
IBM ILOG Solver

Debugger User’s Manual

June 2009

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

http://www.ibm.com/legal/copytrade.shtml

C O N T E N T S
Contents

Preface Before You Begin . vii

About IBM ILOG Solver Debugger .vii

What You Need to Know .vii

What This Manual Contains . viii

Notation Used in This Manual. viii

IBM software support handbook . viii

Accessing software support .viii

Contact via web . ix

Contact via phone . ix

Chapter 1 Debugging and Performance Tuning for Solver-based Applications 1

Installation .2

Prerequisites for Using Solver Debugger. .2

The Distribution Directories .2

Examples Provided .3

Instrumenting Your Own Code .5

Customizing a Pure Solver C++ Application .5

Customizing a Pure Scheduler C++ Application .6

Setting Up Solver Debugger .8

Launching the GUI .8

Connecting an Application .9
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L iii

C O N T E N T S
Debugger Commands .11

Visualizing the Search .12

The Search Tree .13

Monitoring Decisions .16

Monitoring Solution Restoring .19

Monitoring Restart .19

Monitoring Local Search .19

Monitoring Nested Search .20

Visualizing Propagation .21

Events .21

Using the Propagation Spy .21

Tracing the Initial Propagation .23

Tracing the Propagation at a Specific Node. .23

Visualizing Variable Domains. .24

Visualizing Activity Domains (Scheduler-Specific) .27

Combining Search Tree Visualization and Propagation Information29

Creating the Christmas Tree .29

Interpreting the Christmas Tree .30

Using the Constraint Profiler .30

Using the Drawing Board .31

Basic Use of the Drawing Board .32

Advanced Use of the Drawing Board .34

Improving your Application .38

Analyzing Right Subtrees. .38

Tutorial: Tuning the Propagation in the debuggolomb Example .40

Solver Debugger API . 45

IlcAddOnDebugger. .47

IlcDebugger .49

IlcDrawingBoard .53

IlcSchedulerDebugger .63

IlcSolverDebugger .65
iv I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

C O N T E N T S
IlcVisualizeOption. .69

Index . 71
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L v

C O N T E N T S
vi I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

P R E F A C E
Before You Begin

This manual provides you with all the information you need to use IBM® ILOG® Solver
Debugger.

About IBM ILOG Solver Debugger

The IBM® ILOG® Solver Debugger is composed of a GUI and a set of C++ libraries that
enable you to debug and tune the performance of C++ applications written on top of IBM
ILOG Solver and IBM ILOG Scheduler.

What You Need to Know

This manual assumes that you are familiar with the UNIX or PC environment in which you
are going to use Solver Debugger, including its particular windowing system.
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L vii

What This Manual Contains

Chapter 1, Debugging and Performance Tuning for Solver-based Applications, shows
how you can use the graphical features of Solver Debugger to debug and tune the
performance of C++ applications.

Notation Used in This Manual

The following typographic conventions apply throughout this manual:

◆ code extracts and file names are written in this typeface.

◆ entries to be made by the user are written <in angle brackets>

◆ commands appear as: File>Open.

IBM software support handbook

This guide contains important information on the procedures and practices followed in the
service and support of your IBM products. It does not replace the contractual terms and
conditions under which you acquired specific IBM Products or Services. Please review it
carefully. You may want to bookmark the site so you can refer back as required to the latest
information. We are interested in continuing to improve your IBM support experience, and
encourage you to provide feedback by clicking the Feedback link in the left navigation bar
on any page. The "IBM Software Support Handbook" can be found on the web at

http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html

Accessing software support

When calling or submitting a problem to IBM Software Support about a particular service
request, please have the following information ready:

IBM Customer Number

The machine type/model/serial number (for Subscription and Support calls)

Company name

Contact name

Preferred means of contact (voice or email)

Telephone number where you can be reached if request is voice
viii I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html

Related product and version information

Related operating system and database information

Detailed description of the issue

Severity of the issue in relationship to the impact of it affecting your business needs

Contact via web

Open service requests is a tool to help clients find the right place to open any problem,
hardware or software, in any country where IBM does business. This is the starting place
when it is not evident where to go to open a service request.

Service Request (SR) tool offers Passport Advantage clients for distributed platforms online
problem management to open, edit and track open and closed PMRs by customer number.
Timesaving options: create new PMRs with prefilled demographic fields; describe problems
yourself and choose severity; submit PMRs directly to correct support queue; attach
troubleshooting files directly to PMR; receive alerts when IBM updates PMR; view reports
on open and closed PMRs.

You can find information about assistance for SR at http://www.ibm.com/software/support/
help-contactus.html.

System Service Request (SSR) tool is similar to Electronic Service request in providing
online problem management capability for clients with support offerings in place on System
i, System p, System z, TotalStorage products, Linux, Windows, Dynix/PTX, Retail, OS/2,
Isogon, Candle on OS/390 and Consul z/OS legacy products.

IBMLink - SoftwareXcel support contracts offer clients on the System z platform the
IBMLink online problem management tool to open problem records and ask usage questions
on System z software products. You can open, track, update, and close a defect or problem
record; order corrective/preventive/toleration maintenance; search for known problems or
technical support information: track applicable problem reports: receive alerts on high
impact problems and fixes in error; and view planning information for new releases and
preventive maintenance.

Contact via phone

If you have an active service contract maintenance agreement with IBM , or are covered by
Program Services, you may contact customer support teams via telephone. For individual
countries, please visit the Technical Support section of the IBM Directory of worldwide
contacts via http://www.ibm.com/planetwide/.
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L ix

http://www.ibm.com/planetwide/
https://www-304.ibm.com/support/electronic/portal/upr?category=2&locale=en_us
https://www-01.ibm.com/software/support/probsub.html
https://www14.software.ibm.com/webapp/set2/ssr/slprob
http://ibm.com/ibmlink

x I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

C H A P T E R
1

Debugging and Performance Tuning
for Solver-based Applications

The IBM® ILOG® Solver Debugger is composed of a GUI and a set of C++ libraries. The
C++ libraries enable a C++ application written on top of IBM ILOG Solver or IBM ILOG
Scheduler to connect to the Debugger GUI in order to monitor, trace, and debug its execution
or tune its performance. Solver Debugger contains graphic facilities to monitor the search
(Search Tree), the propagation (Propagation Spy and Variable Domains), and to combine
search and propagation information (Christmas Tree). It provides a Constraint Profiler to
obtain statistics, by constraint, about constraint calls and efficiency in terms of domain
reduction. It also enables you to create your own 2D animated graphic representation of the
problem being solved (Drawing Board).

This chapter explains how to connect and use Solver Debugger. It includes the following
sections:

◆ Installation

◆ Instrumenting Your Own Code

◆ Visualizing the Search

◆ Visualizing Propagation

◆ Combining Search Tree Visualization and Propagation Information

◆ Using the Constraint Profiler
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 1

◆ Using the Drawing Board

◆ Improving your Application

Installation

In order to start using Solver Debugger, you need to know:

◆ Prerequisites for Using Solver Debugger

◆ The Distribution Directories

◆ Examples Provided

Prerequisites for Using Solver Debugger

To use the Debugger library, you need:

◆ IBM® ILOG® Solver

◆ IBM ILOG Concert

The only add-on for which specific features are supported is IBM ILOG Scheduler.

The Distribution Directories

The Solver Debugger and its add-on the Scheduler Debugger are to be installed in the same
root directory as the Solver product and the Scheduler product respectively (typically ilog/
solver and ilog/sched).

The distribution structure includes the following directories, where <solverdir>
represents your Solver installation directory and <scheddir> your Scheduler installation:

◆ <solverdir>/bin/<platform>/<libformat>

contains the Solver Debugger GUI, debugger.exe

◆ <solverdir>/help

contains the online documentation

◆ <solverdir>/examples/<platform>/<libformat>/debug*

contains C++ examples based on Solver

◆ <solverdir>/examples/src/debug*

contains C++ source files for the examples

◆ <solverdir>/include/ilsolver

contains the additional include files needed for using the debugger with Solver
2 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

◆ <solverdir>/lib

contains the libraries ildebug.lib and ilsolverdebug.lib

◆ <scheddir>/examples/<platform>/<libformat>/debug*

contains C++ examples based on Scheduler

◆ <scheddir>/examples/src/debug*

contains C++ source files for the examples

◆ <scheddir>/include/ilsched

contains the additional include files needed for using the debugger with Scheduler

◆ <scheddir>/lib

contains the additional library ilschedulerdebug.lib

Examples Provided

Before using the Debugger facilities on your application, you can become familiar with them
by testing the examples provided as part of the Solver Debugger distribution. All the
examples contain Ilo objects.

To compile the examples on Solaris and Linux platforms, use the command:

make debuggersamples

in the directory:

<product>/examples/<platform>/<libformat>

Solver Examples

◆ debugnqueen

This is a pure Solver C++ example. This well-known problem involves placing n queens
on a chessboard in such a way that none of them can capture any other using the
conventional moves allowed to a queen. In other words, the problem is to select n squares
on a chessboard so that any pair of selected squares is never aligned, either vertically or
horizontally. This example uses a Drawing Board to represent the chessboard.

◆ debuggolomb

This example is well-suited to propagation analysis with different levels of pruning for
the alldiff constraint. It is a good example of the use of the Christmas Tree and the
Propagation Spy. The goal of the debuggolomb problem is to find a set of values
representing the graduations of a rule such that the difference between each pair of
graduations is always distinct, and such that the length of the rule is minimal.

◆ debuglsknight
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 3

This example shows how to use the Debugger with local search. It consists in placing as
few knights as possible on a chessboard in such a way that each square is controlled—
attacked or occupied—by at least one knight.
4 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

◆ debugpheasant

This example is useful for tracing the Initial Propagation. This problem consists in
finding the number of pheasants and rabbits in a field, knowing that there are 20 heads
and 56 legs overall.

Scheduler Example

◆ debugjobshopm

The aim of this problem is to schedule a number of jobs on a set of machines in order to
minimize completion time, called makespan. Each job is a sequence of tasks and each
task represents a machine. This example enables you to see the Activity Domains
window, the Gantt chart and specific scheduling events in the Propagation Spy. In the
code of debugjobshopm you will find examples of conditional breakpoints, Debugger
disabling, and the automatic result display switched off.

Instrumenting Your Own Code

This section explains how to customize the Debugger for Solver or Scheduler applications.

