assumesthat all transactions performed with the payment appliance are idempotent. In
other words, if the identical transaction is performed multiple times, the payment appliance will take no
action other than return the same response that was returned for the first time.

Consider the case where the cassette sends a message to the payment appliance but no reply is received
within areasonable time. The cassette cannot distinguish between the case where its message was |ost on
its way to the payment processor and the case where the reply was lost on the return trip.

If the transaction isidempotent, the cassette simply resends the original request and retries if necessary
(within some reasonable limit). Even if all recovery attemptsfail, processing is simple. The cassette aborts
the operation so that it appears that nothing has happened. If the merchant attempts to perform the same
operation again, the cassette services the request exactly asif the first operation never occurred.

If the transaction is not idempotent, the cassette needs additional logic to recover. Perhapsit must send a
query to find if the original request was completed before attempting to recover. Perhapsit must attempt to
void the original request before attempting to recover. Plus, you must consider how to continue recovery if
this step failsand, if all recovery attemptsfail, how to remember that recovery protocols are required when
the merchant attempts to perform the same operation again.

14

IBM WebSphere Payment M anager Cassette Cookbook

If your payment appliance transactions are not idempotent, start with this cookbook. When you have
compl eted the cookbook exercise, return to your account class and add the logic necessary to recover in
those cases where it cannot tell if arequest was processed.

Automatic Synchronous Retry by the Payment Appliance

This cookbook assumes that the payment appliance will automatically retry operations that fail due to data
communication failures (also known as network failures). Furthermore, it assumes that control will not be
returned to the merchant application until the operation succeeds or the retry limit is exhausted.

If your payment appliance does not automatically retry operations that fail due to data communication
failures, start with this cookbook. When you have completed the cookbook exercise, return to your account
class and add the logic necessary to recover.

If the frequency or duration of your recovery options withhold control from the merchant for an
unsatisfactorily long period, start with this cookbook. When you have completed the cookbook exercise,
return to your account class and add additional logic. Thelogic should schedule retry operations using the
framework’ stimer thread or athread from the service thread pool and then return control to the merchant
using a primary return code value of PRC_OPERATION_PENDING. The Cassette Kit Programmer’s
Guide in the IBM WebSphere Payment Manager Cassette Developer Toolkit contains more information
about using the framework’ s timer thread or athread from the service thread pool.

No Wallet

This cookbook assumes that your cassette does not use a browser plug-in to obtain payment information
from the shopper. In other words, it does not support awallet and will not support the framework’s
ReceivePayment command.

If thisassumptionis not valid for your cassette, start with this cookbook. When you have completed the
cookbook exercise, look at the KitCash cassette included in the IBM WebSphere Payment M anager
Cassette Developer Toolkit. It demonstrates how to implement the ReceivePayment command to generate
awake up message for abrowser plug in, how to implement a browse plug in, and how to use aframework
ComPoint to listen and exchange protocol messages with the plug in.

One Account per Merchant

This cookbook assumes that your cassette supports only one account per Payment Manager merchant ID.
If more than one account isrequired at an installation, a different Payment Manager merchant D must be
used for each account.

If thisassumption is not valid for your cassette, start by using this cookbook. When you have completed
the cookbook exercise, extend your implementation to support multiple accounts for each merchant. Be
sure to determine how an account is assigned to a particular order. Y ou will need to answer these design
guestions.

Why does the merchant want to use multiple accounts?

What, in addition to the merchant ID, will be used to select the correct account?

Will it be the currency?

Will it be the credit card brand?

Will it be aspecial value passed from the merchant using a cassette specific protocol data keyword,
like SACCOUNTNUMBER for example?

Will you need to implement an algorithm to select a default account when a specific criterion is not
provided?

15

IBM WebSphere Payment M anager Cassette Cookbook

Once you have this design complete, you need to enhance the retrieveAccount() static method in your
cassette account class aswell as all the places where the method is called.

One Currency per Account

This cookbook assumes that a given account will support one and only one currency. If the merchant
requires more than one currency, another account must be defined.

If thisassumption is not valid for your cassette, start by using this cookbook. When you have completed
this cookbook exercise, extend your implementation to support multiple currencies per account. Most
often, thiswill require that you implement multiple batches for each account, one batch per currency.

A Tangible Batch

This cookbook assumes that payments and credits are accumulated into a tangible batch and that money is
not transferred to the merchant’ s account until the batch isclosed. 1n some systemsthisisknown as batch
settlement. Furthermore, it assumes that the settlement is triggered by a protocol that isinitiated at the
merchant site.

If your cassette uses a batch that can only be closed by the payment network and there is a settlement
protocol exchange that informs the merchant when the batch is closed, start by using this cookbook. When
you have completed the cookbook exercise, modify the batch implementation so it always rejects a
BatchClose API request but still performsthe batch close functions when triggered by the settlement
protocol exchange.

If your cassette has no batch concept (all money istransferred in real time) or if batches are closed
automatically by the payment network without any protocol exchange with the merchant system, it is
recommended that you implement a cosmetic batch. A cosmetic batch is abatch that does not participatein
settlement protocols, but still allows the merchant to collect payments and credits. The batch allowsthe
merchant to organize payments and credits that are related by time. Also, batch reports can be used for
cash flow analysis.

If you want to implement a cosmetic batch, start by using this cookbook. Then, while enhancing the
method that performs settlement protocols, modify the method to simply return aboolean value of true.

One Open Batch per Account

This cookbook assumes that a given account will have only add payments and credits to one open batchat a |
time. Although there may be more than one open batch, all accept the most recently opened batch will not

be used to hold new transactions. Once the cassette assigns an order to an account, no further information
isrequired to determine which batch will contain the order’ s payments and credits.

If thisassumption is not valid for your cassette, start by using this cookbook. When you have completed
this cookbook exercise, extend your implementation to support multiple batches per account. Be sureto
determine how a batch is chosen, given amerchant 1D and an account. Then modify the selectBatch()
static method in your cassette account class aswell as all the places where the method is called.

Required Authorization Protocols

This cookbook assumes that authorization protocols must be exchanged when a payment is created. If the
payment is authorized, another protocol exchangeis used to place the payment into a batch. For most of
the merchant systems in the world, authorization is very important. The authorization is performed while
the shopper is still available. 1f the shopper specified a payment parameter value incorrectly, the shopper

16

IBM WebSphere Payment M anager Cassette Cookbook

can beinformed immediately and allowed to correct the mistake before the order is accepted. Later, when
the goods are ready to ship, a subsequent protocol flow is used to capture the payment so the funds can be
transferred.

If there is some way to validate a payment’ s parameter val ues before committing to the exchange of funds,
it is recommend that you perform this validation as part of the payment authorization protocols. Remember
that the shopper is on-line during the authorization phase but is typically unavailable during the capture
phase. If something iswrong with the payment information provided, it is much easier to notify the
shopper during the authorization phase.

The authorization protocols for your cassette may not be required or even obvious. For example, debit
cardstypically don't require authorization before the payment is captured. However, there are debit card
protocols that allow you to simulate an authorization protocol by specifying an amount of zero or by setting
aspecial flag.

If there is no way to implement authorization protocols for your cassette, start by using this cookbook.
Then, while enhancing the method that implement the authorization protocols, modify the method to
simply return a boolean value of true.

Single Tier Configuration

This cookbook assumes that all the configuration information required by the cassette is held by the
cassette’ s account object (more formerly known as the cassette extension to the framework’s
AccountAdmin object).

Remember, there is a cassette account for each merchant and, by definition, it contains all the information
necessary to identify the merchant and connect to the payment appliance. For LdbCard, thereisafixed
amount of configuration information for each merchant. Furthermore, if there is configuration information
that may be common to all merchants (for example, the RMI server URL may be a candidate for acommon
parameter), the information is simply duplicated in every account.

Thisassumption is highly recommended. The simplicity and convenience of having a single configuration
point typically outweighs the limitation caused by fixing the amount of configuration information and the
burden of re-entering duplicate information. However, there clearly are cases where this assumption will
not bevalid.

Here are design questions to help you determine if this assumption isvalid for your cassette.

1. Doesyour cassette have afixed number of configuration parameters that are common for all merchants
and their accounts? If so, consider creating a cassette extension to the framework’ s CassetteAdmin
object.

2. Doesyour cassette have agroup of related parameters, common for all merchants and their accounts,
where there may variable number of groups in the configuration,? If so, consider creating a system
cassette object where each object represents one group of parametersin the collection. This system
cassette object would configure the framework’ s CassetteAdmin object.

3. Doesyour cassette have afixed number of configuration parametersthat are different for all merchants
but common over all the accounts for a given merchant? If so, consider creating a cassette extension to
the framework’ s PaySystemAdmin object.

4. Doesyour cassette have agroup of related parameters, typically different for each merchant but

common over all the accounts for a given merchant, where there may be a variable number of groups
in the configuration? If so, consider creating a merchant cassette object that configures the

17

IBM WebSphere Payment M anager Cassette Cookbook

frameworks Pay SystemA dmin object.

5. Doesyour cassette have a fixed number of configuration parameters for each merchant account? If so,
consider creating a cassette extension to the framework’s AccountAdmin object.

6. Doesyour cassette have agroup of related parameters where there may be a variable number of groups
for each account in the configuration? If so, consider creating a merchant cassette object that
configures the framework’ s AccountAdmin object.

While designing LdbCard, only question 5 was answered with an overwhelming “YES!". Even for a
parameter that could have a more global scope (the RMI server URL, for example), careful consideration
made it apparent that the parameter was better suited to the cassette extension to the framework’ s
AccountAdmin object. Using the RMI server URL as an example, placing the parameter on the account
allows the cassette to use a simple method for configuration: all parameters are provided with the account
is created and there is no need to manage rel ationships with other configuration objects. In addition, it
supports the flexibility of using multiple RMI serversin order to distribute the load or the administration
domain.

However, if you determine that this assumption isnot valid for your cassette, start by using this cookbook.
During this stage of development, simply define constants for the fixed parameters and collections of
constants for the parameter groups where the configuration may contain a variable number of groups.
When you have compl eted the cookbook exercise, enhance your cassette to support the additional
configuration objects. Y ou can use your cassette’ s account object asatemplate. Be sureto

1. Defineor select aprotocol datakeyword for each cassette dependent configuration parameter |

2. Enhance your cassette’s clsValidationTable to include a validation item for each additional protocol |
data keyword

3. Enhance your cassette’' s readCassetteConfig() method to read the configuration tables and construct the |
additional configuration objects during initialization

4. Enhance your cassette's verifyCassetteConfig() method to assure the relationships between the various |
configuration objects are correct

5. Enhance your cassette’ sinitializeCassette() method to perform any initialization that the new |
configuration objects may require

6. Enhance your cassette’ s validateAdminRequest() and processAdminRequest() methods to processthe |
administration requests that create, modify, and del ete the additional configuration objects

7. Enhance your cassette’ s PSPL file so the Payment Manager user interface can provide the proper |
panelsto display, create, modify, and delete the additional configuration objects

8. Enhanceyour cassette’ s query object so it can respond to query operations that include information |
from the additional configuration objects.

The Cassette Kit Programmer’ s Guide in the IBM WebSphere Payment Manager Cassette Devel oper

Toolkit contains more information about the framework object model and how to implement cassette
dependent administration objects.

Implicitly Open Batch with Automatic Close and Manual Close

18

IBM WebSphere Payment M anager Cassette Cookbook

This cookbook assumes that no merchant interaction is required to open abatch. A batch isautomatically
opened as needed.

If thisassumption is not valid for your cassette, start by using this cookbook. When you have completed
this cookbook exercise, extend your implementation to support BatchOpen requests and, if necessary,
adjust the logic that opens a batch automatically.

This cookbook assumes that the merchant can optionally configure an account so a batch will be closed
automatically. There are two schools of thought on this feature and this cookbook demonstrates both. Be
awarethat while abatch is closing, no other command that uses the same account can be processed. Any
command that references the account will be suspended until the batch processing completes.

1. Tolimit the amount of time commands are suspended, the merchant may want to configure a
maximum batch size. That way, the batch never reaches a size where the delay will become
intolerable. When the batch reaches the configured size, the batch will be closed automatically.

2. Often, it isconvenient if the batch is closed at the same time every day, typically early in the morning
when the system is mostly idle. This not only reduces the chance of suspending acommand for an
intolerable period, it also allows the merchant to use the batch totals as adaily cash flow value. For
this feature, the merchant may want to specify two values: the time of day (specified as minutes after
midnight) when the batch isto be automatically closed and the minimum batch total. The merchant
typically pays afee every timeabatch isclosed. The minimum batch total prevents the batch from
being closed when it is not worth the fee.

If thisassumption is not valid for your cassette, start by using this cookbook and then disabl e the code that
allows the merchant to configure these values for your account. The code that implements this feature will
never perform an automatic close and will still be available if you need to add this feature in the future.

In addition, this cookbook assumes that the merchant can issue arequest that triggers batch settlement.
When the merchant issuesa BatchClose request, the batch is settled.

If thisassumption is not valid for your cassette, start by using this cookbook. When you have completed
this cookbook exercise, extend your implementation to support batch settlement correctly. Be sureto add
the logic necessary to change the state of all payments and credits contained in the batch. When abatchis
closed, the state of all its payments and credits should be set to CLOSED aswell.

Mapping the Payment Manager APl to Your Payment Appliance API

Y ou must determine how to map the merchant Payment Manager requests into actions performed by your
payment appliance. Start by reviewing the LdbCard mapping.

The payment appliance used by the LdbCard cassette included in this cookbook, does not support approve
reversals. In order to change a payment amount, the LdbCard cassette must tell the payment appliance to
void the original payment and then authorize a new payment with the correct amount.

Furthermore, the payment appliance used by the LdbCard cassette does not have a perfect map for deposit
reversals. When the payment appliance voids a payment, the payment authorization becomes void as well.
But, semantically speaking, the Payment Manager DepositReversal request must set the captured amount to
zero while maintaining the original approval. Therefore, the LdbCard cassette must tell the payment
appliance to void the original payment and then authorize anew payment for the original authorized
amount.

Hereisthe mapping used by the LdbCard cassette.

19

IBM WebSphere Payment M anager

Cassette Cookbook

Payment Manager Request Payment Appliance Equivalent

ReceivePaymengt No equivalent. The payment appliance only tracks payments and
credits. It does not understand the relationship between
payments/credits and the shopper’ s order.

AcceptPayment No equivalent. Same reason as above.

CloseOrder No equivalent. Same reason as above.

Cancel Order No equivalent. Same reason as above.

Approve Authorize (Book).

ApproveReversal Void followed by Authorize (Book) for the new amount if the new
amount is not zero.

Deposit Capture (Ship).

DepositReversal Void followed by Authorize (Book) for the amount of the original
approval.

Refund Credit.

RefundReversal Void.

BatchOpen No equivalent. The payment appliance automatically opens abatch
when needed.

BatchClose Settle.

BatchPurge Void followed by Authorize (Book) for the original approval
amount for every payment in the batch and void for every credit in
the batch.

BatchDelete No equivalent. The payment appliance automatically prunes a
batch, including all its payments and credits, when a closed batch
reaches a certain age (configured in the payment appliance).¥

CreateAccount No equivalent. The payment appliance does not support dynamic
configuration. It assumesthat its own user interfaceis used to
configure amerchant before the cassette starts to use the merchants
account.

ModifyAccount No equivalent. Same reason as above.

DeleteAccount No equivalent. Same reason as above.

The Cassette Kit Programmer’s Guide in the IBM WebSphere Payment Manager Cassette Devel oper
Toolkit contains more information about mapping the Payment Manager API to your payment protocols.
Furthermore, the Programmer’ s Guide and Reference included in the IBM WebSphere Payment M anager
contains descriptions for all the commands in the Payment Manager API. After reviewing thisreference
material, draw atable with the same dimensions as the table above with the same valuesin the first column.
In each cell of the second column, describe how your payment protocol would be used to implement the
command listed in the corresponding cell to its | eft.

If there isa command that is not supported by your payment protocol, it isimportant to implement your
cassette to process the command and advance the state of the framework and cassette objects asif the

command was processed successfully.

Thistechnique, sometimes call a cosmetic implementation, keeps

the merchant system independent of the cassette being used for a particular order. In other words, the
merchant can remove a cassette and replace it with your cassette without making major modifications to the

merchant’ s automated business system.

For example, consider a payment protocol that does not support explicit batch settlement. Perhapsthe
payment processor automatically settles the batch at a given time of day and there is no payment protocol
that allows the cassette to synchronize its batch with the payment processor batch.

Inthiscase, itisstill important for the cassette to process a BatchClose command and close all the payment
and creditsin the batch being closed. Even though there is no action perform by the payment processor, an
automated merchant system can still close the batch. The payments and credits in the closed batch will no
longer be candidates for reversal commands and the merchant can generate the batch reports used to
determine how much business was done over the scope of that batch.

20

IBM WebSphere Payment M anager Cassette Cookbook

Designing Your Persistent Data

Although the framework maintains most of the data required for processing credits and payments, thereis
always additional cassette dependent data required aswell. When this data must be persistent (in other
words, the information must be restored to memory when the Payment Manager restarts or when a cassette
object isrestored after being pushed out of the memory cache), it must be maintained in cassette dependent
database tables.

To design your cassette dependent database tables, examine the interface provided by your payment
appliance. Y our cassette must be able to manufacture avalue for each value required in the interface.
Typically, all parameter valuesfall into one of the following categories:

Account data
Order data
Payment data
Credit data
Batch data.

Start by organizing your cassette parameters values into two categories: values supplied and values
returned. Then use the following design questions to decide where to place the parameter val ue.

Design Questionsfor Supplied Values

Can the parameter value be computed from other parameters? If so, thereis no need to make the value
persistent. However, if you want to make the value persistent for the sake of convenience, use the
design questions for returned values to determine where to place the parameter value.

Does the parameter value affect the behavior of your cassette logic? Retry limits, timeout values,

maximum batch sizes are examples of thistype of parameter. If so, the value should be placed in the
account’ s persistent data.

Isthe parameter value the same for all payment appliance commands? User IDs, passwords, payment
appliance URLs, and merchant identifiers are examples of this type of parameter. If so, the value
should be placed in the account’ s persistent data.

Does the parameter value change for each shopper? Personal account numbers (PAN), account

expiration dates, account brands, and billing addresses are all examples of thistype of parameter. If
so, the value should be placed in the order’ s persistent data.

Does the parameter value change for each order? Order descriptions and line item details are examples
of thistype of parameter. If so, the value should be placed in the order’ s persistent data.

Isthe parameter value returned on some payment appliance command and then supplied on subsequent

commands? Transaction identifiers and approval codes are examples of thistype of parameter. If so,
use the design questions for returned values to determine where to place the parameter value.

