
© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights � Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

IBM ILOG Scheduler

Reference Manual

June 2009

Table of Contents
About This Manual..1

Concepts...3

Union of Neighborhoods..51

Intersection of Neighborhoods...52

Group optim.scheduler.modeling...68

Group optim.scheduler.solving...71

Class IloSchedulerSolution::ActivityIterator...77

Class IloGranularFunction::Cursor...78

Class IlcActivity..80

Class IlcActivityDeltaIterator...108

Class IlcActivityIterator..110

Class IlcAltRCDemon...112

Class IlcAltResConstraint..113

Class IlcAltResConstraintIterator...121

Class IlcAltResSet..123

Class IlcAltResSetIterator..128

Class IlcAnyTimetable..130

Class IlcAnyTimetableCursor..136

Class IlcAnyTimetableIterator...138

Class IlcCalendar..139

Class IlcCapResource..142

Class IlcContinuousReservoir...149

Class IlcContinuousReservoirIterator..154

Class IlcDiscreteEnergy...155

Class IlcDiscreteEnergyIterator..163

Class IlcDiscreteResource...164

Class IlcDiscreteResourceIterator..172

Class IlcFollowingActivityIterator...173

Class IlcGranularFunction...175

i

Table of Contents
Class IlcGranularFunctionCursor...179

Class IlcIntervalList..181

Class IlcIntervalListCursor..186

Class IlcIntTimetable..188

Class IlcIntTimetableCursor..194

Class IlcIntTimetableIterator..196

Class IlcIntToFloatSegmentFunction...197

Class IlcIntToFloatSegmentFunctionCursor..202

Class IlcPossibleAltResIterator...204

Class IlcPrecedenceConstraint...206

Class IlcPrecedingActivityIterator..208

Class IlcProbabilisticCriticalityCalculatorI...210

Class IlcRCTexture...212

Class IlcRCTextureESTFactoryI..214

Class IlcRCTextureESTI...216

Class IlcRCTextureFactory..219

Class IlcRCTextureFactoryI...221

Class IlcRCTextureI..223

Class IlcRCTextureIterator...229

Class IlcRCTextureProbabilisticFactoryI...230

Class IlcRCTextureProbabilisticI..231

Class IlcRCTextureTargetFactoryI..233

Class IlcRCTextureTargetI...235

Class IlcRelativeDemandCriticalityCalculatorI..237

Class IlcReservoir...239

Class IlcReservoirIterator..243

Class IlcResource...244

Class IlcResourceConstraint...258

Class IlcResourceConstraintDeltaIterator..273

ii

Table of Contents
Class IlcResourceConstraintIterator..275

Class IlcResourceDemon...278

Class IlcResourceIterator..279

Class IlcResourceTexture..280

Class IlcResourceTextureIterator...285

Class IlcSchedule...287

Class IlcScheduleDemon...294

Class IlcScheduler..295

Class IlcSchedulerPrintTrace..301

Class IlcSchedulerTrace..303

Class IlcSchedulerTraceI...306

Class IlcShape..313

Class IlcShiftListObject..315

Class IlcShiftObject..318

Class IlcStateResource..320

Class IlcStateResourceIterator..328

Class IlcTextureCriticalityCalculator..329

Class IlcTextureCriticalityCalculatorI...331

Class IlcTimeBoundConstraint...333

Class IlcTransitionCostObject...335

Class IlcTransitionCostObjectI..338

Class IlcTransitionTable..342

Class IlcTransitionTimeObject..345

Class IlcTransitionTimeObjectI...347

Class IlcUnaryResource...349

Class IlcUnaryResourceIterator..354

Class IlcVariableSlopeShape...355

Class IlcWorkServer...357

Class IloActivity..361

iii

Table of Contents
Class IloActivityBasicParam...388

Class IloActivityBreakParam...391

Class IloActivityConstraintsParam...395

Class IloActivityOverlapParam..398

Class IloActivityShiftParam...402

Class IloAltResConstraintIterator...404

Class IloAltResSet..406

Class IloCalendar..409

Class IloCapResource..412

Class IloContinuousReservoir..421

Class IloCoverConstraint...425

Class IloDiscreteEnergy...427

Class IloDiscreteResource..431

Class IloGranularFunction...435

Class IloPrecedenceConstraint...438

Class IloRCTextureFactory..440

Class IloRCTextureFactoryI...442

Class IloRelocateActivityNHoodI..443

Class IloReservoir..445

Class IloResource...449

Class IloResourceConstraint...457

Class IloResourceConstraintIterator..469

Class IloResourceParam..471

Class IloResourceValue...477

Class IloSchedulerEnv...479

Class IloSchedulerLargeNHood..487

Class IloSchedulerLargeNHoodI...493

Class IloSchedulerSolution...500

Class IloShape..520

iv

Table of Contents
Class IloShiftListObject...521

Class IloShiftObject..524

Class IloStateResource..525

Class IloTextureCriticalityCalculator..530

Class IloTextureCriticalityCalculatorI...532

Class IloTextureParam...533

Class IloTimeBoundConstraint...537

Class IloTimeWindowNHoodI::IloTimeWindow...539

Class IloTimeWindowNHood...541

Class IloTimeWindowNHoodI..544

Class IloTransitionCost..547

Class IloTransitionCostObject..554

Class IloTransitionCostObjectI...555

Class IloTransitionParam...556

Class IloTransitionTime...560

Class IloTransitionTimeObject..563

Class IloTransitionTimeObjectI...564

Class IloUnaryResource..565

Class IloVariableSlopeShape..567

Class IloAltResSet::Iterator...569

Class IlcResource::ResourceConstraintDeltaIterator...570

Class IlcResource::ResourceConstraintIterator..572

Class IloSchedulerSolution::ResourceConstraintIterator..574

Class IloSchedulerSolution::ResourceIterator..576

Class IlcCalendar::ShiftObjectIterator..577

Class IloCalendar::ShiftObjectIterator..578

Enumeration IlcActivityIteratorFilter...579

Enumeration IlcFailReason..580

Enumeration IlcGranularFunctionRoundingMode..582

v

Table of Contents
Enumeration IlcPrecedenceConstraintType..583

Enumeration IlcResourceConstraintIteratorFilter...584

Enumeration RankFilter...586

Enumeration IlcSchedVariable..587

Enumeration IlcSchedulerChange..588

Enumeration Type..590

Enumeration IlcSlopeConstraintMode..591

Enumeration IlcSolverChange...592

Enumeration IlcTimeBoundConstraintType...593

Enumeration IlcTimeExtent...594

Enumeration IloActivitySelector...595

Enumeration IloEnforcementLevel...596

Enumeration IloGranularFunctionRoundingMode..597

Enumeration IloPrecedenceConstraintType..598

Enumeration IloResourceConstraintSelector..599

Enumeration IloResourceSelector..600

Enumeration IloSchedVariable..601

Enumeration IloResourceConstraintIteratorFilter...602

Enumeration IloSequenceIndexSelector..603

Enumeration Type..604

Enumeration IloTimeBoundConstraintType..605

Enumeration IloTimeExtent...606

Global function IloSetTimesForward..607

Global function IlcActivityStartVarBoundPredicate..608

Global function IlcResourceConstraintSurelyContributesPredicate...609

Global function IlcAltResConstraintNbPossibleEvaluator...610

Global function IlcActivityRandomEvaluator...611

Global function IlcResourceConstraintCapacityMinEvaluator..612

Global function IlcResourceConstraintNextTransitionCostEvaluator..613

vi

Table of Contents
Global function IlcResourceConstraintCapacityMaxEvaluator..614

Global function IlcActivityIntegralExp..615

Global function IlcResourceConstraintProvidingConstraintPredicate...616

Global function IlcActivityStartMaxEvaluator..617

Global function IloTextureSuccessorGoal...618

Global function IlcAltResConstraintVariableConstraintPredicate...619

Global function IlcResourceIsCapacityResourcePredicate...620

Global function IlcResourceConstraintSlopeEvaluator..621

Global function IlcResourceIsUnaryResourcePredicate..622

Global function IlcActivityIsRankedPredicate...623

Global function IlcAssign..624

Global function IlcScheduleOrPostpone..625

Global function IlcResourceConstraintPossibleLastPredicate..626

Global function IloTimeWindowBackwardChronologicalComparator..627

Global function IloTimeWindowBackwardChronologicalComparator..628

Global function IlcRank..629

Global function IlcResourceConstraintSetupPredicate..631

Global function IlcResourceConstraintTeardownPredicate...632

Global function IloUnionNHood..633

Global function IlcActivityResourceConstraintTranslator...634

Global function IlcActivityAltResConstraintTranslator..635

Global function IlcResourceConstraintPossibleSetupPredicate...636

Global function IlcResourceConstraintPossibleFirstPredicate...637

Global function IlcActivityIsBreakablePredicate...638

Global function IlcRCTextureProbabilisticFactory..639

Global function IlcAssignAlternative..640

Global function IlcResourceConstraintVariableConstraintPredicate..641

Global function IlcActivityProcessingTimeMaxEvaluator..642

Global function IlcResourceConstraintStateSetConstraintPredicate...643

vii

Table of Contents
Global function IlcTryAssign...644

Global function IlcScheduleOrPostponeBackward...645

Global function IloIntersectNHood...646

Global function IlcResourceTextureEvaluator...647

Global function IlcResourceIsReservoirPredicate..648

Global function IlcResourceConstraintNegativeConstraintPredicate...649

Global function IlcRCTextureTargetFactory..650

Global function IlcAltResConstraintCapacityEvaluator..651

Global function IlcRelativeDemandCriticalityCalculator..652

Global function IlcProbabilisticCriticalityCalculator...653

Global function IloResourceIntegralConstraint...654

Global function IlcResourceConstraintHasNextPredicate...655

Global function IlcResourceConstraintStateConstraintPredicate...656

Global function IlcResourceConstraintPossiblePrevVisitor..657

Global function IloResourceFunctionalConstraint..658

Global function IlcResourceConstraintPrevTransitionCostEvaluator..659

Global function IlcResourceConstraintSlopeConstraintPredicate..660

Global function IlcTestSequencedResource...661

Global function IlcResourceRandomEvaluator...662

Global function IlcRankBackward...663

Global function IloSequenceForward...665

Global function IlcTextureSuccessorGoal...666

Global function IlcActivityTransitionTypeEvaluator...667

Global function IlcActivityPostponedBackwardPredicate..668

Global function IlcResourceGlobalSlackEvaluator...669

Global function IlcSetTimesBackward...670

Global function IlcActivityDurationMinEvaluator..672

Global function IlcResourceLocalSlackEvaluator...673

Global function IlcSequenceBackward..674

viii

Table of Contents
Global function IlcResourceIsDiscreteResourcePredicate..675

Global function IlcActivityEndMaxEvaluator...676

Global function IlcResourceIsContinuousReservoirPredicate..677

Global function IlcActivityStartMinEvaluator...678

Global function IlcMakeTransitionCost..679

Global function IloRankForward...680

Global function operator<<..681

Global function IloShapeLowerThan..682

Global function IloRelocateActivityNHood..683

Global function IlcFunctionalExp..684

Global function IlcActivityEndVarBoundPredicate...685

Global function IloRankBackward..686

Global function IlcActivityDurationMaxEvaluator...687

Global function IlcTextureAltSuccessorGoal..688

Global function IlcResourceConstraintHasPrevPredicate...689

Global function IlcResourceIsStateResourcePredicate..690

Global function IlcTryRankLast...691

Global function IlcMakeTransitionTime..692

Global function IlcResourceConstraintPossibleTeardownPredicate..693

Global function IlcRCTextureESTFactory..694

Global function IlcResourceIsDiscreteEnergyPredicate..695

Global function IlcGetThreadId...696

Global function IlcResourceConstraintPossibleNextVisitor..697

Global function IlcAltResConstraintResourceSelectedPredicate..698

Global function IlcResourceRankedPredicate...699

Global function IloSequenceBackward..700

Global function IlcShapeLowerThan..701

Global function IlcResourceHasTexturePredicate..702

Global function IlcResourceConstraintRandomEvaluator...703

ix

Table of Contents
Global function IlcResourceResourceConstraintTranslator..704

Global function IlcResourceResourceConstraintTranslator..705

Global function IlcResourceSequencedPredicate...706

Global function IlcResourceConstraintInwardConstraintPredicate..707

Global function IlcActivityEndMinEvaluator..708

Global function operator<=..709

Global function IloTextureAltSuccessorGoal..710

Global function IlcResourceHasBreaksPredicate...711

Global function IlcActivityProcessingTimeMinEvaluator...712

Global function IloTimeWindowForwardChronologicalComparator...713

Global function IloTimeWindowForwardChronologicalComparator...714

Global function IlcResourceCapacityEvaluator...715

Global function IloAssignAlternative..716

Global function IlcResourceEnergyEvaluator...717

Global function IlcResourceConstraintCapacityConstraintPredicate...718

Global function IloSetTimesBackward...719

Global function IlcSequence...720

Global function IlcResourceClosedPredicate..721

Global function IlcActivityPostponedPredicate...722

Global function IlcSetTimes..723

Global function IlcTrySetSuccessor...726

Global function IlcResourceConstraintVirtualNodePredicate..727

Global function IlcTryRankFirst..728

Global function IlcActivityProcessingTimeVarBoundPredicate..729

Global function IlcResourceHasAltResConstraintPredicate..730

Global function IlcResourceConstraintPossiblyContributesPredicate...731

Macro ILCALTRCDEMON...732

Macro ILCRESOURCEDEMON...734

Macro ILCSCHEDULEDEMON...735

x

Table of Contents
Macro IlcTransitionCost...736

Macro IlcTransitionTime..737

Macro ILCUSERSHIFTOBJECT...738

Macro ILORCTEXTUREFACTORY0...739

Macro ILOTEXTURECRITICALITYCALCULATOR0..740

Macro ILOTRANSITIONCOSTOBJECT0..741

Macro ILOTRANSITIONTIMEOBJECT0...742

Typedef IlcSchedulerTraceFilter...744

xi

About This Manual
This reference manual documents the classes and concepts of the IBM® ILOG® Scheduler library.

Group Summary

optim.scheduler.modeling The IBM® ILOG® Scheduler API.

optim.scheduler.solving The IBM® ILOG® Scheduler API.

What Is Scheduler?

Scheduler is a C++ library for modeling scheduling problems. This library is not a new programing language: it
lets you use data structures and control structures provided by C++. Thus, the Scheduler part of an application
can be completely integrated with the rest of that application (for example, the graphic interface, connections to
databases, etc.) because it can share the same objects.

What You Need to Know

This manual assumes that you are familiar with the operating system in which you are using Scheduler. Since
Scheduler is written for C++ developers, this manual assumes that you can write C++ code and that you have a
working knowledge of your C++ development environment.

Notation

Throughout this manual, the following typographic conventions apply:

Samples of code are written in this typeface.•
The names of constructors and member functions appear in this typeface in the section where they
are documented.

•

Important ideas are emphasized like this.•

Naming Conventions

The names of types, classes, and functions defined in the Concert Technology library begin with Ilo.

The names of classes are written as concatenated, capitalized words. For example:

IloActivity

A lower case letter begins the first word in names of arguments, instances, and member functions. Other words
in such a name begin with a capital letter. For example,

aVar
IloActivity::getEndVar

There are no public data members in Scheduler, except in goals and demons. (This reference manual and the
IBM ILOG Solver Reference Manual document goals and demons.)

Accessors begin with the keyword get followed by the name of the data member. Accessors for Boolean
members begin with is followed by the name of the data member. Like other member functions, the first word in
such a name begins with a lower case letter, and any other words in the name begin with a capital letter.

Modifiers begin with the keyword set followed by the name of the data member.

class Task {

1

public:
 Task(char* name, IloInt duration);
 ~Task();
 IloInt getDuration() const;
 void setDuration(IloInt duration);
 IloBool isCritical() const;
 void setCritical(IloBool critic);
};

Include Files

In this reference manual, the documentation of a class uses the caption "Include File" to indicate which header
file you need to include in your application. The caption "Definition File" indicates the header file where the class
is actually defined.

2

Concepts

Scheduler Overview

Overview

The Scheduler Model is composed of three main families of classes:

Scheduling Object Classes•
Parameter Classes•
Model Parsing Object Classes•

These class families are described in the following sections.

Scheduling Object Classes

Scheduling Object classes represent the core classes of the model. They allow representation of activities,
temporal constraints, resources or resource requirements, and transition times and transition costs on resources.
The following figure shows all the Scheduling Object classes.

IBM® ILOG® Scheduler Object Classes

Parameter Classes

Parameter classes represent characteristics or behaviors that can be attached to a scheduling object. For
example, a scheduling object like a resource may have a maximal capacity that varies with time, or there may be
breaks during which activities executing on that resource may be suspended. As another example, an activity
may have different behaviors in response to resource capacity or breaks, or may require transition times if it
follows certain other activities. Parameter classes represent these various characteristics.

Parameter classes have the following properties:

3

The parameter characteristics can be modified using the API of the scheduling objects. For example,
the API of the class representing a resource allows adding a new break in the break list of the resource.

•

The characteristics can be shared between several scheduling objects. For example, several resource
instances may share the same break list (such as, all these resources have breaks on weekends), or
several activities may share the same behavior with respect to breaks. Sharing a characteristic saves
memory in the model and allows easy modification of the value with only one function call for a group of
objects.

•

Each parameter class has a default value, which can be directly modified. The parameters and scheduling
objects are related in a specified pattern. See Parameter Design Pattern for more information.

Parameter classes can be classified according to the scheduling object classes to which they are attached --
either resources or activities. A third type of parameter, Generic Parameters, may represent different types of
characteristics. For example, both the maximal and minimal capacity profiles of a capacity resource are
represented by a parameter class describing a numeric step function. Generic parameters do not have any
inherent semantics. They get particular semantics only when they are attached to a Scheduling Object.

The following is a complete list of Parameter classes.

Resource Parameter

Resource Basic Parameter: IloResourceParam

Activity Parameters

Activity Basic Parameter: IloActivityBasicParam

Activity Constraints Parameter: IloActivityConstraintsParam

Activity Break Parameter: IloActivityBreakParam

Activity Overlap Parameter: IloActivityOverlapParam

Generic Parameters

IloNumToNumStepFunction, IloNumToNumSegmentFunction, IloNumToAnySetStepFunction and
IloIntervalList are documented in the extensions section of the IBM ILOG Concert Technology Reference
Manual.

Time Interval List: IloIntervalList

Transition Cost: IloTransitionParam

Numeric Step Function: IloNumToNumStepFunction

Numeric Piecewise Linear Function: IloNumToNumSegmentFunction

Set Step Function: IloNumToAnySetStepFunction

Scheduler Overview Figure gives an overview of the links between Scheduling Objects and Parameters.

Parameters Organized by Function

Parameters can also be categorized according to their function. We distinguish three categories of parameters:

Description Parameters are parameters that describe the scheduling objects. For example, a parameter
can describe the maximal capacity of a resource.

•

Relaxation Parameters are parameters that relax some features of the scheduling objects. For example,
a relaxation parameter may specify that a due-date constraint on an activity does not need to be taken
into account when solving the problem.

•

4

Enforcement Parameters are parameters that specify how the constraints expressed on the scheduling
objects will be enforced by the scheduler. The value of these parameters is taken from the enumeration
IloEnforcementLevel. The exact semantics of each value must be defined by the scheduler. Those
levels represent a scale of effort that the scheduler will spend at enforcing the corresponding type of
constraints.

•

Following is a brief description of each parameter class.

IloResourceParam

Scheduling Object: IloResource

Category: Relaxation and Enforcement parameter

This parameter specifies if various resource characteristics must be enforced and how much effort must be spent
by the scheduler to enforce them. It states, for example, if the break list, resource usage, precedence relations
between activities requiring the resource, sequencing relations between activities requiring the resource, and/or
transition times are to be enforced, and with how much effort.

IloActivityBasicParam

Scheduling Object: IloActivity

Category: Description parameter

This parameter describes:

The maximal duration of the activity•
If the activity can be suspended by breaks or not•

IloActivityConstraintsParam

Scheduling Object: IloActivity

Category: Relaxation parameter

This parameter allows relaxing the following types of constraints related with an activity:

Break disjunctivity•
Precedence constraints•
Time-bound constraints•
Covering constraint•
Resource constraints.•

IloActivityBreakParam

Scheduling Object: IloActivity

Category: Description parameter

This parameter describes the behavior of the activity with respect to breaks. In particular:

Which breaks will be considered as disjunctive for the activity•
What is the minimal duration of processing time intervals of the activity•
Can the activity be suspended at its start and/or at its end•

IloActivityOverlapParam

Scheduling Object: IloActivity

Category: Description parameter

5

This parameter describes if and how an activity may overlap a break.

IloIntervalList

Scheduling Object: Generic Parameter (used by the class IloResource)

Category: Description parameter

This parameter represents a list of time intervals associated with a numerical type. It is used to represent:

A break list attached to a resource. In that case, the integer type corresponds to the type of break.
(Identified as [brk] in Scheduler Overview Figure.)

•

The time intervals on which the usage of a resource must be enforced. In that case, for all resources
except for continuous reservoir, the integer type represents the time precision (time step) used to
enforce this resource usage. (Identified as [usg] in Scheduler Overview Figure.)

•

The time intervals on which the transition times on a resource must be enforced. (Identified as [tt] in
Scheduler Overview Figure.)

•

For a state resource, the time intervals during which the resource is constrained to be in use. (Identified
as [max] in Scheduler Overview Figure.)

•

IloIntervalList is documented in the extensions section of the IBM ILOG Concert Technology Reference
Manual.

IloTransitionParam

Scheduling Object: Generic Parameter (used by classes IloTransitionCost and IloTransitionTime)

Category: Description parameter

This parameter represents a numerical table. It is used to represent:

The transition times on a resource. (Identified as [time] in Scheduler Overview Figure.)•
The transition costs on a unary resource. (Identified as [cost] in Scheduler Overview Figure.)•

IloNumToNumStepFunction

Scheduling Object: Generic Parameter (used by class IloCapResource)

Category: Description parameter

This parameter represents the numeric step function

This parameter is used to represent the minimal [min] and maximal [max] capacity profile of a capacity resource
and its initial occupation.

IloNumToNumStepFunction is documented in the extensions section of the IBM ILOG Concert Technology
Reference Manual.

IloNumToNumSegmentFunction

Scheduling Object: Generic Parameter (used by class IloContinuousReservoir)

Category: Description parameter

This parameter represents the numeric piecewise linear function

This parameter is used to represent the minimal [min] and maximal [max] level profile of a continuous reservoir
and its initial occupation.

IloNumToNumSegmentFunction is documented in the extensions section of the IBM ILOG Concert
Technology Reference Manual.

6

IloNumToAnySetStepFunction

Scheduling Object: Generic Parameter (used by class IloStateResource)

Category: Description parameter

This parameter represents the set step function:

 where and A is the set of all possible values of type IloAny.

This parameter is used to represent the possible states of the resource for each time interval. (Identified as [max]
in Scheduler Overview Figure.)

IloNumToAnySetStepFunction is documented in the extensions section of the IBM ILOG Concert
Technology Reference Manual.

Scheduler Overview Figure

This figure shows an overview of the links between scheduling objects and parameters in the Scheduler Model.

Model Parsing Object Classes

These classes are used to parse some objects or parameters of the model. The following is the exhaustive list of
Model Parsing Object classes.

7

These classes are all documented in the extensions section of the IBM ILOG Concert Technology Reference
Manual.

Cursor on Interval Lists: IloIntervalListCursor•
Cursor on Numeric Step Functions: IloNumToNumStepFunctionCursor•
Cursor on Numeric Piecewise Linear Functions: IloNumToNumSegmentFunctionCursor•
Cursor on Set Step Functions: IloNumToAnySetStepFunctionCursor•

Parameter Design Pattern

Let schedclass be a Scheduling Object class (for example, IloResource). Let xxxParam be a class that
represents the characteristics xxx of the instances of the class schedclass. For example, let xxxParam be the
break list of an instance of IloResource; in that case, xxxParam is an IloIntervalList.

For simplification, we suppose that xxx consists of one data member that can be accessed by the accessor
getxxxValue(), and modified with the member function setxxxValue(Value).

The handle class of parameters is defined as follows:

class xxxParam : {
public:
 xxxParam(const IloEnv&, ...);
 Value getxxxValue() const;
 void setxxxValue(Value) const;
 void reset();
};

The function reset allows resetting the parameter to its absolute default value. Instances of parameters
xxxParam may be shared between several scheduling objects. (For example, several instances of
IloResource may share the same break list represented as an instance of IloIntervalList). Thus,
changing or resetting the value of an instance of a parameter will affect all the scheduling objects that share this
parameter.

An instance of each class of parameter is stored in the scheduler environment (class IloSchedulerEnv). By
default, all the Scheduling Objects built in that environment will share this parameter instance, unless the local
API of those objects is used (see below). This instance can be accessed as follows:

class IloSchedulerEnv {
 public:
 xxxParam getxxxParam() const;
 void setxxxParam(const xxxParam& param);
 };

The functions getxxxParam and setxxxParam on the scheduler environment do not copy the parameter. The
function setxxxParam is used to set a new xxxParam as default for all the scheduling objects that will be
created later on the environment. This function will detach the previous instance of xxxParam from the
environment but it will not detach this previous instance from the scheduling objects it was already attached to.
The function getxxxParam can be used only to modify the value of the default parameter with
schedEnv.getxxxParam().setxxxValue(Value).

The class schedclass of scheduling objects provides an API to modify the characteristics xxx that are stored in
an instance of xxxParam.

class SCHEDCLASS {
 public:
 SCHEDCLASS(const IloEnv&, ...);
 void setxxxValue(Value);
 Value getxxxValue() const;
 void setxxxParam(const xxxParam& param);
 };

The function setxxxParam is used to set a new xxxParam for the scheduling object. This function does not
copy the parameter. When the function setxxxValue(Value) is called on the scheduling object schedclass,
if the parameter xxxParam is shared between different objects, a local copy is created and the function is

8

applied to this local copy. The rationale is that the local API of a scheduling object must not modify the
parameters that are set for other scheduling objects through shared parameters.

See Also

IloSchedulerEnv.

Calendars

Description

By default an activity is defined by three decision variables: start time (S), end time (E) and duration (D=E-S). In
order to accurately model more complex dependencies between activities and their required resources, a fourth
decision variable is defined: the processing time (PT), which corresponds to the amount of work the activity
performs. The calendar object defines how those variables will interact.

A calendar object is composed by three complementary components:

A list of shift objects. A shift defines forbidden dates for the start, the end or the wall activity (for
example, the activity cannot start during weekends).

•

A list of breaks intervals. A break interval defines when the activity is suspended (for example, if breaks
are defined by weekends, then an activity with a duration of four days starting on Friday finishes at the
end of Wednesday).

•

An efficiency curve. The efficiency curve defines the behavior of the duration regarding the start time of
activity (for example, if the resource only works at 50% during weekends, then an activity with a nominal
duration of four days starting on Friday finishes at the end of Tuesday).

•

Consider a resource R that is suspended every weekend and during holidays. In addition, R needs to be
prepared the day before and the day after each suspension. This preparation will induce a 50% unavailability of
R. Such a behavior can be modeled with a calendar constraint defined by an efficiency curve and break intervals
as follows:

An efficiency curve defined between 25% availability (when only one day of work) and 100%;•
A break interval for each weekend and each holiday.•

In this example, the processing time of the activity A which starts in S=4 and ends in E=20 is then
PT=150+25+100+100+250 = 625% and obviously its duration is D=20-4=16.

9

If the resource R needs to be switched off before weekends, then weekend break intervals can advantageously
be replaced by shift intervals to model this disjunctive behavior. In this case, an activity has to be performed
completely inside a week, so an activity with a processing time equal to 2 will be executed at least after time 17.

Decision Variables

By default an activity A is defined by three decision variables: start time (S), end time (E), and duration (D=E-S).
A fourth variable, called processing Time (PT), is linked to the activity when using a calendar object. This
processing time corresponds to the duration of the activity when neither break intervals nor efficiency need to be
considered. This can also be called the nominal duration. The relation between start, end and processing time is
defined by:

with

If there are no break intervals and no efficiency curve (by default equal to one on the horizon), PT=E-S=D. In
addition to this relationship, activity variables can be overconstrained in the two following ways.

The activity is not breakable corresponds to:

The activity does not use efficiency corresponds to:

Calendar Object Semantic

A calendar object is defined by a list of shift objects, a list of break intervals, and an efficiency curve. By default,
lists are empty and the efficiency curve is equal to 1 on the scheduled horizon. The calendar object is associated
with a resource or a resource constraint. When a calendar is defined both on a resource constraint and on the
corresponding resource, the calendar of the resource is forgiven in order to only take into account the calendar of
the resource constraint.

Consider the example with an activity A, a calendar object C1 associated with the resource R, and a calendar

10

object C2 associated with the resource constraint: A.requires(R). C1 is defined by start shift objects S1 and S2.
C2 is defined by break interval B1. Then variables of activity A are constrained by the calendar object C2, and so
the start of the activity does not have to respect S1 neither S2.

Activities with Null Processing Time

Activities with null processing time are not affected by calendars. This feature provides an easy way to state that
some activities must be "ignored" as far as calendars are concerned.

Activities Related to Several Calendars

Consider a breakable activity act that uses efficiency, with a processingTime equal to 4 and two unary resources
res1 and res2. There are two calendars C1 (the one of the previous example) and C2 (just a break in [14,19))
and two resource constraints rct1=act.requires(res1) with calendar C1 and
rct2=act.requires(res2) with calendar C2. As there is only one activity, there exists only one
processingTime variable, and so the processingTime must be equal on both resource constraints (that is, with C1
and C2). As the efficiency is most of the time smaller than 100%, the activity has to be suspended by the break of
C2 to be able to respect processingTime==4, as shown on the following figure. The only solution is to start at
time 11 and to end at time 20.

So to avoid trouble and express that such an activity requires resource res1 and that the "same" activity also
requires resource res2, you must create another activity from the start until the end as defined by resource res1
with the same start and end variables, and a new processing time variable (see IloActivity::shareStartWithStart
and IloActivity::shareEndWithEnd).

Shift Object Semantic

A shift object is a set of forbidden dates:

An associated type defines the shift behavior regarding the start and the end of the activity. The three types are
as follows.

OnStart: the activity cannot start in the shift, that is: •

OnEnd: the activity cannot end in the shift, that is:
•

OnOverlap: the activity cannot overlap a forbidden date, that is:
•

11

The shift object can be defined by the user using the MACROILOUSERSHIFTOBJECT. However the predefined
shift object IloShiftListObject may be enough in most of the cases as it deals with a list of shift intervals.

Consider the example with a given the calendar C associated with the resource R, and activities A, B and C all
with durations of 4 and requiring R. C is defined by the shift interval list L=[1, 4), [8,12), [15, 17), [23, 24).

If shift object is OnStart: A cannot start in 2, but it could start in 5;•
If shift object is OnEnd: B cannot end in 11, but it could end in 14;•
If shift object is OnOverlap: C cannot start in 14 and end in 18 because of the shift interval [15,17), but it
could start in 18 and end in 22.

•

Break Intervals Semantic

Using breaks is the easiest way to model the suspension of an activity by a fixed time interval; so a suspended
activity is divided in a set of convex time intervals:

For example:

Ignored Breaks

Each time interval I is associated with a unique number called its type (see IloIntervalList in the extensions
section of the IBM ILOG Concert Technology Reference Manual. Those types allow one to parameterize the
behavior of activities with respect to certain breaks, to ignore breaks, or to express disjunctive behavior. See
Disjunctive Break.

Each activity may be associated with a set of ignored break types. It means that every break B whose type
belongs to this set will be ignored, as it does not exist. In the following figure, the activity A with ignored type set
{2} is not suspended by breaks 2 whereas the activity B with ignored type set {1} is suspended by breaks 2.

12

For more information, see IloActivity::addIgnoredBreakType and IloActivity::removeIgnoredBreakType.

Capability of an Activity to be Suspended at Start or at End

If an activity cannot be suspended at start, then there is no suspension time interval that starts at the start time of
the activity.

In the same way, if an activity cannot be suspended at end, then there is no suspension time interval that finishes
at the completion time of the activity.

For more information, see IloActivity::setCanBeSuspendedAtStart, IloActivity::setCanBeSuspendedAtEnd,
IloActivity::canBeSuspendedAtStart, IloActivity::canBeSuspendedAtEnd.

13

Minimal Execution Duration

An activity can express the fact that the duration of each of its time intervals must be greater than a threshold
duration ExecD.

On the preceding example, the minimal processing duration is 3 (the second processing interval). Thus, if the
threshold minimal duration for processing intervals of this activity had been set to 4, the distribution of processing
duration depicted in that figure could not be accepted in a solution. See IloActivity::setExecutionDurationMin.

Breaks and Transition Times

The transition time on a resource allows specifying a delay between two activities (see Transition Times). This
delay can take into account the breaks defined on that resource. By default, the transition time on a resource is
not suspended by the breaks. This can be illustrated by the following example: suppose a unary resource with a
break list [0,2), [7,9), [14,16), and two activities A and B that require this resource. Activity A finishes at time
endA=6 and activity B is constrained to start after the end of activity A. If the transition time between A and B is
ttAB=10, because of this transition time, the activity B cannot start before date endA + ttAB =16.

The member function void IloTransitionTime::setSuspended(IloBool suspended=IloTrue)
allows specifying a transition time that is suspended by the breaks of the resource. In the example above, that
would imply that activity B must start after date 20, as shown in the following figure.

Notice that the transition time on a resource with suspended time concerns all (but only) the breaks on that
resource. That is, no calendar object must be defined on resource constraints attached to the resource.

Disjunctive Break

A break B is said to be disjunctive for an activity act if act behaves as a non-breakable activity with respect to
this break B. That is, the activity act cannot be suspended by the break.

There are three different ways to implement disjunctive behavior with a calendar:

Shift object typed as OnOverlap (see Shift Object Semantic). Notice that in most of the cases, using
shifts is more efficient than breaks regarding disjunctive behavior.

•

Disjunctive break type: Each activity may be associated with a set of disjunctive break types. It means
that every break B whose type belongs to this set will be considered as disjunctive for the activity.

•

Break size: Each activity may be associated with an interval [dmin, dmax] of possible duration for
non-disjunctive breaks. Each break whose duration is outside this interval will be considered as

•

14

disjunctive for the activity.

A break that is not disjunctive is called a normal break. By default, all the breaks except for null duration breaks
are considered as normal (non-disjunctive) breaks for an activity.

Suppose the break list described in the next figure and an activity whose set of disjunctive break types is 1 and
interval of possible duration for normal breaks is [10,12]. The disjunctive status of breaks with respect to this
activity is also given on the following figure. For instance, we see that the first break [2,10) will be considered as
disjunctive for the activity as its type is 1. The break [15,26) will not be considered as disjunctive because its type
does not belong to the set of disjunctive types and its duration (11) falls into the possible durations of normal
breaks. The break [32,40) will be considered as disjunctive because its duration (8) does not fall into the possible
durations of normal breaks.

For more information, see IloActivity::addDisjunctiveBreakType,
IloActivity::removeDisjunctiveBreakType, IloActivity::setDurationMaxNormalBreaks, and
IloActivity::setDurationMinNormalBreaks.

Possible Execution Break Overlap

The standard use of a break is to suspend the processing time of an activity. In some cases, however, you may
want to relax this and allow some limited amount of processing to occur within a break. For example, you might
want to specify that it is possible for the end of an activity to be processed inside a break, providing the length of
processing time within a break is less than some value. In a factory with one 8-hour shift, where non-shift hours
are represented as breaks, it might be better to finish a job as much as a half-hour after the end of the shift rather
than to process the entire activity in the next shift.

Conceptually, a processing time overlap is a period of time during which the processing time of an activity
overlaps a break. Two kinds of processing time overlaps are distinguished:

Start Overlap•
End Overlap•

No other way of overlapping breaks with processing time is allowed.

Note

It is important to understand the distinction between allowing an activity to be suspended at its start or end and
allowing an activity to overlap a break at its start or end. When an activity is suspended at its start, its start time
is inside a break but no processing takes place until that break is over. In contrast, when an activity overlaps a
break at the start, the activity's start time is inside a break and some of its processing takes place inside that
break. The same distinction holds between an activity that is suspended at end and an activity with a non-zero
end overlap.

Start/End Overlap

If an activity act starts (resp. ends) processing in a break B, the duration of the execution overlap between the
activity act and break B is called the start overlap (resp. end overlap) of the activity. If the activity does not start

15

in a break, its start overlap is 0. The following figure illustrates two situations together with the value of the start
overlap.

In the special case where the activity starts and ends in the same break, no commitment is made to decide
whether the overlap belongs to the start or end overlap of the activity. The following figure illustrates, for instance,
the situation where an activity is completely processed inside a break.

For more information, see IloActivity::getEndBreakOverlapMin,
IloActivity::getEndBreakOverlapMax, IloActivity::getStartBreakOverlapMax,
IloActivity::getStartBreakOverlapMin, IloActivity::setEndBreakOverlapMin,
IloActivity::setEndBreakOverlapMax, IloActivity::setStartBreakOverlapMax,
IloActivity::setStartBreakOverlapMin.

Characterization of the Set of Possibly Overlapped Breaks

Each activity may be associated with a set of possibly overlapped at start (resp. end) break types. It means that
every break B whose type belongs to this set will be possibly overlapped by the start (resp. end) of the activity.

Any break whose type does not belong to the set of possibly overlapped at start (resp. end) break types cannot
be overlapped by the start (resp. end) of the activity. That is, the value of its start (resp. end) overlap is 0.

By default, these sets of possibly overlapped breaks are empty so that no break can be overlapped by the start
or end of an activity.

As soon as an activity is associated with a non-empty set of breaks possibly overlapped at start (resp. end), and
unless stated otherwise, the activity may overlap these breaks without limitation on the start (resp. end) overlap
duration. The functions that allow you to constrain this start (resp. end) overlap duration are the ones listed in
Start/End Overlap.

16

For more information, see IloActivity::addStartBreakOverlapType,
IloActivity::removeStartBreakOverlapType, IloActivity::addEndBreakOverlapType,
IloActivity::removeEndBreakOverlapType.

Efficiency Semantic

As described in the calendar object semantic, the efficiency part of the calendar allows you to model complex
dependencies between the activity variables. The relation between start, end and processing time is defined by:

Data regarding the description of the efficiencyCurve are stored in an instance of IloGranularFunction. This
object primarily consists of a step-wise integer-to-integer function plus two additional parameters: the granularity
and the rounding mode.

Consider for example, the preceding efficiency curve of the required resource R of activity A which has a
processing time equal to 4. If the activity starts at time 3, then the activity ends at time 12 (note that in case of
downward rounding mode the activity ends in 11 -- see Rounding, Inward & Outward). The duration is then 9. But
when it starts in 16, the activity ends in 21 (even with downward rounding mode) and then its duration equals 5.

The efficiency part of the calendar constraint is a special case of the integral constraint (see Functional and
Integral Constraints on Resources). Nevertheless this is the only way to safely constrain the processing time
variable with an integral behavior when a calendar is used.

Functional and Integral Constraints on Resources

Description

Integral and functional constraints address the need for modeling complex dependencies between scheduling
variables. Such dependencies makes the use of functions mandatory in order to accurately describe the fine
relationships. These constraints concern all the activities processed by a resource. Here are some examples.

Productivity

A resource often needs to be considered to be unavailable (undergoing maintenance, for instance), which
thereby changes the production of an activity as a function of its start time. Consider for example a manufacturing
machine which produces half of its capability on Saturday and nothing on Sunday. If the usual capability is 6
pieces per hour, the machine will only produce 3 pieces per hour on Saturday and nothing on Sunday. Stated
differently, we need to describe the resource as being 50% productive on Saturday, 0% on Sunday, and 100%
for the rest of the week.

With Scheduler, you can model this behavior with the following code.

IloEnv env;

17

IloModel model(env);
IloGranularFunction week(env, 0, 7, 100);
week.setValue(5, 6, 50);
week.setValue(6, 7, 0);
IloReservoir res(env);
IloActivity act(env, 5);
Model.add(act.produces(res, IloNumVar(env, 1, 10, IloInt)));

IloConstraint productivity = IloResourceIntegralConstraint
 (res, IloCapacityVariable, week);
model.add(productivity);

Cost function

A common use of functional relationships is for making a cost variable dependent on the duration or the end time
of an activity.

For instance, the duration of an activity might trigger two different behaviors according to whether it lasts too long
or not. Consider an activity that costs 10 units if it is executed fast enough (duration less than 5), but costs only 5
such units if there is enough room for a slow, cheaper, processing.

The cost function would be:

IloGranularFunction costFunction(env, 0, 10);
costFunction.setValue(0, 5, 10);
costFunction.setValue(5, 10, 5);

A resource taking the profile into account reads:

IloUnaryResource res(env);
IloConstraint cost = IloResourceFunctionalConstraint(res,
 IloExternalVariable,
 costFunction,
 IloDurationVariable);

This constraint states that every activity executing on res will have a relation between its duration variable and
its external variable. That relation is precisely that specified by costFunction.

Then we can set an activity's external variable to a given cost variable:

IloNumVar costVariable(env, 0, 10, IloInt);
IloActivity act(env, IloNumVar(env, 0, 10, ILOINT));
act.setExternalVariable(costVariable);

and subsequently use this cost in the model.

General case

Scheduler provides modeling tools for two types of relationships: functional and integral constraints.

A functional relationship interprets the function as a response of the resource to a control parameter of the
activity executing on it.

•

An integral relationship sums up the function over an activity's duration (from start to end).•

Data regarding the description of the constraints are stored in an instance of IloGranularFunction. This
object primarily consists of a step-wise integer-to-integer function func, plus an additional parameter, the
granularity g.

Given this data, constraints enforcing Variable1 == f(Variable2) and

18

can be added to the model using:

IloConstraint IloResourceFunctionalConstraint(const IloResource resource,
 IloSchedVariable leftVar,
 const IloGranularFunction curve,
 IloSchedVariable rightVar =
 IlcDurationVariable) const;
IloConstraint IloResourceIntegralConstraint(const IloResource resource,
 IloSchedVariable leftVar,
 const IloGranularFunction curve);

Note that the leftVar could be the processing time variable, but in such a case one has to be sure to not use a
calendar object on the corresponding resource in order to avoid an over-constraint of the problem (see Calendars
and IloResource::ignoreCalendarConstraints).

In Scheduler Engine, the following member functions are available:

IlcConstraint IlcResource::makeFunctionalConstraint
 (IlcSchedVariable leftVar,
 const IlcGranularFunction func,
 IlcSchedVariable rightVar =
 IlcDurationVariable) const;
IlcConstraint IlcResource::makeIntegralConstraint(IlcSchedVariable leftVar,
 const IlcGranularFunction func) const;

The following global functions are available:

IlcIntExp IlcFunctionalExp(const IlcGranularFunction func,
 const IlcIntVar x);
IlcIntExp IlcActivityIntegralExp(IlcActivity act,
 IlcGranularFunction func);

There are several choices for the variable to be used on the left-side of these constraints, as well as the
right-side variable of the functional constraint. These variables are designated by the IloSchedVariable
enumeration in Scheduler Concert Technology and by the corresponding IlcSchedVariable enumeration in
the Scheduler Engine.

When you post a constraint on a resource you enforce that for each resource constraint contributing to the
resource, y = = f(x) where x and y are defined with the binding policy (the enumeration). The constraint posted by
the user is add(y==IlcFunctionalExp(func,x)), where x and y are Solver variables.

Rounding Policy for Integral Constraints

When computing the integral of the function between the start and the end of an activity, the result is usually not
a multiple of the granularity g. As the result of the division by g must be an integral, rounding occurs. The default
rounding mode considers that any raw value of the integral:

in the range [x*g, x*g+g) gives an efficiency equal to x after being divided by g. That means that only the
nearest lower integer is taken into account.

For example, let's take a granularity of 100, and a constant function of value 30. Suppose we want to enforce a
processing time of 10 with such an integral constraint. The rounding will lead to several possible durations for the
activity: d={34, 35, 36}. Indeed, with these three values for the duration, the integral of the function takes the valid
values I={1020, 1050, 1080}, all contained in the required range [10*100, 10*100+100).

Several rounding modes can be associated to an instance of a granular function. The rounding mode will be
taken into account when creating integral constraints. The enumerations
IloGranularFunctionRoundingMode and IlcGranularFunctionRoundingMode are available, along
with the member functions IlcGranularFunction::setRoundingMode and
IloGranularFunction::setRoundingMode, to change the rounding mode.

19

Let func be a granular function with granularity g used within an integral constraint and x be a variable ranging
in [xmin, xmax].

Then, the raw integral value:

is considered to satisfy the integral constraint x == I/g according to the following rounding modes:

IloGranularFunctionRoundUpward: I is in the range [xmin*g, (xmax+1)*g).•
IloGranularFunctionRoundDownward: I is in the range ((xmin-1)*g, xmax*g].•
IloGranularFunctionRoundOutward: I is in the range ((xmin-1)*g, (xmax+1)*g).•
IloGranularFunctionRoundInward: I is in the range [xmin*g, xmax*g].•

The default rounding mode is IloGranularFunctionRoundUpward.

See Also

IloGranularFunction, IloSchedVariable, IloResource, IloActivity, IloResourceIntegralConstraint,
IloResourceFunctionalConstraint, IlcGranularFunction, IlcSchedVariable, IlcResource,
IlcGranularFunctionRoundingMode, IloGranularFunctionRoundingMode.

Global Constraints

Description

The global constraints are:

const IloInt IloRestoreNothing,
 IloRestoreActivityStart,
 IloRestoreActivityEnd,
 IloRestoreActivityDuration,
 IloRestoreActivityProcessingTime,
 IloRestoreActivityExternal,
 IloRestoreRCNext,
 IloRestoreRCPrev,
 IloRestoreRCDirectPredecessor,
 IloRestoreRCDirectSuccessor,
 IloRestoreRCSetup,
 IloRestoreRCTeardown,
 IloRestoreRCCapacity,
 IloRestoreRCSelected,
 IloRestoreAll;

Global constants are used to parameterize the restoration of IloActivity and IloResourceConstraint
objects in the following four contexts.

Local search•
An IloRestoreSolution goal•
IloSolution::getConstraint method•
IloSolution::restore method•

In each of these contexts, the data that is restored (that is, inserted into the solver or, in the case of
IloSolution::getConstraint added, via a constraint, to the model) depends on the value of the
restoreFields flag that is associated with the extractable. The restoreFields are associated with an
extractable in the IloSchedulerSolution::add method or by using the
IloSchedulerSolution::setRestorable and IloSchedulerSolution::setNonRestorable
methods.

Value Field

20

IloRestoreNothing none

IloRestoreActivityStart start time variable of an IloActivity

IloRestoreActivityEnd end time variable of an IloActivity

IloRestoreActivityDuration duration variable of an IloActivity

IloRestoreActivityProcessingTime processing time variable of an IloActivity

IloRestoreActivityExternal external variable associated with an IloActivity

IloRestoreRCNext next relation of an IloResourceConstraint

IloRestoreRCPrev previous relation of an IloResourceConstraint

IloRestoreRCDirectSuccessor direct successors of an IloResourceConstraint

IloRestoreRCDirectPredecessor direct predecessors of an IloResourceConstraint

IloRestoreRCSetup setup status of an IloResourceConstraint

IloRestoreRCTeardown teardown status of an IloResourceConstraint

IloRestoreRCCapacity capacity variable of an IloResourceConstraint

IloRestoreRCSelected selected resource of an IloResourceConstraint

IloRestoreAll all possible restorable fields of the associated extractable

See Also

IloActivity, IloSchedulerSolution, IloResourceConstraint.

Overflow

Description

Due to the limited size of data representation, IBM® ILOG® Scheduler requires several conditions on its input to
avoid overflow or erroneous computations. Some of these conditions are model limitations and are checked
when entering the search; they are listed in the following section, Model Limitations . Some other conditions can
not be checked systematically during the search, for computational efficiency reasons. They are listed in the
section Scheduler Engine Limitations.

Model Limitations

Not all scheduling model instances (class IloModel) can be handled by IBM ILOG Scheduler. In particular, only
integer dates are considered by the engine. Attempts to extract a model that contains time and date data that are
not IloIntVar instances will raise the following exception: integer variable expected during
extraction.

This limitation applies to:

start, end, duration, processing time, and external variables of activities,•
delay variables of precedence constraints,•
capacity variables of resource constraints (alternative included),•
cost, setup cost, teardown cost and cost sum variables of transition costs, and•
time bound variables of time bound constraints.•

Moreover, if necessary, every computation instance of such variables will be clamped to the default range
specified in the corresponding IloSchedulerEnv. See the description of the method

21

IloSchedulerEnv::setIntMaxAtExtraction for more information.

Other data, expected to be in integer form, is rounded if it has been modeled using an instance of IloNumVar or
with an IloNum data type. If applicable, the bounds of IloNumVar variable instances will be rounded toward
minus infinity (floor rounding) or toward plus infinity (ceiling rounding, as in ceil()) depending on the semantics
of the data.

Some numeric data is required to be in integer form (must-be-integer), as no rounding is meaningful. Otherwise,
an IloIntegerExpectedException exception will be raised.

IBM ILOG Scheduler objects concerned by rounding policies and integer requirements are listed in the following
table.

Scheduler Rounding Policies and Integer Requirements

Object Floor Rounding Ceiling Rounding Must-be-integer

IloSchedulerEnv horizon origin

IloActivityBreakParam

duration max normal
breaks, start break
overlap max, end
break overlap max

duration min normal
breaks, minimal execution
duration, start break
overlap min, end beak
overlap min

disjunctive break type,
start break overlap
type, end break
overlap type

IloActivityBasicParam duration max external variable value

IloPrecedenceConstraint

delay value for types
IloStartsAfterStart
IloStartsAfterEnd
IloEndsAfterStart
IloEndsAfterEnd

delay value for types
IloStartsAtStart
IloStartsAtEnd
IloEndsAtStart
IloEndsAtEnd

IloTimeBoundConstraint

time bound value for
types
IloStartsBefore,
IloEndsBefore

time bound value for types
IloStartsAfter,
IloEndsAfter

time bound value for
types IloStartsAt,
IloEndsAt

IloResource capacity
enforcement intervals capacity max capacity min date min/max

IloReservoir capacity initial level

IloContinuousReservoir capacity

IloDiscreteResource capacity

IloDiscreteEnergy capacity

Resource Constraint,
Alternative Resource
Constraint

capacity

IloGranularFunction granularity, segments

IloTransitionParam
setup and teardown
values, transition values

IloTransitionTime
setup and teardown
values, transition values

IloTransitionCost
setup or teardown
cost max

setup and teardown
values, transition values

IloIntervalList interval start, end, type

22

Scheduler Engine Limitations

Several built-in constants are available in IBM ILOG Scheduler Engine in order to validate the range of the input
data: IlcIntMin, IlcIntMax, IlcFloatMin and IlcFloatMax. The first two apply to integer data (dates,
capacities, and so forth), whereas the latter correspond to floating-point data (num-to-num and granular
functions, reservoir capacity, texture measurement, and so forth). Their actual value depends on the architecture,
either 32-bit or 64-bit. Note that Concert Technology also has the corresponding IloIntMax, IloIntMin
limiting constants defined, which are smaller in range than IlcIntMin, IlcIntMax on 64-bit architecture. On
32-bit architecture, these constraints are equal.

During the search, computations are subject to overflows resulting from invalid input. No systematic check is
performed during critical parts of computations, as it would result in a dramatic performance slow down. It is thus
necessary to validate the potentially out-of-range input before entering the search. Potential overflows are
described below, grouped by functionality class.

General Schedule

In IBM ILOG Scheduler, start and end dates are represented by integer. It is required that the maximum start
time plus the maximum duration, or processing time, does not exceed the IlcIntMax value. Similarly, the
minimum end date minus the maximum duration should not be less than IlcIntMin. Note that the default upper
bound of the start, end and duration variables of a model activity (IloActivity) are equal to IloIntMax/2.

If transition times are involved (either by tables or through transition time objects) between a sequence of two
resource constraints, there are restrictions on the permissible transition time values. The minimum end time of
the preceding activity plus the transition time should not exceed IlcIntMax. Similarly, the maximum start time
of the second activity minus the transition time should be greater than IlcIntMin.

The same kind of limitations apply with the optional delay available with the precedence constraint. Depending on
the type of the precedence constraint (IloEndsAfterEnd, IloStartsAtStart, and so forth), two variables
(the preceding and following) are constrained with a delay. To avoid overflows and underflows, the sum of
preceding variable and the delay should always remain within the range [IlcIntMin, IlcIntMax]. Similarly,
the difference between the following variable and the delay should be within the same range.

Edge Finder Constraint

The edge finder constraint may be applied on discrete and unary resources, depending on the capacity
enforcement level. See the table in Interpretation of Capacity Enforcement Levels for details on when the edge
finder is applied.

The edge finder constraint performs propagation based on the grouping of resource constraints as a whole. As a
consequence, the sum of all the minimum processing times of activities pertaining to a unary resource
constraints should not exceed IlcIntMax. Similarly, for discrete resource constraints the sum of all minimum
processing times multiplied by the minimum capacity should not be greater than IlcIntMax.

Balance Constraint

This constraint is available on a discrete resource with a capacity enforcement of IloExtended, or on a
reservoir with capacity enforcement level higher than IloHigh. On a discrete resource, the balance constraint
may overflow if the sum of the maximal capacity required by all resource constraints exceeds IlcIntMax.

On a reservoir, the balance constraint may overflow if the sum of the maximal capacity of all the producing
resource constraints exceeds IlcIntMax, or if the sum of the maximal capacity of all the consuming resource
constraints exceeds IlcIntMax. The balance constraint also overflows if the maximal capacity of the reservoir
exceeds IlcIntMax/2.

Moreover, during extra propagation of the precedence graph (available on a discrete resource with precedence
enforcement level higher than IloHigh), overflow can occur if the sum of the minimal energy (minimal duration *
minimal capacity) over all resource constraints on the resource exceeds IlcIntMax.

Capacity Resource and Associated Timetable Constraint

23

In a capacity resource, the maximum capacity should be less than IlcIntMax/2, either by construction or when
using a member function to set the capacity level (IlcDiscreteEnergy::setEnergyMax,
IlcReservoir::setLevelMax, IlcDiscreteResource::setCapacityMax). The same limitation applies
on the timetable constructed from a IlcCapResource. This includes, for instance, the fourth argument of
IlcCapResource::makeTimetableConstraint.

Energy Resource and Associated Timetable Constraint

In a discrete energy resource, the maximum energy should be less than IlcIntMax/2, either by construction or
when using IlcDiscreteEnergy::setEnergyMax. In IlOG Scheduler Engine, the same limitation applies on
the timetable constructed from an IlcDiscreteEnergy. This includes, for instance, the fourth argument of
IlcCapResource::makeTimetableConstraint.

Functional and Integral Constraint

During propagation of an integral constraint, the values of the integral of a granular function (class
IloGranularFunction) are internally represented with IlcNum variables. It is required that the integral
between the minimum start time and the maximum end time do not overflow IlcFloatMax.

Practical Advice

Whenever unexpected results occur during the search, it might be profitable to use the trace mechanism
(instance of IlcSchedulerTrace) and carefully examine the range of input data and internal state of variables
to detect whether an overflow occurred.

See Also

IloSchedulerEnv, IloEnforcementLevel, IloGranularFunction, IloResource. Also IloIntervalList in the
extensions section of the IBM ILOG Concert Technology Reference Manual.

Resource Usage Profiles

Description

In Scheduler, each resource can be associated with a minimal and a maximal usage profile.

For capacity resources, the maximal usage profile describes the maximal available quantity of the resource over
time whereas the minimal usage profile describes the minimal quantity of the resource that needs to be
consumed by activities over time. These usage profiles are represented by instances of the class
IloNumToNumStepFunction, that is, a step function from real numbers to real numbers. On a discrete
resource, the usage profiles represent the instantaneous capacity of the resource over time. On a reservoir, it
represents the level of the reservoir over time. On a discrete energy resource, it represents the energy of the
resource available per time bucket (see Resource Usage Enforcement).

For continuous reservoirs, the maximal usage profile describes the maximal possible level of the reservoir over
time, whereas the minimal usage profile describes the minimal possible level over time. These usage profiles are
represented by instances of the class IloNumToNumSegmentFunction, that is a piecewise linear function.

For state resources, the maximal usage profile describes the possible states of the resource over time. This
usage profile is represented by an instance of the class IloNumToAnySetStepFunction, that is, a step
function from real numbers to a set of states. The minimal usage profile of the state resource describes a set of
time intervals during which the state resource must be used by at least one activity of the environment. This
usage profile is represented by an instance of the class IloIntervalList.

IloNumToNumStepFunction, IloNumToNumSegmentFunction, IloNumToAnySetStepFunction and
IloIntervalList are documented in the extensions section of the IBM ILOG Concert Technology Reference
Manual.

24

Resource Usage Enforcement

A parameter associated with each resource allows changing the enforcement level of the resource usage profiles
(member functions IloResourceParam::getCapacityEnforcement and
IloResourceParam::setCapacityEnforcement). The semantics of these levels depends on the
scheduler.

Resource Usage Enforcement Intervals

Each resource can be associated with a list of temporal intervals during which the resource usage profiles
(maximal and/or minimal) need to be enforced. Each time interval [timeMin, timeMax) in the list contains a time
step that defines the quantum of time used when enforcing the resource usage (see the following figure). By
default, when nothing is specified, the resource usage profiles are enforced over the entire scheduling horizon
with a time step equal to one.

Note that for a discrete energy resource (instance of IloDiscreteEnergy), the maximal and minimal usage
profiles define the energy of the resource per time step.

Note that for a continuous reservoir, there is no time step. The value associated with each interval is ignored by
Scheduler engine.

Resource Usage Profiles Figure

See Also

IloNumToNumStepFunction, IloNumToNumSegmentFunction, IloNumToAnySetStepFunction and
IloIntervalList are documented in the extensions section of the IBM ILOG Concert Technology Reference
Manual.

IloResource and IloResourceParam.

25

Temporal Relations

Description

Scheduler allows the posting of two kinds of temporal relations in the scheduling environment: temporal
constraints (IloPrecedenceConstraint, IloTimeBoundConstraint) between activities of the
environment, and temporal relations (precedence, sequence) between two resource constraints on the same
resource.

Temporal Constraints Between Activities

Temporal constraints between activities are either instances of the class IloPrecedenceConstraint or
instances of the class IloTimeBoundConstraint. Both classes are a subclass of the IBM® ILOG® Concert
Technology class IloConstraint.

Precedence Constraints

Precedence constraints are instances of the class IloPrecedenceConstraint. They restrict the order of
activities. They constrain an activity to start or end before, at, or after the start or end time of another activity.

Precedence constraints are created through member functions of the class IloActivity. Like all subclasses of
IloConstraint, they must be added to the model to be considered in the search for solutions.

Precedence constraints involve the concept of delay. Delay is an amount of time (constant or variable) that must
elapse between the two variables involved in the precedence constraint. If the delay is negative, it indicates the
inverse of the maximal duration allowed to elapse between the two variables. In other words, endpoint2 can
occur before endpoint1, but the difference between them cannot exceed -delay. See the following figure.

Positve and Negative Delays Figure

Precedence constraints between activities can be enforced in different ways by the scheduling algorithm. The
member function IloResource::setPrecedenceEnforcement can be used to specify how much effort the
scheduling algorithm must spend at enforcing precedence constraints between activities.

Time-Bound Constraints

Time-bound constraints are instances of the class IloTimeBoundConstraint. They constrain an activity to
start or end before, at, or after a given time. They are created by a member function of IloActivity. Like all
subclasses of IloConstraint, they must be added to the model to be considered in the search for solutions.

26

Temporal relations between resource constraints

Scheduler allows representation of two types of temporal relations between resource constraints on the same
resource: precedence relations and sequencing relations. Note that unlike temporal constraints between
activities, temporal relations between resource constraints are not objects, but relations expressed with member
functions of the class IloResourceConstraint.

Before we describe in detail the different temporal relations between resource constraints, we need to introduce
the concept of a contributing resource constraint.

In a model, a resource constraint rct is said to surely contribute if and only if it affects the availability of the
resource. That is:

rct has been directly added to the model (not through a metaconstraint), and•
the minimal processing time of the activity of rct is strictly greater than zero if the time extent of rct is
IloFromStartToEnd, and

•

the minimal capacity required by rct is strictly greater than zero if rct is a capacity resource
constraint.

•

In a model, a resource constraint rct is said to not possibly contribute if and only if it is sure that rct will not
affect the availability of the resource. That is:

the opposite of rct has been directly added to the model (not through a metaconstraint), or•
the processing time of the activity is equal to zero and the time extent of rct is IloFromStartToEnd,
or

•

rct is a capacity resource constraint and the capacity required by rct is equal to zero.•

Precedence Relations

A precedence relation is defined between two resource constraints with the member function setSuccessor().

rct1.setSuccessor(rct2) states that if rct1 and rct2 surely contribute to the model, then the activity of
rct2 is constrained to execute after the activity of rct1 on the resource (that is, the start time of the activity of
rct2 is greater than or equal to the end time of the activity of rct1).

Precedence relations between resource constraints can be enforced in different ways by the scheduling
algorithm. The member function IloResource::setPrecedenceEnforcement can be used to specify how
much effort the scheduling algorithm must spend at enforcing precedence relations between resource
constraints.

Sequencing Relations

Sequencing relations are expressed with the member functions IloResourceConstraint::setNext,
IloResourceConstraint::setSetup, IloResourceConstraint::setNotSetup,
IloResourceConstraint::setNotNext, IloResourceConstraint::setTeardown and
IloResourceConstraint::setNotTeardown.

rct1.setNext(rct2) states that if rct1 and rct2 surely contribute to the model, then no other resource
constraint rct that surely contributes in the model can be executed between rct1 and rct2.

rct1.setNotNext(rct2) states that if rct1 and rct2 surely contribute to the model, then another resource
constraint rct that surely contributes to the model must execute between rct1 and rct2.

rct.setSetup() states that if rct surely contributes to the model, then rct is the first resource constraint to
execute on the resource.

rct.setNotSetup() states that if rct surely contributes to the model, then rct is not the first resource
constraint to execute on the resource.

rct.setTeardown() states that if rct surely contributes to the model, then rct is the last resource constraint
to execute on the resource.

27

rct.setNotTeardown() states that if rct surely contributes to the model, then rct is not the last resource
constraint to execute on the resource.

Sequencing relations between resource constraints can be enforced in different ways by the scheduling
algorithm. The member function IloResourceParam::setSequenceEnforcement can be used to specify
how much effort the scheduling algorithm must spend at enforcing sequencing relations between resource
constraints.

Precedence Constraints On Activities vs. Precedence Relations On Resource
Constraints

This section answers the question: Should one use precedence constraints between activities, or precedence
relations between resource constraints? This question arises because at first glance, a precedence constraint
startsAfterEnd between two activities and a precedence relation setSuccessor between two resource
constraints look very similar.

There are in fact three essential differences.

Precedence relations between resource constraints have an effect on the start and end time of the
corresponding activities only if the resource constraints surely contribute to the model, that is, if they
affect for certain the availability of the resource. For example, a precedence relation between two
resource constraints that requires a null quantity of the same discrete resource will not constrain the
start and end time of the activities. From this point of view, a precedence relation between resource
constraints rct1 and rct2 can be seen as a metaconstraint (rct1 does not contribute or rct2 does
not contribute or act2.startsAfterEnd(act1)). Precedence constraints between activities
constrain the start and end time of activities regardless of which resource the activities require.

1.

A precedence constraint between two activities is a C++ object, whereas a precedence relation between
two resource constraints is expressed simply by enforcing that relation on the resource. From this point
of view, precedence relations between resource constraints are lighter than precedence constraints
between activities. On the other hand, since precedence constraints between two activities are
instances of IloConstraint, the constraints can be used in a metaconstraint. This is not possible for
precedence relations between resource constraints.

2.

The formalism of precedence constraints between activities allows representation of some (constant or
variable) delays between activities. This is not possible with precedence relations between resource
constraints.

3.

See Also

IloActivity, IloActivityConstraintsParam, IloPrecedenceConstraint, IloTimeBoundConstraint,
IloResourceConstraint, IloResource, IloResourceParam.

Transition Times

Description

Given two activities A1 and A2, the transition time between A1 and A2 on a resource R is the amount of time that
must elapse between the end of A1 and the beginning of A2, when A1 precedes A2 on resource R.

A transition time (instance of IloTransitionTime) can be created on a resource.

By default, the transition time on a resource is not suspended by the breaks defined on that resource. The
member function IloTransitionTime::setSuspended allows specifying a transition time that is suspended
by the breaks of the resource. See Breaks and Transition Times for an illustration of suspended transition times.

A parameter associated with each resource allows one to change the level of enforcement of transition times
(member functions IloResourceParam::getTransitionTimeEnforcement and
IloResourceParam::setTransitionTimeEnforcement). The semantics of these levels depends on the
scheduler.

28

The list of time intervals over which the transition times must be enforced is given as a parameter of the
resource, and can be modified with the member functions
IloResource::addTransitionTimeEnforcementInterval, and
IloResource::removeTransitionTimeEnforcementInterval.

An instance of IloTransitionTime associates a resource with either a transition parameter (instance of
IloTransitionParam) or a user-defined transition time object (subclass of IloTransitionTimeObject.)

Transition Time Defined with a Transition Parameter

A transition parameter (instance of IloTransitionParam) is a square table describing the transition between
activities, with two arrays describing the activity setup and teardown values. An integer transition type is
associated with each activity. The accessors are the functions IloActivity::getTransitionType and
IloActivity::setTransitionType. They allow you to define instances of IloTransitionTime from
IloTransitionParam where the arrays are indexed by the transition types of activities.

Note that when a transition time defined with an IloTransitionParam is associated with a resource, activities
of different types cannot overlap on that resource.

Transition Time Defined with a Transition Time Object

A transition time object is a subclass of IloTransitionTimeObject defined with the macro
ILOTRANSITIONTIMEOBJECT0.

This macro makes it easy to define your own transition time together with its extraction function, in case a simple
square table as the one provided by IloTransitionParam is not sufficient for your purposes.

See Also

IloActivity, IloTransitionTime, IloTransitionParam, IloResource, IloTransitionTimeObject,
ILOTRANSITIONTIMEOBJECT0, IloResourceParam.

Transition Costs

Description

A unary resource can only process one activity at a time, so all activities requiring the same unary resource must
be chronologically ordered to find a solution. As a result, in any solution to a problem that includes a unary
resource, each unary resource defines a directed path through all the activities requiring it.

Between each pair of consecutive activities, some cost may be incurred to switch the resource from processing
the first activity to processing the second. These costs may be related to modifications to the resource that
require manpower, material, and energy, such as adjusting or purging a machine.

In Scheduler, transition cost is defined as the cost between an activity and the activity that will execute next to it
on a unary resource. In addition, Scheduler lets you define a setup cost for the activity that starts the usage of the
resource, and a teardown cost for the activity that ends the usage of the resource.

Several transition costs (instances of IloTransitionCost) can be created on a unary resource.

An instance of IloTransitionCost associates a unary resource with either a transition parameter (instance of
IloTransitionParam) or a user defined transition cost object (subclass of IloTransitionCostObject).

Once a transition cost has been defined on a unary resource, the sum of the costs, the setup and teardown costs
on the resource, and the cost of the next and previous transitions of a given activity can be accessed as
instances of IloNumVar variables (see Cost Types Figure).

29

Transition Cost Defined with a Transition Parameter

A transition parameter (instance of IloTransitionParam) is a square table describing the transition between
activities, with two arrays describing the activity setup and teardown values. Scheduler associates an integer
transition type with each activity. The accessors are the functions IloActivity::getTransitionType and
IloActivity::setTransitionType. They allow you to define instances of IloTransitionCost from
IloTransitionParam, where the arrays are indexed by the transition types of activities.

Transition Cost Defined with a Transition Cost Object

A transition cost object is a subclass of IloTransitionCostObject defined with the macro
ILOTRANSITIONCOSTOBJECT0.

This macro makes it easy to define your own transition cost together with its extraction function in case a simple
square table as the one provided by IloTransitionParam is not sufficient.

Cost Types Figure

This figure shows an example of setup, transition, and teardown costs.

See Also

IloTransitionCost, IloTransitionParam, IloTransitionCostObject, ILOTRANSITIONCOSTOBJECT0,
IloUnaryResource.

A Look at Scheduler Modeling and Solver

Description

The Scheduler API allows you to model scheduling problems without any assumptions on the way a solver will
produce a solution. Scheduler is used to build a problem definition; modeling objects are extracted from the
problem definition to the solver; and the solver uses the extracted objects to solve all or part of the problem.
When used with Solver, the extraction of the modeling classes first creates corresponding instances of classes in
another layer; this layer is Scheduler Engine. Scheduler Engine is specific to Solver solution techniques. The

30

Scheduler extractor is the object that interprets the problem definition objects and creates the Schedule Engine
objects for solving the problem. As with the Scheduler Engine, the Scheduler extractor is specific to Solver
solution techniques.

At extraction time, the Scheduler Engine instances are created and initialized given the data in the parameters of
the Scheduler instances. If a model element is changed, and if a Scheduler Engine object is concerned by this
change, a re-extraction will occur before the next Solver search phase. The incorporation of changes to the
model, during search, follows the same protocol as Solver: unless otherwise stated, no model changes will be
taken into account until the next Solver search phase. See the IBM ILOG Solver Reference Manual for more
details.

A benefit of the modeling concept and parameter framework of Scheduler is that it allows users to manage large
scheduling problems with light memory usage. Scheduler classes have a lighter memory usage than the
corresponding classes in Scheduler Engine.

Correspondence between Scheduler and Scheduler Engine Classes

The following table indicates the correspondence between Scheduler classes and Scheduler Engine classes.
The Scheduler classes listed are extracted to the corresponding Scheduler Engine classes.

Class Correspondence Between Scheduler and Scheduler Engine

Scheduler Class Scheduler Engine Class

IloActivity IlcActivity

IloResource IlcResource

IloCapResource IlcCapResource

IloDiscreteResource IlcDiscreteResource

IloUnaryResource IlcUnaryResource

IloDiscreteEnergy IlcDiscreteEnergy

IloReservoir IlcReservoir

IloContinuousReservoir IlcContinuousReservoir

IloStateResource IlcStateResource

IloTimeBoundConstraint IlcTimeBoundConstraint

IloPrecedenceConstraint IlcPrecedenceConstraint

IloResourceConstraint IlcResourceConstraint and IlcAltResConstraint

Modeling Scheduler Engine Classes that are not in Scheduler

There are some Scheduler Engine classes that do not have counterparts in Scheduler because the Scheduler
Engine API is very specific to Solver techniques. Examples include the break lists (instances of the class
IlcBreakList), and the timetable (instance of subclass of IlcIntTimetable and IlcAnyTimetable).
These classes are actually Solver objects involved in the global constraints and whose contents represent
functions defined over the time axis.

The time axis is represented in Scheduler with a numerical integer type, a data of type IloNum or instances of
class IloNumVar. The break list and timetables are modeled in Scheduler with a set of parameters on the
resources whose content is a function on the integer time axis.

The following Scheduler classes are used in modeling break lists and timetables. Note that
IloNumToAnySetStepFunction, IloNumToNumStepFunction, IloNumToNumSegmentFunction, and

31

IloIntervalList are documented in the extensions section of the IBM ILOG Concert Technology Reference
Manual.

IloIntervalList : Breaks list, definition interval of the set of timetables on a resource, must-be-in-use
constraint on a state resource.

IloNumToAnySetStepFunction : Maximal set of states of the timetables of an instance of
IlcStateResource.

IloNumToNumStepFunction : Maximal and minimal capacity, initial content of a capacity resource.

IloNumToNumSegmentFunction : Maximal and minimal capacity, initial content of a continuous reservoir.

Scheduler Engine Classes

The function type definitions, enumerations, and some classes of Scheduler Engine are designed only for writing
search goals or constraint propagation functions. Examples include the following:

IlcResourceIterator, IlcActivityDeltaIterator and any type of iterators on the Solver
object involved in the problem.

•

IlcActivityIteratorFilter and all other enumerations used by iterators.•
IlcResourceSelectorObject and any selector, evaluator, or predicate object used in the Solver
search procedure.

•

Any instance of a subclass of IlcDemon.•

Since these classes are not related to modeling, they do not have any counterpart in Scheduler.

Pure Scheduler Classes

Pure Scheduler classes are classes or enumerations designed for the parameterization of the basic model
objects. These classes are only taken into consideration at extraction time in order to create the related
constrained data structure. Changing this object will lead to a re-extraction if required.

Examples include IloActivityBreakParam, IloNumToNumStepFunction (see IBM ILOG Concert
Technology Reference Manual), and IloEnforcementLevel.

Implicitly Created Solver Variables

In order to implement the propagation of global constraints, to write heuristic selectors and goals, and to let the
user define constraints, the Scheduler Engine object may automatically create Solver variables or data
structures. As these constrained objects are useless in the initial model, they are not created in the Scheduler
model, but only at the beginning of the search.

The Solver variables created, and their corresponding Scheduler Engine classes, are shown in the following
table.

Solver Variables and their Corresponding Scheduler Engine Class

Solver Variables Corresponding Scheduler Engine
Class

Duration and overlap variables. IlcActivity

Next and prev variables of the sequence constraint on a unary resource
(the setup and teardown variables are also created). IlcResourceConstraint

Index variable of the alternative of the resource. IlcAltResConstraint

The data structures used in the global constraint of the resource are the timetables and the precedence graphs.

32

Global Constraints

Global constraints are algorithms that enforce the conditions on the set of resource constraints declared on a
resource. Different global constraints can be selected to enforce the same constraint. For example, the maximum
capacity limitation on a unary resource can be enforced by the timetable constraint, the disjunctive constraint, or
the edge finder algorithm.

This notion is very specific to constraint programing techniques, therefore there is no direct way to explicitly
declare which Solver global constraint to use at the Scheduler model level.

There are two ways for the Scheduler Engine extractor to determine which global constraint to add to the
algorithm. These two methods are described in Adding Global Resource Constraints from the Scheduler Model.

API

The Scheduler Engine and Scheduler APIs are very similar. For example, the read accessors on objects are the
same, but the argument types and return values are different. Compare the following:

IloNumVar IloActivity::getStartVariable() const;
IlcIntVar IlcActivity::getStartVariable() const;
IloBool IloActivity::isBreakable() const;
IlcBool IlcActivity::isBreakable() const;

The main difference lies in the fact that Scheduler is a pure modeling API, with no restrictions on editing
capabilities; whereas Scheduler Engine must respect the properties of Solver. That is the reason that only
monotonic accessors are allowed during the search.

void IloActivity::setBreakable(IloBool breakable) const;
void IloActivityBasicParam::setBreakable
 (IloBool breakable) const;
void IlcActivity::setBreakable(IlcBool breakable);

The last function always applies before entering the search. During Solver search it is forbidden to set an activity
to be breakable. The same type of arguments holds for the following:

void IloResourceConstraint::setNext
 (const IloResourceConstraint& next) const;
void IloResourceConstraint::unsetNext() const;
void IlcResourceConstraint::setNext
 (IlcResourceConstraint next);
void IlcResourceConstraint::unsetNext() const;

The last function is not valid during the search because it is non-monotonic.

Some API elements may have the same purpose, and apply to corresponding classes, but have a slightly
different semantics in Scheduler and Scheduler Engine. For example:

void IloResource::keepOpen(IloBool open);
void IlcResource::close();

The first function (with an argument of IloTrue) specifies that not all the resource constraints are declared in
the model and that therefore, the solver should allow the addition of new resource constraints during search. The
second function specifies that the IlcResource is closed; that is, that it is not kept open during the search.

Nevertheless, the second function is such that the instance of IlcResource cannot be reopened, even when
outside the search. When the function IloResource::keepOpen is called on the model resource, a
re-extraction of the resource is required and the resource will not be closed during the next search.

A parameter object in Scheduler can be used to model data for multiple Scheduler Engine classes. For example,
IloIntervalList is used to store data for both IlcBreakList and IlcIntTimetable. The
IloIntervalList API has a natural correspondence to the API of the Scheduler Engine objects. For example,
if the instance of IloIntervalList is used to define the break list of a resource, the following API:

void IloIntervalList::addInterval(IloNum start, IloNum end,

33

 IloNum type = 0) const;
void IloIntervalList::removeInterval
 (IloNum start, IloNum end) const;

corresponds to:

void IlcBreakList::addBreak(IlcInt start, IlcInt end,
 IlcInt type = 0);
void IlcBreakList::removeBreak(IlcInt start, IlcInt end);

on the corresponding instance of IlcBreakList.

If the instance of IloIntervalList is used to define the set of timetables on a resource, these accessors will
set up the definition of the timetable constraints. That determines the time interval definition of the instance of
IlcIntTimetable managed by the global capacity resource constraint.

IloIntervalList is documented in the extensions section of the IBM ILOG Concert Technology Reference
Manual.

Solver Extensions

As Solver is based on constraint programing, the interpretation of the Scheduler model is quite natural. However,
some functions of Solver cannot be easily accessed by Scheduler. This is mainly related to writing code
dependent upon the current state of the data in the Solver. So, to access these functions of Solver, the user must
use Scheduler Engine to implement the code. Examples of this include extending or creating constraints and
demons, or extending or creating search goals. Examples of some of the Scheduler Engine functions offered for
this purpose are shown in the following table.

Accessing Certain Solver Functions

To Access the Solver
Function Use Scheduler Engine Class (examples)

For search goals and
constraints:

Iterators IlcResourceConstraintIterator

Constrained data class IlcIntTimetable

Members of classes
IlcBool IlcUnaryResource::isRanked;void
IlcResourceConstraint::rankFirst; IlcIntVar
IlcAltResConstraint::getIndexVariable;

For constraints and
demons:

Delta Domain
Management

IlcInt IlcIntTimetable::getRangeTimeMin()
const;IlcResourceConstraintDeltaIterator

Constraint events void IlcIntTimetable::whenRangeInterval (const IlcDemon
g);void IlcResource::whenPredecessors (const IlcDemon g);

For global resource
constraints:

Creation and inspection of
global resource
constraints

void IlcResource::setBreaks(IlcBreakList bl);IlcBool
IlcResource::hasTimetableConstraint() const;

Parameterization of global
resource constraints void IlcDiscreteResource::setEdgeFinder (IlcInt level);

For search goals:

34

Selector object IlcActivitySelectorObject

Choice points IlcTryRankFirst(IlcResourceConstraint rct);

Member functions void IlcActivity::postpone();

Adding Global Resource Constraints from the Scheduler Model

Description

There are two ways for the extractor to determine which global resource constraint is implicitly added to the
Solver from Scheduler: the content of the model or the enforcement level parameters.

The content of the model is used when the Solver has only one way to enforce the constraint. For example, the
transition cost on a resource can only be handled by the Solver with a sequence constraint posted on the
resource. Therefore, a sequence constraint is automatically posted if the unary resource is defined with a
transition cost. The goal IloRankForward needs the disjunctive constraint on the unary and state resources.
Therefore, when the IloRankForward is used, the disjunctive constraint is automatically posted.

The enforcement level parameter is used along with categories of global constraints and resource classes to
select one or several global resource constraints. The higher the enforcement level, the higher the computational
time allocated by the Solver for the constraint propagation on the resource. For example, a capacity enforcement
on a unary resource will add the disjunctive constraint at IloBasic level and set the edge finder at a higher level
(such as IloMediumHigh). Details of the enforcement level parameter are discussed in Resource Enforcement
as Global Constraint Declaration.

A global resource constraint is therefore added to the Solver if either a component of the model needs it, or if an
interpretation of an enforcement level exists. However, if the parameter is ignored in the Scheduler model (for
example, with IloActivity::ignoreResourceConstraints), the global constraint is not posted,
regardless of any other modeling data.

Goals

IloRankForward and IloRankBackward add the disjunctive constraint on the related unary and state
resources.

IloSequenceForward and IloSequenceBackward add the sequence constraint on the related unary
resources.

Parameters

IloIntervalList and IloNumToNumStepFunction are documented in the extensions section of the IBM
ILOG Concert Technology Reference Manual.

A non-empty instance of IloIntervalList as break list parameter adds the breaks constraint on the related
resources.

A non-empty instance of IloIntervalList as capacity enforcement parameter adds the timetable constraint
on the related resources.

A non-empty instance of IloIntervalList as transition time enforcement parameter adds the timetable
constraint on the related resources.

A non-empty instance of IloIntervalList as must-be-in-use enforcement parameter adds the timetable
constraint on the related state resources.

35

A non-empty instance of IloNumToNumStepFunction as any of capacity max, capacity min, or initial level
parameter adds the timetable constraint on the related capacity resources.

A non-empty instance of IloNumToNumSegmentFunction as any of capacity max, capacity min, or initial level
parameter adds the timetable constraint on the related continuous reservoir.

A non-empty instance of IloNumToAnySetStepFunction as initial possible states adds the timetable
constraint on the related state resources.

Closure

If a resource is not declared to be kept open, then the global constraints that manage a closed resource are
added.

Precedence Graph

The usage of any of the following member functions of adds the precedence graph global constraint on the
resource(s) of the invoking resource constraint.

IloResourceConstraint::setNext•
IloResourceConstraint::setNotNext•
IloResourceConstraint::setNotSetup•
IloResourceConstraint::setNotTeardown•
IloResourceConstraint::setSetup•
IloResourceConstraint::setSuccessor•
IloResourceConstraint::setTeardown•

Transition Time and Cost

The usage of the following constructor adds the disjunctive constraint or the type timetable constraint.

IloTransitionTime(IloResource resource,
 IloTransitionParam param,
 const char* name = 0);

Which constraint is added depends upon the type of the argument resource and its capacity enforcement
parameter. The disjunctive constraint of the unary and state resource subsumes the timetable constraint.

The usage of the following constructors will add the sequence constraint on the argument resource.

IloTransitionCost(IloUnaryResource resource,
 IloTransitionParam param,
 const char* name = 0);
IloTransitionCost(IloUnaryResource resource,
 IloTransitionParam param,
 IloBool isNext,
 const char* name = 0);

Balance Constraint

Description

The balance constraint is a global constraint that can be used to enforce the capacity of a discrete resource or a
discrete reservoir.

The balance constraint alone is sufficient to ensure that the minimal and maximal capacity of the resource are
enforced, provided that the minimal or maximal capacity of the resource do not vary over time.

36

Be aware that if the minimal or maximal capacity of the resource does vary over time, then the balance constraint
alone is not sufficient and it must be used together with the timetable constraint in order to ensure the soundness
of the search.

The balance constraint internally maintains a precedence graph between the time-points (start, end) of the
activities on the resource. It propagates by analyzing this graph in order to discover new time bounds for
activities as well as new precedence relations between activity time-points.

In general, the balance constraint is useful as soon as there is a significant number of precedence relations
between the time-points of the activities on the resource. Note that precedence constraints (for example,
IlcActivity::startsAfterEnd) impose such precedence relations.

It is important to note that the memory requirement of the balance constraint is higher than the one of the
disjunctive or the timetable constraint because of the internal precedence graph. Furthermore, if n denotes the
number of activities on the resource, the worst-case complexity of the balance constraint is in O(n3) and the
average complexity is in O(n2). Therefore, the balance constraint should be used for small or medium-size
problems, where a strong pruning that exploits precedence relations is required.

Principle

The balance constraint internally maintains a precedence graph between the time-points (start, end) of the
activities on the resource. More precisely:

The vertices of this graph are the start and end time-points of the activities that uses the discrete resource or
the reservoir; and

•

The directed edges are precedence relations between those time-points: strict or non-strict precedence. These
precedence relations may come from the initial scheduling problem, from search decisions or from the
propagation of the balance constraint or other global constraints.

•

The balance constraint algorithm computes the resource level balance just before and just after each vertex in
the precedence graph, taking into account the quantity of resource produced or consumed by the vertices that
surely and/or possibly execute before the current vertex. It allows one to restrict the domain of the time variables
of activities as well as to discover new precedence relations between time-points.

As an example of propagation, consider a very simple scheduling problem with a reservoir with maximal level 2,
initial level 0, two temporally ordered producing activities p1 and p2 that produce 2 units of reservoir at their end
time-point, and four temporally ordered consuming activities c1, c2, c3 and c4 that consume 1 unit of reservoir at
their start time-point. The balance constraint will automatically order all the activities as follows:

end(p1) ≤ start(c1) ≤ start(c2) ≤ end(p2) ≤ start(c3) ≤ start(c4)

Balance Constraint and Timetable Constraint

The main difference between the balance constraint and the timetable constraint is that the timetable constraint
relies on the absolute position of activities in time whereas the balance constraint relies on their relative position.
The timetable constraint estimates the resource level at absolute dates, whereas the balance constraint
estimates the resource level at nodes of the internal precedence graph, given their relative positioning. In
general, these nodes correspond to time-points that are still not instantiated.

One can show that neither of the two global constraints is dominated by the other: both can perform some
propagation that the other one would not detect.

Both global constraints require a complex internal structure (the timetable and the precedence graph). For the
balance constraint, this internal structure is heavier as it must store the relative position of activities but it allows,
in many cases, a stronger propagation than the timetable constraint.

As stated earlier, the balance constraint is sufficient to ensure that any solution on a discrete resource or a
reservoir satisfies the resource maximal and minimal capacity constraint (provided that the maximal or minimal
capacity of the resource does not vary over time). Thus, it is entirely possible to use the balance constraint alone
to enforce the capacity of a discrete resource or a reservoir. Nevertheless, as the balance constraint is more

37

complex than the timetable constraint, it is a good idea to systematically post a timetable constraint whenever a
balance constraint is posted. It may allow some additional propagation as well as a global speed up of the
propagation.

Balance Constraint and Disjunctive Constraint

The balance constraint can be considered as a generalization of the disjunctive constraint for discrete resources
and reservoirs.

On a discrete resource, the balance constraint subsumes the disjunctive constraint: everything that is found by
the disjunctive constraint will also be found by the balance constraint, but some adjustments are found by the
balance constraint that cannot be found by the disjunctive constraint.

Consider an example of a discrete resource of maximal capacity 10, and three activities act1, act2 and act3 of
duration 10 that require four units of this discrete resource. The three activities cannot overlap. Suppose that we
have the following precedence constraints:

act1.endsAfterStart(act3, 1)
act3.startsAfterStart(act2)
act3.endsAfterEnd(act2)
act2.endsAfterStart(act3, 1)

The balance constraint will discover that activity act1 cannot start to be processed before the end of activity
act2. A consequence is that the start time of act1 must be greater than 10. Note that neither the disjunctive
constraint nor the timetable constraint on the discrete resource would deduce this adjustment.

Using a Balance Constraint

To create a balance constraint, use the member function IlcCapResource::makeBalanceConstraint.

Remember that the balance constraint created by one of these member functions must be posted in order to be
taken into account.

See Also

IlcDiscreteResource, IlcReservoir.

Disjunctive Constraint

Description

The standard way of dealing with resource constraints in Scheduler Engine is to create a Timetable representing
available capacity over time. In the case of discrete, unary, and state resources an alternative representation of
capacity constraints is available. This alternative representation consists of posting a unique, global, disjunctive
constraint that states that if the resource is used by two activities throughout two time intervals [ti1 ti2) and [tj1 tj2)
and the activities are incompatible, (that is, they cannot be scheduled simultaneously), then either ti2 is less than
or equal to tj1, or tj2 is less than or equal to ti1.

Creating a Disjunctive Constraint

To create such a unique, global, disjunctive constraint, use the member functions
IlcDiscreteResource::makeDisjunctiveConstraint or
IlcStateResource::makeDisjunctiveConstraint.

38

Timetables Differ from Disjunctive Constraints

Here are highlights of the differences between those two representations.

The disjunctive representation deals only with requiring activities: to specify that the resource is not
available over a given time interval, the user must create a “fake” activity that requires the resource over
that interval. The use of the disjunctive representation may therefore prove costly (in CPU-time and
memory) if a large collection of “fake” activities is created.

•

The disjunctive representation is more CPU-time consuming, but the propagation of global disjunctive
constraints may result in more precise time bounds than the propagation of the corresponding timetable
constraints. In the context of a particular scheduling application, more CPU-time may be spent
propagating the disjunctive constraints, but this extra propagation may result in a better exploration of
the search space and, consequently, in a drastic improvement of the overall CPU-time.

•

When no "fake" activities are created, the disjunctive representation requires less memory than the
timetable representation.

•

Using Timetables with Disjunctive Constraints: Performance Considerations

It is possible to use both of the two representations in the same application and for the same resource. In such a
case, redundant constraint propagation is performed. A priori, the CPU-time increases, but the combined effect
of:

The more effective propagation of the disjunctive constraint and•
The removal of "fake" activities,•

may, in the end, make the combined use of both representations a more viable approach than the use of either of
them separately.

Implementation

Mathematically, the disjunctive constraint associated with a unary resource R implements the following relation:
for any two activities A and B that require capacity(A) and capacity(B) units of R (capacity(A) and
capacity(B) can be Boolean variables) over two time intervals [start(A) end(A)) and [start(B)
end(B)),

((end(A) + getTransitionTime(A, B) <= start(B))

 || (end(B) + getTransitionTime(B, A) <= start(A))

 || (end(A) - start(A) == 0)

 || (end(B) - start(B) == 0)

 || (capacity(A) == 0)

 || (capacity(B) == 0))

That disjunctive constraint is called global because the same constraint applies to every A and B.

See Also

Edge Finder, IlcDiscreteResource, IlcResource, IlcStateResource, IlcUnaryResource, Ranking , Timetable,
Transition Time in Scheduler Engine.

Durability

Description

Scheduler Engine offers an easy way to build applications where the same resources are used successively in
different scheduling problems and information about resource availability is kept from one problem to another.

39

Such resources are called durable resources. The information about resource availability that is kept from one
problem to another is stored in the timetable constraints of the resources.

The typical steps that may be encountered by an application using durability are:

Create durable resources in a model.•
Extract these resources on a durable scheduler that is an instance of IlcSchedule. The durable
scheduler can be seen as an object that stores the information that is kept from one problem to another
(timetables of durable resources).

•

Different schedules (instances of IlcSchedule), called computation schedules, declare an interest in
using some durable resources.

•

Once a computation schedule has access to the resources it needs (we say that the resources are
locked by the computation schedule), a complete scheduling problem can be defined and solved.

•

At any point, the computation schedule can unlock any of the locked resources; the unlocked resources
keep their timetable information.

•

After a resource is unlocked, further computation done on the computation schedule does not interfere
with the unlocked resource, except the backtracking: that is, backtracking a decision that modified the
timetable of a resource will undo the modification, even if the resource has been unlocked.

•

Example

The main elements of the API that allow the use of durable resources across different scheduling problems are
illustrated in the following example.

The following code creates a durable schedule that gets its durable resources extracted from a Scheduler model.

IloEnv env0; // Allocation environment
IloModel model0(env0);
IloUnaryResource resource(env0);
model0.add(resource);
IloSolver solver0(env0);
IlcScheduler durSched(solver0);
durSched.setDurable(); // A durable schedule is created
solver0.extract(model0); // Extract durable resources
durSched.close(); // All durable resources were defined

Now we define a goal SolveSubProblem, which is in charge of scheduling one activity on the durable unary
resource. In the goal “wrapper,” the computation resource is obtained from the durable scheduler.

ILCGOAL1(SolveSubProblemIlc,
 IlcUnaryResource, compResource) {
 IloSolver solver = getSolver();
 IlcSchedule compSched(solver, 0, 24); // computation schedule
 IlcActivity act(compSched, 8);
 compSched.lock(1, compResource); // Locking before using
 solver.add(act.requires(compResource));
 solver.startsNewSearch(IlcSetTimes(compSched));
 solver.next();
 compSched.unlock(1, compResource); // Resource no longer needed
 solver.out() << act << endl; // Display scheduled activity
 solver.endSearch();
 return 0;
}
ILOCPGOALWRAPPER2(SolveSubProblem, solver,
 IlcScheduler, durSched,
 IloUnaryResource, resource) {
 return SolveSubProblem(solver, durSched.getUnaryResource(resource));
}

The following code creates a computation solver to solve a first instance of sub-problem on the durable
resource.

IloEnv env1; // Computation environment
IloSolver solver1(env1);
solver1.solve
 (SolveSubProblem(env1, solver1, compResource));
env1.end();

40

It outputs: [0 -- 8 --> 8]. The activity of this first sub-problem is scheduled to start at time 0. From now on, the
durable resource remains occupied on the time interval [0, 8). Thus a second computation solver trying to place
another activity on the resource will be aware of the resource availability:

IloEnv env2; // Computation environment
IloSolver solver2(env2);
solver2.solve
 (SolveSubProblem(env2, solver2, compResource));
env2.end();

It outputs: [8 -- 8 --> 16]. The activity of the second sub-problem is scheduled to start at time 8.

Writing Multi-Threaded Applications

It is possible to use durable resources in multi-threaded applications. Scheduler is multi-thread safe if each
thread uses a different solver for creating scheduler objects and those objects are not accessed across different
threads.

Durable resources may be concurrently used by different threads through the methods lock and unlock.

The lock method may block while waiting for all arguments to be unlocked by other threads.•
The unlock ethod allows other threads to gain access to its arguments.•

Limitations

Currently, the only resources that can be managed as durable resources are discrete and unary resources, and
energy resources.

The durable resources are shared by several independent computational solvers. The whole set of requirements
on a durable resource is not known. Also, the following limitations exist:

The minimal capacity/energy of a durable resource is undefined: setCapacityMin,
getCapacityMin, setEnergyMin, getEnergyMin will not work reliably.

•

The maximal capacity/energy of a durable resource should only be changed on the durable environment
and protected with a lock. It is not reversible.

•

A durable resource cannot be closed.•

Managing the Initial Requirement Amount on a Durable Resource

When entering a new session using durable resources, or when a commitment from a previous search phase
must be removed (to figure out a rollback on a database), one needs specific functions for having non-monotonic,
non- reversible behavior. Those functions are:

void IlcCapResource::incrDurableRequirement
 (IlcInt t1, IlcInt t2, IlcInt capacity,
IlcInt outward = IlcTrue, IlcInt breaksDuration = 0);
void IlcCapResource::incrDurableRequirement
 (IlcIntToIntStepFunction func);

These functions modify the requirement amount that corresponds to an activity starting a t1, ending at t2 and
requiring the capacity of the argument capacity. The signature of this function, using an instance of
IlcIntToIntStepFunction, nearly behaves like the iteration of the basic signature on each step of the
function.

If the argument capacity is greater than 0, the effect of the function is to add capacity to the requirement
amount to the resource; that is, to actually decrease the available capacity in the resource.

If the argument capacity is less than 0, the effect of the function is to remove capacity from the requirement
amount of the resource; that is, to increase the available capacity in the resource.

41

The coherency of the requirement amount with respect to the resource capacity is under the responsibility of the
user. For example, one should be cautious that the requirements that are undone do not exceed the activity
requirements that are committed on the resource when a search using the durable resource is launched.

For a multi-threaded durable resource, these functions are enclosed in a critical section. That is, these functions
are MT-hot.

In addition to the limitations described in the previous paragraph, the durable schedule be must closed and the
resource must not be involved in a computational solver.

See Also

IlcResource, IlcSchedule, IlcWorkServer, IlcCapResource.

Edge Finder

Description

Scheduler Engine provides the edge finder as a way to increase propagation for discrete and unary resources.

You can influence the level of constraint propagation when using disjunctive constraints. Rather than considering
only pairs of activities {A1 A2} to prove that A1 must precede A2 or vice-versa, the constraint propagation
process can consider all pertinent tuples {A1 ... An} of activities to prove that some activity Ai must execute first
(or must execute last) among {A1 ... An}. You can switch this extra propagation on or off with the member
function IlcDiscreteResource::setEdgeFinder.

The edge finder takes the break list on the resource into account, that is, it uses the fact that by default, activities
cannot be processed inside breaks. The edge finder also uses the information that some activities can have an
overlap with breaks. The edge finder does not use the eventually available timetable of the resource at hand.

See Also

Disjunctive Constraint, IlcDiscreteResource

Metaconstraints

Description

A metaconstraint is a constraint on one or more constraints.

The IBM ILOG Solver User's Manual explains how to create and use metaconstraints. The specific constraint
classes of Scheduler Engine are fully compatible with the metaconstraint protocol of Solver. The following points
also apply:

The metaconstraint protocol cannot be used with the following Scheduler global constraints: disjunctive,
timetable, precedence graph, balance, sequence, integral, or functional constraints. These are the
constraints created by the following member functions on resource classes:
makeDisjunctiveConstraint, makeTimetableConstraint,
makePrecedenceGraphConstraint, makeBalanceConstraint, makeSequenceConstraint,
makeFunctionalConstraint, and makeIntegralConstraint.

•

Instances of IlcResourceConstraint defined for capacity resources (that is, for instances of
IlcDiscreteResource, IlcDiscreteEnergy, IlcReservoir, IlcUnaryResource) and for
continuous reservoir (that is, for instances of IlcContinuousReservoir) must require or provide
non-zero capacity.

•

Scheduler Engine supports a constructive exclusive disjunction between an activity and a set of capacity
resources. See the classes IlcAltResSet and IlcAltResConstraint for more information about
that possibility.

•

42

There are no restrictions with respect to the metaconstraint protocol for instances of
IlcTimeBoundConstraint.

There are no restrictions with respect to the metaconstraint protocol for instances of
IlcPrecedenceConstraint.

There are no restrictions with respect to the metaconstraint protocol for instances of IlcResourceConstraint
when the constraint is posted on instances of IlcStateResource.

See Also

IlcAltResConstraint, IlcAltResSet, IlcPrecedenceConstraint, IlcResource, IlcResourceConstraint,
IlcTimeBoundConstraint, Disjunctive Constraint, Timetable.

Precedence Graph Constraints

Description

Resource Precedence Graph Constraints

A resource precedence graph is a directed graph that can be associated with a resource and whose nodes are
the resource constraints posted on the resource.

On a resource precedence graph, an edge between two resource constraints (rct1, rct2) means that the activity
of rct1 is constrained to execute before the activity of rct2, provided that both resource constraints rct1 and rct2
definitely affect the availability of the resource (processing time and required capacity strictly greater than zero).

A resource precedence graph constraint is a constraint that creates a precedence graph structure for the
resource with which it is associated and allows propagation of the precedence information contained in this graph
on the variables of the resource constraints (start and end time, processing time, required capacity).

Creating a Resource Precedence Graph Constraint

A resource precedence graph constraint can be created on a resource with the member function
IlcResource::makePrecedenceGraphConstraint.

A resource precedence graph constraint is automatically created for each unary resource with a sequence
constraint.

Overview of Functions Related to Precedence Graphs

When a resource is associated with a precedence graph constraint, new precedence relations between resource
constraints are automatically discovered and added to the graph by the disjunctive constraint, the edge finder,
and the sequence constraint. New edges on the resource precedence graph are also discovered when the
following precedence constraints are posted on the solver between two activities that require the resource:

IlcPrecedenceConstraintType::IlcStartsAfterEnd with positive or null delay•
IlcPrecedenceConstraintType::IlcStartsAtEnd with positive or null delay•
IlcPrecedenceConstraintType::IlcEndsAtStart with negative or null delay•

Some member functions of the class IlcResourceConstraint allow direct addition of new relations on the
graph (IlcResourceConstraint::setNext, IlcResourceConstraint::setSetup,
IlcResourceConstraint::setSuccessor, IlcResourceConstraint::setTeardown). Before entering
the search, it is also possible to remove relations already added on the graph
(IlcResourceConstraint::unsetNext, IlcResourceConstraint::unsetSetup,
IlcResourceConstraint::unsetSuccessor, IlcResourceConstraint::unsetTeardown).

43

Transitive closure of the graph is automatically computed and maintained during the search.

The information stored in the precedence graph can be accessed with member functions of the class
IlcResourceConstraint --such as IlcResourceConstraint::hasAsNext,
IlcResourceConstraint::isDirectlySucceededBy, IlcResourceConstraint::isSucceededBy
--and with the resource constraint iterator IlcResourceConstraintIterator. The availability of these
accessors and iterators is restricted before entering the search, as the transitive closure of the graph has not
been computed.

Status of Resource Constraints in a Precedence Graph

In a resource precedence graph, a resource constraint rct is said to surely contribute if and only if:

rct has been posted, and•
the time extent of rct is not IlcNever, and•
the minimal processing time of the activity of rct is strictly greater than zero if the time extent of rct is
IlcTimeExtent::IlcFromStartToEnd, and

•

the minimal capacity required by rct is strictly greater than zero if rct is a capacity resource constraint.•

In a resource precedence graph, a resource constraint rct is said to not possibly contribute if and only if it is sure
that rct will not affect the availability of the resource. That is:

the opposite of rct is posted, or•
the time extent of rct is IlcNever, or•
the processing time of the activity is equal to zero and the time extent of rct is
IlcTimeExtent::IlcFromStartToEnd, or

•

rct is a capacity resource constraint and the capacity required by rct is equal to zero.•

Relative Positions of Resource Constraints in a Precedence Graph

Let rct1 and rct2 be two resource constraints on the same resource precedence graph.

rct2 is said to be a successor of rct1 on the graph if the fact that both rct1 and rct2 definitely affect the
availability of the resource implies that the activity of rct2 is constrained to execute after the activity of
rct1 (that is, the start time of the activity of rct2 is greater than or equal to the end time of the activity of
rct1).

•

The pair (rct1,rct2) is said to be unranked on the graph if and only if neither rct1 is a successor of rct2
nor rct2 is a successor of rct1.

•

rct1 is said to be ranked on the graph if and only if there is no resource constraint rct such that the pair
(rct1,rct) is unranked.

•

rct2 is said to be a direct successor of rct1 on the graph if and only if rct2 is a successor of rct1 and
there is no resource constraint rct that definitely affects the availability of the resource such that rct is a
successor of rct1 and rct2 is a successor of rct on the current state of the resource precedence graph.

•

rct2 is said to be possibly next to rct1 on the graph if and only if either the pair (rct1,rct2) is unranked or
rct2 is a direct successor of rct1.

•

If the resource is closed, rct2 is said to be next to rct1 on the graph if and only if both rct1 and rct2 are
ranked and rct2 is a direct successor of rct1. If rct2 is next to rct1, no other resource constraint can be
scheduled between rct1 and rct2. In a resource precedence graph, a resource constraint can have
several direct successors whereas it has at most one next resource constraint.

•

If the resource is not closed, no next relation can be deduced because other resource constraints could
still be added.

•

rct1 is said to be a setup resource constraint if and only if no resource constraint rct exists such that rct1
is next to rct.

•

rct1 is said to be a teardown resource constraint if and only if no resource constraint rct can be next to it.•

Example

Consider a closed resource with five resource constraints rct1, rct2, rct3, rct4, and rct5 that definitely affect the
availability of the resource. Suppose that the following relations have been added:

rct1 is succeeded by rct2 and rct3,•
rct2 is succeeded by rct4 and rct5,•

44

rct3 is succeeded by rct4, and•
rct4 is succeeded by rct5.•

After the transitive closure of the graph has been computed during search, we find that:

rct1 is succeeded by rct5•
rct2 is not directly succeeded by rct5 because rct4 is necessarily between rct2 and rct5•
the pair (rct2, rct3) is not ranked•
the pair (rct3, rct5) is ranked because rct3 is succeeded by rct5•
rct4 is ranked•
rct4 has rct5 as next resource constraint•
rct3 has no next resource constraint as there are still two possible candidates: rct2 and rct4•
rct4 is not a next resource constraint of rct3•
rct1 is a setup resource constraint•
rct5 is a teardown resource constraint•

This list is not exhaustive and, of course, the initial relations are still valid in the transitive closure.

Precedence Graph Events and Delta Sets of Resource Constraints

Several events can be defined on a resource constraint with a precedence graph
(IlcResource::whenDirectPredecessors, IlcResource::whenDirectSuccessors, IlcResource::whenPredecessors,
IlcResource::whenSuccessors, IlcResource::whenNext, IlcResource::whenPrevious). These events are triggered
as soon as the corresponding set of resource constraints is modified because the structure of the precedence
graph has changed.

The modifications of these sets of resource constraints are stored in special sets called delta sets. These delta
sets can be accessed during the execution of the goals associated with the event (see
IlcResourceConstraintDeltaIterator). When all the graph events associated with a resource constraint
have been processed, these delta sets are cleared.

For example, the following code displays the set of new direct successor links in the graph as soon as they are
discovered.

class PrintCtI :public IlcConstraintI {
 public:
 PrintCtI(IloSolver solver) :IlcConstraintI(solver) {}
 void printNewDirectSuccessors(IlcResourceConstraint rct) {
 getSolver().out() << "New direct successors of " << rct << ":" << endl;
 for (IlcResourceConstraintDeltaIterator ite(rct, IlcDirectSuccessors); ite.ok(); ++ite)
 getSolver().out() << "\t" << *ite << endl;
 }
 };

 ILCRESOURCEDEMON(PrintDirectSucc, PrintCtI, printNewDirectSuccessors);

 PrintCtI* printer = new PrintCtI(solver);
 IlcResource resource ...;

 resource.whenDirectSuccessors(PrintDirectSucc(printer));

Light Resource Precedence Graph Constraint

The light precedence graph is a light version of the precedence graph constraint on unary resources. It is a global
constraint that maintains the sequence of activities that have been ranked first, the sequence of activities that
have been ranked last and a partition of the other (unranked) activities according to their status
(Not)PossibleFirst/Last. The light precedence graph constraint is sufficient to enforce the unit capacity of the
resource and the successor links between resource constraints. The main interest of the light precedence graph
relies on the fact that its average complexity is linear with the number of activities.

The functionality consists of two member functions:

45

IlcResource::makeLightPrecedenceGraphConstraint allows the creation and return of a light
precedence graph constraint.

•

IlcResource::hasLightPrecedenceGraphConstraint returns IlcTrue if and only if a light
precedence graph constraint has been created on the resource.

•

When the light precedence graph is created and posted on a unary resource, the member function
IlcResource::hasRankInfo returns IlcTrue, and it allows the use of the rank functionalities listed below:

On the methods IlcResourceConstraint::rankFirst,
IlcResourceConstraint::rankNotFirst, IlcResourceConstraint::rankLast,
IlcResourceConstraint::rankNotLast, IlcResourceConstraint::setSuccessor,
IlcResourceConstraint::isPossibleFirst, IlcResourceConstraint::isPossibleLast,
IlcResourceConstraint::isRanked, IlcResourceConstraint::isRankedFirst, and
IlcResourceConstraint::isRankedLast.

•

Also on the methods IlcUnaryResource::isRanked, IlcResource::whenRankedFirstRC,
IlcResource::whenRankedLastRC, IlcResource::getLastRankedFirstRC,
IlcResource::getLastRankedLastRC, IlcResource::getOldLastRankedFirstRC, and
IlcResource::getOldLastRankedLastRC.

•

On the nested iterators IlcResource::ResourceConstraintIterator and
IlcResource::ResourceConstraintDeltaIterator.

•

And on the goals IlcRank and IlcRankBackward.•

Note that both the disjunctive constraint (makeDisjunctiveConstraint) and the (classical) precedence
graph constraint (makePrecedenceGraphConstraint) automatically create a light precedence graph
constraint. The light precedence graph constraint should be used on unary resources with a large number of
activities when the quadratic complexity of the disjunctive constraint is too expensive.

Schedule Precedence Graph Constraints

Whereas the nodes of a resource precedence graph represent resource constraints (see above), we describe in
this section the concept of schedule precedence graph whose nodes are the activities created on a schedule.

On a schedule precedence graph, an edge between two activities (act1, act2) means that activity act1 is
constrained to execute before activity act2.

A schedule precedence graph constraint is a constraint that creates a precedence graph structure for the
schedule with which it is associated and allows propagation of the precedence information contained in this
graph on the variables of the activities (start and end time).

Creating a Schedule Precedence Graph Constraint

A schedule precedence graph constraint can be created on a schedule with the member function
IlcSchedule::makePrecedenceGraphConstraint.

Overview of Functions Related to Schedule Precedence Graphs

When a schedule is associated a precedence graph constraint, the coherence between this global graph and the
resource precedence graphs is ensured: when new precedence relations are discovered on a resource with a
precedence graph, these relations are also added on the schedule precedence graph and, reciprocally, when
new precedence relations are added on the schedule precedence graph, the resource precedence graphs are
updated accordingly.

New edges on the schedule precedence graph are automatically discovered when the following precedence
constraints are posted on the solver:

IlcPrecedenceConstraintType::IlcStartsAfterEnd with positive or null delay•
IlcPrecedenceConstraintType::IlcStartsAtEnd with positive or null delay•
IlcPrecedenceConstraintType::IlcEndsAtStart with negative or null delay•

Some member functions of the class IlcActivity allow direct addition of new precedence relations on the
graph (IlcActivity::setSuccessor). Before entering the search, it is also possible to remove relations

46

already added on the graph (IlcActivity::unsetSuccessor).

Note that adding a new precedence relation on the graph leads exactly to the same propagation as posting a
IlcPrecedenceConstraintType::IlcStartsAfterEnd constraint with null delay.

Transitive closure of the graph is automatically computed and maintained during the search.

The information stored in the precedence graph can be accessed with member functions of the class
IlcActivity (such as IlcActivity::isDirectlySucceededBy, and IlcActivity::isSucceededBy),
and with the activity iterator IlcActivityIterator. The availability of these accessors and iterators is limited
before entering the search, as the transitive closure of the graph has not been computed.

Relative Positions of Activities in a Precedence Graph

Let act1 and act2 be two activities of a schedule with precedence graph.

Activity act2 is said to be a successor of act1 on the graph if it is constrained to execute after act1.•
The pair (act1,act2) is said to be unranked on the graph if and only if neither act1 is a successor of act2
nor act2 is a successor of act1.

•

Activity act1 is said to be ranked on the graph if and only if there is no activity act such that the pair
(act1,act) is unranked.

•

Activity act2 is said to be a direct successor of act1 on the graph if and only if act2 is a successor of
act1 and there is no activity act of the schedule such that act is a successor of act1 and act2 is a
successor of act on the current state of the schedule precedence graph.

•

Precedence Graph Events and Delta Sets of Activities

Several events can be defined on an activity with precedence graph
(IlcSchedule::whenDirectPredecessors, IlcSchedule::whenDirectSuccessors,
IlcSchedule::whenPredecessors, IlcSchedule::whenSuccessors.) These events are triggered as
soon as the corresponding set of activities is modified because the structure of the precedence graph has
changed.

The modifications of these sets of activities are stored in special sets called delta sets. These delta sets can be
accessed during the execution of the goals associated with the event (see IlcActivityDeltaIterator).
When all the graph events associated with an activity have been processed, then these delta sets are cleared.

Example

For example, the following code displays the set of new direct successors of the activity act as soon as new
direct successors of act are discovered on the precedence graph.

class PrintCtI :public IlcConstraintI {
 public:
 PrintCtI(IloSolver solver) :IlcConstraintI(solver) {}
 void printNewDirectSuccessors(IlcActivity act) {
 getSolver().out() << "New direct successors of " << act << ":" <<
 endl;
 for (IlcActivityDeltaIterator ite(act, IlcDirectSuccessors);
 ite.ok(); ++ite)
 getSolver().out() << "\t" << *ite << endl;
 }
 };

ILCRESOURCEDEMON(PrintDirectSucc, PrintCtI, printNewDirectSuccessors);

PrintCtI* printer = new PrintCtI(solver);
IlcSchedule sched ...;

sched.whenDirectSuccessors(PrintDirectSucc(printer));

See Also

47

IlcActivity, IlcActivityIterator, IlcActivityIteratorFilter, IlcActivityDeltaIterator, IlcResource, IlcResourceConstraint,
IlcResourceConstraintIterator, IlcResourceConstraintDeltaIterator, IlcResourceConstraintIteratorFilter

Ranking

Description

Activities may be ranked automatically as part of the constraint propagation process.

Ranking a resource constraint first means that the activity corresponding to the resource constraint will be
executed before every activity on the resource that has not already been ranked first. Specifying that a resource
constraint is not ranked first (that is, IlcResourceConstraint::rankNotFirst) means that the
corresponding activity will execute after at least one of the activities that is currently not ranked. A similar
(inverse) rule applies to ranking last.

More precisely, the propagation of global constraints (light precedence graph, disjunctive constraint) allows
Scheduler Engine to deduce that some activities cannot be first or cannot be last: internal versions of the
member functions IlcResourceConstraint::rankNotFirst and
IlcResourceConstraint::rankNotLast are called as part of the constraint propagation process.

Ranking facilities are defined only for unary resources with a posted light precedence graph constraint, or state
resources with a posted disjunctive constraint. Use the member function IlcResource::hasRankInfo to find
out whether or not ranking facilities are available on a given resource

A resource constraint can be ranked if and only if its time extent is IlcTimeExtent::IlcFromStartToEnd.

In addition, if the resource is closed (as defined for the parent class IlcResource) and only one activity can be
first, then this activity is necessarily first: an internal version of the member function
IlcResourceConstraint::rankFirst is called as part of the constraint propagation process.

Similarly, if the resource is closed and only one activity can be last, then this activity is necessarily last: an
internal version of the member function rankLast is called as part of the constraint propagation process.

If the resource is not closed, then ranking an activity to be not first or not last on a resource has no influence on
its earliest start time.

The member functions IlcResourceConstraint::isPossibleFirst,
IlcResourceConstraint::isPossibleLast, IlcResourceConstraint::isRanked,
IlcResourceConstraint::isRankedFirst, and IlcResourceConstraint::isRankedLast let you
know whether the activity that corresponds to a given resource constraint can be first, can be last, is already
ranked, ranked first or ranked last.

Non-contributing resource constraints (those not posted, with null processing time or with null capacity
requirement) are automatically considered as being ranked; therfore, they are not possible first or possible last
anymore.

Furthermore, some member functions are available on the class IlcResource to access the last resource
constraint that has been ranked first or last (IlcResource::getLastRankedFirstRC,
IlcResource::getLastRankedLastRC) as well as to post demons on the detection of new ranked first or
last activities on the resource (IlcResource::whenRankedFirstRC, IlcResource::whenRankedLastRC).

Some iterators are available for a chronological traversal of all the activities that have been ranked first or last or
for iterating over the resource constraints that are possible first or last
(IlcResource::ResourceConstraintIterator,
IlcResource::ResourceConstraintDeltaIterator).

See Also

IlcResource, IlcResourceConstraint, IlcTimeExtent, Precedence Graph Constraints, Disjunctive Constraint

48

Large Neighborhoods

Description

The main idea behind Large Neighborhood Search is to focus the search on a sub-part of the decision variables
of the problem. In this approach, we start from a known solution (current solution) and try to improve it by
restoring (freezing) the values subset of some decision variables stored in this solution, while leaving other
decision variables free. A goal is then used to try fix these remaining decision variables.

The set of decision variables is partitioned into two sets: the set of selected decision variables, and the other
variables. Different restore policies are then applied, depending if the variable belongs or not to the set of
selected decision variables.

To define the set of selected decision variables, use the pure virtual member function defineSelected of the
class IloLargeNHoodI. Its signature is:

IloSolution IloLargeNHoodI::defineSelected(IloSolver solver, IloInt index)

The instance of class IloSolution returned must contain the set of selected decision variables corresponding
to the neighbor with index index.

Local Search versus Large Neighborhood Search

At first glance, a large neighborhood and a neighborhood look very similar. But there are also some differences:

In a local search approach, the neighborhoods are enumerated explicitly (method define). The size of
the neighborhood is the number of neighbors. A goal may be used to validate the neighbor: to check for
an instance where all the constraints are fulfilled.

•

In a large neighborhood approach, the size of the neighborhood is the number of sub-problems to solve.
Each sub-problem may contain a potentially a large number of neighbors, and thus is a combinatorial
problem itself. To exhibit a neighbor a search algorithm must be used.

•

Suppose there is a scheduling problem made of three activities requiring a unary resource. Further, we have
found a first solution and wish to iteratively select an activity and try to relocate it on the resource. In a local
search approach, the size of the neighborhood is nine: each activity can be either first, last or in the middle on the
resource. A sub-goal may be used to ensure that all other constraints are fulfilled (side constraints). In a large
neighborhood search approach, the number of sub-problems to solve is the number of activities (three in this
case). For each sub-problem, we can use, for instance, the goal IloRankForward to find a neighbor.

Scheduler Large Neighborhood

Large neighborhoods dedicated to scheduling problems derive from the class IloSchedulerLargeNHoodI.

Two predefined neighborhoods dedicated to scheduling problems are available:

IloRelocateActivityNHood which iteratively selects an activity and tries to reschedule it
somewhere else.

•

IloTimeWindowNHood which iteratively selects a time window and tries to reschedule the activities
within the time window.

•

The class IloSchedulerLargeNHoodI provides specialization of functionalities available in class
IloLargeNHoodI for activities and resource constraints. For instance, in class IloLargeNHood, there is a
member function isSelected used to check if an extractable is selected or not:

IloBool isSelected(IloExtractable extr) const;

A similar member function exists on class IloLargeNHood to check if activities and resource constraints are
selected:

49

IloBool isSelected(IloActivity activity) const;

IloBool isSelected(IloResourceConstraint rc) const;

In addition to the above functionalities, the main difference between class IloSchedulerLargeNHoodI and
class IloLargeNHoodI is that class IloSchedulerLargeNHoodI overloads the method finalizeDelta.
To ease the definition of neighborhoods dedicated to scheduling problems, this method removes from any
resource constraint that is not selected the next, the previous, the direct successors and the direct predecessors,
in case these are selected. These are then replaced by new appropriate direct predecessors and direct
successors.

As an example, suppose a set of activities are scheduled on a unary resource, and a time window neighborhood
is applied. In the following equation, R is the resource, [Ai] represents an activity and | represents the time
window boundary.

R: [A0][A1]..[Ai-1] | A[i]..[Aj] | [Aj+1]..[Ak]

Here, the time window contains all activities from Ai to Aj. In the current solution Ai is the next (and also the direct
successor) of Ai-1. Similarly in the current solution, activity Aj is the previous (and also the direct predecessors)
of activity Aj+1. Both the next of Ai-1, the successor of Ai-1, the previous of Aj+1 and the direct predecessors of
Aj+1 are removed. Also, Aj+1 is set as the successor of Ai-1, and Ai-1 is set as the predecessor of Aj+1.

Extending the Library of Large Neighborhoods

There are two ways to extend the library with new large neighborhoods:

by combining existing large neighborhoods.•
by deriving from class IloLargeNHoodI.•

Combining Large Neighborhoods

There are two ways to combine large neighborhoods:

Union of two neighborhoods•
Intersection of two neighborhoods•

50

Union of Neighborhoods
The size of the resulting neighborhood is the product of the sizes of the two neighborhoods: size(n1)*size(n2).

The set of selected extractables of the union for index i is the union of the sets of selected extractables for index
i1 for neighborhood n1, and for index i2 for neighborhood n2 such that i = i1*size(n2) + i2.

For any extractable, if it belongs to the union of the selected sets, it will be restored only if both neighborhoods
specify that it must be restored. In case it does not belong to the union of the selected sets, then it is restored if at
least one of the two neighborhoods specifies that it must be restored.

For example, a neighborhood that relocates two activities at once can be defined as the union of two relocate
activity neighborhoods:

 IloSchedulerLargeNHood n1 = IloRelocateActivityNHood(env);
 IloSchedulerLargeNHood n2 = IloRelocateActivityNHood(env);
 IloLargeNHood nhood = IloUnionNHood(env, n1, n2);

51

Intersection of Neighborhoods
As for the union, the size of the resulting neighborhood is the product of the sizes of the two neighborhoods:
size(n1)*size(n2).

The set of selected extractables of the intersection for index i is the intersection of the sets of selected
extractables for index i1 for neighborhood n1 and for index i2 for neighborhood n2 such that i = i1*size(n2) + i2.

For any extractable, if it belongs to the intersection of the selected sets, it will be restored only if both
neighborhoods specify that it must be restored. In case it does not belong to the intersection of the selected sets,
then it is restored if at least one of the two neighborhoods specify that it must be restored.

For instance, a neighborhood that relocates activities within a time window with a window size 20 and a window
step 10 can be defined as:

 IloSchedulerLargeNHood n1 = IloRelocateActivityNHood(env);
 IloSchedulerLargeNHood n2 = IloTimeWindowNHood(env, 20, 10);
 IloLargeNHood nhood = IloIntersectNHood(env, n1, n2);

Implementing a New Large Neighborhood

When deriving from class IloLargeNHoodI (or IloSchedulerLargeNHoodI), you have to overload at least
the three following virtual member functions:

 IloSolution defineSelected(IloSolver solver, IloInt index);
 void start(IloSolver solver, IloSolution);
 IlcInt getSize(IloSolver solver, IloInt index);

The method defineSelected is a pure virtual member function and must be overloaded to define the selected
extractables corresponding to a neighbor with index.

Methods start and getSize are pure virtual member functions of class IloNHoodI and must be overloaded
as for any neighborhood.

Other virtual member functions on class IloLargeNHoodI are:

 void defineRestoreInfo(IloSolver solver, IloSolution delta);
 void finalizeDelta(IloSolver solver, IloSolution delta);

Method defineRestoreInfo is used to specify for each extractable the restore information; that is, either the
restore fields for activities and resource constraints, or the restore status for other extractables. If this information
differs from the current solution, then this information is added to the delta solution provided as argument. Default
implementation uses the predicates.

Method finalizeDelta can be used to complete the definition delta. By default it doesn't do anything.

Note that class IloLargeHNoodI derives from class IloNHoodI and redefines the virtual method
IloNHoodI::define . It calls method defineSelected, and then if not empty, calls method
defineRestoreInfo and finalizeDelta. So when deriving class IloLargeHNoodI, you do not need to
overload virtual method define.

Resource Enforcement as Global Constraint Declaration

Description

There are two ways for the Scheduler extractor to determine which global resource constraint is implicitly added
to the Solver: the content of the model, or the enforcement level parameter. This section discusses details of the
enforcement level by parameters. For related information, see Adding Global Resource Constraints from the
Scheduler Model.

52

An enforcement level is related to some semantic capability of the resource such as having a finite capacity or a
finite set of states, or enforcing a total order on the activities.

Scheduler offers a set of enforcement levels in the parameter class IloResourceParam . Refer to the
enumeration IloEnforcementLevel for more information.

IloEnforcementLevel IloResourceParam::getBreaksEnforcement() const;
IloEnforcementLevel IloResourceParam::getCapacityEnforcement() const;
IloEnforcementLevel
 IloResourceParam::getPrecedenceEnforcement() const;
IloEnforcementLevel IloResourceParam::getSequenceEnforcement() const;
IloEnforcementLevel
 IloResourceParam::getTransitionTimeEnforcement() const;

The notion of resource enforcement is interpreted in the extraction as the addition of one or several global
constraints.

Each type of enforcement level can be ignored (for example,
IloResourceParam::ignoreCapacityConstraints). Ignoring an enforcement level is interpreted by the
Scheduler extractor as a relaxation of the related global constraint, which is then not posted.

Each class of resource has its own default (value IloBasic) for each type of enforcement level. This default is
fixed in Scheduler and corresponds to the most common usage of the resource.

This parametrization is very important because the pruning algorithms have very different performance levels.
The most effective algorithms are also the most time consuming. For example, the timetable constraint algorithm
is, on average, linear in the number of activities, the edge finder level 1 is quadratic on average, and, at worst,
the disjunctive constraint is somewhere in-between.

Breaks Enforcement

The breaks enforcement is interpreted with the break constraint by the Scheduler extractor. There is only one
pruning algorithm available in the Scheduler Engine, therefore, the enforcement levels have no effect (except
when the break constraints are ignored, in which case no enforcement is done). The break enforcement
corresponds to a call to the function:

void IlcResource::setBreakList(IlcBreakList bl);

All levels for all resources are extracted as posting the breaks constraint if the interval list of the Scheduler
resource is not empty and the ignoreBreaksConstraint is IloFalse.

Capacity Enforcement

The capacity enforcement is related to the main global constraint for a resource class. It corresponds to the
maximal and minimal capacity constraints for a discrete resource, the maximal and minimal energy for an energy
resource, the maximal and minimal content for a reservoir, and the possible set of states and must-be-in-use
status for a state resource.

The Scheduler extractor has five sets of algorithms with which to interpret the capacity enforcement level: the
timetable constraint, the light precedence graph constraint, the disjunctive constraint, the edge finder, and the
balance constraint. These constraints are expressed with the corresponding functions:

IlcConstraint IlcCapResource::makeTimetableConstraint();
IlcConstraint IlcUnaryResource::makeLightPrecedenceGraphConstraint();
IlcConstraint IlcCapResource::makeDisjunctiveConstraint();
void IlcDiscreteResource::setEdgeFinder(IlcInt level)
IlcConstraint IlcCapResource::makeBalanceConstraint();

53

Interpretation of Capacity Enforcement Levels

The following table lists the enforcement levels for the various resources and their corresponding capacity
enforcement. Default values are in bold.

Capacity Enforcement Level Constraint Algorithm

For Discrete Resources:

IloLow, IloMediumLow, IloBasic Timetable

IloMediumHigh Timetable +Disjunctive

IloHigh
Timetable + Disjunctive +
Edge finder (1)

IloExtended
Timetable + Disjunctive +
Edge finder (1) + Balance

For Unary Resources:

IloLow Timetable

IloMediumLow Light Precedence Graph

IloBasic
Light Precedence Graph +
Disjunctive

IloMediumHigh
Light Precedence Graph +
Disjunctive + Edge finder
(1)

IloHigh
Light Precedence Graph +
Disjunctive + Edge finder
(2)

IloExtended
Light Precedence Graph +
Disjunctive + Edge finder
(2) + Balance

For Discrete Energy and Continuous Reservoir:

All levels Timetable

For Reservoir:

IloLow, IloMediumLow, IloBasic, IloMediumHigh Timetable

IloHigh, IloExtended Timetable + Balance

For State Resources:

IloLow, IloMediumLow, IloBasic Timetable

IloMediumHigh, IloHigh, IloExtended Timetable + Disjunctive

Precedence Enforcement

The precedence enforcement is related to the effort of the solver in analyzing the precedence relations between
resource constraints on a resource. It is interpreted by the Scheduler extractor as the precedence graph
constraint. For some classes of resources, namely the discrete and unary resources, specific algorithms can be
triggered dealing with both the capacity limitations and the precedence graph knowledge. The precedence
enforcement functions are:

IlcConstraint IlcResource::makePrecedenceGraphConstraint();
void IlcDiscreteResource::setPrecedencePropagation(IlcInt level = 1);

54

Note that when the capacity constraint is set to be ignored, the precedence propagation levels are ineffectual.

Interpretation of Precedence Enforcement Levels

Precedence Enforcement Level Constraint Algorithm

For Discrete and Unary Resources:

IloLow, IloMediumLow, IloBasic No global constraint

IloMediumHigh Precedence Graph

IloHigh
Precedence Graph + Level
1

IloExtended
Precedence Graph + Level
2

For Discrete Energy, Discrete and Continuous Reservoirs, and State
Resource:

IloLow, IloMediumLow, IloBasic No global constraint

IloMediumHigh, IloHigh, IloExtended Precedence Graph

A global schedule precedence graph (see the member function
IlcSchedule::makePrecedenceGraphConstraint) is created when the enforcement level of the scheduler
environment is set to a value IloMediumHigh or higher. See the member function
IloSchedulerEnv::setPrecedenceEnforcement.

Sequence Enforcement

Sequence enforcement is the way to model the fact that the execution of some activities must be synchronized,
and that a cost may arise when transitioning between activities. This enforcement only applies to unary
resources, and requires either the precedence graph constraint or the following sequence constraint. These
constraints are expressed with the corresponding functions:

IlcConstraint IlcUnaryResource::makeSequenceConstraint();
IlcConstraint IlcUnaryResource::makePrecedenceGraph();

Interpretation of Sequence Enforcement Levels

Sequence Enforcement Level Constraint
Algorithm

For Unary Resources:

IloLow, IloMediumLow, IloBasic No global
constraint

IloMediumHigh
Precedence
Graph

IloHigh, IloExtended
Sequence
Constraint

For all other resource classes:

Does not apply.

55

Transition Time Enforcement

The transition time enforcement is related to the effort of the solver in enforcing the transition times between
activities processed on a given resource.

The Scheduler extractor has three sets of algorithms with which to interpret the transition time enforcement level:
the type timetable constraint, the disjunctive constraint and the precedence graph constraint.

These constraints are expressed with the corresponding functions:

IlcConstraint IlcResource::makeTypeTimetableConstraint();
IlcConstraint IlcDiscreteResource::makeDisjunctiveConstraint();
IlcConstraint IlcResource::makePrecedenceConstraint();

The following table lists the enforcement levels for the various resources and their corresponding transition time
enforcement. Default values are in bold.

Interpretation of Transition Time Enforcement Levels

Transition Time Enforcement Level Constraint
Algorithm

For Unary Resources:

IloLow, IloMediumLow, IloBasic Light Precedence
Graph (1)

IloMediumHigh, IloHigh, IloExtended
Disjunctive
Constraint (4)

For State Resources:

IloLow, IloMediumLow, IloBasic Type Timetable (2)
(3)

IloMediumHigh, IloHigh, IloExtended
Disjunctive
Constraint (4)

For all other resource classes:

IloLow, IloMediumLow, IloBasic, IloMediumHigh, IloHigh,
IloExtended

Type Timetable (5)

Note the following additions or exceptions to the interpretation described in the table.

The Light Precedence Graph is a lighter version of the precedence graph constraint restricted to the
management of rank information (ranked first or last, possible first or last).

1.

When the transition time on the state resource is a user defined transition time built with the macro
ILOTRANSITIONTIMEOBJECT0, the Disjunctive Constraint is used instead of the Type Timetable
Constraint, as the Type Timetable Constraint is not able to enforce such a transition time object

2.

When the capacity, the precedence or the sequence enforcement levels are so that a Disjunctive, a
Precedence Graph or a Sequence Constraint is already defined on the state resource (see the previous
sections Capacity Enforcement, Precedence Enforcement, and Sequence Enforcement), then the Type
Timetable is not used as the Disjunctive or the Precedence Graph Constraint is sufficient to enforce
transition times.

3.

When the capacity constraints are to be ignored on the resource (see the member function
IloResource::ignoreCapacityConstraints), then the Precedence Graph Constraint is used
instead of the Disjunctive Constraint, as posting the Disjunctive Constraint would also enforce capacity
constraints.

4.

On discrete resources, discrete energy resources and reservoirs, the Type Timetable is used to enforce
transition times except if the transition time on the resource is a user-defined transition time built with
the macro ILOTRANSITIONTIMEOBJECT0. In that case, the Precedence Graph Constraint is used
instead.

5.

56

Duration Enforcement

The duration enforcement is related to the effort of the solver in enforcing propagation on the duration variable of
activities. The Scheduler extractor has one way to enforce a stronger propagation on those variables than the
default propagation thanks to the functions:

void IlcDiscreteResource::setTimetablePropagation(IlcInt level=1L);1.
void IlcDiscreteEnergy::setTimetablePropagation(IlcInt level=1L);2.

The following table lists the enforcement levels for the various resources and their corresponding duration
enforcement. Default values are in bold.

Duration Enforcement Level Constraint
Algorithm

For Discrete and Discrete Energy Resources:

IloLow, IloMediumLow, IloBasic No global
constraint

IloMediumHigh, IloHigh, IloExtended
Extra timetable
propagation

For all other resource classes:

IloLow, IloMediumLow, IloBasic, IloMediumHigh, IloHigh, IloExtended No global
constraint

Rounding, Inward & Outward

Description

The member functions:

IlcActivity::requires

IlcActivity::provides

IlcActivity::requiresNot

all accept an argument, outward. This argument is important only when one of the timetables of the resource
that is required or provided by the invoking activity has a time step greater than one.

The time step of a timetable is defined by the argument timeStep of the member function
makeTimetableConstraint (IlcCapResource and IlcStateResource).

The meaning of the argument outward is best illustrated by an example. Let's say we have a unary resource; its
timetable starts at time 0, its time step is 5, and an activity of duration 5 requires the resource with time extent
IlcTimeExtent::IlcFromStartToEnd. Let's assume further that it starts at time 1 (one). We represent
those ideas like this:

/* Must be during search (e.g., inside a goal) */

IloSolver solver = getSolver();
IlcScheduler schedule(solver, 0, 100);
IlcUnaryResource resource(schedule, IlcFalse);
solver.add(resource.makeTimetableConstraint(5));
IlcActivity act(schedule, 5);
solver.add(act.requires(resource, 1,
 IlcFromStartToEnd,
 outward));
act.setStartTime(1);

57

If outward is IlcTrue, the activity uses the resource from time 0 (zero) to time 10. That is, the occupancy of
the activity is rounded outward toward the nearest valid times that correspond to time steps.

In contrast, if outward is IlcFalse, the activity does not use the resource at all. That is, the occupancy of the
activity is rounded inward toward the nearest valid times that correspond to time steps.

Outward rounding is useful when you want to express the idea that even if an activity requires a resource only
part of a time period, the resource is still considered in use for the entire time period. In contrast, inward rounding
corresponds to a situation where an activity requires a resource only when the activity uses the resource
throughout the entire time period.

Rounding arguments are not used for instances of IlcDiscreteEnergy, for which only the energy consumed
in time buckets is relevant, nor for instances of IlcContinuousReservoir, for which the time step of the
timetable is always 1.

See Also

IlcActivity, IlcResourceConstraint, Timetable

Sequence Constraint

Description

Since a unary resource can only process one activity at a time, all activities requiring the same unary resource
must be chronologically ordered to find a solution. As a result, in any solution to a problem that includes a unary
resource, each unary resource defines a directed path through all the activities requiring it.

The nodes of such a path correspond to resource constraints of the time extent
IlcTimeExtent::IlcFromStartToEnd. The links between the resource constraints can hold transition costs.
See IlcTransitionCostObject for more details.

The path has, for its first node, a virtual node before any activities. The link between this first node and the first
activity on the resource holds the setup cost. This first activity is called the setup activity.

The path also has, for its last node, a virtual node after all activities. The link between this last node and the last
activity on the resource holds the teardown cost. This last activity is called the teardown activity.

Scheduler Engine maintains the relationships between the variables defining a path (next of an activity, previous
of an activity, cost of the links between activities) and the scheduler variables (start and end times of the activities
and required capacity). The sequence constraint uses the transition time function associated with the resource.
When a disjunctive constraint is posted on the resource, the sequence constraint will use the ranking information
to improve propagation.

The sequence constraint allows the next and previous variables to be used with any Solver generic constraint
algorithms dealing with paths and forests.

Creating a Sequence Constraint

To create such a sequence constraint, use the member function
IlcUnaryResource::makeSequenceConstraint

The valid resource constraints are implicitly indexed when the resource is closed. Then the next, previous, and
costs variables are created. In other words, the variables used by the path representation of the resource are
created when the sequence constraint is created and the resource closed.

58

Indexing of the Path

Let Nb be the number of resource constraints of time extent IlcTimeExtent::IlcFromStartToEnd on a
closed unary resource. The first node before any resource constraint is indexed by zero. The last node after any
resource constraint is indexed by Nb + 1. A valid resource constraint is indexed by a unique number between 1
and Nb.

Not Visited Nodes

A node may or may not be visited in the path. A node is visited if it has a next and previous node visited by the
path. If a node is not visited, its next and previous variables are bound to a dummy value. Such a node does not
have any link on the path and so it does not contribute to the sum of costs of the links in the path.

With a unary resource, an activity is visited only if its required resource constraint contributes to the resource.
That is, if the product of the processing time of the activity multiplied by the required capacity is not null. In the
sequence constraint on the unary resource, the value of the next and previous variable of a not visited resource
constraint is -1.

See Also

IlcActivity, IlcTimeExtent, IlcTransitionTimeObject, IlcUnaryResource, IlcResourceConstraint, Transition Cost
(Setup and Teardown Costs) In Scheduler Engine

Texture Measurements

Description

From a general perspective, a texture measurement is a measurement of some aspect of a search state. The
actual measured values can then be used for any purpose. A typical use is to guide search by helping to identify
characteristics of a search state that can be exploited to aid heuristic search. It is important to distinguish
between the texture measurements themselves, and the uses to which they may be put; a single texture
measurement may be used in multiple ways for multiple purposes.

For example, the first-fail heuristic in constraint programing chooses the variable with the smallest domain size to
be assigned a value in the current search state. The domain size can be seen as a texture measurement: it is an
aspect of the search state that can be efficiently evaluated and then used for some purpose (in this case, as a
basis for a heuristic decision). Note that nothing limits the uses to which the domain sizes can be put. While
assigning the variable with the smallest domain is a useful heuristic, there may be other uses, perhaps unrelated
to heuristic search, for which the domain size information can be used.

Scheduler Engine implements a specific type of texture, IlcResourceTexture, which is a measure of the
criticality of a resource over the scheduling horizon. Criticality is a floating point value with minimal predefined
semantics. All that is required is that higher levels of criticality are represented by larger floating point values.

The criticality curve can be used to drive heuristic search. For example, in a resource allocation application, it
may be useful to assign an activity to the resource with the lowest criticality over the activity's execution time
window. In an application more directed towards scheduling, identifying the set of activities that demand the most
critical time point across all resources may help heuristic search. In this latter case, a heuristic might sequence a
pair of activities from the set.

To define a resource texture measurement it is necessary to define the impact of a resource constraint on a
resource and to define how the criticality is computed given the aggregated demand and variance for all the
resource constraints on a resource.

This impact that a resource constraint has on a resource is represented by an IlcRCTexture object which
represents two curves: the demand curve of a resource constraint for a resource and the variance of this
demand. Representation of the variance curve is optional. Users can define the demand and variance curves by
subclassing the implementation class IlcRCTextureI and by subclassing the RC Texture factory class

59

IlcRCTextureFactoryI. The factory class simply returns an instance of the user-defined IlcRCTextureI
subclass. The factory is used internally to create a new RC texture object whenever a new resource constraint is
added to a resource. A number of RC texture and RC texture factory classes are predefined in the Scheduler
Engine (such as IlcRCTextureProbabilisticI, and IlcRCTextureProbabilisticFactoryI).

The criticality calculation is similarly defined by subclassing IlcTextureCriticalityCalculatorI. This
class has two pure virtual functions that are used to calculate the criticality for a maximum and minimum resource
capacity constraint given the aggregate demand and variance of all possible resource constraints of a resource.
A number of criticality calculators are predefined in the Scheduler Engine (such as
IlcRelativeDemandCriticalityCalculatorI and IlcProbabilisticCriticalityCalculatorI).

Internally, the texture maintenance algorithm uses an RC factory to create an instance of a subclass of
IlcRCTextureI for each resource constraint on a resource. The demand and variance curve corresponding to
each resource constraint are aggregated across the scheduling horizon and, then, for each relevant time point,
the IlcTextureCriticalityCalculatorI subclass is called to compute the criticality given the aggregate
demand and variance.

At the modeling level, there are a number of predefined classes corresponding to the predefined Scheduler
Engine classes (such as IloTextureCriticalityCalculatorI and IloRCTextureFactory). These
classes allow the specification of the texture measurements in an instance of IloTextureParam. We also
provide a number of utilities (such as the macros ILOTEXTURECRITICALITYCALCULATOR0 and
ILORCTEXTUREFACTORY0) that create user-defined modeling objects that correspond to user-defined Scheduler
Engine objects. For example, with the former macro you can create a model object MyIloTextureCalculator
that corresponds to and is extracted as your Scheduler Engine object MyIlcTextureCalculator.

See Also

IlcResourceTexture, IlcTextureSuccessorGoal, IlcTextureAltSuccessorGoal, IlcResourceTextureIterator,
IlcRCTexture, IlcRCTextureIterator, IlcRCTextureI, IlcRCTextureESTI, IlcRCTextureProbabilisticI,
IlcRCTextureTargetI, IlcRCTextureFactory, IlcRCTextureFactoryI, IlcRCTextureFactoryI,
IlcRCTextureProbabilisticFactoryI, IlcRCTextureTargetFactoryI, IlcTextureCriticalityCalculator,
IlcTextureCriticalityCalculatorI, IlcRelativeDemandCriticalityCalculatorI, IlcProbabilisticCriticalityCalculatorI,
IloTextureSuccessorGoal, IloTextureAltSuccessorGoal, IloTextureParam, IloRCTextureFactory,
IloRCTextureFactoryI, ILORCTEXTUREFACTORY0, IloTextureCriticalityCalculator,
IloTextureCriticalityCalculatorI, ILOTEXTURECRITICALITYCALCULATOR0.

Timetable

Description

An important concept embodied in the implementation of resources is the concept of a timetable constraint.
Semantically, a table can be seen as a variable, the value of which is a function associating a value v(t) with
each point in time t. In the Scheduler Engine, we have two types of timetables, corresponding to the classes
IlcIntTimetable and IlcAnyTimetable.