◆ Customizing a Pure Solver C++ Application

◆ Customizing a Pure Scheduler C++ Application

Customizing a Pure Solver C++ Application

To customize the Debugger for a pure Solver C++ application, proceed as follows. You need
one include file before the solver declaration:

#include <ilsolver/solverdebugger.h>

IloEnv env;
try {
 IloSolver solver(env);

1. Instantiate the Debugger and let it connect your application to the GUI before model
extraction.

IlcSolverDebugger debugger(solver);

2. State the model using Ilo modeling objects.

IloModel model(env);

3. Name your Ilo objects (setName API).

myVar.setName("myVar");
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 5

4. Register the variables you are interested in for model browsing, domain monitoring, etc.
(Optional).

debugger.registerVariable(myVar);

If you want domain visualization, specify it.

debugger.registerVariable(myVar2, IloTrue, IloTrue, IlcVisualizeDomain);

5. Extract the model Ilo objects as Ilc objects.

solver.extract(model);

6. Initialize the Debugger for each running session and solve by placing your optimization
loop inside the debugging loop.

 while (debugger.initialize()) { // debugging loop
 solver.startNewSearch(myGoal);
 while (solver.next()) { // optimization loop
 ostrstream text;
 text << solver.getValue(makespan)<< endl << ends;
 debugger.sendSolution(text.str());
 }
 solver.endSearch();
 }

7. Close the connection to the GUI and release memory.

 debugger.close();
} catch (IloException& ex) {
 cerr << "Error: " << ex << endl;
}
env.end();

Customizing a Pure Scheduler C++ Application

To customize the Debugger for a pure Scheduler C++ application, proceed as follows. You
need two include files before the solver declaration:

#include <ilsolver/solverdebugger.h>
#include <ilsched/schedulerdebugger.h>

try {
 IloEnv env;
 IloSolver solver(env);

1. Instantiate the Debugger.

 IlcSolverDebugger debugger(solver);
6 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

2. State the model using Ilo modeling objects.

 IloModel model(env);
 IloSchedulerEnv schedEnv(env);
 IloInt horizon = 0;
 IloInt k;
 for (k = 0; k < numberOfActivities; k++)
 horizon += durations[k];

3. Name your Ilo objects (setName API).

4. Create a Scheduler Debugger to handle specific panels.

 IlcScheduler schedule(solver);
 IlcSchedulerDebugger schedDebug(debugger,schedule);

5. Register the Ilo objects with the Solver Debugger and the Scheduler Debugger.

 debugger.registerVariable(makespan,IloTrue,IloTrue,IlcVisualizeDomain);
 schedDebug.registerActivity(activity,IloTrue,IloTrue,IlcVisualizeDomain);

6. Inform the Activity Panel of the horizon to display.

 schedDebugger.setHorizon(horizon);

7. Extract the model Ilo objects as Ilc objects.

 solver.extract(model);

8. Initialize the Debugger for each running session and solve by placing your optimization
loop inside the debugging loop.

 while (debugger.initialize()) { // debugging loop
 solver.startNewSearch(myGoal);
 while (solver.next()) { // optimization loop
 ostrstream text;
 text << solver.getValue(makespan)<< endl << ends;
 debugger.sendSolution(text.str());
 }
 solver.endSearch();
 }
 env.end();

9. Close the connection to the GUI and release memory.

 debugger.close();
 } catch (IloException& ex) {
 cerr << "Error: " << ex << endl;
}

Warning: Make sure that you set the global horizon for every activity:
 schedEnv.setHorizon(horizon);
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 7

Setting Up Solver Debugger

In this section you will see how to launch the Debugger GUI and connect an application to it.

◆ Launching the GUI

◆ Connecting an Application

Launching the GUI
In a command prompt window, go to the bin subdirectory where Solver is installed and type:

debugger

On Windows you can use the shortcut provided in:

Start Menu>ILOG>ILOG Solver>ILOG Solver Debugger

By default, the port used for communication between the GUI and your application is 4011.

If you want to use a specific port number, pass, for example, -listensocket 8000 as an
argument.

The GUI starts in initializing mode with a red patch in the bottom right corner of the
window. Solver Debugger is waiting for your application to connect.
8 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

Connecting an Application

To connect an example of an application, go to the directory:

<solverdir>/examples/

Compile and link a debugger example (such as debugnqueen). To start the application:

◆ either select File > Launch application

◆ or run it from the command line.

The GUI switches to idle mode with a blue patch in the bottom right corner of the window.
The Run button is now active. The GUI is ready for you to debug the application.

Note: When using the debuggolomb example, pass it two integer parameters: the size of the
problem and the filtering level of the alldiff constraint.
debuggolomb 6 0 (0 = basic filtering level)
debuggolomb 6 1 (1 = medium filtering level)
debuggolomb 6 2 (2 = extended filtering level)
You can select the arguments before starting the application with File > Arguments.
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 9

Connecting Two Applications at the Same Time

To load two applications at the same time, proceed as follows:

1. Launch two Debugger GUIs with different socket port numbers, for example:

debugger -listensocket 5000 &

debugger -listensocket 5001 &

2. Connect each application to a different port number giving extra arguments to the
constructor IlcSolverDebugger.

In one application, type:

IlcSolverDebugger debugger(solver, IloTrue, IloFalse, 1.0, 5000);

In the other application, type:

IlcSolverDebugger debugger(solver, IloTrue, IloFalse, 1.0, 5001);

Connecting an Application Remotely

To load an application remotely, give the machine name and the port number expected by the
GUI to the constructor IlcSolverDebugger.

IlcSolverDebugger debugger(solver, IloTrue, IloFalse, 1.0, 4011,

 "NameOfMachineOnWhichTheGUIisRunning");

Note: To activate or deactivate the Debugger without recompiling, pass IloTrue or
IloFalse as a second argument to the IlcSolverDebugger constructor based on a
command line argument of your application.
10 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

Debugger Commands

Once you load an application, the Run button becomes active in the Standard Tool Bar.
Your application has built the optimization model and is waiting for you to trigger the
solving by pressing Run. The run session is blocked in the
IlcSolverDebugger::initialize() method.

After clicking on the Run button, the Execution Tool Bar appears. Your application returns
from the initialize() method and solving starts.

These are the buttons that you need to control the Debugger.

● Abort

Stops the current computation.

● Break

Interrupts the execution.

● Continue

Continues the execution and stops tracing the propagation.

● Step Into

Steps into a node and traces the propagation within the node.

● Step Over

Steps over a node, that is, skips the propagation information within that node, and stops
at the beginning of the next node visit.

● Step Out

Steps out of a node and avoids going through all the details of the propagation.

● Continue Trace Till Next Node

Traces the propagation events occurring at the current node, and stops at the beginning of
the next node visit.
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 11

● View Search Tree

Displays a graphic representation of the search, allowing you to visualize each step of the
execution.

● Decision Stack

Inspects the list of decisions taken, starting from the root node to the selected node.

● Inspect Current Node

Inspects the current choice point in the execution.

● Propagation Spy

Displays the trace of propagation events and the result of the propagation.

● View Constraint Profiler

Computes profiling statistics and displays the Constraint Profiler for the current state of
computation.

Visualizing the Search

Solver Debugger provides you with a graphic representation of the search, called the Search
Tree. The Search Tree allows you to visualize each step of the execution of your application.
This section covers the following points:

◆ The Search Tree

◆ Monitoring Decisions

◆ Monitoring Solution Restoring

◆ Monitoring Restart

◆ Monitoring Local Search

◆ Monitoring Nested Search
12 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

The Search Tree

When you first launch an execution, a drawing of the tree appears node by node in the
Search Tree viewer. If necessary, interrupt the execution with the Break button. The
Debugger will stop at the beginning of a node visit.

If you previously closed the search tree views you can redisplay them by selecting the menu
item View > View Search Tree, or by clicking on the corresponding button in the tool
bar.

Figure 1.1

Figure 1.1 The Search Tree for the debuggolomb problem with 5 collapsed subtrees
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 13

The Node Life Cycle

There are five node colors that correspond to the status of a node in the Search Tree, as
shown in the graphic below:

While the yellow arrow points to the root node, the algorithm is performing the initial
domain reduction and the Initial Goal successively.

Interacting with a Node

Right-click on a node to:

◆ add or remove breakpoints

◆ expand or collapse a subtree

◆ open the node inspector

The node inspector contains a trace of the decisions. The node inspector also contains
statistics on the number of propagation events that took place and the domain reduction
performed at the node currently being inspected.
14 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

Search Tree Mode Selectors

Use Search Tree mode selectors to choose the view you want for the Search Tree.

● Selection mode

Click on the arrow button, then double-click on a node belonging to the current
branch.

● Elastic zoom mode

Click on this button then, with the left mouse button, trace a rectangle around the
element(s) you want to enlarge. When you release the mouse button, the enlarged
image fills the window.

● Zoom in

Click on the button with a + sign, then click in the Search Tree window. The image is
increased by a factor of 2 each time you click.

● Zoom out

Click on the button with a – sign, then click in the Search Tree main window. The
image is decreased by a factor of 2 each time you click.

● View whole content

Click on this button then click in the Search Tree window. The whole tree becomes
visible.

● Create new window

Click on this button, then trace a rectangle around the element(s) you want to view in
another window. A new dockable window is created, with a zoom level defined by the
rectangle.
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 15

Monitoring Decisions

You can use several visualization tools to monitor the decisions within your application: the
Node Inspector, the Propagation Spy, the Decision Stack, or a tooltip on the Search Tree.

Figure 1.2

Figure 1.2 Decision and propagation at a search tree node for the debugnqueen problem

The interface shown above contains the elements used to monitor the decisions taken at each
node in the search tree:

Current Node Inspector

Search Tree

Propagation Spy
16 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

Current Node Inspector

To use the Current Node Inspector docked panel, proceed as follows:

1. Select Stepping in Model from the Debug menu to stop at the beginning of the execution
or click on Break to interrupt the execution.

2. Click on the Inspect Current Node button in the debugging tool bar.

3. The Inspect Current Node appears as a docked panel. You can monitor the decisions
taken online.

Node Inspector Dialog Box

Right-click on a node to display the Node Inspector dialog box. In this dialog box,
information on decisions taken at a node is only available when the exploration of the next
node begins.

Propagation Spy

The Propagation Spy does not only contain the propagation events, it also contains the
decision events.

For information on how to use the Propagation Spy, see Using the Propagation Spy.

Decision Stack

The Decision Stack is a panel that lists the decisions made in the current branch, starting
from the root node.

When you double-click on a node, a green arrow points to the node you selected, and the
Decision Stack (docked) panel displays the decisions taken in the branch starting from the
root to the selected node. The description of the decision taken at a node is only available
when the exploration of the next node begins.

The Decision Stack indicates the depth of the node starting from the root, displayed between
brackets. For instance, in the debugnqueen example, [48] Set Value 47 to vars[94]
corresponds to a decision taken at the node pointed to by the green arrow. [48] indicates
the depth from the root.

Note: In the current implementation, the monitored decisions cannot be distinguished from
pushed constraints and optimization events.
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 17

Figure 1.3

Figure 1.3 The Decision Stack panel for the debugnqueen problem

Tooltip on the Search Tree

To access quickly the decisions taken at a node, place the cursor over the node graphic
representation or over the link above. A tooltip will appear with the decision trapped by the
debugger at this node.

Figure 1.4

Figure 1.4 Displaying a decision via the tooltip

Note: Sometimes the last line is the only visible one. Even if the vertical scroll bar appears
as full, previous lines do exist. To force scrolling up, drag the cursor up inside the text.
18 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

Monitoring Solution Restoring

To obtain a new Search Tree view when restoring a solution, type:

 debugger.newSearchTreeView();
 solver.solve(IloRestoreSolution(env, best));

To prevent the Debugger from displaying the Gantt chart automatically at each intermediate
solution, type: debugger.setAutomaticDisplay(IloFalse);

Then call debugger.displayresult() when the optimal solution is restored.

Monitoring Restart

To obtain a new Search Tree view at restart, type:

while(debugger.initialize()) {
 solver.startNewSearch(myGoal);
 if (solver.next()) {
 ostrstream text;
 text << solver.getValue(makespan)<< endl << ends;
 debugger.sendSolution(text.str());
 debugger.newSearchTreeView();
 solver.restartSearch();
 if (solver.next()) {
 ostrstream text;
 text << solver.getValue(makespan)<< endl << ends;
 debugger.sendSolution(text.str());
 }
 }
 solver.endSearch();
}

You can also choose to reuse the same Search Tree view. In that case, the root node will have
four branches.

Monitoring Local Search

To obtain a new Search Tree for each move, proceed as follows:

1. Type:

IlcSolverDebugger debugger(solver);
solver.extract(model);
while (debugger.initialize()) {

2. Create the initial solution:

solver.solve(IloGenerate(env, knightArr)
 && IloStoreSolution(env, sol));
do {
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 19

3. While there are iterations, create a new Search Tree view and start a new search for each
iteration:

 while (--iter >= 0
 && debugger.newSearchTreeView() && solver.solve(move)) {
 moves++;

4. Store the new best solution if there is one, and display it:

 if (sol.getObjectiveValue() < best.getObjectiveValue()) {
 ostrstream txt;
 txt << "Move " << moves
 << ", Knights = " << sol.getObjectiveValue() << endl<< ends;
 debugger.sendSolution(txt.str());
 best.copy(sol);
 }
 }

5. If iterations are still left, ask tabu if it is complete:

 } while (iter > 0 && !tabu.complete());

6. Restore the best solution found:

 debugger.sendConsole("Restoring solution...\n");
 debugger.newSearchTreeView();
 solver.solve(IloRestoreSolution(env, best));
}

See the debuglsknight example for details on local search.

