
IBM WebSphere Commerce Payments for
Multiplatforms

Programmer’s Guide and Reference
Version 3.1

���

IBM WebSphere Commerce Payments for
Multiplatforms

Programmer’s Guide and Reference
Version 3.1

���

Note

Before using this information and the product it supports, be sure to read the general information under Appendix D,
“Notices” on page 159.

Second Edition (July, 2002)

This edition applies to Version 3.1.3 of IBM® WebSphere® Commerce Payments and to all subsequent releases and
modifications until otherwise indicated in new editions.

Contains security software from RSA Data Security, Inc.Copyright © 1994 RSA Data Security, Inc. All rights reserved.

©Copyright IBM Corporation 1997, 2002. All rights reserved.

Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Preface . vii
Conventions in this book . vii
Additional information . vii

Part 1. Introduction . 1

Chapter 1. WebSphere Commerce Payments concepts 3
Understanding WebSphere Commerce Payments terms 3
What’s new for release 3.1 . 4

Part 2. Programmer’s Guide . 7

Chapter 2. WebSphere Commerce Payments commands 9
WebSphere Commerce Payments requests 9
The HTTP body . 10

Character set issues . 10
Communication . 11
WebSphere Commerce Payments responses 11

Formatting commands . 12
WebSphere Commerce Payments command security. 13

Users . 14
Authentication . 14
Role-based access control 14
Role permissions table . 16

Chapter 3. Cashier . 19
Introduction to the Cashier . 19
Cashier profiles. 20
Designing your integration . 20

Managing Cashier profiles . 20
Mapping merchant numbers 21
Mapping order numbers . 21
Designing profiles . 21
AVS . 23
Trace . 23
Error log . 23

Writing cashier profiles . 23
Basic Profile Structure . 23
WebSphere Commerce Payments configuration in profiles 24
Select statements . 24
CollectPayment. 25
Command. 25
Buy Page Information . 25
Parameters . 25

Writing your integration . 27
Building profiles . 27
Including necessary files . 29
Creating a Cashier object . 29
CollectPayment. 30
Creating orders in the WebSphere Commerce Payments – issueCommand() 30
Checking the status of an order – checkPayment(). 30
Using BuyPageInformation 31

iii

Tracing . 31
Exceptions . 31
Writing extensions. 32

SampleCheckout application . 32
Overview . 33
Requirements . 34
Configuration . 34
SampleCheckout Profiles . 35

Chapter 4. Client API Library (CAL) 37
CAL Public Classes . 37
Creating a PaymentServerClient 38
Preparing the iSeries for SSL Support 39
Issuing WebSphere Commerce Paymentscommands 39

Specifying additional information in the HTTP Header 41
Processing responses from WebSphere Commerce Payments 41

Process returned objects . 41
Closing the PaymentServerClient 42
Sample CAL program . 42
Installing Files Required by CAL 43
For Machines that don’t have WebSphere Commerce Payments Installed . . . 43

Chapter 5. Event notification 45
Event types and contents . 45

State change event . 45
Cassette-specific event . 46
Network management event 46

Registering events . 47
Event ListenerURL parameter 47

Chapter 6. WebSphere Commerce Payments realm support 49
Writing a new WebSphere Commerce Payments realm 50

Design points . 50
Realm implementation . 52
Tracing . 53
Linking directly into the user interface 54
Testing . 55

SampleRealm . 55
How to deploy the new realm 56

Part 3. Programmer’s Reference . 57

Chapter 7. WebSphere Commerce Payments command reference 59
Query commands . 59
About . 60
AcceptPayment. 62

Using the AmountExp10 keyword 62
Approve . 64
ApproveReversal . 64
BatchClose . 65
BatchOpen . 66
BatchPurge . 66
CancelOrder . 67
CassetteControl . 68
CloseOrder . 68
CreateAccount . 69

iv Programmer’s Guide and Reference

CreateMerchant . 71
CreateMerchantCassetteObject 71
CreateMerEventListener . 72
CreatePaySystem . 73
CreateSNMEventListener . 73
CreateSystemCassetteObject 74
DeleteAccount . 75
DeleteBatch . 75
DeleteMerchant. 76
DeleteMerchantCassetteObject 76
DeleteMerEventListener . 77
DeletePaySystem . 78
DeleteSNMEventListener . 78
DeleteSystemCassetteObject 79
Deposit. 79
DepositReversal . 80
ModifyAccount . 81
ModifyCassette . 82

Trace settings . 83
ModifyMerchant . 84
ModifyMerchantCassetteObject 85
ModifyMerEventListener . 86
ModifyPayServer . 86
ModifyPaySystem . 87
ModifySNMEventListener . 88
ModifySystemCassetteObject 89
ModifyUserStatus . 89
QueryAccounts . 90
QueryBatches . 91
QueryCassette . 93
QueryCredits . 94
QueryEventListeners . 95
QueryMerchants . 96
QueryOrders. 97
QueryPayments . 100
QueryPaymentServer . 101
QueryPaySystems . 102
QueryUsers . 102

Optional parameters . 102
Valid combination of parameters 103
Access control details . 105

ReceivePayment . 105
Refund . 107
RefundReversal . 108
SetUserAccessRights . 108

Access control rules for merchant administrators 109

Chapter 8. WebSphere Commerce Payments data 111
WebSphere Commerce Payments payment objects 111

Order . 111
Order states . 113
Payments . 115
Payment states . 116
Split Payments . 117
AVS common codes . 117
Credits . 118

Contents v

Credit states . 119
Batches . 119
Batch states . 120

WebSphere Commerce Payments About objects 121
Payment Server About . 121
Cassette About . 121

WebSphere Commerce Payments administration objects 121
Payment Server . 121
Cassette . 122
Merchant . 123
Payment System. 124
Account . 124
Event Listener. 125
User . 126

Part 4. Appendixes . 127

Appendix A. WebSphere Commerce Payments return codes 129
Primary return codes (PRCs) 129
Secondary return codes (generic) 131

Appendix B. ISO currency codes 147

Appendix C. Obtaining requests for comments 157

Appendix D. Notices . 159
Trademarks. 160

Glossary . 161

Index . 175

vi Programmer’s Guide and Reference

Preface

This book is for programmers who are responsible for developing applications that
communicate and interact with the IBM WebSphere Commerce Payments.

Note:
IBM WebSphere Commerce Payments for Multiplatforms (hereafter called
WebSphere Commerce Payments) was previously known as IBM WebSphere
Payment Manager for Multiplatforms. Starting with version 3.1.3, the payments
application was renamed to WebSphere Commerce Payments and references to
the product were changed throughout this document. References to the former
product may still appear in this document and apply to earlier releases of the
product.

Conventions in this book
Table 1. Conventions in this document

Boldface Indicates the name of the item you need to select, the
name of a field, or a string you must enter.

Italics Indicates book titles or variable information that must be
replaced by an actual value.

Monospace Indicates an example, a portion of a file, or a previously
entered value.

Additional information
More information is available from these documents and Web sites:

v The IBM WebSphere Commerce Payments for Multiplatforms Installation Guide
Version 3.1 (WebSphere Commerce Payments Installation Guide) provides
information for installing, migrating, and starting WebSphere Commerce
Payments.

v The IBM WebSphere Commerce Payments for Multiplatforms Administrator’s
Guide Version 3.1 (WebSphere Commerce Payments Administrator’s Guide)
contains conceptual information and shows how to configure WebSphere
Commerce Payments using the user interface.

v The IBM WebSphere Commerce Payments for Multiplatforms, Cassette for SET
Supplement Version 3.1 (WebSphere Commerce Payments Cassette for SET
Supplement) provides information about using the SET protocol with the
WebSphere Commerce Payments, including installation and configuration
information.

v The IBM WebSphere Commerce Payments for Multiplatforms, Cassette for
VisaNet Supplement, Version 3.1 (WebSphere Commerce Payments Cassette for
VisaNet Supplement) provides information about using WebSphere Commerce
Payments to access the VisaNet system, including installation and configuration
information.

v The IBM WebSphere Commerce Payments for Multiplatforms Cassette for
CyberCash Supplement, Version 3.1 (WebSphere Commerce Payments Cassette
for CyberCash Supplement) provides information about using the WebSphere
Commerce Payments to access the CyberCash Cash Register service, including
installation and configuration information.

vii

v The IBM WebSphere Commerce Payments for Multiplatforms, Cassette for
BankServACH Version 3.1 (WebSphere Commerce Payments Cassette for
BankServACH Supplement) provides information about using WebSphere
Commerce Payments to access the Automated Clearing House (ACH) network
through the BankServ gateway. Installation and configuration information is
included.

The above documents are available after installation of WebSphere Commerce
Payments (or the cassette software) through the WebSphere Commerce Payments
user interface. On iSeries®, the documentation is also accessible off the iSeries
Tasks Page at http://hostname:2001 where hostname is the TCP/IP host name of
the iSeries system. The link name in the navigation frame is Documentation.

All documents are available on the WebSphere Commerce Payments CD-ROMs in
Portable Document Format (PDF). For the latest Acrobat reader, see:
http://www.adobe.com. On iSeries systems, the documentation is compressed into a
save file and is only available after WebSphere Commerce Payments has been
installed.

You can also reference the following related Web sites for more information:

v http://www.ibm.com/payment provides more information on the IBM Payment
Suite products

v http://www.software.ibm.com/commerce/payment/support/serv/index.html
provides current WebSphere Commerce Payments technical information and
links to the latest soft copy views of all WebSphere Commerce Payments
documentation.

v http://www.ibm.com/software/websphere/appserv/library.html provides
documentation links for IBM WebSphere Application Server.

v http://www.ibm.com/software/data/pubs/index.html provides documentation
links for IBM Universal Database.

viii Programmer’s Guide and Reference

Part 1. Introduction

1

2 Programmer’s Guide and Reference

Chapter 1. WebSphere Commerce Payments concepts

The IBM WebSphere Commerce Payments provides a generic framework with the
capability of supporting different payment methods with protocol-specific cassettes.
A merchant uses the payment and administration commands to process orders. The
WebSphere Commerce Payments translates the generic command into a payment
protocol-specific request and forwards it to the appropriate recipient, such as a
payment gateway or a secure Web server. The WebSphere Commerce Payments
records its transactions in a relational database.

All integrations of the WebSphere Commerce Payments will issue order creation
calls, as dictated by the underlying payment cassette. For many merchant systems
that will suffice, and all other tasks will be done through the WebSphere Commerce
Payments interface. Merchants who want a tighter integration of additional
WebSphere Commerce Payments financial commands with other existing business
formats, will want to issue additional commands, like Approve, Deposit and
BatchClose.

Understanding WebSphere Commerce Payments terms
The following terms and concepts are used throughout this book:

Batch Collection of payments and credits which are settled together.

Buyer A person making an Internet purchase from the merchant.

Cashier
A component that allows merchant software to fully utilize new cassettes
without requiring code modification. The cashier uses payment option
profiles for each cassette to describe the required cassette-specific
parameters as well as the methods of collecting that information from the
merchant software environment.

Cassette
A software package that plugs into the WebSphere Commerce Payments
Framework and provides support for a specific electronic payment system.
Cassettes can be developed both by IBM and by third parties. Examples
include the IBM SET payment protocol cassette, which supports the Secure
Electronic Transaction protocol.

Credit A credit represents an interaction between a merchant and a bank when the
merchant instructs the bank to refund money to the buyer.

Event listener
A registrant with the WebSphere Commerce Payments that wants to be
notified when significant events occur and object states change.

Framework
The portion of the WebSphere Commerce Payments that enables different
merchant servers using different payment systems to issue the same
generic commands to the WebSphere Commerce Payments and use the
same generic data. The WebSphere Commerce Payments uses
protocol-specific cassettes to translate the generic calls to protocol-specific
messages.

Merchant
A business with an Internet shopping presence. The merchant will integrate
the WebSphere Commerce Payments with its merchant software.

3

Merchant software
The software that supports the merchant Internet business using the
WebSphere Commerce Payments to process and manage Internet
payments. In addition to the WebSphere Commerce Payments, this
software will generally include Web-based software for browsing catalogs,
managing shopping carts and placing orders. Depending on the integration
level with the merchant’s business, support for inventory management,
shipping, and accounting software might also be included.

Order A WebSphere Commerce Payments order is an authorization from a buyer
to make one or more payments using a single payment method.

Payment
A payment represents one interaction between a merchant and a financial
institution to approve and capture all or part of an order. Money moves from
buyer to the merchant.

Realm A registry of users along with a single method of authenticating those users.
A user must be defined in a realm before being granted access to
resources.

What’s new for release 3.1
All cassettes (IBM provided or third party) previously installed on WebSphere
Commerce Payments, Version 2.1 or higher should continue to function after
successfully installing WebSphere Commerce Payments, Version 3.1.

New instructions for migrating configuration and transaction data to the latest
version of the WebSphere Commerce Payments have been added. Before you
install WebSphere Commerce Payments however, see the IBM WebSphere
Commerce Payments for Multiplatforms Installation Guide

Cashier
A few important changes have been implemented for WebSphere
Commerce Payments version 3.1. The principal change is that the Cashier
can now pass multiple values to WebSphere Commerce Payments for each
parameter. This support is particularly useful for sending order line item
detail information to WebSphere Commerce Payments. It is now also
possible to issue other API request via the new issueCommand() method. In
addition, new attributes have been added to the Cashier profile Parameter
element to allow null values to be passed to WebSphere Commerce
Payments and also to allow sensitive data to be hidden when tracing is
turned on.

User supplied order information
Allows merchant applications to specify their own transaction identifier when
creating or querying WebSphere Commerce Payments orders. The intent of
the transaction identifier is to allow orders to be tagged with a identifier so
that the order number does not have to be used to correlate to a
merchant’s order or orders. Also added is the capability for the merchant to
associate other user defined data with a WebSphere Commerce Payments
order. AcceptPayment, ReceivePayment and QueryOrders APIs are affected
by this new function.

STOP API
To increase the security of the product, the STOP API has been removed
from the API set. To stop WebSphere Commerce Payments version 3.1,
you should either issue the StopIBMPayServer command (ENDPYMMGR

4 Programmer’s Guide and Reference

on iSeries) from a command line or use the WebSphere Application Server
adminstrative console to stop the WebSphere Commerce Payments
application server.

Realm changes
Although version 2 WebSphere Commerce Payments realms will still work
in version 3.1, they must now be configured differently due to the removal
of PaymentServlet.properties from the product. Instead of specifying the
realm properties inside the PaymentServlet.properties file, they should now
be defined inside a properties file unique to the realm. You must also now
use the WebSphere Application Server administrative console to change the
realm that WebSphere Commerce Payments uses.

Approval Expiration
An ApprovalExpiration parameter has been added to the CreateAccount
and ModifyAccount commands to specify the period of time after which a
given approval should be considered expired. A payment in the Approved
state will enter the new ApprovalExpired state after the specificed period of
time has elapsed. You can use the ApproveReversal command either to put
a Payment back in the Approved state or to void the Payment. You should
check your cassette documentation to determine whether Approval
Expiration is supported (although note that all IBM cassettes support
Approval Expiration).

Chapter 1. WebSphere Commerce Payments concepts 5

6 Programmer’s Guide and Reference

Part 2. Programmer’s Guide

The WebSphere Commerce Payments provides a number of programming
interfaces to allow you to integrate the product into your system. The following
diagram identifies these interfaces.

Application

Application Realm

HTTP/XML
Interface

HTTP
Request

HTTP Event
Notification

WebSphere
Commerce Payments

C a s s e t t e s

XML
Response

Java Client API Library Java Cashier

The central concept of the WebSphere Commerce Payments is to provide a
framework for managing multiple payment systems while presenting a single
interface to users. WebSphere Commerce Payments introduces the notion of a
payment cassette which is a piece of plug-in software that supports a single
payment system. WebSphere Commerce Payments will route incoming payment
requests to the relevant cassette and responses will be as payment system-neutral
as possible, thereby enabling new cassettes to be added to the system with little or
no disruption to existing integration software. This publication addresses the
programming interfaces that can be used by applications to integrate with
WebSphere Commerce Payments and its cassettes. The cassette programming
interface, which enables software developers to write new cassettes for WebSphere
Commerce Payments, is fully described in the IBM WebSphere Commerce
Payments Cassette Kit information at
http://www.ibm.com/software/webservers/commerce/payment/download.html.

The main programming interface to WebSphere Commerce Payments is based on
HTTP and XML standards. WebSphere Commerce Payments accepts commands
as HTTP POST requests and returns XML documents embedded in HTTP
responses. There are commands for all the payment processing functions and
almost all of the administrative functions. Because the interface uses HTTP and
XML standards, it is possible to invoke WebSphere Commerce Payments
commands from a variety of programming languages. Chapter 2, “WebSphere
Commerce Payments commands” on page 9 describes how these requests and
responses should be formed and lists the full set of WebSphere Commerce
Payments commands along with their required and optional parameters. It is

7

important to note that you will also need to refer to the supplemental documentation
for each cassette you are using to understand the additional keywords that can be
specified for each request as well as the additional cassette XML data that is
provided for each response.

A Java Client API Library (CAL) is provided with WebSphere Commerce Payments
that makes it easy to integrate Java software with WebSphere Commerce
Payments. Using CAL, you can build Java requests and process Java response
objects. CAL handles the building of the HTTP request and the parsing of the XML
responses under the covers. The Client API Library is discussed in Chapter 4,
“Client API Library (CAL)” on page 37.

When creating WebSphere Commerce Payments orders, it is necessary to pass
information that is specific to the payment cassette that will process payments for
that order. Examples of cassette-specific data include credit card numbers, check
numbers, voucher IDs and expiry dates. If the code you write to handle order
creation is hard-coded to support only certain cassettes, then when you add a new
cassette to your system, you need to recode. To avoid this problem, the WebSphere
Commerce Payments provides a Java based library of functions called the Cashier.
The Cashier uses profiles - XML documents - to describe all the parameters that
are required by a cassette for order creation. That way, if you use the Cashier to
create WebSphere Commerce Payments orders, you will not need to write order
creation code that is specific to any given cassettes. The Cashier is described in
Chapter 3, “Cashier” on page 19.

Every WebSphere Commerce Payments command must identify the user that is
issuing the command. WebSphere Commerce Payments will ensure that the user’s
credentials are valid - usually by checking a password - and that the user has
permission to perform the command. To support these security checks, WebSphere
Commerce Payments needs access to a list of users and it needs to know how it
can authenticate any given user. This mechanism is known as a realm and,
although WebSphere Commerce Payments provides a simple realm that allows you
to administer a list of user and their passwords, it is possible for you to write a
WebSphere Commerce Payments realm that integrates with your existing systems.
Writing WebSphere Commerce Payments realms is discussed in Chapter 6,
“WebSphere Commerce Payments realm support” on page 49.

WebSphere Commerce Payments provides an event notification mechanism that
can alert you when certain events occur. The supported event triggers include the
starting or stopping of the WebSphere Commerce Payments and its cassettes, the
change in status of orders belonging to a given merchant or special events defined
by particular cassettes. You can tell WebSphere Commerce Payments which events
you are interested in. When the event is triggered, WebSphere Commerce
Payments will create an HTTP POST message and send it to the URL you
specified. You will need to write a servlet or CGI program - known as an event
listener - to process event notifications. The event notification mechanism is
described in Chapter 5, “Event notification” on page 45.

8 Programmer’s Guide and Reference

Chapter 2. WebSphere Commerce Payments commands

Merchant business software can issue administration, payment and query
commands to the WebSphere Commerce Payments. These commands consist of
keyword-value pairs. (See Chapter 7, “WebSphere Commerce Payments command
reference” on page 59, for command tables.) Commands are executed by issuing
requests and waiting for the responses. WebSphere Commerce Payments requests
are formatted as HTTP POST messages. WebSphere Commerce Payments
responses are XML documents embedded in HTTP. (For a detailed description of
the XML objects, and associated fields, see Chapter 8, “WebSphere Commerce
Payments data” on page 111.) This chapter describes the HTTP POST,
communication with the WebSphere Commerce Payments and the XML output.

WebSphere Commerce Payments requests
Merchant software issues commands to the WebSphere Commerce Payments by
creating an HTTP POST message and sending it to the WebSphere Commerce
Payments. Like any HTTP POST message, a command consists of a header and a
body. Following is an example of a WebSphere Commerce Payments command:
POST /webapp/PaymentManager/PaymentServlet HTTP/1.1
Connection: Keep-Alive
Accept: application/xml
PM-Accept-Language: en-US
Authorization: Basic YWRtaW46YWRtaW4=
Host: localhost
User-Agent: Java PaymentServerClient
Content-Encoding: 8859_1
Content-Length: 187
Content-Type: application/x-www-form-urlencoded

OPERATION=ACCEPTPAYMENT&ETAPIVERSION=3&PAYMENTTYPE=OfflineCard
&MERCHANTNUMBER=123456789&ORDERNUMBER=91600886&AMOUNT=500
&CURRENCY=840&%24EXPIRY=200212&%24PAN=5015550000033019&%24BRAND=ROBO

Note: The breaks in the HTTP body in the example above are for formatting
purposes only. Syntax has to be on the same line.

WebSphere Commerce Payments commands require the header to contain a
number of specified keyword-value pairs, encoded in a particular format. The HTTP
header must contain the following fields with these values:
POST /webapp/PaymentManager/PaymentServlet HTTP/1.1
Connection: Keep-Alive
Accept: application/xml
Content-Encoding: 8859_1
Content-Type: application/x-www-form-urlencoded

In addition, the header must contain additional fields with calculated values:

Host: <PaymentServer host>
This should be the TCP/IP hostname of WebSphere Commerce Payments

Content-Length: <length>
The length of the HTTP body in bytes

Authorization: Basic <authorization-string>
The authorization string consists of a userid and password string, separated
by a single colon (″:″) character. The string should be encoded with a
base64 encoding.

9

authorization-string=base64–user-pass
base64-user-pass=<base64encoding of user-password,
except not limited to 76 char/line>
user-pass=user":"password
userid=*<TEXT excluding ":">
password=*TEXT

Optionally, the HTTP header may contain a PM-Accept-Language HTTP header.
This header indicates the language in which WebSphere Commerce Payments
should provide return code messages in the response message.
PM-Accept-Language: Locales should be specified according to the HTTP RFC
2068. Locales supported by WebSphere Commerce Payments include: pt (Brazilian
Portuguese), en (English), fr (French), de (German), it (Italian), ja (Japanese), ko
(Korean), zh (simplified Chinese), es (Spanish), zh_TW (traditional Chinese). Note
that, although more than one locale can be specified on the PM-Accept-Language
HTTP header, WebSphere Commerce Payments will only use the first locale. If no
PM-Accept-Language header is sent, WebSphere Commerce Payments will use the
locale of the machine where WebSphere Commerce Payments is installed.

The client or merchant programmer may wish to specify additional header fields, to
use HTTP functionality beyond the minimal WebSphere Commerce Payments
communication requirements. The interpretation of these fields is dependent on the
network environment and the Web server under which the WebSphere Commerce
Payments is installed.

The HTTP body
The body of a WebSphere Commerce Payments command consists of a set of
keyword-value pairs, formatted using the encoding specified by the HTTP
content-type: application/x-www-form-urlencoded.

Keywords can be included multiple times (for example, multiple order numbers
specified in a query order command).

The command body must be formatted according to the following rules:

v Each WebSphere Commerce Payments command parameter and its associated
argument (each keyword-value pair of a WebSphere Commerce Payments
command), are separated from each other by an equals (″=″) character.

v Each keyword-value pair is separated from other keyword-value pairs by an
ampersand (″&″) character.

v The keywords and values are URL encoded, which is also the way that binary
data is sent to the WebSphere Commerce Payments. Rules for URL encoding
follow:

– All space characters (hex 0X20 ASCII characters) are replaced by ″+″
characters (hex 0x2B characters)

– All bytes of each keyword and value that do not map to an alphanumeric
US-ASCII character must be escaped. Each of these bytes are replaced with
the escape sequence ″%HH″ where HH is the two hexadecimal digits
representing the ASCII code of the character (byte).

v Keywords are case insensitive. Values are case sensitive

Character set issues
All WebSphere Commerce Payments keywords are specified in the US-ASCII
character set. Values must be encoded in the UTF-8 character set prior to the

10 Programmer’s Guide and Reference

URL-encoding of the HTTP POST body. For example, the Unicode character
0x3053 is represented in UTF-8 as 0xE3, 0x81, 0x93. Once this value is URL
encoded, it is %E3%81%93.

Note: For US-ASCII string or numeric values, no translation is necessary.

Although WebSphere Commerce Payments provides its own authentication
mechanisms, it is possible to plug in your own custom realm code and have
WebSphere Commerce Payments use that (see Chapter 6, “WebSphere Commerce
Payments realm support” on page 49). If the realm that you are using uses userid
and password, then you should use the Authorization HTTP header to encode these
in the request message. However, if your realm uses other authentication data, then
this should be sent to WebSphere Commerce Payments via the PMAUTHOBJECT
keyword-value pair in the HTTP body.

Communication
To send a command to the WebSphere Commerce Payments:

1. Open a TCP connection to the WebSphere Commerce Payments host and port.
The port is usually 80, unless reconfigured.

2. Send a request and wait for the response.

3. Close the connection.

If communication fails prior to receipt of the response, it is uncertain whether or not
the WebSphere Commerce Payments command has actually executed. To
determine if the command has executed, issue query commands to confirm that the
command was received and processed..

If you want to use SSL, configure the Web server on the WebSphere Commerce
Payments to support SSL connections. Once the Web server is configured for SSL,
you can send commands using SSL. You must be ready to participate and perform
all steps to create SSL communication.

WebSphere Commerce Payments responses
WebSphere Commerce Payments responses are XML documents, embedded in
HTTP. The format of the XML document is defined in the WebSphere Commerce
Payments Document Type Definition (DTD). IBMPaymentServer.dtd contains the
DTD and this file can be found in the /include subdirectory.

For iSeries, this file can be found in the /QIBM/ProdData/PymSvr/XML/DTD
subdirectory.

Every HTTP response contains an XML document with a PSApiResult element that
identifies the primary and secondary return code, along with an object count and
additional return code messages, which may contain descriptions of any
WebSphere Commerce Payments return code pairs. For a description of primary
and secondary return code values, see Appendix A, “WebSphere Commerce
Payments return codes” on page 129.

Cassette specific objects are represented using the cassette object and cassette
configuration elements. Details about individual properties can be found in the
respective cassette supplement. (See the cassette supplement documentation for
more information)

Chapter 2. WebSphere Commerce Payments commands 11

Query commands will additionally contain descriptions of WebSphere Commerce
Payments objects and the number of objects returned. Framework objects are
described in the DTD (Document Type Definition) and in the object definition tables
found in Chapter 8, “WebSphere Commerce Payments data” on page 111. The DTD
for this XML document can be either:

v Included in the response

v Found in the file IBMPaymentServer.dtd

When the WebSphere Commerce Payments successfully receives, processes and
responds to a request, it returns an HTTP status code of 200. Other HTTP status
codes can be returned by the web server, due to situations like an authentication
failure or when WebSphere Application Server is not running. This status code,
along with any information in the body, indicates the source of the problem.

Formatting commands
Following are two examples of XML documents resulting from an AcceptPayment
command, and a QueryOrders with Payments command.

AcceptPayment
POST /webapp/PaymentManager/PaymentServlet HTTP/1.1
Connection: Keep-Alive
Accept: application/xml
PM-Accept-Language: en-US
Authorization: Basic YWRtaW46YWRtaW4=
Host: localhost
User-Agent: Java PaymentServerClient
Content-Encoding: 8859_1
Content-Length: 187
Content-Type: application/x-www-form-urlencoded

OPERATION=ACCEPTPAYMENT&ETAVERSION=3&PAYMENTTYPE=OfflineCard&MERCHANTNUMBER=
123456789&ORDERNUMBER=94184938&AMOUNT=500&CURRENCY=840&%24EXPIRY=
200212&%24PAN=5015550000033019&%24BRAND=ROBO

<?xml version="1.0" encoding="UTF-8"?>
<PSApiResult objectCount="0" primaryRC="0" secondaryRC="0">
</PSApiResult>

QueryOrders with Payments
The following example is a response to a QueryOrder with Payment command.
There are two order objects contained in the response document:

v First order object contains one payment

v The second order object does not contain any payments
POST /webapp/PaymentManager/PaymentServlet HTTP/1.1
Connection: Keep-Alive
Accept: application/xml
PM-Accept-Language: en-US
Authorization: Basic YWRtaW46YWRtaW4=
Host: localhost
User-Agent: Java PaymentServerClient
Content-Encoding: 8859_1
Content-Length: 100
Content-Type: application/x-www-form-urlencoded

OPERATION=QUERYORDERS&ETAVERSION=3&PAYMENTTYPE=OfflineCard&MERCHANTNUMBER=
123456789&WITHPAYMENTS=1

<?xml version="1.0" encoding="UTF-8"?>
<PSApiResult objectCount="2" primaryRC="0" secondaryRC="0">

<OrderCollection size="2" withCredits="0" withPayments="1">
<PSOrder ID="O:123456789:94184938" amount="500" amountExp10="-2"

12 Programmer’s Guide and Reference

approvesAllowed="1" brand="ROBO" currency="840" merchantAccount="1"
merchantNumber="123456789" merchantOriginated="1" numberOfCredits="0"
numberOfPayments="1" orderNumber="94184938" paymentType="OfflineCard"
state="order_refundable" timeStampCreated="966461827000"
timeStampModified="966463091000" unapprovedAmount="0">

<PaymentCollection size="1" withOrders="0">
<PSPayment ID="P:123456789:94184938:1" amountExp10="-2"

approveAmount="500" currency="840" depositAmount="0" merchantAccount="1"
merchantNumber="123456789" orderNumber="94184938" paymentNumber="1"
paymentType="OfflineCard" state="payment_approved"
timeStampCreated="966463091000" timeStampModified="966463092000">

<CassetteExtensionObject>
</CassetteExtensionObject>

</PSPayment>
</PaymentCollection>
<CassetteExtensionObject>

<CassetteProperty propertyId="Expiry" value="200212">
</CassetteProperty>
<CassetteProperty propertyId="AccountNumber" value="1">
</CassetteProperty>
<CassetteProperty propertyId="Brand" value="ROBO">
</CassetteProperty>
<CassetteProperty propertyId="AmountApproved" value="500">
</CassetteProperty>
<CassetteProperty propertyId="Pan" value="5015550000033019">
</CassetteProperty>

</CassetteExtensionObject>
</PSOrder>
<PSOrder ID="O:123456789:92005267" amount="500" amountExp10="-2"

approvesAllowed="1" brand="ROBO" currency="840" merchantAccount="1"
merchantNumber="123456789" merchantOriginated="1" numberOfCredits="0"
numberOfPayments="0" orderNumber="92005267" paymentType="OfflineCard"
state="order_refundable" timeStampCreated="966459650000"
timeStampModified="966459650000" unapprovedAmount="500">

<PaymentCollection size="0" withOrders="0">
</PaymentCollection>
<CassetteExtensionObject>

<CassetteProperty propertyId="Expiry" value="200212">
</CassetteProperty>
<CassetteProperty propertyId="AccountNumber" value="1">
</CassetteProperty>
<CassetteProperty propertyId="Brand" value="ROBO">
</CassetteProperty>
<CassetteProperty propertyId="AmountApproved" value="0">
</CassetteProperty>
<CassetteProperty propertyId="Pan" value="5015550000033019">
</CassetteProperty>

</CassetteExtensionObject>
</PSOrder>

</OrderCollection>
</PSApiResult>

WebSphere Commerce Payments command security
When WebSphere Commerce Payments receives a command issued by the user, it
will process the command as follows:

v Authenticate the user by the realm.

v Authorizes the user through the access control facility.

v Process the command.

The following sections describe the concepts associated with command security.

Chapter 2. WebSphere Commerce Payments commands 13

Users
WebSphere Commerce Payments user information is captured in two places:

1. in a realm

2. in the WebSphere Commerce Payments database

WebSphere Commerce Payments authenticates users through the use of realms. A
realm is a registry of users that is responsible for managing the user’s name,
password, and perhaps some other form of user identification (for more information
on realms, see Chapter 6, “WebSphere Commerce Payments realm support” on
page 49). A WebSphere Commerce Payments user must be defined in a realm
before being granted access to WebSphere Commerce Payments resources.
Payments and Merchant administrators can use the WebSphere Commerce
Payments API command or the WebSphere Commerce Payments user interface
User window to assign access to a user defined in a realm.

Authentication
WebSphere Commerce Payments supports two methods to authenticate users:

1. Basic authentication (through the use of realms)

2. WebSphere Commerce Payments Authentication Object (PMAUTHOBJECT)

Both of these methods are described in detail in “Authentication mechanism” on
page 51.

Role-based access control
WebSphere Commerce Payments employs a role-based access control scheme
which defines four WebSphere Commerce Payments roles:

1. Payments administrator

2. Merchant administrator

3. supervisor

4. clerk

The user’s role determines which commands can be issued by that user.

A user other than the Payments administrator can associate with multiple
merchants. For example, a merchant administrator can manage more than one
merchant. Similarly, supervisors and clerks can issue commands for multiple
merchants. The WebSphere Commerce Payments supports the following role-based
access scenarios:

v Payments administrators can issue all of the API commands for all merchants.

v Merchant administrators can perform all functions for the merchants with whom
they associate, except for several limitations on the SetUserAccessRights and
the QueryUsers commands (for more information on these commands, see
“QueryUsers” on page 102 and “SetUserAccessRights” on page 108).

v Supervisors and clerks can issue limited commands for the merchants with whom
they associate.

Assigning a user’s access permissions
A user’s permission (or role) can be assigned or changed only by the Payments
administrator or the Merchant administrator. The Payments administrator can assign
or change any user’s access rights and can assign or change a user’s role to
whatever he wants that user’s role to be, including the role of Payments
administrator.

14 Programmer’s Guide and Reference

The Merchant administrator can only assign or remove a user as a Merchant
administrator, supervisor, or clerk. Further, the merchant administrator can do so
only under one of the following conditions:

1. If the user being granted access to multiple merchants does not currently have
access rights in the WebSphere Commerce Payments, then the merchant
administrator can grant this user access only to merchants that he (as the
merchant administrator) already has access to.

2. If the user being granted access to multiple merchants does have access rights
in the WebSphere Commerce Payments, then the merchants with whom he is
currently associated should also be associated with the assigning merchant
administrator. Further, the merchants who are being assigned to associate with
the user should also be a subset of the merchants associated with the assigning
merchant administrator.

For example, the user X is the merchant administrator for merchants A, B, and C.
User Y does not have access rights in the WebSphere Commerce Payments. X can
assign Y as the merchant administrator for the merchants A, B, and C or for the
merchants A and B. However, if the user Y has access rights in merchants other
than A, B and C (for example the user Y is the merchant administrator for the
merchant D), then the user X cannot change the user Y’s access rights.

The following figure uses set notation to represent some typical scenarios.

In figure A, user X has given access rights to some of X’s merchants to user Y.

Chapter 2. WebSphere Commerce Payments commands 15

In figure B,X and Y are associated with different sets of merchants even though they
both associate with some common merchants. In this case, neither X nor Y can
change the other’s permissions even though they are both merchant administrators
for a common set of merchants.

Role permissions table
Each role has an associated set of operations that can be performed by a user
having this role. The following notation is used to describe the capabilities of each
role listed in Table 2 below.

Table 2. Field Values for Role capabilities

Field value Role capabilities

Y Allowed to perform the command.

M Allowed to perform the command, if the user’s merchant
number includes all the merchant numbers in the command. If
there is no merchant number specified in the command,
authorization fails.

u Allowed to perform the command, if the user attempting the
command matches the user specified in the command. If there
is no user specified in the command, authorization fails.

a Allowed to perform the command, if SETUserAccessRights
special authorization logic allows it. For more information on
the SETUserAccessRights command, see
“SetUserAccessRights” on page 108.

m Allowed to perform the command, if QueryUsers special
authorization logic allows it. For more information on the
QueryUsers command, see “QueryUsers” on page 102.

<blank> A user with this role is not allowed to perform the command.

The following table illustrates the capabilities each role has. An asterisk (*) following
a command indicates that the command does not have a required merchant
number parameter.

Table 3. Role capabilities

Command Payment
Server Admin

Merchant
Admin

Supervisor Clerk

About* Y Y Y Y

AcceptPayment Y M M M

Approve Y M M M

ApproveReversal Y M M M

BatchClose Y M M M

BatchOpen Y M M M

BatchPurge Y M M M

CancelOrder Y M M

CassetteControl Y M M M

CloseOrder Y M M

CreateAccount Y M

CreateMerchant Y

CreateMerchantCassetteObject* Y M

16 Programmer’s Guide and Reference

Table 3. Role capabilities (continued)

CreateMerEventListener Y M

CreatePaySystem Y

CreateSNMEventListener Y

CreateSystemCassetteObject* Y

DeleteAccount Y M

DeleteBatch Y M M M

DeleteMerchant Y

DeleteMerchantCassetteObject* Y M

DeleteMerEventListener Y M

DeletePaySystem Y

DeleteSNMEventListener Y

DeleteSystemCassetteObject* Y

Deposit Y M M M

DepositReversal Y M M

ModifyAccount Y M

ModifyCassette* Y

ModifyMerchant Y M

ModifyMerchantCassetteObject* Y M

ModifyMerEventListener Y M

ModifyPayServer* Y

ModifyPaySystem Y

ModifySNMEventListener Y

ModifySystemCassetteObject* Y

ModifyUserStatus Y M

QueryAccounts Y M M M

QueryBatches Y M M M

QueryCassettes Y

QueryCredits Y M M M

QueryEventListeners Y M

QueryMerchants Y M M M

QueryOrders Y M M M

QueryPayments Y M M M

QueryPaymentServer Y

QueryPaySystems Y M M M

QueryUsers Y m u u

ReceivePayment Y M M M

Refund Y M M

RefundReversal Y M M

SetUserAccessRights* Y a

Chapter 2. WebSphere Commerce Payments commands 17

Note: A user may not update himself. That is to say, user ″admin″ may not call
SETUSERACCESSRIGHTS with the user parameter set to ″admin″.

18 Programmer’s Guide and Reference

Chapter 3. Cashier

Introduction to the Cashier
The Cashier is WebSphere Commerce Payments code that can be invoked by
client applications - such as merchant software - to simplify the process of creating
WebSphere Commerce Payments orders and other WebSphere Commerce
Payments commands. The Cashier uses XML documents called profiles that
describe how commands such as orders should be created for a given cassette.
This allows the client code writer to concentrate on integrating with the WebSphere
Commerce Payments in a generic way rather than having to write code that deals
with cassette-specific information.

You can still create WebSphere Commerce Payments orders without using the
Cashier; programs can use the AcceptPayment and ReceivePayment APIs.
However, the use of the Cashier is preferred since it allows the potential for new
cassettes to be introduced to the system without the need for rewriting any code.

Browser
Web

Server
Servlet
Engine

SampleCheckout
servlet

Cashier

SampleCheckout.xml

WebSphere
Commerce
Payments

profiles

Localization files for
BuyPageInformation

The Cashier is written in Java and is included in the eTillCal.zip package. It
provides a set of methods that can be invoked directly by a WebSphere Commerce
Payments client application. The Cashier itself uses the Client API Library (CAL) to
send AcceptPayment, ReceivePayment, and other commands to WebSphere
Commerce Payments. Therefore, the Cashier benefits from all the advantages of
CAL. The code can operate remotely from WebSphere Commerce Payments, and
can be configured to use a socks server and encrypt messages via SSL if required.
The profiles used by the Cashier must be available where the Cashier is running.

The principal Cashier method is collectPayment(); this is the method that client
applications must invoke to create a WebSphere Commerce Payments order.
collectPayment() takes a profile name, the locale, and a list of environment
variables as arguments. It loads the corresponding profile and uses it to build an
AcceptPayment or ReceivePayment API request. The environment variables are
used to supply the API parameter values.

To query the state of the WebSphere Commerce Payments orders and payments,
you can use the checkPayment() method at any time after the collectPayment()
call.

19

Additionally, you can use the issueCommand() to build and issue other API requests
on WebSphere Commerce Payments. Currently the only supported API
through issueCommand() is the Deposit API.

Cashier profiles
Cashier profiles are XML documents that describe how WebSphere Commerce
Payments commands should be created. All profiles must include the following:

v required WebSphere Commerce Payments parameters

v required cassette parameters

v specifications for how the Cashier supplies values for the above parameters

Profiles may include the following:

v an indication of whether a wallet is used - this flag determines whether the
Cashier will issue an AcceptPayment command or a ReceivePayment command.

v indication of which WebSphere Commerce Payments instance to use for each
profile

v optional WebSphere Commerce Payments parameters

v optional cassette parameters

v buy page information that specifies how client code should build buy pages to
collect buyer information. For example, an HTML form that collects credit card
information required by a specific cassette

v an indication of whether diagnostic information is to be enabled for the profile

Cashier profiles allow parameter values to be specified in four ways:

1. hard-coded as constants in the profile

2. passed as an environment variable on the collectPayment() or issueCommand()
calls

3. specified as originating from a relational database field

4. specified as being calculated by Cashier extension code

If your system already has easy access to data needed by your profiles, then it is
practical to pass this data to the Cashier in environment variables on the
collectPayment() or issueCommand() calls. If data is difficult for your system to
obtain, or is required by only a few profiles, then passing this as environment
variables may be inefficient because you will be deriving this data for all calls to
collectPayment() or issueCommand(), whether the data is required or not.

Designing your integration
This section describes considerations for writing code that integrates with the
WebSphere Commerce Payments via the Cashier.

Managing Cashier profiles
Before using the Cashier, you should determine which profiles you want to make
available on your site. Cassette writers should provide Cashier profiles that are
adaptable for your use. These profiles are stored in the profiles subdirectory of
WebSphere Commerce Payments. However, even if a cassette does not provide
any profiles, they can easily be created by following the cassette’s supplement
guide and the instructions in “Writing cashier profiles” on page 23.

If your system supports multiple stores or merchants, you must decide how you will
determine which profiles are in active use. In the simplest case, all merchants or

20 Programmer’s Guide and Reference

stores may always use a single set of profiles. However, in a more complex
scenario, different merchants or stores may support different sets of profiles. In this
case, you must provide support to map these merchants or stores to the profiles
they use. You may also need to provide tools to administer this table of merchant to
profile mappings.

Mapping merchant numbers
Merchants are the objects with which cassettes are associated and against which
orders are placed. They are identified by merchant numbers of up to nine numeric
digits. Because you can create more than one merchant number for each merchant
entity in your system, it is important to consider how to map the merchant or store
entities in your system against merchant numbers in WebSphere Commerce
Payments. If there is a one-to-one correspondence, and the identifier you use for
your merchant or store can be represented as a string of up to nine digits, then you
need not store WebSphere Commerce Payments merchant numbers in your
system. Otherwise, you must decide how to store WebSphere Commerce Payments
merchant numbers as foreign keys.

Mapping order numbers
Orders are identified by order numbers of up to nine digits. Each order number
must be unique for each merchant number, so it is theoretically possible for a single
instance of WebSphere Commerce Payments to have 999,999,999 merchants,
each with 999,999,999 orders. (Of course, practical limitation would become
unmanageable before reaching these limits.)

A WebSphere Commerce Payments order has a specific definition that might not
precisely match the use of an order in your system. Each WebSphere Commerce
Payments order is an authorization from a buyer to make one or more payments
against a particular payment instrument. An order in which a buyer uses multiple
payment methods must be represented in WebSphere Commerce Payments as
multiple orders. An example would be a down-payment paid by credit card with the
balance paid later by check.