In the case of IlcIntTimetable, the values v(t) are integers. An instance of the class IlcIntTimetable
manages the minimal and maximal possible values for v(t) for each point in time t. It also allows you to define
constraints on these minimal and maximal values as a function of time. The class IlcIntTimetable is used for
capacity resources, that is, instances of the classes IlcDiscreteEnergy, IlcDiscreteResource, or
IlcReservoir.

In the case of IlcAnyTimetable, the values v(t) are pointers to arbitrary objects. An instance of the class
IlcAnyTimetable manages all possible values for v(t) for each point in time t. It also allows you to define
constraints on these possible values as a function of time. The class IlcAnyTimetable is used for state
resources, that is, instances of the class IlcStateResource.

60

Initial Occupation

When associated with a resource by a timetable constraint, a timetable represents the occupation of the resource
by activities. Scheduler Engine provides a way to setup an initial occupation of capacity resources without having
to declare the corresponding activities.

The initial occupation is defined by an instance of the IlcIntToIntStepFunction class. The value of the
function at a time point is considered to be the sum of the requirements of fictitious activities.

This facility is intended to help in solving problems by iteratively adding a new set of activities to schedule or in
improving solutions by rescheduling a subset of the activities.

Implementation Considerations

The timetables in Scheduler Engine store only the instants in time at which the status of the timetable changes.
Information in the timetable is accessed and modified in time proportional to the number of status changes.

See Also

IlcAnyTimetable, IlcCapResource, IlcIntTimetable, IlcResource, IlcStateResource, IBM ILOG Solver Reference
Manual:IlcIntToIntStepFunction

Transition Cost (Setup and Teardown Costs) In Scheduler Engine

Description

Since a unary resource can only process one activity at a time, all activities requiring the same unary resource
must be totally ordered in a solution. As a result, in any solution to a problem that includes a unary resource,
each unary resource defines a directed path through all the activities requiring it.

Between each pair of consecutive activities, some cost may be incurred to switch the resource from processing
the first activity to processing the second. These costs may be related to modifications to the resource that
require manpower, material, and energy, such as adjusting or purging a machine.

In Scheduler Engine, transition cost is defined as the cost between two immediately successive activities in the
sequence constraint of a unary resource. In addition, Scheduler Engine lets you define a setup cost for the
activity that starts the usage of the resource and a teardown cost for the activity that ends the usage of the
resource.

The transition cost object instance of IlcTransitionCostObject can be added to a unary resource with a
sequence constraint using the function IlcUnaryResource::addNextTransitionCost or
IlcUnaryResource::addPrevTransitionCost. The transition cost will be taken into account by the
propagation.

The transition cost can be variable or constant. By constant we mean that it only depends upon the precedence
relationship between two activities. By variable we mean that the evaluation of the transition cost depends upon
current knowledge about the other variables and constraints involved. If it is variable, the transition cost object
must define its minimal and maximal value given the current knowledge about the sequence.

Scheduler Engine associates an integer transition type to each activity. The accessors are the functions
IlcActivity::getTransitionType and IlcActivity::setTransitionType. They allow you to define
instances of IlcTransitionCostObject from integer tables where the rows and columns are indexed by the
transition types.

See Also

IlcMakeTransitionCost, IlcTransitionCostObject, IlcTransitionTable, IlcUnaryResource, Transition Cost (Setup
and Teardown Costs) In Scheduler Engine

61

Transition Time in Scheduler Engine

Description

For discrete resources, discrete energy, and state resources, you can define transition times. Given two activities
A1 and A2, the transition time between A1 and A2 is an amount of time that must elapse between the end of A1
and the beginning of A2 when A1 precedes A2.

Transition times are taken into account when the disjunctive constraint, the precedence graph constraint, or the
type timetable constraint on a resource are posted. Note however, that the disjunctive constraint does not exist
on reservoirs and discrete energy resources.

The precedence graph constraint propagates transition time based on the following precedence relation: If A2 is
a successor of A1 on the precedence graph, then the transition time between A1 and A2 is propagated.

Propagation of transition times is not handled the same way for a disjunctive constraint as for a type timetable
constraint.

The first difference is the definition of which activities are incompatible. Although both the disjunctive constraint
and the type timetable constraint propagate transition times only between activities that are incompatible, the
disjunctive constraint defines incompatibility based on the resource demand, and the type timetable constraint
defines incompatibility based on the transition types of activities. Therefore care must be taken, especially with
discrete and state resources, when choosing which constraint to use. We advise using the type timetable to
propagate transition times on discrete resources, because it is very possible that no pair of activities will be
incompatible based on their resource demands.

A second difference is that the disjunctive constraint propagates transition times more than the type timetable
constraint. Expressing transition times with a type timetable constraint is therefore less CPU-time consuming,
especially when the number of activities is large.

Here is an example to illustrate the extra propagation performed by a disjunctive constraint. Suppose two
activities A1 and A2 have a duration of 4, A1 is to be executed between 0 and 14 and has type 0, A2 executes
between 4 and 21 and has type 1, and they both require the same unary resource. The transition time between
these activities is symmetric and is equal to 3. The disjunctive constraint will deduce that A2 must start from at
least time 7 since A2 cannot be scheduled before A1. The type timetable constraint will not make that deduction.

If we look at activity A1, we could in principle remove type 1from the interval [lst - 3, ect + 3), where lst stands for
latest start time of A1, ect for earliest completion time of A1, and 3 is the transition time. With lst for A1 equal to
10 and ect equal to 4, we see this rule will not result in the actual removal of type 1 from a time interval. Similar
reasoning holds for activity A2.

You can define the transition time function of a resource by passing an instance of the class
IlcTransitionTimeObject to the constructor of the resource, or by calling the member function
IlcResource::setTransitionTimeObject. To have the type timetable constraint propagate the transition
times, the instance of IlcTransitionTimeObject must have been built with an instance of the class
IlcTransitionTable. When you build the transition time object that way, the propagation of the disjunctive
constraint or the type timetable constraint automatically takes transition times into consideration. However,
activities with a type not represented in the instance of IlcTransitionTable are not affected by the transition
times of other activities.

With the member function IlcResource::getTransitionTime you can inspect the transition time between
two activities that require the invoking resource. This member function accepts two resource constraints as
arguments and returns the transition time between the two corresponding activities. By default (that is, when
transition times are not defined), the member function returns zero (0).

Scheduler Engine associates an integer transition type with each activity. The accessors are the functions
IlcActivity::getTransitionType and IlcActivity::setTransitionType. They allow you to define
instances of IlcTransitionTimeObject from integer tables where the rows and columns are indexed by the
transition types.

62

There are some restrictions when the transition times are taken into account by the type timetable constraint:

The type timetable constraint alone does not propagate suspended transition times (See Calendars).
Suspended transition times can be propagated by creating a precedence graph constraint or (on a
unary or state resource) a disjunctive constraint.

•

The instance of IlcTransitionTimeObject that defines the transition time for the resource must
have been built with an instance of IlcTransitionTable.

•

Only resource constraints with a time extent equal to IlcTimeExtent::IlcFromStartToEnd are
taken into account. Resource constraints having a time extent different from
IlcTimeExtent::IlcFromStartToEnd are ignored.

•

The resource cannot be durable.•

See Also

IlcDiscreteEnergy, IlcDiscreteResource, IlcMakeTransitionTime, IlcStateResource, IlcTransitionTable,
IlcTransitionTime, IlcTransitionTimeObject, IlcUnaryResource, Disjunctive Constraint, Type Timetable Constraint,
Precedence Graph Constraints

Type Timetable Constraint

Description

The type timetable constraint performs propagation based on the transition types of the activities. These types
are set with the function IlcActivity::setTransitionType.

The main purpose of the type timetable constraint is to offer an alternative way of propagating transition times
instead of through a disjunctive constraint. For more details on the differences between handling transition times
with a disjunctive constraint and a type timetable constraint see Transition Time in Scheduler Engine.

The type timetable constraint states that two activities that have a different type are incompatible and it
propagates the following constraints.

Let act1 and act2 be two activities that have types type1 and type2 respectively, and let tt(typeX, typeY) be the
transition time from typeX to typeY. If both act1 and act2 actually require the resource and have a minimal
duration greater than 0 and if type1 is different from type2, the type timetable constraint assures that:

endTime(act1) + tt(type1, type2) ≤ startTime(act2) or

endTime(act2) + tt(type2, type1) ≤ startTime(act1)

If type1 is equal to type2 and tt(type1, type2) != 0, the type timetable constraint assures that:

endTime(act1) + tt(type1, type2) ≤ startTime(act2) or

endTime(act2) + tt(type2, type1) ≤ startTime(act1) or

(startTime(act1) = startTime(act2) and endTime(act1) = endTime(act2))

If type1 is equal to type2 and tt(type1, type2) = 0, one of the following two cases will occur:

No constraint on the start and end times of act1 and act2 is propagated. That is, activities of type1 can
partially overlap.

•

The previous constraint occurs. That is, if two activities overlap, they start and end at the same time.•

The type timetable constraint enforces batching activities. A boolean argument in the function that makes the
type timetable constraint allows you to declare the batching options.

Note that the type timetable constraint is available only for discrete resources and discrete energy resources.

63

Some restrictions exist when transition times are taken into account by the type timetable constraint:

The type timetable constraint alone does not propagate suspended transition times (See Calendars).
Suspended transition times can be propagated by creating a precedence graph constraint or (on a
unary or state resource) a disjunctive constraint.

•

The resource cannot be durable.•
The instance of IlcTransitionTimeObject that defines the transition time for the resource must
have been built with an instance of IlcTransitionTable.

•

Only resource constraints with a time extent equal to IlcTimeExtent::IlcFromStartToEnd are
taken into account. Resource constraints having a time extent different from
IlcTimeExtent::IlcFromStartToEnd are ignored.

•

See Also

IlcActivity, IlcTransitionTable, Transition Time in Scheduler Engine.

Moved or Obsolete Functions and Classes

A number of classes and functions have either moved to another library, or have been made obsolete.

Moved Functions and Classes

This is a list of functions and classes that no longer exist in the IBM® ILOG® Scheduler library. The function of
selectors, predicates, evaluators, and comparators has moved from Scheduler to Solver for 6.1. For more
information on these items, please see the concept Selectors and individual classes in the IBM ILOG Solver
Reference Manual.

IlcActivitySelectorObject•
IlcAltRCSelectorObject•
IlcRCSelectorObject•
IlcResourceSelectorObject•
IlcRCComparator•
IlcRCEvaluator•
IlcRCEvaluatorI•
IlcRCPredicate•
IlcRCPredicateI•
IlcRCSequenceNextSelectorObject•
IlcRCSequencePrevSelectorObject•
IlcRCSequenceSelectorObject•
IlcSchedulerComparator•
IlcSchedulerEvaluatorI•
IlcSchedulerPredicate•
IlcSchedulerPredicateI•
IlcSchedulerEvaluator•
IlcActivityComparator•
IlcActivityEvaluator•
IlcActivityPredicate•
IlcAltRCComparator•
IlcAltRCEvaluator•
IlcAltRCPredicate•
IlcResourceComparator•
IlcResourceEvaluator•
IlcResourcePredicate•
IlcActivityEvaluatorI•
IlcActivityPredicateI•
IlcAltRCEvaluatorI•
IlcAltRCPredicateI•
IlcResourceEvaluatorI•
IlcResourcePredicateI•

64

This is a list of functions and classes that moved from Scheduler to Concert. This move occurred in Scheduler
6.0. For more information on these classes, please see individual classes in the extensions section of the IBM
ILOG Concert Technology Reference Manual.

IloIntervalList•
IloIntervalListCursor•
IloNumToNumStepFunction•
IloNumToNumStepFunctionCursor•
IloNumToAnySetStepFunction•
IloNumToAnySetStepFunctionCursor•
IloNumToNumSegmentFunction•
IloNumToNumSegmentFunctionCursor•

Obsolete Functions and Classes

This is a list of functions from Scheduler 6.0 that are now obsolete.

Obsolete Function or Class Replaced By

IloSchedulerSolution::getSolution

IloSchedulerSolution::hasPrecedenceInformation

IloSchedulerSolution::hasSetupRC IloSchedulerSolution::getSetupRC

IloSchedulerSolution::hasTeardownRC IloSchedulerSolution::getTeardownRC

IloSchedulerSolution::hasNextRC IloSchedulerSolution::getNextRC

IloSchedulerSolution::hasPrevRC IloSchedulerSolution::getPrevRC

IlcActDurationMaxEvaluator IlcActivityDurationMaxEvaluator

IlcActDurationMinEvaluator IlcActivityDurationMinEvaluator

IlcActEndMaxEvaluator IlcActivityEndMaxEvaluator

IlcActEndMinEvaluator IlcActivityEndMinEvaluator

IlcActEndVarBoundPredicate IlcActivityEndVarBoundPredicate

IlcActIsBreakablePredicate IlcActivityIsBreakablePredicate

IlcActIsRankedPredicate IlcActivityIsRankedPredicate

IlcActPostponedBackwardPredicate IlcActivityPostponedBackwardPredicate

IlcActPostponedPredicate IlcActivityPostponedPredicate

IlcActProcessingTimeMaxEvaluator IlcActivityProcessingTimeMaxEvaluator

IlcActProcessingTimeMinEvaluator IlcActivityProcessingTimeMinEvaluator

IlcActProcessingTimeVarBoundPredicate IlcActivityProcessingTimeVarBoundPredicate

IlcActRandomEvaluator IlcActivityRandomEvaluator

IlcActStartMaxEvaluator IlcActivityStartMaxEvaluator

IlcActStartMinEvaluator IlcActivityStartMinEvaluator

IlcActStartVarBoundPredicate IlcActivityStartVarBoundPredicate

IlcActTransitionTypeEvaluator IlcActivityTransitionTypeEvaluator

IlcAltRCCapacityEvaluator IlcAltResConstraintCapacityEvaluator

65

IlcAltRCPossibleEvaluator IlcAltResConstraintNbPossibleEvaluator

IlcAltRCResourceSelectedPredicate IlcAltResConstraintResourceSelectedPredicate

IlcAltRCVariableConstraintPredicate IlcAltResConstraintVariableConstraintPredicate

IlcCapacityResourcePredicate IlcResourceIsCapacityResourcePredicate

IlcContinuousReservoirPredicate IlcResourceIsContinuousReservoirPredicate

IlcDiscreteEnergyPredicate IlcResourceIsDiscreteEnergyPredicate

IlcDiscreteResourcePredicate IlcResourceIsDiscreteResourcePredicate

IlcIsReservoirEvaluator IlcResourceIsReservoirPredicate

IlcRCCapacityConstraintPredicate IlcResourceConstraintCapacityConstraintPredicate

IlcRCCapacityMaxEvaluator IlcResourceConstraintCapacityMaxEvaluator

IlcRCCapacityMinEvaluator IlcResourceConstraintCapacityMinEvaluator

IlcRCDurationMaxEvaluator

IlcRCDurationMinEvaluator

IlcRCEndMaxEvaluator

IlcRCEndMinEvaluator

IlcRCHasNextPredicate IlcResourceConstraintHasNextPredicate

IlcRCHasPrevPredicate IlcResourceConstraintHasPrevPredicate

IlcRCInwardConstraintPredicate IlcResourceConstraintInwardConstraintPredicate

IlcRCNegativeConstraintPredicate IlcResourceConstraintNegativeConstraintPredicate

IlcRCPossibleFirstPredicate IlcResourceConstraintPossibleFirstPredicate

IlcRCPossibleLastPredicate IlcResourceConstraintPossibleLastPredicate

IlcRCPossibleSetupPredicate IlcResourceConstraintPossibleSetupPredicate

IlcRCPossibleTeardownPredicate IlcResourceConstraintPossibleTeardownPredicate

IlcRCPossiblyContributesPredicate IlcResourceConstraintPossiblyContributesPredicate

IlcRCProcessingTimeMaxEvaluator

IlcRCProcessingTimeMinEvaluator

IlcRCProvidingConstraintPredicate IlcResourceConstraintProvidingConstraintPredicate

IlcRCRandomEvaluator IlcResourceConstraintRandomEvaluator

IlcRCSetupPredicate IlcResourceConstraintSetupPredicate

IlcRCSlopeConstraintPredicate IlcResourceConstraintSlopeConstraintPredicate

IlcRCSlopeEvaluator IlcResourceConstraintSlopeEvaluator

IlcRCStartMaxEvaluator

IlcRCStartMinEvaluator

IlcRCStateConstraintPredicate IlcResourceConstraintStateConstraintPredicate

IlcRCStateSetConstraintPredicate IlcResourceConstraintStateSetConstraintPredicate

IlcRCSurelyContributesPredicate IlcResourceConstraintSurelyContributesPredicate

66

IlcRCTeardownPredicate IlcResourceConstraintTeardownPredicate

IlcRCTransitionCostEvaluator IlcResourceConstraintNextTransitionCostEvaluatorIlcResourceConstraintPrevTransitionCostEvaluator

IlcRCTransitionTypeEvaluator

IlcRCVariableConstraintPredicate IlcResourceConstraintVariableConstraintPredicate

IlcRCVirtualSinkNodePredicate

IlcRCVirtualSourceNodePredicate

IlcResCapacityEvaluator IlcResourceCapacityEvaluator

IlcResClosedPredicate IlcResourceClosedPredicate

IlcResEnergyEvaluator IlcResourceEnergyEvaluator

IlcReservoirPredicate IlcResourceIsReservoirPredicate

IlcResGlobalSlackEvaluator IlcResourceGlobalSlackEvaluator

IlcResHasAltResConstraintPredicate IlcResourceHasAltResConstraintPredicate

IlcResHasBreaksPredicate IlcResourceHasBreaksPredicate

IlcResHasTexturePredicate IlcResourceHasTexturePredicate

IlcResLocalSlackEvaluator IlcResourceLocalSlackEvaluator

IlcResRandomEvaluator IlcResourceRandomEvaluator

IlcResRankedPredicate IlcResourceRankedPredicate

IlcResSequencedPredicate IlcResourceSequencedPredicate

IlcResTextureEvaluator IlcResourceTextureEvaluator

IlcStateResourcePredicate IlcResourceIsStateResourcePredicate

IlcUnaryResourcePredicate IlcResourceIsUnaryResourcePredicate

67

Group optim.scheduler.modeling
The IBM® ILOG® Scheduler API.

Class Summary

IloActivity

IloActivityBasicParam

IloActivityBreakParam

IloActivityConstraintsParam

IloActivityOverlapParam

IloActivityShiftParam

IloAltResConstraintIterator

IloAltResSet

IloAltResSet::Iterator

IloCalendar

IloCalendar::ShiftObjectIterator

IloCapResource

IloContinuousReservoir

IloCoverConstraint

IloDiscreteEnergy

IloDiscreteResource

IloGranularFunction

IloGranularFunction::Cursor

IloPrecedenceConstraint

IloRCTextureFactory

IloRCTextureFactoryI

IloRelocateActivityNHoodI

IloReservoir

IloResource

IloResourceConstraint

IloResourceConstraintIterator

IloResourceParam

IloResourceValue

IloSchedulerEnv

IloSchedulerLargeNHood

IloSchedulerLargeNHoodI

IloSchedulerSolution

IloSchedulerSolution::ActivityIterator

IloSchedulerSolution::ResourceConstraintIterator

IloSchedulerSolution::ResourceIterator

IloShape

IloShiftListObject

68

IloShiftObject

IloStateResource

IloTextureCriticalityCalculator

IloTextureCriticalityCalculatorI

IloTextureParam

IloTimeBoundConstraint

IloTimeWindowNHood

IloTimeWindowNHoodI

IloTimeWindowNHoodI::IloTimeWindow

IloTransitionCost

IloTransitionCostObject

IloTransitionCostObjectI

IloTransitionParam

IloTransitionTime

IloTransitionTimeObject

IloTransitionTimeObjectI

IloUnaryResource

IloVariableSlopeShape

Macro Summary

ILORCTEXTUREFACTORY0

ILOTEXTURECRITICALITYCALCULATOR0

ILOTRANSITIONCOSTOBJECT0

ILOTRANSITIONTIMEOBJECT0

Enumeration Summary

IloActivitySelector

IloEnforcementLevel

IloGranularFunctionRoundingMode

IloPrecedenceConstraintType

IloResourceConstraintSelector

IloResourceSelector

IloSchedVariable

IloSchedulerSolution::IloResourceConstraintIteratorFilter

IloSequenceIndexSelector

IloTimeBoundConstraintType

IloTimeExtent

Function Summary

IloAssignAlternative

IloIntersectNHood

IloRankBackward

69

IloRankForward

IloRelocateActivityNHood

IloResourceFunctionalConstraint

IloResourceIntegralConstraint

IloSequenceBackward

IloSequenceForward

IloSetTimesBackward

IloSetTimesForward

IloShapeLowerThan

IloTextureAltSuccessorGoal

IloTextureSuccessorGoal

IloTimeWindowBackwardChronologicalComparator

IloTimeWindowBackwardChronologicalComparator

IloTimeWindowForwardChronologicalComparator

IloTimeWindowForwardChronologicalComparator

IloUnionNHood

The IBM® ILOG® Scheduler API.

70

Group optim.scheduler.solving
The IBM® ILOG® Scheduler API.

Class Summary

IlcActivity

IlcActivityDeltaIterator

IlcActivityIterator

IlcAltRCDemon

IlcAltResConstraint

IlcAltResConstraintIterator

IlcAltResSet

IlcAltResSetIterator

IlcAnyTimetable

IlcAnyTimetableCursor

IlcAnyTimetableIterator

IlcCalendar

IlcCalendar::ShiftObjectIterator

IlcCapResource

IlcContinuousReservoir

IlcContinuousReservoirIterator

IlcDiscreteEnergy

IlcDiscreteEnergyIterator

IlcDiscreteResource

IlcDiscreteResourceIterator

IlcFollowingActivityIterator

IlcGranularFunction

IlcGranularFunctionCursor

IlcIntTimetable

IlcIntTimetableCursor

IlcIntTimetableIterator

IlcIntToFloatSegmentFunction

IlcIntToFloatSegmentFunctionCursor

IlcIntervalList

IlcIntervalListCursor

IlcPossibleAltResIterator

IlcPrecedenceConstraint

IlcPrecedingActivityIterator

IlcProbabilisticCriticalityCalculatorI

IlcRCTexture

IlcRCTextureESTFactoryI

IlcRCTextureESTI

71

IlcRCTextureFactory

IlcRCTextureFactoryI

IlcRCTextureI

IlcRCTextureIterator

IlcRCTextureProbabilisticFactoryI

IlcRCTextureProbabilisticI

IlcRCTextureTargetFactoryI

IlcRCTextureTargetI

IlcRelativeDemandCriticalityCalculatorI

IlcReservoir

IlcReservoirIterator

IlcResource

IlcResourceConstraint

IlcResourceConstraintDeltaIterator

IlcResourceConstraintIterator

IlcResourceDemon

IlcResourceIterator

IlcResource::ResourceConstraintDeltaIterator

IlcResource::ResourceConstraintIterator

IlcResourceTexture

IlcResourceTextureIterator

IlcSchedule

IlcScheduleDemon

IlcScheduler

IlcSchedulerPrintTrace

IlcSchedulerTrace

IlcSchedulerTraceI

IlcShape

IlcShiftListObject

IlcShiftObject

IlcStateResource

IlcStateResourceIterator

IlcStateResourceIterator

IlcTextureCriticalityCalculator

IlcTextureCriticalityCalculatorI

IlcTimeBoundConstraint

IlcTransitionCostObject

IlcTransitionCostObjectI

IlcTransitionTable

IlcTransitionTimeObject

IlcTransitionTimeObjectI

72

IlcUnaryResource

IlcUnaryResourceIterator

IlcVariableSlopeShape

IlcWorkServer

Typedef Summary

IlcSchedulerTraceFilter

Macro Summary

ILCALTRCDEMON

ILCRESOURCEDEMON

ILCSCHEDULEDEMON

IlcTransitionCost

IlcTransitionTime

ILCUSERSHIFTOBJECT

Enumeration Summary

IlcActivityIteratorFilter

IlcFailReason

IlcGranularFunctionRoundingMode

IlcPrecedenceConstraintType

IlcResourceConstraintIteratorFilter

IlcResource::RankFilter

IlcSchedVariable

IlcSchedulerChange

IlcSlopeConstraintMode

IlcSolverChange

IlcTimeBoundConstraintType

IlcTimeExtent

Function Summary

IlcActivityAltResConstraintTranslator

IlcActivityDurationMaxEvaluator

IlcActivityDurationMinEvaluator

IlcActivityEndMaxEvaluator

IlcActivityEndMinEvaluator

IlcActivityEndVarBoundPredicate

IlcActivityIntegralExp

IlcActivityIsBreakablePredicate

IlcActivityIsRankedPredicate

IlcActivityPostponedBackwardPredicate

IlcActivityPostponedPredicate

IlcActivityProcessingTimeMaxEvaluator

73

IlcActivityProcessingTimeMinEvaluator

IlcActivityProcessingTimeVarBoundPredicate

IlcActivityRandomEvaluator

IlcActivityResourceConstraintTranslator

IlcActivityStartMaxEvaluator

IlcActivityStartMinEvaluator

IlcActivityStartVarBoundPredicate

IlcActivityTransitionTypeEvaluator

IlcAltResConstraintCapacityEvaluator

IlcAltResConstraintNbPossibleEvaluator

IlcAltResConstraintResourceSelectedPredicate

IlcAltResConstraintVariableConstraintPredicate

IlcAssign

IlcAssignAlternative

IlcFunctionalExp

IlcGetThreadId

IlcMakeTransitionCost

IlcMakeTransitionTime

IlcProbabilisticCriticalityCalculator

IlcRank

IlcRankBackward

IlcRCTextureESTFactory

IlcRCTextureProbabilisticFactory

IlcRCTextureTargetFactory

IlcRelativeDemandCriticalityCalculator

IlcResourceCapacityEvaluator

IlcResourceClosedPredicate

IlcResourceConstraintCapacityConstraintPredicate

IlcResourceConstraintCapacityMaxEvaluator

IlcResourceConstraintCapacityMinEvaluator

IlcResourceConstraintHasNextPredicate

IlcResourceConstraintHasPrevPredicate

IlcResourceConstraintInwardConstraintPredicate

IlcResourceConstraintNegativeConstraintPredicate

IlcResourceConstraintNextTransitionCostEvaluator

IlcResourceConstraintPossibleFirstPredicate

IlcResourceConstraintPossibleLastPredicate

IlcResourceConstraintPossibleNextVisitor

IlcResourceConstraintPossiblePrevVisitor

IlcResourceConstraintPossibleSetupPredicate

IlcResourceConstraintPossibleTeardownPredicate

74

IlcResourceConstraintPossiblyContributesPredicate

IlcResourceConstraintPrevTransitionCostEvaluator

IlcResourceConstraintProvidingConstraintPredicate

IlcResourceConstraintRandomEvaluator

IlcResourceConstraintSetupPredicate

IlcResourceConstraintSlopeConstraintPredicate

IlcResourceConstraintSlopeEvaluator

IlcResourceConstraintStateConstraintPredicate

IlcResourceConstraintStateSetConstraintPredicate

IlcResourceConstraintSurelyContributesPredicate

IlcResourceConstraintTeardownPredicate

IlcResourceConstraintVariableConstraintPredicate

IlcResourceConstraintVirtualNodePredicate

IlcResourceEnergyEvaluator

IlcResourceGlobalSlackEvaluator

IlcResourceHasAltResConstraintPredicate

IlcResourceHasBreaksPredicate

IlcResourceHasTexturePredicate

IlcResourceIsCapacityResourcePredicate

IlcResourceIsContinuousReservoirPredicate

IlcResourceIsDiscreteEnergyPredicate

IlcResourceIsDiscreteResourcePredicate

IlcResourceIsReservoirPredicate

IlcResourceIsStateResourcePredicate

IlcResourceIsUnaryResourcePredicate

IlcResourceLocalSlackEvaluator

IlcResourceRandomEvaluator

IlcResourceRankedPredicate

IlcResourceResourceConstraintTranslator

IlcResourceResourceConstraintTranslator

IlcResourceSequencedPredicate

IlcResourceTextureEvaluator

IlcScheduleOrPostpone

IlcScheduleOrPostponeBackward

IlcSequence

IlcSequenceBackward

IlcSetTimes

IlcSetTimesBackward

IlcShapeLowerThan

IlcTestSequencedResource

IlcTextureAltSuccessorGoal

75

IlcTextureSuccessorGoal

IlcTryAssign

IlcTryRankFirst

IlcTryRankLast

IlcTrySetSuccessor

operator<<

operator<=

The IBM® ILOG® Scheduler API.

76

Class IloSchedulerSolution::ActivityIterator
Definition file: ilsched/ilosolution.h
Include file: <ilsched/iloscheduler.h>

An instance of this class traverses the list of IloActivity instances that have been stored in an
IloSchedulerSolution.

See Also: IloActivity, IloSchedulerSolution, IloSchedulerSolution::ResourceConstraintIterator,
IloSchedulerSolution::ResourceIterator

Constructor Summary

public ActivityIterator(IloSchedulerSolution sol)

Method Summary

public IloBool ok() const

public IloActivity operator*()

public ActivityIterator & operator++()

Constructors

public ActivityIterator(IloSchedulerSolution sol)

This constructor creates an iterator to traverse all the activities that are stored in the given scheduler solution.

Methods

public IloBool ok() const

This member function returns IloTrue if the current position of the iterator is a valid one. It returns IloFalse if
all the activities have been scanned by the iterator.

public IloActivity operator*()

This operator returns the current instance of IloActivity, the one to which the invoking iterator points. If the
iterator is set past the end position, then this operator returns an empty handle.

public ActivityIterator & operator++()

This left-increment operator shifts the current position of the iterator to the next instance of IloActivity.

77

Class IloGranularFunction::Cursor
Definition file: ilsched/ilogfbase.h
Include file: <ilsched/iloscheduler.h>

An instance of IloGranularFunction::Cursor traverses the segments of a granular function.

See Also: IloGranularFunction

Constructor Summary

public Cursor(const IloGranularFunction func, IloNum x)

Method Summary

public IloNum getSegmentMax() const

public IloNum getSegmentMin() const

public IloNum getValue() const

public IloBool ok() const

public void operator++()

public void operator--()

Constructors

public Cursor(const IloGranularFunction func, IloNum x)

This constructor creates a cursor to traverse the segments of the granular function func. It is initialized at the
segment containing the position x. If this position is invalid, an error will be raised.

Methods

public IloNum getSegmentMax() const

This member function returns the right-most valid position pertaining to the current segment.

public IloNum getSegmentMin() const

This member function returns the left-most valid position pertaining to the current segment.

public IloNum getValue() const

This member function returns the value taken by the function on the current segment.

public IloBool ok() const

78

This member function returns IloTrue if the current position of the cursor is a valid one. Otherwise, it returns
IloFalse.

public void operator++()

This left-increment operator shifts the current position of the cursor to the next segment of the function.

public void operator--()

This left-decrement operator shifts the current position of the cursor to the previous segment of the function.

79

Class IlcActivity
Definition file: ilsched/schedule.h
Include file: <ilsched/ilsched.h>

The class IlcActivity is the class for managing activities.

Activities can be linked together by precedence constraints (instances of the class
IlcPrecedenceConstraint). Activities can be linked to resources by resource constraints (instances of the
class IlcResourceConstraint). Activities can also be constrained temporally by instances of the class
IlcTimeBoundConstraint.

Calendars, Processing Time, and Duration

In most of the cases, the four variables defining an activity are linked through the following relation:
start+duration==end. Also, as the processing time corresponds to the nominal duration of the activity,
duration==processingTime. Nevertheless, when calendars are defined, the activity duration can be greater than
the nominal one due to break suspensions or efficiency. So the duration of an activity depends on the nominal
duration and its ability to deal with breaks, isBreakable, and with efficiency, useEfficiency. Such abilities are
defined by the IlcActivity constructor arguments breakable and useEfficiency.

Notice that a breakable activity can only be suspended by breaks; it cannot be suspended to execute another
activity.

For a given instance of a breakable activity, some breaks may be allowed to suspend the activity while others
may not. A break is said to be disjunctive with respect to a breakable activity if the activity cannot be suspended
by that break—that is, the activity must be processed either before the break or after it.

By default, only the breaks with a duration equal to zero are considered as disjunctive.

The notion of a start (end) break overlap variable allows expression of the fact that an activity can start (finish)
the processing inside some special breaks—called possibly overlapped breaks—and allows posting of
constraints on possible overlap duration.

Restrictions with the use of break overlap variables on activities:

No end break overlap variable can be defined on a breakable activity that has been created as
mayBeSuspendedAtEnd.

•

No start break overlap variable can be defined on a breakable activity that has been created as
mayBeSuspendedAtStart.

•

In order to model more efficiently disjuntive behaviors and forbidden dates, it is possible to use shift objects
IlcShiftObject attached to an IlcCalendar. Shifts can be represented directly in intention by the user or in
extension using an IlcIntervalList. Using interval types, activity can ignore some breaks or shifts.

Detecting Inconsistencies

When changing the domain of a start time variable, an end time variable, a duration variable, or a processing
time variable, Scheduler Engine will detect an inconsistency if a changed domain directly conflicts with temporal
constraints and with the resource constraints of activities with fixed (instantiated) start and end times and
processing time.

Scheduler Engine may or may not detect the inconsistency if the changed domain conflicts with the temporal and
resource constraints associated with unscheduled activities, that is, activities for which the start and end times
and/or the processing time are not instantiated yet.

Consuming Resources

80

An activity consumes a resource if some amount of the resource capacity must be made available for the
execution of the activity and the capacity is non-recoverable, that is, the capacity is required from the beginning
of the activity up to the end of time.

Producing and Consuming Reservoirs

An activity produces if some amount of the reservoir capacity is made available through the execution of the
activity.

Time Extents

By default, an activity uses a resource from the activity's start time to its end time. However, it is possible to
specify that a resource is used during a time range different from the default "start to end" range. The
enumeration IlcTimeExtent is defined for this purpose.

Alternative Resource Set

When the member functions IlcActivity::consumes and IlcActivity::requires take the argument
IlcAltResSet, all the resources in the set must be capacity resources. When the member functions
IlcActivity::produces and IlcActivity::provides take the argument IlcAltResSet, all the
resources in the set must be reservoirs.

Functional and Integral Constraints and External Variables

Functional and integral constraints are constraints of the form y_rct=f(x_rct) or
y_rct=sum{start_rct->end_rct}f(t).dt that hold for every resource constraints rct on a given
resource (see Functional and Integral Constraints on Resources.

External variables are useful in case some variable x_rct or y_rct above is not a variable already associated
with the resource constraint (start, end, processing time of the activity, capacity demand, etc.). In that case,
member functions on IlcActivity allow setting a given Solver variable as as external variable of the activity
and use it in the functional/integral constraint (see the enumeration IlcSchedVariable).

Printing or Displaying Activities

The printed representation of an instance of the class IlcActivity consists of two parts: its name, followed by
information about the start time, end time, duration, and if appropriate, the processing time of the activity.

This information is enclosed in brackets and for each of the four variables, consists of either a single value (if the
start time, end time, or duration is precisely known) or a minimal value and a maximal value separated by two
dots. The following examples represent activities that have not been suspended by breaks:

[2 -- 3 --> 5] represents an activity which starts at 2 and ends at 5. The duration of this activity is 3.

[2 -- 3..5 --> 5..7] represents an activity which starts at 2 and ends sometime between 5 and 7. The
duration of this activity is between 3 and 5.

[2..4 -- 3 --> 5..7] represents an activity of duration 3 which starts sometime between 2 and 4 and ends
sometime between 5 and 7.

The following examples represent activities that have been suspended by breaks:

[2 -- (2) 3 --> 5] represents an activity which starts at 2 and ends at 5. The processing time of this
activity is 2. Its duration is 3. Such situation can appears with calendars when breaks or efficiency ar used. For
instance, a break of duration 1 is situated between 2 and 5, or an efficiency function with value 2/3 between 2
and 5.

[5 -- (3..5) 3..6 --> 8..11] represents an activity of processing time between 3 and 5 and duration
between 3 and 6; it starts at 5 and ends sometime between 8 and 11.

[10..30 -- (5) (5..15) --> 15..45] represents an activity of processing time 5 and duration between 5
and 15; it starts sometime between 10 and 30 and ends sometime between 15 and 45.

81

For more information, see Calendars, Precedence Graph Constraints, and Functional and Integral Constraints on
Resources.

See Also: IlcActivityIterator, IlcPrecedenceConstraint, IlcResourceConstraint, IlcSchedule,
IlcScheduleOrPostpone, IlcSchedVariable, IlcTimeBoundConstraint

Constructor Summary

public IlcActivity()

public IlcActivity(IlcActivityI * impl)

public IlcActivity(const IlcSchedule schedule, IlcInt processingTime, IlcBool
breakable=IlcFalse, IlcBool mayBeSuspendedAtStart=IlcFalse, IlcBool
mayBeSuspendedAtEnd=IlcFalse, IlcBool useEfficiency=IlcFalse)

public IlcActivity(const IlcSchedule schedule, IlcIntVar processingTimeVariable,
IlcBool breakable=IlcFalse, IlcBool mayBeSuspendedAtStart=IlcFalse, IlcBool
mayBeSuspendedAtEnd=IlcFalse, IlcBool useEfficiency=IlcFalse)

public IlcActivity(const IlcSchedule schedule, IlcIntVar startVariable, IlcIntVar
endVariable, IlcIntVar processingTimeVariable, IlcBool breakable=IlcFalse,
IlcBool mayBeSuspendedAtStart=IlcFalse, IlcBool
mayBeSuspendedAtEnd=IlcFalse, IlcBool useEfficiency=IlcFalse)

public IlcActivity(const IlcSchedule schedule, IlcIntVar startVariable, IlcIntVar
endVariable, IlcIntVar processingTimeVariable, IlcIntVar durationVariable,
IlcBool mayBeSuspendedAtStart=IlcFalse, IlcBool
mayBeSuspendedAtEnd=IlcFalse, IlcBool useEfficiency=IlcFalse)

Method Summary

public void addDisjunctiveBreakType(IlcIntSet setOfTypes)

public void addDisjunctiveBreakType(IlcInt type)

public void addEndBreakOverlapType(IlcInt type)

public void addEndBreakOverlapType(IlcIntSet typeSet)

public void addIgnoredBreakType(IlcIntSet setOfTypes)

public void addIgnoredBreakType(IlcInt type)

public void addIgnoredShiftType(IlcIntSet setOfTypes)

public void addIgnoredShiftType(IlcInt type)

public void addStartBreakOverlapType(IlcInt type)

public void addStartBreakOverlapType(IlcIntSet typeSet)

public IlcBool canBeSuspendedAtEnd() const

public IlcBool canBeSuspendedAtStart() const

public IlcAltResConstraint consumes(IlcAltResSet set, IlcIntVar capacity)

public IlcAltResConstraint consumes(IlcAltResSet set, IlcInt capacity=1)

public IlcResourceConstraint consumes(IlcCapResource resource, IlcIntVar
capacity)

public IlcResourceConstraint consumes(IlcCapResource resource, IlcInt
capacity=1)

public IlcConstraint covers(IlcActivityArray actAr)

public IlcTimeBoundConstraint endsAfter(IlcIntVar time)

public IlcTimeBoundConstraint endsAfter(IlcInt time)

public IlcPrecedenceConstraint endsAfterEnd(IlcActivity act, IlcIntVar)

82

public IlcPrecedenceConstraint endsAfterEnd(IlcActivity act, IlcInt delay=0)

public IlcPrecedenceConstraint endsAfterStart(IlcActivity act, IlcIntVar)

public IlcPrecedenceConstraint endsAfterStart(IlcActivity act, IlcInt delay=0)

public IlcTimeBoundConstraint endsAt(IlcIntVar time)

public IlcTimeBoundConstraint endsAt(IlcInt time)

public IlcPrecedenceConstraint endsAtEnd(IlcActivity act, IlcIntVar)

public IlcPrecedenceConstraint endsAtEnd(IlcActivity act, IlcInt delay=0)

public IlcPrecedenceConstraint endsAtStart(IlcActivity act, IlcIntVar)

public IlcPrecedenceConstraint endsAtStart(IlcActivity act, IlcInt delay=0)

public IlcTimeBoundConstraint endsBefore(IlcIntVar time)

public IlcTimeBoundConstraint endsBefore(IlcInt time)

public IlcInt getDurationMax() const

public IlcInt getDurationMaxNormalBreaks() const

public IlcInt getDurationMin() const

public IlcInt getDurationMinNormalBreaks() const

public IlcIntVar getDurationVariable() const

public IlcInt getEndBreakOverlapMax() const

public IlcInt getEndBreakOverlapMin() const

public IlcIntVar getEndBreakOverlapVariable() const

public IlcInt getEndMax() const

public IlcInt getEndMin() const

public IlcIntVar getEndVariable() const

public IlcInt getExecutionDurationMin() const

public IlcIntVar getExternalVar() const

public IlcInt getExternalVarMax() const

public IlcInt getExternalVarMin() const

public IlcActivityI * getImpl() const

public const char * getName() const

public IlcAny getObject() const

public IlcInt getProcessingTimeMax() const

public IlcInt getProcessingTimeMin() const

public IlcIntVar getProcessingTimeVariable() const

public IlcSchedule getSchedule() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public IlcInt getStartBreakOverlapMax() const

public IlcInt getStartBreakOverlapMin() const

public IlcIntVar getStartBreakOverlapVariable() const

public IlcInt getStartMax() const

public IlcInt getStartMin() const

public IlcIntVar getStartVariable() const

83

public IlcInt getTransitionType() const

public IlcBool hasEndBreakOverlapVariable() const

public IlcBool hasStartBreakOverlapVariable() const

public IlcBool isBreakable() const

public IlcBool isDirectlySucceededBy(IlcActivity) const

public IlcBool isDisjunctiveBreakType(IlcInt type) const

public IlcBool isExternalVarBound() const

public IlcBool isIgnoredBreakType(IlcInt type) const

public IlcBool isIgnoredShiftType(IlcInt type) const

public IlcBool isPostponed() const

public IlcBool isPostponedBackward() const

public IlcBool isRanked() const

public IlcBool isSucceededBy(IlcActivity) const

public IlcBool operator!=(const IlcActivity & activity) const

public void operator=(const IlcActivity & h)

public IlcBool operator==(const IlcActivity & activity) const

public void postpone()

public void postponeBackward()

public IlcAltResConstraint produces(IlcAltResSet set, IlcIntVar capacity)

public IlcAltResConstraint produces(IlcAltResSet set, IlcInt capacity=1)

public IlcResourceConstraint produces(IlcContinuousReservoir resource,
IlcIntVar capacity)

public IlcResourceConstraint produces(IlcContinuousReservoir resource, IlcInt
capacity=1)

public IlcResourceConstraint produces(IlcReservoir resource, IlcIntVar
capacity)

public IlcResourceConstraint produces(IlcReservoir resource, IlcInt capacity=1)

public IlcAltResConstraint provides(IlcAltResSet set, IlcIntVar capacity,
IlcTimeExtent extent=IlcFromStartToEnd, IlcBool
outward=IlcFalse)

public IlcAltResConstraint provides(IlcAltResSet set, IlcInt capacity=1,
IlcTimeExtent extent=IlcFromStartToEnd, IlcBool
outward=IlcFalse)

public IlcResourceConstraint provides(IlcReservoir resource, IlcIntVar
capacity, IlcTimeExtent extent=IlcFromStartToEnd,
IlcBool outward=IlcFalse)

public IlcResourceConstraint provides(IlcReservoir resource, IlcInt capacity=1,
IlcTimeExtent extent=IlcFromStartToEnd, IlcBool
outward=IlcFalse)

public void removeDisjunctiveBreakType(IlcIntSet setOfTypes)

public void removeDisjunctiveBreakType(IlcInt type)

public void removeEndBreakOverlapType(IlcInt type)

public void removeEndBreakOverlapType(IlcIntSet typeSet)

public void removeIgnoredBreakType(IlcIntSet setOfTypes)

public void removeIgnoredBreakType(IlcInt type)

84

public void removeIgnoredShiftType(IlcIntSet setOfTypes)

public void removeIgnoredShiftType(IlcInt type)

public void removeStartBreakOverlapType(IlcInt type)

public void removeStartBreakOverlapType(IlcIntSet typeSet)

public IlcResourceConstraint requires(IlcStateResource resource, IlcAnySetVar
states, IlcTimeExtent extent=IlcFromStartToEnd,
IlcBool outward=IlcTrue)

public IlcResourceConstraint requires(IlcStateResource resource, IlcAnySet
states, IlcTimeExtent extent=IlcFromStartToEnd,
IlcBool outward=IlcTrue)

public IlcResourceConstraint requires(IlcStateResource resource, IlcAnyVar
state, IlcTimeExtent extent=IlcFromStartToEnd,
IlcBool outward=IlcTrue)

public IlcResourceConstraint requires(IlcStateResource resource, IlcAny state,
IlcTimeExtent extent=IlcFromStartToEnd, IlcBool
outward=IlcTrue)

public IlcAltResConstraint requires(IlcAltResSet set, IlcIntVar capacity,
IlcTimeExtent extent=IlcFromStartToEnd, IlcBool
outward=IlcTrue)

public IlcAltResConstraint requires(IlcAltResSet set, IlcInt capacity=1,
IlcTimeExtent extent=IlcFromStartToEnd, IlcBool
outward=IlcTrue)

public IlcResourceConstraint requires(IlcCapResource resource, IlcIntVar
capacity, IlcTimeExtent extent=IlcFromStartToEnd,
IlcBool outward=IlcTrue)

public IlcResourceConstraint requires(IlcCapResource resource, IlcInt
capacity=1, IlcTimeExtent
extent=IlcFromStartToEnd, IlcBool outward=IlcTrue)

public IlcResourceConstraint requiresNot(IlcStateResource resource,
IlcAnySetVar states, IlcTimeExtent
extent=IlcFromStartToEnd, IlcBool outward=IlcTrue)

public IlcResourceConstraint requiresNot(IlcStateResource resource, IlcAnySet
states, IlcTimeExtent extent=IlcFromStartToEnd,
IlcBool outward=IlcTrue)

public IlcResourceConstraint requiresNot(IlcStateResource resource, IlcAnyVar
state, IlcTimeExtent extent=IlcFromStartToEnd,
IlcBool outward=IlcTrue)

public IlcResourceConstraint requiresNot(IlcStateResource resource, IlcAny
state, IlcTimeExtent extent=IlcFromStartToEnd,
IlcBool outward=IlcTrue)

public void setDuration(IlcInt duration)

public void setDurationMax(IlcInt durationMax)

public void setDurationMaxNormalBreaks(IlcInt duration)

public void setDurationMin(IlcInt durationMin)

public void setDurationMinNormalBreaks(IlcInt duration)

public void setEndBreakOverlap(IlcInt overlap)

public void setEndBreakOverlapMax(IlcInt overlapMax)

public void setEndBreakOverlapMin(IlcInt overlapMin)

public void setEndBreakOverlapVariable(IlcIntVar
overlapVariable)

85

public void setEndMax(IlcInt endMax)

public void setEndMin(IlcInt endMin)

public void setEndTime(IlcInt endTime)

public void setExecutionDurationMin(IlcInt)

public void setExternalValue(IlcInt)

public void setExternalVar(IlcIntVar)

public void setExternalVarMax(IlcInt)

public void setExternalVarMin(IlcInt)

public void setName(const char * name) const

public void setObject(IlcAny object) const

public void setProcessingTime(IlcInt processingTime)

public void setProcessingTimeMax(IlcInt processingTimeMax)

public void setProcessingTimeMin(IlcInt processingTimeMin)

public void setStartBreakOverlap(IlcInt overlap)

public void setStartBreakOverlapMax(IlcInt overlapMax)

public void setStartBreakOverlapMin(IlcInt overlapMin)

public void setStartBreakOverlapVariable(IlcIntVar
overlapVariable)

public void setStartMax(IlcInt startMax)

public void setStartMin(IlcInt startMin)

public void setStartTime(IlcInt startTime)

public void setSuccessor(IlcActivity ct)

public void setTransitionType(IlcInt value)

public IlcTimeBoundConstraint startsAfter(IlcIntVar time)

public IlcTimeBoundConstraint startsAfter(IlcInt time)

public IlcPrecedenceConstraint startsAfterEnd(IlcActivity act, IlcIntVar)

public IlcPrecedenceConstraint startsAfterEnd(IlcActivity act, IlcInt delay=0)

public IlcPrecedenceConstraint startsAfterStart(IlcActivity act, IlcIntVar)

public IlcPrecedenceConstraint startsAfterStart(IlcActivity act, IlcInt delay=0)

public IlcTimeBoundConstraint startsAt(IlcIntVar time)

public IlcTimeBoundConstraint startsAt(IlcInt time)

public IlcPrecedenceConstraint startsAtEnd(IlcActivity act, IlcIntVar)

public IlcPrecedenceConstraint startsAtEnd(IlcActivity act, IlcInt delay=0)

public IlcPrecedenceConstraint startsAtStart(IlcActivity act, IlcIntVar)

public IlcPrecedenceConstraint startsAtStart(IlcActivity act, IlcInt delay=0)

public IlcTimeBoundConstraint startsBefore(IlcIntVar time)

public IlcTimeBoundConstraint startsBefore(IlcInt time)

public void unsetSuccessor(IlcActivity ct)

public IlcBool useEfficiency() const

86

Constructors

public IlcActivity()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcActivity(IlcActivityI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcActivity(const IlcSchedule schedule, IlcInt processingTime, IlcBool
breakable=IlcFalse, IlcBool mayBeSuspendedAtStart=IlcFalse, IlcBool
mayBeSuspendedAtEnd=IlcFalse, IlcBool useEfficiency=IlcFalse)

This constructor creates a new instance of IlcActivity and adds it to the activities managed in the given
schedule. The new activity is constrained to execute sometime between the time origin and the time horizon of
the schedule. Its processing time is set to the given processingTime. If the value of the argument breakable
is equal to IlcTrue, then the created activity is a breakable activity; that is, an activity that can be suspended by
breaks. Otherwise and by default, the activity is a non-breakable activity. The arguments
mayBeSuspendedAtStart and mayBeSuspendedAtEnd are relevant for breakable activities only. They tell
whether the activity can be suspended at its start or end time. If the value of the argument useEfficiency is
equal to IlcTrue, then the created activity is able to deal with efficiency functions defined on required
resources. See Calendars for more information.

public IlcActivity(const IlcSchedule schedule, IlcIntVar processingTimeVariable,
IlcBool breakable=IlcFalse, IlcBool mayBeSuspendedAtStart=IlcFalse, IlcBool
mayBeSuspendedAtEnd=IlcFalse, IlcBool useEfficiency=IlcFalse)

This constructor creates a new instance of IlcActivity and adds it to the activities managed in the given
schedule. The new activity is constrained to execute sometime between the time origin and the time horizon of
the schedule. Its processing time variable is given by the argument processingTimeVariable. If the value of
the argument breakable is equal to IlcTrue, then the created activity is a breakable activity, that is, an activity
that can be suspended by breaks. Otherwise and by default, the activity is a non-breakable activity. The
arguments mayBeSuspendedAtStart and mayBeSuspendedAtEnd are relevant for breakable activities only.
They tell whether the activity can be suspended at its start or end time. If the value of the argument
useEfficiency is equal to IlcTrue, then the created activity is able to deal with efficiency functions defined
on required resources. See Calendars for more information.

public IlcActivity(const IlcSchedule schedule, IlcIntVar startVariable, IlcIntVar
endVariable, IlcIntVar processingTimeVariable, IlcBool breakable=IlcFalse, IlcBool
mayBeSuspendedAtStart=IlcFalse, IlcBool mayBeSuspendedAtEnd=IlcFalse, IlcBool
useEfficiency=IlcFalse)

This constructor creates a new instance of IlcActivity and adds it to the activities managed in the given
schedule. The new activity is created with the start, end and processing time variables given as arguments. If
the value of the argument breakable is equal to IlcTrue, then the created activity is a breakable activity, that
is, an activity that can be suspended by breaks. Otherwise and by default, the activity is a non-breakable activity.
The arguments mayBeSuspendedAtStart and mayBeSuspendedAtEnd are relevant for breakable activities
only. They tell whether the activity can be suspended at its start or end time. If the value of the argument
useEfficiency is equal to IlcTrue, then the created activity is able to deal with efficiency functions defined
on required resources. See Calendars for more information.

public IlcActivity(const IlcSchedule schedule, IlcIntVar startVariable, IlcIntVar
endVariable, IlcIntVar processingTimeVariable, IlcIntVar durationVariable, IlcBool
mayBeSuspendedAtStart=IlcFalse, IlcBool mayBeSuspendedAtEnd=IlcFalse, IlcBool
useEfficiency=IlcFalse)

87

This constructor creates a new instance of IlcActivity and adds it to the activities managed in the given
schedule. The new activity is breakable. Its start, end, processing time and duration variables are given as
arguments. The arguments mayBeSuspendedAtStart and mayBeSuspendedAtEnd tell whether the activity
can be suspended at its start or end time. If the value of the argument useEfficiency is equal to IlcTrue,
then the created activity is able to deal with efficiency functions defined on required resources. See Calendars for
more information.

Methods

public void addDisjunctiveBreakType(IlcIntSet setOfTypes)

This member function adds the set of types setOfTypes to the set of disjunctive break types of the invoking
activity. If a break type belongs to the set of disjunctive break types of a breakable activity, the activity must be
completely processed either before or after that type of break.

Initially, a breakable activity is created with an empty set of disjunctive break types.

public void addDisjunctiveBreakType(IlcInt type)

This member function adds the type type to the set of disjunctive break types of the invoking activity. If a break
type belongs to the set of disjunctive break types of a breakable activity, the activity must be completely
processed either before or after that type of break.

Initially, a breakable activity is created with an empty set of disjunctive break types.

public void addEndBreakOverlapType(IlcInt type)

For each activity, a set of break types is given that defines which break types can possibly be overlapped by the
end of the activity. This member function adds type to this set of break types on the invoking activity. By default,
the set is empty.

This member function is available only outside the search. In particular, it cannot be called within a goal.

public void addEndBreakOverlapType(IlcIntSet typeSet)

For each activity, a set of break types is given that defines which break types can possibly be overlapped by the
end of the activity. This member function adds the types in typeSet to this set of break types on the invoking
activity. By default, the set is empty.

This member function is available only outside the search. In particular, it cannot be called within a goal.

public void addIgnoredBreakType(IlcIntSet setOfTypes)

This member function adds the set of types setOfTypes to the set of ignored break types of the invoking
activity. That is, the invoking activity behaves as if breaks of type included in setOfTypes never exist.

Initially, an activity is created with an empty set of ignored break types.

public void addIgnoredBreakType(IlcInt type)

88

This member function adds the type type to the set of ignored break types of the invoking activity. That is, the
invoking activity behaves as if breaks of type type never exist.

Initially, an activity is created with an empty set of ignored break types.

public void addIgnoredShiftType(IlcIntSet setOfTypes)

This member function adds the set of types setOfTypes to the set of ignored shift types of the invoking activity.
That is, the invoking activity behaves as if shifts of type included in setOfTypes never exist.

Initially, an activity is created with an empty set of ignored shift types.

public void addIgnoredShiftType(IlcInt type)

This member function adds the type type to the set of ignored shift types of the invoking activity. That is, the
invoking activity behaves as if shifts of type type never exist.

Initially, an activity is created with an empty set of ignored shift types.

public void addStartBreakOverlapType(IlcInt type)

For each activity, a set of break types is given that defines which break types can possibly be overlapped by the
start of the activity. This member function adds type to this set of break types on the invoking activity. By default,
the set is empty.

This member function is available only outside the search. In particular, it cannot be called within a goal.

public void addStartBreakOverlapType(IlcIntSet typeSet)

For each activity, a set of break types is given that defines which break types can possibly be overlapped by the
start of the activity. This member function adds the types in typeSet to this set of break types on the invoking
activity. By default, the set is empty.

This member function is available only outside the search. In particular, it cannot be called within a goal.

public IlcBool canBeSuspendedAtEnd() const

This member function returns IlcTrue if the invoking activity can be suspended at the end of the activity.
Otherwise, it returns IlcFalse.

public IlcBool canBeSuspendedAtStart() const

This member function returns IlcTrue if the invoking activity can be suspended at the start of the activity.
Otherwise, it returns IlcFalse.

public IlcResourceConstraint consumes(IlcCapResource resource, IlcInt capacity=1)
public IlcAltResConstraint consumes(IlcAltResSet set, IlcIntVar capacity)

89

public IlcAltResConstraint consumes(IlcAltResSet set, IlcInt capacity=1)
public IlcResourceConstraint consumes(IlcCapResource resource, IlcIntVar capacity)

An activity consumes a resource if some amount of the resource capacity must be made available for the
execution of the activity and the capacity is non-recoverable after the end of the activity. For example, an activity
might consume a raw material in manufacturing a product. If the resource is discrete (class
IlcDiscreteResource, IlcReservoir, or IlcDiscreteEnergy), the activity requires the capacity at all
times after the activity's start time. The corresponding member function implies that the occupancy of the
resource by the activity is rounded inward toward the nearest valid time that corresponds to a time step.

These two expressions are equivalent: activity.consumes(reservoir, capacity); and
activity.requires(reservoir, capacity, IlcAfterStart);

If the resource is a continuous reservoir (class IlcContinuousReservoir), the consumption is continuous
and linear from the start time to the end time of the invoking activity. Since the time step of a timetable for a
continuous reservoir is 1, the returned resource constraint has no inward/outward rounding mode. Its time extent
is not defined as it does not match any case of the enumeration IlcTimeExtent.

If the invoking activity consumes a resource in set, the consumption will be discrete if the selected resource is
an instance of IlcDiscreteResource, IlcReservoir, or IlcDiscreteEnergy. It will be continuous if the
selected resource is an instance of IlcContinuousReservoir. An instance of
IloSolver::SolverErrorException is thrown if either the capacity is a strictly negative integer or if the
capacity is a constrained integer variable with a strictly negative minimal value.

public IlcConstraint covers(IlcActivityArray actAr)

This member function creates a cover constraint. This constraint states that the start time of the invoking activity
is equal to the earliest of the start times of the activities in the array given as argument, and that the end time of
the invoking activity is equal to the latest of the end times of the activities in the array given as argument. In other
words, the invoking activity exactly covers the activities in the array given as argument.

public IlcTimeBoundConstraint endsAfter(IlcInt time)
public IlcTimeBoundConstraint endsAfter(IlcIntVar time)

This member function states that the invoking activity must end after or at time. More formally,
act.endsAfter(time) means end(act) >= time.

public IlcPrecedenceConstraint endsAfterEnd(IlcActivity act, IlcInt delay=0)
public IlcPrecedenceConstraint endsAfterEnd(IlcActivity act, IlcIntVar)

This member function states that the invoking activity ends after the end of act. In addition, at least the given
delay must elapse between the end of act and the end of the invoking activity.

The member function can be invoked with a negative delay, which means that the invoking activity can end
before the end of act, but the difference between the end time of act and the end time of the invoking activity
cannot exceed -delay.

More formally, act1.endsAfterEnd(act, delay) means end(act1) >= end(act) + delay.

public IlcPrecedenceConstraint endsAfterStart(IlcActivity act, IlcInt delay=0)
public IlcPrecedenceConstraint endsAfterStart(IlcActivity act, IlcIntVar)

90

This member function states that the invoking activity ends after the beginning of act. In addition, at least the
given delay must elapse between the beginning of act and the end of the invoking activity.

The member function can be invoked with a negative delay, which means that the invoking activity can end
before the beginning of act, but the difference between the start time of act and the end time of the invoking
activity cannot exceed -delay.

More formally, act1.endsAfterStart(act, delay) means end(act1) >= start(act) + delay.

public IlcTimeBoundConstraint endsAt(IlcInt time)
public IlcTimeBoundConstraint endsAt(IlcIntVar time)

This member function states that the invoking activity must end at time. More formally, act.endsAt(time)
means end(act) == time.

public IlcPrecedenceConstraint endsAtEnd(IlcActivity act, IlcInt delay=0)
public IlcPrecedenceConstraint endsAtEnd(IlcActivity act, IlcIntVar)

This member function states that exactly the given delay must elapse between the end of act and the end of the
invoking activity. More formally, act1.endsAtEnd(act, delay) means end(act1) == end(act) +
delay.

public IlcPrecedenceConstraint endsAtStart(IlcActivity act, IlcInt delay=0)
public IlcPrecedenceConstraint endsAtStart(IlcActivity act, IlcIntVar)

This member function states that exactly the given delay must elapse between the beginning of act and the end
of the invoking activity. More formally, act1.endsAtStart(act, delay) means end(act1) ==
start(act) + delay.

public IlcTimeBoundConstraint endsBefore(IlcInt time)
public IlcTimeBoundConstraint endsBefore(IlcIntVar time)

This member function states that the invoking activity must end before or at time. More formally,
act.endsBefore(time) means end(act) <= time.

public IlcInt getDurationMax() const

This member function returns the longest possible duration of the invoking activity.

public IlcInt getDurationMaxNormalBreaks() const

This member function returns the threshold duration above which all breaks are, by default, considered as
disjunctive. The default value is IlcIntMax.

public IlcInt getDurationMin() const

This member function returns the shortest possible duration of the invoking activity.

91

public IlcInt getDurationMinNormalBreaks() const

This member function returns the threshold duration under which all breaks are considered as disjunctive. By
default, the value of this minimal duration is 1 so that only the breaks with null duration are considered as
disjunctive.

public IlcIntVar getDurationVariable() const

This member function returns the Solver variable that represents the duration of the invoking activity.

public IlcInt getEndBreakOverlapMax() const

This member function returns the maximal value of the end break overlap variable of the invoking activity.

public IlcInt getEndBreakOverlapMin() const

This member function returns the minimal value of the end break overlap variable of the invoking activity.

public IlcIntVar getEndBreakOverlapVariable() const

This member function returns the end break overlap variable of the invoking activity.

public IlcInt getEndMax() const

This member function returns the latest possible end time of the invoking activity.

public IlcInt getEndMin() const

This member function returns the earliest possible end time of the invoking activity.

public IlcIntVar getEndVariable() const

This member function returns the Solver variable that represents the end time of the invoking activity.

public IlcInt getExecutionDurationMin() const

A breakable activity executes during a set of disjoint temporal intervals. These execution intervals are separated
by intervals that correspond to the breaks that suspend the activity.

This member function returns the minimal duration for the execution intervals of the invoking activity.

The default minimal duration is 1. It can be redefined by calling the member function
IlcActivity::setExecutionDurationMin.

92

public IlcIntVar getExternalVar() const

This member function returns the external variable of the invoking activity. Note that by default, the external
variable of an activity is a variable with a domain [IlcIntMin, IlcIntMax].

public IlcInt getExternalVarMax() const

This member function returns the maximal value of the external variable of the invoking activity.

public IlcInt getExternalVarMin() const

This member function returns the minimal value of the external variable of the invoking activity.

public IlcActivityI * getImpl() const

This constructor creates an object by copying another one. This constructor creates an object by copying another
one. This member function returns a pointer to the implementation object of the invoking handle.

public const char * getName() const

This member function returns the name of the invoking object.

public IlcAny getObject() const

This member function returns a pointer to the external object associated with the invoking object, if there is such
an association. It returns 0 (zero) otherwise.

public IlcInt getProcessingTimeMax() const

This member function returns the longest possible processing time for the invoking activity.

public IlcInt getProcessingTimeMin() const

This member function returns the shortest possible processing time for the invoking activity.

public IlcIntVar getProcessingTimeVariable() const

This member function returns the Solver variable that represents the processing time for the invoking activity.

public IlcSchedule getSchedule() const

This member function returns the schedule to which the invoking activity belongs. Each activity belongs to a
unique schedule, an instance of IlcSchedule.

public IloSolver getSolver() const

93

This member function returns an instance of IloSolver associated with the invoking object.

public IloSolverI * getSolverI() const

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

public IlcInt getStartBreakOverlapMax() const

This member function returns the maximal value of the start break overlap variable of the invoking activity.

public IlcInt getStartBreakOverlapMin() const

This member function returns the minimal value of the start break overlap variable of the invoking activity.

public IlcIntVar getStartBreakOverlapVariable() const

This member function returns the start break overlap variable of the invoking activity.

public IlcInt getStartMax() const

This member function returns the latest possible start time of the invoking activity.

public IlcInt getStartMin() const

This member function returns the earliest possible start time of the invoking activity.

public IlcIntVar getStartVariable() const

This member function returns the Solver variable that represents the start time of the invoking activity.

public IlcInt getTransitionType() const

The transition type of an activity is an integer intended to define transition time and cost from an indexed
classification of activities. It is used by transition tables (instances of the class IlcTransitionTable).

This member function returns the transition type of the invoking activity. By default, the transition type is set to
zero.

public IlcBool hasEndBreakOverlapVariable() const

This member function returns IlcTrue if the invoking activity has an end break overlap variable. Otherwise, it
returns IlcFalse.

94

An end break overlap variable is created on an activity as soon as one of the following member functions has
been called: IlcActivity::addEndBreakOverlapType,
IlcActivity::setEndBreakOverlapVariable, IlcActivity::setEndBreakOverlapMax,
IlcActivity::setEndBreakOverlapMin, or IlcActivity::setEndBreakOverlap.

public IlcBool hasStartBreakOverlapVariable() const

This member function returns IlcTrue if the invoking activity has a start break overlap variable. Otherwise, it
returns IlcFalse.

A start break overlap variable is created on an activity as soon as one of the following member functions has
been called: IlcActivity::addStartBreakOverlapType,
IlcActivity::setStartBreakOverlapVariable, IlcActivity::setStartBreakOverlapMax,
IlcActivity::setStartBreakOverlapMin, or IlcActivity::setStartBreakOverlap.

public IlcBool isBreakable() const

This member function returns IlcTrue if the invoking activity is a breakable activity.Otherwise, it returns
IlcFalse.

public IlcBool isDirectlySucceededBy(IlcActivity) const

This member function returns IlcTrue if the invoking activity is directly succeeded by the activity act.
Otherwise, it returns IlcFalse.

This member function should be used only in search and only when a precedence graph constraint has been
created on the schedule.

public IlcBool isDisjunctiveBreakType(IlcInt type) const

This member function returns IlcTrue if type is a disjunctive break type of the invoking activity.

public IlcBool isExternalVarBound() const

This member function returns IlcTrue if and only if the external variable of the invoking activity is bound.

public IlcBool isIgnoredBreakType(IlcInt type) const

This member function returns IloTrue if the type type belongs to the set of ignored break types of the invoking
activity. Otherwise, it returns IloFalse.

public IlcBool isIgnoredShiftType(IlcInt type) const

This member function returns IloTrue if the type type belongs to the set of ignored shift types of the invoking
activity. Otherwise, it returns IloFalse.

public IlcBool isPostponed() const

95

This member function returns IlcTrue if the earliest start time of the invoking activity is equal to the earliest start
time at the moment of the most recent call to the member function postpone. Otherwise, it returns IlcFalse.

public IlcBool isPostponedBackward() const

This member function returns IlcTrue if the latest end time of the invoking activity is equal to the latest end time
at the moment of the most recent call to the member function IlcActivity::postponeBackward. Otherwise,
it returns IlcFalse.

public IlcBool isRanked() const

This member function returns IlcTrue if all the other activities of the schedule are constrained to execute either
before or after the invoking activity. Otherwise, it returns IlcFalse.

This member function should be used only in search and only when a precedence graph constraint has been
created on the schedule.

public IlcBool isSucceededBy(IlcActivity) const

Before entering the search, this function returns IlcTrue if and only if a successor relation has been added with
the member function IlcActivity::setSuccessor.

In search, this member function returns IlcTrue if the invoking activity is succeeded by the activity act.
Otherwise, it returns IlcFalse.

This member function should be used only when a precedence graph constraint has been created on the
schedule.

public IlcBool operator!=(const IlcActivity & activity) const

This operator returns IlcTrue if and only if activity does not refer to the same implementation object as the
invoking activity.

public void operator=(const IlcActivity & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public IlcBool operator==(const IlcActivity & activity) const

This operator returns IlcTrue if and only if activity refers to the same implementation object as the invoking
activity.

public void postpone()

This function insures that the invoking activity is treated as a postponed activity until the earliest start time
changes.

96

public void postponeBackward()

This function insures that the invoking activity is treated as a backward postponed activity until the latest end time
changes.

public IlcResourceConstraint produces(IlcReservoir resource, IlcInt capacity=1)
public IlcAltResConstraint produces(IlcAltResSet set, IlcIntVar capacity)
public IlcAltResConstraint produces(IlcAltResSet set, IlcInt capacity=1)
public IlcResourceConstraint produces(IlcContinuousReservoir resource, IlcIntVar
capacity)
public IlcResourceConstraint produces(IlcContinuousReservoir resource, IlcInt
capacity=1)
public IlcResourceConstraint produces(IlcReservoir resource, IlcIntVar capacity)

An activity produces if some amount of the reservoir capacity is made available through the execution of the
activity. This member function states that the invoking activity produces the given capacity of the given
reservoir.

If the reservoir is discrete (class IlcReservoir), this member function implies that the occupancy of the
reservoir by the activity is rounded inward toward the nearest valid time that corresponds to a time step.

These two expressions are equivalent:

 activity.produces(reservoir, capacity);
 activity.provides(reservoir, capacity, IlcAfterEnd);

If the reservoir is continuous (class IlcContinuousReservoir), the production process is continuous and
linear from the start time to the end time of the invoking activity. Since the time step of a timetable for a
continuous reservoir is 1, the returned resource constraint has no inward/outward rounding mode. Its time extent
is not defined, since it does not match any case of the enumeration IlcTimeExtent.

If the invoking activity produces for a reservoir in set, the production will be discrete if the selected reservoir is
an instance of IlcReservoir. It will be continuous if the selected reservoir is an instance of
IlcContinuousReservoir).

An instance of IloSolver::SolverErrorException is thrown if either of the following conditions occurs:

if capacity is a strictly negative integer, or•
if capacity is a constrained integer variable with a strictly negative minimal value.•

public IlcResourceConstraint provides(IlcReservoir resource, IlcInt capacity=1,
IlcTimeExtent extent=IlcFromStartToEnd, IlcBool outward=IlcFalse)
public IlcAltResConstraint provides(IlcAltResSet set, IlcIntVar capacity,
IlcTimeExtent extent=IlcFromStartToEnd, IlcBool outward=IlcFalse)
public IlcAltResConstraint provides(IlcAltResSet set, IlcInt capacity=1,
IlcTimeExtent extent=IlcFromStartToEnd, IlcBool outward=IlcFalse)
public IlcResourceConstraint provides(IlcReservoir resource, IlcIntVar capacity,
IlcTimeExtent extent=IlcFromStartToEnd, IlcBool outward=IlcFalse)

This member function states that the invoking activity provides the given capacity of the given reservoir. By
default, the activity provides the reservoir from the beginning to the end of its execution. However, the optional
argument extent is available to represent cases in which the activity provides the reservoir over a different time
extent, as explained in IlcTimeExtent.

The argument outward is important only when one of the timetables of the reservoir has a time step greater
than 1 (one). In that case, outward defines whether the occupancy of the reservoir by the activity should be

97

rounded outward or inward towards the nearest valid time that corresponds to a step (apply on discrete or unary
resources and reservoirs).

An instance of IloSolver::SolverErrorException is thrown if any of the following conditions occurs.

if capacity is a strictly negative integer•
if capacity is a constrained integer variable with a strictly negative minimal value•

The set of alternative resources can contain a continuous reservoir if extent is IlcNever, IlcAlways,
IlcAfterStart or IlcAfterEnd. If the time extent is IlcNever, the activity does not provide any capacity. If
the time extent is IlcAlways, the capacity is provided at any time. If the time extent is IlcAfterStart or
IlcAfterEnd, the capacity is not provided before the start of the activity, is totally provided after its end and
linearly provided between its start and its end. For any other time extent, an instance of
IloSolver::SolverErrorException is thrown.

public void removeDisjunctiveBreakType(IlcIntSet setOfTypes)

This member function removes the set of types setOfTypes from the set of disjunctive break types of the
invoking activity. If a break type belongs to the set of disjunctive break types of a breakable activity, the activity
must be completely processed either before or after that type of break.

This member function is available only outside the search. In particular, it cannot be called from within a goal.

public void removeDisjunctiveBreakType(IlcInt type)

This member function removes the type type from the set of disjunctive break types of the invoking activity. If a
break type belongs to the set of disjunctive break types of a breakable activity, the activity must be completely
processed either before or after that type of break.

This member function is available only outside the search. In particular, it cannot be called from within a goal.

public void removeEndBreakOverlapType(IlcInt type)

For each activity, a set of break types is given that defines which break types can possibly be overlapped by the
end of the activity. This member function removes type from this set of break types on the invoking activity.

This member function is available only outside the search. In particular, it cannot be called from within a goal.

public void removeEndBreakOverlapType(IlcIntSet typeSet)

For each activity, a set of break types is given that defines which break types can possibly be overlapped by the
end of the activity. This member function removes all the types of typeSet from this set of break types on the
invoking activity.

This member function is available only outside the search. In particular, it cannot be called from within a goal.

public void removeIgnoredBreakType(IlcIntSet setOfTypes)

This member function removes the set of types setOfTypes from the set of ignored break types of the invoking
activity.

98

public void removeIgnoredBreakType(IlcInt type)

This member function removes the type type from the set of ignored break types of the invoking activity.

public void removeIgnoredShiftType(IlcIntSet setOfTypes)

This member function removes the set of types setOfTypes from the set of ignored shift types of the invoking
activity.

public void removeIgnoredShiftType(IlcInt type)

This member function removes the type type from the set of ignored shift types of the invoking activity.

public void removeStartBreakOverlapType(IlcInt type)

For each activity, a set of break types is given that defines which break types can possibly be overlapped by the
start of the activity. This member function removes type from this set of break types on the invoking activity.

This member function is available only outside the search. In particular, it cannot be called from within a goal.

public void removeStartBreakOverlapType(IlcIntSet typeSet)

For each activity, a set of break types is given that defines which break types can possibly be overlapped by the
start of the activity. This member function removes all the types of typeSet from this set of break types on the
invoking activity.

This member function is available only outside the search. In particular, it cannot be called from within a goal.

public IlcResourceConstraint requires(IlcStateResource resource, IlcAny state,
IlcTimeExtent extent=IlcFromStartToEnd, IlcBool outward=IlcTrue)
public IlcResourceConstraint requires(IlcStateResource resource, IlcAnySetVar
states, IlcTimeExtent extent=IlcFromStartToEnd, IlcBool outward=IlcTrue)
public IlcResourceConstraint requires(IlcStateResource resource, IlcAnySet states,
IlcTimeExtent extent=IlcFromStartToEnd, IlcBool outward=IlcTrue)
public IlcResourceConstraint requires(IlcStateResource resource, IlcAnyVar state,
IlcTimeExtent extent=IlcFromStartToEnd, IlcBool outward=IlcTrue)

This member function states that the invoking activity requires the given resource in the given state or states. By
default, the activity requires resource from the beginning to the end of its execution. However, the optional
argument extent is available to represent cases in which the activity requires the resource over a different time
extent, as explained in IlcTimeExtent.

The argument outward is important only when one of the timetables of resource has a time step greater than 1
(one). In that case, outward defines whether the occupancy of the resource by the activity should be rounded
outward or inward towards the nearest valid time that corresponds to a step.

public IlcResourceConstraint requires(IlcCapResource resource, IlcInt capacity=1,
IlcTimeExtent extent=IlcFromStartToEnd, IlcBool outward=IlcTrue)
public IlcAltResConstraint requires(IlcAltResSet set, IlcIntVar capacity,

99

IlcTimeExtent extent=IlcFromStartToEnd, IlcBool outward=IlcTrue)
public IlcAltResConstraint requires(IlcAltResSet set, IlcInt capacity=1,
IlcTimeExtent extent=IlcFromStartToEnd, IlcBool outward=IlcTrue)
public IlcResourceConstraint requires(IlcCapResource resource, IlcIntVar capacity,
IlcTimeExtent extent=IlcFromStartToEnd, IlcBool outward=IlcTrue)

This member function states that the invoking activity requires the given capacity of the given resource. For
example, an activity might require the presence of a worker on a shift. By default, the activity requires the
resource from the beginning to the end of its execution. However, the optional argument extent is available to
represent cases in which the activity requires the resource over a different time extent, as explained in
IlcTimeExtent.

The argument outward is important only when one of the timetables of resource has a time step greater than 1
(one). In that case, outward defines whether the occupancy of the resource by the activity should be rounded
outward or inward towards the nearest valid time that corresponds to a step.

When the given resource is an instance of IlcDiscreteEnergy, it means that the given capacity is required for
each unit of time in the given time extent.

An instance of IloSolver::SolverErrorException is thrown when any of the following conditions occurs:

if capacity is a strictly negative integer1.
if capacity is a constrained integer variable with a strictly negative minimal value2.

The member function must not be called if resource is a continuous reservoir. However, the set of alternative
resources can contain a continuous reservoir if the IlcTimeExtent extent is IlcNever, IlcAlways,
IlcAfterStart or IlcAfterEnd. If the time extent is IlcNever, the activity does not require any capacity. If
the time extent is IlcAlways, the capacity is required at any time. If the time extent is IlcAfterStart or
IlcAfterEnd, the capacity is not required before the start of the activity, is totally required after its end and
linearly required between its start and its end. For any other time extent, an instance of
IloSolver::SolverErrorException is thrown.

Example

In the following example, activity requires 2 units of the discrete resource resource. As 0 is considered a
possible duration for the activity, nothing occurs when the maximal capacity of the resource is set to 1 over the
interval [0 10). When the earliest end time of the activity becomes 5, Scheduler Engine automatically deduces (by
constraint propagation) that the activity cannot start before 5. Indeed, if the activity starts before 5 (say, at t with t
< 5), then the activity requires the resource at least from t to 5. However, this situation is impossible since the
resource is not available in sufficient quantity. Hence, the activity cannot start before 5. Similarly, when the
minimal duration of the activity is set to 1, the earliest start time of the activity automatically becomes 10.

 /// Must be during search (e.g., inside a goal) ///
 IloSolver solver = getSolver();
 IlcScheduler schedule(solver, 0, 24);
 IlcDiscreteResource resource(schedule, 3);
 IlcIntVar processingTime(solver,0, 24);
 IlcActivity activity(schedule, processingTime);
 solver.add(activity.requires(resource, 2));
 solver.out() << activity << endl;
 resource.setCapacityMax(0, 10, 1);
 solver.out() << activity << endl;
 activity.setEndMin(5);
 solver.out() << activity << endl;
 activity.setProcessingTimeMin(1);
 solver.out() << activity << endl;

The output of that program looks like the following.

 [0..24 -- 0..24 --> 0..24]
 [0..24 -- 0..24 --> 0..24]
 [5..24 -- 0..19 --> 5..24]
 [10..23 -- 1..14 --> 11..24]

100

public IlcResourceConstraint requiresNot(IlcStateResource resource, IlcAny state,
IlcTimeExtent extent=IlcFromStartToEnd, IlcBool outward=IlcTrue)
public IlcResourceConstraint requiresNot(IlcStateResource resource, IlcAnySetVar
states, IlcTimeExtent extent=IlcFromStartToEnd, IlcBool outward=IlcTrue)
public IlcResourceConstraint requiresNot(IlcStateResource resource, IlcAnySet
states, IlcTimeExtent extent=IlcFromStartToEnd, IlcBool outward=IlcTrue)
public IlcResourceConstraint requiresNot(IlcStateResource resource, IlcAnyVar
state, IlcTimeExtent extent=IlcFromStartToEnd, IlcBool outward=IlcTrue)

This member function states that the invoking activity requires the given resource in any state that does not
belong to the given state or set of states. The state or states may change during execution, but must never
belong to the given state or set of states. By default, the activity requires the resource from the beginning to
the end of its execution. However, the optional argument extent is available to represent cases in which the
activity requires the resource over a different time extent, as explained in IlcTimeExtent.

The argument outward is important only when one of the timetables of resource has a time step greater than
1 (one). In that case, outward defines whether the occupancy of the resource by the activity should be
rounded outward or inward towards the nearest valid time that corresponds to a step.

public void setDuration(IlcInt duration)

This member function sets the duration of the invoking activity to duration.

Detecting Inconsistencies

When changing the domain of a start time variable, an end time variable, a duration variable, or a processing
time variable, Scheduler Engine will detect an inconsistency if a changed domain directly conflicts with temporal
constraints and with the resource constraints of activities with fixed (instantiated) start and end times and
processing time.

Scheduler Engine may or may not detect the inconsistency if the changed domain conflicts with the temporal and
resource constraints associated with unscheduled activities, that is, activities for which the start and end times
and/or the processing time are not instantiated yet.

public void setDurationMax(IlcInt durationMax)

This member function states that the duration of the invoking activity can be at most durationMax. An
inconsistency may be detected as documented in IlcActivity::setDuration.

public void setDurationMaxNormalBreaks(IlcInt duration)

This member function states that the invoking activity must be completely processed either before or after any
break whose duration is strictly greater than duration.

Increasing this maximal duration has no effect in search.

public void setDurationMin(IlcInt durationMin)

This member function states that the duration of the invoking activity must be at least durationMin. An
inconsistency may be detected as documented in IlcActivity::setDuration.

101

public void setDurationMinNormalBreaks(IlcInt duration)

This member function states that the invoking activity must be completely processed either before or after any
break whose duration is strictly lower than duration.

By default, the value of this minimal duration for a breakable activity is 1 so that only the breaks with null duration
are considered as disjunctive.

Decreasing this minimal duration has no effect in search.

public void setEndBreakOverlap(IlcInt overlap)

This member function sets overlap as the value of the end break overlap variable.

public void setEndBreakOverlapMax(IlcInt overlapMax)

This member function sets overlapMax as the new maximal value of the end break overlap variable.

public void setEndBreakOverlapMin(IlcInt overlapMin)

This member function sets overlapMin as the new minimal value of the end break overlap variable.

public void setEndBreakOverlapVariable(IlcIntVar overlapVariable)

This member function sets overlapVariable as the end break overlap variable of the invoking activity.

For an activity that finishes in a possibly overlapped break:

if the activity starts before this break, the value of the end break overlap variable is defined as the
duration between the start of the break and the completion time of the activity;

•

if the activity starts in this break (that is, the activity is processed completely inside the break), the only
constraint is that the sum of the start break overlap variable and the end break overlap variable be equal
to the processing time of the activity.

•

The value is defined as 0 for an activity that does not finish in a possibly overlapped break. By default, the end
break overlap variable of an activity with no possibly overlapped break is considered to be bound to 0.

This member function is available only outside the search. In particular, it cannot be called from within a goal.

public void setEndMax(IlcInt endMax)

This member function states that the invoking activity must not end after endMax. An inconsistency may be
detected as documented in IlcActivity::setDuration.

public void setEndMin(IlcInt endMin)

This member function states that the invoking activity must not end before endMin. An inconsistency may be
detected as documented in IlcActivity::setDuration.

102

public void setEndTime(IlcInt endTime)

This member function sets the end time of the invoking activity to endTime. An inconsistency may be detected
as documented in IlcActivity::setDuration.

public void setExecutionDurationMin(IlcInt)

A breakable activity executes during a set of disjoint temporal intervals. These execution intervals are separated
by intervals that correspond to the breaks that suspend the activity.

This member function states that the duration of the temporal intervals during which the invoking breakable
activity executes must all be greater or equal to the value provided. Note that this value must be a strictly positive
integer. By default, breakable activities are created with a minimal duration for execution intervals of 1.

In search, trying to decrease the current minimal duration for execution intervals has no effect.

public void setExternalValue(IlcInt)

This member function sets the value of the external variable of the invoking activity.

public void setExternalVar(IlcIntVar)

This member function sets the external variable of the invoking activity. Before entering the search, this member
function will override any previous specification of external variable. This function may be called only one time
during the search if no external variable has been specified. Any attempt to call this member function during the
search in a situation where some external variable has already been specified on the activity will raise an error.

public void setExternalVarMax(IlcInt)

This member function sets the maximal value of the external variable of the invoking activity.

public void setExternalVarMin(IlcInt)

This member function sets the minimal value of the external variable of the invoking activity.

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

public void setObject(IlcAny object) const

This member function establishes a link between the invoking object and an external object of which the invoking
object might be a data member.

public void setProcessingTime(IlcInt processingTime)

103

This member function assigns processingTime as the processing time for the invoking activity. An
inconsistency may be detected as documented in IlcActivity::setDuration.

public void setProcessingTimeMax(IlcInt processingTimeMax)

This member function states that the processing time of the invoking activity can be at most
processingTimeMax. An inconsistency may be detected as documented in IlcActivity::setDuration.

public void setProcessingTimeMin(IlcInt processingTimeMin)

This member function states that the processing time of the invoking activity must be at least
processingTimeMin. An inconsistency may be detected as documented in IlcActivity::setDuration.

public void setStartBreakOverlap(IlcInt overlap)

This member function sets overlap as the value of the start break overlap variable.

public void setStartBreakOverlapMax(IlcInt overlapMax)

This member function sets overlapMax as the new maximal value of the start break overlap variable.

public void setStartBreakOverlapMin(IlcInt overlapMin)

This member function sets overlapMin as the new minimal value of the start break overlap variable.

public void setStartBreakOverlapVariable(IlcIntVar overlapVariable)

This member function sets overlapVar as the start break overlap variable of the invoking activity.

For an activity that starts in a possibly overlapped break:

if the activity finishes after this break, the value of the start break overlap variable is defined as the
duration between the start of the activity and the end time of the break;

•

if the activity finishes in this break (that is, the activity is completely processed inside the break), the only
constraint is that the sum of the start break overlap variable and the end break overlap variable be equal
to the processing time of the activity.

•

The value is defined as 0 for an activity that does not start in a possibly overlapped break. By default, the start
break overlap variable of an activity with no possibly overlapped break is considered to be bound to 0.

This member function is available only outside the search. In particular, it cannot be called from within a goal.

public void setStartMax(IlcInt startMax)

This member function states that the invoking activity must not start after startMax. An inconsistency may be
detected as documented in IlcActivity::setDuration.

104

public void setStartMin(IlcInt startMin)

This member function states that the invoking activity must not start before startMin. An inconsistency may be
detected as documented in IlcActivity::setDuration.

public void setStartTime(IlcInt startTime)

This member function sets the start time of the invoking activity to startTime. An inconsistency may be
detected as documented by in IlcActivity::setDuration.

public void setSuccessor(IlcActivity ct)

This member function states that the invoking activity has the activity ct as successor on the precedence graph
of the schedule. That is, this member function adds an edge on the precedence graph.

This member function should be used only when a precedence graph constraint has been created on the
schedule.

public void setTransitionType(IlcInt value)

The transition type of an activity is an integer intended to define transition time and cost from an indexed
classification of activities. It is used by transition tables (instances of the class IlcTransitionTable).

This member function sets the transition type of the invoking activity to value.

public IlcTimeBoundConstraint startsAfter(IlcInt time)
public IlcTimeBoundConstraint startsAfter(IlcIntVar time)

This member function states that the invoking activity must start after or at time. More formally,
act.startsAfter(time) means start(act) >= time.

public IlcPrecedenceConstraint startsAfterEnd(IlcActivity act, IlcInt delay=0)
public IlcPrecedenceConstraint startsAfterEnd(IlcActivity act, IlcIntVar)

This member function states that the invoking activity starts after the end of act. (In other words, act precedes
the invoking activity.) In addition, at least the given delay must elapse between the end of act and the
beginning of the invoking activity.

The member function can be invoked with a negative delay, which means that the invoking activity can start
before the end of act, but the difference between the end time of act and the start time of the invoking activity
cannot exceed -delay.

More formally, act1.startsAfterEnd(act, delay) means start(act1) >= end(act) + delay.

public IlcPrecedenceConstraint startsAfterStart(IlcActivity act, IlcInt delay=0)
public IlcPrecedenceConstraint startsAfterStart(IlcActivity act, IlcIntVar)

105

This member function states that the invoking activity starts after the beginning of act. In addition, at least the
given delay must elapse between the beginning of act and the beginning of the invoking activity.

The member function can be invoked with a negative delay, which means that the invoking activity can start
before the beginning of act, but the difference between the start time of act and the start time of the invoking
activity cannot exceed -delay.

More formally, act1.startsAfterStart(act, delay) means start(act1) >= start(act) + delay.

public IlcTimeBoundConstraint startsAt(IlcInt time)
public IlcTimeBoundConstraint startsAt(IlcIntVar time)

This member function states that the invoking activity must start at time. More formally, act.startsAt(time)
means start(act) == time.

public IlcPrecedenceConstraint startsAtEnd(IlcActivity act, IlcInt delay=0)
public IlcPrecedenceConstraint startsAtEnd(IlcActivity act, IlcIntVar)

This member function states that exactly the given delay must elapse between the end of act and the beginning
of the invoking activity.

More formally, act1.startsAtEnd(act, delay) means start(act1) == end(act) + delay.

public IlcPrecedenceConstraint startsAtStart(IlcActivity act, IlcInt delay=0)
public IlcPrecedenceConstraint startsAtStart(IlcActivity act, IlcIntVar)

This member function states that exactly the given delay must elapse between the beginning of act and the
beginning of the invoking activity.

More formally, act1.startsAtStart(act, delay) means start(act1) == start(act) + delay.

public IlcTimeBoundConstraint startsBefore(IlcInt time)
public IlcTimeBoundConstraint startsBefore(IlcIntVar time)

This member function states that the invoking activity must start before or at time. More formally,
act.startsBefore(time) means start(act) <= time.

public void unsetSuccessor(IlcActivity ct)

This member function removes a successor relation that had previously been added on the graph with
IlcActivity::setSuccessor.

This member function should be used only before entering the search and only when a precedence graph
constraint has been created on the schedule.

public IlcBool useEfficiency() const

This member function returns IloTrue if the processing time of the invoking activity is computed using the
efficiency function of resource calendars. Otherwise, it returns IloFalse.

106

107

Class IlcActivityDeltaIterator
Definition file: ilsched/schedule.h
Include file: <ilsched/ilsched.h>

An instance of this class traverses a delta set of activities, for example, the new direct predecessors of a given
activity. This iterator is only available during the search.

See Also: IlcActivity, IlcActivityIteratorFilter, IlcSchedule

Constructor and Destructor Summary

public IlcActivityDeltaIterator(IlcActivity act, IlcActivityIteratorFilter filter)

Method Summary

public IlcBool ok() const

public IlcActivity operator*() const

public IlcActivityDeltaIterator & operator++()

Constructors and Destructors

public IlcActivityDeltaIterator(IlcActivity act, IlcActivityIteratorFilter filter)

This constructor creates a delta iterator to traverse the elements of the subset of activities specified by filter
whose status has changed with respect to act.

The possible filters are IlcDirectPredecessors, IlcDirectSuccessors, IlcPredecessors, and
IlcSuccessors.

The possible statuses of an activity with respect to act are: unranked, direct predecessor, direct successor,
indirect predecessor, indirect successor.

Thus, with the filters IlcDirectSuccessors or IlcDirectPredecessors, the delta iterator traverses the set
of new direct successors or new direct predecessors of act.

With the filters IlcSuccessors or IlcPredecessors, the delta iterator traverses the union of the set of new
direct successors and the set of new indirect successors of act or the union of the set of new direct
predecessors and the set of new indirect predecessors of act. Note that this delta set is a superset of the set of
new successors or new predecessors of act.

The delta sets of activities are emptied once all the demons attached to the precedence graph events of an
activity have been executed. Thus, any attempt to traverse a delta set of activities outside the execution of such a
demon may lead to unexpected behavior.

This constructor can be used only if a schedule precedence graph is associated with the schedule of activity act.
If the schedule is not associated with a precedence graph, this constructor raises an error.

Methods

public IlcBool ok() const

108

This member function returns IlcTrue if the current position of the iterator is a valid one. It returns IlcFalse if
all the activities have been scanned by the iterator.

public IlcActivity operator*() const

This operator returns the current instance of IlcActivity, the one to which the invoking iterator points. If the
iterator is set past the end position, then this operator returns an empty handle.

public IlcActivityDeltaIterator & operator++()

This left-increment operator shifts the current position of the iterator to the next delta instance of IlcActivity.

109

Class IlcActivityIterator
Definition file: ilsched/schedule.h
Include file: <ilsched/ilsched.h>

An instance of this class traverses the set of activities.

For more information, see Precedence Graph Constraints.

See Also: IlcActivity, IlcActivityIteratorFilter, IlcSchedule

Constructor and Destructor Summary

public IlcActivityIterator(const IlcSchedule schedule)

public IlcActivityIterator(IlcActivity, IlcActivityIteratorFilter filter)

Method Summary

public IlcBool ok() const

public IlcActivity operator*() const

public IlcActivityIterator & operator++()

Constructors and Destructors

public IlcActivityIterator(const IlcSchedule schedule)

This constructor creates an iterator to traverse all the activities of schedule during the search. If used before
entering the search, this iterator will traverse an empty list of activities.

public IlcActivityIterator(IlcActivity, IlcActivityIteratorFilter filter)

When a schedule precedence graph is associated with the schedule of an activity, this constructor creates an
iterator to traverse the subset of activities specified by the filter filter. If the schedule is not associated with a
precedence graph, this constructor raises an error.

Before entering the search, only the filter IlcSuccessors is permitted. It allows the definition of an iterator that
traverses the subset of activities act0 for which the successor relation (act,act0) has been added with the
member function act.setSuccessor(act0). Any attempt to use another filter before entering the search will
raise an error. In search, all the filters are allowed.

For example, the following loop, during the search, displays the set of activities that are direct successors of a
given activity act in the precedence graph of the schedule:

 for (IlcActivityIterator ite(act, IlcDirectSuccessors);
 ite.ok();
 ++ite) {
 solver.out() << *ite << endl;
 }

110

Methods

public IlcBool ok() const

This member function returns IlcTrue if the current position of the iterator is a valid one. It returns IlcFalse if
all the activities have been scanned by the iterator.

public IlcActivity operator*() const

This operator returns the current instance of IlcActivity, the one to which the invoking iterator points. If the
iterator is set past the end position, then this operator returns an empty handle.

public IlcActivityIterator & operator++()

This left-increment operator shifts the current position of the iterator to the next instance of IlcActivity.

111

Class IlcAltRCDemon
Definition file: ilsched/altresh.h
Include file: <ilsched/ilsched.h>

An instance of IlcAltRCDemon represents a demon that is associated with all the possible resources on an
alternative resource constraint. To attach the demon on the instance of IlcAltResConstraint, use the
member function IlcAltResConstraint::whenRange. The demon is trigerred each time a change in the
ranges of a possible alternative happens: that is, a change in the start, end, duration, processing time, or the
capacity range. An instance of this class can be created with the macro ILCALTRCDEMON.

See Also: ILCALTRCDEMON, IlcAltResConstraint

Constructor Summary

public IlcAltRCDemon()

public IlcAltRCDemon(IlcAltRCDemonI * impl)

Method Summary

public IlcAltRCDemonI * getImpl() const

public void operator=(const IlcAltRCDemon & h)

Constructors

public IlcAltRCDemon()

This constructor creates an instance which is empty, that is, one whose handle pointer is null. You must assign it
a value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IlcAltRCDemon(IlcAltRCDemonI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

Methods

public IlcAltRCDemonI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public void operator=(const IlcAltRCDemon & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument. After execution of this operator, the invoking object and the
provided argument point to the same implementation object.

112

Class IlcAltResConstraint
Definition file: ilsched/altresh.h
Include file: <ilsched/ilsched.h>

An instance of the class IlcAltResConstraint expresses the fact that an activity uses exactly one resource
from a set of alternatives that make up an instance of IlcAltResSet.

Instances of the class IlcAltResConstraint are created by member functions of the class IlcActivity:

IlcActivity::consumes•
IlcActivity::produces•
IlcActivity::provides•
IlcActivity::requires•

An Exclusive Constructive Disjunctive Constraint

We call an instance of IlcAltResConstraint a disjunctive constraint because it defines a boolean disjunction
so that only one alternative among a set of alternative resources is used to execute the activity.

We say that it is a constructive disjunction because the Scheduler Engine makes deductions on the basis of the
constraint as it goes along to propagate further and more efficiently than modeling with the logical or Solver
metaconstraints. Scheduler Engine maintains the temporal and demand bounds of the activity for each possible
resource.

We also say that an instance of IlcAltResConstraint is exclusive because one and only one resource
among the alternatives will be used by an activity.

Index Variable

A Solver variable indexing the resources of the set of alternative resources is provided. It is intended to add
constraints between the selected resource. Let N be the number of resources in the set, an instance of class
IlcAltResSet. The index variable is created with a domain <0, N>.

The values in <0, N-1> index the resources. The value N is an escape value in the case of no resource selection.
This last value is used in the metaconstraint protocol to express the fact that the instance of
IlcAltResConstraint is false. When the alternative resource constraint is posted (and therefore must be
true), this escape value is automatically removed from the domain of the index variable.

Selection and Solution Search

An alternative resource constraint behaves very much like an ordinary resource constraint as far as an activity is
concerned. The alternative resource constraint manages the set of possible resources for the activity, treating
them so that they behave as one resource from the point of view of the activity. The domains of the start, end,
and duration variables of the activity contain any value that is allowed for at least one of the possible resources of
the activity.

When one resource is selected, the associated resource constraint is added. Once a resource has been
selected, the other resources are no longer possible. If, for some of them, resource constraints had already been
created, the capacity of these resource constraints is reduced to zero.

To make the search for a solution efficient, it is a good idea to select a resource for an activity for which a set of
alternative resources is defined when you schedule it.

Metaconstraint Protocol

IlcAltResConstraint is fully compatible with the metaconstraint protocol of Solver. Stating that an instance
of IlcAltResConstraint is false is conventionally the same as stating that the set of resources is not used by

113

the activity.

Resource Constraints

The resource constraint of a possible resource is automatically created:

when the resource is closed so that the minimal capacity of any timetable of the resource will be
propagated;

•

when the resource is an instance of the class IlcUnaryResource for which a light precedence graph
constraint has been added to the solver so that its ranking properties will be respected and the transition
time taken into account.

•

When the calendar constraint is posted on the resource.•

If need be, you can create the resource constraint of a possible resource. To do so, you use the member function
IlcAltResConstraint::getResourceConstraint.

For more information, see Metaconstraints.

See Also: IlcActivity, IlcAltResConstraintIterator, IlcAltResSet, IlcAssign, IlcAssignAlternative,
IlcPossibleAltResIterator, IlcResource, IlcTimeExtent

Constructor Summary

public IlcAltResConstraint()

public IlcAltResConstraint(IlcAltResConstraintI * impl)

Method Summary

public IlcActivity getActivity() const

public IlcAltResSet getAltResSet() const

public IlcInt getCapacity() const

public IlcInt getCapacityMax(const IlcResource resource) const

public IlcInt getCapacityMin(const IlcResource resource) const

public IlcIntVar getCapacityVariable() const

public IlcInt getDurationMax(const IlcResource resource) const

public IlcInt getDurationMin(const IlcResource resource) const

public IlcInt getEndMax(const IlcResource resource) const

public IlcInt getEndMin(const IlcResource resource) const

public IlcAltResConstraintI * getImpl() const

public IlcIntVar getIndexVariable() const

public IlcInt getNumberOfPossible() const

public IlcInt getProcessingTimeMax(const IlcResource resource)
const

public IlcInt getProcessingTimeMin(const IlcResource resource)
const

public IlcResourceConstraint getResourceConstraint(const IlcResource resource)
const

public IlcCapResource getSelected() const

public IlcInt getStartMax(const IlcResource resource) const

public IlcInt getStartMin(const IlcResource resource) const

public IlcTimeExtent getTimeExtent() const

114

public IlcBool isInwardConstraint() const

public IlcBool isPossible(const IlcResource resource) const

public IlcBool isProvidingConstraint() const

public IlcBool isResourceSelected() const

public IlcBool isSelected(const IlcResource resource) const

public IlcBool isVariableResourceConstraint() const

public void operator=(const IlcAltResConstraint & h)

public void setCapacityMax(IlcResource resource, IlcInt max)

public void setCapacityMin(IlcResource resource, IlcInt min)

public void setDurationMax(IlcResource resource, IlcInt max)

public void setDurationMin(IlcResource resource, IlcInt min)

public void setEndMax(IlcResource resource, IlcInt max)

public void setEndMin(IlcResource resource, IlcInt min)

public void setNotPossible(IlcResource resource)

public void setProcessingTimeMax(IlcResource resource, IlcInt
max)

public void setProcessingTimeMin(IlcResource resource, IlcInt
min)

public void setSelected(IlcResource resource)

public void setStartMax(IlcResource resource, IlcInt max)

public void setStartMin(IlcResource resource, IlcInt min)

public void whenRange(const IlcAltRCDemon g) const

Constructors

public IlcAltResConstraint()

This constructor creates an instance which is empty, that is, one whose handle pointer is null. You must assign it
a value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IlcAltResConstraint(IlcAltResConstraintI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

Methods

public IlcActivity getActivity() const

This member function returns the activity associated with the invoking constraint.

public IlcAltResSet getAltResSet() const

This member function returns the instance of IlcAltResSet associated with the invoking constraint.

public IlcInt getCapacity() const

115

This member function returns the quantity required or provided by the activity associated with the invoking
constraint.

public IlcInt getCapacityMax(const IlcResource resource) const

This member function returns the maximal capacity of the invoking alternative resource constraint assuming
resource is the selected resource.

public IlcInt getCapacityMin(const IlcResource resource) const

This member function returns the minimal capacity of the invoking alternative resource constraint assuming
resource is the selected resource.

public IlcIntVar getCapacityVariable() const

This member function returns the constrained variable representing the quantity required or provided by the
activity associated with the invoking constraint.

public IlcInt getDurationMax(const IlcResource resource) const

This member function returns the longest duration of the activity of the invoking alternative resource constraint
assuming resource is the selected resource.

public IlcInt getDurationMin(const IlcResource resource) const

This member function returns the shortest duration of the activity of the invoking alternative resource constraint
assuming resource is the selected resource.

public IlcInt getEndMax(const IlcResource resource) const

This member function returns the latest end time of the activity of the invoking alternative resource constraint
assuming resource is the selected resource.

public IlcInt getEndMin(const IlcResource resource) const

This member function returns the earliest end time of the activity of the invoking alternative resource constraint
assuming resource is the selected resource.

public IlcAltResConstraintI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IlcIntVar getIndexVariable() const

116

This member function returns the variable that contains the indices of all the possible resources for the invoking
constraint. The indices correspond to the indices of the resources in the instance of the class IlcAltResSet for
which the invoking constraint was defined.

public IlcInt getNumberOfPossible() const

This member function returns the number of possible resources that could be selected for the activity associated
with the invoking constraint. It returns 1 (one) if a resource has already been selected.

public IlcInt getProcessingTimeMax(const IlcResource resource) const

This member function returns the longest processing time for the activity of the invoking alternative resource
constraint assuming resource is the selected resource.

public IlcInt getProcessingTimeMin(const IlcResource resource) const

This member function returns the shortest processing time for the activity of the invoking alternative resource
constraint assuming resource is the selected resource.

public IlcResourceConstraint getResourceConstraint(const IlcResource resource)
const

This member function returns the resource constraint associated with resource in the invoking alternative
resource constraint. If resource is possible but not yet selected, the minimal capacity of the resource constraint
is set to 0 (zero). If resource is not possible, the maximal capacity of the resource constraint is set to 0 (zero),
implying that the resource constraint does not use resource at all. The resource constraint is automatically
added to the solver if resource is possible.

public IlcCapResource getSelected() const

This member function returns the resource that has been selected for the activity associated with the invoking
constraint. An instance of IloSolver::SolverErrorException is thrown if no resource has been selected.

public IlcInt getStartMax(const IlcResource resource) const

This member function returns the latest start time of the activity of the invoking alternative resource constraint
assuming resource is the selected resource.

public IlcInt getStartMin(const IlcResource resource) const

This member function returns the earliest start time of the activity of the invoking alternative resource constraint
assuming resource is the selected resource.

public IlcTimeExtent getTimeExtent() const

This member function returns the time extent of the activity associated with the invoking constraint.

117

public IlcBool isInwardConstraint() const

This member function returns IlcTrue if and only if the occupancy of the selected resource by the invoking
constraint is to be rounded inward toward the nearest valid time that corresponds to a time step. This rounding is
important only when one of the timetables of the selected resource has a time step greater than 1 (one).

public IlcBool isPossible(const IlcResource resource) const

This member function returns IlcTrue if resource can be selected for the activity associated with the invoking
constraint. Otherwise, it returns IlcFalse.

public IlcBool isProvidingConstraint() const

This member function returns IlcTrue if and only if the invoking constraint was constructed by one of these
member functions:IlcActivity::provides or IlcActivity::produces.

public IlcBool isResourceSelected() const

This member function returns IlcTrue if the activity associated with the invoking constraint has selected a
resource as the only possible one. Otherwise, it returns IlcFalse.

public IlcBool isSelected(const IlcResource resource) const

This member function returns IlcTrue if resource has been selected by the invoking constraint. Otherwise, it
returns IlcFalse.

public IlcBool isVariableResourceConstraint() const

This member function returns IlcTrue if and only if the activity associated with the invoking constraint has a
variable representing the required or provided quantity.

public void operator=(const IlcAltResConstraint & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument. After execution of this operator, the invoking object and the
provided argument point to the same implementation object.

public void setCapacityMax(IlcResource resource, IlcInt max)

This member function states that max is the maximal capacity of the invoking alternative resource constraint if
resource is the selected resource.

public void setCapacityMin(IlcResource resource, IlcInt min)

This member function states that min is the minimal capacity of the invoking alternative resource constraint if
resource is the selected resource.

118

public void setDurationMax(IlcResource resource, IlcInt max)

This member function states that max is the longest duration of the activity of the invoking alternative resource
constraint if resource is the selected resource.

public void setDurationMin(IlcResource resource, IlcInt min)

This member function states that min is the shortest duration of the activity of the invoking alternative resource
constraint if resource is the selected resource.

public void setEndMax(IlcResource resource, IlcInt max)

This member function states that max is the latest end time of the activity of the invoking alternative resource
constraint if resource is the selected resource.

public void setEndMin(IlcResource resource, IlcInt min)

This member function states that min is the earliest end time of the activity of the invoking alternative resource
constraint if resource is the selected resource.

public void setNotPossible(IlcResource resource)

This member function states that it is not possible for resource to be selected.

public void setProcessingTimeMax(IlcResource resource, IlcInt max)

This member function states that max is the longest processing time for the activity of the invoking alternative
resource constraint if resource is the selected resource.

public void setProcessingTimeMin(IlcResource resource, IlcInt min)

This member function states that min is the shortest processing time for the activity of the invoking alternative
resource constraint if resource is the selected resource.

public void setSelected(IlcResource resource)

This member function states that resource has been selected for the activity associated with the invoking
constraint. More precisely, it sets (if possible) the value of the index variable to:

the index of resource if resource is in the alternative resource set (so that the invoking constraint
becomes or stays true).

•

N, where N is the number of resources in this set, otherwise (so that the invoking constraint becomes or
stays false).

•

public void setStartMax(IlcResource resource, IlcInt max)

119

This member function states that max is the latest start time of the activity of the invoking alternative resource
constraint if resource is the selected resource.

public void setStartMin(IlcResource resource, IlcInt min)

This member function states that min is the earliest start time of the activity of the invoking alternative resource
constraint if resource is the selected resource.

public void whenRange(const IlcAltRCDemon g) const

This member function associates the demon g with the By Resource Domain propagation event of an alternative
resource constraint. The demon is an instance of the class IlcAltRCDemon designed for this purpose.
Whenever the propagation of the start, end, duration, processing time, and capacity range with respect to a
possible resource occurs, the demon g is executed. Please refer to the Macro ILCALTRCDEMON for full
information and an example.

120

Class IlcAltResConstraintIterator
Definition file: ilsched/altresh.h
Include file: <ilsched/ilsched.h>

An instance of the class IlcAltResConstraintIterator is an iterator that traverses, during the search, the
constraints defined between an instance of IlcActivity and an instance of IlcAltResSet. If used before
entering the search, this iterator will traverse an empty list of alternative resource constraints.

If you iterate over all the constraints that require or provide the resources in that set, you are actually traversing
all the resources that might be required or provided. If you want to traverse only the constraints that surely
provide or require the resources in the set of an instance of IlcAltResSet, then you have to use the member
function IlcConstraint::isPosted (documented in the IBM ILOG Solver Reference Manual) to distinguish
among them. See the example in IlcResourceConstraintIterator for a program that makes this
distinction correctly.

See Also: IlcAltResConstraint, IlcAltResSet, IlcTimeExtent

Constructor and Destructor Summary

public IlcAltResConstraintIterator(IlcAltResSet set)

public IlcAltResConstraintIterator(IlcActivity act)

public IlcAltResConstraintIterator(IlcAltResSet set, IlcTimeExtent extent)

public IlcAltResConstraintIterator(IlcActivity act, IlcTimeExtent extent)

Method Summary

public IlcBool ok() const

public IlcAltResConstraint operator*() const

public IlcAltResConstraintIterator & operator++()

Constructors and Destructors

public IlcAltResConstraintIterator(IlcAltResSet set)

This constructor creates a new instance of IlcAltResConstraintIterator that traverses the constraints
that require or provide the capacity resources in set.

public IlcAltResConstraintIterator(IlcActivity act)

This constructor creates a new instance of IlcAltResConstraintIterator that traverses the alternative
resource constraints defined on act.

public IlcAltResConstraintIterator(IlcAltResSet set, IlcTimeExtent extent)

This constructor creates a new instance of IlcAltResConstraintIterator that traverses the constraints
that require or provide the capacity resources in set that have the time extent indicated by extent.

121

public IlcAltResConstraintIterator(IlcActivity act, IlcTimeExtent extent)

This constructor creates a new instance of IlcAltResConstraintIterator that traverses the alternative
resource constraints defined on act that have the time extent indicated by extent.

Methods

public IlcBool ok() const

This member function returns IlcTrue if there is a current constraint and the invoking iterator points to it.
Otherwise, it returns IlcFalse.

public IlcAltResConstraint operator*() const

This operator returns the current constraint, the one to which the invoking iterator points. If the iterator is set past
the end position, then this operator returns an empty handle.

public IlcAltResConstraintIterator & operator++()

This operator shifts the iterator to point to the next element.

122

Class IlcAltResSet
Definition file: ilsched/altresh.h
Include file: <ilsched/ilsched.h>

An instance of the class IlcAltResSet represents a special set of resources to which activities can be
assigned. When an activity requires an instance of this class, the activity requires exactly one of the resources
represented in that set. For convenience, an instance of IlcAltResSet behaves like a standard resource. To
that end, the class includes member functions that reproduce the properties and behavior of a standard resource.

The set of resources (the alternatives) must consist of capacity resources (that is, instances of
IlcDiscreteEnergy, IlcDiscreteResource, IlcUnaryResource, or IlcReservoir).

Each resource in the set must be unique.

In case the elements of the set of alternative resources do not conform to these rules, an error will be raised
when the set is constructed.

If you change the resources in the set during its use, you will produce unpredictable behavior; in fact, such
changes may lead to erroneous behavior.

Redundant Resources

It is possible to consider the set of resources as a resource whose theoretical capacity is the sum of the
capacities of the resources of the set. Let us call this resource the redundant resource of the set.

An alternative resource constraint on the set is a resource constraint on this redundant resource. Therefore,
posting the timetable constraint or the edge finder constraint on the redundant resource may lead to more
efficient propagation. Global and resource constraints on the redundant resource have exactly the same purpose
as a redundant constraint in a Solver model.

Notice that if the resources of the set are instances of IlcUnaryResource and if they have strictly identical
properties (the activities have the same processing time, do not require any other resources, and there is no
transition time), the redundant resource gives exactly the same solution as the alternative resource. In such a
case, it is more efficient to represent the set of unary resources with a single discrete resource rather than with a
alternative resource set.

Printing or Displaying Sets of Resources

The printed representation of an instance of the class IlcAltResSet consists of its name, followed by the list of
resources. If there are more than 10 resources, only the number of resources is displayed. For example:

[r1, r2, r3] represents a set of resources containing the three resources r1, r2, and r3.

[size = 14] represents a set of resources containing 14 resources.

If the Solver trace is active and the resource is not named, the string "IlcAltResSet" is followed by the
address of the implementation object. The address will be enclosed in parentheses.

See Also: IlcAltResConstraint, IlcAltResSetIterator, IlcAssignAlternative, IlcDiscreteResource, IlcReservoir,
IlcResource, IlcSchedule, IlcUnaryResource

Constructor Summary

public IlcAltResSet()

public IlcAltResSet(IlcAltResSetI * impl)

123

public IlcAltResSet(IlcSchedule schedule, IlcInt size)

public IlcAltResSet(IlcSchedule schedule, IlcResourceArray array)

Method Summary

public void close()

public IlcBool contains(const IlcResource resource) const

public IlcAltResSetI * getImpl() const

public IlcInt getIndex(const IlcResource resource) const

public const char * getName() const

public IlcAny getObject() const

public IlcCapResource getRedundantResource() const

public IlcSchedule getSchedule() const

public IlcInt getSize() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public IlcBool hasRedundantResource() const

public IlcBool isClosed() const

public void makeRedundantResource(IlcBool timetable=IlcFalse)

public IlcBool operator!=(const IlcAltResSet & resource) const

public void operator=(const IlcAltResSet & h)

public IlcBool operator==(const IlcAltResSet & resource) const

public IlcResource & operator[](IlcInt index)

public void setFilled()

public void setName(const char * name) const

public void setObject(IlcAny object) const

Constructors

public IlcAltResSet()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcAltResSet(IlcAltResSetI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcAltResSet(IlcSchedule schedule, IlcInt size)

This constructor creates a new instance of IlcAltResSet and adds it to those managed by schedule. The
size of the set (that is, the number of alternative capacity resources) is indicated by size. Before you use the
new instance, you must initialize its set with instances of capacity resources.

public IlcAltResSet(IlcSchedule schedule, IlcResourceArray array)

This constructor creates a new instance of IlcAltResSet and adds it to those managed by schedule. The
constructor initializes the set with the resources of the resource array passed as argument.

124

Methods

public void close()

This member function closes the invoking object; that is, it closes all the resources present in the invoking
instance of IlcAltResSet.

public IlcBool contains(const IlcResource resource) const

This member function returns IlcTrue if resource belongs to the invoking instance of IlcAltResSet.
Otherwise, it returns IlcFalse.

public IlcAltResSetI * getImpl() const

This constructor creates an object by copying another one. This constructor creates an object by copying another
one. This member function returns a pointer to the implementation object of the invoking handle.

public IlcInt getIndex(const IlcResource resource) const

This member function returns the index of resource in the invoking alternative capacity resource set.

public const char * getName() const

This member function returns the name of the invoking object.

public IlcAny getObject() const

This member function returns a pointer to the external object associated with the invoking object, if there is such
an association. It returns 0 (zero) otherwise.

public IlcCapResource getRedundantResource() const

This member function returns the redundant resource of the invoking set, if it has been previously created.

public IlcSchedule getSchedule() const

This member function returns the schedule to which the invoking instance of IlcAltResSet belongs. Each
alternative resource in the set belongs to the same schedule, an instance of IlcSchedule.

public IlcInt getSize() const

This member function returns the number of alternative capacity resources in the invoking instance of
IlcAltResSet.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

125

public IloSolverI * getSolverI() const

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

public IlcBool hasRedundantResource() const

This member function returns IlcTrue if the redundant resource of the invoking set has been created.
Otherwise, it returns IlcFalse.

public IlcBool isClosed() const

This member function returns IlcTrue if all of the capacity resources in the set of the invoking instance of
IlcAltResSet have been closed. The member function returns IlcFalse otherwise.

public void makeRedundantResource(IlcBool timetable=IlcFalse)

This member function builds the redundant resource associated with the invoking alternative resources set.
When the redundant resource is created, the resource constraints on the resources of the set and the alternative
resource constraints of the set are automatically added to the redundant resource. If the argument timetable is
set to IlcTrue, the timetable constraint is added to the redundant resource.

public IlcBool operator!=(const IlcAltResSet & resource) const

This operator returns IlcTrue if the invoking instance and the argument resource are not identical; that is, they
are handles of different implementation objects. Otherwise, it returns IlcFalse.

public void operator=(const IlcAltResSet & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public IlcBool operator==(const IlcAltResSet & resource) const

This operator returns IlcTrue if the invoking instance and the argument resource are identical; that is, they are
both handles with the same implementation object. Otherwise, it returns IlcFalse.

public IlcResource & operator[](IlcInt index)

This operator returns a reference to the resource located at index in the invoking alternative resource set.

public void setFilled()

The call to this member function confirms that all alternative resources were added to the invoking alternative
resource set. After calling this member function, no resources can be added to the set.

126

The use of this member function is mandatory only for alternative resource sets constructed on durable
schedules.

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

public void setObject(IlcAny object) const

This member function establishes a link between the invoking object and an external object of which the invoking
object might be a data member.

127

Class IlcAltResSetIterator
Definition file: ilsched/altresh.h
Include file: <ilsched/ilsched.h>

An instance of the class IlcAltResSetIterator is an iterator that traverses a set of sets of alternative
resources. For example, you might need an iterator to traverse all the instances of IlcAltResSet managed by
a particular schedule; or you might be interested in traversing all the instances of IlcAltResSet to which a
given resource belongs.

See Also: IlcAltResSet, IlcResource, IlcSchedule

Constructor and Destructor Summary

public IlcAltResSetIterator(IlcResource resource)

public IlcAltResSetIterator(const IlcSchedule schedule)

Method Summary

public IlcBool ok() const

public IlcAltResSet operator*() const

public IlcAltResSetIterator & operator++()

Constructors and Destructors

public IlcAltResSetIterator(IlcResource resource)

This constructor creates a new instance of IlcAltResSetIterator that traverses all the alternative resource
sets that have resource as an element.

public IlcAltResSetIterator(const IlcSchedule schedule)

This constructor creates a new instance of IlcAltResSetIterator that traverses all the instances of
IlcAltResSet that are managed by schedule.

Methods

public IlcBool ok() const

This member function returns IlcTrue if there is a current instance of IlcAltResSet and the invoking iterator
points to it. Otherwise, it returns IlcFalse.

public IlcAltResSet operator*() const

This operator returns the current instance of IlcAltResSet, the one to which the invoking iterator points. If the
iterator is set past the end position, then this operator returns an empty handle.

128

public IlcAltResSetIterator & operator++()

This operator shifts the iterator to the next instance of IlcAltResSet.

129

Class IlcAnyTimetable
Definition file: ilsched/timetabh.h
Include file: <ilsched/ilsched.h>

An instance of the handle class IlcAnyTimetable represents a timetable in which the values are pointers to
arbitrary objects (rather than integers). In the Scheduler Engine, these timetables are used to manage the states
of resources.

A timetable is defined over an interval, [timeMin timeMax), where timeMin is the origin of the timetable and
timeMax is its horizon. In addition to the origin and horizon, you may optionally indicate the period of the
timetable. The period must be a positive integer, and furthermore, the size of the interval (that is,timeMax -
timeMin) must be an integer multiple of the period. If a period is specified, then the values managed by the
timetable can change only at times indicated by timeMin + i * period.

Two types of propagation events can be triggered when this kind of timetable is modified. An event of type
domainInterval indicates that there are some times at which some modification of the domain occurred. An
event of type valueInterval indicates that there are some times at which the value became bound. In order to
perform propagation, member functions allow you to associate demons with each type of event.

The information stored into a timetable is reversible. In particular, when modifiers are called, the state before their
call will be saved by Solver.

For more information, see Timetable.

See Also: IlcAnyTimetableCursor, IlcAnyTimetableIterator, IlcIntTimetable, IlcStateResource

Constructor and Destructor Summary

public IlcAnyTimetable(IlcSchedule, const IlcAnySet states, IlcInt timeMin, IlcInt
timeMax, IlcInt period=1)

Method Summary

public IlcInt getDomainTimeMax() const

public IlcInt getDomainTimeMin() const

public IlcManager getManager() const

public const char * getName() const

public IlcAny getObject() const

public IlcInt getPeriod() const

public IlcInt getTimeMax() const

public IlcInt getTimeMin() const

public IlcAny getValue(IlcInt time) const

public IlcInt getValueTimeMax() const

public IlcInt getValueTimeMin() const

public IlcBool isAlwaysPossible(IlcAny state, IlcInt timeMin, IlcInt
timeMax) const

public IlcBool isAlwaysRequired(IlcAny state, IlcInt timeMin, IlcInt
timeMax) const

public IlcBool isBound(IlcInt time) const

130

public IlcBool isEverPossible(IlcAny state, IlcInt timeMin, IlcInt timeMax)
const

public IlcBool isEverRequired(IlcAny state, IlcInt timeMin, IlcInt timeMax)
const

public IlcBool isPossible(IlcAny state, IlcInt time) const

public IlcBool isRequired(IlcAny state, IlcInt time) const

public void removePossibleStates(IlcInt timeMin, IlcInt timeMax, const
IlcAnySet states)

public void removeState(IlcInt timeMin, IlcInt timeMax, IlcAny state)

public void setName(const char * name)

public void setObject(IlcAny object)

public void setPossibleStates(IlcInt timeMin, IlcInt timeMax, const
IlcAnySet states)

public void setState(IlcInt timeMin, IlcInt timeMax, IlcAny state)

public void whenDomainInterval(const IlcDemon c) const

public void whenValueInterval(const IlcDemon c) const

Constructors and Destructors

public IlcAnyTimetable(IlcSchedule, const IlcAnySet states, IlcInt timeMin, IlcInt
timeMax, IlcInt period=1)

This constructor creates a timetable to manage a set of states over the interval [timeMin, timeMax). The
constructor adds that timetable to those managed by schedule. The timetable starts at timeMin and extends
to timeMax, divided into equal periods of size period.

An instance of IloSolver::SolverErrorException is thrown if any of the following conditions occur:

timeMax - timeMin is not strictly positive;•
period is not strictly positive;•
timeMax - timeMin is not an integer multiple of period.•

Methods

public IlcInt getDomainTimeMax() const

When it is called during the execution of a demon associated with the invoking timetable by the member function
IlcAnyTimetable::whenDomainInterval, this member function returns the time domainTimeMax, that is,
the maximum of the interval [domainTimeMin, domainTimeMax) containing all the times at which the
domain has changed. The return value of this member function is not meaningful outside the execution of such a
demon.

public IlcInt getDomainTimeMin() const

When it is called during the execution of a demon associated with the invoking timetable by the member function
IlcAnyTimetable::whenDomainInterval, this member function returns the time domainTimeMin, that is,
the minimum of the interval [domainTimeMin, domainTimeMax) containing all the times at which the domain
has changed. The return value of this member function is not meaningful outside the execution of such a demon.

131

public IlcManager getManager() const

This member function returns the manager (a handle) of the invoking timetable.

public const char * getName() const

This member function returns a pointer to the name of the invoking timetable. If the invoking timetable has no
name, then this function returns the empty string.

public IlcAny getObject() const

An instance of the class IlcAnyTimetable may be a data member of another "external" object. In such a case,
it may be useful to find the external object from the instance of IlcAnyTimetable. The member function
getObject accesses such an inverse link.

In fact, this member function returns a pointer to the external object associated with the invoking object, if there is
such an association. It returns the null pointer otherwise.

public IlcInt getPeriod() const

This member function returns the size of the periods of the invoking timetable. The meaning of this size is that
the timetable may change only at times representing the beginning of periods, that is, times of the form
(getTimeMin() + i * getPeriod()).

public IlcInt getTimeMax() const

This member function returns the time horizon of the invoking timetable.

public IlcInt getTimeMin() const

This member function returns the time origin of the invoking timetable.

public IlcAny getValue(IlcInt time) const

This member function returns the value at time of the invoking timetable. An instance of
IloSolver::SolverErrorException is thrown if the timetable is not bound at time.

public IlcInt getValueTimeMax() const

When it is called during the execution of a demon associated with a timetable by the member function
IlcAnyTimetable::whenValueInterval, this member function returns the time valueTimeMax, that is, the
maximum of the interval [valueTimeMin, valueTimeMax) containing all the times at which the value has
been bound. The return value of this member function is not meaningful outside the execution of such a demon.

public IlcInt getValueTimeMin() const

132

When it is called during the execution of a demon associated with a timetable by the member function
IlcAnyTimetable::whenValueInterval, this member function returns the time valueTimeMin, that is, the
minimum of the interval [valueTimeMin, valueTimeMax) containing all the times at which the value has
been bound. The return value of this member function is not meaningful outside the execution of such a demon.

public IlcBool isAlwaysPossible(IlcAny state, IlcInt timeMin, IlcInt timeMax) const

This member function returns IlcTrue if it is possible for the invoking timetable to be in the given state over
the entire interval [timeMin, timeMax). Otherwise, it returns IlcFalse.

public IlcBool isAlwaysRequired(IlcAny state, IlcInt timeMin, IlcInt timeMax) const

This member function returns IlcTrue if it is certain that the invoking timetable is in the given state over the
entire interval [timeMin, timeMax). Otherwise, it returns IlcFalse.

public IlcBool isBound(IlcInt time) const

This member function returns IlcTrue if the invoking timetable is bound to a value at time. Otherwise, it
returns IlcFalse.

public IlcBool isEverPossible(IlcAny state, IlcInt timeMin, IlcInt timeMax) const

This member function returns IlcTrue if it is possible that the invoking timetable is in the given state at some
point in the interval [timeMin, timeMax). Otherwise, it returns IlcFalse.

public IlcBool isEverRequired(IlcAny state, IlcInt timeMin, IlcInt timeMax) const

This member function returns IlcTrue if it is certain that the invoking timetable is in the given state at some
point in the interval [timeMin, timeMax). Otherwise, it returns IlcFalse.

public IlcBool isPossible(IlcAny state, IlcInt time) const

This member function returns IlcTrue if it is possible that the invoking timetable is in the given state at the
given time. Otherwise, it returns IlcFalse.

public IlcBool isRequired(IlcAny state, IlcInt time) const

This member function returns IlcTrue if it is certain that the invoking timetable is in the given state the time
indicated by time. Otherwise, it returns IlcFalse.

public void removePossibleStates(IlcInt timeMin, IlcInt timeMax, const IlcAnySet
states)

133

This member function states that the invoking timetable must not be in any of the given states at any time in
the interval [timeMin, timeMax). The set of "impossible" states must be provided as an instance of
IlcAnySet. That class is documented in the Solver Reference Manual.

public void removeState(IlcInt timeMin, IlcInt timeMax, IlcAny state)

This member function states that the invoking timetable must not be in the given state at any time in the interval
[timeMin timeMax).

public void setName(const char * name)

This member function sets the name of the invoking timetable to a copy of the given name.

public void setObject(IlcAny object)

It is possible to associate an object (other than the implementation object) with a handle by means of this
member function. If the invoking handle has no associated object, then object becomes the associated object.
If the invoking handle already has an associated object, an instance of IloSolver::SolverErrorException
is thrown. The argument object must not be the null pointer; otherwise, an instance of
IloSolver::SolverErrorException is thrown.

public void setPossibleStates(IlcInt timeMin, IlcInt timeMax, const IlcAnySet
states)

This member function states that the invoking timetable must be in any of the given states at all times in the
interval [timeMin, timeMax). The set of possible states must be provided as an instance of IlcAnySet.
That class is documented in the Solver Reference Manual.

public void setState(IlcInt timeMin, IlcInt timeMax, IlcAny state)

This member function states that the invoking timetable must be in the given state at all times in the interval
[timeMin, timeMax).

public void whenDomainInterval(const IlcDemon c) const

This member function associates the demon c with the domainInterval propagation event of the invoking
timetable. Whenever a domainInterval propagation event occurs, the demon is executed.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
Whenever a domain propagation event or a series of such events occurs, the constraint is propagated.

A call to the demon signifies that there are some times at which the domain has changed. (The domain changes
whenever a state is removed from the possible set of states.) The interval [domainTimeMin,
domainTimeMax) is the least interval containing all these times.

public void whenValueInterval(const IlcDemon c) const

134

This member function associates the demon c with the valueInterval propagation event of the invoking
timetable. Whenever a valueInterval propagation event occurs, the demon is executed.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
Whenever a valueInterval propagation event occurs, the constraint is propagated.

A call to the demon signifies that there are some times at which the value has been bound. (A value is bound
when its set of possible states is reduced to one state.) The interval [valueTimeMin, valueTimeMax) is the
least interval containing all these times.

135

Class IlcAnyTimetableCursor
Definition file: ilsched/timetabh.h
Include file: <ilsched/ilsched.h>

Objects of the class IlcAnyTimetableCursor allow you to inspect the contents of timetables of type
IlcAnyTimetable. A region of a timetable is a subinterval [timeMin, timeMax) of the interval where it is
defined such that all the times in the region share the same information and any two adjacent regions store
different information. Cursors are intended to iterate forward or backward over the regions of a timetable.

Note

The structure of a timetable cannot be changed while a cursor is being used to inspect the timetable.
Therefore, functions that change the structure of the timetable should not be called while the cursor is being
used; for example, IlcAnyTimetable::removePossibleStates.

See Also: IlcAnyTimetable

Constructor and Destructor Summary

public IlcAnyTimetableCursor(const IlcAnyTimetable table, IlcInt time)

Method Summary

public IlcInt getTimeMax() const

public IlcInt getTimeMin() const

public IlcAny getValue() const

public IlcBool isBound() const

public IlcBool isPossible(IlcAny state) const

public IlcBool ok() const

public void operator++()

public void operator--()

Constructors and Destructors

public IlcAnyTimetableCursor(const IlcAnyTimetable table, IlcInt time)

This constructor creates a cursor to inspect the information stored in the timetable table. This cursor lets you
iterate forward or backward over the regions composing the timetable. The cursor initially indicates the region
containing time.

Methods

public IlcInt getTimeMax() const

This member function returns the time ending the region currently indicated by the cursor.

public IlcInt getTimeMin() const

136

This member function returns the time beginning the region currently indicated by the cursor.

public IlcAny getValue() const

This member function returns the value of the region indicated by the invoking timetable cursor. An instance of
IloSolver::SolverErrorException is thrown if the timetable is not bound at the cursor position.

public IlcBool isBound() const

This member function returns IlcTrue if the set of possible states indicated by the invoking timetable cursor has
been bound; that is, the set of possible states has been reduced to a single state. Otherwise, it returns
IlcFalse.

public IlcBool isPossible(IlcAny state) const

This member function returns IlcTrue if the given state is a member of the set of possible states corresponding
to the region currently indicated by the invoking timetable cursor. Otherwise, it returns IlcFalse.

public IlcBool ok() const

This member function returns IlcFalse if the cursor does not currently indicate a region included in the interval
of the timetable. Otherwise, it returns IlcTrue. Any attempt to use the cursor after ok() returns IlcFalse
could lead to undefined behavior.

public void operator++()

This operator moves the cursor to the region adjacent "on the right" to the current region (forward iteration).

public void operator--()

This operator moves the cursor to the region adjacent "on the left" to the current region (backward iteration).

137

Class IlcAnyTimetableIterator
Definition file: ilsched/state.h
Include file: <ilsched/ilsched.h>

An instance of this class traverses the set of timetables associated with a state resource.

See Also: IlcAnyTimetable, IlcSchedule

Constructor Summary

public IlcAnyTimetableIterator(IlcStateResource res)

Method Summary

public IlcAnyTimetable operator*()

public IlcAnyTimetableIterator & operator++()

Constructors

public IlcAnyTimetableIterator(IlcStateResource res)

This constructor creates an iterator to traverse all the timetables of a state resource.

Methods

public IlcAnyTimetable operator*()

This operator accesses the instance of IlcAnyTimetable located at the current position of the iterator. If the
iterator is set past the end position, this operator returns an empty handle.

public IlcAnyTimetableIterator & operator++()

This left-increment operator shifts the current position of the iterator.

138

Class IlcCalendar
Definition file: ilsched/sbecprop.h

An instance of IloCalendar allows modeling complex behavior for activity variables (start, end, duration and
processing time) within a resource. This behaviour could represent, for example, holidays, resource
performances, and so forth. For more information see Calendars.

A calendar object is defined by three components:

A set of breaks which basically can suspend the execution of the concerned activity (see Calendars)•
A set of shifts which can, for example, forbid some start dates (see Shift Object Semantic)•
A granular step-wise function to define the efficiency of the resource along the schedule (see Functional
and Integral Constraints on Resources)

•

Constructor and Destructor Summary

public IlcCalendar()

public IlcCalendar(IlcCalendarI * impl)

public IlcCalendar(const IlcSchedule schedule)

Method Summary

public void addShiftObject(IlcShiftObject shiftObj)

public IlcIntervalList getBreakList() const

public IlcGranularFunction getEfficiency() const

public IlcCalendarI * getImpl() const

public const char * getName() const

public IlcAny getObject() const

public IlcSchedule getSchedule() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public void operator=(const IlcCalendar & h)

public void removeShiftObject(IlcShiftObject shiftObj)

public void setBreakList(IlcIntervalList list)

public void setEfficiency(IlcGranularFunction f)

public void setName(const char * name) const

public void setObject(IlcAny object) const

Inner Class

IlcCalendar::ShiftObjectIterator

Constructors and Destructors

public IlcCalendar()

This constructor creates an empty handle. You must initialize it before you use it.

139

public IlcCalendar(IlcCalendarI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcCalendar(const IlcSchedule schedule)

This constructor creates a new instance of IlcCalendar. Its name is set to name

Methods

public void addShiftObject(IlcShiftObject shiftObj)

This member function adds the shift object shiftObj to the invoking calendar.

public IlcIntervalList getBreakList() const

This member function returns the list of breaks attached to the invoking calendar, if such a list exists.

public IlcGranularFunction getEfficiency() const

This member function returns the efficiency function attached to the invoking calendar, if such a function exists.

public IlcCalendarI * getImpl() const

This constructor creates an object by copying another one. This constructor creates an object by copying another
one. This member function returns a pointer to the implementation object of the invoking handle.

public const char * getName() const

This member function returns the name of the invoking object.

public IlcAny getObject() const

This member function returns a pointer to the external object associated with the invoking object, if there is such
an association. It returns 0 (zero) otherwise.

public IlcSchedule getSchedule() const

This member function returns the schedule, an instance of IlcSchedule, to which the invoking calendar
belongs.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IloSolverI * getSolverI() const

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

140

public void operator=(const IlcCalendar & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public void removeShiftObject(IlcShiftObject shiftObj)

This member function removes the shift object shiftObj from the invoking calendar.

public void setBreakList(IlcIntervalList list)

This member function sets list as the new break list of the calendar.

public void setEfficiency(IlcGranularFunction f)

This member function sets f as the granular step-wise function that models the efficiency of the calendar within
the schedule.

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

public void setObject(IlcAny object) const

This member function establishes a link between the invoking object and an external object of which the invoking
object might be a data member.

141

Class IlcCapResource
Definition file: ilsched/capacity.h
Include file: <ilsched/ilsched.h>

IlcCapResource is the root class for capacity resources, that is, resources that are defined to have a limited
integer capacity over time. In the Scheduler Engine, there are the following classes of capacity resources:

IlcDiscreteEnergy•
IlcDiscreteResource•
IlcReservoir•
IlcContinuousReservoir•
IlcUnaryResource•

Closing a Resource

The inherited member function IlcResource::close specifies that all the activities requiring or providing the
invoking resource are known; that is, they have been linked to the resource. This information allows additional
constraint propagation to take place, for example, the propagation of minimal capacity constraints. Propagating
minimal capacity constraints is particularly useful in the case of resource allocation problems for which some
minimal amount of provided capacity must be reached. With such information, indeed, the system can eliminate
situations in which minimal capacity amounts cannot be reached using only the activities already defined.

An instance of IloSolver::SolverErrorException is thrown if you attempt to add a new requiring or
providing activity to a capacity resource that has been closed.

Initial Occupation

The timetable of the resource represents the occupation of the resource by activities. Scheduler Engine offers a
way to set up the initial occupation without having to declare the corresponding activities.

That facility is intended to help in solving a problem by iteratively adding a new set of activities to schedule or in
improving a solution by rescheduling a subset of the activities.

For discrete resources, that is for instances of IlcDiscreteResource, IlcDiscreteEnergy, and
IlcReservoir, the initial occupation is defined with an instance of the IlcIntToIntStepFunction class.
For continuous reservoirs, that is instances of IlcContinuousReservoir, the initial occupation is defined with
an instance of the IlcIntToFloatSegmentFunction class. The value of the stepwise or piecewise linear
function at an integer point in time is considered as the sum of the requirements of fictitious or previously
constructed activities.

For instances of IlcDiscreteResource and IlcDiscreteEnergy, the initial level is zero outside the
definition domain of the function.

For instances of IlcReservoir and IlcContinuousReservoir, if the definition domain of the function
intersects the temporal interval of the time table, the initial level is given by the function on its definition domain,
and by zero elsewhere. That is, Scheduler Engine ignores the initial level of the reservoir. If the definition domain
of the function does not intersect the temporal interval of the time table, the initial level of the reservoir is used as
usual.

142

Note

The content of the function is stored by copy in the resource. Any modifications to the function after it is copied
will not be seen by the timetables of the resource.

For more information, see Timetable, Disjunctive Constraint, and in the IBM ILOG Solver Reference Manual,
IlcIntToIntStepFunction.

See Also: IlcIntervalList, IlcResource, IlcResourceConstraint, IlcResourceIterator, IlcSchedule,
IlcRCTextureFactory, IlcIntToFloatSegmentFunction, IlcTextureCriticalityCalculator, IlcAltResSet

Constructor Summary

public IlcCapResource()

public IlcCapResource(IlcCapResourceI * impl)

Method Summary

public IlcCapResourceI * getImpl() const

public IlcResourceTexture getMaxTextureMeasurement() const

public IlcResourceTexture getMinTextureMeasurement() const

public IlcIntTimetable getTimetable() const

public IlcIntTimetable getTimetable(IlcInt time) const

public IlcBool hasInitialOccupation() const

public IlcBool hasMaxTextureMeasurement() const

public IlcBool hasMinTextureMeasurement() const

public void incrDurableRequirement(IlcIntToIntStepFunction func)

public void incrDurableRequirement(IlcInt t1, IlcInt t2, IlcInt
cap, IlcBool inward, IlcInt db)

public IlcBool isRedundantResource() const

public IlcConstraint makeBalanceConstraint()

public IlcResourceTexture makeMaxTextureMeasurement(IlcRCTextureFactory=0,
IlcTextureCriticalityCalculator=0)

public IlcResourceTexture makeMinTextureMeasurement(IlcRCTextureFactory=0,
IlcTextureCriticalityCalculator=0)

public IlcConstraint makeTimetableConstraint(IlcInt timeMin, IlcInt timeMax,
IlcInt timeStep, IlcInt capacity)

public IlcConstraint makeTimetableConstraint(IlcInt timeMin, IlcInt timeMax,
IlcInt timeStep)

public IlcConstraint makeTimetableConstraint(IlcInt timeStep=1)

public void operator=(const IlcCapResource & h)

public void setInitialOccupation(IlcIntToFloatSegmentFunction func)

public void setInitialOccupation(IlcIntToIntStepFunction func)

public void unsetInitialOccupation()

Inherited Methods from IlcResource

close, getCalendar, getDisjunctiveConstraint, getDurableSchedule, getImpl,
getLastRankedFirstRC, getLastRankedLastRC, getLastSurelyContributingRankedFirstRC,
getLastSurelyContributingRankedLastRC, getName, getObject,

143

getOldLastRankedFirstRC, getOldLastRankedLastRC, getPrecedenceGraphConstraint,
getSchedule, getSolver, getSolverI, getTimetableConstraint, getTransitionTime,
hasCalendar, hasDisjunctiveConstraint, hasLightPrecedenceGraphConstraint,
hasPrecedenceGraphConstraint, hasPrecedenceInfo, hasRankInfo,
hasTimetableConstraint, isCapacityResource, isClosed, isContinuousReservoir,
isDiscreteEnergy, isDiscreteResource, isDurable, isReservoir, isStateResource,
isTransitionTimeSuspended, isUnaryResource, makeFunctionalConstraint,
makeIntegralConstraint, makeLightPrecedenceGraphConstraint,
makePrecedenceGraphConstraint, operator!=, operator=, operator==, setCalendar,
setName, setObject, setTransitionTimeObject, setTransitionTimeSuspended,
whenContribution, whenDirectPredecessors, whenDirectSuccessors, whenNext,
whenPossibleNext, whenPossiblePrevious, whenPredecessors, whenPrevious,
whenRankedFirstRC, whenRankedLastRC, whenSuccessors

Constructors

public IlcCapResource()

This constructor creates an instance which is empty, that is, one whose handle pointer is null. You must assign it
a value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IlcCapResource(IlcCapResourceI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

Methods

public IlcCapResourceI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IlcResourceTexture getMaxTextureMeasurement() const

This member function returns the texture measurement associated with the maximum constraint of the invoking
resource. If no texture measurement has been associated with the maximum constraint of the invoking resource,
an empty handle is returned.

public IlcResourceTexture getMinTextureMeasurement() const

This member function returns the texture measurement associated with the minimum constraint of the invoking
resource. If no texture measurement has been associated with the minimum constraint of the invoking resource,
an empty handle is returned.

public IlcIntTimetable getTimetable() const

This member function returns the first timetable of the invoking resource (first in chronological order). An instance
of IloSolver::SolverErrorException is thrown is no timetable exists for the invoking resource. The
invoking resource must not be a continuous reservoir.

public IlcIntTimetable getTimetable(IlcInt time) const

144

This member function returns the timetable that includes time. An instance of
IloSolver::SolverErrorException is thrown if no timetable is defined at time. The invoking resource
must not be a continuous reservoir.

public IlcBool hasInitialOccupation() const

This member function returns IlcTrue if an initial occupation has been set up on the invoking resource.
Otherwise, it returns IlcFalse.