Monitoring Nested Search

To monitor nested search, type the following:

IlcSolverDebugger debugger(solver,IloTrue,IloFalse,1.0,4005,0,IloTrue);
ILCGOAL2(MyIlcGoal,IlcIntVarArray, a, IlcSolverDebugger, debugger) {
 debugger.beginNestedSearchTreeView();
 a.getManager().solve(IlcGenerate(a));
 debugger.endNestedSearchTreeView();
 return 0;
}
ILOCPGOALWRAPPER2(MyIloGoal, solver, IloIntVarArray, a,
 IlcSolverDebugger, debugger) {
 return MyIlcGoal(solver.getManager(),solver.getIntVarArray(a),debugger);
}
20 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

Visualizing Propagation

Solver Debugger provides you with three tools that allow you to display the propagation in
the GUI:

◆ the Propagation Spy to trace events, described in Using the Propagation Spy

◆ the Variable Domains notebook pages in the Output window, described in Visualizing
Variable Domains

◆ the Activity Domains window for Scheduler applications, described in Visualizing
Activity Domains (Scheduler-Specific)

Events

Events can take place:

◆ during the Initial Propagation

◆ during the Initial Goal before the first OR

◆ inside a Search Tree node

Events can be triggered as a direct consequence of:

◆ a constraint propagation triggered by a demon becoming active

◆ a constraint propagation coming from a pushed constraint

◆ a decision taken during the search

◆ an optimization event coming from the minimization or maximization of an objective
function

Using the Propagation Spy

The Propagation Spy is a means of displaying the trace of events and the result of the
propagation in terms of domain reduction. The Propagation Spy provides a graphical
representation of events trapped by the IlcTrace and IlcSchedulerTrace mechanisms.

See the IBM® ILOG® Solver and IBM ILOG Scheduler documentation for details on these
two classes.

The Propagation Spy is a special hierarchical sheet containing a tree hierarchy in the first
column. Each column contains the impact on one variable. Time is represented vertically,
from top to bottom. The textual description of the events is displayed in the first column.
When double-clicking on an event line, the columns are rearranged so that a variable of
interest is displayed first.
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 21

The figure below shows what the tracing of the Initial Propagation for the Pheasants and
Rabbits problem (debugpheasant) looks like in the Propagation Spy.

The cell at the junction of an event line and a variable column is colored according to the
type of event and shows the result of the event in a textual form. You can follow the history
of the domain reduction in that cell.

The correspondences between cell colors and the event types are:

◆ Red = fail

◆ Yellow = inProcess

◆ Blue = setValue

◆ Wheat = removeValue

◆ Cyan = setMin

◆ Magenta = setMax
22 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

Tracing the Initial Propagation

To trace the Initial Propagation of your application, proceed as follows:

1. Select “Stop At Initial Propagation” from the Debug menu. With this option, the
execution will be interrupted at the beginning of the Initial Propagation.

2. Click on the Run button.

3. The Initial Propagation is now displayed in the Propagation Spy window. The following
options are available:

● To enter the propagation detail, click on the Step In button.

- Trace all the Initial Propagation events without stopping at each event by clicking on
the Continue Trace Till Next Node button.

- Trace the Initial Propagation and stop at each event by clicking on the Step In button.

- Leave the propagation detail at that point by clicking on the Step Out button.

● To skip the Initial Propagation, click on the Step Over button.

4. The Debugger stops at the first search node (the first child of the root). The following
options are available:

● To visualize the decisions and the propagation events triggered within the first search
node in the Propagation Spy, click on the Step In button.

● To go to the beginning of the next node, click on the Step Over button.

● To continue and interrupt the execution when you decide to, click on the Continue
Run button and then on the Break button.

● To abort the execution, click on the Abort button.

Tracing the Propagation at a Specific Node

Because of the nondeterministic nature of the search, it is not possible to draw the tree in
advance. A second run is necessary to focus on a segment of the tree.

You can access statistical information about the Initial Propagation through the Search Tree
root.

Tracing the Propagation at a Specific Node in the Search Tree

To trace the propagation at a specific node, proceed as follows:

1. Run the Debugger a first time. Skip the Initial Propagation. Wait until the end of the
solving or Abort if the solving process takes a long time.
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 23

2. Add a breakpoint on a specific node by right-clicking on the node (you can also include
conditional breakpoints in your code).

3. Run the execution a second time. The tree nodes become white and are progressively re-
colored.

4. Step into the node to display the propagation events.

Adding Breakpoints in Your Code

You can register conditional breakpoints in your code so that as soon as a condition becomes
true, the execution is interrupted. You can use three types of conditional breakpoints:

◆ Interrupt the execution as soon as the minimum of a variable domain is greater than or
equal to a value.

◆ Interrupt the execution as soon as the maximum of a variable domain is lower than or
equal to a value.

◆ Interrupt the execution as soon as a variable is bound to a specific value.

For example, in the debugjobshopm example, uncomment the following line:

 debugger.breakIfDomainMaxLe(_makespan),60);

The execution will be interrupted when the maximum of the makespan domain is lower
than or equal to the value 60.

Conditional breakpoints are extracted by the initialize member function. So make sure
you set the conditional breakpoints before the call to the member function
IlcSolverDebugger::initialize().

You can also call the member function IlcSolverDebugger::breakExecution() in
your own goals.

Visualizing Variable Domains

You can set visualization options to follow the domains of the variables during the execution
in the Output window located at the bottom of the Solver Debugger GUI.

Setting Visualization Options

To follow the domains of the variables, you can put graphical demons on your variables by
passing a fourth argument to the member function registerVariable().

debugger.registerVariable(ilovars,IloTrue,IloTrue,
 IlcVisualizeDomain | IlcVisualizeInterval |
 IlcVisualizeValue | IlcVisualizeBoolean,
 "queens");
24 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

◆ To visualize the domain of an integer variable or an array of integer variables, use
IlcVisualizeDomain.

◆ To visualize the lower and upper bounds of a variable or an array of variables, use
IlcVisualizeInterval.

◆ To visualize the value of a variable or an array of variables, use IlcVisualizeValue.

◆ To display colored squares for Boolean variables (integer variables containing 0 in their
domain), use IlcVisualizeBoolean.

◆ To disable visualization, use IlcVisualizeDisabled.Visualization is disabled by
default.

These displays are available as notebook pages in the Output window of the
Solver Debugger GUI.

Visualizing Variable Domains in the Output Window

The following variable visualization examples are taken from the debugnqueen problem.

◆ To visualize the domains of an array of integer variables, click on the corresponding tab
in the Output window. In this example, because of the presolve that occurs when a model
is extracted, the x1[0] variable replaces the expected queens[0].

Note: You may miss some changes if a failure occurs at a node before the graphical demon
is executed.
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 25

◆ To visualize the bounds of an array of integer variables, click on the corresponding tab in
the Output window.

◆ To visualize the values of an array of integer variables, click on the corresponding tab in
the Output window.

◆ To visualize the state of an array of integer variables interpreted as Boolean, click on the
corresponding tab in the Output window. In this example, the colors have the following
meaning: wheat stands for false, blue stands for true, and grey stands for undetermined.

26 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

Visualizing Activity Domains (Scheduler-Specific)

Activity Domains are specific to the product IBM ILOG Scheduler.

The Activity Domains dockable window shows the algorithm reducing the domains of the
activities during the propagation.

Mode Selectors
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 27

The following figures represent the evolution of Activity Domains throughout the
propagation.

Because of the breakable nature of some of the activities, the Start Min- End Min
blue rectangle and the Start Max-End Max red rectangle may not always be the same
size.

As soon as end min passes start max, the time window between these two dates is the
surely overlapped time window.

The activity is totally instantiated. When start min = start max and end min = end
max, the activity schedule is totally determined.

The order in which the activities appear in the Activity Domains window is the same as the
order of the calls made to the member function
IlcSchedulerDebugger::registerActivity.
28 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

Combining Search Tree Visualization and Propagation Information

The representation of a tree combining search information and statistics on propagation
events looks like a tree decorated with big and small balls. For this reason, it is called the
Christmas Tree. This section deals with

◆ Creating the Christmas Tree

◆ Interpreting the Christmas Tree

Creating the Christmas Tree

You can change the representation of the Search Tree to visualize propagation statistics by
changing the color and size of the nodes. To do so:

1. Right-click in the search tree background on a node. A context-sensitive menu appears.
Select the “Tree Inspector...” menu item.

2. Select Type and Domain Reduction for Node color and Propagation Events for Node
size.

3. The Christmas Tree appears in the Search Tree view.

To obtain statistics on domain reduction, you must register the variables you are interested in
with IloSolverDebugger::registerVariable for pure Solver variables and
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 29

IlcSchedulerDebugger::registerActivity for Scheduler activities, and pass
IloTrue as a third argument.

Interpreting the Christmas Tree

The information added to the Search Tree includes the number of propagation events and the
effective global domain reduction at each node:

◆ The size of the nodes becomes proportional to the number of propagation events fired at
each node (which is highly correlated with the time spent at each node).

◆ The meaning of the colors remains unchanged, except that the color is lighter or darker
depending on the effective domain reduction obtained during the propagation at this
node.

The statistical information about the Initial Propagation is concentrated in the tree root. All
nodes are not equal. You can detect if, in failure nodes (red or pink nodes), the failure is
discovered early (small node) or late (large node).

It is important to distinguish between the number of propagation events and the global
domain reduction because many propagation events can be triggered with little impact on the
domain reduction.

Using the Constraint Profiler

You can access the current state of statistics at any moment during the search or the initial
propagation by selecting the menu item View > Constraint Profiler, or by clicking on the
Constraint Profiler button in the tool bar.
30 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

Figure 1.5

Figure 1.5 The Constraint Profiler for the debugnqueen problem

The Constraint Profiler displays statistics, by constraint, about the number of propagation
events triggered and the effective domain reduction achieved when the corresponding
constraint is active. You can double-click on a column title to sort the lines by:

● alphabetical order of constraint description

● number of propagation events triggered (default order)

● effective domain reduction achieved

A constraint can be called several times with no efficiency in terms of domain reduction. The
column domain reduction corresponds to the sum of the values removed by the active
constraint from integer variables. The domain reduction is evaluated by taking the difference
of the value returned by getSize() on the variables before and after the event.

Using the Drawing Board

Solver Debugger provides you with a tool that complements the predefined visualization
tools: the Drawing Board. The Drawing Board allows you to define your own backtrackable
2D graphical representation to animate the search algorithm or represent solutions. The
Drawing Board is a dockable window that you can float and resize.

Note: You can copy the content of the Constraint Profiler by selecting cells while dragging
the mouse and then pressing Ctrl-C. You can paste the result in Microsoft Excel or Star
Office.
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 31

To create a Drawing Board, instantiate an IlcDrawingBoard object and pass the
IlcSolverDebugger instance as an argument.

IlcDrawingBoard drawingBoard(debugger);

You can create several instances of the class IlcDrawingBoard, which will result in the
creation of several Drawing Board docked windows in the GUI.

The Drawing Board contains two sets of member functions:

◆ a set that allows you to use the Drawing Board with graphic objects that are
automatically backtrackable

◆ a set that allows you to draw 2D graphic objects yourself in the Drawing Board without
any automatic support for backtracking.

Basic Use of the Drawing Board

The first set of member functions enables you to connect your Ilc variables to parameters
of the graphic object.

When all the parameters needed by a graphic object are known, that is, when the variables
are bound, the graphic object is drawn. Upon backtracking, the graphic object is cleared
automatically.

The member functions begin with makeXXXX and take Ilc objects as arguments
(makeRectangle, makeFilledPolygon, or makeLabel for instance). Because this set of
member functions requires Ilc and not Ilo objects, call them in a goal, for instance in the
initial goal.

In the following example, an IlcGoal (IlcChessBoard) is wrapped in an IloGoal
(IloChessBoard) and anIloAndGoal is performed on IloChessBoard and the ordinary
IloGenerate goal.