You decide how to map orders in your system with orders in WebSphere
Commerce Payments. If necessary, you may need to store one or more WebSphere
Commerce Payments order numbers with each order in your system.

Designing profiles
Because each profile contains data specifying how to derive the values of
parameters for WebSphere Commerce Payments and cassettes, profiles are usually
specific to a single integration and cannot be copied to another system without
modification. This section lists some of the things to consider when designing how
profiles will work for your integration.

WebSphere Commerce Payments Configuration
There are two ways to configure your system to point to one or more WebSphere
Commerce Payments instances:

1. by specifying the WebSphere Commerce Payments configuration inside each
Cashier profile

2. by specifying the configuration inside your application and using that
configuration for all Cashier profiles.

Either way, it is important to understand that an order is managed by a single
WebSphere Commerce Payments instance. Therefore, when the order is created,
you must record which WebSphere Commerce Payments instance owns the order.

Chapter 3. Cashier 21

If you use profile-based configuration, you can do this by storing the profile name
along with the order. Later, when you want to perform payment operations on the
order, you can query the Cashier to discover which WebSphere Commerce
Payments instance owns the order and direct your API requests to that instance.

Profile parameter sources
Remember to keep in mind that either collectPayment() or issueCommand() can be
used, but that we recommend going to the use of issueCommand().

When using the Cashier, you must decide where your profiles will get their API
parameter values.

If your system already has easy access to data needed by your profiles, then it is
practical to pass this data to the Cashier in environment variables on the
collectPayment() issueCommand() call. If data is difficult for your system to obtain,
or is required by only a few profiles, then passing this as environment variables
may be inefficient because you will be deriving this data for all calls to
collectPayment() issueCommand(), whether the data is required or not.

In these cases, you may prefer to have the Cashier derive the data itself. If the data
is available in a relational database, you can code your profiles to instruct the
Cashier to perform a database query to get it. Or, you can write Cashier extension
code to derive the parameter value. Refer to “Writing your integration” on page 27
to see how this can be done.

Buy page information
Using the Cashier and profiles allows your WebSphere Commerce Payments
integration to support the addition of future payment cassettes without the need for
recoding your system. New cassettes will require different payment information to
be collected on the buy page. Even within the set of credit card cassettes, there are
differences in the buy pages that are presented to a buyer. For example, some
cassettes support the Address Verification Service (AVS) and others do not.

If you write your integration to use information in the Cashier profiles to build buy
pages it becomes much easier to support new cassettes by avoiding the need to
recode your buy pages for the new cassettes.

The profile’s buy page information is determined entirely by your integration design.
It could contain the HTML required to build a form to present to the buyer; it could
be an XML document that describes the data that should be collected; or it could be
a pointer to a Java Server Page or Active Server Page that collects the data. The
only thing you must ensure is that the data entered by the buyer is made available
when the Cashier is using the profile’s parameter definitions to build the
WebSphere Commerce Payments API request.

Publish profile interface
One of the major advantages of the Cashier is that other people can write profiles
that work with your integration. Having integrated with WebSphere Commerce
Payments using the Cashier, new cassettes can be supported by providing the
relevant Cashier profiles, with no requirement for program code changes. To publish
the interface, include the specification for buy page information, parameter sources,
and whether profiles need to contain WebSphere Commerce Payments
configuration information.

22 Programmer’s Guide and Reference

AVS
WebSphere Commerce Paymentscassettes return AVS result codes to merchants
on financial transactions. Because these codes are cassette-specific (meaning they
vary by WebSphere Commerce Paymentscassette), WebSphere Commerce
Paymentsprovides a set of common AVS result codes to extend the
cassette-specific codes. For a mapping of the common AVS result codes to the
cassette-specific codes, see “AVS common codes” on page 117.

Trace
The Cashier provides a trace mechanism that allows diagnostic information to be
written directly to your own system logs, simplifying the process of diagnosing
problems. This facility writes all trace information to one log, thus avoiding the
difficulties involved with correlating multiple logs. To use this facility, follow the
instructions in “Writing your integration” on page 27. If integrating this trace
information is not required for your system, the Cashier provides a simple trace
class that writes the diagnostic information directly to a flat file.

Recording trace information represents a small performance overhead. For this
reason, tracing can be enabled and disabled on a per profile basis. The Profile
element supports an enableTrace attribute that allows you to control tracing.

Error log
Although the Cashier provides a trace facility for use by service personnel in
diagnosing problems, it does not record errors for use by users. Instead, the
Cashier throws Java Exceptions when an error condition is detected. It is the
responsibility of your system to catch these Exceptions and report them
appropriately to the user.

Writing cashier profiles
Four things are required to write a cashier profile:

1. knowledge of the structure of cashier profiles

2. specifications of both the required and optional WebSphere Commerce
Payments parameters

3. specifications of both the required and optional cassette parameters

4. specification of the integration with the cashier

If the cassette writer provides cassette profiles, they are stored in the profiles
directory where WebSphere Commerce Payments is installed. These profiles can
easily be copied and modified to work with other systems. If no template profile is
available, then you must construct a new profile.

Basic Profile Structure
Cashier profiles are XML documents that implement the profile.dtd document type
definition. They have the following basic structure:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Profile SYSTEM "profile.dtd">
<Profile useWallet="false" enableTrace="false">

...

</Profile>

Chapter 3. Cashier 23

When the useWallet attribute is set to true, the Cashier builds a ReceivePayment
API request for collectPayment(); when set to false, an AcceptPayment API
request is constructed for collectPayment(). The enableTrace attribute indicates
whether diagnostic information should be recorded when the Cashier is using this
profile.

WebSphere Commerce Payments configuration in profiles
Optionally, profiles can also contain a WebSphere Commerce Payments
configuration element as follows:
<Profile useWallet="false">

<PaymentsConfiguration
hostname="..."
port="80"
userid="admin"
password="admin"
useSSL="true"
socksHostname="..."
socksPort="..."

dtdPath="..."
/>

...

</Profile>

This information indicates how the Cashier communicates with a WebSphere
Commerce Payments instance when using this profile. The hostname and port
attributes identify the socket where WebSphere Commerce Payments is listening for
API requests. The userid and password attributes specify the identity and
credentials that the Cashier should assume when building API requests.
socksHostname and socksPort are optional attributes that indicate the socks server
to use, if any. useSSL is a flag that indicates whether the communication with
WebSphere Commerce Payments should be encrypted using SSL. The optional
dtdPath parameter specifies the path of the WebSphere Commerce Payments DTD.

Select statements
If the merchant integration supports the use of relational database queries to derive
values for parameter values, then the profile may also contain one or more
SelectStatement elements.
<Profile useWallet="false">

<SelectStatement id="..." allowMultiples="...">
SELECT * FROM ... WHERE ...

</SelectStatement>

...

</Profile>

The contents of the element form the SQL query statement. The id attribute
specifies an identifier for the statement that can be used in subsequent
DatabaseValue elements to refer back to this statement. When building an SQL
statement which does not send back repeating data, ensure that the statement
returns exactly one row, which can be accomplished by not specifying the
allowMultiples attribute, or specifying allowMultiples=″false″. In this case, the
Cashier reports zero or more then one row as errors.

24 Programmer’s Guide and Reference

The optional allowMultiples attribute, if ″true″, indicates that the SQL query may
return multiple rows of data. In this case, the cashier will create multiple arguments
in the API request for each database parameter that references the select
statement. There will be as many arguments as there are rows returned from the
query and each argument will be distinguished by adding a period and an
incrementing integer to the end of the argument. For example, if a parameter with
ID $LINEITEM references a select statement with allowMultiples set to ″true″, and
the SQL query returns three rows, then three arguments will be generated in the
API request by the cashier: $LINEITEM.1, $LINEITEM.2 and $LINEITEM.3

CollectPayment
The CollectPayment element contains all the data needed to create WebSphere
Commerce Payments orders using the Cashier.
<Profile useWallet="false">

<CollectPayment>

...

</CollectPayment>
</Profile>

Command
The Command element contains all the data needed to create WebSphere
Commerce Payments commands using the Cashier. Although this command can be
used to build and issue any WebSphere Commerce Payments API request, the only
API currently supported is Deposit.
<Profile useWallet="false">

<Command name="DEPOSIT">

...

</Command>
</Profile>

Buy Page Information
The system that integrates with the Cashier specifies whether a
BuyPageInformation element is required, and if so, what format it must take.

<BuyPageInformation reference="..."

...

</BuyPageInformation>

BuyPageInformation elements are valid within either CollectPayment or Command
elements.

The optional reference attribute is a free-form field. Its use is defined by the system
that integrates with the Cashier. Read the documentation to see if and how this field
should be used.

Parameters
Parameter elements specify how the Cashier can derive values for each parameter
on the WebSphere Commerce Payments API request.
<name="ACCEPTPAYMENT">

<Parameter

Chapter 3. Cashier 25

name="..."
encoding="... "
maxBytes="..."
sensitive="..."
allowNullValue="...">
...
</Parameter>

Parameter elements are valid within either CollectPayment or Command elements.

The name attribute indicates the name of the API parameter keyword that is sent to
Payment Manger. The element contents indicate how the value should be derived.
There are four ways to derive these values: constants, variables, database entries,
and extensions.

The optional encoding attribute is used if the parameter needs to be in a particular
character encoding. The value is a valid Java name for an encoding. The default
encoding is UTF8.

The optional maxBytes attribute is used to limit the number of bytes of the
parameter passed to WebSphere Commerce Payments. This can be useful to
prevent a parameter containing non-critical data from causing a command to fail
because the parameter value is too long.

The optional sensitive attribute, when set to ″true″ ensures that the cashier will not
display the value of the parameter in the cashier trace file. This is useful for
protecting sensitive data, such as credit card numbers from being obtained illicitly.

Constant parameters
Constant parameters allow unchanging parameter value to be hard-coded inside the
profile.
<Parameter name="..."><CharacterText>1</CharacterText></Parameter>

Variable parameters
Environment variable parameters specify that the value for the parameter is
provided by the system that integrates with the Cashier. Environment variable
values are specified by enclosing the variable name in curly braces {} inside the
Parameter element content. The Cashier reports an error if a specified variable was
not passed in on the collectPayment() call.
<Parameter name="..."><CharacterText>{var1}{var2}</CharacterText></Parameter>

Database parameters
Database parameters indicate that a value is derived by performing a query on a
relational database and looking in the column indicated by the columnName
attribute for the result. The statementID attribute refers to the id attribute of a
previously declared SelectStatement element. The Cashier reports an error if the
query cannot be performed or the column name does not exist.
<Parameter name="...">

<DatabaseValue statementID="..." columnName="..."/>
</Parameter>

Extension parameters
Extension parameters indicate that a custom-written program must be executed to
derive a parameter value. The name attribute of the ExtensionValue element
indicates the name of the program to run. See “Writing your integration” on page 27
for details about writing Cashier extensions.

26 Programmer’s Guide and Reference

<Parameter name="...">
<ExtensionValue name="..."/>

</Parameter>

Writing your integration
The following topics discuss the requirements for writing your integration. They are
as follows:

v Building profiles

v Including the necessary files

v Creating a Cashier object

v Creating orders in the WebSphere Commerce Payments with collectPayment()

v Checking the status of an order with checkPayment()

v Using BuyPageInformation

v Tracing

v Exceptions

v Writing extensions

Note: Javadoc is provided for the Cashier in the
/WebSphere/AppServer/InstalledApps/IBM_Payments.ear/Payments.war
directory of your WebSphere Commerce Payments installation.

For iSeries

Note: Javadoc is provided for the Cashier in the
/QIBM/ProdData/HTTP/Protect/PymSvr/Doc/API directory of your WebSphere
Commerce Paymentsinstallation. It can also be accessed
through http://<hostname>:2001/QIBM/PymSvr/Doc/API/index.html. The
*ADMIN HTTP server instance must be started using the Start TCP/IP
Server (STRTCPSVR) CL command before accessing this URL.

Building profiles
In “Designing your integration” on page 20, you chose which profiles to make
available on your site. This may have included writing your own profiles. The next
step is to edit these profiles for use with your merchant software. This part can be
broken into several parts.

WebSphere Commerce Paymentsconfiguration
If your integration will use multiple WebSphere Commerce Paymentsinstances, then
you might choose to store your WebSphere Commerce Payments configuration
information within your profiles. To do this, you must supply the
PaymentsConfiguration element in your profiles. This element indicates the location
of your WebSphere Commerce Payments instance, the userid and password to use
for this instance, whether or not to use SSL, and (optionally) socks server
information.

Parameters and SelectStatements
When you have a complete list of WebSphere Commerce Payments and cassette
parameters to provide in your profile, you must specify where each parameter will
get its value. The value can come from one of four sources: a hard-coded constant
in the profile, a value from the order processing environment passed on the
collectPayment() or issueCommand() call, a field in a relational database, or it may
be calculated by Cashier extension code. For each parameter in the profile, you
must define where the relevant value can be found in your merchant software. (Your

Chapter 3. Cashier 27

merchant software may publish a formal definition of its interface, which provides a
list of WebSphere Commerce Payments parameters and the locations of their
values in that merchant software.)

For example, if the Cashier will run on a system in which there is only one
merchant, then it would make sense to hard-code the MERCHANTNUMBER
parameter in your Cashier profiles:
<Parameter name="MERCHANTNUMBER"><CharacterText>1</CharacterText></Parameter>

To specify that the value for the WebSphere Commerce Payments
ORDERNUMBER parameter is included in the Map passed on issueCommand()
(associated with the key orderNum), include the following:
<Parameter name="ORDERNUMBER"><CharacterText>{orderNum}</CharacterText></Parameter>

To specify that the values for the WebSphere Commerce Payments AMOUNT and
CURRENCY parameters will be retrieved from a relational database, include the
following:
<SelectStatement id="sql1">SELECT AMT, CUR FROM ORDER_TABLE WHERE ORDERNUMBER=
{orderNum}</SelectStatement>
<Parameter name="AMOUNT"><DatabaseValue statementID="sql1" columnName="AMT">
</Parameter>
<Parameter name="CURRENCY"><DatabaseValue statementID="sql1" columnName="CUR">
</Parameter>

For this example, the amount and currency for the order are retrieved from the
ORDER_TABLE in the columns called AMT and CUR, respectively. Note that the
parameters reference a SelectStatement which provides a row of data for a single
order. orderNum in the SelectStatement must be provided in the data passed to
collectPayment() or issueCommand().

To specify that the value for the WebSphere Commerce Payments ORDERURL
parameter will be constructed in a Cashier extension class named URLBuilder,
include the following:
<Parameter name="ORDERURL"><ExtensionValue name="URLBuilder"></Parameter>

URLBuilder must be a Java class which implements the CashierExtension interface.
URLBuilder.class must be placed in your classpath.

Buy Page information
In “Designing your integration” on page 20 there are descriptions of some ways in
which your integration may use the BuyPageInformation element of your profiles.
Based on your integration design, you must provide information which will make the
generation of buy pages possible. If your merchant software supports shopping in
multiple languages, then you should give extra consideration to localization issues
on the buy page.

When you have finished editing your profiles, it is recommended that you save them
with file names that conform to the following convention: .
MerchantSoftwareNameCassetteName.profile

For example, the WebSphere Commerce Payments provides a profile for use with
the SampleCheckout servlet and the OfflineCard cassette, which is called
SampleCheckoutOfflineCard.profile.

28 Programmer’s Guide and Reference

Including necessary files
To use Cashier, include the following files in the classpath:

v etillCal.zip

v xml4j.jar

v eTillxml4j209.jar

v ibmjsse.jar. This file is only needed if using ssl support for communication with
the WebSphere Commerce Payments.

v a JDBC driver. This is only needed if using Database Value parameters.

v any extension classes referenced in the Cashier’s profiles

You should provide all the Cashier’s profiles and the profile.dtd in a single directory.

Creating a Cashier object
There are three ways to construct a Cashier object:

1. You can construct a Cashier without specifying any information about the
Cashier-to-WebSphere Commerce Payments communication channel (such as
the WebSphere Commerce Payments hostname and port, and whether or not to
use SSL). With this method, the cashier profiles must include the
<PaymentsConfiguration> element which includes the needed information.
public cashier(String profileDirectory) throws Cashier Exception

2. Alternately, you can specify WebSphere Commerce Payments configuration
information on the constructor of the Cashier. In this case, it is not necessary to
include <PaymentsConfiguration> element in your profiles. However, if you do
include <PaymentsConfiguration> in a profile, it will override the
constructor-provided configuration information.
public cashier(String profileDirectory,
String paymentsHostname
String paymentsPort
String userid
String password
boolean useSSL) throws CashierException

3. You can use the following constructor which allows you to connect to
WebSphere Commerce Payments via a socks server.
public cashier(String profileDirectory,
String paymentsHostname,

int paymentsPort,
String socksHostname,

int socksPort,
String userid,
String password,
boolean useSSL) throws CashierException

You should decide which method to use based on the design of your integration.
For example, if you use a single WebSphere Commerce Payments and you
frequently change the administrator’s password, it would be easier to provide
WebSphere Commerce Payments configuration on the Cashier’s constructor rather
than having to update PaymentsConfiguration elements in each of your profiles.

The Cashier can be safely used in a multi-threaded environment. Internally, it
maintains a cache of profiles and consequently you can optimize your integration by
reusing the same Cashier instance (rather than repeatedly instantiating new Cashier
objects).

Chapter 3. Cashier 29

CollectPayment
The CollectPayment element contains all the data needed to create WebSphere
Commerce Payments orders using the cashier.
<Profile useWallet="false">

<CollectPayment>

...

</CollectPayment>
</Profile>

Creating orders in the WebSphere Commerce Payments –
issueCommand()

To create orders in the WebSphere Commerce Payments, call the cashier’s
issueCommand() method. The arguments of the issueCommand() method include:

v command is the constant indicating which command you wish to issue. See the
Cashier class documentation for the list of allowed commands. To create orders,
the command must be ACCEPTPAYMENT or RECEIVEPAYMENT.

v profileName is the name of the profile which used to create the WebSphere
Commerce Payments command.

v locale is the locale in which your merchant software is presenting text to a
shopper (optional)

v values from the order processing environment

v a database connection (optional)

v queryable is an optional querying interface, which can be used to return a list of
values for a parameter using a Hashtable.

The determination of which profile should be used is typically based on the buyer’s
choice of payment method. For example, you may provide a profile for Cash On
Delivery orders and another for credit card orders. The locale which you supply to
issueCommand() should match the locale in which the buyer is shopping. The
WebSphere Commerce Payments will use this value to create a localized message
which may be displayed to the shopper in the event of an error. This allows for new
cassettes to be added without the merchant software having to construct its own
error messages.

Any information that is available when your merchant software is processing orders
should be passed to the Cashier. Depending on your merchant software, this may
include the parameters which constitute an HTTP request, name-value pairs, or
others. Any data used by your profiles should be put in a Map and passed on the
issueCommand() call.

An initialized JDBC Connection should be supplied if your profiles include any
DatabaseValue parameters. Note that the Cashier will not close the JDBC
Connection during the issueCommand() call.

Checking the status of an order – checkPayment()
The Cashier provides a simple method called checkPayment() to query the status of
an order that you have created. A call to checkPayment() will return a
CheckPaymentResponse object which contains the state of the order. The Cashier
javadoc (provided with the WebSphere Commerce Payments) describes the
possible values which this state can have.

30 Programmer’s Guide and Reference

CheckPaymentResponse checkPaymentResponse =
cashier.checkPayment(merchantNumber, orderNumber);

if (checkPaymentResponse.getPrimaryReturnCode() == 0 &&
checkPaymentResponse.getSecondaryReturnCode() == 0)

{
switch (checkPaymentResponse.getState())
{

case CheckPaymentResponse.APPROVED:
...

case CheckPaymentResponse.MISSING:
...

...
}

}
else
{

...
}

Using BuyPageInformation
Buy Page Information, as defined by your integration design, can be retrieved by
calling the Cashier’s getBuyPageInformation() method. To retrieve the Buy Page
Information reference, you call getBuyPageInformationReference().

Tracing
The Cashier provides a trace mechanism to aid in the writing of your integration. A
trace class (SimpleCashierTrace) is provided in etillCal.zip which will write to a file.
Alternatively, by implementing the CashierTrace interface, it is possible to have the
Cashier use your merchant software’s existing trace classes.

Tracing can be enabled on a per-profile basis to help diagnose problematic profiles.
Tracing for a profile is enabled by setting enableTrace=″true″ in the Profile element.
Cashier cashier = new Cashier("d:\\cashierProfileDirectory");
SimpleCashierTrace simpleCashierTrace =
new SimpleCashierTrace("d:\\cashierLogDirectory");
cashier.setTraceClass(simpleCashierTrace);

Exceptions
When an error occurs in the Cashier, an exception is thrown indicates the source of
the problem. There are two varieties of exceptions in the Cashier: ProfileExceptions
and CashierExceptions. The Cashier throws a ProfileException when the Cashier
encounters a profile that is not well-formed, is not valid, or has logical errors that
prevent it from being used to create orders. CashierExceptions are thrown when the
Cashier is used improperly or when there is an error accessing the merchant
database.

When calling the Cashier, you should be aware that issueCommand(),
collectPayment() and checkPayment() throw
PaymentServerCommunicationExceptions. This provides you the opportunity to
write retry logic around these calls.

CashierExceptions and ProfileExceptions may contain a Throwable object which will
provide further details of the error. Both of these exception provide a method called
getNestedException() to provide access to this Throwable object.

Chapter 3. Cashier 31

Writing extensions
Values for most WebSphere Commerce Payments parameters can be obtained
using constants, values from your order processing environment, or values from
your databases. However, there may be some parameters for which the value can
not be so easily derived. For example, if a parameter requires a textual description
of the shopper’s order and your merchant software doesn’t contain that description
in the proper format, then you may need to code a cashier extension to build the
proper value for this parameter.

A Cashier Extension is code that is run by the cashier to build a value for a
WebSphere Commerce Payments parameter. To write a Cashier Extension, you
must write a class which implements the CashierExtension interface. This interface
contains only a single method – getValue(). getValue() is called in a Cashier
Extension when using a cashier profile which contains an ExtensionValue
parameter references that extension.
public class SampleExtension implements CashierExtension
{

public String getValue(String keyword, Hashtable environmentValues,
Hashtable PaymentsParameters, Connection connection,
CashierTrace cashierTrace, Locale locale) throws CashierException

{
if (keyword.equals("$DATETIME"))
{

Date date = new Date();
return date.toString();

}
else if (keyword.equals("$RANDOMNUMBER"))
{
return String.valueOf(Math.random());
}
else ...

}

}

SampleCheckout application
SampleCheckout is a sample application that demonstrates how applications can
use the Cashier to integrate with WebSphere Commerce Payments. The application
uses an HTML interface that can be accessed from the URL
http://hostname/webapp/SampleCheckout. Source code is provided in the
samples/SampleCheckout directory.

For iSeries, source code is provided in the
/QIBM/ProdData/PymSvr/Samples/SampleCheckout directory.

32 Programmer’s Guide and Reference

WebSphere Commerce Payments

Merchant number

Order number

Amount

Currency

Payment method

Brand

Credit card number

Expiration date

123456789

Buy

Offline Card
Cash on delivery (via CustomOffline)

Bill me (via CustomOffline)

Overview
SampleCheckout is a simple order entry system that allows orders to be created
using different payment methods. Users must enter basic order information - such
as order number, merchant number and order amount - as well as the payment
information used to collect payment for the order. SampleCheckout allows the
configuration of any number of different payment methods; each payment method is
supported by a Cashier profile. The SampleCheckout profiles contain the HTML
needed to build the payment information part of the buy page as well as the data
needed to build an API request to create the order in WebSphere Commerce
Payments.

SampleCheckout attempts to display the buy page using the language preference of
the user’s browser. SampleCheckout is translated into the same languages
supported by WebSphere Commerce Payments. If a user’s language preference is
not supported, the buy page is presented in English. To select a language for
Internet Explorer, click Tools from the menu bar, then Internet Options, and then
click the Languages button. From Netscape Navigator, click Edit from the menu
bar, then Preferences, then select Language under the Navigator category. Fields
marked with a red asterisk are required input. Others are optional.

SampleCheckout works for both Cashier profiles that do not use a wallet and those
that do. If profiles do require a wallet, SampleCheckout assumes that the
ReceivePayment API response from the WebSphere Commerce Payments contains
an HTTP wallet wake up message.

Chapter 3. Cashier 33

Requirements
The SampleCheckout application uses Java Server Pages (JSP) and dynamic
HTML technologies. It is automatically installed and configured for the Offline Card
and the CustomOffline cassettes when WebSphere Commerce Payments is
installed. To use it, you must have a servlet engine that supports JSP (such as
WebSphere Application Server) and a browser that supports dynamic HTML. It has
been tested with Netscape Navigator version 4 and Microsoft Internet Explorer
versions 4 and 5.

The Web Server must be configured to serve the files in the directory
web/SampleCheckout in response to URIs beginning
/webapp/Payments/SampleCheckout.

A servlet called SampleCheckoutServlet must be defined to the servlet engine with
a classpath containing the following: eTillCal.zip, xml4j.jar and ibmjsse.jar.

For iSeries, the classpath must contain eTillCal.zip and xml4j.jar.

Also required is the samples/SampleCheckout directory (which includes all the
necessary Java class files, properties files and the SampleCheckout.xml along with
its SampleCheckout.dtd file).

The SampleCheckout.xml configuration file must point to valid profile and log
directories and the configured payment options must point to valid Cashier profiles.

Configuration

Merchant
Software

Cashier

WebSphere
Commerce
Payments

profiles

socks and SSL supported

SampleCheckout uses a configuration file named
samples/SampleCheckout/SampleCheckout.xml to define the following:

v the WebSphere Commerce Payments configuration information (hostname, port,
use of socks and SSL) Since SampleCheckout provides a global method for
storing WebSphere Commerce Payments configuration information, it is not
necessary for each profile to specify a PaymentsConfiguration element.

v the directory containing the SampleCheckout profiles — By default, this is the
profiles directory where WebSphere Commerce Payments is installed.

v the directory where Cashier trace information is written — By default, this is the
log directory where WebSphere Commerce Payments is installed.

v the available payment methods and which Cashier profiles each method uses —
New payment methods can be supported by SampleCheckout by adding the
following element to the PaymentOptionList element of SampleCheckout.xml:
<PaymentOption id="newmethod" profile="newprofname">

New Payment Method
</PaymentOption>

34 Programmer’s Guide and Reference

where newmethod is the ID of this new payment method, newprofname is the
name of the Cashier profile that supports the method, and ″New Payment
Method″ is the label that is displayed on the SampleCheckout buy page.

v the currencies supported by SampleCheckout

SampleCheckout Profiles
When WebSphere Commerce Payments is installed, SampleCheckout profiles is
installed in the profiles directory. SampleCheckout profiles must contain a
BuyPageInformation element and the parameter definitions for all the parameters
required by WebSphere Commerce Payments and the specified cassette for the
profile. SampleCheckout profiles do not need to contain WebSphere Commerce
Payments configuration information since this is specified in the SampleCheckout
configuration file. However, if a PaymentsConfiguration element is specified, then it
will override the configuration specified in SampleCheckout.xml.

Buy page information
The BuyPageInformation element in each profile must contain the HTML to create
the payment information section of the buy page. Each profile’s BuyPageInformation
contents is inserted into the HTML <table> and <form> tags as follows:
<FORM NAME="cassetteform" METHOD="POST"
ACTION="/webapp/Payments/SampleCheckout">

<TABLE BORDER="0" WIDTH="100%" CELLSPACING="1" CELLPADDING="2">

... <BuyPageInformation> contents ...

</TABLE>
</FORM>

SampleCheckout provides localization support for the contents of the
BuyPageInformation element via Java ResourceBundle files. These files contain a
mapping of keywords to text and this allows writers of SampleCheckout profiles to
avoid hard coding text in the BuyPageInformation elements. Instead, at run-time,
SampleCheckout replaces the keywords enclosed in curly braces with text from the
ResourceBundle for the user requested language. The name of the
ResourceBundle used by SampleCheckout BuyPageInformation elements is
indicated by the reference attribute. For example, if a SampleCheckout profile
contains the following elements:
<BuyPageInformation reference="SampleCheckoutOfflineCard"

...
<p>{BPMESSAGE}</p>
...

<BupPageInformation>

and the user has requested buy pages in Canadian French, then the application will
search for localized text for BPMESSAGE in the following Java ResourceBundles
until it finds a match.

SampleCheckoutOfflineCard_fr_CA.class
SampleCheckoutOfflineCard_fr_CA.properties
SampleCheckoutOfflineCard_fr.class
SampleCheckoutOfflineCard_fr.properties
SampleCheckoutOfflineCard.class
SampleCheckoutOfflineCard.properties

Profile environment variables
The following table defines the variables that SampleCheckout makes available to
its profiles. These variables can be used in a profile by enclosing the variable name

Chapter 3. Cashier 35

in curly braces. For example, {merchantnumber} is replaced by the merchant
number entered by the user on the buy page.

Variable Name Content

merchantnumber the merchant number entered on the form

ordernumber the order number entered on the form

currency the 3-digit number for the ISO 4217 currency
selected on the form

currencyAlpha the 3–letter alphabetic value for the ISO
4217 currency

amount the amount entered on the form

amountLowestCurrUnits the amount value, converted to the
currency’s lowest units; for example, 5 US
dollars converts to 500 cents.

paymentOption the Payment method selected on the form

other form variables as specified in the
BuyPageInformation element of each profile

the value entered on the form

36 Programmer’s Guide and Reference

Chapter 4. Client API Library (CAL)

Merchant business software can issue payment, administration, and query
commands to the WebSphere Commerce Payments. Requests are sent to the
WebSphere Commerce Payments by issuing HTTP POST messages, and
responses are received from the WebSphere Commerce Payments in the form of
XML documents embedded in the HTTP. The Java Client API Library (CAL)
provides a Java programming interface that enables merchant software written in
Java to issue these commands to the WebSphere Commerce Payments and
receive the responses. CAL provides a wrapper that shields the merchant software
writer from having to understand the details of HTTP communications and XML
document parsing. CAL provides Java objects that allow a merchant program to:

v create requests to be sent to the WebSphere Commerce Payments

v communicate with the WebSphere Commerce Paymentsvia a TCP connection or
a SSL connection

v process responses from the WebSphere Commerce Payments

A merchant program written to use CAL has several steps:

v Create a PaymentServerClient

v Issue commands to the WebSphere Commerce Payments

– create a Hashtable object and populate it with keyword/value pairs

– issue the command

– process the return codes

– process the returned data

v Close the PaymentServerClient

The remainder of this section describes these steps at a high level. Details can be
found in the JavaDoc, which is located in this location:

v For Windows® and UNIX platforms:
<Payments_installdir>/WebSphere/AppServer/InstalledApps/
IBM_Payments.ear/Payments.war directory.

v For iSeries: /QIBM/ProdData/HTTP/Protect/PymSvr/Doc/API directory. It can
also be accessed through
http://[hostname]:2001/QIBM/PymSvr/Doc/API/index.html. The *ADMIN HTTP
server instance must be started using the Start TCP/IP Server (STRTCPSVR) CL
command before accesssing this URL.

CAL Public Classes
CAL is structured as a Java Class library with a number of public classes. These
classes can be divided into three groups:

1. Client classes: A merchant program will create one instance of these classes to
communicate with the WebSphere Commerce Payments.

v PaymentServerClient: Communicate with the WebSphere Commerce
Payments over a TCP connection (with or without SOCKS support)

v PaymentServerSSLClient: Communicate with the WebSphere Commerce
Payments over an SSL connection

2. The Response class:Each command issued to the WebSphere Commerce
Payments returns an instance of this class: PaymentServerResponse

37

3. The PSObject classes: Data returned from Query commands is processed into
a set of PSObjects reflecting the actual WebSphere Commerce Payments
objects.

v PSObject: superclass of all these objects

v PSAdminObject: superclass of all administration objects

v PSOrder: represents an Order

v PSPayment: represents a Payment

v PSCredit: represents a Credit

v PSBatch: represents a Batch

v PSBatchTotal: represents batch totals for a particular currency

v PSPaymentServer: represents the Payment Server administration object

v PSMerchant: represents a Merchant administration object

v PSCassette: represents a Cassette administration object

v PSMerchantCassetteSettings: represents a PaymentSystem administration
object

v PSAccount: represents an Account administration object

v PSCassetteObject: represents an object attached by a cassette to a generic
object

v PSCassetteConfigObject: represents an administration object attached by a
cassette to a generic administration object

v PSAbout: provides version information for the WebSphere Commerce
Paymentsand the user name of the person issuing the command

v PSCassetteAbout: provides version information for a WebSphere Commerce
Paymentscassette

Creating a PaymentServerClient
A PaymentServerClient represents a connection from the merchant program to the
WebSphere Commerce Payments. It is a persistent object, designed to be created
at the beginning of a merchant program, used and reused throughout that program
and closed when the program terminates. The PaymentServerClient has a single
socket connection that it maintains until the PaymentServerClient is closed. The
PaymentServerClient can be created in several ways to reflect different
communication options.

A basic PaymentServerClient is constructed with three arguments:
PaymentServerClient (String dtdPath, String hostName, int portNumber)

This constructor creates a client that will communicate using TCP to WebSphere
Commerce Payments at hostName:portNumber. Two additional arguments,
socksHost and socksPort, can be added to the basic constructor. This will create a
client that communicates to the WebSphere Commerce Payments through a
SOCKS server.
PaymentServerclient(String dtdPath, String hostName, int portNumber,
String socksHost, int socksPort)

Two additional constructors allow the specification of a hashtable to be used to
specify additional keyword/value pairs to be passed in the HTTP header.
PaymentServerClient (String dtdPath, String hostName, int portNumber,
Hashtable httpHeaderFields)
PaymentServerClient (String dtdPath, String hostName, int portNumber,
String socksHost, int socksPort, Hashtable httpHeaderFields)

38 Programmer’s Guide and Reference

Other communication options are created with subclasses of PaymentServerClient.
A PaymentServerSSLClient communicates with the WebSphere Commerce
Payments over an SSL connection.
PaymentServerSSLClient(String dtdPath, String hostName, int portNumber)
PaymentServerSSLClient(String dtdPath, String hostName, int portNumber,

String socksHost, int socksPort)
PaymentServerSSLClient(String dtdPath, String hostName, int portNumber,

Hashtable httpHeaderFields)
PaymentServerSSLClient(String dtdPath, String hostName, int portNumber,

String socksHost, int socksPort, Hashtable httpHeaderFields)

Note: The DTDPath specified when the PaymentServerClient is instantiated is
used throughout the session (for all subsequent commands processed
before the close ()). The DTDPath on the PaymentServerClient is optional
and can be NULL but better performance can be realized if the DTDPath is
specified.

Preparing the iSeries for SSL Support

Note: These instructions are for iSeries only.

To prepare your system to use Secure Sockets Layer (SSL), you must install the
Digital Certificate Manager Licensed Program: 5722–SS1 OS/400 — Digital
Certificate Manager

You must also install one of the following Cryptograpahic Access Provider Licensed
Programs:

v 5722-AC2 Cryptographic Access Provider 56-Bit

v 5722-AC3 Cryptographic Access Provider 128-Bit

If client authentication is required by the server, you may set the following
properties to specify which digital certificate to use:

v os400.certificateContainer

v os400.certificateLabel

If these properties are not set, the default system certificate (if any) will be used.
More information on iSeries documentation to install Java/SSL is found at:
http://publib.boulder.ibm.com/pubs/html/as400/infocenter.html. Follow the link
for the current iSeries version, then select: Programming, Java, iSeries
Development Kit for Java, Security, Secure Sockets Layer.

Issuing WebSphere Commerce Paymentscommands
The issueCommand method of PaymentServerClient is used to send commands to
the WebSphere Commerce Payments. There are several overloaded versions of the
issueCommand method. At a minimum, each issueCommand method takes the
following parameters:

WebSphere Commerce Payments API command name
The name of the WebSphere Commerce PaymentsAPI command name.
See Chapter 7, “WebSphere Commerce Payments command reference” on
page 59 for a list of WebSphere Commerce Payments API commands. The
public interface PaymentCommandConstants defines constants for each API
command. Refer to the JavaDoc for details.

Chapter 4. Client API Library (CAL) 39

A hashtable of the keyword/value pairs to be sent with the WebSphere
Commerce Paymentscommand

This Java Hashtable represents the parameters to be passed with the
specified API command. The keys to the hashtable are Strings that
represent the API command parameter name. The values represent the
value of the API command parameter. The values can be one of these
types:

v String: a Unicode string in all supported character sets

v byte[]: a byte array, for binary data

v Integer: a 4-byte integer

v Date: a Java Date (java.util.Date) representing a timestamp

v Boolean: a boolean value

v Vector: a vector of any of the above. Vector values are a special case. If
a keyword is assigned a Vector of values, it will be included in the HTTP
body multiple times, one for each entry in the Vector.

It should be noted that CAL does not check these keyword/value pairs to
ensure they are valid for the specified keyword, or that the data types of the
values are correct. CAL simply passes all keyword/value pairs on to the
WebSphere Commerce Payments. See Chapter 7, “WebSphere Commerce
Payments command reference” on page 59 for a list of required and
optional parameters for each WebSphere Commerce Paymentscommand.
The public interface PaymentCommandConstants defines constants for each
API command parameter value. Refer to the JavaDoc for details.

Authentication information
When WebSphere Commerce Payments receives a command, it
authenticates the user through the use of realms. When writing programs
using WebSphere Commerce Payments, it must be understood which realm
the WebSphere Commerce Payments is using. The realm contains the list
of users that are potentially authorized to access WebSphere Commerce
Payments, along with their authentication information. The realm dictates
whether or not each command should have a userId/password associated
with it, or, more generally, a byte array that contains other authentication
credentials. Therefore, look at your realm documentation to determine which
of these issueCommand methods you should use. The default realms that are
provided with WebSphere Commerce Payments all use userId/password for
authentication. If you don’t know what realm your WebSphere Commerce
Payments is using, you can look at your WebSphere Commerce Payments
Settings screen in the user interface.

The basic versions of the issueCommand method are:
issueCommand(String command, Hashtable keywordValuePairs, String basicAuthUserid,

String basicAuthPassword)
issueCommand(String command, Hashtable keywordValuePairs, byte pmAuthObject[])

In addition, there are versions of the issueCommand method that allow the
specification of a hashtable to be used to specify additional keyword/value pairs to
be passed in the HTTP header:
issueCommand(String command, Hashtable keywordValuePairs, Hashtable httpHeaderPairs,
String basicAuthUserid, String basicAuthPassword)
issueCommand(String command, Hashtable keywordValuePairs, Hashtable httpHeaderPairs,
byte pmAuthObject[])

issueCommand will throw an exception in the event of errors or other processing
problems.

40 Programmer’s Guide and Reference

Specifying additional information in the HTTP Header
There are two ways to specify additional information in the HTTP Header:

v in the constructor of the PaymentServerClient object, which causes the additional
parameters to be specified on all commands issued to the WebSphere
Commerce Payments

v in the issueCommand method, which causes the additional parameters to be
specified only for the command that is being issued, thus allowing the HTTP
Header to be tailored for each WebSphere Commerce Payments command. An
example of this occurs on the AcceptPayment and ReceivePayment API
commands. For these commands, the WebSphere Commerce Payments will
return message text when the processing of the command was not successful.
The message text provides additional information in the language preference of
the client application as specified by the PM-Accept-Language tag in the HTTP
header. If the PM-Accept-Language tag is not specified in the HTTP Header, then
the default language of the machine running the servlet is used. See the
PaymentServerResponse methods getBuyerMessage() and getMerchantMessage()
for additional information regarding these messages. In addition, CAL provides a
convenience method to create the keyword/value pair for the PM-Accept-Language
tag. See the PaymentServerClient method addLocaleToHttpHeader for details.

Processing responses from WebSphere Commerce Payments
A PaymentServerResponse object is returned by issueCommand. This object contains
methods that allow the merchant software to access the primary and secondary
return codes that were returned as a result of issuing the command to the
WebSphere Commerce Payments. See Appendix A, “WebSphere Commerce
Payments return codes” on page 129 for a list of WebSphere Commerce Payments
return codes. If a programmatic error occurs, a Java exception is thrown. There are
two types of exceptions defined in CAL:

v PaymentServerCommunicationException This exception is thrown when CAL is
having trouble communicating with the WebSphere Commerce Payments.
Possible causes include:

– CAL received a bad HTTP response; this generally means that something is
wrong with the Payment Servlet or the WebServer/WebSphere configuration.

– CAL took an IOException, which means that the TCP layer or the SSL layer
threw an IOException (for example, could not connect to the WebSphere
Commerce Payments, or the connection went down prematurely). If this
exception results from an IOException, the IOException is stored within the
PaymentServerCommunicationException (and can be accessed by the
merchant programmer).

v PaymentServerClientException This is an internal exception thrown by CAL. It
indicates a defect in CAL.

Process returned objects
When a command results in returned data (for example, Query commands), a set of
PSObjects is returned as part of the PaymentServerResponse. These objects
correspond to basic WebSphere Commerce Payments objects. The interpretation of
these fields can be found in Chapter 8, “WebSphere Commerce Payments data” on
page 111.

The PaymentServerResponse object contains the method getObjectCount which
returns the number of objects that were returned in the response. This is especially
useful for queries using RETURNATMOST, which limits the size of data.

Chapter 4. Client API Library (CAL) 41

Closing the PaymentServerClient
The PaymentServerClient classcontains a close() method. Merchant programs
should call close() prior to exiting. This is not particularly important for simple
programs using standard TCP or SOCKS communication because the Java
Runtime will clean up these resources on exit. However, it is extremely important for
SSL clients. Failure to call close() on these clients can result in problems when the
merchant’s application is restarted. Since merchant programs can be converted to
use SSL at any time, it is good practice to ensure that close() is called in all cases.

Sample CAL program
This section contains a skeleton of a simple CAL program. Sample CAL programs
are available and are located in the following locations:

v For Windows and UNIX platforms:

– <Payments_installdir>/samples directory.

v For iSeries:

– /QIBM/ProdData/PymSvr/CAL/Samplesdirectory.

A merchant program written to use CAL has three primary steps:

1. Create a PaymentServerClient

2. Issue commands to the WebSphere Commerce Payments

a. Create a hashtable and populate it with keyword-value pairs

b. Issue the command

c. Process the return codes

d. Process the returned data

3. Close the PaymentServerClient

An example CAL program follows:
PaymentServerClient client = new PaymentServerClient(dtdPath, hostName,
port);

while (...)
{

Hashtable keywordValuePairs = new Hashtable();
keywordValuePairs.put("merchantnumber","123456789");
... using documentation in the programmer’s reference as a guide, fill

in other keywordValuePairs ...

PaymentServerResponse response =
client.issueCommand(command,keywordValuePairs,userid,password);

int primaryRC = response.getPrimaryRC();
int secondaryRC = response.getSecondaryRC();
... process return codes ...
String contentType = response.getContentType();
if (contentType != null)
... process contentType

Enumeration objects = response.getObjects();
while (objects.hasMoreElements())

{
PSObject object = (PSObject) objects.nextElement();
... process object ...