If you have reached this point in your analysis, you are probably tempted to put the supplied valuein

the payment, credit, or batch persistent data. Resist. Unless the values are computed from other values
or returned by payment appliance commands, placing supplied valuesin the payment, credit, or batch
persistent dataisnot recommended.

21

IBM WebSphere Payment M anager Cassette Cookbook

Itisrelatively easy for amerchant system to provide cassette dependent parameter values when an
order iscreated. Using parametric designs and profiling, merchant systems can create new orders and
pass a collection of protocol datavaluesthat are valid no matter which cassette is being used. Passing
cassette dependent information when a payment is created (the Approve command), when a credit is
created (the Refund command), or when a batch is created (the BatchOpen command) is much more
difficult. Most automated business systems do not have away to add cassette dependent parameter
when these commands are used. Humans using the user interface would be aggravated by the extra
effort required to enter cassette dependent information when performing these operations.

However, if the parameter is optional, areasonable default value is acceptable in most cases, and a
different valueis only needed in extraordinary circumstances, supplied values can be kept in the
payment, credit, or batch persistent data.

- Isthe parameter val ue supplied when a payment is created? An authorization code obtained from the

payment processor’ s operator when a“voice auth” has been used is an example of this type of
parameter. If so, the value should be placed in the payment persistent data.

- Isthe parameter value supplied when a credit is created? An authorization code obtained from the
payment processor’ s operator when a* voice auth” has been used is an example of thistype of
parameter. If so, the value should be placed in the credit persistent data.

- Isthe parameter val ue supplied when abatch is created? A new batch identifier assigned by the

payment processor’ s operator when manually reconciling a batch that doesn’t balance is an example of
thistype of parameter. If so, the value should be placed in the batch persistent data.

Design Questionsfor Returned Values

22

Does the parameter value indicate the outcome of creating a new account? Reason codes, return codes
and error messages are examples of thistype of parameter. If so, the value should be placed in the
account’ s persistent data.

Does the parameter value provide an identifier that is supplied when subsequent orders, payments or

credits are created? Account identifiers, merchant identifiers and secure socket layer (SSL) certificates
are examples of thistype of parameter. If so, the value should be placed in the account’ s persi stent
data.

Does the parameter value indicate the outcome of creating a new order? Fraud scores, export

indicators, and return codes are examples of thistype of parameter. If so, the value should be placed in
the order’ s persistent data.

Does the parameter value provide an identifier that is supplied when subsequent payments or credits
are created? Order identifiers and reference numbers are examples of thistype of parameter. If so, the
value should be placed in the order’ s persistent data.

Does the parameter value indicate the outcome of an operation on a payment? Reason codes, return

codes, and error messages are examples of thistype of parameter. If so, the value should be placed in
the payment’ s persistent data.

Does the parameter value provide an identifier that is supplied when subsequent operations are
performed on the payment? Transaction identifiers and approval codes are examples of thistype of

IBM WebSphere Payment M anager Cassette Cookbook

parameter. If so, the value should be placed in the payment’ s persistent data.

Does the parameter value indicate the outcome of an operation on a credit? Reason codes, return

codes, and error messages are examples of thistype of parameter. If so, the value should be placed in
the credit’ s persistent data.

Does the parameter value provide an identifier that is supplied when subsequent operations are
performed on the credit? Transaction identifiers and approval codes are examples of this type of
parameter. If so, the value should be placed in the credit’ s persistent data.

Does the parameter value indicate the outcome of an operation on abatch? Reason codes, return codes,

and error messages are examples of thistype of parameter. If so, the value should be placed in the
batch’s persistent data.

Does the parameter value provide an identifier that is supplied when subsequent operations are
performed on the batch? Transaction identifiers and approval codes are examples of this type of
parameter. If so, the value should be placed in the batch’ s persistent data.

Account Data

Typically, account data contains the information required to connect to the payment appliance and identify
the merchant within the payment appliance’s configuration. It isusually configuration datathat is only
read by the cassette. The cassette writes account data when an account is created or modified and reads
account data during initialization.

The LdbCard cassette keeps account datain the LdbCardAccount database table. Each row in the table
represents a unique Merchant/Account combination.

Column Name Value Description

M erchantNumber Theidentifier used by the Payment Manager to identify the merchant.

AccountNumber Theidentifier used by the Payment Manager to identify the account

Currency The 1SO currency code for the currency supported by the payment
appliance for this account.

Userld Theidentifier used to get accessto the RMI server that interfaces with the
payment appliance.

Password The password used by the RMI server to authenticate the user 1d.

LdbCardld Theidentifier used by the payment appliance to identify this merchant.

LdbCardRmiUrl The universal resource locator used to make a connection to the RMI
server.

BatchCloseTime Thetime of day, specified as minutes after midnight, when the cassette will
automatically close the currently open batch, if any.

MinBatchTotal The smallest amount of money that the batch must have in order to be a
candidate for an automatic close at the specified time of day. If thevaue
has not been reached, the automatic close will be rescheduled for the next
day.

MaxBatchSize The maximum number of transactions allowed in abatch. When this
number is reached, a new batch is automatically opened and the current
batch is closed.

Most likely, the first three columns will be the same for your cassette. The MerchantNumber and
AccountNumber make up the primary key. The currency is used to double-check the validity of the
currency specified for anew order. The remaining columns need to be replaced to hold the information
that your cassette needs to connect to the payment appliance and identify the merchant.

23

IBM WebSphere Payment M anager Cassette Cookbook

Note that the merchant must provide cassette dependent account information as protocol data passed on the
CreateAccount verb of the Payment Manager framework API. Typically, the Payment Manager
administrator configures a merchant and enables the merchant to use your cassette. Then, using auser ID
authorized as a merchant administrator, the merchant logs into the Payment Manager user interface and
creates the account.

The user interface presents a panel where the merchant enters the cassette dependent information and the
issues the CreateAccount verb with the correct protocol data keywords and values. Y our cassette provides
an XML document containing PSPL tagsto tell the user interface how to display the configuration panel,
how to pass the parameter keywords and val ues on the CreateAccount verb, and how to transform the
command’ s return codes into a message for the operator.

Order Data

Typically, order data contains the information required to identify the shopper’ s account and to authenticate
the shopper. The cassette writes order data when anew order is created and reads order datato resurrect an
order into the cache.

The LdbCard cassette keeps order datain the LdbCardOrder database table. Each row in thetable
represents an order that has been accepted by the cassette.

Column Name Value Description

M erchantNumber Theidentifier used by the Payment Manager to identify the merchant.

OrderNumber Theidentifier used by the Payment Manager to identify the order.

Amount A running total of all the approved payments.

AccountNumber Theidentifier used by the Payment Manager to identify the cassette account
used to process payments and credits for this order.

Pan The shopper’ s personal account number (PAN).

Expiry The expiration date of the shopper’saccountin YYYYMM format.

Brand The brand name of the shoppers credit card.

Address The cardholder’ s street address (for the address verification system (AV S))

Postal Code The cardholder’ s postal code (also for AVS)

Most likely, the first four columnswill be the same for your cassette. The MerchantNumber and the
OrderNumber make up the primary key. The Amount is used to verify that the merchant does not attempt
to use multiple payments to obtain more money than the shopper authorized when the order was created.
The account number is used to identify the account object that will be used to process the payments and
creditsfor this order. The remaining columns need to be replaced to hold the information that your cassette
needsto identify the payment instrument and identify/authenticate the shopper.

Note that the merchant must provide cassette dependent order information as protocol data passed on the
AcceptPayment command. Typically, the merchant presents the shopper with a secure HTML form where
thisinformation is entered manually. Although not covered by this example, an alternativeisfor your
cassette to wakeup awallet plug-in inside the shopper’ s browser and use it to obtain the required
information.

The Cassette Kit Programmer’ s Guide in the IBM WebSphere Payment Manager Cassette Devel oper
Toolkit contains more information about implementing a cassette that uses awallet.

Payment Data

Typically, payment data contains the information required to identify the payment in the payment appliance
aswell asinformation about the result of a payment operation. The cassette writes payment datawhen a

24

IBM WebSphere Payment M anager

Cassette Cookbook

new payment is created or when a payment changes state. The cassette reads payment datato resurrect a

payment into the cache.

The LdbCard cassette keeps payment data in the LdbCardPayment database table. Each row in the table
represents a payment being managed by the cassette.

Column Name

Value Description

M erchantNumber Theidentifier used by the Payment Manager to identify the merchant.
OrderNumber Theidentifier used by the Payment Manager to identify the order.
PaymentNumber Theidentifier used by the Payment Manager to identify the payment.
Approval Code Theidentifier returned by the payment appliance and used to identify the

payment.

DeclineReason

An extrabit of information used to explain why the payment appliance
declined arequest (not strictly required by the Payment Manager but handy
for problem determination)

Most likely, the first three columns will be the same for your cassette. The MerchantNumber,
OrderNumber, and PaymentNumber make up the primary key. The remaining columns need to be replaced
to hold the information required to identify the payment in your payment appliance and assist in problem
determination when there is a data communication or financial failure.

Credit Data

Typically, credit data contains the information required to identify the credit in the payment appliance as
well asinformation about the result of acredit operation. The cassette writes credit datawhen anew credit
is created or when acredit changes state. The cassette reads credit data to resurrect a credit into the cache.

The LdbCard cassette keeps credit datain the LdbCardCredit database table. Each row in the table
represents a credit being managed by the cassette.

Column Name

Value Description

M erchantNumber Theidentifier used by the Payment Manager to identify the merchant.
OrderNumber Theidentifier used by the Payment Manager to identify the order.
CreditNumber Theidentifier used by the Payment Manager to identify the credit.
Approval Code Theidentifier returned by the payment appliance and used to identify the

credit.

DeclineReason

An extrabit of information used to explain why the payment appliance
declined arequest (not strictly required by the Payment Manager but handy
for problem determination)

Most likely, the first three columns will be the same for your cassette. The MerchantNumber,
OrderNumber, and CreditNumber make up the primary key. The remaining columns need to be replaced to
hold the information required to identify the credit in your payment appliance and assist in problem
determination when there is a data communication or financial failure.

Batch Data

Typically, batch data contains the information required to identify the batch in the payment appliance as
well asinformation about the result of abatch operation. The cassette writes batch data when a new batch
isopened or when abatch changes state. The cassette reads batch data to resurrect abatch into the cache.

The LdbCard cassette keeps batch datain the LdbCardBatch database table. Each row in the table
represents a batch being managed by the cassette.

25

IBM WebSphere Payment M anager Cassette Cookbook

Column Name Value Description

M erchantNumber Theidentifier used by the Payment Manager to identify the merchant.

BatchNumber Theidentifier used by the Payment Manager to identify the batch.

ApprovalCode Theidentifier returned by the payment appliance and used to identify the
batch.

DeclineReason An extrabit of information used to explain why the payment appliance

declined arequest (not strictly required by the Payment Manager but handy
for problem determination)

ClosedToNewTrans An indicator used to determine whether or not this batch can be used for

new transactions. This value starts as false when the batch is created and is
set to true when the batch is either automatically or manually closed, even if
the close attempt fails.

Most likely, the first two columns will be the same for your cassette. The MerchantNumber and
BatchNumber make up the primary key. The remaining columns need to be replaced to hold the
information required to identify the batch in your payment appliance and assist in problem determination
when there is a data communication or financial failure.

Designing Your Protocol Data

Cassette dependent parameters are passed to your cassette as protocol data. Y ou must design a protocol
data keyword and value for each cassette dependent parameter required. Follow these guidelines.

26

By definition, a protocol data keyword must begin witha‘$' character. Thisprefix isused by the
framework to decide how to parse the value, validate the value, and passit to the cassette.

By convention, protocol data keywords are defined with every al phabetic character in upper case.

Whenever possible, use aprotocol data keyword that has already been defined by the Payment
Manager framework. These keywords have been standardized to improve the flexibility of the
Payment Manager and to keep the merchant software independent of the cassette being used. If all
cassette devel opers use the standard protocol data keywords for to pass common values, the merchant
can mix and match cassettes without modifying the business system. To find the protocol data
keywords that have been standardized, ook in the PaymentA Pl Constants Javadoc for constants with a
PD_ prefix.

If you don’t find a standard protocol data keyword for a cassette dependent parameter, propose a
keyword to be added to the standardized list. Merchants need the ability to smoothly migrate to new
technologies and remain independent of the cassette being used.

For each cassette dependent parameter, choose a protocol data keyword. Document the keyword and
datatype of thevalue. Valid datatypesinclude

- Boolean

- Byte Array

- Integer

- Long Integer

- Numeric String

- Numeric Token (anumeric string suitable for identifiers like merchant number, order number, and so
on)

- Path (aexisting file or directory path on the local workstation)

- Restricted String (a string where some characters are not allowed)

IBM WebSphere Payment M anager Cassette Cookbook

- String
- Timestamp

For each protocol data keyword documented above, document the secondary return code value that
will be used to identify the parameter when the valueis not valid. Note that there are already standard
secondary return code values defined for every standard protocol data keyword defined in the
framework. For non-standard protocol data keywords, you will need to define cassette dependent
secondary return code constants. By convention, these return code values are contiguous values that
begin with the value 100001.

Understanding the Components You Will Develop

The Cassette Kit Programmer’s Guide in the IBM WebSphere Payment Manager Cassette Devel oper
Toolkit contains important for understanding the Payment Manager Framework. Appendix E: in this
cookbook contains aformal object model definition of the classes developed for the LdbCard cassette. The
following sections describe the component you will develop for your cassette.

Congtants

Y ou will implement a Java Interface that will contain constants used by all your other classes. Typically,
the interface defines constant values for

Cassette dependent database table names

Column names for the cassette dependent tables

XML labelsfor cassette dependent data returned on a query command
Cassette dependent database views for query commands

Column names for the cassette dependent database views

Cassette dependent protocol data keywords

Cassette dependent secondary return codes

Cassette dependent message numbers.

Before placing any other constant in thisinterface, be sure the constants have aglobal scope. A constant is
considered global if it used in more than one class (like database table names) or if it used to communicate
with other systems (like return codes and message numbers). If the constant is use strictly within one class,
it isusually better to define the constant in the classwhereit is used.

Casstte

Y ou will implement a Cassette class, the first prong of the framework plug-in. The Cassette classisthe
primary interface between the framework and your cassette. The framework dynamically loads your
Cassette class and constructs your Cassette object. Asusual for classes |oaded dynamically, the no-
argument constructor is used when instantiating the object. However, there are a number of other methods
that your cassette must implement to initialize your cassette.

The Cassette object isasingleton. The framework will only construct one Cassette object in the Java
virtual machine that contains the payment engine.

The Cassette object isafactory. The framework usesit to construct all the other cassette dependent

payment objects and administration objects. In addition, the framework usesit to construct new cassette
objects and resurrect cassette objects that have been pushed out of the memory cache.

27

IBM WebSphere Payment M anager Cassette Cookbook

The Cassette object isaproxy. The framework sends all payment and administration commands to the
service() method of the cassette. In turn, the cassette sends each request to the appropriate cassette object
for processing, obtains aresponse from that object, and returns the response to the framework.

CassetteQuery

Y ou will implement a CassetteQuery class. Thisisthe second prong of the framework plug-in. The
CassetteQuery class providesthe interface for query commands that may return cassette dependent
information. The framework dynamically loads your CassetteQuery class and constructs your
CassetteQuery object. Asusual for classes|oaded dynamically, the no-argument constructor is used.

The CassetteQuery object isasingleton. The framework will construct one CassetteQuery object in the
servlet’ s Javavirtual machine. Note that the CassetteQuery object isin adifferent virtual machine than the
Cassette object. Because of this, the CassetteQuery object does not have access to any of the cassette’s
payment objects. The cassette’ s database table provide the information returned on a query command.

The CassetteQuery object isaproxy. The framework sends all query commands to the query() method of
the CassetteQuery object.

Account

Y ou will implement an Account class. The Account object is responsible for managing the relationship
between the merchant and the payment appliance. It uses the cassette's account configuration table to create
account objects and verifies that the configuration is syntactically and semantically correct. It is responsible
for making connections to the payment appliance and exchanging data between the cassette and the
payment appliance.

It isalso responsible for performing all the cassette account administration commands (CreateAccount,
ModifyAccount, DeleteAccount) and for archiving cassette dependent account datain persistent storage (in
other words, a cassette dependent account table in the database).

Order

You will implement an Order class. The cassette order object isresponsible for validating all relevant
cassette dependent data (also known as protocol data) passed when the order is created, managing the state
of the framework order object, and routing all the order requests. In addition, it is responsible for archiving
all cassette dependent order datain persistent storage (in other words, a cassette dependent order tablein
the database).

Payment

Y ou will implement a Payment Class. The cassette payment object is responsible for performing all
cassette's payment requests (Approve, ApproveReversal, Deposit, DepositReversal) and to manage the state
of the framework payment object. In addition, it isresponsible for archiving all cassette dependent
payment datain persistent storage (in other words, a cassette dependent payment table in the database).

Credit

You will implement a credit class. The cassette credit object is responsible for performing all cassette's
credit requests (Refund, RefundReversal) and to manage the state of the framework credit object. In
addition, it isresponsible for archiving all cassette dependent credit datain persistent storage (in other
words, a cassette dependent credit table in the database).

28

IBM WebSphere Payment M anager Cassette Cookbook

Batch

Y ou will implement a batch class. The cassette batch object is responsible for performing all cassette's
batch requests (BatchOpen, BatchClose, BatchPurge, DeleteBatch) and to manage the state of the
framework batch object. In addition, it isrepsonsible for archiving all cassette dependent batch datain
persistent storage (in other words, a cassette dependent batch table in the database).

Properties

You will implement a properties file that will be loaded into a Java ResourceBundle. This propertiesfile
must contain all the messages that will be logged by your cassette. To support additional national
languages, your properties file must be translated.

Asyou would expect, the format of your propertiesfileis consistent with the Java Properties class. The
message number is the key and the message text isthe value. Language independent substitution is
performed using rules consistent with the Java M essageFormat class.

If you have other language dependent or installation dependent constants, you can place themin this
propertiesfile aswell.

An XML Document

Y ou will implement an XML document. The framework requires an XML document in order to display
and modify cassette dependent information on the user interface panels. This document contains Payment
Server Presentation Language (PSPL) tags that are interpreted by the Payment Manager user interface
classes.

Using PSPL tags, you will provide cassette dependent extensions to

The framework’ s PSMerchantA ccount panel
The framework’ s PSBatch panel

The framework’ s PSOrder panel

The framework’ s PSPayment panel

The framework’ s PSCredit panel

For each cassette dependent parameter that can be displayed or modified, you will provide a PSPL field tag
in the appropriate extension.