Initial Occupation

The timetable of the resource represents the occupation of the resource by activities. Scheduler Engine offers a
way to set up the initial occupation without having to declare the corresponding activities.

That facility is intended to help in solving a problem by iteratively adding a new set of activities to schedule or in
improving a solution by rescheduling a subset of the activities.

For discrete resources, that is instances of IlcDiscreteResource, IlcDiscreteEnergy, and
IlcReservoir, the initial occupation is defined with an instance of the IlcIntToIntStepFunction class.
For continuous reservoirs, that is instances of IlcContinuousReservoir, the initial occupation is defined with
an instance of the IlcIntToFloatSegmentFunction class. The value of the stepwise or piecewise linear
function at an integer point in time is considered as the sum of the requirements of fictitious or previously
constructed activities.

For instances of IlcDiscreteResource and IlcDiscreteEnergy, the initial level is zero outside the
definition domain of the function.

For instances of IlcReservoir and IlcContinuousReservoir, if the definition domain of the function
intersects the temporal interval of the time table, the initial level is given by the function on its definition domain,
and by zero elsewhere. That is, Scheduler Engine ignores the initial level of the reservoir. If the definition domain
of the function does not intersect the temporal interval of the time table, the initial level of the reservoir is used as
usual.

Note

The content of the function is stored by copy in the resource. Any modifications to the function after it is copied
will not be seen by the timetables of the resource.

public IlcBool hasMaxTextureMeasurement() const

This member function returns IlcTrue if a texture measurement has been created on the maximum constraint
of the invoking resource. Otherwise, it returns IlcFalse.

public IlcBool hasMinTextureMeasurement() const

This member function returns IlcTrue if a texture measurement has been created on the minimum constraint of
the invoking resource. Otherwise, it returns IlcFalse.

public void incrDurableRequirement(IlcIntToIntStepFunction func)

The purpose of this function is to provide a non-reversible, non-monotonic edition of the requirement amount of a
durable resource. Refer to Durability for complete information on that subject.

145

This function modifies the requirement amount that corresponds to an activity starting a t1, ending at t2 and
requiring the capacity of the argument capacity. This function is similar to having an activity on each step
starting at t1, ending at t2 and of value capacity of the argument func.

If the argument capacity is greater than 0, the effect of the function is to add capacity to the amount of
requirement to the resource on the interval [t1, t2); that is, to actually decrease the available capacity in the
resource.

If the argument capacity is less than 0, the effect of the function is to remove capacity from the requirement
amount of the resource on the interval [t1, t2); that is, to increase the available capacity in the resource.

In the case of a discrete resource timetable of timestep different from one, an instance of
IloSolver::SolverErrorException is thrown if the function steps do not fit the timestep of the resource. In
the case of energy with a break timetable, the equivalent activities are considered as being not breakable.

The coherency of the requirement amount with respect to the resource capacity is under the responsibility of the
user. For example, one should be cautious that the requirements that are undone do not exceed the requirement
of activities committed on the resource when a search using the durable resource is launched.

For a multi-threaded durable resource, these functions are enclosed in a critical section. That is, these functions
are MT-hot.

An instance of IloSolver::SolverErrorException is thrown if the schedule is not durable, if the durable
schedule is not closed, or if the resource is in used by a computational manager.

public void incrDurableRequirement(IlcInt t1, IlcInt t2, IlcInt cap, IlcBool
inward, IlcInt db)

The purpose of this function is to provide a non-reversible, non-monotonic edition of the requirement amount of a
durable resource. Refer to Durability for complete information on that subject.

This function modifies the requirement amount that corresponds to an activity starting a t1, ending at t2 and
requiring the capacity of the argument cap.

If the argument cap is greater than 0, the effect of the function is to add cap to the amount of requirement to the
resource on the interval [t1, t2); that is, to actually decrease the available capacity in the resource.

If the argument cap is less than 0, the effect of the function is to remove cap from the requirement amount of the
resource on the interval [t1, t2); that is, to increase the available capacity in the resource.

The optional argument inward is used by discrete resource timetable constraints of a time step greater than one
as the rounding policy for the equivalent activity. The optional argument db is used by energy with break
timetable constraints as the duration of the breaks for the equivalent breakable activity (that is, end time - start
time - processing time).

The coherency of the requirement amount with respect to the resource capacity is under the responsibility of the
user. For example, one should be cautious that the requirements that are undone do not exceed the requirement
of activities committed on the resource when a search using the durable resource is launched.

For a multi-threaded durable resources, these functions are enclosed in a critical section. That is, these functions
are MT-hot.

An instance of IloSolver::SolverErrorException is thrown if the tuple [t1, t2, db) is invalid for
defining an activity. An instance of IloSolver::SolverErrorException is thrown if the schedule is not
durable, if the durable schedule is not closed, or if the resource is in used by a computational manager.

public IlcBool isRedundantResource() const

146

This method returns IlcTrue if the invoking IlcCapResource object was created as a redundant resource,
using the method IlcAltResSet::makeRedundantResource. It returns IlcFalse otherwise.

public IlcConstraint makeBalanceConstraint()

This member function creates a balance constraint on the invoking discrete resource or reservoir. This constraint
allows a stronger propagation of the discrete resource capacity. See Balance Constraint for more information.
That constraint must be posted in order to be taken into account.

public IlcResourceTexture makeMaxTextureMeasurement(IlcRCTextureFactory=0,
IlcTextureCriticalityCalculator=0)

This member function creates an instance of IlcResourceTexture on the maximum constraint of the invoking
resource. By default, that is, if not otherwise specified, the IlcRCTextureFactory used is an instance of
IlcRCTextureProbabilisticFactoryI and the IlcTextureCriticalityCalculator used is an
instance of IlcProbabilisticCriticalityCalculatorI.

public IlcResourceTexture makeMinTextureMeasurement(IlcRCTextureFactory=0,
IlcTextureCriticalityCalculator=0)

This member function creates an instance of IlcResourceTexture on the minimum constraint of the invoking
resource. By default, that is, if not otherwise specified, the IlcRCTextureFactory used is an instance of
IlcRCTextureProbabilisticFactoryI and the IlcTextureCriticalityCalculator used is an
instance of IlcProbabilisticCriticalityCalculatorI.

public IlcConstraint makeTimetableConstraint(IlcInt timeMin, IlcInt timeMax, IlcInt
timeStep, IlcInt capacity)

This member function creates and returns a timetable constraint for the invoking resource. This timetable
constraint implies that the capacity of the resource is limited to capacity from timeMin to timeMax and
allowed to change only at times timeMin + i * timeStep. If the invoking resource is an instance of
IlcDiscreteResource or IlcUnaryResource, capacity represents the maximal theoretical capacity. If the
invoking resource is an instance of IlcDiscreteEnergy, capacity represents the maximal available energy.

An instance of IloSolver::SolverErrorException is thrown if any of the following conditions occur:

if timeStep is not strictly positive;•
if timeMin is not strictly less than timeMax;•
if timeMax minus timeMin is not a multiple of timeStep;•
if the new timetable overlaps another timetable that has already been created for the invoking resource.•

public IlcConstraint makeTimetableConstraint(IlcInt timeMin, IlcInt timeMax, IlcInt
timeStep)

This member function creates and returns a timetable constraint for the invoking resource. This timetable
constraint implies that the capacity of the resource is limited to the theoretical capacity of the resource from
timeMin to timeMax and allowed to change only at times timeMin + i * timeStep.

An instance of IloSolver::SolverErrorException is thrown if any of the following conditions occur:

if timeStep is not strictly positive;•
if timeMin is not strictly less than timeMax;•

147

if timeMax minus timeMin is not a multiple of timeStep;•
if the new timetable overlaps another timetable that has already been created for the invoking resource.•

public IlcConstraint makeTimetableConstraint(IlcInt timeStep=1)

This member function creates and returns a timetable constraint for the invoking resource. This timetable
constraint implies that the capacity of the resource is limited to the theoretical capacity of the resource from the
time origin timeMin to the time horizon, and allowed to change only at times timeMin + i * timeStep.

An instance of IloSolver::SolverErrorException is thrown if any of the following conditions occur:

if timeStep is not strictly positive;•
if the time horizon minus the time origin is not a multiple of timeStep;•
if the new timetable overlaps another timetable that has already been created for the invoking resource.•

public void operator=(const IlcCapResource & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument. After execution of this operator, the invoking object and the
provided argument point to the same implementation object.

public void setInitialOccupation(IlcIntToFloatSegmentFunction func)

This member function sets the argument func as the initial level of the timetables of the invoking capacity
resource. The invoking resource must be a continuous reservoir. The argument func is copied. The initial
occupation is considered at post time of the timetable constraint. That is, a call to setInitialOccupation
after the adding of the timetable constraint in the solver and the entering of the solver in search mode has no
effect.

Refer to IlcCapResource::hasInitialOccupation for more information on initial occupation.

public void setInitialOccupation(IlcIntToIntStepFunction func)

This member function sets the argument func as the initial level of the timetables of the invoking resource. The
argument func is copied. The initial occupation is considered at post time of the timetable constraint. That is, a
call to setInitialOccupation after the adding of the timetable constraint in the solver and the entering of the
solver in search mode has no effect.

Refer to IlcCapResource::hasInitialOccupation for more information on initial occupation.

public void unsetInitialOccupation()

This member function unsets the initial level of the timetables of the invoking resource. That is, the resource no
longer has an initial occupation.

Refer to IlcCapResource::hasInitialOccupation for more information on initial occupation.

148

Class IlcContinuousReservoir
Definition file: ilsched/contires.h
Include file: <ilsched/ilsched.h>

An instance of the class IlcContinuousReservoir represents a resource which activities can either fill or
empty in a continuous process. For example, if an activity that starts at time st and ends at time et can fill the
reservoir by a capacity C, the quantity put in the continuous reservoir by the activity at time t is the following.

0 if t < st;•
(t-st)C/(et-st) if st <= t < et;•
C if et <= t.•

If the duration of the activity is null, the filling (or emptying) process is not continuous since the quantity C is
instantaneously put in (or removed from) the reservoir at time et (which is equal to st).

Scheduler Engine ensures no attempt is made to further empty an already-empty continuous reservoir.
Furthermore, if you define a maximal level of the continuous reservoir, then this maximal level will never be
exceeded.

When the problem model represents an ongoing process, the continuous reservoir may already have some
non-zero level present. To avoid this situation, simply pass an initial level to the constructor of
IlcContinuousReservoir.

The capacity of a continuous reservoir can vary over time. You can define temporary maximal and minimal levels
by using member functions of IlcContinuousReservoir.

Closing a Continuous Reservoir

As for the class IlcReservoir, the member function IlcResource::close is crucial for propagation
affecting the class IlcContinuousReservoir. If close is not called, new activities filling or emptying the
reservoir can still be added; thus preventing propagation. The continuous reservoir must be closed before
propagation can take place.

Disjunctive Constraints

As with reservoirs, there are no disjunctive constraints with continuous reservoirs.

Printing or Displaying Continuous Reservoirs

The printed representation of an instance of the class IlcContinuousReservoir consists of its name, if it
exists, and its theoretical capacity followed by its initial level. The two values are enclosed in brackets and
separated by a dash (-).

For example:

r1[100 - 10] represents the continuous reservoir named r1 which has a capacity equal to 100 and an initial
level equal to 10.

If the Solver trace is active and the resource is not named, the string "IlcContinuousReservoir" is followed
by the address of the implementation object. The address will be enclosed in parentheses.

If the theoretical capacity of the reservoir is equal to its maximal value (that is, IlcIntMax/2), the string
"Maximum Capacity" is displayed instead of its numerical value.

149

See Also: IlcCapResource, IlcContinuousReservoirIterator, IlcResource, IlcResourceConstraint, IlcSchedule

Constructor Summary

public IlcContinuousReservoir()

public IlcContinuousReservoir(IlcContinuousReservoirI * impl)

public IlcContinuousReservoir(IlcSchedule schedule, IlcInt
capacity=IlcMaxCapacityReservoir, IlcFloat initialLevel=0, IlcBool
timetable=IlcTrue)

Method Summary

public IlcContinuousReservoirI * getImpl() const

public IlcFloat getInitialLevel() const

public IlcFloat getLevelMax(IlcInt time) const

public IlcFloat getLevelMaxMax(IlcInt t1, IlcInt t2) const

public IlcFloat getLevelMaxMin(IlcInt t1, IlcInt t2) const

public IlcFloat getLevelMin(IlcInt time) const

public IlcFloat getLevelMinMax(IlcInt t1, IlcInt t2) const

public IlcFloat getLevelMinMin(IlcInt t1, IlcInt t2) const

public IlcFloatTimetable getTimetable(IlcInt time) const

public IlcFloatTimetable getTimetable() const

public IlcConstraint makeTimetableConstraint(IlcInt timeMin, IlcInt
timeMax, IlcFloat
precision=ILC_CONTINUOUS_RESERVOIR_PRECISION)

public void operator=(const IlcContinuousReservoir & h)

public void setLevelMax(IlcInt timeMin, IlcInt timeMax,
IlcFloat levelMax)

public void setLevelMin(IlcInt timeMin, IlcInt timeMax,
IlcFloat levelMin)

Inherited Methods from IlcCapResource

getImpl, getMaxTextureMeasurement, getMinTextureMeasurement, getTimetable,
getTimetable, hasInitialOccupation, hasMaxTextureMeasurement,
hasMinTextureMeasurement, incrDurableRequirement, incrDurableRequirement,
isRedundantResource, makeBalanceConstraint, makeMaxTextureMeasurement,
makeMinTextureMeasurement, makeTimetableConstraint, makeTimetableConstraint,
makeTimetableConstraint, operator=, setInitialOccupation, setInitialOccupation,
unsetInitialOccupation

Inherited Methods from IlcResource

close, getCalendar, getDisjunctiveConstraint, getDurableSchedule, getImpl,
getLastRankedFirstRC, getLastRankedLastRC, getLastSurelyContributingRankedFirstRC,
getLastSurelyContributingRankedLastRC, getName, getObject,
getOldLastRankedFirstRC, getOldLastRankedLastRC, getPrecedenceGraphConstraint,
getSchedule, getSolver, getSolverI, getTimetableConstraint, getTransitionTime,
hasCalendar, hasDisjunctiveConstraint, hasLightPrecedenceGraphConstraint,
hasPrecedenceGraphConstraint, hasPrecedenceInfo, hasRankInfo,
hasTimetableConstraint, isCapacityResource, isClosed, isContinuousReservoir,
isDiscreteEnergy, isDiscreteResource, isDurable, isReservoir, isStateResource,
isTransitionTimeSuspended, isUnaryResource, makeFunctionalConstraint,
makeIntegralConstraint, makeLightPrecedenceGraphConstraint,

150

makePrecedenceGraphConstraint, operator!=, operator=, operator==, setCalendar,
setName, setObject, setTransitionTimeObject, setTransitionTimeSuspended,
whenContribution, whenDirectPredecessors, whenDirectSuccessors, whenNext,
whenPossibleNext, whenPossiblePrevious, whenPredecessors, whenPrevious,
whenRankedFirstRC, whenRankedLastRC, whenSuccessors

Constructors

public IlcContinuousReservoir()

This constructor creates an instance which is empty, that is, one whose handle pointer is null. You must assign it
a value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IlcContinuousReservoir(IlcContinuousReservoirI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IlcContinuousReservoir(IlcSchedule schedule, IlcInt
capacity=IlcMaxCapacityReservoir, IlcFloat initialLevel=0, IlcBool
timetable=IlcTrue)

This constructor creates a new instance of IlcContinuousReservoir and adds it to the set of resources
managed in the given schedule. The capacity expresses the capacity of the new continuous reservoir. The
capacity may be consumed by certain activities and produced by others. The argument initialLevel defines
an initial amount in the continuous reservoir at the time origin of the schedule. By default, the reservoir is
assumed to be empty at the time origin; that is, the initial level is 0 (zero). The default value of capacity is
IlcIntMax/2; that is the maximal theoretical capacity that is allowed. Any capacity greater than IlcIntMax/2
will be treated as if it were equal to IlcIntMax/2.

If timetable is IlcTrue, then a timetable constraint is posted, defining the level of the reservoir to be between
0 (zero) with theoretical capacity over the interval [timeMin, timeMax), where timeMin is the origin and
timeMax is the horizon of the schedule. An instance of IloSolver::SolverErrorException is thrown if
capacity is strictly negative.

Methods

public IlcContinuousReservoirI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IlcFloat getInitialLevel() const

This member function returns the initial level of the continuous reservoir; that is, the initial level that was passed
to the continuous reservoir constructor.

public IlcFloat getLevelMax(IlcInt time) const

This member function returns the maximal level that is present at the given time. An instance of
IloSolver::SolverErrorException is thrown if the timetables of the invoking continuous reservoir do not
cover the given time.

public IlcFloat getLevelMaxMax(IlcInt t1, IlcInt t2) const

151

This member function returns the maximal consumable level throughout the integer time points of the interval
[timeMin, timeMax) (that is, the maximal value over the time points timeMin, ... timeMax-1 of the
maximal resource level). An instance of IloSolver::SolverErrorException is thrown if the timetables of
the invoking continuous reservoir do not cover the complete interval indicated by [timeMin, timeMax).

public IlcFloat getLevelMaxMin(IlcInt t1, IlcInt t2) const

This member function returns the maximal consumable level, over the integer time points of the interval
[timeMin, timeMax), of the minimal resource level. An instance of IloSolver::SolverErrorException
is thrown if the timetables of the invoking continuous reservoir do not cover the complete interval indicated by
[timeMin, timeMax).

public IlcFloat getLevelMin(IlcInt time) const

This member function returns the minimal level that is present at the given time. An instance of
IloSolver::SolverErrorException is thrown if the timetable of the invoking continuous reservoir does not
cover the given time.

public IlcFloat getLevelMinMax(IlcInt t1, IlcInt t2) const

This member function returns the minimal consumable level, over the integer time points of the interval
[timeMin, timeMax), of the maximal resource level. An instance of
IloSolver::SolverErrorException is thrown if the timetables of the invoking continuous reservoir do not
cover the complete interval indicated by [timeMin, timeMax).

public IlcFloat getLevelMinMin(IlcInt t1, IlcInt t2) const

This member function returns the minimal consumable level throughout the integer time points of the interval
[timeMin, timeMax) (that is, the minimal value over the time points timeMin, ..., timeMax-1 of the
minimal resource level). An instance of IloSolver::SolverErrorException is thrown if the timetable of the
invoking continuous reservoir does not cover the complete interval indicated by [timeMin, timeMax).

public IlcFloatTimetable getTimetable(IlcInt time) const

This member function returns the timetable that includes time. An instance of
IloSolver::SolverErrorException is thrown if no timetable is defined at time. The invoking resource
must not be a continuous reservoir.

public IlcFloatTimetable getTimetable() const

This member function returns the first timetable of the invoking resource (first in chronological order). An instance
of IloSolver::SolverErrorException is thrown is no timetable exists for the invoking resource. The
invoking resource must not be a continuous reservoir.

public IlcConstraint makeTimetableConstraint(IlcInt timeMin, IlcInt timeMax,
IlcFloat precision=ILC_CONTINUOUS_RESERVOIR_PRECISION)

152

This member function creates and returns a timetable constraint for the invoking continuous reservoir. This
timetable constraint implies that the capacity of the continuous reservoir is limited to the theoretical capacity of
the reservoir from timeMin to timeMax. The time step of the timetable is 1. An instance of
IloSolver::SolverErrorException is thrown if timeMin is not strictly less than timeMax or if the new
timetable overlaps another timetable that has already been created for the invoking continuous reservoir.

public void operator=(const IlcContinuousReservoir & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument. After execution of this operator, the invoking object and the
provided argument point to the same implementation object.

public void setLevelMax(IlcInt timeMin, IlcInt timeMax, IlcFloat levelMax)

This member function states that the level of the continuous reservoir can be at most levelMax at each integer
time point of the interval [timeMin, timeMax). An instance of IloSolver::SolverErrorException is
thrown if the timetable of the invoking continuous reservoir does not cover the complete interval indicated by
[timeMin, timeMax). The continuous reservoir must be closed in order to propagate constraints.

public void setLevelMin(IlcInt timeMin, IlcInt timeMax, IlcFloat levelMin)

This member function states that the level of the continuous reservoir must be at least levelMin at each integer
time point of the interval [timeMin, timeMax). An instance of IloSolver::SolverErrorException is
thrown if the timetable of the invoking continuous reservoir does not cover the complete interval indicated by
[timeMin, timeMax). The continuous reservoir must be closed in order to propagate constraints.

153

Class IlcContinuousReservoirIterator
Definition file: ilsched/contires.h
Include file: <ilsched/ilsched.h>

An instance of this class traverses the set of continuous reservoirs.

See Also: IlcContinuousReservoir, IlcSchedule

Constructor and Destructor Summary

public IlcContinuousReservoirIterator(const IlcSchedule schedule)

Method Summary

public IlcBool ok() const

public IlcContinuousReservoir operator*() const

public IlcContinuousReservoirIterator & operator++()

Constructors and Destructors

public IlcContinuousReservoirIterator(const IlcSchedule schedule)

This constructor creates an iterator to traverse all the continuous reservoirs of schedule.

Methods

public IlcBool ok() const

This member function returns IlcTrue if the current position of the iterator is a valid one. It returns IlcFalse if
all the continuous reservoirs have been scanned by the iterator.

public IlcContinuousReservoir operator*() const

This operator accesses the instance of IlcContinuousReservoir located at the current position of the
iterator. If the iterator is set past the end position, this operator returns an empty handle.

public IlcContinuousReservoirIterator & operator++()

This left-increment operator shifts the current position of the iterator.

154

Class IlcDiscreteEnergy
Definition file: ilsched/energy.h
Include file: <ilsched/ilsched.h>

An instance of the class IlcDiscreteEnergy represents a resource available as a certain amount of energy
(for example, in watt-hours or human-months) over certain time buckets (for example, minutes, hours, months, or
years). The available energy of a time bucket is used by the activities that are executed within that time bucket.
As a consequence, constraints exist on the energy capacity of the discrete energy resource.

For example, let's assume that each unit of time corresponds to an hour, and that we have defined a discrete
energy resource that has a time step of 24 (corresponding to a day), and energy 10 (machine-hours). Then if we
have an activity of duration 3 (hours) that requires the resource with capacity 2 (machines), it uses energy of 6
(machine-hours). Thus, if this activity is scheduled on the first day, the remaining energy for that first day is 4
(machine-hours).

An instance of the class IlcDiscreteEnergy differs from an instance of the class IlcDiscreteResource in
that it uses the concept of energy, whereas IlcDiscreteResource uses the concept of instantaneous
capacity. However, when the time step of the timetables is 1, the energy over an interval corresponds to the
instantaneous capacity, and so in that case, there is no difference between the two classes. The same is true in
the case of a time table with breaks which, in the case of a time bucket of duration 1, either a break fills the
bucket, or the duration of breaks in the bucket is zero.

Energy Relaxation

A common use of discrete energy is to relax the capacity constraint of a discrete resource. Instead of enforcing
an instantaneous available capacity, the energy relaxation enforces that the average capacity over a time bucket
cannot be exceeded. The corresponding energy is defined as the product of this average instantaneous capacity
times the duration of the time bucket. An advantage is that if several activities with different start and end times
share the same time bucket, the average complexity of the propagation decreases.

In a more formal way, let act be an activity, and svar, evar and dvar be the start, end, and duration variables
of act. So we have evar = svar + dvar. Now let R be an energy resource, bkt a time bucket of duration
bktdur, bktmin the time bucket start time, and bktmax the end time. Let cvar be the capacity required by act
on R.

The duration of the execution of act in the time bucket bkt is:

 d(act, bkt) = min(bktdur, dvar, evar - bktmin, bktmax - svar).

The energy required by act on bkt is E(act, bkt) = d(act, bkt)*cvar.

The discrete energy resource constraint enforces that, for each time bucket bkt, the sum over all activities of
E(act, bkt) is less than or equal to the maximum available energy in bkt.

One notices that if the bucket encompasses the activity execution, then d(act, bkt) is reduced to dvar, and
the required energy is dvar*cvar. When the activity execution overlaps the time bucket, d(act, bkt) =
bktdur = bktmax - bktmin, and the required energy is (bktmax - bktmin)*cvar.

The last remark reveals that the energy relaxation has a drawback in the case of breakable activities. The
effective required energy should only depend upon the processing time, and not the entire duration. For example,
in the case of a time bucket that contains the entire activity execution, dvar*cvar overestimates the energy that
is effectively required, by failing to subtract the unused capacity during break times. Likewise, in the case of an
activity execution that overlaps the time bucket, (bktmax - bktmin)*cvar overestimates the energy
required, because breaks can take place between bktmin and bktmax.

155

This energy relaxation also has a drawback in the case of unary resources. For example, suppose a bucket of
duration 6, and a break at the end of the bucket of duration 2. There are two ways to determine the energy. One
way is to state that the net bucket energy is 6 - 2 = 4. However, a breakable activity using 1 unit of energy per
unit duration, with a duration greater than 6, could not overlap the bucket, since only 4 units of energy are
available over 6 time units. This is incorrect as such an activity should be able to overlap the bucket and suspend
processing during the break. Alternatively, we could state that the break does not use any energy, thus allowing 6
energy units in the first 4 time units of the bucket. However, this would allow two activities of duration 3 to exist
within the bucket. Recall, however, that this energy resource is a relaxation of a unary resource. Having two
activities of duration 3 plus a break of 2 within an interval of size 6 clearly violates the unary resource. If possible,
we would like to have a relaxation that would not allow such a "solution."

To avoid these drawbacks, Scheduler Engine offers a relaxation in the case of an energy resource with breaks
and breakable activities. The main idea is to describe the bucket as containing a break duration and an energy
available outside the break to process the activities. A relaxation of the processing time in the bucket for an
activity is then used.

With the previous notations, let ptvar and dbvar be the processing time variable and the duration of breaks
variable for an activity. We have dvar = ptvar + dbvar. Let db be the duration of the breaks in the bucket
bkt. The relaxation of the processing time effectively executed in a bucket is given by:

 pt(act, bkt) = min(bktdur, dvar, evar - bktmin,

 bktmax - svar) - min(db, dbvar)

If the bucket contains the activity execution, then dbvar < db and pt(act, bkt) is reduced to dvar -
dbvar = ptvar, and the required energy is ptvar*cvar. If the activity execution overlaps the time bucket,
then pt(act, bkt) = bktdur - db = bktmax - bktmin - db, and the required energy is (bktmax -
bktmin - db)*cvar, and this is the expected result from the energy with breaks relaxation.

Notice that in case of a non-breakable activity, dbvar = 0 and we have the regular formula for the energy
calculation. In the same way, this relaxation allows us to take into account that activities can overlap breaks.
Similarly, if no break overlap happens, and if the duration of breaks is equal to the length of the bucket, pt(act,
bkt) = 0.

The duration of breaks in a time bucket must be given before the propagation. Otherwise one can always
suppose that the time bucket can be filled by breaks, making the relaxation inefficient.

This relaxation may or may not be used in conjunction with break constraints. In the last case, the user must
bound the duration of the breakable activities.

The propagation of energy constraints is always based on timetables.

Printing or DisplayingDiscrete Energy Resources

The printed representation of an instance of the class IlcDiscreteEnergy consists of its name, followed by
information about its capacity and the time step of its timetable enclosed in parentheses. If no timetable has been
created, the empty parenthesis are displayed. For example:

[10 (5)] represents a discrete energy resource with a capacity equal to 10 and a timetable time step equal to
5.

[3 ()] represents a discrete energy resource with a capacity equal to 3 and no timetable.

If the Solver trace is active and the resource is not named, the string "IlcDiscreteEnergy" is followed by the
address of the implementation object. The address will be enclosed in parentheses.

For more information, see Calendars, Timetable, Transition Time in Scheduler Engine, and Type Timetable
Constraint.

See Also: IlcCapResource, IlcDiscreteEnergyIterator, IlcIntTimetable, IlcResource, IlcResourceConstraint

156

Constructor Summary

public IlcDiscreteEnergy()

public IlcDiscreteEnergy(IlcDiscreteEnergyI * impl)

public IlcDiscreteEnergy(IlcSchedule schedule, IlcInt timeStep, IlcInt energy,
IlcBool timetable=IlcTrue)

public IlcDiscreteEnergy(IlcSchedule schedule, IlcInt timeStep, IlcInt energy,
IlcTransitionTimeObject ttobj, IlcBool timetable=IlcTrue)

Method Summary

public IlcBool areBreaksClosed() const

public void closeBreaks()

public IlcInt getBreaksDuration(IlcInt time) const

public IlcInt getEnergy() const

public IlcInt getEnergyMax(IlcInt time) const

public IlcInt getEnergyMaxMax(IlcInt timeMin, IlcInt timeMax) const

public IlcInt getEnergyMaxMin(IlcInt timeMin, IlcInt timeMax) const

public IlcInt getEnergyMin(IlcInt time) const

public IlcInt getEnergyMinMax(IlcInt timeMin, IlcInt timeMax) const

public IlcInt getEnergyMinMin(IlcInt timeMin, IlcInt timeMax) const

public IlcDiscreteEnergyI * getImpl() const

public IlcConstraint getTypeTimetableConstraint() const

public IlcBool hasTypeTimetableConstraint() const

public IlcConstraint makeTimetableConstraintWB(IlcInt timeMin, IlcInt
timeMax, IlcInt timeStep, IlcInt energy, IlcInt db)

public IlcConstraint makeTypeTimetableConstraint(IlcBool
useBatch=IlcFalse)

public void operator=(const IlcDiscreteEnergy & h)

public void setBreaksDuration(IlcInt timeMin, IlcInt timeMax,
IlcInt value)

public void setEnergyMax(IlcInt timeMin, IlcInt timeMax, IlcInt
energyMax)

public void setEnergyMin(IlcInt timeMin, IlcInt timeMax, IlcInt
energyMin)

public void setTimetablePropagation(IlcInt level=1L)

Inherited Methods from IlcCapResource

getImpl, getMaxTextureMeasurement, getMinTextureMeasurement, getTimetable,
getTimetable, hasInitialOccupation, hasMaxTextureMeasurement,
hasMinTextureMeasurement, incrDurableRequirement, incrDurableRequirement,
isRedundantResource, makeBalanceConstraint, makeMaxTextureMeasurement,
makeMinTextureMeasurement, makeTimetableConstraint, makeTimetableConstraint,
makeTimetableConstraint, operator=, setInitialOccupation, setInitialOccupation,
unsetInitialOccupation

Inherited Methods from IlcResource

close, getCalendar, getDisjunctiveConstraint, getDurableSchedule, getImpl,

157

getLastRankedFirstRC, getLastRankedLastRC, getLastSurelyContributingRankedFirstRC,
getLastSurelyContributingRankedLastRC, getName, getObject,
getOldLastRankedFirstRC, getOldLastRankedLastRC, getPrecedenceGraphConstraint,
getSchedule, getSolver, getSolverI, getTimetableConstraint, getTransitionTime,
hasCalendar, hasDisjunctiveConstraint, hasLightPrecedenceGraphConstraint,
hasPrecedenceGraphConstraint, hasPrecedenceInfo, hasRankInfo,
hasTimetableConstraint, isCapacityResource, isClosed, isContinuousReservoir,
isDiscreteEnergy, isDiscreteResource, isDurable, isReservoir, isStateResource,
isTransitionTimeSuspended, isUnaryResource, makeFunctionalConstraint,
makeIntegralConstraint, makeLightPrecedenceGraphConstraint,
makePrecedenceGraphConstraint, operator!=, operator=, operator==, setCalendar,
setName, setObject, setTransitionTimeObject, setTransitionTimeSuspended,
whenContribution, whenDirectPredecessors, whenDirectSuccessors, whenNext,
whenPossibleNext, whenPossiblePrevious, whenPredecessors, whenPrevious,
whenRankedFirstRC, whenRankedLastRC, whenSuccessors

Constructors

public IlcDiscreteEnergy()

This constructor creates an instance which is empty, that is, one whose handle pointer is null. You must assign it
a value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IlcDiscreteEnergy(IlcDiscreteEnergyI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IlcDiscreteEnergy(IlcSchedule schedule, IlcInt timeStep, IlcInt energy,
IlcBool timetable=IlcTrue)

This constructor creates a new instance of IlcDiscreteEnergy and adds it to the set of resources managed in
the given schedule. If timetable is IlcTrue, then a timetable constraint is posted; that constraint states that
the energy of the resource is limited to energy for each interval [t (t + timeStep)) where t = timeMin
+ i * timeStep, timeMin is the origin, and t is less than the horizon.

An instance of IloSolver::SolverErrorException is thrown if any of the following conditions occur:

if timeStep is not strictly positive;•
if the time horizon minus the time origin is not a multiple of timeStep;•
if energy is negative.•

If timetable is IlcFalse, then energy is managed as the energy of the resource, and timeStep is ignored in
that case.

public IlcDiscreteEnergy(IlcSchedule schedule, IlcInt timeStep, IlcInt energy,
IlcTransitionTimeObject ttobj, IlcBool timetable=IlcTrue)

This constructor creates a new instance of IlcDiscreteEnergy and adds it to the set of resources managed in
the given schedule. If timetable is IlcTrue, then a timetable constraint is posted; that constraint states that
the energy of the resource is limited to energy for each interval [t (t + timeStep)) where t = timeMin
+ i * timeStep, timeMin is the origin, and t is less than the horizon.

An instance of IloSolver::SolverErrorException is thrown if any of the following conditions occur:

if timeStep is not strictly positive;•
if the time horizon minus the time origin is not a multiple of timeStep;•
if energy is negative.•

158

If timetable is IlcFalse, then energy is managed as the energy of the resource, and timeStep is ignored in
that case.

The argument ttobj indicates which transition time function will be used for the invoking resource. The
argument ttobj must have been built with an instance of IlcTransitionTable. Transition times are taken
into account only when the type timetable constraint is posted. Please see Transition Time in Scheduler Engine
and Type Timetable Constraint for more information.

Methods

public IlcBool areBreaksClosed() const

This member function returns IlcTrue if all the timetables with breaks declared on the invoking energy resource
are closed. If a timetable with breaks is closed, the durations of breaks is completely specified for each bucket of
the timetable.

At post time of the timetable constraints, the declaration of the break duration is automatically closed.

public void closeBreaks()

This member function closes the declaration of the duration of breaks for all the timetables with breaks declared
on the invoking energy. If a timetable with breaks is closed, the durations of breaks is completely specified for
each bucket of the timetable.

At post time of the timetable constraints, the declaration of the break duration is automatically closed.

public IlcInt getBreaksDuration(IlcInt time) const

This member function returns the duration of breaks declared in the bucket of the timetable containing the given
time. If the timetable does not take into account the duration of the breaks per bucket, it returns 0. An instance of
IloSolver::SolverErrorException is thrown if the timetables of the invoking resource do not cover the
given time.

public IlcInt getEnergy() const

This member function returns the theoretical energy of the invoking resource, that is, the energy that was passed
to the resource constructor. If the theoretical energy is unlimited, this member function returns IlcIntMax.

public IlcInt getEnergyMax(IlcInt time) const

This member function returns the maximal energy that can be used at the given time. An instance of
IloSolver::SolverErrorException is thrown if a timetable of the invoking resource do not cover the given
time.

public IlcInt getEnergyMaxMax(IlcInt timeMin, IlcInt timeMax) const

This member function returns the maximal energy that can be used throughout the interval [timeMin,
timeMax) (that is, the maximal value over the interval [timeMin, timeMax) of the maximal resource energy).
An instance of IloSolver::SolverErrorException is thrown if the timetables of the invoking resource do
not cover the complete interval indicated by [timeMin, timeMax).

159

public IlcInt getEnergyMaxMin(IlcInt timeMin, IlcInt timeMax) const

This member function returns the maximal value, over the interval [timeMin, timeMax), of the minimal
resource energy. An instance of IloSolver::SolverErrorException is thrown if the timetables of the
invoking resource do not cover the complete interval indicated by [timeMin, timeMax).

public IlcInt getEnergyMin(IlcInt time) const

This member function returns the minimal energy that must be used at the given time. An instance of
IloSolver::SolverErrorException is thrown if the timetables of the invoking resource do not cover the
given time.

public IlcInt getEnergyMinMax(IlcInt timeMin, IlcInt timeMax) const

This member function returns the minimal value, over the interval [timeMin, timeMax), of the maximal
resource energy. An instance of IloSolver::SolverErrorException is thrown if the timetables of the
invoking resource do not cover the complete interval indicated by [timeMin, timeMax).

public IlcInt getEnergyMinMin(IlcInt timeMin, IlcInt timeMax) const

This member function returns the minimal energy that must be used throughout the interval [timeMin,
timeMax) (that is, the minimal value over the interval [timeMin, timeMax) of the minimal resource energy).
An instance of IloSolver::SolverErrorException is thrown if the timetables of the invoking resource do
not cover the complete interval indicated by [timeMin, timeMax).

public IlcDiscreteEnergyI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IlcConstraint getTypeTimetableConstraint() const

This member function returns the type timetable constraint of the invoking resource.

public IlcBool hasTypeTimetableConstraint() const

This member function returns IlcTrue if the invoking resource has a type timetable constraint. Otherwise, it
returns IlcFalse.

public IlcConstraint makeTimetableConstraintWB(IlcInt timeMin, IlcInt timeMax,
IlcInt timeStep, IlcInt energy, IlcInt db)

This member function creates and returns a timetable constraint taking into account both the energy and the
duration of breaks per buckets for the invoking resource. This timetable constraint implies that the energy per
bucket of the resource is limited to energy, and the duration of breaks per bucket is limited to db. The constraint
is enforced from timeMin to timeMax and allows to change the energy and duration of breaks per buckets only
at times timeMin + i*timeStep.

An instance of IloSolver::SolverErrorException is thrown if any of the following conditions occur:

160

if timeStep is not strictly positive;•
if timeMin is not strictly less than timeMax;•
if timeMax minus timeMin is not a multiple of timeStep;•
if the new timetable overlaps another timetable that has already been created for the invoking resource.•

public IlcConstraint makeTypeTimetableConstraint(IlcBool useBatch=IlcFalse)

This member function attaches a type timetable constraint to the resource and returns it.

The type timetable constraint uses the transition time object that was passed to the constructor of the invoking
resource to propagate the transition times. This transition time object needs to have been built with an instance of
IlcTransitionTable. An instance of IloSolver::SolverErrorException is thrown if no transition time
object was passed to the constructor of the resource or if the transition time object was not built with an instance
of IlcTransitionTable.

The useBatch parameter allows you to batch overlapping activities together that use the same resource and
that are of the same transition type. Basically, if the execution time of the activities overlaps on the resource, then
the activities will be constrained to start and end at the same time. If the execution time of the activities does not
intersect on the resource, then the useBatch parameter has no effect on the activities. Although the activities
must be of the same transition type, the transition time has no effect on the action of useBatch.

public void operator=(const IlcDiscreteEnergy & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument. After execution of this operator, the invoking object and the
provided argument point to the same implementation object.

public void setBreaksDuration(IlcInt timeMin, IlcInt timeMax, IlcInt value)

This member function returns the duration of breaks in the buckets that intersect the interval [timeMin,
timeMax). If the timetable has its declaration of the duration of breaks closed, the call to the function is ignored.
An instance of IloSolver::SolverErrorException is thrown if the timetables of the invoking resource do
not cover the complete interval indicated by [timeMin, timeMax).

public void setEnergyMax(IlcInt timeMin, IlcInt timeMax, IlcInt energyMax)

This member function states that at most energyMax can be used throughout at the interval [timeMin,
timeMax). An instance of IloSolver::SolverErrorException is thrown if the timetables of the invoking
resource do not cover the complete interval indicated by [timeMin, timeMax).

public void setEnergyMin(IlcInt timeMin, IlcInt timeMax, IlcInt energyMin)

This member function states that at least energyMin must be used throughout at the interval [timeMin,
timeMax). An instance of IloSolver::SolverErrorException is thrown if the timetables of the invoking
resource do not cover the complete interval indicated by [timeMin, timeMax).

The resource must be closed in order to propagate a non-zero minimal energy.

public void setTimetablePropagation(IlcInt level=1L)

When the argument level is equal to 1, this member function switches on extra propagation for the maximal
duration and maximal capacity of resource constraints on the resource. This extra propagation globally analyzes

161

the timetable of the resource to identify two things:

Temporal intervals where the maximal duration of the activity can be supported if the resource
constraint requires its minimal capacity

1.

Temporal intervals where the maximal capacity of the resource constraint can be supported if the
duration of the activity equals its minimal duration.

2.

The constraint finds new upper bounds on duration and capacity that are supported by such time intervals.

For example, consider a schedule with 3 activities: a0 (fixed start time 0, fixed end time 8), a1 (fixed start time 15,
fixed end time 20) and a2 (earliest start time 0, latest end time 21, variable duration in [13..21]). All three activities
require the same discrete energy resource res (time step = 7, energy = 100 on each steps [0..7),[7..14),[14..21)
etc.). Suppose that a0 and a1 both require 10 units of res. The extra propagation at level 1 will deduce that, given
the current timetable, the maximal capacity of a2 is 12, and that this maximal capacity can be satisfied if a2 starts
at 5 and finishes at 18.

When the level is equal to 0, the extra propagation above is not performed. The propagation level can be
changed in a reversible way during the search.

162

Class IlcDiscreteEnergyIterator
Definition file: ilsched/energy.h
Include file: <ilsched/ilsched.h>

An instance of this class traverses the set of discrete energy resources.

See Also: IlcDiscreteEnergy, IlcSchedule

Constructor and Destructor Summary

public IlcDiscreteEnergyIterator(const IlcSchedule schedule)

Method Summary

public IlcBool ok() const

public IlcDiscreteEnergy operator*() const

public IlcDiscreteEnergyIterator & operator++()

Constructors and Destructors

public IlcDiscreteEnergyIterator(const IlcSchedule schedule)

This constructor creates an iterator to traverse all the discrete energy resources of schedule.

Methods

public IlcBool ok() const

This member function returns IlcTrue if the current position of the iterator is a valid one. It returns IlcFalse if
all the discrete resources have been scanned by the iterator.

public IlcDiscreteEnergy operator*() const

This operator accesses the instance of IlcDiscreteEnergy located at the current position of the iterator. If the
iterator is set past the end position, this operator returns an empty handle.

public IlcDiscreteEnergyIterator & operator++()

This left-increment operator shifts the current position of the iterator.

163

Class IlcDiscreteResource
Definition file: ilsched/discrete.h
Include file: <ilsched/ilsched.h>

An instance of the class IlcDiscreteResource represents a resource of discrete capacity. Capacity can vary
over time: at any given time, the capacity represents the number of copies or instances of the resource that are
available, for example, the number of milling machines available in a manufacturing shop or the number of
bricklayers at work on a construction site. By discrete, we mean that capacity is defined to be a non-negative
integer.

Each activity may require some amount of the resource capacity, for example, one milling machine or three
bricklayers. This requirement is represented by resource constraints, and propagating these constraints entails
an update of the earliest and latest start and end times of activities.

Theoretical and Maximal Capacity

The theoreticalcapacity of a discrete resource is a bound (that is, a limit) on the amount of capacity that can be
used at any point in time. This idea can be contrasted with the maximal capacity that can be used "in practice" at
a particular point in time or over a particular interval of time. The maximal capacity typically varies over time,
while the theoretical capacity is an intrinsic property of the resource. The theoretical capacity can be infinite. Also,
at any point in time, the maximal capacity cannot exceed the theoretical capacity.

Minimal Capacity

It is also possible to constrain the capacity used so that it exceeds some minimal capacity over some interval of
time. An inconsistency will be detected if at any point in time the minimal capacity exceeds the maximal capacity.

Constraints on Discrete Resources

For discrete resources, there are several methods to take into account the constraints concerning a resource.

The first method allows capacity to vary over time: at any given time, a maximal and a minimal capacity
can be defined representing the number of instances of the resource that are available at that time. This
method depends on posting a timetable constraint. This method is sound, which means that it ensures
that any schedule on the resource satisfy the maximal and minimal capacity constraints.

•

A second method deals only with requiring activities. It consists of posting a balance constraint to insure
that the theoretical capacity is satisfied. This constraint analyzes the precedence relations between
activities requiring the resource, and discovers new precedences as well as new time bounds. Provided
that the maximal capacity of the resource is constant over time, this method is sound, which means that
it ensures that any schedule on the resource satisfies the maximal capacity constraints. This method
does not handle the minimal capacity of the resource.

•

A third method consists of posting a global disjunctive constraint. This constraint ensures that each pair
of activities that require a combined capacity that exceeds the capacity of the resource are not
scheduled at the same time. In general, using this constraint alone is not enough to ensure that any
schedule on the resource satisfy the maximal capacity constraints so that this method must be used in
conjunction with either the timetable or the balance constraint.

•

Note that when you use this third method, you can increase the level of propagation even further: rather than
considering only pairs of activities (A1 A2) to prove that A1 must precede A2 or vice-versa, the constraint
propagation process can consider arbitrary tuples {A1 ... An} of activities to prove that some activity Ai must
execute first (or must execute last) among the activities in the tuple, {A1 ... An}. This algorithm is known as
edge-finding.

164

Printing or Displaying Discrete Resources

The printed representation of an instance of the class IlcDiscreteResource consists of its name, followed by
information about its capacity enclosed in brackets. For example:

[10] represents a discrete resource with a capacity equal to 10.

If the Solver trace is active and the resource is not named, the string "IlcDiscreteResource" is followed by
the address of the implementation object. The address will be enclosed in parentheses.

For more information, see Balance Constraint, Disjunctive Constraint, Edge Finder, Timetable, and Transition
Time in Scheduler Engine.

See Also: IlcCapResource, IlcDiscreteResourceIterator, IlcIntTimetable, IlcResource, IlcResourceConstraint

Constructor Summary

public IlcDiscreteResource()

public IlcDiscreteResource(IlcDiscreteResourceI * impl)

public IlcDiscreteResource(IlcSchedule schedule, IlcInt capacity, IlcBool
timetable=IlcTrue)

public IlcDiscreteResource(IlcSchedule schedule, IlcInt capacity,
IlcTransitionTimeObject ttobj, IlcBool timetable=IlcTrue)

Method Summary

public IlcInt getCapacity() const

public IlcInt getCapacityMax(IlcInt time) const

public IlcInt getCapacityMaxMax(IlcInt timeMin, IlcInt timeMax)
const

public IlcInt getCapacityMaxMin(IlcInt timeMin, IlcInt timeMax)
const

public IlcInt getCapacityMin(IlcInt time) const

public IlcInt getCapacityMinMax(IlcInt timeMin, IlcInt timeMax)
const

public IlcInt getCapacityMinMin(IlcInt timeMin, IlcInt timeMax)
const

public IlcInt getGlobalSlack() const

public IlcDiscreteResourceI * getImpl() const

public IlcInt getLocalSlack() const

public IlcConstraint getTypeTimetableConstraint() const

public IlcBool hasTypeTimetableConstraint() const

public IlcConstraint makeDisjunctiveConstraint()

public IlcConstraint makeTypeTimetableConstraint(IlcBool
useBatch=IlcFalse)

public void operator=(const IlcDiscreteResource & h)

public void setCapacityMax(IlcInt timeMin, IlcInt timeMax,
IlcInt capacityMax)

public void setCapacityMin(IlcInt timeMin, IlcInt timeMax,
IlcInt capacityMin)

public void setEdgeFinder(IlcInt edgeFinder=1)

165

public void setPrecedencePropagation(IlcInt level=1L)

public void setTimetablePropagation(IlcInt level=1L)

public void storeSufficientDirectSuccessors(IloSchedulerSolution
solution, IloRandom rand=0)

Inherited Methods from IlcCapResource

getImpl, getMaxTextureMeasurement, getMinTextureMeasurement, getTimetable,
getTimetable, hasInitialOccupation, hasMaxTextureMeasurement,
hasMinTextureMeasurement, incrDurableRequirement, incrDurableRequirement,
isRedundantResource, makeBalanceConstraint, makeMaxTextureMeasurement,
makeMinTextureMeasurement, makeTimetableConstraint, makeTimetableConstraint,
makeTimetableConstraint, operator=, setInitialOccupation, setInitialOccupation,
unsetInitialOccupation

Inherited Methods from IlcResource

close, getCalendar, getDisjunctiveConstraint, getDurableSchedule, getImpl,
getLastRankedFirstRC, getLastRankedLastRC, getLastSurelyContributingRankedFirstRC,
getLastSurelyContributingRankedLastRC, getName, getObject,
getOldLastRankedFirstRC, getOldLastRankedLastRC, getPrecedenceGraphConstraint,
getSchedule, getSolver, getSolverI, getTimetableConstraint, getTransitionTime,
hasCalendar, hasDisjunctiveConstraint, hasLightPrecedenceGraphConstraint,
hasPrecedenceGraphConstraint, hasPrecedenceInfo, hasRankInfo,
hasTimetableConstraint, isCapacityResource, isClosed, isContinuousReservoir,
isDiscreteEnergy, isDiscreteResource, isDurable, isReservoir, isStateResource,
isTransitionTimeSuspended, isUnaryResource, makeFunctionalConstraint,
makeIntegralConstraint, makeLightPrecedenceGraphConstraint,
makePrecedenceGraphConstraint, operator!=, operator=, operator==, setCalendar,
setName, setObject, setTransitionTimeObject, setTransitionTimeSuspended,
whenContribution, whenDirectPredecessors, whenDirectSuccessors, whenNext,
whenPossibleNext, whenPossiblePrevious, whenPredecessors, whenPrevious,
whenRankedFirstRC, whenRankedLastRC, whenSuccessors

Constructors

public IlcDiscreteResource()

This constructor creates an instance which is empty, that is, one whose handle pointer is null. You must assign it
a value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IlcDiscreteResource(IlcDiscreteResourceI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IlcDiscreteResource(IlcSchedule schedule, IlcInt capacity, IlcBool
timetable=IlcTrue)

This constructor creates a new instance of IlcDiscreteResource and adds it to the set of resources
managed by schedule. The capacity of the resource is limited to capacity.

The argument timetable indicates whether the standard timetable constraint should be posted. The standard
timetable constraint manages the capacity of the resource from the time origin to the time horizon of the given
schedule and allows the capacity to change at any point in time; that is, it defines a time step of 1 (one).

public IlcDiscreteResource(IlcSchedule schedule, IlcInt capacity,
IlcTransitionTimeObject ttobj, IlcBool timetable=IlcTrue)

166

This constructor creates a new instance of IlcDiscreteResource and adds it to the set of resources
managed by schedule. The capacity of the resource is limited to capacity.

The argument ttobj indicates which transition time function will be used for the invoking resource. The
argument ttobj must have been built with an instance of IlcTransitionTable. An instance of
IloSolver::SolverErrorException is thrown if this is not the case.

Transition times are taken into account when the disjunctive constraint or the type timetable constraint is posted.
Transition times are only propagated between two activities that are incompatible. As the disjunctive constraint
defines incompatibility based on the resource demand of the activities and the type timetable constraint defines
incompatibility based on the transition types of the activities, they do not propagate in the same manner. Please
see Transition Time in Scheduler Engine and Type Timetable Constraint for more information. Note that when
the precedence graph constraint is posted, transition times are also propagated between successor resource
constraints.

The argument timetable indicates whether the standard timetable constraint should be posted. The standard
timetable constraint manages the capacity of the resource from the time origin to the time horizon of the given
schedule and allows the capacity to change at any point in time; that is, it defines a time step of 1 (one).

Methods

public IlcInt getCapacity() const

This member function returns the theoretical capacity of the invoking resource, that is, the capacity that was
passed to the resource constructor.

public IlcInt getCapacityMax(IlcInt time) const

This member function returns the maximal capacity that can be used at the given time. An instance of
IloSolver::SolverErrorException is thrown if the timetables of the invoking resource do not cover the
given time.

public IlcInt getCapacityMaxMax(IlcInt timeMin, IlcInt timeMax) const

This member function returns the maximal value of the maximal resource capacity over the interval [timeMin,
timeMax). An instance of IloSolver::SolverErrorException is thrown if the timetables of the invoking
resource do not cover the complete interval indicated by [timeMin, timeMax).

public IlcInt getCapacityMaxMin(IlcInt timeMin, IlcInt timeMax) const

This member function returns the maximal value of the minimal resource capacity over the interval [timeMin,
timeMax). An instance of IloSolver::SolverErrorException is thrown if the timetables of the invoking
resource do not cover the complete interval indicated by [timeMin, timeMax).

public IlcInt getCapacityMin(IlcInt time) const

This member function returns the minimal capacity that must be used or is actually used at the given time. An
instance of IloSolver::SolverErrorException is thrown if the timetables of the invoking resource do not
cover the given time.

167

public IlcInt getCapacityMinMax(IlcInt timeMin, IlcInt timeMax) const

This member function returns the minimal value of the maximal resource capacity over the interval [timeMin,
timeMax). An instance of IloSolver::SolverErrorException is thrown if the timetables of the invoking
resource do not cover the complete interval indicated by [timeMin, timeMax).

public IlcInt getCapacityMinMin(IlcInt timeMin, IlcInt timeMax) const

This member function returns the minimal value of the minimal resource capacity over the interval [timeMin,
timeMax). An instance of IloSolver::SolverErrorException is thrown if the timetables of the invoking
resource do not cover the complete interval indicated by [timeMin, timeMax).

public IlcInt getGlobalSlack() const

This member function measures the overall capacity still available of the invoking resource. To do so, it looks at
all the resource constraints that surely use the invoking resource and for which the activities have not yet been
assigned a start time and calculates their overall minimal start time, smin, and their overall maximal end time,
emax. It then computes the sum of all minimal energies of the activities that should be processed between smin
and emax. It returns the maximal available energy between smin and emax minus this calculated sum of minimal

energies; that is,

The minimal energy of an activity is defined as the minimum of the product of the duration of the activity and the
required capacity of the activity on the resource.

Note that the global slack does not take into account the maximal capacity profile or the break list eventually
defined on the invoking resource.

public IlcDiscreteResourceI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IlcInt getLocalSlack() const

This member function returns the minimal slack over all intervals [t1, t2) where t1 corresponds to the earliest start
time of an activity and t2 corresponds to the latest end time of an activity and for which it holds that [t1, t2) is
included in the interval [smin, emax) where smin is the overall minimal start time and emax the overall maximal
end time of the set of activities that surely use the invoking resource and that have not yet been assigned a start
time.

The slack in an interval [t1, t2) is defined as (t2 - t1)*getCapacity - sumEnergy(t1, t2), where sumEnergy(t1, t2) is
the sum of the minimal energy of activities that have to be scheduled between t1 and t2. The minimal energy of
an activity is defined as the minimum of the product of the duration of the activity and the required capacity of the
activity on the resource.

If all activities that surely use the resource have been assigned a start time, this member function returns the
product of the capacity of the resource and the difference between the scheduling horizon and the scheduling
origin ((schedule.getTimeMax() - schedule.getTimeMin())*getCapacity(), where schedule is the schedule of the
invoking resource).

Note that the local slack does not take into account the maximal capacity profile or the break list eventually
defined on the invoking resource.

Example

168

Let's consider an example. Let's say we're scheduling three activities, A, B, and C, of which we know that activity
A has a duration of only two days and can take place anytime in the next twenty days; activity B lasts 5 days,
cannot start before day 1, and must be finished by day 12; and finally activity C will last 4 days, can start on day
2, and must be finished by day 13. All 3 activities require a capacity of 1 from a resource with a capacity of 2

If we consider the problem globally, we look at all the earliest start times, and among those values, we take the
minimal. That is, we take the smallest of the earliest start times (that's day 0 for activity A) and the last of the
latest end times (that's day 20 for activity A), so there are 40 capacity-days (20 days * 2 capacity) available to us;
and the activities take only 11 days (2+5+4) total; so we have 29 capacity days (40-11) slack globally.

However, if we refine our idea of slack by considering the earliest start time of any activity and the latest end time
of any other activity, we get much tighter slack times. By considering the earliest start time of activity B and the
latest end time of activity C, we'll get an overall span of 12 days. The total duration of the activities that must
absolutely execute during this period is 9 days (5 days for B and 4 days for C), so we now have only 15 capacity
days ((12*2)-9) of slack.

public IlcConstraint getTypeTimetableConstraint() const

This member function returns the type timetable constraint of the invoking resource.

public IlcBool hasTypeTimetableConstraint() const

This member function returns IlcTrue if the invoking resource has a type timetable constraint. Otherwise, it
returns IlcFalse.

public IlcConstraint makeDisjunctiveConstraint()

This member function creates and returns the global disjunctive constraint associated with the invoking resource.
That constraint has to be posted in order to be taken into account. For more information, see Disjunctive
Constraint.

public IlcConstraint makeTypeTimetableConstraint(IlcBool useBatch=IlcFalse)

This member function attaches a type timetable constraint to the resource and returns it.

The type timetable constraint uses the transition time object that was passed to the constructor of the invoking
resource to propagate the transition times. This transition time object needs to have been built with an instance of
IlcTransitionTable. An instance of IloSolver::SolverErrorException is thrown if no transition time
object was passed to the constructor of the resource or if the transition time object was not built with an instance
of IlcTransitionTable.

The useBatch parameter allows you to batch overlapping activities together that use the same resource and
that are of the same transition type. Basically, if the execution time of the activities overlaps on the resource, then
the activities will be constrained to start and end at the same time. If the execution time of the activities does not
intersect on the resource, then the useBatch parameter has no effect on the activities. Although the activities
must be of the same transition type, the transition time has no effect on the action of useBatch.

public void operator=(const IlcDiscreteResource & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument. After execution of this operator, the invoking object and the
provided argument point to the same implementation object.

169

public void setCapacityMax(IlcInt timeMin, IlcInt timeMax, IlcInt capacityMax)

This member function states that at most capacityMax can be used throughout the interval [timeMin,
timeMax). An instance of IloSolver::SolverErrorException is thrown if the timetables of the invoking
resource do not cover the complete interval indicated by [timeMin, timeMax).

public void setCapacityMin(IlcInt timeMin, IlcInt timeMax, IlcInt capacityMin)

This member function states that at least capacityMin must be used throughout the interval [timeMin,
timeMax). Only if the resource is closed will this result in propagation. If the resource is not closed, any number
of resource constraints can still be added, and thus no deductions can be made. An instance of
IloSolver::SolverErrorException is thrown if the timetables of the invoking resource do not cover the
complete interval indicated by [timeMin, timeMax).

public void setEdgeFinder(IlcInt edgeFinder=1)

If the parameter edgeFinder is 1 (one), then this member function switches on the extra propagation for
Disjunctive Constraint. If edgeFinder is strictly greater than 1 and the resource is an instance of the class
IlcUnaryResource, an extra level of propagation is switched on also. If edgeFinder is 0 (zero), all extra
propagation is switched off. Note that if the invoking resource is not an instance of IlcUnaryResource, then
the disjunctive constraints must have been created on the resource.

Extra propagation should not be used when a very large capacity is defined for the resource. That extra
propagation requires the calculation of the available “energy” of the resource; that energy is defined as the
theoretical capacity multiplied by the available time. Having such a large capacity might lead to overflow
problems.

public void setPrecedencePropagation(IlcInt level=1L)

This member function should be used only if a precedence graph constraint has been created on the resource. It
switches on an extra propagation for the precedence graph constraint.

If level is 1, the extra propagation computes new bounds for the start time and completion time of the resource
constraints in the graph by analyzing their direct predecessors and successors.

If level is 2, this extra propagation computes new bounds for the start time and completion time of the resource
constraints in the graph by analyzing all their predecessors and successors.

For example, consider a schedule with 4 activities: a1 (earliest start time = 0, duration = 20), a2 (earliest start
time = 0, duration = 30), a3 (earliest start time = 0, duration = 40) and b that require the same discrete resource
res (capacity = 2). Suppose that a2 requires 2 units of res whereas all other activities require 1 unit of res. If, on
the precedence graph of resource res, activity a2 is constrained to be successor of a1 and activity b is
constrained to be successor of both activities a2 and a3, the extra-propagation at level 1 will deduce that b
cannot start before 50 while the extra-propagation at level 2 will deduce that b cannot start before 60.

public void setTimetablePropagation(IlcInt level=1L)

When the argument level is equal to 1, this member function switches on extra propagation for the maximal
duration and maximal capacity of resource constraints on the resource. This extra propagation globally analyzes
the timetable of the resource to identify two things:

Temporal intervals where the maximal duration of the activity can be supported should the resource
constraint require its minimal capacity

1.

170

Temporal intervals where the maximal capacity of the resource constraint can be supported should the
duration of the activity equal its minimal duration.

2.

The constraint finds new upper bounds on duration and capacity that are supported by such time intervals.

For example, consider a schedule with two activities: a0 (fixed start time 20, fixed end time 70) and a1 (earliest
start time = 0, latest end time 100, variable duration in [10..100]). These two activities require the same discrete
resource res (capacity = 2). Suppose that a0 requires 1 unit of res whereas a1 requires 2 units of res. The extra
propagation at level 1 will deduce that the maximal duration of a1 is 30. This is because the two time intervals
where a1 could be executed, given its minimal requirement of 2 units of res, are [0,20] and [70,100]. The maximal
duration of 30 corresponds to this last interval.

When the level is equal to 0, the extra propagation above is not performed. The propagation level can be
changed in a reversible way during the search.

public void storeSufficientDirectSuccessors(IloSchedulerSolution solution,
IloRandom rand=0)

This member function stores in the solution a set of direct successors that are sufficient to ensure that the
theoretical capacity of the resource is not exceeded. It can be called even if no precedence graph has been
created. Only resource constraints that surely contribute and that have their start and end variables bound are
taken into account. When the optional parameter rand is used, a non-deterministic heuristic is used to select the
set of direct successors.

171

Class IlcDiscreteResourceIterator
Definition file: ilsched/discrete.h
Include file: <ilsched/ilsched.h>

An instance of this class traverses the set of discrete resources.

See Also: IlcDiscreteResource, IlcSchedule

Constructor and Destructor Summary

public IlcDiscreteResourceIterator(const IlcSchedule schedule)

Method Summary

public IlcBool ok() const

public IlcDiscreteResource operator*() const

public IlcDiscreteResourceIterator & operator++()

Constructors and Destructors

public IlcDiscreteResourceIterator(const IlcSchedule schedule)

This constructor creates an iterator to traverse all the discrete resources of schedule.

Methods

public IlcBool ok() const

This member function returns IlcTrue if the current position of the iterator is a valid one. It returns IlcFalse if
all the discrete resources have been scanned by the iterator.

public IlcDiscreteResource operator*() const

This operator accesses the instance of IlcDiscreteResource located at the current position of the iterator. If
the iterator is set past the end position, this operator returns an empty handle.

public IlcDiscreteResourceIterator & operator++()

This left-increment operator shifts the current position of the iterator.

172

Class IlcFollowingActivityIterator
Definition file: ilsched/schedule.h
Include file: <ilsched/ilsched.h>

During the search, an instance of this class traverses the activities that are such that a precedence constraint
holds between this activity and the activity given in the constructor of the iterator. If used before entering the
search, this iterator will traverse an empty list of activities.

This class of iterators does not distinguish among the precedence constraints created by means of the member
functions IlcActivity::startsAfterStart, IlcActivity::startsAfterEnd,
IlcActivity::endsAfterStart, IlcActivity::endsAfterEnd, IlcActivity::startsAtStart,
IlcActivity::startsAtEnd, IlcActivity::endsAtStart, IlcActivity::endsAtEnd. Whichever of
those member functions is used to create the precedence constraint, the invoking activity is identified as the one
that is constrained to occur after the activity passed as an argument to the member function. Likewise, the
activity passed as an argument to the member function is identified as the one that is constrained to occur before
the invoking activity. See the Example which follows for a program that illustrates that idea.

The order in which activities are seen by the iterator is platform-dependent and thus is not predictable.

Example

 Must be during search (e.g., inside a goal)

 IloSolver solver = getSolver();
 IlcScheduler schedule(solver, 0, 20);

 IlcActivity A(schedule, 5); A.setName("A");
 IlcActivity B(schedule, 5); B.setName("B");
 IlcActivity C(schedule, 5); C.setName("C");

 solver.add(A.startsAtEnd(C));
 solver.add(B.endsAtStart(C));
 solver.add(A.startsAfterEnd(B, 2));

 solver.out() << "Preceding A:" << endl;
 for(IlcPrecedingActivityIterator precedingActivityIterator(A);
 precedingActivityIterator.ok();
 ++precedingActivityIterator)
 solver.out() << " " << *precedingActivityIterator << endl;

 solver.out() << "Following C:" << endl;
 for (IlcFollowingActivityIterator followingActivityIterator(C);
 followingActivityIterator.ok();
 ++followingActivityIterator)
 solver.out() << " " << *followingActivityIterator << endl;

See Also: IlcActivity, IlcPrecedenceConstraint, IlcPrecedingActivityIterator

Constructor and Destructor Summary

public IlcFollowingActivityIterator(IlcActivity activity,
IlcResourceConstraintIteratorFilter filter=IlcAllConstraints)

Method Summary

public IlcPrecedenceConstraint getPrecedenceConstraint() const

public IlcBool ok() const

173

public IlcActivity operator*() const

public IlcFollowingActivityIterator & operator++()

Constructors and Destructors

public IlcFollowingActivityIterator(IlcActivity activity,
IlcResourceConstraintIteratorFilter filter=IlcAllConstraints)

This constructor creates an iterator to traverse all the activities constrained to follow activity.

Methods

public IlcPrecedenceConstraint getPrecedenceConstraint() const

This member function returns the precedence constraint between the activity used by the constructor of the
invoking iterator and the activity at its current position.

public IlcBool ok() const

This member function returns IlcTrue if the current position of the iterator is a valid one. It returns IlcFalse if
all the activities have been scanned by the iterator.

public IlcActivity operator*() const

This operator accesses the instance of IlcActivity located at the current position of the iterator. If the iterator
is set past the end position, this operator returns an empty handle.

public IlcFollowingActivityIterator & operator++()

This operator shifts the current position of the iterator.

174

Class IlcGranularFunction
Definition file: ilsched/gfbase.h
Include file: <ilsched/ilsched.h>

An instance of IlcGranularFunction holds a description of a granular step-wise function.

The granular function must respect the following properties:

It is defined over the range [xmin,xmax), and takes only integer values.•
It consists only of steps with non-negative values. These steps are closed on the left and open on the
right.

•

Its maximum value multiplied by the width xmax-xmin of its definition interval must remain in the range
[0,IlcIntMax), in order to not overflow the platform integer representation.

•

These properties are checked when starting to solve the problem, and an exception will be thrown if necessary.

The positive granularity parameter is used as a scaling factor when computing the integral of the function. This
allows limited representation of non-integer function values. This is particularly the case for integral expressions
or constraints built with IlcGranularFunction (see Functional and Integral Constraints on Resources for
more information).

When computing the integral of the function over a given interval (for example, the start and end time of an
activity), the result is divided by the granularity, and the result rounded:

Four rounding modes are available when dividing by granularity. See Functional and Integral Constraints on
Resources for more information.

Note that the member function IlcGranularFunction::getValue does not use the granularity, but returns
the actual value stored in the function, without any scaling.

For more information, see Functional and Integral Constraints on Resources.

See Also: IlcResource, IlcFunctionalExp, IlcActivityIntegralExp, IlcGranularFunctionRoundingMode

Constructor Summary

public IlcGranularFunction()

public IlcGranularFunction(IlcGranularFunctionI * impl)

public IlcGranularFunction(IlcManager m, IlcInt xmin, IlcInt xmax, IlcInt
granularity=1, IlcGranularFunctionRoundingMode
rounding=IlcGranularFunctionRoundUpward)

Method Summary

public void close() const

public IlcInt getDefinitionIntervalMax() const

public IlcInt getDefinitionIntervalMin() const

public IlcInt getGranularity() const

public IlcGranularFunctionI * getImpl() const

175

public const char * getName() const

public IlcAny getObject() const

public IlcGranularFunctionRoundingMode getRoundingMode() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public IlcInt getValue(IlcInt x) const

public IlcBool isClosed() const

public IlcIntExp operator()(const IlcIntVar x) const

public void operator=(const IlcGranularFunction & h)

public void setName(const char * name) const

public void setObject(IlcAny object) const

public void setRoundingMode(IlcGranularFunctionRoundingMode
rounding) const

public void setValue(IlcInt x1, IlcInt x2, IlcInt
value) const

Constructors

public IlcGranularFunction()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcGranularFunction(IlcGranularFunctionI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcGranularFunction(IlcManager m, IlcInt xmin, IlcInt xmax, IlcInt
granularity=1, IlcGranularFunctionRoundingMode
rounding=IlcGranularFunctionRoundUpward)

This constructor creates a new instance of IlcGranularFunction, with granularity equal to granularity.
The initial function is on the interval [xmin, xmax), and will be set to a constant initial value of granularity
over this interval. The parameter rounding selects the default rounding mode applicable for an integral
constraint built with this instance.

Methods

public void close() const

This member function closes the invoking function. That is, it states that the function is known so constraint
propagation can proceed. This is a reversible operation. Any modification of a closed function will raise an error.

public IlcInt getDefinitionIntervalMax() const

This member function returns the right-most point of the interval of definition of the invoking granular function.

public IlcInt getDefinitionIntervalMin() const

176

This member function returns the left-most point of the interval of definition of the invoking granular function.

public IlcInt getGranularity() const

This member function returns the value of the granularity.

public IlcGranularFunctionI * getImpl() const

This constructor creates an object by copying another one. This constructor creates an object by copying another
one. This member function returns a pointer to the implementation object of the invoking handle.

public const char * getName() const

This member function returns the name of the invoking object.

public IlcAny getObject() const

This member function returns a pointer to the external object associated with the invoking object, if there is such
an association. It returns 0 (zero) otherwise.

public IlcGranularFunctionRoundingMode getRoundingMode() const

This member function returns the current rounding mode of the invoking granular function.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IloSolverI * getSolverI() const

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

public IlcInt getValue(IlcInt x) const

This member function returns the current value of the granular function at point x. This point must be inside the
range [xmin, xmax). Otherwise, an exception is thrown.

public IlcBool isClosed() const

This member function returns IlcTrue if the invoking object is closed. Otherwise, it returns IlcFalse.

public IlcIntExp operator()(const IlcIntVar x) const

This function creates and returns an integer expression constrained to be the value of the function at the value of
variable x. The granularity of the function must be equal to 1, otherwise, an error will be raised.

177

public void operator=(const IlcGranularFunction & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

public void setObject(IlcAny object) const

This member function establishes a link between the invoking object and an external object of which the invoking
object might be a data member.

public void setRoundingMode(IlcGranularFunctionRoundingMode rounding) const

This member function selects the rounding mode that will be used when creating an integral constraint with the
invoking granular function.

public void setValue(IlcInt x1, IlcInt x2, IlcInt value) const

This member function sets the value of the granular function to value over the interval [x1, x2). The
IlcGranularFunction must not be closed. The arguments x1 and x2 must respect xmin <= x1 < x2 <=
xmax, and value must be non-negative. Otherwise, an exception will be thrown.

178

Class IlcGranularFunctionCursor
Definition file: ilsched/gfbase.h
Include file: <ilsched/ilsched.h>

An instance of IlcGranularFunctionCursor traverses the segments of a granular function.

See Also: IlcGranularFunction

Constructor Summary

public IlcGranularFunctionCursor(const IlcGranularFunction func, IlcInt x)

Method Summary

public IlcInt getSegmentMax() const

public IlcInt getSegmentMin() const

public IlcInt getValue() const

public IlcBool ok() const

public void operator++()

public void operator--()

Constructors

public IlcGranularFunctionCursor(const IlcGranularFunction func, IlcInt x)

This constructor creates a cursor to traverse the segments of the granular function func. It is initialized at the
segment containing the position x. If this position is invalid, an error will be raised.

Methods

public IlcInt getSegmentMax() const

This member function returns the right-most valid position pertaining to the current segment.

public IlcInt getSegmentMin() const

This member function returns the left-most valid position pertaining to the current segment.

public IlcInt getValue() const

This member function returns the value taken by the function on the current segment.

public IlcBool ok() const

179

This member function returns IlcTrue if the current position of the cursor is a valid one. Otherwise, it returns
IlcFalse.

public void operator++()

This left-increment operator shifts the current position of the cursor to the next segment of the function.

public void operator--()

This left-decrement operator shifts the current position of the cursor to the previous segment of the function.

180

Class IlcIntervalList
Definition file: ilsched/breaks.h
Include file: <ilsched/ilsched.h>

An instance of the class IlcIntervalList represents a list of non-overlapping intervals. Each interval
[timeMin, timeMax) from the list is associated with a numerical type.

Such time intervals can be used, for instance, to represent breaks or shifts. As each interval can be associated
with an integer type, some specific behaviors can be defined on activities (ignore shift or break interval, break
interval possibly overlapped, and so forth).

Break and shift intervals can be attached to a calendar and then associated with resources and resource
constraints (see IlcCalendar).

Printing or Displaying Lists of Intervals

The printed representation of an instance of the class IlcIntervalList consists of its name, followed by the
first chronological interval and the last interval. For example:

<[20->40). . .[70->80)> represents a list of intervals whose first interval occurs in the time interval [20 40)
and whose last interval occurs in the time interval [70 80).

If the Solver trace is active and the resource is not named, the string "IlcIntervalList" is followed by the
address of the implementation object. The address will be enclosed in parentheses.

For more information, see Calendars.

See Also: IlcIntervalListCursor

Constructor Summary

public IlcIntervalList()

public IlcIntervalList(IlcIntervalListI * impl)

public IlcIntervalList(const IlcSchedule schedule)

Method Summary

public void addInterval(IlcInt start, IlcInt end, IlcInt type=OL)

public void addIntervalOnDuration(IlcInt start, IlcInt duration,
IlcInt type=OL)

public void addPeriodicInterval(IlcInt start, IlcInt duration,
IlcInt period)

public void addPeriodicInterval(IlcInt start, IlcInt duration,
IlcInt period, IlcInt end, IlcInt type=0L)

public void close()

public IlcIntervalListI * getImpl() const

public const char * getName() const

public IlcAny getObject() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

181

public IlcBool isClosed() const

public IlcBool isEmpty() const

public void open()

public void operator=(const IlcIntervalList & h)

public void removeInterval(IlcInt start, IlcInt end)

public void removeIntervalOnDuration(IlcInt start, IlcInt duration)

public void removePeriodicInterval(IlcInt start, IlcInt duration,
IlcInt period, IlcInt end)

public void removePeriodicInterval(IlcInt start, IlcInt duration,
IlcInt period)

public void setName(const char * name) const

public void setObject(IlcAny object) const

Constructors

public IlcIntervalList()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcIntervalList(IlcIntervalListI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcIntervalList(const IlcSchedule schedule)

This constructor creates a new instance of IlcIntervalList and adds it to the set of interval lists managed by
the given schedule. That newly constructed list of intervals is initially empty.

Methods

public void addInterval(IlcInt start, IlcInt end, IlcInt type=OL)

This member function adds an interval of type type to the invoking list of intervals. The start time and end time of
that newly added interval are set to start and end. By default, the type of the interval is 0.

An interval can be added to the interval list as long as it is not closed. The effect of this function is reversible.

Any attempt to add a new interval that overlaps with an already existing interval of a different type raises an error.

public void addIntervalOnDuration(IlcInt start, IlcInt duration, IlcInt type=OL)

This member function adds an interval of type type to the invoking list of intervals. The start time of the newly
added interval is start; its end time is start+duration. By default, the type of the interval is 0.

An interval can be added to the interval list as long as it is not closed. The effect of this function is reversible.

Any attempt to add a new interval that overlaps with an already existing interval of a different type raises an error.

public void addPeriodicInterval(IlcInt start, IlcInt duration, IlcInt period)

182

This member function adds a set of intervals of type 0 to the invoking list of intervals. For every i >= 0 such that
start + i * period < horizon, an interval [start + i * period, start + duration + i *
period) is added. horizon is the time horizon of the schedule that was given as an argument to the
constructor of the invoking list of intervals. A periodic interval can be added to the interval list as long as it is not
closed. The effect of this function is reversible.

Any attempt to add a new periodic interval that overlaps with an already existing interval of a different type raises
an error.

public void addPeriodicInterval(IlcInt start, IlcInt duration, IlcInt period,
IlcInt end, IlcInt type=0L)

This member function adds a set of intervals to the invoking list of intervals. For every i >= 0 such that start
+ i * period < end, an interval [start + i * period, start + duration + i * period) is
added. By default, the type of the interval is 0.

A periodic interval can be added to the interval list as long as it is not closed. The effect of these functions is
reversible.

Any attempt to add a new interval that overlaps with an already existing interval of a different type raises an error.

public void close()

This member function closes the interval list, which means that intervals can no longer be added or removed.
The Scheduler Engine uses this knowledge to perform extra propagation. Closing an already closed interval list
has no effect. This function is reversible.

Example

The following piece of code illustrates the extra propagation when a break list is closed.

 //Must be during search (e.g., inside a goal)

 IloSolver solver = getSolver();
 IlcScheduler schedule(solver,0,100);
 IlcUnaryResource res(schedule);
 IlcCalendar cal(schedule);
 IlcIntervalList bl(schedule);
 cal.setBreakList(bl);
 res.setCalendar(cal);
 IlcActivity act(schedule, 20, IlcTrue);
 solver.add(act.requires(res));
 solver.add(act.startsAt(10));
 solver.out() << act << endl;
 // [10 -- (20) 20..90 --> 30..100]
 bl.addInterval(20,50);
 solver.out() << act << endl;
 // [10 -- (20) 50..90 --> 60..100]
 bl.close();
 solver.out() << act << endl;
 // [10 -- (20) 50 --> 60]

public IlcIntervalListI * getImpl() const

This constructor creates an object by copying another one. This constructor creates an object by copying another
one. This member function returns a pointer to the implementation object of the invoking handle.

public const char * getName() const

183

This member function returns the name of the invoking object.

public IlcAny getObject() const

This member function returns a pointer to the external object associated with the invoking object, if there is such
an association. It returns 0 (zero) otherwise.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IloSolverI * getSolverI() const

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

public IlcBool isClosed() const

This member function returns IlcTrue if the invoking interval list is closed. Otherwise, it returns IlcFalse.

public IlcBool isEmpty() const

This member function returns IlcTrue if the invoking interval list is empty. Otherwise, it returns IlcFalse.

public void open()

This member function opens an interval list so that it is possible to add or remove intervals on it. Opening an
already opened interval list has no effect.

This member function is available only outside the search. Trying to open an interval list in search raises an error.

public void operator=(const IlcIntervalList & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public void removeInterval(IlcInt start, IlcInt end)

This member function removes all intervals between start and end. If start is placed inside an interval
[start1, end1), that is, start1 < start < end1, this results in an interval [start1, start). If end is
placed inside an interval [start2, end2) this results in an interval [end, end2). The interval list must be
open. Trying to remove an interval during the search or from a closed interval list raises an error.

This member function is available only outside the search.

public void removeIntervalOnDuration(IlcInt start, IlcInt duration)

This member function removes all intervals between start and start+duration. The interval list must be
open. Trying to remove an interval during the search or from a closed interval list raises an error.

184

This member function is available only outside the search.

public void removePeriodicInterval(IlcInt start, IlcInt duration, IlcInt period,
IlcInt end)

These member functions remove intervals from the invoking interval list. More precisely, for every i >= 0 such
that start + i * period < end, these functions remove all intervals between start + i * period and
start + duration + i * period. The invoking interval list must be open. Trying to remove a periodic
interval during the search or from a closed interval list raises an error.

This member function is available only outside the search.

public void removePeriodicInterval(IlcInt start, IlcInt duration, IlcInt period)

These member functions remove intervals from the invoking interval list. More precisely, for every i >= 0 such
that start + i * period < horizon, these functions remove all intervals between start + i * period
and start + duration + i * period. horizon is the time horizon of the schedule that was given as an
argument to the constructor of the invoking list. The invoking interval list must be open. Trying to remove a
periodic interval during the search or from a closed interval list raises an error.

This member function is available only outside the search.

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

public void setObject(IlcAny object) const

This member function establishes a link between the invoking object and an external object of which the invoking
object might be a data member.

185

Class IlcIntervalListCursor
Definition file: ilsched/brkcsor.h
Include file: <ilsched/ilsched.h>

An instance of the class IlcIntervalList represents a list of non-overlapping intervals. Each interval
[timeMin, timeMax) from the list is associated with a numerical type.

Note that when two consecutive intervals of the list have the same types, these intervals are merged so that the
list is always represented with the minimal number of intervals.

The class IlcIntervalListCursor provides a way to traverse those lists of intervals.

See Also: IlcIntervalList

Constructor and Destructor Summary

public IlcIntervalListCursor(const IlcIntervalListCursor & csor)

public IlcIntervalListCursor(const IlcIntervalList list, const IlcBool
forward=IlcTrue)

Method Summary

public IlcInt getDuration() const

public IlcInt getEnd() const

public IlcInt getStart() const

public IlcInt getType() const

public IlcBool ok() const

public IlcIntervalListCursor & operator++()

public IlcIntervalListCursor & operator--()

Constructors and Destructors

public IlcIntervalListCursor(const IlcIntervalListCursor & csor)

This copy constructor creates a cursor by copying another one. C++ relies on this constructor when you pass an
interval cursor as an argument to a function.

public IlcIntervalListCursor(const IlcIntervalList list, const IlcBool
forward=IlcTrue)

This constructor creates a new instance of IlcIntervalListCursor that traverses the intervals in list. If
forward is IlcTrue (its default value), then the cursor starts at the first interval, that is, the interval with the
earliest start time. Otherwise, the cursor starts with the last interval, that is, the interval with the latest start time.

186

Methods

public IlcInt getDuration() const

This member function returns the duration of the current interval, the one to which the invoking cursor points.

public IlcInt getEnd() const

This member function returns the end time of the current interval, the one to which the invoking cursor points.

public IlcInt getStart() const

This member function returns the start time of the current interval, the one to which the invoking cursor points.

public IlcInt getType() const

This member function returns the type of the current interval.

public IlcBool ok() const

This member function returns IlcTrue if there is a current interval and the invoking cursor points to it.
Otherwise, it returns IlcFalse.

public IlcIntervalListCursor & operator++()

This operator shifts the cursor to the next interval.

public IlcIntervalListCursor & operator--()

This operator shifts the cursor back to the previous interval.

187

Class IlcIntTimetable
Definition file: ilsched/timetabh.h
Include file: <ilsched/ilsched.h>

An instance of the handle class IlcIntTimetable represents a capacity timetable. In Scheduler Engine,
capacity timetables are used to manage the capacity of resources, both the capacity already used and the
capacity remaining.

A timetable is defined over an interval, [timeMin, timeMax), where timeMin is the origin of the timetable
and timeMax is its horizon. In addition to the origin and horizon, you may optionally indicate the period of the
timetable. The period must be a positive integer, and furthermore, the size of the interval (that is, timeMax -
timeMin) must be an integer multiple of the period. If a period is specified, then the values managed by the
timetable can change only at times indicated by timeMin + i * period.

For each point in time in its interval, a capacity timetable retains a minimal and maximal integer value. The
minimal value retained for a point in time indicates the capacity that has already been used; the difference
between the minimal and maximal value indicates the remaining capacity at that time.

Member functions of this class let you consult or modify these minimal and maximal values. These values may
change only monotonically; that is, minimal values cannot decrease, and maximal values cannot increase.

Two types of propagation events can be triggered when a capacity timetable is modified. An event of type
rangeInterval indicates that there are some times at which some modification of minimal or maximal values
occurred. An event of type valueInterval indicates that there are some times at which the minimal value
became equal to the maximal value. In order to perform propagation, member functions allow you to associate
demons with each type of event.

The information stored into a timetable is reversible. In particular, when modifiers are called, the state before their
call will be saved by Solver.

For more information, see Timetable.

See Also: IlcAnyTimetable, IlcCapResource, IlcIntTimetableCursor, IlcIntTimetableIterator

Constructor Summary

public IlcIntTimetable()

public IlcIntTimetable(IlcCapTimetableI * impl)

public IlcIntTimetable(IlcSchedule, IlcInt timeMin, IlcInt timeMax, IlcInt
period=1, IlcInt min=IlcIntMin, IlcInt max=IlcIntMax)

Method Summary

public IlcCapTimetableI * getImpl() const

public IlcInt getMax(IlcInt time) const

public IlcInt getMaxMax(IlcInt timeMin, IlcInt timeMax) const

public IlcInt getMaxMin(IlcInt timeMin, IlcInt timeMax) const

public IlcInt getMin(IlcInt time) const

public IlcInt getMinMax(IlcInt timeMin, IlcInt timeMax) const

public IlcInt getMinMin(IlcInt timeMin, IlcInt timeMax) const

public const char * getName() const

188

public IlcAny getObject() const

public IlcInt getPeriod() const

public IlcInt getRangeTimeMax() const

public IlcInt getRangeTimeMin() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public IlcInt getTimeMax() const

public IlcInt getTimeMin() const

public IlcInt getValue(IlcInt time) const

public IlcInt getValueTimeMax() const

public IlcInt getValueTimeMin() const

public IlcBool isBound(IlcInt time) const

public void operator=(const IlcIntTimetable & h)

public void setMax(IlcInt timeMin, IlcInt timeMax, IlcInt max)

public void setMin(IlcInt timeMin, IlcInt timeMax, IlcInt min)

public void setName(const char * name) const

public void setObject(IlcAny object) const

public void setValue(IlcInt timeMin, IlcInt timeMax, IlcInt value)

public void whenRangeInterval(const IlcDemon c) const

public void whenValueInterval(const IlcDemon c) const

Constructors

public IlcIntTimetable()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcIntTimetable(IlcCapTimetableI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcIntTimetable(IlcSchedule, IlcInt timeMin, IlcInt timeMax, IlcInt
period=1, IlcInt min=IlcIntMin, IlcInt max=IlcIntMax)

This constructor creates a timetable to manage an integer quantity (the capacity) whose value at all times is
bounded between min and max. The constructor adds that timetable to those managed by the schedule. The
timetable starts at timeMin and extends to timeMax, divided into equal periods of size period.

An instance of IloSolver::SolverErrorException is thrown if any of the following conditions occur:

timeMax - timeMin is not strictly positive;•
period is not strictly positive;•
timeMax - timeMin is not an integer multiple of period.•

Methods

public IlcCapTimetableI * getImpl() const

189

This constructor creates an object by copying another one. This constructor creates an object by copying another
one. This member function returns a pointer to the implementation object of the invoking handle.

public IlcInt getMax(IlcInt time) const

This member function returns the maximum value at time of the invoking timetable. The difference between this
maximum and the minimum value at time (returned by the member function IlcIntTimetable::getMin)
indicates the remaining capacity at time.

public IlcInt getMaxMax(IlcInt timeMin, IlcInt timeMax) const

This member function returns the largest of the maximal values of the integer quantity managed by the invoking
timetable. Only those maximal values that correspond to times in the interval [timeMin timeMax) are
considered. An error ("bad index interval") is raised if the invoking timetable does not cover the interval
[timeMin, timeMax) or if timeMin is strictly greater than timeMax.

public IlcInt getMaxMin(IlcInt timeMin, IlcInt timeMax) const

This member function returns the largest of the minimal values of the integer quantity managed by the invoking
timetable. Only those minimal values that correspond to times in the interval [timeMin timeMax) are
considered. An error ("bad index interval") is raised if the invoking timetable does not cover the interval
[timeMin, timeMax) or if timeMin is strictly greater than timeMax.

public IlcInt getMin(IlcInt time) const

This member function returns the minimum value at time of the invoking timetable. This minimum value at time
indicates the capacity that has already been used at time.

public IlcInt getMinMax(IlcInt timeMin, IlcInt timeMax) const

This member function returns the least of the maximal values of the integer quantity managed by the invoking
timetable. Only those maximal values that correspond to times in the interval [timeMin timeMax) are
considered. An error ("bad index interval") is raised if the invoking timetable does not cover the interval
[timeMin, timeMax) or if timeMin is strictly greater than timeMax.

public IlcInt getMinMin(IlcInt timeMin, IlcInt timeMax) const

This member function returns the least of the minimal values of the integer quantity managed by the invoking
timetable. Only those minimal values that correspond to times in the interval [timeMin timeMax) are
considered. An error ("bad index interval") is raised if the invoking timetable does not cover the interval
[timeMin, timeMax) or if timeMin is strictly greater than timeMax.

public const char * getName() const

This member function returns the name of the invoking object.

public IlcAny getObject() const

This member function returns a pointer to the external object associated with the invoking object, if there is such
an association. It returns 0 (zero) otherwise.

190

public IlcInt getPeriod() const

This member function returns the size of the periods of the invoking timetable. The meaning of this size is that
the timetable may change only at times representing the beginning of periods, that is, times of the form
(getTimeMin() + i * getPeriod()).

public IlcInt getRangeTimeMax() const

When it is called during the execution of a demon associated with a timetable by the member function
IlcIntTimetable::whenRangeInterval, this member function returns the time rangeTimeMax, that is, the
maximum of the interval [rangeTimeMin, rangeTimeMax) containing all the times at which a modification of
the values occurred. The return value of this member function is not meaningful outside the execution of a demon
associated with the timetable by the member function IlcIntTimetable::whenRangeInterval.

public IlcInt getRangeTimeMin() const

When it is called during the execution of a demon associated with a timetable by the member function
IlcIntTimetable::whenRangeInterval, this member function returns the time rangeTimeMin, that is, the
minimum of the interval [rangeTimeMin, rangeTimeMax) containing all the times at which a modification of
the values occurred. The return value of this member function is not meaningful outside the execution of a demon
associated with the timetable by the member function IlcIntTimetable::whenRangeInterval.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IloSolverI * getSolverI() const

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

public IlcInt getTimeMax() const

This member function returns the time horizon of the invoking timetable.

public IlcInt getTimeMin() const

This member function returns the time origin of the invoking timetable.

public IlcInt getValue(IlcInt time) const

This member function returns the value of the invoking timetable at time. An instance of
IloSolver::SolverErrorException is thrown if the timetable is not bound at time.

public IlcInt getValueTimeMax() const

191

When it is called during the execution of a demon associated with a timetable by the member function
IlcIntTimetable::whenValueInterval, this member function returns the time valueTimeMax, that is, the
maximum of the interval [valueTimeMin, valueTimeMax) containing all the times at which the minimal
value has become equal to the maximal value. The return value of this member function is not meaningful
outside the execution of a demon associated with the timetable by the member function
IlcIntTimetable::whenValueInterval.

public IlcInt getValueTimeMin() const

When it is called during the execution of a demon associated with a timetable by the member function
IlcIntTimetable::whenValueInterval, this member function returns the time valueTimeMin, that is, the
minimum of the interval [valueTimeMin, valueTimeMax) containing all the times at which the minimal value
has become equal to the maximal value. The return value of this member function is not meaningful outside the
execution of a demon associated with the timetable by the member function
IlcIntTimetable::whenValueInterval.

public IlcBool isBound(IlcInt time) const

This member function returns IlcTrue if the invoking timetable is bound to a value at time. Otherwise, it
returns IlcFalse.

public void operator=(const IlcIntTimetable & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public void setMax(IlcInt timeMin, IlcInt timeMax, IlcInt max)

This member function allows you to modify the maximal values of the integer quantity managed by the invoking
timetable. At every time t, the new maximal value becomes max, provided that max is less than the current
maximal value of t. The maximal value of t remains unchanged if max is greater than the current maximal value
of t. A failure is generated if there is some time t for which max is strictly less than the minimal value of t. The
maximal values are modified only for the times belonging to the interval [timeMin, timeMax).

An instance of IloSolver::SolverErrorException is thrown (bad index interval) if the invoking
timetable does not cover the interval [timeMin, timeMax) or if timeMin is strictly greater than timeMax.

public void setMin(IlcInt timeMin, IlcInt timeMax, IlcInt min)

This member function allows you to modify the minimal values of the integer quantity managed by the invoking
timetable. At every time t, the new minimal value becomes min, provided that min is greater than the current
minimal value in t. The minimal value in t remains unchanged if min is less than the current minimal value of t.
A failure is generated if there is some time t for which min is strictly greater than the maximal value of t. The
minimal values are modified only for the times belonging to the interval [timeMin, timeMax).

An instance of IloSolver::SolverErrorException is thrown (bad index interval) if the invoking
timetable does not cover the interval [timeMin, timeMax) or if timeMin is strictly greater than timeMax.

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

192

public void setObject(IlcAny object) const

This member function establishes a link between the invoking object and an external object of which the invoking
object might be a data member.

public void setValue(IlcInt timeMin, IlcInt timeMax, IlcInt value)

This member function allows you to set the value of the integer quantity managed by the invoking timetable. Then
for every value t on the interval [timeMin, timeMax), both the minimal and the maximal values in t become
equal to value. A failure is generated if there is some time t for which value is strictly less than the current
minimal value of t or strictly greater than the current maximal value of t.

An instance of IloSolver::SolverErrorException is thrown (bad index interval) if the given times
timeMin and timeMax do not belong to the interval of the invoking timetable or if timeMin is strictly greater
than timeMax.

public void whenRangeInterval(const IlcDemon c) const

This member function associates the demon d with the rangeInterval propagation event of the invoking
timetable. Whenever a rangeInterval propagation event occurs, demon d is executed.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
Whenever a rangeInterval propagation event occurs, the constraint will be posted and propagated.

A call to the demon d signifies that there are some times at which a modification of the values occurred. The
interval [rangeTimeMin, rangeTimeMax) is the least interval containing all these times.

public void whenValueInterval(const IlcDemon c) const

This member function associates the demon d with the valueInterval propagation event of the invoking
timetable. Whenever a valueInterval propagation event occurs, the demon d is executed.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
Whenever a valueInterval propagation event occurs, the constraint will be posted and propagated.

A call to the demon d signifies that there are some times at which the minimal value became equal to the
maximal value. The interval [valueTimeMin, valueTimeMax) is the least interval containing all these times.

193

Class IlcIntTimetableCursor
Definition file: ilsched/timetabh.h
Include file: <ilsched/ilsched.h>

Objects of the class IlcIntTimetableCursor allow you to inspect the contents of integer timetables. A region
of an integer timetable is a subinterval [timeMin, timeMax) of the interval where the timetable is defined
such that all the times in the region share the same information and any two adjacent regions store different
information. Cursors are intended to iterate forward or backward over the regions of an integer timetable.

Note

The structure of a timetable cannot be changed while a cursor is being used to inspect the timetable. Therefore
functions that change the structure of the timetable should not be called while the cursor is being used; for
example, IlcIntTimetable::setMax.

See Also: IlcIntTimetable

Constructor and Destructor Summary

public IlcIntTimetableCursor(const IlcIntTimetable table, IlcInt time)

Method Summary

public IlcInt getMax() const

public IlcInt getMin() const

public IlcInt getTimeMax() const

public IlcInt getTimeMin() const

public IlcInt getValue() const

public IlcBool isBound() const

public IlcBool ok() const

public void operator++()

public void operator--()

Constructors and Destructors

public IlcIntTimetableCursor(const IlcIntTimetable table, IlcInt time)

This constructor creates a cursor to inspect the information stored in the integer timetable table. This cursor lets
you to iterate forward or backward over the regions composing the timetable. The cursor initially indicates the
region containing time.

Methods

public IlcInt getMax() const

This member function returns the maximal possible value of the current region. All the times in the current region
share the same maximal value.

194

public IlcInt getMin() const

This member function returns the minimal possible value of the current region. All the times in the current region
share the same minimal value.

public IlcInt getTimeMax() const

This member function returns the time ending the region currently indicated by the cursor.

public IlcInt getTimeMin() const

This member function returns the time beginning the region currently indicated by the cursor.

public IlcInt getValue() const

This member function returns the value of the region that the invoking timetable cursor indicates. An instance of
IloSolver::SolverErrorException is thrown if the timetable is not bound at the cursor position.

public IlcBool isBound() const

This member function returns IlcTrue if the region indicated by the invoking timetable cursor has been bound;
that is, its maximum value is equal to its minimum value. Otherwise, it returns IlcFalse.

public IlcBool ok() const

This member function returns IlcFalse if the cursor does not currently indicate a region included in the
timetable. Otherwise, it returns IlcTrue. Any attempt to use the cursor after ok() returns IlcFalse could lead
to undefined behavior.

public void operator++()

This operator moves the cursor to the region adjacent "on the right" to the current region (forward iteration).

public void operator--()

This operator moves the cursor to the region adjacent "on the left" to the current region (backward iteration).

195

Class IlcIntTimetableIterator
Definition file: ilsched/capacity.h
Include file: <ilsched/ilsched.h>

An instance of this class traverses the set of timetables associated with an integer capacity resource
(IlcDiscreteResource, IlcUnaryResourceIlcReservoir, or IlcDiscreteEnergy).

See Also: IlcIntTimetable, IlcSchedule

Constructor Summary

public IlcIntTimetableIterator(IlcCapResource res)

Method Summary

public IlcIntTimetable operator*()

public IlcIntTimetableIterator & operator++()

Constructors

public IlcIntTimetableIterator(IlcCapResource res)

This constructor creates an iterator to traverse all the timetables of a capacity resource.

Methods

public IlcIntTimetable operator*()

This operator accesses the instance of IlcIntTimetable located at the current position of the iterator. If the
iterator is set past the end position, this operator returns an empty handle.

public IlcIntTimetableIterator & operator++()

This left-increment operator shifts the current position of the iterator.

196

Class IlcIntToFloatSegmentFunction
Definition file: ilsched/segfunc.h
Include file: <ilsched/ilsched.h>

An instance of IlcIntToFloatSegmentFunction represents a continuous or discontinuous piecewise linear
function over integers on an interval [xmin, xmax). The member functions of the class
IlcIntToFloatSegmentFunction are not reversible.

See Also: IlcIntToFloatSegmentFunctionCursor

Constructor Summary

public IlcIntToFloatSegmentFunction()

public IlcIntToFloatSegmentFunction(IlcSegmentedFunctionI * impl)

public IlcIntToFloatSegmentFunction(IlcManager m, IlcInt xmin=IloIntMin, IlcInt
xmax=IloIntMax, IlcFloat dval=0.)

public IlcIntToFloatSegmentFunction(IlcManager m, IlcIntArray x, IlcFloatArray v,
IlcInt xmin=IloIntMin, IlcInt xmax=IloIntMax)

public IlcIntToFloatSegmentFunction(const IlcIntToIntStepFunction & f)

Method Summary

public void addValue(IlcInt x1, IlcInt x2, IlcFloat v)

public void dilate(IlcInt k)

public IlcFloat getArea(IlcInt x1, IlcInt x2) const

public IlcInt getDefinitionIntervalMax() const

public IlcInt getDefinitionIntervalMin() const

public IlcSegmentedFunctionI * getImpl() const

public IlcFloat getMax(IlcInt x1, IlcInt x2) const

public IlcFloat getMin(IlcInt x1, IlcInt x2) const

public const char * getName() const

public IlcAny getObject() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public IlcFloat getValue(IlcInt x) const

public void operator*=(IlcFloat k)

public void operator+=(const IlcIntToFloatSegmentFunction &
fct)

public void operator-=(const IlcIntToFloatSegmentFunction &
fct)

public void operator=(const IlcIntToFloatSegmentFunction & h)

public void setName(const char * name) const

public void setObject(IlcAny object) const

public void setPeriodic(const IlcIntToFloatSegmentFunction &
f, IlcInt x0, IlcInt n=IlcIntMax, IlcFloat dval=0)

197

public void setPoints(IlcIntArray x, IlcFloatArray v)

public void setValue(IlcInt x1, IlcFloat v1, IlcInt x2,
IlcFloat v2)

public void setValue(IlcInt x1, IlcInt x2, IlcFloat v)

public void shift(IlcInt dx, IlcFloat dval=0)

Constructors

public IlcIntToFloatSegmentFunction()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcIntToFloatSegmentFunction(IlcSegmentedFunctionI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcIntToFloatSegmentFunction(IlcManager m, IlcInt xmin=IloIntMin, IlcInt
xmax=IloIntMax, IlcFloat dval=0.)

This constructor creates an integer piecewise linear function defined everywhere on the interval [xmin,xmax)
with the same value dval.

public IlcIntToFloatSegmentFunction(IlcManager m, IlcIntArray x, IlcFloatArray v,
IlcInt xmin=IloIntMin, IlcInt xmax=IloIntMax)

This constructor creates an integer piecewise linear function defined everywhere on the interval [xmin,xmax);
its steps are defined by the two arrays of parameters, x and v. More precisely, the size n of array x must be
equal to the size of array v and, if the created function is defined on the interval [xmin,xmax), its values will be:

v[0] on interval [xmin,x[0]),•
v[i]+ (t-x[i])(v[i+1]-v[i])/(x[i+1]-x[i]) for t in [x[i],x[i+1]) for all i in
[0,n-2] such that x[i-1] <> x[i], and

•

v[n-1] on interval [x[n-1],xmax).•

public IlcIntToFloatSegmentFunction(const IlcIntToIntStepFunction & f)

This copy constructor creates a new piecewise linear function. This new piecewise linear function is a copy of the
integer step function f. They point to different implementation objects.

Methods

public void addValue(IlcInt x1, IlcInt x2, IlcFloat v)

This member function increases the value of the invoking piecewise linear function by v everywhere on the
interval [x1,x2).

public void dilate(IlcInt k)

This member function multiplies the scale of x by k for the invoking piecewise linear function. The parameter k
must be a positive integer.

198

More precisely, if the invoking function was defined over an interval [xmin,xmax), it will be redefined over the
interval [k*xmin,k*xmax) and the value at x will be the former value at x/k.

public IlcFloat getArea(IlcInt x1, IlcInt x2) const

This member function returns the area of the invoking piecewise linear function over the interval [x1,x2). If the
interval [x1,x2) is not included in the interval of definition of the invoking function, an error will be raised.

public IlcInt getDefinitionIntervalMax() const

This member function returns the right-most point of the interval of definition of the invoking piecewise linear
function.

public IlcInt getDefinitionIntervalMin() const

This member function returns the left-most point of the interval of definition of the invoking piecewise linear
function.

public IlcSegmentedFunctionI * getImpl() const

This constructor creates an object by copying another one. This constructor creates an object by copying another
one. This member function returns a pointer to the implementation object of the invoking handle.

public IlcFloat getMax(IlcInt x1, IlcInt x2) const

This member function returns the maximal value of the invoking piecewise linear function on the interval
[x1,x2). If the interval [x1,x2) is not included in the definition interval of the invoking function, an error will be
raised.

public IlcFloat getMin(IlcInt x1, IlcInt x2) const

This member function returns the minimal value of the invoking piecewise linear function on the interval
[x1,x2). If the interval [x1,x2) is not included in the definition interval of the invoking function, an error will be
raised.

public const char * getName() const

This member function returns the name of the invoking object.

public IlcAny getObject() const

This member function returns a pointer to the external object associated with the invoking object, if there is such
an association. It returns 0 (zero) otherwise.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IloSolverI * getSolverI() const

199

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

public IlcFloat getValue(IlcInt x) const

This member function returns the value of the invoking piecewise linear function at x. If x does not belong to the
definition interval of the invoking function, an error will be raised.

public void operator*=(IlcFloat k)

This operator multiplies the value of the invoking integer step function by a factor k everywhere on the interval of
definition.

public void operator+=(const IlcIntToFloatSegmentFunction & fct)

This operator adds the parameter function fct to the invoking piecewise linear function.

public void operator-=(const IlcIntToFloatSegmentFunction & fct)

This operator subtracts the parameter function fct from the invoking piecewise linear function.

public void operator=(const IlcIntToFloatSegmentFunction & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

public void setObject(IlcAny object) const

This member function establishes a link between the invoking object and an external object of which the invoking
object might be a data member.

public void setPeriodic(const IlcIntToFloatSegmentFunction & f, IlcInt x0, IlcInt
n=IlcIntMax, IlcFloat dval=0)

This member function initializes the invoking function as a piecewise linear function that repeats the piecewise
linear function f, n times after x0.

More precisely, if f is defined on [xfmin,xfmax) and if the invoking function is defined on [xmin,xmax), the
value of the invoking function will be:

dval on [xmin, x0),•
f((x-x0) % (xfmax-xfmin)) for x in [x0, Min(x0+n*(xfmax-xfmin), xmax)), and•
dval on [Min(x0+n*(xfmax-xfmin), xmax), xmax)•

200

public void setPoints(IlcIntArray x, IlcFloatArray v)

This member function initializes the invoking function as a piecewise linear function whose segments are defined
by the two parameter arrays x and v.

More precisely, the size n of array x must be equal to the size of array v and, if the created function is defined on
the interval [xmin,xmax), its values will be:

v[0] on interval [xmin,x[0]),•
v[i]+ (t-x[i])(v[i+1]-v[i])/(x[i+1]-x[i]) for t in [x[i],x[i+1]) for all i in
[0,n-2] such that x[i-1] <> x[i], and

•

v[n-1] on interval [x[n-1],xmax).•

public void setValue(IlcInt x1, IlcInt x2, IlcFloat v)
public void setValue(IlcInt x1, IlcFloat v1, IlcInt x2, IlcFloat v2)

This member function sets the value of the invoking piecewise linear function to be v on the interval [x1,x2).

public void shift(IlcInt dx, IlcFloat dval=0)

This member function shifts the invoking function from dx to the right if dx > 0 or from -dx to the left if dx < 0. It
has no effect if dx = 0.

More precisely, if the invoking function is defined on [xmin,xmax) and dx > 0, the new value of the invoking
function is:

dval on the interval [xmin,xmin+dx),•
for all x in [xmin+dx,xmax), the former value at x-dx.•

If dx < 0, the new value of the invoking function is:

for all x in [xmin,xmax+dx), the former value at x-dx,•
dval on the interval [xmax+dx,xmax).•

201

Class IlcIntToFloatSegmentFunctionCursor
Definition file: ilsched/segfunc.h
Include file: <ilsched/ilsched.h>

An instance of the class IlcIntToFloatSegmentFunctionCursor allows you to inspect the contents of a
piecewise linear function. A segment of an instance of IlcIntToFloatSegmentFunction is defined as an
interval [x1, x2) over which the function is linear. Cursors iterate forward or backward over the segments of a
piecewise linear function.

Note

The structure of the piecewise linear function must not be changed while a cursor is inspecting it. Therefore
functions that change the structure of the piecewise linear function, such as
IlcIntToFloatSegmentFunction::setValue , should not be called while a cursor is in use.

See Also: IlcIntToFloatSegmentFunction

Constructor and Destructor Summary

public IlcIntToFloatSegmentFunctionCursor(const IlcIntToFloatSegmentFunction &,
IlcInt x)

Method Summary

public IlcInt getSegmentMax() const

public IlcInt getSegmentMin() const

public IlcFloat getValue(IlcInt t) const

public IlcFloat getValueLeft() const

public IlcFloat getValueRight() const

public IlcBool ok() const

public void operator++()

public void operator--()

Constructors and Destructors

public IlcIntToFloatSegmentFunctionCursor(const IlcIntToFloatSegmentFunction &,
IlcInt x)

This constructor creates a cursor to inspect the piecewise linear function argument. This cursor lets you iterate
forward or backward over the segments of the function. The cursor initially indicates the segment of the function
that contains x.

Methods

public IlcInt getSegmentMax() const

This member function returns the right-most point of the segment currently indicated by the cursor.

202

public IlcInt getSegmentMin() const

This member function returns the left-most point of the segment currently indicated by the cursor.

public IlcFloat getValue(IlcInt t) const

This member function returns the value of the function at time t. t must be inside the segment currently indicated
by the cursor, that is in time interval [getSegmentMin(), getSegmentMax()). An instance of
IloSolver::SolverErrorException is thrown otherwise.

public IlcFloat getValueLeft() const

This member function returns the value of the function at the left-most point of the segment currently indicated by
the cursor.

public IlcFloat getValueRight() const

This member function returns the value of the function at the right-most point of the segment currently indicated
by the cursor.

public IlcBool ok() const

This member function returns IlcFalse if the cursor does not currently indicate a segment included in the
interval of definition of the piecewise linear function. Otherwise, it returns IlcTrue. An attempt to use the cursor
after ok returns IlcFalse leads to undefined behavior.

public void operator++()

This operator moves the cursor to the segment adjacent to the current segment (forward move).

public void operator--()

This operator moves the cursor to the segment adjacent to the current segment (backward move).

203

Class IlcPossibleAltResIterator
Definition file: ilsched/altresh.h
Include file: <ilsched/ilsched.h>

An instance of the class IlcPossibleAltResIterator is an iterator that traverses the possible resources
(those which could be selected) for an instance of IlcAltResConstraint.

If a resource has been selected, then there is one and only one possible resource among those managed by the
constraint.

To make the search for a scheduling solution efficient, it is often a good idea to select one resource for the
activity for which an instance of IlcAltResSet is defined before you schedule it.

See Also: IlcAltResConstraint, IlcResource

Constructor and Destructor Summary

public IlcPossibleAltResIterator(IlcAltResConstraint ct)

Method Summary

public IlcBool ok() const

public IlcResource operator*() const

public IlcPossibleAltResIterator & operator++()

Constructors and Destructors

public IlcPossibleAltResIterator(IlcAltResConstraint ct)

This constructor creates a new instance of IlcPossibleAltResIterator that traverses the set of possible
resources which belong to ct.

Methods

public IlcBool ok() const

This member function returns IlcTrue if there is a current possible resource and the invoking iterator points to
it. Otherwise, it returns IlcFalse.

public IlcResource operator*() const

This operator returns the current possible resource to which the invoking iterator points. If the iterator is set past
the end position, then this operator returns an empty handle.

public IlcPossibleAltResIterator & operator++()

This operator shifts the iterator to the next possible resource.

204

205

Class IlcPrecedenceConstraint
Definition file: ilsched/schedule.h
Include file: <ilsched/ilsched.h>

Instances of the class IlcPrecedenceConstraint are temporalconstraints. These temporal constraints
express precedence between activities in a schedule. (Other temporal constraints, such as instances of
IlcTimeBoundConstraint, express constraints on the time interval in which an activity is to be scheduled.)

This class inherits from the Solver class IlcConstraint. That class is documented in the IBM ILOG Solver
Reference Manual.

Instances of this class are created by these member functions:

IlcActivity::startsAfterStart•
IlcActivity::startsAfterEnd•
IlcActivity::endsAfterStart•
IlcActivity::endsAfterEnd•
IlcActivity::startsAtStart•
IlcActivity::startsAtEnd•
IlcActivity::endsAtStart•
IlcActivity::endsAtEnd•

For more information, see Metaconstraints, and IlcConstraint in the IBM ILOG Solver Reference Manual.

See Also: IlcActivity, IlcPrecedenceConstraintType, IlcTimeBoundConstraint

Constructor Summary

public IlcPrecedenceConstraint()

public IlcPrecedenceConstraint(IlcPrecedenceConstraintI * impl)

Method Summary

public IlcInt getDelay() const

public IlcIntVar getDelayVariable() const

public IlcActivity getFollowingActivity() const

public IlcPrecedenceConstraintI * getImpl() const

public IlcActivity getPrecedingActivity() const

public IlcPrecedenceConstraintType getType() const

public IlcBool hasDelayVariable() const

public void operator=(const IlcPrecedenceConstraint & h)

Constructors

public IlcPrecedenceConstraint()

This constructor creates an instance which is empty, that is, one whose handle pointer is null. You must assign it
a value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IlcPrecedenceConstraint(IlcPrecedenceConstraintI * impl)

206

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

Methods

public IlcInt getDelay() const

This member function returns the delay of the invoking precedence constraint.

Example

The statement

m.add(act2.startsAfterEnd(act1, delay));

posts the constraint that at least the given delay must elapse between the end of the preceding activity act1
and the start of the following activity act2.

public IlcIntVar getDelayVariable() const

This member function returns the delay variable of the invoking precedence constraint.

public IlcActivity getFollowingActivity() const

This member function returns the following activity of the invoking precedence constraint.

public IlcPrecedenceConstraintI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IlcActivity getPrecedingActivity() const

This member function returns the preceding activity of the invoking precedence constraint.

public IlcPrecedenceConstraintType getType() const

This member function returns the type of the invoking precedence constraint.

public IlcBool hasDelayVariable() const

This member function returns IlcTrue if the invoking precedence constraint has a delay variable. Otherwise, it
returns IlcFalse.

public void operator=(const IlcPrecedenceConstraint & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument. After execution of this operator, the invoking object and the
provided argument point to the same implementation object.

207

Class IlcPrecedingActivityIterator
Definition file: ilsched/schedule.h
Include file: <ilsched/ilsched.h>

When used during the search, an instance of this class traverses the activities that are such that a precedence
constraint holds between this activity and the activity given in the constructor of the iterator. If used before
entering the search, this iterator will traverse an empty list of activities.

This class of iterators does not distinguish among the precedence constraints created by means of the member
functions IlcActivity::startsAfterStart, IlcActivity::startsAfterEnd,
IlcActivity::endsAfterStart, IlcActivity::endsAfterEnd, IlcActivity::startsAtStart,
IlcActivity::startsAtEnd, IlcActivity::endsAtStart, and IlcActivity::endsAtEnd.
Whichever of those member functions is used to create the precedence constraint, the invoking activity is
identified as the one that is constrained to occur after the activity passed as an argument to the member function.
Likewise, the activity passed as an argument to the member function is identified as the one that is constrained to
occur before the invoking activity. See the example in the class IlcFollowingActivityIterator for a
program that illustrates that idea.

See Also: IlcActivity, IlcFollowingActivityIterator, IlcPrecedenceConstraint

Constructor and Destructor Summary

public IlcPrecedingActivityIterator(IlcActivity activity,
IlcResourceConstraintIteratorFilter filter=IlcAllConstraints)

Method Summary

public IlcPrecedenceConstraint getPrecedenceConstraint() const

public IlcBool ok() const

public IlcActivity operator*() const

public IlcPrecedingActivityIterator & operator++()

Constructors and Destructors

public IlcPrecedingActivityIterator(IlcActivity activity,
IlcResourceConstraintIteratorFilter filter=IlcAllConstraints)

This constructor creates an iterator to traverse all the activities constrained to precede activity.

Methods

public IlcPrecedenceConstraint getPrecedenceConstraint() const

This member function returns the precedence constraint between the activity used by the constructor of the
invoking iterator and the activity at its current position.

public IlcBool ok() const

208

This member function returns IlcTrue if the current position of the iterator is a valid one. It returns IlcFalse if
all the activities have been scanned by the iterator.

public IlcActivity operator*() const

This dereference operator accesses the instance of IlcActivity located at the current position of the iterator.
If the iterator is set past the end position, then this operator returns an empty handle.

public IlcPrecedingActivityIterator & operator++()

This left-increment operator shifts the current position of the iterator.

209

Class IlcProbabilisticCriticalityCalculatorI
Definition file: ilsched/texturei.h
Include file: <ilsched/ilsched.h>

IlcProbabilisticCriticalityCalculatorI is the implementation class that implements the probabilistic
texture criticality calculator.

Example

The probabilistic criticality calculation assumes that the aggregate demand and variance can be represented by a
normal distribution parameterized by the expected demand (EX, in the following figure) and variance. The
criticality for a minimum constraint, m, is calculated as the fraction of the area under the curve to the left of the
m-value. Similarly, the criticality for a maximum constraint, M, is the fraction of the area under the curve to the
right of M.

For more information, see Texture Measurements.

See Also: IlcResourceTexture, IlcTextureCriticalityCalculator, IlcTextureCriticalityCalculatorI,
IlcRelativeDemandCriticalityCalculatorI

Constructor and Destructor Summary

public IlcProbabilisticCriticalityCalculatorI()

Method Summary

public virtual IlcFloat calculateCriticalityGreaterThan(IlcFloat expectedDemand,
IlcFloat constraintVal, IlcFloat expectedVariance) const

public virtual IlcFloat calculateCriticalityLessThan(IlcFloat expectedDemand,
IlcFloat constraintVal, IlcFloat expectedVariance) const

Inherited Methods from IlcTextureCriticalityCalculatorI

calculateCriticalityGreaterThan, calculateCriticalityLessThan

Constructors and Destructors

public IlcProbabilisticCriticalityCalculatorI()

This constructor creates an instance of IlcProbabilisticCriticalityCalculatorI.

210

Methods

public virtual IlcFloat calculateCriticalityGreaterThan(IlcFloat expectedDemand,
IlcFloat constraintVal, IlcFloat expectedVariance) const

This method calculates the criticality of a maximum constraint at one time point based on a probabilistic
estimation. This estimation assumes that the aggregate demand at a time point can be represented by a normal
distribution with expected demand, demand and with variance, variance. The fraction of this distribution that lies
to the right of constraintVal, is used as the criticality. This calculation is illustrated in the previous figure.

public virtual IlcFloat calculateCriticalityLessThan(IlcFloat expectedDemand,
IlcFloat constraintVal, IlcFloat expectedVariance) const

This method calculates the criticality of a minimum constraint at one time point based on a probabilistic
estimation. This estimation assumes that the aggregate demand at a time point can be represented by a normal
distribution with expected demand, demand and with variance, variance. The fraction of this distribution that lies
to the left of constraintVal, is used as the criticality. This calculation is illustrated in the previous figure.

211

Class IlcRCTexture
Definition file: ilsched/texture.h
Include file: <ilsched/ilsched.h>

An instance of IlcRCTexture represents an individual texture curve for one resource constraint instance.

Individual curves for each resource constraint that can possibly be on a resource are aggregated to form
aggregate curves represented by the IlcResourceTexture class.

For more information, see Texture Measurements.

See Also: IlcRCTextureIterator, IlcResourceTexture, IlcRCTextureI, IlcRCTextureFactoryI

Method Summary

public IlcFloat getCriticalContribution() const

public IlcResourceConstraint getResourceConstraint() const

public IlcFloat getTargetStart() const

public IlcBool hasAlternatives() const

public void setNeedToRecomputeCurve()

public void setTargetStart(IlcFloat t) const

Methods

public IlcFloat getCriticalContribution() const

This member function returns the amount that this individual curve contributes to the aggregate curve at the
critical time point.

public IlcResourceConstraint getResourceConstraint() const

This member function returns the resource constraint associated with the individual curve.

public IlcFloat getTargetStart() const

This member function returns the target start time as set by the IlcRCTexture::setTargetStart member function. If
no target start time has been set, IlcFloatMin is returned.

public IlcBool hasAlternatives() const

This member function returns IlcTrue if the associated resource constraint does not necessarily have to be
true. That is, it returns IlcTrue if the resource constraint is either part of an alternative resource constraint or
the resource constraint is part of a meta-constraint. Otherwise, the function returns IlcFalse.

public void setNeedToRecomputeCurve()

212

This member function forces the individual curve to be recomputed the next time the aggregate curve is updated.
This function does not have to be explicitly called if the need to recompute the curve arises from changes to
variables associated with the resource constraint or activity or to the target start time. Rather, this function is
provided for the case where the individual texture curve is based on external user-defined data. When such data
is "manually" changed, the IlcRCTexture object must be informed of the need to recompute the curve. Note
that using this function generally implies that you have redefined the IlcRCTextureI::updateDataPoints
method in your user-defined subclass of IlcRCTextureI.

public void setTargetStart(IlcFloat t) const

This member function allows the setting of the target start time for an instance of IlcRCTexture. The target
start time of an IlcRCTexture is the preferred start time of the corresponding activity derived by some external
source (such as user preferences or a cooperating solver). The target start time is relevant only if the
implementation class (a subclass of IlcRCTextureI) of the invoking object calculates the individual curve using
the target. Of the predefined subclasses, only IlcRCTextureTargetI uses the target start time. User-defined
subclasses of IlcRCTexture may form their individual curve using the target start time

213

Class IlcRCTextureESTFactoryI
Definition file: ilsched/texturei.h
Include file: <ilsched/ilsched.h>

IlcRCTextureESTFactoryI is an implementation object that allocates instances of IlcRCTextureESTI.

For more information, see Texture Measurements.

See Also: IlcResourceTexture, IlcRCTextureI, IlcRCTextureESTI

Constructor and Destructor Summary

public IlcRCTextureESTFactoryI(IloSolver solver)

Method Summary

public virtual IlcRCTexture createRCTexture(IlcResourceConstraint,
IlcResourceTexture) const

Inherited Methods from IlcRCTextureFactoryI

createRCTexture, getSolver, hasRealZeroCriticality

Constructors and Destructors

public IlcRCTextureESTFactoryI(IloSolver solver)

This constructor creates an instance of IlcRCTextureESTFactoryI.

Methods

public virtual IlcRCTexture createRCTexture(IlcResourceConstraint,
IlcResourceTexture) const

This method returns a pointer to a newly allocated instance of IlcRCTexture representing the individual curve
of the resource constraint for the resource associated with the resource texture.

Example

The createRCTexture() method could be written as follows:

 IlcRCTexture
 IlcRCTextureESTFactoryI::createRCTexture(IlcResourceConstraint rct,
 IlcResourceTexture texture) const {
 IloSolver solver = getSolver();
 return new (solver.getHeap())
 IlcRCTextureESTI(solver, rct, texture);
 }

214

215

Class IlcRCTextureESTI
Definition file: ilsched/texturei.h
Include file: <ilsched/ilsched.h>

IlcRCTextureESTI is the implementation class for the earliest start time individual texture curve. This
individual curve represents the individual demand of the associated resource constraint for its resource based on
the assumption that it will start at its earliest start time. The points used in the texture curve can be seen in the
example in the documentation for IlcRCTextureESTI::calculateIndividualCurve.

For more information, see Texture Measurements.

See Also: IlcRCTextureIterator, IlcResourceTexture, IlcRCTextureESTFactoryI, IlcRCTextureProbabilisticI,
IlcRCTextureI, IlcRCTextureTargetI

Constructor and Destructor Summary

protected IlcRCTextureESTI(IlcManager m, IlcResourceConstraint rc,
IlcResourceTexture resTexture)

Method Summary

protected virtual void calculateIndividualCurve()

Inherited Methods from IlcRCTextureI

calcAltWeight, calculateIndividualCurve, getAltWeight, getCapacity, getDuration,
getEnd, getResourceConstraint, getStart, getTargetStart, insertEvent,
setAltWeight, setCapacity, setDuration, setEnd, setStart, setTargetStart,
updateDataPoints

Constructors and Destructors

protected IlcRCTextureESTI(IlcManager m, IlcResourceConstraint rc,
IlcResourceTexture resTexture)

This protected constructor creates an instance of IlcRCTextureESTI for resource constraint rc and resource
texture resTexture. The created class represents the individual contribution of rc to the aggregate curve of
resTexture. As this constructor is protected, it should only be called from subclasses of IlcRCTextureESTI
or from the IlcRCTextureESTFactoryI friend class.

Methods

protected virtual void calculateIndividualCurve()

This virtual, protected function creates the actual individual curve for the invoking object.

Example

216

Here is an example of how the updateDataPoints() and calculateIndividualCurve() methods might
be written.

 IlcBool IlcRCTextureESTI::updateDataPoints() {

 IlcResourceConstraint rc = getResourceConstraint();

 IlcFloat newAltWeight = calcAltWeight();

 IlcInt dur, cap, startMin;

 IlcAltResConstraint altRct = rc.getAlternative();

 if (0 != altRct.getImpl()) {

 IlcResource res = rc.getResource();

 startMin = altRct.getStartMin(res)

 dur = altRct.getDurationMax(res);

 cap = altRct.getCapacityMax(res);

 }

 else {

 IlcActivity act = rc.getActivity();

 startMin = act.getStartMin();

 dur = act.getDurationMax();

 cap = (rc.isVariableResourceConstraint() ?

 rc.getCapacityVariable().getMax() :

 rc.getCapacity());

 }

 IlcBool changed = IlcFalse;

 if ((getStart() != startMin) ||

 (getDuration() != dur) ||

 (getCapacity() != cap) ||

 (getAltWeight() != newAltWeight)) {

 changed = IlcTrue;

 setStart(startMin);

 setDuration(dur);

 setEnd(startMin + dur);

 setCapacity(cap);

 setAltWeight(newAltWeight);

 }

 return changed;

 }

 void IlcRCTextureESTI::calculateIndividualCurve() {

 IlcFloat demand = getCapacity() * getAltWeight();

217

 insertEvent(getStart(), demand, demand);

 insertEvent(getEnd(), 0, -demand);

 }

218

Class IlcRCTextureFactory
Definition file: ilsched/texture.h
Include file: <ilsched/ilsched.h>

IlcRCTextureFactory is the handle class for IlcRCTextureFactoryI and for its subclasses.

For more information, see Texture Measurements.

Predefined RCTexture Factories

These functions return instances of IlcRCTextureFactory.

IlcRCTextureFactory IlcRCTextureESTFactory (IloSolver);•
IlcRCTextureFactory IlcRCTextureProbabilisticFactory (IloSolver);•
IlcRCTextureFactory IlcRCTextureTargetFactory (IloSolver);•

See Also: IlcResourceTexture, IlcRCTextureFactoryI, IlcRCTexture, IlcRCTextureI, IlcRCTextureESTI,
IlcRCTextureTargetI, IlcRCTextureProbabilisticI

Constructor Summary

public IlcRCTextureFactory()

public IlcRCTextureFactory(IlcRCTextureFactoryI * impl)

Method Summary

public IlcRCTexture createRCTexture(IlcResourceConstraint,
IlcResourceTexture) const

public IlcRCTextureFactoryI * getImpl() const

public IlcBool hasRealZeroCriticality() const

public void operator=(const IlcRCTextureFactory & h)

Constructors

public IlcRCTextureFactory()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcRCTextureFactory(IlcRCTextureFactoryI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IlcRCTexture createRCTexture(IlcResourceConstraint, IlcResourceTexture)
const

219

This method returns a newly allocated instance of IlcRCTexture. This is the function used internally by the
IlcResourceTexture object to generate an individual curve for each resource constraint on a resource.

public IlcRCTextureFactoryI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public IlcBool hasRealZeroCriticality() const

This method defines a characteristic of the IlcRCTexture subclasses created by the invoking factory. If this
function returns IlcTrue, it means that when the individual demand at some time point, t, for IlcRCTextureI
instances allocated by the invoking factory is 0, it will remain at 0 until there is a backtrack in the search.
Otherwise, if IlcFalse is returned, a time point may become zero and then some other value without
backtracking.

See IlcRCTextureFactoryI for more details about this method.

public void operator=(const IlcRCTextureFactory & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

220

Class IlcRCTextureFactoryI
Definition file: ilsched/texturei.h
Include file: <ilsched/ilsched.h>

IlcRCTextureFactoryI is the abstract implementation base class for a class that creates an object that is a
subclass IlcRCTextureI. Instances of subclasses of this class are passed (via a handle class,
IlcRCTextureFactory) to an IlcResourceTexture and used internally whenever a new individual curve
object is required. Whenever a user-defined subclass of IlcRCTextureI is defined, a corresponding
IlcRCTextureFactoryI subclass must also be created. Its sole purpose is to allocate the IlcRCTextureI
subclass.

For more information, see Texture Measurements.

See Also: IlcResourceTexture, IlcRCTextureI

Constructor and Destructor Summary

public IlcRCTextureFactoryI(IloSolver solver)

Method Summary

public virtual IlcRCTexture createRCTexture(IlcResourceConstraint,
IlcResourceTexture) const

public IloSolver getSolver() const

public virtual IlcBool hasRealZeroCriticality() const

Constructors and Destructors

public IlcRCTextureFactoryI(IloSolver solver)

This constructor creates an instance of IlcRCTextureFactoryI. As the class is abstract, this constructor
should only be called by the constructor of subclasses of IlcRCTextureFactoryI.

Methods

public virtual IlcRCTexture createRCTexture(IlcResourceConstraint,
IlcResourceTexture) const

This pure virtual method returns a pointer to a newly allocated subclass of IlcRCTextureI which represents
the individual curve of resource constraint rct for the resource associated with the resource texture texture.
This is the function used internally by the IlcResourceTexture object to generate an individual curve for each
resource constraint on a resource. The individual curve should be allocated on the solver heap. See the example
code in the documentation of IlcRCTextureESTFactoryI.

public IloSolver getSolver() const

221

This member function returns the IloSolver object passed in the constructor of the invoking object.

public virtual IlcBool hasRealZeroCriticality() const

This virtual method defines a characteristic of the IlcRCTextureI subclasses created by the invoking factory. If
this function returns IlcTrue, it means that when the individual demand at some time point, t, for
IlcRCTextureI instances allocated by the invoking factory is 0, it will remain at 0 until there is a backtrack in
the search. Otherwise, if IlcFalse is returned, a time point may become zero and then some other value
without backtracking.

For example, the IlcRCTextureProbabilisticI object has this characteristic because all possible time
points at which the associated activity can execute have a non-zero demand. When a time point is given a zero
demand it is because the possible time window of the resource constraint has been pruned in a monotonic
fashion. In contrast, the IlcRCTextureESTI object does not have this characteristic. For example, the time
point corresponding to getStartMin() + getDuration() + 1 has a zero individual demand. In a future
search state however, the minimum start time may be increased, resulting in a non-zero demand for that time
point.

This function is used to optimize the calculation of texture measurements in the cases where it returns IlcTrue.

The default return value for the method is IlcFalse.

222

Class IlcRCTextureI
Definition file: ilsched/texturei.h
Include file: <ilsched/ilsched.h>

IlcRCTextureI is the implementation base class for the representation of the individual texture curve of a
resource constraint on a resource. IlcRCTextureI is documented so that the user can create subclasses
specifying the different types of individual curves. For example, by default the IlcRCTextureESTI subclass
uses the maximum duration for the individual curve. If the user would rather use the minimum duration, a
subclass of IlcRCTextureESTI could be written. See IlcRCTextureESTI for an example of subclassing
IlcRCTextureI.

The individual curve is a piecewise linear curve represented by a set of points each of which have a time point
and a demand. Optionally a point may represent a variance curve as well as the demand curve. The curves may
be discontinuous, in which case the point representing the discontinuity must explicitly contain its magnitude and
direction (that is, positive or negative). For example, the following figure represents two individual curves. The
values of each of the data points (A through H) are listed in the table that follows.

Example of Demand Curve and Variance Curve

Data Points for the Demand Curve

Note that the data points are floating point values and can be negative.

Point Time Demand Demand Discontinuity Variance Variance Discontinuity

A 10 1 1 0 0

B 50 0 -1 0 0

C 10 0.25 0.25 0 0

D 16.66 0.5 0 0.4 0

223

E 23.33 1 0 0.125 0

F 36.66 1 0 0.125 0

G 43.33 0.5 0 0.4 0

H 50 0 0 0 0

Users have complete control over the definition of the individual curve. A number of data methods (such as
IlcRCTextureI::getCapacity, IlcRCTextureI::setCapacity, IlcRCTextureI::getStart,
IlcRCTextureI::setStart, etc.) are provided for the maintenance of data upon which the individual curves
may be built.

The points of the individual curve must be inserted in ascending temporal order by the
IlcRCTextureI::insertEvent method call from the IlcRCTextureI::calculateIndividualCurve
method. See the example code for IlcRCTextureESTI::calculateIndividualCurve

.

For more information, see Texture Measurements.

See Also: IlcRCTextureIterator, IlcResourceTexture, IlcRCTextureFactoryI, IlcRCTextureESTI,
IlcRCTextureProbabilisticI, IlcRCTextureTargetI

Constructor and Destructor Summary

protected IlcRCTextureI(IlcManager m, IlcResourceConstraint, IlcResourceTexture)

Method Summary

protected IlcFloat calcAltWeight() const

protected virtual void calculateIndividualCurve()

public IlcFloat getAltWeight() const

public IlcFloat getCapacity() const

public IlcFloat getDuration() const

public IlcFloat getEnd() const

public IlcResourceConstraint getResourceConstraint() const

public IlcFloat getStart() const

public IlcFloat getTargetStart() const

protected void insertEvent(IlcFloat t, IlcFloat demand, IlcFloat
demandDisc=0, IlcFloat var=0, IlcFloat varDisc=0)

protected void setAltWeight(IlcFloat altW)

protected void setCapacity(IlcFloat cap)

protected void setDuration(IlcFloat dur)

protected void setEnd(IlcFloat lft)

protected void setStart(IlcFloat est)

public void setTargetStart(IlcFloat)

protected virtual IlcBool updateDataPoints()

224

Constructors and Destructors

protected IlcRCTextureI(IlcManager m, IlcResourceConstraint, IlcResourceTexture)

This protected constructor creates an instance of IlcRCTextureI for resource constraint rct and the resource
texture, texture. The created class represents the individual contribution of rct to the aggregate curve of
texture. As this constructor is protected, it should only be called from subclasses of IlcRCTextureI.

Methods

protected IlcFloat calcAltWeight() const

This protected function calculates the alternative weight of the invoking IlcRCTextureI object. The alternative
weight is an estimate of the probability that the resource constraint associated with the invoking object will be
selected. The alternative weight is defined to be 1/nbAlt, where nbAlt is the number of possible alternatives
for the alternative resource constraint associated with the invoking object. If the resource constraint associated
with the invoking object is not an alternative resource constraint and does not participate in any meta-constraints,
the alternative weight is 1. If the resource constraint associated with the invoking object is involved in
meta-constraints, there is no general method for estimating the alternative weight. Therefore, in such a case, the
alternative weight is defined to be 0.5.

Note that this function calculates and returns a value. There are no side-effects. In particular, if you want to store
the alternative weight in the invoking object, you must call IlcRCTextureI::setAltWeight.

protected virtual void calculateIndividualCurve()

This pure virtual, protected function creates the actual individual curve for the invoking object. Typically, the curve
will be formulated based on the data points updated in the IlcRCTextureI::updateDataPoints method.
However, no restriction is placed on the basis on which the individual curve is formed.

Note

WARNING! When this member function is called, it is necessary to completely recreate the curve by inserting
all the curve elements in ascending temporal order using IlcRCTextureI::insertEvent.

public IlcFloat getAltWeight() const

This function returns the alternative weight of the invoking IlcRCTextureI object. The alternative weight is the
value assigned by the IlcRCTextureI::setAltWeight function. See the member function
IlcRCTextureI::calcAltWeight for a detailed description of alternative weight. If the alternative weight has
never been set, 1 is returned.

public IlcFloat getCapacity() const

This function returns the capacity value used to calculate the individual curve of the invoking object. This value is
assigned using IlcRCTextureI::setCapacity. Note that even though the associated resource constraint
may have a variable capacity, a single value, which is the maximum capacity of the resource constraint on the
resource associated with the IlcResourceTexture instance, is used by default to calculate the individual
curve. You can, of course, create your own subclass of IlcRCTextureI where a different value or even multiple
values of capacity are used to form the individual curve.

225

public IlcFloat getDuration() const

This method returns the duration value used to calculate the individual curve of the invoking object. This value is
assigned using setDuration. Note that even though the associated resource constraint may have a variable
duration, a single value, which is the maximum duration of the resource constraint on the resource associated
with the IlcResourceTexture instance, is used by default to calculate the individual curve. You can, of
course, create your own subclass of IlcRCTextureI where a different value or even multiple values of capacity
are used to form the individual curve.

public IlcFloat getEnd() const

This method returns the time value of the final point in the individual curve. This value is set using
IlcRCTextureI::setEnd. Note that the value used here may not have any resemblance to the maximum end
time of the activity associated with the resource constraint of the invoking object: it is simply the maximum time
value of the end point of the individual curve. For example, in IlcRCTextureESTI, it can be seen that
IlcRCTextureI::setEnd is used to assign the maximum end time to be IlcRCTextureI::getStart plus
IlcRCTextureI::getDuration.

public IlcResourceConstraint getResourceConstraint() const

This method returns a pointer to the implementation class of the resource constraint associated with the invoking
individual texture curve.

public IlcFloat getStart() const

This method returns the time value of the initial point in the individual curve. This value is set using
IlcRCTextureI::setStart. Note that the value used here may not have any resemblance to the minimum
start time of the activity associated with the resource constraint of the invoking object: it is simply the minimum
time value of the start point of the individual curve.

public IlcFloat getTargetStart() const

This public method returns the time value that has been set from an external source using
IlcRCTextureI::setTargetStart. The start time differs from the minimum start time in an important way:
the minimum start time is the minimum possible time value for any elements of the individual curve. The start
time is an expression of preference. Based on some external source, this time is the preferred start time. The
calculation of the individual curve may take this information into account. For example, the
IlcRCTextureTargetI class creates the individual curve assuming that the start time is the only possible start
time. In contrast, IlcRCTextureProbabilisticI ignores the start time.

protected void insertEvent(IlcFloat t, IlcFloat demand, IlcFloat demandDisc=0,
IlcFloat var=0, IlcFloat varDisc=0)

This member function inserts an event into the internal representation of the individual curve. There are three
major restrictions with the use of this function:

This method may only be called from the IlcRCTextureI::calculateIndividualCurve function.1.
All the points of the curve must be reinserted in each call to
IlcRCTextureI::calculateIndividualCurve.

2.

226

A series of consecutive calls to this function (within the same call to
IlcRCTextureI::calculateIndividualCurve) must insert elements in ascending temporal order
to ensure the correct connectivity.

3.

The arguments to this method are as follows:

t - This is the time point of the event.1.
demand - This is the value of the demand for the associated resource constraint for the resource at time
point t.

2.

demandDisc - This is the discontinuity in the demand curve at time t. Discontinuity means that the
demand curve jumps non-continuously up or down by amount |demandDisc| at time t. A negative
value indicates a negative jump. See points B and C in the figure at the start of this class.

3.

var - This is the variance of the demand that the associated resource constraint has for the resource at
time point t. This value is only non-zero when the demand is the expected value of some probabilistic
estimation of resource demand.

4.

varDisc - This is the discontinuity in the variance curve.5.

protected void setAltWeight(IlcFloat altW)

This protected method allows the alternative weight data point of the invoking object to be set.

protected void setCapacity(IlcFloat cap)

This protected method allows the capacity data point of the invoking object to be set.

protected void setDuration(IlcFloat dur)

This protected method allows the duration data point of the invoking object to be set.

protected void setEnd(IlcFloat lft)

This protected method allows the maximum end data point of the invoking object to be set.

protected void setStart(IlcFloat est)

This protected method allows the minimum start time data point of the invoking object to be set.

public void setTargetStart(IlcFloat)

This protected method allows the preferred start time data point of the invoking object to be set.

protected virtual IlcBool updateDataPoints()

This virtual method is called automatically during the process of updating the invoking individual texture curve. It
must update all the data points upon which the individual curve is calculated. In particular, the version of this
function for IlcRCTextureI updates the following items.

the minimum start time to the minimum start time of the associated resource constraint,•

227

the maximum end time to the maximum end time of the associated resource constraint,•
the duration to the maximum duration of the associated resource constraint,•
the capacity to be the maximum capacity of the associated resource constraint, and•
the alternative weight to be the value returned by the member function
IlcRCTextureI::setAltWeight.

•

If one or more of the data points has changed, IlcTrue must be returned. Otherwise, IlcFalse is returned.
The correct return value (depending on whether the data points have been modified) is critical for the correct
updating of the individual texture curve. The user can override this function to update new data points that have
been introduced in subclasses of IlcRCTextureI.

228

Class IlcRCTextureIterator
Definition file: ilsched/texture.h
Include file: <ilsched/ilsched.h>

An instance of IlcRCTextureIterator can be used to iterate through the list of IlcRCTexture objects
associated with an instance of IlcResourceTexture.

See Also: IlcRCTexture

Constructor Summary

public IlcRCTextureIterator(IlcResourceTexture texture)

Method Summary

public IlcBool ok() const

public IlcRCTexture operator*()

public void operator++()

Constructors

public IlcRCTextureIterator(IlcResourceTexture texture)

This constructor creates an instance of IlcRCTextureIterator over the IlcRCTexture elements
associated with texture.

Methods

public IlcBool ok() const

This member function returns IlcTrue if the current position of the iterator is valid. It returns IlcFalse if all of
the IlcRCTexture elements on the corresponding IlcResourceTexture have been scanned.

public IlcRCTexture operator*()

This operator accesses the instance of IlcRCTexture located at the current position of the iterator. If the
iterator is set past the end position, this operator returns an empty handle.

public void operator++()

This left-increment operator shifts the current position of the iterator.

229

Class IlcRCTextureProbabilisticFactoryI
Definition file: ilsched/texturei.h
Include file: <ilsched/ilsched.h>

IlcRCTextureProbabilisticFactoryI is an implementation object that allocates instances of
IlcRCTextureProbabilisticI.