}
}

client.close();

42 Programmer’s Guide and Reference

Installing Files Required by CAL
All files required by CAL can be found in the following locations:

v For Windows and Unix platforms:

– Files can be found in a zipped file called eTillCal.zip, which is found in the
\WebSphere\AppServer\installedApps\IBM_Payments.ear directory. To install
the required files, unzip eTillClientSDK.zip to a directory of your choice.
Recommended directory names are C:\PaymentsClient for Windows NT® or
/usr/PaymentsClient for AIX®, Solaris and Linux®.

v For iSeries:

– Files required by CAL are installed at /QIBM/ProdData/PymSvr/CAL/etillCal.zip
and /QIBM/ProdData/PymSvr/XML/eTillxml4j209.jar. No additional installation
steps are required.

Be sure to include the required class libraries in the CLASSPATH environment
variable for the system or for the session in which your WebSphere Commerce
Payments application will run.

For Machines that don’t have WebSphere Commerce Payments
Installed

If you plan to write to the CAL interface or execute CAL programs from a machine
that does not have the WebSphere Commerce Payments installed, perform the
following steps:

For Windows and UNIX platforms:

1. From a machine where the WebSphere Commerce Payments is installed, copy
the following files to your machine. These files can be found in the WebSphere
Commerce Payments directory:

v etillCal.zip

v eTillxml4j209.jar

v ibmjsse.jar (Only required at runtime if you are using SSL.).

2. If you will be using the IBM-supplied DTD, copy the IBMPaymentServer.dtd file
from the WebSphere Commerce Payments /include directory.

3. Edit your system CLASSPATH to include etillCal.zip and eTillxml4j209.jar.

For iSeries:

1. From a machine where the WebSphere Commerce Payments is installed, copy
the following files to your machine. These files can be found in the WebSphere
Commerce Payments root directory:

v /QIBM/ProdData/PymSvr/CAL/etillCal.zip

v /QIBM/ProdData/PymSvr/XML/eTillxml4j209.jar

2. If you want to use SSL through CAL running on another iSeries system, you will
also need the Licensed Programs listed in the ″Preparing iSeries for SSL
Support″ section on the remote iSeries system.

3. If you will be using the IBM-supplied DTD, copy the IBMPaymentServer.dtd file
from the /QIBM/ProdData/PymSvr/XML/DTD directory.

4. Edit your system CLASSPATH to include etillCal.zip and eTillxml4j209.jar.

Note: If you want SSL support through CAL running on a non-iSeries system, copy
ibmjsse.jar.

Chapter 4. Client API Library (CAL) 43

44 Programmer’s Guide and Reference

Chapter 5. Event notification

The WebSphere Commerce Payments provides an event notification service to
enable merchant software (or non-merchant software such as network management
systems) to listen for events and perform appropriate actions in the merchant’s
business system (For instance, delivering an order to the shipping department when
an event indicates that an order has been approved). One function of this service is
as a performance optimization for systems that normally issue Query commands to
determine the state of WebSphere Commerce Payments objects. By listening for
the events that occur when object states change, a merchant system can react
quickly without incurring the full overhead of a polling loop. In addition, the event
notification service can be used by network management software to monitor the
health of the WebSphere Commerce Payments.

Merchant software registers its interest in WebSphere Commerce Payments events
and specifies a URL. When events occur, the event notification service sends an
HTTP POST to a destination specified by the URL. The merchant software should
be responsible to receive the events. The merchant software that listens for these
events can be a CGI, Java Servlet or a program which listens to the port specified
in the registration.

Event types and contents
The WebSphere Commerce Payments event notification service defines and will
send the following three types of events:

1. State change event. These events are sent when the state of a Framework
object has been changed. For example, the state of an Order object is changed
from ″Received″ to ″Approved″.

2. Cassette-specific event. The cassette can use this event type to notify
merchants of events that occur within the cassette. The cassette defines the
content of the event. Not all cassettes will implement cassette-specific events.

3. Network management event. These events are sent when the WebSphere
Commerce Payments is started or stopped.

WebSphere Commerce Payments provides the ″state change event″ for the
Framework financial objects and the Framework up and down network management
events. The merchant software should refer to the appropriate Cassette Supplement
to find out which cassette events are being supported.

Every event contains the following ″basic″ contents:

v EventType: The type of event.

v Timestamp: Time when the event happens.

v ObjectID: Identifies the object which the event is referring to. The ObjectID may
consist of several fields.

Different event types may contain different information, which is described in the
next section.

State change event
State change event

Name Value

45

State change event

EventType ″1″

Object One of the following values:

v Order

v Payment

v Credit

v Batch

<ObjectID> The ObjectID is dependent on the Object type. Each
object is identified by a set of keys. (For example, an
Order is identified by its MerchantNumber and
OrderNumber.)

PreviousState State name. See “WebSphere Commerce Payments
payment objects” on page 111 for state definitions.

Current State State name. See “WebSphere Commerce Payments
payment objects” on page 111 for state definitions.

TransactionId Transaction identifier that was supplied by the user on
the AcceptPayment or ReceivePayment API.

OrderData1 Auxiliary data that was supplied by the user on the
AcceptPayment or ReceivePayment API.

OrderData2 Auxiliary data that was supplied by the user on the
AcceptPayment or ReceivePayment API.

OrderData3 Auxiliary data that was supplied by the user on the
AcceptPayment or ReceivePayment API.

OrderData4 Auxiliary data that was supplied by the user on the
AcceptPayment or ReceivePayment API.

OrderData5 Auxiliary data that was supplied by the user on the
AcceptPayment or ReceivePayment API.

Cassette-specific event
For cassette-specific events, in addition to the name-value pairs defined in the
following table, each cassette can define its own name-value pairs. The
documentation for each cassette will detail the cassette-specific name-value pairs
and the rules which define when these events are sent.

Cassette-specific event

Name Value

EventType ″2″

CassetteName <CassetteName> value in ASCII character string.

MerchantNumber Integer in ASCII characters.

Network management event
Network management events

Name Value

EventType ″3″

46 Programmer’s Guide and Reference

Network management events

ComponentName Either one of the following values in ASCII character
string:

v Framework

v <CassetteName>

Status Either one of the following integer values in ASCII
string:

v ″1″: (Denotes running)

v ″2″: (Denotes not running)

For example, the WebSphere Commerce Payments will send a State Change Event
with the following contents to the Event Listeners:
EVENTTYPE=1
TIMEGENERATED=
MERCHANTNUMBER=
PREVIOUSSTATE=
CURRENTSTATE=
OBJECT=
ORDERNUMBER=
PAYMENTNUMBER=
CREDITNUMBER=
BATCHNUMBER=
ACCOUNTNUMBER=

WebSphere Commerce Payments will send a Network Management Event with the
following contents to the Event Listeners:
EVENTTYPE=3
TIMEGENERATED=
COMPONENTNAME=
STATUS=

Registering events
In order to receive events, the merchant software must register itself with the
WebSphere Commerce Payments. There are two types of event listeners: merchant
and non-merchant. Merchant listeners can only register merchant-specific events
(all state-change and cassette-specific events). Non-merchant software, such as a
network management system, can only register a network management event. The
merchant and the non-merchant software can register the same type of events
multiple times. In this case, the events will be broadcast to each of the registered
locations.

The API commands for registering and managing event listeners are discussed in
Chapter 7, “WebSphere Commerce Payments command reference” on page 59.

Event ListenerURL parameter
When creating an event listener, a valid ListenerURL is a required keyword. In the
WebSphere Commerce Payments, a valid ListenerURL is defined as a valid Java
URL. The same valid Listener URL may have a different format. For example:
http://foo and http://foo/ are the same URLs, but http://foo/xx and http://foo/xx/ are
two different URLs. The WebSphere Commerce Payments command will convert a
valid URL into the WebSphere Commerce Payments canonical URL format, which
is a valid URL with the following extensions:

Chapter 5. Event notification 47

v The WebSphere Commerce Payments command will insert the port number ″80″
if the port number is not defined.

v The WebSphere Commerce Payments command will insert the hostname
″localhost″ if the hostname is not defined.

v The WebSphere Commerce Payments command will insert the hostname
″localhost″ and the port number ″80″ if neither is defined.

By using this canonical URL format, the QueryEventListener command will return
the same listener for slightly different input URL strings. For example, if the port
number of the listener is 80, then no matter which port number is specified in the
URL, the same listener will be returned.

48 Programmer’s Guide and Reference

Chapter 6. WebSphere Commerce Payments realm support

WebSphere Commerce Payments authenticates users through the use of realms. A
realm is a registry of users along with a single method of authenticating those users
(for example, a user’s name and password). Examples of realm types include LDAP
realms and operating system realms. A user must be defined in a realm before
being granted access to resources. Therefore, a user is a valid WebSphere
Commerce Payments user if, and only if, he is both:

v in the realm

v assigned a role in the WebSphere Commerce Payments

WebSphere Commerce Payments employs a role-based access control scheme
which defines four WebSphere Commerce Payments roles:

1. Payments administrator

2. Merchant administrator

3. supervisor

4. clerk

The Payments administrator can use the WebSphere Commerce Payments user
interface User’s window to assign access (based on role) to a user defined in a
realm. Though other realms can be created, the following are provided with the
WebSphere Commerce Payments:

v PSDefaultRealm: This is a simple realm implementation provided by the
WebSphere Commerce Payments which uses a flat file to hold a list of realm
users and their corresponding passwords.

v WCSRealm: The WCSRealm class is installed automatically by the WebSphere
Commerce Payments installation program if WebSphere Commerce Payments is
installed on the same machine as WebSphere Commerce Suite. This realm
allows the WebSphere Commerce Payments Servlet to use the administrator
information that is already registered in the WebSphere Commerce Suite user
tables. This administrator information is used for Payments administrators, so
that you do not have to define another set of administrator IDs in order to use the
WebSphere Commerce Payments user interface. Use this realm when using
WebSphere Commerce Payments with WebSphere Commerce Suite

v PSOS400Realm: This is a realm implementation provided by the WebSphere
Commerce Payments which accesses the iSeries user profiles to validate users
and their corresponding passwords. It is the default realm for use with
WebSphere Commerce Payments for iSeries.

As previously noted, these are not the only mechanisms for authenticating and
authorizing users. Other applications that use the WebSphere Commerce Payments
may override WebSphere Commerce Payments realm implementations and use
their own support. This chapter provides information on writing new realms for use
with the WebSphere Commerce Payments. Note that if your merchant software
already shares a user registry with the WebSphere Commerce Payments, writing
and implementing a new WebSphere Commerce Payments realm may break the
integration between your merchant software and the WebSphere Commerce
Payments.

49

Writing a new WebSphere Commerce Payments realm
WebSphere Commerce Payments is not a stand-alone application and will always
work in conjunction with other merchant software. If this software provides a user
interface, it is often desirable to provide links into the WebSphere Commerce
Payments user interface in order to perform payment operations such as making
credits against an existing order, closing batches, or viewing the status of existing
payments. Under normal operation, a user would log in to the merchant software
and then, when the user clicks a link to get to the WebSphere Commerce
Payments user interface, he would need to log in a second time to access
WebSphere Commerce Payments. If the merchant software and the WebSphere
Commerce Payments both share the same realm, this double login problem can be
removed by coding the merchant software links to pass authentication information
through the WebSphere Commerce Payments user interface and into the realm
code. Single-signon is often an important reason for wanting to write a WebSphere
Commerce Payments plug-in realm.

This section details the process for writing a new WebSphere Commerce Payments
realm. In preparing to write your new realm, you will need to:

v Make decisions about the design of your realm

v Implement a PaymentServletRealm subclass

v Use the trace facility to enable easy problem determination

v Implement single-signon between another user interface and the WebSphere
Commerce Payments user interface (that is, provide links between your Web
pages and the WebSphere Commerce Payments Web pages using the
single-signon function)

v Test the realm

Design points
To write a realm for WebSphere Commerce Payments you must provide a new
class that extends the PaymentServletRealm class. You should consider the
following design points when writing your new WebSphere Commerce Payments
realm:

Realm name
One of the functions your new realm class will provide is getRealmName().
Payments administrators can determine which realm is currently in use by looking
at the Realm field of the Basic settings window in the user interface. This realm
name is determined by querying the realm using the getRealmName() method. The
result is passed to the user interface via the QueryPaymentServer API response.
You should provide a getRealmName() method in your realm class that returns a
string that can be used by the Payments administrator to understand which realm is
in use and, therefore, how he can manage that particular realm.

Realm properties
Your new realm may require specific configuration values. You will determine what
these new configuration values are and create new property keywords for them.
Your documentation should instruct your users to place these properties in a file
called <realmname>.properties, where <realmname> is the name of the new realm
(e.g. PSDefaultRealm.properties) For example, you may need a new property for
the hostname of the system where your user registry is held. At start-up time,
WebSphere Commerce Payments will read the <realmname>.properties file,
instantiate your realm, and pass all your realm properties to your realm’s init()
method.

50 Programmer’s Guide and Reference

Authentication mechanism
The WebSphere Commerce Payments API uses HTTP post requests to transfer
information. The HTTP request will be made available to your realm’s
getAuthenticatedUser() method so that you can find the authentication information
from the request and determine whether the user issuing the API command is an
authenticated member of the realm or not. You must decide how your realm is
going to get this authentication information. There are three possible mechanisms
for authentication that your realm may use:

1. Basic authentication

2. WebSphere Commerce Payments Authentication Object (that is,
PMAUTHOBJECT)

3. Custom authentication

If your realm requires only basic authentication (that is, user ID and password), then
WebSphere Commerce Payments supports this via the HTTP authorization header.
PaymentServletRealm contains a convenience method,
getFromHTTPAuthorizationString(), that can be used to read the user ID and
password from this HTTP header.

If user ID and password are not sufficient, you can use WebSphere Commerce
Payments’s PMAUTHOBJECT keyword to pass arbitrary authentication information
to the realm. Again, PaymentServletRealm provides a convenience method,
getPMAuthenticationString(), to allow your realm to retrieve this object from the
HTTP request.

Lastly, it is important to note that WebSphere Commerce Payments does not
provide any restriction on the mechanism a realm uses to authenticate any HTTP
request, so you can decide to implement any authentication method you like.

User interface single-signon
As previously noted, if your merchant software and the WebSphere Commerce
Payments both share the same realm, the double login problem (see “Writing a new
WebSphere Commerce Payments realm” on page 50) can be removed by coding
the merchant software links to pass authentication information through the
WebSphere Commerce Payments user interface and into the realm code.

There are two ways that merchant software links can be coded to achieve
single-signon:

1. by passing the user ID and password on the link

2. by passing a PMAUTHOBJECT string containing authentication information

Note that passing the user ID and password can often be seen as a security risk,
particularly if this information is not protected by SSL. Both methods are discussed
below in “Linking directly into the user interface” on page 54. You should choose
whether you want to achieve single-signon and, if so, which method you want to
support.

Realm scalability
The WebSphere Commerce Payments user interface will scale to support very large
user registries, providing that the realm is also capable of scaling. When
WebSphere Commerce Payments receives a QueryUsers command, the realm’s
getUserNames() method is called to get the users from the registry. If an
inexperienced user queries WebSphere Commerce Payments for all users in a very
large realm, it is possible that, a) the query may take a very long time, and b) the

Chapter 6. WebSphere Commerce Payments realm support 51

WebSphere Commerce Payments JVM may run out of memory while processing
the command. There are two methods that realms can make use of to control
queries for very large numbers of users:

1. The first method is for the realm to limit the number of users it returns to
WebSphere Commerce Payments. A UserList object is provided that is basically
a Vector of user names along with a count of the total number of users that
matched the query. You should decide whether or not you want to limit the
number of users returned in response to a call to the getUserNames() method.

2. The second method is to make use of the userFilter passed via the QueryUsers
API to the realm’s getUserNames() method. The user filter should be used to
search for a subset of users in the realm. However, its exact meaning is
determined by the realm. The realms provided with WebSphere Commerce
Payments all use this filter as a case-insensitive substring (that is,
getUserNames() will return only user names that contain the filter string). The
filter is made available on the WebSphere Commerce Payments user interface
on the User Search window. You should decide whether you want to follow
WebSphere Commerce Payments’s convention of using this filter as a substring
to search for, or to define this filter in another way.

Realm case-sensitivity
By default all WebSphere Commerce Payments realms are case-sensitive (that is,
the user ID admin is different from the user ID Admin. If you want to provide a
case-insensitive realm, you should override PaymentServletRealm’s
isCaseSensitive() method and return false.

Realm implementation
To write a realm, you must create a subclass of PaymentServletRealm and provide
implementations for the methods listed below. You can find the Javadoc for the
PaymentServletRealm class and the other classes it uses in the docs/realmapi
directory where WebSphere Commerce Payments is installed.

v getRealmName()

v init()

v getAuthenticatedUser()

v isUserInRealm()

v getUserNames()

String getRealmName()
You should override this method to return a String that identifies the realm to the
Payments administrator. This string is returned on the QueryPaymentServer API
response and displayed both on the Basic settings screen and in the WebSphere
Commerce Payments trace files to identify traced string originating from the realm.
For more details, see “Tracing” on page 53.

void init(Properties properties) throws RealmException
This method is called when the PaymentServlet is first started. WebSphere
Commerce Payments passes a Properties object which contains all the realm
settings from the <realmname>.properties file. You should use these settings to
initialize your realm. If settings are missing or invalid, you can choose either to use
default settings or to go through a RealmException.

If you throw RealmException, the API response will contain a primary return code of
62 and a secondary return code of 1068 indicating to the calling program that the
realm could not be initialized. You should ensure that you use the trace facility so
that the exact problem can be diagnosed and corrected.

52 Programmer’s Guide and Reference

String getAuthenticatedUser(HttpServletRequest request) throws
RealmException
For each API command received, WebSphere Commerce Payments will call the
realm’s getAuthenticatedUser() method to check that the user is a member of the
realm and has provided valid authentication information. You can make use of the
PaymentServletRealm’s getFromHTTPAuthorizationString() and
getPMAuthenticationString() convenience methods to pull authentication information
from the HTTP request. This method must first determine the user’s identity, and
second determine whether the user is authenticated. If authenticated, the method
should return the user name; otherwise, it should return null.

If you throw RealmException, the API response will contain a primary return code of
62 and a secondary return code of 1069 indicating to the calling program that a
realm error occurred. You should ensure that you use the trace facility so that the
exact problem can be diagnosed and corrected.

boolean isUserInRealm(String userName, String userFilter)
throws RealmException
This method is used by WebSphere Commerce Payments when a user uses the
QueryUsers API. The user filter must be null if there is no filtering. If this field is not
null, you should implement your filtered search mechanism in this method.

WebSphere Commerce Payments ensures that each user it returns on the
QueryUsers response is a valid member of the realm. To do this, it uses the realm’s
isUserInRealm() method. You should return true if the user is a valid member of the
realm and any optional following criteria is met. Otherwise return false.

If you throw RealmException, the API response will contain a primary return code of
62 and a secondary return code of 1069 indicating to the calling program that a
realm error occurred. You should ensure that you use the trace facility so that the
exact problem can be diagnosed and corrected.

UserList getUserNames(String userFilter) throws RealmException
In response to a QueryUsers API call, WebSphere Commerce Payments can also
invoke the realm’s getUserNames() method to get a list of users in the realm that
match the userFilter argument. You should implement your filtered search
mechanism in this method.

If you throw RealmException, the API response will contain a primary return code of
62 and a secondary return code of 1069 indicating to the calling program that a
realm error occurred. You should ensure that you use the trace facility so that the
exact problem can be diagnosed and corrected.

Tracing
You can enable realm tracing via the Trace Settings screen in the WebSphere
Commerce Payments User Interface. Select the check box underneath the ’Realm’
column for WebSphere Commerce Payments and click Update to turn realm tracing
on. Deselect the check box to turn it off.

For Windows and UNIX platforms:

v Trace output is sent to the PMTrace1.logand PMTrace2.log files which can be
formatted with the provided FormatTrace command file. The realm trace output
lines can be identified in the formatted log file by the prefix REALM.

For iSeries:

Chapter 6. WebSphere Commerce Payments realm support 53

v Trace output is sent to the PMTrace1.logand PMTrace2.log files which can be
formatted with the Dump Payment Trace (DMPPYMTRC) CL command,
specifying *SERVLET for the trace type. The trace can also be formatted through
the WebSphere Commerce Payments task page Service link.

The realm class can trace any information it chooses by using the following code
segment:
if (isTracing()) trace("Hello World!");

For performance reasons, it is good practice to include the test for isTracing()
since this will avoid making the Java run-time code evaluate the argument of the
trace() method when tracing is disabled.

Linking directly into the user interface
In your Web pages you can provide links that bypass the login window and link
directly into the user interface. During installation, a sample HTML file called
SampleSingleSignon.html was installed in the samples directory where
WebSphere Commerce Payments is installed. Using various methods of
authentication, this sample shows you how to provide a link or button into one of
WebSphere Commerce Payments’s windows.

Authentication by the user interface
Authentication by the user interface can be performed in two ways. The two types
of field data used for authentication are:

v f_userid=<userid> and f_password=<password>

v f_pmauthobject=<bytearray of authentication data>

The field data information that you provide to the user interface is passed to the
PaymentServlet on all WebSphere Commerce Payments commands performed by
the user interface. The realm gets the authentication information from the HTTP
request it receives from the PaymentServlet.

The user interface servlet performs WebSphere Commerce Payments user interface
functions only for authenticated users with proper authorization. To determine
whether or not a user is authenticated, the user interface servlet needs
authentication data. There are multiple sources where the user interface can find
authentication data. Below is a list of sources and the order in which the user
interface servlet accesses them once an HTTP POST is received from a user:

Note: The user interface servlet uses the first authentication data found.

1. If the user has previously logged in during this session, the authentication data
saved when the user logged in originally is used on WebSphere Commerce
Payments commands sent to the PaymentServlet.

2. If a WebSphere Commerce Payments Authentication Object is passed in the
FORM data (using the f_pmauthobject keyword), the authentication data is used
on WebSphere Commerce Payments commands sent to the PaymentServlet.

3. If a username/password is passed in the FORM data, (f_userid and f_password
fields) the authentication data is used on WebSphere Commerce Payments
commands sent to the PaymentServlet.

4. If a username/password is passed in through the Authorization header of the
HTTP POST to the user interface servlet, the authentication data is used on
WebSphere Commerce Payments commands sent to the PaymentServlet.

54 Programmer’s Guide and Reference

Once authentication data is found using the precedence order above, it is supplied
on any commands sent to the PaymentServlet for the requested user interface
function.

When an authentication failure occurs while linking directly to one of WebSphere
Commerce Payments’s user interface Web pages, the signon Web page appears
and displays a login prompt. An authentication failure occurs if the
PMAUTHOBJECT value is considered not valid according to the realm.

Testing
To test your realm, you will need to:

v Compile the realm

v Switch WebSphere Commerce Payments to use the realm

v Use the WebSphere Commerce Payments user interface and other programs to
test the realm

The WebSphere Commerce Payments realm support classes are contained in
eTillClasses.zip. When compiling the realm, you should remember to include this
file and your realm class in your classpath.

Note that information on switching to use the new realm you created can be found
in “How to deploy the new realm” on page 56.

SampleRealm
A sample realm class is provided with WebSphere Commerce Payments. This
realm uses a database table called USERTABLE to hold a list of users along with
their passwords. Since this is only a sample realm, all information is held
unencrypted in the database. The first time SampleRealm is used, it will
automatically create USERTABLE with three users (admin, fred and bob - all with
the same passwords as user names).

You can find SampleRealm in the samples directory where you installed
WebSphere Commerce Payments. To switch to using SampleRealm, edit the
PaymentServlet init parameters via the WebSphere Application Server
administrative console and set the wpm.RealmClass setting to SampleRealm - this
is the fully qualified class name. Also, create a file called SampleRealm.properties
in the WebSphere Commerce Payments installation directory and add the following
content::

SampleRealmJDBCURL=<<the URL of the database that contains the USERTABLE>> --
for example, jdbc:db2:sampledb
SampleRealmDBDriver=<<the JDBC driver name>> --
for example, COM.ibm.db2.jdbc.app.DB2Driver
SampleRealmDBUserid=<<the userid that can be used to read USERTABLE>>
SampleRealmDBPassword=<<the password for SampleRealmDBUserid>>

When you restart your Webserver and WebSphere Application Server, this class will
be enabled.

Note: The SampleRealm supports authentication via both the user ID/password
combination and the PMAUTHOBJECT. Examples of how you can enable
merchant software to implement single-signon can be found in an HTML file
called SampleSingleSignon.html which can be found in the samples directory
where you installed WebSphere Commerce Payments. To use
SampleSingleSignon.html, you should copy this file to your Webserver’s

Chapter 6. WebSphere Commerce Payments realm support 55

publish directory and point a Web browser at
http://<<hostname>>/webapp/PaymentManager/SampleSingleSignon.html.

How to deploy the new realm
Installing the new realm is the responsibility of the realm writer. This section
describes the steps necessary to deploy your new WebSphere Commerce
Payments realm.

The Payment Servlet init parameter, wpm.RealmClass specifies which realm is to
be used by WebSphere Commerce Payments. The value can be changed by
opening the WebSphere Application Server administrative console. To manually
configure your system to using your new realm, complete the following:

1. Open the WebSphere Application Server administrative console.

2. Expand WebSphere Administrative Domain.

3. Expand Nodes.

4. Expand the host name for the system where WebSphere Commerce Payments
is installed.

5. Click WebSphere Commerce Payments. If you are using an iSeries system,
click WPM <instance> WebSphere Commerce Payments, where <instance> is
the name of the WebSphere Commerce Payments instance.

6. Select the JVM Settings tab page. In the System Properties box, add the
realm, <realmname>.

7. Add the parameter value com.ibm.commerce.payment.realm.<realmname>.

8. Click Apply.

9. Stop and restart the WebSphere Commerce Payments Application Server in the
WebSphere Application Server administrative console for your changes to take
effect.

If the realm you are using needs additional configuration, then these realm settings
will be specified in a file called <realmname>.properties in the WebSphere
Commerce Payments installation directory.

For example, to configure WebSphere Commerce Payments to use the
PSDefaultRealm, change the wpm.RealmClass Payment Servlet init parameter to
be com.ibm.etill.framework.payserverapi.PSDefaultRealm and ensure that there
is a file called PSDefaultRealm.properties in the WebSphere Commerce Payments
installation directory that contains the line RealmFile=<location of realm file>.

Ensure that the realm class is in the WebSphere Application Server classpath.
When the PaymentServlet is next initialized, your realm class will be loaded and
start being used.

After updating the wpm.RealmClass setting and the realm-specific properties in the
<realmclass>.properties file, you must restart your WebSphere Application Server
for these changes to take effect.

For information on restarting your Web server and WebSphere Application Server,
see ″Maintaining WebSphere Commerce Payments Security″ in the WebSphere
Commerce Payments Administrator’s Guide.

56 Programmer’s Guide and Reference

Part 3. Programmer’s Reference

57

58 Programmer’s Guide and Reference

Chapter 7. WebSphere Commerce Payments command
reference

Parameters for the commands described here apply to the Framework only.
Additional parameters for specific cassettes are discussed in the appropriate
cassette supplement. Note that in most cases, WebSphere Commerce Payments
does not check for duplicate parameters. If more than one instance of a parameter
is specified, then the last instance will be used.

Clients send commands to the WebSphere Commerce Payments by using HTTP
POST requests, containing lists of keyword-value pairs. This chapter presents:

v WebSphere Commerce Payments financial and administrative commands

v Command descriptions

v Listing of required and optional keywords

v Guidelines regarding payment commands and query commands

Each command contains the name OPERATION. The value of the OPERATION
parameter specifies the requested procedure.

In addition to OPERATION, ETAPIVERSION specifies the version number of the
API. ETAPIVERSION is also required on every command.

Other name-value pairs in each command are dependent on the value of the
OPERATION. The name-value pairs required by the payment operations are listed
in the following tables. Other general guidelines for the name-value pairs include:

v The keyword strings are case-insensitive.

v Do not use leading zeros for any integers in ASCII characters.

Query commands
The following general rules apply to all queries:

v Each query has a set of search modifiers and a set of operational parameters.
The modifiers determine the search criteria and the operational parameters affect
the behavior or output of the command.

v All of the financial queries return either a ″collection″ or a ″keyCollection″ of the
fundamental object being queried. The determination of collection versus
keyCollection is made by the setting of the KEYSONLY parameter.

v Some keywords may be specified multiple times to achieve a search for a set of
order values (for example, STATE=batch_opening, STATE=batch_open,
STATE=batch_closed). For parameters that do not support multiple instances, the
WebSphere Commerce Payments will not return an error and makes no
guarantee as to which value will be used.

v To control the query results size, applications may use the RETURNATMOST
parameter. RETURNATMOST limits the number of objects or object identifiers
returned for a given query, even if that number is less than the actual number of
objects that match the query. The maximum number of objects that can be
returned is ten thousand. For more information on query results, see “Process
returned objects” on page 41.

v One new property is introduced to the PaymentServlet.properties file to specify
the minimum role a user must have to be allowed to view sensitive data. For
each query command, the framework will check the user’s role against that

59

minimum role and will set an indicator in the QueryRequest object to indicate
whether sensitive data should be returned in full view or if it should be masked
out. For more information about setting the wpm.MinSensitiveAccessRole
parameter, refer to the WebSphere Commerce Payments Administrator’s Guide

About
The ABOUT command is typically used in two ways:

v As a ping mechanism to check to see if the WebSphere Commerce Payments is
running.

v To return version information on the WebSphere Commerce Payments and the
installed cassettes, as well as the username running the command.

For more information on the structured response returned by the ABOUT command,
see “Payment Server About” on page 121 and “Cassette About” on page 121.

A successful execution of an ABOUT command will return primary and secondary
return codes of ″0″, ″0″.

The ABOUT command is the only command that can be run by a non-authenticated
user. When this command is run by a non-authenticated user, the command returns
only a primary and secondary return code.

Required keywords for About command

Required Keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x)

OPERATION ASCII character string ″About″

Optional keywords for About command

Optional Keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

AcceptPayment
Use the ACCEPTPAYMENT command to create Order objects when an electronic
wallet is not used. In general, if the command is successful, the order will be placed
in Ordered state. If the command fails, the order will not be created. Pass protocol
specific data on this command; however, specifics depend on the cassette. Refer to
the particular cassette supplement for details

During the processing of an AcceptPayment command, you can ensure that the
cassette handles the Approval step separately from the Order creation step. Select
the Asynchronous Auto Approve payment processing option to indicate that the
approval is asynchronously scheduled to occur. Thus, the buyer does not have to
wait for the approval to occur before receiving a response for the original purchase
request.

60 Programmer’s Guide and Reference

When creating an order, you may want bto approve or deposit funds automatically.
The APPROVEFLAG and DEPOSITFLAG keywords indicate whether or not a
Payment object should be approved and deposited. Refer to the appropriate table
below for additional keywords used if APPROVEFLAG or DEPOSITFLAG are
specified.

Required keywords for AcceptPayment command

Required Keywords Value

AMOUNT A positive 32-bit integer in ASCII characters.

CURRENCY Integer in ASCII characters. See Appendix B, Currency Codes,
for a list of ISO currency codes.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

OPERATION ASCII character string ″AcceptPayment″

ORDERNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

PAYMENTTYPE ASCII character string. Specifies the payment protocol being
used. For example, OfflineCard..

Optional keywords for AcceptPayment command

Optional Keywords Value

AMOUNTEXP10 Integer in ASCII characters. Indicates the number of decimal
places to shift. Valid values are -10 to 10. for more
information about this keyword, refer to “Using the
AmountExp10 keyword” on page 62.

APPROVEFLAG Integer in ASCII characters. Indicates whether the approvals
should be attempted automatically. Default is 0. Supported
values are:

0 - Indicates transaction should not be approved.

1 - Indicates transaction should be approved automatically.

2 - Indicates transaction should be approved
asynchronously.

DTDPATH Path to the locally stored DTD. The value of this parameter
is used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the
complete DTD is returned as an internal DTD. The length of
the DTDPath must be from 1 to 254 bytes.

ORDERDATA1 Auxiliary data supplied by the user, specified as an ASCII
character string between 1 and 254 bytes in length.

ORDERDATA2 Auxiliary data supplied by the user, specified as a UTF-8
string between 1 and 254 bytes in length.

ORDERDATA3 Auxiliary data supplied by the user, specified as a UTF-8
string between 1 and 254 bytes in length.

ORDERDATA4 Auxiliary data supplied by the user, specified as a binary
string between 1 and 254 bytes in length.

ORDERDATA5 Auxiliary data supplied by the user, specified as a binary
string with an arbitrary length.

ORDERURL URL containing order details.

Chapter 7. WebSphere Commerce Payments command reference 61

Optional keywords for AcceptPayment command

TRANSACTIONID Transaction identifier supplied by the user, specified as an
ASCII character string between 1 and 128 bytes in length.

The following tables list the required and optional keywords for APPROVEFLAG=1
or 2.

Required keywords if APPROVEFLAG is set to 1 or 2.

Required Keywords Value

PAYMENTAMOUNT A 32-bit positive integer in ASCII characters.

PAYMENTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

Optional keywords if APPROVEFLAG is set to 1or 2.

Optional Keywords Value

DEPOSITFLAG Boolean value in ASCII characters. Indicates whether the
deposit should be attempted automatically. This flag is only
valid if APPROVE=1 (order is automatically approved).
Supported values are:

0 - Funds should not be automatically deposited

1 - Funds should be automatically deposited.

If DEPOSITFLAG=1, then the following keyword is optional:

Optional keyword if DEPOSITFLAG is set to 1.

Optional Keywords Value

BATCHNUMBER Identifies the batch under which this payment will be
processed. Must be from 1 to 999999999.

Using the AmountExp10 keyword
All amount values are expressed as an amount with currency and exponent. For
example, $5.00 USD (U.S. Dollars) is expressed with Amount=500, Currency=840
(the ISO currency code for USD), and AmountExp10 =-2.

All current ISO currencies have exactly one valid exponent value, so the exponent
can be inferred from the currency. The WebSphere Commerce Payments maintains
a mapping table from currencies to exponents as shown in Appendix B, Currency
Codes. During order creation, (that is, on RECEIVEPAYMENT or
ACCEPTPAYMENT commands), merchant software must always specify both
AMOUNT and CURRENCY keywords. If the currency specified is a known currency
in the ISO table, the corresponding exponent will be used. If the currency specified
is not known (that is, it is not present in the ISO table), then an additional
parameter (AMOUNTEXP10) will be needed to specify the exponent. The existence
of the AMOUNTEXP10 parameter allows for flexibility in supporting future
currencies.

AMOUNTEXP10 Specified on API CURRENCY Present in Mapping Table

62 Programmer’s Guide and Reference

True True

If the exponent passed in on the AMOUNTEXP10
parameter is the same as the one in the mapping
table, then the exponent is used.

If the exponent passed in differs from the one in the
table, then a parameter error occurs.

True False

The exponent passed in on the AMOUNTEXP10
parameter is used.

False True

The exponent derived from the mapping table is used.

False False

A ″parameter not found″ error occurs.

Approve
The APPROVE command is used by the merchant to ask the financial system if the
buyer should be allowed to make the purchase. For example, for a credit card
system, this command would result in a credit card authorization.

The APPROVE command creates a new Payment object for an existing order. This
command is legal when the order is in Ordered or Refundable state. If successful,
the payment will be in either Approved, Deposited, or Closed state if
DEPOSITFLAG is set to 1. If unsuccessful, the payment will be in Declined state.

When approving a payment, you may want to make a deposit automatically. The
DEPOSITFLAG keyword indicates that a Payment object should be deposited.
Refer to the appropriate table below for additional keywords, if DEPOSITFLAG is
set to 1.

Required keywords for Approve command

Required Keywords Value

AMOUNT A positive 32-bit integer in ASCII characters.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

OPERATION ASCII character string ″Approve″

ORDERNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

PAYMENTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

Optional keywords for Approve command

Optional Keywords Value

DEPOSITFLAG Indicates whether the approved payment should be deposited
automatically. Default is 0. Supported values are:

0 - Funds should not be automatically deposited.

1 - Funds should be automatically deposited.

Chapter 7. WebSphere Commerce Payments command reference 63

Optional keywords for Approve command

DTDPATH Path to the locally stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

The following keyword is optional if DEPOSITFLAG=1.

Optional keywords if DEPOSITFLAG is set to 1.

Optional Keywords Value

BATCHNUMBER Identifies the batch under which this payment will be
processed. A numeric string of up to nine characters. Must be
from 1 to 999999999.

ApproveReversal
An ApproveReversal command modifies the approved amount of a payment. For
example, if a payment enters the ApprovalExpired state, then you can use the
ApproveReversal command either to get a new approval or to void the payment.
ApproveReversal is valid for payments in the Approved state. If the
ApproveReversal is successful, and the amount specified is ″0,″ then the payment
moves to Void state. If the amount specified is not ″0,″ then the payment stays in
Approved state and the approved amount is modified.

Required keywords for ApproveReversal command

Required Keywords Value

AMOUNT Must be positive 32-bit integer in ASCII characters.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

OPERATION ASCII character string ″ApproveReversal″

ORDERNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

PAYMENTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

Optional keywords for ApproveReversal command

Optional Keywords Value

DTDPATH Path to the locally stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

BatchClose
The BATCHCLOSE command closes a batch and moves the Batch object into
Closed state. All Payment and Credit objects associated with this batch move to
Closed state as well. This command is only permissible if:

v The batch is in Open state

v The account allows the merchant to close the batch

64 Programmer’s Guide and Reference

v The merchant control attribute is set to true

Required keywords for BatchClose command

Required Keywords Value

BATCHNUMBER A numeric string of up to nine characters.
Must be from 1 to 999999999.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce
Payments Version 2.1.x, 2.2.x and 3.1.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1
to 999999999.

OPERATION ASCII character string ″BatchClose″

Optional keywords for BatchClose command

Optional Keywords Value

DTDPATH Path to the locally stored DTD. The value of
this parameter is used in the XML document
to specify the location of the external DTD. If
this parameter is not specified, the complete
DTD is returned as an internal DTD. The
length of the DTDPath must be from 1 to 254
bytes.

FORCE Valid values are ″0″ and ″1″. A value of ″1″
indicates a local close should be performed
even if the financial operation fails.

BatchOpen
The BATCHOPEN command creates a Batch object and, if successful, puts the
batch into Open state. This command is only permissible if the account allows
merchants to open batches.

Note: In a scenario where there is one merchant (123456789), with two accounts
(acct#1, acct#2), if a BatchOpen is issued with acct#1, batch#1, the batch
will open. When a BatchOpen is sent with acct#2, batch#1, the BatchOpen
will fail and the following message is displayed:
Tue Jun22 13:04:31 EDT 1999 CEPFW0715: Batch ID 299 already exists for
Merchant 123456789 and account 2.

The second test will fail because only one batch with a given BatchNumber
can be in the system at any one time.

Required keywords for BatchOpen command

Required Keywords Value

OPERATION ASCII character string ″BatchOpen″

ACCOUNTNUMBER Integer in ASCII characters. This value is a
unique ID that indicates the acquirer to the
merchant. The value must match the
WebSphere Commerce Payments configured
AccountNumber value. Must be from 1 to
999999999.

BATCHNUMBER A numeric string of up to nine characters.
Must be from 1 to 999999999.

Chapter 7. WebSphere Commerce Payments command reference 65

Required keywords for BatchOpen command

ETAPIVERSION ″3″ (Indicates WebSphere Commerce
Payments Version 2.1.x, 2.2.x and 3.1.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1
to 999999999.

PAYMENTTYPE ASCII character string that identifies the
payment type.

Optional keyword for BatchOpen command

Optional Keywords Value

DTDPATH Path to the locally stored DTD. The value of
this parameter is used in the XML document
to specify the location of the external DTD. If
this parameter is not specified, the complete
DTD is returned as an internal DTD. The
length of the DTDPath must be from 1 to
254 bytes.

BatchPurge
The BATCHPURGE command clears out a batch and returns the Batch object to
Open state. All Payment and Credit objects associated with this batch are removed
from the batch, with Payment objects returned to Approved state and Credit objects
returned to Void state. This command is only permissible if the PurgeAllowed
attribute is set to true.

Required keywords for BatchPurge command

Required Keywords Value

BATCHNUMBER A numeric string of up to nine characters.
Must be from 1 to 999999999.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce
Payments Version 2.1.x, 2.2.x and 3.1.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1
to 999999999.

OPERATION ASCII character string ″BatchPurge″

Optional keywords for BatchPurge command

Optional Keywords Value

DTDPATH Path to the locally stored DTD. The value of
this parameter is used in the XML document
to specify the location of the external DTD. If
this parameter is not specified, the complete
DTD is returned as an internal DTD. The
length of the DTDPath must be from 1 to
254 bytes.

CancelOrder
The CANCELORDER command moves an Order into Canceled state. You can
invoke the CancelOrder command for an Order that satisfies the following criteria:

v It has no Payments or Credits associated with it, OR

66 Programmer’s Guide and Reference

v Any associated Payments or Credits are in their respective Reset, Void,
ApprovalExpired or Declined state.

Once an Order is in Canceled state, no operations are legal except for
CancelOrder. If the optional parameter, DELETEORDER, is set to ″1,″ then the
Order will be pruned. All related Payments and Credits will also be deleted;
cassette-specific objects will be deleted as well.

Required keywords for CancelOrder command

Required Keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce
Payments Version 2.1.x, 2.2.x and 3.1.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1
to 999999999.

OPERATION ASCII character string ″CancelOrder″

ORDERNUMBER Integer in ASCII characters. Must be form 1
to 999999999.

Optional keywords for CancelOrder command

Optional Keywords Value

DELETEORDER Indicates that the order and all ancillary
objects should be deleted. Default is ″0″.
Supported values are:

0-Objects should not be deleted

1-Objects should be deleted

DTDPATH Path to the locally stored DTD. The value of
this parameter is used in the XML document
to specify the location of the external DTD. If
this parameter is not specified, the complete
DTD is returned as an internal DTD. The
length of the DTDPath must be from 1 to
254 bytes.

CassetteControl
The CASSETTECONTROL command is used to perform cassette-specific functions
that do not correspond to any generic commands. CASSETTECONTROL is not
interpreted by the Framework, but is passed down to the cassette.

Refer to the appropriate cassette supplement for details on how this command is
used.

Required keywords for CassetteControl command

Required Keywords Value

CASSETTECOMMAND Command name in ASCII characters. Maximum length is 1000
bytes.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x).

OPERATION ASCII character string ″CassetteControl″.

PAYMENTTYPE ASCII character string. Specifies the payment protocol being
used.

Chapter 7. WebSphere Commerce Payments command reference 67

Optional keywords for CassetteControl command

Optional Keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

CloseOrder
The CLOSEORDER command moves an Order into Closed state. You can invoke
the CLOSEORDER command for an Order that satisfies the following criteria:

v It has at least one Payment or Credit associated with it, AND

v All of the Payments and Credits associated with the Order are in their respective
Closed state.

Once an Order is in Closed state, no operations are legal on it except for
CancelOrder. If the optional parameter DELETEORDER is set to ″1″, then the
database will be pruned, so you can call CloseOrder on an Order in Closed state.
Payments and Credits must be closed.

Required keywords for CloseOrder

Required Keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce
Payments Version 2.1.x, 2.2.x and 3.1.x).

MERCHANTNUMBER Integer in ASCII characters. Must be from 1
to 999999999.

OPERATION ASCII character string ″CloseOrder″.

ORDERNUMBER Integer in ASCII characters. Must be from 1
to 999999999.

Optional keywords for CloseOrder command

Optional Keywords Value

DELETEORDER Indicates that the order and all ancillary
objects should be deleted. Default is 0.
Supported values are:

0-Order and all ancillary objects should not
be deleted

1-Order and all ancillary objects should be
deleted

DTDPATH Path to the locally stored DTD. The value of
this parameter is used in the XML document
to specify the location of the external DTD. If
this parameter is not specified, the complete
DTD is returned as an internal DTD. The
length of the DTDPath must be from 1 to
254 bytes.