Understanding the Incremental Tasks

This cookbook employs atechnique commonly called Incremental Refinement. Y ou will start with a
cassette skeleton and incrementally add and replace methods for each scenario until you have afully

functional cassette.

After each task is completed, you should be able to compile your cassette without any errors. The code
should not depend on the compl etion of subsequent tasks

When all the tasks in a scenario are completed, you should be able to test the scenario successfully.
The scenario should not depend on the completion of subsequent scenarios.

29

IBM WebSphere Payment M anager Cassette Cookbook

Asyou progress through the cookbook exercise, you may discover public constants and public
methods (usually setters and getters) used by LdbCard that are inappropriate for your cassette. When
this happens, you may not be able to del ete the code because the constant or method may still be used
by code that will not be modified until a subsequent step. Instead of deleting the code, copy the code
to agutter areain the module. At the end of the exercise, there is a step where you can safely remove
al the code in the gutter areas. Note that private constants and private methodscan be deleted in the
task where they are discovered.

For your convenience, each interface and class (including theinner classesin the CassetteQuery
module) contains a gutter areathat can be identified by the following comments.

[l <gutter>
/[l</gutter>

In addition to moving the inappropriate public constant or public method to the gutter area, declareit
deprecated. At the end of the cookbook exercise, you can recompile your cassette using the —
deprecated switch before deleting the gutters. If warnings occur, you must either fix the code that is
using the deprecated item or decide to use the code and move it out of the gutter before the gutters are
deleted.

Asyou progress through the cookbook exercise, you will be asked to modify methods originally taken
from the LdbCard example. The extent of the modification will depend on the similarity between your
cassette and the LdbCard cassette: the closer the similarity, the fewer the changes.

Almost all your modifications will be in the methods of the Account classthat interact with your
payment appliance and the methods in the other classes that all them. Most other modifications will be
related to your cassette’ s protocol data and persistent data.

Understanding the Author’s Coding Style

Like all programmers, experience has taught me many tricks that improve my productivity as well asthe
code’ sreadability and maintainability. Unfortunately, these tricks have advanced my coding style so far
beyond conventional wisdom that it may appear foreign to you.

Variable Naming Conventions

There are many conventions that add information to the name of avariable in order to aid the programmer.
For example, the Hungarian notation was used so a programmer would know the variable’ s type just by
looking at the variable name. My notation, the Bader notation, adds a different level of information to the
variable name.

Likeyou, | have found that the most valuable attribute of avariable nameis an effective description of its
contents but, in my experience, | have found that the second most valuabl e attribute i s information about
wherethe variable is declared. The Bader notation givesimmediate information about the source of the
variable s value and the implications of modifying the value. (Doesthe variable have local scope? Isit an
argument? Isit aconstant?

Here are the conventions that | used in the LdbCard cassette along with some exampl es taken from the
LdbCardAccount class. | encourage you to maintain this convention in your cassette.

Constant variables have names where every word is completely capitalized and words are
separated with under scores.

30

IBM WebSphere Payment M anager Cassette Cookbook

private static final String | CV_KEY_ACCOUNT = "Account";

Classvariables (also known as static data) have alower case“cls’ prefix and thefirst letter of
each subsequent word is capitalized.

private static Hashtable cl sAccount Li st = new Hasht abl e();

Object variables (also known asinstance data or state data) have a lower case “obj” prefix and
thefirst letter of each subsequent word is capitalized.

private String obj Mer chant ;

Method arguments have a lower case“arg” prefix and thefirst letter of each subsequent word is
capitalized.

protected LdbCardAccount (
Resul t Set ar gResul t Set
) throws SQLException {

Local variables (sometimes called automatic variables, working variables, or temporary
variables) have a lower case “var” prefix and thefirst letter of each subsequent word is
capitalized.

String varSel ect =
" SELECT * FROM " +
ETi || Archive.getOwer() + "." + TBL_ACCOUNTS;

Class names can be distinguished from variable names because they have no lower case prefix
and thefirst letter of each word is capitalized.

Primitive types can be distinguished from variable names and class names because they are
completely lower case.

Classand File Naming Conventions

The classes implemented while you complete this exercise should follow this convention. If you are
implementing a cassette for a protocol called FastPay

FastPayConstants should be the name of your constantsinterface
FastPayCassette should be the name of your cassette class
FastPayCassetteQuery should be the name of your cassette query class
FastPayA ccount should be the name of your account class
FastPayOrder should be the name of your order class

FastPayPayment should be the name of your payment class
FastPayCredit should be the name of your credit class

FastPayBatch should be the name of your batch class

31

IBM WebSphere Payment M anager Cassette Cookbook

By a convention required by Java, each class must be implemented in afile with afile name that isthe
same asthe class or interface name and afiletype of “.java’.

The name of your default properties file must be FastPay.properties.

The name of your XML document, assuming it is for the English Language must be FastPay.en.PSPL.

Database Table and Column Naming Conventions

To prevent naming collisions in the merchant database, all your database table nhames should begin with
your cassette name. If you are implementing a cassette for a protocol called FastPay

FastPayA ccount should be the name of your cassette dependent account configuration table
FastPayOrder should be the name of your cassette dependent order table

FastPayPayment should be the name of your cassette dependent payment table
FastPayCredit should be the name of your cassette dependent credit table

FastPayBatch should be the name of your cassette dependent batch table.

If your table contains a column with avalue that exactly matches avalue in aframework database table
(MerchantNumber or AccountNumber, for example) your column name should exactly match the column
name in the framework table. Itisalso helpful if your primary key columns are first and ordered by
significance (MerchantNumber, OrderNumber, then PaymentNumber for example).

It isimportant to remember that DB2 identifiers (table names, view names, column names, and so on) are
limited to 18 characters. If you choose a cassette name that islonger than 8 characters, you will need to
manually abbreviate some of the table names that are automatically generated for you by the cassette
exercise.

32

IBM WebSphere Payment M anager Cassette Cookbook

Stage 4. Preparing the Base Files

This chapter describes the steps required to prepare the base files for your new cassette. It assumes that
you have already performed the installation stepsin Appendix A and Appendix B. Furthermore, it assumes
that you have installed the cookbook materials on your D: drive in a directory named D:\!PM Cassette.
Note that the exclamation point cases the directory nameto float to the top of an alphabetical directory list.

1. Useyour favorite text editor and edit D:\!PM Cassette\CreateCassette.cmd. Note that near the
beginning of this script, the working directory is set to D:\!PM Cassette.

2. Modify theline that setsthe NEWDIR environment variable so that the value matches the directory
chosen the Stage 1 chapter.

3. Maodify theline that setsthe NEWCASSET TE environment variable so that the value matches the
cassette name chosen in the Stage 1 chapter.

4. Savethe updated CreateCassette.cmd.
5. Execute the updated CreateCassette.cmd. Thiswill create the raw base files for your new casstte.

6. If youareusing Visua SlickEdit, thisisagood timeto create a project file for your cassette. After
performing the sub-steps below, the Compile, Build, Rebuild, Make JAR, and Install toolsin the Build
menu list will operate on your base cassette files. Note that these tools all assume that the editor’s
current directory isthe directory that contains your basefiles.

1.. Fromthe Visual SlickEdit menu bar, select Project, Open Workspace.

2.. Onthe Open Workspace panel, navigate to D:\! PM Cassette and select ! PM Cassette.vpw. Press
Open.

3.. From the Visual SlickEdit menu bar, select Project, Workspace Properties.
4.. Onthe Workspace Properties panel, press Add.

5.. Onthe Add filesto workspace panel, navigate to D:\! PM Cassette and select the file with the file
name that matches your cassette name and the file type of .vpj.

6.. Back on the Workspace Properties panel, select the project file you have just added and press Set
Active.

7.. Closethe Workspace Properties panel.
8.. Fromthe Visua SlickEdit menu bar select Project, Project Properties.
9.. Onthe Project Properties ... panel, select the Open Command tab.

10.. Onthelinethat begins set target replace the LdbCard file name prefix with the name of your
cassette.

11.. Onthelinethat begins set workdir change the com\ibm\etill\ldbcardcassette directory with the

directory name that contains your new base files. Press OK to save the changes and close the
panel. Note: the remaining steps are required to assure that the changes made on the Open

33

IBM WebSphere Payment M anager Cassette Cookbook

12..

13..
14..

Command tab take effect.
From the Visual SlickEdit menu bar, select Project, Close Workspace.
From the Visual SlickEdit menu bar, select Project, Open Workspace.

On the Open Workspace panel, navigate to D:\! PM Cassette and select ! PM Cassette.vpw. Press
Open.

7. Using your favorite editing tool, change all occurances of LdbCard (be sure to use this exact case) with
the name of your cassette (be sure to specify the exact case) in every base file. Remember, your
cassette name was determined in Stage 1. If you are using Visual SlickEdit, you can use these sub-
steps.

1.

If necessary, navigate to the directory that contains your cassette files and make it the current
directory.

From the menu bar, select Search Replace.
On the Replace panel, press Files/Buffers>> to get the expanded Replace panel
On the expanded Replace panel, enter LdbCard in the Search for: text box, enter your cassette

name in the Replace with text box, select the Match case option, enter *.* in the Files: text box,
and press Replace All.

8. Using your favorite editing tool, change all occurances of LDBCARD (be sure to use this exact case)
with the name of your cassette inupper case(be sureto specify the exact case) in every basefile.
Remember, your cassette name was determined in Stage 1. If you are using Visual SlickEdit, you can
use these sub-steps.

1.

If necessary, navigate to the directory that contains your cassette files and make it the current
directory.

From the menu bar, select Search Replace.
On the Replace panel, press Files/Buffers>> to get the expanded Replace panel
On the expanded Replace panel, enter LDBCARD in the Search for: text box, enter your cassette

name in upper case in the Replace with text box, select the Match case option, enter *.* in the
Files: text box, and press Replace All.

9. Using your favorite editing tool, change all occurances of com\ibml\etill\ldbcardcassette (be sure to use
this exact case) with the name of the directory for your casette (be sure to specify the exact case) in
every base file. Remember, your directory nhame was determined in Stage 1. If you are using Visual
SlickEdit, you can use these sub-steps.

1.

If necessary, navigate to the directory that contains your cassette files and make it the current
directory.

From the menu bar, select Search Replace.

On the Replace panel, press Files/Buffers>> to get the expanded Replace panel

IBM WebSphere Payment M anager Cassette Cookbook

4.. Onthe expanded Replace panel, enter com\ibmietill\ldbcardcassette in the Search for: text box,
enter your directory name in the Replace with text box, select the Match case option, enter *.* in
the Files: text box, and press Replace All.

10. Using your favorite editing tool, change all occurances of com.ibm.etill.ldbcardcassette (be sure to use
this exact case) with the package name for your casette (be sure to specify the exact case) in every base
file. Remember, your package name was determined in Stage 1. If you are using Visual SlickEdit,
you can use these sub-steps.

1.. If necessary, navigate to the directory that contains your cassette files and make it the current
directory.

2.. From the menu bar, select Search Replace.
3.. OntheReplace panel, press Files/Buffers>> to get the expanded Replace panel

4.. Onthe expanded Replace panel, enter com.ibm.etill.|dbcardcassette in the Search for: text box,
enter your package nhame in the Replace with text box, select the Match case option, enter *.* in
the Files: text box, and press Replace All.

11. Using your favorite editor, edit your cassette’ s #StartManager.cmd.

1.. Findthelinethat setsthe CASSETT_CLASSES environment variable and remove the
“:\.japi.zip” from the end of the value set.

2.. Findthelinethat setsthe ENVIRONMENT environment variable and erase all the characters
after the“=" character to the end of theline.

3.. Findthelinethat setsthe DBOWNER environment variable and replace “Idbader” with user 1D
you used to logon to the workstation.

4.. Findthelinethat sets the DBUSER environment variable and replace “Idbader” with the user 1D
you used to logon to the workstatoin.

12. If youfind it convenient to use shortcuts to execute command scripts, you will need to modify afew of |

the provided shortcuts so they will execute your cassette’s command scripts instead of the LdbCard
command scripts.

1.. From the Start bar, select Start, Programs, Windows, Windows NT Explorer.

2.. OntheExploring panel, navigate to the directory that contains your cassette and open the
Shortcuts directory.

3.. Ontheright hand filelist, right click on your cassette' s Build shortcut and select Properties on
the pop-up menu

4.. Ontheresulting Properties panel, select the Shortcut tab. In the Target: text field, find and
replace LdbCard with the name of your cassette. Note: Do not change the working directory.

By convention, your command scripts assume that the Payment Manager directory isthe current
directory. Press OK.

5.. Repeat the previous two steps for each of the following shortcuts.

35

IBM WebSphere Payment M anager Cassette Cookbook

13.

14.

15.

16.

17.

18.

19.

20.

36

- Get Engine Trace
- Get Servlet Trace
- Install

- Remove

- Restore Postlnstall
- Restore Prelnstall

- Start Payment Manager (In addition, change f5lzvb to the password you use when you logon to
the workstation.)

- Wipe Out
- Save DB (In addition, deletethe & and all characters from there to the end of the line.)
- Test DB

6.. For convenience, you may want to copy these shortcuts or the ShortCuts directory to your
desktop.

Using your favorite editor, edit your cassette’s .Install.sqgl file. Examine all occurrences of your
cassette name in upper case. If your cassette nameislonger than 8 characters, you will need to
abbreviate the table and view names so they are all less than 18 characterslong.

Using your favorite editor, edit your cassette’'s .Remove.sql file. If your cassette nameislonger than 8
characters, you will need to change the table and view names so they match the abbreviated names that
you defined above.

Using your favorite editor, edit the file that contains your new account class.

Find and delete all the import statements that reference classes in a package that begins with
“netverify” prefix.

Find and delete all the constants with a name that begins with aprefix of “ICV_" including the
associated comment blocks.

Find the statement that defines objConnection. Change the statement

private Connection obj Connecti on
to
private Object obj Connecti on

Find the connect() method. Leave the blocks that trace the function entry and exit, but remove all the
other statements (an entire try{} catch{} block).

Find the authorizePayment() method. Right after the block that traces the function entry, you will find
an assignment statement for var Result. Change the statement

bool ean varResult = fal se;

to

bool ean var Resul t true;

In the comment above the line you have just changed, change the word “declined” to “approved”.

IBM WebSphere Payment M anager Cassette Cookbook

21.

23.

24.

25,

26.

27.

28.

29.

3L

Then remove al the statements after this statement up to, but not including, the block that traces the
function exit.

Repeat step 12 for each of the following methods

- capturePayment()
- voidPayment()

- captureCredit()

- voidCredit()

- settleBatch()

Build your cassette and copy the updated files into the Payment Manager directories using your
cassette’ s#Build.cmd script or its associated shortcut. Note: Thefirst time you run this script, there
are no .classfilesto delete and an error message will appear. Just ignore this message in this case.

Start your favorite browser and navigate to http://localhost:9527/ .

On the L ogin page, enter admin as the user ID and admin as the password. PressLog In.

Onthe WebSphere Application Server Administration page, press Setup in the navigation panel to
expand the setup tasks.

On the updated navigation panel, pressJava Engine.

On the new Java Engine panel, click in the Application Server Classpath text field. Find the
complete path to eTillClasses.zip and copy it to the clipboard (mark it and press Ctrl-C). Note that the
short DOS names are used for directory namesin this classpath. Move the cursor to the end of the
string in thistext field and add a semi-colon (;). Then paste the contents of the clipboard (Ctrl-V or
right click and paste.) Replace eTillClasses.zip with the name of your cassette JAR file. PressSave.

On the navigation panel, pressL og Off.
Close the browser, shutdown, and restart your workstation.

Install your cassette into the PaymentManager and create your cassette’ s database tables using your
cassette’ s#lnstall script or its associated shortcut. Note: This script will automatically backup the
Payment Manager database before it creates this version of the cassette database tables. \When your
cassette tables are incrementally refined, this backup must be restored with the #RestorePrelnstall
script or its associated shortcut.

Congratulations! Y ou now have a primitive cassette. To start the payment manager with your
cassette, use your cassette’ s#StartManager script or its associated shortcut. Use the Payment Manager
user interface (from the task bar, press Start, Programs, WebSphere Payment Manager, Payment
Manager Logon) to create a new merchant (by convention, use merchant number 100) that is
authorized to use your cassette. The create an new account (by convention, use account number 1000)
for that merchant to use your cassette). Follow the directionsin Appendix D to setup a sample store
and create afew orders. Use the Payment Manager user interface to approve them, deposit them,
reverse them, refund them, settle the batch, and so on.

37

IBM WebSphere Payment M anager Cassette Cookbook

Stage 5: Implement Your Data Model

This chapter describes how to enhance your cassette to use the persistent data and protocol datathat you
designed in Stage 3. You will

Update the SQL script that creates your database tables and views

Update the XML document so the Payment Manager user interface can display your cassette
dependent data

Update the constants with your column names and field identifiers

Update the CassetteQuery classto return your cassette dependent data

Update the Cassette class to define the parameter validation for your cassette’ s protocol data.

1. Start your favorite text editor and edit your cassette’s Install.sql file.

2. Findthe CREATE TABLE command for your cassette’s ACCOUNT table. Replace the column
names and types with those that you designed in Stage 3. See Appendix F if you need tips on how to
specify the datatype for acolumn. Note that you will need to keep the existing columns for
MerchantNumber and AccountNumber because they make up the primary key. Also notethat itisthe
cassette’ sresponsibility to make sure that the merchant does not supply an amount with the wrong
currency, so if your cassette will every support more than one configurable currency, the Currency
column is strongly recommended.

3. Findthe CREATE VIEW command for your cassette’s ACCOUNTVIEW. Thisview will beusedin
your cassette’ s CassetteQuery class. When performing a query, the merchant provides selection
criteria based on the data kept in the framework’ s AccountAdmin objects. Thisview will be used
inside alarger select statement to obtain the cassette dependent information for the same criteria.
Replace the existing explicit column namesin the SELECT clause so they match the column names
created in the last step. Do not include the primary key columns. These columnswill be provided by
the framework’s ETACCOUNTCFG view.

4. Repeat the last two statements for each of the following tables and their views. Note that payments
and credits have two views: one for selecting them when examining framework payments/credits and
one for examining framework batches.