For more information, see Texture Measurements.

See Also: IlcResourceTexture, IlcRCTextureI, IlcRCTextureProbabilisticI

Constructor and Destructor Summary

public IlcRCTextureProbabilisticFactoryI(IloSolver solver)

Method Summary

public virtual IlcRCTexture createRCTexture(IlcResourceConstraint,
IlcResourceTexture) const

Inherited Methods from IlcRCTextureFactoryI

createRCTexture, getSolver, hasRealZeroCriticality

Constructors and Destructors

public IlcRCTextureProbabilisticFactoryI(IloSolver solver)

This constructor creates an instance of IlcRCTextureProbabilisticFactoryI.

Methods

public virtual IlcRCTexture createRCTexture(IlcResourceConstraint,
IlcResourceTexture) const

This method returns a pointer to a newly allocated instance of IlcRCTexture representing the individual curve
of the resource constraint for the resource associated with the resource texture.

Example

The createRCTexture() method could be written as follows:

 IlcRCTexture IlcRCTextureProbabilisticFactoryI::createRCTexture(
 IlcResourceConstraint rct,
 IlcResourceTexture texture) const {
 IloSolver solver = getSolver();
 return new (solver.getHeap())
 IlcRCTextureProbabilisticI(solver, rct, texture);
 }

230

Class IlcRCTextureProbabilisticI
Definition file: ilsched/texturei.h
Include file: <ilsched/ilsched.h>

IlcRCTextureProbabilisticI is the implementation class for the probabilistic individual texture curve. This
individual curve represents the individual demand (and variance of that demand) of the associated resource
constraint for its resource. The curve is based on the assumption that each time in the domain of the start time
variable of the activity associated with the resource constraint is uniformly likely to be assigned. Based on that
assumption, the curve consists of four (time, demand) data points (here expressed in terms of the
IlcRCTextureI API):

(getStartMin(), h/STD)•
(getStartMin()+getDuration(), h*min(STD,getDuration())/STD)•
(getEndMax()-getDuration(), h*min(STD,getDuration())/STD)•
(getEndMax(), 0)•

Where:

h = getAltWeight() * getCapacity()•
STD = getEndMax() - getStartMin() - getDuration() + 1•

Note that all these calculations are based on the data points of the invoking IlcRCTextureProbabilisticI
object. These points are updated in the IlcRCTextureProbabilisticI::updateDataPoints method
using the methods of IlcRCTextureI (for example, IlcRCTextureI::setStart,
IlcRCTextureI::setCapacity). These values are assigned as discussed for
IlcRCTextureI::updateDataPoints.

By subclassing this class and overriding the IlcRCTextureProbabilisticI::updateDataPoints method,
users can redefine these data points and so change the individual curve.

For more information, see Texture Measurements.

See Also: IlcRCTextureIterator, IlcResourceTexture, IlcRCTextureProbabilisticFactoryI, IlcRCTextureESTI,
IlcRCTextureI, IlcRCTextureTargetI

Constructor and Destructor Summary

protected IlcRCTextureProbabilisticI(IlcManager m, IlcResourceConstraint rc,
IlcResourceTexture resTexture)

Method Summary

protected virtual void calculateIndividualCurve()

protected virtual IlcBool updateDataPoints()

Inherited Methods from IlcRCTextureI

calcAltWeight, calculateIndividualCurve, getAltWeight, getCapacity, getDuration,
getEnd, getResourceConstraint, getStart, getTargetStart, insertEvent,
setAltWeight, setCapacity, setDuration, setEnd, setStart, setTargetStart,
updateDataPoints

231

Constructors and Destructors

protected IlcRCTextureProbabilisticI(IlcManager m, IlcResourceConstraint rc,
IlcResourceTexture resTexture)

This protected constructor creates an instance of IlcRCTextureProbabilisticI for resource constraint rc
and resource texture, texture. The created class represents the individual contribution of rc to the aggregate
curve of texture. As this constructor is protected, it should only be called from subclasses of
IlcRCTextureProbabilisticI or from the IlcRCTextureProbabilisticFactoryI friend class.

Methods

protected virtual void calculateIndividualCurve()

This virtual, protected function creates the actual individual curve for the invoking object.

protected virtual IlcBool updateDataPoints()

This virtual method is called automatically during the process of updating the invoking individual texture curve. It
updates as discussed for the member function IlcRCTextureI::updateDataPoints.

232

Class IlcRCTextureTargetFactoryI
Definition file: ilsched/texturei.h
Include file: <ilsched/ilsched.h>

IlcRCTextureTargetFactoryI is an implementation object that allocates instances of
IlcRCTextureTargetI.

For more information, see Texture Measurements.

See Also: IlcResourceTexture, IlcRCTextureI, IlcRCTextureTargetI

Constructor and Destructor Summary

public IlcRCTextureTargetFactoryI(IloSolver solver)

Method Summary

public virtual IlcRCTexture createRCTexture(IlcResourceConstraint,
IlcResourceTexture) const

Inherited Methods from IlcRCTextureESTFactoryI

createRCTexture

Inherited Methods from IlcRCTextureFactoryI

createRCTexture, getSolver, hasRealZeroCriticality

Constructors and Destructors

public IlcRCTextureTargetFactoryI(IloSolver solver)

This constructor creates an instance of IlcRCTextureTargetFactoryI.

Methods

public virtual IlcRCTexture createRCTexture(IlcResourceConstraint,
IlcResourceTexture) const

This method returns a pointer to a newly allocated instance of IlcRCTexture representing the individual curve
of the resource constraint for the resource associated with the resource texture.

Example

The createRCTexture() method could be written as follows:

 IlcRCTexture
 IlcRCTextureTargetFactoryI::createRCTexture(IlcResourceConstraint rct,
 IlcResourceTexture texture) const {

233

 IloSolver solver = getSolver();
 return new (solver.getHeap())
 IlcRCTextureTargetI(solver, rct, texture);
 }

234

Class IlcRCTextureTargetI
Definition file: ilsched/texturei.h
Include file: <ilsched/ilsched.h>

IlcRCTextureTargetI is the implementation class for the target start time individual texture curve. This
individual curve represents the individual demand of the associated resource constraint for its resource based on
the assumption that it will start at an externally defined target start time. The points used in the texture curve can
be seen in the example code below.

For more information, see Texture Measurements.

See Also: IlcRCTextureIterator, IlcResourceTexture, IlcRCTextureTargetFactoryI, IlcRCTextureProbabilisticI,
IlcRCTextureI, IlcRCTexture

Constructor and Destructor Summary

public IlcRCTextureTargetI(IlcManager m, IlcResourceConstraint rc,
IlcResourceTexture resTexture)

Method Summary

protected virtual IlcBool updateDataPoints()

Inherited Methods from IlcRCTextureESTI

calculateIndividualCurve

Inherited Methods from IlcRCTextureI

calcAltWeight, calculateIndividualCurve, getAltWeight, getCapacity, getDuration,
getEnd, getResourceConstraint, getStart, getTargetStart, insertEvent,
setAltWeight, setCapacity, setDuration, setEnd, setStart, setTargetStart,
updateDataPoints

Constructors and Destructors

public IlcRCTextureTargetI(IlcManager m, IlcResourceConstraint rc,
IlcResourceTexture resTexture)

This protected constructor creates an instance of IlcRCTextureTargetI for resource constraint rc and the
resource texture resTexture. The created class represents the individual contribution of rc to the aggregate
curve of resTexture. As this constructor is protected, it should only be called from subclasses of
IlcRCTextureTargetI or from the IlcRCTextureTargetFactoryI friend class.

Methods

protected virtual IlcBool updateDataPoints()

This virtual, protected function updates all the data points on which the curve is calculated.

235

Example

Here is an example of how the updateDataPoints() method might be written.

 IlcBool IlcRCTextureTargetI::updateDataPoints() {
 IlcResourceConstraint rc = getResourceConstraint();
 IlcFloat newAltWeight = calcAltWeight();
 IlcInt dur, cap;
 IlcFloat startMin = getStartTime();

 IlcAltResConstraint altRct = rc.getAlternative();
 if (0 != altRct.getImpl()) {
 IlcResource res = rc.getResource();
 dur = altRct.getDurationMax(res);
 cap = altRct.getCapacityMax(res);
 }

 else {
 IlcActivity act = rc.getActivity();
 dur = act.getDurationMax();
 cap = (rc.isVariableResourceConstraint() ?
 rc.getCapacityVariable().getMax() :
 rc.getCapacity());
 }

 IlcBool changed = IlcFalse;
 if ((getStartMin() != startMin) ||
 (getDuration() != dur) ||
 (getCapacity() != cap) ||
 (getAltWeight() != newAltWeight)) {
 changed = IlcTrue;

 setStart(startMin);
 setDuration(dur);
 setEnd(startMin + dur);
 setCapacity(cap);
 setAltWeight(newAltWeight);
 }

 return changed;
 }

236

Class IlcRelativeDemandCriticalityCalculatorI
Definition file: ilsched/texturei.h
Include file: <ilsched/ilsched.h>

IlcRelativeDemandCriticalityCalculatorI is the implementation class that implements the relative
demand texture criticality calculator.

For more information, see Texture Measurements.

See Also: IlcResourceTexture, IlcTextureCriticalityCalculatorI, IlcTextureCriticalityCalculator,
IlcProbabilisticCriticalityCalculatorI

Constructor and Destructor Summary

public IlcRelativeDemandCriticalityCalculatorI()

Method Summary

public virtual IlcFloat calculateCriticalityGreaterThan(IlcFloat expectedDemand,
IlcFloat constraintVal, IlcFloat expectedVariance) const

public virtual IlcFloat calculateCriticalityLessThan(IlcFloat expectedDemand,
IlcFloat constraintVal, IlcFloat expectedVariance) const

Inherited Methods from IlcTextureCriticalityCalculatorI

calculateCriticalityGreaterThan, calculateCriticalityLessThan

Constructors and Destructors

public IlcRelativeDemandCriticalityCalculatorI()

This constructor creates an instance of IlcRelativeDemandCriticalityCalculatorI.

Methods

public virtual IlcFloat calculateCriticalityGreaterThan(IlcFloat expectedDemand,
IlcFloat constraintVal, IlcFloat expectedVariance) const

This method calculates the criticality of a maximum constraint at one time point based on the ratio of demand to
constraintVal. For sample code, see
IlcRelativeDemandCriticalityCalculatorI::calculateCriticalityLessThan.

public virtual IlcFloat calculateCriticalityLessThan(IlcFloat expectedDemand,
IlcFloat constraintVal, IlcFloat expectedVariance) const

This method calculates the criticality of a minimum constraint at one time point based on the ratio of
constraintVal to demand.

237

Example

The two criticality calculation methods may be written as follows:

 IlcFloat IlcRelativeDemandCriticalityCalculatorI::
 calculateCriticalityGreaterThan(IlcFloat demand,
 IlcFloat constraintVal,
 IlcFloat) const {
 if (demand <= 0)
 return 0;
 else if (constraintVal <= 0)
 return IlcFloatMax;
 return demand / constraintVal;
 }

 IlcFloat IlcRelativeDemandCriticalityCalculatorI::
 calculateCriticalityLessThan(IlcFloat demand,
 IlcFloat constraintVal,
 IlcFloat = 0.) const {
 if (constraintVal <= 0)
 return 0;
 else if (demand <= 0)
 return IlcFloatMax;
 return constraintVal / demand;
 }

238

Class IlcReservoir
Definition file: ilsched/reservoi.h
Include file: <ilsched/ilsched.h>

An instance of the class IlcReservoir represents a resource for which activities can both provide capacity and
also require capacity. You can define required and provided capacity so that the Scheduler Engine will insure that
no more capacity is ever used than provided.

Furthermore, if you define a maximal level of the reservoir, then this maximal level will never be exceeded.

When the model of your problem represents an ongoing process, you may be faced with the fact that the
reservoir already has some non-zero level. You can simply pass an initial level like that to the constructor of
IlcReservoir.

The capacity of a reservoir can vary over time. You can define temporary maximal and minimal levels by using
member functions of IlcReservoir.

Closing a Reservoir

The member function IlcResource::close is crucial for propagation affecting the class IlcReservoir. If
IlcResource::close is not called, new activities providing or requiring capacity can still be added. This
means that no propagation can take place before the reservoir is closed.

Printing or Displaying Reservoirs

The printed representation of an instance of the class IlcReservoir consists of its name, if it exists, and its
theoretical capacity followed by its initial level. The two values are enclosed in brackets and separated by a dash
(-). For example:

r1[100 - 10] represents the reservoir named r1 which has a capacity equal to 100 and an initial level equal
to 10.

If the Solver trace is active and the resource is not named, the string “IlcReservoir” is followed by the address
of the implementation object. The address will be enclosed in parentheses.

If the theoretical capacity of the reservoir is equal to its maximal value (that is IlcIntMax/2), the string
Maximum Capacity is displayed instead of its numerical value.

For more information, see Timetable, and Balance Constraint.

See Also: IlcCapResource, IlcReservoirIterator, IlcResource, IlcResourceConstraint, IlcSchedule

Constructor Summary

public IlcReservoir()

public IlcReservoir(IlcReservoirI * impl)

public IlcReservoir(IlcSchedule schedule, IlcInt capacity=IlcMaxCapacityReservoir,
IlcInt initialLevel=OL, IlcBool timetable=IlcTrue)

Method Summary

public IlcInt getCapacity() const

239

public IlcReservoirI * getImpl() const

public IlcInt getInitialLevel() const

public IlcInt getLevelMax(IlcInt time) const

public IlcInt getLevelMaxMax(IlcInt timeMin, IlcInt timeMax) const

public IlcInt getLevelMaxMin(IlcInt timeMin, IlcInt timeMax) const

public IlcInt getLevelMin(IlcInt time) const

public IlcInt getLevelMinMax(IlcInt timeMin, IlcInt timeMax) const

public IlcInt getLevelMinMin(IlcInt timeMin, IlcInt timeMax) const

public void operator=(const IlcReservoir & h)

public void setLevelMax(IlcInt timeMin, IlcInt timeMax, IlcInt
levelMax)

public void setLevelMin(IlcInt timeMin, IlcInt timeMax, IlcInt
levelMin)

Inherited Methods from IlcCapResource

getImpl, getMaxTextureMeasurement, getMinTextureMeasurement, getTimetable,
getTimetable, hasInitialOccupation, hasMaxTextureMeasurement,
hasMinTextureMeasurement, incrDurableRequirement, incrDurableRequirement,
isRedundantResource, makeBalanceConstraint, makeMaxTextureMeasurement,
makeMinTextureMeasurement, makeTimetableConstraint, makeTimetableConstraint,
makeTimetableConstraint, operator=, setInitialOccupation, setInitialOccupation,
unsetInitialOccupation

Inherited Methods from IlcResource

close, getCalendar, getDisjunctiveConstraint, getDurableSchedule, getImpl,
getLastRankedFirstRC, getLastRankedLastRC, getLastSurelyContributingRankedFirstRC,
getLastSurelyContributingRankedLastRC, getName, getObject,
getOldLastRankedFirstRC, getOldLastRankedLastRC, getPrecedenceGraphConstraint,
getSchedule, getSolver, getSolverI, getTimetableConstraint, getTransitionTime,
hasCalendar, hasDisjunctiveConstraint, hasLightPrecedenceGraphConstraint,
hasPrecedenceGraphConstraint, hasPrecedenceInfo, hasRankInfo,
hasTimetableConstraint, isCapacityResource, isClosed, isContinuousReservoir,
isDiscreteEnergy, isDiscreteResource, isDurable, isReservoir, isStateResource,
isTransitionTimeSuspended, isUnaryResource, makeFunctionalConstraint,
makeIntegralConstraint, makeLightPrecedenceGraphConstraint,
makePrecedenceGraphConstraint, operator!=, operator=, operator==, setCalendar,
setName, setObject, setTransitionTimeObject, setTransitionTimeSuspended,
whenContribution, whenDirectPredecessors, whenDirectSuccessors, whenNext,
whenPossibleNext, whenPossiblePrevious, whenPredecessors, whenPrevious,
whenRankedFirstRC, whenRankedLastRC, whenSuccessors

Constructors

public IlcReservoir()

This constructor creates an instance which is empty, that is, one whose handle pointer is null. You must assign it
a value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IlcReservoir(IlcReservoirI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

240

public IlcReservoir(IlcSchedule schedule, IlcInt capacity=IlcMaxCapacityReservoir,
IlcInt initialLevel=OL, IlcBool timetable=IlcTrue)

This constructor creates a new instance of IlcReservoir and adds it to the set of resources managed in the
given schedule. The capacity argument expresses the capacity of the new reservoir. The capacity may be
consumed by certain activities and produced by others. The argument initialLevel defines an initial amount
in the reservoir at the time origin of the schedule. By default, the reservoir is assumed to be empty at the time
origin; that is, the initial level is 0 (zero). The default value of the theoretical capacity is IlcIntMax/2. That is
the maximal theoretical capacity that is allowed. Any capacity greater than IlcIntMax/2 will be treated as if it
were equal to IlcIntMax/2.

If timetable is IlcTrue, then a timetable constraint is posted, defining the level of the reservoir to be between
0 (zero) and capacity over the interval [timeMin timeMax), where timeMin is the origin and timeMax is
the horizon of the schedule. An instance of IloSolver::SolverErrorException is thrown if capacity is
strictly negative.

Methods

public IlcInt getCapacity() const

This member function returns the theoretical capacity of the invoking reservoir, that is, the capacity that was
passed to the resource constructor. If the theoretical capacity is unlimited, then this member function returns
IlcIntMax/2 (a platform-dependent Solver constant indicating the greatest possible integer).

public IlcReservoirI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IlcInt getInitialLevel() const

This member function returns the initial level of the reservoir; that is, the initial level that was passed to the
reservoir constructor.

public IlcInt getLevelMax(IlcInt time) const

This member function returns the maximal level that is present at the given time. An instance of
IloSolver::SolverErrorException is thrown if the timetables of the invoking reservoir do not cover the
given time.

public IlcInt getLevelMaxMax(IlcInt timeMin, IlcInt timeMax) const

This member function returns the maximal level throughout the interval [timeMin, timeMax) (that is, the
maximal value over the interval [timeMin, timeMax) of the maximal reservoir level). An instance of
IloSolver::SolverErrorException is thrown if the timetables of the invoking reservoir do not cover the
complete interval indicated by [timeMin, timeMax).

public IlcInt getLevelMaxMin(IlcInt timeMin, IlcInt timeMax) const

This member function returns the maximal valiue, over the interval [timeMin, timeMax), of the minimal
reservoir level. An instance of IloSolver::SolverErrorException is thrown if the timetables of the
invoking reservoir do not cover the complete interval indicated by [timeMin, timeMax).

241

public IlcInt getLevelMin(IlcInt time) const

This member function returns the minimal level that is present at the given time. An instance of
IloSolver::SolverErrorException is thrown if the timetables of the invoking reservoir do not cover the
given time.

public IlcInt getLevelMinMax(IlcInt timeMin, IlcInt timeMax) const

This member function returns the minimal value, over the interval [timeMin, timeMax), of the maximal
reservoir level. An instance of IloSolver::SolverErrorException is thrown if the timetables of the
invoking reservoir do not cover the complete interval indicated by [timeMin, timeMax).

public IlcInt getLevelMinMin(IlcInt timeMin, IlcInt timeMax) const

This member function returns the minimal level throughout the interval [timeMin, timeMax) (that is, the
minimal value over the interval [timeMin, timeMax) of the minimal reservoir level). An instance of
IloSolver::SolverErrorException is thrown if the timetables of the invoking reservoir do not cover the
complete interval indicated by [timeMin, timeMax).

public void operator=(const IlcReservoir & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument. After execution of this operator, the invoking object and the
provided argument point to the same implementation object.

public void setLevelMax(IlcInt timeMin, IlcInt timeMax, IlcInt levelMax)

This member function states that the level of the reservoir can be at most levelMax throughout the interval
[timeMin, timeMax). An instance of IloSolver::SolverErrorException is thrown if the timetables of
the invoking reservoir do not cover the complete interval indicated by [timeMin, timeMax). The reservoir
must be closed in order to propagate constraints.

public void setLevelMin(IlcInt timeMin, IlcInt timeMax, IlcInt levelMin)

This member function states that the level of the reservoir must be at least levelMin throughout the interval
[timeMin timeMax). An instance of IloSolver::SolverErrorException is thrown if the timetables of
the invoking reservoir do not cover the complete interval indicated by [timeMin, timeMax). The reservoir
must be closed in order to propagate constraints.

242

Class IlcReservoirIterator
Definition file: ilsched/reservoi.h
Include file: <ilsched/ilsched.h>

An instance of this class traverses the set of reservoirs.

See Also: IlcReservoir, IlcSchedule

Constructor and Destructor Summary

public IlcReservoirIterator(const IlcSchedule schedule)

Method Summary

public IlcBool ok() const

public IlcReservoir operator*() const

public IlcReservoirIterator & operator++()

Constructors and Destructors

public IlcReservoirIterator(const IlcSchedule schedule)

This constructor creates an iterator to traverse all the reservoirs of schedule.

Methods

public IlcBool ok() const

This member function returns IlcTrue if the current position of the iterator is a valid one. It returns IlcFalse if
all the reservoirs have been scanned by the iterator.

public IlcReservoir operator*() const

This operator accesses the instance of IlcReservoir located at the current position of the iterator. If the
iterator is set past the end position, this operator returns an empty handle.

public IlcReservoirIterator & operator++()

This left-increment operator shifts the current position of the iterator.

243

Class IlcResource
Definition file: ilsched/schedule.h
Include file: <ilsched/ilsched.h>

In the Scheduler Engine, a resource is represented by an instance of the abstract class IlcResource. Activities
in a schedule may require or provide resources, so there is a data member in the class IlcResource to
distinguish between resources "to be required" and those "to be provided" by activities. Each resource belongs to
a unique schedule, an instance of IlcSchedule. The member function IlcResource::getSchedule returns
that unique schedule whenever it is invoked on a resource.

There are several predefined subclasses of IlcResource:

Closing a Resource

The member function close specifies that all the activities requiring the invoking resource are known; that is,
they have been linked to the resource. This information allows additional constraint propagation to take place, for
example, the propagation of minimal capacity constraints. Propagating minimal capacity constraints is particularly
useful in the case of resource allocation problems for which some minimal amount of provided capacity must be
reached. With such information, indeed, the system can eliminate situations in which minimal capacity amounts
cannot be reached if no other (not deduced) activity can execute to provide the resource.

An instance of IloSolver::SolverErrorException is thrown when a new resource constraint (see the
IlcResourceConstraint class) is posted on a closed resource.

The member function IlcResource::close is also crucial for propagation affecting the IlcReservoir and
IlcContinuousReservoir classes. If IlcResource::close is not called, new activities providing or
requiring capacity can still be added. This means that no propagation can take place before the reservoir is
closed.

For more information, see Calendars, Disjunctive Constraint, Durability, Timetable, Transition Times, Precedence
Graph Constraints, and Functional and Integral Constraints on Resources.

See Also: IlcAltResSet, IlcIntervalList, IlcCapResource, IlcResourceConstraint, IlcResourceIterator, IlcSchedule,
IlcSchedVariable, IlcGranularFunction

Constructor Summary

public IlcResource()

public IlcResource(IlcResourceI * impl)

Method Summary

244

public void close()

public IlcCalendar getCalendar() const

public IlcConstraint getDisjunctiveConstraint() const

public IlcSchedule getDurableSchedule() const

public IlcResourceI * getImpl() const

public IlcResourceConstraint getLastRankedFirstRC() const

public IlcResourceConstraint getLastRankedLastRC() const

public IlcResourceConstraint getLastSurelyContributingRankedFirstRC() const

public IlcResourceConstraint getLastSurelyContributingRankedLastRC() const

public const char * getName() const

public IlcAny getObject() const

public IlcResourceConstraint getOldLastRankedFirstRC() const

public IlcResourceConstraint getOldLastRankedLastRC() const

public IlcConstraint getPrecedenceGraphConstraint() const

public IlcSchedule getSchedule() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public IlcConstraint getTimetableConstraint() const

public IlcInt getTransitionTime(const IlcResourceConstraint ct1,
const IlcResourceConstraint ct2) const

public IlcBool hasCalendar() const

public IlcBool hasDisjunctiveConstraint() const

public IlcBool hasLightPrecedenceGraphConstraint() const

public IlcBool hasPrecedenceGraphConstraint() const

public IlcBool hasPrecedenceInfo() const

public IlcBool hasRankInfo() const

public IlcBool hasTimetableConstraint() const

public IlcBool isCapacityResource() const

public IlcBool isClosed() const

public IlcBool isContinuousReservoir() const

public IlcBool isDiscreteEnergy() const

public IlcBool isDiscreteResource() const

public IlcBool isDurable() const

public IlcBool isReservoir() const

public IlcBool isStateResource() const

public IlcBool isTransitionTimeSuspended() const

public IlcBool isUnaryResource() const

public IlcConstraint makeFunctionalConstraint(IlcSchedVariable
leftVariable, const IlcGranularFunction func,
IlcSchedVariable rightVariable=IlcDurationVariable,
IlcBool fste=IlcFalse) const

public IlcConstraint makeIntegralConstraint(IlcSchedVariable
leftVariable, const IlcGranularFunction func,

245

IlcBool ignoreSuspensionAtStartEnd=IlcTrue, IlcBool
fste=IlcFalse) const

public IlcConstraint makeLightPrecedenceGraphConstraint()

public IlcConstraint makePrecedenceGraphConstraint()

public IlcBool operator!=(const IlcResource & resource) const

public void operator=(const IlcResource & h)

public IlcBool operator==(const IlcResource & resource) const

public void setCalendar(IlcCalendar cal)

public void setName(const char * name) const

public void setObject(IlcAny object) const

public void setTransitionTimeObject(IlcTransitionTimeObject
ttobj)

public void setTransitionTimeSuspended(IlcBool
suspended=IlcTrue)

public void whenContribution(const IlcResourceDemon d)

public void whenDirectPredecessors(const IlcResourceDemon d)

public void whenDirectSuccessors(const IlcResourceDemon d)

public void whenNext(const IlcResourceDemon d)

public void whenPossibleNext(const IlcResourceDemon d)

public void whenPossiblePrevious(const IlcResourceDemon d)

public void whenPredecessors(const IlcResourceDemon d)

public void whenPrevious(const IlcResourceDemon d)

public void whenRankedFirstRC(const IlcDemon demon) const

public void whenRankedLastRC(const IlcDemon demon) const

public void whenSuccessors(const IlcResourceDemon d)

Inner Enumeration

IlcResource::RankFilter

Inner Class

IlcResource::ResourceConstraintDeltaIterator

IlcResource::ResourceConstraintIterator

Constructors

public IlcResource()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcResource(IlcResourceI * impl)

This constructor creates a handle object from a pointer to an implementation object.

246

Methods

public void close()

This member function closes the invoking resource. That is, it states that all the activities requiring or providing
the invoking resource are known so constraint propagation can proceed.

public IlcCalendar getCalendar() const

This member function returns the calendar attached to the invoking resource, if such an object exists.

public IlcConstraint getDisjunctiveConstraint() const

This member function returns the disjunctive constraint of the invoking resource.

public IlcSchedule getDurableSchedule() const

This member function returns the durable schedule on which the invoking durable resource was constructed. It
returns an empty handle if the invoking resource is not durable.

public IlcResourceI * getImpl() const

This constructor creates an object by copying another one. This constructor creates an object by copying another
one. This member function returns a pointer to the implementation object of the invoking handle.

public IlcResourceConstraint getLastRankedFirstRC() const

This member function returns the last resource constraint that was ranked first on the resource. If no resource
constraint has been ranked first, it returns an empty handle.

This function should be used only if the ranking information is available on the resource (see
IlcResource::hasRankInfo).

public IlcResourceConstraint getLastRankedLastRC() const

This member function returns the last resource constraint that was ranked last on the resource. If no resource
constraint has been ranked last, it returns an empty handle.

This function should be used only if the ranking information is available on the resource (see
IlcResource::hasRankInfo).

public IlcResourceConstraint getLastSurelyContributingRankedFirstRC() const

This member function returns the last resource constraint that was ranked first on the resource and surely affects
the availability of the resource (strictly positive duration and capacity requirement). If no resource constraint
meets these conditions, it returns an empty handle.

This function should be used only if the ranking information is available on the resource (see
IlcResource::hasRankInfo).

247

public IlcResourceConstraint getLastSurelyContributingRankedLastRC() const

This member function returns the last resource constraint that was ranked last on the resource and surely affects
the availability of the resource (strictly positive duration and capacity requirement). If no resource constraint
meets these conditions, it returns an empty handle.

This function should be used only if the ranking information is available on the resource (see
IlcResource::hasRankInfo).

public const char * getName() const

This member function returns the name of the invoking object.

public IlcAny getObject() const

This member function returns a pointer to the external object associated with the invoking object, if there is such
an association. It returns 0 (zero) otherwise.

public IlcResourceConstraint getOldLastRankedFirstRC() const

When called by the execution of a demon d attached with the event IlcResource::whenRankedFirstRC this
member function returns the last resource constraint that has been ranked first during the last triggering of the
event. If the event is triggered for the first time, this function returns an empty handle. The delta iterator
IlcResource::ResourceConstraintDeltaIterator with argument RankedFirst allows iteration in
chronological order (with respect to the start/end time of activities) over all the resource constraints between the
one returned by getOldLastRankedFirstRC (excluded) and the one returned by
IlcResource::getLastRankedFirstRC (included).

When called outside the execution of a demon d attached with the event
IlcResource::whenRankedFirstRC this member function returns the last resource constraint that was
ranked first on the resource. That is, it returns exactly the same value as the member function
IlcResource::getLastRankedFirstRC.

This function should be used only if the ranking information is available on the resource (see
IlcResource::hasRankInfo).

public IlcResourceConstraint getOldLastRankedLastRC() const

When called by the execution of a demon d attached with the event IlcResource::whenRankedLastRC this
member function returns the last resource constraint that has been ranked last during the last triggering of the
event. If the event is triggered for the first time, this function returns an empty handle. The delta iterator
IlcResource::ResourceConstraintDeltaIterator with argument RankedLast allows iteration in
anti-chronological order (with respect to the start/end time of activities) over all the resource constraints between
the one returned by getOldLastRankedLastRC (excluded) and the one returned by
IlcResource::getLastRankedLastRC (included).

When called outside the execution of a demon d attached with the event IlcResource::whenRankedLastRC
this member function returns the last resource constraint that was ranked last on the resource. That is, it returns
exactly the same value as the member function IlcResource::getLastRankedLastRC.

This function should be used only if the ranking information is available on the resource (see
IlcResource::hasRankInfo).

public IlcConstraint getPrecedenceGraphConstraint() const

248

This member function returns the precedence graph constraint associated with the invoking resource.

public IlcSchedule getSchedule() const

This member function returns the schedule to which the invoking resource belongs. Each resource belongs to a
unique schedule, an instance of IlcSchedule.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IloSolverI * getSolverI() const

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

public IlcConstraint getTimetableConstraint() const

This member function returns the timetable constraint of the invoking resource.

public IlcInt getTransitionTime(const IlcResourceConstraint ct1, const
IlcResourceConstraint ct2) const

This member function returns the transition time between the two activities corresponding to ct1 and ct2. By
default, that is when no transition time object has been defined for the resource, this function returns 0.

Transition times can be taken into account by the disjunctive constraint or by the type timetable constraint. See
Transition Time in Scheduler Engine for more details.

public IlcBool hasCalendar() const

This member function returns IlcTrue if a calendar has been attached to the invoking resource. Otherwise, it
returns IlcFalse.

public IlcBool hasDisjunctiveConstraint() const

This member function returns IlcTrue if the invoking resource has a disjunctive constraint. Otherwise, it returns
IlcFalse.

public IlcBool hasLightPrecedenceGraphConstraint() const

This member function returns IlcTrue if and only if a light precedence graph constraint has been created on the
resource.

public IlcBool hasPrecedenceGraphConstraint() const

249

This member function returns IlcTrue if the invoking resource is associated with a precedence graph
constraint. Otherwise, it returns IlcFalse.

public IlcBool hasPrecedenceInfo() const

This member function returns IlcTrue if and only if some precedence information is available on the resource.
This is the case when the resource has been associated with a precedence graph constraint or when the
resource is a unary resource with a sequence constraint.

When this member function returns IlcTrue, all the member functions allowed when
IlcResource::hasRankInfo returns IlcTrue are allowed, along with the following additional functions:

IlcResource::whenDirectSuccessors, IlcResource::whenDirectPredecessors,
IlcResource::whenSuccessors, IlcResource::whenPredecessors,
IlcResource::whenPossiblePrevious, IlcResource::whenPossibleNext.

•

IlcResourceConstraint::setNotNext, IlcResourceConstraint::setNotSetup,
IlcResourceConstraint::setNotTeardown,
IlcResourceConstraint::isDirectlySucceededBy,
IlcResourceConstraint::isSucceededBy,
IlcResourceConstraint::hasAsPossibleNext,
IlcResourceConstraint::isPossibleSetup,
IlcResourceConstraint::isPossibleTeardown.

•

public IlcBool hasRankInfo() const

This member function returns IlcTrue if and only if some rank information is available on the resource. This is
the case when the resource is a unary resource and has been associated with a light precedence graph
constraint, a precedence graph constraint, a disjunctive constraint or a sequence constraint, or when the
resource is a state resource with a precedence graph constraint or a disjunctive constraint.

When this member function returns IlcTrue, the following functions can be used during the search:

IlcResource::getLastRankedFirstRC, IlcResource::getLastRankedLastRC,
IlcResource::getOldLastRankedFirstRC, IlcResource::getOldLastRankedLastRC,
IlcResource::getLastSurelyContributingRankedFirstRC,
IlcResource::getLastSurelyContributingRankedLastRC,
IlcResource::whenRankedFirstRC, IlcResource::whenRankedLastRC,
IlcResource::whenPrevious, IlcResource::whenNext,
IlcResource::whenContribution.

•

IlcUnaryResource::isRanked, IlcUnaryResource::getSetupRC,
IlcUnaryResource::getTeardownRC, IlcUnaryResource::hasSetupRC,
IlcUnaryResource::hasTeardownRC.

•

IlcResourceConstraint::rankFirst, IlcResourceConstraint::rankLast,
IlcResourceConstraint::rankNotFirst, IlcResourceConstraint::rankNotLast,
IlcResourceConstraint::setNext, IlcResourceConstraint::setSetup,
IlcResourceConstraint::setTeardown, IlcResourceConstraint::setSuccessor,
IlcResourceConstraint::isPossibleFirst, IlcResourceConstraint::isPossibleLast,
IlcResourceConstraint::isRankedFirst, IlcResourceConstraint::isRankedLast,
IlcResourceConstraint::isRanked, IlcResourceConstraint::getNextRC,
IlcResourceConstraint::getPrevRC, IlcResourceConstraint::hasAsNext,
IlcResourceConstraint::hasNextRC, IlcResourceConstraint::hasPrevRC,
IlcResourceConstraint::isSetup, IlcResourceConstraint::isTeardown,
IlcResourceConstraint::surelyContributes,
IlcResourceConstraint::possiblyContributes.

•

IlcTryRankFirst, IlcTryRankLast, IlcRank, IlcRankBackward.•

250

public IlcBool hasTimetableConstraint() const

This member function returns IlcTrue if the invoking resource has a timetable constraint. Otherwise, it returns
IlcFalse.

public IlcBool isCapacityResource() const

This member function distinguishes between the classes of resources available in the Scheduler Engine. It
returns IlcTrue if the invoking resource is an instance of the class IlcCapResource. Otherwise, it returns
IlcFalse.

public IlcBool isClosed() const

This member function returns IlcTrue if the invoking resource is closed; that is, the resource no longer accepts
new resource constraints being declared for it. The member function returns IlcFalse if the invoking resource
is still open.

public IlcBool isContinuousReservoir() const

This member function distinguishes among the classes of resources available in the Scheduler Engine. It returns
IlcTrue if the invoking resource is an instance of the class IlcContinuousReservoir. Otherwise, it returns
IlcFalse.

public IlcBool isDiscreteEnergy() const

This member function distinguishes among the classes of resources available in the Scheduler Engine. It returns
IlcTrue if the invoking resource is an instance of the class IlcDiscreteEnergy. Otherwise, it returns
IlcFalse.

public IlcBool isDiscreteResource() const

This member function distinguishes among the classes of resources available in the Scheduler Engine. It returns
IlcTrue if the invoking resource is an instance of the class IlcDiscreteResource. Otherwise, it returns
IlcFalse.

public IlcBool isDurable() const

This member function returns IlcTrue if the invoking resource was constructed on a durable schedule.
Otherwise, it returns IlcFalse.

public IlcBool isReservoir() const

This member function distinguishes among the classes of resources available in the Scheduler Engine. It returns
IlcTrue if the invoking resource is an instance of the class IlcReservoir. Otherwise, it returns IlcFalse.

251

public IlcBool isStateResource() const

This member function distinguishes among the classes of resources available in the Scheduler Engine. It returns
IlcTrue if the invoking resource is an instance of the class IlcStateResource. Otherwise, it returns
IlcFalse.

public IlcBool isTransitionTimeSuspended() const

This member function returns IlcTrue if the transition time on the invoking resource has been declared to be
suspended by breaks.

public IlcBool isUnaryResource() const

This member function distinguishes among the classes of resources available in the Scheduler Engine. It returns
IlcTrue if the invoking resource is an instance of the class IlcUnaryResource. Otherwise, it returns
IlcFalse.

public IlcConstraint makeFunctionalConstraint(IlcSchedVariable leftVariable, const
IlcGranularFunction func, IlcSchedVariable rightVariable=IlcDurationVariable,
IlcBool fste=IlcFalse) const

This member function creates a functional constraint from the function func on all the activities requiring the
invoking resource. If the time extent is IlcNever or IlcAlways, the resource constraint will be ignored.

For each such activity, the integral of the function func is evaluated from the value of the variable designated by
rightVariable, and set to be equal to the variable designated by leftVariable:

leftVariable = f(rightVariable)

The func object must be closed, otherwise an error will be raised. Whenever the processing time is used
(IloProcessingTimeVariable), every activity executing on the resource must be breakable, and the
granular function func must take a value less than or equal to its granularity. Otherwise an error will be raised
when starting to solve the problem.

public IlcConstraint makeIntegralConstraint(IlcSchedVariable leftVariable, const
IlcGranularFunction func, IlcBool ignoreSuspensionAtStartEnd=IlcTrue, IlcBool
fste=IlcFalse) const

This member function creates an integral constraint from the function func on all the activities requiring the
invoking resource. If the time extent is IlcNever or IlcAlways, the resource constraint will be ignored.

For each such activity, the integral of the function func is computed over the duration, divided by the granularity,
and properly rounded (see IlcGranularFunction), It is then set to be equal to the variable designated by
leftVar:

The leftVar argument should only be one of the following variable types: IlcExternalVariable,
IlcProcessingTimeVariable, IlcCapacityVariable, IlcEnergyVariable. The func object must be
closed, otherwise an error will be raised. Whenever the processing time is used
(IlcProcessingTimeVariable), every activity executing on the resource must be breakable, and the

252

granular function func must take a value less than or equal to its granularity. Otherwise an error will be raised
when starting to solve the problem.

The suspension of activities at the start or end (see IlcActivity::canBeSuspendedAtStart and
IlcActivity::canBeSuspendedAtEnd) is by default not taken into account. To take forbidden suspensions
into account, the argument ignoreSuspensionAtStartEnd may be set to IlcFalse. Then, the resulting
integral constraint will accordingly prevent activities to start/end in intervals where the granular function func has
zero values.

public IlcConstraint makeLightPrecedenceGraphConstraint()

This member function allows the creation and return of a light precedence graph constraint on the invoking unary
resource. That constraint has to be posted in order to be taken into account.

public IlcConstraint makePrecedenceGraphConstraint()

This member function creates and returns the precedence graph constraint associated with the invoking
resource. That constraint has to be posted in order to be taken into account.

public IlcBool operator!=(const IlcResource & resource) const

This operator returns IlcTrue if and only if resource does not refer to the same implementation object as the
invoking resource.

public void operator=(const IlcResource & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public IlcBool operator==(const IlcResource & resource) const

This operator returns IlcTrue if and only if resource refers to the same implementation object as the invoking
resource.

public void setCalendar(IlcCalendar cal)

This member function attaches the calendar cal to the invoking resource.

Outside the search, it is possible to attach a new calendar to a resource that already has a calendar attached. In
that case the new attachment replaces the previous one.

During search, it is possible to attach a calendar only to a resource that does not have a previously attached
calendar. In that case, the attachment is reversible. During search, any attempt to attach a new calendar to a
resource that already has an attached calendar raises an error.

When two different calendars are attached respectively to a resource constraint and to its corresponding
resource, only the one on the resource constraint is taken into account. That is, if some breaks are attached to
the resource Res using the calendar Cal1 and some shifts are attached to a resource constraint Rct of Res using
the calendar Cal2, then only shifts are taken into account on Rct (Cal2). In other words, breaks of cal1 are
ignored (Cal1).

253

Notice that calendars can be shared between resources and resource constraints, and that setCalendar does
not imply that a local copy of the calendar is made; one should be aware of the fact that any change to a shared
calendar holds for all resources and resource constraints sharing the calendar.

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

public void setObject(IlcAny object) const

This member function establishes a link between the invoking object and an external object of which the invoking
object might be a data member.

public void setTransitionTimeObject(IlcTransitionTimeObject ttobj)

This member function allows setting ttobj as the new transition time function of the invoking resource. During
the search, any attempt to change the transition function of a resource will raise an error.

public void setTransitionTimeSuspended(IlcBool suspended=IlcTrue)

This member function allows specifying whether or not the transition time on the invoking resource should be
suspended by breaks. By default, the transition time of the resource is not suspended by breaks.

public void whenContribution(const IlcResourceDemon d)

This member function associates the resource demon d with contribution events of resource constraints of the
invoking resource. When the contribution status of a resource constraint changes (from possibly contributing to
surely contributing or to not possibly contributing), the demon d is executed on that resource constraint.

This member function should be used only in search and only if some rank information is available on the
resource (see member function IlcResource::hasRankInfo).

public void whenDirectPredecessors(const IlcResourceDemon d)

This member function associates the resource demon d with changes to the set of resource constraints that are
direct predecessors of a resource constraint of the invoking resource. When the set of resource constraints that
are direct predecessors of a resource constraint changes because some new direct predecessors have
appeared, the demon d is executed on the resource constraint whose set of direct predecessors has changed.

This member function should be used only in search and only if some precedence information is available on the
resource (see member function IlcResource::hasPrecedenceInfo).

public void whenDirectSuccessors(const IlcResourceDemon d)

This member function associates the resource demon d with changes to the set of resource constraints that are
direct successors of a resource constraint of the invoking resource. When the set of resource constraints that are
direct successors of a resource constraint changes because some new direct successors have appeared, the
demon d is executed on the resource constraint whose set of direct successors has changed.

This member function should be used only in search and only if some precedence information is available on the
resource (see member function IlcResource::hasPrecedenceInfo).

254

public void whenNext(const IlcResourceDemon d)

This member function associates the resource demon d with the next resource constraint of resource constraints
of the invoking resource. When the next resource constraint of a resource constraint is known, the demon d is
executed on the resource constraint whose next resource constraints have become known. This next resource
constraint can then be accessed with the member function IlcResourceConstraint::getNextRC. When the
setup resource constraints is known, the resource demon d is executed on an empty handle resource constraint.

This member function should be used only in search and only if some rank information is available on the
resource (see member function IlcResource::hasRankInfo).

public void whenPossibleNext(const IlcResourceDemon d)

This member function associates the resource demon d with changes to the set of resource constraints that are
possibly next to a resource constraint of the invoking resource. When the set of resource constraints that are
possibly next to a resource constraint changes because some resource constraint that was possibly next is no
longer possibly next, the demon d is executed on the resource constraint whose set of possibly next resource
constraints has changed. In case the possible setup resource constraints change, the resource demon d is
executed on an empty handle resource constraint.

This member function should be used only in search and only if some precedence information is available on the
resource (see member function IlcResource::hasPrecedenceInfo).

public void whenPossiblePrevious(const IlcResourceDemon d)

This member function associates the resource demon d with changes to the set of resource constraints that are
possibly previous to a resource constraint of the invoking resource. When the set of resource constraints that are
possibly previous to a resource constraint changes because some resource constraint that was possibly previous
is no longer possibly previous, the demon d is executed on the resource constraint whose set of possibly
previous resource constraints has changed. In case the possible teardown resource constraints change, the
resource demon d is executed on an empty handle resource constraint.

This member function should be used only in search and only if some precedence information is available on the
resource (see member function IlcResource::hasPrecedenceInfo).

public void whenPredecessors(const IlcResourceDemon d)

This member function associates the resource demon d with changes to the set of resource constraints that are
predecessors of a resource constraint of the invoking resource. When the set of resource constraints that are
predecessors of a resource constraint changes because some new predecessors have appeared, the demon d is
executed on the resource constraint whose set of predecessors has changed.

This member function should be used only in search and only if some precedence information is available on the
resource (see member function IlcResource::hasPrecedenceInfo).

public void whenPrevious(const IlcResourceDemon d)

This member function associates the resource demon d with the previous resource constraint of resource
constraints of the invoking resource. When the previous resource constraint of a resource constraint is known,
the demon d is executed on the resource constraint whose previous resource constraints have become known.
This previous resource constraint can then be accessed with the member function
IlcResourceConstraint::getPrevRC. When the teardown resource constraints is known, the resource

255

demon d is executed on an empty handle resource constraint.

This member function should be used only in search and only if some rank information is available on the
resource (see member function IlcResource::hasRankInfo).

public void whenRankedFirstRC(const IlcDemon demon) const

This member function associates a demon with a change of the set of resource constraints currently ranked first
on the resource. When this set changes because some resource constraint has just been ranked first, the demon
is executed. In the execution code of the demon, the delta iterator
IlcResource::ResourceConstraintDeltaIterator is available to iterate over the freshly ranked first
resource constraints.

Since a constraint is also a demon, a constraint can be passed as an argument to this member function. When
the change event is triggered, the constraint is posted and propagated.

This function should be used only if the ranking information is available on the resource (see
IlcResource::hasRankInfo).

public void whenRankedLastRC(const IlcDemon demon) const

This member function associates a demon with a change of the set of resource constraints currently ranked last
on the resource. When this set changes because some resource constraint has just been ranked last, the demon
is executed. In the execution code of the demon, the delta iterator
IlcResource::ResourceConstraintDeltaIterator is available to iterate over the freshly ranked last
resource constraints.

Since a constraint is also a demon, a constraint can be passed as an argument to this member function. When
the change event is triggered, the constraint is posted and propagated.

This function should be used only if the ranking information is available on the resource (see
IlcResource::hasRankInfo).

public void whenSuccessors(const IlcResourceDemon d)

This member function associates the resource demon d with changes to the set of resource constraints that are
successors of a resource constraint of the invoking resource. When the set of resource constraints that are
successors of a resource constraint changes because some new successors have appeared, the demon d is
executed on the resource constraint whose set of successors has changed.

This member function should be used only in search and only if some precedence information is available on the
resource (see member function IlcResource::hasPrecedenceInfo).

Inner Enumerations

Enumeration RankFilter

Definition file: ilsched/schedule.h
Include file: <ilsched/ilsched.h>

This enumeration allows specifying a subset of resource constraints to traverse with the iterators
IlcResource::ResourceConstraintIterator, and
IlcResource::ResourceConstraintDeltaIterator.

256

RankedFirst indicates the subset of resource constraints that have been ranked first on the resource.

RankedLast indicates the subset of resource constraints that have been ranked last on the resource.

NotRanked indicates the subset of resource constraints that have not yet been ranked first or last on the
resource.

PossibleFirst indicates the subset of resource constraints that can possibly be ranked first on the resource.
This is the set of resource constraints that has not yet been ranked first nor ranked last, nor otherwise
determined to be unavailable to be ranked first.

PossibleLast indicates the subset of resource constraints that can possibly be ranked last on the resource.
This is the set of resource constraints that has not yet been ranked first nor ranked last, nor otherwise
determined to be unavailable to be ranked last.

See Also: IlcResource::ResourceConstraintIterator, IlcResource::ResourceConstraintDeltaIterator

Fields:

RankedFirst = 1

RankedLast = 2

Ranked = 3

NotRanked = 4

PossibleFirst = 8

PossibleLast = 16

257

Class IlcResourceConstraint
Definition file: ilsched/schedule.h
Include file: <ilsched/ilsched.h>

Instances of the class IlcResourceConstraint are resource constraints. This class inherits from the Solver
class IlcConstraint, which is documented in the Solver Reference Manual.

Instances of this class are created by these member functions:

IlcActivity::requires•
IlcActivity::provides•
IlcActivity::consumes•
IlcActivity::produces•
IlcActivity::requiresNot•

For more information, see Precedence Graph Constraints, Sequence Constraint, Metaconstraints, and
IlcConstraint in the IBM ILOG Solver Reference Manual.

See Also: IlcActivity, IlcResource, IlcResourceConstraintIterator, IlcTimeExtent, IlcTryRankFirst, IlcTryRankLast,
IlcUnaryResource

Constructor Summary

public IlcResourceConstraint()

public IlcResourceConstraint(IlcResourceConstraintI * impl)

Method Summary

public IlcActivity getActivity() const

public IlcCalendar getCalendar() const

public IlcInt getCapacity() const

public IlcIntVar getCapacityVariable() const

public IlcResourceConstraintI * getImpl() const

public IlcResourceConstraint getNextRC() const

public IlcIntVar getNextVar() const

public IlcResourceConstraint getPrevRC() const

public IlcIntVar getPrevVar() const

public IlcResource getResource() const

public IlcInt getSequenceIndex() const

public IlcShape getShape() const

public IlcFloat getSlope() const

public IlcSlopeConstraintMode getSlopeConstraintMode() const

public IlcAny getState() const

public IlcAnySet getStateSet() const

public IlcAnySetVar getStateSetVariable() const

public IlcAnyVar getStateVariable() const

public IlcTimeExtent getTimeExtent() const

258

public IlcBool hasAsNext(IlcResourceConstraint) const

public IlcBool hasAsPossibleNext(IlcResourceConstraint) const

public IlcBool hasCalendar() const

public IlcBool hasNextRC() const

public IlcBool hasPrevRC() const

public IlcBool hasShape() const

public IlcBool hasSlope() const

public IlcBool isCapacityConstraint() const

public IlcBool isDirectlySucceededBy(IlcResourceConstraint)
const

public IlcBool isInwardConstraint() const

public IlcBool isNegativeConstraint() const

public IlcBool isNotVisited() const

public IlcBool isPossibleFirst() const

public IlcBool isPossibleLast() const

public IlcBool isPossibleSetup() const

public IlcBool isPossibleTeardown() const

public IlcBool isProvidingConstraint() const

public IlcBool isRanked() const

public IlcBool isRankedFirst() const

public IlcBool isRankedLast() const

public IlcBool isSetup() const

public IlcBool isStateConstraint() const

public IlcBool isStateSetConstraint() const

public IlcBool isSucceededBy(IlcResourceConstraint) const

public IlcBool isTeardown() const

public IlcBool isVariableResourceConstraint() const

public IlcBool isVirtualNode() const

public IlcBool isVisited() const

public IlcVariableSlopeShape makeVariableSlopeShape(IlcFloatVar slope) const

public void operator=(const IlcResourceConstraint & h)

public IlcBool possiblyContributes() const

public void rankFirst()

public void rankLast()

public void rankNotFirst()

public void rankNotLast()

public void removeShape() const

public void setCalendar(IlcCalendar cal)

public void setNext(IlcResourceConstraint ct)

public void setNotNext(IlcResourceConstraint ct)

public void setNotSetup()

public void setNotTeardown()

259

public void setNotVisited()

public void setSetup()

public void setSlope(IlcFloat slope, IlcSlopeConstraintMode
mode=IlcRoundedCapacity)

public void setSuccessor(IlcResourceConstraint ct)

public void setTeardown()

public void setVisited()

public IlcBool surelyContributes() const

public void unsetNext()

public void unsetSetup()

public void unsetSuccessor(IlcResourceConstraint ct)

public void unsetTeardown()

Constructors

public IlcResourceConstraint()

This constructor creates an instance which is empty, that is, one whose handle pointer is null. You must assign it
a value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IlcResourceConstraint(IlcResourceConstraintI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

Methods

public IlcActivity getActivity() const

This member function returns the activity of the invoking resource constraint.

public IlcCalendar getCalendar() const

This member function returns the calendar attached to the invoking resource constraint, if such an object exists.

public IlcInt getCapacity() const

This member function returns the required or provided quantity of the invoking resource constraint.

public IlcIntVar getCapacityVariable() const

This member function returns the variable representing the required or provided quantity of the invoking resource
constraint.

public IlcResourceConstraintI * getImpl() const

260

This member function returns a pointer to the implementation object of the invoking handle.

public IlcResourceConstraint getNextRC() const

This member function returns the resource constraint of the next activity of the invoking resource constraint. The
resource constraint must be of time extent IlcFromStartToEnd. This member function should be called only if
some rank information is available on the resource (see member function IlcResource::hasRankInfo).

public IlcIntVar getNextVar() const

This member function returns the next variable of the invoking resource constraint. The resource constraint must
be of time extent IlcFromStartToEnd. The resource must be an instance of IlcUnaryResource, closed,
and with its sequence constraint created. Let Nb be the number of resource constraints of time extent
IlcFromStartToEnd. When the sequence constraint is posted, the next variable is initialized to the following
set.

If the value of the next variable is Nb + 1, the resource constraint is the last on the resource. If its value is -1,
the resource constraint is not visited, that is, either the processing time or the required capacity is zero.

public IlcResourceConstraint getPrevRC() const

This member function returns the resource constraint of the previous activity of the invoking resource constraint.
The resource constraint must be of time extent IlcFromStartToEnd. This member function should be called
only if some rank information is available on the resource (see member function
IlcResource::hasRankInfo).

public IlcIntVar getPrevVar() const

This member function returns the previous variable of the invoking resource constraint. The resource constraint
must be of time extent IlcFromStartToEnd. The resource must be an instance of IlcUnaryResource,
closed, and with its sequence constraint created. Let Nb be the number of resource constraints of time extent
IlcFromStartToEnd. When the sequence constraint is posted, the previous variable is initialized to the
following set.

If the value of the previous variable is 0 (zero), the resource constraint is the first on the resource. If its value is
-1, the resource constraint is not visited, that is, either the processing time or the required capacity is zero.

public IlcResource getResource() const

This member function returns the resource of the invoking resource constraint.

public IlcInt getSequenceIndex() const

This member function returns the unique index of the invoking resource constraint used by the sequence
constraint attached to its resource.

The resource constraint must be of time extent IlcFromStartToEnd. The resource must be an instance of
IlcUnaryResource, closed, and with its sequence constraint created.

261

To obtain the resource constraint from an index, use the accessor IlcUnaryResource::getSequenceRC.

public IlcShape getShape() const

This function returns the instance of IlcShape associated with the resource constraint. An error will be raised if
no such shape has been created.

public IlcFloat getSlope() const

This member function returns the slope value of the slope constraint created by the member function setSlope.
An instance of IloSolver::SolverErrorException is thrown if the invoking resource constraint has no
slope constraint or if its resource is not a continuous reservoir.

public IlcSlopeConstraintMode getSlopeConstraintMode() const

This member function returns the rounding mode of the slope constraint created by the member function
IlcResourceConstraint::setSlope. An instance of IloSolver::SolverErrorException is thrown if
the invoking resource constraint has no slope constraint or if its resource is not a continuous reservoir.

public IlcAny getState() const

This member function returns the required state of the invoking resource constraint.

public IlcAnySet getStateSet() const

This member function returns the required set of states of the invoking resource constraint.

public IlcAnySetVar getStateSetVariable() const

This member function returns the variable representing the required set of states of the invoking resource
constraint.

public IlcAnyVar getStateVariable() const

This member function returns the variable representing the required state of the invoking resource constraint.

public IlcTimeExtent getTimeExtent() const

This member function returns the time extent of the invoking resource constraint.

public IlcBool hasAsNext(IlcResourceConstraint) const

Before search, this function returns IlcTrue if and only if a next relation has been added with the member
function IlcResourceConstraint::setNext(rct). In search, this member function returns IlcTrue if rct

262

is next to the invoking resource constraint. Otherwise, it returns IlcFalse. This member function should be
called only if some rank information is available on the resource (see member function
IlcResource::hasRankInfo).

public IlcBool hasAsPossibleNext(IlcResourceConstraint) const

This member function returns IlcTrue if it is possible that rct is next to the invoking resource constraint.
Otherwise, it returns IlcFalse.

This member function should be used only in search and only if some precedence information is available on the
resource (see member function IlcResource::hasPrecedenceInfo).

public IlcBool hasCalendar() const

This member function returns IloTrue if a calendar has been attached to the invoking resource constraint.
Otherwise, it returns IloFalse.

public IlcBool hasNextRC() const

This member function returns IlcTrue if the immediately following activity of the activity of the invoking resource
constraint is known. Otherwise it returns IlcFalse.

The resource constraint must be of time extent IlcFromStartToEnd. This member function should be called
only if some rank information is available on the resource (see member function
IlcResource::hasRankInfo)

There is no possible next resource constraint if the invoking resource constraint does not contribute or is the
teardown resource constraint.

public IlcBool hasPrevRC() const

This member function returns IlcTrue if the immediately preceding activity of the activity of the invoking
resource constraint is known. Otherwise it returns IlcFalse.

The resource constraint must be of time extent IlcFromStartToEnd. This member function should be called
only if some rank information is available on the resource (see member function
IlcResource::hasRankInfo)

There is no possible previous resource constraint if the invoking resource constraint does not contribute or is the
setup resource constraint.

public IlcBool hasShape() const

This function returns IlcTrue if a shape has been associated with the resource constraint

public IlcBool hasSlope() const

This member function returns IlcTrue if the resource of the invoking resource constraint is a continuous
reservoir and if a slope constraint has been defined by the member function
IlcResourceConstraint::setSlope. Otherwise, it returns IlcFalse.

263

public IlcBool isCapacityConstraint() const

This member function returns IlcTrue if and only if the invoking resource constraint indicates that a quantity
(and thus not a state) is required or provided.

public IlcBool isDirectlySucceededBy(IlcResourceConstraint) const

This member function returns IlcTrue if the invoking resource constraint is directly succeeded by the resource
constraint rct. Otherwise, it returns IlcFalse.

This member function should be called only if some precedence information is available on the resource (see
member function IlcResource::hasPrecedenceInfo).

public IlcBool isInwardConstraint() const

This member function returns IlcTrue if and only if the occupancy of the resource by the invoking constraint is
to be rounded inward towards the nearest valid time that corresponds to a time step. This rounding is important
only when one of the timetables of the resource has a time step greater than 1 (one).

public IlcBool isNegativeConstraint() const

This member function returns IlcTrue if and only if the invoking constraint was constructed by the member
function IlcActivity::requiresNot, or was extracted from an IloResourceConstraint that was
constructed by the member function IloActivity::requiresNot

public IlcBool isNotVisited() const

This member function returns IlcTrue if the activity of the invoking resource constraint is not visited by the path
defined by the sequence constraint attached to its resource. Otherwise it returns IlcFalse. Not visited means
that the processing time or the required capacity is zero.

The resource constraint must be of time extent IlcFromStartToEnd. The resource must be an instance of
IlcUnaryResource, closed, and with its sequence constraint created.

public IlcBool isPossibleFirst() const

This member function returns IlcTrue if the activity that corresponds to the invoking resource constraint can be
ranked first among those that have not yet been ranked. Otherwise, it returns IlcFalse. In particular, it returns
IlcFalse if the activity has already been ranked.

This member function should be used only if the resource that corresponds to the invoking resource constraint is
either a unary resource (an instance of IlcUnaryResource) or a state resource (an instance of
IlcStateResource).

This function should be used only if the ranking information is available on the resource (see
IlcResource::hasRankInfo).

public IlcBool isPossibleLast() const

264

This member function returns IlcTrue if the activity that corresponds to the invoking resource constraint can be
ranked last among those that have not yet been ranked. Otherwise, it returns IlcFalse. In particular, it returns
IlcFalse if the activity has already been ranked.

This member function should be used only if the resource that corresponds to the invoking resource constraint is
either a unary resource (an instance of IlcUnaryResource) or a state resource (an instance of
IlcStateResource).

This function should be used only if the ranking information is available on the resource (see
IlcResource::hasRankInfo).

public IlcBool isPossibleSetup() const

This member function returns IlcTrue if it is possible that the invoking resource constraint is a setup resource
constraint. Otherwise, it returns IlcFalse.

This member function should be used only in search and only if some precedence information is available on the
resource (see member function IlcResource::hasPrecedenceInfo).

public IlcBool isPossibleTeardown() const

This member function returns IlcTrue if it is possible that the invoking resource constraint is a teardown
resource constraint. Otherwise, it returns IlcFalse.

This member function should be used only in search and only if some precedence information is available on the
resource (see member function IlcResource::hasPrecedenceInfo).

public IlcBool isProvidingConstraint() const

This member function returns IlcTrue if and only if the invoking constraint was constructed by the member
functions IlcActivity::provides, or IlcActivity::produces, or was extracted from an
IloResourceConstraint that was constructed by the member function IloActivity::requiresNot.

public IlcBool isRanked() const

This member function returns IlcTrue if and only if the invoking resource constraint has been ranked first or last
on the resource; otherwise it returns IlcFalse.

This member function is available in search only. It should be used only if the resource that corresponds to the
invoking resource constraint is either a unary resource (an instance of IlcUnaryResource) or a state resource
(an instance of IlcStateResource). This member function is available in search only.

This function should be used only if the ranking information is available on the resource (see
IlcResource::hasRankInfo).

public IlcBool isRankedFirst() const

This member function returns IlcTrue if and only if the invoking resource constraint has been ranked first on
the resource; otherwise it returns IlcFalse.

This member function is available in search only. It should be used only if the resource that corresponds to the
invoking resource constraint is either a unary resource (an instance of IlcUnaryResource) or a state resource

265

(an instance of IlcStateResource). This member function is available in search only.

This function should be used only if the ranking information is available on the resource (see
IlcResource::hasRankInfo).

public IlcBool isRankedLast() const

This member function returns IlcTrue if and only if the invoking resource constraint has been ranked last on the
resource; otherwise it returns IlcFalse.

This member function is available in search only. It should be used only if the resource that corresponds to the
invoking resource constraint is either a unary resource (an instance of IlcUnaryResource) or a state resource
(an instance of IlcStateResource). This member function is available in search only.

This function should be used only if the ranking information is available on the resource (see
IlcResource::hasRankInfo).

public IlcBool isSetup() const

Before search, this function returns IlcTrue if and only if the invoking resource constraint has been constrained
to be a setup resource constraint with the member function IlcResourceConstraint::setSetup.

In search, this member function returns IlcTrue if the invoking resource constraint is a setup resource
constraint. Otherwise, it returns IlcFalse.

This member function should be called only if some rank information is available on the resource (see member
function IlcResource::hasRankInfo).

public IlcBool isStateConstraint() const

This member function returns IlcTrue if and only if the invoking resource constraint indicates that a single state
(and thus not a quantity or one of a set of states) is required.

public IlcBool isStateSetConstraint() const

This member function returns IlcTrue if and only if the invoking resource constraint indicates that one of a set
of states (and thus not a quantity or a single state) is required.

public IlcBool isSucceededBy(IlcResourceConstraint) const

Before search, this function returns IlcTrue if and only if a successor relation has been added with the member
function IlcResourceConstraint::setSuccessor(rct).

In search, this member function returns IlcTrue if the invoking resource constraint is succeeded by the
resource constraint rct. Otherwise, it returns IlcFalse.

This member function should be called only if some precedence information is available on the resource (see
member function IlcResource::hasPrecedenceInfo).

public IlcBool isTeardown() const

266

Before search, this function returns IlcTrue if and only if the invoking resource constraint has been constrained
to be a teardown resource constraint with the member function IlcResourceConstraint::setTeardown.

In search, this member function returns IlcTrue if the invoking resource constraint is a teardown resource
constraint. Otherwise, it returns IlcFalse.

This member function should be called only if some rank information is available on the resource (see member
function IlcResource::hasRankInfo).

public IlcBool isVariableResourceConstraint() const

This member function returns IlcTrue if and only if the invoking resource constraint has a variable representing
the required quantity or state or provided quantity.

public IlcBool isVirtualNode() const

This member function returns true if and only if the resource constraint requires a unary resource and represents
the sequence virtual node of this unary resource. The sequence virtual node of a unary resource is an
automatically created resource constraint that do not affect the availability of the resource and that is used in the
sequence goals and selectors to represent the virtual initial (in case of a chronological sequence goal like
IlcSequence) or final (in case of an anti-chronological sequence goal like IlcSequenceBackward) resource
constraint in the sequence of resource constraints of the unary resource .

public IlcBool isVisited() const

This member function returns IlcTrue if the activity of the invoking resource constraint is visited by the path
defined by the sequence constraint attached to its resource. Otherwise it returns IlcFalse. Visited means that
the processing time is strictly positive and the required capacity is one.

The resource constraint must be of time extent IlcFromStartToEnd. The resource must be an instance of
IlcUnaryResource, closed, and with its sequence constraint created.

public IlcVariableSlopeShape makeVariableSlopeShape(IlcFloatVar slope) const

This function associates an instance of IlcVariableSlopeShape with the resource constraint. Shapes are
only available on continuous reservoirs. An exception will be thrown if the minimal value of the slope variable is
strictly negative.

See Also: IlcShape, IlcVariableSlopeShape

public void operator=(const IlcResourceConstraint & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument. After execution of this operator, the invoking object and the
provided argument point to the same implementation object.

public IlcBool possiblyContributes() const

This member function returns IlcTrue if the invoking resource constraint possibly affects the availability of the
resource. Otherwise, it returns IlcFalse.

267

public void rankFirst()

This member function states that the activity that corresponds to the invoking resource constraint is the first
activity to execute among those that have not yet been ranked. This member function should be used only if the
resource that corresponds to the invoking resource constraint is either a unary resource (an instance of
IlcUnaryResource) or a state resource (an instance of IlcStateResource).

The ranking has no effect on the start and end times of activities that do not truly require the resource, that is,
activities for which the duration or the amount of required capacity can be 0 (zero). In other words, if the activity
that corresponds to the invoking resource constraint truly requires its resource, then it is constrained to execute
before any other unranked activity that truly requires the resource.

Any of the following cases will raise an error:

if no rank information (see IlcResource::hasRankInfo) is associated with the resource of the
invoking resource constraint;

•

if the time extent of the invoking resource constraint is not IlcFromStartToEnd; (Indeed, it does not
make sense to rank the activity if the time extent is not IlcFromStartToEnd;

•

if the invoking resource constraint has already been ranked (using either rankFirst or rankLast).•

public void rankLast()

This member function states that the activity that corresponds to the invoking resource constraint is the last
activity to execute among those that have not yet been ranked. This member function should be used only if the
resource that corresponds to the invoking resource constraint is either a unary resource (an instance of
IlcUnaryResource) or a state resource (an instance of IlcStateResource).

The ranking has no effect on the start and end times of activities that do not truly require the resource, that is,
activities for which the duration or the amount of required capacity can be 0 (zero). In other words, if the activity
that corresponds to the invoking resource constraint truly requires its resource, then it is constrained to execute
after any other unranked activity that truly requires the resource.

Any of the following cases will raise an error:

if no rank information (see IlcResource::hasRankInfo) is associated with the resource of the
invoking resource constraint;

•

if the time extent of the invoking resource constraint is not IlcFromStartToEnd; (Indeed, it does not
make sense to rank the activity if the time extent is not IlcFromStartToEnd, a value of the
enumeration IlcTimeExtent.)

•

if the invoking resource constraint has already been ranked (using either rankFirst or rankLast).•

public void rankNotFirst()

This member function states that the activity that corresponds to the invoking resource constraint is not the first
activity to execute among those that have not yet been ranked. This member function should be used only if the
resource that corresponds to the invoking resource constraint is either a unary resource (an instance of
IlcUnaryResource) or a state resource (an instance of IlcStateResource).

Any of the following cases will raise an error:

if no rank information (see IlcResource::hasRankInfo) is associated with the resource of the
invoking resource constraint;

•

if the time extent of the invoking resource constraint is not IlcFromStartToEnd. (Indeed, it does not
make sense to rank the activity if the time extent is not IlcFromStartToEnd, a value of the
enumeration IlcTimeExtent.)

•

268

public void rankNotLast()

This member function states that the activity that corresponds to the invoking resource constraint is not the last
activity to execute among those that have not yet been ranked. This member function should be used only if the
resource that corresponds to the invoking resource constraint is either a unary resource (an instance of
IlcUnaryResource) or a state resource (an instance of IlcStateResource).

Any of the following cases will raise an error:

if no rank information (see IlcResource::hasRankInfo) is associated with the resource of the
invoking resource constraint;

•

if the time extent of the invoking resource constraint is not IlcFromStartToEnd. (Indeed, it does not
make sense to rank the activity if the time extent is not IlcFromStartToEnd, a value of the
enumeration IlcTimeExtent.)

•

public void removeShape() const

This function remove the instance of IlcShape associated with the resource constraint. This member function
must be used outside the search. An error will be raised if no such shape has been created.

public void setCalendar(IlcCalendar cal)

This member function attaches the calendar cal to the invoking resource constraint.

Outside the search, it is possible to attach a new calendar to a resource constraint that already has a calendar
attached. In that case the new attachment replaces the previous one.

During search, it is possible to attach a calendar only to a resource constraint that does not have a previously
attached calendar. In that case, the attachment is reversible. During search, any attempt to attach a new
calendar to a resource constraint that already has an attached calendar raises an error.

When two different calendars are attached respectively to a resource constraint and to its corresponding
resource, only the one on the resource constraint is taken into account. That is, if some breaks are attached to
the resource Res using the calendar Cal1 and some shifts are attached to a resource constraint Rct of Res using
the calendar Cal2, then only shifts are taken into account on Rct (Cal2). In other words, breaks of cal1 are
ignored (Cal1).

Notice that calendars can be shared between resources and resource constraints, and that setCalendar does
not imply that a local copy of the calendar is made; one should be aware of the fact that any change to a shared
calendar holds for all resources and resource constraints sharing the calendar.

public void setNext(IlcResourceConstraint ct)

This member function states that ct is next to the invoking resource constraint. This means that there cannot
exist any resource constraint ct0 such that ct0 definitely affects the availability of the resource and ct0 starts or
finishes between the end of the invoking resource constraint and the start of ct.

This member function should be called only on unary resources and if some rank information is available on the
resource (see member function IlcResource::hasRankInfo).

public void setNotNext(IlcResourceConstraint ct)

269

This member function states that ct cannot be next to the invoking resource constraint. This means that there
must exist a resource constraint ct0 such that ct0 definitely affects the availability of the resource and ct0 starts or
finishes between the end of the invoking resource constraint and the start of ct.

This member function should be called only on unary resources and only if some precedence information is
available on the resource (see member function IlcResource::hasPrecedenceInfo).

public void setNotSetup()

This member function states that the invoking resource constraint cannot be a setup resource constraint which
means that some resource constraint must necessarily be previous to it.

This member function should be used only if a precedence graph constraint or a sequence constraint has been
created on the resource. It can be used before or during search.

This member function should be called only on unary resources and if some precedence information is available
on the resource (see member function IlcResource::hasPrecedenceInfo).

public void setNotTeardown()

This member function states that the invoking resource constraint cannot be a teardown resource constraint
which means that some other resource constraint rct must exist such that the invoking resource constraint is
previous to rct.

This member function should be called only on unary resources and if some precedence information is available
on the resource (see member function IlcResource::hasPrecedenceInfo).

public void setNotVisited()

This member function sets the activity of the invoking resource constraint to "not visited" by the path defined by
the sequence constraint attached to its resource. Not visited means that the processing time or the required
capacity is zero.

The resource constraint must be of time extent IlcFromStartToEnd. The resource must be an instance of
IlcUnaryResource, closed, and with its sequence constraint created.

public void setSetup()

This member function states that the invoking resource constraint is a setup resource constraint which means
that no resource constraint can be previous to it.

This member function should be called only on unary resources and only if some rank information is available on
the resource (see member function IlcResource::hasRankInfo).

public void setSlope(IlcFloat slope, IlcSlopeConstraintMode
mode=IlcRoundedCapacity)

This member function creates a slope constraint for the invoking resource constraint, that is the ratio between the
capacity of the invoking resource constraint and the duration of its activity is constrained to be slope, with a
rounding mode defined by mode. This constraint is internally added to the solver.

270

The resource of the invoking resource constraint must be a continuous reservoir. The slope of a resource
constraint cannot be modified in search but a slope can be set to a resource constraint with no slope defined yet.

public void setSuccessor(IlcResourceConstraint ct)

This member function states that the invoking resource constraint has the resource constraint ct as successor
on the precedence graph of the resource. That is, this member function adds an edge on the precedence graph.

This member function should be called only if some rank information is available on the resource (see member
function IlcResource::hasRankInfo).

public void setTeardown()

This member function states that the invoking resource constraint is a teardown resource constraint which means
that no resource constraint rct can exist such that the invoking resource constraint is previous to rct.

This member function should be called only on unary resources and if some rank information is available on the
resource (see member function IlcResource::hasRankInfo).

public void setVisited()

This member function sets the activity of the invoking resource constraint to "visited" by the path defined by the
sequence constraint attached to its resource. Visited means that the processing time is strictly positive and the
required capacity is one.

The resource constraint must be of time extent IlcFromStartToEnd. The resource must be an instance of
IlcUnaryResource, closed, and with its sequence constraint created.

public IlcBool surelyContributes() const

This member function returns IlcTrue if the invoking resource constraint definitely affects the availability of the
resource. Otherwise, it returns IlcFalse.

public void unsetNext()

This member function removes a next relation that was previously added on the graph with
IlcResourceConstraint::setNext.

This member function should be used only before search and only if some rank information is available on the
resource (see member function IlcResource::hasRankInfo).

public void unsetSetup()

This member function removes the information that the invoking resource constraint must be a setup resource
constraint as stated by IlcResourceConstraint::setSetup.

This member function should be used only before search and only if some rank information is available on the
resource (see member function IlcResource::hasRankInfo).

271

public void unsetSuccessor(IlcResourceConstraint ct)

This member function removes a successor relation that was previously added on the graph with
IlcResourceConstraint::setSuccessor.

This member function should be called only if some precedence information is available on the resource (see
member function IlcResource::hasPrecedenceInfo).

public void unsetTeardown()

This member function removes the information that the invoking resource constraint must be a teardown
resource constraint as stated by IlcResourceConstraint::setTeardown.

This member function should be used only before search and only if some rank information is available on the
resource (see member function IlcResource::hasRankInfo).

272

Class IlcResourceConstraintDeltaIterator
Definition file: ilsched/schedule.h
Include file: <ilsched/ilsched.h>

An instance of this class traverses a delta set of resource constraints (for example, the new direct predecessors
of a given resource constraint).

See Also: IlcActivity, IlcResource, IlcResourceConstraint, IlcResourceConstraintIteratorFilter

Constructor and Destructor Summary

public IlcResourceConstraintDeltaIterator(IlcResourceConstraint constraint,
IlcResourceConstraintIteratorFilter filter)

Method Summary

public IlcActivity getActivity() const

public IlcResource getResource() const

public IlcBool ok() const

public IlcResourceConstraint operator*() const

public IlcResourceConstraintDeltaIterator & operator++()

Constructors and Destructors

public IlcResourceConstraintDeltaIterator(IlcResourceConstraint constraint,
IlcResourceConstraintIteratorFilter filter)

This constructor creates a delta iterator to traverse the elements of the subset of resource constraints specified
by the filter whose status has changed with respect to constraint. The possible filters are
IlcDirectPredecessors, IlcDirectSuccessors, IlcPredecessors, IlcSuccessors. The possible
statuses of a resource constraint with respect to constraint are: unranked, direct predecessor, direct
successor, indirect predecessor, indirect successor.

Thus, with the filter IlcDirectSuccessors or IlcDirectPredecessors, the delta iterator traverses the set
of new direct successors or direct predecessors of constraint.

With the filter IlcSuccessors or IlcPredecessors, the delta iterator traverses the union of the set of new
direct successors and the set of new indirect successors or the union of the set of new direct predecessors and
the set of new indirect predecessors of constraint. This delta set is a superset of the set of new successors or
new predecessors of constraint because any resource constraint whose status changes from direct
successor to indirect successor or from direct predecessor to indirect predecessor will be traversed by this delta
iterator even though it was already a successor or predecessor.

Note

The delta sets of resource constraints are emptied when all the demons attached to the graph events of a
resource constraint have been executed. Thus, any attempt to traverse a delta set of resource constraints
outside the execution of such a demon may lead to unexpected behavior.

This constructor can be used only when a resource precedence graph is associated with the resource required
by constraint. If the resource is not associated with a precedence graph, an instance of
IloSolver::SolverErrorException is thrown.

273

Methods

public IlcActivity getActivity() const

This member function returns the activity involved in the resource constraint located at the current position of the
invoking iterator.

public IlcResource getResource() const

This member function returns the resource involved in the resource constraint located at the current position of
the invoking iterator.

public IlcBool ok() const

This member function returns IlcTrue if the current position of the iterator is a valid one. It returns IlcFalse if
all the constraints have been scanned by the iterator.

public IlcResourceConstraint operator*() const

This operator accesses the instance of IlcResourceConstraint located at the current position of the iterator.
If the iterator is set past the end position, this operator returns an empty handle.

public IlcResourceConstraintDeltaIterator & operator++()

This left-increment operator shifts the current position of the iterator.

274

Class IlcResourceConstraintIterator
Definition file: ilsched/schedule.h
Include file: <ilsched/ilsched.h>

An instance of this class traverses a set of resource constraints (for example, the resource constraints on a given
activity or the resource constraints on a given resource, etc.).

Iterating over all the resource constraints on the resources required or provided by an activity is actually an
iteration over all the resources that might be required or provided by the activity. If you want to iterate only the
resource constraints that are surely required or provided by the activity, then you should use the isTrue
member function of the class of constraints involved. The following example shows a program that correctly
makes this distinction.

Example

The following program correctly makes the distinction between iterating over all the resources that might be used
by an activity versus iterating only those resources that are surely used by the activity.

 Must be during search (e.g., inside a goal)

 IloSolver solver = getSolver();
 IlcScheduler schedule(solver, 0, 50);

 IlcUnaryResource resource1(schedule);
 resource1.setName("resource 1");

 IlcUnaryResource resource2(schedule);
 resource2.setName("resource 2");

 IlcUnaryResource resource3(schedule);
 resource3.setName("resource 3");

 IlcActivity activity(schedule, 5);
 activity.setName("activity");

 solver.add(activity.requires(resource1));
 solver.add(activity.requires(resource3) || activity.requires(resource2));

 for (IlcResourceConstraintIterator ite(activity); ite.ok();
 ++ite)
 solver.out() << activity << " might require "
 << ite.getResource() << endl;
 solver.out() << endl;

 for (IlcResourceConstraintIterator ite2(activity); ite2.ok();
 ++ite2)
 if ((*ite2).isTrue())
 solver.out() << activity << " requires "
 << ite2.getResource() << endl;
 solver.out() << endl;

The output of that program looks like this:

 activity[0..45 -- 5 --> 5..50] might require resource 2[1]
 activity[0..45 -- 5 --> 5..50] might require resource 3[1]
 activity[0..45 -- 5 --> 5..50] might require resource 1[1]

 activity[0..45 -- 5 --> 5..50] requires resource 1[1]

For more information, see Precedence Graph Constraints.

See Also: IlcActivity, IlcResource, IlcResourceConstraint, IlcResourceConstraintIteratorFilter

275

Constructor and Destructor Summary

public IlcResourceConstraintIterator(IlcActivity activity,
IlcResourceConstraintIteratorFilter filter=IlcAllConstraints)

public IlcResourceConstraintIterator(IlcActivity activity, IlcTimeExtent extent,
IlcResourceConstraintIteratorFilter filter=IlcAllConstraints)

public IlcResourceConstraintIterator(IlcResource resource,
IlcResourceConstraintIteratorFilter filter=IlcAllConstraints)

public IlcResourceConstraintIterator(IlcResource resource, IlcTimeExtent extent,
IlcResourceConstraintIteratorFilter filter=IlcAllConstraints)

public IlcResourceConstraintIterator(IlcResourceConstraint constraint,
IlcResourceConstraintIteratorFilter filter)

Method Summary

public IlcActivity getActivity() const

public IlcResource getResource() const

public IlcBool ok() const

public IlcResourceConstraint operator*() const

public IlcResourceConstraintIterator & operator++()

Constructors and Destructors

public IlcResourceConstraintIterator(IlcActivity activity,
IlcResourceConstraintIteratorFilter filter=IlcAllConstraints)

This constructor creates an iterator to traverse all the resources required or provided by activity.

public IlcResourceConstraintIterator(IlcActivity activity, IlcTimeExtent extent,
IlcResourceConstraintIteratorFilter filter=IlcAllConstraints)

This constructor creates an iterator to traverse all the resources required or provided by activity throughout
the time extent indicated by extent.

public IlcResourceConstraintIterator(IlcResource resource,
IlcResourceConstraintIteratorFilter filter=IlcAllConstraints)

This constructor creates an iterator to traverse all the activities that require or provide resource.

public IlcResourceConstraintIterator(IlcResource resource, IlcTimeExtent extent,
IlcResourceConstraintIteratorFilter filter=IlcAllConstraints)

This constructor creates an iterator to traverse all the activities that require or provide resource throughout the
time extent indicated by extent.

public IlcResourceConstraintIterator(IlcResourceConstraint constraint,
IlcResourceConstraintIteratorFilter filter)

276

When a resource precedence graph is associated with the resource required by constraint, this constructor
creates an iterator to traverse the subset of resource constraints specified by the filter given as the second
argument. If the resource is not associated with a precedence graph, this constructor raises an error.

Before entering the search, only the filter IlcSuccessors is permitted. It allows the definition of an iterator that
traverses the subset of resource constraints rct0 for which the successor relation (rct,rct0) has been added
via the member function rct.IlcResourceConstraint::setSuccessor(rct0). Any attempt to use
another filter before entering the search will raise an error. In search, all the filters are allowed.

For example, the following loop, during the search, displays the set of resource constraints that are direct
successors of the resource constraint rct in the precedence graph of the resource:

 for (IlcResourceConstraintIterator ite(rct, IlcDirectSuccessors);
 ite.ok();
 ++ite) {
 solver.out() << *ite << endl;
 }

Methods

public IlcActivity getActivity() const

This member function returns the activity involved in the resource constraint located at the current position of the
invoking iterator.

public IlcResource getResource() const

This member function returns the resource involved in the resource constraint located at the current position of
the invoking iterator.

public IlcBool ok() const

This member function returns IlcTrue if the current position of the iterator is a valid one. It returns IlcFalse if
all the constraints have been scanned by the iterator.

public IlcResourceConstraint operator*() const

This operator accesses the instance of IlcResourceConstraint located at the current position of the iterator.
If the iterator is set past the end position, then this operator returns an empty handle.

public IlcResourceConstraintIterator & operator++()

This left-increment operator shifts the current position of the iterator.

277

Class IlcResourceDemon
Definition file: ilsched/schedule.h
Include file: <ilsched/ilsched.h>

An instance of IlcResourceDemon represents a demon that is associated with all the resource constraints on a
resource. An example is a demon that is triggered every time the set of successors of a resource constraint on
the resource changes. An instance of this class can be created by the macro ILCRESOURCEDEMON.

See Also: ILCRESOURCEDEMON, IlcResource

Constructor Summary

public IlcResourceDemon()

public IlcResourceDemon(IlcResourceDemonI * impl)

Method Summary

public IlcResourceDemonI * getImpl() const

public void operator=(const IlcResourceDemon & h)

Constructors

public IlcResourceDemon()

This constructor creates an instance which is empty, that is, one whose handle pointer is null. You must assign it
a value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IlcResourceDemon(IlcResourceDemonI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

Methods

public IlcResourceDemonI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public void operator=(const IlcResourceDemon & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument. After execution of this operator, the invoking object and the
provided argument point to the same implementation object.

278

Class IlcResourceIterator
Definition file: ilsched/schedule.h
Include file: <ilsched/ilsched.h>

An instance of this class traverses a set of resources (for example, all the resources managed by a given
schedule).

See Also: IlcResource, IlcSchedule

Constructor and Destructor Summary

public IlcResourceIterator(const IlcSchedule schedule)

Method Summary

public IlcBool ok() const

public IlcResource operator*() const

public IlcResourceIterator & operator++()

Constructors and Destructors

public IlcResourceIterator(const IlcSchedule schedule)

This constructor creates an iterator to traverse all the resources of schedule.

Methods

public IlcBool ok() const

This member function returns IlcTrue if the current position of the iterator is a valid one. It returns IlcFalse if
all the resources have been scanned by the iterator.

public IlcResource operator*() const

This operator accesses the instance of IlcResource located at the current position of the iterator. If the iterator
is set past the end position, then this operator returns an empty handle.

public IlcResourceIterator & operator++()

This left-increment operator shifts the current position of the iterator.

279

Class IlcResourceTexture
Definition file: ilsched/texture.h
Include file: <ilsched/ilsched.h>

An instance of IlcResourceTexture represents a measure of the criticality of the resource over time.
Criticality is a non-negative floating point value with 0 indicating that the minimum or maximum resource capacity
constraint will be satisfied at all time points given the current time windows for all resource constraints on the
resource. The higher the criticality value the more likely the resource capacity constraint will be broken at a time
point.

Such a measure of criticality can be used as a basis for heuristic decision making. For example, it might be
useful to identify the resource and time point with the highest overall criticality and then make a heuristic decision
involving the resource constraints that possibly demand that resource at that time point.

The criticality is calculated by the aggregation of demand from each of the resource constraints that can possibly
execute on the resource. This individual demand is represented, for each resource constraint, by an instance of
the class IlcRCTexture. A simple aggregation is first performed by summing the demand (and variance of the
demand) at each time point from each IlcRCTexture instance. These aggregate demand and variance curves
can be examined using an instance of IlcResourceTextureIterator. The criticality curve is formed by a
transformation of the aggregate demand and variance curves. This transformation takes into account the value of
the resource capacity constraint (minimum or maximum) at each time point. The class
IlcTextureCriticalityCalculatorI allows you to define the transformation from aggregate demand and
aggregate variance to criticality. The common transformations are predefined in the classes
IlcProbabilisticCriticalityCalculatorI and IlcRelativeDemandCriticalityCalculatorI.

You can also define the individual curves which represent the demand (and variance) of a single resource
constraint for a single resource. This can be done by defining a subclass of IlcRCTextureI and a subclass of
IlcRCTextureFactoryI. Again, a number of commonly used classes are predefined: IlcRCTextureESTI,
IlcRCTextureProbabilisticI, and IlcRCTextureTargetI together with their corresponding factories:
IlcRCTextureESTFactoryI, IlcRCTextureProbabilisticFactoryI, and
IlcRCTextureTargetFactoryI.

The individual curves represented by the instances of IlcRCTexture and the aggregate curves represented by
the instances of IlcResourceTexture are automatically updated when the possible time window of an activity
changes.

An IlcResourceTexture instance must be created by using either the method
IlcCapResource::makeMaxTextureMeasurement or
IlcCapResource::makeMinTextureMeasurement.

The following concepts are used in the discussion of the IlcResourceTexture class.

Commitment: A commitment is a heuristic decision. Typically, it is one branch of a choice point. For
example, a commitment might be the assignment of a start time to an activity, the addition of a
precedence constraint between a pair of activities, or the assignment of an alternative resource
constraint to a resource. Commitments do not have to be “positive” decisions. For example, we also
consider the following as commitments: specifying that the start time of an activity must not be a
particular time point, or specifying that an alternative resource constraint must not execute on a
particular resource.

•

Critical Time Point: The critical time point on a resource is the time point with the highest criticality in the
current search state.

•

For more information and examples of the use of IlcResourceTexture curves, see Texture Measurements,
and the texture curve example in the IBM ILOG Scheduler User's Manual, "Using The Trace Facilities to Handle An
Overconstrained Problem."

For more information, see Texture Measurements.

280

See Also: IlcRCTexture, IlcResourceTextureIterator, IlcDiscreteResource, IlcRCTextureFactoryI,
IlcTextureCriticalityCalculatorI, IlcTextureSuccessorGoal, IlcTextureAltSuccessorGoal

Constructor Summary

public IlcResourceTexture()

public IlcResourceTexture(IlcResourceTextureI * impl)

Method Summary

public IlcFloat getCriticalContribution(const IlcResourceConstraint
ct) const

public IlcRCTextureArray getCriticalityOrderedRCTextures() const

public IlcResourceTextureI * getImpl() const

public IlcFloat getMaxCriticality() const

public const char * getName() const

public IlcAny getObject() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public IlcFloat getTimeOfMaxCriticality() const

public IlcBool hasPossibleCommitments() const

public void operator=(const IlcResourceTexture & h)

public void resetNoCommitments() const

public void setName(const char * name) const

public void setNoCommitmentsAtCriticalPoint() const

public void setObject(IlcAny object) const

public void setRandomGenerator(IloRandom rg, IlcFloat beta=1.)
const

Constructors

public IlcResourceTexture()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcResourceTexture(IlcResourceTextureI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IlcFloat getCriticalContribution(const IlcResourceConstraint ct) const

This member function returns the amount that the individual curve associated with ct contributes to the overall
curve at the critical time point.

public IlcRCTextureArray getCriticalityOrderedRCTextures() const

281

This member function returns an array of IlcRCTexture instances associated with this IlcResourceTexture
instance, ordered in descending order of the magnitude of their contribution to the aggregate curve at the critical
time point.

Note

Instances of IlcRCTextureArray are defined using the Solver macro ILCARRAY(IlcRCTexture).
Refer to the IBM ILOG Solver Reference Manual for information on using the macro to create array classes.

public IlcResourceTextureI * getImpl() const

This constructor creates an object by copying another one. This constructor creates an object by copying another
one. This member function returns a pointer to the implementation object of the invoking handle.

public IlcFloat getMaxCriticality() const

This member function returns the highest level of criticality of the texture curve.

public const char * getName() const

This member function returns the name of the invoking object.

public IlcAny getObject() const

This member function returns a pointer to the external object associated with the invoking object, if there is such
an association. It returns 0 (zero) otherwise.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IloSolverI * getSolverI() const

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

public IlcFloat getTimeOfMaxCriticality() const

This member function returns the time point of the highest criticality of the texture curve.

public IlcBool hasPossibleCommitments() const

Returns IlcTrue if there are any time points where a commitment is possible.

This member function tests if there are any time points at which there can possibly be commitments to be
performed among the contending resource constraints. This function returns IlcTrue if there are any time
points at which there is an aggregate criticality of greater than 0. Otherwise, it returns IlcFalse.

public void operator=(const IlcResourceTexture & h)

282

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public void resetNoCommitments() const

This function removes all intervals that were previously declared to contain no possible commitments by the
IlcResourceTexture::setNoCommitmentsAtCriticalPoint function. This function can be useful when
your search consists of multiple separate goals. For example, imagine you are solving a problem involving both
resource allocation and activity sequencing. You may want to assign all alternative resources using one goal and
then use a different goal to add precedence constraints between resource constraints assigned to the same
resource. Depending on the goal, the use of setNoCommitmentsAtCriticalPoint() has different
semantics. In the alternative resource assignment goal, the
IlcResourceTexture::setNoCommitmentsAtCriticalPoint is used to inform the texture measurement
that there are no alternative resource assignments to be made over some time interval. When switching to the
resource constraint sequencing goal, the no commitment intervals are no longer relevant: the goal is trying to add
precedence constraints and so the fact that there are no alternative resource assignments to be made is
irrelevant. In such a case, you can use resetNoCommitment() to remove all the intervals and recalculate the
criticality.

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

public void setNoCommitmentsAtCriticalPoint() const

This member function informs the IlcResourceTexture instance that there are no commitments at its current
critical point, and therefore any time points that involve only those activities that have a positive contribution for
the current critical point should actually have a criticality of 0.

An example of such a situation is the following:

Activity A: [0 .. 10 — 10 —> 10 .. 20] and requires R0

Activity B: [10 .. 20 — 10 —> 20 .. 30] and requires R0

A ends before the start of B.

If A and B are the only activities on unary resource R0, and R0 is available throughout the time interval [0, 30],
then it is clear that the criticality is 0 at all time points on the interval [0, 30]. There is no possibility that the
capacity constraint on R0 will be exceeded. However, for reasons of computational complexity, the
IlcResourceTexture may consider each activity individually in aggregating individual demand into overall
criticality. This estimation leads to a non-zero criticality value on the interval [10, 20). That is, based on their time
windows, both A and B can be executing at, for example, time 15. Because the texture aggregation procedure
does not take into account the existence of a precedence constraint between A and B, it estimates that there is a
non-zero likelihood that bothA and B will execute at time 15. Therefore, the estimated criticality is greater than 0.
If 15 were estimated to be the critical time point on R0, some heuristics may attempt to reduce that criticality by
posting a precedence constraint between the two activities only to find that such a constraint already exists and,
in fact, that the true criticality is 0. At that point, this member function could be used to inform the
IlcResourceTexture that there are no possible commitments at its critical point and to cause it to recalculate
its criticality. In fact, this function analyzes all the activities that can possibly execute at the critical point and
expands the interval with no possible commitments as far as possible. The reasoning is that if there are no
possible commitments among the activities competing for the critical point, then there are no possible
commitments at any time point where only those activities (or a subset) can possibly execute. In our example, the
new texture measurement would assign a criticality of 0 to all points on the interval [0 30).

public void setObject(IlcAny object) const

283

This member function establishes a link between the invoking object and an external object of which the invoking
object might be a data member.

public void setRandomGenerator(IloRandom rg, IlcFloat beta=1.) const

This member function sets the random number generator and the beta value to be used with the random number
generator. The random number generator is used to choose the critical time point when a number of time points
have similar criticalities. The beta value controls the interval of values which will be considered similar. If a
random generator has been set, the critical time point on a texture will be found by selecting with uniform
probability one time point from all of those whose criticality value lies in the interval [beta * maxCrit,
maxCrit], where maxCrit is the maximum criticality value of all time points on the resource. In other words, all
the time points whose criticality values lie within the interval are considered to have the same criticality and so
one of them is randomly selected.

284

Class IlcResourceTextureIterator
Definition file: ilsched/texture.h
Include file: <ilsched/ilsched.h>

An instance of IlcResourceTextureIterator can be used to examine the criticality and aggregate demand
curves represented by an instance of IlcResourceTexture.

See Also: IlcResourceTexture

Constructor Summary

public IlcResourceTextureIterator(const IlcResourceTexture texture)

public IlcResourceTextureIterator(const IlcResourceTexture texture, IlcFloat time)

Method Summary

public IlcFloat getCriticality() const

public IlcFloat getDemand() const

public IlcFloat getDemandDiscontinuity() const

public IlcFloat getDemandSlope() const

public IlcFloat getTime() const

public IlcBool ok() const

public void operator++()

public void operator--()

Constructors

public IlcResourceTextureIterator(const IlcResourceTexture texture)

This constructor creates an iterator to traverse texture. The iterator initially points to the first segment of the
texture curve.

public IlcResourceTextureIterator(const IlcResourceTexture texture, IlcFloat time)

This constructor creates an iterator to traverse texture. The iterator initially points to the segment of the texture
curve containing time.

Methods

public IlcFloat getCriticality() const

This member function returns the value of the criticality at the start time of the current segment of the texture
curve pointed to by the invoking iterator.

public IlcFloat getDemand() const

285

This member function returns the value of the aggregate demand at the start time of the current segment of the
texture curve pointed to by the invoking iterator.

public IlcFloat getDemandDiscontinuity() const

This member function returns the discontinuity of the aggregate demand at the start time of the current segment
of the texture curve pointed to by the invoking iterator.

public IlcFloat getDemandSlope() const

This member function returns the slope of the aggregate demand at the start time of the current segment of the
texture curve pointed by the invoking iterator.

public IlcFloat getTime() const

This member function returns the start time of the current segment of the texture curve pointed to by the invoking
iterator.

public IlcBool ok() const

This member function returns IlcFalse if the iterator does not currently indicate a segment included in the
texture curve. Otherwise, it returns IlcTrue.

public void operator++()

This operator moves the iterator to the segment adjacent to the current segment of the texture curve (forward
move).

public void operator--()

This operator moves the iterator to the segment adjacent to the current segment of the texture curve (backward
move).

286

Class IlcSchedule
Definition file: ilsched/schedule.h
Include file: <ilsched/ilsched.h>

An instance of the class IlcSchedule is an object which represents a schedule. Although most applications will
use only one schedule, it is possible to use multiple schedules, for example, to simulate distributed scheduling. A
schedule manages resources that are required or provided by activities.

A schedule is associated with a time interval defined by timeMin, the origin of the schedule, and timeMax, the
horizon of the schedule. By convention, the time interval is considered closed on the left and open on the right,
denoted like this: [timeMin, timeMax). This convention makes it possible to define time-varying parameters
(such as the number of resources available) at any given time. In the Scheduler Engine library, integers are used
to represent time so the value assumed by a parameter at a given time is the value assumed over the entire
interval[time, (time + 1)). The time origin and the time horizon are used by default to initialize timetables
of resources as well as earliest start times and latest end times of activities.

Printing or Displaying a Schedule

The printed representation of an instance of the class IlcSchedule consists of two parts: its name followed by
the values of its two constructor arguments, timeMin and timeMax. These two values are enclosed in brackets
and separated by two dots, like this: [0..10].

If the Solver trace is active and the schedule has not been named, the string "IlcSchedule" followed by the
address of the implementation object precedes the values of the two constructor arguments, timeMin and
timeMax, enclosed in brackets.

Inverse Links

An instance of the class IlcSchedule may be a data member of another "external" object. In such a case, it
may be useful to find the external object from the instance of IlcSchedule. The member functions getObject
and setObject are provided to manage such an inverse link.

Handles and Implementation Classes

Like Solver, Scheduler Engine implements most of its entities by means of handle classes and implementation
classes, where an object of the handle class contains a pointer (the handle pointer) to an instance of the
corresponding implementation class (the implementation object). These two levels allow Scheduler to do most of
the memory management for you. For more details about handle and implementation classes, see that topic in
the Solver Reference Manual. Normally, as a Scheduler Engine user, you will exploit handles.

There are two cases in which you should use the implementation class:

When you define a transition time object and choose not to use the macro IlcTransitionTime. See
IlcTransitionTimeObjectI for an example of deriving a new transition time object.

1.

When you define a transition cost object and choose not to use the macro IlcTransitionCost. See
IlcTransitionCostObjectI for an example of deriving a new transition cost object.

2.

For more information, see Durability, and the Solver Reference Manual.

See Also: IlcActivity, IlcResource

Constructor Summary

public IlcSchedule()

287

public IlcSchedule(IlcScheduleI * impl)

Method Summary

public void close()

public IlcScheduleI * getImpl() const

public const char * getName() const

public IlcInt getNumberOfActivities() const

public IlcInt getNumberOfResources() const

public IlcAny getObject() const

public IlcConstraint getPrecedenceGraphConstraint() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public IlcInt getTimeMax() const

public IlcInt getTimeMin() const

public IlcBool hasPrecedenceGraphConstraint() const

public IlcBool isClosed() const

public IlcBool isDurable() const

public void lock(IlcInt sizeRes, IlcResource * arrayRes, IlcInt
sizeAlt, IlcAltResSet * arrayAlt)

public void lock(IlcResourceArray array)

public void lock(IlcInt size, IlcResource * array)

public IlcConstraint makePrecedenceGraphConstraint()

public IlcBool operator!=(const IlcSchedule & schedule) const

public void operator=(const IlcSchedule & h)

public IlcBool operator==(const IlcSchedule & schedule) const

public void setDurable() const

public void setName(const char * name) const

public void setObject(IlcAny object) const

public void unlock(IlcInt sizeRes, IlcResource * arrayRes, IlcInt
sizeAlt, IlcAltResSet * arrayAlt)

public void unlock(IlcResourceArray array)

public void unlock(IlcInt size, IlcResource * array)

public void whenDirectPredecessors(const IlcScheduleDemon)

public void whenDirectSuccessors(const IlcScheduleDemon)

public void whenPredecessors(const IlcScheduleDemon)

public void whenSuccessors(const IlcScheduleDemon)

Constructors

public IlcSchedule()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcSchedule(IlcScheduleI * impl)

288

This constructor creates a handle object from a pointer to an implementation object.

Methods

public void close()

After creation of all its durable resources, a durable schedule may be closed by calling this member function.
After closing, no further durable resources can be created on the invoking schedule. Closing a durable schedule
is not reversible.

Calling this member function is mandatory only in multi-threaded applications and must occur before using any of
the durable resources constructed on the invoking durable schedule.

This member function has relevance for durable schedules only.

public IlcScheduleI * getImpl() const

This constructor creates an object by copying another one. This constructor creates an object by copying another
one. This member function returns a pointer to the implementation object of the invoking handle.

public const char * getName() const

This member function returns the name of the invoking object.

public IlcInt getNumberOfActivities() const

This member function returns the number of activities managed by the invoking schedule.

public IlcInt getNumberOfResources() const

This member function returns the number of resources managed by the invoking schedule.

public IlcAny getObject() const

This member function returns a pointer to the external object associated with the invoking object, if there is such
an association. It returns 0 (zero) otherwise.

public IlcConstraint getPrecedenceGraphConstraint() const

This member function returns the precedence graph constraint associated with the invoking schedule.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IloSolverI * getSolverI() const

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

289

public IlcInt getTimeMax() const

This member function returns the time horizon of the invoking schedule. This value is defined in the
IloSchedulerEnv associated with the model extracted by the IlcScheduler object.

public IlcInt getTimeMin() const

This member function returns the time origin of the invoking schedule. This value is defined in the
IloSchedulerEnv associated with the model extracted by the IlcScheduler object.

public IlcBool hasPrecedenceGraphConstraint() const

This member function returns IlcTrue if the invoking schedule is associated with a precedence graph
constraint.

public IlcBool isClosed() const

This member function returns IlcTrue if the invoking schedule has been closed. Otherwise it returns
IlcFalse.

public IlcBool isDurable() const

This member function returns IlcTrue if the invoking schedule has been declared as durable. Otherwise it
returns IlcFalse.

public void lock(IlcInt size, IlcResource * array)
public void lock(IlcInt sizeRes, IlcResource * arrayRes, IlcInt sizeAlt,
IlcAltResSet * arrayAlt)
public void lock(IlcResourceArray array)

These member functions allow the invoking schedule object to lock one or several durable resources. The
resources passed as arguments must be durable resources constructed on the same durable schedule.

Note

The class IlcResourceArray is created using the Solver macro ILCARRAY. Refer to the IBM ILOG Solver
Reference Manual for information on using the macro to create array classes.

Before using one or several durable resources to define a scheduling problem, the schedule associated with the
problem must lock those durable resources.

After calling lock, the resources are considered to be locked by the invoking schedule. The invoking schedule is
called the computation schedule and its solver the computation solver.

Trying to lock resources already locked by another schedule in the same thread will raise an error. Trying to lock
resources already locked by other schedules in different threads may cause the current thread to be blocked
while waiting for all arguments to be unlocked by other threads.

Note that in multi-threaded applications, the use of lock in loops like:

290

 for(IlcInt i = 0; i < SIZE; i++)
 compSchedule.lock(1, resourceArray[i]);

may result in deadlocks. The correct use should be:

compSchedule.lock(SIZE, resourceArray);

Trying to lock a resource already locked by the same schedule has no effect.

The method lock is reversible under backtracking and the associated reversible action is
IlcSchedule::unlock with the same arguments.

After locking by compSchedule, the following equalities are true for a locked resource:

 resource.getSchedule() == compSchedule;
 resource.getSolver() == compSchedule.getSolver();

A resource is locked if and only if the following test succeeds:

resource.getDurableSchedule() != resource.getSchedule()

A resource that has just been locked does not have any resource constraints or global constraints, except global
constraints created on the allocation solver. If global constraints were already added on the durable schedule,
they will be added automatically to the computation schedule.

Locked resources can be used for creating and adding resource constraints on the solver of the computation
schedule.

public IlcConstraint makePrecedenceGraphConstraint()

This member function creates and returns the precedence graph constraint associated with the invoking
schedule. The constraint must be posted in order to be taken into account.

public IlcBool operator!=(const IlcSchedule & schedule) const

This operator returns IlcTrue if and only if schedule does not refer to the same implementation object as the
invoking schedule.

public void operator=(const IlcSchedule & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public IlcBool operator==(const IlcSchedule & schedule) const

This operator returns IlcTrue if and only if schedule refers to the same implementation object as the invoking
schedule.

public void setDurable() const

This member function declares the invoking schedule as durable. This member function must be used outside
the search. This solver is called the allocation solver.

Durable schedules should be used only to create resources and global constraints (timetable, break, and
disjunctive constraints) on these resources. Such resources are called durable resources. Durable resources can

291

be grouped into alternatives (IlcAltResSet) on the durable schedule.

Activities cannot be created on a durable schedule and resource constraints cannot be added to the allocation
solver. A schedule already containing some resources and/or activities cannot be set as durable.

Setting a schedule as durable is not reversible.

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

public void setObject(IlcAny object) const

This member function establishes a link between the invoking object and an external object of which the invoking
object might be a data member.

public void unlock(IlcInt size, IlcResource * array)
public void unlock(IlcInt sizeRes, IlcResource * arrayRes, IlcInt sizeAlt,
IlcAltResSet * arrayAlt)
public void unlock(IlcResourceArray array)

These member functions allow the invoking schedule object to unlock one or several durable resources. The
resources passed as arguments must be durable resources constructed on the same durable schedule.
Unlocking may be performed during search.

Note

The class IlcResourceArray is created using the Solver macro ILCARRAY. Refer to the IBM ILOG Solver
Reference Manual for information on using the macro to create array classes.

All constraints (resource and global) that are using the unlocked resources become "inhibited," meaning that no
further propagation will occur through them. Unlocked resources keep the timetable information that was
computed before they were unlocked.

For any unlocked resource the following equalities are true:

 resource.getSchedule() == resource.getDurableSchedule();
 resource.getSolver() == resource.getDurableSchedule().getSolver();

Unlocked resources are in a state allowing them to be locked. Further computation performed on the schedule
does not affect the unlocked resource, except backtracking. Backtracking a decision that modified the timetable
of a resource will undo the modification, even if the resource has been unlocked.

Do not call unlock during propagation. Trying to unlock a resource which is not locked by the invoking schedule
has no effect.

Note that unlock is not reversible, that is, an unlocked resource will not be locked again under backtracking and
inhibited constraints remain inhibited.

public void whenDirectPredecessors(const IlcScheduleDemon)

This member function associates the schedule demon d with changes to the set of activities that are direct
predecessors of an activity of the invoking schedule. When the set of activities that are direct predecessors of an
activity changes because some new direct predecessors have appeared, the demon d is executed on the activity
whose set of direct predecessors has changed.

292

This member function has no effect until a precedence graph constraint has been created on the schedule.

public void whenDirectSuccessors(const IlcScheduleDemon)

This member function associates the schedule demon d with changes to the set of activities that are direct
successors of an activity of the invoking schedule. When the set of activities that are direct successors of an
activity changes because some new direct successors have appeared, the demon d is executed on the activity
whose set of direct successors has changed.

This member function has no effect until a precedence graph constraint has been created on the schedule.

public void whenPredecessors(const IlcScheduleDemon)

This member function associates the schedule demon d with changes to the set of activities that are
predecessors of an activity of the invoking schedule. When the set of activities that are predecessors of an
activity changes because some new predecessors have appeared, the demon d is executed on the activity
whose set of predecessors has changed.

This member function has no effect until a precedence graph constraint has been created on the schedule.

public void whenSuccessors(const IlcScheduleDemon)

This member function associates the schedule demon d with changes to the set of activities that are successors
of an activity of the invoking schedule. When the set of activities that are successors of an activity changes
because some new successors have appeared, the demon d is executed on the activity whose set of successors
has changed.

This member function has no effect until a precedence graph constraint has been created on the schedule.

293

Class IlcScheduleDemon
Definition file: ilsched/schedule.h
Include file: <ilsched/ilsched.h>

An instance of IlcScheduleDemon represents a demon that is associated with all the activities on a schedule.
An example could be a demon that is triggered every time the set of successors of an activity in the schedule
changes. An instance of this class can be created by the macro ILCSCHEDULEDEMON.

See Also: ILCSCHEDULEDEMON, IlcSchedule

Constructor Summary

public IlcScheduleDemon()

public IlcScheduleDemon(IlcScheduleDemonI * impl)

Method Summary

public IlcScheduleDemonI * getImpl() const

public void operator=(const IlcScheduleDemon & h)

Constructors

public IlcScheduleDemon()

This constructor creates an instance which is empty, that is, one whose handle pointer is null. You must assign it
a value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IlcScheduleDemon(IlcScheduleDemonI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

Methods

public IlcScheduleDemonI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public void operator=(const IlcScheduleDemon & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument. After execution of this operator, the invoking object and the
provided argument point to the same implementation object.

294

Class IlcScheduler
Definition file: ilsched/ilocpschedextr.h
Include file: <ilsched/iloscheduler.h>

The class IlcScheduler is the repository of all the information used during the solve process of a scheduling
problem. It allows retrieval of the search object (Ilc) that has been extracted from a scheduler extractable (Ilo).

For more information, see the concept Assert and NDEBUG in the IBM ILOG Solver Reference Manual.

Constructor Summary

public IlcScheduler(IloSolver solver)

Method Summary

public IlcActivity getActivity(const IloActivity ext) const

public IlcAltResConstraint getAltResConstraint(const IloResourceConstraint
ext) const

public IlcAltResSet getAltResSet(const IloAltResSet ext) const

public IlcCalendar getCalendar(const IloCalendar ext) const

public IlcCapResource getCapResource(const IloCapResource ext) const

public IlcContinuousReservoir getContinuousReservoir(const
IloContinuousReservoir ext) const

public IlcDiscreteEnergy getDiscreteEnergy(const IloDiscreteEnergy ext)
const

public IlcDiscreteResource getDiscreteResource(const IloDiscreteResource ext)
const

public IloGranularFunction getExtractable(IlcGranularFunction sobj) const

public IloTransitionCost getExtractable(IlcTransitionCostObject sobj) const

public IloTransitionTime getExtractable(IlcTransitionTimeObject sobj) const

public IloResource getExtractable(IlcResource sobj) const

public IloActivity getExtractable(IlcActivity sobj) const

public IloAltResSet getExtractable(IlcAltResSet sobj) const

public IloResourceConstraint getExtractable(IlcAltResConstraint sobj) const

public IloResourceConstraint getExtractable(IlcResourceConstraint sobj) const

public IloTimeBoundConstraint getExtractable(IlcTimeBoundConstraint sobj) const

public IloPrecedenceConstraint getExtractable(IlcPrecedenceConstraint sobj) const

public IlcGranularFunction getGranularFunction(const IloGranularFunction ext)
const

public IlcPrecedenceConstraint getPrecedenceConstraint(const
IloPrecedenceConstraint ext) const

public IlcReservoir getReservoir(const IloReservoir ext) const

public IlcResource getResource(const IloResource ext) const

public IlcResourceConstraint

295

getResourceConstraint(const IloResourceConstraint
ext) const

public IlcShiftObject getShiftObject(const IloShiftObject ext) const

public IloSolver getSolver() const

public IlcStateResource getStateResource(const IloStateResource ext) const

public IlcTimeBoundConstraint getTimeBoundConstraint(const
IloTimeBoundConstraint ext) const

public IlcTransitionCostObject getTransitionCostObject(const IloTransitionParam
ext) const

public IlcTransitionCostObject getTransitionCostObject(const
IloTransitionCostObject ext) const

public IlcTransitionCostObject getTransitionCostObject(const IloTransitionCost
ext) const

public IlcTransitionTimeObject getTransitionTimeObject(const
IloTransitionTimeObject ext) const

public IlcTransitionTimeObject getTransitionTimeObject(const IloTransitionTime
ext) const

public IlcUnaryResource getUnaryResource(const IloUnaryResource ext) const

public IloBool hasAlternative(const IloResourceConstraint ext)
const

Inherited Methods from IlcSchedule

close, getImpl, getName, getNumberOfActivities, getNumberOfResources, getObject,
getPrecedenceGraphConstraint, getSolver, getSolverI, getTimeMax, getTimeMin,
hasPrecedenceGraphConstraint, isClosed, isDurable, lock, lock, lock,
makePrecedenceGraphConstraint, operator!=, operator=, operator==, setDurable,
setName, setObject, unlock, unlock, unlock, whenDirectPredecessors,
whenDirectSuccessors, whenPredecessors, whenSuccessors

Constructors

public IlcScheduler(IloSolver solver)

This constructor creates a new instance of IlcScheduler if none currently exists on the given instance of
IloSolver. If a schedule has already been created on the solver, then the new handle uses it, and points to the
same implementation. If no instance of IloSchedulerEnv had been created on the IloEnv that the solver is
built on, then one is created.

Methods

public IlcActivity getActivity(const IloActivity ext) const

This member function returns the instance of IlcActivity that has been extracted from ext, the given
IloActivity. If ext has not been extracted, an empty handle is returned.

public IlcAltResConstraint getAltResConstraint(const IloResourceConstraint ext)
const

This member function returns the instance of IlcAltResConstraint that has been extracted from ext, the

296

given IloResourceConstraint. If ext has not been extracted, an empty handle is returned. In debug mode,
an assertion will be violated if ext is not an alternative resource constraint.

public IlcAltResSet getAltResSet(const IloAltResSet ext) const

This member function returns the instance of IlcAltResSet that has been extracted from ext, the given
IloAltResSet. If ext has not been extracted, an empty handle is returned.

public IlcCalendar getCalendar(const IloCalendar ext) const

This member function returns the instance of IlcCalendar that has been extracted from ext, the given
IloCalendar. If exthas not been extracted, an empty handle is returned.

public IlcCapResource getCapResource(const IloCapResource ext) const

This member function returns the instance of IlcCapResource that has been extracted from ext, the given
IloCapResource. If ext has not been extracted, an empty handle is returned.

public IlcContinuousReservoir getContinuousReservoir(const IloContinuousReservoir
ext) const

This member function returns the instance of IlcContinuousReservoir that has been extracted from ext,
the given IloContinuousReservoir. If ext has not been extracted, an empty handle is returned.

public IlcDiscreteEnergy getDiscreteEnergy(const IloDiscreteEnergy ext) const

This member function returns the instance of IlcDiscreteEnergy that has been extracted from ext, the given
IloDiscreteEnergy. If ext has not been extracted, an empty handle is returned.

public IlcDiscreteResource getDiscreteResource(const IloDiscreteResource ext) const

This member function returns the instance of IlcDiscreteResource that has been extracted from ext, the
given IloDiscreteResource. If ext has not been extracted, an empty handle is returned.

public IloGranularFunction getExtractable(IlcGranularFunction sobj) const

This member function returns the instance of IloGranularFunction from which sobj has been extracted. If
sobj has not been generated via an extraction, then it returns an empty handle.

public IloTransitionCost getExtractable(IlcTransitionCostObject sobj) const

This member function returns the instance of IloTransitionCost from which sobj has been extracted. If
sobj has not been generated via an extraction, then it returns an empty handle.

public IloTransitionTime getExtractable(IlcTransitionTimeObject sobj) const

297

This member function returns the instance of IloTransitionTime from which sobj has been extracted. If
sobj has not been generated via an extraction, then it returns an empty handle.

public IloResource getExtractable(IlcResource sobj) const

This member function returns the instance of IloResource from which sobj has been extracted. If sobj has
not been generated via an extraction, then it returns an empty handle.

public IloActivity getExtractable(IlcActivity sobj) const

This member function returns the instance of IloActivity from which sobj has been extracted. If sobj has
not been generated via an extraction, then it returns an empty handle.

public IloAltResSet getExtractable(IlcAltResSet sobj) const

This member function returns the instance of IloAltResSet from which sobj has been extracted. If sobj has
not been generated via an extraction, then it returns an empty handle.

public IloResourceConstraint getExtractable(IlcAltResConstraint sobj) const

This member function returns the instance of IloResourceConstraint from which sobj has been extracted.
If sobj has not been generated via an extraction, then it returns an empty handle.

public IloResourceConstraint getExtractable(IlcResourceConstraint sobj) const

This member function returns the instance of IloResourceConstraint from which sobj has been extracted.
If sobj has not been generated via an extraction, then it returns an empty handle.

public IloTimeBoundConstraint getExtractable(IlcTimeBoundConstraint sobj) const

This member function returns the instance of IloTimeBoundConstraint from which sobj has been
extracted. If sobj has not been generated via an extraction, then it returns an empty handle.

public IloPrecedenceConstraint getExtractable(IlcPrecedenceConstraint sobj) const

This member function returns the instance of IloPrecedenceConstraint from which sobj has been
extracted. If sobj has not been generated via an extraction, then it returns an empty handle.

public IlcGranularFunction getGranularFunction(const IloGranularFunction ext) const

This member function returns the instance of IlcGranularFunction that has been extracted from ext, the
given IloGranularFunction. If ext has not been extracted, an empty handle is returned.

298

public IlcPrecedenceConstraint getPrecedenceConstraint(const
IloPrecedenceConstraint ext) const

This member function returns the instance of IlcPrecedenceConstraint that has been extracted from ext,
the given IloPrecedenceConstraint. If ext has not been extracted, an empty handle is returned.

public IlcReservoir getReservoir(const IloReservoir ext) const

This member function returns the instance of IlcReservoir that has been extracted from ext, the given
IloReservoir. If ext has not been extracted, an empty handle is returned.

public IlcResource getResource(const IloResource ext) const

This member function returns the instance of IlcResource that has been extracted from ext, the given
IloResource. If ext has not been extracted, an empty handle is returned.

public IlcResourceConstraint getResourceConstraint(const IloResourceConstraint ext)
const

This member function returns the instance of IlcResourceConstraint that has been extracted from ext, the
given IloResourceConstraint. If ext has not been extracted, an empty handle is returned. In debug mode,
an assertion will be violated if ext is an alternative resource constraint.

public IlcShiftObject getShiftObject(const IloShiftObject ext) const

This member function returns the instance of IlcShiftObject that has been extracted from ext, the given
IloShiftObject. If exthas not been extracted, an empty handle is returned.

public IloSolver getSolver() const

This member function returns the instance of IloSolver on which was built the called object.

public IlcStateResource getStateResource(const IloStateResource ext) const

This member function returns the instance of IlcStateResource that has been extracted from ext, the given
IloStateResource. If ext has not been extracted, an empty handle is returned.

public IlcTimeBoundConstraint getTimeBoundConstraint(const IloTimeBoundConstraint
ext) const

This member function returns the instance of IlcTimeBoundConstraint that has been extracted from ext,
the given IloTimeBoundConstraint. If ext has not been extracted, an empty handle is returned.

public IlcTransitionCostObject getTransitionCostObject(const IloTransitionParam
ext) const

299

This member function returns the instance of IlcTransitionCostObject corresponding to the extraction of
ext, the given IloTransitionParam. If ext has not been extracted, an empty handle is returned. This
member function is useful to get a transition cost object that was not associated with any unary resource in the
model; for example, to use it in a selector for the goals IlcSequence or IlcSequenceBackward.

public IlcTransitionCostObject getTransitionCostObject(const
IloTransitionCostObject ext) const

This member function returns the instance of IlcTransitionCostObject that has been extracted from ext,
the given IloTransitionCostObject. If ext has not been extracted, an empty handle is returned.

public IlcTransitionCostObject getTransitionCostObject(const IloTransitionCost ext)
const

This member function returns the instance of IlcTransitionCostObject that has been extracted from ext,
the given IloTransitionCost. If ext has not been extracted, an empty handle is returned.

public IlcTransitionTimeObject getTransitionTimeObject(const
IloTransitionTimeObject ext) const

This member function returns the instance of IlcTransitionTimeObject that has been extracted from ext,
the given IlcTransitionTimeObject. If ext has not been extracted, an empty handle is returned.

public IlcTransitionTimeObject getTransitionTimeObject(const IloTransitionTime ext)
const

This member function returns the instance of IlcTransitionTimeObject that has been extracted from ext,
the given IloTransitionTime. If ext has not been extracted, an empty handle is returned.

public IlcUnaryResource getUnaryResource(const IloUnaryResource ext) const

This member function returns the instance of IlcUnaryResource that has been extracted from ext, the given
IloUnaryResource. If ext has not been extracted, an empty handle is returned.

public IloBool hasAlternative(const IloResourceConstraint ext) const

This member function returns IloTrue if the extracted counterpart of the argument ext is an instance of the
class IlcAltResConstraint. It returns IlcFalse if the extracted counterpart of the argument ext is an
instance of the class IlcResourceConstraint.

300

Class IlcSchedulerPrintTrace
Definition file: ilsched/schedtrace.h
Include file: <ilsched/ilsched.h>

The IlcSchedulerPrintTrace class is used to get printed messages of every trace event. To get those
events, the manager must be in trace mode. See IloSolver::setTraceMode in the IBM ILOG Solver
Reference Manual.

Example

 solver.setTraceMode(IlcTrue);
 IlcSchedulerPrintTrace trace(schedule);
 trace.traceAllActivities();
 trace.traceAllResources();

See Also: IlcSchedulerTrace, IlcSchedulerTraceFilter

Constructor Summary

public IlcSchedulerPrintTrace()

public IlcSchedulerPrintTrace(IlcSchedulerPrintTraceI * impl)

public IlcSchedulerPrintTrace(IlcSchedule s, IlcBool traceFails=IlcTrue, const
char * name=0)

Method Summary

public IlcSchedulerPrintTraceI * getImpl() const

public void operator=(const IlcSchedulerPrintTrace & h)

public void resetFilter() const

public void setFilter(IlcSchedulerTraceFilter filter) const

Inherited Methods from IlcSchedulerTrace

trace, trace, trace, trace, trace, trace, trace, traceAllActivities,
traceAllFailures, traceAllResources

Constructors

public IlcSchedulerPrintTrace()

This constructor creates an instance which is empty, that is, one whose handle pointer is null. You must assign it
a value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IlcSchedulerPrintTrace(IlcSchedulerPrintTraceI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IlcSchedulerPrintTrace(IlcSchedule s, IlcBool traceFails=IlcTrue, const char
* name=0)

301

This constructor creates an instance of IlcSchedulerPrintTrace for the IlcSchedule given as argument.
Member functions of the base class IlcSchedulerTrace like
IlcSchedulerTrace::traceAllActivities will act on the objects of this instance of IlcSchedule.

If the value of traceFails is IlcTrue (the default), then all the failures will be traced. Otherwise, only failures
triggered by Solver variables of traced Scheduler objects will be displayed. A name can be given to the trace.

Methods

public IlcSchedulerPrintTraceI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public void operator=(const IlcSchedulerPrintTrace & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument. After execution of this operator, the invoking object and the
provided argument point to the same implementation object.

public void resetFilter() const

This member function resets the filter associated with the calling object. After the filter is reset, all events will be
displayed.

public void setFilter(IlcSchedulerTraceFilter filter) const

This member function associates the specified filter to the calling object. Only events for which the function given
as argument returns IlcTrue will be displayed.

302

Class IlcSchedulerTrace
Definition file: ilsched/schedtrace.h
Include file: <ilsched/ilsched.h>

The IlcSchedulerTrace class is used to determine which Scheduler objects (activities, resources,
constraints) will be traced.

The implementation class, IlcSchedulerTraceI, has several virtual methods that can be overloaded to get
different behaviors.

Example

 MySchedTraceI* traceI = new (solver.getHeap())
 MySchedTraceI(schedule);
 IlcSchedulerTrace trace(traceI);
 trace.traceAllActivities();
 trace.traceAllResources();

See Also: IlcSchedulerPrintTrace, IlcSchedulerTraceI

Method Summary

public void trace(IlcTimeBoundConstraint tbCt, IlcBool withActivity=IlcTrue) const

public void trace(IlcPrecedenceConstraint precCt, IlcBool withActivities=IlcTrue)
const

public void trace(IlcAltResSet resSet) const

public void trace(IlcResource res, IlcBool withResourceConstraints=IlcTrue) const

public void trace(IlcAltResConstraint altRct, IlcBool withActivity=IlcTrue) const

public void trace(IlcResourceConstraint rct, IlcBool withActivity=IlcTrue) const

public void trace(IlcActivity act, IlcBool withResourceConstraints=IlcTrue) const

public void traceAllActivities() const

public void traceAllFailures() const

public void traceAllResources() const

Methods

public void trace(IlcTimeBoundConstraint tbCt, IlcBool withActivity=IlcTrue) const

This member function states that the time bound constraint must be traced: if this constraint has a variable date,
modifications of this variable will trigger the call of specific member functions of the implementation class of the
invoking object.

If the argument withActivity equals IlcTrue, then the activity involved in the time bound constraint will also
be traced.

public void trace(IlcPrecedenceConstraint precCt, IlcBool withActivities=IlcTrue)
const

303

This member function states that the precedence constraint must be traced: if this precedence constraint has a
variable delay, modifications of this variable will trigger the call of specific member functions of the
implementation class of the invoking object.

If the argument withActivities equals IlcTrue, then the two activities involved in the precedence constraint
will also be traced.

public void trace(IlcAltResSet resSet) const

This member function states that the given alternative resource set must be traced; all the alternative resource
constraints that refer to this set will be traced.

public void trace(IlcResource res, IlcBool withResourceConstraints=IlcTrue) const

This member function states that the resource must be traced: this means that the structures used in the global
constraints posted on this resource (timetables, precedence graphs) will be traced. Modifications of those data
structures will trigger the call of specific member functions of the implementation class of the invoking object.

If the argument withResourceConstraints equals IlcTrue, then all the resource constraints in which this
resource is involved, and their corresponding activities will also be traced.

public void trace(IlcAltResConstraint altRct, IlcBool withActivity=IlcTrue) const

This member function states that the given alternative resource constraint must be traced: any modification of
any variable that this resource constraint owns (index of chosen resource, capacity, or required set) will call a
specific member function of the implementation class of the invoking object.

If the argument withActivity equals IlcTrue, then the activity that corresponds to this alternative resource
constraint will also be traced.

public void trace(IlcResourceConstraint rct, IlcBool withActivity=IlcTrue) const

This member function states that the given resource constraint must be traced: any modification of any variable
that this resource constraint owns (capacity or required set) will call a specific member function of the
implementation class of the invoking object.

If the argument withActivity equals IlcTrue, then the activity that corresponds to this resource constraint
will also be traced.

public void trace(IlcActivity act, IlcBool withResourceConstraints=IlcTrue) const

This member function states that the given activity must be traced: any modification of any variable that this
activity owns will call a specific member function of the implementation class of the invoking object.

If the argument withResourceConstraints equals IlcTrue, then all the resource constraints, alternative
resource constraints, precedence constraints and time bound constraints in which this activity is involved will also
be traced.

public void traceAllActivities() const

304

This member function states that all the activities must be traced. The constraints in which they are involved (time
bound, precedence, resource, and alternative resource constraints) will also be traced.

public void traceAllFailures() const

This member function states that all the failures must be traced. The corresponding member functions of the
implementation class of the invoking object will be called. The default behavior of a Scheduler trace object (that
is, if this method is not called), is that only failures triggered by Solver variables of traced Scheduler objects will
be traced.

public void traceAllResources() const

This member function states that all the resources must be traced. The constraints in which they are involved
(resource constraints, alternative resource constraints), and their corresponding activities, will also be traced.

Note that temporal constraints will not be traced, and activities that do not require a resource will not be traced
either. Use the member function IlcSchedulerTrace::traceAllActivities for such a case.

305

Class IlcSchedulerTraceI
Definition file: ilsched/schedtracei.h
Include file: <ilsched/ilsched.h>

The class IlcSchedulerTraceI is the base class used to build a trace for a scheduling problem. It provides
virtual methods that are called when a change occurs on a traced scheduling object, and is intended to be
sub-classed by the user so that its behavior fits the user's needs.

The default behavior of all the virtual methods is to do nothing, so that one can overload only the methods one is
interested in.

Tracing modifications of objects

When a modification on a traced scheduling object (see IlcSchedulerTrace) occurs, the virtual method that
corresponds to this change (named xxxChange, where xxx is the type of object that changes) will be called
twice: first just before the modification, then just after. The timing of a particular call (whether just before or just
after the modification) is indicated by the first argument, a boolean value that equals IlcTrue if that call
occurred just before the modification.

The other arguments give the context of the modification: the instance of object that is being modified, the type of
change, and the value that is used to change the object (for example, the new minimum value or the value
removed from the possible set).

Tracing failures

When a failure occurs, it will be traced if either of the two following conditions hold:

it is triggered by a Solver variable of a traced Scheduler object.•
the member function IlcSchedulerTrace::traceAllFailures was called.•

If a failure is traced, then one or more virtual methods of the class IlcSchedulerTraceI will be called.

If the failure occurs because a variable gets an empty domain, then either failIntVar or
failIntSetVar will be called, depending on the type of variable.

•

If the failure occurs because a goal, a demon or a constraint explicitly calls fail(), then
failDemon will be called.

•

In all fail cases, failManager will be called.•

Example

 class MyTraceI : public IlcSchedulerTraceI {
 public:
 MyTraceI(IlcScheduleI* schedule, const char* name=0);
 virtual ~MyTraceI() {}

 ...

 };

 int main () {

 ...

 MyTraceI* myTraceI = new (solver.getGlobalHeap())
 MyTraceI(scheduler, "MyTrace"));
 IlcSchedulerTrace myTrace(myTraceI);

 ...

 }

306

See Also: IlcSchedulerPrintTrace, IlcSchedulerTrace

Constructor and Destructor Summary

public IlcSchedulerTraceI(IlcScheduleI * schedule, const char * name=0)

Method Summary

public virtual void activityChange(IlcBool isBeginEvent, const
IlcActivity act, IlcSchedulerChange change,
IlcSolverChange solverChange, const IlcActivity
act2, IlcInt val)

public virtual void altResConstraintChange(IlcBool isBeginEvent, const
IlcAltResConstraint altResCt, IlcSchedulerChange
change, IlcSolverChange solverChange, IlcInt
intVal)

public virtual void anyTimetableChange(IlcBool isBeginEvent, const
IlcAnyTimetable tt, IlcSchedulerChange change,
IlcInt t1, IlcInt t2, IlcAnySet anySet, IlcAny
anyVal)

public virtual void failDemon(const IlcDemon demon)

public virtual void failIntSetVar(const IlcIntSetVar setVar)

public virtual void failIntVar(const IlcIntExp exp)

public virtual void failManager(IlcInt nbFails)

public IlcActivity getCurrentActivity1() const

public IlcActivity getCurrentActivity2() const

public IlcAltResConstraint getCurrentAltResConstraint() const

public IlcAltResSet getCurrentAltResSet() const

public IlcPrecedenceConstraint getCurrentPrecedenceConstraint() const

public IlcResource getCurrentResource() const

public IlcResourceConstraint getCurrentResourceConstraint1() const

public IlcResourceConstraint getCurrentResourceConstraint2() const

public IlcTimeBoundConstraint getCurrentTimeBoundConstraint() const

public IlcInt getCurrentTimeMax() const

public IlcInt getCurrentTimeMin() const

public IlcFailReason getFailReason() const

public const char * getMessage(IlcFailReason reason) const

public const char * getMessage(IlcSolverChange chg) const

public const char * getMessage(IlcSchedulerChange chg) const

public IlcScheduleI * getScheduleI() const

public IloSolver getSolver() const

public ILCSTD(ostream) const

public virtual void intTimetableChange(IlcBool isBeginEvent, const
IlcIntTimetable tt, IlcSchedulerChange change,
IlcInt t1, IlcInt t2, IlcInt intVal)

public virtual void precedenceConstraintChange(IlcBool isBeginEvent,
const IlcPrecedenceConstraint precCt,
IlcSchedulerChange change, IlcSolverChange

307

solverChange, IlcInt intVal)

public virtual void resourceConstraintChange(IlcBool isBeginEvent,
const IlcResourceConstraint resCt,
IlcSchedulerChange change, IlcSolverChange
solverChange, const IlcResourceConstraint resCt2,
IlcInt intVal, IlcAny anyVal)

public virtual void timeBoundConstraintChange(IlcBool isBeginEvent,
const IlcTimeBoundConstraint tbCt,
IlcSchedulerChange change, IlcSolverChange
solverChange, IlcInt intVal)

Constructors and Destructors

public IlcSchedulerTraceI(IlcScheduleI * schedule, const char * name=0)

This constructor creates a new instance of IlcSchedulerTraceI and adds it to the given schedule. It can be
used to trace all objects in schedule. Its name is set to name.

Methods

public virtual void activityChange(IlcBool isBeginEvent, const IlcActivity act,
IlcSchedulerChange change, IlcSolverChange solverChange, const IlcActivity act2,
IlcInt val)

This member function is called when a change occurs on the traced activity act. If activityChange is called
just before the modification, then isBeginEvent equals IlcTrue; it equals IlcFalse if the modification has
just occurred. The argument change indicates what is changed in the activity (for example, the start variable
or end variable). If the change is related to an underlying Solver object (such as the start variable), then
solverChange indicates how this object is changed (for example, setMin, setMax, setValue). Otherwise,
this parameter equals IlcUndefinedSolverChange.

Some events (such as IlcActivitySetSuccessor) are related to two activities. In this case, act2 is a handle
on this other activity. Otherwise, it is an empty handle.

When an integer Solver variable is changed, the value used (such as the new minimum) is given in val. When
an activity is postponed (either forward or backward), the date from which it is postponed is given in val.
Otherwise, the value of this argument is IlcIntMin.

public virtual void altResConstraintChange(IlcBool isBeginEvent, const
IlcAltResConstraint altResCt, IlcSchedulerChange change, IlcSolverChange
solverChange, IlcInt intVal)

This member function is called when a change occurs on the traced alternative resource constraint altResCt. If
altResConstraintChange is called just before the modification, then isBeginEvent equals IlcTrue; it
equals IlcFalse if the modification has just occurred. The argument change indicates what is changed in the
alternative resource constraint (for example, the index variable). If the change is related to an underlying Solver
object (such as the index variable), then solverChange indicates how this object is changed (for example,
setMin, setMax, setValue). Otherwise, this parameter equals IlcUndefinedSolverChange.

Some events (such as IlcResourceConstraintSetSuccessor) are related to two alternative resource
constraints. In this case, resCt2 is a handle on this other alternative resource constraint. Otherwise, it is an
empty handle.

When an integer Solver variable is changed, the value used (such as the new minimum) is given in intVal.
Otherwise, the value of this argument is IlcIntMin.

308

public virtual void anyTimetableChange(IlcBool isBeginEvent, const IlcAnyTimetable
tt, IlcSchedulerChange change, IlcInt t1, IlcInt t2, IlcAnySet anySet, IlcAny
anyVal)

This member function is called when a change occurs on the traced timetable tt. If
resourceConstraintChange is called just before the modification, then isBeginEvent equals IlcTrue; it
equals IlcFalse if the modification has just occurred. The argument change indicates what is changed in the
timetable.

The parameters t1 and t2 define the interval on which the timetable is being modified.

The value used to change the timetable (for example, the set of states removed from the possible states set) is
given in anySet. If the value consists of only one IlcAny, then anySet is an empty handle, and this value is
given in anyVal. The value used to change the timetable (such as the value removed from the possible states
set) is given in anyVal, if it is only a single state. Otherwise, this parameter equals 0 and the values are given in
anySet.

public virtual void failDemon(const IlcDemon demon)

This method is called when demon triggers a failure.

public virtual void failIntSetVar(const IlcIntSetVar setVar)

This method is called when a modification of setVar triggers a failure.

public virtual void failIntVar(const IlcIntExp exp)

This method is called when a modification of exp triggers a failure.

public virtual void failManager(IlcInt nbFails)

This method is called when a failure occurs. The new number of fails is nbFails.

public IlcActivity getCurrentActivity1() const

When a fail occurs and the activity related to the failure is known to Scheduler Engine, then this method returns
this activity. Otherwise it returns an empty handle. This method must only be called when inside a call to
failDemon, failIntVar, failIntSetVar or failManager.

public IlcActivity getCurrentActivity2() const

When a fail occurs and a second activity related to the failure is known to the Scheduler Engine (e.g. one activity
is said to be next to another, and this leads to a fail), then this method returns this second activity. Otherwise it
returns an empty handle. This method must only be called when inside a call to failDemon, failIntVar,
failIntSetVar or failManager.

public IlcAltResConstraint getCurrentAltResConstraint() const

309

When a fail occurs and an instance of IlcAltResConstraint is known to the Scheduler Engine, then this
method returns this alternative resource constraint. Otherwise it returns an empty handle. This method must only
be called when inside a call to failDemon, failIntVar, failIntSetVar or failManager.

public IlcAltResSet getCurrentAltResSet() const

When a fail occurs and an instance of IlcAltResSet related to the failure is known to the Scheduler Engine,
then this method returns this alternative resource set. Otherwise it returns an empty handle. This method must
only be called when inside a call to failDemon, failIntVar, failIntSetVar or failManager.

public IlcPrecedenceConstraint getCurrentPrecedenceConstraint() const

When a fail occurs and a precedence constraint related to the failure is known to the Scheduler Engine, then this
method returns this precedence constraint. Otherwise it returns an empty handle. This method must only be
called when inside a call to failDemon, failIntVar, failIntSetVar or failManager.

public IlcResource getCurrentResource() const

When a fail occurs and a resource related to the failure is known to the Scheduler Engine, then this method
returns this resource. Otherwise it returns an empty handle. This method must only be called when inside a call
to failDemon, failIntVar, failIntSetVar or failManager.

public IlcResourceConstraint getCurrentResourceConstraint1() const

When a fail occurs and a resource constraint related to the failure is known to the Scheduler Engine, then this
method returns this resource constraint. Otherwise it returns an empty handle. This method must only be called
when inside a call to failDemon, failIntVar, failIntSetVar or failManager.

public IlcResourceConstraint getCurrentResourceConstraint2() const

When a fail occurs and a second resource constraint related to the failure is known to the Scheduler Engine, then
this method returns this second resource constraint. Otherwise it returns an empty handle. This method must
only be called when inside a call to failDemon, failIntVar, failIntSetVar or failManager.

public IlcTimeBoundConstraint getCurrentTimeBoundConstraint() const

When a fail occurs and a time bound constraint related to the failure is known to the Scheduler Engine, then this
method returns this time bound constraint. Otherwise it returns an empty handle. This method must only be
called when inside a call to failDemon, failIntVar, failIntSetVar or failManager.

public IlcInt getCurrentTimeMax() const

When a fail occurs and the time interval related to the failure is known to the Scheduler Engine, then this method
returns the upper bound of this interval. Otherwise it returns IlcIntMax. This method must only be called when
inside a call to failDemon, failIntVar, failIntSetVar or failManager.

310

public IlcInt getCurrentTimeMin() const

When a fail occurs and the time interval related to the failure is known to the Scheduler Engine, then this method
returns the lower bound of this interval. Otherwise it returns IlcIntMin. This method must only be called when
inside a call to failDemon, failIntVar, failIntSetVar or failManager.

public IlcFailReason getFailReason() const

When a fail occurs and the reason for the fail is known to the Scheduler Engine, then this method returns the
reason. If the reason of the fail is unknown to the Scheduler Engine, this method will return
IlcFailReasonUnknown. This method must only be called when inside a call to failDemon, failIntVar,
failIntSetVar or failManager.

public const char * getMessage(IlcSchedulerChange chg) const
public const char * getMessage(IlcFailReason reason) const
public const char * getMessage(IlcSolverChange chg) const

This member function returns a string containing the name of the change given as argument.

public IlcScheduleI * getScheduleI() const

This member function returns the instance of IlcScheduleI on which the trace was built.

public IloSolver getSolver() const

This member function returns the instance of IloSolver that is associated with the instance of IlcSchedule
on which the trace was built.

public ILCSTD(ostream) const

This member function returns the stream that can be used to output trace information. This is the stream that is
attached to the solver.

public virtual void intTimetableChange(IlcBool isBeginEvent, const IlcIntTimetable
tt, IlcSchedulerChange change, IlcInt t1, IlcInt t2, IlcInt intVal)

This member function is called when a change occurs on the traced integer timetable tt. If
timeBoundConstraintChange is called just before the modification, then isBeginEvent equals IlcTrue;
it equals IlcFalse if the modification has just occurred. The argument change indicates what is changed in the
timetable.

The value used to change the timetable (such as the new minimum) is given by intVal. The parameters t1 and
t2 define the interval on which the timetable is being modified.

public virtual void precedenceConstraintChange(IlcBool isBeginEvent, const
IlcPrecedenceConstraint precCt, IlcSchedulerChange change, IlcSolverChange
solverChange, IlcInt intVal)

311

This member function is called when a change occurs on the traced precedence constraint precCt. If
precedenceConstraintChange is called just before the modification, then isBeginEvent equals IlcTrue;
it equals IlcFalse if the modification has just occurred. The argument change indicates what is changed in the
precedence constraint (for example, the delay variable). If the change is related to an underlying Solver object
(such as the delay variable), then solverChange indicates how this object is changed (for example, setMin,
setMax, setValue). Otherwise, this parameter equals IlcUndefinedSolverChange.