Example: Drawing the Chessboard for the debugnqueen Problem

Let’s call IloChessBoard a user-defined goal whose role is to initialize a grid representing
a chessboard and ellipses indicating the locations of the queens. Here is an example of an
IlcGoal wrapped as IloGoal:

ILCGOAL3(IlcChessBoard, IlcInt, nqueen, IlcIntVarArray,
 queens,IlcDrawingBoard, drawingBoard) {
 drawingBoard.clean();
 drawingBoard.makeGrid(
 drawingBoard.constantInt(0),
 drawingBoard.constantInt(0),
 drawingBoard.constantInt(nqueen*10),
 drawingBoard.constantInt(nqueen*10),

Note: If you previously closed a drawing board panel, you can redisplay it by selecting the
menu item View > View Drawing Board.
32 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

 drawingBoard.constantInt(nqueen),
 drawingBoard.constantInt(nqueen),
 drawingBoard.constantInt(1));
 for(int i=0; i < nqueen; ++i) {
 IlcIntExp exp = queens[i]*10;
 drawingBoard.makeFilledEllipse(drawingBoard.constantInt(i*10), exp,
 drawingBoard.constantInt(10),
 drawingBoard.constantInt(10), "red",
 drawingBoard.constantInt(1));
 }
 return 0;
}

ILOCPGOALWRAPPER3(IloChessBoard, solver, IloInt, nqueen, IloIntVarArray,
 queens, IlcDrawingBoard, drawingBoard){

 return IlcChessBoard(solver, nqueen,
 solver.getIntVarArray(queens),drawingBoard);

}
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 33

Here is how to start the search:

solver.startNewSearch(IloAndGoal(solver.getEnv(),
 IloChessBoard(solver.getEnv(),
 nqueen,ilovars,drawingBoard),
 IloGenerate(solver.getEnv(),ilovars)));

The Drawing Board now displays the representation of a chessboard, with red ellipses
indicating the position of the queens.

Advanced Use of the Drawing Board

The second set of member functions allows you to create and manage the graphic objects
yourself.

◆ First create a graphic object with the member function makeNewGraphicObject on the
class IlcDrawingBoard. This member function provides you with an identifier that
will enable you to later refer to the graphic object.

IloInt id = drawingBoard.makeNewGraphicObject();

◆ Then call the drawXXXX member functions. These member functions take constants as
arguments. If you want to erase your graphic object, you can do it with the member
function eraseGraphic().

Note: The expected colors use X names. For example:
"red","green","blue","yellow","pink","brown","magenta","cyan",
"white","black","turquoise1","SeaGreen1","gold1","IndianRed1",
"Sienna1","tan1","salmon1","orange1","tomato1","HotPink1","orchid2"
34 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

Example: Creating a New Algorithm Animation for a Scheduling Application

In the following snippet of code, the code of the debugjobshopm example is changed in
order to represent the minimum and maximum values of the variables in a 2D representation.

The x-axis indicates the value of the minimum of the domain. The y-axis indicates the value
of the maximum of the domain. Thus, the range of the variable domain can be represented
by a 2D arrow.

When the arrow is on the diagonal, min equals max, which means that the variable is bound.
A colored arrow is created between the start and end variables of a set of activities.
Backtracking is handled by using reversible actions. When searching for a solution, the
arrows start moving towards the diagonal. Sometimes an arrow takes a negative slope, which
indicates that the domain of the start variable is no longer compatible with the domain of the
end variable of the corresponding activity. A failure then occurs and the algorithm
backtracks.

The following figure represents a user-defined animation of the search for a Scheduler
application. The red arrow at the bottom left takes a negative slope. This arrow represents the
activity responsible for a failure: its end max is strictly lower than its start max.
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 35

The following snippet of code is an extract from the debugjobshopm example.

const char* colors[] = {
 "red","green","blue","yellow","pink","brown","magenta","cyan","white",
 "black","turquoise1","SeaGreen1","gold1","IndianRed1","Sienna1",
 "tan1","salmon1","orange1","tomato1","HotPink1","orchid2"
};
static void DrawActivity(IlcActivity activity,IlcDrawingBoard
 drawingBoard,IlcInt id)
{
 drawingBoard.eraseGraphic(id);
 drawingBoard.drawArrow(id,
 activity.getStartVariable().getMin(),
 activity.getStartVariable().getMax(),
 activity.getEndVariable().getMin(),
 activity.getEndVariable().getMax(),
 1,
 colors[id % 21]);
}
ILCDEMON3(MyUpdateActivityDemon,IlcActivity,activity,IlcDrawingBoard,
 drawingBoard,IlcInt,id)
{
 DrawActivity(activity,drawingBoard,id);
}

ILCGOAL3(MyGoalReDrawActivityOnBacktrack,IlcActivity,
 activity,IlcDrawingBoard,drawingBoard,IlcInt,id)
{
 DrawActivity(activity,drawingBoard,id);
 return 0;
}

static void ActivityOnDrawingBoard(IlcActivity activity, IlcDrawingBoard
 drawingBoard)
{
 IloInt id = drawingBoard.makeNewGraphicObject();
 activity.getStartVariable().whenDomain(MyUpdateActivityDemon
 (activity.getManager(),activity,drawingBoard,id));
 activity.getEndVariable().whenDomain(MyUpdateActivityDemon
 (activity.getManager(),activity,drawingBoard,id));
 activity.getManager().addReversibleAction(MyGoalReDrawActivityOnBacktrack
 (activity.getManager(),activity,drawingBoard,id));
}

ILCGOAL2(MyIlcDrawingBoardCreation, IlcDrawingBoard, drawingBoard,
 IlcScheduler, scheduler) {
 drawingBoard.clean();
 IloInt id = drawingBoard.makeNewGraphicObject();
 drawingBoard.drawLine(id,0,0,200,200,1);
 id = drawingBoard.makeNewGraphicObject();
 drawingBoard.drawArrow(id,0,0,0,200,1);
 id = drawingBoard.makeNewGraphicObject();
 drawingBoard.drawArrow(id,0,0,200,0,1);
 id = drawingBoard.makeNewGraphicObject();
 drawingBoard.drawLabel(id,170,50,"Min");
 id = drawingBoard.makeNewGraphicObject();
 drawingBoard.drawLabel(id,5,170,"Max");
36 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

 IlcActivityIterator it(scheduler);
 while (it.ok()) {
 IlcActivity activity = (*it);
 ActivityOnDrawingBoard(activity,drawingBoard);
 ++it;
 }
 return 0;
}

ILOCPGOALWRAPPER2(MyDrawingBoardCreation, solver, IlcDrawingBoard,
 drawingBoard, IlcScheduler, scheduler){
 return MyIlcDrawingBoardCreation(solver, drawingBoard, scheduler);
}

The solving is then done as follows:

IlcScheduler scheduler(debugger.getSolver());
IlcDrawingBoard drawingBoard(debugger);
goal = IloAndGoal(solver.getEnv(),
 MyDrawingBoardCreation(solver.getEnv(),
 drawingBoard,scheduler),
 goal);
 while(debugger.initialize()) {
 solver.startNewSearch(goal);

...
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 37

Improving your Application

This section provides you with an example on how to improve an optimization application.
This application contains an objective function, and uses IBM® ILOG Solver with the
Depth First Search exploration order.

If your own application corresponds to these criteria, you can use the following visualization
methodology to improve the search and the propagation. In this section, you will learn how
to analyze right subtrees in your Search Tree and follow a tutorial to see how the propagation
can be improved.

◆ Analyzing Right Subtrees

◆ Tutorial: Tuning the Propagation in the debuggolomb Example

Analyzing Right Subtrees

To interpret the results of the Search Tree, keep in mind the theoretical ideal shape of a
Search Tree, which looks like the figure below.

To spot possible problems in your application, analyze the right subtrees in your Search
Tree.
38 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

For a binary tree, considering that the right branch is the contradiction of the left branch,
when right subtrees are developed you can draw one of the following two conclusions:

◆ Solutions appear in the right subtree, in which case the search can be improved since it is
the contradiction of a decision that leads to a better solution.

◆ Solutions do not appear in the right subtree, in which case there is a lack of propagation
because the back propagation of the cost should have pruned the subtree automatically.

When you use the Depth First Search exploration order, the higher in the tree the right
subtrees are, the more you should pay attention to them, because the tree is potentially
exponential in its depth.
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 39

Tutorial: Tuning the Propagation in the debuggolomb Example

This section is based on the debuggolomb example. It shows you how Solver Debugger can
be used to tune the propagation of a Solver application.

Filter levels

In order to tune the propagation in the debuggolomb example, we will use the alldiff
global constraint of Solver with two different levels of propagation.

◆ When using the basic filter level of this constraint, Solver guarantees that, at any
computation point, the specified variables do not have the values of the already-assigned
variables inside their domain.

◆ When using the extended filter level, Solver reasons on the domains instead of the values
and guarantees that, for each value in the domain of any given variable, there exist values
in the domains of the remaining variables such that the constraint is satisfied.

Using the Search Tree

Visualize the Search Trees corresponding to the basic and extended filter levels. The
following figure represents the Search Trees corresponding to the two filter levels.

In the Search Tree, the extended level enforces a stronger pruning than the basic one, while
the basic filter level produces a bigger tree with additional right subtrees.

These right subtrees have only failure leaves, which is a sign of lack of propagation. By
setting the filter level to the extended level these right subtrees are pruned.

Reminder: When connecting to the debuggolomb example, pass two integer parameters:
the size of the problem and the filtering level of the alldiff constraint.

debuggolomb 6 0 (0 = basic filtering level)

debuggolomb 6 1 (1 = medium filtering level)

debuggolomb 6 2 (2 = extended filtering level)
40 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

Using the Christmas Tree

The Christmas Tree provides a picture of the cost and the efficiency of the extended
propagation.

Compare the number of propagation events in the first right subtree located in the frame in
Figure 1.6 with the number of propagation events occurring at the corresponding big failure
node in Figure 1.7.

Figure 1.6

Figure 1.6 The Christmas Tree for the debuggolomb problem with a basic level of propagation

Figure 1.7

Figure 1.7 The Christmas Tree for the debuggolomb problem with an extended level of propagation

The big node requires two times fewer propagation events to detect the failure than the
subtree. So the extended propagation saved time.

Now compare the Initial Propagation statistics by looking at the root node. The efficiency of
domain reduction is the same (63.25%).
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 41

Using the Propagation Spy

Inspect the Initial Propagation. Solver adds a hidden constraint when posting the alldiff
constraint. When tracing the propagation at the first big failure node of the extended filter
level, the Propagation Spy displays the extra propagation, as shown in the figure below.

Figure 1.8

Figure 1.6 Comparing two propagation traces using the Propagation Spy for the debuggolomb
problem

◆ With the basic filter level, the propagation stops after reducing the variable
difference[11] to the interval [7..11].

◆ With the extended level, the propagation of an additional internal constraint posted by
the alldiff constraint strongly reduces the domains by means of Set Min events. This
additional propagation leads to a failure, avoiding a subtree exploration.

Notice that four Set Min events are triggered on the difference[11] variable where one
should be enough. These Set Min events are Remove Value orders that have been
translated by Solver into Set Min because the value to remove was a bound.
42 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

So, reasoning on bounds instead of on domains is sufficient in this case. Tune the alldiff
constraint to the intermediate filter level, which reasons on bounds instead of on domains.

 You obtain the same Search Tree as with the extended filter level. The Propagation Spy
shows that, at the same choice point, the variable difference[11] is bound more quickly.

Figure 1.9

Figure 1.9 Propagation Spy for the debuggolomb problem with an intermediate filter level

Using the Constraint Profiler

You can paste the matrix from the Constraint Profiler to Microsoft Excel and make your own
statistics. For instance, summing the propagation events gives the results shown below. The
table contains the statistics on the number of events for the debuggolomb problem.