- Your cassette’ sBATCH table and the BATCHVIEW

- Y our cassette’ s ORDER table and the ORDERVIEW

- Your cassette’s PAYMENT table and both the PAYMENTVIEW and the PAYBATVIEW
- Your cassette’s CREDIT table and both the CREDITVIEW and the CREBATVIEW

5. Savetheupdated file. Usethe #RestorePrelnstall script to restore the database to its original state.
Then run your cassettes #l nstall script or its associated shortcut to test your file. If, during the above
exercise, you have change the name of atable or view, make sure you make the matching change to
your cassette’s Remove.sql file. In any case, thiswould be agood time to test your cassette’s
Remove.sql file using the #Remove script or its associated shortcut. It does not perform acomplete
test of the Remove.sql file, but it will assure you that the cassette dependent table and view names
match.

6. Start your favorite text editor and edit your cassette’sen.PSPL file. You will need to change all the
field tagsin thisfile so they will display and optionally update your cassette dependent data. The
syntax of thefield tag can be found in C:\Program Files\|BM\PaymentM anager\pspl\psl p.dtd.

7. Find your cassette’ s AccountDetails field group. Using the existing field tags as amodel, create field
tags for your account data and then delete any tag that isno longer used. By convention, if thefieldis

39

IBM WebSphere Payment M anager Cassette Cookbook

10.

11

13.

14.

15.

16.

40

taken directly from the database, the field’ sid attribute should match the column name from the
database. If thefield isused to obtain information from the merchant, the field’ s updatel D attribute
should specify the matching protocol data keyword that you chose in Stage 3. See Appendix F for tips
on choosing the type and display Type attributes.

Repeat the last step for the following field groups. Most likely, the information displayed for these
field groups cannot be modified by the merchant so the field' s displayType attribute should be set to
readOnly.

- OrderDetails
- BatchDetails
- PaymentDetails
- CreditDetails

Savethisfilefor now. Later, the message tagsin the Account screen will be updated to display the
correct error message when the merchant does not enter the protocol data values correctly.

Start your favorite text editor and edit your cassette’ s Constants.javafile.

Find the constants that have a TBL _ prefix. Make sure each constant isinitialized to the correct
cassette dependent database table name.

Find the constants that have a COL _ prefix. In this section, make sure thereis a constant for every
column name you have defined, no matter which tableit isin. Constants organized by table will be
updated in subsequent steps using the constants you define here. If there are any existing COL _
constants that you do not intend to use, copy them to the gutter area and declare them deprecated. This
isrequired because they will continue to be referenced in alater stage. They must remain so your
cassette can be compiled without error.

Note that you will need botha COL_MERCHANT constant and aCOL_MERCHANT_NAME
constant. To remain compatible with previous versions of the Payment Manager, some of the
framework views use a column name of MerchantName instead of the new, more appropriate, column
name of MerchantNumber.

Find the constants that have an XDM _ prefix. In this section, make sure thereis a constant for every
field id attribute that you used in your cassette’ s .en.PSPL document. If there are any existing XDM_
constants you do not intend to use, copy them to the gutter and declare them deprecated.

Find the constants that have a prefix of VIEW_. Thefirst seven parameters define constants for the
cassette views. Make sure each isinitialized to the correct cassette dependent view name. The
remaining VIEW__ constants define the column names used in the view. Make sure there is a constant
for each column in aview and that each initializer references the correct COL __ constant defined above.
If there are any existing VIEW _ constants that you do not intend to use, copy them to the gutter and
declare them deprecated.

Find the constants that have a prefix of PD_. Note that they are organized into two categories:
PD_PAY _ for protocol data passed on the AcceptPayment command and PD_ACC _ for protocol data
passed on CreateAccount or ModifyAccount commands. Make surethereisaPD_ constant for every
protocol data keyword designed in Stage 3. Whenever possible, initialize the constant to one of the
standard protocol data keyword defined in the framework. If there are any existing PD__constants that
you do not intend to use, copy them to the gutter and declare them deprecated.

Find the constants that have a prefix of SRC_. Note these secondary return code values are organized
into different categories depending on the class where they are used. Each category has a unique
range. Find thereturn codesin the 10000 range. Make surethereisan SRC_CASSETTE _ constant

IBM WebSphere Payment M anager Cassette Cookbook

17.

18.

19.

20.

21.

23.

24.

25.

26.

27.

for each cassette dependent protocol data value defined above. Note that you should not definea
secondary return code value for any of the standard protocol data keywords defined by the framework.
Y our code should use the framework’ s matching secondary return code value instead.

Savethefile. Build your cassette using the #Build script or its associated shortcut. Fix any build
errors. Note that at this point, the cassette should compile correctly but cannot be tested.

Start your favorite text editor and edit your cassette’ s CassetteQuery.javafile.
Find the inner class named OrderlInfo.

Make sure this class has an instance variable for each column in the cassette dependent order table.
Simply delete any existing instance variable that you will not use.

Modify the constructor to assign valuesto each of the instance variables from the appropriate column
of the result set argument. Use the VIEW__ constants created above to specify the column name.
Simply delete any existing statement that you do not intend to use. Note that you should not use the
result set directly. Instead, use the correct Etill Archive class method to read the column. These
methods are provided to remove platform and database inconsistencies in these operations. See
Appendix F for tips on how to select the correct class method for your column.

Modify the combine() method so thereis an .addProperty() method call for each instance variable that
is not part of the primary key. Use the appropriate XML _ constants defined above to identify each
field. Simply delete any existing addProperty() method call that you do not intend to use.

Repeat the last four steps for each of the following inner classes.

- Paymentinfo
- Creditinfo
- Batchinfo
- AccountInfo

Savethefile. Build your cassette using the #Build script or its associated shortcut. Fix any build
errors. Notethat at this point, the cassette should compile correctly but cannot be tested.

Start your favorite text editor and edit your cassette’ s Cassette.javafile.

Near the top of thisfile, thereisastatic block that initializes the cassette’ s protocol data validation
table. Using the existing statements as a model, construct a framework Validationltem for each
protocol data keyword that your cassette uses and put it into the validation table using the protocol data
keyword as akey. See Appendix F for tips on choosing the correct Validationltem object for each
protocol data keyword. Use the protocol data keyword constants that you have defined and either the
correct framework secondary return code or the matching secondary return code val ue constant that
you have defined. Simply remove any existing statement that you do not intend to use.

Savethefile. Build your cassette using the #Build script or its associated shortcut. Fix any build

errors. Note that at this point, the cassette should compile correctly and should even start correctly, but
cannot be tested.

41

IBM WebSphere Payment M anager Cassette Cookbook

Stage 6: Implement Your Account Class

In this stage, you will implement about half of your account class and test the commands the create,
modify, delete, start and stop an account. Additional methods will be added to the account objectsin
subsequent stages.

1

2,

Start your favorite editor and edit your cassette’ s Constants.javafile.

Find the constants that begin with an ACC_ prefix. Make sure thereisaconstant for each column
name in your cassette account table. Initialize each constant to the matching COL_ constant defined in
Stage 5. Simply delete any existing constant that you do not intend to use. After you update the
Account.javafile, these old values will not be used.

Savethefile.
Start your favorite editor and edit your cassette’ s Account.javafile.

Find theinstance variables, that is, the variables with a name that begins with a prefix of obj. Skip past
objFrameworkA ccount and then make sure that there is an instance variable for each columnin your
cassette’ s account table including the primary key columns. If there are any existing instance variable
that you do not intend to use, copy them to the gutter and declare them deprecated.

Examine all the existing methods with a prefix of set or get. If these setter and getter methods
reference a deprecated instance variable, copy them to the gutter and declare them deprecated as well.
At aminimum, you will be left with getMerchant(),and getAccount(), and perhaps getCurrency() as
well. Consider adding setter and getter methods for your other instance variables. These methods are
highly recommended, even if they are not public, because they offer a convenient place where the
values can be transformed to different internal representationsif necessary. For example, setters could
be used to transform avalue taken from the database into a more appropriate internal representation
and getters could do the reverse.

Find the constructor that takes a ResultSet as an argument. Modify this constructor to assign values to
each of the instance variables from the appropriate column. Consider using the setters created earlier
to make the assignments. Use the ACC_ constants created above to specify the column name. Simply
delete any existing assignment statement that you do not intend to use. Note that you should not use
theresult set directly. Instead, use the correct Etill Archive class method to read the column. These
methods are provided to remove platform and database inconsistencies in these operations. See
Appendix F for tips on how to select the correct class method for your column.

Find the constructor that takes an AdminRequest as an argument. Modify this constructor to assign
values to each of the instance variables from values taken from the request or values taken from the
protocol data parameter table provided with the request. Consider using the setters created earlier to
make the assignments. Simply delete any existing assignment statement that you do not intend to use.
Note that there are no validity checks donein this constructor. The validity checkswill be performed
in adifferent method.

Find the initializeAccount() method. Remove any existing statements that you do not intend to use. If
necessary, add any statements required to initialize your account regardless of how it was constructed.
Thisisagood place to initialize instance variables that are computed from other instance variables
that connate be subsequently modified.. For values computed from instance variables that can
changed by a ModifyAccount command, the values should beinitialized in the startAccount() method.

10. Find the createRecord() method.

43

IBM WebSphere Payment M anager Cassette Cookbook

11

13.

14.

15.

16.

1.. Changevarlnsert declaration so that it isinitialized to the SQL INSERT statement required to add
arow to your cassette's account table. Usethe ACC_ constants for column names.

2.. Changethe Trace.traceDatabaseWrite() method call to trace varlnsert and all the values that will
besetintoit.

3.. Makesurethereisastatement that adds avalue to the prepared statement for each column in the
database. Simply remove any existing statement that you do not intend to use. Note that you
should not use the prepared statement directly. Instead, use the correct Etill Archive class method
to add the value for each column. These methods are provided to remove platform and database
inconsistencies in these operations. See Appendix F for tips on how to select the correct class
method for your column.

Find the updateRecord() method.

1.. ChangevarUpdate declaration so that it isinitialized to the SQL UPDATE statement required to
modify arow to your cassette’s account table. Use the ACC_ constants for column names.

2.. Changethe Trace.traceDatabaseWrite() method call to trace varUpdate and all the values that will
besetintoit.

3.. Makesurethereisa statement that adds avalue to the prepared statement for each column in the
database. Simply remove any existing statement that you do not intend to use. Note that you
should not use the prepared statement directly. Instead, use the correct Etill Archive class method
to add the value for each column. These methods are provided to remove platform and database
inconsistencies in these operations. See Appendix F for tips on how to select the correct class
method for your column.

Find the modifyAccount() method. Modify this method to assign values to each of the instance
variables from values taken from the protocol data parameter table provided with the request. If a
given protocol data keyword is not in the parameter table, its instance data should not be modified.
Consider using the setters created earlier to make the assignments. Simply delete any existing
assignment statement that you do not intend to use. Note that there are no validity checks donein this
constructor. The validity checkswill be performed in a different method.

Find the connect() and disconnect() methods. These are private methods that are called from the
startAccount() and stopAccount() methods respectively. If thereis connection activity associated with
your payment appliance, add the appropriate code to these two methods. If not, consider removing
these methods and their callsin startAccount() and stopAccount().

Find the startAccount() and stopAccount(). Modify the startAccount() method to initialize any
instance variable value that is computed from instance variables that can be modified by a
ModifyAccount method. In addition, consider adding any logic required to start or stop your accounts
interface to your payment appliance.

Find the verifyAccounts() class method. If thereislogic required to verify the account configuration
when the account object have been resurrected from the database during Payment Manager
initialization, add the logic here. Notethat thisis specifically for logic that cannot be performed in the
constructor because the framework has not been completely initialized when the constructor is called.

Find the initializeA ccounts() class method. If thereislogic required to initialize the account objects
resurrected from the database during Payment Manager initialization, add the logic here. Asabove,
thisis specifically for logic that cannot be performed in the constructor because the framework has not
been completely initialized when the constructor is called. If theinitialization logic islimited to the
scope of asingle account object, it ismore appropriate to place thislogic in the startAccount()

IBM WebSphere Payment M anager Cassette Cookbook

17.

18.

19.

method. Thismethod is better suited to initialization for the payment appliance or other cassette
dependent components with a global scope.

Find the validateCreateRequest() class method. This method is used to validate the protocol data
passed on a CreateAccount command. Keep in mind that the automatic parameter validation
performed by the framework using the validation table you created in Stage 5 cannot perform existence
checks, consistency checks, or compatibility checks. Using the existing logic as model, add the logic
to abort the request if arequired parameter is not supplied. Simply remove any existing statements that
you do not intend to use. Then, if necessary, add any logic required to abort the request if there are any
inconsistencies or incompatibilities between the protocol datavalues supplied.

Find the validateM odifyRequest() class method. This method is used to validate the protocol data
passed on a ModifyAccount command. Keep in mind that the automatic parameter validation
performed by the framework using the validation table you created in Stage 5 cannot perform existence
checks, consistency checks, or compatibility checks. Using the existing logic as model, add the logic
to abort the request if a supplied parameter cannot be supplied on a ModifyAccount request. For
example, changing the Currency attribute of the account would can not be allowed because there may
be existing orders that use the account with the current currency. Simply remove any existing
statements that you do not intend to use. Then, if necessary, add any logic required to abort the request
if there are any inconsistencies or incompatibilities between the protocol data values supplied.

Savethefile. Build your cassette using the #Build script or its associated shortcut. Fix any build
errors. Start the Payment Manager engine using your #StartManager script or its associated shortcut.
Now you should be able to test your code. Use the Payment Manager user interface to create, delete,
modify, and display accounts. Examine the payment engine error logs and traces to make sure your
code isworking correctly. Start and stop the Payment Manager engine to make sure existing accounts
areresurrected correctly.

45

IBM WebSphere Payment M anager Cassette Cookbook

Stage 7: Implement Your Batch Class

In this step, you will implement your batch class. Although batch operations cannot be tested here, they
will be tested when payment and credits are added to the batch in subsequent steps.

1. Start your favorite editor and edit your cassette’ s Constants.javafile.

2. Find the constants that begin with an BAT _ prefix. Make surethereisaconstant for each column
name in your cassette batch table. Initialize each constant to the matching COL _ constant defined in
Stage 5. Simply delete any existing constant that you do not intend to use. After you update the
Batch.javafile, these old values will not be used.

3. Savethefile.
4. Start your favorite editor and edit your cassette’ s Batch.javafile.

5. Findtheinstance variables, that is, the variables with a name that begins with a prefix of obj. Skip past
obj Cassette, objFrameworkBatch, and objCassetteAccount. Then make sure that thereis an instance
variable for each column in your cassette’ s batch table excluding the primary key columns. (Primary
key values can always be obtained from the framework batch object.) If there are any existing instance
variables that you do not intend to use, copy them to the gutter and declare them deprecated.

6. Examine all the existing methods with a prefix of set or get. If these setter and getter methods
reference a deprecated instance variable, copy them to the gutter and declare them deprecated as well.
Consider adding setter and getter methods for your instance variables. These methods are highly
recommended, even if they are not public, because they offer a convenient place where the values can
be transformed to different internal representations if necessary. For example, setters could be used to
transform a val ue taken from the database into a more appropriate internal representation and getters
could do thereverse.

7. Find the resurrectBatch() method.

1.. Examinethe varSelect declaration and note how it selects arow from the cassette batch table.
Ordinarily no changes are required.

2.. Examinethe Trace.traceDatabaseRead() method call and note how it traces the varSelect
statement. Ordinarily no changes are required.

3.. Afterthestatementi f (var Resul t. next ()), make surethat each instance variable created
aboveisinitialized from the appropriate column of the result set. Simply remove any existing
statement that you do not intend to use. Usethe BAT _ constants for column names. Note that
you should not use the result set directly. Instead, use the correct Etill Archive class method to
read the value for each column. These methods are provided to remove platform and database
inconsistencies in these operations. See Appendix F for tips on how to select the correct class
method for your column.

8. Find the createRecord() method.

1.. Changevarlnsert declaration so that it isinitialized to the SQL INSERT statement required to add
arow to your cassette' s batch table. Usethe BAT_ constants for column names.

2.. Changethe Trace.traceDatabaseWrite() method call to trace varinsert and all the values that will
be setintoit.

47

IBM WebSphere Payment M anager Cassette Cookbook

10.

11

13.

48

3.. Makesurethereisastatement that adds avalue to the prepared statement for each column in the
database. Simply remove any existing statement that you do not intend to use. Note that you
should not use the prepared statement directly. Instead, use the correct Etill Archive class method
to add the value for each column. These methods are provided to remove platform and database
inconsistencies in these operations. See Appendix F for tips on how to select the correct class
method for your column.

Find the updateRecord() method.

1.. ChangevarUpdate declaration so that it isinitialized to the SQL UPDATE statement required to
modify arow to your cassette' s batch table. Usethe BAT_ constants for column names.

2.. Changethe Trace.traceDatabaseWrite() method call to trace varUpdate and all the values that will
besetintoit.

3.. Makesurethereisastatement that adds a value to the prepared statement for each column in the
database. Simply remove any existing statement that you do not intend to use. Note that you
should not use the prepared statement directly. Instead, use the correct Etill Archive class method
to add the value for each column. These methods are provided to remove platform and database
inconsistencies in these operations. See Appendix F for tips on how to select the correct class
method for your column.

Find the batchClose() method. Note the call to objCassetteAccount.settleBatch(). If your payment
appliance does not support the batch close there is nothing more to do. The existing code will
implement a cosmetic batch for your cassette. If batch close is supported, modify thislogic to use your
account object to take the appropriate action. Y ou are free to change the method name, the parameters,
and anything else aslong as the all the other statementsin this method are left to do the correct
bookkeeping.

Savethefile.

If your cassette supports batch close, use your favorite text editor to edit your cassette’ s Account.java
file. Replaceits settleBatch() method with whatever is expected by your Batch class. Implement the
logic to exercise your payment appliance and close the batch. Use the batch object’ s getters and setters
to obtain and update cassette dependent batch information.

Savethefiles. Build your cassette using the #Build script or its associated shortcut. Fix any build
errors. Further testing must wait until payments or credits are added to the batch.

IBM WebSphere Payment M anager Cassette Cookbook

Stage 8: Implement Your Order Class

In this step, you will implement your order class and test the AcceptPayment command.

1

2.

Start your favorite editor and edit your cassette’ s Constants.javafile.

Find the constants that begin with an ORD_ prefix. Make sure there is a constant for each column
name in your cassette order table. Initialize each constant to the matching COL _ constant defined in
Stage 5. Simply delete any existing constant that you do not intend to use. After you update the
Order.javafile, these old values will not be used.

Save thefile.
Start your favorite editor and edit your cassette’ s Order.javafile.

Find theinstance variables, that is, the variables with a name that begins with a prefix of obj. Skip past
obj Cassette, objFrameworkOrder, and obj CassetteAccount. Then make sure that thereis an instance
variable for each column in your cassette’ s order table excluding the primary key columns. (Primary
key values can always be obtained from the framework order object.) If there are any existing instance
variables that you do not intend to use, copy them to the gutter and declare them deprecated.