When an integer Solver variable is changed, the value used (such as the new minimum) is given in intVal.
Otherwise, the value of this argument is IlcIntMin.

public virtual void resourceConstraintChange(IlcBool isBeginEvent, const
IlcResourceConstraint resCt, IlcSchedulerChange change, IlcSolverChange
solverChange, const IlcResourceConstraint resCt2, IlcInt intVal, IlcAny anyVal)

This member function is called when a change occurs on the traced resource constraint resCt. If
resourceConstraintChange is called just before the modification, then isBeginEvent equals IlcTrue; it
equals IlcFalse if the modification has just occurred. The argument change indicates what is changed in the
resource constraint (for example, the capacity variable). If the change is related to an underlying Solver object
(such as the capacity variable), then solverChange indicates how this object is changed (for example,
setMin, setMax, setValue). Otherwise, this parameter equals IlcUndefinedSolverChange.

Some events (such as IlcResourceConstraintSetSuccessor) are related to two resource constraints. In
this case, resCt2 is a handle on this other resource constraint. Otherwise, it is an empty handle.

When an integer Solver variable is changed, the value used (for example, the new minimum) is given in intVal.
Otherwise, this parameter equals IlcIntMin. When an IlcAnyVar is changed (such as the state required),
the value used (such as the state removed) is given in anyVal. Otherwise this parameter equals 0.

public virtual void timeBoundConstraintChange(IlcBool isBeginEvent, const
IlcTimeBoundConstraint tbCt, IlcSchedulerChange change, IlcSolverChange
solverChange, IlcInt intVal)

This member function is called when a change occurs on the traced time bound constraint tbCt. If
timeBoundConstraintChange is called just before the modification, then isBeginEvent equals IlcTrue;
it equals IlcFalse if the modification has just occurred. The argument change indicates what is changed in the
time bound constraint (for example, the date variable). If the change is related to an underlying Solver object
(such as the date variable), then solverChange indicates how this object is changed (for example, setMin,
setMax, setValue). Otherwise, this parameter equals IlcUndefinedSolverChange.

When an integer Solver variable is changed, the value used (for example, the new minimum) is given in intVal.
Otherwise, this parameter equals IlcIntMin.

312

Class IlcShape
Definition file: ilsched/shaperct.h
Include file: <ilsched/ilsched.h>

Instances of IlcShape are generic objects describing shapes associated with resource constraints on
continuous reservoirs.

See Also: IlcResourceConstraint, IlcVariableSlopeShape, IloShape, IloVariableSlopeShape

Constructor Summary

public IlcShape()

public IlcShape(IlcShapeI * impl)

Method Summary

public IlcShapeI * getImpl() const

public const char * getName() const

public IlcAny getObject() const

public IlcResourceConstraint getResourceConstraint() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public IlcBool isVariableSlopeShape() const

public void operator=(const IlcShape & h)

public void setName(const char * name) const

public void setObject(IlcAny object) const

Constructors

public IlcShape()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcShape(IlcShapeI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IlcShapeI * getImpl() const

This constructor creates an object by copying another one. This constructor creates an object by copying another
one. This member function returns a pointer to the implementation object of the invoking handle.

public const char * getName() const

This member function returns the name of the invoking object.

313

public IlcAny getObject() const

This member function returns a pointer to the external object associated with the invoking object, if there is such
an association. It returns 0 (zero) otherwise.

public IlcResourceConstraint getResourceConstraint() const

This member function returns the instance of IlcResourceConstraint with which the shape is associated.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IloSolverI * getSolverI() const

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

public IlcBool isVariableSlopeShape() const

This member function returns IlcTrue if the invoking handle relates to an instance of
IlcVariableSlopeShape. In this case, the handle can be safely down-cast into a IlcVariableSlopeShape
handle, using the corresponding copy-constructor.

See Also: IlcVariableSlopeShape

public void operator=(const IlcShape & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

public void setObject(IlcAny object) const

This member function establishes a link between the invoking object and an external object of which the invoking
object might be a data member.

314

Class IlcShiftListObject
Definition file: ilsched/shifts.h

The class IlcShiftListObject inherits from the class IlcShiftObject). It allows expression of shifts as a
list of forbidden time intervals. Depending on the type of the shift list object, the time restriction can concern the
whole activity execution, or only its start or its end. Indeed three different types are defined:

OnStart: Shifts only concern the start of the activity. For instance, if the shift is the interval [a,b), then
the start of the activity must be strictly smaller than a or greater than b.

•

OnEnd: Shifts only concern the end of the activity. For instance, if the shift is the interval [a,b), then the
end of the activity must be strictly smaller than a or greater than b.

•

OnOverlap: Shifts concern the whole activity. That is, the activity cannot overlap shifts. For example, if
the shift is the interval [a,b), then the end of the activity must be strictly smaller than a or the start must
be greater than b.

•

In addition, each time interval (see IlcIntervalList) can be associated with an integer type. In such cases,
activities can specify which types have to be ignored.

For more information, see Calendars and Shift Object Semantic.

Constructor Summary

public IlcShiftListObject()

public IlcShiftListObject(IlcShiftListObjectI * impl)

public IlcShiftListObject(IlcSchedule sched)

public IlcShiftListObject(IlcSchedule sched, IlcIntervalList shiftList,
IlcShiftListObject::Type type)

Method Summary

public IlcShiftListObjectI * getImpl() const

public IlcIntervalList getShiftList() const

public IlcShiftListObject::Type getType() const

public void operator=(const IlcShiftListObject & h)

public void setShiftList(IlcIntervalList shiftList,
IlcShiftListObject::Type type)

Inherited Methods from IlcShiftObject

getImpl, operator=

Inner Enumeration

IlcShiftListObject::Type

Constructors

public IlcShiftListObject()

315

This constructor creates an instance which is empty, that is, one whose handle pointer is null. You must assign it
a value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IlcShiftListObject(IlcShiftListObjectI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IlcShiftListObject(IlcSchedule sched)

This constructor creates a new instance of IlcShiftListObject. By default, the shift list is empty and the
type is OnStart.

public IlcShiftListObject(IlcSchedule sched, IlcIntervalList shiftList,
IlcShiftListObject::Type type)

This constructor creates a new instance of IlcShiftListObject. The shift list is set to shiftList and the
type is set to type.

Methods

public IlcShiftListObjectI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IlcIntervalList getShiftList() const

This member function returns the time interval list that represents the set of forbidden dates of the invoking shift
object.

public IlcShiftListObject::Type getType() const

This member function returns the type that defines the behavior of the shifts during the search (see
IlcShiftListObject::Type).

public void operator=(const IlcShiftListObject & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument. After execution of this operator, the invoking object and the
provided argument point to the same implementation object.

public void setShiftList(IlcIntervalList shiftList, IlcShiftListObject::Type type)

This member function sets shiftList as the new shift list of the invoking shift object with the type type.

Inner Enumerations

Enumeration Type

Definition file: ilsched/shifts.h

316

The Type of IlcShiftListObject allows definition of the behavior during search regarding the variables of
concerned activities. The possible types are:

OnStart: Shifts only concern the start of the activity. For instance, if the shift is the interval [a,b), then
the start of the activity must be strictly smaller than a or greater than b.

•

OnEnd: Shifts only concern the end of the activity. For instance, if the shift is the interval [a,b), then the
end of the activity must be strictly smaller than a or greater than b.

•

OnOverlap: Shifts concern the whole activity. That is, the activity cannot overlap shifts. For instance, if
the shift is the interval [a,b), then the end of the activity must be strictly smaller than a or the start must
be greater than b.

•

Fields:

OnStart = 0

OnEnd = 1

OnOverlap = 2

317

Class IlcShiftObject
Definition file: ilsched/shifts.h

The class IlcShiftObject allows definition of shifts which constrain concerned activities. Shifts are forbidden
time intervals, not necessarily defined in extension ILCUSERSHIFTOBJECT), which restrict possible starts, ends
or whole executions of activities.

To express shifts it is possible to enumerate all intervals with IlcShiftListObject, or to write an intention
definition using ILCUSERSHIFTOBJECT).

For more information, see Calendars and Shift Object Semantic.

Constructor Summary

public IlcShiftObject()

public IlcShiftObject(IlcShiftObjectI * impl)

public IlcShiftObject(void * impl)

Method Summary

public IlcShiftObjectI * getImpl() const

public void operator=(const IlcShiftObject & h)

Constructors

public IlcShiftObject()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcShiftObject(IlcShiftObjectI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcShiftObject(void * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IlcShiftObjectI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

318

public void operator=(const IlcShiftObject & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

319

Class IlcStateResource
Definition file: ilsched/state.h
Include file: <ilsched/ilsched.h>

An instance of the class IlcStateResource represents a resource of infinite capacity, the state of which can
vary over time. Each activity may, throughout its execution, require a state resource to be in a given state (or in
any of a given set of states). Consequently, two activities may not overlap if they require incompatible states
during their execution. Two methods—similar to those used for discrete and unary resources—are available to
take into account the constraints concerning the requirement or the provision of a state resource.

The first method allows the set of possible states to vary over time: at any given time, the resource may
or may not be allowed to be in a given state.

•

The second method deals only with requiring activities: it consists of updating the earliest and latest
start and end times of activities to insure that the time intervals over which two activities that require
incompatible states cannot overlap.

•

For state resources, you can define transition times with the second method.

State

In the context of an instance of IlcStateResource, a state is defined as a pointer to any type of object (that is,
a pointer of type IlcAny). The class IlcAnyTimetable is used to represent the evolution of the state of the
resource over time.

Printing or Displaying State Resources

The printed representation of an instance of the class IlcStateResource consists of its name, followed by a
list of states. If there are more than 10 states, only the number of states is displayed.

For example:

[0x1, 0x2, 0x3] represents a state resource whose possible states are the ones represented by the pointers
0x1, 0x2, and 0x3.

[12 possible states] represents a state resource whose number of possible states is equal to 12.

If the Solver trace is active and the resource is not named, the string "IlcStateResource" is followed by the
address of the implementation object. The address will be enclosed in parentheses.

Special Considerations for State Resources: Limitations of Disjunctive Constraints

Throughout this explanation, we have assumed that each activity which requires a state resource requires it in
the same state (either a constant or a Solver variable) from the beginning to the end of its execution.

In addition, an activity may require a state resource in any of a given set of states, and yet allow the state to
change during the execution of the activity, provided that it remains in the given set. Similarly, an activity may
simply require the state resource not to be in a given state (or in any of a given set of states) throughout its
execution.

A disjunctive constraint cannot manage these cases as well as a timetable.

For example, assume three activities A, B, and C intersect in time. Assume the resource constraints are as
follows:

A requires the resource in any of the states s1 and s2 (the state is allowed to change during the•

320

execution of the activity but must always be either s1 or s2);
B requires the resource in any of the states s1 and s3 (the state is allowed to change during the
execution of the activity but must always be either s1 or s3);

•

C requires the resource in any of the states s2 and s3 (the state is allowed to change during the
execution of the activity but must always be either s2 or s3).

•

In such a case, the disjunctive constraint fails to detect the incompatibility of the three constraints because any
two of these constraints are fully compatible.

In contrast, the timetable mechanism perfectly detects the incompatibility because the variable representing the
state of the resource at the time at which the three activities intersect can assume no value. A disjunctive
constraint may still be useful in such a case, as a redundant constraint for activities requiring only a state, or to
take transition times into account.

More precisely, there are two types of resource constraints that can be posted to insist that an activity requires a
state resource:

IlcActivity::requires means that the activity requires the resource in a state or given set of
states that cannot change during the execution of the activity (the state or states may be a Solver
variable, but this variable has to be instantiated in a solution to the problem under consideration).

•

IlcActivity::requiresNot means that the activity requires the resource not to be in a given state
or given set of states (which can be a Solver variable); in other words, the state of the resource can
change during the execution of the activity, but must never be the given state.

•

As explained before, a disjunctive constraint deals perfectly with constraints of the type requires. A disjunctive
constraint deals imperfectly with constraints of the type requiresNot. Instead, a timetable is needed to deal
with such constraints.

For more information, see Ranking , Disjunctive Constraint, Timetable, and Transition Time in Scheduler Engine.

See Also: IlcAnyTimetable, IlcResource, IlcResourceConstraint, IlcStateResourceIterator

Constructor Summary

public IlcStateResource()

public IlcStateResource(IlcStateResourceI * impl)

public IlcStateResource(IlcSchedule schedule, IlcAnySet states, IlcBool
timeTable=IlcTrue)

public IlcStateResource(IlcSchedule schedule, IlcAnySet states,
IlcTransitionTimeObject ttobj, IlcBool disjAndTimetable=IlcTrue)

Method Summary

public IlcStateResourceI * getImpl() const

public IlcAny getState(IlcInt time) const

public IlcAnyTimetable getTimetable() const

public IlcAnyTimetable getTimetable(IlcInt time) const

public IlcConstraint getTypeTimetableConstraint() const

public IlcBool hasTypeTimetableConstraint() const

public IlcBool isAlwaysInUse(IlcInt timeMin, IlcInt timeMax) const

public IlcBool isAlwaysPossible(IlcAny state, IlcInt timeMin, IlcInt
timeMax) const

public IlcBool isAlwaysRequired(IlcAny state, IlcInt timeMin, IlcInt
timeMax) const

public IlcBool isBound(IlcInt time) const

321

public IlcBool isEverInUse(IlcInt timeMin, IlcInt timeMax) const

public IlcBool isEverPossible(IlcAny state, IlcInt timeMin, IlcInt
timeMax) const

public IlcBool isEverRequired(IlcAny state, IlcInt timeMin, IlcInt
timeMax) const

public IlcBool isInUse(IlcInt time) const

public IlcBool isPossible(IlcAny state, IlcInt time) const

public IlcBool isRequired(IlcAny state, IlcInt time) const

public IlcConstraint makeDisjunctiveConstraint()

public IlcConstraint makeTimetableConstraint(IlcInt timeMin, IlcInt
timeMax, IlcInt timeStep, IlcAnySet states)

public IlcConstraint makeTimetableConstraint(IlcInt timeStep=1)

public IlcConstraint makeTypeTimetableConstraint(IlcBool useBatch=IlcFalse)

public void operator=(const IlcStateResource & h)

public void removePossibleStates(IlcInt timeMin, IlcInt timeMax,
IlcAnySet states)

public void removeState(IlcInt timeMin, IlcInt timeMax, IlcAny
state)

public void setMustBeInUse(IlcInt timeMin, IlcInt timeMax)

public void setPossibleStates(IlcInt timeMin, IlcInt timeMax,
IlcAnySet states)

public void setState(IlcInt timeMin, IlcInt timeMax, IlcAny state)

Inherited Methods from IlcResource

close, getCalendar, getDisjunctiveConstraint, getDurableSchedule, getImpl,
getLastRankedFirstRC, getLastRankedLastRC, getLastSurelyContributingRankedFirstRC,
getLastSurelyContributingRankedLastRC, getName, getObject,
getOldLastRankedFirstRC, getOldLastRankedLastRC, getPrecedenceGraphConstraint,
getSchedule, getSolver, getSolverI, getTimetableConstraint, getTransitionTime,
hasCalendar, hasDisjunctiveConstraint, hasLightPrecedenceGraphConstraint,
hasPrecedenceGraphConstraint, hasPrecedenceInfo, hasRankInfo,
hasTimetableConstraint, isCapacityResource, isClosed, isContinuousReservoir,
isDiscreteEnergy, isDiscreteResource, isDurable, isReservoir, isStateResource,
isTransitionTimeSuspended, isUnaryResource, makeFunctionalConstraint,
makeIntegralConstraint, makeLightPrecedenceGraphConstraint,
makePrecedenceGraphConstraint, operator!=, operator=, operator==, setCalendar,
setName, setObject, setTransitionTimeObject, setTransitionTimeSuspended,
whenContribution, whenDirectPredecessors, whenDirectSuccessors, whenNext,
whenPossibleNext, whenPossiblePrevious, whenPredecessors, whenPrevious,
whenRankedFirstRC, whenRankedLastRC, whenSuccessors

Constructors

public IlcStateResource()

This constructor creates an instance which is empty, that is, one whose handle pointer is null. You must assign it
a value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IlcStateResource(IlcStateResourceI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

322

public IlcStateResource(IlcSchedule schedule, IlcAnySet states, IlcBool
timeTable=IlcTrue)

This constructor creates a new instance of IlcStateResource and adds it to the set of resources managed in
the given schedule. The argument states is the set of pointers that can be accepted as possible states for the
resource. The argument timeTable indicates whether the standard timetable constraint manages the profile of
possible states of the resource from the time origin to the time horizon of the given schedule; if so, it allows this
set of possible states to change at any point in time; that is, it defines a time step of 1 (one).

public IlcStateResource(IlcSchedule schedule, IlcAnySet states,
IlcTransitionTimeObject ttobj, IlcBool disjAndTimetable=IlcTrue)

This constructor creates a new instance of IlcStateResource and adds it to the set of resources managed in
the given schedule. The argument states is the set of pointers that can be accepted as possible states for the
resource. The argument ttobj indicates which transition time function will be used for the invoking resource.
The argument disjAndTimetable indicates whether both the standard timetable constraint and the disjunctive
constraint will be added to the solver.

Transition times are taken into account when the timetable or the disjunctive constraint are posted. Transition
times are only propagated between two activities that are incompatible. As the disjunctive constraint defines
incompatibility based on the resource demand of the activities and the type timetable constraint defines
incompatibility based on the transition types of the activities, they do not propagate in the same manner. Please
see Transition Time in Scheduler Engine and Type Timetable Constraint for more information.

If the argument ttobj has not been built with an instance of IlcTransitionTable, the type timetable
constraint will be unable to take the transition times into account. Please see Type Timetable Constraint for more
information.

The standard timetable constraint manages the profile of possible states of the resource from the time origin to
the time horizon of the given schedule; it allows this set of possible states to change at any point in time; that is, it
defines a time step of 1 (one).

Methods

public IlcStateResourceI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IlcAny getState(IlcInt time) const

This member function returns the state of the invoking resource at time.

public IlcAnyTimetable getTimetable() const

This member function returns the first (in chronological order) timetable of the invoking resource. An instance of
IloSolver::SolverErrorException is thrown if no timetable exists for the invoking resource.

public IlcAnyTimetable getTimetable(IlcInt time) const

This member function returns the timetable which includes time. An instance of
IloSolver::SolverErrorException is thrown if no timetable is defined at time.

323

public IlcConstraint getTypeTimetableConstraint() const

This member function returns the type timetable constraint of the invoking resource.

public IlcBool hasTypeTimetableConstraint() const

This member function returns IlcTrue if the invoking resource has a type timetable constraint. Otherwise, it
returns IlcFalse.

public IlcBool isAlwaysInUse(IlcInt timeMin, IlcInt timeMax) const

This member function returns IlcTrue if the resource is constantly in use over the interval [timeMin,
timeMax); that is, the resource is never idle in that interval. Otherwise, it returns IlcFalse.

An instance of IloSolver::SolverErrorException is thrown if the timetables of the invoking resource do
not cover the complete interval [timeMin, timeMax).

public IlcBool isAlwaysPossible(IlcAny state, IlcInt timeMin, IlcInt timeMax) const

This member function returns IlcTrue if and only if it is possible that the invoking resource is in the given
stateover the entire interval [timeMin, timeMax). Otherwise, it returns IlcFalse.

An instance of IloSolver::SolverErrorException is thrown if the timetables of the invoking resource do
not cover the complete interval [timeMin, timeMax).

public IlcBool isAlwaysRequired(IlcAny state, IlcInt timeMin, IlcInt timeMax) const

This member function returns IlcTrue if and only if it is certain that the invoking resource is in the given
stateover the entire interval [timeMin, timeMax). Otherwise, it returns IlcFalse.

An instance of IloSolver::SolverErrorException is thrown if the timetables of the invoking resource do
not cover the complete interval [timeMin, timeMax).

public IlcBool isBound(IlcInt time) const

This member function returns IlcTrue if and only if the state of the invoking resource at the given time is
known. Otherwise, it returns IlcFalse.

An instance of IloSolver::SolverErrorException is thrown if the timetables of the invoking resource do
not cover time.

public IlcBool isEverInUse(IlcInt timeMin, IlcInt timeMax) const

This member function returns IlcTrue if the invoking resource is ever in use over the interval [timeMin,
timeMax); that is, there is ever a time in the interval when the invoking resource is not idle. Otherwise, the
member function returns IlcFalse.

324

An instance of IloSolver::SolverErrorException is thrown if the timetables of the invoking resource do
not cover the complete interval [timeMin, timeMax).

public IlcBool isEverPossible(IlcAny state, IlcInt timeMin, IlcInt timeMax) const

This member function returns IlcTrue if and only if it is possible that the invoking resource is in the given
stateat some point in the interval [timeMin, timeMax). Otherwise, it returns IlcFalse.

An instance of IloSolver::SolverErrorException is thrown if the timetables of the invoking resource do
not cover the complete interval [timeMin, timeMax).

public IlcBool isEverRequired(IlcAny state, IlcInt timeMin, IlcInt timeMax) const

This member function returns IlcTrue if and only if it is certain that the invoking resource is in the given
stateat some point in the interval [timeMin, timeMax). Otherwise, it returns IlcFalse.

An instance of IloSolver::SolverErrorException is thrown if the timetables of the invoking resource do
not cover the complete interval [timeMin, timeMax).

public IlcBool isInUse(IlcInt time) const

This member function returns IlcTrue if the invoking resource is in use at the time indicated by time; that is,
the resource is not idle at time. Otherwise, it returns IlcFalse.

An instance of IloSolver::SolverErrorException is thrown if the timetables of the invoking resource do
not cover time.

public IlcBool isPossible(IlcAny state, IlcInt time) const

This member function returns IlcTrue if and only if it is possible that the invoking resource is in the given
state at the given time. Otherwise, it returns IlcFalse.

An instance of IloSolver::SolverErrorException is thrown if the timetables of the invoking resource do
not cover time.

public IlcBool isRequired(IlcAny state, IlcInt time) const

This member function returns IlcTrue if and only if it is certain that the invoking resource is in the given state
at the given time. Otherwise, it returns IlcFalse.

An instance of IloSolver::SolverErrorException is thrown if the timetables of the invoking resource do
not cover time.

public IlcConstraint makeDisjunctiveConstraint()

This member function creates and returns the global disjunctive constraint associated with the invoking resource.
For more information see Disjunctive Constraint.

public IlcConstraint makeTimetableConstraint(IlcInt timeMin, IlcInt timeMax, IlcInt

325

timeStep, IlcAnySet states)

This member function creates and returns a new timetable constraint for the invoking resource. The argument
states indicates the set of possible states. From timeMin to timeMax, the state of the resource is allowed to
change only at times timeMin + i * timeStep. The state must remain constant over each interval [t (t +
timeStep)) with t = timeMin + i * timeStep and t at least as great as timeMin and strictly less than
timeMax.

An instance of IloSolver::SolverErrorException is thrown if any of the following conditions occur:

if timeMin is not strictly less than timeMax;•
if timeStep is not strictly positive;•
if timeMax - timeMin is not a multiple of timeStep;•
if states contains an element that was not in the set of possible states that was passed to the
resource constructor;

•

if the new timetable overlaps a timetable that has already been created for the invoking resource.•

public IlcConstraint makeTimetableConstraint(IlcInt timeStep=1)

This member function creates and returns a new timetable constraint for the invoking resource. The set of
possible states is given by the set passed to the IlcStateResource constructor. From the time origin
timeMin to the time horizon, the state of the resource is allowed to change only at times timeMin + i *
timeStep. The state must remain constant over each interval [t (t + timeStep)) with t = timeMin + i
* timeStep and t at least as great as the time origin and less than the time horizon.

An instance of IloSolver::SolverErrorException is thrown if any of the following conditions occur:

if timeStep is not strictly positive;•
if the time horizon minus the time origin is not a multiple of timeStep;•
if the new timetable overlaps a timetable that has already been created for the invoking resource.•

public IlcConstraint makeTypeTimetableConstraint(IlcBool useBatch=IlcFalse)

This member function attaches a type timetable constraint to the resource and returns it.

The type timetable constraint uses the transition time object that was passed to the constructor of the invoking
resource to propagate the transition times. This transition time object needs to have been built with an instance of
IlcTransitionTable. An instance of IloSolver::SolverErrorException is thrown if no transition time
object was passed to the constructor of the resource or if the transition time object was not built with an instance
of IlcTransitionTable.

public void operator=(const IlcStateResource & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument. After execution of this operator, the invoking object and the
provided argument point to the same implementation object.

public void removePossibleStates(IlcInt timeMin, IlcInt timeMax, IlcAnySet states)

This member function states that the invoking resource must not be in any of the given states at any time in the
interval [timeMin, timeMax). The set of “impossible” states can be provided as an instance of IlcAnySet.
That class is documented in the IBM ILOG Solver Reference Manual.

An instance of IloSolver::SolverErrorException is thrown if the timetables of the invoking resource do
not cover the complete interval [timeMin, timeMax).

326

public void removeState(IlcInt timeMin, IlcInt timeMax, IlcAny state)

This member function states that the invoking resource must not be in the given state at any time in the interval
[timeMin, timeMax).

An instance of IloSolver::SolverErrorException is thrown if the timetables of the invoking resource do
not cover the complete interval [timeMin, timeMax).

public void setMustBeInUse(IlcInt timeMin, IlcInt timeMax)

This member function states that the invoking resource must be in use and that it cannot be idle over the interval
[timeMin, timeMax).

The resource must be closed to propagate.

An instance of IloSolver::SolverErrorException is thrown if the timetables of the invoking resource do
not cover the complete interval [timeMin, timeMax).

public void setPossibleStates(IlcInt timeMin, IlcInt timeMax, IlcAnySet states)

This member function states that the invoking resource must be in some of the given states at all times in the
interval [timeMin, timeMax). The set of possible states can be provided as an instance of IlcAnySet. That
class is documented in the Solver Reference Manual.

An instance of IloSolver::SolverErrorException is thrown if the timetables of the invoking resource do
not cover the complete interval [timeMin, timeMax).

public void setState(IlcInt timeMin, IlcInt timeMax, IlcAny state)

This member function states that the invoking resource must be in the given state at all times in the interval
[timeMin, timeMax).

An instance of IloSolver::SolverErrorException is thrown if the timetable of the invoking resource does
not cover the complete interval [timeMin, timeMax).

327

Class IlcStateResourceIterator
Definition file: ilsched/schedulerdoc.h
Include files: <ilsched/ilsched.h> and <ilsched/ilsched.h>

An instance of this class traverses the set of state resources.

An instance of this class traverses the set of timetables associated with a state resource.

See Also: IlcStateResource, IlcSchedule, IlcAnyTimetable, IlcSchedule

Constructor and Destructor Summary

public IlcStateResourceIterator(const IlcSchedule schedule)

Method Summary

public IlcBool ok() const

public IlcStateResource operator*() const

public IlcStateResourceIterator & operator++()

Constructors and Destructors

public IlcStateResourceIterator(const IlcSchedule schedule)

This constructor creates an iterator to traverse all the state resources of schedule.

Methods

public IlcBool ok() const

This member function returns IlcTrue if the current position of the iterator is a valid one. It returns IlcFalse if
all the state resources have been scanned by the iterator.

public IlcStateResource operator*() const

This operator accesses the instance of IlcStateResource located at the current position of the iterator. If the
iterator is set past the end position, this operator returns an empty handle.

public IlcStateResourceIterator & operator++()

This left-increment operator shifts the current position of the iterator.

328

Class IlcTextureCriticalityCalculator
Definition file: ilsched/texture.h
Include file: <ilsched/ilsched.h>

IlcTextureCriticalityCalculator is the handle class for IlcTextureCriticalityCalculatorI and
for its subclasses.

For more information, see Texture Measurements.

Predefined Texture Criticality Calculators

These functions return instances of IlcTextureCriticalityCalculator.

IlcTextureCriticalityCalculator IlcProbabilisticCriticalityCalculator
(IloSolver solver);

•

IlcTextureCriticalityCalculator IlcRelativeDemandCriticalityCalculator
(IloSolver solver);

•

See Also: IlcResourceTexture, IlcTextureCriticalityCalculatorI, IlcProbabilisticCriticalityCalculatorI,
IlcRelativeDemandCriticalityCalculatorI

Constructor Summary

public IlcTextureCriticalityCalculator()

public IlcTextureCriticalityCalculator(IlcTextureCriticalityCalculatorI * impl)

Method Summary

public IlcFloat calculateCriticalityGreaterThan(IlcFloat
expectedDemand, IlcFloat constraintVal,
IlcFloat expectedVariance=0.) const

public IlcFloat calculateCriticalityLessThan(IlcFloat
expectedDemand, IlcFloat constraintVal,
IlcFloat expectedVariance=0.) const

public IlcTextureCriticalityCalculatorI * getImpl() const

public void operator=(const
IlcTextureCriticalityCalculator & h)

Constructors

public IlcTextureCriticalityCalculator()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcTextureCriticalityCalculator(IlcTextureCriticalityCalculatorI * impl)

This constructor creates a handle object from a pointer to an implementation object.

329

Methods

public IlcFloat calculateCriticalityGreaterThan(IlcFloat expectedDemand, IlcFloat
constraintVal, IlcFloat expectedVariance=0.) const

This method calculates the criticality of a maximum capacity constraint of the resource at one time point. Given
the expected demand (expectedDemand), the variance (expectedVariance), and the value of the constraint
(constraintVal), for a time point, this function calculates a measure of the likelihood that the underlying set of
resource constraints represented by expectedDemand and expectedVariance will demand more than
constraintVal units of resource. The returned value must be a non-negative value.

The actual calculation depends on the semantics of the criticality calculation. See
IlcProbabilisticCriticalityCalculatorI and IlcRelativeDemandCriticalityCalculatorI for
more details.

public IlcFloat calculateCriticalityLessThan(IlcFloat expectedDemand, IlcFloat
constraintVal, IlcFloat expectedVariance=0.) const

This method calculates the criticality of a minimum capacity constraint of the resource at one time point. Given
the expected demand expectedDemand, the variance expectedVariance, and the value of the constraint
constraintVal, for a time point, this function calculates a measure of the likelihood that the underlying set of
resource constraints represented by expectedDemand and expectedVariance will demand less than
constraintVal units of resource. The returned value must be a non-negative value.

The actual calculation depends on the semantics of the criticality calculation. See
IlcProbabilisticCriticalityCalculatorI and IlcRelativeDemandCriticalityCalculatorI for
more details.

public IlcTextureCriticalityCalculatorI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public void operator=(const IlcTextureCriticalityCalculator & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

330

Class IlcTextureCriticalityCalculatorI
Definition file: ilsched/texturei.h
Include file: <ilsched/ilsched.h>

IlcTextureCriticalityCalculatorI is the abstract base implementation class for objects which calculate
the criticality of a texture measurement at a single time point. An instance of the subclass
IlcTextureCriticalityCalculatorI is used internally by IlcResourceTexture to transform the
aggregate demand (and, optionally, the aggregate variance) curves into a criticality curve.

For more information, see Texture Measurements.

See Also: IlcResourceTexture, IlcTextureCriticalityCalculator, IlcProbabilisticCriticalityCalculatorI,
IlcRelativeDemandCriticalityCalculatorI

Constructor and Destructor Summary

public IlcTextureCriticalityCalculatorI()

Method Summary

public virtual IlcFloat calculateCriticalityGreaterThan(IlcFloat expectedDemand,
IlcFloat constraintVal, IlcFloat expectedVariance) const

public virtual IlcFloat calculateCriticalityLessThan(IlcFloat expectedDemand,
IlcFloat constraintVal, IlcFloat expectedVariance) const

Constructors and Destructors

public IlcTextureCriticalityCalculatorI()

This constructor creates an instance of IlcTextureCriticalityCalculatorI. As the class is pure abstract,
this constructor should only be used automatically in the constructor of subclasses.

Methods

public virtual IlcFloat calculateCriticalityGreaterThan(IlcFloat expectedDemand,
IlcFloat constraintVal, IlcFloat expectedVariance) const

This pure virtual method calculates the criticality of a maximum capacity constraint of the resource at one time
point. For a time point, given expectedDemand and expectedVariance, and the value of the constraint,
constraintVal, this function calculates a measure of the likelihood that the underlying set of resource
constraints represented by demand and variance will demand more than constraintVal units of resource. The
returned value must be non-negative.

See IlcProbabilisticCriticalityCalculatorI and
IlcRelativeDemandCriticalityCalculatorI for more details.

public virtual IlcFloat calculateCriticalityLessThan(IlcFloat expectedDemand,

331

IlcFloat constraintVal, IlcFloat expectedVariance) const

This method calculates the criticality of a minimum capacity constraint of the resource at one time point. For a
time point, given expectedDemand and expectedVariance, and the value of the constraint constraintVal,
this function calculates a measure of the likelihood that the underlying set of resource constraints represented by
demand and variance will demand less than constraintVal units of resource. The returned value must be a
non-negative value.

See IlcProbabilisticCriticalityCalculatorI and
IlcRelativeDemandCriticalityCalculatorI for more details.

332

Class IlcTimeBoundConstraint
Definition file: ilsched/schedule.h
Include file: <ilsched/ilsched.h>

Instances of the class IlcTimeBoundConstraint are temporalconstraints. These temporal constraints
express constraints on the time interval in which an activity is to be scheduled. (Other temporal
constraints—instances of IlcPrecedenceConstraint—express precedence between activities in a
schedule.)

This class inherits from the Solver class IlcConstraint, which is documented in the Solver Reference Manual.

Instances of this class are created by these member functions:

IlcActivity::startsBefore•
IlcActivity::endsBefore•
IlcActivity::startsAt•
IlcActivity::endsAt•
IlcActivity::startsAfter•
IlcActivity::endsAfter•

For more information, see Metaconstraints, and IlcConstraint in the IBM ILOG Solver Reference Manual.

See Also: IlcActivity, IlcPrecedenceConstraint, IlcTimeBoundConstraintType

Constructor Summary

public IlcTimeBoundConstraint()

public IlcTimeBoundConstraint(IlcTimeBoundConstraintI * impl)

Method Summary

public IlcActivity getActivity() const

public IlcTimeBoundConstraintI * getImpl() const

public IlcInt getTimeBound() const

public IlcIntVar getTimeBoundVariable() const

public IlcTimeBoundConstraintType getType() const

public IlcBool hasTimeBoundVariable() const

public void operator=(const IlcTimeBoundConstraint & h)

Constructors

public IlcTimeBoundConstraint()

This constructor creates an instance which is empty, that is, one whose handle pointer is null. You must assign it
a value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IlcTimeBoundConstraint(IlcTimeBoundConstraintI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

333

Methods

public IlcActivity getActivity() const

This member function returns the activity of the invoking time-bound constraint.

public IlcTimeBoundConstraintI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IlcInt getTimeBound() const

This member function returns the time bound of the invoking time-bound constraint.

public IlcIntVar getTimeBoundVariable() const

This member function returns the time-bound variable of the invoking time-bound constraint.

public IlcTimeBoundConstraintType getType() const

This member function returns the type of the invoking time-bound constraint.

public IlcBool hasTimeBoundVariable() const

This member function returns IlcTrue if the invoking time-bound constraint has a time-bound variable.
Otherwise, it returns IlcFalse.

public void operator=(const IlcTimeBoundConstraint & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument. After execution of this operator, the invoking object and the
provided argument point to the same implementation object.

334

Class IlcTransitionCostObject
Definition file: ilsched/trancost.h
Include file: <ilsched/ilsched.h>

An instance of this class can be passed as an argument to the function
IlcUnaryResource::addNextTransitionCost or IlcUnaryResource::addPrevTransitionCost to
declare a cost to factor into a sequence constraint added to the resource. It defines a set of functions that
calculate the transition, setup, and teardown costs between resource constraints.

The transition cost is the cost to have the activity of one resource constraint as the successor to the activity of
another. The setup cost is the cost for the activity of a resource constraint to be sequenced first. The teardown
cost is the cost for the activity of a resource constraint to be sequenced last.

The class IlcTransitionCostObject is the handle class of the class IlcTransitionCostObjectI. To
define an IlcTransitionCostObject class adapted to your needs, you must encode the virtual functions
declared in the IlcTransitionCostObjectI class. For an example of this, refer to
IlcTransitionCostObjectI.

You can also use an instance of IlcTransitionTable as the argument of the function
IlcMakeTransitionCost.

For more information, see Sequence Constraint.

See Also: IlcMakeTransitionCost, IlcResourceConstraint, IlcTransitionCost, IlcTransitionCostObjectI

Constructor Summary

public IlcTransitionCostObject()

public IlcTransitionCostObject(IlcTransitionCostObjectI * impl)

Method Summary

public IlcTransitionCostObjectI * getImpl() const

public IlcInt getSetupCost(const IlcResourceConstraint srct1)
const

public IlcInt getSetupCostMax(const IlcResourceConstraint
srct1) const

public IlcInt getSetupCostMin(const IlcResourceConstraint
srct1) const

public IlcInt getTeardownCost(const IlcResourceConstraint
srct1) const

public IlcInt getTeardownCostMax(const IlcResourceConstraint
srct1) const

public IlcInt getTeardownCostMin(const IlcResourceConstraint
srct1) const

public IlcInt getTransitionCost(const IlcResourceConstraint
srct1, const IlcResourceConstraint srct2) const

public IlcInt getTransitionCostMax(const
IlcResourceConstraint srct1, const
IlcResourceConstraint srct2) const

public IlcInt

335

getTransitionCostMin(const
IlcResourceConstraint srct1, const
IlcResourceConstraint srct2) const

public IlcBool isVariable() const

public void operator=(const IlcTransitionCostObject & h)

Constructors

public IlcTransitionCostObject()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcTransitionCostObject(IlcTransitionCostObjectI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IlcTransitionCostObjectI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public IlcInt getSetupCost(const IlcResourceConstraint srct1) const

This member function returns the constant setup cost of the activity of the resource constraint srct1. The setup
cost is the cost for this activity to be first in the sequence.

public IlcInt getSetupCostMax(const IlcResourceConstraint srct1) const

This member function returns the maximal variable setup cost of the activity of the resource constraint srct1.
The setup cost is the cost for this activity to be first in the sequence.

public IlcInt getSetupCostMin(const IlcResourceConstraint srct1) const

This member function returns the minimal variable setup cost of the activity of the resource constraint srct1.
The setup cost is the cost for this activity to be first in the sequence.

public IlcInt getTeardownCost(const IlcResourceConstraint srct1) const

This member function returns the constant teardown cost of the activity of the resource constraint srct1. The
teardown cost is the cost for this activity to be last in the sequence.

public IlcInt getTeardownCostMax(const IlcResourceConstraint srct1) const

336

This member function returns the maximal variable teardown cost of the activity of the resource constraint
srct1. The teardown cost is the cost for this activity to be last in the sequence.

public IlcInt getTeardownCostMin(const IlcResourceConstraint srct1) const

This member function returns the minimal variable teardown cost of the activity of the resource constraint srct1.
The teardown cost is the cost for this activity to be last in the sequence.

public IlcInt getTransitionCost(const IlcResourceConstraint srct1, const
IlcResourceConstraint srct2) const

This member function returns the constant transition cost if the activity of the resource constraint srct1
immediately precedes the activity of the resource constraint srct2 in the sequence.

public IlcInt getTransitionCostMax(const IlcResourceConstraint srct1, const
IlcResourceConstraint srct2) const

This member function returns the maximal variable transition cost if the activity of the resource constraint srct1
immediately precedes the activity of the resource constraint srct2 in the sequence.

public IlcInt getTransitionCostMin(const IlcResourceConstraint srct1, const
IlcResourceConstraint srct2) const

This member function returns the minimal variable transition cost if the activity of the resource constraint srct1
immediately precedes the activity of the resource constraint srct2 in the sequence.

public IlcBool isVariable() const

This member function returns IlcTrue if the invoking instance of IlcTransitionCostObject is variable.
Otherwise, it returns IlcFalse.

public void operator=(const IlcTransitionCostObject & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

337

Class IlcTransitionCostObjectI
Definition file: ilsched/trancost.h
Include file: <ilsched/ilsched.h>

The class IlcTransitionCostObjectI defines a set of functions that calculate the transition, setup, and
teardown costs between resource constraints. Its handle class can be passed as an argument to the function
IlcUnaryResource::addNextTransitionCost or IlcUnaryResource::addPrevTransitionCost to
declare that it is a cost to factor into a sequence constraint added to the resource.

The transition cost is the cost to have the activity of one resource constraint as the successor to the activity of
another. The setup cost of a resource constraint is the cost for its activity to be sequenced first. The teardown
cost of a resource constraint is the cost for its activity to be sequenced last.

The transition cost can be variable or constant. By constant we mean that it only depends upon the precedence
relationship between two activities. By variable we mean that the evaluation of the transition cost depends upon
current knowledge about the other variables and constraints involved. If it is variable, the transition cost object
must define its minimal and maximal value given the current knowledge about the sequence.

To define an IlcTransitionCostObjectI subclass adapted to your needs, you have to encode the virtual
functions declared in the IlcTransitionCostObjectI class. For a constant transition cost, you have only to
redefine the virtual function IlcTransitionCostObjectI::getTransitionCost and, if needed,
IlcTransitionCostObjectI::getSetupCost and IlcTransitionCostObjectI::getTeardownCost.
For a variable transition cost, you have only to redefine the virtual functions
IlcTransitionCostObjectI::getTransitionCostMax,
IlcTransitionCostObjectI::getTransitionCostMin and, if needed,
IlcTransitionCostObjectI::getSetupCostMax, IlcTransitionCostObjectI::getSetupCostMin,
IlcTransitionCostObjectI::getTeardownCostMax, and
IlcTransitionCostObjectI::getTeardownCostMin.

See the Example which follows.

Example

Suppose you have a unary resource that represents a machine. Between the execution of two tasks on the
machine, some workers are required to perform a maintenance operation to reset the machine. You know that
this maintenance operation has a given duration (the transition time between two jobs), starts after the end of the
first task, and ends before the start of the next task.

To express this last constraint you need to be able to access the start variable of the next task. As you don't
know in advance which task will be the next of an activity, this may pose a problem. However, the variable
transition cost facility is well suited to express this constraint.

 class StartTransitionCostI : public IlcTransitionCostObjectI {
 public:
 StartTransitionCostI();
 ~StartTransitionCostI();
 virtual IlcInt getTransitionCostMax
 (const IlcResourceConstraint srct1,
 const IlcResourceConstraint srct2) const;
 virtual IlcInt getTransitionCostMin
 (const IlcResourceConstraint srct1,
 const IlcResourceConstraint srct2) const;
 virtual IlcInt getSetupCostMin
 (const IlcResourceConstraint srct1) const;
 virtual IlcInt getSetupCostMax
 (const IlcResourceConstraint srct1) const;
 virtual IlcInt getTeardownCostMin
 (const IlcResourceConstraint srct1) const;
 virtual IlcInt getTeardownCostMax

338

 (const IlcResourceConstraint srct1) const;
 };

 StartTransitionCostI::StartTransitionCostI()
 // the transition cost is variable
 :IlcTransitionCostObjectI(IlcTrue)
 {}

 StartTransitionCostI::~StartTransitionCostI() {}

 IlcInt
 StartTransitionCostI::getTransitionCostMax
 (const IlcResourceConstraint,
 const IlcResourceConstraint srct2) const {
 return srct2.getActivity().getStartMax();
 }

 IlcInt
 StartTransitionCostI::getTransitionCostMin
 (const IlcResourceConstraint,
 const IlcResourceConstraint srct2) const {
 return srct2.getActivity().getStartMin();
 }

 IlcInt
 StartTransitionCostI::getSetupCostMin
 (const IlcResourceConstraint srct1) const {
 return srct1.getActivity().getStartMin();
 }

 IlcInt
 StartTransitionCostI::getSetupCostMax
 (const IlcResourceConstraint srct1) const {
 return srct1.getActivity().getStartMax();
 }

 IlcInt
 StartTransitionCostI::getTeardownCostMin
 (const IlcResourceConstraint srct1) const {
 return srct1.getActivity().getSchedule().getTimeMax();
 }

 IlcInt
 StartTransitionCostI::getTeardownCostMax
 (const IlcResourceConstraint srct1) const {
 return srct1.getActivity().getSchedule().getTimeMax();
 }

 // Must be used during search (e.g., inside a goal)
 IloSolver solver = getSolver();
 IlcScheduler schedule(solver, 0, 1000);

 IlcUnaryResource machine(schedule);
 IlcDiscreteResource workers(schedule, 10);

 // Must be used during search (e.g., inside a goal)

 IlcActivity task1(schedule, 100);
 IlcResourceConstraint rct1 = task1.requires(machine);
 solver.add(rct1);

 // Must be used during search (e.g., inside a goal)
 machine.close();

 solver.add(machine.makeSequenceConstraint());
 IlcTransitionCostObject startObj =
 new (solver.getHeap()) StartTransitionCostI();
 machine.addNextTransitionCost(startObj);

 // Must be used during search (e.g., inside a goal)
 IlcActivity maintenance1(schedule, 20);
 solver.add(maintenance1.getStartVariable() >=
 task1.getEndVariable());

 solver.add(maintenance1.getEndVariable() <=

339

 machine.getNextTransitionCostVar(startObj, rct1));
 solver.add(maintenance1.requires(workers, 3));

For more information, see Sequence Constraint.

See Also: IlcResourceConstraint, IlcTransitionCostObject

Constructor and Destructor Summary

public IlcTransitionCostObjectI(IlcBool isVariable=IlcFalse)

Method Summary

public virtual IlcInt getSetupCost(const IlcResourceConstraint srct1) const

public virtual IlcInt getSetupCostMax(const IlcResourceConstraint srct1) const

public virtual IlcInt getSetupCostMin(const IlcResourceConstraint srct1) const

public virtual IlcInt getTeardownCost(const IlcResourceConstraint srct1) const

public virtual IlcInt getTeardownCostMax(const IlcResourceConstraint srct1) const

public virtual IlcInt getTeardownCostMin(const IlcResourceConstraint srct1) const

public virtual IlcInt getTransitionCost(const IlcResourceConstraint srct1, const
IlcResourceConstraint srct2) const

public virtual IlcInt getTransitionCostMax(const IlcResourceConstraint srct1,
const IlcResourceConstraint srct2) const

public virtual IlcInt getTransitionCostMin(const IlcResourceConstraint srct1,
const IlcResourceConstraint srct2) const

public IlcBool isVariable() const

Constructors and Destructors

public IlcTransitionCostObjectI(IlcBool isVariable=IlcFalse)

This constructor creates an instance of IlcTransitionCostObjectI. The Boolean argument isVariable
specifies whether the transition cost is or is not variable.

Methods

public virtual IlcInt getSetupCost(const IlcResourceConstraint srct1) const

This virtual member function returns the constant setup cost of the activity of the resource constraint srct1. The
setup cost is the cost for this activity to be first in the sequence. By default, it returns 0.

public virtual IlcInt getSetupCostMax(const IlcResourceConstraint srct1) const

This virtual member function returns the maximum variable setup cost of the activity of the resource constraint
srct1. The setup cost is the cost for this activity to be first in the sequence. By default, it returns 0.

public virtual IlcInt getSetupCostMin(const IlcResourceConstraint srct1) const

340

This virtual member function returns the minimum variable setup cost of the activity of the resource constraint
srct1. The setup cost is the cost for this activity to be first in the sequence. By default, it returns 0.

public virtual IlcInt getTeardownCost(const IlcResourceConstraint srct1) const

This virtual member function returns the constant teardown cost of the activity of the resource constraint srct1.
The teardown cost is the cost for this activity to be last in the sequence. By default, it returns 0.

public virtual IlcInt getTeardownCostMax(const IlcResourceConstraint srct1) const

This virtual member function returns the maximum variable teardown cost of the activity of the resource
constraint srct1. The teardown cost is the cost for this activity to be last in the sequence. By default, it returns 0.

public virtual IlcInt getTeardownCostMin(const IlcResourceConstraint srct1) const

This virtual member function returns the minimum variable teardown cost of the activity of the resource constraint
srct1. The teardown cost is the cost for this activity to be last in the sequence. By default, it returns 0.

public virtual IlcInt getTransitionCost(const IlcResourceConstraint srct1, const
IlcResourceConstraint srct2) const

This virtual member function returns the constant transition cost if the activity of resource constraint srct1
immediately precedes the activity of resource constraint srct2 in the sequence. By default, it raises an error.

public virtual IlcInt getTransitionCostMax(const IlcResourceConstraint srct1, const
IlcResourceConstraint srct2) const

This virtual member function returns the maximum variable transition cost if the activity of the resource constraint
srct1 immediately precedes the activity of the resource constraint srct2 in the sequence. By default, it raises
an error if the invoking instance is variable and returns the constant transition cost if the invoking instance is
constant.

public virtual IlcInt getTransitionCostMin(const IlcResourceConstraint srct1, const
IlcResourceConstraint srct2) const

This virtual member function returns the minimum variable transition cost if the activity of the resource constraint
srct1 immediately precedes the activity of the resource constraint srct2 in the sequence. By default, it raises
an error if the invoking instance is variable and returns the constant transition cost if the invoking instance is
constant.

public IlcBool isVariable() const

This member function returns IlcTrue if the invoking instance of IlcTransitionCostObjectI is variable.
Otherwise, it returns IlcFalse.

341

Class IlcTransitionTable
Definition file: ilsched/trancost.h
Include file: <ilsched/ilsched.h>

An instance of IlcTransitionTable is a square table of non-negative integers that defines the data for
instances of IlcTransitionCostObject or IlcTransitionTimeObject.

The transition type of an instance of IlcActivity is used as the index of a table to calculate the transition cost
or time. You can create an instance of IlcTransitionCostObject by calling the function
IlcMakeTransitionCost. You can create an instance of IlcTransitionTimeObject by calling the
function IlcMakeTransitionTime.

The table must be filled with non-negative integers. By default, it is initially filled with zeros. The table may or may
not be symmetric, that is, the transition cost may or may not be different if an activity follows or precedes another
one. If a table is declared as symmetric, the Scheduler Engine allocates only the required triangular half of the
table and only that half needs to be filled. The index of the line of the table is the transition type of the preceding
activity. The index of the column of the table is the transition type of the following activity.

Once the transition table has been associated with a transition time or a transition cost, the table is considered as
frozen; that is, it cannot be modified any more with the member function IlcTransitionTable::setValue.

For more information, see Transition Time in Scheduler Engine, Disjunctive Constraint, Transition Cost (Setup
and Teardown Costs) In Scheduler Engine, and Sequence Constraint.

See Also: IlcMakeTransitionCost, IlcMakeTransitionTime

Constructor Summary

public IlcTransitionTable()

public IlcTransitionTable(IlcTransitionTableI * impl)

public IlcTransitionTable(IlcSchedule schedule, IlcInt size, IlcBool
isSymmetric=IlcTrue)

public IlcTransitionTable(IlcSchedule schedule, IlcInt size, IlcInt ** _table)

Method Summary

public IlcTransitionTableI * getImpl() const

public const char * getName() const

public IlcAny getObject() const

public IlcSchedule getSchedule() const

public IlcInt getSize() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public IlcInt getValue(IlcInt line, IlcInt column) const

public IlcBool operator!=(const IlcTransitionTable & table) const

public void operator=(const IlcTransitionTable & h)

public IlcBool operator==(const IlcTransitionTable & table) const

public void setName(const char * name) const

public void setObject(IlcAny object) const

342

public void setValue(IlcInt line, IlcInt column, IlcInt value)

Constructors

public IlcTransitionTable()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcTransitionTable(IlcTransitionTableI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcTransitionTable(IlcSchedule schedule, IlcInt size, IlcBool
isSymmetric=IlcTrue)

This constructor creates a new instance of IlcTransitionTable. The size argument, which must be a
strictly non-negative integer, gives the number of lines and columns of the transition table. The table is initially
filled with zeroes. The Boolean argument isSymmetric expresses the fact that the table is symmetric. If
isSymmetric is true, only half of the table needs to be defined.

public IlcTransitionTable(IlcSchedule schedule, IlcInt size, IlcInt ** _table)

This constructor creates a new instance of IlcTransitionTable. The size argument, which must be a
strictly non-negative integer, gives the number of lines and columns of the transition table. The table is filled with
the contents of the _table argument. The _table argument must fit size and be filled with non-negative
integers.

Methods

public IlcTransitionTableI * getImpl() const

This constructor creates an object by copying another one. This constructor creates an object by copying another
one. This member function returns a pointer to the implementation object of the invoking handle.

public const char * getName() const

This member function returns the name of the invoking object.

public IlcAny getObject() const

This member function returns a pointer to the external object associated with the invoking object, if there is such
an association. It returns 0 (zero) otherwise.

public IlcSchedule getSchedule() const

This member function returns the schedule to which the invoking transition table belongs. Each transition table
belongs to a unique schedule, an instance of IlcSchedule.

public IlcInt getSize() const

This member function returns the size of the invoking transition table.

public IloSolver getSolver() const

343

This member function returns an instance of IloSolver associated with the invoking object.

public IloSolverI * getSolverI() const

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

public IlcInt getValue(IlcInt line, IlcInt column) const

This member function returns the positive integer of the invoking transition table for the line line and for the
column column. The arguments line and column must be non-negative integers strictly smaller than the size
of the table. The argument line is the transition type of the preceding activity. The argument column is the
transition type of the following activity.

public IlcBool operator!=(const IlcTransitionTable & table) const

This operator returns IlcTrue if and only if table does not refer to the same implementation object as the
invoking transition table.

public void operator=(const IlcTransitionTable & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public IlcBool operator==(const IlcTransitionTable & table) const

This operator returns IlcTrue if and only if table refers to the same implementation object as the invoking
transition table.

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

public void setObject(IlcAny object) const

This member function establishes a link between the invoking object and an external object of which the invoking
object might be a data member.

public void setValue(IlcInt line, IlcInt column, IlcInt value)

This member function sets the argument value as the value of the invoking transition table for the arguments
line and column. The arguments line and column must be non-negative integers, strictly smaller than the
size of the table. The argument value must be a non-negative integer. The argument line is the transition type
of the preceding activity. The argument column is the transition type of the following activity.

344

Class IlcTransitionTimeObject
Definition file: ilsched/schedule.h
Include file: <ilsched/ilsched.h>

An instance of the class IlcTransitionTimeObject can be passed to the constructors of the classes
IlcUnaryResource and IlcStateResource. It then defines which transition time function will be used for the
resource being constructed.

The simplest way to define a transition time object is to use the macro IlcTransitionTime.

A more general way to define a transition time object is to define a new class of transition time objects. An
instance of IlcTransitionTimeObject uses the virtual member function
IlcTransitionTimeObjectI::getTransitionTime to define a transition time function. For an example of
this, refer to IlcTransitionTimeObjectI.

See Also: IlcMakeTransitionTime, IlcStateResource, IlcTransitionTime, IlcTransitionTimeObjectI,
IlcUnaryResource

Constructor Summary

public IlcTransitionTimeObject(const IlcTransitionTimeObject & ttobj)

public IlcTransitionTimeObject(IlcTransitionTimeObjectI * impl)

Method Summary

public IlcTransitionTimeObjectI * getImpl() const

public void operator=(const IlcTransitionTimeObject &
ttobj)

Constructors

public IlcTransitionTimeObject(const IlcTransitionTimeObject & ttobj)

This copy constructor creates a transition time object by copying another one. After execution of this constructor,
both the newly created object and ttobj point to the same implementation object. C++ relies on this constructor
when you pass a transition time object as an argument to a function.

public IlcTransitionTimeObject(IlcTransitionTimeObjectI * impl)

This constructor creates an instance of the handle class IlcTransitionTimeObject from the pointer to an
instance of its implementation class IlcTransitionTimeObjectI.

Methods

public IlcTransitionTimeObjectI * getImpl() const

This member function returns a pointer to the implementation object associated with the invoking transition time
object.

345

public void operator=(const IlcTransitionTimeObject & ttobj)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the argument ttobj. After the execution of this operator, the invoking object and the
ttobj object both point to the same implementation object. A transition time object must be assigned before it
can be used; this assignment operator is useful for that purpose.

346

Class IlcTransitionTimeObjectI
Definition file: ilsched/schedule.h
Include file: <ilsched/ilsched.h>

The class IlcTransitionTimeObjectI defines a set of functions that calculate the transition time between
resource constraints.

To define an IlcTransitionTimeObjectI class adapted to your needs, you have to encode the virtual
functions declared in the IlcTransitionTimeObjectI class.

See Also: IlcMakeTransitionTime, IlcTransitionTimeObject

Method Summary

public virtual IlcInt getTransitionTime(const IlcResourceConstraint srct1, const
IlcResourceConstraint srct2) const

Methods

public virtual IlcInt getTransitionTime(const IlcResourceConstraint srct1, const
IlcResourceConstraint srct2) const

This virtual member function returns the transition time if the activity of resource constraint rct1 immediately
precedes the activity of resource constraint rct2 in the sequence. By default, it raises an error.

Example

To define an IlcTransitionTimeObjectI subclass adapted to your needs, you have to encode the virtual
functions declared in the IlcTransitionTimeObjectI class. To do so, you must define a subclass of the
implementation class IlcTransitionTimeObjectI. In the subclass, you must then redefine the virtual
member function getTransitionTime.

 class TransTimeObject: public IlcTransitionTimeObjectI {
 private:
 IlcInt _distance;
 public:
 TransTimeObject(IlcInt distance);
 IlcInt getTransitionTime(const IlcResourceConstraint rct1,
 const IlcResourceConstraint rct2)const;
 };

 TransTimeObject::TransTimeObject(IlcInt distance)
 :_distance(distance)
 {}

 IlcInt
 TransTimeObject::getTransitionTime
 (const IlcResourceConstraint,
 const IlcResourceConstraint) const
 {
 return _distance;
 }

 IlcTransitionTimeObject myTransTimeObject(IloSolver s, *
 IlcInt distance) {
 return new (s.getImpl()) TransTimeObject(distance);
 }

347

Now you can use this last function to define the transition time of a resource, like this:

 IlcUnaryResource resource(schedule,
 myTransitionTimeObject(solver, 2));

348

Class IlcUnaryResource
Definition file: ilsched/unary.h
Include file: <ilsched/ilsched.h>

An instance of the class IlcUnaryResource represents a discrete resource with capacity one.

As with discrete resources, there are two methods to take into account the constraints concerning the
requirement of a unary resource. For reasons of efficiency, both methods specialize the methods of discrete
resources.

The first method allows capacity to vary over time: at any given time, the resource may or may not be in
use.

•

The second method deals only with requiring activities: it consists of posting a global, disjunctive
constraint to insure that the time intervals over which two activities require the unary resource cannot
overlap in time. No timetable needs to be created if this method is used.

•

In fact, that second method automatically updates the earliest and latest start and end times of activities by
means of that posted global, disjunctive constraint. When using the second method, you can increase the level of
propagation in a similar way as for discrete resources with the member function
IlcDiscreteResource::setEdgeFinder.

The second method (of dealing only with requiring activities) allows you to define transitiontimes between any
two activities that require the same unary resource. Given two activities A1 and A2, the transition time between
A1 and A2 is an amount of time that must elapse between the end of A1 and the beginning of A2 when A1
precedes A2. The member function IlcResource::getTransitionTime returns the transition time between two
activities that require the resource under consideration (that is, the invoking resource). See Transition Time in
Scheduler Engine.

Sequence Constraints

Since a unary resource can only process one activity at a time, all activities requiring the same unary resource
must be chronologically ordered to find a solution. As a result, in any solution to a problem that includes a unary
resource, each unary resource defines a directed path through all the activities requiring it.

The nodes of such a path correspond to resource constraints of the time extent IlcFromStartToEnd. The links
between the resource constraints can hold transition costs. See IlcTransitionCostObject for more details.

The path has, for its first node, a virtual node before any activities. The link between this first node and the first
activity on the resource holds the setup cost. This first activity is called the setup activity.

The path also has, for its last node, a virtual node after all activities. The link between this last node and the last
activity on the resource holds the teardown cost. This last activity is called the teardown activity.

Because the path has a directed cost, there are two possible orientations for calculating a transition cost:
between a node and the set of its possible successors or between a node and the set of its possible
predecessors.

In first case, the variable cost of a node is calculated between the virtual setup node and the set of possible setup
activities, and between an activity and the set of its possible following activities. There is no teardown cost.

In the second case, the variable cost of a node is calculated between an activity and the set of its possible
preceding activities, and between the virtual teardown node and the set of possible teardown activities. There is

349

no setup cost.

Printing or Displaying Unary Resources

The printed representation of an instance of the class IlcUnaryResource consists of its name followed its
capacity, which is 1, enclosed in brackets.

If the Solver trace is active and the resource is not named, the string "IlcUnaryResource" is followed by the
address of the implementation object. The address will be enclosed in parentheses.

For more information, see the concepts Disjunctive Constraint, Edge Finder, Ranking , Sequence Constraint,
Timetable, Transition Cost (Setup and Teardown Costs) In Scheduler Engine, and Transition Time in Scheduler
Engine.

See Also: IlcDiscreteResource, IlcIntTimetable, IlcRank, IlcResource, IlcTransitionCostObject,
IlcUnaryResourceIterator

Constructor Summary

public IlcUnaryResource()

public IlcUnaryResource(IlcUnaryResourceI * impl)

public IlcUnaryResource(IlcSchedule schedule, IlcBool disjunctive=IlcTrue)

public IlcUnaryResource(IlcSchedule schedule, IlcTransitionTimeObject ttobj,
IlcBool disjunctive=IlcTrue)

Method Summary

public IlcUnaryResourceI * getImpl() const

public IlcConstraint getSequenceConstraint() const

public IlcResourceConstraint getSetupRC() const

public IlcResourceConstraint getTeardownRC() const

public IlcResourceConstraint getVirtualNodeRC() const

public IlcBool hasSequenceConstraint() const

public IlcBool hasSetupRC() const

public IlcBool hasTeardownRC() const

public IlcBool isRanked() const

public IlcBool isSequenced() const

public void operator=(const IlcUnaryResource & h)

Inherited Methods from IlcDiscreteResource

getCapacity, getCapacityMax, getCapacityMaxMax, getCapacityMaxMin, getCapacityMin,
getCapacityMinMax, getCapacityMinMin, getGlobalSlack, getImpl, getLocalSlack,
getTypeTimetableConstraint, hasTypeTimetableConstraint, makeDisjunctiveConstraint,
makeTypeTimetableConstraint, operator=, setCapacityMax, setCapacityMin,
setEdgeFinder, setPrecedencePropagation, setTimetablePropagation,
storeSufficientDirectSuccessors

Inherited Methods from IlcCapResource

getImpl, getMaxTextureMeasurement, getMinTextureMeasurement, getTimetable,
getTimetable, hasInitialOccupation, hasMaxTextureMeasurement,
hasMinTextureMeasurement, incrDurableRequirement, incrDurableRequirement,
isRedundantResource, makeBalanceConstraint, makeMaxTextureMeasurement,
makeMinTextureMeasurement, makeTimetableConstraint, makeTimetableConstraint,

350

makeTimetableConstraint, operator=, setInitialOccupation, setInitialOccupation,
unsetInitialOccupation

Inherited Methods from IlcResource

close, getCalendar, getDisjunctiveConstraint, getDurableSchedule, getImpl,
getLastRankedFirstRC, getLastRankedLastRC, getLastSurelyContributingRankedFirstRC,
getLastSurelyContributingRankedLastRC, getName, getObject,
getOldLastRankedFirstRC, getOldLastRankedLastRC, getPrecedenceGraphConstraint,
getSchedule, getSolver, getSolverI, getTimetableConstraint, getTransitionTime,
hasCalendar, hasDisjunctiveConstraint, hasLightPrecedenceGraphConstraint,
hasPrecedenceGraphConstraint, hasPrecedenceInfo, hasRankInfo,
hasTimetableConstraint, isCapacityResource, isClosed, isContinuousReservoir,
isDiscreteEnergy, isDiscreteResource, isDurable, isReservoir, isStateResource,
isTransitionTimeSuspended, isUnaryResource, makeFunctionalConstraint,
makeIntegralConstraint, makeLightPrecedenceGraphConstraint,
makePrecedenceGraphConstraint, operator!=, operator=, operator==, setCalendar,
setName, setObject, setTransitionTimeObject, setTransitionTimeSuspended,
whenContribution, whenDirectPredecessors, whenDirectSuccessors, whenNext,
whenPossibleNext, whenPossiblePrevious, whenPredecessors, whenPrevious,
whenRankedFirstRC, whenRankedLastRC, whenSuccessors

Constructors

public IlcUnaryResource()

This constructor creates an instance which is empty, that is, one whose handle pointer is null. You must assign it
a value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IlcUnaryResource(IlcUnaryResourceI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IlcUnaryResource(IlcSchedule schedule, IlcBool disjunctive=IlcTrue)

This constructor creates a new instance of IlcUnaryResource and adds it to the set of resources managed in
the given schedule. The capacity of the resource is 1 (one). The argument disjunctive indicates whether
the disjunctive constraint should be posted.

public IlcUnaryResource(IlcSchedule schedule, IlcTransitionTimeObject ttobj,
IlcBool disjunctive=IlcTrue)

This constructor creates a new instance of IlcUnaryResource and adds it to the set of resources managed in
the given schedule. The capacity of the resource is 1 (one). The argument ttobj indicates which transition
time function will be used for the invoking resource. The argument disjunctive indicates whether the
disjunctive constraint should be posted.

Transition times are taken into account when the disjunctive constraint or the type timetable constraint is posted.
If both constraints are posted, transition times will be taken into account only by the disjunctive constraint.

If the argument ttobj has not been built with an instance of IlcTransitionTable, the type timetable
constraint will be unable to take transition times into account. See Transition Time in Scheduler Engine and Type
Timetable Constraint for more information.

351

Methods

public IlcUnaryResourceI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IlcConstraint getSequenceConstraint() const

This member function returns the sequence constraint attached to the resource, if it exists.

public IlcResourceConstraint getSetupRC() const

This member function returns the resource constraint required by the setup activity of the invoking resource. This
member function should be called only if some rank information is available on the resource (see member
function IlcResource::hasRankInfo).

public IlcResourceConstraint getTeardownRC() const

This member function returns the resource constraint required by the teardown activity of the invoking resource.
This member function should be called only if some rank information is available on the resource (see member
function IlcResource::hasRankInfo).

public IlcResourceConstraint getVirtualNodeRC() const

This member function returns the sequence virtual node of the invoking unary resource. The sequence virtual
node of a unary resource is an automatically created resource constraint that do not affect the availability of the
resource and that is used in the sequence goals and selectors to represent the virtual initial (in case of a
chronological sequence goal like IlcSequence) or final (in case of an anti-chronological sequence goal like
IlcSequenceBackward) resource constraint in the sequence of resource constraints of the unary resource .

public IlcBool hasSequenceConstraint() const

This member function returns IlcTrue if a sequence constraint is attached on the invoking resource. Otherwise
it returns IlcFalse.

public IlcBool hasSetupRC() const

This member function returns IlcTrue if the setup activity of invoking resource is known. Otherwise it returns
IlcFalse. This member function should be called only if some rank information is available on the resource
(see member function IlcResource::hasRankInfo).

public IlcBool hasTeardownRC() const

This member function returns IlcTrue if the invoking resource has a teardown activity. Otherwise it returns
IlcFalse. This member function should be called only if some rank information is available on the resource
(see member function IlcResource::hasRankInfo).

public IlcBool isRanked() const

352

This member function returns IlcTrue if all resource constraints defined on the invoking resource have been
ranked. Otherwise, it returns IlcFalse. This member function should be called only if some rank information is
available on the resource (see member function IlcResource::hasRankInfo).

public IlcBool isSequenced() const

This member function returns IlcTrue if the invoking resource is sequenced. That is, if each visited activity has
a predecessor (or is the setup activity) and a successor (or is the teardown activity). Otherwise it returns
IlcFalse.

public void operator=(const IlcUnaryResource & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument. After execution of this operator, the invoking object and the
provided argument point to the same implementation object.

353

Class IlcUnaryResourceIterator
Definition file: ilsched/schedulerdoc.h
Include file: <ilsched/ilsched.h>

An instance of this class traverses the set of unary resources.

See Also: IlcUnaryResource, IlcSchedule

Constructor and Destructor Summary

public IlcUnaryResourceIterator(const IlcSchedule schedule)

Method Summary

public IlcBool ok() const

public IlcUnaryResource operator*() const

public IlcUnaryResourceIterator & operator++()

Constructors and Destructors

public IlcUnaryResourceIterator(const IlcSchedule schedule)

This constructor creates an iterator to traverse all the unary resources of schedule.

Methods

public IlcBool ok() const

This member function returns IlcTrue if the current position of the iterator is a valid one. It returns IlcFalse if
all the unary resources have been scanned by the iterator.

public IlcUnaryResource operator*() const

This operator accesses the instance of IlcUnaryResource located at the current position of the iterator. If the
iterator is set past the end position, this operator returns an empty handle.

public IlcUnaryResourceIterator & operator++()

This left-increment operator shifts the current position of the iterator.

354

Class IlcVariableSlopeShape
Definition file: ilsched/shaperct.h
Include file: <ilsched/ilsched.h>

An instance of IlcVariableSlopeShape holds a description of a shape with variable slope.

See Also: IlcResourceConstraint

Constructor Summary

public IlcVariableSlopeShape()

public IlcVariableSlopeShape(IlcShapeI * impl)

public IlcVariableSlopeShape(const IlcShape & shape)

Method Summary

public IlcShapeI * getImpl() const

public IlcFloatVar getSlopeVariable() const

public void operator=(const IlcVariableSlopeShape & h)

Inherited Methods from IlcShape

getImpl, getName, getObject, getResourceConstraint, getSolver, getSolverI,
isVariableSlopeShape, operator=, setName, setObject

Constructors

public IlcVariableSlopeShape()

This constructor creates an instance which is empty, that is, one whose handle pointer is null. You must assign it
a value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IlcVariableSlopeShape(IlcShapeI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IlcVariableSlopeShape(const IlcShape & shape)

This copy-constructor provides a safe down-cast of a generic instance of IlcShape into an instance of
IlcVariableSlopeShape. In debug mode, an assertion failure will be raised if the IlcShape is not an
instance of IlcVariableSlopeShape.

Methods

public IlcShapeI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

355

public IlcFloatVar getSlopeVariable() const

This member function returns the variable parameterizing the slope of the shape. This parameter is supplied at
construction time, when invoking IlcResourceConstraint::makeVariableSlopeShape.

See Also: IlcResourceConstraint

public void operator=(const IlcVariableSlopeShape & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument. After execution of this operator, the invoking object and the
provided argument point to the same implementation object.

356

Class IlcWorkServer
Definition file: ilsched/workserv.h
Include file: <ilsched/workserv.h>

This class offers facilities for writing multi-threaded applications. It allows you to create a specified number of
threads and then to execute different pieces of code on these threads asynchronously. Each thread is associated
with a unique environment that is an instance of IloEnv; the code executed by each thread is a Solver goal.

Upon request, the workserver object provides you with the environment or solver of a thread waiting for work. An
instance of IloGoal can be constructed in the environment. It can then be extracted to the solver of the
corresponding thread and executed on the thread.

For more information, see Durability.

See Also: IlcGetThreadId

Constructor Summary

public IlcWorkServer()

public IlcWorkServer(IlcBaseAgentServerI * impl)

public IlcWorkServer(const IlcScheduler sched0, IlcInt nbOfThreads, const char *
prefix=0)

Method Summary

public void end()

public IloEnv getIdleEnv()

public IloSolver getIdleSolver()

public IlcBaseAgentServerI * getImpl() const

public void launch(IloGoal goal)

public void operator=(const IlcWorkServer & h)

Constructors

public IlcWorkServer()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcWorkServer(IlcBaseAgentServerI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcWorkServer(const IlcScheduler sched0, IlcInt nbOfThreads, const char *
prefix=0)

This constructor creates a work server that starts nbOfThreads worker threads. Each worker thread has a
different environment and waits to receive work. If the number of threads is 0, then no worker thread is created

357

and further calls to the member function launch of this IlcWorkServer will be treated sequentially.

The created work server will be used to solve solver goals that use the durable resources of the schedule
sched0. Note that sched0 must be a durable and closed schedule. If sched0 is not a durable schedule or is not
closed, any attempt to launch a goal on this work server will raise an error.

The argument prefix serves as a base for creating names for the output streams of each thread: the first
thread will output in prefix0.out, the second in prefix1.out, etc. If prefix is 0, then the default output
stream is considered.

Note

An application containing a workserver object can be compiled as a single threaded application. In this case,
the actual value of the parameter nbOfThreads is ignored and is considered to be zero.

Methods

public void end()

This member function waits for all worker threads to finish their work, then stops them and calls end() on each
worker's environment.

public IloEnv getIdleEnv()

This member function returns the environment associated with a thread that is waiting for work. If there is no
such thread, this call may block while waiting for a free worker.

public IloSolver getIdleSolver()

This member function returns the solver associated with a thread that is waiting for work. If there is no such
thread, this call may block while waiting for a free worker.

public IlcBaseAgentServerI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public void launch(IloGoal goal)

The argument goal must be a solver goal constructed on the same environment as the solver obtained by a
previous call to getIdleSolver. The waiting worker whose solver was returned by the previous call at
getIdleSolver starts working by extracting and executing the goal. Calls to getIdleSolver and launch
must be interleaved. At the end of the execution of the goal, the memory allocated on the idle solver is collected.

Example

Let us consider the very simple scheduling problem that consists of creating and scheduling an activity which
requires a given durable resource. Suppose that ten instances of this problem are to be solved, each instance
characterized by the particular resource it needs. The inherent parallelism of this application can by exploited by
solving different instances on different threads.

358

The following Solver goal defines and solves an instance of the scheduling problem.

#include <ilsched/iloscheduler.h>
#include <ilsched/workserv.h>

 ILCGOAL1(ProblemIlc,
 IlcDiscreteResource, resource) {
 IloSolver solver = getSolver();
 IlcSchedule schedule(solver, 0, 365);
 IlcActivity activity(scheduler, 10);
 scheduler.lock(1, resource);
 solver.add(activity.requires(resource, 3));
 solver.startNewSearch(IlcSetTimes(schedule));
 solver.next();
 schedule.unlock(1, resource);
 solver.endSearch();
 return 0;
 }

 ILOCPGOALWRAPPER2(Problem, solver,
 IlcScheduler, durableSched,
 IloDiscreteResource, resource) {
 return ProblemIlc(solver,
 durableSched.getDiscreteResource(resource));
 }

 int main(){

 // Creating the durable resources in a model:
 IloEnv env0;
 IloModel model0(env0);
 const IloInt nbOfResources = 2;
 IloDiscreteResource resources[nbOfResources];
 for (IloInt i=0; i < nbOfResources; i++) {
 resources[i] = IloDiscreteResource(env0, 7);
 model0.add(resources[i]);
 }

 // Creating the durable scheduler:
 IloSolver solver0(env0);
 IlcScheduler scheduler0(solver0);
 scheduler0.setDurable();
 solver0.extract(model0);
 scheduler0.close();

 // Creating the worker threads:
 IlcWorkServer server(scheduler0, 3);

 // Solving ten instances:
 for (IloInt k=0; k<10; k++){
 IloInt resourceIdx = k % nbOfResources;

 // Getting the solver of a waiting worker thread:
 IloEnv env = server.getIdleEnv();

 // Creating the problem instance:
 IloGoal instance = Problem(env,
 scheduler0,
 resources[resourceIdx]);

 // Solving it on the corresponding thread:
 server.launch(instance);
 }

 // Stopping all worker threads:
 server.end();
 env0.end();
 return 0;
 }

public void operator=(const IlcWorkServer & h)

359

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

360

Class IloActivity
Definition file: ilsched/iloactivity.h
Include file: <ilsched/iloscheduler.h>

An instance of IloActivity allows modeling tasks in Scheduler. The properties of an instance of
IloActivity can be divided into three categories: time interval, requirement of resources, and compliance with
calendars (for example, the ability to be suspended by breaks).

This class inherits from the IBM® ILOG® Concert Technology class IloExtractable. That class is
documented in the IBM ILOG Concert Technology Reference Manual.

Activity as a Time Interval

Several Concert Technology numerical variables define the underlying time interval of an activity. These
variables are the start and end variables, which are the bounds of the time interval, and the processing time
variable, which is the quantity of time for which the activity must be processed to achieve its execution according
to calendar definition. Scheduler allows creating constraints on the time interval in a natural way.

A time-bound constraint enforces limits on the start or end variables of the time interval. The variable must be
greater than, less than, or equal to a numerical constant or variable. The time-bound constraints startsAfter
and endsBefore allow managing release dates and due dates on activities.

A temporal constraint synchronizes the execution of two activities. More precisely, the start or end variable of the
preceding activity must be less than or equal to the start or end variable of the following activity, with a given
delay. The delay is either a numerical constant or variable. For example, the temporal constraint
startsAfterEnd is used to enforce that the invoking activity follows another activity.

For example:

 IloEnv env;
 IloModel m(env);
 IloActivity act1(env, 5);
 IloActivity act2(env, 8);
 IloNumVar delay(env, -6, 10);
 m.add(act1.startsAfterEnd(act2, delay);
 m.add(act1.startsAfter(6));
 IloNumVar duedate(env, 45, 60);
 m.add(act2.endsBefore(duedate));

For more information, see Temporal Relations.

Activity as a Resource Requirement

A resource constraint enforces the fact that on a certain time interval a resource is used to process the activity.
The class IloActivity offers a set of member functions to create a resource constraint.

The default member function to declare a resource constraint on a discrete resource or a state resource is
IloActivity::requires. It means that the activity will reserve the resource from its start time to its end time.

The default member functions to declare a resource constraint on a reservoir are IloActivity::produces,
which is used to fill the reservoir at the end of the activity, and IloActivity::consumes, used to empty the
reservoir at the start of the activity.

For example:

 IloEnv env;
 IloModel m(env);
 IloActivity act(env, 5);
 IloDiscreteResource d(env, 12);
 IloReservoir r(env, 200);

361

 IloNumVar c(env, 3, 5);
 m.add(act.requires(d, c));
 m.add(act.consumes(r, 25));

Activity and Calendars

Resources and resource constraints can be associated with a calendar. A calendar allows expression of complex
behavior such as suspension due to breaks, disjunctions due to shifts, or duration increase due to efficiency. For
more information, see Calendars.

An activity that allows suspension because of breaks is a breakable activity. An activity that takes into account
the efficiency function of calendars is a useEfficiency activity.

The behavior of an activity with respect to the calendars must be declared by the user. It allows the solver to
partition the processing time of an activity between its start and end times.

The class IloActivity provides a full set of member functions associated with parameter classes that manage
the behavior of an activity with respect to calendars.

Functional and Integral Constraints and External Variables

Functional and integral constraints are of the form yrct = f(xrct) or yrct = sum{startrct -> endrct}f(t).dt and hold for
every resource constraint rct on a given resource (see Functional and Integral Constraints on Resources.
External variables are useful when xrct or yrct are not already associated with the resource constraint (start, end,
capacity demand, and so forth). In such cases, member functions of IloActivity allow designating IBM®
ILOG® Concert Technology variables as external variables, and using these variables in functional and integral
constraints (see the enumeration IloSchedVariable).

Parameter Classes

Instances of IloActivityConstraintsParam are used to choose what kind of constraints on activities should
be taken into account.

Instances of IloActivityBasicParam are used to specify basic behavior of the activity regarding calendars,
such as the activity is breakable, the activity use efficiency, and some general parameters on the breakable
activity such as the maximum duration of breaks.

Instances of IloActivityBreakParam are used to specify the way breakable activities should be executed;
for example, the type of breaks, the durations of disjunctive breaks, and the possibility to suspend the activity at
its start or its end.

Instances of IloActivityShiftParam are used to specify the way activities should be behave in case of
shifts; for instance, some shifts can be ignored regarding their type, or their duration.

Instances of IloActivityOverlapParam are used to specify in which conditions an activity can overlap
breaks, for example, if the activity can start or end in a break.

Refer to Scheduler Overview for more information on how to share parameters among resources, and how the
direct modification of parameters through the resource API may affect them.

For more information, see Calendars, Functional and Integral Constraints on Resources, Temporal Relations,
Transition Costs, and Transition Times.

See Also: IloActivityBasicParam, IloActivityBreakParam, IloActivityShiftParam, IloActivityConstraintsParam,
IloActivityOverlapParam, IloSchedulerSolution, IloResourceConstraint, IloTransitionParam,
IloPrecedenceConstraint, IloTimeBoundConstraint, IloSchedVariable

Constructor Summary

public IloActivity()

public IloActivity(IloActivityI * impl)

362

public IloActivity(const IloEnv env, IloNum processingTime, const char * name)

public IloActivity(const IloEnv env, IloNum processingTime, IloInt
transitionType=0, const char * name=0)

public IloActivity(const IloEnv env, const IloNumVar processingTimeVariable,
IloInt transitionType=0, const char * name=0)

Method Summary

public void addDisjunctiveBreakType(const IloIntSet types)
const

public void addDisjunctiveBreakType(IloInt type) const

public void addEndBreakOverlapType(const IloIntSet types)
const

public void addEndBreakOverlapType(IloInt type) const

public void addIgnoredBreakType(const IloIntSet types) const

public void addIgnoredBreakType(IloInt type) const

public void addIgnoredShiftType(const IloIntSet types) const

public void addIgnoredShiftType(IloInt type) const

public void addStartBreakOverlapType(const IloIntSet types)
const

public void addStartBreakOverlapType(IloInt type) const

public IloBool areCoverConstraintsIgnored() const

public IloBool arePrecedenceConstraintsIgnored() const

public IloBool areResourceConstraintsIgnored() const

public IloBool areTimeBoundConstraintsIgnored() const

public IloBool canBeSuspendedAtEnd() const

public IloBool canBeSuspendedAtStart() const

public void clearDisjunctiveBreakType() const

public void clearEndBreakOverlapType() const

public void clearIgnoredBreakType() const

public void clearIgnoredShiftType() const

public void clearStartBreakOverlapType() const

public IloAltResConstraint consumes(const IloAltResSet, const IloNumVar
capVar) const

public IloAltResConstraint consumes(const IloAltResSet, IloNum cap=1) const

public IloResourceConstraint consumes(const IloCapResource, const IloNumVar
capVar) const

public IloResourceConstraint consumes(const IloCapResource, IloNum cap=1) const

public IloCoverConstraint covers() const

public IloTimeBoundConstraint endsAfter(const IloNumVar time) const

public IloTimeBoundConstraint endsAfter(IloNum time) const

public IloPrecedenceConstraint endsAfterEnd(const IloActivity act, const
IloNumVar delay) const

public IloPrecedenceConstraint endsAfterEnd(const IloActivity act, IloNum
delay=0) const

public IloPrecedenceConstraint

363

endsAfterStart(const IloActivity act, const
IloNumVar delay) const

public IloPrecedenceConstraint endsAfterStart(const IloActivity act, IloNum
delay=0) const

public IloTimeBoundConstraint endsAt(const IloNumVar time) const

public IloTimeBoundConstraint endsAt(IloNum time) const

public IloPrecedenceConstraint endsAtEnd(const IloActivity act, const IloNumVar
delay) const

public IloPrecedenceConstraint endsAtEnd(const IloActivity act, IloNum delay=0)
const

public IloPrecedenceConstraint endsAtStart(const IloActivity act, const IloNumVar
delay) const

public IloPrecedenceConstraint endsAtStart(const IloActivity act, IloNum delay=0)
const

public IloTimeBoundConstraint endsBefore(const IloNumVar time) const

public IloTimeBoundConstraint endsBefore(IloNum time) const

public IloIntExprArg getDurationExpr() const

public IloNum getDurationMax() const

public IloNum getDurationMaxNormalBreaks() const

public IloNum getDurationMin() const

public IloNum getDurationMinNormalBreaks() const

public IloNum getEndBreakOverlapMax() const

public IloNum getEndBreakOverlapMin() const

public IloIntExprArg getEndExpr() const

public IloNum getEndMax() const

public IloNum getEndMin() const

public IloNum getExecutionDurationMin() const

public IloNum getExternalValue() const

public IloNumVar getExternalVariable() const

public IloActivityI * getImpl() const

public IloNum getProcessingTimeMax() const

public IloNum getProcessingTimeMin() const

public IloNumVar getProcessingTimeVariable() const

public IloNum getStartBreakOverlapMax() const

public IloNum getStartBreakOverlapMin() const

public IloIntExprArg getStartExpr() const

public IloNum getStartMax() const

public IloNum getStartMin() const

public IloInt getTransitionType() const

public IloBool hasDisjunctiveBreakType() const

public IloBool hasEndBreakOverlapType() const

public IloBool hasIgnoredBreakType() const

public IloBool hasIgnoredShiftType() const

364

public IloBool hasStartBreakOverlapType() const

public void ignoreBreakDisjunctivity(IloBool ignored=IloTrue)
const

public void ignoreCoverConstraints(IloBool ignored=IloTrue)
const

public void ignorePrecedenceConstraints(IloBool
ignored=IloTrue) const

public void ignoreResourceConstraints(IloBool ignored=IloTrue)
const

public void ignoreTimeBoundConstraints(IloBool
ignored=IloTrue) const

public IloBool isBreakable() const

public IloBool isBreakDisjunctivityIgnored() const

public IloBool isDisjunctiveBreakType(IloInt type) const

public IloBool isEndBreakOverlapType(IloInt type) const

public IloBool isIgnoredBreakType(IloInt type) const

public IloBool isIgnoredShiftType(IloInt type) const

public IloBool isStartBreakOverlapType(IloInt type) const

public IloAltResConstraint produces(const IloAltResSet, const IloNumVar
capVar) const

public IloAltResConstraint produces(const IloAltResSet, IloNum cap=1) const

public IloResourceConstraint produces(const IloContinuousReservoir, const
IloNumVar capVar) const

public IloResourceConstraint produces(const IloContinuousReservoir, IloNum
cap=1) const

public IloResourceConstraint produces(const IloReservoir, const IloNumVar
capVar) const

public IloResourceConstraint produces(const IloReservoir, IloNum cap=1) const

public IloAltResConstraint provides(const IloAltResSet, const IloNumVar
capVar, IloTimeExtent extent=IloFromStartToEnd,
IloBool outward=IloFalse) const

public IloAltResConstraint provides(const IloAltResSet, IloNum cap=1,
IloTimeExtent extent=IloFromStartToEnd, IloBool
outward=IloFalse) const

public IloResourceConstraint provides(const IloReservoir, const IloNumVar
capVar, IloTimeExtent extent=IloFromStartToEnd,
IloBool outward=IloFalse) const

public IloResourceConstraint provides(const IloReservoir, IloNum cap=1,
IloTimeExtent extent=IloFromStartToEnd, IloBool
outward=IloFalse) const

public void removeDisjunctiveBreakType(const IloIntSet types)
const

public void removeDisjunctiveBreakType(IloInt type) const

public void removeEndBreakOverlapType(const IloIntSet types)
const

public void removeEndBreakOverlapType(IloInt type) const

public void removeIgnoredBreakType(const IloIntSet types)
const

365

public void removeIgnoredBreakType(IloInt type) const

public void removeIgnoredShiftType(const IloIntSet types)
const

public void removeIgnoredShiftType(IloInt type) const

public void removeStartBreakOverlapType(const IloIntSet types)
const

public void removeStartBreakOverlapType(IloInt type) const

public IloResourceConstraint requires(const IloStateResource, const
IloAnySetVar states, IloTimeExtent
extent=IloFromStartToEnd, IloBool outward=IloTrue)
const

public IloResourceConstraint requires(const IloStateResource, const IloAnySet
states, IloTimeExtent extent=IloFromStartToEnd,
IloBool outward=IloTrue) const

public IloResourceConstraint requires(const IloStateResource, const IloAnyVar
state, IloTimeExtent extent=IloFromStartToEnd,
IloBool outward=IloTrue) const

public IloResourceConstraint requires(const IloStateResource, IloAny state,
IloTimeExtent extent=IloFromStartToEnd, IloBool
outward=IloTrue) const

public IloAltResConstraint requires(const IloAltResSet, const IloNumVar
capVar, IloTimeExtent extent=IloFromStartToEnd,
IloBool outward=IloTrue) const

public IloAltResConstraint requires(const IloAltResSet, IloNum cap=1,
IloTimeExtent extent=IloFromStartToEnd, IloBool
outward=IloTrue) const

public IloResourceConstraint requires(const IloCapResource, const IloNumVar
capVar, IloTimeExtent extent=IloFromStartToEnd,
IloBool outward=IloTrue) const

public IloResourceConstraint requires(const IloCapResource, IloNum cap=1,
IloTimeExtent extent=IloFromStartToEnd, IloBool
outward=IloTrue) const

public IloResourceConstraint requiresNot(const IloStateResource, const
IloAnySetVar states, IloTimeExtent
extent=IloFromStartToEnd, IloBool outward=IloTrue)
const

public IloResourceConstraint requiresNot(const IloStateResource, const
IloAnySet states, IloTimeExtent
extent=IloFromStartToEnd, IloBool outward=IloTrue)
const

public IloResourceConstraint requiresNot(const IloStateResource, const
IloAnyVar state, IloTimeExtent
extent=IloFromStartToEnd, IloBool outward=IloTrue)
const

public IloResourceConstraint requiresNot(const IloStateResource, IloAny state,
IloTimeExtent extent=IloFromStartToEnd, IloBool
outward=IloTrue) const

public void setActivityBasicParam(const IloActivityBasicParam
param) const

public void setActivityBreakParam(const IloActivityBreakParam
param) const

public void

366

setActivityConstraintsParam(const
IloActivityConstraintsParam param) const

public void setActivityOverlapParam(const
IloActivityOverlapParam param) const

public void setActivityShiftParam(const IloActivityShiftParam
param) const

public void setBreakable(IloBool breakable=IloTrue) const

public void setCanBeSuspendedAtEnd(IloBool val=IloTrue) const

public void setCanBeSuspendedAtStart(IloBool val=IloTrue)
const

public void setDurationMax(IloNum duration)

public void setDurationMaxNormalBreaks(IloNum max) const

public void setDurationMin(IloNum duration)

public void setDurationMinNormalBreaks(IloNum min) const

public void setEndBreakOverlapMax(IloNum max) const

public void setEndBreakOverlapMin(IloNum min) const

public void setEndMax(IloNum endMax) const

public void setEndMin(IloNum endMin) const

public void setExecutionDurationMin(IloNum min) const

public void setExternalValue(IloNum val)

public void setExternalVariable(IloNumVar var)

public void setProcessingTimeMax(IloNum processingTime) const

public void setProcessingTimeMin(IloNum processingTime) const

public void setStartBreakOverlapMax(IloNum max) const

public void setStartBreakOverlapMin(IloNum min) const

public void setStartMax(IloNum startMax) const

public void setStartMin(IloNum startMin) const

public void setTransitionType(IloInt type) const

public void setUseEfficiency(IloBool useEfficiency=IloTrue)
const

public void shareEndWithEnd(IloActivity activity)

public void shareEndWithStart(IloActivity activity)

public void shareStartWithEnd(IloActivity activity)

public void shareStartWithStart(IloActivity activity)

public IloTimeBoundConstraint startsAfter(const IloNumVar time) const

public IloTimeBoundConstraint startsAfter(IloNum time) const

public IloPrecedenceConstraint startsAfterEnd(const IloActivity act, const
IloNumVar delay) const

public IloPrecedenceConstraint startsAfterEnd(const IloActivity act, IloNum
delay=0) const

public IloPrecedenceConstraint startsAfterStart(const IloActivity act, const
IloNumVar delay) const

public IloPrecedenceConstraint startsAfterStart(const IloActivity act, IloNum
delay=0) const

367

public IloTimeBoundConstraint startsAt(const IloNumVar time) const

public IloTimeBoundConstraint startsAt(IloNum time) const

public IloPrecedenceConstraint startsAtEnd(const IloActivity act, const IloNumVar
delay) const

public IloPrecedenceConstraint startsAtEnd(const IloActivity act, IloNum delay=0)
const

public IloPrecedenceConstraint startsAtStart(const IloActivity act, const
IloNumVar delay) const

public IloPrecedenceConstraint startsAtStart(const IloActivity act, IloNum
delay=0) const

public IloTimeBoundConstraint startsBefore(const IloNumVar time) const

public IloTimeBoundConstraint startsBefore(IloNum time) const

public void unshare()

public IloBool useEfficiency() const

Constructors

public IloActivity()

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IloActivity(IloActivityI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IloActivity(const IloEnv env, IloNum processingTime, const char * name)

This constructor creates a new instance of IloActivity. The new activity is constrained to execute between
the time origin and the time horizon of the schedule environment. Its processing time is set to the given
processingTime. Its name is set to name.

public IloActivity(const IloEnv env, IloNum processingTime, IloInt
transitionType=0, const char * name=0)

This constructor creates a new instance of IloActivity. The new activity is constrained to execute between
the time origin and the time horizon of the schedule environment. Its processing time is set to the given
processingTime. transitionType represents its transition type. Its name is set to name.

public IloActivity(const IloEnv env, const IloNumVar processingTimeVariable, IloInt
transitionType=0, const char * name=0)

This constructor creates a new instance of IloActivity. The processing time variable of the new activity is set
to processingTimeVariable. transitionType represents its transition type. Its name is set to name.

Methods

public void addDisjunctiveBreakType(const IloIntSet types) const

368

This member function adds the set of types types to the set of disjunctive break types of the invoking activity. If
a break type belongs to the set of disjunctive break types of a breakable activity, the breakable activity must be
completely processed either before or after that type of break.

Initially, an activity is created with an empty set of disjunctive break types.

This member function has no effect if the invoking activity is not breakable.

public void addDisjunctiveBreakType(IloInt type) const

This member function adds the type type to the set of disjunctive break types of the invoking activity. If a break
type belongs to the set of disjunctive break types of an activity, the breakable activity must be completely
processed either before or after that type of break.

Initially, an activity is created with an empty set of disjunctive break types.

This member function has no effect if the invoking activity is not breakable.

public void addEndBreakOverlapType(const IloIntSet types) const

This member function adds the set of types types to the set of overlap break types of the invoking activity. If a
break type belongs to the set of overlap break types of an activity, the activity can be processed at its end time
during that break. Initially, an activity is created with an empty set of overlap break types.

public void addEndBreakOverlapType(IloInt type) const

This member function adds the type type to the set of overlap break types of the invoking activity. If a break type
belongs to the set of overlap break types of an activity, the activity can be processed at its end time during that
break. Initially, an activity is created with an empty set of overlap break types.

public void addIgnoredBreakType(const IloIntSet types) const

This member function adds the set of types types to the set of ignored break types of the invoking activity. That
is, the invoking activity behaves as if breaks of type included in types do not exist.

Initially, an activity is created with an empty set of ignored break types.

public void addIgnoredBreakType(IloInt type) const

This member function adds the type type to the set of ignored break types of the invoking activity. That is, the
invoking activity behaves as if breaks of type type do not exist.

Initially, an activity is created with an empty set of ignored break types.

public void addIgnoredShiftType(const IloIntSet types) const

This member function adds the set of types types to the set of ignored shift types of the invoking activity. That
is, the invoking activity behaves as if shifts of type included in types do not exist.

Initially, an activity is created with an empty set of ignored shift types.

369

public void addIgnoredShiftType(IloInt type) const

This member function adds the type type to the set of ignored shift types of the invoking activity. That is, the
invoking activity behaves as if shifts of type type never exist.

Initially, an activity is created with an empty set of ignored shift types.

public void addStartBreakOverlapType(const IloIntSet types) const

This member function adds the set of types types to the set of overlap break types of the invoking activity. If a
break type belongs to the set of overlap break types of an activity, the activity can be processed at its start time
during that break. Initially, an activity is created with an empty set of overlap break types.

public void addStartBreakOverlapType(IloInt type) const

This member function adds type to the set of overlap break types of the invoking activity. If a break type belongs
to the set of overlap break types of an activity, the activity can be processed at its start time during that break.
Initially, an activity is created with an empty set of overlap break types.

public IloBool areCoverConstraintsIgnored() const

This member function returns IloTrue if the cover constraints defined on the invoking activity are not taken into
account when searching for the solution. Otherwise, it returns IloFalse.

public IloBool arePrecedenceConstraintsIgnored() const

This member function returns IloTrue if the precedence constraints defined on the invoking activity are not
taken into account when searching for the solution. Otherwise, it returns IloFalse.

public IloBool areResourceConstraintsIgnored() const

This member function returns IloTrue if the resource constraints defined on the invoking activity are not taken
into account when searching for the solution. Otherwise, it returns IloFalse.

public IloBool areTimeBoundConstraintsIgnored() const

This member function returns IloTrue if the time-bound constraints defined on the invoking activity are not
taken into account when searching for the solution. Otherwise, it returns IloFalse.

public IloBool canBeSuspendedAtEnd() const

This member function returns IloTrue if the invoking activity can be suspended at its end time. Otherwise, it
returns IloFalse.

public IloBool canBeSuspendedAtStart() const

370

This member function returns IloTrue if the invoking activity can be suspended at its start time. Otherwise, it
returns IloFalse.

public void clearDisjunctiveBreakType() const

This member function empties the set of disjunctive break types of the invoking activity.

public void clearEndBreakOverlapType() const

This member function empties the set of end overlap types of the invoking activity.

public void clearIgnoredBreakType() const

This member function empties the set of ignored break types of the invoking activity.

public void clearIgnoredShiftType() const

This member function empties the set of ignored shift types of the invoking activity.

public void clearStartBreakOverlapType() const

This member function empties the set of start overlap types of the invoking activity.

public IloResourceConstraint consumes(const IloCapResource, IloNum cap=1) const
public IloAltResConstraint consumes(const IloAltResSet, const IloNumVar capVar)
const
public IloAltResConstraint consumes(const IloAltResSet, IloNum cap=1) const
public IloResourceConstraint consumes(const IloCapResource, const IloNumVar capVar)
const

An activity consumes a resource if some amount of the resource capacity must be made available for the
execution of the activity and the capacity is non-recoverable after the end of the activity. For example, an activity
might consume a raw material in manufacturing a product.

If the resource is discrete (classes IloDiscreteResource, IloReservoir, IloDiscreteEnergy), the
activity requires the capacity at all times after the activity's start time. The corresponding member function implies
that the occupancy of the resource by the activity is rounded inward toward the nearest valid time that
corresponds to a time step.

When the given resource is an instance of IloDiscreteEnergy, it means that the source of the energy is
consumed (that is, that the given capacity can no longer be provided again after the beginning of the activity).

When the resource is discrete, the following two expressions are equivalent:

activity.consumes(resource, capacity); and•
activity.requires(resource, capacity, IlcAfterStart);•

371

If the resource is a continuous reservoir (class IloContinuousReservoir), the consumption is continuous
and linear from the start time to the end time of the invoking activity. Since the time step of a timetable for a
continuous reservoir is 1, the returned resource constraint has no inward/outward rounding mode. Its time extent,
which does not match any case of the enumeration IloTimeExtent, is not defined either.

If the invoking activity consumes a resource in set, the consumption will be discrete if the selected resource is
an instance of IloDiscreteResource, IloReservoir, or IloDiscreteEnergy. It will be continuous if the
selected resource is an instance of IloContinuousReservoir.

An IloException is thrown when entering the search if either the capacity is negative, or if capacity is a
variable with a negative minimal value.

public IloCoverConstraint covers() const

This member function builds a cover constraint for the invoking activity. The set of activities to be covered by the
invoking activity is initially empty. See the member functions IloCoverConstraint::add and
IloCoverConstraint::remove to see how to modify the set of covered activities. The cover constraint states that
the start time of the invoking activity is equal to the earliest of the start times of the covered activities, and that the
end time of the invoking activity is equal to the latest of the end times of the covered activities.

public IloTimeBoundConstraint endsAfter(IloNum time) const
public IloTimeBoundConstraint endsAfter(const IloNumVar time) const

This member function states that the invoking activity must end after or at time. More formally,
act.endsAfter(time) means end(act) >= time.

The constraint returned by this member function must be added to the model by IloModel::add in order to be
taken into account during the search for solutions.

public IloPrecedenceConstraint endsAfterEnd(const IloActivity act, IloNum delay=0)
const
public IloPrecedenceConstraint endsAfterEnd(const IloActivity act, const IloNumVar
delay) const

This member function states that the invoking activity ends after the end of act. In addition, at least the given
delay must elapse between the end of act and the end of the invoking activity.

The member function can be invoked with a negative delay, which means that the invoking activity can end
before the end of act, but the difference between the end time of act and the end time of the invoking activity
cannot exceed -delay.

More formally, act1.endsAfterEnd(act, delay) means end(act1) >= end(act) + delay.

The constraint returned by this member function must be added to the model by IloModel::add in order to be
taken into account during the search for solutions.

public IloPrecedenceConstraint endsAfterStart(const IloActivity act, IloNum
delay=0) const
public IloPrecedenceConstraint endsAfterStart(const IloActivity act, const
IloNumVar delay) const

This member function states that the invoking activity ends after the beginning of act. In addition, at least the
given delay must elapse between the beginning of act and the end of the invoking activity.

372

The member function can be invoked with a negative delay, which means that the invoking activity can end
before the beginning of act, but the difference between the start time of act and the end time of the invoking
activity cannot exceed -delay.

More formally, act1.endsAfterStart(act, delay) means end(act1) >= start(act) + delay.

The constraint returned by this member function must be added to the model by IloModel::add in order to be
taken into account during the search for solutions.

public IloTimeBoundConstraint endsAt(IloNum time) const
public IloTimeBoundConstraint endsAt(const IloNumVar time) const

This member function states that the invoking activity must end at time. More formally, act.endsAt(time)
means end(act) == time.

The constraint returned by this member function must be added to the model by IloModel::add in order to be
taken into account during the search for solutions.

public IloPrecedenceConstraint endsAtEnd(const IloActivity act, IloNum delay=0)
const
public IloPrecedenceConstraint endsAtEnd(const IloActivity act, const IloNumVar
delay) const

This member function states that exactly the given delay must elapse between the end of act and the end of the
invoking activity. More formally, act1.endsAtEnd(act, delay) means end(act1) == end(act) +
delay.

The constraint returned by this member function must be added to the model by IloModel::add in order to be
taken into account during the search for solutions.

public IloPrecedenceConstraint endsAtStart(const IloActivity act, IloNum delay=0)
const
public IloPrecedenceConstraint endsAtStart(const IloActivity act, const IloNumVar
delay) const

This member function states that exactly the given delay must elapse between the beginning of act and the end
of the invoking activity. More formally, act1.endsAtStart(act, delay) means end(act1) ==
start(act) + delay.

The constraint returned by this member function must be added to the model by IloModel::add in order to be
taken into account during the search for solutions.

public IloTimeBoundConstraint endsBefore(IloNum time) const
public IloTimeBoundConstraint endsBefore(const IloNumVar time) const

This member function states that the invoking activity must end before or at time. More formally,
act.endsBefore(time) means end(act) <= time.

The constraint returned by this member function must be added to the model by IloModel::add in order to be
taken into account during the search for solutions.

public IloIntExprArg getDurationExpr() const

373

This member function returns an expression that represents the duration of the invoking activity.

public IloNum getDurationMax() const

This member function returns the maximum duration of the invoking activity.

public IloNum getDurationMaxNormalBreaks() const

This member function returns the maximal duration above which all breaks are considered as disjunctive. By
default, the value of this maximal duration is IloInfinity.

public IloNum getDurationMin() const

This member function returns the minimum duration of the invoking activity.

public IloNum getDurationMinNormalBreaks() const

This member function returns the threshold duration under which all breaks are considered as disjunctive. By
default, the value of this minimal duration is 1 (one) so that only the breaks with null duration are considered as
disjunctive.

public IloNum getEndBreakOverlapMax() const

This member function returns the maximal value of the end break overlap variable of the invoking activity.

public IloNum getEndBreakOverlapMin() const

This member function returns the minimal value of the end break overlap variable of the invoking activity.

public IloIntExprArg getEndExpr() const

This member function returns an expression that represents the end time of the invoking activity.

public IloNum getEndMax() const

This member function returns the latest end time of the invoking activity.

public IloNum getEndMin() const

This member function returns the earliest end time of the invoking activity.

public IloNum getExecutionDurationMin() const

374

A breakable activity executes during a set of disjoint temporal intervals. These execution intervals are separated
by intervals that correspond to the breaks that suspend the activity. This member function returns the minimal
duration for any execution interval of the invoking activity.

public IloNum getExternalValue() const

This member function returns the current value of the external variable of the invoking activity. It raises an error in
case the external variable is not bound.

public IloNumVar getExternalVariable() const

This member function returns the external variable of the invoking activity. By default, the external variable of an
activity is a variable with a domain [IloIntMin, IloIntMax].

public IloActivityI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloNum getProcessingTimeMax() const

This member function returns the maximum processing time of the invoking activity.

public IloNum getProcessingTimeMin() const

This member function returns the minimum processing time of the invoking activity.

public IloNumVar getProcessingTimeVariable() const

This member function returns the variable that represents the processing time for the invoking activity.

public IloNum getStartBreakOverlapMax() const

This member function returns the maximal value of the start break overlap variable of the invoking activity.

public IloNum getStartBreakOverlapMin() const

This member function returns the minimal value of the start break overlap variable of the invoking activity.

public IloIntExprArg getStartExpr() const

This member function returns an expression that represents the start time of the invoking activity.

public IloNum getStartMax() const

375

This member function returns the latest start time of the invoking activity.

public IloNum getStartMin() const

This member function returns the earliest start time of the invoking activity.

public IloInt getTransitionType() const

The transition type of an activity is an integer intended to define transition time and cost from an indexed
classification of activities.

public IloBool hasDisjunctiveBreakType() const

This member function returns IloTrue if the set of disjunctive break types is not empty.

public IloBool hasEndBreakOverlapType() const

This member function returns IloTrue if the set of end break overlap types is not empty.

public IloBool hasIgnoredBreakType() const

This member function returns IloTrue if the set of ignored break types is not empty.

public IloBool hasIgnoredShiftType() const

This member function returns IloTrue if the set of ignored shift types is not empty.

public IloBool hasStartBreakOverlapType() const

This member function returns IloTrue if the set of start break overlap types is not empty.

public void ignoreBreakDisjunctivity(IloBool ignored=IloTrue) const

When the argument ignored is equal to IloTrue, this member function inhibits the disjunctive breaks for the
invoking activity. That is, all breaks will be treated as normal, non-disjunctive breaks. Otherwise, the disjunctive
breaks are taken into account for the invoking activity.

This member function has no effect if at the beginning of the search the invoking activity is not breakable.

public void ignoreCoverConstraints(IloBool ignored=IloTrue) const

When the argument ignored is equal to IloTrue, this member function inhibits the cover constraints defined
on the invoking activity. Otherwise, and by default, the cover constraints defined on the invoking activity are taken
into account.

376

public void ignorePrecedenceConstraints(IloBool ignored=IloTrue) const

When the argument ignored is equal to IloTrue, this member function inhibits the precedence constraints
defined on the invoking activity. Otherwise the precedence constraints defined on the invoking activity are taken
into account.

public void ignoreResourceConstraints(IloBool ignored=IloTrue) const

When the argument ignored is equal to IloTrue, this member function inhibits the resource constraints
defined on the invoking activity. When the argument ignored is equal to IloFalse, this member function takes
into account the resource constraints defined on the invoking activity.

public void ignoreTimeBoundConstraints(IloBool ignored=IloTrue) const

When the argument ignored is equal to IloTrue, this member function inhibits the time-bound constraints
defined on the invoking activity. Otherwise the time-bound constraints defined on the invoking activity are taken
into account.

public IloBool isBreakable() const

This member function returns IloTrue if the invoking activity is breakable. Otherwise, it returns IloFalse.

public IloBool isBreakDisjunctivityIgnored() const

This member function returns IloTrue if the break disjunctivity is ignored for the invoking activity. Otherwise, it
returns IloFalse.

public IloBool isDisjunctiveBreakType(IloInt type) const

This member function returns IloTrue if the type type belongs to the set of disjunctive break types of the
invoking activity. Otherwise, it returns IloFalse.

public IloBool isEndBreakOverlapType(IloInt type) const

This member function returns IloTrue if the type type belongs to the set of end overlap types of the invoking
activity. Otherwise, it returns IloFalse.

public IloBool isIgnoredBreakType(IloInt type) const

This member function returns IloTrue if the type type belongs to the set of ignored break types of the invoking
activity. Otherwise, it returns IloFalse.

public IloBool isIgnoredShiftType(IloInt type) const

377

This member function returns IloTrue if the type type belongs to the set of ignored shift types of the invoking
activity. Otherwise, it returns IloFalse.

public IloBool isStartBreakOverlapType(IloInt type) const

This member function returns IloTrue if the type type belongs to the set of start overlap types of the invoking
activity. Otherwise, it returns IloFalse.

public IloResourceConstraint produces(const IloReservoir, IloNum cap=1) const

An activity produces if some amount of the capacity of the (discrete or continuous) reservoir is definitely made
available through the execution of the activity. This member function states that the invoking activity produces the
given capacity for the given reservoir.

If the reservoir is discrete (class IloReservoir), this member function implies that the occupancy of the
reservoir by the activity is rounded inward toward the nearest valid time that corresponds to a time step. The
following two expressions are equivalent:

activity.produces(reservoir, capacity);•
activity.provides(reservoir, capacity, IloAfterEnd);•

If the reservoir is continuous (class IloContinuousReservoir), the production process is continuous and
linear from the start time to the end time of the invoking activity. Since the time step of a timetable for a
continuous reservoir is 1, the returned resource constraint has no inward/outward rounding mode. Its time extent,
which does not match any case of the enumeration IloTimeExtent, is not defined either.

If the invoking activity produces for a reservoir in set, the production will be discrete if the selected reservoir is
an instance of IloReservoir. It will be continuous if the selected reservoir is an instance of
IloContinuousReservoir.

An IloException is thrown when entering the search if either the capacity is negative, or if capacity is a
variable with a negative minimal value.

public IloResourceConstraint provides(const IloReservoir, IloNum cap=1,
IloTimeExtent extent=IloFromStartToEnd, IloBool outward=IloFalse) const
public IloAltResConstraint provides(const IloAltResSet, const IloNumVar capVar,
IloTimeExtent extent=IloFromStartToEnd, IloBool outward=IloFalse) const
public IloAltResConstraint provides(const IloAltResSet, IloNum cap=1, IloTimeExtent
extent=IloFromStartToEnd, IloBool outward=IloFalse) const
public IloResourceConstraint provides(const IloReservoir, const IloNumVar capVar,
IloTimeExtent extent=IloFromStartToEnd, IloBool outward=IloFalse) const

This member function states that the invoking activity provides the given capacity of the given reservoir. By
default, the activity provides the reservoir from the beginning to the end of its execution. However, the optional
argument extent is available to represent cases in which the activity provides the reservoir over a different time
extent, as explained in IloTimeExtent.

The argument outward is important only when one of the resource usage enforcement intervals of the reservoir
has a time step greater than 1 (one). In that case, outward defines whether the occupancy of the reservoir by
the activity should be rounded outward or inward towards the nearest valid time that corresponds to a step. By
default, outward is considered to be false for a providing resource constraint.

An IloException is thrown when entering the search if either the capacity is negative, or if capacity is a
variable with a negative minimal value.

378

The set of alternative resources can contain a continuous reservoir if the time extent is IloNever, IloAlways,
IloAfterStart or IloAfterEnd. If the time extent is IloNever, the activity does not provide any capacity. If
the time extent is IloAlways, the capacity is provided at any time. If the time extent is IloAfterStart or
IloAfterEnd, the capacity is not provided before the start of the activity, is totally provided after its end and
linearly provided between its start and its end.

public void removeDisjunctiveBreakType(const IloIntSet types) const

This member function removes the set of types types from the set of disjunctive break types of the invoking
activity. If a break type belongs to the set of disjunctive break types of a breakable activity, the activity must be
completely processed either before or after that type of break.

public void removeDisjunctiveBreakType(IloInt type) const

This member function removes the type type from the set of disjunctive break types of the invoking activity. If a
break type belongs to the set of disjunctive break types of a breakable activity, the activity must be completely
processed either before or after that type of break.

public void removeEndBreakOverlapType(const IloIntSet types) const

For each activity, a set of break types is given that defines which break types can possibly be overlapped by the
end of the activity. This member function removes all the types of types from this set of break types on the
invoking activity.

public void removeEndBreakOverlapType(IloInt type) const

For each activity, a set of break types is given that defines which break types can possibly be overlapped by the
end of the activity. This member function removes type from this set of break types on the invoking activity.

public void removeIgnoredBreakType(const IloIntSet types) const

This member function removes the set of types types from the set of ignored break types of the invoking
activity.

public void removeIgnoredBreakType(IloInt type) const

This member function removes the type type from the set of ignored break types of the invoking activity.

public void removeIgnoredShiftType(const IloIntSet types) const

This member function removes the set of types types from the set of ignored shift types of the invoking activity.

public void removeIgnoredShiftType(IloInt type) const

This member function removes the type type from the set of ignored shift types of the invoking activity.

379

public void removeStartBreakOverlapType(const IloIntSet types) const

For each activity, a set of break types is given that defines which break types can possibly be overlapped by the
start of the activity. This member function removes all the types of types from this set of break types on the
invoking activity.

public void removeStartBreakOverlapType(IloInt type) const

For each activity, a set of break types is given that defines which break types can possibly be overlapped by the
start of the activity. This member function removes the type type from this set of break types on the invoking
activity.

public IloResourceConstraint requires(const IloStateResource, const IloAnySet
states, IloTimeExtent extent=IloFromStartToEnd, IloBool outward=IloTrue) const
public IloResourceConstraint requires(const IloStateResource, const IloAnySetVar
states, IloTimeExtent extent=IloFromStartToEnd, IloBool outward=IloTrue) const

This member function states that the invoking activity requires the given resource in one of the given set of
states. The state may change during execution, but must remain in the given set of states. By default, the activity
requires the resource from the beginning to the end of its execution. However, the optional argument extent is
available to represent cases in which the activity requires the resource over a different time extent, as explained
in IloTimeExtent.

The argument outward is important only when one of the resource usage enforcement intervals of the resource
has a time step greater than 1 (one). In that case, outward defines whether the occupancy of the resource by
the activity should be rounded outward or inward towards the nearest valid time that corresponds to a step. By
default, outward is considered to be true for a requirement.

public IloResourceConstraint requires(const IloStateResource, IloAny state,
IloTimeExtent extent=IloFromStartToEnd, IloBool outward=IloTrue) const
public IloResourceConstraint requires(const IloStateResource, const IloAnyVar
state, IloTimeExtent extent=IloFromStartToEnd, IloBool outward=IloTrue) const

This member function states that the invoking activity requires the given resource in the given state. By default,
the activity requires the resource from the beginning to the end of its execution. However, the optional argument
extent is available to represent cases in which the activity requires the resource over a different time extent, as
explained in IloTimeExtent.

The argument outward is important only when one of the resource usage enforcement intervals of the resource
has a time step greater than 1 (one). In that case, outward defines whether the occupancy of the resource by
the activity should be rounded outward or inward towards the nearest valid time that corresponds to a step. By
default, outward is considered to be true for a requirement.

public IloResourceConstraint requires(const IloCapResource, IloNum cap=1,
IloTimeExtent extent=IloFromStartToEnd, IloBool outward=IloTrue) const
public IloAltResConstraint requires(const IloAltResSet, const IloNumVar capVar,
IloTimeExtent extent=IloFromStartToEnd, IloBool outward=IloTrue) const
public IloAltResConstraint requires(const IloAltResSet, IloNum cap=1, IloTimeExtent
extent=IloFromStartToEnd, IloBool outward=IloTrue) const
public IloResourceConstraint requires(const IloCapResource, const IloNumVar capVar,
IloTimeExtent extent=IloFromStartToEnd, IloBool outward=IloTrue) const

380

This member function states that the invoking activity requires the given capacity of the given resource. For
example, an activity might require the presence of a worker on a shift. By default, the activity requires the
resource from the beginning to the end of its execution. However, the optional argument extent is available to
represent cases in which the activity requires the resource over a different time extent, as explained in
IloTimeExtent.

The argument outward is important only when one of the resource usage enforcement intervals of the resource
has a time step greater than 1 (one). In that case, outward defines whether the occupancy of the resource by
the activity should be rounded outward or inward towards the nearest valid time that corresponds to a step. When
the given resource is an instance of IloDiscreteEnergy, it means that the given capacity is required for each
unit of time in the given time extent. By default, outward is considered to be true for a requirement.

An IloException is thrown when entering the search if either the capacity is negative, or if capacity is a
variable with a negative minimal value.

The member function must not be called with a capacity resource that is a continuous reservoir; however, the set
of alternative resources can contain a continuous reservoir if time extent is IloNever, IloAlways,
IloAfterStart or IloAfterEnd. If the time extent is IloNever, the activity does not require any capacity. If
the time extent is IloAlways, the capacity is required at any time. If the time extent is IloAfterStart or
IloAfterEnd, the capacity is not required before the start of the activity, is totally required after its end and
linearly required between its start and its end.

public IloResourceConstraint requiresNot(const IloStateResource, const IloAnySet
states, IloTimeExtent extent=IloFromStartToEnd, IloBool outward=IloTrue) const
public IloResourceConstraint requiresNot(const IloStateResource, const IloAnySetVar
states, IloTimeExtent extent=IloFromStartToEnd, IloBool outward=IloTrue) const

This member function states that the invoking activity requires the given resource in any state that does not
belong to the given set of states. The state may change during execution, but must never belong to the given set
of states.

By default, the activity requires the resource from the beginning to the end of its execution. However, the optional
argument extent is available to represent cases in which the activity requires the resource over a different time
extent, as explained in IloTimeExtent.

The argument outward is important only when one of the resource usage enforcement intervals of the resource
has a time step greater than 1 (one). In that case, outward defines whether the occupancy of the resource by
the activity should be rounded outward or inward towards the nearest valid time that corresponds to a step. By
default, outward is considered to be true for a requirement.

public IloResourceConstraint requiresNot(const IloStateResource, IloAny state,
IloTimeExtent extent=IloFromStartToEnd, IloBool outward=IloTrue) const
public IloResourceConstraint requiresNot(const IloStateResource, const IloAnyVar
state, IloTimeExtent extent=IloFromStartToEnd, IloBool outward=IloTrue) const

This member function states that the invoking activity requires the given resource in any state different from the
given state. The state may change during execution, but must never be the given state.

By default, the activity requires the resource from the beginning to the end of its execution. However, the optional
argument extent is available to represent cases in which the activity requires the resource over a different time
extent, as explained in IloTimeExtent.

The argument outward is important only when one of the resource usage enforcement intervals of the resource
has a time step greater than 1 (one). In that case, outward defines whether the occupancy of the resource by
the activity should be rounded outward or inward towards the nearest valid time that corresponds to a step. By
default, outward is considered to be true for a requirement.

381

public void setActivityBasicParam(const IloActivityBasicParam param) const

This member function sets param as the new basic activity parameter.

public void setActivityBreakParam(const IloActivityBreakParam param) const

This member function sets param as the new break activity parameter.

public void setActivityConstraintsParam(const IloActivityConstraintsParam param)
const

This member function sets param as the new constraint activity parameter.

public void setActivityOverlapParam(const IloActivityOverlapParam param) const

This member function sets param as the new overlap activity parameter.

public void setActivityShiftParam(const IloActivityShiftParam param) const

This member function sets param as the new shift activity parameter.

public void setBreakable(IloBool breakable=IloTrue) const

When the argument breakable is equal to IloTrue, this member function allows the invoking activity to be
breakable. Otherwise, the invoking activity is not breakable.

public void setCanBeSuspendedAtEnd(IloBool val=IloTrue) const

If val is equal to IloTrue, this member function permits the invoking activity to be suspended at its end time.

This member function has no effect if at the beginning of the search the invoking activity is not breakable.

public void setCanBeSuspendedAtStart(IloBool val=IloTrue) const

If val is equal to IloTrue, this member function permits the invoking activity to be suspended at its start time.
Otherwise, the invoking activity cannot be suspended at its start time.

This member function has no effect if at the beginning of the search the invoking activity is not breakable.

public void setDurationMax(IloNum duration)

This member function states that the duration of the invoking activity can be at most duration.

382

public void setDurationMaxNormalBreaks(IloNum max) const

This member function states that the invoking activity must be completely processed either before or after any
break whose duration is strictly greater than max. By default, the value of this duration for a breakable activity is
IloInfinity.

public void setDurationMin(IloNum duration)

This member function states that the duration of the invoking activity must be at least duration.

public void setDurationMinNormalBreaks(IloNum min) const

This member function states that the invoking activity must be completely processed either before or after any
break whose duration is strictly lower than min.

By default, the value of this duration for a breakable activity is 1 (one) so that only the breaks with null duration
are considered as disjunctive.

public void setEndBreakOverlapMax(IloNum max) const

This member function sets max as the new maximal value of the end break overlap duration.

public void setEndBreakOverlapMin(IloNum min) const

This member function sets min as the new minimal value of the end break overlap duration.

public void setEndMax(IloNum endMax) const

This member function states that the invoking activity must not end after endMax.

public void setEndMin(IloNum endMin) const

This member function states that the invoking activity must not end before endMin.

public void setExecutionDurationMin(IloNum min) const

A breakable activity executes during a set of disjoint temporal intervals. These execution intervals are separated
by intervals that correspond to the breaks that suspend the activity.

This member function states that the duration of the temporal intervals during which the invoking breakable
activity executes must each be greater or equal to min. Note that min must be a strictly positive integer. By
default, breakable activities are created with a minimal duration for execution intervals of 1 (one).

public void setExternalValue(IloNum val)

383

This member function sets val as the value of the external variable of the invoking activity.

public void setExternalVariable(IloNumVar var)

This member function sets var as the external variable of the invoking activity.

public void setProcessingTimeMax(IloNum processingTime) const

This member function states that the processing time of the invoking activity can be at most processingTime.

public void setProcessingTimeMin(IloNum processingTime) const

This member function states that the processing time of the invoking activity must be at least processingTime.

public void setStartBreakOverlapMax(IloNum max) const

This member function sets max as the new maximal value of the start break overlap duration.

public void setStartBreakOverlapMin(IloNum min) const

This member function sets min as the new minimal value of the start break overlap duration.

public void setStartMax(IloNum startMax) const

This member function states that the invoking activity must not start after startMax.

public void setStartMin(IloNum startMin) const

This member function states that the invoking activity must not start before startMin.

public void setTransitionType(IloInt type) const

The transition type of an activity is an integer intended to define transition time and cost from an indexed
classification of activities. It is used by transition parameters (instances of the class IloTransitionParam).

public void setUseEfficiency(IloBool useEfficiency=IloTrue) const

When the argument useEfficiency is equal to IloTrue, the processing time of the invoking activity is
computed using the efficiency function of resource calendars.

Note that if no calendar with efficiency function is attached to resources or resource constraints required by the
invoking activity, the processing time remains unbounded.

384

public void shareEndWithEnd(IloActivity activity)

This member function states that the invoking activity shares its end with the end of the activity provided as
argument.

public void shareEndWithStart(IloActivity activity)

This member function states that the invoking activity shares its end with the start of the activity provided as
argument.

public void shareStartWithEnd(IloActivity activity)

This member function states that the invoking activity shares its start with the end of the activity provided as
argument.

public void shareStartWithStart(IloActivity activity)

This member function states that the invoking activity shares its start with the start of the activity provided as
argument.

public IloTimeBoundConstraint startsAfter(IloNum time) const
public IloTimeBoundConstraint startsAfter(const IloNumVar time) const

This member function states that the invoking activity must start after or at time. More formally,
act.startsAfter(time) means start(act) >= time.

The constraint returned by this member function must be added to the model by IloModel::add in order to be
taken into account during the search for solutions.

public IloPrecedenceConstraint startsAfterEnd(const IloActivity act, IloNum
delay=0) const
public IloPrecedenceConstraint startsAfterEnd(const IloActivity act, const
IloNumVar delay) const

This member function states that the invoking activity starts after the end of act. (In other words, act precedes
the invoking activity.) In addition, at least the given delay must elapse between the end of act and the
beginning of the invoking activity.

The member function can be invoked with a negative delay, which means that the invoking activity can start
before the end of act, but the difference between the end time of act and the start time of the invoking activity
cannot exceed -delay.

More formally, act1.startsAfterEnd(act, delay) means start(act1) >= end(act) + delay.

The constraint returned by this member function must be added to the model by IloModel::add in order to be
taken into account during the search for solutions.

public IloPrecedenceConstraint startsAfterStart(const IloActivity act, IloNum
delay=0) const

385

public IloPrecedenceConstraint startsAfterStart(const IloActivity act, const
IloNumVar delay) const

This member function states that the invoking activity starts after the beginning of act. In addition, at least the
given delay must elapse between the beginning of act and the beginning of the invoking activity.

The member function can be invoked with a negative delay, which means that the invoking activity can start
before the beginning of act, but the difference between the start time of act and the start time of the invoking
activity cannot exceed -delay.

More formally, act1.startsAfterStart(act, delay) means start(act1) >= start(act) + delay.

The constraint returned by this member function must be added to the model by IloModel::add in order to be
taken into account during the search for solutions.

public IloTimeBoundConstraint startsAt(IloNum time) const
public IloTimeBoundConstraint startsAt(const IloNumVar time) const

This member function states that the invoking activity must start at time. More formally, act.startsAt(time)
means start(act) == time.

The constraint returned by this member function must be added to the model by IloModel::add in order to be
taken into account during the search for solutions.

public IloPrecedenceConstraint startsAtEnd(const IloActivity act, IloNum delay=0)
const
public IloPrecedenceConstraint startsAtEnd(const IloActivity act, const IloNumVar
delay) const

This member function states that exactly the given delay must elapse between the end of act and the beginning
of the invoking activity.

More formally, act1.startsAtEnd(act, delay) means start(act1) == end(act) + delay.

The constraint returned by this member function must be added to the model by IloModel::add in order to be
taken into account during the search for solutions.

public IloPrecedenceConstraint startsAtStart(const IloActivity act, IloNum delay=0)
const
public IloPrecedenceConstraint startsAtStart(const IloActivity act, const IloNumVar
delay) const

This member function states that exactly the given delay must elapse between the beginning of act and the
beginning of the invoking activity.

More formally, act1.startsAtStart(act, delay) means start(act1) == start(act) + delay.

The constraint returned by this member function must be added to the model by IloModel::add in order to be
taken into account during the search for solutions.

public IloTimeBoundConstraint startsBefore(IloNum time) const
public IloTimeBoundConstraint startsBefore(const IloNumVar time) const

386

This member function states that the invoking activity must start before or at time. More formally,
act.startsBefore(time) means start(act) <= time.

The constraint returned by this member function must be added to the model by IloModel::add in order to be
taken into account during the search for solutions.

public void unshare()

This member function states that the invoking activity does not share its start nor its end.

public IloBool useEfficiency() const

This member function returns IloTrue if the processing time of the invoking activity is computed using the
efficiency function of resource calendars. Otherwise, it returns IloFalse.

387

Class IloActivityBasicParam
Definition file: ilsched/iloactivityparam.h
Include file: <ilsched/iloscheduler.h>

Parameters are used to change the default behavior of activities and resources. By default, an activity is not
breakable, does not consider efficiency function of potential calendars, and no interval is ignored. With
IloActivityBasicParam, it is (for example) possible to specify if an activity is breakable, or if an activity must
take into account efficiency functions. IloActivityBasicParam also allows ignoring sets of interval types,
such as breaks and shifts.

This class inherits from the IBM® ILOG® Concert Technology class IloExtractable. That class is
documented in the IBM ILOG Concert Technology Reference Manual.

For more information, see Calendars, and Parameter Classes.

See Also: IloActivity, IloSchedulerEnv

Constructor Summary

public IloActivityBasicParam()

public IloActivityBasicParam(IloActivityBasicParamI * impl)

public IloActivityBasicParam(const IloEnv env, const char * name=0)

Method Summary

public void addIgnoredBreakType(const IloIntSet types) const

public void addIgnoredBreakType(IloInt type) const

public void clearIgnoredBreakType() const

public IloActivityBasicParamI * getImpl() const

public IloBool hasIgnoredBreakType() const

public IloBool isBreakable() const

public IloBool isIgnoredBreakType(IloInt type) const

public void removeIgnoredBreakType(const IloIntSet types)
const

public void removeIgnoredBreakType(IloInt type) const

public void setBreakable(IloBool breakable=IloTrue) const

public void setUseEfficiency(IloBool useEfficiency=IloTrue)
const

public IloBool useEfficiency() const

Constructors

public IloActivityBasicParam()

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

388

public IloActivityBasicParam(IloActivityBasicParamI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IloActivityBasicParam(const IloEnv env, const char * name=0)

This constructor creates an instance of IloActivityBasicParam with the default values that an activity is not
breakable, does not use efficiency, and there are no ignored breaks or shifts.

Methods

public void addIgnoredBreakType(const IloIntSet types) const

This member function adds the set of types types to the set of ignored break types of the invoking parameter.

public void addIgnoredBreakType(IloInt type) const

This member function adds the type type to the set of ignored break types of the invoking parameter.

public void clearIgnoredBreakType() const

This member function empties the set of ignored break types of the invoking parameter.

public IloActivityBasicParamI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloBool hasIgnoredBreakType() const

This member function returns IloTrue if the set of ignored break types is not empty.

public IloBool isBreakable() const

This member function returns IloTrue if the activities depending on this parameter are breakable. Otherwise, it
returns IloFalse.

public IloBool isIgnoredBreakType(IloInt type) const

This member function returns IloTrue if the type type belongs to the set of ignored break types of the invoking
parameter. Otherwise, it returns IloFalse.

public void removeIgnoredBreakType(const IloIntSet types) const

This member function removes the set of types types from the set of ignored break types of the invoking
parameter.

389

public void removeIgnoredBreakType(IloInt type) const

This member function removes the type type from the set of ignored break types of the invoking parameter.

public void setBreakable(IloBool breakable=IloTrue) const

When breakable is equal to IloTrue, this member function states that activities depending on this parameter
are breakable. Otherwise, they are not breakable.

public void setUseEfficiency(IloBool useEfficiency=IloTrue) const

When the argument useEfficiency is equal to IloTrue, the processing time is computed using the efficiency
function of resource calendars.

Note that if no calendar with an efficiency function is attached to resources or to resource constraints required by
activities used by the invoking parameter, the processing time remains unbounded.

public IloBool useEfficiency() const

This member function returns IloTrue if the processing time is computed using the efficiency function of
resource calendars. Otherwise, it returns IloFalse.

390

Class IloActivityBreakParam
Definition file: ilsched/iloactivityparam.h
Include file: <ilsched/iloscheduler.h>

Parameters are used to change the default behavior of activities and resources. By default when an activity is
breakable, the minimum duration of its execution time is equal to one, only null duration breaks are considered as
disjunctive, and the breakable activity cannot be suspended at its start or end time. Instances of
IloActivityBreakParam are used to change these characteristics in order to control the way breakable
activities are executed.

It is possible to specify the minimal duration of a breakable activity executed in several parts, the ability of a
breakable activity to be suspended at its start or end time, and to define the set of disjunctive breaks for activities.

This parameter has no effect on activities that are not breakable.

For more information, see Calendars and Parameter Classes.

See Also: IloActivity, IloSchedulerEnv

Constructor Summary

public IloActivityBreakParam()

public IloActivityBreakParam(IloActivityBreakParamI * impl)

public IloActivityBreakParam(const IloEnv env, const char * name=0)

Method Summary

public void addDisjunctiveBreakType(const IloIntSet types)
const

public void addDisjunctiveBreakType(IloInt type) const

public IloBool canBeSuspendedAtEnd() const

public IloBool canBeSuspendedAtStart() const

public void clearDisjunctiveBreakType() const

public IloNum getDurationMaxNormalBreaks() const

public IloNum getDurationMinNormalBreaks() const

public IloNum getExecutionDurationMin() const

public IloActivityBreakParamI * getImpl() const

public IloBool hasDisjunctiveBreakType() const

public IloBool isDisjunctiveBreakType(IloInt type) const

public void removeDisjunctiveBreakType(const IloIntSet types)
const

public void removeDisjunctiveBreakType(IloInt type) const

public void setCanBeSuspendedAtEnd(IloBool susp=IloTrue)
const

public void setCanBeSuspendedAtStart(IloBool susp=IloTrue)
const

391

public void setDurationMaxNormalBreaks(IloNum
maxDurNormBreaks) const

public void setDurationMinNormalBreaks(IloNum
minDurNormBreaks) const

public void setExecutionDurationMin(IloNum minExecutionTime)
const

Constructors

public IloActivityBreakParam()

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IloActivityBreakParam(IloActivityBreakParamI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IloActivityBreakParam(const IloEnv env, const char * name=0)

This constructor creates an instance of IloActivityBreakParam with the default values that the duration of
its execution time is equal to one, no breaks are considered as disjunctive, and breakable activities cannot be
suspended at their start and end times.

Methods

public void addDisjunctiveBreakType(const IloIntSet types) const

This member function adds the set of types types to the set of disjunctive break types of the invoking
parameter.

public void addDisjunctiveBreakType(IloInt type) const

This member function adds the type type to the set of disjunctive break types of the invoking parameter.

public IloBool canBeSuspendedAtEnd() const

This member function returns IloTrue if the activity using the invoking parameter can be suspended at its end
time. Otherwise, it returns IloFalse.

public IloBool canBeSuspendedAtStart() const

This member function returns IloTrue if the activity using the invoking parameter can be suspended at its start
time. Otherwise, it returns IloFalse.

public void clearDisjunctiveBreakType() const

This member function empties the set of disjunctive break types of activity using the invoking parameter.

392

public IloNum getDurationMaxNormalBreaks() const

This member function returns the threshold duration above which all breaks are considered as disjunctive.

public IloNum getDurationMinNormalBreaks() const

This member function returns the threshold duration under which all breaks are considered as disjunctive. By
default, the value of this minimal duration is 1 (one) so that only the breaks with null duration are considered as
disjunctive.

public IloNum getExecutionDurationMin() const

A breakable activity may execute during a set of disjoint temporal intervals. These execution intervals are
separated by intervals that correspond to the breaks that suspend the activity. This member function returns the
minimal duration for the execution intervals of the activities using the invoking parameter.

The default minimal duration is 1 (one). It can be redefined by calling the member function
setExecutionDurationMin.

public IloActivityBreakParamI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloBool hasDisjunctiveBreakType() const

This member function returns IloTrue if the set of disjunctive break types of the invoking parameter is not
empty. Otherwise, it returns IloFalse.

public IloBool isDisjunctiveBreakType(IloInt type) const

This member function returns IloTrue if the type type belongs to the set of disjunctive break types of the
invoking activity. Otherwise, it returns IloFalse.

public void removeDisjunctiveBreakType(const IloIntSet types) const

This member function removes the set of types types from the set of disjunctive break types of the invoking
parameter.

public void removeDisjunctiveBreakType(IloInt type) const

This member function removes type from the set of disjunctive break types of the invoking parameter.

public void setCanBeSuspendedAtEnd(IloBool susp=IloTrue) const

If susp is equal to IloTrue, this member function permits the activity using the invoking parameter to be
suspended at its end time. Otherwise, these activities cannot be suspended at its end time.

393

public void setCanBeSuspendedAtStart(IloBool susp=IloTrue) const

If susp is equal to IloTrue, this member function permits the activity using the invoking parameter to be
suspended at its start time. Otherwise, these activities cannot be suspended at its start time.

public void setDurationMaxNormalBreaks(IloNum maxDurNormBreaks) const

This member function states that the invoking activity must be completely processed either before or after any
break whose duration is strictly greater than maxDurNormBreaks.

Increasing this maximal duration has no effect in search mode.

public void setDurationMinNormalBreaks(IloNum minDurNormBreaks) const

This member function states that the invoking activity must be completely processed either before or after any
break whose duration is strictly lower than minDurNormBreaks.

By default, the value of this minimal duration for a breakable activity is 1 (one) so that only the breaks with null
duration are considered disjunctive.

Decreasing this minimal duration has no effect in search mode.

public void setExecutionDurationMin(IloNum minExecutionTime) const

A breakable activity may execute during a set of disjoint temporal intervals. These execution intervals are
separated by intervals that correspond to the breaks that suspend the activity.

This member function states that the duration of the temporal intervals during which the invoking breakable
activity executes must all be greater or equal to minExecutionTime. Note that minExecutionTime must be a
strictly positive integer. By default, the minimal duration for execution intervals is 1.

Decreasing the minimal duration for execution intervals has no effect in search mode.

394

Class IloActivityConstraintsParam
Definition file: ilsched/iloactivityparam.h
Include file: <ilsched/iloscheduler.h>

Parameters are used to change the default behavior of activities and resources. By default, all constraints on
activities are taken into account. Instances of IloActivityConstraintsParam are used to change the
default behaviour. It is possible to activate or deactivate some kinds of constraints, such as the precedence
constraints, the time-bound constraints, the resource constraints, and the calendar constraints. If the activity is
breakable, it is also possible to activate or deactivate disjunctive breaks.

For more information, see Calendars, Temporal Relations, and Parameter Classes.

See Also: IloActivity, IloSchedulerEnv, IloPrecedenceConstraint, IloResourceConstraint,
IloTimeBoundConstraint

Constructor Summary

public IloActivityConstraintsParam()

public IloActivityConstraintsParam(IloActivityConstraintsParamI * impl)

public IloActivityConstraintsParam(const IloEnv env, const char * name=0)

Method Summary

public IloBool areCoverConstraintsIgnored() const

public IloBool arePrecedenceConstraintsIgnored() const

public IloBool areResourceConstraintsIgnored() const

public IloBool areShiftConstraintsIgnored() const

public IloBool areTimeBoundConstraintsIgnored() const

public IloActivityConstraintsParamI * getImpl() const

public void ignoreBreakDisjunctivity(IloBool
ignored=IloTrue) const

public void ignoreCoverConstraints(IloBool
ignored=IloTrue) const

public void ignorePrecedenceConstraints(IloBool
ignored=IloTrue) const

public void ignoreResourceConstraints(IloBool
ignored=IloTrue) const

public void ignoreShiftConstraints(IloBool
ignored=IloTrue) const

public void ignoreTimeBoundConstraints(IloBool
ignored=IloTrue) const

public IloBool isBreakDisjunctivityIgnored() const

Constructors

public IloActivityConstraintsParam()

395

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IloActivityConstraintsParam(IloActivityConstraintsParamI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IloActivityConstraintsParam(const IloEnv env, const char * name=0)

This constructor creates a new instance of IloActivityConstraintsParam, with the default value that the following
constraints are all activated: precedence constraints, time-bound constraints, resource constraints, and calendar
constraints. Disjunctive breaks are also taken into account for breakable activities.

Methods

public IloBool areCoverConstraintsIgnored() const

This member function returns IloTrue if the cover constraints are not taken into account for the invoking
parameter. Otherwise, it returns IloFalse.

public IloBool arePrecedenceConstraintsIgnored() const

This member function returns IloTrue if the precedence constraints are not taken into account for the invoking
parameter. Otherwise, it returns IloFalse.

public IloBool areResourceConstraintsIgnored() const

This member function returns IloTrue if resource constraints are not taken into account for the invoking
parameter. Otherwise, it returns IloFalse.

public IloBool areShiftConstraintsIgnored() const

This member function returns IloTrue if shifts of calendar constraints are not taken into account for the invoking
parameter. Otherwise, it returns IloFalse.

public IloBool areTimeBoundConstraintsIgnored() const

This member function returns IloTrue if time-bound constraints are not taken into account for the invoking
parameter. Otherwise, it returns IloFalse.

public IloActivityConstraintsParamI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public void ignoreBreakDisjunctivity(IloBool ignored=IloTrue) const

When the argument ignored is equal to IloTrue, this member function causes the invoking parameter to
ignore the disjunctive breaks. Otherwise, the disjunctive constraints are taken into account.

396

public void ignoreCoverConstraints(IloBool ignored=IloTrue) const

When the argument ignored is equal to IloTrue, this member function causes the invoking parameter to
ignore the cover constraints. Otherwise, and by default, the cover constraints are taken into account.

public void ignorePrecedenceConstraints(IloBool ignored=IloTrue) const

When the argument ignored is equal to IloTrue, this member function causes the invoking parameter to
ignore the precedence constraints. Otherwise, the precedence constraints are taken into account.

public void ignoreResourceConstraints(IloBool ignored=IloTrue) const

When the argument ignored is equal to IloTrue, this member function causes the invoking parameter to
ignore the resource constraints. Otherwise, the resource constraints are taken into account.

public void ignoreShiftConstraints(IloBool ignored=IloTrue) const

When the argument ignored is equal to IloTrue, this member function causes the invoking parameter to
ignore the shift part of the calendar constraints. Otherwise, the shifts are taken into account.

public void ignoreTimeBoundConstraints(IloBool ignored=IloTrue) const

When the argument ignored is equal to IloTrue, this member function causes the invoking parameter to
ignore the time-bound constraints. Otherwise, the constraints are taken into account.

public IloBool isBreakDisjunctivityIgnored() const

This member function returns IloTrue if disjunctive breaks are not taken into account for the invoking
parameter. Otherwise, it returns IloFalse.