68 Programmer’s Guide and Reference

CreateAccount
The CREATEACCOUNT command creates an Account object for the specified
Payment System object.

Required keywords for CreateAccount command

Required Keywords Value

ACCOUNTNUMBER Integer in ASCII characters. Must be from 1 to
999999999.

Specifies an identifier for the new Account.

CASSETTENAME ASCII character string from 1 to 64 bytes.

Specifies an identifier for the new account.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments
Version 2.1.x, 2.2.x and 3.1.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to
999999999.

Specifies an identifier for the new Account.

OPERATION ASCII character string ″CreateAccount″

Optional keywords for CreateAccount command

Optional Keywords Value

ACCOUNTTITLE UTF-8 string that is either null or from 1 to 254 bytes.
If present, the value passed in will replace the
AccountTitle specified Account object.

DTDPATH Path to the locally-stored DTD. The value of this
parameter is used in the XML document to specify the
location of the external DTD. If this parameter is not
specified, the complete DTD is returned as an internal
DTD. The length of the DTDPath must be from 1 to
254 bytes.

ENABLED ASCII character string ″0″ or ″1,″ where ″0″ and ″1″
denote false and true, respectively. If present, the
value passed in will replace the Enabled field of the
Account object.

Indicates whether the Account object should be active.

FINANCIALINSTITUTION UTF-8 string that is either null or from 1 to 254 bytes.
If present, the value passed in will replace the
Financial Institution specified Account object.

APAPPROVEFLAG Approve flag for AcceptPayment. ASCII character
string ″0″, ″1″, or ″2″. Default is ″0″

″0″ indicates transaction should not be approved.

″1″ indicates transaction should be approved
automatically.

″2″ indicates transaction should be approved
asynchronously.

Chapter 7. WebSphere Commerce Payments command reference 69

Optional keywords for CreateAccount command

RPAPPROVEFLAG Approve flag for ReceivePayment. ASCII character
string ″0″, ″1″, or ″2″. Default is ″0″

″0″ indicates transaction should not be approved.

″1″ indicates transaction should be approved
automatically.

″2″ indicates transaction should be approved
asynchronously.

APDEPOSITFLAG ASCII character string ″0″ or ″1″, where ″0″ and ″1″
denote false and true, respectively. Only specified if
APAPPROVEFLAG is defined and not set to 0.
Otherwise PRC_INVALID_PARAMETER_
COMBINATION_, RC_AP_DEPOSITFLAG will be
returned.

RPDEPOSITFLAG ASCII character string ″0″ or ″1″, where ″0″ and ″1″
denote false and true, respectively. Only specified if
RPAPPROVEFLAG is defined and not set to
0.Otherwise PRC_INVALID_PARAMETER_
COMBINATION_, RC_RP_DEPOSITFLAG will be
returned.

APPROVALEXPIRATION Integer value that indicates the number of days after a
payment has been approved that the approval expires.
This field supports configurable approval expiration
where this setting controls whether a payment approval
associated with the account will expire after the
elapsed time. A value of 0 implies no expiration. When
a payment approval expires, it will be placed in the
ApprovalExpired state.
Note: A cassette is allowed to cause payment
approvals to expire independently of this setting, but
this parameter allows the framework to detect payment
approval expiration on behalf of the cassette. Add a
cross reference to Payment States to see a description
of the ApprovalExpired state.

Note: APAPPROVEFLAG AND RPAPPROVEFLAG values are superseded by the
API Approve flag when the API Approve flag contains a non-zero, non-null
value.

CreateMerchant
The CREATEMERCHANT command creates a Merchant object.

Required keywords for CreateMerchant command

Required Keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x).

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

Specifies the identifier for the new Merchant object.

OPERATION ASCII character string ″CreateMerchant″.

70 Programmer’s Guide and Reference

Optional keywords for CreateMerchant command

Optional Keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

ENABLED ASCII character string ″0″ or ″1,″ where ″0″ and ″1″ denote
false and true, respectively. If present, the value passed in will
replace the Enabled field of the Merchant object.

Indicates whether the Merchant object should be active.

MERCHANTTITLE UTF-8 string that is either null or from 1 to 128 bytes. If
present; the value passed in will replace the MerchantTitle
specified Merchant object.

CreateMerchantCassetteObject
The CREATEMERCHANTCASSETTEOBJECT command is used to create a
cassette-specific object with the type specified in the OBJECTNAME keyword.

Refer to the appropriate cassette supplement for details on how this command is
used.

Required keywords for CreateMerchantCassetteObject command

Required Keywords Value

CASSETTENAME ASCII character string from 1 to 64 bytes.

Specifies an identifier for the MerchantCassette object.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x).

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

Specifies an identifier for MerchantCassette object.

OBJECTNAME ASCII character string. Value specified by the cassette.

Specifies an identifier for MerchantCassette object. Maximum
length is 1000 bytes.

OPERATION ASCII character string ″CreateMerchantCassetteObject″

Optional keywords for the CreateMerchantCassetteObject command.

Optional Keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

ENABLED ASCII character string ″0″ or ″1″, where ″0″ and ″1″ denote
false and true, respectively. If present, the value passed in will
replace the Enabled field of the MerchantCassette object.

Indicates whether the MerchantCassette object should be
enabled.

Chapter 7. WebSphere Commerce Payments command reference 71

CreateMerEventListener
The CREATEMEREVENTLISTENER command creates a merchant event listener.

Required keywords for CreateMerEventListener command

Required Keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version
2.1.x, 2.2.x and 3.1.x).

EVENTTYPE Integer in ASCII characters that identifies the event type.
Events have the following values:

1: State change event

2: Cassette-specific event

LISTENERURL ASCII character string that identifies where the events show
(for example,
http://www.merchant.com/webapp/PaymentManager
/eventReceiver888). If the port number is not specified, the
default port number, 80, is used. A valid URL from 1 to 256
characters.

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

OPERATION ASCII character string ″CreateMerEventListener″.

Optional keywords for CreateMerEventListener command

Optional Keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath is from 1 to 254 bytes.

SOCKSHOST Host name of the socks server. This parameter is required
only for the event being sent through a socks server.
Maximum length is 256 bytes.

SOCKSPORT Port number of the socks server. This parameter is only used
if SOCKSHOST is specified. The default is 1080. The value
for a (nonnull) SocksPort parameter must be a positive 16-bit
unsigned integer from 1 to 65535.

Required keywords if EventType is set to 2.

Required Keywords Value

CASSETTENAME ASCII character string up to 64 bytes that identifies the
cassette name. Required for registering cassette events. No
parameter limitations-must match an existing cassette or will
fail.

CreatePaySystem
The CREATEPAYSYSTEM command creates a Payment System object for
assigning the specified merchant permission to use the specified cassette.

Required keywords for CreatePaySystem command

Required Keywords Value

72 Programmer’s Guide and Reference

Required keywords for CreatePaySystem command

CASSETTENAME ASCII character string from 1 to 64 bytes.

Specifies an identifier for the new PaySystem object.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x).

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

Specifies an identifier for the new PaySystem object.

OPERATION ASCII character string ″CreatePaySystem″.

Optional keywords for CreatePaySystem command

Optional Keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

ENABLED ASCII character string ″0″ or ″1,″ where ″0″ and ″1″ denotes
false and true, respectively. If present, the value passed in will
replace the Enabled field of the PaySystem object.

Indicates whether the PaySystem object should be active.

CreateSNMEventListener
The CREATESNMEVENTLISTENER command creates a system network
management event listener.

Required keywords for CreateSNMEventListener command

Required Keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x)

EVENTTYPE ″3″ (Identifies the SNM event type.) Other values reserved for
future use.

LISTENERURL ASCII character string that identifies where the events show
(for example,
http://www.merchant.com/webapp/PaymentManager
/eventReceiver888). If the port number is not specified, the
default port number, 80, is used. A valid URL from 1 to 256
characters.

OPERATION ASCII character string ″CreateSNMEventListener″.

Optional keywords for CreateSNMEventListener command

Optional Keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

Chapter 7. WebSphere Commerce Payments command reference 73

Optional keywords for CreateSNMEventListener command

SOCKSHOST Host name of the socks server. This parameter is required
only for the event being sent through a socks server.
Parameter values must be a valid integer (if specified).
Maximum length is 256 bytes.

SOCKSPORT Port number of the socks server. This parameter is only used
if SOCKSHOST is specified. The default is 1080. The value
for a (nonnull) SocksPort parameter must be a positive 16-bit
unsigned integer from 1 to 65535.

CreateSystemCassetteObject
The CREATESYSTEMCASSETTEOBJECT command creates a cassette-specific
object with the type specified in the OBJECTNAME keyword.

Refer to the appropriate cassette supplement for details on how this command is
used.

Required keywords for CreateSystemCassetteObject command

Required Keywords Value

CASSETTENAME ASCII character string from 1 to 64 bytes.

Specifies an identifier for the SystemCassette object.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x).

OBJECTNAME ASCII character string. Value specified by the cassette.

Specifies an identifier for the SystemCassette object.

OPERATION ASCII character string ″CreateSystemCassetteObject″.

Optional keywords for CreateSystemCassetteObject command

Optional Keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

ENABLED ASCII character string ″0″ or ″1,″ where ″0″ and ″1″ denote
false and true, respectively. If present, the value passed in
will replace the Enabled field of the SystemCassette object.

Indicates whether the SystemCassette object should be
active.

DeleteAccount
The DELETEACCOUNT command deletes the specified Account object and all its
subsidiary objects.

Required keywords for DeleteAccount command

Required Keywords Value

74 Programmer’s Guide and Reference

Required keywords for DeleteAccount command

ACCOUNTNUMBER Integer in ASCII characters. Must be from 1 to 999999999. In
conjunction with MERCHANTNUMBER and
CASSETTENAME, it uniquely identifies the target Account
object for this command.

CASSETTENAME ASCII character string from 1 to 64 bytes. In conjunction with
MERCHANTNUMBER and ACCOUNTNUMBER, uniquely
identifies the target Account object for this command.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x).

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999. In
conjunction with CASSETTENAME and ACCOUNTNUMBER,
it uniquely identifies the target Account object for this
command.

OPERATION ASCII character string ″DeleteAccount″.

Optional keyword for DeleteAccount command.

Optional Keyword Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

DeleteBatch
The DELETEBATCH command prunes the specified batch from the database
tables. The DELETEBATCH command is legal only when a batch is in Closed state.

Required keywords for DeleteBatch command

Required Keywords Value

BATCHNUMBER Integer in ASCII characters. Identifies the
number of the batch which this payment is
assigned. Must be from 1 to 999999999.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce
Payments Version 2.1.x, 2.2.x and 3.1.x).

MERCHANTNUMBER Integer in ASCII characters. Must be from 1
to 999999999.

OPERATION ASCII character string ″DeleteBatch″.

Optional keyword for DeleteBatch command

Optional Keyword Value

DTDPATH Path to the locally stored DTD. The value of
this parameter is used in the XML document
to specify the location of the external DTD. If
this parameter is not specified, the complete
DTD is returned as an internal DTD. The
length of the DTDPath must be from 1 to
254 bytes.

Chapter 7. WebSphere Commerce Payments command reference 75

DeleteMerchant
The DELETEMERCHANT command deletes the specified Merchant object and all
its subsidiary objects.

Required keywords for DeleteMerchant command

Required Keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x).

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.
Use the target Merchant object for this command.

OPERATION ASCII character string ″DeleteMerchant″.

Optional keyword for DeleteMerchant command

Optional Keyword Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

DeleteMerchantCassetteObject
The DELETEMERCHANTCASSETTEOBJECT command deletes the cassette
object with the type specified by the object name.

Refer to the appropriate cassette supplement for details on how this command is
used.

Required keywords for DeleteMerchantCassetteObject command

Required Keywords Value

CASSETTENAME ASCII character string from 1 to 64 bytes. In conjunction with
MERCHANTNUMBER, OBJECTNAME and protocol data
parameters, uniquely identifies the target MerchantCassette
for this command.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x).

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999. In
conjunction with CASSETTENAME, OBJECTNAME and data
parameters, uniquely identifies the target MerchantCassette
for this command.

OBJECTNAME ASCII character string value specified by the cassette. In
conjunction with CASSETTENAME, MERCHANTNUMBER
protocol data parameters, uniquely identifies the target
MerchantCassette object for this command. The maximum
length is 1000 bytes.

OPERATION ASCII character string ″DeleteMerchantCassetteObject″

Optional keyword for DeleteMerchantCassetteObject command.

Optional Keyword Value

76 Programmer’s Guide and Reference

Optional keyword for DeleteMerchantCassetteObject command.

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

DeleteMerEventListener
The DELETEMEREVENTLISTENER command deletes the MerEventListener
object.

Required keywords for DeleteMerEventListener command

Required Keywords Value

CASSETTENAME ASCII character string up to 64 bytes that identifies the
cassette name. Required for registering cassette events. No
parameter limitations-must match an existing cassette or will
fail.

ETAPIVERSION ’3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x).

EVENTTYPE Integer in ASCII characters that identifies the event type.
Events have the following values:

1: State change event

2: Cassette-specific event

LISTENERURL ASCII character string that identifies where the events show
(for example,
http://www.merchant.com/webapp/PaymentManager
/eventReceiver888). If the port number is not specified, the
default port number, 80, is used. No parameter limitations.

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

OPERATION ASCII character string ″DeleteMerEventListener″.

Optional keywords for DeleteMerEventListener command

Optional Keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

DeletePaySystem
The DELETEPAYSYSTEM command deletes the specified Payment System object
and all its subsidiary objects.

Required keywords for DeletePaySystem command

Required Keywords Value

CASSETTENAME ASCII character string from 1 to 64 bytes. In conjunction with
MERCHANTNUMBER, uniquely identifies the target
MerchantCassetteSettings object for this command.

Chapter 7. WebSphere Commerce Payments command reference 77

Required keywords for DeletePaySystem command

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x).

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999. In
conjunction with CASSETTENAME, uniquely identifies the
MerchantCassetteSettings object for this command.

OPERATION ASCII character string ″DeletePaySystem″.

Optional keyword for DeletePaySystem command

Optional Keyword Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

DeleteSNMEventListener
The DELETESNMEVENTLISTENER command deletes the specified system
network management event listener.

Required keywords for DeleteSNMEventListener command

Required Keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x).

EVENTTYPE ″3″ (Identifies the SNM event type. Other values reserved for
future use.)

LISTENERURL ASCII character string that identifies where the events show
(for example,
http://www.merchant.com/webapp/PaymentManager
/eventReceiver888). If the port number is not specified, the
default port number, 80, is used. A valid URL from 1 to 256
characters.

OPERATION ASCII character string ″DeleteSNMEventListener″.

Optional keyword for DeleteSNMEventListener command

Optional Keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

DeleteSystemCassetteObject
The DELETESYSTEMCASSETTEOBJECT command deletes the Cassette object
with type specified by object name.

Refer to the appropriate cassette supplement for details on how this command is
used.

78 Programmer’s Guide and Reference

Required keywords for DeleteSystemCassetteObject command

Required Keywords Value

CASSETTENAME ASCII character string from 1 to 64 bytes. In conjunction with
OBJECTNAME and protocol data parameters, uniquely
identifies the target SystemCassette object for this command.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x).

OBJECTNAME ASCII character string. Value specified by the cassette. In
conjunction with CASSETTENAME and protocol data
parameters, uniquely identifies the target SystemCassette
object for the command. The maximum length is 1000 bytes.

OPERATION ASCII character string ″DeleteSystemCassetteObject″.

Optional keyword for DeleteSystemCassetteObject command.

Optional Keyword Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

Deposit
The DEPOSIT command results in the association of a specified payment with a
batch and the subsequent deposit of previously approved monies for that payment.
The DEPOSIT command is legal when operating on deposits in Approved state.

If successful, the specified payment is moved into Deposited state.

Required keywords for Deposit command

Required Keywords Value

AMOUNT Must be a 32-bit integer in ASCII characters.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce
Payments Version 2.1.x, 2.2.x and 3.1.x).

MERCHANTNUMBER Integer in ASCII characters. Must be from 1
to 999999999.

OPERATION ASCII character string ″Deposit.″

ORDERNUMBER Integer in ASCII characters. Must be from 1
to 999999999.

PAYMENTNUMBER Integer in ASCII characters. Must be from 1
to 999999999.

Optional keywords for Deposit command

Optional Keywords Value

BATCHNUMBER Identifies the batch under which this payment
will be processed. Must be from 1 to
999999999.

Chapter 7. WebSphere Commerce Payments command reference 79

Optional keywords for Deposit command

DTDPATH Path to the locally stored DTD. The value of
this parameter is used in the XML document
to specify the location of the external DTD. If
this parameter is not specified, the complete
DTD is returned as an internal DTD. The
length of the DTDPath must be from 1 to
254 bytes.

DepositReversal
A DEPOSITREVERSAL command disassociates a payment from a batch. This
command is legal for payments in Deposited state. If successful, the payment
moves to Approved state or Void state, and the deposited amount is reset to ″0″.

Required keywords for DepositReversal command

Required Keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce
Payments Version 2.1.x, 2.2.x and 3.1.x).

MERCHANTNUMBER Integer in ASCII characters. Must be from 1
to 999999999.

OPERATION ASCII character string ″DepositReversal.″

ORDERNUMBER Integer in ASCII characters. Must be from 1
to 999999999.

PAYMENTNUMBER Integer in ASCII characters. Must be from 1
to 999999999.

Optional keywords for DepositReversal command

Optional Keyword Value

DTDPATH Path to the locally stored DTD. The value of
this parameter is used in the XML document
to specify the location of the external DTD. If
this parameter is not specified, the complete
DTD is returned as an internal DTD. The
length of the DTDPath must be from 1 to
254 bytes.

ModifyAccount
The MODIFYACCOUNT command is used to change the attributes of a specified
Account object.

Required keywords for ModifyAccount command

Required Keywords Value

ACCOUNTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

In conjunction with MERCHANTNUMBER and
CASSETTENAME, uniquely identifies the target Account for
this command.

80 Programmer’s Guide and Reference

Required keywords for ModifyAccount command

CASSETTENAME ASCII character string from 1 to 64 bytes.

In conjunction with MERCHANTNUMBER and
ACCOUNTNUMBER, uniquely identifies the target Account for
this command.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x).

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

In conjunction with CASSETTENAME and
ACCOUNTNUMBER, uniquely identifies the target Account for
this command.

OPERATION ASCII character string ″ModifyAccount″.

Optional keywords for ModifyAccount command

Optional Keywords Value

ACCOUNTTITLE UTF-8 string that is either null or from 1 to 254 bytes. If
present, the value passed in will replace the AccountTitle
specified Account object.

DTDPATH Path to the locally-stored DTD. The value of this
parameter is used in the XML document to specify the
location of the external DTD. If this parameter is not
specified, the complete DTD is returned as an internal
DTD. The length of the DTDPath must be from 1 to 254
bytes.

ENABLED ASCII character string ″0″ or ″1″, where ″0″ and ″1″
denote false and true, respectively. If present, the value
passed in will replace the Enabled field of the Account
object.

Indicates whether the Account object should be active.

FINANCIALINSTITUTION UTF-8 string that is either null or from 1 to 255 bytes. If
present, the value passed in will replace the
FinancialInstitution specified Account object.

APAPPROVEFLAG Approve flag for AcceptPayment. ASCII character string
″0″, ″1″, or ″2″. Default is ″0″

″0″ indicates transaction should not be approved.

″1″ indicates transaction should be approved automatically.

″2″ indicates transaction should be approved
asynchronously.

RPAPPROVEFLAG Approve flag for ReceivePayment. ASCII character string
″0″, ″1″, or ″2″. Default is ″0″

″0″ indicates transaction should not be approved.

″1″ indicates transaction should be approved automatically.

″2″ indicates transaction should be approved
asynchronously.

Chapter 7. WebSphere Commerce Payments command reference 81

Optional keywords for ModifyAccount command

APDEPOSITFLAG ASCII character string ″0″ or ″1″, where ″0″ and ″1″
denote false and true, respectively. Only specified if
APAPPROVEFLAG is defined and not set to 0. Otherwise
PRC_INVALID_PARAMETER_ COMBINATION_,
RC_AP_DEPOSITFLAG will be returned.

RPDEPOSITFLAG ASCII character string ″0″ or ″1″, where ″0″ and ″1″
denote false and true, respectively. Only specified if
RPAPPROVEFLAG is defined and not set to 0. Otherwise
PRC_INVALID_PARAMETER_ COMBINATION_,
RC_RP_DEPOSITFLAG will be returned.

APPROVALEXPIRATION Integer value that indicates the number of days after a
payment has been approved that the approval expires.
This field supports configurable approval expiration where
this setting controls whether a payment approval
associated with the account will expire after the elapsed
time. A value of 0 implies no expiration. When a payment
approval expires, it will be placed in the ApprovalExpired
state.
Note: A cassette is allowed to cause payment approvals
to expire independently of this setting, but this parameter
allows the framework to detect payment approval
expiration on behalf of the cassette. For a description of
the ApprovalExpired state see: “Payment states” on
page 116

Note: APAPPROVEFLAG AND RPAPPROVEFLAG values are superceded by the
API Approve flag when the API approve flag contains a non-zero, non-null
value.

ModifyCassette
The MODIFYCASSETTE command is used to modify the properties of the specified
cassette object.

Required keywords for ModifyCassette command

Required Keywords Value

CASSETTENAME ASCII character string from 1 to 64 bytes. Identifies the target
cassette object for this command.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x).

OPERATION ASCII character string ″ModifyCassette.″

Optional keywords for ModifyCassette command

Optional Keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

82 Programmer’s Guide and Reference

Optional keywords for ModifyCassette command

ENABLED ASCII character string ″0″ or ″1,″ where ″0″ and ″1″ denote
false and true, respectively. If present, the value passed in will
replace the Enabled field of the Cassette object.

Indicates whether the Cassette object should be active.

TRACESETTING 32-bit bitmask. If present, the value passed in will replace the
TraceSetting of the specified cassette object. See “Trace
settings” for information on determining this value. Add all bits
and use that number for TRACESETTING.

Trace settings
The following table provides a listing of various traces and their descriptions to aid
you in providing the correct value for the TRACESETTING keyword.

Trace Type Description Bit of BITMASK

Connection Established A new socket connection has been
established

0x00000001

Connection Dropped/Lost An existing socket connection has been
closed

0x00000002

TCP Read Data has been read from a TCP socket 0x00000004

TCP Read with data Data has been read from a TCP socket
(and includes trace)

0x00000008

TCP Write Data has been written to a TCP socket 0x00000010

TCP Write with data Data has been written to a TCP socket (
and includes trace)

0x00000020

Function Entry The specified function has just been
entered

0x00000040

Function Exit The specified function is about to be
exited

0x00000080

API Command used The specified API command was called 0x00000100

Database Read Data has been read from the database 0x00000200

Database Write Data has been written to the database 0x00000400

Database Commit Changes have been committed to the
database

0x00000800

Debug A generic debug message 0x00001000

Object State change (order,
batch payment, credit)

Used to output the state of an object 0x00002000

Error Occurred An error has occurred 0x00004000

Start Work Item The specified work item has been started 0x00008000

Trace Information Message Used by the tracing code to output some
informational messages (when tracing
was started/stopped etc.)

0x00010000

System Info General system information 0x00020000

Cassette Message 1 Reserved trace type for cassette-specific
messages

0x80000000

Cassette Message 2 Reserved trace type for cassette-specific
messages

0x40000000

Chapter 7. WebSphere Commerce Payments command reference 83

Cassette Message 3 Reserved trace type for cassette-specific
messages

0x20000000

Cassette Message 4 Reserved trace type for cassette-specific
messages

0x10000000

Multiple types of traces can run at the same time; any combination of traces is
legal. To determine the correct tracesetting value when running multiple traces,
simply add the bits together. For example, if you are using all types of database
tracing (e.g. DB_READ, DB_WRITE, and DB_COMMIT) you would need to add:
0x200 + 0x400 + 0x800 = 0xE00(3584)

In this example, 3584 would be the value used for TRACESETTING

If you wanted to use all of the cassette traces, you would need to add:
0x80000000 + 0x40000000 + 0x20000000 + 0x10000000 = 0xF0000000 (-268435456)

In this example -268435456 would be the value used for TRACESETTING.

TRACESETTING is a 32–bit signed integer. To summarize, the following procedure
will aid you in determining the correct value for TRACESETTING:

1. Add up the bits to get X.

2. If 0≤ X ≤ 2147483647; use X for TRACESETTING

3. If X > 2147483647; X - 4294967296 is the value for TRACESETTING

ModifyMerchant
The MODIFYMERCHANT command modifies the properties of the specified
Merchant object.

Required keywords for ModifyMerchant command

Required Keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x).

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

Identifies the target Merchant object for the command.

OPERATION ASCII character string ″ModifyMerchant.″

Optional keywords for ModifyMerchant command

Required Keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

ENABLED ASCII character string ″0″ or ″1,″ where ″0″ and ″1″ denotes
false and true respectively. If present, the value passed in will
replace the Enabled field of the Merchant object.

Indicates whether the Merchant object should be active.

84 Programmer’s Guide and Reference

Optional keywords for ModifyMerchant command

MERCHANTTITLE UTF-8 string that is either null or from 1 to 128 bytes present;
the value passed in will replace the MerchantTitle specified
Merchant object.

ModifyMerchantCassetteObject
The MODIFYMERCHANTCASSETTEOBJECT command modifies the properties of
the Cassette object with type specified by the object name.

Refer to the appropriate cassette supplement for details on how this command is
used.

Required keywords for ModifyMerchantCassetteObject command

Required Keywords Value

CASSETTENAME ASCII character string from 1 to 64 bytes.

Specifies an identifier for the MerchantCassette object.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version
2.1.x, 2.2.x and 3.1.x).

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

In conjunction with CASSETTENAME, OBJECTNAME and
protocol data parameters, it uniquely identifies the target
MerchantCassette object for the command.

OBJECTNAME ASCII character string. Value specified by the cassette.

In conjunction with CASSETTENAME,
MERCHANTNUMBER, and protocol data parameters,
uniquely identifies the target MerchantCassette for this
command. The maximum length is 1000 bytes.

OPERATION ASCII character string ″ModifyMerchantCassetteObject.″

Optional keywords for ModifyMerchantCassetteObject command.

Optional Keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

ENABLED ASCII character string ″0″ or ″1,″ where ″0″ and ″1″ denote
false and true, respectively. If present, the value passed in will
replace the Enabled field of the MerchantCassette object.

Indicates whether the MerchantCassette object should be
enabled.

ModifyMerEventListener
The MODIFYMEREVENTLISTENER command modifies the specified
MerEventListener object.

Chapter 7. WebSphere Commerce Payments command reference 85

Required keywords for ModifyMerEventListener command

Required Keywords Value

ENABLED Can be set to 1(true) or 0 (false).

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x).

EVENTTYPE Integer in ASCII characters that identifies the event type.
Events have the following values:

1: State change event

2: Cassette specific event

LISTENERURL ASCII character string that identifies where the events show
(for example,
http://www.merchant.com/webapp/PaymentManager/eventReceiver888).
If the port number is not specified, the default port number,
80, is used. No parameter limitations.

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

OPERATION ASCII character string ″ModifyMerEventListener.″

Optional keywords for ModifyMerEventListener command

Optional Keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

Required keyword is EventType is set to 2.

Required Keywords Value

CASSETTENAME ASCII character string up to 64 bytes that identifies the
cassette name. Required for modifying cassette events. No
parameter limitations. Must match an existing cassette.

ModifyPayServer
The MODIFYPAYSERVER command modifies the global properties of the Payment
Server object.

Required keywords for ModifyPayServer command

Required Keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x).

OPERATION ASCII character string ″ModifyPayServer.″

Optional keywords for ModifyPayServer command

Optional Keywords Value

86 Programmer’s Guide and Reference

Optional keywords for ModifyPayServer command

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

ENABLED ASCII character string ″0″ or ″1″, where ″0″ and ″1″ denote
false and true, respectively. If present, the value passed in will
replace the Enabled field of the PayServer object.

Indicates whether the PaymentServer object should be active.

ETILLHOSTNAME ASCII character string, either null or from 1 to 254 characters
present, the value passed in will replace the ETillHostname
field in the PaymentServer object.

A nonnull value indicates the DNS hostname that should be
sent when sending messages to the WebSphere Commerce
Payments. A null value indicates that DNS lookup should be
used to determine the value.

LOGPATH ASCII character string, either null or from 1 to 254 characters
present, the value passed in will replace the LogPath of the
PaymentServer object.

TRACEFILESIZE ASCII character string representing a (64-byte) long, when it
must be either null or positive. If present, the value passed will
replace the TraceFileSize of the PaymentServer object. The
minimum value is 4K (that is, 4096).

TRACESETTING 32-bit bitmask. If present, the value passed in will replace the
TraceSetting of the PaymentServerObject. See “Trace
settings” on page 83 for information on determining this value.
Add all bits and use that number for TRACESETTING.

ModifyPaySystem
The MODIFYPAYSYSTEM command modifies the specified Payment System
object.

Required keywords for ModifyPaySystem command

Required Keywords Value

CASSETTENAME ASCII character string from 1 to 64 bytes.

In conjunction with MERCHANTNUMBER, uniquely identifies
the target Payment System object command.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x).

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

In conjunction with CASSETTENAME, uniquely identifies the
target PaymentSystem object command.

OPERATION ASCII character string ″ModifyPaySystem″

Optional keywords for ModifyPaySystem command

Optional Keywords Value

Chapter 7. WebSphere Commerce Payments command reference 87

Optional keywords for ModifyPaySystem command

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

ENABLED ASCII character string ″0″ or ″1,″ where ″0″ and ″1″ denotes
false and true, respectively. If present, the value passed in will
replace the Enabled field of the ModifyPaySystem object.

Indicates whether the ModifyPaySystem object should be
active.

ModifySNMEventListener
The MODIFYSNMEVENTLISTENER command modifies the System Network
Management Event Listener object.

Required keywords for ModifySNMEventListener command

Required Keywords Value

ENABLED Can be set to 1 (true) or 0 (false)

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x).

EVENTTYPE 3: Identifies the SNM event type. Other values reserved for
future use.

LISTENERURL ASCII character string that identifies where the events show
(for example,
http://www.merchant.com/webapp/PaymentManager/eventReceiver888).
If the port number is not specified, the default port number,
80, is used. A valid URL from 1 to 256 characters.

OPERATION ASCII character string ″ModifySNMEventListener″

Optional keywords for ModifySNMEventListener command

Optional Keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

ModifySystemCassetteObject
The MODIFYSYSTEMCASSETTEOBJECT command modifies the properties of the
Cassette object with the type specified by object name.

Refer to the appropriate cassette supplement for details on how this command is
used.

Required keywords for ModifySystemCassetteObject command

Required Keywords Value

88 Programmer’s Guide and Reference

Required keywords for ModifySystemCassetteObject command

CASSETTENAME ASCII character string from 1 to 64 bytes.

In conjunction with OBJECTNAME and protocol data
parameters, uniquely identifies the target SystemCassette
object for this command.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version
2.1.x, 2.2.x and 3.1.x).

OBJECTNAME ASCII character string. Value specified by the cassette.

In conjunction with CASSETTENAME and protocol data
parameters, uniquely the target SystemCassette object for
this command. The maximum length is 1000 bytes.

OPERATION ASCII character string ″ModifySystemCassetteObject.″

Optional keywords for ModifySystemCassetteObject command.

Optional Keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

ENABLED ASCII character string ″0″ or ″1,″ where ″0″ and ″1″ denotes
false and true, respectively. If present, the value passed in
will replace the Enabled field of the SystemCassette object.

Indicates whether the SystemCassette object should be
active.

ModifyUserStatus
This command changes the status of the user who has the access rights to the
WebSphere Commerce Payments. Access control for this function is limited to the
Payments administrators and the Merchant administrator. The Merchant
administrator can only ″modify user status″ of the user in his merchant.

Required keywords for ModifyUserStatus command

Required Keywords Value

ENABLED Can be set to 1 (true) or 0 (false)

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x).

MERCHANTNUMBER String form of numeric merchant number. This keyword is
required if any of the request is issued by a Merchant
administrator.

OPERATION ASCII character string ″ModifyUserStatus.″

USER Byte array containing userid characters. ASCII character string
from 1 to 80 characters.

ROLE The value assigned to each WebSphere Commerce Payments
role. For designated values, see Table 5 on page 103

Chapter 7. WebSphere Commerce Payments command reference 89

QueryAccounts
The QUERYACCOUNTS command returns a collection of Account objects in XML
format.

Required keywords and operational parameters for QueryAccounts command

Required Keyword Multiple
Allowed?

Value

ETAPIVERSION N ″3″ (Indicates WebSphere Commerce
Payments Version 2.1.x, 2.2.x and 3.1.x).

OPERATION N ASCII character string ″QueryAccounts.″

Optional operational parameter for QueryAccounts command

Optional Operational
Parameter

Value

DTDPATH Path to the locally-stored DTD. The value of this parameter
will be used in the XML document to specify the location of
the external DTD. If this parameter is not specified, the
complete DTD will be returned as an internal DTD. The
length of the DTDPath must be from 1 to 254 bytes.

Search modifiers for QueryAccounts command

Optional Keywords Multiple
Allowed?

Value

ACCOUNTNUMBER Y The account number. Integer in ASCII
characters. Must be from 1 to 999999999.

CASSETTENAME Y The name of the cassette. ASCII character
string with a maximum length of 64 bytes.

MERCHANTNUMBER Y The merchant number. Integer in ASCII
characters. Must be from 1 to 999999999.

QueryBatches
The QUERYBATCHES command returns a collection of WebSphere Commerce
Payments batch objects or batchkeys.

Required keywords and operational parameters for QueryBatches command

Required Keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce
Payments Version 2.1.x, 2.2.x and 3.1.x).

OPERATION ASCII character string ″QueryBatches.″

Optional operational parameters for QueryBatches command.

Optional Operational Parameter Value

DTDPATH ASCII character string. Path to the locally-stored DTD.
The value of this parameter will be used in the XML
document to specify the location of the external DTD.
If this parameter is not specified, the complete DTD
will be returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

90 Programmer’s Guide and Reference

Optional operational parameters for QueryBatches command.

KEYSONLY 1: Instead of returning the actual objects, only a list of
unique batch identifiers (in the form
″orderNumber:batchNumber″) should be returned.

0: The complete objects will be returned.

RETURNATMOST Specifies the maximum number of objects or unique
credit identifiers to return for this call. This enables the
application to control the amount of data returned by a
given query call. A 32-bit positive integer in ASCII
characters.

WITHCREDITS 1: All related PSCredit objects should be located and
kept with the batch objects.

0: Credits will not be returned.

WITHPAYMENTS 1: All related PSPayment objects should be located
and kept with the batch objects.

0: Payments will not be returned.

Search modifiers for QueryBatches command.

Optional Search Modifiers Multiple
Allowed?

Value

ACCOUNTNUMBER Y Merchant’s account with its financial
institution. Integer in ASCII characters. Must
be from 1 to 999999999.

BALANCESTATUS Y An ASCII character string containing one of
the following values:

″batch_not_yet_balanced″

″batch_balanced″

″batch_out_of_balance″

BATCHNUMBER Y Integer in ASCII characters. Must be from 1
to 999999999.

CLOSEALLOWED N 1: Only batches which the merchant is
allowed to close should be returned.

0: Only batches that will be closed by the
financial institution should be returned. If
this parameter is not specified, or if any
other value is specified, then both types of
batches will be returned.

CLOSEBEGINTIME N A date and time to be used as the lower
limit of the close time of the batch. To be
included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24 hour clock), 01
January 1970.

Chapter 7. WebSphere Commerce Payments command reference 91

Search modifiers for QueryBatches command.

CLOSEENDTIME N A date and time to be used as the upper
limit of the close time of the batch. To be
included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24 hour clock), 01
January 1970.

MERCHANTNUMBER Y Integer in ASCII characters. Must be from 1
to 999999999.

MODIFYBEGINTIME N A date and time to be used as the lower
limit of the modify time of the batch. To be
included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24 hour clock), 01
January 1970.

MODIFYENDTIME N A date and time to be used as the upper
limit of the modify time of the batch. To be
included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24 hour clock), 01
January 1970.

OPENBEGINTIME N A date and time to be used as the lower
limit of the open time of the batch. To be
included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24 hour clock), 01
January 1970.

OPENENDTIME N A date and time to be used as the upper
limit of the open time of the batch. To be
included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24 hour clock), 01
January 1970.

PAYMENTTYPE Y ASCII character string. Value has a
maximum length of 10 bytes.

STATE Y An ASCII character string containing one of
the following values:

v ″batch_opening″

v ″batch_open″

v ″batch_closing″

v ″batch_closed″

QueryCassette
A QUERYCASSETTE command returns a collection of Cassette objects in XML
format.

Required keywords and operational parameters for QueryCassettes command

Required Keyword Value

92 Programmer’s Guide and Reference

Required keywords and operational parameters for QueryCassettes command

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version
2.1.x, 2.2.x and 3.1.x).

OPERATION ASCII character string ″QueryCassettes.″

Optional operational parameter for QueryCassettes command

Optional Operational Parameter Value

DTDPATH Path to the locally-stored DTD. The value of this
parameter used in the XML document to specify the
location of the external DTD. If this parameter is not
specified, the complete DTD is returned as an internal
DTD. The length of the DTDPath must be from 1 to
254 bytes.

Search modifiers for QueryCassettes command

Optional Search Modifiers Multiple
Allowed?

Value

CASSETTENAME Y The name of the cassette. ASCII character
string with a maximum length of 64 bytes.

QueryCredits
The QUERYCREDITS command returns a collection of WebSphere Commerce
Payments Credit objects or unique payment identifiers (in the form: ″orderNumber:
creditNumber″).

Required keywords and operational parameters for QueryCredits command

Required Keyword Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce
Payments Version 2.1.x, 2.2.x and 3.1.x).

OPERATION ASCII character string ″QueryCredits″.

Optional operational parameters for QueryCredits command.

Optional Operational Parameters Value

DTDPATH ASCII character string. Path to the locally-stored DTD.
The value of this parameter will be used in the XML
document to specify the location of the external DTD.
If this parameter is not specified, the complete DTD
will be returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

KEYSONLY 1: Instead of returning the actual objects, only a list of
unique credit identifiers (in the form
″merchantNumber:orderNumber:creditNumber″)
should be returned.

0: The complete objects will be returned.

RETURNATMOST Specifies the maximum number of objects or unique
credit identifiers to return for this call. This enables the
application to control the amount of data returned by a
given query call. Integer in ASCII characters. 32-bit
positive integer.

Chapter 7. WebSphere Commerce Payments command reference 93

Optional operational parameters for QueryCredits command.

WITHORDERS 1: PSORDER object should be located and returned
with the Credit objects.

0: Only Credit objects will be returned.

Search modifiers for QueryCredits command

Optional Search Modifiers Multiple
Allowed?

Value

BATCHNUMBER Y Integer in ASCII characters. Must be from 1
to 999999999.

BRAND Y Brand of customer’s payment instrument.
ASCII character string.

CREATEBEGINTIME N A date and time to be used as the lower
limit of the create time of the credit. To be
included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24 hour clock), 01
January 1970.

CREATEENDTIME N A date and time to be used as the upper
limit of the create time of the credit. To be
included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24 hour clock), 01
January 1970.

CREDITNUMBER Y Integer in ASCII characters. Must be from 1
to 999999999.

CURRENCY N The ISO 4217 currency code for amount
values. Integer in ASCII characters. Must be
exactly 3 characters long and should include
leading zeroes if necessary.

MAXAMOUNT N Maximum credit amount. A Currency value
must also be specified. A 32-bit positive
integer in ASCII characters.

MERCHANTNUMBER Y Integer in ASCII characters. Must be from 1
to 999999999.

MINAMOUNT N Minimum credit amount. A Currency value
must also be specified. A 32-bit positive
integer in ASCII characters.

MODIFYBEGINTIME N A date and time to be used as the lower
limit of the modify time of the credit. To be
included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24 hour clock), 01
January 1970.

94 Programmer’s Guide and Reference

Search modifiers for QueryCredits command

MODIFYENDTIME N A date and time to be used as the upper
limit of the modify time of the credit. To be
included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24 hour clock), 01
January 1970.

ORDERNUMBER Y Integer in ASCII characters. Must be from 1
to 9999999999.

PAYMENTTYPE Y ASCII character string. Value has a
maximum length of 10 characters.

REFERENCENUMBER Y Merchant-assigned reference number for
this credit. ASCII character string.

STATE Y An ASCII character string containing one of
the following values:

v ″credit_reset″

v ″credit_refunded″

v ″credit_closed″

v ″credit_declined″

v ″credit_void″

v ″credit_pending″

QueryEventListeners
The QUERYEVENTLISTENERS command returns a collection of Event Listener
objects.

Required keyword for QueryEventListeners command

Required Keyword Multiple
Allowed?

Value

ETAPIVERSION N ″3″ (Indicates WebSphere Commerce
Payments Version 2.1.x, 2.2.x and 3.1.x).

OPERATION N ASCII character string
″QueryEventListeners.″

Optional operational parameters for QueryEventListeners command

Optional Keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the external
DTD. If this parameter is not specified, the complete DTD is
returned as an internal DTD. The length of the DTDPath must be
from 1 to 254 bytes.

Search modifiers for QueryEventListeners command

Optional Search
Modifiers

Multiple
Allowed?

Value

CASSETTENAME Y ASCII character string, 1 to 64 bytes..

Chapter 7. WebSphere Commerce Payments command reference 95

Search modifiers for QueryEventListeners command

EVENTTYPE Y Integer in ASCII characters. Value must be from 1 to
3:

v 1 = state change event

v 2 = cassette event

v 3 = network management event

LISTENERURL Y ASCII character string that identifies where the events
show (for example,
http://www.merchant.com/webapp/PaymentManager
/eventReceiver888). If the port number is not
specified, the default port number, 80, is used. No
parameter limitations.

MERCHANTNUMBER Y Integer in ASCII characters. Value must be from 1 to
999999999.

QueryMerchants
The QUERYMERCHANTS command returns a collection of Merchant objects.

Required keywords and operational parameters for QueryMerchants command

Required Keywords Multiple
Allowed?

Value

ETAPIVERSION N ″3″ (Indicates WebSphere Commerce
Payments Version 2.1.x, 2.2.x and 3.1.x).

OPERATION N ASCII character string ″QueryMerchants.″

Optional operational parameter for QueryMerchants command.

Optional Operational Parameter Value

DTDPATH ASCII character string. Path to the locally-stored DTD.
The value of this parameter will be used in the XML
document to specify the location of the external DTD.
If this parameter is not specified, the complete DTD
will be returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

Search modifier for QueryMerchants command

Optional Search Modifier Multiple
Allowed?

Value

MERCHANTNUMBER Y The merchant number. If no merchant
number is specified, PSMerchant elements
will be returned for all merchants defined to
the WebSphere Commerce Payments.
Integer in ASCII characters. Must be from 1
to 999999999.

QueryOrders
The QUERYORDERS command returns a collection of PSOrder objects or order
numbers.

96 Programmer’s Guide and Reference

Required keywords and operational parameters for QueryOrders command

Required Keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce
Payments Version 2.1.x, 2.2.x and 3.1.x).