Filter Level Total Number of Events

Basic 3534

Intermediate 2726

Extended 2790
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 43

44 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

Solver Debugger API

This section contains the C++ API for the IBM® ILOG Solver Debugger.
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 45

46 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

IlcAddOnDebugger

Category C++ class

Description The class IlcAddOnDebugger is the base class for the Debugger classes specialized in
debugging an application based on an add-on for IBM® ILOG® Solver.

Include File <ilsolver/addondebugger.h>

Synopsis class IlcAddOnDebugger {
public:
 IlcAddOnDebugger(IlcAddOnDebuggerI* impl=0);
 IloBool displayResult() const;
 IlcAddOnDebuggerI* getImpl() const;
 };
#endif

Constructor IlcAddOnDebugger(IlcAddOnDebuggerI* impl=0);

Creates a new handle class on the same implementation object.

Member Functions
IloBool displayResult() const;

Displays the result graphically. In the current implementation, by default, this member
function is automatically called at each solution. In Scheduler applications it displays a
Gantt chart with precedences.

IlcAddOnDebuggerI* getImpl() const;

Returns the implementation object.
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 47

48 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

IlcDebugger

Category C++ class

Description The class IlcDebugger is a handle class on an instance of the implementation class
IlcDebuggerI. This class manages the debugging protocol with the Debugger GUI so
that an external application or a specific engine can connect to the GUI.

Include File <ilsolver/debugger.h>

Synopsis class IlcDebugger {
public:
 IlcDebugger(IlcDebuggerI* impl = 0);
 int beginNestedSearchTreeView();
 void breakExecution();
 void browseAll();
 void close();
 IloBool displayResult() const;
 int endNestedSearchTreeView();
 IlcDebuggerI* getImpl() const {return _impl;}
 IloBool isActive() const;
 IloBool isAutomaticBrowse() const;
 IloBool isAutomaticDisplay() const;
 IloBool isConnected() const;
 IloBool isTextual() const;
 int newSearchTreeView();
 void sendConsole(const char* text);
 void sendSolution(const char* text);
 void setAutomaticBrowse(IloBool automaticBrowse);
 void setAutomaticDisplay(IloBool automatic);
 };

Constructor IlcDebugger(IlcDebuggerI* impl = 0);

Creates a new handle class on the same implementation object.

Member Functions
int beginNestedSearchTreeView();

Creates a new Search Tree view in Solver Debugger. Sends notification of the next node
created to the new Search Tree. Goes back to the previous Search Tree whenever
endNestedSearch is called.

void breakExecution();

Interrupts the execution.

void browseAll();

Forces the Debugger to browse the model.
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 49

void close();

Closes the connection between the user application and the GUI server and releases the
memory.

IloBool displayResult() const;

Displays the result graphically. In the current implementation, by default, this member
function is automatically called at each solution. In Scheduler applications it displays a
Gantt chart with precedences.

int endNestedSearchTreeView();

Goes back to the parent Search Tree. Considers the current Search Tree as terminated.
Returns the identification of the parent Search Tree.

IlcDebuggerI* getImpl() const;

Returns the underlying implementation object.

IloBool isActive() const;

Returns true if the Debugger was set to active upon creation.

IloBool isAutomaticBrowse() const;

Returns true if the Debugger is in automatic browse mode.

IloBool isAutomaticDisplay() const;

Returns true if the Debugger is set to the automatic display mode for the result.

IloBool isConnected() const;

Returns true if the connection with the GUI server is still active.

IloBool isTextual() const;

Returns true if the Debugger was set to textual upon creation.

int newSearchTreeView();

Creates a new Search Tree view in Solver Debugger. Sends notification of the next node
created to the new Search Tree. Considers the previous Search Tree as terminated.
Returns the identification of the Search Tree view to be created.

void sendConsole(const char* text);

Sends a message to the Debugger Console Notebook Page.

void sendSolution(const char* text);

Sends a message to the Debugger Notebook Page.

void setAutomaticBrowse(IloBool automaticBrowse);

Tells the Debugger to switch on or off the automatic model browsing.
50 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

void setAutomaticDisplay(IloBool automatic);

Tells the Debugger to switch on or off the automatic display mode for the result. If the
Debugger is set to the automatic display mode, add-on debuggers display a specific
graphic representation of the solution, such as a Gantt chart for the Scheduler Debugger.
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 51

52 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

IlcDrawingBoard

Category C++ class

Description The class IlcDrawingBoard provides a 2D representation of the search algorithm.

Include File <ilsolver/drawingboard.h>

Synopsis class IlcDrawingBoard
{
public:
 IlcDrawingBoard(IlcSolverDebugger debugger,
 IloInt width = 100,
 IloInt height = 100,
 IloNum scaleH = 1.0,
 IloNum scaleV = 1.0);
 IlcDrawingBoard(IlcDrawingBoardI* impl = 0);
 void clean();
 IlcIntExp constantInt(IloInt value) const;
 IlcFloatExp constantNum(IloNum value) const;
 void drawArc(IloInt id, IloInt xLowerLeft, IloInt yLowerLeft,
 IloInt rectWidth, IloInt rectHeight,
 IlcFloat startAngle, IlcFloat angleRange,
 IloInt th);
 void drawArrow(IloInt id, IloInt x1, IloInt y1,
 IloInt x2, IloInt y2, IloInt th,
 const char* col = "black");
 void drawEllipse(IloInt id, IloInt xLowerLeft,
 IloInt yLowerLeft, IloInt rectWidth,
 IloInt rectHeight, IloInt th);
 void drawFilledArc(IloInt id, IloInt xLowerLeft,
 IloInt yLowerLeft, IloInt rectWidth,
 IloInt rectHeight, IlcFloat startAngle,
 IlcFloat angleRange,
 const char* col, IloInt th);
 void drawFilledEllipse(IloInt id, IloInt xLowerLeft,
 IloInt yLowerLeft, IloInt rectWidth,
 IloInt rectHeight, const char* col,
 IloInt th);
 void drawFilledLabel(IloInt id, IloInt x, IloInt y,
 const char* str, const char* col);
 void drawFilledPolygon(IloInt id, IloInt x[], IloInt y[],
 IloInt count, const char* col,
 IloInt th, IloInt fillRule);
 void drawFilledRectangle(IloInt id, IloInt xLowerLeft,
 IloInt yLowerLeft,
 IloInt rectWidth,
 IloInt rectHeight,
 const char* col, IloInt th);
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 53

 void drawFilledRoundedRectangle(IloInt id, IloInt xLowerLeft,
 IloInt yLowerLeft,
 IloInt rectWidth,
 IloInt rectHeight,
 IlcFloat rc,
 const char* col,
 IloInt th);
 void drawGrid(IloInt id, IloInt xLowerLeft, IloInt yLowerLeft,
 IloInt rectWidth, IloInt rectHeight,
 IloInt cols, IloInt rows, IloInt th);
 void drawLabel(IloInt id, IloInt x, IloInt y, const char* str);
 void drawLine(IloInt id, IloInt x1, IloInt y1,
 IloInt x2, IloInt y2, IloInt th,
 const char* col = "black");
 void drawPolyline(IloInt id, IloInt x[], IloInt y[],
 IloInt count, IloInt th);
 void drawRectangle(IloInt id, IloInt xLowerLeft,
 IloInt yLowerLeft, IloInt rectWidth,
 IloInt rectHeight, IloInt th);
 void drawRoundedRectangle(IloInt id, IloInt xLowerLeft,
 IloInt yLowerLeft,
 IloInt rectWidth,
 IloInt rectHeight,
 IlcFloat rc, IloInt th);
 void eraseGraphic(IloInt id);
 void makeArc(IlcIntExp xLowerLeft, IlcIntExp yLowerLeft,
 IlcIntExp rectWidth, IlcIntExp rectHeight,
 IlcFloatExp startAngle,
 IlcFloatExp angleRange,IlcIntExp th);
 void makeArrow(IlcIntExp x1, IlcIntExp y1,
 IlcIntExp x2, IlcIntExp y2,
 IlcIntExp th, const char* col = "black");
 void makeEllipse(IlcIntExp xLowerLeft, IlcIntExp yLowerLeft,
 IlcIntExp rectWidth, IlcIntExp rectHeight,
 IlcIntExp th);
 void makeFilledArc(IlcIntExp xLowerLeft, IlcIntExp yLowerLeft,
 IlcIntExp rectWidth, IlcIntExp rectHeight,
 IlcFloatExp startAngle,
 IlcFloatExp angleRange,
 const char* col, IlcIntExp th);
 void makeFilledEllipse(IlcIntExp xLowerLeft,
 IlcIntExp yLowerLeft,
 IlcIntExp rectWidth,
 IlcIntExp rectHeight,
 const char* col, IlcIntExp th);
 void makeFilledLabel(IlcIntExp x, IlcIntExp y,
 const char* str, const char* col);
 void makeFilledPolygon(IlcIntVarArray x,IlcIntVarArray y,
 const char* col, IlcIntExp th,
 IlcIntExp fillRule);
54 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

 void makeFilledRectangle(IlcIntExp xLowerLeft,
 IlcIntExp yLowerLeft,
 IlcIntExp rectWidth,
 IlcIntExp rectHeight,
 const char* col, IlcIntExp th);
 void makeFilledRoundedRectangle(IlcIntExp xLowerLeft,
 IlcIntExp yLowerLeft,
 IlcIntExp rectWidth,
 IlcntExp rectHeight,
 IlcFloatExp rc,
 const char* col,
 IlcIntExp th);
 void makeGrid(IlcIntExp xLowerLeft, IlcIntExp yLowerLeft,
 IlcIntExp rectWidth, IlcIntExp rectHeight,
 IlcIntExp cols, IlcIntExp rows,
 IlcIntExp th);
 void makeLabel(IlcIntExp x, IlcIntExp y,const char* str);
 void makeLine(IlcIntExp x1, IlcIntExp y1,
 IlcIntExp x2, IlcIntExp y2,
 IlcIntExp th,const char* col = "black");
 int makeNewGraphicObject();
 void makePolyline(IlcIntVarArray x, IlcIntVarArray y,
 IlcIntExp th);
 void makeRectangle(IlcIntExp xLowerLeft, IlcIntExp yLowerLeft,
 IlcIntExp rectWidth, IlcIntExp rectHeight,
 IlcIntExp th);
 void makeRoundedRectangle(IlcIntExp xLowerLeft,
 IlcIntExp yLowerLeft,
 IlcIntExp rectWidth,
 IlcIntExp rectHeight,
 IlcFloatExp rc, IlcIntExp th);
 void setBackgroundColor(const char* col);
};

Constructors IlcDrawingBoard(IlcSolverDebugger debugger,
 IloInt width = 100,
 IloInt height = 100,
 IloNum scaleH = 1.0,
 IloNum scaleV = 1.0);

Creates a new Drawing Board. The width parameter indicates the width of the panel
when undocked. The height parameter indicates the height of the panel when
undocked. The parameter scaleH has a value between 0 and 2. It indicates the
horizontal scale factor. The parameter scaleV has a value between 0 and 2. It indicates
the vertical scale factor.

IlcDrawingBoard(IlcDrawingBoardI* impl = 0);

Creates a new handle class on the same Drawing Board implementation object.
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 55

Member Functions
void clean();

Deletes all information from the Drawing Board.

IlcIntExp constantInt(IloInt value) const;

Creates an IlcIntExp object containing an integer constant.