397

Class IloActivityOverlapParam
Definition file: ilsched/iloactivityparam.h
Include file: <ilsched/iloscheduler.h>

Parameters are used to change the default behavior of activities and resources. By default, an activity cannot
overlap breaks. Instances of IloActivityOverlapParam are used to specify in which conditions an activity
can overlap breaks.

A break overlap variable allows an activity to start or to finish processing inside some special breaks (called
"possibly overlapped breaks"), and allows posting constraints on possible overlap duration.

This class inherits from the IBM ILOG Concert Technology class IloExtractable. That class is documented in
the IBM ILOG Concert Technology Reference Manual.

For more information, see Calendars, and Parameter Classes.

See Also: IloActivity, IloSchedulerEnv

Constructor Summary

public IloActivityOverlapParam()

public IloActivityOverlapParam(IloActivityOverlapParamI * impl)

public IloActivityOverlapParam(const IloEnv env, const char * name=0)

Method Summary

public void addEndBreakOverlapType(const IloIntSet types)
const

public void addEndBreakOverlapType(IloInt type) const

public void addStartBreakOverlapType(const IloIntSet types)
const

public void addStartBreakOverlapType(IloInt type) const

public void clearEndBreakOverlapType() const

public void clearStartBreakOverlapType() const

public IloNum getEndBreakOverlapMax() const

public IloNum getEndBreakOverlapMin() const

public IloActivityOverlapParamI * getImpl() const

public IloNum getStartBreakOverlapMax() const

public IloNum getStartBreakOverlapMin() const

public IloBool hasEndBreakOverlapType() const

public IloBool hasStartBreakOverlapType() const

public IloBool isEndBreakOverlapType(IloInt type) const

public IloBool isStartBreakOverlapType(IloInt type) const

public void removeEndBreakOverlapType(const IloIntSet
types) const

public void removeEndBreakOverlapType(IloInt type) const

398

public void removeStartBreakOverlapType(const IloIntSet
types) const

public void removeStartBreakOverlapType(IloInt type) const

public void setEndBreakOverlapMax(IloNum endOverlapMax)
const

public void setEndBreakOverlapMin(IloNum endOverlapMin)
const

public void setStartBreakOverlapMax(IloNum startOverlapMax)
const

public void setStartBreakOverlapMin(IloNum startOverlapMin)
const

Constructors

public IloActivityOverlapParam()

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IloActivityOverlapParam(IloActivityOverlapParamI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IloActivityOverlapParam(const IloEnv env, const char * name=0)

This constructor creates a new instance of IloActivityOverlapParam with the default values that an activity
cannot overlap breaks at start and end times.

Methods

public void addEndBreakOverlapType(const IloIntSet types) const

This member function adds the set of types types to the set of end break overlap types.

public void addEndBreakOverlapType(IloInt type) const

This member function adds the type type to the set of end break overlap types.

public void addStartBreakOverlapType(const IloIntSet types) const

This member function adds the set of types types to the set of start break overlap types.

public void addStartBreakOverlapType(IloInt type) const

This member function adds the type type to the set of start break overlap types.

public void clearEndBreakOverlapType() const

399

This member function empties the set of end break overlap types.

public void clearStartBreakOverlapType() const

This member function empties the set of start break overlap types.

public IloNum getEndBreakOverlapMax() const

This member function returns the maximal value of the end break overlap variable of the activities depending on
the invoking parameter.

public IloNum getEndBreakOverlapMin() const

This member function returns the minimal value of the end break overlap variable of the activities depending on
the invoking parameter.

public IloActivityOverlapParamI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloNum getStartBreakOverlapMax() const

This member function returns the maximal value of the start break overlap variable of the activities depending on
the invoking parameter.

public IloNum getStartBreakOverlapMin() const

This member function returns the minimal value of the start break overlap variable of the activities depending on
the invoking parameter.

public IloBool hasEndBreakOverlapType() const

This member function returns IloTrue if the set of end break overlap types of the invoking parameter is not
empty.

public IloBool hasStartBreakOverlapType() const

This member function returns IloTrue if the set of start break overlap types of the invoking parameter is not
empty.

public IloBool isEndBreakOverlapType(IloInt type) const

This member function returns IloTrue if the type type belongs to the set of end break overlap types of the
invoking parameter.

400

public IloBool isStartBreakOverlapType(IloInt type) const

This member function returns IloTrue if the type type belongs to the set of start break overlap types of the
invoking parameter.

public void removeEndBreakOverlapType(const IloIntSet types) const

This function removes the set of types types from the set of end break overlap types.

public void removeEndBreakOverlapType(IloInt type) const

This member function removes the type type from the set of end break overlap types.

public void removeStartBreakOverlapType(const IloIntSet types) const

This function removes the set of types types from the set of start break overlap types.

public void removeStartBreakOverlapType(IloInt type) const

This function removes the type type from the set of start break overlap types.

public void setEndBreakOverlapMax(IloNum endOverlapMax) const

This member function sets endOverlapMax as the new maximal value of the end break overlap variable.

public void setEndBreakOverlapMin(IloNum endOverlapMin) const

This member function sets endOverlapMin as the new minimal value of the end break overlap variable.

public void setStartBreakOverlapMax(IloNum startOverlapMax) const

This member function sets startOverlapMax as the new maximal value of the start break overlap variable.

public void setStartBreakOverlapMin(IloNum startOverlapMin) const

This member function sets startOverlapMin as the new minimal value of the start break overlap variable.

401

Class IloActivityShiftParam
Definition file: ilsched/iloactivityparam.h
Include file: <ilsched/iloscheduler.h>

Parameters are used to change the default behavior of activities and resources. By default, an activity deals with
all shifts. Instances of IloActivityShiftParam are used to define the set of ignored types of shifts for
activities.

For more information, see Shift Object Semantic and Parameter Classes.

See Also: IloActivity, IloSchedulerEnv

Constructor Summary

public IloActivityShiftParam()

public IloActivityShiftParam(IloActivityShiftParamI * impl)

public IloActivityShiftParam(const IloEnv env, const char * name=0)

Method Summary

public void addIgnoredShiftType(const IloIntSet types) const

public void addIgnoredShiftType(IloInt type) const

public void clearIgnoredShiftType() const

public IloActivityShiftParamI * getImpl() const

public IloBool hasIgnoredShiftType() const

public IloBool isIgnoredShiftType(IloInt type) const

public void removeIgnoredShiftType(const IloIntSet types)
const

public void removeIgnoredShiftType(IloInt type) const

Constructors

public IloActivityShiftParam()

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IloActivityShiftParam(IloActivityShiftParamI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IloActivityShiftParam(const IloEnv env, const char * name=0)

This constructor creates an instance of IloActivityShiftParam with the default values. No shifts are
ignored.

402

Methods

public void addIgnoredShiftType(const IloIntSet types) const

This member function adds the set of types types to the set of ignored shift types of the invoking parameter.

public void addIgnoredShiftType(IloInt type) const

This member function adds the type type to the set of ignored shift types of the invoking parameter.

public void clearIgnoredShiftType() const

This member function empties the set of ignored shift types of the invoking parameter.

public IloActivityShiftParamI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloBool hasIgnoredShiftType() const

This member function returns IloTrue if the set of ignored shift types is not empty.

public IloBool isIgnoredShiftType(IloInt type) const

This member function returns IloTrue if the type type belongs to the set of ignored shift types of the invoking
parameter. Otherwise, it returns IloFalse.

public void removeIgnoredShiftType(const IloIntSet types) const

This member function removes the set of types types from the set of ignored shift types of the invoking
parameter.

public void removeIgnoredShiftType(IloInt type) const

This member function removes the type type from the set of ignored shift types of the invoking parameter.

403

Class IloAltResConstraintIterator
Definition file: ilsched/iloresconstraint.h
Include file: <ilsched/iloscheduler.h>

An instance of this class traverses the set of alternative resource constraints defined on an environment.

Note

This class is provided for compatibility with the IloIterator<IloAltResConstraint> class of Scheduler
5.0. In the current version of the library the class IloAltResConstraint does not exist and therefore
IloIterator<IloAltResConstraint> is not a well-formed iterator.

For more information, see IloIterator<IloResourceConstraint> in the Concert Reference Manual.

See Also: IloResourceConstraintIterator

Constructor Summary

public IloAltResConstraintIterator(const IloEnv env)

Method Summary

public IloBool ok()

public IloResourceConstraint operator*()

public void operator++()

Constructors

public IloAltResConstraintIterator(const IloEnv env)

This constructor creates an iterator to traverse all the alternative resource constraints that are defined on the
environment env.

Methods

public IloBool ok()

This member function returns IloTrue if the current position of the iterator is a valid one. It returns IloFalse if
all the alternative resource constraints have been scanned by the iterator.

public IloResourceConstraint operator*()

This operator returns the current instance of IloResourceConstraint, the one to which the invoking iterator
points. This operator must not be called if the iterator does not point to a valid position, that is, one to which the
member function IloAltResConstraintIterator::ok returns IloFalse.

404

public void operator++()

This left-increment operator shifts the current position of the iterator to the next instance of
IloResourceConstraint with alternatives.

405

Class IloAltResSet
Definition file: ilsched/iloaltresset.h
Include file: <ilsched/iloscheduler.h>

Alternative Resource Set.

An instance of the class IloAltResSet represents a special set of resources to which activities can be
assigned.

This class inherits from the IBM® ILOG® Concert Technology class IloExtractable. That class is
documented in the IBM ILOG Concert Technology Reference Manual.

When an activity requires an instance of this class, the activity requires exactly one of the resources represented
in that set. For convenience, we say that an instance of IloAltResSet behaves like a standard resource. To
that end, the class includes member functions that reproduce the properties and behavior of a standard resource.

The set of resources (the alternatives) must consist of capacity resources (that is, instances of
IloDiscreteEnergy, IloDiscreteResource, IloUnaryResource, IloContinuousReservoir or
IloReservoir).

Redundant Resources

It is possible to consider the set of resources as a resource whose theoretical capacity is the sum of the
capacities of the resources of the set. This resource is called the redundant resource of the set. The redundant
resource of an alternative set of unary or discrete resources is a discrete resource. The redundant resource of an
alternative set of discrete energy resources is a discrete energy resource. The redundant resource of an
alternative set of reservoirs is a reservoir.

When created (see member functions IloAltResSet::getRedundantResource and
IloAltResSet::setRedundantResource), a redundant resource can be used as a normal resource. In
particular, the parameters of the redundant resource can be modified.

See Also: IloResource, IloAltResSet::Iterator

Constructor Summary

public IloAltResSet()

public IloAltResSet(IloAltResSetI * impl)

public IloAltResSet(const IloEnv env, const char * name=0)

Method Summary

public void add(const IloResource resource) const

public IloBool contains(const IloResource resource) const

public IloAltResSetI * getImpl() const

public IloCapResource getRedundantResource() const

public IloBool hasRedundantResource() const

public IloBool isKeptOpen() const

public IloBool operator==(const IloAltResSet resource) const

public void remove(const IloResource resource) const

public void setRedundantResource(IloBool redundant=IloTrue) const

406

Inner Class

IloAltResSet::Iterator

Constructors

public IloAltResSet()

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IloAltResSet(IloAltResSetI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IloAltResSet(const IloEnv env, const char * name=0)

This constructor creates a new instance of IloAltResSet and adds it to those managed in the environment.
This set of alternative resources is initially empty.

Methods

public void add(const IloResource resource) const

This member function adds a new resource to the invoking alternative resource set.

public IloBool contains(const IloResource resource) const

This member function returns IloTrue if resource currently belongs to the invoking instance of
IloAltResSet. Otherwise, it returns IloFalse.

public IloAltResSetI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloCapResource getRedundantResource() const

This member function returns the redundant resource of the invoking alternative resource set. If this redundant
resource does not currently exist - no previous call to the member function setRedundantResource(IloTrue)
- this member function will create it. In that case, the current alternative resource set must not be empty and all
the resources of the set must be of the same type (discrete, discrete energy, or reservoir). Otherwise, an error
will be raised.

public IloBool hasRedundantResource() const

This member function returns IloTrue if the invoking alternative resource set is currently associated with a
redundant resource. Otherwise, it will return IloFalse.

public IloBool isKeptOpen() const

407

This member function returns IloTrue if all resources belonging to the invoking alternative resource set must be
kept open during the search. Otherwise, it returns IloFalse.

public IloBool operator==(const IloAltResSet resource) const

This operator returns IloTrue if the invoking instance and the argument resource are identical; that is, they
are both handles with the same implementation object. Otherwise, it returns IloFalse.

public void remove(const IloResource resource) const

This member function removes resource from the invoking alternative resource set.

public void setRedundantResource(IloBool redundant=IloTrue) const

If the argument redundant is equal to IloTrue, this member function will create a redundant resource for the
invoking alternative resource set. In that case, the current alternative resource set must not be empty, and all the
resources of the set must be of the same type (discrete, discrete energy, or reservoir). Otherwise, an error will be
raised.

If the argument redundant is equal to IloFalse and if a redundant resource already exists - from a previous
call to setRedundantResource(IloTrue) or getRedundantResource() - this resource will no longer be
considered as the redundant resource of the invoking alternative resource set. Note that this resource will still
exist as well as its parameters and the activities that may use it.

408

Class IloCalendar
Definition file: ilsched/ilocalendar.h

An instance of IloCalendar allows modeling complex behavior for activity variables (start, end, duration and
processing time) within a resource. This behaviour could represent, for example, holidays, resource
performances, and so forth. For more information, see Calendars. A calendar object is defined by three
components:

A set of breaks which basically can suspend the execution of the concerned activity (see Calendars)•
A set of shifts which can, for example, forbid some start dates (see Shift Object Semantic)•
A granular step-wise function to define the efficiency of the resource along the schedule (see Functional
and Integral Constraints on Resources)

•

Constructor Summary

public IloCalendar()

public IloCalendar(IloCalendarI * impl)

public IloCalendar(const IloEnv env, const char * name=0)

Method Summary

public void addShiftObject(IloShiftObject shift) const

public IloBool areShiftObjectsIgnored() const

public IloCalendarI * getImpl() const

public IloBool hasBreakListParam() const

public IloBool hasEfficiencyParam() const

public IloBool hasShiftObject() const

public void ignoreBreakListParam(IlcBool ignored=IloTrue) const

public void ignoreEfficiencyParam(IlcBool ignored=IloTrue) const

public void ignoreShiftObjects(IlcBool ignored=IloTrue) const

public IloBool isBreakListParamIgnored() const

public IloBool isEfficiencyParamIgnored() const

public void removeShiftObject(IloShiftObject shift) const

public void setBreakListParam(const IloIntervalList breakList) const

public void setEfficiencyParam(const IloGranularFunction f) const

Inner Class

IloCalendar::ShiftObjectIterator

Constructors

public IloCalendar()

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

409

public IloCalendar(IloCalendarI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IloCalendar(const IloEnv env, const char * name=0)

This constructor creates a new instance of IloCalendar. Its name is set to name

Methods

public void addShiftObject(IloShiftObject shift) const

This member function adds the shift object shift to the invoking calendar.

public IloBool areShiftObjectsIgnored() const

This member function returns IloTrue if shift objects of the invoking calendar are not taken into account when
searching for a solution. Otherwise, it returns IloFalse.

public IloCalendarI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloBool hasBreakListParam() const

This member function returns IloTrue if a list of breaks has been attached to the invoking calendar. Otherwise,
it returns IloFalse.

public IloBool hasEfficiencyParam() const

This member function returns IloTrue if an efficiency function has been attached to the invoking calendar.
Otherwise, it returns IloFalse.

public IloBool hasShiftObject() const

This member function returns IlcTrue if the invoking calendar contains shift objects. If the calendar list of shift
object is empty, it returns IlcFalse.

public void ignoreBreakListParam(IlcBool ignored=IloTrue) const

When the argument ignored is equal to IloTrue, this member function inhibits breaks for the invoking
calendar. That is, all breaks will be ignored.

public void ignoreEfficiencyParam(IlcBool ignored=IloTrue) const

When the argument ignored is equal to IloTrue, this member function inhibits the efficiency behavior for the
invoking calendar. That is, the efficiency function is considered as equal to the granularity on the entire horizon.

410

public void ignoreShiftObjects(IlcBool ignored=IloTrue) const

When the argument ignored is equal to IloTrue, this member function inhibits all shift objects added to the
invoking calendar. That is, no shift is taken into account when searching for a solution.

public IloBool isBreakListParamIgnored() const

This member function returns IloTrue if breaks of the invoking calendar are not taken into account when
searching for a solution. Otherwise, it returns IloFalse.

public IloBool isEfficiencyParamIgnored() const

This member function returns IloTrue if the efficiency of the invoking calendar is not taken into account when
searching for a solution. Otherwise, it returns IloFalse.

public void removeShiftObject(IloShiftObject shift) const

This member function removes the shift object shift from the invoking calendar.

public void setBreakListParam(const IloIntervalList breakList) const

This member function sets breakList as the new break list of the calendar.

public void setEfficiencyParam(const IloGranularFunction f) const

This member function sets f as the granular step-wise function that models the efficiency of the calendar within
the schedule.

411

Class IloCapResource
Definition file: ilsched/ilocapacity.h
Include file: <ilsched/iloscheduler.h>

IloCapResource is the root class for capacity resources, that is, resources that are defined to have a limited
integer capacity over time. In Scheduler, there are five classes of capacity resources:

IloDiscreteEnergy•
IloDiscreteResource•
IloReservoir•
IloContinuousReservoir•
IloUnaryResource•

Theoretical and Maximal Capacity

The theoretical capacity of a capacity resource is a bound (that is, a limit) on the amount of capacity that can be
available at any point in time. The maximal capacity is the capacity that can be used in practice at a particular
point in time or over a particular interval of time. The maximal capacity typically varies over time (a resource
maximal capacity profile), while the theoretical capacity is an intrinsic property of the resource. The maximal
capacity can never exceed the theoretical capacity. The theoretical capacity can be infinite.

The theoretical capacity can be set by the member function IloCapResource::setCapacity. The maximal
level is set by the member functions setCapacityMax, setEnergyMax, setLevelMax of the classes
IloDiscreteResource, IloDiscreteEnergy, IloReservoir or IloContinuousReservoir.

Resources as Data Members

An instance of the class IloCapResource may be a data member of another “external” object. In such a case, it
may be useful to find the external object from the instance of IloCapResource. The inherited member functions
IloExtractable::getObject and IloExtractable::setObject are provided to manage such an
inverse link.

Parameter Classes

Initial occupation: (class IloNumToNumStepFunction or IloNumToNumSegmentFunction

This parameter describes the initial occupation of the capacity resource over time (see the following section,
Initial Occupation). The parameter class IloNumToNumStepFunction is the capacity resource of an instance
of IloDiscreteEnergy, IloDiscreteResource, or IloReservoir. IloNumToNumSegmentFunction is
the capacity resource of an instance of IloContinuousReservoir. It is directly modified by the member
function IloCapResource::setInitialOccupation. IloNumToNumStepFunction and
IloNumToNumSegmentFunction are documented in the IBM ILOG Concert Technology Reference Manual.

Refer to Scheduler Overview for more information on how to share parameters among resources, and how the
direct modification of parameters through the resource API may affect them.

Initial Occupation

412

A resource may already be occupied by some activities before solving a scheduling problem. This initial
occupation can be set up without having to declare the corresponding activities.

That facility is intended to help in solving a problem by iteratively adding a new set of activities to schedule or in
improving a solution by rescheduling a subset of the activities.

The initial occupation parameter is defined with an instance of the IloNumToNumSegmentFunction class if the
capacity resource is a continuous reservoir, and with an instance of the IloNumToNumStepFunction class
otherwise. IloNumToNumStepFunction and IloNumToNumSegmentFunction are documented in the IBM
ILOG Concert Technology Reference Manual.

For instances of IloDiscreteResource and IloDiscreteEnergy, the initial level is zero outside the
definition domain of the function.

For instances of IloReservoir or IloContinuousReservoir, if the definition domain of the function
intersects the capacity enforcement intervals defined on the invoking reservoir (see
IloResource::setCapacityEnforcementIntervalsParam), the initial level is given by the function on the
defined enforcement intervals, and by zero elsewhere. That is, the initial level of the reservoir is ignored. If the
definition domain of the function does not intersect the temporal interval of the time table, the initial level of the
reservoir is used as usual.

See Also: IloAltResSet, IloEnforcementLevel, IloResource, IloResourceConstraint

Constructor Summary

public IloCapResource()

public IloCapResource(IloCapResourceI * impl)

Method Summary

public void addMaxTextureIgnoreInterval(const IloIntervalList list)

public void addMaxTextureIgnoreInterval(IloNum start, IloNum end)

public void addMaxTextureIgnoreIntervalOnDuration(IloNum start,
IloNum duration)

public void addMaxTexturePeriodicIgnoreInterval(IloNum start, IloNum
duration, IloNum period, IloNum end)

public void addMinTextureIgnoreInterval(const IloIntervalList list)

public void addMinTextureIgnoreInterval(IloNum start, IloNum end)

public void addMinTextureIgnoreIntervalOnDuration(IloNum start,
IloNum duration)

public void addMinTexturePeriodicIgnoreInterval(IloNum start, IloNum
duration, IloNum period, IloNum end)

public void emptyMaxTextureIgnoreIntervals()

public void emptyMinTextureIgnoreIntervals()

public IloNum getCapacity() const

public IloCapResourceI * getImpl() const

public IloNum getInitialOccupation(IloNum time) const

public IloNum getInitialOccupationMax(IloNum timeMin, IloNum timeMax)
const

public IloNum getInitialOccupationMin(IloNum timeMin, IloNum timeMax)
const

public IloBool hasInitialOccupation() const

public IloBool hasMaxTextureMeasurement() const

413

public IloBool hasMinTextureMeasurement() const

public void removeMaxTextureIgnoreInterval(const IloIntervalList
list)

public void removeMaxTextureIgnoreInterval(IloNum start, IloNum end)

public void removeMaxTextureIgnoreIntervalOnDuration(IloNum start,
IloNum duration)

public void removeMaxTexturePeriodicIgnoreInterval(IloNum start,
IloNum duration, IloNum period, IloNum end)

public void removeMinTextureIgnoreInterval(const IloIntervalList
list)

public void removeMinTextureIgnoreInterval(IloNum start, IloNum end)

public void removeMinTextureIgnoreIntervalOnDuration(IloNum start,
IloNum duration)

public void removeMinTexturePeriodicIgnoreInterval(IloNum start,
IloNum duration, IloNum period, IloNum end)

public void setCapacity(IloNum capacity) const

public void setInitialOccupation(IloNum timeMin, IloNum occ1, IloNum
timeMax, IloNum occ2) const

public void setInitialOccupation(IloNum timeMin, IloNum timeMax,
IloNum occ) const

public void setInitialOccupationParam(const
IloNumToNumSegmentFunction tfp) const

public void setInitialOccupationParam(const IloNumToNumStepFunction
tfp) const

public void setMaxTextureHeuristicBeta(IloNum b)

public void setMaxTextureParam(const IloTextureParam param) const

public void setMaxTextureRandomGenerator(IloRandom r)

public void setMinTextureHeuristicBeta(IloNum b)

public void setMinTextureParam(const IloTextureParam param) const

public void setMinTextureRandomGenerator(IloRandom r)

public void unsetMaxTextureRandomGenerator()

public void unsetMinTextureRandomGenerator()

Inherited Methods from IloResource

addCapacityEnforcementInterval, addTransitionTimeEnforcementInterval,
areCalendarConstraintsIgnored, areCapacityConstraintsIgnored,
arePrecedenceConstraintsIgnored, areSequenceConstraintsIgnored,
areTransitionTimeConstraintsIgnored, getCalendar, getCalendarEnforcement,
getCapacityEnforcement, getDurationEnforcement, getImpl, getPrecedenceEnforcement,
getSequenceEnforcement, getTransitionTimeEnforcement, hasCalendar,
ignoreCalendarConstraints, ignoreCapacityConstraints, ignorePrecedenceConstraints,
ignoreSequenceConstraints, ignoreTransitionTimeConstraints, isCapacityResource,
isContinuousReservoir, isDiscreteEnergy, isDiscreteResource, isKeptOpen,
isReservoir, isStateResource, isUnaryResource, keepOpen,
removeCapacityEnforcementInterval, removeTransitionTimeEnforcementInterval,
setCalendar, setCalendarEnforcement, setCapacityEnforcement,
setCapacityEnforcementIntervalsParam, setDurationEnforcement,
setPrecedenceEnforcement, setResourceParam, setSequenceEnforcement,
setTransitionTimeEnforcement, setTransitionTimeEnforcementIntervalsParam

414

Constructors

public IloCapResource()

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IloCapResource(IloCapResourceI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

Methods

public void addMaxTextureIgnoreInterval(const IloIntervalList list)

This member function adds an interval list to the list of intervals that are ignored by the texture measurement on
the maximum capacity constraint of the invoking resource. The new interval is merged with existing intervals that
it overlaps, if any.

public void addMaxTextureIgnoreInterval(IloNum start, IloNum end)

This member function adds an interval to the list of intervals that are ignored by the texture measurement on the
maximum capacity constraint of the invoking resource. The ignored interval is [start, end). The new interval
is merged with existing intervals that it overlaps, if any.

public void addMaxTextureIgnoreIntervalOnDuration(IloNum start, IloNum duration)

This member function adds an interval to the list of intervals that are ignored by the texture measurement on the
maximum capacity constraint of the resource. The ignored interval is [start,start+duration). The new
interval is merged with existing intervals that it overlaps, if any.

public void addMaxTexturePeriodicIgnoreInterval(IloNum start, IloNum duration,
IloNum period, IloNum end)

This member function adds a set of intervals to the list of intervals that are ignored by the texture measurement
on the maximum capacity constraint of the invoking resource. For every i >= 0 such that start + i *
period < end, an interval of[start + i * period, start + duration + i * period) is added.
Adding a new interval that overlaps with an already existing interval results in the merging of the intervals.

public void addMinTextureIgnoreInterval(const IloIntervalList list)

This member function adds an interval list to the list of intervals that are ignored by the texture measurement on
the minimum capacity constraint of the invoking resource. The new interval is merged with existing intervals that
it overlaps, if any.

public void addMinTextureIgnoreInterval(IloNum start, IloNum end)

415

This member function adds an interval to the list of intervals that are ignored by the texture measurement on the
minimum capacity constraint of the invoking resource. The ignored interval is [start, end). The new interval
is merged with existing intervals that it overlaps, if any.

public void addMinTextureIgnoreIntervalOnDuration(IloNum start, IloNum duration)

This member function adds an interval to the list of intervals that are ignored by the texture measurement on the
minimum capacity constraint of the resource. The ignored interval is [start,start+duration). The new
interval is merged with existing intervals that it overlaps, if any.

public void addMinTexturePeriodicIgnoreInterval(IloNum start, IloNum duration,
IloNum period, IloNum end)

This member function adds a set of intervals to the list of intervals that are ignored by the texture measurement
on the minimum capacity constraint of the invoking resource. For every i >= 0 such that start + i *
period < end, an interval of[start + i * period, start + duration + i * period) is added.
Adding a new interval that overlaps with an already existing interval results in the merging of the intervals.

public void emptyMaxTextureIgnoreIntervals()

This member function removes all the intervals from the ignored intervals of the texture measurement on the
maximum capacity constraint of the invoking resource.

public void emptyMinTextureIgnoreIntervals()

This member function removes all the intervals from the ignored intervals of the texture measurement on the
minimum capacity constraint

public IloNum getCapacity() const

This member function returns the theoretical capacity of the invoking resource.

public IloCapResourceI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloNum getInitialOccupation(IloNum time) const

Returns the initial occupation at time.

Initial Occupation

A resource may already be occupied by some activities before solving a scheduling problem. This initial
occupation can be set up without having to declare the corresponding activities.

That facility is intended to help in solving a problem by iteratively adding a new set of activities to schedule or in
improving a solution by rescheduling a subset of the activities.

The initial occupation parameter is defined with an instance of the IloNumToNumSegmentFunction class if the
capacity resource is a continuous reservoir, and with an instance of the IloNumToNumStepFunction class

416

otherwise. IloNumToNumStepFunction and IloNumToNumSegmentFunction are documented in the
Concert Technology Reference Manual.

For instances of IloDiscreteResource and IloDiscreteEnergy, the initial level is zero outside the
definition domain of the function.

For instances of IloReservoir or IloContinuousReservoir, if the definition domain of the function
intersects the capacity enforcement intervals defined on the invoking reservoir (see
IloResource::setCapacityEnforcementIntervalsParam), the initial level is given by the function on the
defined enforcement intervals, and by zero elsewhere. That is, the initial level of the reservoir is ignored. If the
definition domain of the function does not intersect the temporal interval of the time table, the initial level of the
reservoir is used as usual.

public IloNum getInitialOccupationMax(IloNum timeMin, IloNum timeMax) const

Returns the maximum level of the initial occupation function on the interval [timeMin, timeMax).

See IloCapResource::getInitialOccupation for more information about initial occupation.

public IloNum getInitialOccupationMin(IloNum timeMin, IloNum timeMax) const

Returns the minimum level of the initial occupation function on the interval [timeMin, timeMax).

See IloCapResource::getInitialOccupation for more information about initial occupation.

public IloBool hasInitialOccupation() const

This member function returns IloTrue if an initial occupation has been set up on the invoking resource.
Otherwise, it returns IloFalse.

See IloCapResource::getInitialOccupation for more information about initial occupation.

public IloBool hasMaxTextureMeasurement() const

This member function returns IloTrue if a texture measurement will be created at extraction time on the
maximum capacity constraint of the invoking resource. Otherwise, IloFalse is returned.

public IloBool hasMinTextureMeasurement() const

This member function returns IloTrue if a texture measurement will be created at extraction time on the
minimum capacity constraint of the invoking resource. Otherwise, IloFalse is returned.

public void removeMaxTextureIgnoreInterval(const IloIntervalList list)

This member function removes all intervals ignored by the texture measurement on the invoking resource during
the intervals in list.

public void removeMaxTextureIgnoreInterval(IloNum start, IloNum end)

417

This member function removes all intervals ignored by the texture measurement on the maximum capacity
constraint of the invoking resource between start and end. If start is inside an existing interval [start1,
end1), that is, start1 < start < end1, this results in the ignored interval [start1, start). If end is
inside an interval [start2, end2) this results in an ignored interval [end, end2).

public void removeMaxTextureIgnoreIntervalOnDuration(IloNum start, IloNum duration)

This member function removes all ignored intervals on the texture measurement on the maximum capacity
constraint of the invoking resource between start and start+duration.

public void removeMaxTexturePeriodicIgnoreInterval(IloNum start, IloNum duration,
IloNum period, IloNum end)

This member function removes ignored intervals from the texture measurement on the maximum capacity
constraint of the invoking resource. More precisely, for every i >= 0 such that start + i * period < end,
this function removes all intervals betweenstart + i * period and start + duration + i *period.

public void removeMinTextureIgnoreInterval(const IloIntervalList list)

This member function removes all intervals ignored by the texture measurement on the minimum capacity
constraint of the invoking resource during the intervals in list.

public void removeMinTextureIgnoreInterval(IloNum start, IloNum end)

This member function removes all intervals ignored by the texture measurement on the minimum capacity
constraint of the invoking resource between start and end. If start is inside an existing interval [start1,
end1), that is, start1 < start < end1, this results in the ignored interval [start1, start). If end is
inside an interval [start2, end2) this results in an ignored interval [end, end2).

public void removeMinTextureIgnoreIntervalOnDuration(IloNum start, IloNum duration)

This member function removes all ignored intervals on the texture measurement on the minimum capacity
constraint of the invoking resource between start and start+duration.

public void removeMinTexturePeriodicIgnoreInterval(IloNum start, IloNum duration,
IloNum period, IloNum end)

This member function removes ignored intervals from the texture measurement on the minimum capacity
constraint of the invoking resource. More precisely, for every i >= 0 such that start + i * period < end,
this function removes all intervals betweenstart + i * period and start + duration + i *period.

public void setCapacity(IloNum capacity) const

This member function sets capacity as the new theoretical capacity of the invoking resource.

public void setInitialOccupation(IloNum timeMin, IloNum occ1, IloNum timeMax,
IloNum occ2) const

418

Sets the initial occupation on the interval [timeMin, timeMax) to be equal to occ1 at timeMin, to be equal
to occ2 at timeMax and to be linear between these two time points. This function should be called only if the
invoking capacity resource is a continuous reservoir.

See IloCapResource::getInitialOccupation for more information about initial occupation.

public void setInitialOccupation(IloNum timeMin, IloNum timeMax, IloNum occ) const

Sets the initial occupation on the interval [timeMin, timeMax) to be equal to occ.

See IloCapResource::getInitialOccupation) for more information about initial occupation.

public void setInitialOccupationParam(const IloNumToNumSegmentFunction tfp) const

This member function sets the piecewise linear function tfp as the initial level of the invoking resource. An
exception is thrown if the invoking resource is not a continuous reservoir.

See IloCapResource::getInitialOccupation for more information about initial occupation.

public void setInitialOccupationParam(const IloNumToNumStepFunction tfp) const

This member function sets the argument tfp as the initial level of the invoking resource.

See IloCapResource::getInitialOccupation for more information about initial occupation.

public void setMaxTextureHeuristicBeta(IloNum b)

This member function sets the beta value to be used with the random number generator for the texture
measurement on the maximum constraint of the invoking resource. If no random number generator is used, this
function does nothing. For details on the use of the beta argument, see
IlcResourceTexture::setRandomGenerator.

public void setMaxTextureParam(const IloTextureParam param) const

This member function sets the texture parameter on maximum capacity constraints to param. Modeling objects
that are created will point to this instance, which can thus be shared between several objects.

public void setMaxTextureRandomGenerator(IloRandom r)

This member function sets the random number generator that will be used in choosing the critical time point for
the texture measurement on the maximum constraint of the invoking resource. By default, no random number
generator is used.

public void setMinTextureHeuristicBeta(IloNum b)

419

This member function sets the beta value to be used with the random number generator for the texture
measurement on the minimum constraint of the invoking resource. If no random number generator is used, this
function does nothing. For details on the use of the beta argument, see
IlcResourceTexture::setRandomGenerator.

public void setMinTextureParam(const IloTextureParam param) const

This member function sets the texture parameter on minimum capacity constraints to param. Modeling objects
that are created will point to this instance, which can thus be shared between several objects.

public void setMinTextureRandomGenerator(IloRandom r)

This member function sets the random number generator that will be used in choosing the critical time point for
the texture measurement on the minimum constraint of the invoking resource. By default, no random number
generator is used.

public void unsetMaxTextureRandomGenerator()

This member function removes the random number generator from the maximum capacity constraint, meaning
that no random numbers will be used in choosing the critical time point in the texture measurement.

public void unsetMinTextureRandomGenerator()

This member function removes the random number generator from the minimum capacity constraint, meaning
that no random numbers will be used in choosing the critical time point in the texture measurement.

420

Class IloContinuousReservoir
Definition file: ilsched/ilocontreservoir.h
Include file: <ilsched/iloscheduler.h>

An instance of the class IloContinuousReservoir represents a resource which activities can either fill or
empty. The process is continuous and linear between the start and the end of the activity. If the duration of the
activity is null, the filling (or emptying) process is instantaneous (so not continuous). The continuous reservoir
cannot be emptied if it is already empty and, if a maximal capacity is defined, then this maximal capacity, or level,
will never be exceeded.

When the model of your problem represents an ongoing process, you may be faced with the fact that a reservoir
level already exists. You can simply pass an initial level like that to the constructor of
IloContinuousReservoir or use the IloContinuousReservoir::setInitialLevel member function.

The maximum and minimum levels of a continuous reservoir can vary over time. You can define them by using
member functions of IloContinuousReservoir.

Parameter classes

Minimal and maximal capacity: (class IloNumToNumSegmentFunction)

These parameters describe the minimal and maximal levels over time. They are directly modified by the member
functions IloContinuousReservoir::setLevelMin and IloContinuousReservoir::setLevelMax.
The class IloNumToNumSegmentFunction is documented in the IBM ILOG Concert Technology Reference
Manual.

Refer to Scheduler Overview for more information on how to share parameters among resources, and how the
direct modification of parameters through the resource API may affect them.

See Also: IloEnforcementLevel, IloCapResource, IloResourceConstraint

Constructor Summary

public IloContinuousReservoir()

public IloContinuousReservoir(IloContinuousReservoirI * impl)

public IloContinuousReservoir(const IloEnv env, IloNum
capacity=IloMaxCapacityReservoir, IloNum initialLevel=0, const char *
name=0)

Method Summary

public IloContinuousReservoirI * getImpl() const

public IloNum getInitialLevel() const

public IloNum getLevelMax(IloNum time) const

public IloNum getLevelMaxMax(IloNum timeMin, IloNum timeMax)
const

public IloNum getLevelMaxMin(IloNum timeMin, IloNum timeMax)
const

public IloNum getLevelMin(IloNum time) const

421

public IloNum getLevelMinMax(IloNum timeMin, IloNum timeMax)
const

public IloNum getLevelMinMin(IloNum timeMin, IloNum timeMax)
const

public void setInitialLevel(IloNum level) const

public void setLevelMax(IloNum timeMin, IloNum timeMax,
IloNum level) const

public void setLevelMaxParam(const
IloNumToNumSegmentFunction tfp) const

public void setLevelMin(IloNum timeMin, IloNum timeMax,
IloNum level) const

public void setLevelMinParam(const
IloNumToNumSegmentFunction tfp) const

Inherited Methods from IloCapResource

addMaxTextureIgnoreInterval, addMaxTextureIgnoreInterval,
addMaxTextureIgnoreIntervalOnDuration, addMaxTexturePeriodicIgnoreInterval,
addMinTextureIgnoreInterval, addMinTextureIgnoreInterval,
addMinTextureIgnoreIntervalOnDuration, addMinTexturePeriodicIgnoreInterval,
emptyMaxTextureIgnoreIntervals, emptyMinTextureIgnoreIntervals, getCapacity,
getImpl, getInitialOccupation, getInitialOccupationMax, getInitialOccupationMin,
hasInitialOccupation, hasMaxTextureMeasurement, hasMinTextureMeasurement,
removeMaxTextureIgnoreInterval, removeMaxTextureIgnoreInterval,
removeMaxTextureIgnoreIntervalOnDuration, removeMaxTexturePeriodicIgnoreInterval,
removeMinTextureIgnoreInterval, removeMinTextureIgnoreInterval,
removeMinTextureIgnoreIntervalOnDuration, removeMinTexturePeriodicIgnoreInterval,
setCapacity, setInitialOccupation, setInitialOccupation,
setInitialOccupationParam, setInitialOccupationParam, setMaxTextureHeuristicBeta,
setMaxTextureParam, setMaxTextureRandomGenerator, setMinTextureHeuristicBeta,
setMinTextureParam, setMinTextureRandomGenerator, unsetMaxTextureRandomGenerator,
unsetMinTextureRandomGenerator

Inherited Methods from IloResource

addCapacityEnforcementInterval, addTransitionTimeEnforcementInterval,
areCalendarConstraintsIgnored, areCapacityConstraintsIgnored,
arePrecedenceConstraintsIgnored, areSequenceConstraintsIgnored,
areTransitionTimeConstraintsIgnored, getCalendar, getCalendarEnforcement,
getCapacityEnforcement, getDurationEnforcement, getImpl, getPrecedenceEnforcement,
getSequenceEnforcement, getTransitionTimeEnforcement, hasCalendar,
ignoreCalendarConstraints, ignoreCapacityConstraints, ignorePrecedenceConstraints,
ignoreSequenceConstraints, ignoreTransitionTimeConstraints, isCapacityResource,
isContinuousReservoir, isDiscreteEnergy, isDiscreteResource, isKeptOpen,
isReservoir, isStateResource, isUnaryResource, keepOpen,
removeCapacityEnforcementInterval, removeTransitionTimeEnforcementInterval,
setCalendar, setCalendarEnforcement, setCapacityEnforcement,
setCapacityEnforcementIntervalsParam, setDurationEnforcement,
setPrecedenceEnforcement, setResourceParam, setSequenceEnforcement,
setTransitionTimeEnforcement, setTransitionTimeEnforcementIntervalsParam

Constructors

public IloContinuousReservoir()

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

422

public IloContinuousReservoir(IloContinuousReservoirI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IloContinuousReservoir(const IloEnv env, IloNum
capacity=IloMaxCapacityReservoir, IloNum initialLevel=0, const char * name=0)

This constructor creates a new instance of IloContinuousReservoir and adds it to the set of resources
managed in the given environment. The capacity argument expresses the capacity of the new reservoir. The
capacity may be consumed by certain activities and produced by others. The argument initialLevel defines
an initial amount in the reservoir at the time origin of the schedule environment. By default, the continuous
reservoir is assumed to be empty at the time origin; that is, the initial level is 0 (zero). If the argument name is
defined, it is assigned as the name of the newly created continuous reservoir.

Methods

public IloContinuousReservoirI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloNum getInitialLevel() const

This member function returns the initial level of the continuous reservoir; that is, the initial level that was passed
to the continuous reservoir constructor.

public IloNum getLevelMax(IloNum time) const

This member function returns the maximal level of the invoking continuous reservoir at the given time.

public IloNum getLevelMaxMax(IloNum timeMin, IloNum timeMax) const

This member function returns the maximal value of the level of the invoking continuous reservoir over the interval
[timeMin, timeMax) (that is, the maximal value over the interval [timeMin, timeMax) of the maximal
reservoir level).

public IloNum getLevelMaxMin(IloNum timeMin, IloNum timeMax) const

This member function returns the maximal value of the minimal level of the invoking continuous reservoir over the
interval [timeMin timeMax).

public IloNum getLevelMin(IloNum time) const

This member function returns the minimal level of the invoking continuous reservoir at the given time.

public IloNum getLevelMinMax(IloNum timeMin, IloNum timeMax) const

This member function returns the minimal value over the interval [timeMin, timeMax) of the maximal level of
the invoking continuous reservoir.

423

public IloNum getLevelMinMin(IloNum timeMin, IloNum timeMax) const

This member function returns the minimal level of the invoking continuous reservoir throughout the interval
[timeMin, timeMax) (that is, the minimal value over the interval [timeMin, timeMax) of the minimal
reservoir level).

public void setInitialLevel(IloNum level) const

This member function sets the initial level of the invoking continuous reservoir.

public void setLevelMax(IloNum timeMin, IloNum timeMax, IloNum level) const

This member function states that the level of the continuous reservoir can be at most level throughout the time
interval [timeMin, timeMax). An instance of IloException is thrown if the timetable of the invoking
continuous reservoir does not cover the complete interval indicated by [timeMin, timeMax). The continuous
reservoir must be closed in order to propagate constraints.

public void setLevelMaxParam(const IloNumToNumSegmentFunction tfp) const

This member function sets the maximal level of the continuous reservoir over time to be the function defined in
tfp.

public void setLevelMin(IloNum timeMin, IloNum timeMax, IloNum level) const

This member function states that the level of the continuous reservoir must be at least level at each integer
time point of the interval [timeMin, timeMax). An instance of IloException is thrown if the timetable of the
invoking continuous reservoir does not cover the complete interval indicated by [timeMin, timeMax). The
continuous reservoir must be closed in order to propagate constraints.

public void setLevelMinParam(const IloNumToNumSegmentFunction tfp) const

This member function sets the minimal level of the continuous reservoir over time to be the function defined in
tfp.

424

Class IloCoverConstraint
Definition file: ilsched/iloactivity.h
Include file: <ilsched/iloscheduler.h>

Instances of the class IloCoverConstraint are cover constraints. A cover constraint states that an activity
(the covering activity) must exactly cover a set of activities (the covered activities). More precisely, it means that
the start time of the covering activity is equal to the earliest of the start times of the covered activities, and that
the end time of the covering activity is equal to the latest of the end times of the covered activities.

This class inherits from the IBM® ILOG® Concert Technology class IloConstraint. That class is documented
in the IBM ILOG Concert Technology Reference Manual.

Instances of this class are created by the member function IloActivity::covers.

See Also: IloActivity, IloActivityConstraintsParam

Constructor Summary

public IloCoverConstraint()

public IloCoverConstraint(IloCoverConstraintI * impl)

Method Summary

public void add(const IloActivity act) const

public IloBool contains(const IloActivity act) const

public IloActivity getActivity() const

public IloCoverConstraintI * getImpl() const

public void remove(const IloActivity act) const

Constructors

public IloCoverConstraint()

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IloCoverConstraint(IloCoverConstraintI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

Methods

public void add(const IloActivity act) const

This member function adds the activity act to the set of activities to be covered.

Example

The code:

425

 IloCoverConstraint coverCT = act.covers();
 coverCT.add(act1);
 coverCT.add(act2);
 model.add(coverCT);

adds to the model the constraint that activity act must cover both activities act1 and act2. Another way to add
the same constraint is:

model.add(act.covers(2, act1, act2));

public IloBool contains(const IloActivity act) const

This member function returns IloTrue if and only if the activity act is to be covered by the constraint.

public IloActivity getActivity() const

This member function returns the covering activity of the cover constraint. That is, it returns the activity on which
a member function IloActivity::covers was called to build the invoking cover constraint.

public IloCoverConstraintI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public void remove(const IloActivity act) const

This member function removes the activity act from the set of activities to be covered.

426

Class IloDiscreteEnergy
Definition file: ilsched/iloenergy.h
Include file: <ilsched/iloscheduler.h>

Discrete Energy Resource.

An instance of the class IloDiscreteEnergy represents a resource available as a certain amount of energy
(for example, in watt-hours, in human-months) over certain time buckets (for example, minutes, hours, months,
years). The available energy of a time bucket is used by the activities executed on that time bucket, and as a
consequence, energy capacity constraints use the energy of the discrete energy resource.

For example, let's assume that each unit of time corresponds to an hour, and that we have defined a discrete
energy resource that has a time step of 24 (corresponding to a day), and energy 10. Then if we have an activity
of duration 3 (hours) that requires the resource with capacity 2 (machines), it uses energy of 6 (machine-hours).
Thus, if this activity is scheduled on the first day, the remaining energy for that first day is 4 (machine-hours).

An instance of the class IloDiscreteEnergy uses the concept of energy, differing from the class
IloDiscreteResource, which uses the concept of instantaneous capacity. However, when the time step of
the resource is 1 (one), the energy over an interval corresponds to the instantaneous capacity, and thus in that
case, there is no difference between the two classes. The time buckets of the discrete energy resource are
defined by the capacity enforcement intervals parameter.

Parameter classes

Minimal and maximal capacity: (class IloNumToNumStepFunction)

These parameters describe the minimal and maximal energy per time bucket over time. They are directly
modified by the member functions IloDiscreteEnergy::setEnergyMin and
IloDiscreteEnergy::setEnergyMax. IloNumToNumStepFunction is documented in the extensions
section of the IBM ILOG Concert Technology Reference Manual.

Refer to Scheduler Overview for more information on how to share parameters among resources, and how the
direct modification of parameters through the resource API may affect them. Also see Resource Usage Profiles.

See Also: IloResource, IloCapResource, IloEnforcementLevel

Constructor Summary

public IloDiscreteEnergy()

public IloDiscreteEnergy(IloDiscreteEnergyI * impl)

public IloDiscreteEnergy(const IloEnv env, IloNum timeStep, IloNum capacity, const
char * name=0)

Method Summary

public IloNum getEnergyMax(IloNum time) const

public IloNum getEnergyMaxMax(IloNum timeMin, IloNum timeMax) const

public IloNum getEnergyMaxMin(IloNum timeMin, IloNum timeMax) const

public IloNum getEnergyMin(IloNum time) const

public IloNum getEnergyMinMax(IloNum timeMin, IloNum timeMax) const

427

public IloNum getEnergyMinMin(IloNum timeMin, IloNum timeMax) const

public IloDiscreteEnergyI * getImpl() const

public void setEnergyMax(IloNum timeMin, IloNum timeMax, IloNum
energy) const

public void setEnergyMaxParam(const IloNumToNumStepFunction tfp)
const

public void setEnergyMin(IloNum timeMin, IloNum timeMax, IloNum
energy) const

public void setEnergyMinParam(const IloNumToNumStepFunction tfp)
const

Inherited Methods from IloCapResource

addMaxTextureIgnoreInterval, addMaxTextureIgnoreInterval,
addMaxTextureIgnoreIntervalOnDuration, addMaxTexturePeriodicIgnoreInterval,
addMinTextureIgnoreInterval, addMinTextureIgnoreInterval,
addMinTextureIgnoreIntervalOnDuration, addMinTexturePeriodicIgnoreInterval,
emptyMaxTextureIgnoreIntervals, emptyMinTextureIgnoreIntervals, getCapacity,
getImpl, getInitialOccupation, getInitialOccupationMax, getInitialOccupationMin,
hasInitialOccupation, hasMaxTextureMeasurement, hasMinTextureMeasurement,
removeMaxTextureIgnoreInterval, removeMaxTextureIgnoreInterval,
removeMaxTextureIgnoreIntervalOnDuration, removeMaxTexturePeriodicIgnoreInterval,
removeMinTextureIgnoreInterval, removeMinTextureIgnoreInterval,
removeMinTextureIgnoreIntervalOnDuration, removeMinTexturePeriodicIgnoreInterval,
setCapacity, setInitialOccupation, setInitialOccupation,
setInitialOccupationParam, setInitialOccupationParam, setMaxTextureHeuristicBeta,
setMaxTextureParam, setMaxTextureRandomGenerator, setMinTextureHeuristicBeta,
setMinTextureParam, setMinTextureRandomGenerator, unsetMaxTextureRandomGenerator,
unsetMinTextureRandomGenerator

Inherited Methods from IloResource

addCapacityEnforcementInterval, addTransitionTimeEnforcementInterval,
areCalendarConstraintsIgnored, areCapacityConstraintsIgnored,
arePrecedenceConstraintsIgnored, areSequenceConstraintsIgnored,
areTransitionTimeConstraintsIgnored, getCalendar, getCalendarEnforcement,
getCapacityEnforcement, getDurationEnforcement, getImpl, getPrecedenceEnforcement,
getSequenceEnforcement, getTransitionTimeEnforcement, hasCalendar,
ignoreCalendarConstraints, ignoreCapacityConstraints, ignorePrecedenceConstraints,
ignoreSequenceConstraints, ignoreTransitionTimeConstraints, isCapacityResource,
isContinuousReservoir, isDiscreteEnergy, isDiscreteResource, isKeptOpen,
isReservoir, isStateResource, isUnaryResource, keepOpen,
removeCapacityEnforcementInterval, removeTransitionTimeEnforcementInterval,
setCalendar, setCalendarEnforcement, setCapacityEnforcement,
setCapacityEnforcementIntervalsParam, setDurationEnforcement,
setPrecedenceEnforcement, setResourceParam, setSequenceEnforcement,
setTransitionTimeEnforcement, setTransitionTimeEnforcementIntervalsParam

Constructors

public IloDiscreteEnergy()

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IloDiscreteEnergy(IloDiscreteEnergyI * impl)

428

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IloDiscreteEnergy(const IloEnv env, IloNum timeStep, IloNum capacity, const
char * name=0)

This constructor creates a new instance of IloDiscreteEnergy and adds it to the set of resources managed in
the given environment. The argument timeStep represents the default size of time buckets. The energy of the
resource is limited to capacity for each time bucket.

Methods

public IloNum getEnergyMax(IloNum time) const

This member function returns the maximal energy that can be used at the given time.

public IloNum getEnergyMaxMax(IloNum timeMin, IloNum timeMax) const

This member function returns the maximal energy that can be used throughout the interval [timeMin,
timeMax) (that is, the maximal value over the interval [timeMin, timeMax) of the maximal resource energy).

public IloNum getEnergyMaxMin(IloNum timeMin, IloNum timeMax) const

This member function returns the maximal value, over the interval [timeMin, timeMax), of the minimal
resource energy.

public IloNum getEnergyMin(IloNum time) const

This member function returns the minimal energy that must be used at the given time.

public IloNum getEnergyMinMax(IloNum timeMin, IloNum timeMax) const

This member function returns the minimal value, over the interval [timeMin, timeMax), of the maximal
resource energy.

public IloNum getEnergyMinMin(IloNum timeMin, IloNum timeMax) const

This member function returns the minimal energy that must be used throughout the interval [timeMin,
timeMax) (that is, the minimal value over the interval [timeMin, timeMax) of the minimal resource energy).

public IloDiscreteEnergyI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public void setEnergyMax(IloNum timeMin, IloNum timeMax, IloNum energy) const

This member function states that the maximal energy per time bucket required throughout the interval
[timeMin, timeMax) is at least energy.

429

public void setEnergyMaxParam(const IloNumToNumStepFunction tfp) const

This member function sets the maximal energy per time bucket over time to be the function defined in tfp.

public void setEnergyMin(IloNum timeMin, IloNum timeMax, IloNum energy) const

This member function states that the minimal energy per time bucket required throughout the interval
[timeMintimeMax) is at least energy.

public void setEnergyMinParam(const IloNumToNumStepFunction tfp) const

This member function sets the minimal energy per time bucket over time to be the function defined in tfp.

430

Class IloDiscreteResource
Definition file: ilsched/ilodiscrete.h
Include file: <ilsched/iloscheduler.h>

An instance of the class IloDiscreteResource represents a resource of discrete capacity. Capacity can vary
over time: at any given time, the capacity represents the number of copies or instances of the resource that are
available. For example, the capacity might be the number of milling machines available in a manufacturing shop
or the number of bricklayers at work on a construction site. By discrete, we mean that capacity is defined to be a
positive integer.

Each activity may require some amount of the resource capacity, for example, one milling machine or three
bricklayers. This requirement is represented by resource constraints.

Minimal Capacity

It is possible to constrain the capacity used so that it exceeds some minimal capacity over some interval of time.
No solution will be found if at any point in time the minimal capacity exceeds the maximal capacity.

Parameter classes

Minimal and maximal capacity: (class IloNumToNumStepFunction)

These parameters describe the minimal and maximal capacities over time. They are directly modified by the
member functions IloDiscreteResource::setCapacityMin and
IloDiscreteResource::setCapacityMax.

IloNumToNumStepFunction is documented in the extensions section of the IBM ILOG Concert Technology
Reference Manual.

Refer to Scheduler Overview for more information on how to share parameters among resources, and how the
direct modification of parameters through the resource API may affect them.

See Also: IloEnforcementLevel, IloResource, IloCapResource

Constructor Summary

public IloDiscreteResource()

public IloDiscreteResource(IloDiscreteResourceI * impl)

public IloDiscreteResource(const IloEnv env, IloNum capacity, const char * name=0)

Method Summary

public IloNum getCapacityMax(IloNum time) const

public IloNum getCapacityMaxMax(IloNum timeMin, IloNum timeMax)
const

public IloNum getCapacityMaxMin(IloNum timeMin, IloNum timeMax)
const

public IloNum getCapacityMin(IloNum time) const

431

public IloNum getCapacityMinMax(IloNum timeMin, IloNum timeMax)
const

public IloNum getCapacityMinMin(IloNum timeMin, IloNum timeMax)
const

public IloDiscreteResourceI * getImpl() const

public void setCapacityMax(IloNum timeMin, IloNum timeMax,
IloNum capacity) const

public void setCapacityMaxParam(const IloNumToNumStepFunction
tfp) const

public void setCapacityMin(IloNum timeMin, IloNum timeMax,
IloNum capacity) const

public void setCapacityMinParam(const IloNumToNumStepFunction
tfp) const

Inherited Methods from IloCapResource

addMaxTextureIgnoreInterval, addMaxTextureIgnoreInterval,
addMaxTextureIgnoreIntervalOnDuration, addMaxTexturePeriodicIgnoreInterval,
addMinTextureIgnoreInterval, addMinTextureIgnoreInterval,
addMinTextureIgnoreIntervalOnDuration, addMinTexturePeriodicIgnoreInterval,
emptyMaxTextureIgnoreIntervals, emptyMinTextureIgnoreIntervals, getCapacity,
getImpl, getInitialOccupation, getInitialOccupationMax, getInitialOccupationMin,
hasInitialOccupation, hasMaxTextureMeasurement, hasMinTextureMeasurement,
removeMaxTextureIgnoreInterval, removeMaxTextureIgnoreInterval,
removeMaxTextureIgnoreIntervalOnDuration, removeMaxTexturePeriodicIgnoreInterval,
removeMinTextureIgnoreInterval, removeMinTextureIgnoreInterval,
removeMinTextureIgnoreIntervalOnDuration, removeMinTexturePeriodicIgnoreInterval,
setCapacity, setInitialOccupation, setInitialOccupation,
setInitialOccupationParam, setInitialOccupationParam, setMaxTextureHeuristicBeta,
setMaxTextureParam, setMaxTextureRandomGenerator, setMinTextureHeuristicBeta,
setMinTextureParam, setMinTextureRandomGenerator, unsetMaxTextureRandomGenerator,
unsetMinTextureRandomGenerator

Inherited Methods from IloResource

addCapacityEnforcementInterval, addTransitionTimeEnforcementInterval,
areCalendarConstraintsIgnored, areCapacityConstraintsIgnored,
arePrecedenceConstraintsIgnored, areSequenceConstraintsIgnored,
areTransitionTimeConstraintsIgnored, getCalendar, getCalendarEnforcement,
getCapacityEnforcement, getDurationEnforcement, getImpl, getPrecedenceEnforcement,
getSequenceEnforcement, getTransitionTimeEnforcement, hasCalendar,
ignoreCalendarConstraints, ignoreCapacityConstraints, ignorePrecedenceConstraints,
ignoreSequenceConstraints, ignoreTransitionTimeConstraints, isCapacityResource,
isContinuousReservoir, isDiscreteEnergy, isDiscreteResource, isKeptOpen,
isReservoir, isStateResource, isUnaryResource, keepOpen,
removeCapacityEnforcementInterval, removeTransitionTimeEnforcementInterval,
setCalendar, setCalendarEnforcement, setCapacityEnforcement,
setCapacityEnforcementIntervalsParam, setDurationEnforcement,
setPrecedenceEnforcement, setResourceParam, setSequenceEnforcement,
setTransitionTimeEnforcement, setTransitionTimeEnforcementIntervalsParam

Constructors

public IloDiscreteResource()

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

432

public IloDiscreteResource(IloDiscreteResourceI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IloDiscreteResource(const IloEnv env, IloNum capacity, const char * name=0)

This constructor creates a new instance of IloDiscreteResource and adds it to the set of resources
managed in the environment. The theoretical capacity of the resource is capacity. The argument name is the
name of the constructed IloDiscreteResource.

Methods

public IloNum getCapacityMax(IloNum time) const

This member function returns the maximal capacity that can be used at a given time.

public IloNum getCapacityMaxMax(IloNum timeMin, IloNum timeMax) const

This member function returns the maximal value of the maximal resource capacity over the interval [timeMin,
timeMax).

public IloNum getCapacityMaxMin(IloNum timeMin, IloNum timeMax) const

This member function returns the maximal value of the minimal resource capacity over the interval [timeMin,
timeMax).

public IloNum getCapacityMin(IloNum time) const

This member function returns the minimal capacity that must be used or is actually used at the given time.

public IloNum getCapacityMinMax(IloNum timeMin, IloNum timeMax) const

This member function returns the minimal value of the maximal resource capacity over the interval [timeMin,
timeMax).

public IloNum getCapacityMinMin(IloNum timeMin, IloNum timeMax) const

This member function returns the minimal value of the minimal resource capacity over the interval [timeMin,
timeMax).

public IloDiscreteResourceI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public void setCapacityMax(IloNum timeMin, IloNum timeMax, IloNum capacity) const

433

This member function states that at most capacity can be used throughout the interval [timeMin,
timeMax).

public void setCapacityMaxParam(const IloNumToNumStepFunction tfp) const

This member function sets tfp as the maximum capacity profile parameter of the invoking resource.

public void setCapacityMin(IloNum timeMin, IloNum timeMax, IloNum capacity) const

This member function states that at least capacity must be used throughout the interval [timeMin,
timeMax).

public void setCapacityMinParam(const IloNumToNumStepFunction tfp) const

This member function sets tfp as the minimum capacity profile parameter of the invoking resource.

434

Class IloGranularFunction
Definition file: ilsched/ilogfbase.h
Include file: <ilsched/iloscheduler.h>

An instance of IloGranularFunction holds the description of granular step-wise functions.

The granular function must respect the following properties:

It is defined over the range [xmin,xmax), and takes only integer values.•
It consists only of steps with non-negative values. These steps are closed on the left and open on the
right.

•

Its maximum value multiplied by the width xmax-xmin of its definition interval must be less than the
largest integer value that can be represented by the machine's integer representation.

•

These properties are checked at extraction time, and an exception will be thrown if necessary.

The positive granularity parameter is optionally used as a scaling factor when computing the integral of the
function. This allows limited representation of non-integer function values. This is particularly the case for integral
expressions or constraints built with IloGranularFunction (see Functional and Integral Constraints on
Resources for more information).

When computing the integral of the function over a given interval (for example, the start and end time of an
activity), the result is divided by the granularity, and then rounded:

Note that the member function IloGranularFunction::getValue does not use the granularity, but returns
the actual value stored in the function, without any scaling.

Four rounding modes are available when dividing by granularity. Refer to Functional and Integral Constraints
on Resources for a detailed description of each rounding mode.

See Also: IloResource, IloGranularFunctionRoundingMode

Constructor Summary

public IloGranularFunction()

public IloGranularFunction(IloGranularFunctionI * impl)

public IloGranularFunction(const IloEnv env, IloNum xmin, IloNum xmax, IloNum
granularity=1.0, const char * name=0)

Method Summary

public IloNum getDefinitionIntervalMax() const

public IloNum getDefinitionIntervalMin() const

public IloNum getGranularity() const

public IloGranularFunctionI * getImpl() const

public IloGranularFunctionRoundingMode getRoundingMode() const

public IloNum getValue(IloNum x) const

435

public void setRoundingMode(IloGranularFunctionRoundingMode
rounding=IloGranularFunctionRoundUpward)
const

public void setValue(IloNum x1, IloNum x2, IloNum
value) const

Inner Class

IloGranularFunction::Cursor

Constructors

public IloGranularFunction()

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IloGranularFunction(IloGranularFunctionI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IloGranularFunction(const IloEnv env, IloNum xmin, IloNum xmax, IloNum
granularity=1.0, const char * name=0)

This constructor creates a new instance of IloGranularFunction, with granularity equal to granularity.
The initial function is on the interval [xmin, xmax), and is set to a constant initial value of granularity over
this interval.

Methods

public IloNum getDefinitionIntervalMax() const

This member function returns the right-most point of the interval of definition of the invoking granular function.

public IloNum getDefinitionIntervalMin() const

This member function returns the left-most point of the interval of definition of the invoking granular function.

public IloNum getGranularity() const

This member function returns the value of the granularity.

public IloGranularFunctionI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloGranularFunctionRoundingMode getRoundingMode() const

This member function returns the current rounding mode of the invoking granular function.

436

public IloNum getValue(IloNum x) const

This member function returns the current value of the granular function at point x. This point must be inside the
range [xmin, xmax). Otherwise, an exception is thrown.

public void setRoundingMode(IloGranularFunctionRoundingMode
rounding=IloGranularFunctionRoundUpward) const

This member function selects the rounding mode that will be used when creating an integral constraint with the
invoking granular function.

public void setValue(IloNum x1, IloNum x2, IloNum value) const

This member function sets the value of the granular function to value over the interval [x1, x2). x1 and x2
must respect xmin <= x1 < x2 <= xmax, or an exception will be thrown.

In addition, the granular function must respect the properties listed in the Introduction to this class.

437

Class IloPrecedenceConstraint
Definition file: ilsched/iloactivity.h
Include file: <ilsched/iloscheduler.h>

Instances of the class IloPrecedenceConstraint are temporal constraints. These temporal constraints
express precedence between activities in a schedule. (Other temporal constraints—instances of
IloTimeBoundConstraint—express constraints on the time interval in which an activity is to be scheduled.)

This class inherits from the IBM ILOG Concert Technology class IloConstraint. That class is documented in
the IBM ILOG Concert Technology Reference Manual.

Instances of this class are created by these member functions:

IloActivity::startsAfterStart•
IloActivity::startsAfterEnd•
IloActivity::endsAfterStart•
IloActivity::endsAfterEnd•
IloActivity::startsAtStart•
IloActivity::startsAtEnd•
IloActivity::endsAtStart•
IloActivity::endsAtEnd•

For more information, see IloConstraint in the IBM ILOG Concert Technology Reference Manual, and
Temporal Relations.

See Also: IloActivity, IloActivityConstraintsParam

Constructor Summary

public IloPrecedenceConstraint()

public IloPrecedenceConstraint(IloPrecedenceConstraintI * impl)

Method Summary

public IloNum getDelay() const

public IloNumVar getDelayVariable() const

public IloActivity getFollowingActivity() const

public IloPrecedenceConstraintI * getImpl() const

public IloActivity getPrecedingActivity() const

public IloPrecedenceConstraintType getType() const

public IloBool hasDelayVariable() const

Constructors

public IloPrecedenceConstraint()

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IloPrecedenceConstraint(IloPrecedenceConstraintI * impl)

438

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

Methods

public IloNum getDelay() const

This member function returns the delay of the invoking precedence constraint.

Example

The statement

m.add(act2.startsAfterEnd(act1, delay));

posts the constraint that at least the given delay must elapse between the end of the preceding activity act1
and the start of the following activity act2.

public IloNumVar getDelayVariable() const

Returns the variable delay that the constraint was build with. Should not be called if the constraint has been build
with a constant delay. Will assert in this case if we are in debug mode.

This member function returns the delay variable of the invoking precedence constraint.

public IloActivity getFollowingActivity() const

This member function returns the following activity of the invoking precedence constraint.

public IloPrecedenceConstraintI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloActivity getPrecedingActivity() const

This member function returns the preceding activity of the invoking precedence constraint.

public IloPrecedenceConstraintType getType() const

This member function returns the type of the invoking precedence constraint.

public IloBool hasDelayVariable() const

IloTrue if the constraint has been build with a variable delay

This member function returns IloTrue if the invoking precedence constraint has a delay variable. Otherwise, if
the delay is constant, it returns IloFalse.

439

Class IloRCTextureFactory
Definition file: ilsched/ilotextureparami.h
Include file: <ilsched/iloscheduler.h>

RC Texture factory objects in Scheduler Concert Technology depend on the classes IloRCTextureFactory
and IloRCTextureFactoryI. The class IloRCTextureFactory is the handle class. An instance of the class
IloRCTextureFactory contains a data member (the handle pointer) that points to an instance of the class
IloRCTextureFactoryI (the implementation object). If you define a new class of RC Texture factory with the
macro ILORCTEXTUREFACTORY0, it will define the implementation class together with the corresponding virtual
member function IloRCTextureFactoryI::extract, and a member function that returns an instance of the
handle class IloRCTextureFactory.

Predefined Factories

The following functions, defined using the ILORCTEXTUREFACTORY0 macro, return instances of RC Texture
factory model objects.

 IloRCTextureFactoryI *IloRCTextureESTFactory(IloEnv env);

This function returns a pointer to a factory object which, when extracted, corresponds to an
IlcRCTextureESTFactoryI.

 IloRCTextureFactoryI *IloRCTextureProbabilisticFactory(IloEnv env);

This function returns a pointer to a factory object which, when extracted, corresponds to an
IlcRCTextureProbabilisticFactoryI.

IloRCTextureFactoryI *IloRCTextureTargetFactory(IloEnv env);

This function returns a pointer to a factory object which, when extracted, corresponds to an
IlcRCTextureTargetFactoryI.

For more information, see Texture Measurements.

See Also: IloRCTextureFactoryI, ILORCTEXTUREFACTORY0, IlcRCTextureFactory

Constructor Summary

public IloRCTextureFactory()

public IloRCTextureFactory(IloRCTextureFactoryI * impl)

Method Summary

public IloRCTextureFactoryI * getImpl() const

Constructors

public IloRCTextureFactory()

This constructor creates an empty handle. You must initialize it before you use it.

public IloRCTextureFactory(IloRCTextureFactoryI * impl)

440

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IloRCTextureFactoryI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

441

Class IloRCTextureFactoryI
Definition file: ilsched/ilotextureparami.h
Include file: <ilsched/iloscheduler.h>

RC Texture factories in Scheduler Concert Technology depend on the classes IloRCTextureFactoryI and
IloRCTextureFactory. The class IloRCTextureFactoryI is the implementation class. If you define a new
class of factory with the macro ILORCTEXTUREFACTORY0, it will define this implementation class together with
the corresponding virtual member function IloRCTextureFactoryI::extract, and with a member function
that returns an instance of the handle class IloRCTextureFactory.

For more information, see Texture Measurements.

See Also: IloRCTextureFactory, ILORCTEXTUREFACTORY0, IlcRCTextureFactory

Method Summary

public virtual IlcRCTextureFactoryI * extract(const IloSolver & solver) const

protected void use(const IloSolver &, const IloExtractable
&) const

Methods

public virtual IlcRCTextureFactoryI * extract(const IloSolver & solver) const

This virtual function implements the extraction of the invoking factory into an IlcRCTextureFactoryI* by the
solver given as argument. Note that this member function must be defined by using the macro
ILORCTEXTUREFACTORY0.

protected void use(const IloSolver &, const IloExtractable &) const

This member function can only be called from within the member function IloRCTextureFactoryI::extract
(that is, only in the code of a macro ILORCTEXTUREFACTORY0). It states that the invoking factory currently in the
process of being extracted by the solver given as argument uses the extractable given as the second argument.
As a consequence, the extractable given as the second argument will be immediately extracted by the solver.

442

Class IloRelocateActivityNHoodI
Definition file: ilsched/ilolnsgoals.h
Include file: <ilsched/iloscheduler.h>

An instance of this class represents an activity neighborhood.

See IloComparator and IloPredicate in the IBM ILOG Solver Reference Manual for more information.

See Also: IloSchedulerLargeNHoodI

Constructor Summary

public IloRelocateActivityNHoodI(IloEnv env, IloComparator< IloActivity >
comparator, IloPredicate< IloActivity > predicate, const char * name)

Method Summary

public virtual IloSolution defineSelected(IloSolver solver, IloInt index)

Inherited Methods from IloSchedulerLargeNHoodI

define, defineRestoreInfo, defineSelected, finalizeDelta, getCurrentSolution,
getRestoreActivityDurationPredicate, getRestoreActivityEndPredicate,
getRestoreActivityExternalPredicate, getRestoreActivityProcessingTimePredicate,
getRestoreActivityStartPredicate, getRestoreExtractablePredicate, getRestoreInfo,
getRestoreRCCapacityPredicate, getRestoreRCDirectPredecessorPredicate,
getRestoreRCDirectSuccessorPredicate, getRestoreRCNextPredicate,
getRestoreRCPrevPredicate, getRestoreRCSelectedPredicate,
getRestoreRCSetupPredicate, getRestoreRCTeardownPredicate, isSelected,
setRestoreActivityDurationPredicate, setRestoreActivityEndPredicate,
setRestoreActivityExternalPredicate, setRestoreActivityProcessingTimePredicate,
setRestoreActivityStartPredicate, setRestoreExtractablePredicate,
setRestoreRCCapacityPredicate, setRestoreRCDirectPredecessorPredicate,
setRestoreRCDirectSuccessorPredicate, setRestoreRCNextPredicate,
setRestoreRCPrevPredicate, setRestoreRCSelectedPredicate,
setRestoreRCSetupPredicate, setRestoreRCTeardownPredicate

Constructors

public IloRelocateActivityNHoodI(IloEnv env, IloComparator< IloActivity >
comparator, IloPredicate< IloActivity > predicate, const char * name)

This constructor creates an activity neighborhood.

The parameter comparator is used (if it is not an empty handle) to specify in which order the activities should
be considered. When applied the comparator receives as argument the neighborhood.

The parameter predicate is used to specify which activities to consider. The size of this neighborhood is the
number of activities in the current solution for which this predicate returns IloTrue. In case the predicate is an
empty handle, the size of this neighborhood is the number of activities in the current solution.

443

Methods

public virtual IloSolution defineSelected(IloSolver solver, IloInt index)

This pure virtual member function returns the set of decision variables, or instances of IloExtractable, on
which to focus the search.

444

Class IloReservoir
Definition file: ilsched/iloreservoir.h
Include file: <ilsched/iloscheduler.h>

An instance of the class IloReservoir represents a resource for which activities can both provide capacity and
also require capacity. If a maximal capacity of the reservoir is defined, then this maximal capacity, or level, will
never be exceeded.

When the model of your problem represents an ongoing process, you may be faced with the fact that a reservoir
level already exists. You can simply pass an initial level like that to the constructor of IloReservoir or use the
IloReservoir::setInitialLevel(IloNum) member function.

The level of a reservoir can vary over time. You can define temporary maximal and minimal levels by using
member functions of IloReservoir.

Parameter classes

Minimal and maximal capacity: (class IloNumToNumStepFunction)

These parameters describe the minimal and maximal levels over time. They are directly modified by the member
functions IloReservoir::setLevelMin and IloReservoir::setLevelMax.
IloNumToNumStepFunction is documented in the extensions section of the IBM ILOG Concert Technology
Reference Manual.

Refer to Scheduler Overview for more information on how to share parameters among resources, and how the
direct modification of parameters through the resource API may affect them.

See Also: IloEnforcementLevel, IloCapResource, IloResourceConstraint

Constructor Summary

public IloReservoir()

public IloReservoir(IloReservoirI * impl)

public IloReservoir(const IloEnv env, IloNum capacity=IloMaxCapacityReservoir,
IloNum initialLevel=0, const char * name=0)

Method Summary

public IloReservoirI * getImpl() const

public IloNum getInitialLevel() const

public IloNum getLevelMax(IloNum time) const

public IloNum getLevelMaxMax(IloNum timeMin, IloNum timeMax) const

public IloNum getLevelMaxMin(IloNum timeMin, IloNum timeMax) const

public IloNum getLevelMin(IloNum time) const

public IloNum getLevelMinMax(IloNum timeMin, IloNum timeMax) const

public IloNum getLevelMinMin(IloNum timeMin, IloNum timeMax) const

public void setInitialLevel(IloNum level) const

445

public void setLevelMax(IloNum timeMin, IloNum timeMax, IloNum level)
const

public void setLevelMaxParam(const IloNumToNumStepFunction tfp) const

public void setLevelMin(IloNum timeMin, IloNum timeMax, IloNum level)
const

public void setLevelMinParam(const IloNumToNumStepFunction tfp) const

Inherited Methods from IloCapResource

addMaxTextureIgnoreInterval, addMaxTextureIgnoreInterval,
addMaxTextureIgnoreIntervalOnDuration, addMaxTexturePeriodicIgnoreInterval,
addMinTextureIgnoreInterval, addMinTextureIgnoreInterval,
addMinTextureIgnoreIntervalOnDuration, addMinTexturePeriodicIgnoreInterval,
emptyMaxTextureIgnoreIntervals, emptyMinTextureIgnoreIntervals, getCapacity,
getImpl, getInitialOccupation, getInitialOccupationMax, getInitialOccupationMin,
hasInitialOccupation, hasMaxTextureMeasurement, hasMinTextureMeasurement,
removeMaxTextureIgnoreInterval, removeMaxTextureIgnoreInterval,
removeMaxTextureIgnoreIntervalOnDuration, removeMaxTexturePeriodicIgnoreInterval,
removeMinTextureIgnoreInterval, removeMinTextureIgnoreInterval,
removeMinTextureIgnoreIntervalOnDuration, removeMinTexturePeriodicIgnoreInterval,
setCapacity, setInitialOccupation, setInitialOccupation,
setInitialOccupationParam, setInitialOccupationParam, setMaxTextureHeuristicBeta,
setMaxTextureParam, setMaxTextureRandomGenerator, setMinTextureHeuristicBeta,
setMinTextureParam, setMinTextureRandomGenerator, unsetMaxTextureRandomGenerator,
unsetMinTextureRandomGenerator

Inherited Methods from IloResource

addCapacityEnforcementInterval, addTransitionTimeEnforcementInterval,
areCalendarConstraintsIgnored, areCapacityConstraintsIgnored,
arePrecedenceConstraintsIgnored, areSequenceConstraintsIgnored,
areTransitionTimeConstraintsIgnored, getCalendar, getCalendarEnforcement,
getCapacityEnforcement, getDurationEnforcement, getImpl, getPrecedenceEnforcement,
getSequenceEnforcement, getTransitionTimeEnforcement, hasCalendar,
ignoreCalendarConstraints, ignoreCapacityConstraints, ignorePrecedenceConstraints,
ignoreSequenceConstraints, ignoreTransitionTimeConstraints, isCapacityResource,
isContinuousReservoir, isDiscreteEnergy, isDiscreteResource, isKeptOpen,
isReservoir, isStateResource, isUnaryResource, keepOpen,
removeCapacityEnforcementInterval, removeTransitionTimeEnforcementInterval,
setCalendar, setCalendarEnforcement, setCapacityEnforcement,
setCapacityEnforcementIntervalsParam, setDurationEnforcement,
setPrecedenceEnforcement, setResourceParam, setSequenceEnforcement,
setTransitionTimeEnforcement, setTransitionTimeEnforcementIntervalsParam

Constructors

public IloReservoir()

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IloReservoir(IloReservoirI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IloReservoir(const IloEnv env, IloNum capacity=IloMaxCapacityReservoir,
IloNum initialLevel=0, const char * name=0)

446

This constructor creates a new instance of IloReservoir and adds it to the set of resources managed in the
given environment. The capacity argument expresses the capacity of the new reservoir. The capacity may be
consumed by certain activities and produced by others. The argument initialLevel defines an initial amount
in the reservoir at the time origin of the schedule environment. By default, the reservoir is assumed to be empty
at the time origin; that is, the initial level is 0 (zero). If the argument name is defined, it is assigned as the name of
the newly created reservoir.

Methods

public IloReservoirI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloNum getInitialLevel() const

This member function returns the initial level of the reservoir.

public IloNum getLevelMax(IloNum time) const

This member function returns the maximal reservoir level that is present at the given time.

public IloNum getLevelMaxMax(IloNum timeMin, IloNum timeMax) const

This member function returns the maximal value of the reservoir level over the interval [timeMin, timeMax)
(that is, the maximal value over the interval [timeMin, timeMax) of the maximal reservoir level).

public IloNum getLevelMaxMin(IloNum timeMin, IloNum timeMax) const

This member function returns the maximal value of the minimal reservoir level, over the interval [timeMin,
timeMax).

public IloNum getLevelMin(IloNum time) const

This member function returns the minimal level of the invoking reservoir present at the given time.

public IloNum getLevelMinMax(IloNum timeMin, IloNum timeMax) const

This member function returns the minimal value over the interval [timeMin, timeMax) of the maximal
reservoir level.

public IloNum getLevelMinMin(IloNum timeMin, IloNum timeMax) const

This member function returns the minimal reservoir level throughout the interval [timeMin, timeMax) (that is,
the minimal value over the interval [timeMin, timeMax) of the minimal reservoir capacity).

public void setInitialLevel(IloNum level) const

447

This member function sets the initial level of the reservoir.

public void setLevelMax(IloNum timeMin, IloNum timeMax, IloNum level) const

This member function states that the level of the reservoir can be at most level throughout the interval
[timeMin, timeMax).

public void setLevelMaxParam(const IloNumToNumStepFunction tfp) const

This member function sets the maximal reservoir level over time to be the function defined in tfp.

public void setLevelMin(IloNum timeMin, IloNum timeMax, IloNum level) const

This member function states that the level of the reservoir must be at least level throughout the interval
[timeMin timeMax).

public void setLevelMinParam(const IloNumToNumStepFunction tfp) const

This member function sets the minimal reservoir level over time to be the function defined in tfp.

448

Class IloResource
Definition file: ilsched/iloresource.h
Include file: <ilsched/iloscheduler.h>

A resource is represented by an instance of the abstract class IloResource. Activities in a schedule may
require or provide resources.

This class inherits from the IBM® ILOG® Concert Technology class IloExtractable. That class is
documented in the IBM ILOG Concert Technology Reference Manual.

There are several predefined subclasses of IloResource.

Parameter Classes

Calendar: (class IloCalendar)

This parameter attached to the resource allows expressing complex behavior as resource breaks and shifts, and
efficiency along the schedule. It is modified by the member function IloResource::setCalendar.

Resource parameter: (class IloResourceParam)

This parameter describes the basic resource parameter of the resource. It is directly modified by the following
member functions: IloResource::ignoreCalendarConstraints,
IloResource::ignoreCapacityConstraints, IloResource::ignorePrecedenceConstraints,
IloResource::ignoreSequenceConstraints, IloResource::ignoreTransitionTimeConstraints,
IloResource::setBreaksEnforcement, IloResource::setCapacityEnforcement,
IloResource::setPrecedenceEnforcement, IloResource::setSequenceEnforcement,
IloResource::setTransitionTimeEnforcement, and IloResource::keepOpen.

Capacity enforcement intervals: (class IloIntervalList)

This parameter describes the set of time intervals on which the resource usage must be enforced. It is directly
modified by the following member functions: IloResource::addCapacityEnforcementInterval and
IloResource::removeCapacityEnforcementInterval.

Refer to Scheduler Overview for more information on how to share parameters among resources and how the
direct modification of parameters through the resource API may affect them.

For more information, see Calendars, and Resource Usage Profiles .

See Also: IloAltResSet, IloCapResource, IloDiscreteEnergy, IloDiscreteResource, IloEnforcementLevel,
IloReservoir, IloStateResource, IloResourceParam, IloResourceConstraint, IloTransitionTime, IloUnaryResource

449

Constructor Summary

public IloResource()

public IloResource(IloResourceI * impl)

Method Summary

public void addCapacityEnforcementInterval(IloNum tmin, IloNum
tmax, IloNum step=1) const

public void addTransitionTimeEnforcementInterval(IloNum tmin,
IloNum tmax) const

public IloBool areCalendarConstraintsIgnored() const

public IloBool areCapacityConstraintsIgnored() const

public IloBool arePrecedenceConstraintsIgnored() const

public IloBool areSequenceConstraintsIgnored() const

public IloBool areTransitionTimeConstraintsIgnored() const

public IloCalendar getCalendar() const

public IloEnforcementLevel getCalendarEnforcement() const

public IloEnforcementLevel getCapacityEnforcement() const

public IloEnforcementLevel getDurationEnforcement() const

public IloResourceI * getImpl() const

public IloEnforcementLevel getPrecedenceEnforcement() const

public IloEnforcementLevel getSequenceEnforcement() const

public IloEnforcementLevel getTransitionTimeEnforcement() const

public IloBool hasCalendar() const

public void ignoreCalendarConstraints(IloBool ignored=IloTrue)
const

public void ignoreCapacityConstraints(IloBool ignored=IloTrue)
const

public void ignorePrecedenceConstraints(IloBool ignored=IloTrue)
const

public void ignoreSequenceConstraints(IloBool ignored=IloTrue)
const

public void ignoreTransitionTimeConstraints(IloBool
ignored=IloTrue) const

public IloBool isCapacityResource() const

public IloBool isContinuousReservoir() const

public IloBool isDiscreteEnergy() const

public IloBool isDiscreteResource() const

public IloBool isKeptOpen() const

public IloBool isReservoir() const

public IloBool isStateResource() const

public IloBool isUnaryResource() const

public void keepOpen(IloBool open=IloTrue) const

public void removeCapacityEnforcementInterval(IloNum tmin, IloNum
tmax) const

450

public void removeTransitionTimeEnforcementInterval(IloNum tmin,
IloNum tmax) const

public void setCalendar(IloCalendar calendar) const

public void setCalendarEnforcement(IloEnforcementLevel level)
const

public void setCapacityEnforcement(IloEnforcementLevel level)
const

public void setCapacityEnforcementIntervalsParam(const
IloIntervalList it) const

public void setDurationEnforcement(IloEnforcementLevel level)
const

public void setPrecedenceEnforcement(IloEnforcementLevel level)
const

public void setResourceParam(const IloResourceParam params) const

public void setSequenceEnforcement(IloEnforcementLevel level)
const

public void setTransitionTimeEnforcement(IloEnforcementLevel
level) const

public void setTransitionTimeEnforcementIntervalsParam(const
IloIntervalList it) const

Constructors

public IloResource()

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IloResource(IloResourceI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

Methods

public void addCapacityEnforcementInterval(IloNum tmin, IloNum tmax, IloNum step=1)
const

This member function specifies a new time interval [tmin,tmax) during which the usage of the invoking
resources will be enforced. The step represents the time precision that must be considered when enforcing the
usage of the invoking resource on that interval.

public void addTransitionTimeEnforcementInterval(IloNum tmin, IloNum tmax) const

This member function specifies a new time interval [tmin, tmax) during which the transition times on the
invoking resources will be enforced.

public IloBool areCalendarConstraintsIgnored() const

451

This member function returns IloTrue if the calendar constraints of the invoking resource are to be ignored.
Otherwise, it returns IloFalse.

public IloBool areCapacityConstraintsIgnored() const

This member function returns IloTrue if the usage of the invoking resource is to be ignored. Otherwise, it
returns IloFalse.

public IloBool arePrecedenceConstraintsIgnored() const

This member function returns IloTrue if the precedence constraints of the invoking resource are to be ignored.
Otherwise, it returns IloFalse.

public IloBool areSequenceConstraintsIgnored() const

This member function returns IloTrue if the sequence constraints of the invoking resource are to be ignored.
Otherwise, it returns IloFalse.

public IloBool areTransitionTimeConstraintsIgnored() const

This member function returns IloTrue if the transition time on the invoking resource is to be ignored. Otherwise,
it returns IloFalse.

public IloCalendar getCalendar() const

This member function returns the calendar attached to the invoking resource, if such an object exists.

public IloEnforcementLevel getCalendarEnforcement() const

This member function returns the enforcement level for the calendar of the invoking resource. Also see
IloResource::setCalendarEnforcement.

public IloEnforcementLevel getCapacityEnforcement() const

This member function returns the capacity enforcement level of the invoking resource. See also:
IloResource::setCapacityEnforcement.

public IloEnforcementLevel getDurationEnforcement() const

This member function returns the duration enforcement level of the invoking resource. See also:
IloResource::setDurationEnforcement.

public IloResourceI * getImpl() const

452

This member function returns a pointer to the implementation object of the invoking handle.

public IloEnforcementLevel getPrecedenceEnforcement() const

This member function returns the enforcement level for precedence relations of the invoking resource. See also:
IloResource::setPrecedenceEnforcement.

public IloEnforcementLevel getSequenceEnforcement() const

This member function returns the enforcement level for sequencing relations of the invoking resource. See also:
IloResource::setSequenceEnforcement.

public IloEnforcementLevel getTransitionTimeEnforcement() const

This member function returns the transition time enforcement level of the invoking resource. See also:
IloResource::setTransitionTimeEnforcement.

public IloBool hasCalendar() const

This member function returns IloTrue if a calendar has been attached to the invoking resource. Otherwise, it
returns IloFalse.

public void ignoreCalendarConstraints(IloBool ignored=IloTrue) const

This member function allows specifying if the calendar constraint of the invoking resources will be ignored. If the
argument ignored is equal to IloTrue, it will behave as if no calendar is attached to the invoking resource.

public void ignoreCapacityConstraints(IloBool ignored=IloTrue) const

This member function allows specifying if the usage of the invoking resource by the activities will be ignored. If
the argument ignored is equal to IloTrue, and the resource is a capacity resource, it will behave as if the
capacity constraints on the resource are ignored. If the resource is a state resource, it will behave as if the
required state constraints on the resource are ignored.

public void ignorePrecedenceConstraints(IloBool ignored=IloTrue) const

This member function allows specifying if the precedence relations defined on the invoking resource will be
ignored. If the argument ignored is equal to IloTrue, it will behave as if the precedence constraints are
ignored. Precedence relations are expressed with the member function
IloResourceConstraint::setSuccessor.

public void ignoreSequenceConstraints(IloBool ignored=IloTrue) const

This member function allows specifying if the sequence relations defined on the invoking resource will be
ignored. If the argument ignored is equal to IloTrue, it will behave as if the sequence constraints are ignored.
Sequence relations are expressed with the member functions IloResourceConstraint::setNext and
IloResourceConstraint::setNotNext.

453

public void ignoreTransitionTimeConstraints(IloBool ignored=IloTrue) const

This member function allows specifying if the transition times defined on the invoking resource will be ignored. If
the argument ignored is equal to IloTrue, it will behave as if the transition time constraints are ignored.

public IloBool isCapacityResource() const

This member function distinguishes between the classes of resources available in Scheduler. It returns IloTrue
if the invoking resource is an instance of the class IloCapResource. Otherwise, it returns IloFalse.

public IloBool isContinuousReservoir() const

This member function returns IloTrue if the invoking resource is an instance of the class
IloContinuousReservoir. Otherwise, it returns IloFalse.

public IloBool isDiscreteEnergy() const

This member function returns IloTrue if the invoking resource is an instance of the class
IloDiscreteEnergy. Otherwise, it returns IloFalse.

public IloBool isDiscreteResource() const

This member function returns IloTrue if the invoking resource is an instance of the class
IloDiscreteResource. Otherwise, it returns IloFalse.

public IloBool isKeptOpen() const

This member function returns IloTrue if the invoking resource should be kept open. Otherwise, it returns
IloFalse. See also: IloResource::keepOpen.

public IloBool isReservoir() const

This member function returns IloTrue if the invoking resource is an instance of the class IloReservoir.
Otherwise, it returns IloFalse.

public IloBool isStateResource() const

This member function returns IloTrue if the invoking resource is an instance of the class IloStateResource.
Otherwise, it returns IloFalse.

public IloBool isUnaryResource() const

This member function returns IloTrue if the invoking resource is an instance of the class IloUnaryResource.
Otherwise, it returns IloFalse.

454

public void keepOpen(IloBool open=IloTrue) const

If the argument open is equal to IloTrue, this member function states that the invoking resource must be kept
open when starting to solve the problem. It means that additional activities requiring or providing the invoking
resource may be added during solving. Otherwise, if the argument open is equal to IloFalse, it states that all
the activities requiring or providing the invoking resource will be defined in the model before starting to solve the
problem. By default, it is supposed that all the activities requiring or providing the invoking resource are defined in
the model before starting to solve the problem.

public void removeCapacityEnforcementInterval(IloNum tmin, IloNum tmax) const

This member function removes a time interval [tmin,tmax) during which the usage of the invoking resources
had be enforced. It means that the resource usage does not need to be enforced on the interval [tmin, tmax).

public void removeTransitionTimeEnforcementInterval(IloNum tmin, IloNum tmax) const

This member function removes a time interval [tmin, tmax) during which the transition times on the invoking
resources were enforced.

public void setCalendar(IloCalendar calendar) const

This member function attaches the calendar calendar to the invoking resource. Notice that calendars can be
shared between resources, and that setCalendar does not imply that a local copy of the calendar is made.
One should be aware of the fact that any change to a shared calendar, using IloCalendar member functions
with the calendar that comes from getCalendar, applies to all resources sharing the calendar.

public void setCalendarEnforcement(IloEnforcementLevel level) const

This member function allows specifying an enforcement level for the calendar of the resources. The level of
enforcement of calendar constraints describes how the solver will enforce these calendar specifications. The
semantics of these levels is solver dependent. The default enforcement level is IloBasic.

public void setCapacityEnforcement(IloEnforcementLevel level) const

This member function allows specifying an enforcement level for the usage of the resources depending on this
parameter. The level of enforcement of resource usage describes how the solver will enforce this resource
usage. The semantics of these levels is solver dependent. The default enforcement level is IloBasic.

public void setCapacityEnforcementIntervalsParam(const IloIntervalList it) const

This member function sets it as the list of capacity enforcement intervals of the invoking resource.

public void setDurationEnforcement(IloEnforcementLevel level) const

This member function allows specifying an enforcement level for the durations of the activities using the invoking
resource. The duration level of enforcement describes how the solver will enforce these durations. The semantics

455

of these levels are solver dependent. The default enforcement level is IloBasic.

public void setPrecedenceEnforcement(IloEnforcementLevel level) const

This member function allows specifying an enforcement level for the precedence relations defined on the
resources depending on this parameter. Precedence relations can be expressed with the member function
IloResourceConstraint::setSuccessor. The level of enforcement of precedence relations describes how
the solver will enforce these constraints. The semantics of these levels is solver dependent. The default
enforcement level is IloBasic.

public void setResourceParam(const IloResourceParam params) const

This member function sets params as the new resource parameter.

public void setSequenceEnforcement(IloEnforcementLevel level) const

This member function allows specifying an enforcement level for the sequencing relations defined on the
resources depending on this parameter. Sequencing relations are expressed by the member functions
IloResourceConstraint::setNext and IloResourceConstraint::setNotNext. The level of
enforcement of sequencing relations describes how the solver will enforce these relations. The semantics of
these levels is solver dependent. The default enforcement level is IloBasic.

public void setTransitionTimeEnforcement(IloEnforcementLevel level) const

This member function allows specifying an enforcement level for the transition times defined on the invoking
resource. Transition times can be associated with a resource using the class IloTransitionTime. The level of
enforcement of transition times describes how the solver will enforce these relations. The semantics of these
levels is solver dependent. The default enforcement level is IloBasic.

public void setTransitionTimeEnforcementIntervalsParam(const IloIntervalList it)
const

This member function sets it as the list of transition time enforcement intervals of the invoking resource.

456

Class IloResourceConstraint
Definition file: ilsched/iloresconstraint.h
Include file: <ilsched/iloscheduler.h>

Resource constraint.

Instances of the class IloResourceConstraint are resource constraints.

This class inherits from the IBM® ILOG® Concert Technology class IloConstraint. That class is documented
in the IBM ILOG Concert Technology Reference Manual.

Instances of this class are created by these member functions:

IloActivity::requires•
IloActivity::provides•
IloActivity::consumes•
IloActivity::produces•
IloActivity::requiresNot•

The five elements of a resource constraint are an activity, an alternative resource set, a constant or variable
demand, a time extent, and a rounding mode.

A resource constraint enforces the fact that on a certain time interval, exactly one resource from a set of
alternatives that make up an instance of IloAltResSet is used to process the activity. The class
IloActivity offers a set of member functions to create a resource constraint.

The demand type depends upon the resource. For example, a discrete capacity resource or a reservoir needs a
positive numerical demand. The demand type for a state resource is a state or a set of states.

The time extent declares the period of time over which the availability of the resource is affected by the activity.
Usually, the default value of the time extent is sufficient, since most activities will “require” a discrete capacity or a
state resource from the start to the end of the activity. So in most cases, the time extent does not need to be
declared. An activity can either produce or consume a reservoir.

The rounding mode tells the solver how to manage the use of the time buckets. Depending on the rounding
mode, an activity that partially overlaps a time bucket is considered to either require the resource over the entire
time bucket, or not require the resource during the time bucket at all.

Note that for resource constraints on continuous reservoirs, the time extent and the rounding mode have no
meaning and are not used. This is because the time step of a timetable for a continuous reservoir is 1, so the
returned resource constraint has no inward/outward rounding mode. Its time extent, which does not match any
case of the enumeration IloTimeExtent, is not defined either.

The alternative resource set specifies the set of resources from which one resource must be selected. If the
resource constraint has only one possible resource, then it requires an alternative resource set with a single
element.

In order to better model interaction between activities and resources, it is possible to attach a specific calendar
on a resource constraint. In such a case, the calendar of the resource constraint will subsume the calendar
possibly attached to the corresponding resource. That is, even if a calendar is defined on the resource, it is not
taken into account when a calendar is specified on the resource constraint.

The member functions of the class IloResourceConstraint allow retrieval of this data. In addition, the class
IloResourceConstraint offers member functions to constrain the relative position of activities on the
resource.

For more information, see Temporal Relations.

457

See Also: IloActivity, IloResource, IloTimeExtent, IloCapResource, IloActivityConstraintsParam, IloReservoir,
IloStateResource, IloTransitionCost, IloTransitionTime, IloUnaryResource

Constructor Summary

public IloResourceConstraint()

public IloResourceConstraint(IloResourceConstraintI * impl)

Method Summary

public IloActivity getActivity() const

public IloAltResSet getAltResSet() const

public IloCalendar getCalendar() const

public IloNum getCapacity() const

public IloNum getCapacityMax(const IloResource resource)
const

public IloNum getCapacityMin(const IloResource resource)
const

public IloNumVar getCapacityVariable() const

public IloNum getDurationMax(const IloResource resource)
const

public IloNum getDurationMin(const IloResource resource)
const

public IloNum getEndMax(const IloResource resource) const

public IloNum getEndMin(const IloResource resource) const

public IloResourceConstraintI * getImpl() const

public IloResourceConstraint getNext() const

public IloNum getProcessingTimeMax(const IloResource
resource) const

public IloNum getProcessingTimeMin(const IloResource
resource) const

public IloResource getResource() const

public IloShape getShape() const

public IloNum getStartMax(const IloResource resource)
const

public IloNum getStartMin(const IloResource resource)
const

public IloAny getState() const

public IloAnySet getStateSet() const

public IloAnySetVar getStateSetVariable() const

public IloAnyVar getStateVariable() const

public IloTimeExtent getTimeExtent() const

public IloBool hasAsNext(const IloResourceConstraint ct)
const

public IloBool hasCalendar() const

public IloBool hasNext() const

public IloBool hasShape() const

458

public IloBool isCapacityConstraint() const

public IloBool isInwardConstraint() const

public IloBool isNegativeConstraint() const

public IloBool isProvidingConstraint() const

public IloBool isRejected(const IloResource resource) const

public IloBool isSelected(const IloResource resource) const

public IloBool isSetup() const

public IloBool isStateConstraint() const

public IloBool isStateSetConstraint() const

public IloBool isSucceededBy(const IloResourceConstraint
ct) const

public IloBool isTeardown() const

public IloBool isVariableResourceConstraint() const

public IloVariableSlopeShape makeVariableSlopeShape(IloNumVar slope)
const

public void removeShape() const

public IloResourceSelectionConstraint select(const IloResource resource) const

public void setCalendar(IloCalendar calendar) const

public void setCapacityMax(const IloResource resource,
IloNum max) const

public void setCapacityMin(const IloResource resource,
IloNum min) const

public void setDurationMax(const IloResource resource,
IloNum max) const

public void setDurationMin(const IloResource resource,
IloNum min) const

public void setEndMax(const IloResource resource, IloNum
max) const

public void setEndMin(const IloResource resource, IloNum
min) const

public void setNext(const IloResourceConstraint ct)
const

public void setNotNext(const IloResourceConstraint ct)
const

public void setNotSetup() const

public void setNotTeardown() const

public void setProcessingTimeMax(const IloResource
resource, IloNum max) const

public void setProcessingTimeMin(const IloResource
resource, IloNum min) const

public void setRejected(const IloResource resource)
const

public void setSelected(const IloResource resource)
const

public void setSetup() const

public void setStartMax(const IloResource resource,

459

IloNum max) const

public void setStartMin(const IloResource resource,
IloNum min) const

public void setSuccessor(const IloResourceConstraint ct)
const

public void setTeardown() const

public void unsetNext(const IloResourceConstraint ct)
const

public void unsetSelection(const IloResource resource)
const

public void unsetSetup() const

public void unsetSuccessor(const IloResourceConstraint
ct) const

public void unsetTeardown() const

Constructors

public IloResourceConstraint()

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IloResourceConstraint(IloResourceConstraintI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

Methods

public IloActivity getActivity() const

This member function returns the activity of the invoking resource constraint.

public IloAltResSet getAltResSet() const

This member function returns the instance of IloAltResSet associated with the invoking constraint. If the
resource constraint was constructed with a single resource, rather than an IloAltResSet, this function returns
an IloAltResSet containing only that resource. The alternative resource set, denoted ARS here, is local to the
invoking resource constraint. That is, it is not shared with any other resource constraint unless a new resource
constraint is subsequently as requiring ARS.

public IloCalendar getCalendar() const

This member function returns the calendar attached to the invoking resource constraint, if such an object exists.

public IloNum getCapacity() const

This member function returns the required or provided quantity of the invoking resource constraint.

460

public IloNum getCapacityMax(const IloResource resource) const

This member function returns the maximal required or provided quantity of the invoking resource constraint
assuming resource is the selected resource.

public IloNum getCapacityMin(const IloResource resource) const

This member function returns the minimal required or provided quantity of the invoking resource constraint
assuming resource is the selected resource.

public IloNumVar getCapacityVariable() const

This member function returns the variable representing the required or provided quantity of the invoking resource
constraint.

public IloNum getDurationMax(const IloResource resource) const

This member function returns the longest duration of the activity of the invoking resource constraint assuming
resource is the selected resource.

public IloNum getDurationMin(const IloResource resource) const

This member function returns the shortest duration of the activity of the invoking resource constraint assuming
resource is the selected resource.

public IloNum getEndMax(const IloResource resource) const

This member function returns the latest end time of the activity of the invoking resource constraint assuming
resource is the selected resource.

public IloNum getEndMin(const IloResource resource) const

This member function returns the earliest end time of the activity of the invoking resource constraint assuming
resource is the selected resource.

public IloResourceConstraintI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloResourceConstraint getNext() const

This member function returns the next resource constraint that affects the availability of the resource after the
invoking resource constraint.

public IloNum getProcessingTimeMax(const IloResource resource) const

461

This member function returns the longest processing time for the activity of the invoking resource constraint
assuming resource is the selected resource.

public IloNum getProcessingTimeMin(const IloResource resource) const

This member function returns the shortest processing time for the activity of the invoking resource constraint
assuming resource is the selected resource.

public IloResource getResource() const

This member function returns the resource of the invoking resource constraint. This method throws an exception
if the invoking resource constraint has an alternative resource set that does not contain exactly one element.

public IloShape getShape() const

This function returns the instance of IloShape associated with the resource constraint.

public IloNum getStartMax(const IloResource resource) const

This member function returns the latest start time of the activity of the invoking resource constraint assuming
resource is the selected resource.

public IloNum getStartMin(const IloResource resource) const

This member function returns the earliest start time of the activity of the invoking resource constraint assuming
resource is the selected resource.

public IloAny getState() const

This member function returns the required state of the invoking resource constraint.

public IloAnySet getStateSet() const

This member function returns the required set of states of the invoking resource constraint.

public IloAnySetVar getStateSetVariable() const

This member function returns the variable representing the required set of states of the invoking resource
constraint.

public IloAnyVar getStateVariable() const

462

This member function returns the variable representing the required state of the invoking resource constraint.

public IloTimeExtent getTimeExtent() const

This member function returns the time extent of the invoking resource constraint.

public IloBool hasAsNext(const IloResourceConstraint ct) const

This function returns IloTrue if and only if a next relation has been added with the member function
IloResourceConstraint::setNext.

public IloBool hasCalendar() const

This member function returns IloTrue if a calendar has been attached to the invoking resource constraint.
Otherwise, it returns IloFalse.

public IloBool hasNext() const

This function returns IloTrue if and only if there exists a unique resource constraint, ct, that has been
constrained to be next after the invoking resource constraint with the member function
IloResourceConstraint::setNext.

public IloBool hasShape() const

This function returns IlcTrue if a shape has been associated with the resource constraint

public IloBool isCapacityConstraint() const

This member function returns IloTrue if and only if the invoking resource constraint indicates that a quantity
(and thus not a state) is required or provided.

public IloBool isInwardConstraint() const

This member function returns IloTrue if and only if the occupancy of the resource by the invoking constraint is
to be rounded inward towards the nearest valid time that corresponds to a time step. This rounding is important
only when one of the resource usage enforcement intervals of the resource has a time step greater than 1 (one).

public IloBool isNegativeConstraint() const

This member function returns IloTrue if and only if the invoking constraint was constructed by the member
function IloActivity::requiresNot

public IloBool isProvidingConstraint() const

463

This member function returns IloTrue if and only if the invoking constraint was constructed by one of these
member functions: IloActivity::provides or IloActivity::produces.

public IloBool isRejected(const IloResource resource) const

This member function returns IloTrue if resource cannot be selected for the activity associated with the
invoking resource constraint (see member function IloResourceConstraint::setRejected). Otherwise, it
returns IloFalse.

public IloBool isSelected(const IloResource resource) const

This member function returns IloTrue if resource must be selected by the invoking constraint (see member
function IloResourceConstraint::setRejected). Otherwise, it returns IloFalse.

public IloBool isSetup() const

This member function returns IloTrue if and only if the invoking resource constraint has been constrained to be
a setup resource constraint with the member function IloResourceConstraint::setSetup.

public IloBool isStateConstraint() const

This member function returns IloTrue if and only if the invoking resource constraint indicates that a single state
(and thus not a quantity or one of a set of states) is required.

public IloBool isStateSetConstraint() const

This member function returns IloTrue if and only if the invoking resource constraint indicates that one of a set
of states (and thus not a quantity or a single state) is required.

public IloBool isSucceededBy(const IloResourceConstraint ct) const

This member function returns IloTrue if and only if a successor relation has been added with the member function
IloResourceConstraint::setSuccessor.

public IloBool isTeardown() const

This member function returns IloTrue if and only if the invoking resource constraint has been constrained to be
a teardown resource constraint with the member function IloResourceConstraint::setTeardown.

public IloBool isVariableResourceConstraint() const

This member function returns IloTrue if and only if the invoking resource constraint has a variable representing
the required quantity or state or provided quantity.

public IloVariableSlopeShape makeVariableSlopeShape(IloNumVar slope) const

464

This function associates an instance of IloVariableSlopeShape with the resource constraint. Shapes are
only available on continuous reservoirs. If the resource constraint already has a shape, that shape is discarded
and replaced by the newly created one. An exception will be thrown at extraction time if the minimal value of the
slope variable is strictly negative.

See Also: IloShape, IloVariableSlopeShape

public void removeShape() const

This function removes the instance of IloShape associated with the resource constraint.

public IloResourceSelectionConstraint select(const IloResource resource) const

This member function creates and returns a constraint that specifies that resource must be selected for the
invoking resource constraint.

The fact that a given resource r must not be selected for a resource constraint rct can be expressed by the
negation of this constraint, as follows:

 model.add(!rct.select(r))

public void setCalendar(IloCalendar calendar) const

This member function attaches the calendar calendar to the invoking resource constraint. Notice that calendars
can be shared between resource constraints, and that setCalendar does not imply that a local copy of the
calendar is made. One should be aware of the fact that any change to a shared calendar (using IloCalendar
member functions with the calendar that comes from getCalendar) applies to all resource constraints sharing
the calendar.

public void setCapacityMax(const IloResource resource, IloNum max) const

This member function states that if resource is the selected resource, then the maximal required or provided
quantity of the invoking resource constraint is max.

public void setCapacityMin(const IloResource resource, IloNum min) const

This member function states that if resource is the selected resource, then the minimal required or provided
quantity of the invoking resource constraint is min.

public void setDurationMax(const IloResource resource, IloNum max) const

This member function states that if resource is the selected resource, the longest duration of the activity of the
invoking resource constraint is max.

public void setDurationMin(const IloResource resource, IloNum min) const

465

This member function states that if resource is the selected resource, then the shortest duration of the activity
of the invoking resource constraint is min.

public void setEndMax(const IloResource resource, IloNum max) const

This member function states that if resource is the selected resource, then the latest end time of the activity of
the invoking resource constraint is max.

public void setEndMin(const IloResource resource, IloNum min) const

This member function states that if resource is the selected resource, then the earliest end time of the activity
of the invoking resource constraint is min.

public void setNext(const IloResourceConstraint ct) const

This member function states that if the invoking resource constraint and ct affect the same resource, then ct is
next after the invoking resource constraint. There cannot exist any other resource constraint that affects the
availability of the resource and starts or finishes between the end of the invoking resource constraint and the start
of ct.

At extraction time if there is an empty intersection between the alternative resource set for the invoking resource
constraint and the alternative resource set for ct, this function has no effect, as the condition that the two
resource constraints must affect the same resource cannot be true.

public void setNotNext(const IloResourceConstraint ct) const

This member function states that ct is not next after the invoking resource constraint. This means that if the
invoking resource constraint and ct both affect the availability of the resource, then there must be another
resource constraint that affects the availability of the resource and it starts or finishes between the end of the
invoking resource constraint and the start of ct.

At extraction time if there is an empty intersection between the alternative resource set for the invoking resource
constraint and the alternative resource set for ct, this function has no effect, as the condition that the two
resource constraints must affect the same resource cannot be true.

public void setNotSetup() const

This member function states that the invoking resource constraint is not a setup resource constraint. This means
that if the invoking resource constraint affects the availability of the resource, there must be a different resource
constraint previous to it that also affects the availability of the resource.

public void setNotTeardown() const

This member function states that the invoking resource constraint is not a teardown resource constraint. This
means that if the invoking resource affects the availability of the resource, then there must be a different resource
constraint that also affects the availability of the resource and occurs after the invoking resource constraint.

public void setProcessingTimeMax(const IloResource resource, IloNum max) const

466

This member function states that if resource is the selected resource, then the longest processing time for the
activity of the invoking resource constraint is max.

public void setProcessingTimeMin(const IloResource resource, IloNum min) const

This member function states that if resource is the selected resource, the shortest processing time for the
activity of the invoking resource constraint is max.

public void setRejected(const IloResource resource) const

This member function states that it is not possible for resource to be selected. If resource is not a member of
the alternative resource set of the invoking resource constraint, this method has no effect.

public void setSelected(const IloResource resource) const

This member function states that resource must be selected for the activity associated with the invoking
constraint. If resource is not a member of the alternative resource set of the invoking resource constraint, this
method will result in an inconsistent model. Any attempt to solve such a model will fail.

public void setSetup() const

This member function states that the invoking resource constraint is a setup resource constraint. This means that
if the invoking resource constraint affects the availability of the resource, no other resource constraint that affects
the availability of the resource can be previous to it.

public void setStartMax(const IloResource resource, IloNum max) const

This member function states that if resource is the selected resource, the latest start time of the activity of the
invoking resource constraint is max.

public void setStartMin(const IloResource resource, IloNum min) const

This member function states that if resource is the selected resource, the earliest start time of the activity of the
invoking resource constraint is min.

public void setSuccessor(const IloResourceConstraint ct) const

This member function states that the invoking resource constraint has the resource constraint ct as successor.
This means that if the invoking resource constraint and ct both affect the availability of the resource, then the
activity of ct is constrained to execute after the activity of the invoking resource constraint.

At extraction time if there is an empty intersection between the alternative resource set for the invoking resource
constraint and the alternative resource set for ct, this function has no effect, as the condition that the two
resource constraints must affect the same resource cannot be true.

public void setTeardown() const

467

This member function states that the invoking resource constraint is a teardown resource constraint. This means
that if the invoking resource constraint affects the availability of the resource, then no resource constraint can
exist that affects the availability of the resource after the invoking resource constraint.

public void unsetNext(const IloResourceConstraint ct) const

This member function removes all information regarding the next relation between the invoking resource
constraint and ct. That is, the information specified by both of the member functions
IloResourceConstraint::setNext and IloResourceConstraint::setNotNext is removed from the
model.

public void unsetSelection(const IloResource resource) const

This member function states that resource is a possible resource for the activity associated with the invoking
constraint, but not necessarily the one selected. This member function removes the information added to the
model by the IloResourceConstraint::setSelected and IloResourceConstraint::setRejected
member functions.

public void unsetSetup() const

This member function removes all setup information from the invoking resource constraint. That is, this member
function removes all information added to the model by the member functions
IloResourceConstraint::setSetup and setNotSetup.

public void unsetSuccessor(const IloResourceConstraint ct) const

This member function removes all information regarding the successor relation between the invoking resource
constraint and ct. That is, the information specified by the member function setSuccessor(ct) is removed
from the model.

public void unsetTeardown() const

This member function removes all teardown information from the invoking resource constraint. That is, this
member function removes all information added to the model by the member functions
IloResourceConstraint::setTeardown and setNotTeardown.

468

Class IloResourceConstraintIterator
Definition file: ilsched/iloresconstraint.h
Include file: <ilsched/iloscheduler.h>

An instance of this class traverses the set of non-alternative resource constraints defined on an environment.

Note

This class is provided for compatibility with the IloIterator<IloResourceConstraint> class of
Scheduler 5.0 and Scheduler 5.1. In the current version of the library,
IloIterator<IloResourceConstraint> traverses all resource constraints (whether or not they are
defined on an alternative resource set) defined on an environment.

For more information, see IloIterator<IloResourceConstraint> in the Concert Reference Manual.

See Also: IloAltResConstraintIterator

Constructor Summary

public IloResourceConstraintIterator(const IloEnv env)

Method Summary

public IloBool ok()

public IloResourceConstraint operator*()

public void operator++()

Constructors

public IloResourceConstraintIterator(const IloEnv env)

This constructor creates an iterator to traverse all the non-alternative resource constraints that are defined on the
environment env.

Methods

public IloBool ok()

This member function returns IloTrue if the current position of the iterator is a valid one. It returns IloFalse if
all the non-alternative resource constraints have been scanned by the iterator.

public IloResourceConstraint operator*()

This operator returns the current instance of IloResourceConstraint, the one to which the invoking iterator
points. This operator must not be called if the iterator does not point to a valid position, that is, one to which the
member function IloResourceConstraintIterator::ok returns IloFalse.

469

public void operator++()

This left-increment operator shifts the current position of the iterator to the next non-alternative instance of
IloResourceConstraint.

470

Class IloResourceParam
Definition file: ilsched/iloresourceparam.h
Include file: <ilsched/iloscheduler.h>

Parameters are used to change the default behavior of activities and resources.

Several kinds of constraints can be posted on a resource:

calendar constraints•
resource usage constraints•
precedence relations between resource constraints on that resource•
sequencing relations among resource constraints on that resource•
transition times.•

Instances of IloResourceParam are used to specify whether and how these constraints posted on resources
must be taken into account during the search.

This class inherits from the IBM® ILOG® Concert Technology class IloExtractable. That class is
documented in the IBM ILOG Concert Technology Reference Manual.

For more information, see Calendars, Parameter Classes, Temporal Relations, Parameters Organized by
Function, Resource Usage Profiles, Transition Costs, Transition Times, and Resource Enforcement as Global
Constraint Declaration.

See Also: IloResource, IloEnforcementLevel

Constructor Summary

public IloResourceParam()

public IloResourceParam(IloResourceParamI * impl)

public IloResourceParam(const IloEnv env, const char * name=0)

Method Summary

public IloBool areCalendarConstraintsIgnored() const

public IloBool areCapacityConstraintsIgnored() const

public IloBool arePrecedenceConstraintsIgnored() const

public IloBool areSequenceConstraintsIgnored() const

public IloBool areTransitionTimeConstraintsIgnored() const

public IloEnforcementLevel getCalendarEnforcement() const

public IloEnforcementLevel getCapacityEnforcement() const

public IloEnforcementLevel getDurationEnforcement() const

public IloResourceParamI * getImpl() const

public IloEnforcementLevel getPrecedenceEnforcement() const

public IloEnforcementLevel getSequenceEnforcement() const

public IloEnforcementLevel getTransitionTimeEnforcement() const

public void ignoreCalendarConstraints(IloBool ignore=IloTrue)
const

471

public void ignoreCapacityConstraints(IloBool ignore=IloTrue)
const

public void ignorePrecedenceConstraints(IloBool ignore=IloTrue)
const

public void ignoreSequenceConstraints(IloBool ignore=IloTrue)
const

public void ignoreTransitionTimeConstraints(IloBool
ignore=IloTrue) const

public IloBool isKeptOpen() const

public void keepOpen(IloBool open=IloTrue) const

public void setCalendarEnforcement(IloEnforcementLevel level)
const

public void setCapacityEnforcement(IloEnforcementLevel level)
const

public void setDurationEnforcement(IloEnforcementLevel level)
const

public void setPrecedenceEnforcement(IloEnforcementLevel level)
const

public void setSequenceEnforcement(IloEnforcementLevel level)
const

public void setTransitionTimeEnforcement(IloEnforcementLevel
level) const

Constructors

public IloResourceParam()

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IloResourceParam(IloResourceParamI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IloResourceParam(const IloEnv env, const char * name=0)

This constructor creates a new instance of IloResourceParam in the given environment env.

Methods

public IloBool areCalendarConstraintsIgnored() const

This member function returns IloTrue if the calendar of the resources depending on this parameter is to be
ignored. Otherwise, it returns IloFalse.

public IloBool areCapacityConstraintsIgnored() const

This member function returns IloTrue if the usage of the resources depending on this parameter is to be
ignored. Otherwise, it returns IloFalse.

472

public IloBool arePrecedenceConstraintsIgnored() const

This member function returns IloTrue if the precedence relations defined on the resources depending on this
parameter are to be ignored. Otherwise, it returns IloFalse. Precedence relations are expressed with the
member function IloResourceConstraint::setSuccessor.

public IloBool areSequenceConstraintsIgnored() const

This member function returns IloTrue if the sequencing relations defined on the resources depending on this
parameter are to be ignored. Otherwise, it returns IloFalse. Sequencing relations are expressed with the
following member functions: IloResourceConstraint::setNext,
IloResourceConstraint::setNotNext, IloResourceConstraint::setSetup,
IloResourceConstraint::setNotSetup, IloResourceConstraint::setTeardown, and
IloResourceConstraint::setNotTeardown.

public IloBool areTransitionTimeConstraintsIgnored() const

This member function returns IloTrue if the transition time defined on the resources depending on this
parameter is to be ignored. Otherwise, it returns IloFalse.

public IloEnforcementLevel getCalendarEnforcement() const

This member function returns the enforcement level for calendar constraint of the invoking parameter. See also:
IloResourceParam::getCalendarEnforcement

public IloEnforcementLevel getCapacityEnforcement() const

This member function returns the capacity enforcement level of the invoking parameter. See also:
IloResourceParam::setCapacityEnforcement

public IloEnforcementLevel getDurationEnforcement() const

This member function returns the enforcement level on the duration of the invoking parameter. See also:
IloResourceParam::setDurationEnforcement

public IloResourceParamI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloEnforcementLevel getPrecedenceEnforcement() const

This member function returns the enforcement level for precedence relations of the invoking parameter. See
also: IloResourceParam::setPrecedenceEnforcement

public IloEnforcementLevel getSequenceEnforcement() const

473

This member function returns the enforcement level for sequencing relations of the invoking parameter. See also:
IloResourceParam::setSequenceEnforcement

public IloEnforcementLevel getTransitionTimeEnforcement() const

This member function returns the enforcement level for transition time relations of the invoking parameter. See
also: IloResourceParam::setTransitionTimeEnforcement

public void ignoreCalendarConstraints(IloBool ignore=IloTrue) const

This member function allows you to specify whether the calendar constraints of the resources depending on this
parameter will be ignored. If the argument ignored is equal to IloTrue, it will behave as if no calendar is
attached to the resources depending on this parameter.

public void ignoreCapacityConstraints(IloBool ignore=IloTrue) const

This member function allows you to specify whether the capacity or state constraints on the resources depending
on this parameter will be ignored. If the argument ignore is equal to IloTrue, and the resource is a capacity
resource, it will behave as if the capacity constraints on the resource are ignored. If the resource is a state
resource, it will behave as if the required state constraints on the resource are ignored.

public void ignorePrecedenceConstraints(IloBool ignore=IloTrue) const

This member function allows you to specify whether the precedence relations defined on the resources
depending on this parameter will be ignored. If the argument ignore is equal to IloTrue, it will behave as if the
precedence relations are ignored. Precedence relations are expressed with the member function
IloResourceConstraint::setSuccessor.

public void ignoreSequenceConstraints(IloBool ignore=IloTrue) const

This member function allows you to specify whether the sequence relations defined on the resources depending
on this parameter will be ignored. If the argument ignore is equal to IloTrue, it will behave as if the sequence
relations are ignored. Sequence relations are expressed with the member functions
IloResourceConstraint::setNext and IloResourceConstraint::setNotNext.

public void ignoreTransitionTimeConstraints(IloBool ignore=IloTrue) const

This member function allows you to specify whether the transition times defined on the resources depending on
this parameter will be ignored. If the argument ignore is equal to IloTrue, it will behave as if the transition time
constraints are ignored.

public IloBool isKeptOpen() const

This member function returns IloTrue if the resource depending on this parameter should be kept open.
Otherwise, it returns IloFalse. See also: IloResourceParam::keepOpen

public void keepOpen(IloBool open=IloTrue) const

474

If the argument open is equal to IloTrue, this member function states that the resources depending on this
parameter must be kept open when starting to solve the problem. It means that additional activities requiring or
providing these resources may be added during solving. Otherwise, if the argument open is equal to IloFalse,
it states that all the activities requiring or providing the resources depending on this parameter are known before
starting to solve the problem. By default, it is supposed that all the activities requiring or providing the resources
are known before starting to solve the problem.

public void setCalendarEnforcement(IloEnforcementLevel level) const

This member function allows specifying an enforcement level for the calendar of the resources. The level of
enforcement of calendar constraints describes how the solver will enforce these calendar constraints. The
semantics of these levels is solver dependent. The default enforcement level is IloBasic. For more information
on the enforcement levels and how they are interpreted in Scheduler Engine, see IloEnforcementLevel and
Resource Enforcement as Global Constraint Declaration.

public void setCapacityEnforcement(IloEnforcementLevel level) const

This member function allows specifying an enforcement level for the usage of the resources depending on this
parameter. The level of enforcement of resource usage describes how the solver will enforce this resource
usage. The semantics of these levels is solver dependent. The default enforcement level is IloBasic. For more
information on the enforcement levels and how they are interpreted in Scheduler Engine, see
IloEnforcementLevel and Resource Enforcement as Global Constraint Declaration.

public void setDurationEnforcement(IloEnforcementLevel level) const

This member function allows specifying an enforcement level for the duration of activities using the resources
depending on this parameter. The level of enforcement describes how the solver will enforce these durations.
The semantics of these levels is solver dependent. The default enforcement level is IloBasic. For more
information on the enforcement levels and how they are interpreted in Scheduler Engine, see
IloEnforcementLevel and Resource Enforcement as Global Constraint Declaration.

public void setPrecedenceEnforcement(IloEnforcementLevel level) const

This member function allows specifying an enforcement level for the precedence relations defined on the
resources depending on this parameter. Precedence relations can be expressed with the member function
IloResourceConstraint::setSuccessor. The level of enforcement of precedence relations describes how
the solver will enforce these constraints. The semantics of these levels is solver dependent. The default
enforcement level is IloBasic. For more information on the enforcement levels and how they are interpreted in
Scheduler Engine, see IloEnforcementLevel and Resource Enforcement as Global Constraint Declaration.

public void setSequenceEnforcement(IloEnforcementLevel level) const

This member function allows specifying an enforcement level for the sequencing relations defined on the
resources depending on this parameter. Sequencing relations are expressed by the member functions
IloResourceConstraint::setNext and IloResourceConstraint::setNotNext. The level of
enforcement of sequencing relations describes how the solver will enforce these relations. The semantics of
these levels is solver dependent. The default enforcement level is IloBasic. For more information on the
enforcement levels and how they are interpreted in Scheduler Engine, see IloEnforcementLevel and
Resource Enforcement as Global Constraint Declaration.

475

public void setTransitionTimeEnforcement(IloEnforcementLevel level) const

This member function allows specifying an enforcement level for the transition times defined on the resources
depending on this parameter. Transition times can be associated with a resource with the member functions of
the class IloTransitionTime. The level of enforcement of transition times describes how the solver will
enforce these relations. The semantics of these levels is solver dependent. The default enforcement level is
IloBasic. For more information on the enforcement levels and how they are interpreted in Scheduler Engine,
see IloEnforcementLevel and Resource Enforcement as Global Constraint Declaration.

476

Class IloResourceValue
Definition file: ilsched/iloresvaluect.h

This class allows associating an integer value (or an integer variable) for each resource in an environment. A
default can be specified for all the resources that are not explicitely associated a value.

Constructor Summary

public IloResourceValue()

public IloResourceValue(IloResourceValueI * impl)

public IloResourceValue(IloEnv env, const char * name=0)

Method Summary

public IloResourceValueI * getImpl() const

public IloIntExprArg operator[](IloResourceConstraint rct)

public void setDefault(IloInt defaultValue)

public void setValue(IloResource resource, IloIntVar var)

public void setValue(IloResource resource, IloInt value)

Constructors

public IloResourceValue()

This constructor creates an empty handle. You must initialize it before you use it.

public IloResourceValue(IloResourceValueI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IloResourceValue(IloEnv env, const char * name=0)

This constructor creates a new instance of IloResourceValue to associate an integer value (or integer
variable) with each resource in the environment.

Methods

public IloResourceValueI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloIntExprArg operator[](IloResourceConstraint rct)

This member function returns an integer expression whose value is the value of the resource that is selected by
the resource constraint given as parameter.

public void setDefault(IloInt defaultValue)

477

This member function defines a default value associated with each resource in the environment. It means that
the invoking IloResourceValue will associate the value defaultValue with each resource but those which
have explicitely been associated a value thanks to the member functions setValue.

public void setValue(IloResource resource, IloIntVar var)

This member function associates the variable value var with resource resource.

public void setValue(IloResource resource, IloInt value)

This member function associates the value value with resource resource.

478

Class IloSchedulerEnv
Definition file: ilsched/iloschedenv.h
Include file: <ilsched/iloscheduler.h>

The class IloSchedulerEnv is the repository of all the default parameters used when creating new modeling
objects. There can be at most one IloSchedulerEnv defined on a given instance of IloEnv.

Avoiding Overflows

In order to avoid overflows in computations by Scheduler Engine, an efficient policy is to limit the domain of all
extracted integer variables to an interval of [-L,L]. For example, a variable whose lower bound is 0 and upper
bound is IloInfinity will be extracted as a variable with the domain [0,L]. This limit L is set by the member
function IloSchedulerEnv::setIntMaxAtExtraction. At extraction, this limit is used only for variables that
are used by Scheduler objects or constraints, as the start and end times, the capacity variables or the
precedence delays. Please note that there is an exception for the cost sum variable (class
IloTransitionCost). For this variable, the limit L is not applied because there is usually no overflow with this
variable. The default value of this limit is IloIntMax/2, which avoids overflows in most cases.

For more information, see IloNumToNumStepFunction, IloNumToAnySetStepFunction, and
IloIntervalList in the extensions section of the IBM ILOG Concert Technology Reference Manual,
Parameter Classes.

See Also: IloActivityBasicParam, IloActivityBreakParam, IloActivityConstraintsParam, IloActivityOverlapParam,
IloActivityShiftParam, IloResourceParam

Constructor Summary

public IloSchedulerEnv(const IloEnv env)

public IloSchedulerEnv(IloSchedulerEnvI * impl)

Method Summary

public IloActivityBasicParam getActivityBasicParam() const

public IloActivityBreakParam getActivityBreakParam() const

public IloActivityConstraintsParam getActivityConstraintsParam() const

public IloActivityOverlapParam getActivityOverlapParam() const

public IloActivityShiftParam getActivityShiftParam() const

public IloIntervalList getBreakListParam() const

public IloIntervalList getCapacityEnforcementIntervalsParam() const

public IloNumToNumStepFunction getCapacityMaxParam() const

public IloNumToNumStepFunction getCapacityMinParam() const

public IloEnv getEnv() const

public IloNum getHorizon() const

public IloSchedulerEnvI * getImpl() const

public IloNumToNumStepFunction getInitialOccupationParam() const

public IloInt getIntMaxAtExtraction() const

public IloTextureParam getMaxTextureParam() const

public IloTextureParam getMinTextureParam() const

479

public IloIntervalList getMustBeInUseParam() const

public IloNum getOrigin() const

public IloNumToAnySetStepFunction getPossibleStatesParam() const

public IloEnforcementLevel getPrecedenceEnforcement() const

public IloResourceParam getResourceParam() const

public IloIntervalList getTransitionTimeEnforcementIntervalsParam()
const

public void setActivityBasicParam(const
IloActivityBasicParam param) const

public void setActivityBreakParam(const
IloActivityBreakParam param) const

public void setActivityConstraintsParam(const
IloActivityConstraintsParam param) const

public void setActivityOverlapParam(const
IloActivityOverlapParam param) const

public void setActivityShiftParam(const
IloActivityShiftParam param) const

public void setBreakListParam(const IloIntervalList param)
const

public void setCapacityEnforcementIntervalsParam(const
IloIntervalList param) const

public void setCapacityMaxParam(const
IloNumToNumStepFunction param) const

public void setCapacityMinParam(const
IloNumToNumStepFunction param) const

public void setHorizon(IloNum horizon) const

public void setInitialOccupationParam(const
IloNumToNumStepFunction param) const

public void setIntMaxAtExtraction(IloInt max) const

public void setMaxTextureParam(const IloTextureParam
param) const

public void setMinTextureParam(const IloTextureParam
param) const

public void setMustBeInUseParam(const IloIntervalList
param) const

public void setOrigin(IloNum origin) const

public void setPossibleStatesParam(const
IloNumToAnySetStepFunction param) const

public void setPrecedenceEnforcement(IloEnforcementLevel
level) const

public void setResourceParam(const IloResourceParam param)
const

public void setTransitionTimeEnforcementIntervalsParam(const
IloIntervalList param) const

480

Constructors

public IloSchedulerEnv(const IloEnv env)

This constructor creates a new instance of IloSchedulerEnv if none currently exists on the given instance of
IloEnv. If a scheduler environment has already been created on the environment, then the new handle uses it,
and points to the same implementation. When created, an instance of IloSchedulerEnv will create all the
default parameters and initialize them to their default values.

public IloSchedulerEnv(IloSchedulerEnvI * impl)

This constructor creates an instance of the handle class IloSchedulerEnv from the pointer to an instance of
the implementation class IloSchedulerEnvI.

Methods

public IloActivityBasicParam getActivityBasicParam() const

This member function returns the default instance of the activity basic parameter. Modeling objects that are
created will point to this instance, which can thus be shared between several objects.

public IloActivityBreakParam getActivityBreakParam() const

This member function returns the default instance of the activity break parameter. Modeling objects that are
created will point to this instance, which can thus be shared between several objects.

public IloActivityConstraintsParam getActivityConstraintsParam() const

This member function returns the default instance of the activity constraints parameter. Modeling objects that are
created will point to this instance, which can thus be shared between several objects.

public IloActivityOverlapParam getActivityOverlapParam() const

This member function returns the default instance of the activity overlap parameter. Modeling objects that are
created will point to this instance, which can thus be shared between several objects.

public IloActivityShiftParam getActivityShiftParam() const

This member function returns the default instance of the activity shift parameter. Modeling objects that are
created will point to this instance, which can thus be shared between several objects.

public IloIntervalList getBreakListParam() const

This member function returns the default instance of the break list parameter. Modeling objects that are created
will point to this instance, which can thus be shared between several objects.

481

public IloIntervalList getCapacityEnforcementIntervalsParam() const

This member function returns the default instance of the capacity enforcement intervals parameter. Modeling
objects that are created will point to this instance, which can thus be shared between several objects.

public IloNumToNumStepFunction getCapacityMaxParam() const

This member function returns the default instance of the maximal capacity parameter. Modeling objects that are
created will point to this instance, which can thus be shared between several objects.

public IloNumToNumStepFunction getCapacityMinParam() const

This member function returns the default instance of the minimal capacity parameter. Modeling objects that are
created will point to this instance, which can thus be shared between several objects.

public IloEnv getEnv() const

This member function returns the instance of IloEnv on which the called object was built.

public IloNum getHorizon() const

This member function returns the time horizon. The time origin and the time horizon are used by default at
extraction to initialize the time window over which resource capacity constraints must be enforced. The origin and
horizon are also used for setting earliest start times and latest end times of activities when they are created.

public IloSchedulerEnvI * getImpl() const

This member function returns a pointer to the implementation object corresponding to the invoking activity (a
handle).

public IloNumToNumStepFunction getInitialOccupationParam() const

This member function returns the default instance of the initial occupation parameter. Modeling objects that are
created will point to this instance, which can thus be shared between several objects.

public IloInt getIntMaxAtExtraction() const

This member function returns the value of the maximum limit of the domain of the integer variables used by
Scheduler Engine.

Avoiding Overflows

In order to avoid overflows in computations by Scheduler Engine, an efficient policy is to limit the domain of all
extracted integer variables to an interval of [-L,L]. For example, a variable whose lower bound is 0 and upper
bound is IloInfinity will be extracted as a variable with the domain [0,L]. This limit L is set by the member
function IloSchedulerEnv::setIntMaxAtExtraction. At extraction, this limit is used only for variables that

482

are used by Scheduler objects or constraints, as the start and end times, the capacity variables or the
precedence delays. Please note that there is an exception for the cost sum variable (class
IloTransitionCost). For this variable, the limit L is not applied because there is usually no overflow with this
variable. The default value of this limit is IloIntMax/2, which avoids overflows in most cases.

For more information, see Parameters Organized by Function and IloNumToNumStepFunction in the IBM
ILOG Concert Technology Reference Manual.

public IloTextureParam getMaxTextureParam() const

The member function returns the default instance of the texture parameter on maximum capacity constraints.
Modeling objects that are created will point to this instance, which can thus be shared between several objects.

public IloTextureParam getMinTextureParam() const

The member function returns the default instance of the texture parameter on minimum capacity constraints.
Modeling objects that are created will point to this instance, which can thus be shared between several objects.

public IloIntervalList getMustBeInUseParam() const

This member function returns the default instance of the must be in use parameter. Modeling objects that are
created will point to this instance, which can thus be shared between several objects.

public IloNum getOrigin() const

This member function returns the time origin. The time origin and the time horizon are used by default at
extraction to initialize the time window over which resource capacity constraints must be enforced. The origin and
horizon are also used for setting earliest start times and latest end times of activities when they are created.

public IloNumToAnySetStepFunction getPossibleStatesParam() const

This member function returns the default instance of the possible states parameter. Modeling objects that are
created will point to this instance, which can thus be shared between several objects.

public IloEnforcementLevel getPrecedenceEnforcement() const

This member function returns the global precedence enforcement level of the scheduler environment.

public IloResourceParam getResourceParam() const

This member function returns the default instance of the resource parameter. Modeling objects that are created
will point to this instance, which can thus be shared between several objects.

public IloIntervalList getTransitionTimeEnforcementIntervalsParam() const

483

This member function returns the default instance of the transition time enforcement intervals parameter.
Modeling objects that are created will point to this instance, which can thus be shared between several objects.

public void setActivityBasicParam(const IloActivityBasicParam param) const

This member function sets param as the new default activity basic parameter. Subsequently created modeling
objects will point to this parameter instance.

public void setActivityBreakParam(const IloActivityBreakParam param) const

This member function sets param as the new default activity break parameter. Subsequently created modeling
objects will point to this parameter instance.

public void setActivityConstraintsParam(const IloActivityConstraintsParam param)
const

This member function sets param as the new default activity constraints parameter. Subsequently created
modeling objects will point to this parameter instance.

public void setActivityOverlapParam(const IloActivityOverlapParam param) const

This member function sets param as the new default activity overlap parameter. Subsequently created modeling
objects will point to this parameter instance.

public void setActivityShiftParam(const IloActivityShiftParam param) const

This member function sets param as the new default activity shift parameter. Subsequently–created modeling
objects will point to this parameter instance.

public void setBreakListParam(const IloIntervalList param) const

This member function sets param as the new default break list parameter. Subsequently created modeling
objects will point to this parameter instance.

public void setCapacityEnforcementIntervalsParam(const IloIntervalList param) const

This member function sets param as the new default capacity enforcement intervals parameter. Subsequently
created modeling objects will point to this parameter instance.

public void setCapacityMaxParam(const IloNumToNumStepFunction param) const

This member function sets param as the new default maximal capacity parameter. Subsequently created
modeling objects will point to this parameter instance.

public void setCapacityMinParam(const IloNumToNumStepFunction param) const

484

This member function sets param as the new default minimal capacity parameter. Subsequently created
modeling objects will point to this parameter instance.

public void setHorizon(IloNum horizon) const

This member function sets the time horizon to horizon. The time origin and the time horizon are used by default
at extraction to initialize the time window over which resource capacity constraints must be enforced. The origin
and horizon are also used for setting earliest start times and latest end times of activities when they are created.

public void setInitialOccupationParam(const IloNumToNumStepFunction param) const

This member function sets param as the new default initial occupation parameter. Subsequently created
modeling objects will point to this parameter instance.

public void setIntMaxAtExtraction(IloInt max) const

This member function sets max as the new value for the maximum limit of the domain of the integer variables
used by Scheduler Engine. See IloSchedulerEnv::getIntMaxAtExtraction for more information on avoiding
overflows.

public void setMaxTextureParam(const IloTextureParam param) const

This member function sets the texture parameter on maximum capacity constraints to param. Modeling objects
that are created will point to this instance, which can thus be shared between several objects.

public void setMinTextureParam(const IloTextureParam param) const

This member function sets the texture parameter on minimum capacity constraints to param. Modeling objects
that are created will point to this instance, which can thus be shared between several objects.

public void setMustBeInUseParam(const IloIntervalList param) const

This member function sets param as the new default must be in use parameter. Subsequently created modeling
objects will point to this parameter instance.

public void setOrigin(IloNum origin) const

This member function sets the time origin to origin. The time origin and the time horizon are used by default at
extraction to initialize the time window over which resource capacity constraints must be enforced. The origin and
horizon are also used for setting earliest start times and latest end times of activities when they are created.

public void setPossibleStatesParam(const IloNumToAnySetStepFunction param) const

485

This member function sets param as the new default possible states parameter. Subsequently created modeling
objects will point to this parameter instance.

public void setPrecedenceEnforcement(IloEnforcementLevel level) const

This member function allows setting level as the new global precedence enforcement level of the scheduler
environment. See Resource Enforcement as Global Constraint Declaration for a description of how this
enforcement level is interpreted at extraction time by the scheduler engine.

public void setResourceParam(const IloResourceParam param) const

This member function sets param as the new default resource parameter. Subsequently created modeling
objects will point to this parameter instance.

public void setTransitionTimeEnforcementIntervalsParam(const IloIntervalList param)
const

This member function sets param as the new default transition time enforcement intervals parameter.
Subsequently created modeling objects will point to this parameter instance.

486

Class IloSchedulerLargeNHood
Definition file: ilsched/ilolnsgoals.h
Include file: <ilsched/iloscheduler.h>

This class represents a large neighborhood dedicated to scheduling problems.

The current solution is an instance of IloSchedulerSolution.

A set of activity predicates is used to specify if the start, the end, the duration, the processing time, and the
external variables of an activity should be restored.

Similarly, a set of predicates can be used to specify if the next, the prev, the direct successors, the direct
predecessors, the teardown, and the setup of a resource constraint should be restored.

The virtual member function defineRestoreInfo is available with a specialized signature for activity and
resource constraints.

The virtual member function finalizeDelta has been overloaded: it removes from the current solution any link
of the types next / prev / direct successors / direct predecessors between a resource constraint that is selected
and a resource constraint that is not selected.

See Large Neighborhoods and the Selectors concept in the IBM ILOG Solver Reference Manual for more
information.

See Also: IloSchedulerLargeNHoodI

Method Summary

public void defineRestoreInfo(IloSolver, IloSolution)

public IloSolution defineSelected(IloSolver, IloInt index)

public void finalizeDelta(IloSolver, IloSolution)

public IloSchedulerSolution getCurrentSolution() const

public IloPredicate< IloActivity > getRestoreActivityDurationPredicate()
const

public IloPredicate< IloActivity > getRestoreActivityEndPredicate() const

public IloPredicate< IloActivity > getRestoreActivityExternalPredicate()
const

public IloPredicate< IloActivity > getRestoreActivityProcessingTimePredicate()
const

public IloPredicate< IloActivity > getRestoreActivityStartPredicate() const

public IloPredicate< IloExtractable > getRestoreExtractablePredicate() const

public IloPredicate< IloResourceConstraint > getRestoreRCCapacityPredicate() const

public IloPredicate< IloResourceConstraint > getRestoreRCDirectPredecessorPredicate()
const

public IloPredicate< IloResourceConstraint > getRestoreRCDirectSuccessorPredicate()
const

public IloPredicate< IloResourceConstraint > getRestoreRCNextPredicate() const

public IloPredicate< IloResourceConstraint > getRestoreRCPrevPredicate() const

487

public IloPredicate< IloResourceConstraint > getRestoreRCSelectedPredicate() const

public IloPredicate< IloResourceConstraint > getRestoreRCSetupPredicate() const

public IloPredicate< IloResourceConstraint > getRestoreRCTeardownPredicate() const

public IloBool isSelected(IloExtractable ext) const

public void setRestoreActivityDurationPredicate(IloPredicate<
IloActivity > predicate)

public void setRestoreActivityEndPredicate(IloPredicate<
IloActivity > predicate)

public void setRestoreActivityExternalPredicate(IloPredicate<
IloActivity > predicate)

public void setRestoreActivityProcessingTimePredicate(IloPredicate<
IloActivity > predicate)

public void setRestoreActivityStartPredicate(IloPredicate<
IloActivity > predicate)

public void setRestoreExtractablePredicate(IloPredicate<
IloExtractable > predicate)

public void setRestoreRCCapacityPredicate(IloPredicate<
IloResourceConstraint > predicate)

public void setRestoreRCDirectPredecessorPredicate(IloPredicate<
IloResourceConstraint > predicate)

public void setRestoreRCDirectSuccessorPredicate(IloPredicate<
IloResourceConstraint > predicate)

public void setRestoreRCNextPredicate(IloPredicate<
IloResourceConstraint > predicate)

public void setRestoreRCPrevPredicate(IloPredicate<
IloResourceConstraint > predicate)

public void setRestoreRCSelectedPredicate(IloPredicate<
IloResourceConstraint > predicate)

public void setRestoreRCSetupPredicate(IloPredicate<
IloResourceConstraint > predicate)

public void setRestoreRCTeardownPredicate(IloPredicate<
IloResourceConstraint > predicate)

Methods

public void defineRestoreInfo(IloSolver, IloSolution)

This virtual member function iterates on all extractables and appplies on each extractable the predicate to specify
if it must be restored from the current solution.

public IloSolution defineSelected(IloSolver, IloInt index)

This pure virtual member function returns the set of decision variables, or instances of IloExtractable, on
which to focus the search.

public void finalizeDelta(IloSolver, IloSolution)

This virtual member function is called to complete the definition of the neighborhood.