Examine all the existing methods with a prefix of set or get. If these setter and getter methods
reference a deprecated instance variable, copy them to the gutter and declare them deprecated as well.
Consider adding setter and getter methods for your instance variables. These methods are highly
recommended, even if they are not public, because they offer a convenient place where the values can
be transformed to different internal representationsif necessary. For example, setters could be used to
transform a val ue taken from the database into a more appropriate internal representation and getters
could do the reverse.

Find the constructor that takes three arguments including a ParameterTable. This method is used to
validate the protocol data passed on an AcceptPayment command. Keep in mind that the automatic
parameter validation performed by the framework using the validation table you created in Stage 5
cannot perform existence checks, consistency checks, or compatibility checks. Using the existing logic
as model, add the logic to sent the instance variables from the protocol data values supplied and abort
the request if arequired parameter isnot supplied. Simply remove any existing statements that you do
not intend to use. Then, if necessary, add any logic required to abort the request if there are any
inconsistencies or incompatibilities between the protocol datavalues supplied.

Find the resurrectOrder() method.

1.. Examinethe varSelect declaration and note how it selects a row from the cassette order table.
Ordinarily no changes are required.

2.. Examinethe Trace.traceDatabaseRead() method call and note how it traces the varSelect
statement. Ordinarily no changes are required.

3.. After thestatementi f (var Resul t. next ()), make sure that each instance variable created
above isinitialized from the appropriate column of the result set. Simply remove any existing
statement that you do not intend to use. Usethe ORD__ constants for column names. Note that
you should not use the result set directly. Instead, use the correct Etill Archive class method to
read the value for each column. These methods are provided to remove platform and database
inconsistencies in these operations. See Appendix F for tips on how to select the correct class
method for your column.

49

IBM WebSphere Payment M anager Cassette Cookbook

9. Find the createRecord() method.

1.

Change varlnsert declaration so that it isinitialized to the SQL INSERT statement required to add
arow to your cassette’ s order table. Usethe ORD__ constants for column names.

Change the Trace.traceDatabaseWrite() method call to trace varlnsert and all the values that will
besetintoit.

Make sure there is a statement that adds a val ue to the prepared statement for each column in the
database. Simply remove any existing statement that you do not intend to use. Note that you
should not use the prepared statement directly. Instead, use the correct Etill Archive class method
to add the value for each column. These methods are provided to remove platform and database
inconsistencies in these operations. See Appendix F for tips on how to select the correct class
method for your column.

10. Find the updateRecord() method.

1.

Change varUpdate declaration so that it isinitialized to the SQL UPDATE statement required to
modify arow to your cassette’s order table. Usethe BAT_ constants for column names.

Change the Trace.traceDatabaseWrite() method call to trace varUpdate and all the values that will
be setintoit.

Make sure there is a statement that adds a val ue to the prepared statement for each column in the
database. Simply remove any existing statement that you do not intend to use. Note that you
should not use the prepared statement directly. Instead, use the correct Etill Archive class method
to add the value for each column. These methods are provided to remove platform and database
inconsistenciesin these operations. See Appendix F for tips on how to select the correct class
method for your column.

11. Find the acceptPayment() method. Notethe logic that assures that the order is using a currency that
the account supports. If necessary, change thislogic to whatever is appropriate for your cassette. If
necessary add additional runtime checks and abort the request if your cassette cannot process payments
and credits for the new order. No other changes should be necessary. Theremaining logicisfor
bookkeeping.

50

Savethefiles. Build your cassette using the #Build script or its associated shortcut. Fix any build
errors. Start the Payment Manager using the #StartManager script or its associated shortcut. Usethe
Sample Store (see Appendix E) to issue AcceptPayment requests and test your Order class. In
addition, use the Payment Manager user interface to display and cancel your orders.

IBM WebSphere Payment M anager Cassette Cookbook

Stage 9: Implement Your Payment Class

In this step, you will implement your payment class and test the Approve, ApproveReversal, Deposit, and
Deposit reversal commands. In addition, the BatchClose and CloseOrder commands can be tested.

1. Start your favorite editor and edit your cassette’ s Constants.javafile.

2. Find the constants that begin with a PAY _ prefix. Make sure thereis aconstant for each column name
in your cassette payment table. Initialize each constant to the matching COL _ constant defined in
Stage 5. Simply delete any existing constant that you do not intend to use. After you update the
Payment.javafile, these old values will not be used.

3. Savethefile.
4. Start your favorite editor and edit your cassette’ s Payment.javafile.

5. Findtheinstance variables, that is, the variables with a name that begins with a prefix of obj. Skip past
objFrameworkPayment. Then make sure that there is an instance variable for each column in your
cassette’ s payment table excluding the primary key columns. (Primary key values can always be
obtained from the framework payment object.) If there are any existing instance variables that you do
not intend to use, copy them to the gutter and declare them deprecated.

6. Examine all the existing methods with a prefix of set or get. If these setter and getter methods
reference a deprecated instance variable, copy them to the gutter and declare them deprecated as well.
Consider adding setter and getter methods for your instance variables. These methods are highly
recommended, even if they are not public, because they offer a convenient place where the values can
be transformed to different internal representations if necessary. For example, setters could be used to
transform a val ue taken from the database into a more appropriate internal representation and getters
could do thereverse.

7. Find the resurrectPayment() method.

1.. Examinethe varSelect declaration and note how it selects arow from the cassette payment table.
Ordinarily no changes are required.

2.. Examinethe Trace.traceDatabaseRead() method call and note how it traces the varSelect
statement. Ordinarily no changes are required.

3.. Afterthestatementi f (var Resul t. next ()), make surethat each instance variable created
aboveisinitialized from the appropriate column of the result set. Simply remove any existing
statement that you do not intend to use. Usethe PAY _ constants for column names. Note that
you should not use the result set directly. Instead, use the correct Etill Archive class method to
read the value for each column. These methods are provided to remove platform and database
inconsistencies in these operations. See Appendix F for tips on how to select the correct class
method for your column.

8. Find the createRecord() method.

1.. Changevarlnsert declaration so that it isinitialized to the SQL INSERT statement required to add
arow to your cassette’ s payment table. Usethe PAY _ constants for column names.

2.. Changethe Trace.traceDatabaseWrite() method call to trace varinsert and all the values that will
be setintoit.

51

IBM WebSphere Payment M anager Cassette Cookbook

10.

11

13.

14.

15.

16.

52

3.. Makesurethereisastatement that adds avalue to the prepared statement for each column in the
database. Simply remove any existing statement that you do not intend to use. Note that you
should not use the prepared statement directly. Instead, use the correct Etill Archive class method
to add the value for each column. These methods are provided to remove platform and database
inconsistencies in these operations. See Appendix F for tips on how to select the correct class
method for your column.

Find the updateRecord() method.

1.. ChangevarUpdate declaration so that it isinitialized to the SQL UPDATE statement required to
modify arow to your cassette’ s payment table. Usethe PAY _ constants for column names.

2.. Changethe Trace.traceDatabaseWrite() method call to trace varUpdate and all the values that will
besetintoit.

3.. Makesurethereisastatement that adds a value to the prepared statement for each column in the
database. Simply remove any existing statement that you do not intend to use. Note that you
should not use the prepared statement directly. Instead, use the correct Etill Archive class method
to add the value for each column. These methods are provided to remove platform and database
inconsistencies in these operations. See Appendix F for tips on how to select the correct class
method for your column.

Find the approve() method. Notethe call to varAccount.authorizePayment() and
varAccount.depositPayment(). Modify thislogic to use your account object to take the appropriate
action. You are free to change the method name, the parameters, and anything else aslong as the all
the other statementsin this method are | eft to do the correct bookkeeping.

Find the approveReversal() method. Note the call to varAccount.voidPayment() and
varAccount.authorizePayment(). Modify thislogic to use your account object to take the appropriate
action. You are freeto change the method name, the parameters, and anything else aslong as the all
the other statementsin this method are left to do the correct bookkeeping.

Find the deposit() method. Note the call to varAccount.capturePayment(). Modify thislogic to use
your account object to take the appropriate action. Y ou are free to change the method name, the
parameters, and anything else aslong asthe all the other statementsin this method are left to do the
correct bookkeeping.

Find the depositReversal () method. Note the call to varAccount.voidPayment() and
varAccount.authorizePayment(). Modify thislogic to use your account object to take the appropriate
action. You are free to change the method name, the parameters, and anything else aslong as the all
the other statementsin this method are left to do the correct bookkeeping.

Savethefile.

Use your favorite text editor to edit your cassette’s Account.javafile. Replace its authorizePayment(),
voidPayment(), and capturePayment() method with whatever is expected by your Payment class.
Implement the logic to exercise your payment appliance and perform the required action. Usethe
getters and setters of the cassette order object and the cassette payment object to obtain and update
cassette dependent information.

Savethefiles. Build your cassette using the #Build script or its associated shortcut. Fix any build
errors. Start the Payment Manager using the #StartManager script or its associated shortcut. Usethe
Sample Store (see Appendix E) to and the Payment Manager user interface to create orders, approve
payments, deposit payments, void payments, close batches, purge batches, close orders, delete orders,

IBM WebSphere Payment M anager

and del ete batches.

Cassette Cookbook

53

IBM WebSphere Payment M anager Cassette Cookbook

Stage 10: Implement Your Credit Class

In thisstep, you will implement your credit class and test the Refund and RefundReversal commands. In
addition, the BatchClose and CloseOrder commands will be tested again.

1. Start your favorite editor and edit your cassette’ s Constants.javafile.

2. Find the constants that begin with a CRE_ prefix. Make surethereisaconstant for each column name
in your cassette payment table. Initialize each constant to the matching COL _ constant defined in
Stage 5. Simply delete any existing constant that you do not intend to use. After you update the
Credit.javafile, these old values will not be used.

3. Savethefile.
4. Start your favorite editor and edit your cassette’ s Credit.javafile.

5. Findtheinstance variables, that is, the variables with a name that begins with a prefix of obj. Skip past
objFrameworkCredit. Then make sure that there is an instance variable for each column in your
cassette’' s credit table excluding the primary key columns. (Primary key values can always be
obtained from the framework credit object.) If there are any existing instance variables that you do not
intend to use, copy them to the gutter and declare them deprecated.

6. Examine all the existing methods with a prefix of set or get. If these setter and getter methods
reference a deprecated instance variable, copy them to the gutter and declare them deprecated as well.
Consider adding setter and getter methods for your instance variables. These methods are highly
recommended, even if they are not public, because they offer a convenient place where the values can
be transformed to different internal representations if necessary. For example, setters could be used to
transform a val ue taken from the database into a more appropriate internal representation and getters
could do thereverse.

7. Find the resurrectCredit() method.

1.. Examinethe varSelect declaration and note how it selects arow from the cassette credit table.
Ordinarily no changes are required.

2.. Examinethe Trace.traceDatabaseRead() method call and note how it traces the varSelect
statement. Ordinarily no changes are required.

3.. Afterthestatementi f (var Resul t. next ()), make surethat each instance variable created
aboveisinitialized from the appropriate column of the result set. Simply remove any existing
statement that you do not intend to use. Use the CRE__ constants for column names. Note that
you should not use the result set directly. Instead, use the correct Etill Archive class method to
read the value for each column. These methods are provided to remove platform and database
inconsistencies in these operations. See Appendix F for tips on how to select the correct class
method for your column.

8. Find the createRecord() method.

1.. Changevarlnsert declaration so that it isinitialized to the SQL INSERT statement required to add
arow to your cassette' s credit table. Use the CRE__ constants for column names.

2.. Changethe Trace.traceDatabaseWrite() method call to trace varinsert and all the values that will
be setintoit.

55

IBM WebSphere Payment M anager Cassette Cookbook

10.

11

13.

14.

56

3.. Makesurethereisastatement that adds avalue to the prepared statement for each column in the
database. Simply remove any existing statement that you do not intend to use. Note that you
should not use the prepared statement directly. Instead, use the correct Etill Archive class method
to add the value for each column. These methods are provided to remove platform and database
inconsistencies in these operations. See Appendix F for tips on how to select the correct class
method for your column.

Find the updateRecord() method.

1.. ChangevarUpdate declaration so that it isinitialized to the SQL UPDATE statement required to
modify arow to your cassette’' s credit table. Use the CRE_ constants for column names.

2.. Changethe Trace.traceDatabaseWrite() method call to trace varUpdate and all the values that will
besetintoit.

3.. Makesurethereisastatement that adds a value to the prepared statement for each column in the
database. Simply remove any existing statement that you do not intend to use. Note that you
should not use the prepared statement directly. Instead, use the correct Etill Archive class method
to add the value for each column. These methods are provided to remove platform and database
inconsistencies in these operations. See Appendix F for tips on how to select the correct class
method for your column.

Find the refund() method. Notethe call to varAccount.captureCredit(). Modify thislogic to use your
account object to take the appropriate action. Y ou are free to change the method name, the parameters,
and anything else aslong as the all the other statementsin this method are |eft to do the correct
bookkeeping.

Find the refundReversal () method. Note the call to varAccount.voidCredit(). Modify thislogic to use
your account object to take the appropriate action. Y ou are free to change the method name, the
parameters, and anything else aslong asthe all the other statementsin this method are left to do the
correct bookkeeping.

Savethefile.

Use your favorite text editor to edit your cassette’s Account.javafile. Replace its captureCredit() and
voidCredit methods with whatever is expected by your Credit class. Implement the logic to exercise
your payment appliance and perform the required action. Use the getters and setters of the cassette
order object and the cassette credit object to obtain and update cassette dependent information.

Savethefiles. Build your cassette using the #Build script or its associated shortcut. Fix any build
errors. Start the Payment Manager using the #StartManager script or its associated shortcut. Usethe
Sample Store (see Appendix E) to and the Payment Manager user interface to create orders, approve
payments, deposit payments, void payments, refund, void refunds, close batches, purge batches, close
orders, delete orders, and delete batches.

IBM WebSphere Payment M anager Cassette Cookbook

Stage 11: Test Your Cassette

In this stage, you will test your cassette.

The directory D:\!PM Cassette\PayGenT est Cases contains all the PayGen test scripts used to perform
regression testing on the LdbCardCassette. Although there are only 8 scripts that exercise the cassette,
nearly 70% of the cassettes codeistested. Notethat the file type of a PayGen script is.ps. To executea
given script, you simply passitsfile name as a parameter to the batch file that is customized in step 1.

1

Using your favorite text editor, edit D:\!PM Cassette\Pay Gen\L dbCardTest0.bat. If necessary,
modify the path tojava.exe and the classpath values so they are suitable for your environment. Save
the file using afile name that you will recognize. For example, if your cassette name is FastPay you
could choose aname like FastPayTestO.bat. The O suffix isconvenient because, to run multiple
independent test scenarios at the same time, you will need a unique batch file for each active scenario

Using your favorite text editor, edit D:\'PM Cassette\Pay Gen\L dbCar dTestO.properties. Modify the
HOSTNAM E property value to match the host name where your Payment Manager test systemis
running. Save the file using the same file name that you used in the step above with afile type of
.properties. PayGen finds the correct properties file by matching the name of the batch file that
invokes the PayGen application.

Test your batch file and your propertiesfile by running the test script named About.ps.

Update and execute the other test scripts in D:\!PM Cassette\PayGenT estCases to make them suitable
for your cassette. To update the scripts,

Find and modify every :StartTest clause that contains a CreateAccount command. Change the
value of the CassetteName parameter and modify the protocol data parameter names and values
to match those necessary for your cassette.

Find and modify every :StartTest clause that contains an AcceptPayment command. Change the
value of the PaymentType parameter and modify the protocol data parameter names and values to
match those necessary for your cassette.

Find and modify every :StartTest clause : ExpectedString-<CassetteProperty ... statement and
a:ExpectedNoString-<CassetteProperty... statement. Remove any statement that tests for
cassette dependent values that your cassette does not supply. Add additional statementsto test the
cassette dependent val ues that you do supply.

If your cassette does not support the M axBatchSize design, you will also need to modify the
D:\!PM Cassette\PayGenT est Cases\Or der Exer cise.ps file by adding explicit BatchClose
commands where the current script expects the batch to be closed automatically.

Before this stage, your cassette was tested using the Sample Store and the Payment Manager user
interface but this methodology is not sufficient. There will always be some error case that cannot be
tested and automation is required for reliable and repeatable testing. Using the scriptsinin

D:\'PM Cassette\PayGenT estCases as an example, design, create, and execute additional PayGen test
scriptsto fully test your cassette. For convenience, you may want to make a hardcopy of thefile

D:\PM Cassette\PayGen\Readme.txt. Thisfile containsall the PayGen documentation.

Be sure to validate that the database tables are updated correctly. Since the Query command
examines the database, not the objectsin memory, it can be used to automate thistest.

Be sure to validate the primary and secondary return code val ues returned.

Be sure to validate that the framework object states change correctly.

Be sure to validate that the state checks are performed correctly.

Be sureto test every supported platform.

57

IBM WebSphere Payment M anager

58

Cassette Cookbook

IBM WebSphere Payment M anager Cassette Cookbook

Stage 12: Package Your Cassette

In this stage, you will complete your cassette.

1. Find all the code that you have copied to a gutter and deleteit. Rebuild your cassette to verify that the
codeisno longer needed. Fix any build errors.

2. Build aninstall package for every supported platform and test them. The Cassette Kit Programmer’s
Guidein the IBM WebSphere Payment Manager Cassette Developer Toolkit contains information that
may help you with this task.

3. Usee-mail and tell this author what you liked and what you didn’t like about this cookbook.

4. Congratulate yourself, you are ready to ship the cassette to your customers.

59

IBM WebSphere Payment M anager Cassette Cookbook

Appendix A: Installing the Java Development Kit

This appendix describes the steps necessary to install a Java Development Kit (JDK) on the Microsoft
Windows NT workstation where you will be developing your cassette. If you have already installed a
JDK on your workstation, you still must perform steps 9 and beyond.

10.

11

Start your favorite browser and navigate to your favorite Java JDK supplier (for example,
http://java.sun.com, or if you are an IBM employee, http://w3.hursley.ibm.com/java) and obtain the
Java Development Kit (JDK) Version 1.1.x wherex is 7 or larger. (Note: JDK 1.2.x is not supported
for cassette development.)

Open thefile obtained in the previous step. The following steps assume that you are using the Install
Shield IDK package for Win32 systems provided by IBM. The panels displayed by the package you
selected may be different than those discussed bel ow, but the following should still provide avaluable
guide.

OnthelnstallShield Self-extracting EXE panel, pressYes. A progress bar appears whilethefiles are
extracted and a setup program will start automatically.