IlcFloatExp constantNum(IloNum value) const;

Creates an IlcFloatExp object containing a floating-point constant.

void drawArc(IloInt id, IloInt xLowerLeft, IloInt yLowerLeft,
 IloInt rectWidth, IloInt rectHeight,
 IlcFloat startAngle, IlcFloat angleRange,
 IloInt th);

Creates a nonbacktrackable arc identified byid and embedded in a rectangle. The
rectangle is specified by the lower left coordinates xLowerLeft, yLowerLeft, the
width rectWidth and the height rectHeight. The angle of the arc begins at position
startAngle and moves, in a clockwise direction, the number of degrees indicated by
angleRange. The line of the arc is of thickness th.

void drawArrow(IloInt id, IloInt x1, IloInt y1, IloInt x2, IloInt y2,
 IloInt th, const char* col="black");

Creates a nonbacktrackable arrow identified by id. The arrow starts at (x1,y1) and
ends at (x2,y2). The thickness of the line is th and the default color of the arrow is
black.

void drawEllipse(IloInt id, IloInt xLowerLeft, IloInt yLowerLeft,
 IloInt rectWidth, IloInt rectHeight, IloInt th);

Creates a nonbacktrackable empty ellipse identified by id and embedded in a rectangle.
The rectangle is specified by the lower left coordinates xLowerLeft, yLowerLeft, the
width rectWidth and the height rectHeight. The outline of the ellipse is of thickness
th.

void drawFilledArc(IloInt id, IloInt xLowerLeft, IloInt yLowerLeft,
 IloInt rectWidth, IloInt rectHeight,
 IlcFloat startAngle, IlcFloat angleRange,
 const char* col, IloInt th);

Creates a nonbacktrackable filled arc identified byid and embedded in a rectangle. The
rectangle is specified by the lower left coordinates xLowerLeft, yLowerLeft, the
width rectWidth and the height rectHeight. The angle of the arc begins at position
startAngle and moves, in a clockwise direction, the number of degrees indicated by
angleRange. The line of the arc is of thickness th and the segment is filled with the
color col.
56 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

void drawFilledEllipse(IloInt id, IloInt xLowerLeft,
 IloInt yLowerLeft, IloInt rectWidth,
 loInt rectHeight, const char* col,
 IloInt th);

Creates a nonbacktrackable filled ellipse identified byid and embedded in a rectangle.
The rectangle is specified by the lower left coordinates xLowerLeft, yLowerLeft, the
width rectWidth and the height rectHeight. The outline of the ellipse is of thickness
th and the ellipse is filled with the color col

void drawFilledLabel(IloInt id, IloInt x, IloInt y,
 const char* str, const char* col);

Creates a nonbacktrackable filled label identified byid. The label is anchored at the point
(x,y), contains the character string str and is of the color specified by col.

void drawFilledPolygon(IloInt id, IloInt x[], IloInt y[],
 IloInt count, const char* col,
 IloInt th, IloInt fillRule);

Creates a nonbacktrackable polygon identified byid and filled with the color col. The
parameter th indicates the thickness of the line. The two integer array parameters x[],
y[] specifying the X and Y coordinates must be of the same size. The count parameter
indicates the number of point coordinates. The fillRule parameter indicates which
points are to be considered as being inside the polygon, depending on the number of
crossing segments that define the shape of the area to be filled. There are two rules to
define the shape:

◆ setting the fillRule parameter to 0 takes the “EvenOdd Rule”

◆ setting the fillRule parameter to 1 takes the “Winding Rule”.

EvenOdd Rule: according to this rule, in the case of the complex polygon shown below,
the central area of the star is not considered to lie inside the polygon and, therefore, is not
filled. This is the default value.

Winding Rule: according to this rule, the central area of the star is considered to lie
inside the polygon and, therefore, is filled.
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 57

void drawFilledRectangle(IloInt id, IloInt xLowerLeft,
 IloInt yLowerLeft, IloInt rectWidth,
 IloInt rectHeight, const char* col,
 IloInt th);

Creates a nonbacktrackable rectangle identified byid and filled with the color col. The
rectangle is anchored at the point (xLowerLeft, yLowerLeft) and its dimensions are
rectWidth, rectHeight. The outline of the rectangle is of thickness th.

void drawFilledRoundedRectangle(IloInt id, IloInt xLowerLeft,
 IloInt yLowerLeft,
 IloInt rectWidth,
 IloInt rectHeight,
 IlcFloat rc, const char* col,
 IloInt th);

Creates a nonbacktrackable rectangle with rounded corners and filled with the color col.
The rectangle is identified byid. The parameters are similar to those of
drawFilledRectangle above, except for rc, which specifies the amplitude of the arc
used for the rounded corners.

void drawGrid(IloInt id, IloInt xLowerLeft, IloInt yLowerLeft,
 IloInt rectWidth, IloInt rectHeight,
 IloInt cols, IloInt rows, IloInt th);

Creates a nonbacktrackable grid identified byid and embedded in a rectangle. The
rectangle is specified by the anchor points xLowerLeft, yLowerLeft, and the
dimensions rectWidth, rectHeight. The columns and rows in the grid are specified
by the integers cols and rows. The lines of the grid are of thickness th.

void drawLabel(IloInt id, IloInt x, IloInt y, const char* str);

Creates a nonbacktrackable label identified byid. The label is anchored at the point
(x,y) and contains the character string str.

void drawLine(IloInt id, IloInt x1, IloInt y1, IloInt x2, IloInt y2,
 IloInt th, const char* col = "black");

Creates a nonbacktrackable line identified byid. The line, drawn between the two points
(x1,y1) and (x2,y2), is of thickness th and default color black.

void drawPolyline(IloInt id, IlcInt x[], IlcInt y[],
 IlcInt count, IlcInt th);

Creates a nonbacktrackable polyline identified byid. The two integer array parameters
x[], y[] specifying the X and Y coordinates must be of the same size. The count
parameter indicates the number of point coordinates. The th parameter indicates the
thickness of the line. To obtain an empty polygon, give the same value to the first X and
last X and to the first Y and last Y.
58 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

void drawRectangle(IloInt id, IloInt xLowerLeft, IloInt yLowerLeft,
 IloInt rectWidth, IloInt rectHeight, IloInt th);

Creates a nonbacktrackable empty rectangle identified byid. The rectangle is anchored
at the point (xLowerLeft, yLowerLeft) and its dimensions are rectWidth,
rectHeight. The outline of the rectangle is of thickness th.

void drawRoundedRectangle(IloInt id, IloInt xLowerLeft,
 IloInt yLowerLeft, IloInt rectWidth,
 IloInt rectHeight, IlcFloat rc,
 IloInt th);

Creates a nonbacktrackable empty rectangle with rounded corners, identified byid. The
parameters are similar to those of drawRectangle above, except for rc, which specifies
the amplitude of the arc used for the rounded corners.

void eraseGraphic(IloInt id);

Erases a nonbacktrackable graphic identified byid.

void makeArc(IlcIntExp xLowerLeft, IlcIntExp yLowerLeft,
 IlcIntExp rectWidth, IlcIntExp rectHeight,
 IlcFloatExp startAngle, IlcFloatExp angleRange,
 IlcIntExp th);

Creates a backtrackable arc embedded in a rectangle. The rectangle is specified by the
lower left coordinates xLowerLeft, yLowerLeft, the width rectWidth and the height
rectHeight. The angle of the arc begins at position startAngle and moves, in a
clockwise direction, the number of degrees indicated by angleRange. The line of the
arc is of thickness th.

void makeArrow(IlcIntExp x1, IlcIntExp y1, IlcIntExp x2, IlcIntExp y2,
 IlcIntExp th, const char* col = "black");

Creates a backtrackable arrow that starts at the point (x1,y1) and ends at the point
(x2,y2). The thickness of the line is th and the default color of the arrow is black.

void makeEllipse(IlcIntExp xLowerLeft, IlcIntExp yLowerLeft,
 IlcIntExp rectWidth, IlcIntExp rectHeight,
 IlcIntExp th);

Creates a backtrackable empty ellipse embedded in a rectangle. The rectangle is
specified by the lower left coordinates xLowerLeft, yLowerLeft, the width
rectWidth and the height rectHeight. The outline of the ellipse is of thickness th.
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 59

void makeFilledArc(IlcIntExp xLowerLeft, IlcIntExp yLowerLeft,
 IlcIntExp rectWidth, IlcIntExp rectHeight,
 IlcFloatExp startAngle, IlcFloatExp angleRange,
 const char* col, IlcIntExp th);

Creates a backtrackable filled arc embedded in a rectangle. The rectangle is specified by
the lower left coordinates xLowerLeft, yLowerLeft, the width rectWidth and the
height rectHeight. The angle of the arc begins at position startAngle and moves, in
a clockwise direction, the number of degrees indicated by angleRange. The line of the
arc is of thickness th and the segment is filled with the color col.

void makeFilledEllipse(IlcIntExp xLowerLeft, IlcIntExp yLowerLeft,
 IlcIntExp rectWidth, IlcIntExp rectHeight,
 const char* col, IlcIntExp th);

Creates a backtrackable filled ellipse embedded in a rectangle. The rectangle is specified
by the lower left coordinates xLowerLeft, yLowerLeft, the width rectWidth and the
height rectHeight. The outline of the ellipse is of thickness th and the ellipse is filled
with the color col

void makeFilledLabel(IlcIntExp x, IlcIntExp y,
 const char* str, const char* col);

Creates a backtrackable filled label. The label is anchored at the point (x,y), contains the
character string str and has the background color specified by col.

void makeFilledPolygon(IlcIntVarArray x, IlcIntVarArray y,
 const char* col, IlcIntExp th,
 IlcIntExp fillRule);

Creates a backtrackable polygon filled with the color col. The th parameter indicates
the line thickness. The two integer array parameters x, y specifying the X and Y
coordinates, must be of the same size. The fillRule parameter indicates which points
are to be considered as being inside the polygon, depending on the number of crossing
segments that define the shape of the area to be filled. There are two rules to define the
shape:

◆ setting the fillRule parameter to 0 takes the “EvenOdd Rule”

◆ setting the fillRule parameter to 1 takes the “Winding Rule”.

 See the method drawFilledPolygon for an explanation of these rules.

void makeFilledRectangle(IlcIntExp xLowerLeft, IlcIntExp yLowerLeft,
 IlcIntExp rectWidth, IlcIntExp rectHeight,
 const char* col, IlcIntExp th);

Creates a backtrackable rectangle filled with the color col. The rectangle is anchored at
the point (xLowerLeft, yLowerLeft) and its dimensions are rectWidth,
rectHeight. The outline of the rectangle is th pixels thick.
60 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

void makeFilledRoundedRectangle(IlcIntExp xLowerLeft,
 IlcIntExp yLowerLeft,
 IlcIntExp rectWidth,
 IlcIntExp rectHeight,
 IlcFloatExp rc,
 const char* col, IlcIntExp th);

Creates a backtrackable rectangle with rounded corners. The parameters are similar to
those of makeFilledRectangle above, except for rc, which specifies the amplitude of
the arc used for the rounded corners.

void makeGrid(IlcIntExp xLowerLeft, IlcIntExp yLowerLeft,
 IlcIntExp rectWidth, IlcIntExp rectHeight,
 IlcIntExp cols, IlcIntExp rows, IlcIntExp th);

Creates a backtrackable grid embedded in a rectangle. The rectangle is specified by the
anchor points xLowerLeft, yLowerLeft, and the dimensions rectWidth,
rectHeight. The columns and rows in the grid are specified by the integers cols and
rows. The lines of the grid are of thickness th.

void makeLabel(IlcIntExp x, IlcIntExp y, const char* str);

Creates a backtrackable label anchored at the point (x,y) and containing the character
string str.

void makeLine(IlcIntExp x1, IlcIntExp y1, IlcIntExp x2, IlcIntExp y2,
 IlcIntExp th, const char* col = "black");

Creates a backtrackable line between the two points (x1,y1) and (x2,y2), of
thickness th and default color black.

int makeNewGraphicObject();

Creates a new nonbacktrackable 2D graphic object.

void makePolyline(IlcIntVarArray x, IlcIntVarArray y, IlcIntExp th);

Creates a backtrackable polyline.The two integer array parameters x, y, specifying the X
and Y coordinates, must be of the same size. The th parameter indicates the thickness of
the line. To obtain an empty polygon, give the same value to the first X and last X and to
the first Y and last Y.

void makeRectangle(IlcIntExp xLowerLeft, IlcIntExp yLowerLeft,
 IlcIntExp rectWidth, IlcIntExp rectHeight,
 IlcIntExp th);

Creates a backtrackable empty rectangle. The rectangle is anchored at the point
(xLowerLeft, yLowerLeft) and its dimensions are rectWidth, rectHeight. The
outline of the rectangle is th pixels thick.
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 61

void makeRoundedRectangle(IlcIntExp xLowerLeft, IlcIntExp yLowerLeft,
 IlcIntExp rectWidth, IlcIntExp rectHeight,
 IlcFloatExp rc, IlcIntExp th);

Creates a backtrackable empty rectangle with rounded corners. The parameters are
similar to those of makeRectangle above, except for rc, which specifies the amplitude
of the arc used for the rounded corners.

void setBackgroundColor(const char* col);

The parameter col sets the background color for the Drawing Board.
62 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

IlcSchedulerDebugger

Category C++ class

Description The class IlcSchedulerDebugger provides an interface to the IBM® ILOG® Solver
Debugger in an ILOG Scheduler environment.