488

public IloSchedulerSolution getCurrentSolution() const

This member function returns the current solution, which is the one registered by the virtual member function
start.

public IloPredicate< IloActivity > getRestoreActivityDurationPredicate() const

This member function returns the predicate used to specify if the duration of an activity in the current solution
must be restored.

public IloPredicate< IloActivity > getRestoreActivityEndPredicate() const

This member function returns the predicate used to specify if the end of an activity in the current solution must be
restored.

public IloPredicate< IloActivity > getRestoreActivityExternalPredicate() const

This member function returns the predicate used to specify if the external variable of an activity in the current
solution must be restored.

public IloPredicate< IloActivity > getRestoreActivityProcessingTimePredicate()
const

This member function returns the predicate used to specify if the processing time of an activity in the current
solution must be restored.

public IloPredicate< IloActivity > getRestoreActivityStartPredicate() const

This member function returns the predicate used to specify if the end of an activity in the current solution must be
restored.

public IloPredicate< IloExtractable > getRestoreExtractablePredicate() const

This member function returns the predicate used to specify which extractables to restore from the current
solution.

public IloPredicate< IloResourceConstraint > getRestoreRCCapacityPredicate() const

This member function returns the predicate used to specify if the capacity of a resource constraint in the current
solution must be restored.

public IloPredicate< IloResourceConstraint >
getRestoreRCDirectPredecessorPredicate() const

489

This member function returns the predicate used to specify if the direct predecessors of a resource constraint in
the current solution must be restored.

public IloPredicate< IloResourceConstraint > getRestoreRCDirectSuccessorPredicate()
const

This member function returns the predicate used to specify if the direct successors of a resource constraint in the
current solution must be restored.

public IloPredicate< IloResourceConstraint > getRestoreRCNextPredicate() const

This member function returns the predicate used to specify if the next (resource constraint) of a resource
constraint in the current solution must be restored.

public IloPredicate< IloResourceConstraint > getRestoreRCPrevPredicate() const

This member function returns the predicate used to specify if the prev (previous resource constraint) of a
resource constraint in the current solution must be restored.

public IloPredicate< IloResourceConstraint > getRestoreRCSelectedPredicate() const

This member function returns the predicate used to specify if the resource selected of a resource constraint in the
current solution must be restored.

public IloPredicate< IloResourceConstraint > getRestoreRCSetupPredicate() const

This member function returns the predicate used to specify if the setup of a resource constraint in the current
solution must be restored.

public IloPredicate< IloResourceConstraint > getRestoreRCTeardownPredicate() const

This member function returns the predicate used to specify if the teardown of a resource constraint in the current
solution must be restored.

public IloBool isSelected(IloExtractable ext) const

This member function returns IloTrue if the extractable is selected. Otherwise, it returns IloFalse.

public void setRestoreActivityDurationPredicate(IloPredicate< IloActivity >
predicate)

This member function sets the predicate used to specify if the duration of an activity in the current solution must
be restored. An exception is raised if the predicate is an empty handle.

public void setRestoreActivityEndPredicate(IloPredicate< IloActivity > predicate)

490

This member function sets the predicate used to specify if the end of an activity in the current solution must be
restored. An exception is raised if the predicate is an empty handle.

public void setRestoreActivityExternalPredicate(IloPredicate< IloActivity >
predicate)

This member function sets the predicate used to specify if the external variable of an activity in the current
solution must be restored. An exception is raised if the predicate is an empty handle.

public void setRestoreActivityProcessingTimePredicate(IloPredicate< IloActivity >
predicate)

This member function sets the predicate used to specify if the processing time of an activity in the current
solution must be restored. An exception is raised if the predicate is an empty handle.

public void setRestoreActivityStartPredicate(IloPredicate< IloActivity > predicate)

This member function sets the predicate used to specify if the start of an activity in the current solution must be
restored. An exception is raised if the predicate is an empty handle.

public void setRestoreExtractablePredicate(IloPredicate< IloExtractable >
predicate)

This member function sets the predicate used to specify which extractables to restore from the current solution.
When applied, the predicate receives the neighborhood as an argument.

public void setRestoreRCCapacityPredicate(IloPredicate< IloResourceConstraint >
predicate)

This member function sets the predicate used to specify if the capacity of a resource constraint in the current
solution must be restored. An exception is raised if the predicate is an empty handle.

public void setRestoreRCDirectPredecessorPredicate(IloPredicate<
IloResourceConstraint > predicate)

This member function sets the predicate used to specify if the direct predecessors of a resource constraint in the
current solution must be restored. An exception is raised if the predicate is an empty handle.

public void setRestoreRCDirectSuccessorPredicate(IloPredicate<
IloResourceConstraint > predicate)

This member function sets the predicate used to specify if the direct successors of a resource constraint in the
current solution must be restored. An exception is raised if the predicate is an empty handle.

public void setRestoreRCNextPredicate(IloPredicate< IloResourceConstraint >

491

predicate)

This member function sets the predicate used to specify if the next (resource constraint) of a resource constraint
in the current solution must be restored. An exception is raised if the predicate is an empty handle.

public void setRestoreRCPrevPredicate(IloPredicate< IloResourceConstraint >
predicate)

This member sets the predicate used to specify if the prev (previous resource constraint) of a resource constraint
in the current solution must be restored. An exception is raised if the predicate is an empty handle.

public void setRestoreRCSelectedPredicate(IloPredicate< IloResourceConstraint >
predicate)

This member function sets the predicate used to specify if the resource selected of a resource constraint in the
current solution must be restored. An exception is raised if the predicate is an empty handle.

public void setRestoreRCSetupPredicate(IloPredicate< IloResourceConstraint >
predicate)

This member function sets the predicate used to specify if the setup of a resource constraint in the current
solution must be restored. An exception is raised if the predicate is an empty handle.

public void setRestoreRCTeardownPredicate(IloPredicate< IloResourceConstraint >
predicate)

This member function sets the predicate used to specify if the teardown of a resource constraint in the current
solution must be restored. An exception is raised if the predicate is an empty handle.

492

Class IloSchedulerLargeNHoodI
Definition file: ilsched/ilolnsgoals.h
Include file: <ilsched/iloscheduler.h>

This abstract implementation class is used to define a large neighborhood dedicated to scheduling problems.

The current solution is an instance of IloSchedulerSolution.

A set of activity predicates are used to specify if the start, the end, the duration, the processing time, and the
external variables of an activity should be restored.

Similarly, a set of predicates can be used to specify if the next, the prev, the direct successors, the direct
predecessors, the teardown, and the setup of a resource constraint should be restored.

The virtual member function defineRestoreInfo is available with a specialized signature for activity and
resource constraints.

The virtual member function finalizeDelta has been overloaded: it removes from the current solution any link
of the types next / prev / direct successors / direct predecessors between a resource constraint that is selected
and a resource constraint that is not selected.

See Large Neighborhoods and the Selectors concept in the IBM ILOG Solver Reference Manual for more
information.

See Also: IloSchedulerLargeNHood

Constructor and Destructor Summary

public IloSchedulerLargeNHoodI(IloEnv env, const char * name)

Method Summary

public virtual IloSolution define(IloSolver solver, IloInt index)

public virtual void defineRestoreInfo(IloSolver solver,
IloSolution solution)

public virtual IloSolution defineSelected(IloSolver solver, IloInt
index)

public virtual void finalizeDelta(IloSolver solver,
IloSolution solution)

public IloSchedulerSolution getCurrentSolution() const

public IloPredicate< IloActivity > getRestoreActivityDurationPredicate()
const

public IloPredicate< IloActivity > getRestoreActivityEndPredicate() const

public IloPredicate< IloActivity > getRestoreActivityExternalPredicate()
const

public IloPredicate< IloActivity > getRestoreActivityProcessingTimePredicate()
const

public IloPredicate< IloActivity > getRestoreActivityStartPredicate() const

493

public IloPredicate< IloExtractable > getRestoreExtractablePredicate() const

public virtual IloInt getRestoreInfo(IloSolver solver,
IloExtractable)

public IloPredicate< IloResourceConstraint > getRestoreRCCapacityPredicate() const

public IloPredicate< IloResourceConstraint > getRestoreRCDirectPredecessorPredicate()
const

public IloPredicate< IloResourceConstraint > getRestoreRCDirectSuccessorPredicate()
const

public IloPredicate< IloResourceConstraint > getRestoreRCNextPredicate() const

public IloPredicate< IloResourceConstraint > getRestoreRCPrevPredicate() const

public IloPredicate< IloResourceConstraint > getRestoreRCSelectedPredicate() const

public IloPredicate< IloResourceConstraint > getRestoreRCSetupPredicate() const

public IloPredicate< IloResourceConstraint > getRestoreRCTeardownPredicate() const

public IloBool isSelected(IloExtractable) const

public void setRestoreActivityDurationPredicate(IloPredicate<
IloActivity > predicate)

public void setRestoreActivityEndPredicate(IloPredicate<
IloActivity > predicate)

public void setRestoreActivityExternalPredicate(IloPredicate<
IloActivity > predicate)

public void setRestoreActivityProcessingTimePredicate(IloPredicate<
IloActivity > predicate)

public void setRestoreActivityStartPredicate(IloPredicate<
IloActivity > predicate)

public void setRestoreExtractablePredicate(IloPredicate<
IloExtractable > predicate)

public void setRestoreRCCapacityPredicate(IloPredicate<
IloResourceConstraint > predicate)

public void setRestoreRCDirectPredecessorPredicate(IloPredicate<
IloResourceConstraint > predicate)

public void setRestoreRCDirectSuccessorPredicate(IloPredicate<
IloResourceConstraint > predicate)

public void setRestoreRCNextPredicate(IloPredicate<
IloResourceConstraint > predicate)

public void setRestoreRCPrevPredicate(IloPredicate<
IloResourceConstraint > predicate)

public void setRestoreRCSelectedPredicate(IloPredicate<
IloResourceConstraint > predicate)

public void setRestoreRCSetupPredicate(IloPredicate<
IloResourceConstraint > predicate)

public void setRestoreRCTeardownPredicate(IloPredicate<
IloResourceConstraint > predicate)

Constructors and Destructors

public IloSchedulerLargeNHoodI(IloEnv env, const char * name)

This constructor creates a neighborhood. The optional argument name, if supplied, is the name of the

494

neighborhood.

Methods

public virtual IloSolution define(IloSolver solver, IloInt index)

The virtual member function is overloaded and calls successively the member functions defineSelected,
defineRestoreInfo and finalizeDelta.

public virtual void defineRestoreInfo(IloSolver solver, IloSolution solution)

This virtual member function iterates on all extractables and appplies on each extractable the predicate to specify
if it must be restored from the current solution.

public virtual IloSolution defineSelected(IloSolver solver, IloInt index)

This pure virtual member function returns the set of decision variables, or instances of IloExtractable, on
which to focus the search.

public virtual void finalizeDelta(IloSolver solver, IloSolution solution)

This virtual member function is called to complete the definition of the delta. It removes all links between two
resource constraints of the types prev, next, direct successors and direct predecessors, where one resource
constraint is selected and the other is not selected.

public IloSchedulerSolution getCurrentSolution() const

This member function returns the current solution, that is, the one registered by the virtual member function
start.

public IloPredicate< IloActivity > getRestoreActivityDurationPredicate() const

This member function returns the predicate used to specify if the duration of an activity in the current solution
must be restored.

public IloPredicate< IloActivity > getRestoreActivityEndPredicate() const

This member function returns the predicate used to specify if the end of an activity in the current solution must be
restored.

public IloPredicate< IloActivity > getRestoreActivityExternalPredicate() const

This member function returns the predicate used to specify if the external variable of an activity in the current
solution must be restored.

495

public IloPredicate< IloActivity > getRestoreActivityProcessingTimePredicate()
const

This member function returns the predicate used to specify if the processing time of an activity in the current
solution must be restored.

public IloPredicate< IloActivity > getRestoreActivityStartPredicate() const

This member function returns the predicate used to specify if the start of an activity in the current solution must
be restored.

public IloPredicate< IloExtractable > getRestoreExtractablePredicate() const

This member function returns the predicate used to specify which extractables to restore from the current
solution.

public virtual IloInt getRestoreInfo(IloSolver solver, IloExtractable)

This virtual member function is called to complete the definition of the neighborhood.

public IloPredicate< IloResourceConstraint > getRestoreRCCapacityPredicate() const

This member function returns the predicate used to specify if the capacity of a resource constraint in the current
solution must be restored.

public IloPredicate< IloResourceConstraint >
getRestoreRCDirectPredecessorPredicate() const

This member function returns the predicate used to specify if the direct predecessors of a resource constraint in
the current solution must be restored.

public IloPredicate< IloResourceConstraint > getRestoreRCDirectSuccessorPredicate()
const

This member function returns the predicate used to specify if the direct successors of a resource constraint in the
current solution must be restored.

public IloPredicate< IloResourceConstraint > getRestoreRCNextPredicate() const

This member function returns the predicate used to specify if the next (resource constraint) of a resource
constraint in the current solution must be restored.

public IloPredicate< IloResourceConstraint > getRestoreRCPrevPredicate() const

496

This member function returns the predicate used to specify if the previous (resource constraint) of a resource
constraint in the current solution must be restored.

public IloPredicate< IloResourceConstraint > getRestoreRCSelectedPredicate() const

This member function returns the predicate used to specify if the resource selected of a resource constraint in the
current solution must be restored.

public IloPredicate< IloResourceConstraint > getRestoreRCSetupPredicate() const

This member function returns the predicate used to specify if the setup of a resource constraint in the current
solution must be restored.

public IloPredicate< IloResourceConstraint > getRestoreRCTeardownPredicate() const

This member function returns the predicate used to specify if the teardown of a resource constraint in the current
solution must be restored.

public IloBool isSelected(IloExtractable) const

This member function returns IloTrue if the extractable is selected. Otherwise, it returns IloFalse.

public void setRestoreActivityDurationPredicate(IloPredicate< IloActivity >
predicate)

This member function sets the predicate used to specify if the duration of an activity in the current solution must
be restored. When applied, the predicate receives as argument the neighborhood. An exception is raised if the
predicate is an empty handle.

public void setRestoreActivityEndPredicate(IloPredicate< IloActivity > predicate)

This member function sets the predicate used to specify if the end of an activity in the current solution must be
restored. When applied, the predicate receives as argument the neighborhood. An exception is raised if the
predicate is an empty handle.

public void setRestoreActivityExternalPredicate(IloPredicate< IloActivity >
predicate)

This member function sets the predicate used to specify if the external variable of an activity in the current
solution must be restored. When applied, the predicate receives as argument the neighborhood. An exception is
raised if the predicate is an empty handle.

public void setRestoreActivityProcessingTimePredicate(IloPredicate< IloActivity >
predicate)

497

This member function sets the predicate used to specify if the processing time of an activity in the current
solution must be restored. When applied, the predicate receives as argument the neighborhood. An exception is
raised if the predicate is an empty handle.

public void setRestoreActivityStartPredicate(IloPredicate< IloActivity > predicate)

This member function sets the predicate used to specify if the start of an activity in the current solution must be
restored. An exception is raised if the predicate is an empty handle.

public void setRestoreExtractablePredicate(IloPredicate< IloExtractable >
predicate)

This member sets the predicate used to specify which extractables to restore from the current solution. When
applied, the predicate receives as argument the neighborhood. An error is raised if the predicate is an empty
handle.

public void setRestoreRCCapacityPredicate(IloPredicate< IloResourceConstraint >
predicate)

This member function sets the predicate used to specify if the capacity of a resource constraint in the current
solution must be restored. When applied, the predicate receives as argument the neighborhood. An exception is
raised if the predicate is an empty handle.

public void setRestoreRCDirectPredecessorPredicate(IloPredicate<
IloResourceConstraint > predicate)

This member function sets the predicate used to specify if the direct predecessors of a resource constraint in the
current solution must be restored. When applied, the predicate receives as argument the neighborhood. An
exception is raised if the predicate is an empty handle.

public void setRestoreRCDirectSuccessorPredicate(IloPredicate<
IloResourceConstraint > predicate)

This member function sets the predicate used to specify if the direct successors of a resource constraint in the
current solution must be restored. When applied, the predicate receives as argument the neighborhood. An
exception is raised if the predicate is an empty handle.

public void setRestoreRCNextPredicate(IloPredicate< IloResourceConstraint >
predicate)

This member function sets the predicate used to specify if the next (resource constraint) of a resource constraint
in the current solution must be restored. When applied, the predicate receives as argument the neighborhood. An
exception is raised if the predicate is an empty handle.

public void setRestoreRCPrevPredicate(IloPredicate< IloResourceConstraint >
predicate)

498

This member function sets the predicate used to specify if the prev (previous resource constraint) of a resource
constraint in the current solution must be restored. When applied, the predicate receives as argument the
neighborhood. An exception is raised if the predicate is an empty handle.

public void setRestoreRCSelectedPredicate(IloPredicate< IloResourceConstraint >
predicate)

This member function sets the predicate used to specify if the resource selected of a resource constraint in the
current solution must be restored. When applied, the predicate receives as argument the neighborhood. An
exception is raised if the predicate is an empty handle.

public void setRestoreRCSetupPredicate(IloPredicate< IloResourceConstraint >
predicate)

This member function sets the predicate used to specify if the setup of a resource constraint in the current
solution must be restored. When applied, the predicate receives as argument the neighborhood. An exception is
raised if the predicate is an empty handle.

public void setRestoreRCTeardownPredicate(IloPredicate< IloResourceConstraint >
predicate)

This member function sets the predicate used to specify if the teardown of a resource constraint in the current
solution must be restored. When applied, the predicate receives as argument the neighborhood. An exception is
raised if the predicate is an empty handle.

499

Class IloSchedulerSolution
Definition file: ilsched/ilosolution.h
Include file: <ilsched/iloscheduler.h>

The class IloSchedulerSolution has two distinct purposes. One use is for the storage of solution data, and
the other use is as the central data structure for local search. These two purposes are quite different and so it is
useful to clearly distinguish between them.

IloSchedulerSolution for Data Storage

As a general object in which to store information about the state of the solver at the level of scheduling, an
IloSchedulerSolution object can be used to store and inspect activities, resources and resource
constraints. This information can be modified within the IloSchedulerSolution object, however, the
modifications only affect the data stored in the solution object. If you want the modifications reflected either in the
model or in a solver, it is necessary to directly modify the model or the objects extracted in a solver. For example,
you can store an instance of an IloActivity in a solution object as follows:

 IloSchedulerSolution sol(env);
 IloActivity act(env, 10);
 sol.add(act);

If we assume that act is part of a model that has been extracted by an IlcScheduler object, schedule, and
solved by the associated solver, we can then store the activity in the solution with the command:

 sol.store(scheduler);

This command causes the solver data regarding act (and any other extractables added to the solution) to be
stored in the solution. In the example of an IloActivity, the bounds on the start time, end time, processing
time, and duration variables are stored together with any external variable that you may have associated with the
activity.

Note that the data that is stored is retrieved from the current state of the solver.

The data in the solution can then be modified via the IloSchedulerSolution API. For example, to set the
value of the start time in the solution, you can write:

 sol.setStartMin(act, 10);
 sol.setStartMax(act, 10);

Note that these commands only change the data stored in sol. In particular the original model is unchanged and
the value of the start time of the IlcActivity that the solver has extracted from act is unchanged. To change
the model, the extractable itself must be changed. For example,

 act.setLb(sol.getStartMin(act));
 act.setUb(sol.getStartMax(act));

Similarly, you can write a search goal which takes an IloSchedulerSolution object as an argument and
then, once inside the search, adds constraints to the solver based on the information stored in the
IloSchedulerSolution.

IloSchedulerSolution for Local Search

In local search in IBM® ILOG® Scheduler, IloSchedulerSolution plays the same role as the IloSolution
object does in local search in IBM ILOG Solver (see the IBM ILOG Solver Reference Manual). That is, an
IloSchedulerSolution is used to represent a neighbor that is to be explored. Typically, such a neighbor is
specified by an IloSchedulerSolution which contains only those objects which change in moving from the
current solution to the neighbor. The values of those objects in the solution reflect their values in the neighbor
that is to be explored. For example, assume you have a solution where four resource constraints on the same

500

resource are ordered as follows: A before B before C before D.

Further assume that one of the neighbors you want to explore is the one where the order of B and C is reversed.
The following code will create an IloSchedulerSolution object that represents such a neighbor:

 IloSchedulerSolution delta(env);
 delta.add(A, IloRestoreRCNext);
 delta.add(B, IloRestoreRCNext);
 delta.add(C, IloRestoreRCNext);
 delta.setNext(A, C);
 delta.setNext(C, B);
 delta.setNext(B, D);

Notice that the IloSchedulerSolution::add method requires a second argument in this case. This
argument specifies what part of the information stored in the solution about the extractable is to be restored by
the solver. This information is only relevant in four cases:

During local search.1.
If you use the IloRestoreSolution goal.2.
If you use the IloSolution::getConstraint method.3.
If you use the IloSolution::restore method.4.

In each of these cases, the actual information that is restored (or, in the case of
IloSolution::getConstraint, added as a constraint) depends on the fields that have been defined to be
restored. By default, for IloActivity and IloResourceConstraint all the stored information is restored.
Note that for IloResource (and its subclasses) nothing can be restored in this way. This is because, from a
local search perspective, the resource does not contain any decision variables.

For more information about local search see the IBM ILOG Solver Reference Manual and the IBM ILOG Solver
User Manual.

Storing Solutions

There are two ways to store solutions. Users can choose the method they prefer and mix methods if desired.

In the first method, all the objects that are to be stored are added to the solution once using
IloSchedulerSolution::add. Then, when the solver is in the search state that is to be stored, a single call
to the function IloSchedulerSolution::store(const IlcScheduler scheduler) will store all the
added objects that have been extracted by the solver associated with scheduler.

In the second method, there is no need to add the objects to the solution. Instead, when the solver is in the
search state that is to be stored, a call to IlcSchedulerSolution::store can be made for each object that
is to be stored. For example, IloSchedulerSolution::store(const IloActivity activity,
IlcScheduler scheduler) will add activity to the solution and then immediately store it.

Sharing Solutions

IloSchedulerSolution inherits from class IloSolution (see the IBM ILOG Concert Technology Reference
Manual). This means that all of the actual implementation of the data structure for storing objects is performed by
the instance of IloSolution. In addition, an instance of IloSchedulerSolution can be casted to an
instance of IloSolution back and forth. This allow to share a single solution instance among different solvers.
For example, IBM® ILOG® Dispatcher (see the IBM ILOG Dispatcher Reference Manual) contains an
IloRoutingSolution that also inherits from class IloSolution. In a problem that uses both Scheduler and
Dispatcher, a single IloSolution instance can be shared between the two solvers by casting it to the
appropriate class.

Storing Objects

When an object is stored, with either method described earlier, the values of its variables—assuming they are
instantiated—are stored in the scheduler solution. If a variable is not bound, the minimal and the maximal value
of its domain are stored in most cases.

501

When an activity is stored, the start time, end time, duration, processing time, and external variable of
the activity are stored. If a variable is not bound, its bounds are stored.

•

For a resource constraint on a capacity resource, the minimal and maximal capacity is stored. If the
resource constraint has alternatives, the set of resources that are still possible is stored. If the resource
constraint is associated with a precedence graph on a resource and if the resource constraint either has
no alternatives or if a single resource has been selected, then the next, direct successor, setup, and
teardown relations are stored.

•

For resources with precedence graph constraints, the order of the resource constraints in its
precedence graph is stored.

•

For capacity resources with timetable constraints, the minimal and maximal capacity level of the
resource is stored. The capacity level of a resource is the amount of capacity that is used by its
resource constraints. For example, the capacity level of a discrete resource at a time t is the sum of the
capacities of all its resource constraints that are associated with activities that cover the time t. With
such a definition, when the algorithm has found only a partial solution, the minimal (or maximal) capacity
level may be less (or greater) than the minimal (or maximal) capacity of the resource. This may be a
problem for some applications, so the member function
IloSchedulerSolution::setLevelsStoredWithBounds is provided to set the resource in a
“storage with bounds” mode. In such a mode, the levels are stored so that the minimal level is never
less than the minimum capacity and the maximal level is never greater than the maximum capacity.

•

Consequently, the minimal capacity level of a resource at time t is the sum of the minimal capacities of all
resource constraints that surely contribute to the resource and that are associated with activities that surely cover
time t.

If the resource is closed, the maximal capacity level of the resource at time t is the sum of the maximal capacities
of all resource constraints that possibly contribute to the resource and that are associated with activities that
possibly cover time t. If the resource is not closed, the maximal capacity level of the resource at time t is equal to
IloInfinity.

Accessing Stored Objects

An instance of the class IloSchedulerSolution represents a mapping between stored Scheduler objects and
their (possible) values. It is important to note that this mapping is not reversible. This means that the values of the
stored objects are preserved when backtracking. The values of the stored objects can be accessed at any time
by calling appropriate member functions of the class IloSchedulerSolution. There are also iterators that
allow access to all the objects stored in a scheduler solution.

Modifying Values of Stored Objects

It is possible to modify the values of the stored objects by calling appropriate member functions of the class
IloSchedulerSolution.

Restoring a solution

Relations of type next and previous as well as setup and teardown are restored only on unary resources that
have a precedence graph (either light or classical).

Successors and predecessors are always restored even if the resource has no precedence graph.

For alternative resource constraints, edges of type next, previous, successor and predecessor are restored only if
both resource constraints are or can be on the same resource. When a next, previous, successor or predecessor
relation between two resource constraints is restored, it means that whenever both resource constraints are
allocated the same resource, the relation holds.

Deleting Solutions

The IloSchedulerSolution class provides an end function that frees all the memory used to save the data in
a solution. Explicitly calling this function is unnecessary as the memory will also be reclaimed when the IloEnv
is destroyed. However, if the user is creating and manipulating a large number of solutions, it may be desirable to
reclaim memory from IlcSchedulerSolution instances that are no longer needed. The end function has
been provided for just such a situation.

502

For more information, see IloNumToAnySetStepFunction in the IBM ILOG Concert Technology Reference
Manual. Also see Global Constraints.

See Also: IloActivity, IloResource, IloResourceConstraint, IloSchedulerSolution::ActivityIterator,
IloSchedulerSolution::ResourceConstraintIterator, IloSchedulerSolution::ResourceIterator

Constructor Summary

public IloSchedulerSolution(const IloEnv, const char * name=0)

public IloSchedulerSolution(const IloSolution)

public IloSchedulerSolution(const IloModel, const char * name=0)

Method Summary

public void add(const IloResource x) const

public void add(const IloModel x) const

public void add(const IloResourceConstraint x, IloInt
restoreFields=IloRestoreAll) const

public void add(const IloActivity x, IloInt
restoreFields=IloRestoreAll) const

public IloBool areLevelsStoredWithBounds(const IloResource res)
const

public void copy(IloSchedulerSolution solution) const

public IloNum getCapacityMax(const IloResourceConstraint rct)
const

public IloNum getCapacityMin(const IloResourceConstraint rct)
const

public IloNumToNumSegmentFunction getContinuousLevelMax(const IloResource res)
const

public IloNumToNumSegmentFunction getContinuousLevelMin(const IloResource res)
const

public IloNumToNumStepFunction getDiscreteLevelMax(const IloResource resource)
const

public IloNumToNumStepFunction getDiscreteLevelMin(const IloResource resource)
const

public IloNum getDurationMax(const IloActivity activity) const

public IloNum getDurationMin(const IloActivity activity) const

public IloNum getEndMax(const IloActivity activity) const

public IloNum getEndMin(const IloActivity activity) const

public IloEnv getEnv() const

public IloNum getExternalVariableMax(const IloActivity
activity) const

public IloNum getExternalVariableMin(const IloActivity
activity) const

public IloNum getLevelMax(const IloResource resource, IloNum
time) const

public IloNum getLevelMin(const IloResource resource, IloNum
time) const

public IloResourceConstraint getNextRC(const IloResourceConstraint rct) const

503

public IloResourceConstraint getPrevRC(const IloResourceConstraint rct) const

public IloNum getProcessingTimeMax(const IloActivity activity)
const

public IloNum getProcessingTimeMin(const IloActivity activity)
const

public IloInt getRestorable(IloResourceConstraint rc) const

public IloInt getRestorable(IloActivity activity) const

public IloResource getSelected(const IloResourceConstraint rct)
const

public IloResourceConstraint getSetupRC(const IloResource resource) const

public IloNum getStartMax(const IloActivity activity) const

public IloNum getStartMin(const IloActivity activity) const

public IloResourceConstraint getTeardownRC(const IloResource resource) const

public IloBool hasAsNext(const IloResourceConstraint srct1,
const IloResourceConstraint srct2) const

public IloBool hasCapacityInformation(const IloResource
resource) const

public IloBool hasPredecessors(const IloResourceConstraint rct)

public IloBool hasSuccessors(const IloResourceConstraint rct)

public IloBool isResourceSelected(const IloResourceConstraint
rct) const

public IloBool isSetup(const IloResourceConstraint rct) const

public IloBool isSucceededBy(const IloResourceConstraint srct1,
const IloResourceConstraint srct2) const

public IloBool isTeardown(const IloResourceConstraint rct)
const

public IloSchedulerSolution makeClone(IloEnv e) const

public void remove(IloModel m) const

public void setCapacityMax(const IloResourceConstraint ct,
IloNum max) const

public void setCapacityMin(const IloResourceConstraint ct,
IloNum min) const

public void setDurationMax(const IloActivity activity,
IloNum max) const

public void setDurationMin(const IloActivity activity,
IloNum min) const

public void setEndMax(const IloActivity activity, IloNum
max) const

public void setEndMin(const IloActivity activity, IloNum
min) const

public void setExternalVariableMax(const IloActivity
activity, IloNum max) const

public void setExternalVariableMin(const IloActivity
activity, IloNum min) const

public void setLevelMax(const IloResource resource, IloNum
start, IloNum end, IloNum max) const

public void setLevelMin(const IloResource resource, IloNum

504

start, IloNum end, IloNum min) const

public void setLevelsStoredWithBounds(const IloResource res,
IloBool withBounds=IloTrue) const

public void setNext(const IloResourceConstraint srct1, const
IloResourceConstraint srct2) const

public void setNonRestorable(IloResourceConstraint rc) const

public void setNonRestorable(IloActivity activity) const

public void setProcessingTimeMax(const IloActivity activity,
IloNum max) const

public void setProcessingTimeMin(const IloActivity activity,
IloNum min) const

public void setRestorable(IloResourceConstraint rc, IloInt
storeFields) const

public void setRestorable(IloActivity activity, IloInt
storeFields) const

public void setSelected(IloResourceConstraint rct, const
IloResource resource) const

public void setSetup(const IloResourceConstraint rct) const

public void setStartMax(const IloActivity activity, IloNum
max) const

public void setStartMin(const IloActivity activity, IloNum
min) const

public void setSuccessor(const IloResourceConstraint srct1,
const IloResourceConstraint srct2) const

public void setTeardown(const IloResourceConstraint rct)
const

public void store(const IloResourceConstraint ct, const
IlcScheduler scheduler) const

public void store(const IloResource resource, const
IlcScheduler scheduler) const

public void store(const IloActivity activity, const
IlcScheduler scheduler) const

public void store(const IlcScheduler scheduler) const

public void unsetNext(const IloResourceConstraint rct) const

public void unsetNext(const IloResourceConstraint srct1,
const IloResourceConstraint srct2) const

public void unsetPrecedences()

public void unsetPrecedences(const IloResource resource)

public void unsetPredecessors(const IloResourceConstraint
rct) const

public void unsetPrev(const IloResourceConstraint rct) const

public void unsetSelected(const IloResourceConstraint rct)
const

public void unsetSequence(const IloResource resource)

public void unsetSequences()

public void unsetSetup(const IloResourceConstraint rct)
const

505

public void unsetSuccessor(const IloResourceConstraint
srct1, const IloResourceConstraint srct2) const

public void unsetSuccessors(const IloResourceConstraint rct)
const

public void unsetTeardown(const IloResourceConstraint rct)
const

Inner Enumeration

IloSchedulerSolution::IloResourceConstraintIteratorFilter

Inner Class

IloSchedulerSolution::ActivityIterator

IloSchedulerSolution::ResourceConstraintIterator

IloSchedulerSolution::ResourceIterator

Constructors

public IloSchedulerSolution(const IloEnv, const char * name=0)

This constructor creates a new instance of the class IloSchedulerSolution. This instance does not contain
stored objects. Objects can be stored in this instance by calling the member function
IloSchedulerSolution::store.

public IloSchedulerSolution(const IloSolution)

This constructor creates an instance of IloSchedulerSolution that is an interface to the passed
IloSolution solution. Rather than creating an internal IloSolution, an argument is used.

This constructor can be used to share an IloSolution instance among a number of solvers, each with a
different interface to a solution object.

public IloSchedulerSolution(const IloModel, const char * name=0)

This constructor creates a scheduler solution from the environment associated with model. It calls
add(IloModel) and adds all the scheduler extractables (that is, IloActivity, IloResourceConstraint,
IloResource and its subclasses) that have been explicity added to the model to the solution. The optional
argument name, if provided, becomes the name of the underlying IloSolution associated with the newly
created IloSchedulerSolution.

Methods

public void add(const IloResource x) const

This member function adds the passed IloResource to the list of objects in the solution. The next time
IloSchedulerSolution::store(const IlcScheduler) is called, the resource will be stored.

public void add(const IloModel x) const

506

This member function adds model x to the invoking scheduler solution. That is, all activities, resource constraints,
and resources that have been explicitly added to model are added to the invoking routing solution.

public void add(const IloResourceConstraint x, IloInt restoreFields=IloRestoreAll)
const

This member function adds x to the list of objects in the solution. The next time
IloSchedulerSolution::store(const IlcScheduler) is called, the resource constraint will be stored.
The storeFields argument defines the fields that will be restored when applying goal IloRestoreSolution
or when calling method IloSolution::restore. Valid values of restoreFields are
IloRestoreNothing, IloRestoreAll, and any bitwise-OR combination of IloRestoreRCNext,
IloRestoreRCPrev, IloRestoreRCDirectSuccessor, IloRestoreRCDirectPredecessors,
IloRestoreRCSetup, IloRestoreRCTeardown, IloRestoreRCCapacity, and IloRestoreRCSelected.

Note

Warning If IloResourceConstraint does not have a resource selected, the precedence relations of type
next, previous, direct successor, direct predecessor, setup and teardown will not be stored.

public void add(const IloActivity x, IloInt restoreFields=IloRestoreAll) const

This member function adds x to the list of objects in the solution. The next time
IloScheduler::store(const IlcScheduler) is called, the activity will be stored. The restoreFields
argument defines the fields that will be restored in local search, the IloRestoreSolution goal, and via the
IloSolution::getConstraint methods. Valid values of storeFields are IloRestoreNothing,
IloRestoreAll, and any bitwise-OR combination of IloRestoreActivityStart,
IloRestoreActivityEnd, IloRestoreActivityDuration, IloRestoreActivityProcessingTime,
IloRestoreActivityExternal.

public IloBool areLevelsStoredWithBounds(const IloResource res) const

This member function returns IloTrue if the current storage mode of res is “with bounds.” See the section
"Storing Objects" at the start of this class for more information.

This member function should be used only if res is stored in the scheduler solution and contains information
about capacity levels.

public void copy(IloSchedulerSolution solution) const

This member function copies solution to the invoking scheduler solution.

public IloNum getCapacityMax(const IloResourceConstraint rct) const

This member function returns the maximal capacity of the given resource constraint in the invoking scheduler
solution.

This member function should be used only if rct is stored in the scheduler solution.

public IloNum getCapacityMin(const IloResourceConstraint rct) const

507

This member function returns the minimal capacity of the given resource constraint in the invoking scheduler
solution.

This member function should be used only if rct is stored in the scheduler solution.

public IloNumToNumSegmentFunction getContinuousLevelMax(const IloResource res)
const

This member function returns a piecewise linear function describing the stored maximal level of res in the
invoking scheduler solution. The returned piecewise linear function is a physical representation of the maximal
level of res in the solution. Therefore, it is possible to modify the stored maximal level by modifying the
piecewise linear function; and modifying the stored maximal level of res modifies the returned piecewise linear
function.

This member function should be used only if res is stored in the scheduler solution and contains information
about capacity levels.

public IloNumToNumSegmentFunction getContinuousLevelMin(const IloResource res)
const

This member function returns a piecewise linear function describing the stored minimal level of res in the
invoking scheduler solution. The returned piecewise linear function is a physical representation of the minimal
level of res in the solution. Therefore, it is possible to modify the stored minimal level by modifying the piecewise
linear function; and modifying the stored minimal level of res modifies the returned piecewise linear function.

This member function should be used only if res is stored in the scheduler solution and contains information
about capacity levels.

public IloNumToNumStepFunction getDiscreteLevelMax(const IloResource resource)
const

This member function returns a step function describing the stored maximal level of resource in the invoking
scheduler solution. The returned step function is a physical representation of the maximal level of resource in
the solution. Therefore, it is possible to modify the stored maximal level by modifying the step function; and
modifying the stored maximal level of resource modifies the returned step function.

This member function should be used only if resource is stored in the scheduler solution and contains
information about capacity levels. This member function must not be used if resource is a continuous reservoir.

public IloNumToNumStepFunction getDiscreteLevelMin(const IloResource resource)
const

This member function returns a step function describing the stored minimal level of resource in the invoking
scheduler solution. The returned step function is a physical representation of the minimal level of resource in
the solution. Therefore, it is possible to modify the stored minimal level by modifying the step function; and
modifying the stored minimal level of resource modifies the returned step function.

This member function should be used only if resource is stored in the scheduler solution and contains
information about capacity levels. This member function must not be used if resource is a continuous reservoir.

public IloNum getDurationMax(const IloActivity activity) const

508

This member function returns the maximal duration of the given activity in the invoking scheduler solution.

This member function should be used only if activity is stored in the scheduler solution.

public IloNum getDurationMin(const IloActivity activity) const

This member function returns the minimal duration of the given activity in the invoking scheduler solution.

This member function should be used only if activity is stored in the scheduler solution.

public IloNum getEndMax(const IloActivity activity) const

This member function returns the maximal end time of the given activity in the invoking scheduler solution.

This member function should be used only if activity is stored in the scheduler solution.

public IloNum getEndMin(const IloActivity activity) const

This member function returns the minimal end time of the given activity in the invoking scheduler solution.

This member function should be used only if activity is stored in the scheduler solution.

public IloEnv getEnv() const

This member function returns the environment for which the scheduler solution was created.

public IloNum getExternalVariableMax(const IloActivity activity) const

This member function returns the maximal value for the external variable of the given activity in the invoking
scheduler solution.

This member function should be used only if activity is stored in the scheduler solution.

public IloNum getExternalVariableMin(const IloActivity activity) const

This member function returns the minimal value for the external variable of the given activity in the invoking
scheduler solution.

This member function should be used only if activity is stored in the scheduler solution.

public IloNum getLevelMax(const IloResource resource, IloNum time) const

This member function returns the maximal level of the given resource in the invoking scheduler solution at the
given time.

This member function should be used only if resource is stored in the scheduler solution and contains
information about capacity levels.

509

public IloNum getLevelMin(const IloResource resource, IloNum time) const

This member function returns the minimal level of the given resource in the invoking scheduler solution at the
given time.

This member function should be used only if resource is stored in the scheduler solution and contains
information about capacity levels.

public IloResourceConstraint getNextRC(const IloResourceConstraint rct) const

This member function returns the next resource constraint of the given resource constraint in the invoking
scheduler solution, if such a next constraint exists. In case there are several such constraints, this method
returns an empty handle: see IloSchedulerSolution::ResourceConstraintIterator to iterate on all
the next resource constraints.

This member function should be used only if rct is stored in the invoking scheduler solution.

public IloResourceConstraint getPrevRC(const IloResourceConstraint rct) const

This member function returns the previous resource constraint of the given resource constraint in the invoking
scheduler solution, if such a previous constraint exists. In case there are several such constraints, the method
returns an empty handle : see IloSchedulerSolution::ResourceConstraintIterator to iterate on all
previous resource constraints.

This member function should be used only if rct is stored in the invoking scheduler solution.

public IloNum getProcessingTimeMax(const IloActivity activity) const

This member function returns the maximal processing time of the given activity in the invoking scheduler solution.

This member function should be used only if activity is stored in the scheduler solution.

public IloNum getProcessingTimeMin(const IloActivity activity) const

This member function returns the minimal processing time of the given activity in the invoking scheduler solution.

This member function should be used only if activity is stored in the scheduler solution.

public IloInt getRestorable(IloResourceConstraint rc) const

This method returns the value representing the fields of rc that will be restored.

public IloInt getRestorable(IloActivity activity) const

This method returns the value representing the fields of activity that will be restored.

public IloResource getSelected(const IloResourceConstraint rct) const

510

This member function returns the selected resource of the given resource constraint in the invoking scheduler
solution if this selected resource exists.

This member function should be used only if rct is stored in the scheduler solution.

public IloResourceConstraint getSetupRC(const IloResource resource) const

This member function returns the setup resource constraint of the given resource in the invoking scheduler
solution, if such a setup resource constraint exists. In case there are several such constraints, this method
returns an empty handle.

This member function should be used only if resource is stored in the invoking scheduler solution.

public IloNum getStartMax(const IloActivity activity) const

This member function returns the maximal start time of the given activity in the invoking scheduler solution.

This member function should be used only if activity is stored in the scheduler solution.

public IloNum getStartMin(const IloActivity activity) const

This member function returns the minimal start time of the given activity in the invoking scheduler solution.

This member function should be used only if activity is stored in the scheduler solution.

public IloResourceConstraint getTeardownRC(const IloResource resource) const

This member function returns the teardown resource constraint of the given resource in the invoking scheduler
solution, if such a teardown resource constraint exists. In case there are several such constraints, this method
returns an empty handle.

This member function should be used only if resource is stored in the invoking scheduler solution.

public IloBool hasAsNext(const IloResourceConstraint srct1, const
IloResourceConstraint srct2) const

This member function returns IloTrue if the resource constraint srct2 is a next resource constraint of the
resource constraint rct1 in the invoking scheduler solution. Otherwise, it returns IloFalse.

public IloBool hasCapacityInformation(const IloResource resource) const

This member function returns IloTrue if information about capacity levels has been stored for the resource in
the invoking scheduler solution. Otherwise, it returns IloFalse.

Capacity information is stored for resources only if sufficient information is available from the solver. In the case
of IlcScheduler, the timetable constraint must exist on the resources in order for the capacity information to
be stored in the solution. See Resource Enforcement as Global Constraint Declaration.

511

public IloBool hasPredecessors(const IloResourceConstraint rct)

This member function returns IloTrue if the resource constraint rct has at least one predecessor in the
invoking scheduler solution. Otherwise it returns IloFalse.

This member function should be used only if rct is stored in the invoking scheduler solution.

public IloBool hasSuccessors(const IloResourceConstraint rct)

This member function returns IloTrue if the resource constraint rct has at least one successor in the invoking
scheduler solution. Otherwise it returns IloFalse.

This member function should be used only if rct is stored in the invoking scheduler solution.

public IloBool isResourceSelected(const IloResourceConstraint rct) const

This member function returns IloTrue if the given resource constraint has a selected resource in the invoking
scheduler solution. Otherwise, it returns IloFalse.

This member function should be used only if rct is stored in the scheduler solution.

public IloBool isSetup(const IloResourceConstraint rct) const

This member function returns IloTrue if rct is the setup (that is, the first) resource constraint of its resource in
the invoking scheduler solution. Otherwise, it returns IloFalse.

This member function should be used only if rct is stored in the invoking scheduler solution.

public IloBool isSucceededBy(const IloResourceConstraint srct1, const
IloResourceConstraint srct2) const

This member function returns IloTrue if the resource constraint srct2 succeedes the resource constraint
srct1 in the invoking scheduler solution, that is if a successor relation has been added with the member function
setSuccessor. Otherwise it returns IloFalse.

public IloBool isTeardown(const IloResourceConstraint rct) const

This member function returns IloTrue if rct is the teardown (that is, the last) resource constraint of its
resource in the invoking scheduler solution. Otherwise, it returns IloFalse.

This member function should be used only if rct is stored in the invoking scheduler solution.

public IloSchedulerSolution makeClone(IloEnv e) const

This member function allocates a new solution on e and adds to it all objects that were added to the invoking
object. The newly created solution is returned.

512

public void remove(IloModel m) const

This member function removes all scheduler extractables (such as IloActivity, IloResourceConstraint,
IloResource and its subclasses) that have been explicitly added to the model from the invoking scheduler
solution.

public void setCapacityMax(const IloResourceConstraint ct, IloNum max) const

This member function changes the maximal capacity of ct in the invoking scheduler solution to max.

This member function should be used only if ct is stored in the scheduler solution.

public void setCapacityMin(const IloResourceConstraint ct, IloNum min) const

This member function changes the minimal capacity of ct in the invoking scheduler solution to min.

This member function should be used only if ct is stored in the scheduler solution.

public void setDurationMax(const IloActivity activity, IloNum max) const

This member function changes the maximal duration of activity in the invoking scheduler solution to max.

This member function should be used only if activity is stored in the scheduler solution.

public void setDurationMin(const IloActivity activity, IloNum min) const

This member function changes the minimal duration of activity in the invoking scheduler solution to min.

This member function should be used only if activity is stored in the scheduler solution.

public void setEndMax(const IloActivity activity, IloNum max) const

This member function changes the maximal end time of activity in the invoking scheduler solution to max.

This member function should be used only if activity is stored in the scheduler solution.

public void setEndMin(const IloActivity activity, IloNum min) const

This member function changes the minimal end time of activity in the invoking scheduler solution to min.

This member function should be used only if activity is stored in the scheduler solution.

public void setExternalVariableMax(const IloActivity activity, IloNum max) const

This member function changes the maximal value of the external variable of activity in the invoking scheduler
solution to max. This member function should be used only if activity is stored in the scheduler solution.

513

public void setExternalVariableMin(const IloActivity activity, IloNum min) const

This member function changes the minimal value of the external variable of activity in the invoking scheduler
solution to max.

This member function should be used only if activity is stored in the scheduler solution.

public void setLevelMax(const IloResource resource, IloNum start, IloNum end,
IloNum max) const

This member function changes the maximal level of resource in the invoking scheduler solution to max during
the interval [start end]. For this purpose, the internal step function for the stored maximal level of the
resource is modified.

This member function should be used only if resource is stored in the scheduler solution and contains
information about capacity levels.

public void setLevelMin(const IloResource resource, IloNum start, IloNum end,
IloNum min) const

This member function changes the minimal level of resource in the invoking scheduler solution to min during
the interval [start end]. For this purpose, the internal step function for the stored minimal level of the
resource is modified.

This member function should be used only if resource is stored in the scheduler solution and contains
information about capacity levels.

public void setLevelsStoredWithBounds(const IloResource res, IloBool
withBounds=IloTrue) const

If withBounds is equal to IloTrue, this member function sets the storage mode of res to be “with bounds.” At
the construction of the scheduler object, the default mode is “without bounds.” See the section "Storing Objects"
at the start of this class for more information.

This member function should be used only if res is stored in the scheduler solution and contains information
about capacity levels.

public void setNext(const IloResourceConstraint srct1, const IloResourceConstraint
srct2) const

If the resource constaint srct1 is stored in the invoking scheduler solution, this member function makes srct2
the next resource constraint of srct1 in the invoking scheduler solution. Similarly, if the resource constraint
srct2 is stored in the invoking scheduler solution, this member function makes srct1 the previous of srct2.

Next and previous are restored only on unary resources.

public void setNonRestorable(IloResourceConstraint rc) const

This member function sets rc as non-restorable. No fields of this resource constraint will be restored. This
method is equivalent to setRestorable(rc, IloRestoreNothing);

514

public void setNonRestorable(IloActivity activity) const

This member function sets activity as non-restorable. No fields of this activity will be restored. This method is
equivalent to setRestorable(activity, IloRestoreNothing);

public void setProcessingTimeMax(const IloActivity activity, IloNum max) const

This member function changes the maximal processing time of activity in the invoking scheduler solution to
max.

This member function should be used only if activity is stored in the scheduler solution.

public void setProcessingTimeMin(const IloActivity activity, IloNum min) const

This member function changes the minimal processing time of activity in the invoking scheduler solution to
min.

This member function should be used only if activity is stored in the scheduler solution.

public void setRestorable(IloResourceConstraint rc, IloInt storeFields) const

This member function sets the data fields that will be restored for rc in the context of local search, the
IloRestoreSolution goal, IloSolution::getConstraint, and IloSolution::restore. Valid values
of storeFields are IloRestoreNothing, IloRestoreAll, and any bitwise-OR combination of
IloRestoreRCNext, IloRestoreRCDirectSuccessor, IloRestoreRCSetup, IloRestoreRCTeardown,
IloRestoreRCCapacity, and IloRestoreRCSelected.

public void setRestorable(IloActivity activity, IloInt storeFields) const

This member function sets the data fields that will be restored for activity in the context of local search, the
IloRestoreSolution goal, IloSolution::getConstraint, and IloSolution::restore. Valid values
of storeFields are IloRestoreNothing, IloRestoreAll, and any bitwise-OR combination of
IloRestoreActivityStart, IloRestoreActivityEnd, IloRestoreActivityDuration,
IloRestoreActivityProcessingTime, IloRestoreActivityExternal.

public void setSelected(IloResourceConstraint rct, const IloResource resource)
const

This member function sets the selected resource of rct in the invoking scheduler solution to resource. If the
resource constraint is a setup (resp. teardown) resource constraint and if the resource is stored in the invoking
scheduler solution, then the member function getSetupRC (resp. getTeardownRC) returns the resource
constraint rct.

This member function should be used only if rct is stored in the scheduler solution.

public void setSetup(const IloResourceConstraint rct) const

515

This member function makes rct a setup resource constraint in the invoking scheduler solution. If the resource
constraint has a selected resource and if this selected resource is stored in the invoking scheduler solution, then
the member function getSetupRC returns the resource constraint rct.

This member function should be used only if rct is stored in the invoking scheduler solution.

Setups are only restored on unary resources.

public void setStartMax(const IloActivity activity, IloNum max) const

This member function changes the maximal start time of activity in the invoking scheduler solution to max.

This member function should be used only if activity is stored in the scheduler solution.

public void setStartMin(const IloActivity activity, IloNum min) const

This member function changes the minimal start time of activity in the invoking scheduler solution to min.

This member function should be used only if activity is stored in the scheduler solution.

public void setSuccessor(const IloResourceConstraint srct1, const
IloResourceConstraint srct2) const

If the resource constaint srct1 is stored in the invoking scheduler solution, this member function makes srct2
a successor of srct1 in the invoking scheduler solution. Similarly, if the resource constraint srct2 is stored in
the invoking scheduler solution, this member function makes srct1 a predecessor of srct2.

public void setTeardown(const IloResourceConstraint rct) const

This member function makes rct a teardown resource constraint in the invoking scheduler solution. If the
resource constraint has a selected resource and if this selected resource is stored in the invoking scheduler
solution, then the member functions getTeardownRC returns the resource constraint rct.

This member function should be used only if rct is stored in the invoking scheduler solution.

Teardowns are only restored on unary resources.

public void store(const IloResourceConstraint ct, const IlcScheduler scheduler)
const

This member function stores ct in the invoking scheduler solution. The minimal and maximal capacities of the ct
are also stored. The data stored is that which is present in the current search state of scheduler.

public void store(const IloResource resource, const IlcScheduler scheduler) const

This member function stores resource in the invoking scheduler solution.

If the resource has a precedence graph, then the resource constraints that actually execute on the resource are
stored. The resource constraints that are stored are only those that are part of the model: if the solver has
created resource constraints during the search, they will not be added to the solution. In addition, the precedence

516

order between those resource constraints (if present) is stored.

public void store(const IloActivity activity, const IlcScheduler scheduler) const

This member function stores activity in the invoking scheduler solution. The minimal and maximal values for
start time, end time, processing time, duration, and external variable are stored. The data stored is that which is
present in the current search state of scheduler.

public void store(const IlcScheduler scheduler) const

This member function calls the IloSolution::store(IloAlgorithm) function on the internal
IloSolution. That function stores the data (from the algorithm) for each object that:

has been added to the invoking solution, and•
is used (that is, extracted) by the solver associated with scheduler.•

The data stored is that which is present in the current search state of scheduler.

public void unsetNext(const IloResourceConstraint rct) const

This member function removes all the next resource constraints of rct in the invoking scheduler solution.
Consistency is maintained; that is, the resource constraint rct is no longer a previous resource constraint of its
former next resource constraints.

This member function should be used only if rct is stored in the invoking scheduler solution.

public void unsetNext(const IloResourceConstraint srct1, const
IloResourceConstraint srct2) const

This member function removes the next edge, if it exists, between srct1 and srct2 in the invoking schedule
solution. Consistency is maintained; that is, srct1 is no longer a previous resource constraint of srct2.

public void unsetPrecedences()

This member function removes all the successors and all the predecessors of all resource constraints that are
stored in the invoking scheduler solution.

public void unsetPrecedences(const IloResource resource)

This member function removes all the successors and all the predecessors of all resource constraints that have
resource as the selected resource in the invoking scheduler solution.

This member function should be used only if rct is stored in the invoking scheduler solution.

public void unsetPredecessors(const IloResourceConstraint rct) const

This member function removes all the predecessors of rct in the invoking scheduler solution. Consistency is
maintained; that is, the resource constraint rct is no longer a successor of its former predecessors.

517

This member function should be used only if rct is stored in the invoking scheduler solution.

public void unsetPrev(const IloResourceConstraint rct) const

This member function removes all the previous resource constraints of rct in the invoking scheduler solution.
Consistency is maintained; that is, the resource constraint rct is no longer a next resource constraint of its
former previous resource constraints.

This member function should be used only if rct is stored in the invoking scheduler solution.

public void unsetSelected(const IloResourceConstraint rct) const

This member function removes the selected resource of rct in the invoking scheduler solution. If the resource
constraint is a setup (resp. teardown) resource constraint and if its former selected resource is stored in the
invoking scheduler solution, then the member function getSetupRC (resp. getTeardownRC) will no longer
return the resource constraint rct.

This member function should be used only if rct is stored in the scheduler solution.

public void unsetSequence(const IloResource resource)

This member function removes all the next, previous, setup and teardown of all resource constraints that have
resource as the selected resource in the invoking scheduler solution.

This member function should be used only if rct is stored in the invoking scheduler solution.

public void unsetSequences()

This member function removes all the next, previous, setup and teardown of all resource constraints that are
stored in the invoking scheduler solution.

public void unsetSetup(const IloResourceConstraint rct) const

This member function removes rct as a setup resource constraint in the invoking scheduler solution. If the
resource constraint has a selected resource and if this selected resource is stored in the invoking scheduler
solution, then the member function getSetupRC will no longer return the resource constraint rct.

This member function should be used only if rct is stored in the invoking scheduler solution.

public void unsetSuccessor(const IloResourceConstraint srct1, const
IloResourceConstraint srct2) const

This member function removes the precedence relation between srct1 and srct2 from the invoking scheduler
solution, if this edge exists. As a consequence, srct2 is no longer a successor of srct1 in the invoking
scheduler solution nor is srct1 a predecessor of srct2.

public void unsetSuccessors(const IloResourceConstraint rct) const

518

This member function removes all the successors of rct in the invoking scheduler solution. Consistency is
maintained; that is, the resource constraint rct is no longer a predecessor of its former successors.

This member function should be used only if rct is stored in the invoking scheduler solution.

public void unsetTeardown(const IloResourceConstraint rct) const

This member function removes rct as a teardown resource constraint in the invoking scheduler solution. If the
resource constraint has a selected resource and if this selected resource is stored in the invoking scheduler
soluiton, then the member function getTeardownRC will no longer return the resource constraint rct.

This member function should be used only if rct is stored in the invoking scheduler solution.

Inner Enumerations

Enumeration IloResourceConstraintIteratorFilter

Definition file: ilsched/ilosolution.h
Include file: <ilsched/ilosolution.h>

The enumeration IloResourceConstraintIteratorFilter can be used to create a
IloSchedulerSolution::ResourceConstraintIterator that traverses a specifed set of resource
constraints such as the predecessors or the successors. The possible values are described below.

IloPredecessors indicates that the iterator will traverse the set of resource constraints that are predecessors
of a given resource constraint.

IloSuccessors indicates that the iterator will traverse the set of resource constraints that are direct successors
of a given resource constraint.

IloPrevious indicates that the iterator will traverse the set of resource constraints that are previous of a given
resource constraint.

IloNext indicates that the iterator will traverse the set of resource constraints that are next of a given resource
constraint.

See Also: IloSchedulerSolution::ResourceConstraintIterator

Fields:

IloPredecessors = 0

IloSuccessors = 1

IloPrevious = 2

IloNext = 3

519

Class IloShape
Definition file: ilsched/iloresconstrainti.h
Include file: <ilsched/iloscheduler.h>

Instances of IloShape are generic objects describing shapes associated with resource constraints on
continuous reservoirs.

The concept of Shape offers fine control over the production and consumption of a resource constraint on a
continuous reservoir. When no shape is activated, the usual behaviour of a resource constraint is to consume or
produce at a constant rate, given by the capacity and the duration of the activity. When created, an
IloVariableSlopeShape can turn this constant rate into a Solver variable, suitable for decision and search.

See Also: IloResourceConstraint, IloReservoir, IloVariableSlopeShape

Method Summary

public IloBool hasShape() const

public IloBool isVariableSlopeShape() const

Methods

public IloBool hasShape() const

This member function returns IloTrue if the invoking handle relates to an active shape.

public IloBool isVariableSlopeShape() const

This member function returns IloTrue if the invoking handle relates to an instance of
IloVariableSlopeShape. In this case, the handle can be safely down-cast into a IloVariableSlopeShape
handle, using the corresponding copy-constructor.

See Also: IloVariableSlopeShape

520

Class IloShiftListObject
Definition file: ilsched/ilocalendar.h

The class IloShiftListObject inherits from the class IloShiftObject. It allows expressing shifts as a list
of forbidden time intervals. Depending on the type of the shift list object, the time restriction can concern the
whole activity execution or only its start or its end. Three different types are defined:

OnStart: Shifts only concern the start of the activity. For instance, if the shift is the interval [a,b), then
the start of the activity must be strictly smaller than a or greater than b.

•

OnEnd: Shifts only concern the end of the activity. For instance, if the shift is the interval [a,b), then the
end of the activity must be strictly smaller than a or greater than b.

•

OnOverlap: Shifts concern the whole activity. That is the activity cannot overlap shifts. For instance, if
the shift is the interval [a,b), then the end of the activity must be strictly smaller than a or the start must
be greater than b.

•

In addition, each time interval (see IloIntervalList in the extensions section of the IBM ILOG Concert
Technology Reference Manual), can be associated with an integer type. In such cases, activity parameters (see
IloActivityShiftParam) can specify which types must be ignored.

For more information, see Calendars, and Shift Object Semantic.

Constructor Summary

public IloShiftListObject()

public IloShiftListObject(IloShiftListObjectI * impl)

public IloShiftListObject(const IloEnv env, const char * name=0)

public IloShiftListObject(const IloEnv env, IloIntervalList shiftList,
IloShiftListObject::Type type, const char * name=0)

Method Summary

public IloShiftListObjectI * getImpl() const

public IloIntervalList getReadOnlyShiftListParam() const

public IloShiftListObject::Type getType() const

public void setShiftListParam(IloIntervalList shiftList)

public void setType(IloShiftListObject::Type type)

Inherited Methods from IloShiftObject

getImpl

Inner Enumeration

IloShiftListObject::Type

Constructors

public IloShiftListObject()

521

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IloShiftListObject(IloShiftListObjectI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IloShiftListObject(const IloEnv env, const char * name=0)

This constructor creates a new instance of IloShiftListObject. By default, the shift list is empty. Its name is
set to name

public IloShiftListObject(const IloEnv env, IloIntervalList shiftList,
IloShiftListObject::Type type, const char * name=0)

This constructor creates a new instance of IloShiftListObject. The shift list is set to shiftList and the
type is set to type. Its name is set to name

Methods

public IloShiftListObjectI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloIntervalList getReadOnlyShiftListParam() const

This member function returns the time interval list that represents the set of forbidden dates of the invoking shift
object.

public IloShiftListObject::Type getType() const

This member function returns the type that defines the behavior of the shifts during the search (see
IloShiftListObject::Type).

public void setShiftListParam(IloIntervalList shiftList)

This member function sets shiftList as the new shift list of the invoking shift object.

public void setType(IloShiftListObject::Type type)

This member function sets type as the new type of the invoking shift object.

Inner Enumerations

Enumeration Type

Definition file: ilsched/ilocalendar.h

522

The Type of IloShiftListObject allows you to define the behavior during the search regarding the variables
of concerned activities. The possible types are:

OnStart: Shifts only affect the start of the activity. For instance, if the shift is the interval [a,b), then the
start of the activity must be strictly smaller than a or greater than b.

•

OnEnd: Shifts only affect the end of the activity. For instance, if the shift is the interval [a,b), then the end
of the activity must be strictly smaller than a or greater than b.

•

OnOverlap: Shifts affect the whole activity. That is, the activity cannot overlap shifts. For instance, if
the shift is the interval [a,b), then the end of the activity must be strictly smaller than a, or the start must
be greater than b.

•

Fields:

OnStart = 0

OnEnd = 1

OnOverlap = 2

523

Class IloShiftObject
Definition file: ilsched/ilocalendar.h

The class IloShiftObject allows definition of shifts which constrain the possible date execution of concerned
activities. Shifts are forbidden time intervals, not necessarily defined in extension (see ILCUSERSHIFTOBJECT),
which restrict possible starts, ends or whole executions of activities.

To express shifts it is possible to enumerate all intervals with an IloShiftListObject, or to write an intention
definition using ILCUSERSHIFTOBJECT.

For more information, see Calendars and Shift Object Semantic.

Constructor Summary

public IloShiftObject()

public IloShiftObject(IloShiftObjectI * impl)

Method Summary

public IloShiftObjectI * getImpl() const

Constructors

public IloShiftObject()

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IloShiftObject(IloShiftObjectI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

Methods

public IloShiftObjectI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

524

Class IloStateResource
Definition file: ilsched/ilostate.h
Include file: <ilsched/iloscheduler.h>

An instance of the class IloStateResource represents a resource of infinite capacity, the state of which can
vary over time. Each activity may, throughout its execution, require a state resource to be in a given state (or in
any of a given set of states). Consequently, two activities may not overlap if they require incompatible states
during their execution.

Parameter Classes

Possible states: (class IloNumToAnySetStepFunction)

This parameter describes the possible states of the state resource over time. It is directly modified by the
following member functions: IloStateResource::addPossibleStates,
IloStateResource::addPossibleState, IloStateResource::removePossibleStates, and
IloStateResource::removePossibleState.

Must be in use intervals: (class IloIntervalList)

This parameter describes the set of time intervals during which the resource needs to be used by some activities.
It is directly modified by the following member functions: IloStateResource::setMustBeInUse, and
IloStateResource::unsetMustBeInUse.

Refer to Scheduler Overview for more information on how to share parameters among resources, and how the
direct modification of parameters through the resource API may affect them. Also see
IloNumToAnySetStepFunction and IloIntervalList in the extensions section of the IBM ILOG Concert
Technology Reference Manual.

See Also: IloEnforcementLevel, IloResource, IloResourceConstraint

Constructor Summary

public IloStateResource()

public IloStateResource(IloStateResourceI * impl)

public IloStateResource(const IloEnv env, const IloAnySet states, const char *
name=0)

Method Summary

public void addPossibleState(IloNum timeMin, IloNum timeMax,
IloAny state) const

public void addPossibleState(IloAny state) const

public void addPossibleStates(IloNum timeMin, IloNum timeMax,
const IloAnySet states) const

public void addPossibleStates(const IloAnySet states) const

public IloStateResourceI * getImpl() const

public IloAnySet getPossibleStates(IloNum time) const

public IloAnySet getPossibleStates() const

public IloBool

525

isAlwaysPossibleState(IloNum timeMin, IloNum timeMax,
IloAny state) const

public IloBool isEverPossibleState(IloNum timeMin, IloNum timeMax,
IloAny state) const

public IloBool isPossibleState(IloNum time, IloAny state) const

public void removePossibleState(IloNum timeMin, IloNum timeMax,
IloAny state) const

public void removePossibleState(IloAny state) const

public void removePossibleStates(IloNum timeMin, IloNum timeMax,
const IloAnySet states) const

public void removePossibleStates(const IloAnySet states) const

public void setMustBeInUse(IloNum timeMin, IloNum timeMax) const

public void setMustBeInUseParam(const IloIntervalList intervals)
const

public void setPossibleStatesParam(const
IloNumToAnySetStepFunction states) const

public void unsetMustBeInUse(IloNum timeMin, IloNum timeMax) const

Inherited Methods from IloResource

addCapacityEnforcementInterval, addTransitionTimeEnforcementInterval,
areCalendarConstraintsIgnored, areCapacityConstraintsIgnored,
arePrecedenceConstraintsIgnored, areSequenceConstraintsIgnored,
areTransitionTimeConstraintsIgnored, getCalendar, getCalendarEnforcement,
getCapacityEnforcement, getDurationEnforcement, getImpl, getPrecedenceEnforcement,
getSequenceEnforcement, getTransitionTimeEnforcement, hasCalendar,
ignoreCalendarConstraints, ignoreCapacityConstraints, ignorePrecedenceConstraints,
ignoreSequenceConstraints, ignoreTransitionTimeConstraints, isCapacityResource,
isContinuousReservoir, isDiscreteEnergy, isDiscreteResource, isKeptOpen,
isReservoir, isStateResource, isUnaryResource, keepOpen,
removeCapacityEnforcementInterval, removeTransitionTimeEnforcementInterval,
setCalendar, setCalendarEnforcement, setCapacityEnforcement,
setCapacityEnforcementIntervalsParam, setDurationEnforcement,
setPrecedenceEnforcement, setResourceParam, setSequenceEnforcement,
setTransitionTimeEnforcement, setTransitionTimeEnforcementIntervalsParam

Constructors

public IloStateResource()

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IloStateResource(IloStateResourceI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IloStateResource(const IloEnv env, const IloAnySet states, const char *
name=0)

This constructor creates a new instance of IloStateResource and adds it to the set of resources managed in
the given environment. The argument states is the set of pointers that can be accepted as possible states for
the resource. If the argument name is defined, it is assigned as the name of the newly created state resource.

526

Methods

public void addPossibleState(IloNum timeMin, IloNum timeMax, IloAny state) const

This member function adds a given state to the set of possible states of the invoking resource over the interval
[timeMin, timeMax).

public void addPossibleState(IloAny state) const

This member function adds a state to the set of possible states of the invoking resource.

public void addPossibleStates(IloNum timeMin, IloNum timeMax, const IloAnySet
states) const

This member function adds a set of states to the set of possible states of the invoking resource over the
interval [timeMin, timeMax).

public void addPossibleStates(const IloAnySet states) const

This member function adds a set of states to the set of possible states of the invoking resource.

public IloStateResourceI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloAnySet getPossibleStates(IloNum time) const

This member function returns the set of possible states of the invoking resource at a given time.

public IloAnySet getPossibleStates() const

This member function returns the set of possible states of the invoking resource.

public IloBool isAlwaysPossibleState(IloNum timeMin, IloNum timeMax, IloAny state)
const

This member function returns IloTrue if and only if it is possible that the invoking resource is in the given
state over the entire interval [timeMin, timeMax). Otherwise, it returns IloFalse.

public IloBool isEverPossibleState(IloNum timeMin, IloNum timeMax, IloAny state)
const

This member function returns IloTrue if and only if it is possible that the invoking resource is in the given
state at some point in the interval [timeMin, timeMax). Otherwise, it returns IloFalse.

527

public IloBool isPossibleState(IloNum time, IloAny state) const

This member function returns IloTrue if and only if it is possible that the invoking resource is in the given
state at the given time. Otherwise, it returns IloFalse.

public void removePossibleState(IloNum timeMin, IloNum timeMax, IloAny state) const

This member function states that the invoking resource must not be in the given state at any time in the interval
[timeMin, timeMax).

public void removePossibleState(IloAny state) const

This member function removes a state from the set of possible states of the invoking resource.

public void removePossibleStates(IloNum timeMin, IloNum timeMax, const IloAnySet
states) const

This member function states that the invoking resource must not be in any of the given states at any time in the
interval [timeMin, timeMax).

public void removePossibleStates(const IloAnySet states) const

This member function removes a set of states from the set of possible states of the invoking resource.

public void setMustBeInUse(IloNum timeMin, IloNum timeMax) const

This member function states that the invoking resource must be in use and that it cannot be idle over the interval
[timeMin, timeMax).

public void setMustBeInUseParam(const IloIntervalList intervals) const

This member function sets the argument intervals as the list of time intervals during which the invoking
resource must be in use.

public void setPossibleStatesParam(const IloNumToAnySetStepFunction states) const

This member function sets the argument states as the function that describes the possible states of the
invoking resource over time.

public void unsetMustBeInUse(IloNum timeMin, IloNum timeMax) const

This member function states that the invoking resource does not need to be in use during the interval
[timeMin, timeMax).

528

529

Class IloTextureCriticalityCalculator
Definition file: ilsched/ilotextureparami.h
Include file: <ilsched/iloscheduler.h>

A texture criticality calculator object in Scheduler Concert Technology is a modeling object that, when extracted,
corresponds to a specific IlcTextureCriticalityCalculator object. The modeling object itself can be
used to specify the criticality calculation that will be performed on resource capacity constraints in the solver.

In Scheduler Concert Technology, texture criticality calculator objects depend on the classes
IloTextureCriticalityCalculator and IloTextureCriticalityCalculatorI. The class
IloTextureCriticalityCalculator is the handle class. An instance of the class
IloTextureCriticalityCalculator contains a data member (the handle pointer) that points to an instance
of the class IloTextureCriticalityCalculatorI (the implementation object). If you define a new class of
texture criticality calculator with the macro ILOTEXTURECRITICALITYCALCULATOR0, it will define the
implementation class together with the corresponding virtual member function
IloTextureCriticalityCalculatorI::extract, and a member function that returns an instance of the
handle class IloTextureCriticalityCalculator.

For more information, see Texture Measurements.

Predefined Texture Criticality Calculators

The following functions, defined using the macro ILOTEXTURECRITICALITYCALCULATOR0, return instances of
texture criticality calculator model objects.

 IloTextureCriticalityCalculator IloProbabilisticCriticalityCalculator (IloEnv env);

This function returns a pointer to a texture criticality calculator object which, when extracted, corresponds to an
IlcProbabilisticCriticalityCalculatorI.

 IloTextureCriticalityCalculator IloRelativeDemandCriticalityCalculator (IloEnv env);

This function returns a pointer to a texture criticality calculator object which, when extracted, corresponds to an
IlcRelativeDemandCriticalityCalculatorI.

See Also: IlcTextureCriticalityCalculator, ILOTEXTURECRITICALITYCALCULATOR0,
IloTextureCriticalityCalculatorI, IlcProbabilisticCriticalityCalculatorI, IlcRelativeDemandCriticalityCalculatorI

Constructor Summary

public IloTextureCriticalityCalculator()

public IloTextureCriticalityCalculator(IloTextureCriticalityCalculatorI * impl)

Method Summary

public IloTextureCriticalityCalculatorI * getImpl() const

Constructors

public IloTextureCriticalityCalculator()

530

This constructor creates an empty handle. You must initialize it before you use it.

public IloTextureCriticalityCalculator(IloTextureCriticalityCalculatorI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IloTextureCriticalityCalculatorI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

531

Class IloTextureCriticalityCalculatorI
Definition file: ilsched/ilotextureparami.h
Include file: <ilsched/iloscheduler.h>

Texture criticality calculator objects in Scheduler Concert Technology depend on the classes
IloTextureCriticalityCalculatorI and IloTextureCriticalityCalculator. The class
IloTextureCriticalityCalculatorI is the implementation class. If you define a new class of factory with
the macro ILOTEXTURECRITICALITYCALCULATOR0, it will define this implementation class together with the
corresponding virtual member function IloTextureCriticalityCalculatorI::extract, and with a
member function that returns an instance of the handle class IloTextureCriticalityCalculator.

For more information, see Texture Measurements.

See Also: IloTextureCriticalityCalculator, ILOTEXTURECRITICALITYCALCULATOR0,
IlcTextureCriticalityCalculator

Method Summary

public virtual IlcTextureCriticalityCalculatorI * extract(const IloSolver &
solver) const

protected void use(const IloSolver &, const
IloExtractable &) const

Methods

public virtual IlcTextureCriticalityCalculatorI * extract(const IloSolver & solver)
const

This virtual function implements the extraction of the invoking texture criticality calculator into an
IlcTextureCriticalityCalculatorI* by the solver given as argument. Note that this member function
must be defined by using the macro ILOTEXTURECRITICALITYCALCULATOR0.

protected void use(const IloSolver &, const IloExtractable &) const

This member function can only be called from within the member function
IloTextureCriticalityCalculatorI::extract (that is, only in the code of a macro
ILOTEXTURECRITICALITYCALCULATOR0). It states that the invoking texture criticality calculator currently in the
process of being extracted by the solver given as argument uses the extractable given as the second argument.
As a consequence, the extractable given as the second argument will be immediately extracted by the solver.

532

Class IloTextureParam
Definition file: ilsched/ilotextureparam.h
Include file: <ilsched/iloscheduler.h>

Parameters are used to change the default behavior and characteristics of activities and resources. An instance
of IloTextureParam modifies the existence and type of texture measurement that is created on a resource. By
default, no texture measurement is created.

Texture measurements are measurements of some aspect of the search state and can be used to guide
heuristics. See Texture Measurements.

For more information, see Texture Measurements.

See Also: IloDiscreteResource, IlcResourceTexture, IloTextureSuccessorGoal, IloTextureAltSuccessorGoal

Constructor Summary

public IloTextureParam()

public IloTextureParam(IloTextureParamI * impl)

public IloTextureParam(const IloEnv env, const char * name=0)

Method Summary

public void addIgnoreInterval(const IloIntervalList) const

public void addIgnoreInterval(IloNum start, IloNum end) const

public void addIgnoreIntervalOnDuration(IloNum start, IloNum
duration) const

public void addPeriodicIgnoreInterval(IloNum start, IloNum duration,
IloNum period, IloNum end) const

public void emptyIgnoreIntervals() const

public IloIntervalList getIgnoreIntervals() const

public IloTextureParamI * getImpl() const

public void removeIgnoreInterval(const IloIntervalList) const

public void removeIgnoreInterval(IloNum start, IloNum end) const

public void removeIgnoreIntervalOnDuration(IloNum start, IloNum
duration) const

public void removePeriodicIgnoreInterval(IloNum start, IloNum
duration, IloNum period, IloNum end) const

public void setCriticalityCalculator(IloTextureCriticalityCalculator)

public void setHeuristicBeta(IloNum) const

public void setRandomGenerator(IloRandom) const

public void setRCTextureFactory(IloRCTextureFactory)

public void unsetRandomGenerator() const

533

Constructors

public IloTextureParam()

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IloTextureParam(IloTextureParamI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IloTextureParam(const IloEnv env, const char * name=0)

This constructor creates a new instance of IloTextureParam, with the default value that no texture
measurement will be created.

Methods

public void addIgnoreInterval(const IloIntervalList) const

This member function adds an interval list to the list of intervals that are ignored by the texture measurement.
The new intervals are merged with existing intervals that they overlap, if any.

public void addIgnoreInterval(IloNum start, IloNum end) const

This member function adds an interval to the list of intervals that are ignored by the texture measurement. The
ignored interval is [start, end). The new interval is merged with existing intervals that it overlaps, if any.

public void addIgnoreIntervalOnDuration(IloNum start, IloNum duration) const

This member function adds an interval to the list of intervals that are ignored by the texture measurement. The
ignored interval is [start, start+duration). The new interval is merged with existing intervals that it
overlaps, if any.

public void addPeriodicIgnoreInterval(IloNum start, IloNum duration, IloNum period,
IloNum end) const

This member function adds a set of intervals to the list of intervals that are ignored by the texture measurement.
For every i >= 0 such that start + i * period < end, an interval of [start + i * period, start
+ duration + i * period) is added. Adding a new interval that overlaps with an already existing interval
results in the merging of the intervals.

public void emptyIgnoreIntervals() const

This member function removes all the intervals from the ignored intervals of the invoking parameter.

public IloIntervalList getIgnoreIntervals() const

534

This member function returns a list of intervals that will be ignored by the texture measurements. No texture
calculations will take place on these intervals and the criticality value for all time points within the intervals is 0.

public IloTextureParamI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public void removeIgnoreInterval(const IloIntervalList) const

This member function removes all intervals ignored by the texture measurement during the intervals in the
interval list.

public void removeIgnoreInterval(IloNum start, IloNum end) const

This member function removes all intervals ignored by the texture measurement between start and end. If
start is inside an existing interval [start1, end1), that is, start1 < start < end1, this results in an
ignored interval [start1, start). If end is inside an interval [start2, end2) this results in an ignored
interval [end, end2).

public void removeIgnoreIntervalOnDuration(IloNum start, IloNum duration) const

This member function removes all ignored intervals on the invoking parameter between start and
start+duration.

public void removePeriodicIgnoreInterval(IloNum start, IloNum duration, IloNum
period, IloNum end) const

This member function removes ignored intervals from the invoking parameter. More precisely, for every i >= 0
such that start + i * period < end, this function removes all intervals between start + i * period
and start + duration + i * period.

public void setCriticalityCalculator(IloTextureCriticalityCalculator)

This member function sets the texture criticality calculator object given as argument as the criticality calculator of
the invoking texture parameter.

public void setHeuristicBeta(IloNum) const

This member function sets the beta value to be used with the random number generator. If no random number
generator is used, this function does nothing. For details on the use of the beta argument, see
IlcResourceTexture::setRandomGenerator.

public void setRandomGenerator(IloRandom) const

This member function sets the random number generator to be used in choosing the critical time point on the
texture measurement. By default, no random number generator is used.

535

public void setRCTextureFactory(IloRCTextureFactory)

This member function sets the texture factory object given as argument as the texture factory of the invoking
texture parameter.

public void unsetRandomGenerator() const

This member function removes the random number generator, meaning that no random numbers will be used in
choosing the critical time point on the texture measurement.

536

Class IloTimeBoundConstraint
Definition file: ilsched/iloactivity.h
Include file: <ilsched/iloscheduler.h>

Instances of the class IloTimeBoundConstraint are temporal constraints. These temporal constraints
express constraints on the time interval in which an activity is to be scheduled. (Other temporal constraints —
instances of IloPrecedenceConstraint— express precedence between activities in a schedule.)

This class inherits from the Concert Technology class IloConstraint, which is documented in the IBM ILOG
Concert Technology Reference Manual.

Instances of this class are created by these member functions:

IloActivity::startsBefore•
IloActivity::endsBefore•
IloActivity::startsAt•
IloActivity::endsAt•
IloActivity::startsAfter•
IloActivity::endsAfter.•

For more information, see IloConstraint in the IBM ILOG Concert Technology Reference Manual, and
Temporal Relations.

See Also: IloActivity, IloActivityConstraintsParam

Constructor Summary

public IloTimeBoundConstraint()

public IloTimeBoundConstraint(IloTimeBoundConstraintI * impl)

Method Summary

public IloActivity getActivity() const

public IloTimeBoundConstraintI * getImpl() const

public IloNum getTimeBound() const

public IloNumVar getTimeBoundVariable() const

public IloTimeBoundConstraintType getType() const

public IloBool hasTimeBoundVariable() const

Constructors

public IloTimeBoundConstraint()

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IloTimeBoundConstraint(IloTimeBoundConstraintI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

537

Methods

public IloActivity getActivity() const

This member function returns the activity of the invoking time-bound constraint.

public IloTimeBoundConstraintI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloNum getTimeBound() const

This member function returns the time-bound of the invoking time-bound constraint.

public IloNumVar getTimeBoundVariable() const

This member function returns the time-bound variable of the invoking time-bound constraint.

public IloTimeBoundConstraintType getType() const

This member function returns the type of the invoking time-bound constraint.

public IloBool hasTimeBoundVariable() const

This member function returns IloTrue if the invoking time-bound constraint has a time-bound variable.
Otherwise, it returns IloFalse.

538

Class IloTimeWindowNHoodI::IloTimeWindow
Definition file: ilsched/ilolnsgoals.h
Include file: <ilsched/iloscheduler.h>

The embedded class IloTimeWindow represents a time interval [start..end).

Method Summary

public void display(ostream & stream) const

public IloInt getDuration() const

public IloInt getEnd() const

public IloInt getStart() const

public IloBool intersects(const IloTimeWindow & tw) const

public IloBool operator==(const IloTimeWindow & tw) const

Methods

public void display(ostream & stream) const

This member function displays the time interval of [start..end) where start is the start of the time time interval and
end is the end of the time interval.

public IloInt getDuration() const

This member function returns the duration of the time interval.

public IloInt getEnd() const

This member function returns the end of the time interval.

public IloInt getStart() const

This member function returns the start of the time interval.

public IloBool intersects(const IloTimeWindow & tw) const

This member function returns IloTrue if the time window provided as argument intersects with this time
window.

public IloBool operator==(const IloTimeWindow & tw) const

539

This member function returns IloTrue if the time window provided as argument starts and ends at the same
time as this time window.

540

Class IloTimeWindowNHood
Definition file: ilsched/ilolnsgoals.h
Include file: <ilsched/iloscheduler.h>

An instance of this class represents a time window neighborhood.

The size of this neighborhood is the number of time windows created internally and depends on two parameters
(integers) provided to the constructor: windowSize and windowStep.

The parameter windowSize represents the number of activities in any time window.

The parameter windowStep represents the number of activities skipped to move to the next time window.

For example, suppose there are 20 activities and windowSize equals 10 and windowStep is 5. Three time
windows are then created, with the first one containing the first 10 activities with index in [0..10), the second one
containing the activities with index in [5..15), and the last one containing the activities with index from [15..20).

New member functions are available to check if an activity or a resource constraint is before or after the selected
activities and resource constraints.

Default behavior is to only restore resource constraints that are not selected (not in the current time window).
This behavior can be changed by specifying appropriate predicates (for example, see member function
IloSchedulerLargeNHoodI::setRestoreActivityStartPredicate.

See Also: IloSchedulerLargeNHood, IloTimeWindowNHoodI

Constructor Summary

public IloTimeWindowNHood(IloEnv env, IloInt windowSize, IloInt windowStep, const
char * name=0)

public IloTimeWindowNHood(IloEnv env, IloInt windowSize, IloInt windowStep,
IloComparator< IloTimeWindowNHoodI::IloTimeWindow > comparator, const char
* name=0)

public IloTimeWindowNHood(IloEnv env, IloInt windowSize, IloInt windowStep,
IloComparator< IloTimeWindowNHoodI::IloTimeWindow > comparator,
IloPredicate< IloActivity > predicate, const char * name=0)

Method Summary

public IloBool isAfterSelected(IloResourceConstraint rc) const

public IloBool isAfterSelected(IloActivity activity) const

public IloBool isBeforeSelected(IloResourceConstraint rc) const

public IloBool isBeforeSelected(IloActivity activity) const

Inherited Methods from IloSchedulerLargeNHood

defineRestoreInfo, defineSelected, finalizeDelta, getCurrentSolution,
getRestoreActivityDurationPredicate, getRestoreActivityEndPredicate,
getRestoreActivityExternalPredicate, getRestoreActivityProcessingTimePredicate,
getRestoreActivityStartPredicate, getRestoreExtractablePredicate,
getRestoreRCCapacityPredicate, getRestoreRCDirectPredecessorPredicate,
getRestoreRCDirectSuccessorPredicate, getRestoreRCNextPredicate,

541

getRestoreRCPrevPredicate, getRestoreRCSelectedPredicate,
getRestoreRCSetupPredicate, getRestoreRCTeardownPredicate, isSelected,
setRestoreActivityDurationPredicate, setRestoreActivityEndPredicate,
setRestoreActivityExternalPredicate, setRestoreActivityProcessingTimePredicate,
setRestoreActivityStartPredicate, setRestoreExtractablePredicate,
setRestoreRCCapacityPredicate, setRestoreRCDirectPredecessorPredicate,
setRestoreRCDirectSuccessorPredicate, setRestoreRCNextPredicate,
setRestoreRCPrevPredicate, setRestoreRCSelectedPredicate,
setRestoreRCSetupPredicate, setRestoreRCTeardownPredicate

Constructors

public IloTimeWindowNHood(IloEnv env, IloInt windowSize, IloInt windowStep, const
char * name=0)

This constructor creates a time window neighborhood. The parameter windowSize specifies the number of
activities of any time window considered, and the parameter windowStep specifies the number of activities to
skip to move to the next time window.

An error is raised if windowStep and windowSize are not positive numbers, or if windowStep is greater than
windowSize.

public IloTimeWindowNHood(IloEnv env, IloInt windowSize, IloInt windowStep,
IloComparator< IloTimeWindowNHoodI::IloTimeWindow > comparator, const char *
name=0)

This constructor creates a time window neighborhood. The parameter windowSize specifies the number of
activities of any time window considered, and the parameter windowStep specifies the number of activities to
skip to move to the next time window.

The parameter comparator is used to specify in which order the time windows should be considered.

public IloTimeWindowNHood(IloEnv env, IloInt windowSize, IloInt windowStep,
IloComparator< IloTimeWindowNHoodI::IloTimeWindow > comparator, IloPredicate<
IloActivity > predicate, const char * name=0)

This constructor creates a time window neighborhood. The parameter windowSize specifies the number of
activities of any time window considered, and the parameter windowStep specifies the number of activities to
skip to move to the next time window.

The parameter comparator is used to specify in which order the time windows should be considered.

The parameter predicate is used to specify the activities in the current solution to use to build the time
windows.

Methods

public IloBool isAfterSelected(IloResourceConstraint rc) const

This member function returns IloTrue if the start in the current solution of the activity associated with the
resource constraint is greater than the end of the time interval.

public IloBool isAfterSelected(IloActivity activity) const

542

This member function returns IloTrue if the end in the current solution of the activity is greater than or equal to
the end of the time interval.

public IloBool isBeforeSelected(IloResourceConstraint rc) const

This member function returns IloTrue if the start in the current solution of the activity associated with the
resource contraint is less than the start of the time interval.

public IloBool isBeforeSelected(IloActivity activity) const

This member function returns IloTrue if the start in the current solution of the activity is less than the start of the
time interval.

543

Class IloTimeWindowNHoodI
Definition file: ilsched/ilolnsgoals.h
Include file: <ilsched/iloscheduler.h>

An instance of this class represents a time window neighborhood.

The size of this neighborhood is the number of time windows created internally and depends on two parameters
(integers) provided to the constructor: windowSize and windowStep.

The parameter windowSize represents the number of activities in any time window.

The parameter windowStep represents the number of activities skipped to move to the next time window.

For example, suppose there are 20 activities and windowSize equals 10 and windowStep is 5. Three time
windows are then created, with the first one containing the first 10 activities with index in [0..10), the second one
containing the activities with index in [5..15), and the last one containing the activities with index from [15..20).

New member functions are available to check if an activity or a resource constraint is before or after the selected
activities and resource constraints.

Default behavior is to only restore resource constraints that are not selected (not in the current time window).
This behavior can be changed by specifying appropriate predicates (for example, see the member function
IloSchedulerLargeNHoodI::setRestoreActivityStartPredicate.

See Also: IloSchedulerLargeNHoodI, IloTimeWindowNHood

Constructor and Destructor Summary

public IloTimeWindowNHoodI(IloEnv env, IloInt windowSize, IloInt windowStep,
IloComparator< IloTimeWindowNHoodI::IloTimeWindow > comparator,
IloPredicate< IloActivity > predicate, const char * name=0)

Method Summary

public virtual IloSolution defineSelected(IloSolver solver, IloInt index)

public IloBool isAfterSelected(IloResourceConstraint rc) const

public IloBool isAfterSelected(IloActivity activity) const

public IloBool isBeforeSelected(IloResourceConstraint rc) const

public IloBool isBeforeSelected(IloActivity activity) const

Inherited Methods from IloSchedulerLargeNHoodI

define, defineRestoreInfo, defineSelected, finalizeDelta, getCurrentSolution,
getRestoreActivityDurationPredicate, getRestoreActivityEndPredicate,
getRestoreActivityExternalPredicate, getRestoreActivityProcessingTimePredicate,
getRestoreActivityStartPredicate, getRestoreExtractablePredicate, getRestoreInfo,
getRestoreRCCapacityPredicate, getRestoreRCDirectPredecessorPredicate,
getRestoreRCDirectSuccessorPredicate, getRestoreRCNextPredicate,
getRestoreRCPrevPredicate, getRestoreRCSelectedPredicate,
getRestoreRCSetupPredicate, getRestoreRCTeardownPredicate, isSelected,
setRestoreActivityDurationPredicate, setRestoreActivityEndPredicate,
setRestoreActivityExternalPredicate, setRestoreActivityProcessingTimePredicate,

544

setRestoreActivityStartPredicate, setRestoreExtractablePredicate,
setRestoreRCCapacityPredicate, setRestoreRCDirectPredecessorPredicate,
setRestoreRCDirectSuccessorPredicate, setRestoreRCNextPredicate,
setRestoreRCPrevPredicate, setRestoreRCSelectedPredicate,
setRestoreRCSetupPredicate, setRestoreRCTeardownPredicate

Inner Class

IloTimeWindowNHoodI::IloTimeWindow

Constructors and Destructors

public IloTimeWindowNHoodI(IloEnv env, IloInt windowSize, IloInt windowStep,
IloComparator< IloTimeWindowNHoodI::IloTimeWindow > comparator, IloPredicate<
IloActivity > predicate, const char * name=0)

This constructor creates a time window neighborhood. The parameter windowSize specifies the number of
activities of any time window considered, and the parameter windowStep specifies the number of activities to
skip to move to the next time window.

The parameter comparator is used (if not an empty handle) to specify in which order the time windows should
be considered.

The parameter predicate is used (if not an empty handle) to specify the activities in the current solution to use
to build the time windows.

Parameters windowSize and windowStep must be positive integers. An error is raised if the parameter
windowStep is greater than parameter windowSize.

Methods

public virtual IloSolution defineSelected(IloSolver solver, IloInt index)

This pure virtual member function returns the set of decision variables, or instances of IloExtractable, on
which to focus the search.

public IloBool isAfterSelected(IloResourceConstraint rc) const

This member function returns IloTrue if the start in the current solution of the activity associated with the
resource constraint is greater than the end of the time interval.

public IloBool isAfterSelected(IloActivity activity) const

This member function returns IloTrue if the end in the current solution of the activity is greater than or equal to
the end of the time interval.

public IloBool isBeforeSelected(IloResourceConstraint rc) const

This member function returns IloTrue if the start in the current solution of the activity associated to the resource
contraint is less than the start of the time interval.

545

public IloBool isBeforeSelected(IloActivity activity) const

This member function returns IloTrue if the start in the current solution of the activity is less than the start of the
time interval.

546

Class IloTransitionCost
Definition file: ilsched/ilotransition.h
Include file: <ilsched/iloscheduler.h>

The class IloTransitionCost allows definition of a transition cost for a unary resource. More precisely, an
instance of IloTransitionCost allows association of an instance of either IloTransitionParam or a
user-defined IloTransitionCostObject with a unary resource.

If the IloTransitionCost is defined with an instance of IloTransitionParam, the transition costs on that
unary resource will then be computed by using the IloTransitionParam and the transition types of activities.

If the IloTransitionCost is defined with an instance of IloTransitionCostObject, the transition costs
on that unary resource will then be computed by using the object extracted from the
IloTransitionCostObject and the virtual transition costs it defines.

Note that several transition costs can be defined on the same unary resource.

The type of the transition cost is set to Next whenever one of these member functions is called:
IloTransitionCost::getNextCostExpr, or IloTransitionCost::getSetupCostExpr.

The type of the transition cost is set to Prev whenever either of these member functions is called:
IloTransitionCost::getPrevCostExpr, or IloTransitionCost::getTeardownCostExpr.

This class inherits from the IBM ILOG Concert Technology class IloExtractable. That class is documented in
the IBM ILOG Concert Technology Reference Manual.

For more information, see Transition Costs.

See Also: IloUnaryResource, IloTransitionParam, IloResourceParam, IloResourceConstraint,
IloTransitionCostObject

Constructor Summary

public IloTransitionCost()

public IloTransitionCost(IloTransitionCostI * impl)

public IloTransitionCost(const IloUnaryResource resource, const IloTransitionParam
param, const char * name=0)

public IloTransitionCost(const IloUnaryResource resource, const IloTransitionParam
param, IloBool isNext, const char * name=0)

public IloTransitionCost(const IloUnaryResource resource, const
IloTransitionCostObject tobj, const char * name=0)

public IloTransitionCost(const IloUnaryResource resource, const
IloTransitionCostObject tobj, IloBool isNext, const char * name=0)

Method Summary

public IloNum getCost(const IloResourceConstraint rct1x, const
IloResourceConstraint rct2x) const

public IloNumVar getCostSumVar() const

public IloTransitionCostI * getImpl() const

public IloIntExprArg getNextCostExpr(const IloResourceConstraint rct)
const

547

public IloNum getNextCostMax(IloResourceConstraint rct) const

public IloNum getNextCostMin(IloResourceConstraint rct) const

public IloIntExprArg getPrevCostExpr(const IloResourceConstraint rct)
const

public IloNum getPrevCostMax(IloResourceConstraint rct) const

public IloNum getPrevCostMin(IloResourceConstraint rct) const

public IloNum getSetupCost(const IloResourceConstraint rct)
const

public IloIntExprArg getSetupCostExpr() const

public IloNum getSetupCostMax() const

public IloNum getSetupCostMin() const

public IloNum getTeardownCost(IloResourceConstraint rct) const

public IloIntExprArg getTeardownCostExpr() const

public IloNum getTeardownCostMax() const

public IloNum getTeardownCostMin() const

public IloTransitionCostObject getTransitionCostObject() const

public IloBool hasCostSumVar() const

public IloBool isNextTransitionCost() const

public IloBool isPrevTransitionCost() const

public void setCostSumVar(const IloNumVar sum) const

public void setNextCostMax(IloResourceConstraint rct, IloNum
value)

public void setNextCostMin(IloResourceConstraint rct, IloNum
value)

public void setPrevCostMax(IloResourceConstraint rct, IloNum
value)

public void setPrevCostMin(IloResourceConstraint rct, IloNum
value)

public void setSetupCostMax(IloInt value) const

public void setSetupCostMin(IloInt value) const

public void setTeardownCostMax(IloInt value) const

public void setTeardownCostMin(IloInt value) const

public void setTransitionParam(const IloTransitionParam param)
const

Constructors

public IloTransitionCost()

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IloTransitionCost(IloTransitionCostI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

548

public IloTransitionCost(const IloUnaryResource resource, const IloTransitionParam
param, const char * name=0)

This constructor creates a transition cost for the unary resource resource and adds it to the set of transition
costs managed by the resource. Transition costs on this resource will be computed using the transition
parameter param.

public IloTransitionCost(const IloUnaryResource resource, const IloTransitionParam
param, IloBool isNext, const char * name=0)

This constructor creates a transition cost for the unary resource resource and adds it to the set of transition
costs managed by the resource. Transition costs on this resource will be computed by using the transition
parameter param. If isNext equals IloTrue, the transition cost will be of type Next; that is, the member
functions IloTransitionCost::getPrevCostExpr and IloTransitionCost::getTeardownCostExpr
will not be available. If isNext equals IloFalse, the transition cost will be of type Prev; that is, the member
functions IloTransitionCost::getNextCostExpr and IloTransitionCost::getSetupCostExpr will
not be available.

public IloTransitionCost(const IloUnaryResource resource, const
IloTransitionCostObject tobj, const char * name=0)

This constructor creates a transition cost for the unary resource resource and adds it to the set of transition
costs managed by the resource. Transition costs on this resource will be computed using the transition cost
object tobj.

public IloTransitionCost(const IloUnaryResource resource, const
IloTransitionCostObject tobj, IloBool isNext, const char * name=0)

This constructor creates a transition cost for the unary resource resource and adds it to the set of transition
costs managed by the resource. Transition costs on this resource will be computed by using the transition cost
object tobj. If isNext equals IloTrue, the transition cost will be of type Next; that is, the member functions
IloTransitionCost::getPrevCostExpr and IloTransitionCost::getTeardownCostExpr will not
be available. If isNext equals IloFalse, the transition cost will be of type Prev; that is, the member functions
IloTransitionCost::getNextCostExpr and IloTransitionCost::getSetupCostExpr will not be
available.

Methods

public IloNum getCost(const IloResourceConstraint rct1x, const
IloResourceConstraint rct2x) const

This member function returns the transition cost between the two resource constraints given as arguments. The
transition cost is computed by using the transition type of the activities and the current transition parameter. More
precisely, if activity of rct1x is of type t1, and activity rct2x is of type t2, then this member function will return
the value corresponding to line t1 and column t2 on the transition parameter. In other words, it will return the
value that was set by using IloTransitionParam::setValue(t1,t2). This member function will throw an
exception if the transition cost is defined with a transition cost object, as the transition function will be created
only at extraction time.

public IloNumVar getCostSumVar() const

549

This member function returns the cost sum variable. The cost sum variable represents the sum of the transition
costs (including setup and transition costs) of all the resource constraints on the resource of the invoking
transition cost.

public IloTransitionCostI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloIntExprArg getNextCostExpr(const IloResourceConstraint rct) const

This member function returns an expression that represents the cost between rct and the resource constraint
that will be next to rct. If rct is the last resource constraint on the resource, then this cost is the teardown cost
of rct. rct must be a resource constraint of the resource of the invoking transition cost. The transition cost is
set to type Next.

public IloNum getNextCostMax(IloResourceConstraint rct) const

This member function returns the maximum transition cost between rct and the resource constraint that will be
next to rct. If rct is the last resource constraint on the resource, then this cost is the maximum teardown cost
of rct. rct must be a resource constraint of the resource of the invoking transition cost.

public IloNum getNextCostMin(IloResourceConstraint rct) const

This member function returns the minimimum transition cost between rct and the resource constraint that will be
next to rct. If rct is the last resource constraint on the resource, then this cost is the minimum teardown cost of
rct. rct must be a resource constraint of the resource of the invoking transition cost.

public IloIntExprArg getPrevCostExpr(const IloResourceConstraint rct) const

This member function returns an expression that represents the cost between rct and the resource constraint
that will be previous to rct. If rct is the first resource constraint on the resource, then this cost is the setup cost
of rct. rct must be a resource constraint of the resource of the invoking transition cost. The transition cost is
set to type Prev.

public IloNum getPrevCostMax(IloResourceConstraint rct) const

This member function returns the maximum transition cost between rct and the resource constraint that will be
previous to rct. If rct is the first resource constraint on the resource, then this cost is the maximum setup cost
of rct. rct must be a resource constraint of the resource of the invoking transition cost.

public IloNum getPrevCostMin(IloResourceConstraint rct) const

This member function returns the minimum transition cost between rct and the resource constraint that will be
previous to rct. If rct is the first resource constraint on the resource, then this cost is the minimum setup cost
of rct. rct must be a resource constraint of the resource of the invoking transition cost.

public IloNum getSetupCost(const IloResourceConstraint rct) const

550

This member function returns the setup cost of the resource constraint rct. The setup cost is computed by using
the transition type of the activity and the current transition parameter. This member function will throw an
exception if the transition cost is defined with a transition cost object, as the transition function will be created
only at extraction time.

public IloIntExprArg getSetupCostExpr() const

This member function returns an expression that represents the setup cost for the invoking transition cost. That
is, the setup cost of the first resource constraint to be processed on the resource is returned. The transition cost
is set to type Next.

public IloNum getSetupCostMax() const

This member function returns the maximum setup cost of the invoking transition cost. That is, the maximum
setup cost of the first resource constraint to be processed on the resource is returned.

public IloNum getSetupCostMin() const

This member function returns the minimum setup cost of the invoking transition cost. That is, the minimum setup
cost of the first resource constraint to be processed on the resource is returned.

public IloNum getTeardownCost(IloResourceConstraint rct) const

This member function returns the teardown cost of the resource constraint rct. The teardown cost is computed
by using the transition type of the activity and the current transition parameter. This member function will throw
an exception if the transition cost is defined with a transition cost object, as the transition function will be created
only at extraction time.

public IloIntExprArg getTeardownCostExpr() const

This member function returns an expression that represents the teardown cost for the invoking transition cost.
That is, the teardown cost of the last resource constraint to be processed on the resource is returned. The
transition cost is set to type Prev.

public IloNum getTeardownCostMax() const

This member function returns the maximum teardown cost of the invoking transition cost. That is, the maximum
teardown cost of the last resource constraint to be processed on the resource is returned.

public IloNum getTeardownCostMin() const

This member function returns the minimum teardown cost of the invoking transition cost. That is, the minimum
teardown cost of the last resource constraint to be processed on the resource is returned.

public IloTransitionCostObject getTransitionCostObject() const

551

In case the invoking transition cost has been created with a user defined transition cost object, this member
function will return this transition cost object. Otherwise, it will return an empty handle.

public IloBool hasCostSumVar() const

This member function returns IloTrue if the invoking transition cost has been created as a cost sum variable.
The cost sum variable represents the sum of the transition costs (including setup and transition costs) of all the
resource constraints on the resource of the invoking transition cost. A cost sum variable is automatically created
when calling the member function IloTransitionCost::getCostSumVar or
IloTransitionCost::setCostSumVar.

public IloBool isNextTransitionCost() const

This member function returns IloTrue if the invoking transition cost is of type next. Otherwise it returns false.

public IloBool isPrevTransitionCost() const

This member function returns IloTrue if the invoking transition cost is of type next. Otherwise it returns false.

public void setCostSumVar(const IloNumVar sum) const

This member function sets sum as the cost sum variable of the invoking transition cost. The cost sum variable
represents the sum of the transition costs (including setup and transition costs) of all the resource constraints on
the resource of the invoking transition cost.

public void setNextCostMax(IloResourceConstraint rct, IloNum value)

This member function sets the maximum transition cost between rct and the resource constraint that will be
next to rct. If rct is the last resource constraint on the resource, then this cost is the maximum teardown cost
of rct. rct must be a resource constraint of the resource of the invoking transition cost. The transition cost is
set to type Next.

public void setNextCostMin(IloResourceConstraint rct, IloNum value)

This member function sets the minimimum transition cost between rct and the resource constraint that will be
next to rct. If rct is the last resource constraint on the resource, then this cost is the minimum teardown cost of
rct. rct must be a resource constraint of the resource of the invoking transition cost. The transition cost is set
to type Next.

public void setPrevCostMax(IloResourceConstraint rct, IloNum value)

This member function sets the maximum transition cost between rct and the resource constraint that will be
previous to rct. If rct is the first resource constraint on the resource, then this cost is the maximum setup cost
of rct. rct must be a resource constraint of the resource of the invoking transition cost. The transition cost is
set to type Prev.

public void setPrevCostMin(IloResourceConstraint rct, IloNum value)

552

This member function sets the minimum transition cost between rct and the resource constraint that will be
previous to rct. If rct is the first resource constraint on the resource, then this cost is the minimum setup cost
of rct. rct must be a resource constraint of the resource of the invoking transition cost. The transition cost is
set to type Prev.

public void setSetupCostMax(IloInt value) const

This member function sets the maximum setup cost of the invoking transition cost. That is, the maximum setup
cost of the first resource constraint to be processed on the resource is returned. The transition cost is set to type
Next.

public void setSetupCostMin(IloInt value) const

This member function sets the minimum setup cost of the invoking transition cost. That is, the minimum setup
cost of the first resource constraint to be processed on the resource is returned. The transition cost is set to type
Next.

public void setTeardownCostMax(IloInt value) const

This member function sets the maximum teardown cost of the invoking transition cost. That is, the maximum
teardown cost of the last resource constraint to be processed on the resource is returned. The transition cost is
set to type Prev.

public void setTeardownCostMin(IloInt value) const

This member function sets the minimum teardown cost of the invoking transition cost. That is, the minimum
teardown cost of the last resource constraint to be processed on the resource is returned. The transition cost is
set to type Prev.

public void setTransitionParam(const IloTransitionParam param) const

This member function allows changing the transition parameter used to compute the transition cost.

553

Class IloTransitionCostObject
Definition file: ilsched/ilotransition.h
Include file: <ilsched/iloscheduler.h>

Transition cost objects in Scheduler Concert Technology depend on the classes IloTransitionCostObjectI
and IloTransitionCostObject. The class IloTransitionCostObject is the handle class. An instance of
the class IloTransitionCostObject contains a data member (the handle pointer) that points to an instance
of the class IloTransitionCostObjectI (the implementation object). If you define a new class of transition
cost object with the macro ILOTRANSITIONCOSTOBJECT0, it will define the implementation class together with
the corresponding virtual member function IloTransitionCostObjectI::extract, and a member function
that returns an instance of the handle class IloTransitionCostObject.

For more information, see Transition Costs.

See Also: IloTransitionCostObjectI, ILOTRANSITIONCOSTOBJECT0, IloTransitionCost

Constructor Summary

public IloTransitionCostObject()

public IloTransitionCostObject(IloTransitionCostObjectI * impl)

Method Summary

public IloTransitionCostObjectI * getImpl() const

public void setChanged()

Constructors

public IloTransitionCostObject()

This constructor creates an empty handle. You must initialize it before you use it.

public IloTransitionCostObject(IloTransitionCostObjectI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IloTransitionCostObjectI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public void setChanged()

This member function states that the invoking transition cost object has been changed and therefore needs to be
re-extracted.

554

Class IloTransitionCostObjectI
Definition file: ilsched/ilotransition.h
Include file: <ilsched/iloscheduler.h>

Transition cost objects in Scheduler Concert Technology depend on the classes IloTransitionCostObjectI
and IloTransitionCostObject. The class IloTransitionCostObjectI is the implementation class. If
you define a new class of transition cost object with the macro ILOTRANSITIONCOSTOBJECT0, it will define this
implementation class together with the corresponding virtual member function
IloTransitionCostObjectI::extract, and with a member function that returns an instance of the handle
class IloTransitionCostObject.

For more information, see Transition Costs.

See Also: IloTransitionCostObject, ILOTRANSITIONCOSTOBJECT0, IloTransitionCost

Method Summary

public virtual IlcTransitionCostObjectI * extract(const IloSolver & solver) const

protected void use(const IloSolver &, const
IloExtractable &) const

Methods

public virtual IlcTransitionCostObjectI * extract(const IloSolver & solver) const

This virtual function implements the extraction of the invoking transition cost object into an
IlcTransitionCostObjectI* by the solver given as argument. Note that this member function must be
defined by using the macro ILOTRANSITIONCOSTOBJECT0.

protected void use(const IloSolver &, const IloExtractable &) const

This member function can only be called from within the member function
IloTransitionCostObjectI::extract (that is, only in the code of a macro
ILOTRANSITIONCOSTOBJECT0). It states that the invoking transition cost object currently in the process of
being extracted by the solver given as argument uses the extractable given as the second argument. As a
consequence, the extractable given as the second argument will be immediately extracted by the solver currently
performing the extraction of the invoking transition cost, which must be given as first argument to this member
function.

555

Class IloTransitionParam
Definition file: ilsched/ilotransition.h
Include file: <ilsched/iloscheduler.h>

The class IloTransitionParam allows representation of transition, setup and teardown times and/or costs on
a resource.

In the class IloTransitionParam, setup and teardown times and/or costs are stored as an array of
non-negative numbers indexed by the transition type of activities. By default, the setup and teardown values are
considered to be zero.

Transition times and/or costs between resource constraints are stored as a square table of non-negative
numbers, indexed by the transition type of activities. By default, it is initially filled with zeros. The table may or
may not be symmetric, that is, the transition time and/or cost may or may not be different if an activity follows or
precedes another one. If a table is declared as symmetric, only the required triangular half of the table is
allocated and only that half needs to be filled. The index of the line of the table is the transition type of the
preceding activity. The index of the column of the table is the transition type of the following activity.

Instances of IloTransitionParam are used to build transition times on resources (see also
IloTransitionTime) and transition costs on unary resources (see also IloTransitionCost).

For more information, see Transition Costs, Transition Times, Parameter Classes.

See Also: IloActivity, IloTransitionCost, IloTransitionTime

Constructor Summary

public IloTransitionParam()

public IloTransitionParam(IloTransitionParamI * impl)

public IloTransitionParam(const IloEnv env, IloInt size, IloBool
isSymmetric=IloFalse, const char * name=0)

public IloTransitionParam(const IloEnv env, IloInt size, IloNum ** ttable, const
char * name=0)

public IloTransitionParam(const IloEnv env, IloInt size, IloNum ** ttable, const
IloNumArray setups, const IloNumArray teardowns, const char * name=0)

public IloTransitionParam(const IloEnv env, IloInt size, IloNum ** ttable, const
IloNumArray setupOrTeardowns, IloBool setup=IloTrue, const char * name=0)

Method Summary

public IloBool checkTriangularInequality() const

public IloTransitionParamI * getImpl() const

public IloNum getSetup(IloInt line) const

public IloInt getSize() const

public IloNum getTeardown(IloInt line) const

public IloNum getValue(IloInt line, IloInt column) const

public IloBool isSymmetric() const

public void setSetup(IloInt line, IloNum value) const

556

public void setSetupArray(const IloNumArray setups) const

public void setTeardown(IloInt line, IloNum value) const

public void setTeardownArray(const IloNumArray teardowns) const

public void setTransitionTable(IloNum ** ttable) const

public void setValue(IloInt line, IloInt column, IloNum value)
const

Constructors

public IloTransitionParam()

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IloTransitionParam(IloTransitionParamI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IloTransitionParam(const IloEnv env, IloInt size, IloBool
isSymmetric=IloFalse, const char * name=0)

This constructor creates a new instance of IloTransitionParam. The argument size, which must be a
strictly non-negative integer, gives the number of lines and columns of the transition table as well as the size of
the arrays of setup and teardown values. The table and arrays are initially filled with zeroes. The boolean
argument isSymmetric expresses the fact that the table is symmetric. If isSymmetric is IloTrue, only half
the table needs to be defined. By default, a transition time parameter is not symmetric.

public IloTransitionParam(const IloEnv env, IloInt size, IloNum ** ttable, const
char * name=0)

This constructor creates a new instance of IloTransitionParam. The argument size, which must be a
strictly non-negative integer, gives the number of lines and columns of the transition table as well as the size of
the arrays of setup and teardown values. The table is initially filled with the values of the array of arrays ttable.
The setup and teardown values are assumed to be zero.

public IloTransitionParam(const IloEnv env, IloInt size, IloNum ** ttable, const
IloNumArray setups, const IloNumArray teardowns, const char * name=0)

This constructor creates a new instance of IloTransitionParam. The argument size, which must be a
strictly non-negative integer, gives the number of lines and columns of the transition table as well as the size of
the arrays of setup and teardown values. The table is initially filled with the values of the array of arrays ttable.
The setup and teardown values are initialized by copying the numerical arrays setups and teardowns.

public IloTransitionParam(const IloEnv env, IloInt size, IloNum ** ttable, const
IloNumArray setupOrTeardowns, IloBool setup=IloTrue, const char * name=0)

This constructor creates a new instance of IloTransitionParam. The argument size, which must be a
strictly non-negative integer, gives the number of lines and columns of the transition table as well as the size of
the arrays of setup and teardown values. The table is initially filled with the values of the array of arrays ttable.
If the value of the argument setup is IloTrue, the setup values are initialized by copying the numerical array
setupOrTeardowns and the teardown values are supposed to be equal to zero. If the value of the argument

557

setup is IloFalse, the teardown values are initialized by copying the numerical array setupOrTeardowns
and the setup values are supposed to be equal to zero.

Methods

public IloBool checkTriangularInequality() const

This member function returns IloTrue if and only if the invoking transition param satisfies the triangular
inequality. Triangular inequality is defined as:

for all i,j,k in [0,size): value(i,j) <= value(i,k) + value(k,j)•
for all i,j in [0,size): setup(i) <= setup(j) + value(j,i), and•
teardown(i) <= teardown(j) + value(i,j).•

public IloTransitionParamI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloNum getSetup(IloInt line) const

This member function returns the value of the setup for the argument line. An assert will be violated if the
argument line is not a non-negative integer strictly smaller than the size of the transition parameter.

public IloInt getSize() const

This member function returns the size of the invoking transition parameter.

public IloNum getTeardown(IloInt line) const

This member function returns the value of the teardown for the argument line. An assert will be violated if the
argument line is not a non-negative integer strictly smaller than the size of the transition parameter.

public IloNum getValue(IloInt line, IloInt column) const

This member function returns the value of the table of the invoking transition parameter for the line line and for
the column column. The argument line is the transition type of the preceding activity. The argument column is
the transition type of the following activity. An assert will be violated if the arguments line and column are not
non-negative integers strictly smaller than the size of the transition parameter.

public IloBool isSymmetric() const

This member function returns IloTrue if the table of the invoking transition parameter was initially created as a
symmetric table. Otherwise, it returns IloFalse.

public void setSetup(IloInt line, IloNum value) const

This member function sets value as the new setup value for the index index. An assert will be violated if the
argument line is not a non-negative integer strictly smaller than the size of the transition parameter, or if the

558

argument value is not a non-negative number.

public void setSetupArray(const IloNumArray setups) const

This member function initializes the array of setups with a copy of the numerical array setups. An assert will be
violated if the size of the array setups not the same as the size of the invoking transition parameter.

public void setTeardown(IloInt line, IloNum value) const

This member function sets value as the new teardown value for the argument line. An assert will be violated if
the argument line is not a non-negative integer strictly smaller than the size of the transition parameter or if the
argument value is not a non-negative number.

public void setTeardownArray(const IloNumArray teardowns) const

This member function initializes the array of teardowns with a copy of the numerical array teardowns. An assert
will be violated if the size of the array teardown is not the same as the size of the invoking transition parameter.

public void setTransitionTable(IloNum ** ttable) const

This member function initializes the table of the invoking transition parameter with the values of the array of
arrays ttable.

public void setValue(IloInt line, IloInt column, IloNum value) const

This member function sets value as the value of the table of the invoking transition parameter for line and
column. The argument line is the transition type of the preceding activity. The argument column is the
transition type of the following activity. An assert will be violated if the arguments line and column are not
non-negative integers strictly smaller than the size of the transition parameter or if the argument value is not a
non-negative number.

559

Class IloTransitionTime
Definition file: ilsched/ilotransition.h
Include file: <ilsched/iloscheduler.h>

The class IloTransitionTime allows definition of transition time for a resource.

More precisely, an instance of IloTransitionTime allows association of an instance of either an
IloTransitionParam or a user-defined IloTransitionTimeObject with a resource.

If the IloTransitionTime is defined with an instance of IloTransitionParam, the transition times on that
resource will be computed by using the IloTransitionParam and the transition types of the activities.

If the IloTransitionTime is defined with an instance of IloTransitionTimeObject, the transition times
on that resource will be computed by using the object extracted from the IloTransitionTimeObject and the
virtual transition times it defines.

Note that at most one transition time can be active on a resource. Any attempt to create a transition time on a
resource that has already been associated with a transition time will override the previous transition time.

This class inherits from the IBM® ILOG® Concert Technology class IloExtractable. That class is
documented in the IBM ILOG Concert Technology Reference Manual.

For more information, see Calendars and Transition Times.

See Also: IloResource, IloResourceParam, IloResourceConstraint, IloTransitionParam, IlcTransitionTimeObject

Constructor Summary

public IloTransitionTime()

public IloTransitionTime(IloTransitionTimeI * impl)

public IloTransitionTime(const IloResource resource, const IloTransitionParam
param, const char * name=0)

public IloTransitionTime(const IloResource resource, const IloTransitionTimeObject
tobj, const char * name=0)

Method Summary

public IloTransitionTimeI * getImpl() const

public IloNum getTime(const IloResourceConstraint rct1x, const
IloResourceConstraint rct2x) const

public IloTransitionTimeObject getTransitionTimeObject() const

public IloBool isSuspended() const

public void setSuspended(IloBool suspended=IloTrue)

public void setTransitionParam(const IloTransitionParam param)
const

Constructors

public IloTransitionTime()

560

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IloTransitionTime(IloTransitionTimeI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IloTransitionTime(const IloResource resource, const IloTransitionParam
param, const char * name=0)

This constructor creates a transition time for resource. Transition times on resource will be computed by
using the transition parameter param. If the resource resource was already associated a transition time, the
new transition time overrides the previous one.

public IloTransitionTime(const IloResource resource, const IloTransitionTimeObject
tobj, const char * name=0)

This constructor creates a transition time for resource. Transition times on resource will be computed by
using the transition time object tobj. If resource was already associated a transition time, the new transition
time overrides the previous one.

Methods

public IloTransitionTimeI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloNum getTime(const IloResourceConstraint rct1x, const
IloResourceConstraint rct2x) const

This member function returns the transition time between the two resource constraints given as arguments. The
transition time is computed by using the transition type of the activities and the current transition parameter. More
precisely, if activity of rct1x is of type t1, and activity rct2x is of type t2, then this member function will return
the value corresponding to row t1 and column t2 on the transition parameter. In other words, it will return the
value that was set by using IloTransitionParam::setValue(t1,t2). This member function will throw an
exception if the transition time is defined with a transition time object as the transition function will be created only
at extraction time.

public IloTransitionTimeObject getTransitionTimeObject() const

If the invoking transition time has been created with a user-defined transition time object, this member function
will return this transition time object. Otherwise, it will return an empty handle.

public IloBool isSuspended() const

This member function returns IloTrue if and only if the invoking transition time has been declared to be
suspended by breaks.

public void setSuspended(IloBool suspended=IloTrue)

561

This member function allows specifying whether the invoking transition time is suspended by breaks or not. By
default, a transition time is not suspended by breaks.

public void setTransitionParam(const IloTransitionParam param) const

This member function allows changing the transition parameter used to compute the transition times of the
resources of the invoking instance of IloTransitionTime.

562

Class IloTransitionTimeObject
Definition file: ilsched/ilotransition.h
Include file: <ilsched/iloscheduler.h>

Transition time objects in Scheduler Concert Technology depend on the classes IloTransitionTimeObjectI
and IloTransitionTimeObject. The class IloTransitionTimeObject is the handle class. An instance of
the class IloTransitionTimeObject contains a data member (the handle pointer) that points to an instance
of the class IloTransitionTimeObjectI (the implementation object). If you define a new class of transition
time object with the macro ILOTRANSITIONTIMEOBJECT0, it will define the implementation class together with
the corresponding virtual member function IloTransitionTimeObjectI::extract, and a member function
that returns an instance of the handle class IloTransitionTimeObject.

For more information, see Transition Times.

See Also: IloTransitionTimeObjectI, ILOTRANSITIONTIMEOBJECT0, IloTransitionTime

Constructor Summary

public IloTransitionTimeObject()

public IloTransitionTimeObject(IloTransitionTimeObjectI * impl)

Method Summary

public IloTransitionTimeObjectI * getImpl() const

public void setChanged()

Constructors

public IloTransitionTimeObject()

This constructor creates an empty handle. You must initialize it before you use it.

public IloTransitionTimeObject(IloTransitionTimeObjectI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IloTransitionTimeObjectI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public void setChanged()

This member function states that the invoking transition time object has been changed, and therefore needs to be
re-extracted.

563

Class IloTransitionTimeObjectI
Definition file: ilsched/ilotransition.h
Include file: <ilsched/iloscheduler.h>

Transition time objects in Scheduler Concert Technology depend on the classes IloTransitionTimeObjectI
and IloTransitionTimeObject. The class IloTransitionTimeObjectI is the implementation class. If
you define a new class of transition time object with the macro ILOTRANSITIONTIMEOBJECT0, it will define this
implementation class together with the corresponding virtual member function
IloTransitionTimeObjectI::extract, and with a member function that returns an instance of the handle
class IloTransitionTimeObject.

For more information, see Transition Times.

See Also: IloTransitionTimeObject, ILOTRANSITIONTIMEOBJECT0, IloTransitionTime

Method Summary

public virtual IlcTransitionTimeObjectI * extract(const IloSolver & solver) const

protected void use(const IloSolver &, const
IloExtractable &) const

Methods

public virtual IlcTransitionTimeObjectI * extract(const IloSolver & solver) const

This virtual function implements the extraction of the invoking transition time object into an
IlcTransitionTimeObjectI* by the solver given as argument. Note that this member function must be
defined by using the macro ILOTRANSITIONTIMEOBJECT0.

protected void use(const IloSolver &, const IloExtractable &) const

This member function can only be called from within the member function
IloTransitionTimeObjectI::extract (that is, only in the code of a macro
ILOTRANSITIONTIMEOBJECT0). It states that the invoking transition time object currently in the process of
being extracted by the solver given as argument uses the extractable given as the second argument. As a
consequence, the extractable given as the second argument will be immediately extracted by the solver currently
performing the extraction of the invoking transition time, which must be given as first argument to this member
function.

564

Class IloUnaryResource
Definition file: ilsched/ilounary.h
Include file: <ilsched/iloscheduler.h>

Unary Resource.

An instance of the class IloUnaryResource represents a resource with capacity one.

See Also: IloDiscreteResource, IloEnforcementLevel, IloResourceConstraint, IloTransitionCost

Constructor Summary

public IloUnaryResource()

public IloUnaryResource(IloUnaryResourceI * impl)

public IloUnaryResource(const IloEnv env, const char * name=0)

Method Summary

public IloUnaryResourceI * getImpl() const

Inherited Methods from IloDiscreteResource

getCapacityMax, getCapacityMaxMax, getCapacityMaxMin, getCapacityMin,
getCapacityMinMax, getCapacityMinMin, getImpl, setCapacityMax,
setCapacityMaxParam, setCapacityMin, setCapacityMinParam

Inherited Methods from IloCapResource

addMaxTextureIgnoreInterval, addMaxTextureIgnoreInterval,
addMaxTextureIgnoreIntervalOnDuration, addMaxTexturePeriodicIgnoreInterval,
addMinTextureIgnoreInterval, addMinTextureIgnoreInterval,
addMinTextureIgnoreIntervalOnDuration, addMinTexturePeriodicIgnoreInterval,
emptyMaxTextureIgnoreIntervals, emptyMinTextureIgnoreIntervals, getCapacity,
getImpl, getInitialOccupation, getInitialOccupationMax, getInitialOccupationMin,
hasInitialOccupation, hasMaxTextureMeasurement, hasMinTextureMeasurement,
removeMaxTextureIgnoreInterval, removeMaxTextureIgnoreInterval,
removeMaxTextureIgnoreIntervalOnDuration, removeMaxTexturePeriodicIgnoreInterval,
removeMinTextureIgnoreInterval, removeMinTextureIgnoreInterval,
removeMinTextureIgnoreIntervalOnDuration, removeMinTexturePeriodicIgnoreInterval,
setCapacity, setInitialOccupation, setInitialOccupation,
setInitialOccupationParam, setInitialOccupationParam, setMaxTextureHeuristicBeta,
setMaxTextureParam, setMaxTextureRandomGenerator, setMinTextureHeuristicBeta,
setMinTextureParam, setMinTextureRandomGenerator, unsetMaxTextureRandomGenerator,
unsetMinTextureRandomGenerator

Inherited Methods from IloResource

addCapacityEnforcementInterval, addTransitionTimeEnforcementInterval,
areCalendarConstraintsIgnored, areCapacityConstraintsIgnored,
arePrecedenceConstraintsIgnored, areSequenceConstraintsIgnored,

565

areTransitionTimeConstraintsIgnored, getCalendar, getCalendarEnforcement,
getCapacityEnforcement, getDurationEnforcement, getImpl, getPrecedenceEnforcement,
getSequenceEnforcement, getTransitionTimeEnforcement, hasCalendar,
ignoreCalendarConstraints, ignoreCapacityConstraints, ignorePrecedenceConstraints,
ignoreSequenceConstraints, ignoreTransitionTimeConstraints, isCapacityResource,
isContinuousReservoir, isDiscreteEnergy, isDiscreteResource, isKeptOpen,
isReservoir, isStateResource, isUnaryResource, keepOpen,
removeCapacityEnforcementInterval, removeTransitionTimeEnforcementInterval,
setCalendar, setCalendarEnforcement, setCapacityEnforcement,
setCapacityEnforcementIntervalsParam, setDurationEnforcement,
setPrecedenceEnforcement, setResourceParam, setSequenceEnforcement,
setTransitionTimeEnforcement, setTransitionTimeEnforcementIntervalsParam

Constructors

public IloUnaryResource()

This constructor creates an instance that is empty, that is, one whose handle pointer is null. You must assign it a
value before you access it. Any attempt to access it before assignment leads to undefined behaviour.

public IloUnaryResource(IloUnaryResourceI * impl)

This constructor creates an instance of the handle class from the pointer to an instance of the implementation
class.

public IloUnaryResource(const IloEnv env, const char * name=0)

This constructor creates a new instance of IloUnaryResource and adds it to the set of resources managed in
the given environment. The capacity of the resource is 1 (one). If the argument name is defined, it is used as the
name of the newly created resource.

Methods

public IloUnaryResourceI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

566

Class IloVariableSlopeShape
Definition file: ilsched/iloresconstrainti.h
Include file: <ilsched/iloscheduler.h>

Instances of IloVariableSlopeShape provide control of resource constraint rate of production or
consumption, through a Solver variable.

For a given resource constraint, the rate of production or consumption is defined as the variable: Slope =
Capacity / Duration. The corresponding variable can be accessed and set through the member functions
IloVariableSlopeShape::getSlopeVar and IloVariableSlopeShape::setSlopeVar.

Since the slope variable uses floating point representation, the finest precision available on the values of the
slope is proportional to epsilon = 2.21*10^-16. Hence, any value comprised in the interval (Slope*(1-epsilon),
Slope] will be considered to verify the constraint Slope = Capacity / Duration.

See Also: IloResourceConstraint

Constructor Summary

public IloVariableSlopeShape(const IloShape & shape)

Method Summary

public IloNumVar getSlopeVar() const

public void setSlopeVar(IloNumVar var) const

Inherited Methods from IloShape

hasShape, isVariableSlopeShape

Constructors

public IloVariableSlopeShape(const IloShape & shape)

This copy-constructor provides a safe down-cast of a generic instance of IloShape into an instance of
IloVariableSlopeShape. In debug mode, an assertion failure will be raised if the IloShape is not a instance
of IloVariableSlopeShape.

Methods

public IloNumVar getSlopeVar() const

This member function returns the variable that parameterizes the slope of the shape.

See Also: IloShape, IloResourceConstraint

public void setSlopeVar(IloNumVar var) const

567

This member function sets the variable that parameterizes the slope of the shape.

See Also: IloShape, IloResourceConstraint

568

Class IloAltResSet::Iterator
Definition file: ilsched/iloaltresset.h
Include file: <ilsched/iloscheduler.h>

An instance of this class traverses the list of resources in a given instance of IloAltResSet.

See Also: IloAltResSet, IloResource

Constructor Summary

public Iterator(IloAltResSet set)

Method Summary

public IloBool ok() const

public IloResource operator*()

public Iterator & operator++()

Constructors

public Iterator(IloAltResSet set)

This constructor creates an iterator to traverse all the resources that are stored in a given instance of
IloAltResSet.

Methods

public IloBool ok() const

This member function returns IloTrue if the current position of the iterator is a valid one. It returns IloFalse if
all the resources have been scanned by the iterator.

public IloResource operator*()

This operator returns the current instance of IloResource, the one to which the invoking iterator points. This
operator must not be called if the iterator does not point to a valid position, that is, one to which the member
function Iterator::ok returns IloFalse.

public Iterator & operator++()

This left-increment operator shifts the current position of the iterator to the next instance of IloResource.

569

Class IlcResource::ResourceConstraintDeltaIterator
Definition file: ilsched/schedule.h
Include file: <ilsched/ilsched.h>

This iterator should be used only in a demon triggered by the event IlcResource::whenRankedFirstRC or
the event IlcResource::whenRankedLastRC. This iterator traverses the set of resource constraints that have
been ranked first (or last) since last execution of the event IlcResource::whenRankedFirstRC (or
IlcResource::whenRankedLastRC).

The only possible filters for building this iterator are RankedFirst and RankedLast. Using another filter will
throw an exception at construction time.

See Also: IlcResource::RankFilter

Constructor Summary

public ResourceConstraintDeltaIterator(const IlcResource resource,
IlcResource::RankFilter filter)

Method Summary

public IlcBool ok() const

public IlcResourceConstraint operator*() const

public ResourceConstraintDeltaIterator & operator++()

public ResourceConstraintDeltaIterator & operator--()

Constructors

public ResourceConstraintDeltaIterator(const IlcResource resource,
IlcResource::RankFilter filter)

This constructor creates an iterator to traverse the delta subset of resource constraints specified by the filter on
the unary or state resource given as first argument. This constructor should be used only if the ranking
information is available on the resource (see IlcResource::hasRankInfo).

In case the filter is RankedFirst, this constructor allows iteration over the new resource constraints that have
been ranked first on a resource since last triggering of the event IlcResource::whenRankedLastRC. The
iterator is initialized at the first newly ranked first resource constraint, and the
ResourceConstraintDeltaIterator::operator++, member function will traverse the set of newly ranked
first resource constraints in chronological order (with respect to the start/end time of activities).

In case the filter is RankedLast, this constructor allows iteration over the new resource constraints that have
been ranked last on a resource since last triggering of the event IlcResource::whenRankedLastRC. The
iterator is initialized at the first newly ranked last resource constraints, and the
ResourceConstraintDeltaIterator::operator++, member function will traverse the set of newly ranked
first resource constraints in anti-chronological order (with respect to the start/end time of activities).

Methods

public IlcBool ok() const

570

This member function returns IloTrue if the current position of the iterator is a valid one. It returns IloFalse if
the subset of resource constraints has been completely scanned by the iterator.

public IlcResourceConstraint operator*() const

This operator returns the current instance of IlcResourceConstraint, the one to which the invoking iterator
points. If the iterator is set past the end position, then this operator returns an empty handle.

public ResourceConstraintDeltaIterator & operator++()

This left-increment operator shifts the current position of the iterator to the next instance of
IlcResourceConstraint.

public ResourceConstraintDeltaIterator & operator--()

This left-increment operator shifts the current position of the iterator to the previous instance of
IlcResourceConstraint.

571

Class IlcResource::ResourceConstraintIterator
Definition file: ilsched/schedule.h
Include file: <ilsched/ilsched.h>

An instance of this class traverses specific subsets of resource constraints on a given unary or state resource.
More precisely, it allows traversing the following items:

the subset of resource constraints that have been ranked first on the resource (RankedFirst).•
the subset of resource constraints that have been ranked last on the resource (RankedLast).•
the subset of resource constraints that are still not ranked first or last on the resource (NotRanked).•
the subset of resource constraints that are possibly ranked first on the resource (PossibleFirst).•
the subset of resource constraints that are possibly ranked last on the resource (PossibleLast).•

See Also: IlcResource::RankFilter

Constructor Summary

public ResourceConstraintIterator(const IlcResource resource,
IlcResource::RankFilter filter)

public ResourceConstraintIterator(const IlcResource resource,
IlcResource::RankFilter filter, const IlcResourceConstraint)

Method Summary

public IlcBool ok() const

public IlcResourceConstraint operator*() const

public ResourceConstraintIterator & operator++()

public ResourceConstraintIterator & operator--()

Constructors

public ResourceConstraintIterator(const IlcResource resource,
IlcResource::RankFilter filter)

This constructor creates an iterator to traverse the subset of resource constraints specified by the filter on the
unary or state resource given as the first argument. In case of a filter RankedFirst, the resource constraints
are traversed in the chronological order (with respect to the start/end time of activities) with the
ResourceConstraintIterator::operator++ member function. In case of a filter RankedLast, the
resource constraints are traversed in the anti-chronological order with the operator++ member function.

This constructor should be used only if the ranking information is available on the resource (see
IlcResource::hasRankInfo).

public ResourceConstraintIterator(const IlcResource resource,
IlcResource::RankFilter filter, const IlcResourceConstraint)

This constructor creates an iterator to traverse the subset of resource constraints specified by the filter on the
unary or state resource given as the first argument, and starting at the resource constraint rct given as
argument. An exception will be thrown in case the ranked status of the resource constraint (ranked first or last,
possible first or last) is not compatible with the filter.

572

This constructor should be used only if the ranking information is available on the resource (see
IlcResource::hasRankInfo).

In case of a filter RankedFirst, the resource constraints are traversed in the chronological order (with respect
to the start/end time of activities) with the ResourceConstraintIterator::operator++, member function.
In case of a filter RankedLast, the resource constraints are traversed in the anti-chronological order with the
operator++ member function.

Methods

public IlcBool ok() const

This member function returns IloTrue if the current position of the iterator is a valid one. It returns IloFalse if
the subset of resource constraints has been completely scanned by the iterator.

public IlcResourceConstraint operator*() const

This operator returns the current instance of IlcResourceConstraint, the one to which the invoking iterator
points. If the iterator is set past the end position, then this operator returns an empty handle.

public ResourceConstraintIterator & operator++()

This left-increment operator shifts the current position of the iterator to the next instance of
IlcResourceConstraint.

public ResourceConstraintIterator & operator--()

This left-increment operator shifts the current position of the iterator to the previous instance of
IlcResourceConstraint.

573

Class IloSchedulerSolution::ResourceConstraintIterator
Definition file: ilsched/ilosolution.h
Include file: <ilsched/iloscheduler.h>

An instance of this class traverses the list of IloResourceConstraint instances that have been stored in an
IloSchedulerSolution.

See Also: IloResourceConstraint, IloSchedulerSolution, IloSchedulerSolution::ResourceIterator,
IloSchedulerSolution::ActivityIterator

Constructor and Destructor Summary

public ResourceConstraintIterator(IloSchedulerSolution sol)

public ResourceConstraintIterator(IloSchedulerSolution sol, IloResource r)

public ResourceConstraintIterator(IloSchedulerSolution sol, IloActivity a)

public ResourceConstraintIterator(IloSchedulerSolution sol, IloResourceConstraint
ct, IloBool iterateOnSuccessors=IloTrue)

public ResourceConstraintIterator(IloSchedulerSolution sol, IloResourceConstraint
ct, IloSchedulerSolution::IloResourceConstraintIteratorFilter filter)

Method Summary

public IloBool ok() const

public IloResourceConstraint operator*()

public ResourceConstraintIterator & operator++()

Constructors and Destructors

public ResourceConstraintIterator(IloSchedulerSolution sol)

This constructor creates an iterator to traverse all the resource constraints that are stored in the given scheduler
solution.

public ResourceConstraintIterator(IloSchedulerSolution sol, IloResource r)

This constructor creates an iterator to traverse all the resource constraints that have resource r as the selected
resource.

public ResourceConstraintIterator(IloSchedulerSolution sol, IloActivity a)

This constructor creates an iterator that traverses all the resource constraints on activity a that are stored in the
solution sol.

public ResourceConstraintIterator(IloSchedulerSolution sol, IloResourceConstraint
ct, IloBool iterateOnSuccessors=IloTrue)

574

When the boolean iterateOnSuccessors is true, this constructor creates an iterator that traverses all the
resoure constraints that succeed the resource constraint ct in the scheduler solution sol. When the boolean
iterateOnSuccessors is false, this constructor creates an iterator that traverses all the resource constraints
that precede the resource constraint ct in the scheduler solution sol.

public ResourceConstraintIterator(IloSchedulerSolution sol, IloResourceConstraint
ct, IloSchedulerSolution::IloResourceConstraintIteratorFilter filter)

This constructor creates an iterator that traverses the subset of resource constraints specified by the filter. For
instance, to iterate on all successors of ct that are stored in the scheduler solution sol, use filter value
IloSchedulerSolution::IloSuccessors. See enum
IloSchedulerSolution::IloResourceConstraintIteratorFilter for all possible values of the filter.

Methods

public IloBool ok() const

This member function returns IloTrue if the current position of the iterator is a valid one. It returns IloFalse if
all the resources have been scanned by the iterator.

public IloResourceConstraint operator*()

This operator returns the current instance of IloResourceConstraint, the one to which the invoking iterator
points. If the iterator is set past the end position, then this operator returns an empty handle.

public ResourceConstraintIterator & operator++()

This left-increment operator shifts the current position of the iterator to the next instance of
IloResourceConstraint.

575

Class IloSchedulerSolution::ResourceIterator
Definition file: ilsched/ilosolution.h
Include file: <ilsched/iloscheduler.h>

An instance of this class traverses the list of IloResource instances that have been stored in an
IloSchedulerSolution.

See Also: IloResource, IloSchedulerSolution, IloSchedulerSolution::ResourceConstraintIterator,
IloSchedulerSolution::ActivityIterator

Constructor Summary

public ResourceIterator(IloSchedulerSolution sol)

Method Summary

public IloBool ok() const

public IloResource operator*()

public ResourceIterator & operator++()

Constructors

public ResourceIterator(IloSchedulerSolution sol)

This constructor creates an iterator to traverse all the resources that are stored in the given scheduler solution.

Methods

public IloBool ok() const

This member function returns IloTrue if the current position of the iterator is a valid one. It returns IloFalse if
all the resources have been scanned by the iterator.

public IloResource operator*()

This operator returns the current instance of IloResource, the one to which the invoking iterator points. If the
iterator is set past the end position, then this operator returns an empty handle.

public ResourceIterator & operator++()

This left-increment operator shifts the current position of the iterator to the next instance of IloResource.

576

Class IlcCalendar::ShiftObjectIterator
Definition file: ilsched/sbecprop.h

An instance of this class traverses the list of shift objects that have been added to the corresponding
IlcCalendar.

Constructor Summary

public ShiftObjectIterator(IlcCalendar calendar)

Method Summary

public IlcBool ok() const

public IlcShiftObject operator*() const

public ShiftObjectIterator & operator++()

Constructors

public ShiftObjectIterator(IlcCalendar calendar)

This constructor creates an iterator to traverse the list of shift objects that have been added to calendar.

Methods

public IlcBool ok() const

This member function returns IlcTrue if the current position of the iterator is a valid one. It returns IlcFalse if
the list of shift objects has been completely scanned by the iterator.

public IlcShiftObject operator*() const

This operator returns the current instance of IlcShiftObject, the one to which the invoking iterator points. If
the iterator is set past the end position, then this operator returns an empty handle.

public ShiftObjectIterator & operator++()

This left-increment operator shifts the current position of the iterator to the next instance of IlcShiftObject.

577

Class IloCalendar::ShiftObjectIterator
Definition file: ilsched/ilocalendar.h

An instance of this class traverses the list of shift objects that have been added to the corresponding
IloCalendar.

Constructor Summary

public ShiftObjectIterator(IloCalendar calendar)

Method Summary

public IlcBool ok() const

public IloShiftObject operator*() const

public ShiftObjectIterator & operator++()

Constructors

public ShiftObjectIterator(IloCalendar calendar)

This constructor creates an iterator to traverse the list of shift objects that have been added to calendar.

Methods

public IlcBool ok() const

This member function returns IloTrue if the current position of the iterator is a valid one. It returns IloFalse if
the list of shift objects has been completely scanned by the iterator.

public IloShiftObject operator*() const

This operator returns the current instance of IloShiftObject, the one to which the invoking iterator points. If
the iterator is set past the end position, then this operator returns an empty handle.

public ShiftObjectIterator & operator++()

This left-increment operator shifts the current position of the iterator to the next instance of IloShiftObject.

578

Enumeration IlcActivityIteratorFilter
Definition file: ilsched/basic.h
Include file: <ilsched/ilsched.h>

Given an activity act on a schedule with a schedule precedence graph, several useful sets of activities can be
defined with respect to act (set of successors of act, set of predecessors of act, etc.).