OPERATION ASCII character string ″QueryOrders.″

Optional operational parameters for QueryOrders command.

Optional Operational Parameters Value

DTDPATH ASCII character string. Path to the locally-stored DTD.
The value of this parameter will be used in the XML
document to specify the location of the external DTD.
If this parameter is not specified, the complete DTD
will be returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

KEYSONLY 1: Instead of returning the actual objects, only a list of
order numbers and merchant numbers should be
returned.

0: Complete objects will be returned.

RETURNATMOST Specifies the maximum number of objects or order
numbers to return for this call. Enables the application
to control the amount of data returned by a given
query call. A 32-bit positive integer in ASCII
characters.

WITHCREDITS 1: All related PSCredit objects should be located and
kept with the Order objects.

0: Credits will not be returned.

WITHPAYMENTS 1: All related PSPayment objects should be located
and kept with the Order objects.

0: Payments will not be returned.

Search modifiers for QueryOrders command

Optional Search Modifiers Multiple
Allowed?

Value

ACCOUNTNUMBER Y Merchant’s account with its financial
institution. Integer in ASCII characters. Must
be from 1 to 999999999.

APPROVESALLOWED N Supported values are:

1: Approve command is allowed for this
order

0: Approve command is not allowed for this
order

BRAND Y Brand of customer’s payment instrument.
ASCII character string

Chapter 7. WebSphere Commerce Payments command reference 97

Search modifiers for QueryOrders command

CREATEBEGINTIME N A date and time to be used as the lower
limit of the create time of the order. To be
included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24 hour clock), 01
January 1970.

CREATEENDTIME N A date and time to be used as the upper
limit of the create time of the order. To be
included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24 hour clock), 01
January 1970.

CURRENCY N The ISO 4217 currency code for amount
values. Integer in ASCII characters. Must be
exactly 3 characters long and should include
leading zeroes if necessary.

MAXAMOUNT N Maximum order amount. A Currency value
must also be specified. A 32-bit positive
integer in ASCII characters.

MAXUNAPPROVEDAMOUNT N Maximum order amount that has yet to be
approved. A Currency value must also be
specified. A 32-bit positive integer in ASCII
characters.

MERCHANTNUMBER Y Merchant number. Integer must be in ASCII
characters. Value must be from 1 to
999999999.

MINAMOUNT N Minimum order amount. A Currency value
must also be specified. A 32-bit positive
integer in ASCII characters.

MINUNAPPROVEDAMOUNT N Minimum order amount that has yet to be
approved. A Currency value must also be
specified. A 32-bit positive integer in ASCII
characters.

MODIFYBEGINTIME N A date and time to be used as the lower
limit of the modify time of the order. To be
included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24 hour clock), 01
January 1970.

MODIFYENDTIME N A date and time to be used as the upper
limit of the modify time of the order. To be
included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24 hour clock), 01
January 1970.

ORDERDATA1 N Auxiliary data supplied by the user, specified
as an ASCII character string between 1 and
254 bytes in length.

ORDERNUMBER Y Integer in ASCII characters. Must be from 1
to 99999999.

98 Programmer’s Guide and Reference

Search modifiers for QueryOrders command

PAYMENTTYPE Y Payment system type. Integer in ASCII
characters. Maximum length is 10 bytes

STATE Y An ASCII character string containing one of
the following values:

v ″order_requested″

v ″order_ordered″

v ″order_refundable″

v ″order_rejected″

v ″order_pending″

TRANSACTIONID N Transaction identifier supplied by the user,
specified as an ASCII character string from
1 to 128 bytes in length.

QueryPayments
The QUERYPAYMENTS command returns a collection of WebSphere Commerce
Payments Payment objects or unique payment identifiers (in the form
″orderNumber: paymentNumber″).

Required keywords and operational parameters for QueryPayments command

Required Keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce
Payments Version 2.1.x, 2.2.x and 3.1.x).

OPERATION ASCII character string ″QueryPayments.″

Search modifiers for QueryPayments command

Optional Search Modifiers Multiple
Allowed?

Value

BATCHNUMBER Y Integer in ASCII characters. Must be from 1
to 999999999.

BRAND Y Brand of customer’s payment instrument.
ASCII character string.

CREATEBEGINTIME N A date and time to be used as the lower
limit of the create time of the payment. To
be included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24 hour clock), 01
January 1970.

CREATEENDTIME N A date and time to be used as the upper
limit of the create time of the payment. To
be included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24 hour clock), 01
January 1970.

CURRENCY N The ISO 4217 currency code for amount
values. Integer in ASCII characters. Must be
exactly 3 characters long and should include
leading zeroes if necessary.

Chapter 7. WebSphere Commerce Payments command reference 99

Search modifiers for QueryPayments command

MAXAPPROVEAMOUNT N Maximum approved amount. A Currency
value must also be specified. A 32-bit
positive integer in ASCII characters.

MAXDEPOSITAMOUNT N Maximum deposit amount. A Currency value
must also be specified. A 32-bit positive
integer in ASCII characters.

MERCHANTNUMBER Y Integer in ASCII characters. Must be from 1
to 999999999.

MINAPPROVEAMOUNT N Minimum approved amount. A Currency
value must also be specified. A 32-bit
positive integer in ASCII characters.

MINDEPOSITAMOUNT N Minimum deposit amount. A Currency value
must also be specified. A 32-bit positive
integer in ASCII characters.

MODIFYBEGINTIME N A date and time to be used as the lower
limit of the modify time of the payment. To
be included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24 hour clock), 01
January 1970.

MODIFYENDTIME N A date and time to be used as the upper
limit of the modify time of the payment. To
be included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24 hour clock), 01
January 1970.

ORDERNUMBER Y Integer in ASCII characters. Must be from 1
to 999999999.

PAYMENTNUMBER Y Integer in ASCII characters. Must be from 1
to 999999999.

PAYMENTTYPE Y Integer in ASCII characters. Maximum
length is 10 bytes.

REFERENCENUMBER Y Merchant-assigned reference number for
this payment. ASCII character string.

STATE Y An ASCII character string containing one of
the following values:

v ″payment_reset″

v ″payment_approved″

v ″payment_deposited″

v ″payment_closed″

v ″payment_declined″

v ″payment_void″

v ″payment_pending″

Optional operational parameters for QueryPayments command.

Optional Operational Parameters Value

100 Programmer’s Guide and Reference

Optional operational parameters for QueryPayments command.

DTDPATH ASCII character string. Path to the locally-stored DTD.
The value of this parameter will be used in the XML
document to specify the location of the external DTD.
If this parameter is not specified, the complete DTD
will be returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

KEYSONLY 1: Instead of returning the actual objects, only a list of
unique payment identifiers (in the form
″merchantNumber: orderNumber: paymentNumber″)
should be returned.

0: The complete objects will be returned.

RETURNATMOST Specifies the maximum number of objects or unique
payment identifiers to return for this call. This enables
the application to control the amount of data returned
by a given query call. A 32-bit positive integer in ASCII
characters.

WITHORDERS 1: PSOrder object should be located and returned
with the payment objects.

0: Order will not be returned.

QueryPaymentServer
The QUERYPAYMENTSERVER command returns the Payment Server object.

Required keywords and operational parameter for QueryPaymentServer command

Required Keyword Multiple
Allowed?

Value

ETAPIVERSION N ″3″ (Indicates WebSphere Commerce
Payments Version 2.1.x, 2.2.x and 3.1.x).

OPERATION N ASCII character string
″QueryPaymentServer.″

Optional operational parameter for QueryPaymentServer command

Optional Operational Parameter Value

DTDPATH Path to the locally-stored DTD. The value of this
parameter used in the XML document to specify the
location of the external DTD. If this parameter is not
specified, the complete DTD is returned as an internal
DTD. The length of the DTDPath must be from 1 to
254 bytes.

QueryPaySystems
The QUERYPAYSYSTEMS command returns a collection of Payment System
objects.

Required keywords and operational parameters for QueryPaySystems command

Required Keyword Multiple
Allowed?

Value

Chapter 7. WebSphere Commerce Payments command reference 101

Required keywords and operational parameters for QueryPaySystems command

ETAPIVERSION N ″3″ (Indicates WebSphere Commerce
Payments Version 2.1.x, 2.2.x and 3.1.x).

OPERATION N ASCII character string ″QueryPaySystems.″

Optional operational parameter for QueryPaySystems command

Optional Operational Parameter Value

DTDPATH Path to the locally-stored DTD. The value of this
parameter will be used in the XML document to
specify the location of the external DTD. If this
parameter is not specified, the complete DTD will be
returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

Search modifiers for QueryPaySystems command

Optional Search Modifiers Multiple
Allowed?

Value

CASSETTENAME Y The cassette name. ASCII character string.
Maximum length is 64 bytes.

MERCHANTNUMBER Y The merchant number. Integer in ASCII
characters. Must be from 1 to 999999999.

QueryUsers
The QUERYUSERS command returns a collection of User objects.

Optional parameters
MerchantNumber

Performing QUERYUSERS on MerchantNumber returns all users
associated with that merchant.

Filter The QUERYUSERS command enables administrators to query users by
specifying a user filter. The filter is used by each realm to identify a subset
of the whole user registry. The actual filter semantics must be defined by
each realm. Both the PSDefaultRealm and the PSOS400Realm allow the
filter to specify the character substrings of the username. For example,
calling QUERYUSERS and passing a filter of Smi might result in a list of
users including Smith, Smitty and Jones-Smittinger. Note that both the
PSDefaultRealm and the PSOS400Realm will treat the user filter as case
insensitive. The filter parameter specifies a filter to screen the users being
returned. For more information, refer to “Valid combination of parameters”
on page 103.

Note that when the Merchant administrator requires additional userids, they must be
created and assigned by the Payments administrator.

The following table details the command syntax for the QUERYUSERS command:

Table 4. Optional keywords for QueryUsers command

Optional Keywords Multiple
Allowed?

Value

102 Programmer’s Guide and Reference

Table 4. Optional keywords for QueryUsers command (continued)

ETAPIVERSION N ″3″ (Indicates WebSphere Commerce
Payments Version 2.1.x, 2.2.x and 3.1.x)

MERCHANTNUMBER Y String form of numeric merchant number.

OPERATION N ASCII character string ″QueryUsers.″

ROLE N The value assigned to each WebSphere
Commerce Payments role. For
designated values, see Table 5 below.

USER N Maximum length is 80 bytes. This is the
user name.

RETURNATMOST N Integer in ASCII characters. 32–bit
positive integer. The maximum number
of users to be returned is 10000.

FILTER N ASCII character string with a maximum
length of 128 bytes.

Table 5. Role Values and Specifications

Value Meaning Merchant-specific Role?

0 Payments Administrator N

1 Merchant Administrator Y

2 Supervisor Y

3 Clerk Y

Valid combination of parameters
The following table illustrates all parameter combinations for the QUERYUSERS
command. It also maps who can issue commands for the parameter combinations
and what results will be returned.

Note that in most cases, WebSphere Commerce Payments does not check for
duplicate parameters. If more than one instance of a parameter is specified, then
the last instance will be used.

Chapter 7. WebSphere Commerce Payments command reference 103

Table 6. Valid parameter combinations for QueryUsers

Parameter combinations Valid? Who can
issue?

Return unauthorized
users

No parameters specified Yes PMA Yes

MERCHANTNUMBER Yes PMA/MA No

ROLE Yes PMA No

USER Yes All Yes

MERCHANTNUMBER + ROLE Yes PMA/MA No

MERCHANTNUMBER + USER Yes All No

ROLE + USER Yes All No

MERCHANTNUMBER + ROLE + USER Yes All No

FILTER Yes PMA Yes

FILTER + MERCHANTNUMBER Yes PMA/MA No

FILTER + ROLE Yes PMA No

FILTER + MERCHANTNUMBER +
ROLE

Yes PMA/MA No

FILTER + USER Yes, but filter will be
ignored

All Yes

FILTER + MERCHANTNUMBER +
USER

Yes, but filter will be
ignored

All No

FILTER + ROLE + USER Yes, but filter will be
ignored

All No

FILTER + MERCHANTNUMBER +
USER + ROLE

Yes, but filter will be
ignored

All No

Parameter combinations
Some key points about QUERYUSERS parameter combinations:

v When the Username is specified, the filter will be ignored.

v To return the unauthorized users, you can use only one of the following
methods:

1. Use the filter without the Username

2. Do not specify any parameters

3. Query with Username only

Valid Though a parameter combination may be defined in the QUERYUSERS
parameter table as being valid, certain queries may still be invalid. For
example, even though a merchant administrator can issue a query with
Role and Username parameters, the query will be allowed only when the
username specified is the merchant administrator’s username (that is, when
the merchant administrator is querying himself). For more details on access
control for the QUERYUSERS command, see “Access control details” on
page 105.

Return unauthorized users
The Return unauthorized users column indicates whether the specified
parameter combination can return users who are in the realm, but are not
authorized to use the WebSphere Commerce Payments. This allows
Payments administrators to query a single user and assign that user
WebSphere Commerce Payments access. Note that all calls to
QUERYUSERS can return users who are authorized.

104 Programmer’s Guide and Reference

Note that a realm may choose not to return all the matching users in the realm -
especially if the filter is very unrestrictive. In these cases, the above methods will
set the User objectCount to the total number of matching realm users. This, in turn,
will indicate to the QUERYUSERS caller that the results are not complete and that
a more restrictive search filter should be applied.

Access control details
. Whether a query is allowed is dependent on the role of the query issuer.

Payments administrator
The Payments administrator can issue a query with any combination of the
parameters.

Merchant administrator

A merchant administrator can only query users who:

v are associated with a merchant number (or numbers) that is managed by
the merchant administrator

In addition, the merchant administrator needs to adhere to the following
requirements in his query request:

v At least one MerchantNumber needs to be specified, and all of the
merchant numbers specified should belong to merchants associated with
the merchant administrator. There is one exception where the merchant
number is not required: the merchant administrator queries himself.

v If the Role parameter is specified, it should not contain the role of the
Payments administrator.

Supervisors and clerks
For all other roles, the user can query himself. In this case, if the filter is
specified, the filter will be ignored.

ReceivePayment
The RECEIVEPAYMENT command is used for order creation when there is
electronic wallet participation. If successful, the order object is moved to Requested
state. Subsequent wallet communication will complete the order and move it to
Ordered state.

When creating an order, you may want to approve or deposit funds automatically.
Once wallet communication is done and the order is in Ordered state, the
APPROVEFLAG and DEPOSITFLAG keywords indicate that a Payment object
should be automatically deposited and approved. Refer to the appropriate table
below for additional keywords that are used if APPROVEFLAG or DEPOSITFLAG
are specified.

Table 7. Required keywords for ReceivePayment command

Required Keywords Value

AMOUNT Must be 32-bit positive integer in ASCII characters.

CURRENCY Integer in ASCII characters. See Appendix B, Currency Codes,
for a list of ISO currency codes.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x).

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

OPERATION ASCII character string ″ReceivePayment.″

Chapter 7. WebSphere Commerce Payments command reference 105

Table 7. Required keywords for ReceivePayment command (continued)

ORDERNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

PAYMENTTYPE ASCII character string. Specifies the payment protocol being
used; for example, OfflineCard.

Table 8. Optional keywords for ReceivePayment command

Optional Keywords Value

AMOUNTEXP10 Integer in ASCII characters. Indicates the number of decimal
places to shift. For more information on this keyword, refer to
“Using the AmountExp10 keyword” on page 62.

APPROVEFLAG Integer in ASCII characters. Indicates whether the approvals
should be attempted automatically. Default is 0. Supported
values are:

0 - Indicates transaction should not be approved.

1 - Indicates transaction should be approved automatically.

2 - Indicates transaction should be approved asynchronously.

DTDPATH Path to the locally stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this pbarameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

ORDERDATA1 Auxiliary data supplied by the user, specified as an ASCII
character string between 1 and 254 bytes in length.

ORDERDATA2 Auxiliary data supplied by the user, specified as a UTF-8
string from 1 to 254 bytes in length.

ORDERDATA3 Auxiliary data supplied by the user, specified as a UTF-8
string between 1 and 254 bytes in length.

ORDERDATA4 Auxiliary data supplied by the user, specified as a binary string
between 1 and 254 bytes in length.

ORDERDATA5 Auxiliary data supplied by the user, specified as a binary string
with an arbitrary length.

ORDERURL URL containing order details.

TRANSACTIONID Transaction identifier supplied by the user, specified as an
ASCII character string between 1 and 128 bytes in length.

The following tables list the required and optional keywords for APPROVEFLAG=1
or 2.

Table 9. Required keywords if APPROVEFLAG is set to 1 or 2

Required Keywords Value

PAYMENTAMOUNT A 32–bit positive integer in ASCII characters.

PAYMENTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

Table 10. Optional keywords if APPROVEFLAG is set to 1 or 2.

Optional Keywords Value

106 Programmer’s Guide and Reference

Table 10. Optional keywords if APPROVEFLAG is set to 1 or 2. (continued)

DEPOSITFLAG Boolean value in ASCII characters. Indicates whether the
deposit should be attempted automatically. This flag is only
valid if APPROVE=1 (order is automatically approved).
Supported values are:

0 - Funds should not be automatically deposited

1 - Funds should be automatically deposited.

If DEPOSITFLAG=1, then the following keyword is optional:

Table 11. Optional keyword if DEPOSITFLAG is set to 1

Optional Keywords Value

BATCHNUMBER Identifies the batch under which this payment will be
processed. Must be from 1 to 999999999.

Refund
A REFUND command is used to create a Credit object and is used when the
merchant wants to return monies to the cardholder. The REFUND command is legal
when the specified order is in Refundable state.

If successful, a Credit object will be created in Refunded or Closed state. If
unsuccessful, a Credit object will be in Declined state.

Table 12. Required keywords for Refund command

Required Keywords Value

AMOUNT Must be a 32-bit positive integer in ASCII characters.

CREDITNUMBER Integer in ASCII characters. Must be from 1 to 999999999.
Indicates the number assigned to this credit.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments Version 2.1.x,
2.2.x and 3.1.x).

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

OPERATION ASCII character string ″Refund.″

ORDERNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

Table 13. Optional keywords for Refund command

Optional Keywords Value

BATCHNUMBER Optional for implicit batch. A numeric string of up to nine
characters. Identifies the batch under which this payment will
be processed. Must be from 1 to 999999999.

DTDPATH Path to the locally stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

Chapter 7. WebSphere Commerce Payments command reference 107

RefundReversal
A REFUNDREVERSAL command is used to void existing Credit objects. This
command operates on Credit objects in Refunded state. A successful
REFUNDREVERSAL call will result in the Credit object moving to Void State. If
unsuccessful, the Credit object remains in Refunded state.

Table 14. Required keywords for RefundReversal command

Required Keywords Value

CREDITNUMBER Integer in ASCII characters. Must be from 1 to 999999999.
Indicates the number assigned to this credit.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce PaymentsVersion 2.1.x,
2.2.x and 3.1.x).

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

OPERATION ASCII character string ″RefundReversal.″

ORDERNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

Table 15. Optional keywords for RefundReversal command

Optional Keywords Value

DTDPATH Path to the locally stored DTD. The value of this parameter is
used in the XML document to specify the location of the
existing DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

SetUserAccessRights
The SETUSERACCESSRIGHTS command is used to set, change, or remove a
user’s access rights. However, this command will not create or remove users from
the realm you are using to authenticate users. Before using the
SetUserAccessRights command, make sure the user has been added to your realm
(for example, PSOS400Realm or PSDefaultRealm).

adding user access
If you want to add a user’s access rights, first add that particular user to the
realm and then issue the SetUserAccessRights command.

removing user access
If you want to remove the user’s access rights, issue the
SetUserAccessRights command first to remove the user’s access rights and
then remove the user from the realm.

Table 16. Required keywords for SetUserAccessRights command

Required Keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce PaymentsVersion 2.1.x,
2.2.x and 3.1.x).

MERCHANTNUMBER String form of numeric merchant number. This keyword is
required if any of the roles specified is merchant specific.
Merchant number must be from 1 to 999999999. For users
other than the Payments administrator, multiple keyword-value
pairs can be specified.

OPERATION ASCII character string ″SetUserAccessRights.″

108 Programmer’s Guide and Reference

Table 16. Required keywords for SetUserAccessRights command (continued)

ROLE String form of numeric value.

USER ASCII character string with a maximum length of 40 bytes.
(Note that a user may not update himself. That is to say, user
″admin″ may not call SETUSERACCESSRIGHTS with the
user parameter set to ″admin″.)

To set or change a user’s access rights, specify the role and the merchant
number(s) on the command. To set or change a user’s access rights such that the
user has a role with multiple merchants, you must repeat the keyword-value pairs of
the merchant number multiple times. The merchant number(s) must be specified if
any role given is merchant-specific (See Table 5 on page 103) and must not be
specified if the role given is non-merchant-specific.

Notes:

1. If the Role parameter is not specified, this command can be used to remove a
user’s access rights. In which case, the WebSphere Commerce Payments will
ignore the merchant numbers (even though they are specified in the command).

2. A user may not update himself. That is to say, user ″admin″ may not call
SETUSERACCESSRIGHTS with the user parameter set to ″admin″.

Access control rules for merchant administrators
Only the Payments administrator and the merchant administrator can assign or
change a user’s permission (or role). The Payments administrator can assign or
change any user’s access rights and can assign or change a user’s role to
whatever he wants that user’s role to be, including the role of Payments
administrator. Whereas the merchant administrator can assign or remove a user as
a merchant administrator, supervisor, or clerk, he cannot assign or change a user’s
permissions to that of Payments administrator. Further, the merchant administrator
can assign and change permissions only under the conditions outlined in “Assigning
a user’s access permissions” on page 14.

Chapter 7. WebSphere Commerce Payments command reference 109

110 Programmer’s Guide and Reference

Chapter 8. WebSphere Commerce Payments data

This chapter focuses on WebSphere Commerce Payments Framework payment
and administration objects and states. An object is a collection of data maintained
by WebSphere Commerce Payments which represents a real-world entity. Each
object is defined, and tables are provided to indicate field names, syntax and
descriptions. The state of an object provides information on legal actions for that
particular object. Query commands can be used to retrieve the current state of an
object. Additional tables list the possible states of a particular object, along with a
description of what that state means and which commands are legal for that state.

WebSphere Commerce Payments payment objects
WebSphere Commerce Payments defines the following Framework objects for all
electronic payments, regardless of payment protocol:

v Order

v Payment

v Credit

v Batch

WebSphere Commerce Payments uses the terms order, payment, and credit to
represent payment data for all electronic payment. An Order is an object that is
created as a result of a data flow between a buyer and a merchant, while the buyer
is placing an order for merchandise or services. Transactions flow between the
merchant and the financial institution during the Order life cycle. These transactions
can be broken into two broad categories: payments (monies transferred to the
merchant from the consumer) and credits (monies returned to the buyer, such as
when merchandise is defective). As processing on an Order continues, Payment
and Credit objects are created, modified, and destroyed.

Another type of object used by the WebSphere Commerce Payments is a batch
object. A batch represents multiple transactions processed as a group, such as the
deposit of all payments at the end of a business day. Batch objects in the
WebSphere Commerce Payments keep track of the collections of transactions. For
instance, if a financial institution tells the merchant to close out the week’s
transactions, the merchant will close the current batch and open a new one. Batch
objects for these two batches will reflect the new status of the batches.

Order, Payment, Credit, and Batch objects each have an associated state. The
state of an object determines what actions are permitted for the object. The state of
an object is determined by the action, or command, that was last performed on it.

Each WebSphere Commerce Payments Framework object is defined by its
attributes, or fields. In the sections that follow, Object Tables display field names,
field syntax, and field descriptions for each Framework object. In addition, Object
State Tables display the states an object can assume and field descriptions for
those states.

Order
An Order represents all the instructions and information needed from the buyer
(payer) in order for the merchant (payee) to collect money. The merchant may
collect that money all at once, or over a period of time, but never needs to go back
to the buyer for additional information. The required information is all there in the

111

Order. The WebSphere Commerce Payments Order object describes the data
included in the order. Each Order can have zero or more payments associated with
it. The attributes for the Order object are:

Table 17. PSOrderObject Attributes

Field Name Syntax Description

merchantNumber Numeric token, 1 to 9
digits long

A number that identifies the merchant that created the Order.

orderNumber Numeric token, 1 to 9
digits long

A number assigned by the merchant that uniquely identifies the
Order.

merchantOriginated 0 or 1 (Boolean) Value is 1, (true) if the Order was created using AcceptPayment.
Value is 0, (false) if the Order was created using
ReceivePayment.

amount Integer Identifies the Order amount in the smallest denomination of the
particular currency used to place the Order. When combined with
AmountExp10, this field specifies the amount of the full Order in
the specified currency.

amountExp10 Integer Indicates the number of decimal places to shift the decimal point
to reflect the currency. For example, if the amount is 2325, the
currency code is for U.S. dollars, and AmountExp10 is -2, the
transaction amount in U.S. dollars is $23.25.

currency Integer ISO code for currency. For example, 840 is the numeric code for
a U.S. dollar, and 392 is the numeric code for a Japanese yen.

paymentType Character string Identifies the payment type, or protocol, used to place the Order
(for example, SET or OfflineCard).

timeStampCreated Date The time that this Order entry was created. The number of
milliseconds since midnight January 1, 1970 GMT.

timeStampModified Date The time that this Order entry was last modified. The number of
milliseconds since midnight, January 1, 1970 GMT.

state Character string The state of the Order.

v order_requested

v order_ordered

v order_refundable

v order_rejected

v order_pending

v order_canceled

v order_closed

approvesAllowed 0 or 1 (Boolean) Flag indicating if approve commands are legal on this Order.

unapprovedAmount Integer Amount of the Order minus the approved amount of all
Payments for that Order.

numberOfPayments Integer The number of payments associated with this Order.

numberOfCredits Integer The number of credits associated with this order.

brand Character string For credit card payment types: the payment card brand used to
place this Order (for example, VISA or MasterCard).

orderURL URL A merchant-defined URL often used to point to information about
the Order in the merchant’s business system.

merchantAccount Numeric token, 1 to 9
digits long

The number of the Account used to process this Order.

Assigned prior to the Order entering Ordered state.

112 Programmer’s Guide and Reference

Table 17. PSOrderObject Attributes (continued)

Field Name Syntax Description

transactionId Character string, 1 to 128
ASCII characters long

Customer’s transaction identifier. This value will only be present
if a non-null TRANSACTIONID value was specified on the
AcceptPayment or ReceivePayment command.

orderData1 Character string, 1 to 254
ASCII characters long

This value will only be present if a non-null ORDERDATA1 value
was specified on the AcceptPayment or ReceivePayment
command.

orderData2 UTF-8 string, 1 to 254
bytes long

This value will only be present if a non-null ORDERDATA2 value
was specified on the AcceptPayment or ReceivePayment
command.

orderData3 UTF-8 string, 1 to 254
bytes long

This value will only be present if a non-null ORDERDATA3 value
was specified on the AcceptPayment or ReceivePayment
command.

orderData4 Binary string, 1 to 254
bytes long

This value will only be present if a non-null ORDERDATA4 value
was specified on the AcceptPayment or ReceivePayment
command.

orderData5 Binary string of an
arbitrary length

This value will only be present if a non-null ORDERDATA5 value
was specified on the AcceptPayment or ReceivePayment
command.

Note: A numeric token is defined as a numeric string that is one to nine digits in
length.

Order states
The state of an object determines what actions are legal for the object. The state of
an object is determined by the action, or command, that was last performed on it
(for example, a Payment that was approved, moves into Approved state).

Orders are in one of the following states:

State Description

Requested A preliminary state where the buyer has not yet provided all
of the information necessary to complete the Order. Legal
commands for this state:

v CancelOrder

Chapter 8. WebSphere Commerce Payments data 113

State Description

Ordered Indicates consumer/merchant server/WebSphere
Commerce Payments order message flow completed
successfully. WebSphere Commerce Payments can now
perform commands on Payments. Legal commands for this
state:

v CloseOrder, if the order has any payments or credits
associated with it, they all must be in closed state before
CloseOrder is allowed; if an Order has no payments or
credits associated with it, then CloseOrder is not valid.

v CancelOrder, if one or the other is true:

– The order has no Payments or Credits associated
with it, OR

– All Payments and Credits are in either Reset, Void,
ApprovalExpired or Declined state.

v Approve

v ApproveReversal

v Deposit

v DepositReversal

Refundable The WebSphere Commerce Payments can now perform
commands on Payments and Credits. The point at which
an Order moves from Ordered to Refundable state depends
on the payment type. Legal commands for this state:

v CloseOrder, if the order has any payments or credits
associated with it, they all must be in closed state before
CloseOrder is allowed; if an Order has no payments or
credits associated with it, then CloseOrder is not valid.

v Approve

v ApproveReversal

v Deposit

v DepositReversal

v Refund

v RefundReversal

Rejected Indicates that a problem occurred during the
consumer-merchant purchase flows. Legal commands for
this state:

v CancelOrder

Pending An Order is in Pending state when the WebSphere
Commerce Payments is performing a command on the
Order. No commands are legal for Orders in this state.

Canceled This Order has been canceled. Legal commands for this
state:

v CancelOrder with the DELETEORDER flag enabled (this
removes the Order from the database).

Closed This Order has been closed. Legal commands for this
state:

v CloseOrder

v CancelOrder with the DELETEORDER flag enabled (thisl
removes the Order from the database).

114 Programmer’s Guide and Reference

Payments
WebSphere Commerce Payments Payment object represents a request by the
merchant to the financial institution to approve all or part of an Order.

In many cases, all the money authorized for collection by the Order will be collected
in a single payment. Some payment systems may allow the money authorized in
one Order (that is, one set of payment instructions) to be collected in multiple
payments, depending on the business model. There can be zero or more Payments
per Order. The attributes for the Payment object are:

Table 18. PSPaymentObject Attributes

Field name Syntax Description

merchantNumber Numeric token, 1 to 9
digits long

A number that identifies the merchant that created the Order.

orderNumber Numeric token, 1 to 9
digits long

A number assigned by the merchant that uniquely identifies the
Order. This field matches the orderNumber in the Orders table.

paymentNumber Numeric token, 1 to 9
digits long

A unique identifier for a particular Payment within an Order.

paymentType Character string Identifies the payment type, or protocol, used to place the order
(for example, SET or OfflineCard).

approvedAmount Integer Amount of the Order that has been approved for Payment.

amount Integer Identifies the Payment amount in the smallest denomination of
the particular currency used to place the order. When combined
with AmountExp10, this field specifies the amount of the
Payment in the specified currency.

amountExp10 Integer Indicates the number of decimal places to shift the decimal point
to reflect the currency. For example, if the amount is 2325, the
currency code is for U.S. dollars, and AmountExp10 is -2, the
transaction amount in U.S. dollars is $23.25.

currency Integer The currency used to make this Payment. ISO code for currency.
For example, 840 is the numeric code for a U.S. dollar, and 392
is the numeric code for a Japanese yen.

timeStampCreated Date The time that this Payment entry was created. The number of
milliseconds since midnight, January 1, 1970 GMT.

timeStampModified Date The time that this Payment entry was last modified. The number
of milliseconds since midnight, January 1, 1970 GMT.

state Character string The state of the Payment:

v payment_reset

v payment_approved

v payment_deposited

v payment_pending

v payment_declined

v payment_void

v payment_closed

v payment_approvalexpired

batchNumber Numeric token, 1 to 9
digits long

The number that identifies the Batch.

Assigned when the Payment is deposited.

referenceNumber Character string Plain text identifier used by the financial institution to identify a
Payment.

Chapter 8. WebSphere Commerce Payments data 115

Table 18. PSPaymentObject Attributes (continued)

Field name Syntax Description

depositAmount Integer The amount deposited for this Payment (can differ from
approved amount).

Assigned when deposited.

merchantAccount Numeric token, 1 to 9
digits long

A number that identifies the Account used to process this Order.

order IDREF XML element representing the order associated with this
payment.

approveTime Date The last time that this Payment entry was approved.

approvalExpiry Date The time that a Payment approval expires. A null value implies
no expiration.

Payment states
Payments are in one of the following states:

State Description Valid commands

Reset A Payment enters Reset state
when a Payment has been
created, but has not yet been
processed.

No valid commands exist for
Payments in this state, since the
Approve command has not yet
completed.

Approved A Payment enters Approved state
when an approve command is
successful. For credit card
payment types, Approved state
means that the Payment has been
authorized.

v ApproveReversal

v Deposit

Deposited A Payment enters Deposited state
when a deposit, or auto-deposit,
command is successful. For credit
card payment types, Deposited
state means that the Payment has
been captured.

DepositReversal

Closed A Payment in Deposited state
moves into Closed state when the
Batch associated with the Payment
closes. When a Payment is in
Closed state, the financial
transaction is complete; monies
are deposited, and the Payment
cannot be modified.

No valid commands exist for
Payments in this state.

Declined A Payment enters Declined state
when an approve command is
rejected for financial reasons.

Approve

Void A Payment enters Void state when
an ApproveReversal command for
an amount of zero is successful.

Approve

Pending A command is currently being
performed on this Payment.

No valid commands exist for
Payments in this state.

116 Programmer’s Guide and Reference

ApprovalExpired The Payment moves from an
Approved state to the
ApprovalExpired state after the
specified approval time has
elapsed or the cassette has
detected that the Payment
authorization has expired. This is
an optional state which may not be
supported by a cassette.

ApproveReversal

Split Payments
Suppose a customer contacts an online catalog store and orders $80 of
merchandise. The merchant checks the inventory and finds that only $60 worth of
merchandise is in stock and can be shipped. The merchant would like to collect $60
now and the remaining $20 when the rest of the order is filled. WebSphere
Commerce Payments is designed to support payment systems in which customers
provide payment information once (for the entire $80) and the merchant collects the
funds over time ($60 now and $20 later). This is referred to as split payments.

AVS common codes
If the cassette you are using supports WebSphere Commerce Payments common
AVS codes, then you can also query the commonAVSCode parameters to
determine the AVS result in a cassette-independent way.

Mapping of common AVS result codes to SET cassette result codes follows.

SET
Cassette
Result
Code

Common
AVS
Code

PM Constant Name Description

0 4 AVS_OTHER_RESPONSE This constant maps the address
information unavailable, system
unavailable (possibly due to
timeout), card type not
supported, and transaction
ineligible AVS return codes.
Some other system-related
response was received from the
credit card processor.

1 3 AVS_NO_MATCH Neither the street address nor
the postal code matches.

2 2 AVS_POSTALCODE_MATCH The 5–digit or 9–digit postal
code matches, but the street
address does not.

3 1 AVS_STREETADDRESS_MATCH The street address matches, but
the postal code does not.

4 0 AVS_COMPLETE_MATCH This constant maps both the
AVS 5–digit and 9–digit postal
code and street addresses. Both
are exact matches.

Chapter 8. WebSphere Commerce Payments data 117

Credits
The WebSphere Commerce Payments command that creates the Credit object is
called Refund. The Credit object identifies one credit made against the amount of
money identified in one Order (that is, the payment agreement) object. There can
be zero or more Credits per Order. The attributes for the Credit object are:

Table 19. PSCreditObject Attributes

Field Name Syntax Description

merchantNumber Numeric token, 1 to 9
digits long

A number that identifies the merchant that created the Order.

orderNumber Numeric token, 1 to 9
digits long

A number assigned by the merchant that uniquely identifies the
Order. This field matches the orderNumber in the Orders table.

creditNumber Numeric token, 1 to 9
digits long

A unique identifier for a particular Credit within an Order.

paymentType Character string Identifies the payment type, or protocol, used to place the order
(for example, SET or OfflineCard).

amount Integer Identifies the Credit amount in the smallest denomination of the
particular currency used to place the order. When combined with
AmountExp10, this field specifies the amount of the Credit in the
specified currency.

amountExp10 Integer Indicates the number of decimal places to shift the decimal point
to reflect the currency. For example, if the amount is 2325, the
currency code is for U.S. dollars, and AmountExp10 is -2, the
transaction amount in U.S. dollars is $23.25.

currency Integer The currency used to issue this Credit. ISO code for currency.
For example, 840 is the numeric code for a U.S. dollar, and 392
is the numeric code for a Japanese yen.

timeStampCreated Date The time that this Credit entry was created. The number of
milliseconds since midnight, January 1, 1970 GMT.

timeStampModified Date The time that this Credit entry was last modified. The number of
milliseconds since midnight, January 1, 1970 GMT.

state Character string The state of the Credit:

v credit_reset

v credit_refunded

v credit_pending

v credit_declined

v credit_void

v credit_closed

For more information on Credit states, see “Credit states” on
page 119.

batchNumber Numeric token, 1 to 9
digits long

The number that identifies the Batch.

Assigned when the Payment is deposited.

referenceNumber Character string Plain text identifier used by the financial institution to identify a
Payment.

merchantAccount Numeric token, 1 to 9
digits long

The number of the Account used to process this Order.

118 Programmer’s Guide and Reference

Credit states
Credits are in one of the following states:

State Description

Reset A Credit enters Reset state when a Credit has been
created, but has not yet been processed. No commands
are legal for Credits in this state.

Refunded A Credit enters Refunded state when a refund command is
successful. Legal commands for this state:

v RefundReversal

Closed A Credit in Refunded state moves into Closed state when
the Batch associated with the Credit closes. When a Credit
is in Closed state, the financial transaction is complete;
monies are refunded, and the Credit cannot be modified.
No commands are legal for Credits in Closed state.

Declined A Credit enters Declined state when a refund command is
rejected for financial reasons. Legal commands for this
state:

v Refund

Void A Credit enters Void state when a RefundReversal
command for an amount of zero is successful. Legal
commands for this state:

v Refund

Pending A command is currently being performed on this Credit. No
commands are legal for Credits in this state.

Batches
A Batch is a collection of financial transactions (Payments and Credits) that are
processed as a unit by a financial institution. A Batch is associated with an Account
and a merchant. An Account can have zero or more Batches. The attributes for the
Batch object are:

Table 20. PSBatchObject Attributes

Field Name Syntax Description

merchantNumber Numeric token, 1 to 9
digits long

The number of the merchant that owns the Batch.

merchantAccount Numeric token, 1 to 9
digits long

The account number associated with the Batch.

batchNumber Numeric token, 1 to 9
digits long

The number that identifies the Batch.

Assigned when the Payment is deposited.

purgeAllowed 0 or 1 (Boolean) Flag indicating if it is legal for the merchant to purge this batch. If
the value is 1, (yes), the merchant can purge this batch using
the BatchPurge command. If the value is 0, (no), the merchant
cannot purge this batch.

forceAllowed 0 or 1 (Boolean) Flag indicating if it is legal for the merchant to issue a
BatchClose command with the Force option set. If the value is 1,
(yes), the merchant can issue the command.

paymentType Character string Identifies the payment type, or protocol, used to place the Order
(for example, SET or OfflineCard).

Chapter 8. WebSphere Commerce Payments data 119

Table 20. PSBatchObject Attributes (continued)

Field Name Syntax Description

merchantControl 0 or 1 (Boolean) Flag indicating if it is legal for the merchant to control this batch.
If the value is 1, (true), the merchant is responsible for settling
this Batch. (The merchant settles the Batch by explicitly closing
the Batch using the BatchClose command.) If the value is 0,
(false), the merchant does nothing to settle this Batch.

timeStampOpened Date The time that this Batch was opened (either by the merchant or
the financial institution). The number of milliseconds since
midnight, January 1, 1970 GMT.

timeStampClosed Date The time that this Batch was closed (either by the merchant or
the financial institution). The number of milliseconds since
midnight, January 1, 1970 GMT.

timeStampModified Date The time that this Batch was last modified. The number of
milliseconds since midnight, January 1, 1970 GMT.

state Character string The state of the Batch:

v batch_opening

v batch_open

v batch_closing

v batch_closed

For more information on Batch states, see “Batch states”.

batchStatus Character string The balance status of this Batch:

v batch_not_ yet_ balanced: balancing has not yet been
performed on this Batch.

v batch_balanced: the Batch has been balanced, and
everything is in agreement.

v batch_out_ of_ balance: the Batch has been balanced, and
everything does not agree.

Batch states
Batches are in one of the following states:

State Description

Opening The Batch is currently being opened. No commands are
legal on a Batch in Opening state.

Open Payments and Credits can be added to a Batch in Open
state. Legal commands for this state:

v CloseBatch, only if merchantControl is true.

Closing Batch is currently being settled. No commands are legal for
Batches in this state.

Closed A batch in Closed state has been settled. Legal commands
for this state:

v DeleteBatch

120 Programmer’s Guide and Reference

WebSphere Commerce Payments About objects
WebSphere Commerce Payments defines the following About objects:

v Payment Server About

v Cassette About

Each WebSphere Commerce Payments About object is defined by its attributes, or
fields. In the sections that follow, Object Tables display field names, field syntax,
and field descriptions for each About object.

Payment Server About
The Payment Server About object contains the version of the WebSphere
Commerce Payments. The Payment Server attributes are:

Field Name Syntax Description

version Character string The WebSphere Commerce
Payments version.

userName Character string The name of the user running the
About command.

Cassette About
The Cassette About object contains version information on a cassette. The Payment
Server attributes are:

Field Name Syntax Description

cassette Character string The cassette payment system name.

version Character string The cassette version.

WebSphere Commerce Payments administration objects
WebSphere Commerce Payments defines the following Framework objects for
WebSphere Commerce Payments administration:

v Payment Server

v Cassette

v Merchant

v Payment System

v Account

v Event Listener

v User

Each WebSphere Commerce Payments Administration object is defined by its
attributes, or fields. In the sections that follow, Object Tables display field names,
field syntax, and field descriptions for each Administration object.

Payment Server
The Payment Server object describes the state of the WebSphere Commerce
Payments. The Payment Server attributes are:

Chapter 8. WebSphere Commerce Payments data 121

Table 21. PSPaymentServer Object Attributes

Field Name Syntax Description

paymentServerHostname Character string The hostname of the computer where WebSphere
Commerce Payments is installed.

realmName Character string The name of the realm currently being used by the
WebSphere Commerce Payments.

logPath Character string The directory WebSphere Commerce Payments uses
to record trace and error logs. Files that will be written
to this directory include etillerror, pserror, etc. . .

traceFileSize Integer The maximum size in bytes of the trace file.

traceSetting Character string The current trace setting used by WebSphere
Commerce Payments.

numberOfOrderCommands Integer The number of order commands made on WebSphere
Commerce Payments since the last time it was
restarted.

numberOfPaymentCommands Integer The number of payment commands made on
WebSphere Commerce Payments since the last time it
was restarted.

numberOfAdminCommands Integer The number of administration commands made on
WebSphere Commerce Payments since the last time it
was restarted.

numberOfQueryCommands Integer The number of query commands made on WebSphere
Commerce Payments since the last time it was
restarted.

changesPending Boolean, XML 0 or 1 Flag indicating whether or not changes have been
applied to WebSphere Commerce Payments, where
0=false and 1=true. These changes will not take effect
until the entire WebSphere Commerce Payments is
restarted.

enabled Boolean, XML 0 or 1 Flag indicating whether WebSphere Commerce
Payments is enabled or not (that is, whether
WebSphere Commerce Payments is writeable), where
0=false and 1=true.

active Boolean, XML 0 or 1 Flag indicating whether WebSphere Commerce
Payments is active or not (that is, whether WebSphere
Commerce Payments is ready for use), where 0=false
and 1=true.

valid Boolean, XML 0 or 1 Flag indicating whether WebSphere Commerce
Payments is valid or not (that is, whether WebSphere
Commerce Payments is configured correctly), where
0=false and 1=true.

paymentServerMsgs Character string A comma-separated list of message codes generated
by WebSphere Commerce Payments that identify
error, warning, or information messages related to the
merchant’s Payment settings.