On the resulting Welcome panel, press Next.
On the Softwar e License Agreement panel, press Yes after reviewing the agreement.

On the Select Components panel, accept the default components at the minimum. Use the default
destination directory if possible. Subsequent steps assume that the JDK isinstalled in C:\jdk1.1.8. In
any case, record the destination directory for later use. PressNext.

Onthe Start Copying Files panel, review the settings and pressNext if acceptable. Otherwise return
to the previous panels and correct the settings. A progress bar will be displayed as the components are
installed.

On the Setup Complete panel, uncheck the Yes, | want to view... and pressFinish.
On the task bar, pressStart, Settings, Control Panel.
On the Control Panel panel, open System.

On the System Properties panel, select the Environment tab. Select any variable inthe System
Variables: list box. (Note: Thisisrequired to ensure that the JAVA_HOME environment variable
about to be created will be placed in the system’s environment list. The JAVA_HOME variable must
be available no matter who is logged on to the workstation.) Enter JAVA_HOME inthe Variable
text box and the JDK destination directory, which you recorded above, in the Value text box. Press
SET. (Note: if you press OK before you press Set, your changes will belost) The new environment
variable should now appear in the System Variables: list box. PressOK.

61

IBM WebSphere Payment M anager Cassette Cookbook

Appendix B: Installing the Payment Manager

This appendix describes the steps required to install the IBM WebSphere Payment Manager on the
Microsoft Windows NT workstation where you will be devel oping your cassette.

1

2.

10.

11

13.

14.

15.

16.

17.

18.

Put the IBM WebSphere Payment Manager 2.1 Windows NT CD in your drive.
From the task bar, pressStart, Run.

On the Run panel, pressBrowse

On the Browse panel, navigate to the CD drive and selectinstall.cmd. Press Open
Back on the Run panel, pressOK.

On the Payment Manager Install panel, press Next.

On the Softwar e License Agreement panel, press Accept if the terms are acceptable. The installation
program will check for running applications that may cause installation conflicts.

On the Choose Destination L ocation, use the default destination directory if at all possible.
Subseguent steps assume that the payment manager isinstalled in C:\Program
Files\IBM\PaymentM anager .

On the Select Web Server Option panel, you should see a message informing you that the IBM

WebSphere Application Server products were not detected and will be installed and configured. Press
Next.

On the Select Database to I nstall panel, select Install IBM Universal Database 5.2 and press Next.
On the Payment Manager Database Access | nfor mation panel, the user ID used to logon to the
workstation should already be displayed along with the default Payment Manager Database name
(psadmin). Enter the appropriate password and press Next.

On the Payment Manager Configuration Information panel, use the default TCP port if at all
possible. Subsequent steps assume that the payment manager listens to port 8611. PressNext.

On the Payment Engine Shortcut panel, select Create a Payment Engine shortcut and press Next.
Onthelnstallation Summary, review the options selected. Use Back to return to a previous panel if
you need to correct avalue. When everything is acceptable, pressNext. An Install Progress panel
will appear with aprogress bar. After apreliminary step, IBM Universal Database DB2 will be
installed followed by the IBM WebSphere Application Server. Finally, the Payment Manager will be
installed and its database tables will be created.

OnthelBM WebSphere Payment Manager ... panel, pressNext. Y our default web browser will be
started and the README file will be displayed. Review thefile, print thefileif you deem it
necessary, and close the web browser.

On the Infor mation Panel, note the message and pressOK.

Close all the open windows.

Onthe Task Bar, select Start, Shutdown.

63

IBM WebSphere Payment M anager Cassette Cookbook

19.

20.

21

23.

24.

25.

26.

27.

28.

29.

3L

32.

On the Shut Down Windows panel, select Restart the computer? and press Yes.

When the workstation restarts, logon using the same user ID and password you used when installing
the Payment Manager.

OnthelBM Software Registration Tool panel, press Next.

On the subsequent IBM Softwar e Registration Tool panel, enter values to identify yourself and press
Next.

On the subsequent IBM Softwar e Registration Tool panel, enter values to identify your organization
and press Next.

On the subsequent IBM Softwar e Registration Tool panel, enter the country of your mailing address
and press Next.

On the subsequent IBM Softwar e Registration Tool panel, enter your mailing address and press
Next.

On the subsequent IBM Softwar e Registration Tool panel, enter your telephone numbers and e-mail
address. PressNext.

On the subsequent IBM Softwar e Registration Tool panel, select the benefits desired and if you care
to, agree to provide customer survey responses. If you have previously registered this software, in
other words, thisis not the first time you have installed this software, it is recommended that you
choosethe“| do not wish to receive...” option and do not agree to answer customer survey questions.

On the subsequent IBM Softwar e Registration Tool panel, select the desired registration option. If
you have previously registered this software, it is recommended that you choose the Telephone option.

On the subsequent IBM Softwar e Registration Tool panel, follow the directions. If you have
previously registered this software and have followed the recommendations above, Y our panel will
have atext field for the registration number. 1f you know your registration number, enter it here.
Otherwise, just enter 5. PressNext.

Onthefinal IBM Software Registration Tool panel, press Exit.

Onthe Task Bar, select Start, Settings, Control Panel.

On the Control Panel panel, open Services.

On the Services panel, the following services should show astatus of Active and a Startup value of
Automatic.

-DB2-DB2

- DB2 - DB2DAS00

- IBM HTTP Administration
- IBM HTTP Server

On the same Ser vices panel, the WebSphere Servlet Service should have blank Status value and a
Startup value of Manual. Thisis correct because this serviceisintegrated with the IBM HTTP Server.

Close the Services panel and the Control Panel panel.

IBM WebSphere Payment M anager

Cassette Cookbook

65

IBM WebSphere Payment M anager Cassette Cookbook

Appendix C: Practice with LdbCard

The LdbCard cassette was written to use a payment appliance developed by IBM but never released as a
product. This payment appliance was chosen mostly because it was convenient but also because it
illustrates most of the implementation details you are likely to find in your own development project.
However, there are legal restrictions that prohibit the distribution of this appliance outside of my team.

If you would like to use LdbCard as a practice cassette, the following steps describe how modify the
LdbAccount class to make it independent of the payment appliance.

1

2.

Start your favorite editor and edit LdbCardA ccount.class.

Find the connect() method. Leave the blocks that trace the function entry and exit, but remove all the
other statements.

Find the authorizePayment() method. Right after the block that traces the function entry, you will find
an assignment statement for var Result. Change the statement

bool ean varResult = fal se;

to

bool ean varResul t true;
Then remove all the statements after this statement up to, but not including, the block that traces the
function exit.

Repeat step 3 for each of the following methods.
- capturePayment()

- voidPayment()

- captureCredit()

- voidCredit()

- settleBatch()

Recompile the LdbCard cassette using the Rebuild tool in the Visual SlickEdit project or with the
following commands.

D:

CD D:\! PMCassette

SET JDKDI R=C:\j dk1.1.8

SET WORKDI R=comli bmetil |\l dbcardcassette

SET ETILLDI R=C:\ Program Fi | es\ | BM Paynent Manager

SET CLASSPATH=C:\JDK1.1.8\lib\classes.zip

SET CLASSPATH=%ETI LLDI R% eTi | | Cl asses. zi p; UCLASSPATHY
SET CLASSPATH=%AORKDI R | i b\ j api . zi p; UCLASSPATHY

SET CLASSPATH=. \ ; UCL ASSPATH%

ERASE 9NORKDI R%A *. cl ass

%I DKDI R bi n\j avac %NORKDI R% LdbCar dCassette. java

% DKDI R bi n\j avac %ANORKDI R% LdbCar dCassett eQuery. j ava

Rebuild the LdbCardCassette.jar using the M ake JAR tool in the Visual SlickEdit project or with the
following commands.

67

IBM WebSphere Payment M anager Cassette Cookbook

10.

11

13.

68

D:

CD D:\! PMCassette

SET JDKDI R=C:\j dk1.1.8

SET WORKDI R=com\i bmietil |\l dbcardcassette

SET TARGET=LdbCardCassette.jar

XCOPY 9AORKDI R * . properties .\

%I DKDI R bi n\jar cf0 %rARGET% NORKDI R . cl ass *. properties
ERASE *. properties

COPY %IARGET% 9%AORKDI RA 1 i b

Use your favorite text editor to editL dbCar d#StartM anager .cmd. Find all instances of the string
“ldbader” and replace them with the workstation user 1D used toinstall the Payment Manager. Note
that this command file takes one parameter (find*“%1"), the password used to authenticate this user ID.

Copy the LdbCard files into the production system using the I nstall tool in the Visual SlickEdit project
or with the following commands.

D:

CD D:\! PMCassette

SET WORKDI R=comlibm etil |\l dbcardcassette

SET ETI LLDI R=C:\ Program Fi | es\ | BM Paynent Manager
XCOPY 9%MNORKDI R9A *. cnd " %ETI LLDI R%

XCOPY 9%NORKDI RoA *. sql " %ETI LLDI R Ar chi ve"

XCOPY 9%NORKDI RoA *. PSPL " %ETI LLDI RoA pspl ™

XCOPY 9%NORKDI RO i b\ *.* "OETI LLDI R&

Install the LdbCard cassette into your production system by opening a DB2 command window (Start,
Programs, DB2 for Windows NT, Command Windos) and executing the LdbCard#l nstall.cmd
script that was copied into your production system in step 8 in the resulting command window.

Start the Payment Manager using the L dbCard#StartM anager.cmd script that was copied into your
production system in step 8. Be sure to specify aparameter, namely the password necessary to
authenticate the user 1D you placed into the command filein step 7.

From the task bar, select Start, Programs, WebSpher e Payment M anager, Payment M anager
Logon. Logon (the default user ID and password are both admin), create a merchant that is authorized
to use LdbCard, and create an LdbCard account for the merchant (the values specified for account
parameters won’'t matter).

Make some purchases with the sample store.

Return to the Payment Manager user interface and have some fun approving, voiding, depositing,
crediting, and settling.

IBM WebSphere Payment M anager Cassette Cookbook

Appendix D: Using the Sample Store

The sample buy page that is provided with the payment manager is unsuitable for testing a cassette. Its
servlet contains hard coded assumptions for the PAYMENTTY PE parameter and the protocol datavalues
to be passed on the AcceptPayment verb. Furthermore, the servlet invoked by the sample buy page does
not provide any feedback about the result of its actions.

The Sample Store provided with the cookbook materials overcomes these limitations and can be used to
generate Payment Manager ordersto help you test your cassette. Theindex.html fileincluded in the
Sample Store contains a sample buy page containing an HTML form that uses an HTTP POST request to
invoke the Sample Store servlet. Inturn, the servlet uses the parameters passed on the POST request to
issue an AcceptPayment command to the Payment Manager. See the following table to understand the
relationship between the form and the servlet’ s actions.

Parameter provided by the HTML Action Taken by the Servlet on its AcceptPayment

Form Command

PAYMENTTYPE Thevalueisused asthe value for the PAYMENTTY PE
keyword.

MERCHANTNUMBER Thevalue isused asthe value for the MERCHANTNUMBER
keyword.

AMOUNT The value is used as the value for the AMOUNT keyword.

CURRENCY The value is used as the value for the CURRENCY keyword.

ORDERNUMBER Thevalueisignored. The servlet automatically generates a

value for the ORDERNUMBER parameter by using the date and
time. Thisallows multiple orders to be generated from the same
form.

EXPIRYYEAR and EXPIRYMONTH | Thefour digit year value is combined with the 2 digit month
value (YYYYMM) to make the value for the SEXPIRY protocol
data keyword.

Any parameter that beginswith $ The keyword and its value are passed as cassette dependent
protocol data.

Follow these steps to use the Sample Store.

1. Useyour favorite text editor to modify D:\!PM Cassette\SampleStore\index.html. Change every
occurrence of LdbCard to your cassette name. Save thefile.

2. If necessary, use your favorite text editor to modify D:\!PM Cassette\Sampl eStore\index.html. For
example, if your cassette has additional protocol data values that must be specified by the shopper, add
the required input fields to the HTML table inside the HTML form. Usethe $PAN parameter as an
example. If your cassette has additional protocol datavaluesthat, for the purposes of atest, are
constants, add the required hidden input fieldsto the HTML form. Usethe PAYMENTTY PE
parameter as an example. Savethefile.

3. If necessary, use your favorite text editor to modify D:\!PM Cassette\Sampl eStore\SampleStore.java.
Typically thisisunnecessary. Itisonly required when protocol data values must be computed instead
of passing through. For an example, look how EXPIRYYEAR and EXPIRY MONTH values are
combined to make the $EXPIRY parameter value.

4. Recompilethe Sample Store cassette using the Compile tool in the Visual SlickEdit project, the
SampleStore#Build.cmd provided, or with the following commands.
D:
CD D:\! PMCassette
SET JDKDI R=C:\j dk1.1.8

69

IBM WebSphere Payment M anager Cassette Cookbook

70

SET WORKDI R=Sanpl eSt or e

SET ETILLDI R=C:\ Program Fi | es\ | BM Paynent Manager

SET JAVAXDI R=%ETI| LLDI R% | BMAeDAS

SET CLASSPATH=%JDKDI R% | i b\ cl asses. zi p

SET CLASSPATH=%JAVAXDI R% | i b\ j sdk. j ar ; UCLASSPATH%

SET CLASSPATH=%ETI LLDI R eTi | | Cl asses. zi p; UCLASSPATHY
SET CLASSPATH=%AORKDI R% %CL ASSPATHY

ERASE 9NORKDI R% *. cl ass

%I DKDI R% bi n\j avac %AORKDI R% Sanpl eSt ore. j ava

Copy the Sample Store files into the production system using the I nstall tool in the Visual SlickEdit
project, the SampleStore#Build.cmd provided, or with the following commands.

D:

CD D:\! PMCassette

SET WORKDI R=Sanpl eSt or e

SET ETILLDI R=C:\ Program Fi | es\ | BM Paynent Manager
SET HTMLDI R=%ETI| LLDI R% ht t pd\ ht docs

SET SERVLETDI R=%eti | | di r% | BW\ebAS\ servl ets

xcopy 9NORKDI R *. cl ass " %SERVLETDI R%

xcopy 9AORKDI R% *. html " 9%dTM.DI R% Sanpl eSt ore\ *. *"

Start your favorite browser and go to http://host/SampleStorewhere host is replaced with the host
name of the workstation where the Payment Manager isinstalled. To create an order, fill out the form
and press the Buy button.

IBM WebSphere Payment M anager Cassette Cookbook

Appendix E: LdbCard Class Descriptions

This appendix describes the classes implemented for the LdbCard cassette.

LdbCardCassette

Class Name
Extends
Implements

Responsibilities

Construction

Destruction

Contains

Refer ences

Referenced by

LdbCardCassette
Cassette
LdbCardConstants

This object is responsible for managing the cassette’ s resources within the
Payment Manager framework. The framework uses cassette methods for
initialization, creating new objects, resurrecting existing objects from the
database, and for servicing API requests that affect administration, payments,
and credits.

During initialization, the framework dynamically loads this class and
constructs a single instance when the cassette is referenced by arow in the
ETCASSETTECFG database table.

Never. The object exists until the Payment Manager isterminated.

A payment type, aresource bundle identifier, and a Hashtabl e that contains
validation objects for parsing and validating protocol data

None

The framework Supervisor

71

IBM WebSphere Payment M anager Cassette Cookbook

LdbCardConstants

I nterface Name LdbCardConstants

Extends PaymentA pi Constants

Responsibilities Thisinterface defines any constant that is used in more than one class.
Contains - The payment type

Thetraceidentifier

All cassette dependent database table names

All cassette dependent database view names

All column names for the cassette dependent database tables
All XML data member names

All protocol datakeywords

All cassette dependent secondary return codes

All message number constants

72

IBM WebSphere Payment M anager Cassette Cookbook

LdbCardCassetteQuery

Class Name L dbCardCassetteQuery

Extends CassetteQuery

| mplements LdbCardConstants

Responsibilities This object isresponsible for extracting cassette dependent information for

Construction

Destruction
Contains
References

Referenced by

Payment Manager query requests. The framework uses the methods for
processing query requests that include cassette resources. Inner classes that
extend the QueryRequest class are used to construct the SQL statements that
obtain the cassette dependent information and process the result set.

During initialization, the framework dynamically loads this class and
constructs a single instance when the cassette is referenced by arow in the
ETCASSETTECFG database table.

Never. The object exists until the Payment Manager is terminated.

A payment type and aresource bundleidentifier

Nothing.

The framework Servlet.

73

IBM WebSphere Payment M anager Cassette Cookbook

LdbCardAccount
Class Name LdbCardA ccount

Extends Object

| mplements LdbCardConstants, Archivable

Responsibilities + Thisclassisresponsible for managing a collection of account objects that
are used by the cassette to process merchant payment requests.

An object isresponsible for selecting and retrieving an open batch to
contain a payment or credit that uses the account for processing.

An object isresponsible for managing the relationship between the
merchant and the financial network. It isresponsible for making
connections to the financial network and exchanging data between the
cassette and the payment network. It isalso responsible for processing
administration requests that start, stop, create, modify, or del ete accounts
from the configuration.

Construction During initialization, the cassette constructs an account object for each row in
the cassette account table. After initialization, the cassette constructs an
account object while processing a CREATE_ACCOUNT administration
request.

Destruction An account object becomes available for garbage collection after the cassette
processesa DELETE_ACCOUNT administration request.

Contains - A merchant number
An account number

Other cassette dependent data that defines the merchant account options
(for example, the currency supported)

Other cassette dependent data that identifies the merchant in the financial
network

Other cassette dependent data used to connect to the financial network

References The associated framework AccountAdmin object

Referenced by + Thisclass' s account collection
Any order that uses this account to perform payment processing

74

IBM WebSphere Payment M anager Cassette Cookbook

LdbCardBatch

Class Name
Extends
I mplements

Responsibilities

Construction

Destruction

Contains

Refer ences

Referenced by

LdbCardBatch
Object
CassetteBatch, LdbCardConstants

An object isresponsible for recording cassette dependent persistent batch
data, managing the batch state kept in the framework batch object, and
processing the merchant batch requests, namely

CloseBatch
DeleteBatch
PurgeBatch.

An object is constructed when the framework asks the cassette to create or
resurrect a batch.

An object becomes available for garbage collection after the batch is closed or
deleted.