Include File <ilsched/schedulerdebugger.h>

Synopsis class IlcSchedulerDebugger: public IlcAddOnDebugger {
public:
 IlcSchedulerDebugger(IlcSolverDebugger debugger,
 IlcSchedule s,
 IloBool traceAllActivities = IloTrue,
 IloBool traceAllResources = IloTrue,
 IloBool traceAllowed = IloTrue);
 IlcSchedulerTrace getSchedulerTrace() const;
 void registerActivity(IloActivity activity,
 IloBool toBrowse = IloTrue,
 IloBool toTrace = IloTrue,
 IlcVisualizeOption displayDomain =
 IlcVisualizeDisabled);
 void registerResource(IloResource resource,
 IloBool toBrowse = IloTrue);
 void registerUnaryResourceArray(IloArray<IloUnaryResource>
 &resources,
 const char* name,
 IloBool toBrowse = IloTrue);
 void setHorizon(IlcInt horizon);
 };

Constructor IlcSchedulerDebugger(IlcSolverDebugger debugger,
 IlcSchedule s,
 IloBool traceAllActivities = IloTrue,
 IloBool traceAllResources = IloTrue,
 IloBool traceAllowed = IloTrue);

The parameter s sets the IlcSchedule you have created to declare your activities and
resources. If the parameter traceAllActivities is true and traceAllowed is also
true, all activities are traced. If the parameter traceAllResources is true and
traceAllowed is also true, all resources are traced. If the parameter traceAllowed is
true, a specific trace for a Scheduler application is added.
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 63

Member Functions
IlcSchedulerTrace getSchedulerTrace() const;

Returns the graphical Scheduler trace added by the instance IlcSchedulerDebugger.

void registerActivity(IloActivity activity,
 IloBool toBrowse = IloTrue,
 IloBool toTrace = IloTrue,
 IlcVisualizeOption displayDomain = IlcVisualizeDisabled);

Registers an interest in an activity. The parameter activity sets the IlcActivity to
consider. If the parameter toBrowse is true, the model will display the activity in the
Debugger Model Browser. If the parameter toTrace is true, the activity must be traced
and the start and end variables must be taken into account in the Christmas Tree. If the
parameter displayDomain is true, the activity will be monitored graphically in the
Activity Domains panel.

void registerResource(IloResource resource,
 IloBool toBrowse = IloTrue);

Registers an interest in a resource. The parameter resource indicates the
IloResource to consider. If the parameter toBrowse is true, the option Browse Active
Model will be activated in the Debugger Model Browser.

void registerUnaryResourceArray(IloArray<IloUnaryResource>&resources,
 const char* name,
 IloBool toBrowse = IloTrue);

Registers an interest in a unary resource array. The parameter resources indicates the
array of unary resources to consider. The parameter name indicates the name of the array
to be displayed in the browser. If the parameter toBrowse is true, the option Browse
Active Model will be activated in the Debugger Model Browser.

void setHorizon(IlcInt horizon);

Gives the horizon to consider in the graphical representation of the Activity Domains.
This member function is to be called after registering the activities. The parameter
horizon sets the maximum value of the upper bounds of all activity end variables.
64 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

IlcSolverDebugger

Category C++ class

Description The class IlcSolverDebugger provides an interface to the IBM® ILOG® Solver
Debugger in an IBM ILOG Solver environment.

Include File <ilsolver/solverdebugger.h>

Synopsis class class IlcSolverDebugger: public IlcDebugger {
public:
 IlcSolverDebugger(IloSolver solver,
 IloBool active = IloTrue,
 IloBool textual = IloFalse,
 double pollingPeriod = 1.0,
 int socketPort = 4011,
 const char* guiServer = 0,
 IloBool nestedSearch = IloFalse);
 void breakIfBound(IloFloatVar var, IloNum val);
 void breakIfBound(IloIntVar var, IloInt val);
 void breakIfDomainMaxLe(IloFloatVar var, IloNum val);
 void breakIfDomainMaxLe(IloIntVar var, IloInt val);
 void breakIfDomainMinGe(IloFloatVar var, IloNum val);
 void breakIfDomainMinGe(IloIntVar var, IloInt val);
 void displayProfiling();
 IloSolver getSolver() const;
 IloBool initialize();
 void profileAllConstraints(IloBool all);
 void registerConstraint(IloConstraint cst,
 IloBool browse = IloTrue,
 IloBool trace = IloTrue);
 void registerVariable(IloFloatVar var,
 IloBool browse = IloTrue,
 IloBool trace = IloTrue,
 IlcVisualizeOption option = IlcVisualizeDisabled);
 void registerVariable(IloFloatVarArray var,
 IloBool browse = IloTrue,
 IloBool trace = IloTrue,
 IlcVisualizeOption option = IlcVisualizeDisabled,
 const char* name = 0);
 void registerVariable(IloIntVar var,
 IloBool browse = IloTrue,
 IloBool trace = IloTrue,
 IlcVisualizeOption option = IlcVisualizeDisabled);
 void registerVariable(IloIntVarArray var,
 IloBool browse = IloTrue,
 IloBool trace = IloTrue,
 IlcVisualizeOption option = IlcVisualizeDisabled,
 const char* name = 0);
 };
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 65

Constructor IlcSolverDebugger(IloSolver solver,
 IloBool active = IloTrue,
 IloBool textual = IloFalse,
 double pollingPeriod = 1.0,
 int socketPort = 4011,
 const char* guiServer = 0,
 IloBool nestedSearch = IloFalse);

When the active parameter is true, the Debugger is active and tries to connect to the
GUI immediately. Otherwise, the Debugger library has no effect. In this case, the
member function initialize() returns true when it is called for the first time and false
otherwise. The sendConsole() and sendSolution() member functions display the
messages on the standard output. The parameter solver indicates the IloSolver
object to which the constraints are added. With the parameter textual, if the Debugger
is active, XML messages are sent to the standard output (stdout) instead of the GUI.
The parameter pollingPeriod sets the number of seconds between two abort or break
checks. The parameter socketPort indicates the port number for which the GUI is
waiting. The parameter guiServer indicates the machine name on which the GUI is
running. If this parameter is null, then localhost is taken.

Member Functions
void breakIfBound(IloFloatVar var, IloNum val);

Registers a conditional breakpoint. The execution is interrupted at this conditional
breakpoint if the specified floating point variable is bound to val.

void breakIfBound(IloIntVar var, IloInt val);

Registers a conditional breakpoint. The execution is interrupted at this conditional
breakpoint if the specified integer variable is bound to val.

void breakIfDomainMaxLe(IloFloatVar var, IloNum val);

Registers a conditional breakpoint. The execution is interrupted at this conditional
breakpoint if the domain max of the specified floating point variable is lower than or
equal to val.

void breakIfDomainMaxLe(IloIntVar var, IloInt val);

Registers a conditional breakpoint. The execution is interrupted at this conditional
breakpoint if the domain max of the specified integer variable is lower than or equal to
val.

void breakIfDomainMinGe(IloFloatVar var, IloNum val);

Registers a conditional breakpoint. The execution is interrupted at this conditional
breakpoint if the domain min of the specified floating point variable is greater than or
equal to val.
66 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

void breakIfDomainMinGe(IloIntVar var, IloInt val);

Registers a conditional breakpoint. The execution is interrupted at this conditional
breakpoint if the domain min of the specified integer variable is greater than or equal to
val.

void displayProfiling();

Creates and displays the Constraint Profiler window from code. (Equivalent to clicking
on the Constraint Profiler button from the GUI).

IloSolver getSolver() const;

Returns the same IloSolver instance as the one passed to the constructor.

IloBool initialize();

Initializes a running session. Returns false if a Quit order comes from the GUI.

void profileAllConstraints(IloBool all);

By default all constraints are profiled. To restrict the list of monitored constraints, use
profileAllConstraints(IloFalse) and call the registerConstraint method
on the constraints your are interested in.

void registerConstraint(IloConstraint cst,
 IloBool browse = IloTrue,
 IloBool trace = IloTrue);

Registers an interest in the constraint cst. The parameter cst indicates the constraint to
consider. If the parameter browse is true, the model should be displayed in the Debugger
Model Browser. If the parameter trace is true, the variables must be traced.

void registerVariable(IloFloatVar var,
 IloBool browse = IloTrue,
 IloBool trace = IloTrue,
 IlcVisualizeOption option = IlcVisualizeDisabled);

Registers an interest in the float variable var. The parameter var indicates the variable
to consider. If the parameter browse is true, the model should be displayed in the
Debugger Model Browser. If the parameter trace is true, the variables must be traced.
The parameter option gives access to a graphical monitoring of the variable (displaying
its range or value).
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 67

void registerVariable(IloFloatVarArray var,
 IloBool browse = IloTrue,
 IloBool trace =IloTrue,
 IlcVisualizeOption option = IlcVisualizeDisabled,
 const char* name = 0);

Registers an interest in the array of float variables var. The parameter var indicates the
array of variables to consider. If the parameter browse is true, the model should be
displayed in the Debugger Model Browser. If the parameter trace is true, the variables
must be traced. The parameter option gives access to a graphical monitoring of the
variable (displaying its range or value).

void registerVariable(IloIntVar var,
 IloBool trace =IloTrue,
 IloBool browse = IloTrue,
 IlcVisualizeOption option = IlcVisualizeDisabled);

Registers an interest in the integer variable var. The parameter var indicates the
Ilovar to consider. If the parameter browse is true, then if the model is browsed it will
be displayed in the Debugger Model Browser. If the parameter trace is true, variables
must be traced and taken into account in the Christmas Tree. The parameter option
gives access to a graphical monitoring of the variable (displaying its range or value).

void registerVariable(IloIntVarArray var,
 IloBool browse = IloTrue,
 IloBool trace = IloTrue,
 IlcVisualizeOption option = IlcVisualizeDisabled,
 const char* name = 0);

Registers an interest in the array of integer variables var. The parameter var indicates
the array of variables to consider. If the parameter browse is true, the model should be
displayed in the Debugger Model Browser. If the parameter trace is true, the variables
must be traced and taken into account in the Christmas Tree. The parameter option
gives access to a graphical monitoring of the variable (displaying its domain, range, and
value).
68 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

IlcVisualizeOption

Category Type Definition

Include File <ilsolver/debuggerbasics.h>

Description The type definition IlcVisualizeOption is a visualization option that can be passed
to IlcSolverDebugger.registerVariable or
IlcSchedulerDebugger.registerActivity.

Synopsis typedef unsigned int IlcVisualizeOption;
typedef enum {IlcVisualizeDisabled = 0,
 IlcVisualizeDomain = 1,
 IlcVisualizeInterval = 2,
 IlcVisualizeValue = 4,
 IlcVisualizeBoolean = 8} IlcVisualizeOptionType;

IlcVisualizeOption can take the above values.
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 69

70 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

I N D E X
Index

A

Abort button 11
Activity Domains 27
adding breakpoints in your code 24
application

connecting 9
connecting remotely 10
connecting two at the same time 10
customizing 5, 6
improving 38

B

backtracking 32
beginNestedSearchTreeView member function

IlcDebugger Debugger C++ class 49
boolean variable, displaying 25
Break button 11
breakExecution member function

IlcDebugger Debugger C++ class 49
breakIfBound(IloFloatVar...) member function

IlcSolverDebugger Debugger C++ class 66
breakIfBound(IloIntVar...) member function

IlcSolverDebugger Debugger C++ class 66
breakIfDomainMaxLe(IloFloatVar...)