Cassette
The Cassette object describes the state of a cassette that is installed in the
WebSphere Commerce Payments. The attributes of a Cassette object are:

122 Programmer’s Guide and Reference

Table 22. PSCassetteObject Attributes

Field Name Syntax Description

cassette Character string The name of the cassette (for example, SET or
OfflineCard).

companyPkgName Character string The name of the company that developed the cassette
(used to identify the cassette’s Java package name).

traceSetting Character string The current trace setting of the cassette.

changesPending 0 or 1 (Boolean) Flag indicating whether or not changes have been
applied to the cassette, where 0=false and 1=true.
These changes will not take effect until the cassette is
restarted.

enabled 0 or 1 (Boolean) Flag indicating whether the cassette is enabled or not
(that is, whether the cassette is writeable), where
0=false and 1=true.

active 0 or 1 (Boolean) Flag indicating whether the cassette is active or not
(that is, whether the cassette is ready for use), where
0=false and 1=true.

valid 0 or 1 (Boolean) Flag indicating whether the cassette is valid or not
(that is, whether the cassette is configured correctly),
where 0=false and 1=true.

cassetteMsgs Character string A comma-separated list of message codes generated
by the cassette that identify error, warning, or
information messages related to the cassette to the
XDM client application.

paymentServerMsgs Character string A comma-separated list of message codes generated
by WebSphere Commerce Payments that identify
error, warning, or information messages related to the
cassette.

Merchant
The WebSphere Commerce Payments Merchant object describes the state of a
merchant who is defined to use WebSphere Commerce Payments. The attributes of
the Merchant are:

Table 23. PSMerchantObject Attributes

Field Name Syntax Description

merchantNumber Numeric token, 1 to 9
digits long

A number that identifies the merchant that created the Order.

merchantName Character string The merchant name. This is an optional field that provides
meaningful, display information in WebSphere Commerce
Payments user interface.

changesPending 0 or 1 (Boolean) Flag indicating whether or not changes have been applied to the
cassette, where 0=false and 1=true. These changes will not take
effect until the merchant is re-enabled.

enabled 0 or 1 (Boolean) Flag indicating whether the cassette is enabled or not, where
0=false and 1=true.

active 0 or 1 (Boolean) Flag indicating whether the cassette is active or not, where
0=false and 1=true.

valid 0 or 1 (Boolean) Flag indicating whether the cassette is valid or not, where
0=false and 1=true.

Chapter 8. WebSphere Commerce Payments data 123

Table 23. PSMerchantObject Attributes (continued)

paymentServerMsgs Character string A comma-separated list of message codes generated by
WebSphere Commerce Payments, that identify error, warning, or
information messages related to the merchant.

Payment System
The WebSphere Commerce Payments Payment System object describes the
settings that a merchant has made for a cassette. The attributes of the cassette
settings are:

Table 24. PSMerchantCassetteSettingsObject Attributes

Field Name Syntax Description

cassette Character string The name of the cassette (for example, SET or OfflineCard).

merchantNumber Numeric token, 1 to 9
digits long

A number that identifies the merchant.

changesPending 0 or 1 (Boolean) Flag indicating whether or not changes have been applied to the
cassette, where 0=false and 1=true. These changes will not take
effect until the cassette is restarted for this merchant.

enabled 0 or 1 (Boolean) Flag indicating whether the cassette is enabled or not (that is,
whether the cassette is writeable), where 0=false and 1=true.

active 0 or 1 (Boolean) Flag indicating whether the cassette is active or not (that is,
whether the cassette is ready for use), where 0=false and
1=true.

valid 0 or 1 (Boolean) Flag indicating whether the cassette is valid or not (that is,
whether the cassette is configured correctly), where 0=false and
1=true.

paymentServerMsgs Character string A comma-separated list of message codes generated by
WebSphere Commerce Payments that identify error, warning, or
information messages related to the payment system.

Account
The WebSphere Commerce Payments merchant Account object describes the state
of an account that a merchant holds with a financial institution. The attributes of an
account are:

Table 25. PSMerchantAccountObject Attributes

Field Name Syntax Description

cassette Character string The name of the cassette (for example, SET or
OfflineCard).

merchantNumber Numeric token, 1 to 9
digits long

A number that identifies the merchant.

merchantAccountNumber Numeric token, 1 to 9
digits long

A number that identifies the account. This number is
created locally (that is, by the hosting service provider or
by the merchant administrator) and is for tracking
purposes.

merchantAccountName Character string The account name. This is an optional field that provides
meaningful, display information in the Payment Manger
user interface.

124 Programmer’s Guide and Reference

Table 25. PSMerchantAccountObject Attributes (continued)

Field Name Syntax Description

financialInstName Character string The financial institution name. This is an optional field that
provides meaningful, display information in WebSphere
Commerce Payments user interface.

changesPending 0 or 1 (Boolean) Flag indicating whether or not changes have been applied
to the cassette, where 0=false and 1=true. These changes
will not take effect until the account is restarted.

enabled 0 or 1 (Boolean) Flag indicating whether the cassette is enabled or not,
where 0=false and 1=true.

active 0 or 1 (Boolean) Flag indicating whether the cassette is active or not,
where 0=false and 1=true.

valid 0 or 1 (Boolean) Flag indicating whether the cassette is valid or not, where
0=false and 1=true.

cassetteMsgs Character string A comma-separated list of message codes generated by
the cassette that identify error, warning, or information
messages related to the account or the XDM client
application.

paymentServerMsgs Character string A comma-separated list of message codes generated by
the Payment Manger that identify error, warning, or
information messages related to the account.

apApproveFlag Numeric Token, 1 to 9
digits long

Approve flag for AcceptPayment

apDepositFlag 0 or 1 (Boolean) 0=false and 1=true. Deposit flag forAcceptPayment.
Should only be specified when apApproveFlag is defined
and not set to 0.

rpApproveFlag Numeric Token, 1 to 9
digits long

Approve flag for ReceivePayment

rpDepositFlag 0 or 1 (Boolean) 0=false and 1=true. Deposit flag for ReceivePayment.
Should only be specified when rpApproveFlag is defined
and not set to 0.

approvalExpiration Numeric token, 1 to 9
digits long

Value indicating the number of days from the time a
payment is approved until the payment approval expires.

Event Listener
The WebSphere Commerce Payments Event Listener object describes the state of
registered WebSphere Commerce Payments events. The attributes of an Event
Listener are:

Table 26. PSEventListenerObject Attributes

Field Name Syntax Description

eventType Character string The type of event being monitored.

listenerURL Character string The URL defined for an event type. WebSphere Commerce
Payments event notification model provides for messages to be
sent to the listener URL defined for a specific event type.
Multiple URLs can be defined for a single event type.

timeRegistered Date The time that the merchant registered an event type. The
number of milliseconds since midnight, January 1, 1970 GMT.

socksHost Character string The hostname of the socks server receiving event notification
from WebSphere Commerce Payments. The value is null if not
using socks. The default is null.

Chapter 8. WebSphere Commerce Payments data 125

Table 26. PSEventListenerObject Attributes (continued)

Field Name Syntax Description

socksPort Character string The port of the socks server receiving event notification from
WebSphere Commerce Payments. The value is null if not using
socks. The default is null.

merchantNumber Numeric token, 1 to 9
digits long

A number that identifies the merchant.

changesPending 0 or 1 (Boolean) Flag indicating whether or not changes have been applied to the
cassette, where 0=false and 1=true. These changes will not take
effect until the cassette is restarted. Not used.

enabled 0 or 1 (Boolean) Flag indicating whether the cassette is enabled or not, where
0=false and 1=true.

active 0 or 1 (Boolean) Flag indicating whether the cassette is active or not, where
0=false and 1=true. Not used.

valid 0 or 1 (Boolean) Flag indicating whether the cassette is valid or not, where
0=false and 1=true. Not used

paymentServerMsgs Character string A comma-separated list of message codes generated by
WebSphere Commerce Payments that identify error, warning, or
information messages related to the event type.

User
The WebSphere Commerce Payments User object describes the state of users
defined for the WebSphere Commerce Payments. The attributes of a User are:

Table 27. PSUserObject Attributes

Field Name Syntax Description

userName Character string The name of the user.

configuration Character string The user configuration.

roleIDs Character string. The role ID defined for the user (that is, clerk, supervisor,
Merchant administrator, or Payments administrator).

merchantNumber Numeric token, 1 to 9
digits long

A number that identifies the merchant. This value is set for all
roles other than Payments administrator. Note that the result of
the QueryUsers command may return a user with access rights
to multiple merchants. In this case, the WebSphere Commerce
Payments will return the merchant number as a list of merchant
numbers with the following syntax: m1, m2, m3, . . .

changesPending 0 or 1 (Boolean) Flag indicating whether or not changes have been applied to the
User, where 0=false and 1=true. These changes will not take
effect until the cassette is restarted for the merchant. Not used.

enabled 0 or 1 (Boolean) Flag indicating whether the cassette is enabled or not, where
0=false and 1=true (enabled).

active 0 or 1 (Boolean) Flag indicating whether the cassette is active or not, where
0=false and 1=true. Not used.

valid 0 or 1 (Boolean) Flag indicating whether the cassette is valid or not, where
0=false and 1=true. Not used.

paymentServerMsgs Character string A comma-separated list of message codes generated by
WebSphere Commerce Payments that identify error, warning, or
information messages related to the user.

objectCount The number of real, matched objects.

126 Programmer’s Guide and Reference

Part 4. Appendixes

127

128 Programmer’s Guide and Reference

Appendix A. WebSphere Commerce Payments return codes

The return codes include both primary return codes and secondary return codes.

v Primary return codes (PRCs) describe the basic response of WebSphere
Commerce Payments. The primary return code is returned on each command.

v Secondary return codes (SRCs) provide additional information. WebSphere
Commerce Payments defines two types of generic SRCs: a set that is common
to all the PRCs, and a set that is specific to a particular PRC.

The SRC is returned in the optional secondaryrc structure passed on each
command.

Protocol cassette writers may also extend the set with protocol-specific codes.
Refer to the appropriate cassette supplement for information regarding these codes.

Primary return codes (PRCs)
The following table shows the primary return codes (PRCs) for WebSphere
Commerce Payments. Those PRCs that have specific secondary return codes
(SRCs) are listed in this table; SRCs that span multiple PRCs are in “Secondary
return codes (generic)” on page 131.

Table 28. Primary Return Codes (PRCs)

PRC_OPERATION_SUCCESS 0 Operation completed successfully. A
non-zero secondary return code (SRC)
may be provided for additional
information.

PRC_OPERATION_PENDING 1 The API call has not yet completed and
is pending on the availability of
WebSphere Commerce Payments
entities. The SRC indicates resources
upon which the operation is pending.

PRC_UNDEFINED_OBJECT 2 A specified object was not found. The
object is indicated by the SRC.

PRC_PARAMETER_NOT_FOUND 3 A required parameter was not found.
The parameter is indicated by the SRC.

PRC_PARAMETER_TOO_SHORT 4 A required parameter was too short.
The parameter is indicated by the SRC.

PRC_PARAMETER_TOO_LONG 5 A required parameter was too long. The
parameter is indicated by the SRC.

PRC_PARAMETER_FORMAT_ERROR 6 A required parameter was formatted
incorrectly. The parameter is indicated
by the SRC.

PRC_PARAMETER_VALUE_ERROR 7 A required parameter had an incorrect
value. The parameter is indicated by the
SRC.

PRC_DUPLICATE_OBJECT 8 A duplicate object exists. As indicated
by the SRC, a payment with this
payment number already exists.

PRC_PARAMETER_MISMATCH 9 A parameter mismatch occurred. The
parameter is indicated by the SRC.

129

Table 28. Primary Return Codes (PRCs) (continued)

PRC_INPUT_ERROR 10 There was an error parsing the input
stream. The command or one of its
parameters has an invalid length.

PRC_VERB_NOT_VALID_IN_PRESENT_STATE 11 An object is not in the correct state for
this action. The particular object is
indicated by the SRC.

PRC_COMMUNICATION_ERROR 12 A communication error occurred in the
WebSphere Commerce Payments.

PRC_INTERNAL_ETILL_ERROR 13 The WebSphere Commerce Payments
experienced an unexpected internal
error.

PRC_DATABASE_ERROR 14 A database communications error
occurred.

PRC_CASSETTE_ERROR 15 A cassette-specific error occurred. Refer
to cassette-supplementary information
for documentation.

PRC_UNSUPPORTED_API_VERSION 17 The API version used by the application
program is newer than that supported
by the WebSphere Commerce
Payments.

PRC_OBSOLETE_API_VERSION 18 The API version used by the application
is no longer supported by the
WebSphere Commerce Payments.
Upgrade the application program to use
the newer function which replaces the
obsoleted function or feature.

PRC_AUTOAPPROVE_FAILED 19 Auto approve in ReceivePayment or
AcceptPayment failed.

PRC_AUTODEPOSIT_FAILED 20 Auto deposit in ReceivePayment or
AcceptPayment failed

PRC_CASSETTE_NOTRUNNING 21 The cassette is not running.

PRC_CASSETTE_NOTVALID 22 The cassette is not valid.

PRC_UNSUPPORTED_IN_SYSPLEX 23 The operation is not supported in
sysplex environment.

PRC_PARAMETER_NULL_VALUE 24 The parameter has a null value.

PRC_XML_ERROR 30 The XML document is not correct.

PRC_COREQUISITE_PARAMETER_NOT_FOUND 31 The parameter must be specified when
another parameter is specified.

PRC_INVALID_PARAMETER_COMBINATION 32 The combination of the parameters
specified in a API command is not
allowed.

PRC_BATCH_ERROR 33 An error related with the Batch
operation occurred.

PRC_FINANCIAL_FAILURE 34 The operation failed for financial
reasons.

PRC_SERVLET_INIT_ERROR 50 An error occurred when initializing the
servlet.

PRC_AUTHENTICATION_ERROR 51 An error occurred during the user
authentication.

130 Programmer’s Guide and Reference

Table 28. Primary Return Codes (PRCs) (continued)

PRC_AUTHORIZATION_ERROR 52 An error occurred during the user
authorization.

PRC_UNHANDLED_EXCEPTION 53 An unhandled (such as null pointer)
exception occurred.

PRC_DUPLICATE_PARAMETER_VALUE_NOT_ALLOWED 54 The parameter can not be specified
multiple times in this API command.

PRC_COMMAND_NOT_SUPPORTED 55 The command name is not recognized
as a valid $til; command.

PRC_CRYPTO_ERROR 56 Error related with encryption/decryption
key.

PRC_NOT_ACTIVE 57 An administration object is not active.

PRC_PARAMETER_NOT_ALLOWED 58 The parameter should not be specified.

PRC_DELETE_ERROR 59 The object could not be deleted.

PRC_WEBSPHERE 60 A WebSphere/WebServer related error
occurred.

PRC_SUPPORTED_IN_SYSPLEX_ADMIN_ONLY 61 The request is supported in Sysplex
mode only on the WebSphere
Commerce Payments designated as the
Sysplex Administrator.

PRC_REALM 62 A realm related error occurred.

Secondary return codes (generic)
Table 29. Generic Secondary Return Codes (SRCs)

RC_NONE 0 No additional information available.

RC_INITIALIZATION_MESSAGE 1 An initialization message is included in
the return data buffer. This buffer must
be freed by the caller of this routine.

RC_INPUT_ERROR_TOO_LONG 2 Input stream exceeds maximum length.

RC_INPUT_ERROR_UNKNOWN_COMMAND 3 Unknown command.

RC_UNEXPECTED 4 An unexpected error has occurred.

RC_COMMUNICATION_ERROR_INPUT 5 WebSphere Commerce Payments
received an exception when reading
data from the merchant server.

RC_API_INITIALIZE_FAILURE 6 API initialization failed.

RC_MERCHANTNUMBER 110 Response refers to the merchant
number parameter.

RC_ORDERNUMBER 111 Response refers to the order number
parameter.

RC_PAYMENTNUMBER 112 Response refers to the
PAYMENTNUMBER parameter.

RC_CREDITNUMBER 113 Response refers to the
CREDITNUMBER parameter.

RC_BATCHNUMBER 114 Response refers to the
BATCHNUMBER parameter. (Note: In
previous versions this return code
referenced the BATCHID parameter.)

Appendix A. WebSphere Commerce Payments return codes 131

Table 29. Generic Secondary Return Codes (SRCs) (continued)

RC_ACCOUNTNUMBER 115 Response refers to the
ACCOUNTNUMBER parameter.

RC_PAYMENTTYPE 116 Response refers to the PAYMENTTYPE
parameter.

RC_AMOUNT 117 Response refers to the AMOUNT
parameter.

RC_AMOUNTEXP10 118 Response refers to the
AMOUNTEXP10 parameter.

RC_CURRENCY 119 Response refers to the CURRENCY
parameter.

RC_OD 120 Response refers to the order
description parameter.

RC_CHARSET 121 Response refers to the character set
parameter.

RC_SUCCESSURL 122 Response refers to the success URL
parameter.

RC_FAILURL 123 Response refers to the failure URL
parameter.

RC_CANCELURL 124 Response refers to the cancel URL
parameter.

RC_APPROVEFLAG 125 Response refers to the approve flag
parameter.

RC_PAYMENTAMOUNT 126 Response refers to the payment
amount parameter.

RC_SPLITFLAG 127 Response refers to the splits allowed
parameter.

RC_DEPOSITFLAG 128 Response refers to the deposit flag
parameter.

RC_PROTOCOLDATA 129 Response refers to the protocol data
parameter.

RC_ORDERURLS 130 Response refers to the order URL
parameter.

RC_SERVICEURL 131 Response refers to the service URL
parameter.

RC_CASSETTECOMMAND 132 Response refers to the cassette
command parameter.

RC_USERNAME 133 Response refers to the user parameter.

RC_EVENTTYPE 134 Response refers to the event type
parameter.

RC_WITHCREDITS 135 Response refers to the withCredits
parameter.

RC_CREATEBEGINTIME 136 Response refers to the creation begin
time parameter.

RC_CREATEENDTIME 137 Response refers to the creation end
time parameter.

RC_MINAMOUNT 138 Response refers to the minimum
amount parameter.

132 Programmer’s Guide and Reference

Table 29. Generic Secondary Return Codes (SRCs) (continued)

RC_MAXAMOUNT 139 Response refers to the maximum
amount parameter.

RC_RETURNATMOST 140 Response refers to the ″return at most″
parameter.

RC_KEYSONLY 141 Response refers to the keys only
parameter.

RC_DTDPATH 143 Response refers to the dtd path
parameter.

RC_REFERENCENUMBER 144 Response refers to the reference
number parameter.

RC_WITHORDERS 145 Response refers to the withOrders
parameter.

RC_MESSAGES 146 Response refers to the messages key.

RC_OPENBEGINTIME 147 Response refers to the batch open
beginning time parameter.

RC_OPENENDTIME 148 Response refers to the batch open
ending time parameter.

RC_CLOSEBEGINTIME 149 Response refers to the batch close
beginning time parameter.

RC_CLOSEENDTIME 150 Response refers to the batch close
ending time parameter.

RC_STATUS 151 Response refers to the status
parameter.

RC_CLOSEALLOWED 153 Response refers to the close allowed
parameter.

RC_WITHPAYMENTS 154 Response refers to the withPayments
parameter.

RC_TIMEREGISTERED 155 Response refers to the time registered
parameter.

RC_MINAPPROVEAMOUNT 156 Response refers to the minimum
approve amount parameter.

RC_MAXAPPROVEAMOUNT 157 Response refers to the maximum
approve amount parameter.

RC_MINDEPOSITAMOUNT 158 Response refers to the minimum
deposit amount parameter.

RC_MAXDEPOSITAMOUNT 159 Response refers to the maximum
deposit amount parameter.

RC_ORDERURL 160 Response refers to the order URL
parameter.

RC_MODIFYBEGINTIME 161 Response refers to the modification
beginning time parameter.

RC_MODIFYENDTIME 162 Response refers to the modification
ending time parameter.

RC_DELETEORDER 165 Response refers to the delete order
parameter.

RC_MINUNAPPROVEDAMOUNT 166 Response refers to the minimum
un-approved amount parameter.

Appendix A. WebSphere Commerce Payments return codes 133

Table 29. Generic Secondary Return Codes (SRCs) (continued)

RC_MAXUNAPPROVEDAMOUNT 167 Response refers to the maximum
un-approved amount parameter.

RC_APPROVESALLOWED 168 Response refers to the approve allowed
parameter.

RC_PURGEALLOWED 169 Response refers to the
PURGEALLOWED parameter.

RC_MAXBATCHSIZE 170 Response refers to the
$MAXBATCHSIZE parameter.

RC_CHECK_CASSETTE_STATUS 171 Inspect cassette-specific data for further
information.

RC_FORCE 172 Response refers to the FORCE
parameter. May be returned in
response to the BATCHCLOSE
command. Indicates that the error
described by the primary return code
refers to the boolean parameter
FORCE.

RC_AP_APPROVEFLAG 173 Response refers to the acceptPayment
approve flag parameter.

RC_AP_DEPOSITFLAG 174 Response refers to the acceptPayment
deposit flag parameter.

RC_RP_APPROVEFLAG 175 Response refers to the receivePayment
approve flag parameter.

RC_RP_DEPOSITFLAG 176 Response refers to the receivePayment
deposit flag parameter.

RC_APPROVALEXPIRATION 177 Response refers to the
ApprovalExpiration parameter.

RC_MERCHANTPAYSYS 202 Response refers to merchant payment
system (such as SET).

RC_ACCOUNT 203 Response refers to an account.

RC_ORDER 204 Response refers to an order entity.

RC_PAYMENT 205 Response refers to a payment entity.

RC_CREDIT 206 Response refers to a credit entity.

RC_BATCH 207 Response refers to a batch entity.

RC_BRAND 208 Response refers to a brand.

RC_STATE 209 Response refers to the state.

RC_MULTIPLE_BATCHES 211 Response refers to batch objects.

RC_AUTOMATIC_CREATION 212 An error occurred during automatic
batch open

RC_BATCH_EMPTY 213 The batch is empty. An attempt was
made to close a batch that does not
contain any payments or credits. It is
up to the cassette to decide whether or
not this is an error condition.

RC_SYSPLEXFLAG 214 Response refers to the sysplex flag.

RC_COMMTYPE 215 Response refers to the communication
type.

134 Programmer’s Guide and Reference

Table 29. Generic Secondary Return Codes (SRCs) (continued)

RC_PAYMENTGROUPNAME 216 Response refers to the payment group
name.

RC_ADMINHOSTNAME 217 Response refers to the admin host
name.

RC_NDHOSTNAME 218 Response refers to the Net.Dispatcher
host name.

RC_PLEXNAME 219 Response refers to the sysplex name.

RC_UNKNOWN_ETILL_HOST 301 The specified WebSphere Commerce
Payments host is not valid.

RC_HOSTNAME_NOT_VALID 303 The WebSphere Commerce Payments
hostname parameter is in error.

RC_HOST_IP_ADDRESS_UNAVAILABLE 306 Could not locate host IP address.

RC_SOCKET_STARTUP_FAILURE 307 Could not initialize socket library.

RC_HANDLE_REQUIRED 308 A PaymentServerHandle is required for
this API.

RC_COMMUNICATION_ERROR 309 A communication error occurred.

RC_RESERVED_BITS_SET_IN_FLAGS 310 Bits that are reserved for future use are
non-zero. They must be zero.

RC_TIME_PERIOD_INVALID 311 The value specified on the TimePeriod
is invalid.

RC_PROTOCOL_DATA_KEYWORD_INVALID 312 The keyword in the protocol data is not
valid.

RC_AMOUNT_RANGE_INVALID 313 The amount range is not valid.

RC_SOCKET_CREATION_FAILED 320 Could not open a socket to
communicate with the WebSphere
Commerce Payments. TCP/IP socket
resources may be depleted.

RC_CONNECTION_TO_PAYMENT_SERVER_FAILED 321 Could not open a network connection to
the WebSphere Commerce Payments
using port and address specified earlier
on an etInitializeAPI() call.

RC_SEND_OF_DATA_ON_SOCKET_FAILED 322 Could not send data on network
connection with WebSphere Commerce
Payments. WebSphere Commerce
Payments may have closed the
connection.

RC_RECEIVE_OF_DATA_ON_SOCKET_FAILED 323 Could not receive data on network
connection with WebSphere Commerce
Payments. WebSphere Commerce
Payments may have closed the
connection.

RC_ERROR_CHECKING_FOR_READ_DATA 324 Could not check for data ready to read
on network connection with WebSphere
Commerce Payments. WebSphere
Commerce Payments may have closed
the connection.

RC_SOCKET_CLOSE_FAILED 325 Failed to close the socket.

RC_ENCODING_EXCEPTION 400 An encoding error occurred.

Appendix A. WebSphere Commerce Payments return codes 135

Table 29. Generic Secondary Return Codes (SRCs) (continued)

RC_UNSUPPORTED_DOCUMENT_TYPE 401 The XML document type is not
supported.

RC_EMPTY_DOCUMENT 402 The document is empty.

RC_MISSING_ORDER_COLLECTION 403 The order collection is missing.

RC_DOCUMENT_TOO_LARGE 404 The XML document generated by an
XDM query was too large. Refine the
search criteria and re-attempt the query.

RC_SERVLET_INIT_EXCEPTION 500 An error occurred during the servlet
initialization.

RC_CANNOT_FIND_PROPERTY_FILE 501 The property file can not be located.

RC_ERROR_LOADING_PROPERTY_FILE 502 An error occurred while loading the
property file.

RC_ERROR_JDBCDRIVER_NAME 503 Response refers to the JDBC driver
name.

RC_ERROR_JDBCURL 504 Response refers to the JDBC URL.

RC_ERROR_DBOWNER 505 Response refers to the database
owner.

RC_ERROR_DBUSERID 506 Response refers to the database user
id.

RC_ERROR_DBPASSWORD 507 Response refers to the database
password.

RC_ERROR_LOGPATH 508 Response refers to the log path.

RC_ERROR_HOSTNAME 509 Response refers to the host name.

RC_ERROR_PSENGINE_PORTNUMBER 510 Response refers to the WebSphere
Commerce Payments engine port
number.

RC_ERROR_LOADING_JDBCDRIVER 511 An error occurred while loading JDBC
driver.

RC_ERROR_CONNECTING_DATABASE_OR_EXEC_SQL 512 An error occurred while either
connecting to the database or
executing the SQL statement.

RC_ERROR_INIT_ERROR_LOG 513 An error occurred while initializing the
error log.

RC_ERROR_LOADING_CASSETTE 514 An error occurred while loading the
cassette.

RC_ERROR_ROOT_PASSWORD 515 The root password is not valid.

RC_ERROR_MAXDBCONNECTIONS 516 Response refers to the maximum
number of database connections.

RC_ERROR_MINSENSITIVEACCESSROLE 517 Response refers to the minimum role
allowed to view sensitive financial data.

RC_NEW_PASSWORD 518 Parameter refers to the new password.

RC_DATA_SOURCE 519 Parameter refers to the data source
name.

RC_OPERATION 530 Response refers to the Operation
parameter.

RC_ETAPIVERSION 531 Response refers to the etApiVersion
parameter.

136 Programmer’s Guide and Reference

Table 29. Generic Secondary Return Codes (SRCs) (continued)

RC_AUTHENTICATED_USER_NOT_GIVEN 553 No authenticated user was given for the
WebSphere Commerce Payments
command.

RC_USER_NOT_AUTHORIZED 554 The specified user is not authorized to
perform the requested operation.

RC_ERROR_PROTECTION_REALM_NOT_SPECIFIED 555 There is no name specified for the
ProtectedRealm setting in the
PaymentServlet.properties file.

RC_SPECIFIED_REALM_UNKNOWN 556 The realm specified in the
PaymentServlet.properties file is
unknown.

RC_REALMCLASS 557 Response refers to the
eTill.RealmClass property.

RC_PAYSERVER_ADMIN 600 Response refers to the WebSphere
Commerce Payments administration
entity.

RC_CASSETTE_ADMIN 601 Response refers to a cassette
administration entity.

RC_MERCHANT_ADMIN 602 Response refers to a merchant
administration entity.

RC_PAYMENTSYSTEM_ADMIN 603 Response refers to a payment system
administration entity.

RC_ACCOUNT_ADMIN 604 Response refers to an account
administration entity.

RC_ETILLHOSTNAME 611 Response refers to the
ETILLHOSTNAME parameter.

RC_TRACESETTING 612 Response refers to the
TRACESETTING parameter.

RC_TRACEFILESIZE 613 Response refers to the
TRACEFILESIZE parameter.

RC_LOGPATH 614 Response refers to the LOGPATH
parameter.

RC_CASSETTENAME 615 Response refers to the
CASSETTENAME parameter.

RC_MERCHANTTITLE 616 Response refers to the
MERCHANTTITLE parameter.

RC_ACCOUNTTITLE 617 Response refers to the
ACCOUNTTITLE parameter.

RC_FINANCIALINSTITUTION 618 Response refers to the
FINANCIALINSTITUTION parameter.

RC_OBJECTNAME 619 Response refers to the OBJECTNAME
parameter.

RC_ENABLED 620 Response refers to the ENABLED
parameter.

RC_EVENT_LISTENER 621 Response refers to the
EVENTLISTENER object.

RC_LISTENERURL 622 Response refers to the LISTENERURL
parameter.

Appendix A. WebSphere Commerce Payments return codes 137

Table 29. Generic Secondary Return Codes (SRCs) (continued)

RC_SOCKSPORT 623 Response refers to the SOCKSPORT
parameter.

RC_ROLE 624 Response refers to the user role
parameter.

RC_USER 625 Response refers to the user object.

RC_USER_NOT_ENABLED 626 Response refers to the user (the user is
not enabled).

RC_USER_MISCONFIGURED 627 Response refers to the User object (the
user has rights to the WebSphere
Commerce Payments. The user is
misconfigured).

RC_KEY_TAMPERED 628 Encryption key has been altered.

RC_KEY_NOT_EXIST 629 Encryption key did not exist for the
specified component.

RC_SOCKSHOST 630 Response refers to the SOCKSHOST
parameter.

RC_ENCRYPT_ENCRYPTION_KEY_FAILED 631 Failed to encrypt encryption key.

RC_DECRYPT_ENCRYPTION_KEY_FAILED 632 Failed to decrypt encryption key.

RC_ENCRYPTION_KEY_TYPE_NOT_SUPPORTED 633 The encryption key type is not
supported.

RC_VALIDATE_ENCRYPTION_KEY_FAILED 634 Failed to validate encryption key.

RC_GENERATE_ENCRYPTION_KEY_FAILED 635 Failed to generate encryption key.

RC_NOT_ACL_OWNER 636 The user is not the ACL owner.

RC_BAD_REALM 637 A realm error has been occurred.

RC_NO_SUCH_ACL 638 The ACL is not defined.

RC_LAST_ACL_OWNER 639 The user is the last owner of the ACL.

RC_NO_SUCH_USER 640 The user is not defined in the
WebSphere realm.

RC_USER_BEING_REMOVED_HAS_NO_ACCESS_RIGHTS 641 Try to remove a user’s access rights
who does not have one in the
WebSphere Commerce Payments.

RC_FILTER 642 Response refers to the FILTER
parameter.

RC_TRANSACTIONID 643 Response refers to the
TRANSACTIONID parameter.

RC_ORDERDATA1 644 Response refers to the ORDERDATA1
parameter.

RC_ORDERDATA2 645 Response refers to the ORDERDATA2
parameter.

RC_ORDERDATA3 646 Response refers to the ORDERDATA3
parameter.

RC_ORDERDATA4 647 Response refers to the ORDERDATA4
parameter.

RC_ORDERDATA5 648 Response refers to the ORDERDATA5
parameter.

RC_SERVICE_POOL 649 Response refers to the service thread
pool size eTill.spoolsize.

138 Programmer’s Guide and Reference

Table 29. Generic Secondary Return Codes (SRCs) (continued)

RC_INVALID_CHANGEPASSWORD_STATE 650 It is only valid to change the PM
password immediately after the
WebSphere Commerce Payments
Application Server is started.

RC_ASYNCHAPPDELAY 651 Response refers to the
wpm.AsynApproveDelayTimeInSecs
parameter.

RC_APPEXPDELAY 652 Response refers to the
wpm.ApprovalExpirationDelayTimeInMins
parameter.

RC_PROTOCOL_POOL 653 Response refers to the protocol thread
pool size wpm.ppoolsize.

RC_CASSETTE_PCARD_SHIPPINGAMOUNT 900 Response refers to purchase card
data’s shipping amount parameter.

RC_CASSETTE_PCARD_DUTYAMOUNT 901 Response refers to purchase card
data’s duty amount parameter.

RC_CASSETTE_PCARD_DUTYREFERENCE 902 Response refers to purchase card
data’s duty reference parameter.

RC_CASSETTE_PCARD_NATIONALTAXAMOUNT 903 Response refers to purchase card
data’s national tax amount parameter.

RC_CASSETTE_PCARD_NATIONALTAXRATE 904 Response refers to purchase card
data’s national tax rate parameter.

RC_CASSETTE_PCARD_LOCALTAXAMOUNT 905 Response refers to purchase card
data’s local tax amount parameter.

RC_CASSETTE_PCARD_OTHERTAXAMOUNT 906 Response refers to purchase card
data’s other tax amount parameter.

RC_CASSETTE_PCARD_TOTALTAXAMOUNT 907 Response refers to purchase card
data’s total tax amount parameter.

RC_CASSETTE_PCARD_MERCHANTTAXID 908 Response refers to purchase card
data’s merchant tax id parameter.

RC_CASSETTE_PCARD_ALTERNATETAXID 909 Response refers to purchase card
data’s alternate tax id parameter.

RC_CASSETTE_PCARD_TAXEXEMPTINDICATOR 910 Response refers to purchase card
data’s tax exempt indicator parameter.

RC_CASSETTE_PCARD_MERCHANTDUTYTARIFFREFERENCE 911 Response refers to purchase card
data’s merchant duty tariff reference
parameter.

RC_CASSETTE_PCARD_CUSTOMERDUTYTARIFFREFERENCE 912 Response refers to purchase card
data’s customer duty tariff reference
parameter.

RC_CASSETTE_PCARD_SUMMARYCOMMODITYCODE 913 Response refers to purchase card
data’s summary commodity code
parameter.

RC_CASSETTE_PCARD_MERCHANTTYPE 914 Response refers to purchase card
data’s merchant type parameter.

RC_CASSETTE_PCARD_MERCHANTCOUNTRYCODE 915 Response refers to purchase card
data’s merchant country code
parameter.

RC_CASSETTE_PCARD_MERCHANTCITYCODE 916 Response refers to purchase card
data’s merchant city code parameter.

Appendix A. WebSphere Commerce Payments return codes 139

Table 29. Generic Secondary Return Codes (SRCs) (continued)

RC_CASSETTE_PCARD_MERCHANTSTATEPROVINCE 917 Response refers to purchase card
data’s merchant state province
parameter.

RC_CASSETTE_PCARD_MERCHANTPOSTALCODE 918 Response refers to purchase card
data’s merchant postal code parameter.

RC_CASSETTE_PCARD_MERCHANTLOCATIONID 919 Response refers to purchase card
data’s merchant location id parameter.

RC_CASSETTE_PCARD_MERCHANTNAME 920 Response refers to purchase card
data’s merchant name parameter.

RC_CASSETTE_PCARD_SHIPFROMCOUNTRYCODE 921 Response refers to purchase card
data’s ship from country code
parameter.

RC_CASSETTE_PCARD_SHIPFROMCITYCODE 922 Response refers to purchase card
data’s ship from city code parameter.

RC_CASSETTE_PCARD_SHIPFROMSTATEPROVINCE 923 Response refers to purchase card
data’s ship from state province
parameter.

RC_CASSETTE_PCARD_SHIPFROMPOSTALCODE 924 Response refers to purchase card
data’s ship from postal code parameter.

RC_CASSETTE_PCARD_SHIPFROMLOCATIONID 925 Response refers to purchase card
data’s ship from location id parameter.

RC_CASSETTE_PCARD_SHIPTOCOUNTRYCODE 926 Response refers to purchase card
data’s ship to country code parameter.

RC_CASSETTE_PCARD_SHIPTOCITYCODE 927 Response refers to purchase card
data’s ship to city code parameter.

RC_CASSETTE_PCARD_SHIPTOSTATEPROVINCE 928 Response refers to purchase card
data’s ship to state province parameter.

RC_CASSETTE_PCARD_SHIPTOPOSTALCODE 929 Response refers to purchase card
data’s ship to postal code parameter.

RC_CASSETTE_PCARD_SHIPTOLOCATIONID 930 Response refers to purchase card
data’s ship to location id parameter.

RC_CASSETTE_PCARD_MERCHANTORDERNUMBER 931 Response refers to purchase card
data’s merchant order number
parameter.

RC_CASSETTE_PCARD_CUSTOMERREFERENCENUMBER 932 Response refers to purchase card
data’s customer reference number
parameter.

RC_CASSETTE_PCARD_ORDERSUMMARY 933 Response refers to purchase card
data’s order summary parameter.

RC_CASSETTE_PCARD_CUSTOMERSERVICEPHONE 934 Response refers to purchase card
data’s customer service phone
parameter.

RC_CASSETTE_PCARD_DISCOUNTAMOUNT 935 Response refers to purchase card
data’s discount amount parameter.

RC_CASSETTE_PCARD_SHIPPINGNATIONALTAXRATE 936 Response refers to purchase card
data’s shipping national tax rate
parameter.

RC_CASSETTE_PCARD_SHIPPINGNATIONALTAXAMOUNT 937 Response refers to purchase card
data’s shipping national tax amount
parameter.

140 Programmer’s Guide and Reference

Table 29. Generic Secondary Return Codes (SRCs) (continued)

RC_CASSETTE_PCARD_NATIONALTAXINVOICEREFERENCE 938 Response refers to purchase card
data’s national tax invoice reference
parameter.

RC_CASSETTE_PCARD_PRINTCUSTOMERSERVICEPHONENUMBER939 Response refers to purchase card
data’s print customer service phone
number parameter.

RC_CASSETTE_ITEM_COMMODITYCODE 940 Response refers to line item data’s
commodity code parameter.

RC_CASSETTE_ITEM_PRODUCTCODE 941 Response refers to line item data’s
product code parameter.

RC_CASSETTE_ITEM_DESCRIPTOR 942 Response refers to line item data’s
descriptor parameter.

RC_CASSETTE_ITEM_QUANTITY 943 Response refers to line item data’s
quantity parameter.

RC_CASSETTE_ITEM_SKU 944 Response refers to line item data’s
SKU parameter.

RC_CASSETTE_ITEM_UNITCOST 945 Response refers to line item data’s unit
cost parameter.

RC_CASSETTE_ITEM_UNITOFMEASURE 946 Response refers to line item data’s unit
of measure parameter.

RC_CASSETTE_ITEM_NETCOST 947 Response refers to line item data’s net
cost parameter.

RC_CASSETTE_ITEM_DISCOUNTAMOUNT 948 Response refers to line item data’s
discount amount parameter.

RC_CASSETTE_ITEM_DISCOUNTINDICATOR 949 Response refers to line item data’s
discount indicator parameter.

RC_CASSETTE_ITEM_NATIONALTAXAMOUNT 950 Response refers to line item data’s
national tax amount parameter.

RC_CASSETTE_ITEM_NATIONALTAXRATE 951 Response refers to line item data’s
national tax rate parameter.

RC_CASSETTE_ITEM_NATIONALTAXTYPE 952 Response refers to line item data’s
national tax type parameter.

RC_CASSETTE_ITEM_LOCALTAXAMOUNT 953 Response refers to line item data’s
local tax amount parameter.

RC_CASSETTE_ITEM_LOCALTAXRATE 954 Response refers to line item data’s
local tax rate parameter.

RC_CASSETTE_ITEM_OTHERTAXAMOUNT 955 Response refers to line item data’s
other tax amount parameter.

RC_CASSETTE_ITEM_TOTALCOST 956 Response refers to line item data’s total
cost parameter.

RC_CASSETTE_FUNCTION_NOT_SUPPORTED 1000 The cassette does not support this
command.

RC_CASSETTE_UNSPECIFIED_ERROR 1001 The cassette does not support this
command.

RC_CASSETTE_BATCH_ID 1002 Batch ID was either (1) specified when
prohibited or (2) not specified when
required.

Appendix A. WebSphere Commerce Payments return codes 141

Table 29. Generic Secondary Return Codes (SRCs) (continued)

RC_CASSETTE_REFUND_AMOUNT_NOT_ZERO 1003 The cassette allows only complete
refund reversals (that is, the amount
must be zero).

RC_CASSETTE_OPERATION_FAILED 1004 The operation experienced financial
failure.

RC_CASSETTE_ENCRYPTION_ERROR 1008 An encryption error occurred while the
cassette was composing or processing
a protocol message.

RC_CASSETTE_DECRYPTION_ERROR 1009 A decryption error occurred while the
cassette was composing or processing
a protocol message.

RC_CASSETTE_IMPLICIT_BATCHES_ONLY 1010 A BATCHOPEN or BATCHCLOSE
command but the financial processor
associated with the account controls
batch processing.

RC_CASSETTE_BATCH_CURRENCY 1011 The currency for all transactions in a
batch must be the same.

RC_CASSETTE_BATCH_AMOUNTEXP10 1012 The amount exponent for all
transactions in a batch must be the
same.

RC_CASSETTE_BRAND 1014 Response refers to the brand
parameter (specified in protocol data).

RC_CASSETTE_PAN 1015 Response refers to the PAN parameter
(specified in protocol data).

RC_CASSETTE_EXPIRY 1016 Response refers to the expiry
parameter (specified in protocol data).

RC_CASSETTE_DEPOSIT_AMOUNT_NOT_ZERO 1017 This account only allows complete
deposit reversals (that is, the amount
must be zero).

RC_CASSETTE_COMMUNICATION_ERROR 1018 A communication error occurred
between the cassette and an entity with
which it communicates.

RC_CASSETTE_INTERMEDIATE_RESPONSE_NULL 1019 The cassette received a unexpected
NULL response from an entity with
which it communicates.

RC_CASSETTE_INTERMEDIATE_RESPONSE_UNEXPECTED 1020 The cassette received a unexpected
response from an entity with which it
communicates.

RC_CASSETTE_BATCH_ERROR 1021 A batch-related error occurred.

RC_CASSETTE_BATCH_BALANCE_ERROR 1022 The totals for this batch calculated by
the WebSphere Commerce Payments
and the financial institution did not
match.

RC_CASSETTE_APPROVE_NO_DEPOSIT 1040 While processing an APPROVE with
automatic deposit, the cassette
successfully completed the approval,
but could not successfully complete the
deposit.

RC_CASSETTE_DECLINED 1041 The financial institution declined the
request for an unknown reason.

142 Programmer’s Guide and Reference

Table 29. Generic Secondary Return Codes (SRCs) (continued)

RC_CASSETTE_DECLINED_EXPIRY 1042 The financial institution declined the
request due to the expiry value.

RC_CASSETTE_DECLINED_INSTRUMENT 1043 The financial institution declined the
request due to a problem with the
purchase instrument (the credit card,
check or whatever instrument is used
by this cassette’s payment protocol).

RC_CASSETTE_AVSDATA 1051 Response refers to the group of AVS
parameters (specified in protocol data).