Cassette dependent data for managing a batch

The cassette object that owns the batch
The associated framework batch object

The cassette account object that will be used to process the batch’s
payment requests

The associated framework batch object

The open batch collection in the associated framework AccountAdmin
object

75

IBM WebSphere Payment M anager

LdbCardOrder

Class Name
Extends
Implements

Responsibilities

Construction
Destruction
Contains

Refer ences

Referenced by

76

Cassette Cookbook

LdbCardOrder
Object
CassetteOrder, LdbCardConstants

An object isresponsible for associating the account object to be used for
payment requests, recording all the cassette dependent persistent order data
(typically protocol data values passed when the order is created), managing
the state of the framework order object, and processing or routing all the
requests that affect an order, namely

ReceivePayment
AcceptPayment
Approve
ApproveReversal
Deposit
DepositReversal
Refund
RefundReversal
CloseOrder
Cancel Order
CloseBatch

An object is constructed when the framework asks the cassette to create or
resurrect an order.

An object becomes available for garbage collection when the framework
removes the associated framework order object from the cache.

Cassette dependent order information (for example, the credit card brand, the
credit card number, the expiration date, and any address verification data)

The cassette object that owns the order
The associated framework order object

The associated cassette account object that will be used to process the
order’s payment requests

The associated framework order object

IBM WebSphere Payment M anager Cassette Cookbook

LdbCardPayment

Class Name
Extends
Implements

Responsibilities

Construction

Destruction

Contains

Refer ences

Referenced by

L dbCardPayment
Object
CassetteTransaction, LdbCardConstants

An object isresponsible for recording all the cassette dependent persi stent
payment data (typically values that identify the payment in the financial
network and values that record the outcome of any payment transactions
performed), for managing the state of the framework payment object, and for
processing all the API requests that affect a payment, namely

Approve
ApproveReversal
Deposit
DepositReversal.
CloseBatch
PurgeBatch

An object is constructed when the framework asks the cassette to create or
resurrect a payment.

An object becomes available for garbage collection when the framework
removes the associated framework payment object from the cache.

Cassette dependent payment information (for example, financial network
payment identifiers, approval codes, and reason codes)

The cassette object that owns the payment
The associated framework payment object

The associated framework payment object

The transaction key in the payment list container of the framework batch
object that contains this payment

77

IBM WebSphere Payment M anager Cassette Cookbook

LdbCardCredit

Class Name
Extends
Implements

Responsibilities

Construction

Destruction

Contains

References

Referenced by

78

LdbCardCredit
Object
CassetteTransaction, LdbCardConstants

An object isresponsible for recording all the cassette dependent persi stent
credit data (typically values that identify the credit in the financial network
and values that record the outcome of any credit transactions performed), for
managing the state of the framework credit object, and for processing all the
API requests that affect a credit, namely

Refund
RefundReversal
CloseBatch
PurgeBatch.

An object is constructed when the framework asks the cassette to create or
resurrect a credit.

An object becomes available for garbage collection when the framework
removes the associated framework credit object from the cache.

Cassette dependent credit information (for example, financial network credit
identifiers, approval codes, and reason codes)

1. The cassette object that ownsthe credit
2. Theassociated framework credit object

The associated framework credit object

The transaction key in the credit list container of the framework batch
object that contains this credit

IBM WebSphere Payment M anager Cassette Cookbook

Appendix F: Tips and Techniques

This appendix contains miscellaneous tips and techniques that may help you design and develop your
cassette.

How To Add Multiple Brand Administration Objects

1. Makesureyouwant to do this. Thisisgoingto add agreat deal of complexity to your cassette. Make
sureitisworthit. If the number of brandsis afinite short list, consider making afew BRAND
columnsin the Account table (one group of columns for each brand). If the number of brands varies
too much for this approach, consider making an account per brand. Yes, for a given merchant, some
information will be duplicated in all the accounts, but that isasmall priceto pay for the simplicity.
Note that, in this respect, both the SET cassette and the CyberCash cassette are bad examples. They
consumed programmer years of effort to implement brands when other design points would have been
much better for the customers. Continue only if you are absolutely certain that you want to implement
brands.

2. Start with theinitialization SQL statements. Y ou will need to create a brand table and a view that will
select rows from the brand table when the merchant queries an account. Be sure to add the table name,
view name, and column namesto your Constants interface.

CREATE TABLE xxxBrand(Mer chant Nunber VARCHAR(9) NOT NULL,
Account Nunber VARCHAR(9) NOT NULL,
Br andl D VARCHAR(32) NOT NULL,

add your cassette dependent columms here

Enabl ed SMALLI NT,

Active SMALLI NT,
Valid SMALLI NT,
Pendi ng SMVALLI NT,
MessagesKey VARCHAR(40) ,

PRI MARY KEY (Merchant Nunber, Account Nunber, BrandlD));

CREATE VI EW xxxBrandVi ew AS SELECT
ETACCOUNTCFG. *,
xxXBr and. Br andl D,

add your cassette dependent columms here

xxxBr and. Enabl ed as BrandEnabl ed,
xxxBrand. Acti ve as BrandActi ve,
xxxBrand. Val i d as BrandVali d,
xxxBr and. Pendi ng as BrandPendi ng,
xxxBr and. MessagesKey as BrandMessagesKey
FROM xxxBr and, ETACCOUNTCFG WHERE
xxxBr and. Mer chant Nunber = ETACCOUNTCFG. Mer chant Nurrber
and xxxBrand. Account Nunber = ETACCOUNTCFG. Account Nunber ;

3. Update your PSPL to add a panel that adds, modifies, and del etes brands associated with an account.
Be sure to add your XML field IDsto your constantsinterface.

79

IBM WebSphere Payment M anager Cassette Cookbook

<screen id="brand" updatel D="BRAND' confi gures="PSMer chant Account ">

<nane>Br ands</ nanme>

<short Hel p>Add, edit, or delete brands for this account.</shortHel p>

<header><![CDATA[dick on a brand to edit or delete the brand.]]></header>

<enptyLi st>No brands exist for this account. Create a brand by clicking
Add a Brand. </ enpt yLi st >

<fi el dGoup i d="brand">

<header >Enter this information as instructed by your financi al

institution or certificate authority. </ header>

Add your cassette dependent field tags here

</fiel dG oup>

<action id="add">Add a Brand...</action>

<action id="del ete">Del ete Sel ected Brands...</action>
<action id="create">Create Brand</action>

<action i d="updat e">Updat e</ acti on>

<action id="revert">Revert</action>

Add your cassette dependent nessages here. Below are a few exanpl es.
You will need to define your own secondary return codes.

<nessage i d="PRC=5- SRC=11012" type="error">Error: The Brand Name nust be
between 1 and 32 characters. </ nessage>

<nmessage i d="PRC=5- SRC=11013" type="error">Error: The Certificate Authority

nmust be between 1 and 32 characters. </ nessage>

<nmessage i d="PRC=3- SRC=11012" type="error">Error: The Brand Nane is
requi red. </ nessage>

<nessage i d="PRC=6- SRC=400" type="error">Error: The given character
encoding i s not supported. </ nessage>

<nessage i d="PRC=2- SRC=11100" type="error">Error: The specified Brand Nane
does not exist for this account. </ nessage>

<nessage i d="PRC=8- SRC=11100" type="error">Error: A brand with the given
Brand Name al ready exists for this account. </ nmessage>

<nessage i d="PRC=59- SRC=204" type="error">Error: A brand cannot be del eted

unless all related orders are in Cancel ed or O osed state. </ nessage>
</ screen>

4. Update your CassetteQuery classto obtain and combine all the brand information whenever an
AccountQueryRequest is processed. Model the BrandQuery and Brandinfo inner classes after the
AccountQuery and Accountlnfo inner classes, respectively.

} else if (argRequest instanceof Account QueryRequest) {
Account Query varQuery = new Account Query(
(Account Quer yRequest) ar gRequest
)
var Query. cormbi ne(ar gFr anewor kObj ect s) ;
BrandQuery varBrand = new BrandQuery(
(Account Quer yRequest) ar gRequest

80

IBM WebSphere Payment M anager Cassette Cookbook

)
var Brand. conmbi ne(ar gFr anewor kObj ect s) ;

}

5. Update your Cassette class to handle the AdminRequests that create, modify, and del ete merchant
cassette objects.

6. Updateyour Cassette classto initialize all the brand objects during the readConfiguration(),
verifyConfiguration(), and initialize() methods.

7. Using the LdbCardAccount as a model, implement your cassette's Brand class. Your Brand class
should extend AdminObject and implement your constants. Most likely you will need these methods

Static methods

- resurrectBrands

- verifyBrands

- initializeBrands

- retreiveBrand

- retreiveAccountBrands
- validateCreateRequest
- validateM odifyRequest
- validateDel eteRequest
I nstanceM ethods

- two constructors: one for creating a brand from protocol data, one for ressurrecting a brand during
initialization

- createRecord

- updateRecord

- deleteRecord

- modifyBrand

- deleteBrand

- startBrand

- stopBrand

8. Update your account so that it cascades functionsto all its brands. For example
If you start an account, all its brands should be started

if you stop an account, all its brands should be stopped
if you delete an account, all its brands should be del eted.

How to Create Specialized Parameter Validation Objects

Y ou can create specialized parameter validation objects.
1. Extend the ParameterValidationltem class or any of its existing subclasses.

2. Implement aconstructor with

- A String parameter for the parameter keyword

- A short parameter for the secondary return code

- A boolean parameter that indicates whether or not null value are allowed
- Any other parameter used by your class to validate the parameter value

81

IBM WebSphere Payment M anager Cassette Cookbook

3. Inyour constructor, call the appropriate constructor for your super class.
4. Implement avalidateAndInsertVaue() method with

A byte[] parameter that contains the value
A ParameterTable parameter where the result will be placed
A throws ETill AbortOperation clause.

5. Inyour validateAndinsertValue() method perform the required conversions and validity checks.
Throw an ETill AbortOperation exception with the appropriate primary return code and the secondary
return code passed in the constructor if thereis any conversion error or validity check failure.
Otherwise, save the converted value in the supplied Parameter Tabl e using the parameter keyword
passed on the constructor asthe key.

The cookbook materials contain an example that performs the Luhn Check on credit card numbers. Look
in D:\IPM Cassette\com\ibm\l dbtestcassette\L uhnStringV alidationltem.java.

82

IBM WebSphere Payment M anager Cassette Cookbook

Appendix G: WebSphere Commerce Suite V4.1

The IBM WebSphere Commerce Suite Version 4.1 is adescendent of and replacement for IBM
Net.Commerce. The WebSphere Payment Manager isincluded with every copy of the WebSphere
Commerce Suite. Every WebSphere Commerce Suite customer is potentially a customer for your cassette.

The WebSphere Commerce Suite is extraordinarily flexible and customizable. Thereis no doubt that,
given enough effort, any merchant can customize a store to use your cassette to its full capability while
providing the shopper with a delightful shopping experience. But most merchants cannot afford the effort
necessary develop the best possible implementation. Typically, they rely on default conventions and
default programming provided by IBM. When customization is necessary, they rely on sample source that
can be easily modified to perform correctly in their environment.

As acassette devel oper, you are faced with several choices.

Y ou can ignore the WebSphere Commerce Suite. However, thiswill limit your customers to those that
can afford to design and devel op customized software that exploits your cassette and its financial
network.

Y ou can study the WebSphere Commerce Suite just enough to assure that your cassette will work with
the default programming provided by IBM. However, thiswill probably reduce the usefulness of your
cassette to the smallest common subset of functions supported by all payment cassettes. The advanced
features of your cassette, and therefore your competitive edge, will belost.

You caninvest in extraeffort and provide the WebSphere Commerce Suite merchants with instructions
and software that can be used to customize the merchant’s store. However, this option comes with its
own challenge: you must sustain the cost of the additional development and testing while providing a
deployment package that does not overwhelm the merchant.

THE FOLLOWING SECTIONSIN THIS APPENDIX WILL

Help you understand the system behavior of the default programming provided by IBM

Help you understand how you can provide software that the merchant can use to extend the system
beyond the default programming

Describe IBM’svision for a better system where cassette developers do not have to provide special
merchant software for the WebSphere Commerce Suite or any other merchant business system.

The Default Behavior for Cassettes That Support a Wallet

To trigger this behavior, the merchant must customize the macro assigned to the ORD_DSP_PEN view
task. Roughly, ORD_DSP_PEN translatesto “display the pending order”. Thistask isinvoked when the
shopper presses a button indicating the desire to checkout. By default, the macro displaysthe order inits
final form and gives the shopper an opportunity to select a payment method.

The customization provided by the merchant gives the shopper away to indicate that they wish to pay for
the order using their wallet. (Thewallet isabrowser plug-in that will wake up after your cassette supplies
the wake-up message in response to a ReceivePayment command.) Thisweb page will be coded so that
when the shopper makes this choice

83

IBM WebSphere Payment M anager Cassette Cookbook

AnHTTP form will be posted to the WebSphere Commerce Suite OrderProcess command or the first
command in a chain of commands that eventually posts the OrderProcess command

The form will contain a hidden parameter named do_payment_type where do_payment_type=INIT
The formwill contain a hidden parameter named payment_type where the valueis set to your cassette
name

The form will contain a hidden parameter named merchant_rn where the value matches the merchant’s
merchant number

The form will contain a hidden parameter named order_rn where the value matches the shopper’ s order
number.

When the post request reaches the OrderProcess command, the following events occur.

The OrderProcess command reaches a point where it decides how to collect payment information. In

this case, do_payment_typeisINIT so it invokes the overridable function that has been assigned to the

DO_PAYINIT processtask. By default, the RecvPaymentPM function provided by IBM is assigned to
this task.

RecvPaymentPM invokes the overridable function assigned to the PAY_PROTOCOL_DATA process
task. By default, thistask is assigned to afunction that does nothing.

RecvPaymentPM invokes the overridable function assigned to the PAY _ORDER_DESC task. By

default, thistask is assigned to the OrderDesc function provided by IBM. It generates a string that
describesthe order. Hereisan example.

K. J. Hol di ngs I nc.
Order #30164

SKU# Description Quantity Price/Unit Price
91-123H Cl aw Hanmer 1 15. 89 15. 89
91-648B Bal | pei n Hammrer 1 13. 99 13. 99
Sub- Tot al 29. 88

Tax 4.48

Shi ppi ng 5.00

Shi ppi ng Tax 0. 00

Grand Tot al 39. 36

RecvPaymentPM sends a ReceivePayment command to the WebSphere Payment Manager where

- AMOUNT is set to the order’ s amount

- CURRENCY isset to the store’ s currency

- MERCHANTNUMBER is set to the value of the merchant-rn
- ORDERNUMBER is set to the value of the order_rn

- PAYMENTTYPE is set to the value of payment_type

- AUTOAPPROVE is set to the value that is found in the AutoA pprove column of the PAY OPTIONS
table where the merchant number and payment type is used as an index to find the row
- When AutoApprove=1, PAYMENTAMOUNT is set to the same valueas AMOUNT

- When AutoApprove=1, PAYMENTNUMBER issetto 1

IBM WebSphere Payment M anager Cassette Cookbook

- When AutoApprove=1, AUTODEPOSIT is set to the value found in the AutoDeposit column of the
PAY OPTIONS table using the same row that found the AutoApprove configuration value.
- Additional protocol data keywords and values are taken from a name/value pair table, empty by

default but potentially updated by the overrideable function assigned to the
PAY_PROTOCOL_DATA task.

When ReceivePayment compl etes successfully, RecvPaymentPM extracts the wake-up message and
returnsit to the shopper’ s browser. Payment protocols are then exchanged between the shopper’s
wallet and your cassette. When the ReceivePayment fails, RecvPaymentPM sets the error handler to
the DO_PAYMENT_ERR exception task and returnsfalse. Thiserror task does nothing but inform
the shopper that an error occurred in the most general terms. The primary and secondary return codes
from the Payment Manager are not used to provide any detailed information about the cause even
when the failure was caused by bad shopper input.

Meanwhile, a background server thread is watching the state of the Payment Manager orders. When an
order state changes from “Requested” to “Ordered” or “Refundable’, the UPDATE_INV task isused
to commit the inventory to the shopper’sorder. In unsuccessful, the WebSphere Commerce Suite
order isset to “Insufficient Inventory” and merchant intervention is required to resolve the problem.

Meanwhile, a background server thread is watching the state of the Payment Manager payments.
When a payment state changesto “ Approved”’ and the WebSphere Commerce Suite order is not
“Insufficient Inventory”, the WebSphere Commerce Suite order is set to “ Complete” (in other words,
ready to ship).

The Default Behavior for Cassettes That Support Explicit Shopper Input

To trigger this behavior, the merchant must customize the macro assigned to the ORD_DSP_PEN view
task. Roughly, ORD_DSP_PEN translatesto “display the pending order”. Thistask isinvoked when the
shopper presses a button indicating the desire to checkout. By default, the macro displaysthe order inits
final form and gives the shopper an opportunity to select a payment method.

The customization provided by the merchant gives the shopper away to indicate that they wish to pay for
the order by manually entering payment information. The shopper enters payment information into an
HTML form and, eventually, the values entered are sent to the Payment Manager using an AcceptPayment
command. Thisweb page will be coded so that when the shopper makes this choice

An HTTP form will be posted to the WebSphere Commerce Suite OrderProcess command or the first
command in achain of commands that eventually posts the OrderProcess command

The form will not contain a hidden parameter named do_payment_type or, optionally, will contain a
hidden parameter named do_payment_type where the value is unspecified (in other words, the valueis
null).

The form will contain a hidden parameter named do_payment_type_suffix where
do_payment_suffix=PMACCEPT.

The formwill contain a hidden parameter named payment_type where the valueis set to your cassette
name

The form will contain a hidden parameter named merchant_rn where the value matches the merchant’s
merchant number

The form will contain a hidden parameter named order_rn where the value matches the shoppers order
number

The formwill contain a parameter named cctype where the value is the brand name of the supported
payment instrument chosen by the shopper (for example, Visaor Discover)

85

IBM WebSphere Payment M anager Cassette Cookbook

The form will contain a parameter named ccnum where the value is a personal account number, entered
by the shopper, for the payment instrument chosen

The form will contain a parameter named ccxyear where the valueis ayear, selected by the shopper,
when the payment instrument will expire

The form will contain a parameter named ccxmonth where the value is a month, selected by the
shopper, when the payment instrument will expire.

When the post request reaches the OrderProcess command, the following events occur.

The OrderProcess command reaches a point where it decides how to collect payment information. In

this case, do_payment_typeisnull so it examinesthe do_payment_suffix. It buildsanew task name
by appending an underscore and the value of the do_payment_suffix keyword to the end of
DO_PAYMENT. In this case, the resulting task nameis DO_PAYMENT_PMACCEPT. It then
invokes the overridable function that has been assigned to the process task with the task hame just
constructed. By default, the DoPaymentPM A ccept function provided by IBM is assigned to the
DO_PAYMENT_PMACCEPT process task.