IlcSolverDebugger Debugger C++ class 66
breakIfDomainMaxLe(IloIntVar...)

IlcSolverDebugger Debugger C++ class 66
breakIfDomainMinGe(IloFloatVar...)

IlcSolverDebugger Debugger C++ class 66
breakIfDomainMinGe(IloIntVar...)

IlcSolverDebugger Debugger C++ class 67
breakpoints 14
buttons

Abort 11
Break 11
Continue 11
Continue Trace Till Next Node 11
Decision Stack 12
Inspect Current Node 12
Propagation Spy 12
Run 9, 11
Step Into 11
Step Out 11
Step Over 11
View Constraint Profiler 12
View Search Tree 12

C

choice point 12, 43
Christmas Tree

creating 29
domain reduction 30
interpreting 30
number of propagation events 30
visualizing 29

clean member function
IlcDrawingBoard C++ class 56
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 71

close member function
IlcDebugger Debugger C++ class 50

colors
Drawing Board 34
event types 22
node types 14
Propagation Spy 22
Variable Domains 26

commands to control the Debugger 11
conditional breakpoints 24
connecting

an application 9
an application remotely 10
two applications 10

constantInt member function
IlcDrawingBoard C++ class 56

constantNum member function
IlcDrawingBoard C++ class 56

Constraint Profiler
description 30
using 43

constraint statistics 31
Continue button 11
Continue Trace Till Next Node button 11
customer support viii
customizing your application

Scheduler C++ application 6
Solver C++ application 5

D

Debugger
commands 11
examples directory 2, 3
Tree Inspector 29

debuggolomb example
description 3
filter levels 9, 40
Search Tree 13

debugjobshopm example 5, 35
debuglsknight example 3
debugnqueen example

Decision Stack 18
description 3
Drawing Board 32

Variable Domains 25
debugpheasant example

description 5
Initial Propagation 22

Decision Stack button 12
Decision Stack docked panel 17
decisions taken at a node 18
displayResult member function

IlcAddOnDebugger Debugger C++ class 47
IlcDebugger Debugger C++ class 50

distribution directories 2
domain reduction 31
drawArc member function

IlcDrawingBoard C++ class 56
drawArrow member function

IlcDrawingBoard C++ class 56
drawEllipse member function

IlcDrawingBoard C++ class 56
drawFilledArc member function

IlcDrawingBoard C++ class 56
drawFilledEllipse member function

IlcDrawingBoard C++ class 57
drawFilledLabel member function

IlcDrawingBoard C++ class 57
drawFilledPolygon member function

IlcDrawingBoard C++ class 57
drawFilledRectangle member function

IlcDrawingBoard C++ class 58
drawFilledRoundedRectangle member function

IlcDrawingBoard C++ class 58
drawGrid member function

IlcDrawingBoard C++ class 58
Drawing Board

advanced use 34
basic use 32
customizing colors 34
example 35

Drawing Board class 53
drawLabel member function

IlcDrawingBoard C++ class 58
drawLine member function

IlcDrawingBoard C++ class 58
drawPolyline member function

IlcDrawingBoard C++ class 58
drawRectangle member function
72 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

IlcDrawingBoard C++ class 59
drawRoundedRectangle member function

IlcDrawingBoard C++ class 59

E

endNestedSearchTreeView member function
IlcDebugger Debugger C++ class 50

eraseGraphic member function
IlcDrawingBoard C++ class 59

event types, colors 22
examples

debuggolomb 3, 9, 13, 40
debugjobshopm 5, 35
debuglsknight 3
debugnqueen 3, 18, 25, 32
debugpheasant 5, 22
description 3

examples directory 2, 3

G

Gantt chart 5, 19
getImpl member function

IlcAddOnDebugger Debugger C++ class 47
IlcDebugger Debugger C++ class 50

getSchedulerTrace member function
IlcSchedulerDebugger Debugger C++ class 64

getSolver member function
IlcSolverDebugger Debugger C++ class 67

GUI
idle mode 9
initializing mode 8

GUI installation 2

I

idle mode, Debugger GUI 9
IlcAddOnDebugger Debugger C++ class

constructor 47, 49
displayResult 47
getImpl 47

IlcDebugger Debugger C++ class 49
beginNestedSearchTreeView 49
breakExecution 49

close 50
constructor 49
displayResult 50
endNestedSearchTreeView 50
getImpl 50
isActive 50
isAutomaticDisplay 50
isConnected 50
isTextual 50
newSearchTreeView 50
sendConsole 50
sendSolution 50
setAutomaticDisplay 51

IlcDrawingBoard C++ class 53
clean 56
constantInt 56
constantNum 56
constructor 55
drawArc 56
drawArrow 56
drawEllipse 56
drawFilledArc 56
drawFilledEllipse 57
drawFilledLabel 57
drawFilledPolygon 57
drawFilledRectangle 58
drawFilledRoundedRectangle 58
drawGrid 58
drawLabel 58
drawLine 58
drawPolyline 58
drawRectangle 59
drawRoundedRectangle 59
eraseGraphic 59
makeArc 59
makeArrow 59
makeEllipse 59
makeFilledArc 60
makeFilledEllipse 60
makeFilledLabel 60
makeFilledPolygon 60
makeFilledRectangle 60
makeFilledRoundedRectangle 61
makeGrid 61
makeLabel 61
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 73

makeLine 61
makeNewGraphicObject 61
makePolyline 61
makeRectangle 61
makeRoundedRectangle 62
setBackgroundColor 62

IlcSchedulerDebugger Debugger C++ class
constructor 63
getSchedulerTrace 64
registerActivity 64
registerResource 64
registerUnaryResourceArray 64
setHorizon 64

IlcSolverDebugger Debugger C++ class
breakIfBound(IloFloatVar..) 66
breakIfBound(IloIntVar...) 66
breakIfDomainMaxLe(IloFloatVar...) 66
breakIfDomainMaxLe(IloIntVar...) 66
breakIfDomainMinGe(IloFloatVar...) 66
breakIfDomainMinGe(IloIntVar...) 67
constructor 66
getSolver 67
initialize 67
registerConstraint 67
registerVariable(IloBool...) 68
registerVariable(IloFloatVar...) 67
registerVariable(IloFloatVarArray...)

68
registerVariable(IloIntVarArray...) 68

IlcVisualizeOption type definition 69
improving your application 38
include files

for Debugger with Scheduler 3
for Debugger with Solver 2
Scheduler C++ application 6
Solver C++ application 5

initial propagation 30
Initial Propagation, tracing 23
initialize member function

IlcSolverDebugger Debugger C++ class 67
initializing mode, Debugger GUI 8
Inspect Current Node button 12
installation

Debugger GUI 2
online documentation 2

Scheduler examples 3
Solver examples 2

installation directories 2
integer variable

bounds 25, 26
domain 25
state 26
value 25, 26

interpreting
Christmas Tree 30
right subtrees 38

isActive member function
IlcDebugger Debugger C++ class 50

isAutomaticDisplay member function
IlcDebugger Debugger C++ class 50

isConnected member function
IlcDebugger Debugger C++ class 50

isTextual member function
IlcDebugger Debugger C++ class 50

L

local search 19

M

makeArc member function
IlcDrawingBoard C++ class 59

makeArrow member function
IlcDrawingBoard C++ class 59

makeEllipse member function
IlcDrawingBoard C++ class 59

makeFilledArc member function
IlcDrawingBoard C++ class 60

makeFilledEllipse member function
IlcDrawingBoard C++ class 60

makeFilledLabel member function
IlcDrawingBoard C++ class 60

makeFilledPolygon member function
IlcDrawingBoard C++ class 60

makeFilledRectangle member function
IlcDrawingBoard C++ class 60

makeFilledRoundedRectangle member function
IlcDrawingBoard C++ class 61

makeGrid member function
74 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

IlcDrawingBoard C++ class 61
makeLabel member function

IlcDrawingBoard C++ class 61
makeLine member function

IlcDrawingBoard C++ class 61
makeNewGraphicObject member function

IlcDrawingBoard C++ class 61
makePolyline member function

IlcDrawingBoard C++ class 61
makeRectangle member function

IlcDrawingBoard C++ class 61
makeRoundedRectangle member function

IlcDrawingBoard C++ class 62
mode selectors 15
monitoring

local search 19
nested search 20
restart 19
solution restoring 19

monitoring decisions 16
Current Node Inspector docked panel 17
Decision Stack docked panel 17
Node Inspector dialog box 17
Propagation Spy 17

N

nested search 20
newSearchTreeView member function

IlcDebugger Debugger C++ class 50
Node Inspector dialog box 14, 17
node life cycle 14
node types

colors 14
root node 14
status 14

O

online documentation 2

P

propagation
events 21, 31

statistics 29
tracing at a specific node 23
visualizing 21

Propagation Spy
button 12
colors 22
description 17
event types 22
using 21, 42

R

registerActivity member function
IlcSchedulerDebugger Debugger C++ class 64

registerConstraint member function
IlcSolverDebugger Debugger C++ class 67

registerResource member function
IlcSchedulerDebugger Debugger C++ class 64

registerUnaryResourceArray member function
IlcSchedulerDebugger Debugger C++ class 64

registerVariable(IloFloatVar...) m.f.
IlcSolverDebugger Debugger C++ class 67

registerVariable(IloFloatVarArray...) m.f.
IlcSolverDebugger Debugger C++ class 68

registerVariable(IloIntVar...) m.f.
IlcSolverDebugger Debugger C++ class 68

registerVariable(IloIntVarArray...) m.f.
IlcSolverDebugger Debugger C++ class 68

remote connection 10
restart 19
right subtrees, interpreting 38
root node 14
Run button 9, 11

S

Search Tree
description 13
ideal shape 38
mode selectors 15
node inspector 14, 17

sendConsole member function
IlcDebugger Debugger C++ class 50

sendSolution member function
IlcDebugger Debugger C++ class 50
I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L 75

setAutomaticDisplay member function
IlcDebugger Debugger C++ class 51

setBackgroundColor member function
IlcDrawingBoard C++ class 62

setHorizon member function
IlcSchedulerDebugger Debugger C++ class 64

solution restoring 19
Solver Debugger

C++ libraries 1
starting the GUI 8

starting Solver Debugger 8
statistics

for a constraint 31
propagation 29

Step Into button 11
Step Out button 11
Step Over button 11
support

customer viii

T

tool bar
execution 11
standard 11

tracing
Initial Propagation 23
propagation at a specific node 23
propagation events 21

Tree Inspector 29
type definition IlcVisualizeOption 69

V

Variable Domains
colors 26
disabling visualization 25
displaying Boolean variables 25
integer variable bounds 25, 26
integer variable domain 25
integer variable value 25, 26
setting visualization options 24
state of integer variable interpreted as Boolean 26
visualizing 25

View Constraint Profiler button 12

View Search Tree button 12
visualizing

Activity Domains 27
both propagation events and search 29
propagation 21
search 12
Variable Domains 25
76 I B M I L O G S O L V E R D E B U G G E R U S E R ’ S M A N U A L

	Debugger User’s Manual
	Before You Begin
	About IBM ILOG Solver Debugger
	What You Need to Know
	What This Manual Contains
	Notation Used in This Manual
	IBM software support handbook

	Debugging and Performance Tuning for Solver-based Applications
	Installation
	Instrumenting Your Own Code
	Setting Up Solver Debugger
	Debugger Commands
	Visualizing the Search
	Visualizing Propagation
	Combining Search Tree Visualization and Propagation Information
	Using the Constraint Profiler
	Using the Drawing Board
	Improving your Application

	Solver Debugger API
	IlcAddOnDebugger
	IlcDebugger
	IlcDrawingBoard
	IlcSchedulerDebugger
	IlcSolverDebugger
	IlcVisualizeOption

	Index
	A
	B
	C
	D
	E
	G
	I
	L
	M
	N
	O
	P
	R
	S
	T
	V