RC_CASSETTE_AVS_COUNTRYCODE 1052 Response refers to the AVS country
code parameter (specified in protocol
data).

RC_CASSETTE_AVS_STREETADDRESS 1053 Response refers to the AVS street
address parameter (specified in
protocol data).

RC_CASSETTE_AVS_CITY 1054 Response refers to the AVS city
parameter (specified in protocol data).

RC_CASSETTE_AVS_STATEPROVINCE 1055 Response refers to the AVS
state/province parameter (specified in
protocol data).

RC_CASSETTE_AVS_POSTALCODE 1056 Response refers to the AVS postal code
parameter (specified in protocol data).

RC_CASSETTE_AVS_LOCATIONID 1057 Response refers to the AVS location id
parameter (specified in protocol data).

RC_CASSETTE_CARDHOLDERNAME 1058 Response refers to the cardholder
name parameter (specified in protocol
data).

RC_CASSETTE_MAXBATCHSIZE 1059 Response refers to the maximum batch
size parameter (specified in protocol
data).

RC_CASSETTE_CURRENCY 1060 Response refers to the currency
parameter (specified in protocol data).

RC_CASSETTE_HUMAN_INTERVENTION_REQUIRED 1061 The operation failed completely or
partially. Human intervention is required
to resolve the failure.

RC_CASSETTE_DECLINED_APPROVAL_EXPIRED 1062 The approval for the payment has
expired. You must obtain a new
approval for the payment amount
before you can successfully deposit. If
the cassette supports ApproveReversal,
then use it to obtain the new approval
for the existing payment. Otherwise,
use Approve to create a new approved
payment which you can subsequently
deposit.

RC_CASSETTE_AMOUNT_WOULD_EXCEED_ORDER_AMOUNT 1063 Approval of the specified amount would
cause the cumulative amount of all
payments exceed the original order
amount.

RC_CASSETTE_VERSION 1064 Cassette version specified in the
database table exceeds the maximum
length.

Appendix A. WebSphere Commerce Payments return codes 143

Table 29. Generic Secondary Return Codes (SRCs) (continued)

RC_CASSETTE_CARDVERIFYCODE 1065 Response refers to the specified card
verification code.

RC_CASSETTE_AUTHCODE 1066 Response refers to the specified
authorization code.

RC_CASSETTE_DECLINECODE 1067 Response refers to the specified
decline code.

RC_REALM_INIT_ERROR 1068 The defined realm could not be
initialized.

RC_REALM_OPERATION_ERROR 1069 An error occurred while using the
defined realm.

RC_CASSETTE_SHIPPINGDATA 1071 Response refers to the group of
shipping address parameters (specified
in protocol data).

RC_CASSETTE_SHIP_COUNTRYCODE 1072 Response refers to the shipping country
code parameter (specified in protocol
data).

RC_CASSETTE_SHIP_STREETADDRESS 1073 Response refers to the shipping street
address parameter (specified in
protocol data).

RC_CASSETTE_SHIP_CITY 1074 Response refers to the shipping city
parameter (specified in protocol data).

RC_CASSETTE_SHIP_STATEPROVINCE 1075 Response refers to the shipping
state/province parameter (specified in
protocol data).

RC_CASSETTE_SHIP_POSTALCODE 1076 Response refers to the shipping postal
code parameter (specified in protocol
data).

RC_CASSETTE_BILLINGDATA 1081 Response refers to the group of billing
address parameters (specified in
protocol data).

RC_CASSETTE_BILL_COUNTRYCODE 1082 Response refers to the billing country
code parameter (specified in protocol
data).

RC_CASSETTE_BILL_STREETADDRESS 1083 Response refers to the billing street
address parameter (specified in
protocol data).

RC_CASSETTE_BILL_CITY 1084 Response refers to the billing city
parameter (specified in protocol data).

RC_CASSETTE_BILL_STATEPROVINCE 1085 Response refers to the billing
state/province parameter (specified in
protocol data).

RC_CASSETTE_BILL_POSTALCODE 1086 Response refers to the billing postal
code parameter (specified in protocol
data).

RC_ACCEPTPAYMENTAUTOAPPROVE 1087 Response refers to the approve flag on
the merchant account on
AcceptPayment.

RC_ACCEPTPAYMENTAUTODEPOSIT 1088 Response refers to the deposit flag on
the merchant account on
AcceptPayment.

144 Programmer’s Guide and Reference

Table 29. Generic Secondary Return Codes (SRCs) (continued)

RC_RECEIVEPAYMENTAUTOAPPROVE 1089 Response refers to the approve flag on
the merchant account on
ReceivePayment.

RC_RECEIVEPAYMENTAUTODEPOSIT 1090 Response refers to the deposit flag on
the merchant account on
ReceivePayment.

RC_CASSETTE_COUNTRYCODE 1092 Response refers to the country code
parameter (specified in protocol data).

RC_CASSETTE_STREETADDRESS 1093 Response refers to the street address
parameter (specified in protocol data).

RC_CASSETTE_CITY 1094 Response refers to the city parameter
(specified in protocol data).

RC_CASSETTE_STATEPROVINCE 1095 Response refers to the state or
province parameter (specified in
protocol data).

RC_CASSETTE_POSTALCODE 1096 Response refers to the postal (zip)
code parameter (specified in protocol
data).

RC_CASSETTE_AVSCODE 1097 Response refers to the AVS code
parameter (specified in protocol data).

RC_CASSETTE_AUTHCODE_AND_DECLINEREASON 1098 Conflicting protocol data was specified
with this API command.

RC_CASSETTE_BATCHCLOSETIME 1099 Response refers to the batch close time
parameter (specified in protocol data).

RC_CASSETTE_METHOD 1100 Response refers to the payment
method parameter (specified in protocol
data).

RC_CASSETTE_FIBATCHID 1101 Response refers to the financial
institution batch identification parameter
(specified in protocol data).

RC_CASSETTE_AUXILIARY1 1102 Response refers to the first auxiliary
text parameter (specified in protocol
data).

RC_CASSETTE_AUXILIARY2 1103 Response refers to the second auxiliary
text parameter (specified in protocol
data).

RC_CASSETTE_DECLINEREASON 1104 Response refers to the specified
authorization reason.

RC_CASSETTE_BUYERNAME 1105 Response refers to the Buyer Name.

RC_CASSETTE_STREETADDRESS2 1106 Response refers to the Street Address,
Line 2.

RC_CASSETTE_PHONENUMBER 1107 Response refers to the phone number.

RC_CASSETTE_EMAILADDRESS 1108 Response refers to the email address.

RC_CASSETTE_CHECKROUTINGNUMBER 1109 Response refers to the check routing
number.

RC_CASSETTE_CHECKINGACCOUNTNUMBER 1110 Response refers to the checking
account number.

Appendix A. WebSphere Commerce Payments return codes 145

146 Programmer’s Guide and Reference

Appendix B. ISO currency codes

Following is a list of ISO 4217 currency codes. Use these values with the
CURRENCY parameter.

Country/Region Code Alpha Code
Numeric

Exponent
Conversions

Currency

Afganistan AFA 004 -2 Afghanistan
Afghani

Albania ALL 008 -2 Albanian Lek

Algeria DZD 012 -2 Algerian Dinar

American Samoa USD 840 -2 US Dollar

Andorra ESP, FRF,
ADP

724, 250, 020 0, -2, 0 Spanish
Peseta,
French Franc,
Andorran
Peseta

Angola AOA 973 -2 Kwanza

Anguilla XCD 951 -2 East
Caribbean
Dollar

Antigua and Barbuda XCD 951 -2 East
Caribbean
Dollar

Argentina ARS 032 -2 Argentine
Peso

Armenia AMD 051 -2 Armenian
Dram

Aruba AWG 533 -2 Aruban
Guilder

Australia AUD 036 -2 Australian
Dollar

Austria ATS 040 -2 Austrian
Schilling

Azerbaijan AZM 031 -2 Azerbaijanian
Manat

Bahamas BSD 044 -2 Bahamian
Dollar

Bahrain BHD 048 -3 Bahraini Dinar

Bangladesh BDT 050 -2 Bangladeshi
Taka

Barbados BBD 052 -2 Barbados
Dollar

Belarus BYB, RYR 112, 974 0 Belarussian
Ruble,
Belarussian
Ruble

Belgium BEF 056 0 Belgian Franc

Belize BZD 084 -2 Belize Dollar

147

Benin XOF 952 0 CFA Franc
(BCEAO)

Bermuda BMD 060 -2 Bermuda
Dollar

Bhutan INR, BTN 356, 064 -2, -2 Indian Rupee,
Ngultrum

Bolivia BOB, BOV 068, 984 -2, -2 Boliviano,
Mvdol

Bosnia & Herzegovina BAM 977 -2 Convertible
Marks

Botswana BWP 072 -2 Pula

Bouvet Island NOK 578 -2 Norwegian
Krone

Brazil BRL 986 -2 Brazil Real

British Indian Ocean
Territory

USD 840 -2 US Dollar

Brunei Darrusslam BND 096 -2 Brunei Dollar

Bulgaria BGL, BGN 100, 975 -2, -2 Lev, Bulgarian
Lev

Burkina Faso XOF 952 0 CFA Franc
BCEAO

Burundi BIF 108 0 Burundi Franc

Cambodia KHR 116 -2 Cambodian
Riel

Cameroon XAF 950 0 CFA Franc
(BEAC)

Canada CAD 124 -2 Canadian
Dollar

Cape Verde CVE 132 -2 Cape Verde
Escudo

Cayman Islands KYD 136 -2 Cayman
Islands Dollar

Central African Republic XAF 950 0 CFA Franc
(BEAC)

Chad XAF 950 0 CFA Franc
(BEAC)

Chile CLP, CLF 152, 990 0, 0 Chilean Peso,
Unidates de
fomento

China CNY 156 -2 Yuan
Renminbi

China
(Hong Kong S.A.R.)

HKD 344 -2 Hong Kong
Dollar

China
(Mancau S.A.R.)

MOP 446 -2 Pataca

Christmas Island AUD 036 -2 Australian
Dollar

Cocos (Keeling) Islands AUD 036 -2 Australian
Dollar

148 Programmer’s Guide and Reference

Colombia COP 170 -2 Colombian
Peso

Comoros KMF 174 0 Comoro Franc

Congo XAF 950 0 CFA Franc
(BEAC)

Congo, Democratic
Republic of

CDF 976 -2 Franc
Congolais

Cook Islands NZD 554 -2 New Zealand
Dollar

Costa Rica CRC 188 -2 Costa Rican
Colon

Côte D’Ivoire XOF 952 0 CFA Franc
(BCEAO)

Croatia HRK 191 -2 Croatian Kuna

Cuba CUP 192 -2 Cuban Peso

Cyprus CYP 196 -2 Cyprus Pound

Czech Republic CZK 203 -2 Czech Koruna

Denmark DKK 208 -2 Danish Krone

Djibouti DJF 262 0 Djibouti Franc

Dominica XCD 951 -2 East
Caribbean
Dollar

Dominican Republic DOP 214 -2 Dominican
Peso

East Timor TPE, IDE 626, 360 0, -2 Timor Escudo,
Rupiah

Ecuador ECS, ECV 218, 983 -2, -2 Sucre, Unidad
de Valor
Constante
(UVC)

Egypt EGP 818 -2 Egyptian
Pound

El Salvador SVC 222 -2 El Salvador
Colon

Equatorial Guinea XAF 950 0 CFA Franc
(BEAC)

Eritrea ERN 232 -2 Nafka

Estonia EEK 233 -2 Kroon

Ethiopia ETB 230 -2 Ethiopian Birr

Faroe Islands DKK 208 -2 Danish Krone

European Union (ECU) XEU 954 -2 euro

European Union (Euro) EUR 978 -2 European
Currency Unit

Falkland Islands FKP 238 -2 Falkland
Islands Pound

Fiji FJD 242 -2 Fiji Dollar

Finland FIM 246 -2 Finnish
Markka

Appendix B. ISO currency codes 149

France FRF 250 -2 French Franc

French Guiana FRF 250 -2 French Franc

French Polynesia XPF 953 0 CFP Franc

French Southern
Territories

XPF 953 0 CFP Franc

Gabon XAF 950 0 CFA Franc
(BEAC)

Gambia GMD 270 -2 Dalasi

Georgia GEL 981 -2 Lari

Germany DEM 276 -2 Deutsche
Mark

Ghana GHC 288 -2 Ghana Cedi

Gibraltar GIP 292 -2 Gibraltar
Pound

Greece GRD 300 0 Drachma

Greenland DKK 208 -2 Danish Krone

Granada XCD 951 -2 East
Caribbean
Dollar

Guadaloupe FRF 250 -2 French Franc

Guam USD 840 -2 US Dollar

Guatemala GTQ 320 -2 Guatemalan
Quetzal

Guinea GNF 324 0 Guinea Franc

Guinea-Bissau GWP, XOF 624, 952 -2, 0 Guinea-Bissau
Peso, CFA
Franc
(BCEAO)

Guyana GYD 328 -2 Guyana Dollar

Haiti HTG, USD 332, 840 -2, -2 Haiti Gourde,
US Dollar

Heard Island and
McDonald Islands

AUD 036 -2 Australian
Dollar

Holy See (Vatican City
State)

ITL 380 0 Italian Lira

Honduras HNL 340 -2 Honduran
Lempira

Hungary HUF 348 -2 Forint

Iceland ISK 352 -2 Iceland Krona

India INR 356 -2 Indian Rupee

Indonesia IDR 360 -2 Indonesian
Rupiah

International Monetary
Fund

XDR 960 N.A. SDR

Iran IRR 364 -2 Iranian Rial

Iraq IQD 368 -3 Iraqi Dinar

Ireland IEP 372 -2 Irish Pound

150 Programmer’s Guide and Reference

Israel ILS 376 -2 New Israeli
Sheqel

Italy ITL 380 0 Italian Lira

Jamaica JMD 388 -2 Jamaican
Dollar

Japan JPY 392 0 Yen

Jordan JOD 400 -3 Jordanian
Dinar

Kazakhstan KZT 398 -2 Kazakhstan
Tenge

Kenya KES 404 -2 Kenyan
Shilling

Kiribati AUD 036 -2 Australian
Dollar

Korea, Democratic
People’s Republic of

KPW 408 -2 North Korean
Won

Korea, Republic of KRW 410 0 South Korean
Won

Kuwait KWD 414 -3 Kuwaiti Dinar

Kyrgyzstan KGS 417 -2 Kyrgyzstan
Som

Lao People’s Democratic
Republic

LAK 418 -2 Laos Kip

Latvia LVL 428 -2 Latvian Lats

Lebanon LBP 422 -2 Lebanese
Pound

Lesotho ZAR, LSL 710, 426 -2, -2 Rand, Loti

Liberia LRD 430 -2 Liberian Dollar

Libyan Arab Jamahirya LYD 434 -3 Libyan Dinar

Liechtenstein CHF 756 -2 Swiss Franc

Lithuania LTL 440 -2 Lithuanian
Litas

Luxembourg LUF 442 0 Luxembourg
Franc

Macedonia (Former Yug.
Rep.)

MKD 807 -2 Macedonian
Denar

Madagascar MGF 450 0 Malagasy
Franc

Malawi MWK 454 -2 Kwacha

Malaysia MYR 458 -2 Malaysian
Ringgit

Maldives MVR 462 -2 Maldives
Rufiyaa

Mali XOF 952 0 CFA Franc
BCEAO

Malta MTL 470 -2 Maltese Lira

Marshall Islands USD 840 -2 US Dollar

Appendix B. ISO currency codes 151

Martinique FRF 250 -2 French Franc

Mauritania MRO 478 -2 Mauritanian
Ouguiya

Mauritius MUR 480 -2 Mauritius
Rupee

Mexico MXN, MXV 484, 979 -2, -2 Mexican Peso,
Mexican
Unidad de
Inversion
(UDI)

Micronesia USD 840 -2 US Dollar

Moldova, Republic of MDL 498 -2 Moldovan Leu

Monaco FRF 250 -2 French Franc

Mongolia MNT 496 -2 Mongolian
Tugrik

Montserrat XCD 951 -2 East
Caribbean
Dollar

Morocco MAD 504 -2 Moroccan
Dirham

Mozambique MZM 508 -2 Mozambique
Metical

Myanmar MMK 104 -2 Myanmar Kyat

Namibia ZAR, NAD 710, 516 -2, -2 Rand, Namibia
Dollar

Nauru AUD 036 -2 Australian
Dollar

Nepal NPR 524 -2 Nepalese
Rupee

Netherlands Antilles ANG 532 -2 Netherlands
Antillian
Guilder

Netherlands NLG 528 -2 Netherlands
Gulder

New Caledonia XPF 953 0 CFP Franc

New Zealand NZD 554 -2 New Zealand
Dollar

Nicaragua NIO 558 -2 Nicaraguan
Cordoba Oro

Niger XOF 952 0 CFA Franc
BCEAO

Nigeria NGN 566 -2 Nigerian Naira

Niue NZD 554 -2 New Zealand
Dollar

Norfolk Island AUD 036 -2 Australian
Dollar

Northern Mariana Islands USD 840 -2 US Dollar

Norway NOK 578 -2 Norwegian
Krone

152 Programmer’s Guide and Reference

Oman OMR 512 -3 Rial Omani

Pakistan PKR 586 -2 Pakistan
Rupee

Palau USD 840 -2 US Dollar

Panama PAB, USD 590, 840 -2, -2 Balboa, US
Dollar

Papua New Guinea PGK 598 -2 Papua New
Guinea Kina

Paraguay PYG 600 0 Paraguay
Guarani

Peru PEN 604 -2 Peru Nuevo
Sol

Philippines PHP 608 -2 Philippine
Peso

Pitcairn NZD 554 -2 New Zealand
Dollar

Poland PLN 985 -2 Poland Zloty

Portugal PTE 620 0 Portuguese
Escudo

Puerto Rico USD 840 -2 US Dollar

Qatar QAR 634 -2 Qatari Rial

Reunion FRF 250 -2 French Franc

Romania ROL 642 -2 Romanian Leu

Russian Federation RUR, RUB 810, 643 -2, -2 Russian
Ruble,
Russian Ruble

Rwanda RWF 646 0 Rwanda Franc

Saint Kitts and Nevis XCD 951 -2 East
Caribbean
Dollar

Saint Lucia FRF 951 -2 East
Caribbean
Dollar

Saint Pierre and Miquelon XCD 250 -2 French Franc

Saint Vincent and the
Grenadines

XCD 951 -2 East
Caribbean
Dollar

Saint Helena SHP 654 -2 St. Helena
Pound

Samoa WST 882 -2 Tala

San Marino ITL 380 0 Italian Lira

Sao Tome and Principe STD 678 -2 Sao Tome and
Principe Dobra

Saudi Arabia SAR 682 -2 Saudi Riyal

Senegal XOF 952 0 CFA Franc
BCEAO

Seychelles SCR 690 -2 Seychelles
Rupee

Appendix B. ISO currency codes 153

Sierra Leone SLL 694 -2 Sierra Leone
Leone

Singapore SGD 702 -2 Singapore
Dollar

Slovakia SKK 703 -2 Slovak Koruna

Slovenia SIT 705 -2 Slovenia Tolar

Solomon Island SBD 090 -2 Solomon
Islands Dollar

Somalia SOS 706 -2 Somalia
Shilling

South Africa ZAR 710 -2 South African
Rand

Spain ESP 724 0 Spanish
Peseta

Sri Lanka LKR 144 -2 Sri Lanka
Rupee

Sudan SDP 736 -2 Sudanese
Dinar

Suriname SRG 740 -2 Suriname
Guilder

Svalbard and Jan Mayen NOK 578 -2 Norwegian
Krone

Swaziland SZL 748 -2 Swaziland
Lilangeni

Sweden SEK 752 -2 Swedish
Krona

Switzerland CHF 756 -2 Swiss Franc

Syrian Arab Republic SYP 760 -2 Syrian Pound

Taiwan TWD 901 -2 New Taiwan
Dollar

Tajikistan TJR 762 0 Tajik Ruble

Tanzania, United Republic
of

TZS 834 -2 Tanzanian
Shilling

Thailand THB 764 -2 Thai Baht

Togo XOF 952 0 CFA Franc
BCEAO

Tokelau NZD 554 -2 New Zealand
Dollar

Tonga TOP 776 -2 Tonga
Pa’anga

Trinidad and Tobago TTD 780 -2 Trinidad and
Tobago Dollar

Tunisia TND 788 -3 Tunisian Dinar

Turkey TRL 792 0 Turkish Lira

Turkmenistan TMM 795 -2 Manat

Turks and Caicos Islands USD 840 -2 US Dollar

Tuvalu AUD 036 -2 AUD

154 Programmer’s Guide and Reference

Uganda UGX 800 2 Ugandan
Shilling

Ukraine UAH 980 -2 Hryvnia

United Arab Emirates AED 784 -2 UAE Dirham

United Kingdom GBP 826 -2 Pound Sterling

United States of America USD, USS,
USN

840, 998, 997 -2, -2, -2 US Dollar,
(Same day)
(Next day)

United States Minor
Outlying Islands

USD 840 -2 US Dollar

Uruguay UYU 858 -2 Peso
Uruguayo

Uzbekistan UZS 860 -2 Uzbekistan
Sum

Vanuatu VUV 548 0 Vanuatu Vatu

Venezuela VEB 862 -2 Venezuela
Bolivar

Viet Nam VND 704 -2 Viet Nam
Dong

Virgin Islands (British) USD 840 -2 US Dollar

Virgin Islands (US) USD 840 -2 US Dollar

Wallis and Futuna XPF 953 0 CFP Franc

Western Sahara MAD 504 -2 Moroccan
Dirham

Yemen YER 886 -2 Yemeni Rial

Yugoslavia YUN 891 -2 Yugoslavian
Dinar

Zaire ZRN 180 -2 Unknown

Zambia ZMK 894 -2 Zambia
Kwacha

Zimbabwe ZWD 716 -2 Zimbabwe
Dollar

Appendix B. ISO currency codes 155

156 Programmer’s Guide and Reference

Appendix C. Obtaining requests for comments

Requests for comments (RFCs) are documents that present new protocols and
establish standards for the Internet protocol suite. Hardcopies of all RFCs are
available from the Network Information Center (NIC), either individually or on a
subscription basis. You can obtain these documents from:

Government Systems, Inc.
Attn: Network Information Center
14200 Park Meadow Drive
Suite 200
Chantilly, VA 22021

You can access RFCs from this URL:

http://www.cis.ohio-state.edu/hypertext/information/rfc.html

157

158 Programmer’s Guide and Reference

Appendix D. Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation

159

Department TL3B/Building 062
PO Box 12195
3039 Cornwallis Road
Research Triangle Park, NC 27709-2195

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement or
any equivalent agreement between us.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

v AIX

v DB2

v IBM

v IBM Consumer Wallet

v IBM Payment Gateway

v IBM Payment Registry

v IBM Payment Server

v iSeries

v RS/6000

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States and/or other countries.

Lotus and Lotus Domino Go Webserver are trademarks of Lotus Development
Corporation in the United States and/or other countries.

Microsoft, Windows NT, and the Windows logo are trademarks or registered
trademarks of Microsoft Corporation in the United States and/or other countries.

SET Secure Electronic Transaction, Secure Electronic Transaction, SET, and the
SET Secure Electronic Transaction design mark are trademarks and service marks
owned by SET Secure Electronic Transaction LLC.

UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks
of others.

160 Programmer’s Guide and Reference

Glossary

This dictionary defines technical terms used in the
documentation for Payment Suite products. It
includes IBM product terminology and may include
selected terms and definitions from:

v The American National Standard Dictionary for
Information Systems , ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies may be
purchased from the American National
Standards Institute, 11 West 42nd Street, New
York, New York 10036. Definitions are identified
by the symbol (A) after the definition.

v The ANSI/EIA Standard—440-A, Fiber Optic
Terminology. Copies may be purchased from
the Electronic Industries Association, 2001
Pennsylvania Avenue, N.W., Washington, DC
20006. Definitions are identified by the symbol
(E) after the definition.

v The Information Technology Vocabulary
developed by Subcommittee 1, Joint Technical
Committee 1, of the International Organization
for Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1). Definitions of published parts of this
vocabulary are identified by the symbol (I) after
the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after
the definition, indicating that final agreement
has not yet been reached among the
participating National Bodies of SC1.

v The IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

v Internet Request for Comments: 1208, Glossary
of Networking Terms

v Internet Request for Comments: 1392, Internet
Users’ Glossary

v The Object-Oriented Interface Design: IBM
Common User Access Guidelines , Carmel,
Indiana: Que, 1992.

The most current IBM Dictionary of Computing is
available on the World Wide Web at
http:\\www.ibm.com/networking/nsq/nsqmain.htm.

The following cross-references are used in this
dictionary:

Contrast with:
This refers the reader to a term that has
an opposed or substantively different
meaning.

See: This refers the reader to (a) a related
term, (b) a term that is the expanded form
of an abbreviation or acronym, or (c) a
synonym or more preferred term.

Obsolete term for:
This indicates that the term should not be
used and refers the reader to the
preferred term.

A
access control. In computer security, the process of
ensuring that the resources of a computer system can
be accessed only by authorized users in authorized
ways.

account. An account is a relationship between the
merchant and the financial institution which processes
transactions for that merchant. There can be multiple
accounts for each payment cassette.

account name. The name you assign to the account.
Its only function is to provide display information in the
user interface.

acquirer. In e-commerce, the financial institution (or an
agent of the financial institution) that receives from the
merchant the financial data relating to a transaction and
initiates that data into an interchange system.

Address Verification Service (AVS). Within IBM
e-commerce, a credit and debit card scheme used by
merchants to authenticate the cardholder. The merchant
requests the cardholder’s address and uses AVS to
confirm that the cardholder is who he says he is.

ADSM. See ADSTAR Distributed Storage Manager.

ADSTAR Distributed Storage Manager (ADSM). An
IBM licensed program that provides storage
management and data access services in a
multi-vendor, distributed computing environment.

applet. An application program, written in the Java
programming language, that can be retrieved from a
Web server and executed by a Web browser. A
reference to an applet appears in the markup for a Web
page, in the same way that a reference to a graphics
file appears; a browser retrieves an applet in the same
way that it retrieves a graphics file. For security
reasons, an applet’s access rights are limited in two
ways: the applet cannot access the file system of the

161

client upon which it is executing, and the applet’s
communication across the network is limited to the
server from which it was downloaded. Contrast with
servlet.

approve. Within IBM e-commerce, a WebSphere
Commerce Payments verb. A merchant issues this verb
to create a Payment object. For cassettes that
implement credit card protocols, this verb will likely map
to authorization (see authorize). Other cassettes may
implement the approval process differently. For IBM
WebSphere Commerce Payments Cassette for SET and
Cassette for CyberCash, the approve verb results in
the creation of a Payment object and authorization to
ensure that funds are available to cover payment.

approve all. Selects all orders displayed for approval.

approved amount. The amount of the order approved
for payment.

approve selected. Selects the orders that you want to
create a payment in the approved state for. You must
perform a manual deposit on this payment to move it
from approved state to deposit state.

asymmetric. In computer security, pertaining to the
use of different keys for encryption and decryption.

authentication. (1) In SETCo., the process that seeks
to validate identity or to prove the integrity of the
information. Authentication in public key systems uses
digital signatures. (2) In computer security, verification
that a message has not been altered or corrupted. (3) In
computer security, a process used to verify the user of
an information system or protected resources.

authorization. (1) In SETCo., the process by which a
properly appointed person or persons grants permission
to perform some action on behalf of an organization.
This process assesses transaction risk, confirms that a
given transaction does not raise the account holder debt
above the account credit limit, and reserves the
specified amount of credit. (When a merchant obtains
authorization, payment for the authorized amount is
guaranteed provided that the merchant followed the
rules associated with the authorization process.) (2) In
computer security, the right granted to a user to
communicate with or make use of a computer
system. (T) (3) An access right. (4) The process of
granting a user either complete or restricted access to
an object, resource, or function.

authorization reversal. In SETCo., a transaction sent
when a previous authorization needs to be canceled
(that is, a full reversal performed) or decreased (that is,
a partial reversal performed). A full reversal will be used
when the transaction cannot be completed, such as
when the cardholder cancels the order or the merchant
discovers that goods are no longer available, as when
discontinued. A partial reversal will be used when the
authorization was for the entire order and some of the
goods cannot be shipped, resulting in a split shipment.

authorize. In the credit card world, a merchant is
guaranteed that cardholder funds are available to cover
a transaction by first authorizing the transaction. The
cardholder’s issuer (that is, the bank that issued the
card) guarantees payment.

B
balance. Within IBM e-commerce, an attribute of a
WebSphere Commerce Payments Batch object.
Indicates whether the merchant and financial institution
agreed on the contents of the batch when it was closed.
See 172 for more details.

balanced. Within IBM e-commerce, an attribute of a
WebSphere Commerce Payments Batch object. The
batch has been successfully balanced. All totals agree.

balance status. Within IBM e-commerce, an attribute
of a WebSphere Commerce Payments Batch object.
The balance status of a batch can be balanced or out of
balance.

baseline. In SETCo., a baseline product is the specific
product within an operating system family that is run
against the SET Tests. A vendor must designate a
distinct baseline product for each unrelated operating
system family. Refer to the SET Testing Policies and
Procedures for a complete explanation.

batch. (1) In the credit card world , a batch is a
collection of fund transfer requests that are all done at
the same time (that is, in a batch). Individual fund
transfers are not performed for each individual payment,
but, rather, a group of transfers is processed so that
both the merchant and the financial institution can agree
on the funds that are to be transferred. Before a batch
is closed (that is, the funds are exchanged) there is
usually some type of reconciliation process so that both
sides agree on the amounts. A group of records or data
processing jobs brought together for processing or
transmission. (2) Within IBM e-commerce, one of the
fundamental WebSphere Commerce Payments objects
is the Batch. A Batch is an object with which Payment
and Credit objects are associated. Transfer of funds is
to occur when the batch is closed. (3) A group of
records or data processing jobs brought together for
processing or transmission.

batch close date. One of two numeric search
parameters that defines the chronological start of your
search. Specify a date that precedes the batch close
date for the batch you want to search.

batch number. The number that identifies the batch.
WebSphere Commerce Payments assigns a number to
the batch when the payment is deposited.

batch open date. One of two numeric search
parameters that defines the chronological start of your
search. Specify a date that precedes the batch open
date for the batch you want to search.

162 Programmer’s Guide and Reference

batch number. The number that identifies the batch.
The number WebSphere Commerce Payments assigns
to the batch when the payment is deposited.

batch search. Search for a single batch or group of
batches, based on a defined list of characteristics.

BCD. See binary-coded decimal notation.

big endian. A format for storage or transmission of
binary data in which the most significant bit (or byte) is
placed first. Contrast with little endian.

binary-coded decimal (BCD) notation. A
binary-coded notation in which each of the decimal
digits is represented by a binary numeral; for example,
in binary-coded decimal notation that uses the weights
8, 4, 2, 1, the number “twenty-three” is represented by
0010 0011 (compare its representation 10111 in the
pure binary numeration system). (I) (A)

bitmapped message. A variable-length transaction in
which each bit in an array of bits indicates the presence
or absence of a data field within the transaction.

brand. Within IBM e-commerce, the Cassette object
for all of the WebSphere Commerce Payments
cassettes (for example, Cassette for SET and Cassette
for CyberCash). Each financial transaction for a
WebSphere Commerce Payments cassette is
associated with a particular brand (for example,
MasterCard or VISA). Each account with a financial
institution can be configured to support one or more
brands.

browser. See Web browser.

browser plug-in. See Web browser plug-in.

C
CA. See certificate authority.

capture. (1) In SETCo., a transaction sent after the
merchant has shipped the goods. This transaction will
trigger the movement of funds from the Issuer to the
Acquirer and then to the merchant account. (2) In the
credit card world, payment is actually made when the
funds are captured. All payments must be authorized
and captured (although this work can be done at the
same time). Note that all payments are associated with
a batch (see “void payment” on page 173) and that the
actual capture occurs when the associated batch is
closed.

capture reversal. In SETCo., a transaction sent when
the information in a previous capture message was
incorrect or should never have been sent (such as when
the goods were not actually shipped). If the capture
reversal is the result of incorrect information, it will be
followed by a new capture message with the correct
information.

cardholder. In e-commerce, a person who has a valid
payment card account and uses software that supports
e-commerce.

cardholder application. In SETCo., a cardholder
application, sometimes called a wallet, that is run by an
online consumer that enables secure payment card
transactions over a network. SET Cardholder
applications must generate SET protocol messages that
can be accepted by SET Merchant, Payment Gateway,
and Certificate Authority components.

cascading. In high-availability cluster multiprocessing
(HACMP), pertaining to a cluster configuration in which
the cluster node with the highest priority for a particular
resource acquires the resource if the primary node fails
but relinquishes the resource to the primary node upon
reintegration of the primary node into the cluster.
Contrast with concurrent and rotating.

cassette. (1) In e-commerce, a software component
consisting of a collection of Java classes and interfaces
that can be easily installed into other software
components involved in e-commerce to extend the
function of these components. (2) In IBM e-commerce,
a WebSphere Commerce Payments concept. The
WebSphere Commerce Payments provides a framework
that can support many different forms of payment.
WebSphere Commerce Payments cassettes are written
by IBM or third-party vendors to support different
payment protocols (such as, SET and CyberCash)
within the WebSphere Commerce Payments
Framework. Thus, WebSphere Commerce Payments is
an extensible product that can support additional
protocols.

cast. In programming languages, an operator that
converts the value of its operand to a specified type.

CERN. Conseil Européen pour la Recherche Nucléaire
(European Laboratory for Particle Physics). Located in
Geneva, Switzerland, CERN initiated the World Wide
Web and was the first organization to create a Web
server. The CERN Web server is the basis for many
commercially available servers.

certificate. (1) In e-commerce, a digital document that
binds a public key to the identity of the certificate owner,
thereby enabling the certificate owner to be
authenticated. A certificate is issued by a certificate
authority (CA). (2) In SETCo., a certificate that has been
digitally signed by a trusted authority (usually the
cardholder financial institution) to identify the user of the
public key. SET defines the following certificate types:

v signature

v key encipherment

v certificate signature

v CRL signature

certificate authority (CA). (1) In e-commerce, an
organization that issues certificates. The CA

Glossary 163

authenticates the certificate owner’s identity and the
services that the owner is authorized to use, issues new
certificates, renews existing certificates, and revokes
certificates belonging to users who are no longer
authorized to use them. See issuer. (2) In SETCo.,
certificate authority refers to both the component and to
the entity issuing and verifying digital certificates. The
component is a product run by a Certificate Authority
entity that is authorized to issue and verify digital
certificates as requested by Cardholder Wallet
components, Merchant Server components, and/or
Payment Gateway components over public and private
networks.

certificate chain. (1) In SETCo., a hierarchy of digital
certificates. The certificate at the top of the hierarchy is
called the ″root certificate.″ (2) In SETCo., an ordered
grouping of digital certificates, including the root
certificate, that are used to validate a specific certificate.

certificate renewal. In SETCo., the process by which
a new certificate is created for an existing public key.

certificate revocation. In SETCo., the process of
revoking an otherwise valid certificate by the entity that
issued the certificate.

certificate revocation list. In SETCo., a list of
certificate serial numbers previously issued by a
certificate authority that indicate the certificates that are
invalid prior to normal expiration due to compromise,
disaffiliation, or some other unusual circumstance.

certification. In SETCo., the process of ascertaining
that a set of requirements or criteria has been fulfilled
and attesting to that fact to others, usually with some
written instrument. A system that has been inspected
and evaluated as fully compliant with the SET protocol
by duly authorized parties and process would be said to
have been certified.

certification authority. See certificate authority.

certified. In SETCo., the process of ascertaining that a
set of requirements or criteria has been fulfilled and
attesting to that fact to others, usually with some written
instrument. A system that has been inspected and
evaluated as fully compliant with the SET protocol by
duly authorized parties and process would be said to
have been certified.

CGI. See Common Gateway Interface.

CGI program. A computer program that runs on a
Web server and uses the Common Gateway Interface
(CGI) to perform tasks that are not usually done by a
Web server (for example, database access and form
processing). A CGI script is a CGI program that is
written in a scripting language such as Perl.

CGI script. See CGI program.

clerk. (1) In IBM e-commerce, this is a WebSphere
Commerce Payments concept. The WebSphere
Commerce Payments has four different access rights. A
clerk is defined on a per-merchant basis and has the
lowest level of access. (2) A clerk is a low-level
employee.

client. A computer system or process that requests a
service of another computer system or process that is
typically referred to as a server. Multiple clients may
share access to a common server.

closed. An order moves into closed state when its
associated payment, or payments, moves from
deposited state into closed state (that is, when the
batch associated with the payment closes). When an
order is in closed state, the financial transaction is
complete; monies are deposited, and the order cannot
be modified. No commands are permitted for orders in
this state.

cluster. In high-availability cluster multiprocessing
(HACMP), a set of independent systems (called nodes)
that are organized into a network for the purpose of
sharing resources and communicating with each other.

cluster node. In high-availability cluster
multiprocessing (HACMP), an RS/6000 system that
participates in a cluster.

commerce service provider (CSP). An Internet
service provider that hosts merchant shopping sites and
processes payments for the merchants.

Common Gateway Interface (CGI). A standard for the
exchange of information between a Web server and
computer programs that are external to it. The external
programs can be written in any programming language
that is supported by the operating system on which the
Web server is running. See CGI program.

concurrent. In high-availability cluster multiprocessing
(HACMP), pertaining to a cluster configuration in which
all cluster nodes use a resource simultaneously. A
cluster node can fail and reintegrate into the cluster
without affecting other cluster nodes or the resource.
Contrast with cascading and rotating.

confidentiality. In SETCo., the protection of sensitive
and personal information from unintentional and
intentional attacks and disclosure.

constructor. In programming languages, a method
that has the same name as a class and is used to
create and initialize objects of that class.

constructor method. See constructor.

conversation. A logical connection between two
transaction programs using an LU 6.2 session.
Conversations are delimited by brackets to gain
exclusive use of a session.

164 Programmer’s Guide and Reference

credit. In SETCo., a transaction sent when the
merchant needs to return money to the cardholder (via
the Acquirer and the Issuer) following a valid capture
message, such as when goods have been returned or
were defective.

credit reversal. In SETCo., a transaction sent when
the information in a previous credit transaction was
incorrect or should have never been sent.

cryptographic key. In SETCo., a value which is used
to control a cryptographic process, such as encryption
or authentication. Knowledge of an appropriate key
allows correct decryption or validation of a message.

cryptography. (1) In SETCo., a mathematical process
used for encryption or authentication information. (2)
The discipline which embodies principles, means, and
methods for the transformation of data in order to hide
its information content, prevent its undetected
modification and unauthorized use, or a combination
thereof. (3) The transformation of data to conceal its
contents and to prevent one person from forging or
modifying another person’s messages.

CSP. See commerce service provider.

CyberCash CashRegister. An electronic payment
processing service that is provided by CyberCash, Inc.
The CyberCash CashRegister enables merchants to
accept and process various types of electronic
payments for goods or services that are purchased over
the Internet.

CyberCash cassette. A payment cassette that
provides support for the CyberCash CashRegister.

D
daily batch totals. The Daily Batch Totals report
computes the totals for all batches closed on the date
specified on the Search window. The totals include all
payments and credits made for all payment types.

decryption. In computer security, the process of
transforming encoded text or ciphertext into plain text.

derived products. In SETCo., derived products are
components that are created from a product that has
received a SET Mark license. Derived products must be
created from a product that has received the SET Mark,
regardless of operating system family. Please refer to
the SET Testing Policies and Procedures for a complete
explanation.

deposit all . Selects all of the order payments
displayed for deposit.

deposited amount . The amount deposited for a
Payment. The deposited amount can be different than
the approved amount.

deposit selected . Selects the order payments that
you want to deposit.

digital envelope. (1) In SETCo., a cryptographic
technique to encrypt data and send the encryption key
along with the data. Generally, a symmetric algorithm is
used to encrypt the data and an asymmetric algorithm is
used to encrypt the encryption key. (2) In e-commerce,
a package of encrypted data and the encryption key.

digital signature. (1) In SETCo., information
encrypted with an entity private key, which is appended
to a message to assure the recipient of the authenticity
and integrity of the message. The digital signature
proves that the message was signed by the entity
owning, or having access to, the private key. (2) In
e-commerce, data that is appended to, or is a
cryptographic transformation of, a data unit and that
enables the recipient of the data unit to verify the
source and integrity of the unit and to recognize
potential forgery.

distinguished name. In SET programs, information
that uniquely identifies the owner of a certificate.

document type definition (DTD). The rules that
specify the structure for a particular class of SGML or
XML documents. The DTD defines the structure with
elements, attributes, and notations, and it establishes
constraints for how each element, attribute, and notation
may be used within the particular class of documents. A
DTD is analogous to a database schema in that the
DTD completely describes the structure for a particular
markup language.

DTD. See document type definition.

dual signature. In SETCo., a digital signature that
covers two or more data structures by including secure
hashes or each data structure in a single encrypted
block. Dual signing is done for efficiency, that is, to
reduce the number of public key encryption operations.

E
EAR file. An Enterprise Archive file represents a J2EE
application that can be deployed in a WebSphere
application server. EAR files are standard Java archive
files and have the file extension .ear.

e-business. Either (a) the transaction of business over
an electronic medium such as the Internet or (b) any
organization (for example, commercial, industrial,
nonprofit, educational, or governmental) that transacts
its business over an electronic medium such as the
Internet. An e-business combines the resources of
traditional information systems with the vast reach of an
electronic medium such as the Internet (including the
World Wide Web, intranets, and extranets); it connects
critical business systems directly to critical business
constituencies--customers, employees, and suppliers.
The key to becoming an e-business is building a

Glossary 165

transaction-based Web site in which all core business
processes (especially all processes that require a
dynamic and interactive flow of information) are put
online to improve service, cut costs, and sell products.

ECML. See Electronic Commerce Modeling Language.

e-commerce. (1) The exchange of goods and services
for payment between the cardholder and merchant
when some or all of the transaction is performed via
electronic communication. (2) The subset of e-business
that involves the exchange of money for goods or
services purchased over an electronic medium such as
the Internet.

electronic commerce. See e-commerce.

Electronic Commerce Modeling Language (ECML).
In e-commerce, a universal format for wallets that
streamlines the collection of electronic data for shipping,
billing, and payment on a merchant’s Web site and
thereby enhances the online shopping experience for
consumers and merchants. IBM is one of many
companies that are collaborating to develop ECML.

encryption. (1) In SETCo., the process of converting
information in order to render it into a form unintelligible
to all except holders of a specific cryptographic key. Use
of encryption protects information between the
encryption process and the decryption process (that is,
the inverse of encryption), against unauthorized
disclosure. (2) In computer security, the process of
transforming data into an unintelligible form in such a
way that the original data either cannot be obtained or
can be obtained only by using a decryption process.

event. In the Tivoli environment, any significant
change in the state of a system resource, network
resource, or network application. An event can be
generated for a problem, for the resolution of a problem,
or for the successful completion of a task. Examples of
events are: the normal starting and stopping of a
process, the abnormal termination of a process, and the
malfunctioning of a server.

event listener. In IBM e-commerce, a computer
program that waits to be informed of events of interest
and acts upon them.

expiry. (1) The certificate expiration date assigned
when the certificate was obtained. Certificates are
specific to payment types (for example, SET or
CyberCash.) (2) Specifies the card expiration date. An
expiry value is required for SET protocol. The value is
specified as a string and is used on the payment
initiation message. For example, 199911 is an expiry
value.