DoPaymentPM A ccept performs validation checks on the ccnum value.

- The value specified for cctype is used to select the appropriate rowsin the CCCHECK table.

- For each row found, the value of the Prefix column is compared to the prefix of the value specified
for ccnum. If amatch isnot found, an exception is thrown and the shopper isinformed that the
specified valueisinvalid. If amatch isfound, the row isused for the next checks.

- The length of the ccnum value is compared with the Length column of the selected row. If thereis
no match, an exception is thrown and the shopper isinformed that the specified valueisinvalid. If a
match isfound, the row is used for the next check.

- A task nameis obtained from the CheckAlgorithm column of the selected row. That task isinvoked
to complete the ccnum checks. If thistask discovers a problem, an exception isthrown and the

shopper isinformed that the specified valueisinvalid. Otherwise, control is returned to
DoPaymentPmA ccept.

Typically, the CheckAlgorithm column contains the value DO_LUHN_CHECK. By default, the
DoL uhnCheck function provided by IBM is assigned to thistask.

DoPaymentPM Accept performs validation checks on the ccxyear and ccxmonth values. If the

indicated expiration date has passed, an exception isthrown and the shopper isinformed that the
instrument has expired. If theindicated expiration dateis 10 years or more in the future, an exception
isthrown and the shopper isinformed that the expiration date isinvalid.

DoPaymentPM A ccept invokes the overridable function assigned to the PAY_PROTOCOL_DATA
processtask. By default, thistask isassigned to afunction that does nothing.

DoPaymentPM A ccept invokes the overridable function assigned to the PAY_ORDER_DESC task. By

default, thistask is assigned to the OrderDesc function provided by IBM. It generates a string that
describes the order. Hereisan example.

K. J. Hol di ngs Inc.
Order #30164

SKU# Description Quantity Price/Unit Price
91-123H Cl aw Hanmer 1 15. 89 15. 89
91- 648B Bal | pei n Hammer 1 13. 99 13. 99

86

IBM WebSphere Payment M anager Cassette Cookbook

Sub- Tot al 29. 88
Tax 4.48

Shi ppi ng 5.00

Shi ppi ng Tax 0. 00
Grand Tot al 39. 36

DoPaymentPM A ccept sends an AcceptPayment command to the WebSphere Payment Manager where

- AMOUNT is set to the order’s amount

- CURRENCY isset to the store’ s currency

- MERCHANTNUMBER is set to the value of the merchant-rn

- ORDERNUMBER is set to the value of the order_rn

- PAYMENTTY PE is set to the value of payment_type

- AUTOAPPROVE isawayssetto 0

- $BRAND is set to the value of cctype

- $PAN is set to the value of ccnum

- $EXPIRY is set to the value of ccxyear concatenated with the value of ccxmonth

- Additional protocol data keywords and values are taken from a name/value pair table, empty by

default but potentially updated by the overrideable function assigned to the
PAY_PROTOCOL_DATA task.

Note that AUTOAPPROVE is always set to O here, even if the merchant has requested an automatic
approval. DoPaymentPM A ccept runs on acritical thread that cannot afford to be suspended while the
Payment Manager is exchanging protocols to authorize the payment. A background scheduler will be
used to issue an APPROV E command on a different thread.

When AcceptPayment compl etes successfully, DoPaymentPM A ccept examinesthe PAY OPTIONS

table using the merchant number and the payment type to select arow. If the AutoApprove column
indicates that an automatic approval is desired. DoPaymentPM Accept schedules awork item to be
performed by the background scheduler. When the AcceptPayment fails, DoPaymentPM A ccept sets
the error handler to the DO_PAYMENT _ERR exception task and returnsfalse. Thiserror task does
nothing but inform the shopper that an error occurred in the most general terms. The primary and
secondary return codes from the Payment Manager are not used to provide any detailed information
about the cause even when the failure was caused by bad shopper input.

Meanwhile, the background scheduler is watching itswork queue. When awork item arrives. The
background scheduler sends an Approve command to the WebSphere Payment Manager where

- AMOUNT is set to the order’ s amount

- MERCHANTNUMBER is set to the value of the merchant-rn
- ORDERNUMBER is set to the value of the order_rn

- PAYMENTNUMBER isset to 1

- AUTODEPOSIT is set to the value that isfound in the AutoDeposit column of the PAY OPTIONS
table where the merchant number and the payment type is used to find the row.

Meanwhile, a background server thread is watching the state of the Payment Manager payments.

When a payment state changes to “ Approved”, the WebSphere Commerce Suite order is set to
“Complete” (in other words, ready to ship).

87

IBM WebSphere Payment M anager Cassette Cookbook

Planning Questions and Answers

The following gquestions and answers should help you make plans for the effort required to support the
WebSphere Commerce Suite.

Q: What if | do nothing?

A: Software engineers call this “exporting the cost to the customer”. In this case, the merchant will need
tojustify the effort to do the research, design, and development necessary to customize their installation to
utilize your cassette. If your financial system is attractive enough and valuable enough, merchants may
find the effort justified. Otherwise, they will choose a competitor’s cassette which requires|ess effort to
integrate.

But watch out! Consider what will happen if you take this approach and you are outrageously successful.
Itisvery likely that merchants will have questions and problems with their integration and will over load
your customer support system.

Q: What isthelowest reasonableinvestment | can make and still support WebSphere Commerce
Suite with my cassette?

A: These are the steps for the lowest reasonabl e investment.
1. Design your cassette so that it will operate correctly given the default behavior of the WebSphere
Commerce Suite. You will need to examine the details provided earlier in this appendix but, for

example,

- If you support ReceivePayment, don’t require any protocol data

- If you support AcceptPayment, require only $PAN, $BRAND, $EXPIRY and definetheir valuesin a

way that is consistent with the automatic checks that will be performed before AcceptPayment is
issued.

2. Expand your test effort to include

- Theinstallation and configuration of WebSphere Commerce Suite
- The customization necessary to use your cassette
- Enough system level testing to assure that everything interoperates correctly

- There aretwo vastly different paths to the OrderProcess command, so be sure to test in both types of

stores—amall and a one-stop-shop.

3. Expand your documentation to show a WebSphere Commerce Suite merchant how to customize their

system so that your cassette is used when the shopper chooses the proper brand or payment instrument.

In this case, the documentation isvery simple.

- When awallet is used, instruct the merchant to include do_payment_type=INIT as ahidden variable
when your cassette is chosen. When awallet isnot used instruct the merchant to include
do_payment_suffix=PMACCEPT as a hidden variable when your cassette is chosen.

- In either case, instruct the merchant to include payment_type=X (where X is replaced with your
cassette name) when your cassette is chosen.

88

IBM WebSphere Payment M anager Cassette Cookbook

- Include several samples. At least two examples are required: one for when the storeis part of amall
and another for when the store is a one-stop-shop.

Q: That’salmost good enough, but the account number s used by my cassette will not passthe
automatic checks. What can | do?

A: First consider adding information to the CCCHECK table to support your account numbers. Tofind an
example, search the WebSphere Commerce Suite installation directory tree for afile named
cccheck_add.v32.sql. This SQL script is used to define the default table.

Note that the CCCHECK table will require arow for every Type/Prefix/Length combination that you
support. Consider a case where atype can have any possible prefix and can vary between 5 and 15 digits.
In this case, there will be 10 (each digit O through 9) times 11 (11 different lengths) or 110 rows defined for
that type. Hopefully, your case won’t be that bad.

For each row in the CCHECK table, you can specify atask to be used to validate that the digits have been
entered correctly. If your account numbers can be verified with the Luhn Check, specify the
'DO_LUHN_CHECK ' task. If thereisadifferent algorithm, you can specify atask name for an overridable
function that you develop and supply. (At thistime, thereisno example available.) If thereisno algorithm
for verifying the account numbers, leave the column null.

IF THISSTRATEGY ISACCEPTABLE, ADD THE FOLLOWING STEPSTO YOUR
DEVELOPMENT EFFORT.

1. Do all the lowest reasonable investment steps documented above.

2. Design and develop a SQL script that can be used to add the required rows to the CCCHECK table.

3. If necessary, design and develop an overridable function that will validate that the account number
digits have been entered correctly. Then design and develop a SQL script that will add atask name for
your overridable function and assign your overridable function to that task.

4. Update your cassette installation facility to detect the presence of the WebSphere Commerce Suite. |If
detected and approved by the administrator, have the facility add your rows to the CCCHECK table
and, if necessary, copy your DLL into the system and configure the system for your new
task/overridable function.

5. Expand your documentation to describe WebSphere Commerce Suite extensions that you supply

If this strategy is not acceptable, continue with the following question.

Q: The shopper input for my cassette just doesn’t match the cctype/ccnum/cexyear/ccxmonth
paradigm used by the default behavior. What can | do?

A: Addthefollowing stepsto your development effort and then continue to the next question. These steps

demonstrate a way to bypass the default checks and the next question shows how to get a different type of

shopper input into your cassette.

1. Design and develop a SQL script that can be used to add one row to the CCCHECK table. . Tofind an |
example, search the WebSphere Commerce Suite installation directory tree for afile named
cccheck_add.v32.sql. Inthisrow,

- Set the CCTY PE column to your cassette name

89

IBM WebSphere Payment M anager Cassette Cookbook

- Set the CCLENGTH columnto 5
- Set the CCPREFIX columnto 9
- Leave the CCALGTASKRN column null (in other words, empty)

2. Enhance your documentation and your examples to show the merchant how to add hidden parameters |
that will always pass the automatic checks performed.

- Use cctype="X" where X isthe name of your cassette.
- Use ccnum="99999"
- Use cexyear="2009".
- Use ccxmonth="01".

Note that thiswill cause an interesting defect if the codeis still in production after January 2009. You
may opt for amore robust approach. For example, consider using JavaScript to set ccxyear to one year
in the future and ccxmonth to the current month.

3. Add support for your cassette dependent shopper input using the steps outlined below. |

Q: | am not satisfied with WebSphere Commerce Suite' s default behavior. | don’t want my cassette
to bereduced to the lowest functional level provided by all cassettes. | want every competitive
advantage. To exploit the advanced features of my cassette, it needs additional data that is supplied
by the shopper. For example,

Cardholder name and billing address for an address verification system

A cardholder verification code like VISA’s card verification value 2 (CCV2) or Mastercard’s
Card Verification Code 2 (CVC2)

A shopper account number that does not match the credit card paradigm.

What can | do?
A: These are the steps to customize protocol data.

1. If cctype/ccnum/cexyear/ccxmonth parameters used by the default behavior do not apply to your |
cassette, start with the steps outlined above.

2. Expand your development effort to include the design and implementation of an overridable function |
for the PAY_PROTOCOL_DATA task. Good examples can be found in the
adt\sampl es\payment\protdata directory that was placed in the WebSphere Commerce Suit installation
directory. Inthisoverridable function, you will include the logic to find the val ues specified by the
shopper, manipulate the values if necessary, and save the appropriate protocol data keyword and value
in the name/value pair collection provided by the caller.

3. Expand your test effort to include |

- Theinstallation and configuration of WebSphere Commerce Suite
- The customization necessary to use your cassette
- Enough system level testing to assure that everything interoperates correctly

- There aretwo vastly different paths to the OrderProcess command, so be sure to test in both types of
stores—amall and a one-stop-shop.

90

IBM WebSphere Payment M anager Cassette Cookbook

4. Update your cassette installation facility to detect the presence of the WebSphere Commerce Suite. If |
detected and approved by the administrator, have the facility add your overridable functions and any
related tasks to the system.

5. Expand your documentation to show a WebSphere Commerce Suite merchant how to customize their |
system so that your cassette is used when the shopper chooses the proper brand or payment instrument.

- When awallet is used, instruct the merchant to include do_payment_type=INIT as ahidden variable
when your cassette is chosen. When awallet isnot used instruct the merchant to include
do_payment_suffix=PMACCEPT as a hidden variable when your cassette is chosen.

- In either case, instruct the merchant to include payment_type=X (where X is replaced with your
cassette name) when your cassette is chosen.

- Tell the merchant how to add the correct HTML form elements necessary to get the additional
information from the shopper. Be sureto explicitly define the parameter names and the values
allowed, including any length restrictions.

- Include several samples. At least two examples are required: one for when the store is part of amall
and another for when the store is a one-stop-shop.

6. Expand your documentation to show a WebSphere Commerce Suite merchant how to customize their |
system when it requires more than one overridable function for the PAY_PROTOCOL_DATA task.
WebSphere only allows one overridable function to be assigned to atask per merchant. If the
merchant wants to use more than one cassette and several cassettes require overridable functionsfor
the PAY_PROTOCOL_DATA task, the merchant must perform extra customization.

- The merchant must assign a payment type task switch to the existing PAY_PROTOCOL_DATA

task. Anexampleis provided with the cookbook. Look in the
D:\!PM Cassette\WebSphereCommerce\Suit directory. The example switchesto the correct task by
appending the value of the payment_type parameter to the current task name.

- The merchant must define a new task for every cassette used, even if the cassette does not require an

overridable function. Each task name must be of the form PAY_PROTOCOL_DATA_X where X is
the cassette name.

- For each task created above, the merchant must assign an overridable function. If the cassette does

not require an overridable function, the DoNothingNoArgs overridable function supplied by IBM can
be used. For cassettes that required a specific overridable function, the function supplied with the
cassette must be used.

Q: Toexploit the advanced features of my cassette, it needs additional data that is supplied, not by
the shopper, but by the merchant system. For example,

A shopper may be annoyed if asked to specify cardholder billing addressinfor mation when the
information is already known by the system (probably through shopper registration)
Lineitem detail isrequired for advanced fraud detection and billing.

What can | do?

A: USE THE STEPSTO CUSTOMIZE PROTOCOL DATA DOCUMENTED ABOVE, BUT ADD
EXTRA EFFORT TO THE DESIGN, DEVELOPMENT, AND DOCUMENTATION OF YOUR
OVERRIDABLE FUNCTION. DO YOUR BEST NOT TO UNDERESTIMATE THIS EXTRA
EFFORT. IT ISMUCH MORE DIFFICULT THAN OBTAINING EXTRA INFORMATION
FROM THE SHOPPER.

91

IBM WebSphere Payment M anager Cassette Cookbook

The WebSphere Commerce System can contain many bits of information that may be valuableto a
financial network. For example,

Lineitem detail for the order

The merchant’ s store name

The merchant’ s address

The merchant’ s contact information
Shipping address

Shopper billing address

Shopper e-mail address

Shopper telephone number.

However, a given merchant system may not collect all the possible bits of information. To encourage
merchants to fully utilize your cassette, you may need to provide detailed documentation explaining the
value of collecting the information and suggesting techniques for collecting it.

Worse, the techniques for extracting data from the system are not well documented and there aren’t very
many examples. Y ou may need significant investment to find where the data is kept and what techniqueis
used to obtain it.

Thereisagood example for obtaining line item detail. The examplesfor the PAY_ORDER_DESC task
use a good technique for getting line item detail in order to build the order description. Look inthe
adt\sampl es\payment\orderdesc directory that was placed in the WebSphere Commerce Suite installation
directory.

Q: Following the guidelinesin this cookbook, my cassette will validate any data provided by the
shopper and return primary and secondary return codesthat precisely identify the cause of any
failures. However, the WebSphere Commer ce Suite does not give thisinformation to the shopper.
Shoppers and merchants will be annoyed if the shopper gets some obscur e message reporting that
“The payment system hasfailed. Pleasetry again or contact the merchant.” whenever the shopper
entersan invalid value. | want to facilitate a delightful shopper experience. |1 want the shopper to see
a message that precisely identifies the parameter and states why the valueisinvalid.

What can | do?

A: Usethe steps to customize protocol data documented above, but add extra effort to the design,
development, and documentation of your overridable function.

1. Defineanew error task name that will be used whenever you need to inform the shopper that a
supplied value was entered incorrectly. Y ou may be tempted to reuse the existing
DO_PAYMENT_ERR task, but that may cause collisions when the merchant uses more than one
cassette that wants to override this task.

2. Design and implement a cassette dependent error macro that will be assigned to your new error task.
Examples can be found in the adt\samples\macro directory that was placed in the WebSphere
Commerce Suite installation directory. Error information can be extracted from the environment so
that this macro will generate the correct message for the shopper. Keep in mind that this macro may
need to support national languages other than English and may need to be customized by the merchant.

3. Enhance your overridable function to set the error handler task to your new error exception task.

4. Enhance your overridable function to validate any datathat could potentially be provided by the
shopper. True, this duplicates the effort that will be performed by the cassette, but it is unavoidable

92

IBM WebSphere Payment M anager Cassette Cookbook

given the current state of the art. If avalidation error is detected, save the appropriate error
information for your error task and return aboolean fal se.

5. Enhance your documentation to inform the merchant about the validation checks, how the error macro
isused, and how to customize the error macro if necessary.

6. Enhance your cassette installation facility to add the new task and its default macro to the system.

A Vision for a Better System

The statements in this section cannot be construed as acommitment by IBM to supply the software or
product enhancements discussed. Rather it isan acknowledgment that integration with WebSphere
Commerce Suite can place an excessive burden on cassette devel opment and thereis arequirement to
reduce the integration effort. IBM’s ability to meet these requirements will depend on market and business
considerations. Furthermore, advancing technology may make this vision obsolete.

In the near term, the vision is to enhance the cookbook materials with better examples for overridable
functions. Better, the hopeisto establish conventions and techniques that allow the development of
overridable functions that can be used by most cassettes without modification. Use the cassette developers
forum to request examples and comment on beneficial conventions.

In the long term, the vision is to remove the need for cassette dependent customization of merchant systems
by providing aprofiling system. With this system, the cassette devel oper would provide an XML
document (perhaps using Payment Server Presentation Language (PSPL) tags) that describes the protocol
data keywords supported by the cassette on ReceivePayment and AcceptPayment commands. Just as for
the Payment Manager user interface today, the document will show how to translate Payment M anager
return codes in to the correct operator message.

During the installation phase, a commerce system administrator would use this XML document to generate
aprofile. The completed profile defines which protocol data keywords will be used and how the values
will be supplied. Values could be supplied

Asaconstant
Asavalue from agiven parameter from the HTTP form submitted by the shopper
Asavalue from agiven column of asupplied database query.

IBM would supply software that would perform payment processing. It would examine the profile,
automatically marshal the parameters as directed by the profile, send the correct command to the Payment
Manager, and, if necessary, display the correct error message to the shopper.

Although the merchant may still need to modify the catalog system to obtain extrainformation from the

shopper, no other merchant system software would need to be implemented by either the merchant or the
cassette devel oper.

93