Extensible Markup Language (XML). A standard
metalanguage for defining markup languages that was
derived from and is a subset of SGML. XML omits the
more complex and less-used parts of SGML and makes
it much easier to (a) write applications to handle

document types, (b) author and manage structured
information, and (c) transmit and share structured
information across diverse computing systems. The use
of XML does not require the robust applications and
processing that is necessary for SGML. XML is being
developed under the auspices of the World Wide Web
Consortium (W3C).

F
failover. See fallover.

fallover. In high-availability cluster multiprocessing
(HACMP), an active node’s acquisition of resources that
were previously owned by another cluster node in order
to maintain the availability of those resources.

financial institution. (1) In SETCo., an establishment
responsible for facilitating customer-initiated transactions
or transmissions of funds for the extension of credit or
the custody, loan, exchange, or issuance of money,
such as a bank or its designate. (2) Within IBM
e-commerce, banks, building societies, and credit
unions are examples of financial institutions. An
institution that provides financial services.

financial network. Within IBM e-commerce, the
aggregate of card processors, acquirers, card issuers,
and other institutions through which payment card
transaction processing is traditionally performed.

firewall. In communication, a functional unit that
protects and controls the connection of one network to
other networks. The firewall (a) prevents unwanted or
unauthorized communication traffic from entering the
protected network and (b) allows only selected
communication traffic to leave the protected network.

force. Within IBM e-commerce, a WebSphere
Commerce Payments verb. An attempt to settle a batch
(see 172). If the reconciliation step fails, the batch is still
not closed on the WebSphere Commerce Payments
(although it may be out of balance or not closed at the
financial institution).

FQDN. See fully qualified domain name.

fully qualified domain name (FQDN). In the Internet
suite of protocols, the name of a host system that
includes all of the subnames of the domain name. An
example of a fully qualified domain name is
mycomputer.city.company.com. See host name.

H
HACMP. See high-availability cluster multiprocessing.

handle. In the AIX operating system, a data structure
that is a temporary local identifier for an object.
Allocating a handle creates it. Binding a handle makes it
identify an object at a specific location.

166 Programmer’s Guide and Reference

hardware token. In SETCo., a portable device (for
example, smart card, PCMCIA cards) specifically
designed to store cryptographic information and possibly
perform cryptographic functions in a secure manner.

has been certified. A system that has been inspected
and evaluated as fully compliant with the SET protocol
by duly authorized parties and process would be said to
have been certified.

hash. See root key hash.

heartbeat. In software products, a signal that one
entity sends to another to convey that it is still active.

high-availability cluster multiprocessing (HACMP).
An application service that enables up to eight RS/6000
servers to access the same data in parallel. This
optimizes application execution and scalability and
protects against unplanned outages and server
downtime.

home page. The initial Web page that is returned by a
Web site when a user specifies the uniform resource
locator (URL) for the Web site. For example, if a user
specifies the URL for the IBM Web site, which is
http://www.ibm.com , the Web page that is returned is
the IBM home page. Essentially, the home page is the
entry point for accessing the contents of the Web site.
The home page may sometimes be called the ″welcome
page″ or the ″front page.″

host. To provide the software and services for
managing a Web site.

HostCapture/PostAuth. Within IBM e-commerce, this
is a CyberCash concept. One of the three processing
models supported by the CyberCash CashRegister
service. In particular, the AcquirerProfile field of an
account may be set to HostCapture/PostAuth = 2,
which indicates that the acquirer controls batch
processing and a separate deposit request is required
to capture the funds after a payment is authorized.

host byte order. The byte order that a central
processing unit (CPU) uses to store and process data.
This byte order can be big endian or little endian,
depending on the particular CPU. Contrast with network
byte order.

host name. In the Internet suite of protocols, the name
given to a computer. Sometimes, “host name” is used to
mean fully qualified domain name; other times, it is
used to mean the most specific subname of a fully
qualified domain name. For example, if
mycomputer.city.company.com is the fully qualified
domain name, either of the following may be considered
the host name:

v mycomputer.city.company.com

v mycomputer

HTML. See Hypertext Markup Language.

HTTP. See Hypertext Transfer Protocol.

Hypertext Markup Language (HTML). A markup
language that conforms to the SGML standard and was
designed primarily to support the online display of
textual and graphical information that includes hypertext
links.

Hypertext Transfer Protocol (HTTP). In the Internet
suite of protocols, the protocol that is used to transfer
and display hypertext documents.

I
idempotency. (1) A property of a mathematical
operation whereby repeating the operation produces no
change in the final result. For example, the operation of
deducting $25.00 from an account balance is not
idempotent, but the operation of setting an account
balance to $500.00 is idempotent. (2) In SET Secure
Electronic Transaction, a property that enables the
sender of a request to repeat the request with a
guarantee that the outcome will be the same regardless
of whether the request is lost, the response is lost, or
the request or response is delayed due to network
problems. Idempotency is necessary because the SET
protocol works in environments where message delivery
is not guaranteed, and when the sender does not
receive a response, it cannot determine the cause of
the delay. If a SET application does not receive a
response in a reasonable amount of time, it resends the
message; when the receiving SET application
determines that it has already processed that message,
it retrieves the previous response and sends that
response again.

instrumentation. In application or system software,
either (a) monitoring functions that provide performance
and other information to a management system or (b)
the use of monitoring functions to provide performance
and other information to a management system.

identify. To establish the identity.

installment payments. In SETCo., a type of payment
transaction negotiated between the merchant and the
cardholder which permits the merchant to process
multiple authorizations. Cardholder specifies a maximum
number of permitted Authorization for paying through
installment payments.

integrity. In SETCo., the quality of information or a
process that is free from error, whether induced
accidentally or intentionally.

interactive. In SETCo., a generic class for a network
transport mechanism that is dependent on a logical
session being maintained during the message exchange
(for example, World Wide Web sessions).

internet. (1) In SETCo., the largest collection of
networks in the world, interconnected in such a way as

Glossary 167

to allow them to function as a single virtual network. (2)
A collection of interconnected networks that use the
Internet suite of protocols. The internet that allows
universal access is referred to as the Internet (with a
capital “I”). An internet that provides restricted access
(for example, to a particular enterprise or organization)
is frequently called an intranet, whether or not it also
connects to the public Internet.

Internet. The worldwide collection of interconnected
networks that use the Internet suite of protocols and
permit public access.

interoperability. In SETCo., the ability to exchange
messages and keys, both manually and in an
automated environment, with any other party
implementing this standard, provided that both
implementations use compatible options of this standard
and compatible communications facilities.

interprocess communication (IPC). The process by
which programs communicate data to each other and
synchronize their activities. Semaphores, signals, and
internal message queues are common methods of
interprocess communication.

intranet. A private network that integrates Internet
standards and applications (such as Web browsers)
with an organization’s existing computer networking
infrastructure.

IP address. The unique 32-bit address that specifies
the location of each device or workstation on the
Internet. For example, 9.67.97.103 is an IP address.

IPC. See interprocess communication.

issuer. (1) In SETCo., the financial institution or its
agent that issues the unique primary account number
(PAN) to the cardholder for the payment card brand. (2)
In e-commerce, a financial institution that issues
payment cards to individuals. An issuer can act as its
own certificate authority (CA) or can contract with a third
party for the service.

J
J2EE. (Java 2 Enterprise Edition) J2EE is designed to
support applications that implement enterprise services
for customers, employees, suppliers, partners, and
others who make demands on or contributions to the
enterprise. This can be a single module or a group of
modules packaged into an .ear file with a J2EE
application deployment descriptor. J2EE applications
are typically engineered to be distributed across multiple
computing tiers.

Java. An object-oriented programming language for
portable interpretive code that supports interaction
among remote objects. Java was developed and
specified by Sun Microsystems, Incorporated.

Java Database Connectivity (JDBC). An application
programming interface (API) that has the same
characteristics as Open Database Connectivity (ODBC)
but is specifically designed for use by Java database
applications. Also, for databases that do not have a
JDBC driver, JDBC includes a JDBC to ODBC bridge,
which is a mechanism for converting JDBC to ODBC; it
presents the JDBC API to Java database applications
and converts this to ODBC. JDBC was developed by
Sun Microsystems, Inc. and various partners and
vendors.

Java Development Kit (JDK). A software package
that can be used to write, compile, debug, and run Java
applets and applications.

Java Runtime Environment (JRE). A subset of the
Java Development Kit (JDK) that contains the core
executables and files that constitute the standard Java
platform. The JRE includes the Java Virtual Machine,
core classes, and supporting files.

Java Virtual Machine (JVM). A software
implementation of a central processing unit (CPU) that
runs compiled Java code (applets and applications).

JDBC. See Java Database Connectivity.

JDK. See Java Development Kit.

JRE. See Java Runtime Environment.

JVM. See Java Virtual Machine.

K
keepalive message. In Internet communications, a
message sent among nodes when no data traffic has
been detected for a given period of time. This
communication ensures the vitality of the session by
keeping the link “alive.”

key. In computer security, a sequence of symbols that
is used with a cryptographic algorithm for encrypting or
decrypting data. See private key and public key.

key pair. In computer security, a public key and a
private key. When the key pair is used for encryption,
the sender uses the public key to encrypt the message,
and the recipient uses the private key to decrypt the
message. When the key pair is used for signing, the
signer uses the private key to encrypt a representation
of the message, and the recipient uses the public key to
decrypt the representation of the message for signature
verification. See asymmetric and digital signature.

key ring. In computer security, a file that contains
public keys, private keys, trusted roots, and certificates.

168 Programmer’s Guide and Reference

L
little endian. A format for storage or transmission of
binary data in which the least significant bit (or byte) is
placed first. Contrast with big endian.

M
memory leak. A condition in which a computer
program allocates memory and does not free (or
properly free) this memory. If the program continues to
run and is not terminated, it uses large amounts of real
memory and eventually runs out of memory.

merchant. In SETCo., a seller of goods, services,
and/or other information who accepts payment for these
items electronically. The merchant may also provide
electronic selling services and/or electronic delivery of
items for sale.

merchant chargeback. Within IBM e-commerce, when
fraud occurs and a merchant is liable for funds not
obtained, a financial institution may issue a merchant
chargeback, reclaiming funds previously credited to a
merchant’s account.

merchant server. (1) In SETCo., a Merchant Server
component is a product run by an online merchant to
process payment card transactions and authorizations.
It communicates with the Cardholder Wallet, Payment
Gateway, and Certificate Authority components. (2) In
e-commerce, a Web server that offers cataloged
shopping.

merchant settings. The settings that a merchant has
made for a cassette. In the WebSphere Commerce
Payments user interface, the Payment System object
displays as Merchant Settings.

MIME. See Multipurpose Internet Mail Extensions.

mirroring. In the AIX operating system, the
maintenance of more than one copy of stored data to
prevent the loss of data.

Multipurpose Internet Mail Extensions (MIME). An
Internet standard for identifying the type of object being
transferred across the Internet. MIME types include
several variants of audio, graphics, and video.

mutex. A mutual exclusion lock. See mutual exclusion
mechanism.

mutual exclusion mechanism. In software, a method
for preventing two separately executing pieces of code
from interfering with each other’s use of a particular
data object. For example, if one thread is executing a
function that modifies a shared data structure, the
application may need to prevent other threads from
simultaneously attempting to read the data before the
modifications are complete.

N
network. In SETCo., a collection of communication
and information processing systems that may be shared
among several users.

network byte order. The byte order that a network
uses to transmit data. In the Internet, this byte order is
always big endian. Contrast with host byte order.

node. See cluster node.

normal mode. In the IBM Payment Gateway, the
processing scheme in which a batched SET message is
presented in its entirety to the customized exits of the
Payment Gateway Application. Contrast with supervisor
mode.

number of credits. In SETCo., a credit is a
transaction sent when the merchant needs to return
money to the cardholder (via the Acquirer and the
Issuer) following a valid capture message, such as
when goods have been returned or were defective.
Credits can be for up to the total amount of all
payments associated with an Order. There can be zero
or more Credits per Order.

number of payments. In SETCo., a payment is a
request by the merchant to the financial institution to
approve all or part of an order. In many cases, all the
money authorized for collection by the order will be
collected in a single payment. Some payment systems
may allow the money authorized in one order (that is,
one set of payment instructions) to be collected in
multiple payments, depending on the business model.
There can be zero or more payments per order.

O
ODBC. See Open Database Connectivity.

ODBC bridge. See Java Database Connectivity.

Open Database Connectivity (ODBC). A standard
application programming interface (API) for accessing
data in both relational and nonrelational database
management systems. Using this API, database
applications can access data stored in database
management systems on a variety of computers even if
each database management system uses a different
data storage format and programming interface. ODBC
is based on the call level interface (CLI) specification of
the X/Open SQL Access Group and was developed by
Digital Equipment Corporation (DEC), Lotus, Microsoft,
and Sybase. Contrast with Java Database Connectivity.

online catalog. In SETCo., shopping on the Internet is
simple with online catalogs. Online catalogs are Web
pages that display items for sale by an online merchant.

Glossary 169

order. An order represents all the instructions and
information needed from the consumer (payer) in order
for the merchant (payee) to collect money.

order amount. The amount of the order.

order fulfillment. Within IBM e-commerce, merchant
systems responsible for shipping or distributing orders
for which payment has been received. It is believed that
an order fulfillment system would query the WebSphere
Commerce Payments to determine what goods are to
be shipped.

order search. Search for a single order or group of
orders, based on a defined set of characteristics.

out of balance. An unsuccessful attempt was made to
balance a batch. All totals do not agree.

P
password. For computer or network security, a
specific string of characters entered by a user and
authenticated by the system in determining the user’s
privileges, if any, to access and manipulate the data and
operations of the system.

payment. In SETCo., a payment is a request by the
merchant to the financial institution to approve all or part
of an order. In many cases, all the money authorized for
collection by the order will be collected in a single
payment. Some payment systems may allow the money
authorized in one order (that is, one set of payment
instructions) to be collected in multiple payments,
depending on the business model.

payment amount. The total payment amount
deposited by the merchant for this order.

payment card. (1) In SETCo., a term used to
collectively refer to credit cards, debit cards, charge
cards, and bank cards issued by a financial institution
and which reflects a relationship between the cardholder
and the financial institution. (2) In e-commerce, a credit
card, debit card, or charge card (a) that is issued by a
financial institution and shows a relationship between
the cardholder and the financial institution and (b) for
which a certificate can be issued from an authenticated
certificate authority.

payment cassette. A cassette that implements an
electronic payment protocol.

payment gateway. (1) In SETCo., a payment gateway
component is a product run by an acquirer or a
designated third party that processes merchant
authorization and payment messages (including
payment instructions from cardholders) and interfaces
with private financial networks. (2) In e-commerce, the
entity that handles transactions between a merchant
and an acquirer.

Payment Gateway Application. In the Payment
Gateway Transaction Manager (PGTM), the component
that processes SET transactions.

Payment Gateway Transaction Manager (PGTM). In
the IBM Payment Gateway, the component that is the
application-level routing switch. It provides the
protocol-level conversion for managing incoming and
outgoing communication, and it provides base services
for the intelligent routing of transactions to applications.
It manages the communication with merchants and
routes transactions among merchants, the Payment
Gateway Application, and the acquirer’s private financial
networks.

payment number. (1) Numeric token. (2) A unique
identifier for a particular payment within an order.

payment server. In e-commerce, the electronic
equivalent of a cash register that organizes and accepts
payment for the goods and services selected for
purchase. A payment server uses other components,
such as a payment gateway and a payment
management system, to complete the financial
transactions.

Payment Suite. The brand name for IBM’s family of
payment products for e-commerce.

PGTM. See Payment Gateway Transaction Manager.

port. In the Internet suite of protocols, a specific
logical connector between the Transmission Control
Protocol (TCP) or the User Datagram Protocol (UDP)
and a higher-level protocol or application. See
well-known port.

port number. In the Internet suite of protocols, the
identifier for a logical connector between an application
entity and the transport service.

primary account number (PAN). In SETCo., the
assigned number that identifies the card issuer and
cardholder. This account number is composed of an
issuer identification number, an individual account
number identification, and an accompanying check digit,
as defined by ISO 7812–1985.

private key. (1) In SETCo., a cryptographic key used
with a public key cryptographic algorithm, uniquely
associated with an entity and not made public. This key
is used to create digital signatures or to decrypt
messages or files. (2) In computer security, a key that is
known only to its owner. Contrast with public key. See
public key cryptography.

protocol. The meanings of, and the sequencing rules
for, requests and responses used for managing a
network, transferring data, and synchronizing the states
of network components.

public key. (1) In SETCo., a cryptographic key used
with a public key cryptographic algorithm, uniquely

170 Programmer’s Guide and Reference

associated with an entity publicly available. It is used to
verify signatures that were created with he matched
private key. Public keys are also used to encrypt
messages or files that can only be decrypted using the
matched private key. (2) In computer security, a key that
is made available to everyone. Contrast with private
key. See public key cryptography.

public key cryptography. In computer security,
cryptography in which public keys and private keys are
used for encryption and decryption.

purge. Within IBM e-commerce, a WebSphere
Commerce Payments verb. To remove all associated
Payments and Credits from a Batch object, treating it as
if it has just been created.

R
random. In SETCo., a value in a set that has equal
probability of being selected from the total population of
possibilities and is, hence, unpredictable.

realm. In the WebSphere family of products, a
database of users, groups, and access control lists. A
user must be defined in a realm to access any resource
belonging to that realm.

recurring payments. In SETCo., a type of payment
transaction initiated by the cardholder that permits the
merchant to process multiple authorizations. There are
two kinds of recurring payments:

1. multiple payments for a fixed amount

2. repeated billings

refund. Identifies the Credit amount in the smallest
denomination of the particular currency used to place
the Order.

registration authority. In SETCo., an independent
third-party organization that processes payment card
applications for multiple payment card brands and
forwards applications to the appropriate financial
institutions.

reintegration. In high-availability cluster
multiprocessing (HACMP), the actions that occur within
the cluster when a component that had previously
detached from the cluster returns to the cluster. These
actions are controlled by the event scripts and when
necessary, by manual intervention.

root certificate. In SETCo., the certificate at the top of
the certificate hierarchy. See certificate chain.

root key hash. In SET programs, a hexadecimal value
that is used to verify the validity of a root certificate. The
hash value is published for a consumer to use when the
software does not recognize the root certificate.

rotating. In high-availability cluster multiprocessing
(HACMP), pertaining to a cluster configuration in which

the cluster node with the highest priority for a particular
resource acquires the resource if the primary node fails
and retains the resource even upon reintegration of the
primary node into the cluster. Contrast with cascading
and concurrent.

RS/6000. A family of workstations and servers based
on IBM’s POWER architecture. They are primarily
designed for running multi-user numerical computing
applications that use the AIX operating system.

S
sale. (1) In the credit card world, a sale occurs when a
transaction is authorized and marked for capture all at
once rather than using a two-step process. (2) Within
IBM e-commerce, a WebSphere Commerce Payments
user interface verb. It means a simultaneous Approve
and Deposit.

sale all. Selects all orders displayed to approve and
move the associated payment directly into deposited
state. The sale function automatically performs an
approve and a deposit on your payment.

sale selected. Selects the orders that you want to
approve and move the associated payment directly into
deposited state. The sale function automatically
performs an approve and a deposit on your payment.

sales transaction. In SETCo., a payment
authorization transaction that allows a merchant to
authorize a transaction and request payment in a single
message to the acquirer.

Secure Electronic Transaction. See SET Secure
Electronic Transaction.

Secure Sockets Layer (SSL). (1) In SETCo., Secure
Socket Layer (SSL) (developed by Netscape
Communications Company) is a standard that encrypts
data between a Web browser and a Web server. SSL
does not specify what data is sent or encrypted. In an
SSL session, all data sent is encrypted. (2) A security
protocol that provides communication privacy. SSL
enables client/server applications to communicate in a
way that is designed to prevent eavesdropping,
tampering, and message forgery. SSL was developed
by Netscape Communications Corp. and RSA Data
Security, Inc.

server. In SETCo., a functional unit that provides
services to one or more clients over a network.
Examples include a file server, a print server, and a mail
server.

servlet. An application program, written in the Java
programming language, that is executed on a Web
server. A reference to a servlet appears in the markup
for a Web page, in the same way that a reference to a
graphics file appears. The Web server executes the

Glossary 171

servlet and sends the results of the execution (if there
are any) to the Web browser. Contrast with applet.

SET. See SET Secure Electronic Transaction.

SET logo. In SETCo., the SET logo or SET Mark is
your assurance that the merchant is using software that
has successfully completed the SET Software
Certification test.

SET cassette. A payment cassette that provides
support for the SET protocol.

SET Secure Electronic Transaction. (1) In SETCo.,
the SET Secure Electronic Transaction™ protocol is an
open industry standard developed for the secure
transmission of payment information over the Internet
and other electronic networks. (2) A specification for
securing payment card transactions over open networks
such as the Internet. SET was developed by Visa,
MasterCard, IBM, and other technology companies.

settle. Within IBM e-commerce, a WebSphere
Commerce Payments verb. An attempt to close a Batch
object and transfer funds. As part of the settling
procedure, there may be some reconciliation or
balancing steps (depending on the cassette and
financial institution policy) to ensure that the merchant
and financial institution agree on the funds being
transferred. If the reconciliation step fails, the batch may
remain in an open state.

settle all. Settles all batches displayed. The batches
can then submit payments and refunds for processing
by a payment processor.

settle batches. Settle batches is used to submit
batches (payments and refunds) for processing by a
payment processor. You can choose to settle one
Batch, or multiple Batches.

settle selected. Settles the batches you selected. The
selected batches can then submit payments and
refunds for processing by a payment processor.

sibling. In SETCo., sibling products are components
which, by virtue of being within the same operating
system family, are closely related to baseline products.
Siblings must be of the same operating system family
as the baseline product from which they were created,
with identical functionality. Refer to the SET Testing
Policies and Procedures for a complete explanation.

SMIT. See System Management Interface Tool.

socket. An endpoint provided by the transport service
of a network for communication between processes or
application programs.

socks-enabled. Pertaining to TCP/IP software, or to a
specific TCP/IP application, that understands the socks
protocol. “Socksified” is a slang term for socks-enabled.

socksified. See socks-enabled.

socks protocol. A protocol that enables an application
in a secure network to communicate through a firewall
via a socks server.

socks port. The port on which the Socks server is
listening.

socks server. A circuit-level gateway that provides a
secure one-way connection through a firewall to server
applications in a nonsecure network.

SSL. See Secure Sockets Layer.

stack. A slang term for the set of protocols that
comprise TCP/IP. The preferred term is TCP/IP.

supervisor. Can perform all payment processing
functions for the merchant.

supervisor mode. In the IBM Payment Gateway, the
processing scheme in which a batched SET message is
presented as a series of individual requests to the
customized exits of the Payment Gateway Application.
Contrast with normal mode.

System Management Interface Tool (SMIT). An
interface tool of the AIX operating system for installing,
maintaining, configuring, and diagnosing tasks.

T
TEC. See Tivoli Enterprise Console.

terminal capture. Within IBM e-commerce, a
CyberCash concept. One of the three processing
models supported by the CyberCash CashRegister
service. In particular, the AcquirerProfile field of an
account may be set to Terminal Capture = 3 , which
indicates that the merchant controls batch processing.

thread. A stream of computer instructions that is in
control of a process. A multi-threaded process begins
with one stream of instructions (one thread) and may
later create other instruction streams to perform tasks.

thread pool. The threads that are being used by or
are available to a computer program.

time approved. The date and time that this Payment
entry was created.

time opened. The time that the batch was created.

time ordered. The time that the order entry was
created.

Tivoli Enterprise Console (TEC). A Tivoli product that
collects, processes, and automatically initiates corrective
actions for system, application, network, and database
events; it is the central control point for events from all
sources. The Tivoli Enterprise Console provides a

172 Programmer’s Guide and Reference

centralized, global view of the network computing
environment; it uses distributed event monitors to collect
information, a central event server to process
information, and distributed event consoles to present
information to system administrators.

Tivoli GEM. See Tivoli Global Enterprise Manager.

Tivoli Global Enterprise Manager (Tivoli GEM). A
Tivoli product that allows system administrators to
graphically monitor, control, and configure applications
residing in distributed and host (S/390) environments
and to use the concept of business systems
management to organize related components, thereby
providing a business perspective for management
decisions. Tivoli Global Enterprise Manager gives
information technology staff a logical view of the
computing environment; this view shows, at a glance,
the status of the multiple applications that comprise the
enterprise’s business system, including application
components, the relationships among and between
components, and the flow of data between the
applications. By providing this view from a business
perspective, Tivoli Global Enterprise Manager enables
system administrators to quickly make determinations
about the business impact of any component failure.
Addressing technology problems from the business
perspective greatly improves the effectiveness of
system administrators and provides a higher level of
service to users.

Tivoli Inventory. A Tivoli product that enables system
administrators to gather hardware and software
information for a network computing environment. It
scans the managed resources and stores inventory
information in the configuration repository.

Tivoli management software. The overall descriptor
for software from Tivoli Systems Inc., which includes
Tivoli Enterprise software (for systems management in a
large organization), Tivoli IT Director (for systems
management in a small or medium organization), and
Tivoli Cross-Site (for the management of e-commerce
systems). Tivoli management software enables
organizations to centrally manage their computing
resources (including the critical applications that drive
business performance and profits) in a simple and
straightforward manner.

Tivoli Ready. Pertaining to a product that has passed
rigorous product certification testing by Tivoli Systems
Inc. to ensure that the product delivers turnkey (or
″out-of-the-box″) integration with Tivoli management
software. A product that has passed this certification
testing carries the Tivoli Ready logo.

transaction. In SETCo., a sequence of one or more
related messages.

trust chain. In SETCo., a synonym for certificate
chain. See 164.

trusted root. In the Secure Sockets Layer (SSL), the
public key and associated distinguished name of a
certificate authority (CA).

U
uniform resource locator (URL). (1) A sequence of
characters that represent information resources on a
computer or in a network such as the Internet. This
sequence of characters includes (a) the abbreviated
name of the protocol used to access the information
resource and (b) the information used by the protocol to
locate the information resource. For example, in the
context of the Internet, these are abbreviated names of
some protocols used to access various information
resources: http , ftp , gopher , telnet , and news ; and
this is the URL for the IBM home page:
http://www.ibm.com . (2) The address of an item on the
World Wide Web. It includes the protocol followed by
the fully qualified domain name (sometimes called the
host name) and the request. The Web server typically
maps the request portion of the URL to a path and file
name. For example, if the URL is
http://www.networking.ibm.com/nsg/nsgmain.htm , the
protocol is http ; the fully qualified domain name is
www.networking.ibm.com; and the request is
/nsg/nsgmain.htm.

URL. See uniform resource locator.

user exit routine. A user-written routine that receives
control at predefined user exit points. User exit routines
can be written in assembler or a high-level language.

V
virtual sales slip. In SETCo., detailed information on
a financial transaction which is generated by the
merchant’s online store and downloaded to your digital
wallet. Typical items contained in the virtual sales slip
are confirmation of your order, shipping details, tax (if
applicable), and total amount of sale.

virtual store. An interactive simulation of a store on
the World Wide Web.

void payment. Within IBM e-commerce, a verb
meaning to nullify or cancel a payment operation (that
is, to make it as if it never happened).

W
wallet. In the IBM Payment Suite, software that
enables a user to make approved payments to
authenticated merchants over public networks and to
manage payment card accounts and purchases.

WAR file. A Web Archive (WAR) file is a Java archive
file used to store one or more of the following: servlets;
JavaServer Pages (JSP) files; utility classes; static

Glossary 173

documents (such as HTML files, images and sound);
client-side applets, beans and classes; descriptive
meta-information. Its standard file extension is .war.
WAR files are used to package Web modules.

Web. See World Wide Web.

Web browser. (1) Within IBM e-commerce, software
running on the cardholder processing system that
provides interface to public data networks. (2) A client
program that initiates requests to a Web server and
displays the information that the server returns.

Web browser plug-in. In SETCo., software installed
on the cardholder’s computer used to add functions to
the Web browser.

webmaster. The person who is ultimately responsible
for managing and maintaining a particular Web site.

Web page. Any document that can be accessed by a
uniform resource locator (URL) on the World Wide Web.
Contrast with home page.

Web server. A server that is connected to the Internet
and is dedicated to serving Web pages.

Web site. A Web server that is managed by a single
entity (an organization or an individual) and contains
information in hypertext for its users, often including
hypertext links to other Web sites. Each Web site has a
home page. In a uniform resource locator (URL), the
Web site is indicated by the fully qualified domain name.
For example, in the URL
http://www.networking.ibm.com/nsg/nsgmain.htm , the
Web site is indicated by www.networking.ibm.com ,
which is the fully qualified domain name.

WebSphere. Pertaining to a family of IBM software
products that provide a development and deployment
environment for basic Web publishing and for
transaction-intensive, enterprise-scale e-business
applications.

well-known port. In the Internet suite of protocols,
one of a set of preassigned protocol port numbers that
address specific functions used by transport-level
protocols such as the Transmission Control Protocol
(TCP) and the User Datagram Protocol (UDP). The File
Transfer Protocol (FTP) and the Simple Mail Transfer
Protocol (SMTP), for example, use well-known port
numbers.

World Wide Web (WWW). A network of servers that
contain programs and files. Many of the files contain
hypertext links to other documents available through the
network.

WWW. See World Wide Web.

X
XML. See Extensible Markup Language.

Numerics
2KP transaction. A SET transaction in which the
cardholder messages are unsigned and two key pairs
(one for the merchant and one for the payment
gateway) are used for encryption.

3KP transaction. A SET transaction in which the
cardholder messages are unsigned and three key pairs
(one for the merchant, one for the payment gateway,
and one for the cardholder) are used for encryption.

174 Programmer’s Guide and Reference

Index

Special Characters
(CAL), Java Client API Library 37
(Document Type Definition), DTD 12

A
About command 60
AcceptPayment command 60
access control, role-based 14
Account object

attributes 124
Address Verification Service 22
AmountExp10 keyword 62
AMOUNTEXP10 parameter 62
Approve command 63
ApproveReversal command 64
authentication information 13
authentication of users 14
AVS 22
AVS common codes 117
AVS result codes

mapping to common AVS codes 117
mapping to CyberCash cassette 117
mapping to SET cassette 117

B
batch 111
Batch

account association 119
attributes 119

batch states 120
batch, defined 3
BatchClose command 64
BatchOpen command 65
BatchPurge command 66
building profiles 27
buy page information 25
buyer, defined 3

C
CAL 37

required files 43
CAL program

format 42
CancelOrder command 66
capabilities of role 16
cashier

errors 23
exceptions 23
trace 23

Cashier
introduction 19

cashier object, creating 29
cashier profiles, writing 23
cashier, defined 3

Cassette object 122
Cassette-specific event 45
CassetteControl command 67
cassettes, defined 3
character sets 10
character, Unicode 11
checkPayment 30
class, PaymentServerClient 42
class, PSObject 38
classes, Client 37
Client API Library 37
Client API Library (CAL) 37
Client classes 37
Close Method 42
CloseOrder command 68
codes, currency 62
codes, primary return 11, 129
codes, secondary return 11

types 129
collection 59
CollectPayment 25, 30
Command 25

required value 59
commands

About 60
AcceptPayment 60
Approve 63
ApproveReversal 64
BatchClose 64
BatchOpen 65
BatchPurge 66
CancelOrder 66
CassetteControl 67
CloseOrder 68
CreateAccount 69
CreateMerchant 70
CreateMerchantCassetteObject 71
CreateMerEventListener 72
CreatePaySystem 72
CreateSNMEventListener 73
CreateSystemCassetteObject 74
DeleteAccount 74
DeleteBatch 75
DeleteMerchant 76
DeleteMerchantCassetteObject 76
DeleteMerEventListener 77
DeletePaySystem 77
DeleteSNMEventListener 78
DeleteSystemCassetteObject 78
Deposit 79
DepositReversal 80
ModifyAccount 80
ModifyCassette 82
ModifyMerchant 84
ModifyMerchantCassetteObject 85
ModifyMerEventListener 85
ModifyPayServer 86
ModifyPaySystem 87

175

commands (continued)
ModifySNMEventListener 88
ModifySystemCassetteObject 88
ModifyUserStatus 89
QueryAccounts 90
QueryBatches 90
QueryCassette 92
QueryCredits 93
QueryEventListeners 95
QueryMerchants 96
QueryOrders 96
QueryPayment 99
QueryPaymentServer 101
QueryPaySystems 101
QueryUsers 102
ReceivePayment 105
Refund 107
RefundReversal 108
SetUserAccessRights 108

commands, Query 12
commands, WebSphere Commerce Payments 9
CreateAccount command 69
CreateMerchant command 70
CreateMerchantCassetteObject command 71
CreateMerEventListener 72
CreatePaySystem command 72
CreateSNMEventListener command 73
CreateSystemCassetteObject command 74
creation, order

required keywords 62
credit 111
Credit object

attributes 118
credit, defined 3
Credits

states 119
criteria, search 59
currencies, ISO 62
currency codes 62
currency codes, ISO 147

D
DeleteAccount command 74
DeleteBatch command 75
DeleteMerchant command 76
DeleteMerchantCassetteObject command 76
DeleteMerEventListener command 77
DeletePaySystem command 77
DeleteSNMEventListener command 78
DeleteSystemCassetteObject command 78
Deposit command 79
DepositReversal command 80
documents, XML 11
DTD (Document Type Definition) 12

E
encoding, URL

rules 10
escape sequence 10

event
contents 45

Event Listener object
attributes 125

event listener, defined 3
event listeners

types 47
Event ListenerURL 47
Event Notification

Event ListenerURL parameter 47
event notification service 45

event types 45
EventType 45
extensions

writing 32

F
financial queries 59
Framework objects 111
framework, defined 3

H
HTTP Body

encoding 10
format rules 10

HTTP header
additional header fields 10
calculated values 9
required field values 9

HTTP POST messages 9
HTTP POST requests 59

I
information, authentication 13
instances, multiple 59
integration 19

designing 20
writing 27

ISO currencies 62
ISO currency codes 147
issue command method 40
issueCommand 30

J
JAVA Client API Library 37
Java Client API Library, (CAL) 37

K
keyCollection 59
keyword-value pairs 9

L
leading zeros 59
locales 10

176 Programmer’s Guide and Reference

M
Merchant listeners 47
Merchant object

attributes 123
merchant program

written for CAL 42
merchant software, defined 3
merchant, defined 3
messages, HTTP POST 9
modifiers, search 59
ModifyAccount command 80
ModifyCassette command 82
ModifyMerchant command 84
ModifyMerchantCassetteObject command 85
ModifyMerEventListener command 85
ModifyPayServer command 86
ModifyPaySystem command 87
ModifySNMEventListener command 88
ModifySystemCassetteObject command 88
ModifyUserStatus command 89
multiple instances 59

N
name-value pairs

guidelines 59
Network management event 45
non-merchant listeners 47
Notices 159

O
object

how defined 111
state 113

object, Account
attributes 124

object, Cassette 122
object, Credit

attributes 118
object, Event Listener

attributes 125
object, Merchant

attributes 123
object, Order

attributes 112
object, Payment

attributes 115
object, Payment System

attributes 124
object, user

attributes 126
ObjectID 45
objects, Framework 111
objects, payment 111
operational parameters 59
order 111
order creation

required keywords 62
Order life cycle 111

Order object
attributes 112

order, defined 4

P
pairs, keyword-value 9
pairs, name-value

guidelines 59
parameter, RETURNATMOST 59
parameters, operational 59
payment 111
payment initiation message 105
Payment object

attributes 115
payment objects 111
Payment System object

attributes 124
payment, defined 4
Payments

states 116
payments, split 117
PaymentServerClient

arguments 38
subclasses 39

PaymentServerClient class 42
PaymentServerResponse 41
PaymentServerSSLClient 39
permissions, role 16
polling loop 45
POST messages, HTTP 9
PRCs 129
primary return codes 11, 129
profiles, building 27
profiles, cashier, writing 23
program, CAL

format 42
program, merchant

written for CAL 42
PSObject class 38

Q
queries, financial 59
query commands

rules 59
Query commands 12
QueryAccounts command 90
QueryBatches command 90
QueryCassette command 92
QueryCredits command 93
QueryEventListeners command 95
QueryMerchants command 96
QueryOrders command 96
QueryPayment command 99
QueryPaymentServer command 101
QueryPaySystems command 101
QueryUsers command 102

Index 177

R
realms

design points 50
implementing 52
properties 50
provided with WebSphere Commerce Payments 49
tracing 53
writing a new realm 50

ReceivePayment command 105
Refund command 107
RefundReversal command 108
relative object states 11
requests for comments, RFCs

URL access 157
requests, HTTP POST 59
requests, WebSphere Commerce Payments 9
response class 37
result codes, AVS 117
return codes

location of 129
new structure for Version 1.2 129
overview 129
primary 129
secondary 131

return codes, primary 11, 129
return codes, secondary 11, 129
RETURNATMOST parameter 59
RFCs, requests for comments

URL access 157
role capabilities 16
role permissions 16
role, user’s 14

S
search criteria 59
search modifiers 59
secondary return codes 11, 129
SET

initiating a transaction 105
SetUserAccessRights command 108
socksHost 38
socksPort 38
Split Payments 117
SRCs 131
SSL connections 11
State change event 45
states, batch 120
states, relative object 11

T
terms, WebSphere Commerce Payments 3
Timestamp 45
trace, cashier 23
traces 83
TRACESETTING keyword 83
trademarks 160

U
Unicode character 11
URL encoding

rules 10
user object

attributes 126
user’s role 14
userids, creating 102

W
WebSphere Commerce Payments

terms 3
WebSphere Commerce Payments About object 121
WebSphere Commerce Payments Administration

object 121
WebSphere Commerce Payments commands 9

example 9
WebSphere Commerce Payments requests 9
writing cashier profiles 23
writing extensions 32
writing your integration 27

X
XML documents 11

Z
zeros, leading 59

178 Programmer’s Guide and Reference

Readers’ Comments — We’d Like to Hear from You

IBM WebSphere Commerce Payments for Multiplatforms
Programmer’s Guide and Reference
Version 3.1

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Software Reengineering
Department G7IA / Bldg 503
P.O. Box 12195
Research Triangle Park, NC
27709-9990

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in U.S.A.

	Contents
	Preface
	Conventions in this book
	Additional information

	Part 1. Introduction
	Chapter 1. WebSphere Commerce Payments concepts
	Understanding WebSphere Commerce Payments terms
	What's new for release 3.1

	Part 2. Programmer's Guide
	Chapter 2. WebSphere Commerce Payments commands
	WebSphere Commerce Payments requests
	The HTTP body
	Character set issues

	Communication
	WebSphere Commerce Payments responses
	Formatting commands
	AcceptPayment
	QueryOrders with Payments

	WebSphere Commerce Payments command security
	Users
	Authentication
	Role-based access control
	Assigning a user's access permissions

	Role permissions table

	Chapter 3. Cashier
	Introduction to the Cashier
	Cashier profiles
	Designing your integration
	Managing Cashier profiles
	Mapping merchant numbers
	Mapping order numbers
	Designing profiles
	WebSphere Commerce Payments Configuration
	Profile parameter sources
	Buy page information
	Publish profile interface

	AVS
	Trace
	Error log

	Writing cashier profiles
	Basic Profile Structure
	WebSphere Commerce Payments configuration in profiles
	Select statements
	CollectPayment
	Command
	Buy Page Information
	Parameters
	Constant parameters
	Variable parameters
	Database parameters
	Extension parameters

	Writing your integration
	Building profiles
	WebSphere Commerce Paymentsconfiguration
	Parameters and SelectStatements
	Buy Page information

	Including necessary files
	Creating a Cashier object
	CollectPayment
	Creating orders in the WebSphere Commerce Payments – issueCommand()
	Checking the status of an order – checkPayment()
	Using BuyPageInformation
	Tracing
	Exceptions
	Writing extensions

	SampleCheckout application
	Overview
	Requirements
	Configuration
	SampleCheckout Profiles
	Buy page information
	Profile environment variables

	Chapter 4. Client API Library (CAL)
	CAL Public Classes
	Creating a PaymentServerClient
	Preparing the iSeries for SSL Support
	Issuing WebSphere Commerce Paymentscommands
	Specifying additional information in the HTTP Header

	Processing responses from WebSphere Commerce Payments
	Process returned objects

	Closing the PaymentServerClient
	Sample CAL program
	Installing Files Required by CAL
	For Machines that don't have WebSphere Commerce Payments Installed

	Chapter 5. Event notification
	Event types and contents
	State change event
	Cassette-specific event
	Network management event

	Registering events
	Event ListenerURL parameter

	Chapter 6. WebSphere Commerce Payments realm support
	Writing a new WebSphere Commerce Payments realm
	Design points
	Realm name
	Realm properties
	Authentication mechanism
	User interface single-signon
	Realm scalability
	Realm case-sensitivity

	Realm implementation
	String getRealmName()
	void init(Properties properties) throws RealmException
	String getAuthenticatedUser(HttpServletRequest request) throws RealmException
	boolean isUserInRealm(String userName, String userFilter) throws RealmException
	UserList getUserNames(String userFilter) throws RealmException

	Tracing
	Linking directly into the user interface
	Authentication by the user interface

	Testing

	SampleRealm
	How to deploy the new realm

	Part 3. Programmer's Reference
	Chapter 7. WebSphere Commerce Payments command reference
	Query commands
	About
	AcceptPayment
	Using the AmountExp10 keyword

	Approve
	ApproveReversal
	BatchClose
	BatchOpen
	BatchPurge
	CancelOrder
	CassetteControl
	CloseOrder
	CreateAccount
	CreateMerchant
	CreateMerchantCassetteObject
	CreateMerEventListener
	CreatePaySystem
	CreateSNMEventListener
	CreateSystemCassetteObject
	DeleteAccount
	DeleteBatch
	DeleteMerchant
	DeleteMerchantCassetteObject
	DeleteMerEventListener
	DeletePaySystem
	DeleteSNMEventListener
	DeleteSystemCassetteObject
	Deposit
	DepositReversal
	ModifyAccount
	ModifyCassette
	Trace settings

	ModifyMerchant
	ModifyMerchantCassetteObject
	ModifyMerEventListener
	ModifyPayServer
	ModifyPaySystem
	ModifySNMEventListener
	ModifySystemCassetteObject
	ModifyUserStatus
	QueryAccounts
	QueryBatches
	QueryCassette
	QueryCredits
	QueryEventListeners
	QueryMerchants
	QueryOrders
	QueryPayments
	QueryPaymentServer
	QueryPaySystems
	QueryUsers
	Optional parameters
	Valid combination of parameters
	Access control details

	ReceivePayment
	Refund
	RefundReversal
	SetUserAccessRights
	Access control rules for merchant administrators

	Chapter 8. WebSphere Commerce Payments data
	WebSphere Commerce Payments payment objects
	Order
	Order states
	Payments
	Payment states
	Split Payments
	AVS common codes
	Credits
	Credit states
	Batches
	Batch states

	WebSphere Commerce Payments About objects
	Payment Server About
	Cassette About

	WebSphere Commerce Payments administration objects
	Payment Server
	Cassette
	Merchant
	Payment System
	Account
	Event Listener
	User

	Part 4. Appendixes
	Appendix A. WebSphere Commerce Payments return codes
	Primary return codes (PRCs)
	Secondary return codes (generic)

	Appendix B. ISO currency codes
	Appendix C. Obtaining requests for comments
	Appendix D. Notices
	Trademarks

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