The enumeration IlcActivityIteratorFilter can be used to create an activity iterator
IlcActivityIterator that allows traversing such sets of activities. Each element of the enumeration
specifies a particular set to traverse.

IlcPredecessors specifies that the iterator traverse the set of activities that are predecessors of a given
activity.

IlcSuccessors specifies that the iterator traverse the set of activities that are successors of a given activity.

IlcDirectPredecessors specifies that the iterator traverse the set of activities that are direct predecessors of
a given activity.

IlcDirectSuccessors specifies that the iterator traverse the set of activities that are direct successors of a
given activity.

IlcUnranked specifies that the iterator traverse the set of activities that are unranked with respect to a given
activity.

For more information, see Precedence Graph Constraints.

See Also: IlcActivityIterator

Fields:

IlcPredecessors = 6

IlcSuccessors = 7

IlcDirectPredecessors = 3

IlcDirectSuccessors = 4

IlcUnranked = 5

579

Enumeration IlcFailReason
Definition file: ilsched/basic.h
Include file: <ilsched/ilsched.h>

This enumeration is used to describe the reason of a failure, if it is known to the Scheduler Engine. See
IlcSchedulerTraceI::getFailReason.

The values IlcFailActivityNoStartOverlapVariable and
IlcFailActivityNoEndOverlapVariable mean that an activity was to overlap a break at its start (or end,
respectively), but no start (or end, respectively) overlap variable was defined.

The values IlcFailAltResConstraint and IlcFailAltResConstraintOpposite mean that a resource
constraint (or its opposite, respectively) was to be propagated, but this led to a failure.

The value IlcFailAtConstraintOpposite means that the opposite of an "at constraint" was to be
propagated but this led to a failure.

The value IlcFailBalanceConstraint means that the balance constraint was propagated and it led to a
failure. If the fail reason is associated with a resource constraint rct, it means that the balance constraint
detected that the resource is over-consumed, or the reservoir overflows or underflows just before or after rct. In
case this fail reason is not associated with any resource constraint, it means that the balance constraint has
detected a global failure.

The values IlcFailDisjunctive, IlcFailEdgeFinder, IlcFailBreakConstraint,
IlcFailCapTimetable, IlcFailContinuousTimetable, IlcFailPrecedenceConstraint,
IlcFailStateTimetable, and IlcFailTypeTimetable mean that the corresponding constraint has
detected a failure condition.

The values with the prefix IlcFailPrecedenceGraph mean that the named modification was to be made, but
this led to a failure.

The values IlcFailResourceConstraint and IlcFailResourceConstraintOpposite mean that a
resource constraint (or its opposite, respectively) was to be propagated, but this led to a failure.

The values IlcFailResourceIntegralConstraint and IlcFailResourceFunctionalConstraint
mean that resource integral or resource functional constraint was to be propagated, but this led to a failure.

The value IlcFailTimeBoundConstraint means that a time-bound constraint was to be propagated, but this
led to a failure.

See Also: IlcSchedulerTraceI

Fields:

IlcFailReasonUnknown = 0

IlcFailDisjunctive

IlcFailEdgeFinder

IlcFailBreakConstraint

IlcFailCapTimetable

IlcFailStateTimetable

IlcFailTypeTimetable

IlcFailContinuousTimetable

IlcFailPrecedenceGraphPropagateClose

580

IlcFailPrecedenceGraphSetSuccessor

IlcFailPrecedenceGraphSetNext

IlcFailPrecedenceGraphSetNotNext

IlcFailPrecedenceGraphRankFirst

IlcFailPrecedenceGraphRankNotFirst

IlcFailPrecedenceGraphRankLast

IlcFailPrecedenceGraphRankNotLast

IlcFailPrecedenceGraphSetToContribute

IlcFailPrecedenceGraphSetToNotContribute

IlcFailPrecedenceGraphSetToContributeEvt

IlcFailPrecedenceGraphSetToNotContributeEvt

IlcFailPrecedenceGraphSetStrictSuccessorEvt

IlcFailPrecedenceGraphSetSuccessorEvt

IlcFailPrecedenceGraphSetSimultaneousEvt

IlcFailPrecedenceConstraint

IlcFailAtConstraintOpposite

IlcFailTimeBoundConstraint

IlcFailResourceConstraint

IlcFailResourceConstraintOpposite

IlcFailAltResConstraint

IlcFailAltResConstraintOpposite

IlcFailActivityNoStartOverlapVariable

IlcFailActivityNoEndOverlapVariable

IlcFailActivityNoStartProdOverlapVariable

IlcFailActivityNoEndProdOverlapVariable

IlcFailResourceCalendarConstraint

IlcFailBalanceConstraint

IlcFailResourceIntegralConstraint

IlcFailResourceFunctionalConstraint

IlcFailTransitionExpr

IlcFailSchedLast

581

Enumeration IlcGranularFunctionRoundingMode
Definition file: ilsched/basic.h
Include file: <ilsched/ilsched.h>

This enumeration selects a rounding mode associated to an IlcGranularFunction object. This rounding
mode is taken into account when using the granular function to create integral constraints.

For more information, see Functional and Integral Constraints on Resources.

See Also: IlcGranularFunction

Fields:

IlcGranularFunctionRoundInward = 0x0

IlcGranularFunctionRoundUpward = 0x1

IlcGranularFunctionRoundDownward = 0x2

IlcGranularFunctionRoundOutward = 0x3

582

Enumeration IlcPrecedenceConstraintType
Definition file: ilsched/basic.h
Include file: <ilsched/ilsched.h>

This enumeration describes the type of an instance of IlcPrecedenceConstraint.

IlcStartsAfterStart signifies that at least a given "delay" must elapse between the beginning of the
"preceding" activity and the beginning of the "following" activity.

IlcStartsAfterEnd signifies that at least a given "delay" must elapse between the end of the "preceding"
activity and the beginning of the "following" activity.

IlcEndsAfterStart signifies that at least a given "delay" must elapse between the beginning of the
"preceding" activity and the end of the "following" activity.

IlcEndsAfterEnd signifies that at least a given "delay" must elapse between the end of the "preceding" activity
and the end of the "following" activity.

IlcStartsAtStart signifies that exactly a given "delay" must elapse between the beginning of the "preceding"
activity and the beginning of the "following" activity.

IlcEndsAtStart signifies that exactly a given "delay" must elapse between the beginning of the "preceding"
activity and the end of the "following" activity.

IlcStartsAtEnd signifies that exactly a given "delay" must elapse between the end of the "preceding" activity
and the beginning of the "following" activity.

IlcEndsAtEnd signifies that exactly a given "delay" must elapse between the end of the "preceding" activity and
the end of the "following" activity.

See Also: IlcPrecedenceConstraint

Fields:

IlcStartsAfterStart = 0

IlcStartsAfterEnd = 1

IlcEndsAfterStart = 2

IlcEndsAfterEnd = 3

IlcStartsAtStart = 4

IlcStartsAtEnd = 5

IlcEndsAtStart = 6

IlcEndsAtEnd = 7

583

Enumeration IlcResourceConstraintIteratorFilter
Definition file: ilsched/basic.h
Include file: <ilsched/ilsched.h>

Given a resource constraint rct on a resource with a resource precedence graph, several useful sets of
resource constraints can be defined with respect to rct (set of successors, sets of predecessors, etc.).

The enumeration IlcResourceConstraintIteratorFilter can be used to create a resource constraint
iterator IlcResourceConstraintIterator that traverses such sets of resource constraints. Each element of
the enumeration specifies a particular set to traverse.

For more information, see Precedence Graph Constraints.

IlcDirectPredecessors indicates that the iterator will traverse the set of resource constraints that are direct
predecessors of a given resource constraint.

IlcDirectSuccessors indicates that the iterator will traverse the set of resource constraints that are direct
successors of a given resource constraint.

IlcUnranked indicates that the iterator will traverse the set of resource constraints that are unranked with
respect to a given resource constraint.

IlcPredecessors indicates that the iterator will traverse the set of resource constraints that are predecessors
of a given resource constraint.

IlcSuccessors indicates that the iterator will traverse the set of resource constraints that are successors of a
given resource constraint.

IlcPossiblePrevious indicates that the iterator will traverse the set of resource constraints that are either
direct predecessors of or unranked with respect to a given resource constraint.

IlcPossibleNext indicates that the iterator will traverse the set of resource constraints that are either direct
successors of or unranked with respect to a given resource constraint.

See Also: IlcResourceConstraintIterator

Fields:

IlcAllConstraints = 0

IlcActiveConstraints = 1

IlcPostedConstraints = 2

IlcDirectPredecessors = 3

IlcDirectSuccessors = 4

IlcUnranked = 5

IlcPredecessors = 6

IlcSuccessors = 7

IlcPossiblePrevious = 8

IlcPossibleNext = 9

IlcPredSucc = 10

IlcStrictDirectPredecessors = 11

IlcStrictDirectSuccessors = 12

584

IlcStrictPredecessors = 13

IlcStrictSuccessors = 14

IlcSimultaneous = 15

585

Enumeration RankFilter
Definition file: ilsched/schedule.h
Include file: <ilsched/ilsched.h>

This enumeration allows specifying a subset of resource constraints to traverse with the iterators
IlcResource::ResourceConstraintIterator, and
IlcResource::ResourceConstraintDeltaIterator.

RankedFirst indicates the subset of resource constraints that have been ranked first on the resource.

RankedLast indicates the subset of resource constraints that have been ranked last on the resource.

NotRanked indicates the subset of resource constraints that have not yet been ranked first or last on the
resource.

PossibleFirst indicates the subset of resource constraints that can possibly be ranked first on the resource.
This is the set of resource constraints that has not yet been ranked first nor ranked last, nor otherwise
determined to be unavailable to be ranked first.

PossibleLast indicates the subset of resource constraints that can possibly be ranked last on the resource.
This is the set of resource constraints that has not yet been ranked first nor ranked last, nor otherwise
determined to be unavailable to be ranked last.

See Also: IlcResource::ResourceConstraintIterator, IlcResource::ResourceConstraintDeltaIterator

Fields:

RankedFirst = 1

RankedLast = 2

Ranked = 3

NotRanked = 4

PossibleFirst = 8

PossibleLast = 16

586

Enumeration IlcSchedVariable
Definition file: ilsched/basic.h
Include file: <ilsched/ilsched.h>

This enumeration is used to designate the Solver variable constrained by the constraint
IlcResource::makeIntegralConstraint or IlcResource::makeFunctionalConstraint. For more
information, see Functional and Integral Constraints on Resources.

IlcExternalVariable specifies that the external variable of each activity linked to the resource via a resource
constraint will be constrained. The external variable of an activity can be any Solver variable, associated with an
activity via the IlcActivity::setExternalVar function.

IlcProcessingTimeVariable specifies that the processing time variable of each activity linked to the
resource via a resource constraint will be constrained.

IlcCapacityVariable specifies that the capacity variable of each resource constraint on the resource will be
constrained.

IlcEnergyVariable specifies that the energy variable of each resource constraint on the resource will be
constrained. The energy of a resource constraint is defined as the product of the capacity variable and the
duration of the activity.

IlcDurationVariable specifies that the duration variable of each activity linked to the resource via a
resource constraint will be constrained.

IlcStartVariable specifies that the start variable of each activity linked to the resource via a resource
constraint will be constrained.

IlcEndVariable specifies that the end variable of each activity linked to the resource via a resource constraint
will be constrained.

See Also: IlcResource, IlcGranularFunction

Fields:

IlcExternalVariable = 0

IlcProcessingTimeVariable = 1

IlcCapacityVariable = 2

IlcEnergyVariable = 3

IlcDurationVariable = 4

IlcStartVariable = 8

IlcEndVariable = 12

587

Enumeration IlcSchedulerChange
Definition file: ilsched/schedtracei.h
Include file: <ilsched/ilsched.h>

This enumeration is used to describe which scheduler event has occurred. It indicates, for example, the
modification of the start of an activity, the modification of a precedence constraint delay, an
IlcResourceConstraint becomes next of another, and so forth. This enumeration is used in the
IlcSchedulerTraceFilter functions.

Note that users should not rely on the order of the values listed in the synopsis: It is likely to change between
successive releases of IBM® ILOG® Scheduler.

See Also: IlcSchedulerTraceFilter, IlcSchedulerTraceI

Fields:

IlcUndefinedSchedulerChange = 0

IlcActivityStart

IlcActivityEnd

IlcActivityProcessingTime

IlcActivityDuration

IlcActivityDurationOfBreaks

IlcActivityStartOverlap

IlcActivityEndOverlap

IlcActivityPostponed

IlcActivityPostponedBackward

IlcResourceConstraintCapacity

IlcResourceConstraintState

IlcResourceConstraintStateSet

IlcResourceConstraintNext

IlcResourceConstraintNextCost

IlcResourceConstraintPrev

IlcResourceConstraintPrevCost

IlcResourceSetup

IlcResourceSetupCost

IlcResourceTeardown

IlcResourceTeardownCost

IlcResourceConstraintNextExpr

IlcResourceConstraintPrevExpr

IlcResourceSetupExpr

IlcResourceTeardownExpr

588

IlcResourceConstraintContribution

IlcAltResConstraintIndex

IlcAltResConstraintCapacity

IlcAltResConstraintContribution

IlcTimeBoundConstraintDate

IlcPrecedenceConstraintDelay

IlcIntTimetableSetMin

IlcIntTimetableSetMax

IlcIntTimetableClose

IlcAnyTimetableMakeCompatible

IlcAnyTimetableSetState

IlcAnyTimetableSetPossibleStates

IlcAnyTimetableRemovePossibleStates

IlcAnyTimetableSetMustBeInUse

IlcAnyTimetableClose

IlcTypeTimetableMakeCompatible

IlcTypeTimetableSetType

IlcTypeTimetableRemovePossibleType

IlcTypeTimetableSetMustBeInUse

IlcActivitySetSuccessor

IlcResourceConstraintSetSuccessor

IlcResourceConstraintSetNext

IlcResourceConstraintSetNotNext

IlcResourceConstraintRankFirst

IlcResourceConstraintRankNotFirst

IlcResourceConstraintRankLast

IlcResourceConstraintRankNotLast

IlcResourceConstraintSetToContribute

IlcResourceConstraintSetToNotContribute

IlcResourceConstraintSetToContributeEvt

IlcResourceConstraintSetToNotContributeEvt

IlcResourceConstraintSetStrictSuccessorEvt

IlcResourceConstraintSetSuccessorEvt

IlcResourceConstraintSetSimultaneousEvt

IlcSchedulerChangeLast

589

Enumeration Type
Definition file: ilsched/shifts.h

The Type of IlcShiftListObject allows definition of the behavior during search regarding the variables of
concerned activities. The possible types are:

OnStart: Shifts only concern the start of the activity. For instance, if the shift is the interval [a,b), then
the start of the activity must be strictly smaller than a or greater than b.

•

OnEnd: Shifts only concern the end of the activity. For instance, if the shift is the interval [a,b), then the
end of the activity must be strictly smaller than a or greater than b.

•

OnOverlap: Shifts concern the whole activity. That is, the activity cannot overlap shifts. For instance, if
the shift is the interval [a,b), then the end of the activity must be strictly smaller than a or the start must
be greater than b.

•

Fields:

OnStart = 0

OnEnd = 1

OnOverlap = 2

590

Enumeration IlcSlopeConstraintMode
Definition file: ilsched/basic.h
Include file: <ilsched/ilsched.h>

This enumeration provides values to define the rounding mode of the slope constraint as a parameter of the
function IlcResourceConstraint::setSlope.

Let c be the capacity of the resource constraints, let s be its slope and let d be the duration of the activity.

When initializing a slope constraint, IlcAtLeastCapacity signifies that d is constrained to satisfy c <= s.d <
c+1.

When initializing a slope constraint, IlcAtMostCapacity signifies that d is constrained to satisfy c-1 < s.d <= c.

When initializing a slope constraint, IlcRoundedCapacity signifies that d is constrained to satisfy c-1 < s.d <
c+1.

See Also: IlcResourceConstraint

Fields:

IlcNoSlopeConstraint = 0

IlcAtLeastCapacity = 1

IlcAtMostCapacity = 2

IlcRoundedCapacity = 3

591

Enumeration IlcSolverChange
Definition file: ilsched/schedtracei.h
Include file: <ilsched/ilsched.h>

This enumeration is used to describe how a Solver variable that is used by a Scheduler object is changed: for
example, the minimum value of an integer expression changes, an element is added to the required set of a set
variable, and so forth. This enumeration is used with the Scheduler Engine trace mechanism.

See Also: IlcSchedulerTraceFilter, IlcSchedulerTraceI

Fields:

IlcUndefinedSolverChange = 0

IlcIntExpSetMin

IlcIntExpSetMax

IlcIntExpSetValue

IlcIntExpRemoveValue

IlcAnyExpSetValue

IlcAnyExpRemoveValue

IlcIntSetVarRemovePossible

IlcIntSetVarAddRequired

IlcIntSetVarSetValue

IlcSolverChangeLast

592

Enumeration IlcTimeBoundConstraintType
Definition file: ilsched/basic.h
Include file: <ilsched/ilsched.h>

This enumeration provides values that are assigned to a data member in the class IlcTimeBoundConstraint
and its subclasses. That data member expresses time bounds on activities in a schedule.

IlcStartsBefore signifies that the latest start time of the activity equals the given time bound.

IlcEndsBefore signifies that the latest end time of the activity equals the given time bound.

IlcStartsAt signifies that the start time of the activity equals the given time bound.

IlcEndsAt signifies that the end time of the activity equals the given time bound.

IlcStartsAfter signifies that the earliest start time of the activity equals the given time bound.

IlcEndsAfter signifies that the earliest end time of the activity equals the given time bound.

See Also: IlcTimeBoundConstraint

Fields:

IlcStartsBefore = 0

IlcEndsBefore = 1

IlcStartsAt = 2

IlcEndsAt = 3

IlcStartsAfter = 4

IlcEndsAfter = 5

593

Enumeration IlcTimeExtent
Definition file: ilsched/basic.h
Include file: <ilsched/ilsched.h>

By default, it is assumed that an activity uses a resource throughout its execution. A non-breakable activity uses
the resource from the start time of the activity to the end time of the activity. A breakable activity uses the
resource during its processing time with specified breaks. However, it may be possible to specify a time range
different from the default start to end range. The enumeration IlcTimeExtent is defined for this purpose. Note
that, for continuous reservoirs, this notion of time extent is not defined.

IlcNever indicates that the activity requires (or provides) the resource at no time.

IlcAlways indicates that the activity requires (or provides) the resource at all times (that is, before its start time,
from its start time to its end time, and after its end time). It is useful to optimize the maximal available capacity of
a resource.

IlcBeforeStart indicates that the activity requires (or provides) the resource at all times before its start time.

IlcAfterStart indicates that the activity requires (or provides) the resource at all times after its start time (that
is, both from its start time to its end time and after its end time). This time extent is useful when an activity
consumes a reservoir, for example when part of a budget is spent for the performance of the activity.

IlcAfterEnd indicates that the activity requires (or provides) the resource at all times after its end time. This
time extent is useful when an activity produces a reservoir, for example, when finished goods are produced in a
factory.

IlcBeforeEnd indicates that the activity requires (or provides) the resource at all times before its end time (that
is, both before its start time and from its start time to its end time). This time extent is useful when some activities
require resources that have never been used before, for example when brand-new bank notes are used to test
the prototype of an automatic teller machine (ATM).

IlcBeforeStartAndAfterEnd indicates that the activity requires (or provides) the resource at all times before
its start time and after its end time.

IlcFromStartToEnd indicates that the activity requires (or provides) the resource from its start time to its end
time. This is the default time extent.

See Also: IlcResourceConstraint

Fields:

IlcNever = 0

IlcAlways = 1

IlcBeforeStart = 2

IlcAfterStart = 3

IlcAfterEnd = 4

IlcBeforeEnd = 5

IlcBeforeStartAndAfterEnd = 6

IlcFromStartToEnd = 7

594

Enumeration IloActivitySelector
Definition file: ilsched/iloschedgoals.h
Include file: <ilsched/iloscheduler.h>

This enumeration is used to indicate how activities should be selected by the goals IloSetTimesForward and
IloSetTimesBackward.

See Also: IloActivity

Fields:

IloSelFirstActMinEndMax = 0

IloSelFirstActMinEndMin

IloSelLastActMaxStartMin

IloSelLastActMaxStartMax

595

Enumeration IloEnforcementLevel
Definition file: ilsched/ilobasic.h
Include file: <ilsched/iloscheduler.h>

Several types of global constraints may be expressed on a given resource object. For example, a break list or
transition times may be expressed on a given resource.

The enforcement level allows specifying with how much effort a given global constraint on a resource may be
expressed.

All levels ensure that any solution found by the scheduler will satisfy the type of constraint associated with the
level. Stated otherwise, the enforcement level allows selecting which algorithms are used to enforce the
corresponding constraint, but even the lowest enforcement level will ensure that the constraint is satisfied.

The exact semantics of the levels depend on the scheduler.

For more information, see Resource Enforcement as Global Constraint Declaration, and Parameter
ClassesParameters Organized by Function.

IloLow and IloMediumLow represent enforcement levels lower than the default level IloBasic. Stating that
the enforcement level of a type of constraint is lower than IloBasic means that the scheduler will spend less
effort at enforcing those constraints than it would do by default.

IloBasic is the default enforcement level.

IloMediumHigh, IloHigh and IloExtended correspond to a scale of enforcement levels higher than the
default level IloBasic. Stating that the enforcement level of a type of constraint is higher than IloBasic
means that the scheduler will spend more effort at enforcing those constraints than it would do by default.

See Also: IloResource, IloResourceParam

Fields:

IloNone = 0

IloLow = 10

IloMediumLow = 20

IloBasic = 30

IloMediumHigh = 40

IloHigh = 50

IloExtended = 60

596

Enumeration IloGranularFunctionRoundingMode
Definition file: ilsched/ilogfbase.h
Include file: <ilsched/iloscheduler.h>

This enumeration selects a rounding mode associated to an IloGranularFunction object. This rounding
mode is taken into account when using the granular function to create integral constraints. Refer to Functional
and Integral Constraints on Resources for a detailed description of each rounding mode.

See Also: IloGranularFunction

Fields:

IloGranularFunctionRoundInward = 0x00

IloGranularFunctionRoundUpward = 0x01

IloGranularFunctionRoundDownward = 0x02

IloGranularFunctionRoundOutward = 0x03

597

Enumeration IloPrecedenceConstraintType
Definition file: ilsched/ilobasic.h
Include file: <ilsched/iloscheduler.h>

This enumeration describes the type of an instance of IloPrecedenceConstraint.

IloStartsAfterStart signifies that at least a given " delay " must elapse between the beginning of the "
preceding " activity and the beginning of the " following " activity.

IloStartsAfterEnd signifies that at least a given " delay " must elapse between the end of the " preceding "
activity and the beginning of the " following " activity.

IloEndsAfterStart signifies that at least a given " delay " must elapse between the beginning of the "
preceding " activity and the end of the " following " activity.

IloEndsAfterEnd signifies that at least a given " delay " must elapse between the end of the " preceding "
activity and the end of the " following " activity.

IloStartsAtStart signifies that exactly a given " delay " must elapse between the beginning of the "
preceding " activity and the beginning of the " following " activity.

IloStartsAtEnd signifies that exactly a given " delay " must elapse between the end of the " preceding "
activity and the beginning of the " following " activity.

IloEndsAtStart signifies that exactly a given " delay " must elapse between the beginning of the " preceding "
activity and the end of the " following " activity.

IloEndsAtEnd signifies that exactly a given " delay " must elapse between the end of the " preceding " activity
and the end of the " following " activity.

See Also: IloPrecedenceConstraint

Fields:

IloStartsAfterStart = 0

IloStartsAfterEnd = 1

IloEndsAfterStart = 2

IloEndsAfterEnd = 3

IloStartsAtStart = 4

IloStartsAtEnd = 5

IloEndsAtStart = 6

IloEndsAtEnd = 7

598

Enumeration IloResourceConstraintSelector
Definition file: ilsched/iloschedgoals.h
Include file: <ilsched/iloscheduler.h>

This enumeration is used to indicate how resource constraints should be selected by the goals
IloRankForward and IloRankBackward.

IloSelFirstRCMinEndMax selects the resource constraint that is possibly first with the minimal earliest start
time, using minimal latest end time to break any ties.

IloSelFirstRCMinStartMax selects a resource constraint that is possibly first with the minimal earliest start
time, using minimal latest start time to break any ties.

IloSelLastRCMaxEndMin selects a resource constraint that is possibly last with the maximal latest end time,
using maximal earliest end time to break any ties.

IloSelLastRCMaxStartMin selects a resource constraint that is possibly last with the maximal latest end
time, using maximal earliest start time to break any ties.

See Also: IloResource, IloResourceConstraint

Fields:

IloSelFirstRCMinEndMax = 0

IloSelFirstRCMinStartMax

IloSelLastRCMaxEndMin

IloSelLastRCMaxStartMin

599

Enumeration IloResourceSelector
Definition file: ilsched/iloschedgoals.h
Include file: <ilsched/iloscheduler.h>

This enumeration is used to indicate how resources should be selected by the goals IloRankForward,
IloRankBackward, IloSequenceForward, IloSequenceBackward, and IloAssignAlternative.

Not all the values of the enumeration can be used for selecting any kind of resource. To select an
IloUnaryResource, use one of IloSelResMinGlobalSlack, IloSelResMinLocalSlack,
IloSelResSequenceMinGlobalSlack, or IloSelResSequenceMinLocalSlack. To select one resource
of an alternative, use one of IloSelResMinGlobalSlack, IloSelResMinLocalSlack,
IloSelResMinCapacity, or IloSelAltRes. To select a state resource, use IloSelStateRes. If a wrong
selector is used in a goal, an IloException is raised.

IloSelResMinGlobalSlack selects the non-ranked unary resource with minimal global slack.

IloSelResMinLocalSlack selects the non-ranked unary resource with minimal local slack.

IloSelResSequenceMinGlobalSlack selects the non-sequenced unary resource with minimal global slack.

IloSelResSequenceMinLocalSlack selects the non-sequenced unary resource with minimal local slack.

IloSelResMinCapacity selects the resource with minimal capacity.

IloSelStateRes selects an unranked state resource.

IloSelAltRes selects a possible resource for an alternative resource constraint.

See Also: IloResource

Fields:

IloSelResMinGlobalSlack = 0

IloSelResMinLocalSlack

IloSelResSequenceMinGlobalSlack

IloSelResSequenceMinLocalSlack

IloSelResMinCapacity

IloSelStateRes

IloSelAltRes

600

Enumeration IloSchedVariable
Definition file: ilsched/ilogfbase.h
Include file: <ilsched/iloscheduler.h>

This enumeration is used to designate the Solver variable constrained by IloResourceIntegralConstraint
and IloResourceFunctionalConstraint. See Functional and Integral Constraints on Resources for more
information.

IloExternalVariable specifies that the external variable of each activity linked to the resource via a resource
constraint will be constrained. The external variable of an activity can be any Solver variable, associated with an
activity via the IloActivity::setExternalVariable function.

IloProcessingTimeVariable specifies that the processing time variable of each activity linked to the
resource via a resource constraint will be constrained.

IloCapacityVariable specifies that the capacity variable of each resource constraint on the resource will be
constrained.

IloEnergyVariable specifies that the energy of each resource constraint on the resource will be constrained.
The energy of a resource constraint is defined as the product of the capacity variable by the duration of the
activity.

IloDurationVariable specifies that the duration variable of each activity linked to the resource via a
resource constraint will be constrained.

IloStartVariable specifies that the start variable of each activity linked to the resource via a resource
constraint will be constrained.

IloEndVariable specifies that the end variable of each activity linked to the resource via a resource constraint
will be constrained.

See Also: IloGranularFunction, IloResourceIntegralConstraint, IloResourceFunctionalConstraint

Fields:

IloExternalVariable = 0

IloProcessingTimeVariable = 1

IloCapacityVariable = 2

IloEnergyVariable = 3

IloDurationVariable = 4

IloStartVariable = 8

IloEndVariable = 12

601

Enumeration IloResourceConstraintIteratorFilter
Definition file: ilsched/ilosolution.h
Include file: <ilsched/ilosolution.h>

The enumeration IloResourceConstraintIteratorFilter can be used to create a
IloSchedulerSolution::ResourceConstraintIterator that traverses a specifed set of resource
constraints such as the predecessors or the successors. The possible values are described below.

IloPredecessors indicates that the iterator will traverse the set of resource constraints that are predecessors
of a given resource constraint.

IloSuccessors indicates that the iterator will traverse the set of resource constraints that are direct successors
of a given resource constraint.

IloPrevious indicates that the iterator will traverse the set of resource constraints that are previous of a given
resource constraint.

IloNext indicates that the iterator will traverse the set of resource constraints that are next of a given resource
constraint.

See Also: IloSchedulerSolution::ResourceConstraintIterator

Fields:

IloPredecessors = 0

IloSuccessors = 1

IloPrevious = 2

IloNext = 3

602

Enumeration IloSequenceIndexSelector
Definition file: ilsched/iloschedgoals.h
Include file: <ilsched/iloscheduler.h>

This enumeration is used to indicate which value to select for the next or prev variable of the resource constraints
in the goals IloSequenceForward and IloSequenceBackward.

IloSelNextRCMinCostEndMax selects the resource constraint with the minimal earliest start time. If there is a
tie, then selection is determined by minimal transition cost, and then by minimal latest end time.

IloSelNextRCMinEndMaxCost selects the resource constraint with the minimal earliest start time. If there is a
tie, then selection is determined by minimal latest end time, and then by minimal transition cost.

IloSelNextRCMinCostEndMin selects the resource constraint with the minimal earliest start time. If there is a
tie, then selection is determined by minimal transition cost, and then by minimal earliest end time.

IloSelNextRCMinEndMinCost selects the resource constraint with the minimal earliest start time. If there is a
tie, then selection is determined by minimal earliest end time, and then by minimal transition cost.

IloSelNextRCMinCostStartMax selects the resource constraint with the minimal earliest start time. If there is
a tie, then selection is determined by minimal transition cost, and then by minimal latest start time.

IloSelNextRCMinStartMaxCost selects the resource constraint with the minimal earliest start time. If there is
a tie, then selection is determined by minimal latest start time, and then by minimal transition cost.

IloSelPrevRCMaxCostStartMin selects the resource constraint with the maximal latest end time. If there is a
tie, then selection is determined by minimal transition cost, and then by maximal earliest start time.

IloSelPrevRCMaxStartMinCost selects the resource constraint with the maximal latest end time. If there is a
tie, then selection is determined by maximal earliest start time, and then by minimal transition cost.

IloSelPrevRCMaxCostStartMax selects the resource constraint with the maximal latest end time. If there is a
tie, then selection is determined by minimal transition cost, and then by maximal latest start time.

IloSelPrevRCMaxStartMaxCost selects the resource constraint with the maximal latest end time. If there is a
tie, then selection is determined by maximal latest start time, and then by minimal transition cost.

Fields:

IloSelNextRCMinCostEndMax = 0

IloSelNextRCMinEndMaxCost

IloSelNextRCMinCostEndMin

IloSelNextRCMinEndMinCost

IloSelNextRCMinCostStartMax

IloSelNextRCMinStartMaxCost

IloSelPrevRCMaxCostStartMin

IloSelPrevRCMaxStartMinCost

IloSelPrevRCMaxCostStartMax

IloSelPrevRCMaxStartMaxCost

603

Enumeration Type
Definition file: ilsched/ilocalendar.h

The Type of IloShiftListObject allows you to define the behavior during the search regarding the variables
of concerned activities. The possible types are:

OnStart: Shifts only affect the start of the activity. For instance, if the shift is the interval [a,b), then the
start of the activity must be strictly smaller than a or greater than b.

•

OnEnd: Shifts only affect the end of the activity. For instance, if the shift is the interval [a,b), then the end
of the activity must be strictly smaller than a or greater than b.

•

OnOverlap: Shifts affect the whole activity. That is, the activity cannot overlap shifts. For instance, if
the shift is the interval [a,b), then the end of the activity must be strictly smaller than a, or the start must
be greater than b.

•

Fields:

OnStart = 0

OnEnd = 1

OnOverlap = 2

604

Enumeration IloTimeBoundConstraintType
Definition file: ilsched/ilobasic.h
Include file: <ilsched/iloscheduler.h>

This enumeration provides values that are assigned to a data member in the class IloTimeBoundConstraint
and its subclasses. That data member expresses time bounds on activities in a schedule.

IloStartsBefore signifies that the latest start time of the activity equals the given time bound.

IloEndsBefore signifies that the latest end time of the activity equals the given time bound.

IloStartsAt signifies that the start time of the activity equals the given time bound.

IloEndsAt signifies that the end time of the activity equals the given time bound.

IloStartsAfter signifies that the earliest start time of the activity equals the given time bound.

IloEndsAfter signifies that the earliest end time of the activity equals the given time bound.

See Also: IloTimeBoundConstraint

Fields:

IloStartsBefore = 0

IloEndsBefore = 1

IloStartsAt = 2

IloEndsAt = 3

IloStartsAfter = 4

IloEndsAfter = 5

605

Enumeration IloTimeExtent
Definition file: ilsched/ilobasic.h
Include file: <ilsched/iloscheduler.h>

By default, an activity uses a resource throughout its execution; that is, from the start time of the activity to the
end time of the activity. However, it is possible to specify a time range different from the default " start to end "
range. The enumeration IloTimeExtent is defined for this purpose.

IloNever indicates that the activity requires (or provides) the resource at no time.

IloAlways indicates that the activity requires (or provides) the resource at all times (that is, before its start time,
from its start time to its end time, and after its end time). IloAlways is useful for optimizing the maximal
available capacity of a resource.

IloBeforeStart indicates that the activity requires (or provides) the resource at all times before its start time.

IloAfterStart indicates that the activity requires (or provides) the resource at all times after its start time
(including after its end time). This time extent is useful when an activity consumes a reservoir; for example, when
part of a budget is spent for the performance of the activity.

IloAfterEnd indicates that the activity requires (or provides) the resource at all times after its end time. This
time extent is useful when an activity produces a reservoir; for example, when finished goods are produced in a
factory.

IloBeforeEnd indicates that the activity requires (or provides) the resource at all times before its end time (that
is, from before its start time up to its end time). This time extent is useful when some activities require resources
that have never been used before; for example, when brand-new bank notes are used to test the prototype of an
automatic teller machine (ATM).

IloBeforeStartAndAfterEnd indicates that the activity requires (or provides) the resource at all times before
its start time and after its end time.

IloFromStartToEnd indicates that the activity requires (or provides) the resource from its start time to its end
time. This is the default time extent.

See Also: IloActivity, IloResourceConstraint

Fields:

IloNever = 0

IloAlways = 1

IloBeforeStart = 2

IloAfterStart = 3

IloAfterEnd = 4

IloBeforeEnd = 5

IloBeforeStartAndAfterEnd = 6

IloFromStartToEnd = 7

606

Global function IloSetTimesForward
public IloGoal IloSetTimesForward(const IloEnv env, IloActivitySelector
activitySelector=IloSelFirstActMinEndMax)
public IloGoal IloSetTimesForward(const IloEnv env, const IloNumVar criterion,
IloActivitySelector activitySelector=IloSelFirstActMinEndMax)

Definition file: ilsched/iloschedgoals.h
Include file: <ilsched/iloscheduler.h>

This function creates and returns a goal that assigns a start time to all activities in the model. If the argument
criterion is given, then this variable will be bound, if possible, to its minimal value at the end of the search. By
default, that is, if no activity selector is given as an argument, the activity selector IloSelFirstActMinEndMax
selects the next activity.

Note

WARNING In order to ensure a purely anti-chronological scheduling, the supplied activity selector should
always choose an unscheduled activity of maximal latest end time. Furthermore, scheduling an activity at time t
should not have an impact on the latest end times of later activities.

In particular, one should be careful in using precedence constraints with a negative delay (and similar Solver
constraints on start and end variables).

For further details about the interpretation of the IloSetTimesForward goal in the Scheduler Engine and
about these restrictions, see IlcSetTimes.

See Also: IlcSetTimes, IloActivitySelector

607

Global function IlcActivityStartVarBoundPredicate
public IloPredicate< IlcActivity > IlcActivityStartVarBoundPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns an activity predicate whose operator(const IlcActivity& activity) returns
IlcTrue if and only if the processing time variable of the activity is bound.

This functions exists with either an IloEnv or an IloSolver as argument.

608

Global function
IlcResourceConstraintSurelyContributesPredicate
public IloPredicate< IlcResourceConstraint >
IlcResourceConstraintSurelyContributesPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource constraint predicate whose operator(const IlcResourceConstraint&
rc) returns IlcTrue if and only if rc surely affects the availability of the resource. Otherwise, it returns
IlcFalse. This member function returns IlcFalse if the resource constraint rc is an empty handle; that is, if it
corresponds to a virtual resource constraint (source or sink node). This predicate is implemented using
IlcResourceConstraint::possiblyContributes.

This functions exists with either an IloEnv or an IloSolver as argument.

609

Global function IlcAltResConstraintNbPossibleEvaluator
public IloEvaluator< IlcAltResConstraint >
IlcAltResConstraintNbPossibleEvaluator(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns an IloEvaluator::IlcAltResConstraint whose operator(const
IlcAltResConstraint& altrc) method returns the number of resources that are possible for altrc. This
method uses the method IlcAltResConstraint::getNumberOfPossible.

This functions exists with either an IloEnv or an IloSolver as argument.

610

Global function IlcActivityRandomEvaluator
public IloEvaluator< IlcActivity > IlcActivityRandomEvaluator(IlcManager,
IloRandom)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns an activity evaluator whose operator(const IlcResource& resource) returns a
random number drawn with uniform probability from the interval [0..1).

This functions exists with either an IloEnv or an IloSolver as argument.

611

Global function IlcResourceConstraintCapacityMinEvaluator
public IloEvaluator< IlcResourceConstraint >
IlcResourceConstraintCapacityMinEvaluator(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource constraint evaluator whose operator(const IlcResourceConstraint&
ct) returns the minimum value of the capacity variable of ct. If ct is not a variable resource constraint, the
function returns the actual capacity required or produced by the resource constraint. Undefined behavior occurs if
ct is not a capacity resource constraint. The minimum capacity of the virtual source and sink nodes is defined to
be 0.

This functions exists with either an IloEnv or an IloSolver as argument.

612

Global function
IlcResourceConstraintNextTransitionCostEvaluator
public IloEvaluator< IlcResourceConstraint >
IlcResourceConstraintNextTransitionCostEvaluator(IlcManager,
IlcTransitionCostObject)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource constraint evaluator whose operator(const IlcResourceConstraint&
ct, IlcAny context1) returns the transition cost between ct and a "comparison" resource constraint given
in the context.

This functions exists with either an IloEnv or an IloSolver as argument.

613

Global function IlcResourceConstraintCapacityMaxEvaluator
public IloEvaluator< IlcResourceConstraint >
IlcResourceConstraintCapacityMaxEvaluator(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource constraint evaluator whose operator(const IlcResourceConstraint&
ct) returns the maximum value of the capacity variable of ct. If ct is not a variable resource constraint, the
function returns the actual capacity required or produced by the resource constraint. Undefined behavior occurs if
ct is not a capacity resource constraint. The maximum capacity of the virtual source and sink nodes is defined to
be 0.

This functions exists with either an IloEnv or an IloSolver as argument.

614

Global function IlcActivityIntegralExp
public IlcIntExp IlcActivityIntegralExp(const IlcActivity act, const
IlcGranularFunction func)

Definition file: ilsched/schedule.h
Include file: <ilsched/ilsched.h>

This function creates and returns an expression computed as the integral, over the duration of the activity act, of
the function func divided by the granularity, and properly rounded (see IlcGranularFunction).

615

Global function
IlcResourceConstraintProvidingConstraintPredicate
public IloPredicate< IlcResourceConstraint >
IlcResourceConstraintProvidingConstraintPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource constraint predicate whose operator(const IlcResourceConstraint&
rc) returns IlcTrue if and only if rc was constructed by the member function IlcActivity::provides or
was extracted from an IloResourceConstraint that was constructed by the member function
IloActivity::provides or IloActivity::produces. This member function returns IlcFalse if the
resource constraint rc is an empty handle; that is, if it corresponds to a virtual resource constraint (source or sink
node). This predicate is implemented using IlcResourceConstraint::possiblyContributes.

This functions exists with either an IloEnv or an IloSolver as argument.

616

Global function IlcActivityStartMaxEvaluator
public IloEvaluator< IlcActivity > IlcActivityStartMaxEvaluator(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns an activity evaluator whose operator(const IlcActivity& activity) returns the
maximum value of the start time variable of the activity.

This functions exists with either an IloEnv or an IloSolver as argument.

617

Global function IloTextureSuccessorGoal
public IloGoal IloTextureSuccessorGoal(const IloEnv env)
public IloGoal IloTextureSuccessorGoal(const IloEnv env, const IloNumVar criterion)

Definition file: ilsched/iloschedgoals.h
Include file: <ilsched/iloscheduler.h>

This function creates and returns a goal that adds successor relations between all pairs of resource constraints
on all resources in the model that have a texture measurement. If the argument criterion is given, then this
variable will be bound, if possible, to its minimal value at the end of the search.

Each time the goal is executed, the resource and time point with highest criticality is identified and the set of
resource constraints, S, that contributed to that criticality are examined. Two resource constraints are identified:

The resource constraint, A, with the highest contribution to the critical point that is not a successor or
predecessor of all other elements of S.

1.

The resource constraint, B, with the highest contribution to the critical point, that is not A, nor a
successor or predecessor of A.

2.

A choice point is created using the IlcResourceConstraint::setSuccessor function. The direction of the
successor relation (that is, A.setSuccessor(B) or B.setSuccessor(A)) that is explored first is the one that
preserves the most local slack between A and B. The reverse successor relation is posted on backtracking.

618

Global function
IlcAltResConstraintVariableConstraintPredicate
public IloPredicate< IlcAltResConstraint >
IlcAltResConstraintVariableConstraintPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns an alternative resource constraint predicate whose operator(const
IlcAltResConstraint& altrc) returns IlcTrue if and only the activity associated with altrc has a
variable representing the required or provided capacity. This predicate is implemented using
IlcAltResConstraint::isVariableResourceConstraint.

This functions exists with either an IloEnv or an IloSolver as argument.

619

Global function IlcResourceIsCapacityResourcePredicate
public IloPredicate< IlcResource >
IlcResourceIsCapacityResourcePredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource predicate whose operator(const IlcResource& resource) returns
IlcTrue if and only if the resource is an IlcCapResource.

This functions exists with either an IloEnv or an IloSolver as argument.

620

Global function IlcResourceConstraintSlopeEvaluator
public IloEvaluator< IlcResourceConstraint >
IlcResourceConstraintSlopeEvaluator(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource constraint evaluator whose operator(const IlcResourceConstraint&
ct) returns the value of the slope of ct. Undefined behavior occurs if ct has no slope or if its resource is not a
continuous reservoir. The slope of the virtual source and sink nodes is defined to be 0.

This functions exists with either an IloEnv or an IloSolver as argument.

621

Global function IlcResourceIsUnaryResourcePredicate
public IloPredicate< IlcResource > IlcResourceIsUnaryResourcePredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource predicate whose operator(const IlcResource& resource) returns
IlcTrue if and only if the resource is an IlcUnaryResource.

This functions exists with either an IloEnv or an IloSolver as argument.

622

Global function IlcActivityIsRankedPredicate
public IloPredicate< IlcActivity > IlcActivityIsRankedPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns an activity predicate whose operator(const IlcActivity& activity) returns
IlcTrue if and only if all the other activities in the schedule are constrained to execute either before or after the
activity.

This functions exists with either an IloEnv or an IloSolver as argument.

623

Global function IlcAssign
public IlcGoal IlcAssign(IlcAltResConstraint alternatives, IloSelector<
IlcResource, IlcAltResConstraint > possibleSel=0)

Definition file: ilsched/srchalt.h
Include file: <ilsched/search.h>

This function returns a goal which assigns a resource as the selected one in alternatives. The goal uses the
selector possibleSel to choose the resource. If no instance of
IloSelector<IlcResource,IlcAltResConstraint> is given, the goal uses a default selector which tries
the resources in the same order as IlcPossibleAltResIterator.

See IloSelector in the IBM ILOG Solver Reference Manual for more information.

Implementation

This function could be defined like this:

 IlcGoal IlcAssign(IlcAltResConstraint constraint,
 IloSelector<IlcResource> possibleSel){
 if (!constraint.isResourceSelected()) {
 IlcResource resource;
 if (possibleSel.select(resource, constraint))
 return IlcAnd(IlcTryAssign(resource, constraint),
 IlcAssign(constraint, possibleSel));
 }
 return 0;
 }

See Also: IlcAltResConstraint, IlcResource, IlcTryAssign

624

Global function IlcScheduleOrPostpone
public IlcGoal IlcScheduleOrPostpone(IlcActivity activity)

Definition file: ilsched/srchgoal.h
Include file: <ilsched/search.h>

This function sets a choice point and then assigns to activity its earliest start time. In case of failure,
activity is postponed by its member function IlcActivity::postpone.

See Also: IlcActivity, IlcActivity::postpone, IlcSetTimes

625

Global function IlcResourceConstraintPossibleLastPredicate
public IloPredicate< IlcResourceConstraint >
IlcResourceConstraintPossibleLastPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource constraint predicate whose operator(const IlcResourceConstraint&
rc) returns IlcTrue if and only if rc can be ranked last among the non-ranked resource constraints. In
particular, it returns IlcFalse if rc is already ranked or if rc represents a virtual source or sink node (empty
handle). This predicate is implemented using IlcResourceConstraint::isPossibleLast.

This functions exists with either an IloEnv or an IloSolver as argument.

626

Global function
IloTimeWindowBackwardChronologicalComparator
public IloComparator< IloTimeWindowNHoodI::IloTimeWindow >
IloTimeWindowBackwardChronologicalComparator(IloEnv env)

Definition file: ilsched/ilolnsgoals.h
Include file: <ilsched/iloscheduler.h>

This function returns a predefined time interval comparator. The comparator compares two instances of the class
IloTimeWindowNHoodI::IloTimeWindow, tw1 and tw2. The time interval tw1 is less than time interval tw2
if the end of tw1 is greater than the end of tw2. If the ends are equal, it compares the starts of both intervals.
The comparator is allocated on the memory allocation stack of env.

See IloComparator in the IBM ILOG Solver Reference Manual for more information.

See Also: IloSchedulerLargeNHood

627

Global function
IloTimeWindowBackwardChronologicalComparator
public IloComparator< IloTimeWindowNHoodI::IloTimeWindow >
IloTimeWindowBackwardChronologicalComparator(IloSolver solver)

Definition file: ilsched/ilolnsgoals.h
Include file: <ilsched/iloscheduler.h>

This function returns a predefined time interval comparator. The comparator compares two instances of the class
IloTimeWindowNHoodI::IloTimeWindow, tw1 and tw2. The time interval tw1 is less than time interval tw2
if the end of tw1 is greater than the end of tw2. If the ends are equal, it compares the starts of both intervals.
The comparator is allocated on the memory allocation stack of solver.

See IloComparator in the IBM ILOG Solver Reference Manual for more information.

See Also: IloSchedulerLargeNHood

628

Global function IlcRank
public IlcGoal IlcRank(IlcResource resource, IloSelector< IlcResourceConstraint,
IlcResource > rcSel=0)
public IlcGoal IlcRank(IlcSchedule schedule, IloSelector< IlcResource, IlcSchedule
> rSel=0, IloSelector< IlcResourceConstraint, IlcResource > rcSel=0)
public IlcGoal IlcRank(IlcSchedule schedule, IlcIntVar criterion, IloSelector<
IlcResource, IlcSchedule > rSel=0, IloSelector< IlcResourceConstraint, IlcResource
> rcSel=0)

Definition file: ilsched/srchgoal.h
Include file: <ilsched/ilsched.h>

This function creates and returns a goal that ranks all resource constraints on a set of resources in chronological
order.

If its first argument is an instance of IlcResource, it considers all the resource constraints on that
instance of IlcResource.

•

If its first argument is an instance of IlcSchedule, it considers all the resource constraints on
instances of IlcResource in that schedule. The resource selector rSel selects the next resource. By
default, that is, when no resource selector object is given, a resource selector defaultResSel defined
as follows is used:

•

 IloSelector<IlcResource,IlcSchedule> defaultResSel = IlcResourceInScheduleSelector(s);
 sel.setPredicate(IlcResourceIsUnaryResourcePredicate(s) &&
 !IlcResourceRankedPredicate(s));
 sel.setComparator(IlcResourceGlobalSlackEvaluator(s));

If the argument criterion is given, then this variable will be bound, if possible, to its minimal value at
the end of the search.

•

The resource constraint selector rcSel selects the next resource constraint to be ranked first on a given
resource given as first context to the selection function. By default, that is, when no
IloSelector<IlcResourceConstraint,IlcResource> is given, a resource constraint selector
defaultRCSel defined as follows is used:

 IloSelector<IlcResourceConstraint,IlcResource> defaultRCSel = IlcResourceConstraintInScheduleSelector(s);
 IlcTranslator<IlcActivity, IlcResourceConstraint> ac = IlcActivityResourceConstraintTranslator(s);
 sel.setPredicate(IlcResourceConstraintPossibleFirstPredicate(s));
 sel.setComparator(IlcLexicalComposition(IlcCompareMin(IlcActivityStartMinEvaluator(s)<<ac),
 IlcCompareMin(IlcActivityStartMaxEvaluator(s)<<ac)));

Note

WARNING This function assumes that all resources that are selected have been closed, that is, that no
unknown resource constraints have yet to be posted. If you cannot close all resources, you should use a
resource selector that selects only closed resources. In such a case, you should also handle the ranking of the
resources that are not closed yourself.

Ranking is only well defined on unary and state resources. Therefore, your resource selector should contain an
instance of IlcResourceIsUnaryResourcePredicate or IlcResourceIsStateResourcePredicate
(or both, joined by a logical-OR).

Implementation

Here's how we could define the goal returned by the first version of the function.

 ILCGOAL2(IlcRankResource, IlcResource, resource,
 IloSelector<IlcResourceConstraint,IlcResource>, rcSel) {
 IlcResourceConstraint constraint;
 if (rcSel.select(constraint, resource))

629

 return IlcAnd(IlcTryRankFirst(constraint), this);
 return 0;
 }

Here's how we could define the goal returned by the second version of the function:

 ILCGOAL3(IlcRankSchedule, IlcSchedule, schedule,
 IloSelector<IlcResource,IlcSchedule>, rSel,
 IloSelector<IlcResourceConstraint,IlcResource>, rcSel) {
 IlcResource resource;
 if (rSel.select(resource, schedule))
 return IlcAnd(IlcRank(resource, rcSel), this);
 return 0;
 }

See IloSelector in the IBM ILOG Solver Reference Manual for more information.

See Also: IlcSchedule, IlcResource, IlcTryRankFirst

630

Global function IlcResourceConstraintSetupPredicate
public IloPredicate< IlcResourceConstraint >
IlcResourceConstraintSetupPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource constraint predicate whose operator(const IlcResourceConstraint&
rc) returns IlcTrue if and only if rc is the setup resource constraint. This member function returns IlcFalse
if rc represents a virtual source or sink node (empty handle). This predicate is implemented using
IlcResourceConstraint::isSetup.

This functions exists with either an IloEnv or an IloSolver as argument.

631

Global function IlcResourceConstraintTeardownPredicate
public IloPredicate< IlcResourceConstraint >
IlcResourceConstraintTeardownPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource constraint predicate whose operator(const IlcResourceConstraint&
rc) returns IlcTrue if and only if rc is the teardown resource constraint. This member function returns
IlcFalse if rc represents a virtual source or sink node (empty handle). This predicate is implemented using
IlcResourceConstraint::isTeardown.

This functions exists with either an IloEnv or an IloSolver as argument.

632

Global function IloUnionNHood
public IloSchedulerLargeNHood IloUnionNHood(IloEnv env, IloSchedulerLargeNHood
nhood1, IloSchedulerLargeNHood nhood2, const char * name=0)

Definition file: ilsched/ilolnsgoals.h
Include file: <ilsched/iloscheduler.h>

This function creates a composed large neighborhood. The neighborhood formed is the union of the
neighborhood of nhood1 and nhood2.

The size of the neighborhood is the product of the sizes of nhood1 and nhood2.

The set of selected extractables of the union for index i is the union of the sets of selected extractables for index
i1 for neighborhood n1 and for index i2 for neighborhood n2 such that i = i1*size(n2) + i2.

For any extractable, it will be restored if either nhood1 or nhood2 specify that it must be restored.

633

Global function IlcActivityResourceConstraintTranslator
public IloTranslator< IlcActivity, IlcResourceConstraint >
IlcActivityResourceConstraintTranslator(IloEnv)
public IloTranslator< IlcActivity, IlcResourceConstraint >
IlcActivityResourceConstraintTranslator(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a translator which implements a function (IloTranslator::operator) that, when given
a resource constraint, returns the activity of this resource constraint. It is useful for transforming activity
predicates and evaluators into the corresponding resource constraints predicates and evaluators.

This functions exists with either an IloEnv or an IloSolver as argument.

634

Global function IlcActivityAltResConstraintTranslator
public IloTranslator< IlcActivity, IlcAltResConstraint >
IlcActivityAltResConstraintTranslator(IloEnv)
public IloTranslator< IlcActivity, IlcAltResConstraint >
IlcActivityAltResConstraintTranslator(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a translator which implements a function (IloTranslator::operator) that, when given
an alternative resource constraint, returns the activity of this alternative resource constraint. It is useful for
transforming activity predicates/selectors into the corresponding alternative resource constraints
predicates/selectors.

This functions exists with either an IloEnv or an IloSolver as argument.

635

Global function
IlcResourceConstraintPossibleSetupPredicate
public IloPredicate< IlcResourceConstraint >
IlcResourceConstraintPossibleSetupPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource constraint predicate whose operator(const IlcResourceConstraint&
rc) returns IlcTrue if and only if rc can be a setup resource constraint. This member function returns
IlcFalse if rc represents a virtual source or sink node (empty handle). This predicate is implemented using
IlcResourceConstraint::isPossibleSetup.

This functions exists with either an IloEnv or an IloSolver as argument.

636

Global function
IlcResourceConstraintPossibleFirstPredicate
public IloPredicate< IlcResourceConstraint >
IlcResourceConstraintPossibleFirstPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource constraint predicate whose operator(const IlcResourceConstraint&
rc) returns IlcTrue if and only if rc can be ranked first among the non-ranked resource constraints. In
particular, it returns IlcFalse if rc is already ranked or if rc represents a virtual source or sink node (empty
handle). This predicate is implemented using IlcResourceConstraint::isPossibleFirst.

This functions exists with either an IloEnv or an IloSolver as argument.

637

Global function IlcActivityIsBreakablePredicate
public IloPredicate< IlcActivity > IlcActivityIsBreakablePredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns an activity predicate whose operator(const IlcActivity& activity) returns
IlcTrue if and only if the activity is a breakable activity.

This functions exists with either an IloEnv or an IloSolver as argument.

638

Global function IlcRCTextureProbabilisticFactory
public IlcRCTextureFactory IlcRCTextureProbabilisticFactory(IloSolver solver)

Definition file: ilsched/texture.h
Include file: <ilsched/ilsched.h>

This function returns an IlcRCTextureFactory instance whose
IlcRCTextureFactory::createRCTexture method returns an instance of
IlcRCTextureProbabilisticI.

639

Global function IlcAssignAlternative
public IlcGoal IlcAssignAlternative(IlcAltResSet resources, IloSelector<
IlcResource, IlcAltResConstraint > possibleSel=0, IloSelector< IlcAltResConstraint,
IlcAltResSet > constraintSel=0)
public IlcGoal IlcAssignAlternative(IlcSchedule schedule, IloSelector< IlcResource,
IlcAltResConstraint > possibleSel=0, IloSelector< IlcAltResConstraint, IlcAltResSet
> constraintSel=0)
public IlcGoal IlcAssignAlternative(IlcResource resource, IloSelector<
IlcAltResConstraint, IlcAltResSet > constraintSel=0)

Definition file: ilsched/srchalt.h
Include file: <ilsched/search.h>

This function returns a goal that assigns a possible resource as the selected one for a set of constraints.

If its first argument is an instance of IlcAltResSet, it considers all the constraints on that instance of
IlcAltResSet.

•

If its first argument is an instance of IlcSchedule, it considers all the constraints on instances of
IlcAltResSet in that schedule.

•

If its first argument is an instance of IlcResource, it considers all the constraints on instances of
IlcAltResSet for which that resource is a possible alternative.

•

The goal uses the resource selector possibleSel to choose the resource and the alternative resource
constraint selector constraintSel to choose a constraint. If no argument of type
IloSelector<IlcResource,IlcAltResConstraint> is given, the goal uses a default selector, which tries
the resources in the same order as an instance of IlcPossibleAltResIterator. If no argument of type
IloSelector<IlcAltResConstraint,IlcAltResSet> is given, the goal uses a default selector, which
tries the posted or metaposted alternative resources constraints in the same order as an instance of
IlcAltResConstraintIterator.

Implementation

This function can be defined like this:

 IlcGoal IlcAssignAlternative
 (IlcAltResSet resources,
 IloSelector<IlcResource,IlcAltResConstraint> possibleSel,
 IloSelector<IlcAltResConstraint,IlcAltResSet> constraintSel) {
 IlcAltResConstraint alternative;
 if (constraintSel.select(alternative, resources))
 return IlcAnd(IlcAssign(alternative, possibleSel),
 IlcAssignAlternative(resources,
 possibleSel,
 constraintSel));
 return 0;
 }

See IloSelector in the IBM ILOG Solver Reference Manual for more information.

See Also: IlcAltResConstraint, IlcAltResSet, IlcAssign, IlcResource, IlcSchedule

640

Global function
IlcResourceConstraintVariableConstraintPredicate
public IloPredicate< IlcResourceConstraint >
IlcResourceConstraintVariableConstraintPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource constraint predicate whose operator(const IlcResourceConstraint&
rc) returns IlcTrue if and only if rc has a variable representing the required or provided quantity of the
required state. This member function returns IlcFalse if rc represents a virtual source or sink node (empty
handle). This predicate is implemented using IlcResourceConstraint::isCapacityConstraint.

This functions exists with either an IloEnv or an IloSolver as argument.

641

Global function IlcActivityProcessingTimeMaxEvaluator
public IloEvaluator< IlcActivity >
IlcActivityProcessingTimeMaxEvaluator(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns an activity evaluator whose operator(const IlcActivity& activity) returns the
maximum value of the processing time variable of the activity.

This functions exists with either an IloEnv or an IloSolver as argument.

642

Global function
IlcResourceConstraintStateSetConstraintPredicate
public IloPredicate< IlcResourceConstraint >
IlcResourceConstraintStateSetConstraintPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource constraint predicate whose operator(const IlcResourceConstraint&
rc) returns IlcTrue if and only if rc indicates that one of a set of states of a state resource is required by the
activity of the resource constraint. This member function returns IlcFalse if rc represents a virtual source or
sink node (empty handle). This predicate is implemented using
IlcResourceConstraint::isStateConstraint.

This functions exists with either an IloEnv or an IloSolver as argument.

643

Global function IlcTryAssign
public IlcGoal IlcTryAssign(IlcResource resource, IlcAltResConstraint alternatives)

Definition file: ilsched/srchalt.h
Include file: <ilsched/search.h>

This function sets a choice point and then assigns the resource to be the selected one in alternatives. In
case of failure, resource is set to be not possible for alternatives. This function returns the choice point as
a goal.

See Also: IlcAltResConstraint, IlcResource

644

Global function IlcScheduleOrPostponeBackward
public IlcGoal IlcScheduleOrPostponeBackward(IlcActivity activity)

Definition file: ilsched/srchgoal.h
Include file: <ilsched/search.h>

This function sets a choice point and then assigns activity its latest end time. In case of failure, activity is
postponed backward using the member function IlcActivity::postponeBackward.

Note

An activity that is postponed backward will actually be performed earlier than it would have been performed if it
the assignment of its latest end time had not failed.

See Also: IlcActivity, IlcSetTimesBackward

645

Global function IloIntersectNHood
public IloSchedulerLargeNHood IloIntersectNHood(IloEnv env, IloSchedulerLargeNHood
nhood1, IloSchedulerLargeNHood nhood2, const char * name=0)

Definition file: ilsched/ilolnsgoals.h
Include file: <ilsched/iloscheduler.h>

This function creates a composed large neighborhood. The neighborhood formed is the intersection of the
neighborhood of nhood1 and nhood2.

The size of the neighborhood is the product of sizes of nhood1 and nhood2.

The set of selected extractables of the intersection for index i is the intersection of the sets of selected
extractables for index i1 for neighborhood nhood1 and for index i2 for neighborhood nhood2 such that i =
i1*size(n2) + i2.

For any extractable, it will be restored if either nhood1 or nhood2 specify that it must be restored.

See Large Neighborhoods and the Selectors concept in the IBM ILOG Solver Reference Manual for more
information.

646

Global function IlcResourceTextureEvaluator
public IloEvaluator< IlcResource > IlcResourceTextureEvaluator(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource evaluator whose operator(const IlcResource& resource) returns the
maximum value of criticality of the texture measurement curve on the resource object to which it is applied. The
behavior is undefined if this evaluator is applied to a resource that is not an IlcDiscreteResource or if no
texture measurement has been created on the resource.

This functions exists with either an IloEnv or an IloSolver as argument.

647

Global function IlcResourceIsReservoirPredicate
public IloPredicate< IlcResource > IlcResourceIsReservoirPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource predicate whose operator(const IlcResource& resource) returns
IlcTrue if and only if the resource is an IlcReservoir.

This functions exists with either an IloEnv or an IloSolver as argument.

648

Global function
IlcResourceConstraintNegativeConstraintPredicate
public IloPredicate< IlcResourceConstraint >
IlcResourceConstraintNegativeConstraintPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource constraint predicate whose operator(const IlcResourceConstraint&
rc) returns IlcTrue if and only if rc was constructed by the member function IlcActivity::requiresNot
or was extracted from an IloResourceConstraint that was constructed by the member function
IloActivity::requiresNot. This member function returns IlcFalse if the resource constraint rc is an
empty handle; that is, if it corresponds to a virtual resource constraint (source or sink node). This predicate is
implemented using IlcResourceConstraint::possiblyContributes.

This functions exists with either an IloEnv or an IloSolver as argument.

649

Global function IlcRCTextureTargetFactory
public IlcRCTextureFactory IlcRCTextureTargetFactory(IloSolver solver)

Definition file: ilsched/texture.h
Include file: <ilsched/ilsched.h>

This function returns an IlcRCTextureFactory instance whose
IlcRCTextureFactory::createRCTexture method returns an instance of IlcRCTextureTargetI.

650

Global function IlcAltResConstraintCapacityEvaluator
public IloEvaluator< IlcAltResConstraint >
IlcAltResConstraintCapacityEvaluator(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns an IloEvaluator::IlcAltResConstraint whose operator(const
IlcAltResConstraint& altrc) method returns the quantity required or provided by the alternative resource
constraint altrc. This method uses the method IlcAltResConstraint::getCapacity.

This functions exists with either an IloEnv or an IloSolver as argument.

651

Global function IlcRelativeDemandCriticalityCalculator
public IlcTextureCriticalityCalculator
IlcRelativeDemandCriticalityCalculator(IloSolver solver)

Definition file: ilsched/texture.h
Include file: <ilsched/ilsched.h>

This function returns an IlcTextureCriticalityCalculator instance that calculates criticality with an
instance of the IlcRelativeDemandCriticalityCalculatorI implementation class. The new instance is
allocated on the solver heap.

652

Global function IlcProbabilisticCriticalityCalculator
public IlcTextureCriticalityCalculator
IlcProbabilisticCriticalityCalculator(IloSolver solver)

Definition file: ilsched/texture.h
Include file: <ilsched/ilsched.h>

This function returns an IlcTextureCriticalityCalculator instance that calculates criticality with an
instance of the IlcProbabilisticCriticalityCalculatorI implementation class. The new instance is
allocated on the solver heap.

653

Global function IloResourceIntegralConstraint
public IloConstraint IloResourceIntegralConstraint(const IloResource resource,
IloSchedVariable leftVariable, const IloGranularFunction func, IloBool
ignoredSuspensionAtStartEnd=IloTrue)

Definition file: ilsched/ilogfbase.h
Include file: <ilsched/iloscheduler.h>

This function creates an integral constraint from the function func on all the activities requiring the resource res.
If the time extent is IloNever or IloAlways, the resource constraint will be ignored.

For each such activity, the integral of the function func is computed over the activity duration, divided by the
granularity, and properly rounded (see IloGranularFunction). It is then set to be equal to the value of the
variable designated by leftVar:

Such a function can be used to specify detailed, time-varying constraints for all activities on a resource. For
example, such a function can be used to specify precisely how the duration of an activity depends on its start and
end times. Whenever the processing time is used (IloProcessingTimeVariable), every activity executing on
the resource must be breakable, and the granular function func must take a value less than or equal to its
granularity. Otherwise an error will be raised when starting to solve the problem.

The suspension of activities at the start or end (see IloActivity::canBeSuspendedAtStart and
IloActivity::canBeSuspendedAtEnd) is by default not taken into account. To take forbidden suspensions
into account, the argument ignoreSuspensionAtStartEnd may be set to IlcFalse. Then, the resulting
integral constraint will accordingly prevent activities to start/end in intervals where the granular function func has
zero values.

For more information, see Functional and Integral Constraints on Resources.

See Also: IloGranularFunction, IloSchedVariable

654

Global function IlcResourceConstraintHasNextPredicate
public IloPredicate< IlcResourceConstraint >
IlcResourceConstraintHasNextPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource constraint predicate whose operator(const IlcResourceConstraint&
rc) returns IlcTrue if and only if the immediately following activity of the activity of rc is known. In case rc
represents a virtual node, it is assumed that it represents the virtual source node, and the evaluation of the
predicate returns IlcTrue if and only if the setup node (that is, the node that directly follows the virtual source
node), is known. This predicate is implemented using IlcResourceConstraint::hasNextRC.

This functions exists with either an IloEnv or an IloSolver as argument.

655

Global function
IlcResourceConstraintStateConstraintPredicate
public IloPredicate< IlcResourceConstraint >
IlcResourceConstraintStateConstraintPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource constraint predicate whose operator(const IlcResourceConstraint&
rc) returns IlcTrue if and only if rc indicates that a single state of a state resource is required by the activity of
the resource constraint. This member function returns IlcFalse if rc represents a virtual source or sink node
(empty handle). This predicate is implemented using IlcResourceConstraint::isStateConstraint.

This functions exists with either an IloEnv or an IloSolver as argument.

656

Global function IlcResourceConstraintPossiblePrevVisitor
public IloVisitor< IlcResourceConstraint, IlcResourceConstraint >
IlcResourceConstraintPossiblePrevVisitor(IlcManager)
public IloVisitor< IlcResourceConstraint, IlcResourceConstraint >
IlcResourceConstraintPossiblePrevVisitor(IloEnv)

Definition file: ilsched/srchseq.h
Include file: <ilsched/ilsched.h>

This function returns a visitor that allows to traverse the set of resource constraints that are possibly previous to
the resource constraint given as container. In case the resource constraint given as container is a sequence
virtual node (see IlcResourceConstraint::isVirtualNode), the visitor traverses the set of resource
constraints that are possible teardown resource constraints on the resource.

See the section about Visitors in the concept Selectors of the IBM ILOG Solver Reference Manual

657

Global function IloResourceFunctionalConstraint
public IloConstraint IloResourceFunctionalConstraint(const IloResource resource,
IloSchedVariable leftVariable, const IloGranularFunction func, IloSchedVariable
rightVariable=IloDurationVariable)

Definition file: ilsched/ilogfbase.h
Include file: <ilsched/iloscheduler.h>

This function creates a functional constraint from the function func on all the activities requiring the resource
res. If the time extent is IloNever or IloAlways, the resource constraint will be ignored.

For each such activity, the function func is evaluated at the value of the variable designated by rightVar, and
set to be equal to the value of variable designated by leftVar:

 leftVar = func(rightVar)

By default, if no rightVar is given, IloDurationVariable is used. Such a function can be used to specify
detailed, time-varying constraints for all activities on a resource. For example, such a function can be used to
specify precisely how the duration of an activity depends on its start time. Whenever the processing time is used
(IloProcessingTimeVariable), every activity executing on the resource must be breakable, and the
granular function func must take a value less than or equal to its granularity. Otherwise an error will be raised
when starting to solve the problem.

658

Global function
IlcResourceConstraintPrevTransitionCostEvaluator
public IloEvaluator< IlcResourceConstraint >
IlcResourceConstraintPrevTransitionCostEvaluator(IlcManager,
IlcTransitionCostObject)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource constraint evaluator whose operator(const IlcResourceConstraint&
ct, IlcAny context1) returns the transition cost between a "comparison" resource constraint given in the
context and ct.

This functions exists with either an IloEnv or an IloSolver as argument.

659

Global function
IlcResourceConstraintSlopeConstraintPredicate
public IloPredicate< IlcResourceConstraint >
IlcResourceConstraintSlopeConstraintPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource constraint predicate whose operator(const IlcResourceConstraint&
rc) returns IlcTrue if and only if rc has a slope constraint. This member function returns IlcFalse if rc
represents a virtual source or sink node (empty handle). This predicate is implemented using
IlcResourceConstraint::hasSlope.

This functions exists with either an IloEnv or an IloSolver as argument.

660

Global function IlcTestSequencedResource
public void IlcTestSequencedResource(const IlcUnaryResource resource)

Definition file: ilsched/srchseq.h
Include file: <ilsched/search.h>

This function checks whether resource is sequenced. That is, that its setup and teardown activities are known
and that each activity has either a next and a previous activity or is not visited. If an activity does not follow these
rules, it is set to “not visited”.

The resource must be closed and have its sequence constraint created.

This function is intended to be used in the search goals IlcSequence and IlcSequenceBackward, which are
used for sequencing resources, to check if the sequence found is a valid path.

For more information, see Sequence Constraint.

See Also: IlcSequenceBackward, IlcUnaryResource, IlcSequence

661

Global function IlcResourceRandomEvaluator
public IloEvaluator< IlcResource > IlcResourceRandomEvaluator(IlcManager,
IloRandom)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource evaluator whose operator(const IlcResource& resource) returns a
random number drawn with uniform probability from the interval [0..1).

This functions exists with either an IloEnv or an IloSolver as argument.

662

Global function IlcRankBackward
public IlcGoal IlcRankBackward(IlcResource resource, IloSelector<
IlcResourceConstraint, IlcResource > rcSel=0)
public IlcGoal IlcRankBackward(IlcSchedule schedule, IloSelector< IlcResource,
IlcSchedule > rSel=0, IloSelector< IlcResourceConstraint, IlcResource > rcSel=0)
public IlcGoal IlcRankBackward(IlcSchedule schedule, IlcIntVar criterion,
IloSelector< IlcResource, IlcSchedule > rSel=0, IloSelector< IlcResourceConstraint,
IlcResource > rcSel=0)

Definition file: ilsched/srchgoal.h
Include file: <ilsched/ilsched.h>

This function creates and returns a goal that ranks all resource constraints on a set of resources in
anti-chronological order.

If its first argument is an instance of IlcResource, it considers all the resource constraints on that
instance of IlcResource.

•

If its first argument is an instance of IlcSchedule, it considers all the resource constraints on
instances of IlcResource in that schedule. The resource selector rSel selects the next resource. By
default, that is, when no resource selector object is given, a resource selector defaultResSel defined
as follows is used:

•

 IloSelector<IlcResource,IlcSchedule> defaultResSel = IlcResourceInScheduleSelector(s);
 sel.setPredicate(IlcResourceIsUnaryResourcePredicate(s) &&
 !IlcResourceRankedPredicate(s));
 sel.setComparator(IlcResourceGlobalSlackEvaluator(s));

If the argument criterion is given, then this variable will be bound, if possible, to its maximal value at
the end of the search.

•

The resource constraint selector rcSel selects the next resource constraint to be ranked last on a given
resource given as first context to the selection function. By default, that is, when no
IloSelector<IlcResourceConstraint> is given, a resource constraint selector defaultRCSel defined as
follows is used:

 IloSelector<IlcResourceConstraint,IlcResource> defaultRCSel = IlcResourceConstraintInScheduleSelector(s);
 IlcTranslator<IlcActivity, IlcResourceConstraint> ac = IlcActivityResourceConstraintTranslator(s);
 sel.setPredicate(IlcResourceConstraintPossibleLastPredicate(s));
 sel.setComparator(IlcLexicalComposition(IlcCompareMax(IlcActivityEndMaxEvaluator(s)<<ac),
 IlcCompareMax(IlcActivityEndMinEvaluator(s)<<ac)));

Note

WARNING This function assumes that all resources that are selected have been closed, that is, that no
unknown resource constraints have yet to be posted. If you cannot close all resources, you should use a
resource selector that selects only closed resources. In such a case, you should also handle the ranking of the
resources that are not closed yourself.

Ranking is only well defined on unary and state resources. Therefore, your resource selector should contain an
instance of IlcResourceIsUnaryResourcePredicate or IlcResourceIsStateResourcePredicate
(or both, joined by a logical-OR).

Implementation

Here's how we could define the goal returned by the first version of the function.

 ILCGOAL2(IlcRankBackwardResource, IlcResource, resource,
 IloSelector<IlcResourceConstraint,IlcResource>, rcSel) {
 IlcResourceConstraint constraint;
 if (rcSel.select(constraint, resource))

663

 return IlcAnd(IlcTryRankLast(constraint), this);
 return 0;
 }

Here's how we could define the goal returned by the second version of the function:

 ILCGOAL3(IlcRankBackwardSchedule, IlcSchedule, schedule,
 IloSelector<IlcResource,IlcSchedule>, rSel,
 IloSelector<IlcResourceConstraint,IlcResource>, rcSel) {
 IlcResource resource;
 if (rSel.select(resource, schedule))
 return IlcAnd(IlcRankBackward(resource, rcSel), this);
 return 0;
 }

See IloSelector in the IBM ILOG Solver Reference Manual for more information.

See Also: IlcSchedule, IlcResource, IlcTryRankLast

664

Global function IloSequenceForward
public IloGoal IloSequenceForward(const IloEnv env, const IloUnaryResource uRes)
public IloGoal IloSequenceForward(const IloEnv env, const IloNumVar criterion,
IloResourceSelector rSel=IloSelResMinGlobalSlack)
public IloGoal IloSequenceForward(const IloEnv env, IloResourceSelector
rSel=IloSelResMinGlobalSlack)
public IloGoal IloSequenceForward(const IloEnv env, const IloNumVar criterion,
const IloTransitionParam param, IloSequenceIndexSelector
iSel=IloSelNextRCMinCostEndMax, IloResourceSelector rSel=IloSelResMinGlobalSlack)
public IloGoal IloSequenceForward(const IloEnv env, const IloUnaryResource uRes,
const IloTransitionParam param, IloSequenceIndexSelector
iSel=IloSelNextRCMinCostEndMax)
public IloGoal IloSequenceForward(const IloEnv env, const IloTransitionParam param,
IloSequenceIndexSelector iSel=IloSelNextRCMinCostEndMax, IloResourceSelector
rSel=IloSelResMinGlobalSlack)

Definition file: ilsched/iloschedgoals.h
Include file: <ilsched/iloscheduler.h>

These functions return instances of IloGoal that sequence instances of IloUnaryResource from their setup
activity to their teardown activity (sequencing forward). The involved resources must be instances of
IloUnaryResource, and they must not be kept open.

When the argument uRes is given, the function returns an instance of IloGoal that sequences uRes. When
there is no resource argument, all the unary resources of the model that are not to be kept open are successively
sequenced according to the unary resource selector argument rSel. By default, the resource selector is
IloSelResSequenceMinGlobalSlack. Unary resources that are to be kept open during the search will not be
sequenced.

The selector iSel, a value from the enumeration IloSequenceIndexSelector, selects a possible value for
the next resource constraint of each resource constraint. The default selector is
IloSelNextRCMinCostEndMax.

When the argument criterion is used, the goal also assigns it to its smallest consistent value after the
sequencing has been completed.

When an IloSequenceIndexSelector is used, the estimation of the cost will be determined by the
IloTransitionParam parameter passed to the constructor. The default value for such an index selector is
IloSelNextRCMinCost.

See Also: IloSequenceBackward, IloUnaryResource, IloTransitionParam, IloSequenceIndexSelector

665

Global function IlcTextureSuccessorGoal
public IlcGoal IlcTextureSuccessorGoal(IlcSchedule s, IloSelector< IlcResource,
IlcSchedule > rSel=0)
public IlcGoal IlcTextureSuccessorGoal(IlcSchedule s, IlcIntVar criterion,
IloSelector< IlcResource, IlcSchedule > rSel=0)
public IlcGoal IlcTextureSuccessorGoal(IlcUnaryResource res)

Definition file: ilsched/txtgoal.h
Include file: <ilsched/ilsched.h>

These functions create and return goals that completely sequence the resource constraints on a unary
resource(s). The sequencing is achieved by setting the successor relations on the precedence graph associated
with each resource. The sequence between the two activities is the one that results in the greatest remaining
pair-wise slack.

The goal created by this function assumes that the precedence graph exists on the resources.

Functions Taking an IlcSchedule

The resource selector indicated by rSel selects the next resource. By default, that is, when no resource selector
is given, the resources are selected in descending order of texture criticality. The pair of activities to sequence is
chosen in descending order of their contribution to the critical time point on the selected resource.

Note that the texture measurements are recalculated during every execution of the goal, and therefore the
decision-making focus may opportunistically move from one resource to another without the former resource
being completely sequenced.

For more information, see Texture Measurements.

See Also: IlcTextureAltSuccessorGoal, IlcResourceTexture, IlcRCTexture

666

Global function IlcActivityTransitionTypeEvaluator
public IloEvaluator< IlcActivity > IlcActivityTransitionTypeEvaluator(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns an activity evaluator whose operator(const IlcActivity& activity) returns the
transition type of the activity.

This functions exists with either an IloEnv or an IloSolver as argument.

667

Global function IlcActivityPostponedBackwardPredicate
public IloPredicate< IlcActivity >
IlcActivityPostponedBackwardPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns an activity predicate whose operator(const IlcActivity& activity) returns
IlcTrue if and only if the activity is postponed backward.

This functions exists with either an IloEnv or an IloSolver as argument.

See Also: IlcSetTimesBackward

668

Global function IlcResourceGlobalSlackEvaluator
public IloEvaluator< IlcResource > IlcResourceGlobalSlackEvaluator(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource evaluator whose operator(const IlcResource& resource) returns the
global slack of the resource object to which it is applied. The behavior is undefined if this evaluator is applied to a
resource that is not an IlcDiscreteResource. See IlcDiscreteResource::getGlobalSlack.

This functions exists with either an IloEnv or an IloSolver as argument.

669

Global function IlcSetTimesBackward
public IlcGoal IlcSetTimesBackward(IlcSchedule schedule, IloSelector< IlcActivity,
IlcSchedule > aSel=0)
public IlcGoal IlcSetTimesBackward(IlcSchedule schedule, IlcIntVar criterion,
IloSelector< IlcActivity, IlcSchedule > aSel=0)

Definition file: ilsched/srchgoal.h
Include file: <ilsched/search.h>

This function creates and returns a goal that assigns an end time to all activities managed by schedule. If the
argument criterion is given, then the assignments are made to maximize criterion. The activity selector
aSel selects the next activity. By default, that is, if no activity selector is given as an argument, the activity
selector used is defined as follows:

 IloSelector<IlcActivity,IlcSchedule> aSel = IlcActivityInScheduleSelector(s);
 sel.setPredicate(!IlcActivityEndVarBoundPredicate(s) &&
 !IlcActivityPostponedBackwardPredicate(s));
 sel.setComparator(IlcLexicalComposition(IlcCompareMax(IlcActivityEndMaxEvaluator(s)),
 IlcCompareMax(IlcActivityStartMinEvaluator(s))));

The function is designed to efficiently schedule activities in an anti-chronological order. It considers only solutions
that can be produced as follows: in each step, choose an unscheduled activity A of maximal latest end time and
schedule it as late as possible, as allowed by the previously scheduled activities (which have greater end times
than A).

Internally, the function uses the schedule-or-postpone-backward method that works as follows.

A selected activity is assigned to its latest end time.1.
If that end time leads to a failure, the activity is postponed backward until its latest end time has been
removed. This removal can occur as a result of a combination of decisions and propagation.

2.

Before assigning the latest end time to an activity, with this candidate end time et, it is determined whether a
backward postponed activity actP exists that can be or should be scheduled after et, that is, whether
actP.getStartMax() >= et or actP.getEndMin() >= et. If this is the case, a fail is generated based on the reasoning
that if we have “normal” precedence and resource constraints, the latest end time of actP will never be removed
and thus actP will remain postponed backward and no solution will be found in this branch of the search tree.

As implied by the above description, IlcSetTimesBackward can be thought of as a “mirror image” of
IlcSetTimes: rather than scheduling chronologically according to earliest start times and postponement, it
schedules anti-chronologically according to latest end times and “backward” postponement. Consequently, there
are also mirror image situations where IlcSetTimesBackward performs an incomplete search. To examine
this, let's adapt the first example presented in IlcSetTimes. Assume we have an activity B that can start a
maximal 50 units after the start of an activity A which can be expressed by a precedence constraint with negative
delay.

A.startsAfterStart(B, -50)

Given a scheduling horizon of 1000, suppose that A cannot be scheduled at a later time than 900 since it
requires a resource that has a maximal capacity of 0 in the interval [900,1000). Then B cannot be scheduled after
time 950 even if there are no later activities. IlcSetTimesBackward will not find a solution here, because it will
attempt to assign B to an end time of 1000. When this fails, it will postpone-backward B but then realize that
there are no other activities that can be schedule after B and therefore it concludes that there are no solutions.
Note that in this very simple case, it is likely that constraint propagation will discover that 950 is the actual latest
end time of B and so IlcSetTimesBackward will successfully find a solution. However, if this situation is part
of a larger, more complex constraint interaction, it cannot be guaranteed that constraint propagation will discover
the globally consistent latest end time. In such a situation, then, a solution will be missed.

Similarly, the code presented in IlcSetTimes can be easily adapted to produce an example where
IlcSetTimesBackward concludes that no solutions exist, even when there is one.

670

In general, IlcSetTimesBackward can miss solutions if there are precedence constraints with negative delay,
if the processing time of an activity depends on its start or end time, or if reservoirs are used.

Note

WARNING In order to ensure a purely chronological scheduling, the supplied activity selector should always
choose an unscheduled activity of minimal earliest start time. Furthermore, scheduling an activity at time t
should not have an impact on the earliest start times of activities that have been scheduled earlier.

In particular, care should be taken in using precedence constraints with a negative delay, activities where the
processing time depends on the start or end time of the activity, and reservoirs.

See IloSelector in the IBM ILOG Solver Reference Manual for more information.

See Also: IlcSchedule, IlcSetTimes, IlcScheduleOrPostponeBackward

671

Global function IlcActivityDurationMinEvaluator
public IloEvaluator< IlcActivity > IlcActivityDurationMinEvaluator(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns an activity evaluator whose operator(const IlcActivity& activity) returns the
minimum value of the duration variable of the activity.

This functions exists with either an IloEnv or an IloSolver as argument.

672

Global function IlcResourceLocalSlackEvaluator
public IloEvaluator< IlcResource > IlcResourceLocalSlackEvaluator(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource evaluator whose operator(const IlcResource& resource) returns the
local slack of the resource object to which it is applied. The behavior is undefined if this evaluator is applied to a
resource that is not an IlcDiscreteResource. See IlcDiscreteResource::getGlobalSlack.

This functions exists with either an IloEnv or an IloSolver as argument.

673

Global function IlcSequenceBackward
public IlcGoal IlcSequenceBackward(IlcUnaryResource resource, IloSelector<
IlcResourceConstraint, IlcResourceConstraint > prevSelect=0)
public IlcGoal IlcSequenceBackward(IlcSchedule schedule, IloSelector<
IlcResourceConstraint, IlcResourceConstraint > prevSelect)
public IlcGoal IlcSequenceBackward(IlcSchedule schedule, IloSelector< IlcResource,
IlcSchedule > resSel=0, IloSelector< IlcResourceConstraint, IlcResourceConstraint >
prevSelect=0)
public IlcGoal IlcSequenceBackward(IlcSchedule schedule, IlcIntVar criterion,
IloSelector< IlcResourceConstraint, IlcResourceConstraint > prevSelect)
public IlcGoal IlcSequenceBackward(IlcSchedule schedule, IlcIntVar criterion,
IloSelector< IlcResource, IlcSchedule > resSel=0, IloSelector<
IlcResourceConstraint, IlcResourceConstraint > prevSelect=0)

Definition file: ilsched/srchseq.h
Include file: <ilsched/search.h>

These functions return instances of IlcGoal that sequence instances of IlcUnaryResource from their
teardown activity to their setup activity (sequencing in reverse). The involved resources must be instances of
IlcUnaryResource, closed, and with their precedence graph constraints posted.

When the argument resource is given, the function returns an instance of IlcGoal that sequences resource.

When the argument schedule is given, all the closed unary resources of schedule with a posted precedence
graph constraint are successively sequenced in reverse according to the resource selector argument resSel. By
default, the resource selector is defined as follows:

 IloSelector<IlcResource,IlcSchedule> resSel(!IlcResourceSequencedPredicate(solver),
 IlcResourceGlobalSlackEvaluator(solver));

Note

WARNING IlcSequenceBackward can only be applied to IlcUnaryResource instances. When defining
your own selectors make sure that the predicate IlcResourceSequencedPredicate (solver) or the
predicate IlcResourceIsUnaryResourcePredicate (solver) is used.

The resource constraint selector prevSelect selects a resource constraint that is a possibly previous to the
lastly sequenced backward resource constraint. The instance of IlcResourceConstraint in the context of
this selector represents the lastly sequenced backward resource constraint. At the begining of the search when
no resource constraint has been sequenced backward, the search goal passes the sequence virtual node of the
resource as context. See IlcUnaryResource::getVirtualNodeRC. When it is not specified, the previous
selector object used by default selects the possibly previous resource constraint with the biggest maximal end
time, using the biggest minimal start time to break ties.

If the argument criterion is given, then this variable will be bound, if possible, to its minimal value at the end
of the search.

For more information, see Sequence Constraint.

See Also: IlcSequence, IlcTestSequencedResource, IlcUnaryResource

674

Global function IlcResourceIsDiscreteResourcePredicate
public IloPredicate< IlcResource >
IlcResourceIsDiscreteResourcePredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource predicate whose operator(const IlcResource& resource) returns
IlcTrue if and only if the resource is an IlcDiscreteResource.

This functions exists with either an IloEnv or an IloSolver as argument.

675

Global function IlcActivityEndMaxEvaluator
public IloEvaluator< IlcActivity > IlcActivityEndMaxEvaluator(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns an activity evaluator whose operator(const IlcActivity& activity) returns the
maximum value of the end time variable of the activity.

This functions exists with either an IloEnv or an IloSolver as argument.

676

Global function IlcResourceIsContinuousReservoirPredicate
public IloPredicate< IlcResource >
IlcResourceIsContinuousReservoirPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource predicate whose operator(const IlcResource& resource) returns
IlcTrue if and only if the resource is an IlcContinuousReservoir.

This functions exists with either an IloEnv or an IloSolver as argument.

677

Global function IlcActivityStartMinEvaluator
public IloEvaluator< IlcActivity > IlcActivityStartMinEvaluator(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns an activity evaluator whose operator(const IlcActivity& activity) returns the
minimum value of the start time variable of the activity.

This functions exists with either an IloEnv or an IloSolver as argument.

678

Global function IlcMakeTransitionCost
public IlcTransitionCostObject IlcMakeTransitionCost(IlcTransitionTable table,
IlcIntArray setups, IlcIntArray teardowns)
public IlcTransitionCostObject IlcMakeTransitionCost(IlcTransitionTable table)
public IlcTransitionCostObject IlcMakeTransitionCost(IlcTransitionTable table,
IlcIntArray setups)

Definition file: ilsched/trancost.h
Include file: <ilsched/ilsched.h>

This function creates an instance of IlcTransitionCostObject. It uses an instance of
IlcTransitionTable for the transition cost and IlcIntArray for the setup and teardown costs. The table
and arrays must be of the same size and filled with positive integers.

The transition, setup, and teardown costs of an instance of IlcTransitionCostObject are calculated using
the transition type of the activities of the resource constraint. Notice that this implies that the transition type of the
activities must be non-negative and strictly smaller than the size of the table.

See Also: IlcActivity::getTransitionType, IlcMakeTransitionTime, IlcTransitionTable, IlcTransitionCostObject

679

Global function IloRankForward
public IloGoal IloRankForward(const IloEnv env, const IloUnaryResource res,
IloResourceConstraintSelector rcSel=IloSelFirstRCMinStartMax)
public IloGoal IloRankForward(const IloEnv env, IloResourceSelector
rSel=IloSelResMinGlobalSlack, IloResourceConstraintSelector
rcSel=IloSelFirstRCMinStartMax)
public IloGoal IloRankForward(const IloEnv env, const IloNumVar criterion,
IloResourceSelector rSel=IloSelResMinGlobalSlack, IloResourceConstraintSelector
rcSel=IloSelFirstRCMinStartMax)
public IloGoal IloRankForward(const IloEnv env, const IloStateResource res,
IloResourceConstraintSelector rcSel=IloSelFirstRCMinStartMax)

Definition file: ilsched/iloschedgoals.h
Include file: <ilsched/iloscheduler.h>

Resource Constraints on a Resource

These functions (1st and 4th) create and return a goal that ranks all resource constraints of the unary or state
resource res. The resource constraint selector indicated by rcSel selects the next resource constraint to be
ranked first. By default (when no resource constraint selector is given as an argument), the resource constraint
selector IloSelFirstRCMinStartMax selects the next resource constraint to be ranked first.

Resource Constraints in a Model

This function (2nd) creates and returns a goal that ranks all resource constraints of all unary or state resources in
the model. The resource selector indicated by rSel selects the next resource. The resource constraint selector
rcSel selects the next resource constraint to be ranked first.

This function will rank either all the state resources (if rSel == IloSelStateRes), or all the unary resources
(if rSel == IloSelResMinGlobalSlack, or IloSelResMinLocalSlack). By default (when no selectors
are given as arguments), the resource selector IloSelResMinGlobalSlack selects the next resource, and the
resource constraint selector IloSelFirstRCMinStartMax selects the next resource constraint to be ranked
first.

Resource Constraints in a Model with a Criterion

This function (3rd) creates and returns a goal that is a logical AND of the goal described in the previous section
with a goal that attempts to instantiate criterion. The instantiation goal tries values for criterion in
ascending order.

Note

WARNING This function assumes that all unary or state resources that are selected are not kept open, that is,
that there are no unknown resource constraints yet to be added. If you cannot close all unary or state
resources, you should use a resource selector that selects only closed resources. In such a case, you should
also handle the ranking of the resources that are not closed yourself.

Implementation

For an example of how the goals returned by these functions could be implemented, see IlcRank. Also see
Ranking .

See Also: IloStateResource, IloUnaryResource, IlcSchedule, IlcRank, IloResourceConstraintSelector

680

Global function operator<<
public ostream & operator<<(ostream & stream, const IlcActivity & activity)

Definition file: ilsched/schedule.h
Include file: <ilsched/ilsched.h> <ilsched/timetabh.h>

 ostream& operator<< (ostream& stream,
 const IlcActivity& activity);
 ostream& operator<< (ostream& stream,
 const IlcAltResSet& resource);
 ostream& operator<<(ostream& stream,
 const IlcAnyTimetable& table);
 ostream& operator<< (ostream& stream,
 const IlcIntervalList& bl);
 ostream& operator<< (ostream& stream,
 const IlcIntTimetable& table);
 ostream& operator<< (ostream& stream,
 const IlcResource& resource);
 ostream& operator<< (ostream& stream,
 const IlcSchedule& schedule);

This operator directs its output to an output stream (normally, standard output).

The operator uses the virtual member function display of an implementation class. For instance, the member
function IlcScheduleI::display defines how the invoking instance of IlcSchedule is printed on the given
output stream. To display a schedule, you simply write:

 solver.out() << schedule;

The class IloSolver is documented in the IBM ILOG Solver Reference Manual.

Implementation

The operator is defined like this:

 ostream& operator<<(ostream& stream, const IlcSchedule
 schedule) {
 schedule.getImpl()->display(stream);
 return stream;
 }

The definition files for this operator include ilsched/altresh.h, ilsched/breaks.h, and ilsched/schedule.h.

See Also: IlcActivity, IlcAltResSet, IlcIntervalList, IlcResource, IlcSchedule

681

Global function IloShapeLowerThan
public IloConstraint IloShapeLowerThan(IloResourceConstraint resCt1,
IloResourceConstraint resCt2)

Definition file: ilsched/iloresconstraint.h

This function returns a constraint acting on each resource constraint passed as an argument. An error will be
raised if one the resource constraints does not have a shape specified. The constraint returned will state that the
contribution of the first resource constraint's shape must be less than or equal to the contribution of the second
shape. This condition must hold at each time point.

See Also: IloResourceConstraint, IloShape

682

Global function IloRelocateActivityNHood
public IloSchedulerLargeNHood IloRelocateActivityNHood(IloEnv env, IloComparator<
IloActivity > comparator=0, IloPredicate< IloActivity > activity=0, const char *
name=0)

Definition file: ilsched/ilolnsgoals.h
Include file: <ilsched/iloscheduler.h>

This funtion creates an activity neighborhood.

The optional parameter comparator is used to specify in which order the activities should be considered. When
applied the comparator receives as argument the neighborhood.

The optional parameter predicate is used to specify which activities to consider. The size of this neighborhood
is the number of activities in the current solution for which this predicate returns IloTrue. If the predicate is an
empty handle, the size of this neighborhood is the number of activities in the current solution.

For more information, see Large Neighborhoods. In the IBM ILOG Solver Reference Manual, see the Selectors
concept and IloComparator and IloPredicate.

See Also: IloSchedulerLargeNHood, IloRelocateActivityNHoodI

683

Global function IlcFunctionalExp
public IlcIntExp IlcFunctionalExp(const IlcGranularFunction func, const IlcIntVar
x)

Definition file: ilsched/gfbase.h
Include file: <ilsched/ilsched.h>

This function creates and returns an integer expression constrained to be the value of the function func at the
value of x. The granularity of the function must be equal to 1, otherwise, an error will be raised.

684

Global function IlcActivityEndVarBoundPredicate
public IloPredicate< IlcActivity > IlcActivityEndVarBoundPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns an activity predicate whose operator(const IlcActivity& activity) returns
IlcTrue if and only if the end variable of the activity is bound.

This functions exists with either an IloEnv or an IloSolver as argument.

685

Global function IloRankBackward
public IloGoal IloRankBackward(const IloEnv env, const IloUnaryResource res,
IloResourceConstraintSelector rcSel=IloSelLastRCMaxEndMin)
public IloGoal IloRankBackward(const IloEnv env, IloResourceSelector
rSel=IloSelResMinGlobalSlack, IloResourceConstraintSelector
rcSel=IloSelLastRCMaxEndMin)
public IloGoal IloRankBackward(const IloEnv env, const IloNumVar criterion,
IloResourceSelector rSel=IloSelResMinGlobalSlack, IloResourceConstraintSelector
rcSel=IloSelLastRCMaxEndMin)
public IloGoal IloRankBackward(const IloEnv env, const IloStateResource res,
IloResourceConstraintSelector rcSel=IloSelLastRCMaxEndMin)

Definition file: ilsched/iloschedgoals.h
Include file: <ilsched/iloscheduler.h>

Resource Constraints on a Resource

These functions (1st and 4th) create and return a goal that ranks all resource constraints of the unary or state
resource res. The resource constraint selector indicated by rcSel selects the next resource constraint to be
ranked last. By default (when no resource constraint selector is given as an argument), the resource constraint
selector IloSelLastRCMaxEndMin selects the next resource constraint to be ranked last.

Resource Constraints in a Model

This function (2nd) creates and returns a goal that ranks all resource constraints of all unary or state resources in
the model. The resource selector indicated by rSel selects the next resource. The resource constraint selector
rcSel selects the next resource constraint to be ranked last.

This function will rank either all the state resources (if rSel == IloSelStateRes), or all the unary resources
(if rSel == IloSelResMinGlobalSlack, or IloSelResMinLocalSlack). By default (when no selectors
are given as arguments), the resource selector IloSelResMinGlobalSlack selects the next resource, and the
resource constraint selector IloSelLastRCMaxEndMin selects the next resource constraint to be ranked last.

Resource Constraints in a Model with a Criterion

This function (3rd) creates and returns a goal that is a logical AND of the goal described in the previous section
with a goal that attempts to instantiate criterion. The instantiation goal tries values for criterion in
descending order.

Note

WARNING This function assumes that all unary or state resources that are selected are not kept open, that is,
that there are no unknown resource constraints yet to be added. If you cannot close all unary or state
resources, you should use a resource selector that selects only closed resources. In such a case, you should
also handle the ranking of the resources that are not closed yourself.

Implementation

For an example of how the goals returned by these functions could be implemented, see IlcRankBackward.
Also see Ranking .

See Also: IloStateResource, IloUnaryResource, IlcSchedule, IlcRankBackward, IloResourceConstraintSelector

686

Global function IlcActivityDurationMaxEvaluator
public IloEvaluator< IlcActivity > IlcActivityDurationMaxEvaluator(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns an activity evaluator whose operator(const IlcActivity& activity) returns the
maximum value of the duration variable of the activity.

This functions exists with either an IloEnv or an IloSolver as argument.

687

Global function IlcTextureAltSuccessorGoal
public IlcGoal IlcTextureAltSuccessorGoal(IlcSchedule s, IloSelector< IlcResource,
IlcSchedule > rSel=0)
public IlcGoal IlcTextureAltSuccessorGoal(IlcSchedule s, IlcIntVar criterion,
IloSelector< IlcResource, IlcSchedule > rSel=0)
public IlcGoal IlcTextureAltSuccessorGoal(IlcUnaryResource res)

Definition file: ilsched/txtgoal.h
Include file: <ilsched/ilsched.h>

These functions create and return goals that interleave the assignment of resources to alternative resource
constraints and the sequencing of resource constraints on unary resource(s). Given a resource, either by
definition or by a resource selector, the goal identifies the time point on the resource with the highest criticality
according to the texture measurements. The resource constraint with the maximum contribution to the resource
and time point is then examined. If that resource constraint has no alternatives and if there exists another
non-alternative resource constraint with which it can be sequenced, a precedence constraint (using the
setSuccessor method) is posted. Otherwise, a new constraint is added specifying that the corresponding
activity must execute on another resource.

The sequence between the two activities is the one that results in the greatest remaining pair-wise slack.

The goal created by this function assumes that the precedence graph exists on the resources.

Functions taking an IlcSchedule

The resource selector indicated by rSel selects the next resource. By default, that is, when no resource selector
is given, the resources are selected in descending order of texture criticality. The pair of activities to sequence is
chosen in descending order of their contribution to the critical time point on the selected resource.

Note that the texture measurements are recalculated during every execution of the goal, and therefore the
decision-making focus may opportunistically move from one resource to another without the former resource
being completely sequenced.

For more information, see Texture Measurements.

See Also: IlcTextureSuccessorGoal, IlcResourceTexture, IlcRCTexture

688

Global function IlcResourceConstraintHasPrevPredicate
public IloPredicate< IlcResourceConstraint >
IlcResourceConstraintHasPrevPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource constraint predicate whose operator(const IlcResourceConstraint&
rc) returns IlcTrue if and only if the immediately preceding activity of the activity of rc is known. In case rc
represents a virtual node, it is assumed that it represents the virtual sink node, and the evaluation of the
predicate returns IlcTrue if and only if the teardown node (that is, the node that directly precedes the virtual
sink node), is known. This predicate is implemented using IlcResourceConstraint::hasPrevRC.

This functions exists with either an IloEnv or an IloSolver as argument.

689

Global function IlcResourceIsStateResourcePredicate
public IloPredicate< IlcResource > IlcResourceIsStateResourcePredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource predicate whose operator(const IlcResource& resource) returns
IlcTrue if and only if the resource is an IlcStateResource.

This functions exists with either an IloEnv or an IloSolver as argument.

690

Global function IlcTryRankLast
public IlcGoal IlcTryRankLast(IlcResourceConstraint rct)

Definition file: ilsched/srchgoal.h
Include file: <ilsched/search.h>

This function sets a choice point and then ranks the resource constraint rct to be last on its resource. In case of
failure, rct is set to be not last on its resource. If the resource is not closed, then ranking rct to be not last has
no influence on the latest end time of the activity of rct.

Ranking facilities are defined only for unary and state resources whose ranking information is available (see
IlcResource::hasRankInfo). A resource constraint can be ranked if and only if its time extent is
IlcFromStartToEnd.

For more information, see Ranking .

See Also: IlcRank, IlcRankBackward, IlcResourceConstraint, IlcStateResource, IlcTimeExtent,
IlcUnaryResource

691

Global function IlcMakeTransitionTime
public IlcTransitionTimeObject IlcMakeTransitionTime(IlcTransitionTable table,
IlcBool triangularInequality=IlcFalse)

Definition file: ilsched/trancost.h
Include file: <ilsched/ilsched.h>

This function creates an instance of IlcTransitionTimeObject using an instance of
IlcTransitionTable. If the value of the argument triangularInequality is IlcTrue, it means that the
transition table satisfies the triangular inequality. This may be useful to improve the performances of the search
as it will not be necessary to check it.

The transition times of an instance of IlcTransitionTimeObject use the transition type of the activities of
the resource constraints. Notice that this implies that the transition type of the activities must be non-negative and
strictly smaller than the size of the table.

See Also: IlcActivity::getTransitionType, IlcMakeTransitionCost, IlcTransitionTable, IlcTransitionTimeObject

692

Global function
IlcResourceConstraintPossibleTeardownPredicate
public IloPredicate< IlcResourceConstraint >
IlcResourceConstraintPossibleTeardownPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource constraint predicate whose operator(const IlcResourceConstraint&
rc) returns IlcTrue if and only if rc can be a teardown resource constraint. This member function returns
IlcFalse if rc represents a virtual source or sink node (empty handle). This predicate is implemented using
IlcResourceConstraint::isPossibleTeardown.

This functions exists with either an IloEnv or an IloSolver as argument.

693

Global function IlcRCTextureESTFactory
public IlcRCTextureFactory IlcRCTextureESTFactory(IloSolver solver)

Definition file: ilsched/texture.h
Include file: <ilsched/ilsched.h>

This function returns an IlcRCTextureFactory instance whose
IlcRCTextureFactory::createRCTexture method returns an instance of IlcRCTextureESTI.

694

Global function IlcResourceIsDiscreteEnergyPredicate
public IloPredicate< IlcResource > IlcResourceIsDiscreteEnergyPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource predicate whose operator(const IlcResource& resource) returns
IlcTrue if and only if the resource is an IlcDiscreteEnergy.

This functions exists with either an IloEnv or an IloSolver as argument.

695

Global function IlcGetThreadId
public IlcInt IlcGetThreadId()

Definition file: ilsched/workserv.h
Include file: <ilsched/workserv.h>

This function returns an integer that uniquely identifies the thread from which it was called. The returned value is
system dependent.

See Also: IlcWorkServer

696

Global function IlcResourceConstraintPossibleNextVisitor
public IloVisitor< IlcResourceConstraint, IlcResourceConstraint >
IlcResourceConstraintPossibleNextVisitor(IlcManager)
public IloVisitor< IlcResourceConstraint, IlcResourceConstraint >
IlcResourceConstraintPossibleNextVisitor(IloEnv)

Definition file: ilsched/srchseq.h
Include file: <ilsched/ilsched.h>

This function returns a visitor that allows to traverse the set of resource constraints that are possibly next to the
resource constraint given as container. In case the resource constraint given as container is a sequence virtual
node (see IlcResourceConstraint::isVirtualNode), the visitor traverses the set of resource constraints
that are possible setup resource constraints on the resource.

See the section about Visitors in the concept Selectors of the IBM ILOG Solver Reference Manual

697

Global function
IlcAltResConstraintResourceSelectedPredicate
public IloPredicate< IlcAltResConstraint >
IlcAltResConstraintResourceSelectedPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns an alternative resource constraint predicate whose operator(const
IlcAltResConstraint& altrc) returns IlcTrue if and only if a single resource has been selected for the
activity corresponding to altrc. If there are still multiple resources that can be selected, IlcFalse is returned.
This predicate is implemented using IlcAltResConstraint::isResourceSelected.

This functions exists with either an IloEnv or an IloSolver as argument.

698

Global function IlcResourceRankedPredicate
public IloPredicate< IlcResource > IlcResourceRankedPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource predicate whose operator(const IlcResource& resource) returns
IlcTrue if and only if ranking is not supported on the resource (if IlcResource::hasRankInfo returns
IlcFalse) or if ranking is supported and the resource constraints on the resource are completely ranked.

This functions exists with either an IloEnv or an IloSolver as argument.

699

Global function IloSequenceBackward
public IloGoal IloSequenceBackward(const IloEnv env, const IloUnaryResource uRes)
public IloGoal IloSequenceBackward(const IloEnv env, const IloNumVar criterion,
IloResourceSelector rSel=IloSelResMinGlobalSlack)
public IloGoal IloSequenceBackward(const IloEnv env, IloResourceSelector
rSel=IloSelResMinGlobalSlack)
public IloGoal IloSequenceBackward(const IloEnv env, const IloNumVar criterion,
const IloTransitionParam param, IloSequenceIndexSelector
iSel=IloSelPrevRCMaxCostStartMin, IloResourceSelector rSel=IloSelResMinGlobalSlack)
public IloGoal IloSequenceBackward(const IloEnv env, const IloUnaryResource uRes,
const IloTransitionParam param, IloSequenceIndexSelector
iSel=IloSelPrevRCMaxCostStartMin)
public IloGoal IloSequenceBackward(const IloEnv env, const IloTransitionParam
param, IloSequenceIndexSelector iSel=IloSelPrevRCMaxCostStartMin,
IloResourceSelector rSel=IloSelResMinGlobalSlack)

Definition file: ilsched/iloschedgoals.h
Include file: <ilsched/iloscheduler.h>

These functions return instances of IloGoal that sequence instances of IloUnaryResource from their
teardown activity to their setup activity (sequencing in reverse). The involved resources must be instances of
IloUnaryResource, and they must not be kept open.

When the argument uRes is given, the function returns an instance of IloGoal that sequences uRes. When
there is no resource argument, all the unary resources in the model that are not to be kept open are successively
sequenced in reverse according to the unary resource selector argument rSel. By default, the resource selector
is IloSelResMinGlobalSlack.

The selector iSel, a value from the enumeration IloSequenceIndexSelector, selects a possible value of a
previous resource constraint of each resource constraint. The default selector is
IloSelPrevRCMaxCostStartMin.

When the argument criterion is used, the goal also assigns it to its smallest consistent value after the
sequencing has been completed.

When an IloSequenceIndexSelector is used, the estimation of the cost will be determined by the
IloTransitionParam parameter passed to the constructor. The default value for such an index selector is
IloSelPrevRCMaxCostStartMin.

See Also: IloSequenceForward, IloUnaryResource, IloTransitionParam, IloSequenceIndexSelector

700

Global function IlcShapeLowerThan
public IlcConstraint IlcShapeLowerThan(IlcResourceConstraint resCt1,
IlcResourceConstraint resCt2)

Definition file: ilsched/shaperct.h

This function returns a Solver constraint acting on each resource constraint passed as an argument. An error will
be raised if one the resource constraints does not have a shape specified. The constraint returned will state that
the contribution of the first resource constraint's shape must be less than or equal to the contribution of the
second shape. This condition must hold at each time point.

See Also: IlcResourceConstraint, IlcShape

701

Global function IlcResourceHasTexturePredicate
public IloPredicate< IlcResource > IlcResourceHasTexturePredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource predicate whose operator(const IlcResource& resource) returns
IlcTrue if and only if the resource has an associated IlcResourceTexture instance.

This functions exists with either an IloEnv or an IloSolver as argument.

702

Global function IlcResourceConstraintRandomEvaluator
public IloEvaluator< IlcResourceConstraint >
IlcResourceConstraintRandomEvaluator(IlcManager, IloRandom)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource constraint evaluator whose operator(const IlcResourceConstraint&
ct) returns a random number drawn with uniform probability from the interval [0..1).

This functions exists with either an IloEnv or an IloSolver as argument.

703

Global function IlcResourceResourceConstraintTranslator
public IloTranslator< IlcResource, IlcResourceConstraint >
IlcResourceResourceConstraintTranslator(IloEnv)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a translator which implements a function (IloTranslator::operator) that, when given
a resource constraint, returns the resource of this resource constraint. It is useful for transforming resource
predicates/selectors into the corresponding resource constraints predicates/selectors.

This functions exists with either an IloEnv or an IloSolver as argument.

704

Global function IlcResourceResourceConstraintTranslator
public IloTranslator< IlcResource, IlcResourceConstraint >
IlcResourceResourceConstraintTranslator(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a translator which implements a function (IloTranslator::operator) that, when given
a resource constraint, returns the resource of this resource constraint. It is useful for transforming resource
predicates/selectors into the corresponding resource constraints predicates/selectors.

This functions exists with either an IloEnv or an IloSolver as argument.

705

Global function IlcResourceSequencedPredicate
public IloPredicate< IlcResource > IlcResourceSequencedPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource predicate whose operator(const IlcResource& resource) returns
IlcTrue if and only if sequencing is not supported on the resource (if the resource is not a closed unary
resource with a posted sequence constraint) or if sequencing is supported and the resource constraints on the
resource are completely sequenced.

This functions exists with either an IloEnv or an IloSolver as argument.

706

Global function
IlcResourceConstraintInwardConstraintPredicate
public IloPredicate< IlcResourceConstraint >
IlcResourceConstraintInwardConstraintPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource constraint predicate whose operator(const IlcResourceConstraint&
rc) returns IlcTrue if and only if rc was constructed by the member function IlcActivity::requiresNot
or was extracted from an IloResourceConstraint that was constructed by the member function
IloActivity::requiresNot. This member function returns IlcFalse if the resource constraint rc is an
empty handle; that is, if it corresponds to a virtual resource constraint (source or sink node). This predicate is
implemented using IlcResourceConstraint::possiblyContributes.

This functions exists with either an IloEnv or an IloSolver as argument.

707

Global function IlcActivityEndMinEvaluator
public IloEvaluator< IlcActivity > IlcActivityEndMinEvaluator(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns an activity evaluator whose operator(const IlcActivity& activity) returns the
minimum value of the end time variable of the activity.

This functions exists with either an IloEnv or an IloSolver as argument.

708

Global function operator<=
public IlcConstraint operator<=(IlcIntTimetable, IlcIntToIntStepFunction)
public IlcConstraint operator<(IlcIntTimetable, IlcIntToIntStepFunction)
public IlcConstraint operator>=(IlcIntTimetable, IlcIntToIntStepFunction)
public IlcConstraint operator>(IlcIntTimetable, IlcIntToIntStepFunction)
public IlcConstraint operator==(IlcIntTimetable, IlcIntToIntStepFunction)
public IlcConstraint operator<=(IlcIntToIntStepFunction f, IlcIntTimetable t)
public IlcConstraint operator<(IlcIntToIntStepFunction f, IlcIntTimetable t)
public IlcConstraint operator>=(IlcIntToIntStepFunction f, IlcIntTimetable t)
public IlcConstraint operator>(IlcIntToIntStepFunction f, IlcIntTimetable t)
public IlcConstraint operator==(IlcIntToIntStepFunction f, IlcIntTimetable t)

Definition file: ilsched/timetabh.h
Include file: <ilsched/ilsched.h>

These constraint operators create constraints between an integer step function and an integer timetable that
constrain the maximal (or minimal) availability profile of the resources.

Note

Any modification of the IlcIntToIntStepFunction argument after the constraint has been posted will
have no effect on the constraint.

Example

The following code defines an integer step function capMax and uses it to constrain the maximal availability
profile of a discrete resource res.

 // Must be during search (e.g., inside a goal)
 IloSolver solver = getSolver();
 IlcScheduler schedule(solver, 0, 100);

 IlcDiscreteResource res(schedule,10);
 IlcIntToIntStepFunction capMax(solver,0,100);
 capMax.setSteps(IlcIntArray(solver,3,30,50,90),
 IlcIntArray(solver,4,10,8,6,10));
 solver.add(res.getTimetable() >= capMax); // ...

709

Global function IloTextureAltSuccessorGoal
public IloGoal IloTextureAltSuccessorGoal(const IloEnv env)
public IloGoal IloTextureAltSuccessorGoal(const IloEnv env, const IloNumVar
criterion)

Definition file: ilsched/iloschedgoals.h
Include file: <ilsched/iloscheduler.h>

This function creates and returns a goal that adds successor relations between all pairs of resource constraints,
and assigns all alternative resource constraints on all resources in the model that have a non-zero texture
measurement. This goal can be combined with IloAssignAlternative to create a complete goal which
includes cases with a texture measurements of zero (IloTextureAltSuccessorGoal &&
IloAssignAlternative).

If the argument criterion is given, then this variable will be bound, if possible, to its minimal value at the end
of the search.

At each step of the goal the resource R and the time point with highest criticality are identified, and the set of
resource constraints S that contribute to the criticality of R at the most critical time point are examined. Three
resource constraints are identified:

The non-alternative resource constraint, A, with the highest contribution to the critical point that is not a
successor or predecessor of all other elements of S.

1.

The non-alternative resource constraint, B, with the highest contribution to the critical point that is not
A, nor a successor or predecessor of A.

2.

The alternative resource constraint, C, with the highest contribution to the critical point of all alternative
resource constraints.

3.

The contribution to the critical point by resource constraint A is then compared to that of resource constraint C. If
A has the higher contribution, then a choice point based on a successor relation between A and B is formed. This
choice point is exactly the same form as that created by IloTextureSuccessorGoal.

If the contribution of C is greater than that of A, a choice point that removes the resource R from the set of
possible resources for C is created. On backtracking, the choice point enforces that C must execute on resource
R.

710

Global function IlcResourceHasBreaksPredicate
public IloPredicate< IlcResource > IlcResourceHasBreaksPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource predicate whose operator(const IlcResource& resource) returns
IlcTrue if and only if the resource has breaks.

This functions exists with either an IloEnv or an IloSolver as argument.

711

Global function IlcActivityProcessingTimeMinEvaluator
public IloEvaluator< IlcActivity >
IlcActivityProcessingTimeMinEvaluator(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns an activity evaluator whose operator(const IlcActivity& activity) returns the
minimum value of the processing time variable of the activity.

This functions exists with either an IloEnv or an IloSolver as argument.

712

Global function
IloTimeWindowForwardChronologicalComparator
public IloComparator< IloTimeWindowNHoodI::IloTimeWindow >
IloTimeWindowForwardChronologicalComparator(IloSolver solver)

Definition file: ilsched/ilolnsgoals.h
Include file: <ilsched/iloscheduler.h>

This function returns a predefined time interval comparator. The comparator compares two instances of the class
IloTimeWindowNHoodI::IloTimeWindow, tw1 and tw2. The time interval tw1 is less than time interval tw2
if the start of tw1 is less than the start of tw2. If the starts are equal, it compares the ends of both intervals. The
comparator is allocated on the memory allocation stack of solver.

See IloComparator in the IBM ILOG Solver Reference Manual for more information.

See Also: IloSchedulerLargeNHood

713

Global function
IloTimeWindowForwardChronologicalComparator
public IloComparator< IloTimeWindowNHoodI::IloTimeWindow >
IloTimeWindowForwardChronologicalComparator(IloEnv env)

Definition file: ilsched/ilolnsgoals.h

This function returns a predefined time interval comparator. The comparator compares two instances of the class
IloTimeWindowNHoodI::IloTimeWindow, tw1 and tw2. The time interval tw1 is less than time interval tw2
if the start of tw1 is less than the start of tw2. If the starts are equal, it compares the ends of both intervals. The
comparator is allocated on the memory allocation stack of env.

See IloComparator in the IBM ILOG Solver Reference Manual for more information.

See Also: IloSchedulerLargeNHood

714

Global function IlcResourceCapacityEvaluator
public IloEvaluator< IlcResource > IlcResourceCapacityEvaluator(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource evaluator whose operator(const IlcResource& resource) returns the
theoretical capacity of the IlcCapResource object to which it is applied. The behavior is undefined if this
evaluator is applied to a resource that is not an IlcCapResource.

This functions exists with either an IloEnv or an IloSolver as argument.

715

Global function IloAssignAlternative
public IloGoal IloAssignAlternative(const IloEnv env, IloResourceSelector
possibleSel=IloSelAltRes)
public IloGoal IloAssignAlternative(const IloEnv env, const IloResource resource)
public IloGoal IloAssignAlternative(const IloEnv env, const IloAltResSet resources,
IloResourceSelector possibleSel=IloSelAltRes)

Definition file: ilsched/iloschedgoals.h
Include file: <ilsched/iloscheduler.h>

This function returns a goal that assigns a possible resource as the selected one for an alternative resource
constraint.

If the second argument is an instance of IloAltResSet, it considers all the constraints on that
instance of IloAltResSet.

•

If the second argument is an instance of IloResource, it considers all the constraints on instances of
IloAltResSet for which that resource is a possible alternative.

•

If the second argument is an IloResourceSelector, it considers all the constraints on instances of
IloAltResSet for which that resource is a possible alternative.

•

The goal uses the selector possibleSel to choose the resource. If no argument of type
IloResourceSelector is given, the goal uses the default selector, IloSelAltRes. The goal selects posted
and metaposted alternative resource constraints in arbitrary order. To customize this behavior it is necessary to
directly use the Scheduler Engine classes IlcAssignAlternative and
IloSelector<IlcAltResConstraint>.

Implementation

See IlcAssignAlternative for an example of how this function can be defined.

See Also: IloAltResSet, IloResource, IlcAssignAlternative

716

Global function IlcResourceEnergyEvaluator
public IloEvaluator< IlcResource > IlcResourceEnergyEvaluator(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource evaluator whose operator(const IlcResource& resource) returns the
maximum theoretical energy level of the IlcDiscreteEnergy object to which it is applied. The behavior is
undefined if this evaluator is applied to a resource that is not an IlcDiscreteEnergy resource.

This functions exists with either an IloEnv or an IloSolver as argument.

717

Global function
IlcResourceConstraintCapacityConstraintPredicate
public IloPredicate< IlcResourceConstraint >
IlcResourceConstraintCapacityConstraintPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource constraint predicate whose operator(const IlcResourceConstraint&
rc) returns IlcTrue if and only if rc requires or provides a quantity of a resource (rather than a state). This
member function returns IlcFalse if rc represents a virtual source or sink node (empty handle). This predicate
is implemented using IlcResourceConstraint::isCapacityConstraint.

This functions exists with either an IloEnv or an IloSolver as argument.

718

Global function IloSetTimesBackward
public IloGoal IloSetTimesBackward(const IloEnv env, IloActivitySelector
activitySelector=IloSelLastActMaxStartMin)
public IloGoal IloSetTimesBackward(const IloEnv env, const IloNumVar criterion,
IloActivitySelector activitySelector=IloSelLastActMaxStartMin)

Definition file: ilsched/iloschedgoals.h
Include file: <ilsched/iloscheduler.h>

This function creates and returns a goal that assigns an end time to all activities in the model. If the argument
criterion is given, then this variable will be bound, if possible, to its maximal value at the end of the search.
By default, that is, if no activity selector is given as an argument, the activity selector
IloSelLastActMaxStartMin selects the next activity.

Note

WARNING In order to ensure a purely anti-chronological scheduling, the supplied activity selector should
always choose an unscheduled activity of maximal latest end time. Furthermore, scheduling an activity at time t
should not have an impact on the latest end times of later activities.

In particular, one should be careful in using precedence constraints with a negative delay (and similar Solver
constraints on start and end variables).

For further details about the interpretation of the IloSetTimesBackward goal in the Scheduler Engine and
about these restrictions, see IlcSetTimesBackward.

See Also: IlcSetTimesBackward, IloActivitySelector

719

Global function IlcSequence
public IlcGoal IlcSequence(IlcUnaryResource resource, IloSelector<
IlcResourceConstraint, IlcResourceConstraint > nextSelect=0)
public IlcGoal IlcSequence(IlcSchedule schedule, IloSelector<
IlcResourceConstraint, IlcResourceConstraint > nextSelect)
public IlcGoal IlcSequence(IlcSchedule schedule, IloSelector< IlcResource,
IlcSchedule > resSel=0, IloSelector< IlcResourceConstraint, IlcResourceConstraint >
nextSelect=0)
public IlcGoal IlcSequence(IlcSchedule schedule, IlcIntVar criterion, IloSelector<
IlcResourceConstraint, IlcResourceConstraint > nextSelect)
public IlcGoal IlcSequence(IlcSchedule schedule, IlcIntVar criterion, IloSelector<
IlcResource, IlcSchedule > resSel=0, IloSelector< IlcResourceConstraint,
IlcResourceConstraint > nextSelect=0)

Definition file: ilsched/srchseq.h
Include file: <ilsched/search.h>

These functions return instances of IlcGoal that sequence instances of IlcUnaryResource from their setup
activity to their teardown activity (sequencing forward). The involved resources must be instances of
IlcUnaryResource, closed, and with their precedence graph constraint posted.

When the argument resource is given, the function returns an instance of IlcGoal that sequences resource.

When the argument schedule is given, all the closed unary resources of schedule with a posted precedence
graph constraint are successively sequenced according to the resource selector argument resSel. By default,
the resource selector is defined as follows:

 IloSelector<IlcResource,IlcSchedule> resSel(!IlcResourceSequencedPredicate(solver),
 IlcResourceGlobalSlackEvaluator(solver));

Note

WARNING IlcSequence can only be applied to IlcUnaryResource instances. When defining your own
selectors make sure that the predicate IlcResourceSequencedPredicate (solver) or the predicate
IlcResourceIsUnaryResourcePredicate (solver) is used.

The resource constraint selector nextSelect selects a resource constraint that is possibly next to the lastly
sequenced resource constraint. The instance of IlcResourceConstraint in the context of this selector
represents the lastly sequenced resource constraint. At the begining of the search when no resource constraint
has been sequenced, the search goal passes the sequence virtual node of the resource as context. See
IlcUnaryResource::getVirtualNodeRC. When this selector is not specified, the next selector object used
by default selects the possibly next resource constraint with the smallest minimal start time, using the smallest
maximal end time to break ties.

If the argument criterion is given, then this variable will be bound, if possible, to its minimal value at the end
of the search.

For more information, see Sequence Constraint.

See Also: IlcSequenceBackward, IlcTestSequencedResource, IlcUnaryResource

720

Global function IlcResourceClosedPredicate
public IloPredicate< IlcResource > IlcResourceClosedPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource predicate whose operator(const IlcResource& resource) returns
IlcTrue if and only if the resource is closed.

This functions exists with either an IloEnv or an IloSolver as argument.

721

Global function IlcActivityPostponedPredicate
public IloPredicate< IlcActivity > IlcActivityPostponedPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns an activity predicate whose operator(const IlcActivity& activity) returns
IlcTrue if and only if the activity is postponed.

This functions exists with either an IloEnv or an IloSolver as argument.

See Also: IlcSetTimes

722

Global function IlcSetTimes
public IlcGoal IlcSetTimes(IlcSchedule schedule, IloSelector< IlcActivity,
IlcSchedule > aSel=0)
public IlcGoal IlcSetTimes(IlcSchedule schedule, IlcIntVar criterion, IloSelector<
IlcActivity, IlcSchedule > aSel=0)

Definition file: ilsched/srchgoal.h
Include file: <ilsched/search.h>

This function creates and returns a goal that assigns a start time to all activities managed by schedule. If the
argument criterion is given, then the assignments are made to minimize criterion. The activity selector
aSel selects the next activity. By default, that is, if no activity selector is given as an argument, the activity
selector used is defined as follows:

 IloSelector<IlcActivity,IlcSchedule> aSel = IlcActivityInScheduleSelector(s);
 sel.setPredicate(!IlcActivityStartVarBoundPredicate(s) &&
 !IlcActivityPostponedPredicate(s));
 sel.setComparator(IlcLexicalComposition(IlcCompareMin(IlcActivityStartMinEvaluator(s)),
 IlcCompareMin(IlcActivityEndMaxEvaluator(s))));

The goal is designed to efficiently schedule activities in a chronological order. It considers only solutions that can
be produced as follows: in each step, choose an unscheduled activity A of minimal earliest start time and
schedule it as early as possible, as allowed by the previously scheduled activities (which have smaller start times
than A).

Internally, the function uses a schedule-or-postpone method that works as follows:

A selected activity is assigned to its earliest start time.1.
If that start time leads to a failure, the activity is postponed until its earliest start time has been removed.
This removal can occur as a result of a combination of decisions and propagation.

2.

Before assigning the earliest start time to an activity with a candidate start time st, it is determined whether an
already postponed activity actP exists that can be or should be scheduled before st, that is, whether
actP.getEndMin() <= st or actP.getStartMax() <= st. If this is the case, a fail is generated based on the reasoning
that if we have “normal” precedence and resource constraints, the earliest start time of actP will never be
removed and thus actP will remain postponed and no solution will be found in this branch of the search tree.

This reasoning can result in an incomplete search (that is, solutions may be missed) in some situations. To take
a specific example, suppose we have an activity B that can start as much as 50 units after the start of an activity
A. This can be expressed by a precedence constraint with negative delay:

 A.startsAfterStart(B, -50)

Assume that B cannot be scheduled at a time earlier than 100 because it requires a resource that has a maximal
capacity of 0 in the interval [0,100). A, therefore, cannot be scheduled before time 50 even if there are no earlier
activities. IlcSetTimes will not find a solution here, because it will attempt to assign A to a start time of 0. When
this fails, it will postpone A but then realize that there are no other activities that can be schedule before A and
therefore it concludes that there are no solutions. Note that in this very simple case, it is likely that constraint
propagation will discover that 50 is the actual earliest start time of A and so IlcSetTimes will successfully find a
solution. However, if this situation is part of a larger, more complex constraint interaction, it cannot be guaranteed
that constraint propagation will discover the globally consistent earliest start time. In such a situation, then, a
solution will be missed.

Another situation where missed solutions can arise is when the processing time of an activity depends on its start
or end time. For example, we have three activities, A, B, and C, all of which require the same unary capacity
resource. Activities B and C have processing times of 10. Activity A has a processing time of 1 if its start time is in
the set {1, 2, 3, 4} and a processing time of 10 otherwise. The scheduling horizon is 25 time units and B and C
can only start at or after time unit 1.

The Scheduler Concert Technology code below and the output demonstrate that such a situation leads to a
missed solution when IlcSetTimes (extracted from the IloSetTimesForward goal) is used.

723

 IloEnv env;
 IloModel model(env);

 IloSchedulerEnv schedEnv(env);
 schedEnv.setOrigin(0);
 schedEnv.setHorizon(25);

 IloNumVar ptA(env, 1, 10, ILOINT);
 IloActivity a(env, ptA);
 a.setName("A");

 IloActivity b(env, 10, "B");
 IloActivity c(env, 10, "C");

 model.add(b.startsAfter(1));
 model.add(c.startsAfter(1));

 // processing time is 1 iff start time is in set {1, 2, 3, 4}
 // otherwise processing time is 10

 IloNumVar stA = a.getStartVariable();
 model.add((stA < 1) || (stA > 4) || (ptA == 1));
 model.add(((stA >= 1) && (stA <= 4)) || (ptA == 10));

 IloUnaryResource r(env);
 model.add(a.requires(r));
 model.add(b.requires(r));
 model.add(c.requires(r));

 IloSolver solver(model);
 IloBool solved = solver.solve(IloSetTimesForward(env));
 solver.out() << "First solve: " << solved << endl;

 model.add(a.startsAt(1));
 solved = solver.solve(IloSetTimesForward(env));
 solver.out() << "Solve after adding a.startsAt(1): "
 << solved << endl;

 Output:
 First solve: 0
 Solve after adding a.startsAt(1): 1

What happens in this example is that the IlcSetTimes goals tries to assign activity A to start time 0. This leads
to a dead-end because this implies that all three activities have a processing time of 10 which cannot be
accommodated on a unary resource within the 25 time-unit scheduling horizon. Activity A is then postponed and
the goal attempts to assign B to time 1. This fails, as all three activities again would have to have processing
times of 10. Finally, the goal tries to schedule activity C at time 1, with the same result as when it tried activity B.
Therefore, the goal concludes, there are no solutions.

Clearly, however, there are solutions, as demonstrated when we assign the start time of A to be 1. The
processing time of A is therefore 1 and the other two activities can then follow within the scheduling horizon.

In general, IlcSetTimes may miss solutions if there are precedence constraints with negative delay, if the
processing time of an activity depends on its start or end time, or if reservoirs are used.

Note

WARNING In order to ensure a purely chronological scheduling, the supplied activity selector should always
choose an unscheduled activity of minimal earliest start time. Furthermore, scheduling an activity at time t
should not have an impact on the earliest start times of activities that have been scheduled earlier.

In particular, care should be taken in using precedence constraints with a negative delay, activities where the
processing time depends on the start or end time of the activity, and reservoirs.

See IloSelector in the IBM ILOG Solver Reference Manual for more information.

See Also: IlcSchedule, IlcScheduleOrPostpone, IlcSetTimesBackward

724

725

Global function IlcTrySetSuccessor
public IlcGoal IlcTrySetSuccessor(IlcResourceConstraint, IlcResourceConstraint)

Definition file: ilsched/srchpg.h
Include file: <ilsched/search.h>

This function sets a choice point and then adds the precedence relation rct1.setSuccessor(rct2) on the
precedence graph of the resource with the method IlcResourceConstraint::setSuccessor. In case of
failure, the precedence relation rct2.setSuccessor(rct1) is added on the precedence graph of the
resource.

This goal can be used only when a precedence graph constraint has been posted on the resource.

For more information, see Precedence Graph Constraints.

See Also: IlcResource, IlcResourceConstraint

726

Global function IlcResourceConstraintVirtualNodePredicate
public IloPredicate< IlcResourceConstraint >
IlcResourceConstraintVirtualNodePredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource constraint predicate whose operator(const IlcResourceConstraint&
rc) returns IlcTrue if and only if rc represents a sequence virtual node. The sequence virtual node of a unary
resource is an automatically created resource constraint that does not affect the availability of the resource and
that is used in the sequence goals and selectors to represent the virtual initial (in case of a chronological
sequence goal like IlcSequence) or final (in case of an antichronological sequence goal like
IlcSequenceBackward) resource constraint in the sequence of resource constraints of the unary resource .

This functions exists with either an IloEnv or an IloSolver as argument.

727

Global function IlcTryRankFirst
public IlcGoal IlcTryRankFirst(IlcResourceConstraint rct)

Definition file: ilsched/srchgoal.h
Include file: <ilsched/search.h>

This function sets a choice point and then ranks the resource constraint rct to be first on its resource. In case of
failure, rct is set to be not first on its resource. If the resource is not closed, then ranking rct to be not first has
no influence on the earliest start time of the activity of rct.

Ranking facilities are defined only for unary and state resources whose ranking information is available (see
IlcResource::hasRankInfo). A resource constraint can be ranked if and only if its time extent is
IlcFromStartToEnd.

For more information, see Ranking .

See Also: IlcRank, IlcResourceConstraint, IlcStateResource, IlcTimeExtent, IlcUnaryResource

728

Global function
IlcActivityProcessingTimeVarBoundPredicate
public IloPredicate< IlcActivity >
IlcActivityProcessingTimeVarBoundPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns an activity predicate whose operator(const IlcActivity& activity) returns
IlcTrue if and only if the processing time variable of the activity is bound.

This functions exists with either an IloEnv or an IloSolver as argument.

729

Global function IlcResourceHasAltResConstraintPredicate
public IloPredicate< IlcResource >
IlcResourceHasAltResConstraintPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource predicate whose operator(const IlcResource& resource) returns
IlcTrue if and only if there exists a resource constraint on the resource that is an IlcAltResConstraint that
has not been assigned to a resource.

This functions exists with either an IloEnv or an IloSolver as argument.

730

Global function
IlcResourceConstraintPossiblyContributesPredicate
public IloPredicate< IlcResourceConstraint >
IlcResourceConstraintPossiblyContributesPredicate(IlcManager)

Definition file: ilsched/selector.h
Include file: <ilsched/ilsched.h>

This function returns a resource constraint predicate whose operator(const IlcResourceConstraint&
rc) returns IlcTrue if and only if rc possibly affects the availability of the resource. Otherwise, it returns
IlcFalse. This member function returns IlcFalse if the resource constraint rc is an empty handle; that is, if it
corresponds to a virtual resource constraint (source or sink node). This predicate is implemented using
IlcResourceConstraint::possiblyContributes.

This functions exists with either an IloEnv or an IloSolver as argument.

731

Macro ILCALTRCDEMON
Definition file: ilsched/altresh.h

ILCALTRCDEMON(DemonClass, ConstraintClass, method)

This macro creates an instance of the class DemonClass which is a subclass of IlcAltRCDemon. When this
demon is triggered, it executes the function method of the constraint ConstraintClass given as parameter to
the macro. The signature of this method must be: void
ConstraintClass::method(IlcAltResConstraint rc, IlcResource resource). The argument
resource is a possible resource whose change in some ranges for the alternative resource constraint is
responsible for the triggering of the demon; for example, the start min of the activity if the resource was selected
in the alternative resource constraint. Actually, the demon is trigerred each time a change happens in the start,
end, duration, processing time, or capacity range.

Once the resource demon class has been defined with the macro ILCALTRCDEMON(DemonClass,
ConstraintClass, method), an instance of this demon can be created by passing an instance of
ConstraintClass as a parameter of the member function IlcAltResConstraint::whenRange as follows:

 ConstraintClass* ct = ...;
 IlcAltRCDemon myDemon = DemonClass(ct);

Example

The following code defines a demon AltRCDemonCaller that prints pieces of information about the resources
whose ranges change.

 class AltRCDemonCallI : public IlcConstraintI {
 IlcAltResConstraint _ct;
 public:
 AltRCDemonCallI(IlcManager m, IlcAltResConstraint ct)
 :IlcConstraintI(m), _ct(ct)
 {}
 ~AltRCDemonCallI() {}
 virtual void post();
 virtual void propagate();
 void showInfo(IlcAltResConstraint rc, IlcResource resource);
 };

 void AltRCDemonCallI::showInfo(IlcAltResConstraint rc, IlcResource resource) {
 IlcAltResSet set = rc.getAltResSet();
 cout << endl << "--------AltRCDemonCallI---------" << endl;
 cout << "IlcAltResConstraint :" << rc << endl;
 cout << "IlcResource : " << resource << endl;
 cout << "Index : " << set.getIndex(resource) << " in " << rc.getIndexVariable() << endl;
 cout << "--------------------------------" << endl;
 }

 ILCALTRCDEMON(AltRCDemonCaller, AltRCDemonCallI, showInfo);

 void AltRCDemonCallI::post() {
 _ct.whenRange(AltRCDemonCaller(this));
 }

 void AltRCDemonCallI::propagate() {
 cout << endl << "--------AltRCDemonCallI---------" << endl;
 cout << "Demon For " << _ct << endl;
 cout << "--------------------------------" << endl;
 }

 IloSolver ...;
 IlcSchedule schedule(s, 0, 500);
 IlcDiscreteResource r1(schedule, 2);
 IlcDiscreteResource r2(schedule, 2);
 r1.setName("r1");
 r2.setName("r2");
 IlcAltResSet set(schedule, 2, r1, r2);
 IlcActivity a1(schedule, 30);
 IlcAltResConstraint rc1 = a1.requires(set, 2);

732

 s.add(rc1);
 s.add(new (s.getHeap()) AltRCDemonCallI(s, rc1));

See Also: IlcAltResConstraint, IlcAltRCDemon

733

Macro ILCRESOURCEDEMON
Definition file: ilsched/schedule.h

ILCRESOURCEDEMON(DemonClass, ConstraintClass, method)

This macro creates an instance of the class DemonClass which is a subclass of IlcResourceDemon. When
this demon is triggered, it executes the function method of the constraint ConstraintClass given as
parameter to the macro. The signature of this method must be: void
ConstraintClass::method(IlcResourceConstraint rct). The resource constraint given as argument
is the one that is responsible for the triggering of the demon; for example, the resource constraint whose set of
successors has changed.

Once the resource demon class has been defined with the macro ILCRESOURCEDEMON(DemonClass,
ConstraintClass, method), an instance of this demon can be created by passing an instance of
ConstraintClass as a parameter as follows:

 ConstraintClass* ct = ...;
 IlcResourceDemon myDemon = DemonClass(ct);

Example

The following code defines a couple of demons PrintDemonSucc and PrintDemonPred that respectively print
the new successors and predecessors of any resource constraints whose set of successors or predecessors has
changed.

 class PrintCtI :public IlcConstraintI {
 public:
 PrintCtI(IloSolver solver)
 :IlcConstraintI(solver){}
 void printNewSuccessors(IlcResourceConstraint changedRct) {
 getSolver().out() << "New successors of " << changedRct << ":" << endl;
 for (IlcResourceConstraintDeltaIterator ite(changedRct, IlcSuccessors); ite.ok(); ++ite) {
 getSolver().out() << "t" << *ite << endl;
 }
 }
 void printNewPredecessors(IlcResourceConstraint changedRct) {
 getSolver().out() << "New predecessors of " << changedRct << ":" << endl;
 for (IlcResourceConstraintDeltaIterator ite(changedRct, IlcPredecessors); ite.ok(); ++ite) {
 getSolver().out() << "t" << *ite << endl;
 }
 }
 };

 ILCRESOURCEDEMON(PrintDemonSucc, PrintCtI, printNewSuccessors);
 ILCRESOURCEDEMON(PrintDemonPred, PrintCtI, printNewPredecessors);

 IloSolver solver ...;
 IlcResource resource ...;

 PrintCtI* printCt = new (solver) PrintCtI(solver);

 resource.whenSuccessors(PrintDemonSucc(printCt));
 resource.whenPredecessors(PrintDemonPred(printCt));

See Also: IlcResource, IlcResourceDemon

734

Macro ILCSCHEDULEDEMON
Definition file: ilsched/schedule.h

ILCSCHEDULEDEMON(DemonClass, ConstraintClass, method)

This macro creates an instance of the class DemonClass which is a subclass of IlcScheduleDemon. When
this demon is triggered, it executes the function method of the constraint ConstraintClass given as
parameter to the macro. The signature of this method must be: void
ConstraintClass::method(IlcActivity act). The activity given as argument is the one that is
responsible for the triggering of the demon; for example, the activity whose set of successors has changed.

Once the schedule demon class has been defined with the macro ILCSCHEDULEDEMON(DemonClass,
ConstraintClass, method), an instance of this demon can be created by passing an instance of
ConstraintClass as a parameter as follows:

 ConstraintClass* ct = ...;
 IlcScheduleDemon myDemon = DemonClass(ct);

See ILCRESOURCEDEMON for an example of code using a similar macro.

See Also: IlcSchedule, IlcScheduleDemon

735

Macro IlcTransitionCost
Definition file: ilsched/trancost.h

IlcTransitionCost(fct)

This macro defines a function that returns an instance of the class IlcTransitionCostObject. Such an
object can be passed to the function IlcUnaryResource::addNextTransitionCost or
IlcUnaryResource::addPrevTransitionCost. In that case, the object defines a transition cost function to
be used by the sequence constraint on the invoking unary resource.

Notice that this transition cost is constant, that is, only the function
IlcTransitionCostObject::getTransitionCost is defined and any call to
IlcTransitionCostObject::getTransitionCostMin or
IlcTransitionCostObject::getTransitionCostMax raises an error. Also note that the setup and
teardown costs are zero.

Example

The call IlcTransitionCost(functionName) defines the following function:

 IlcTransitionCostObject functionNameObject(IloSolver s);

The argument functionName should be a pointer to a function that takes two instances of the class
IlcResourceConstraint as its arguments and returns an integer. Here is an example of such a function:

 IlcInt myTransCostFct(const IlcResourceConstraint rct1,
 const IlcResourceConstraint rct2)
 {
 return IlcAbs(rct1.getActivity().getTransitionType() -
 rct2.getActivity().getTransitionType());
 }

Now using that function and the call IlcTransitionCost(myTransCostFct), we can define the following
function:

 IlcTransitionCostObject myTransCostFctObject(IloSolver s);

This function can be used to define a transition cost for a unary resource resource:

 IlcUnaryResource resource(schedule);
 s.add(resource.makeSequenceConstraint());
 resource.addNextTransitionCost(IlcTransitionCost(myTransCostFct);

See Also: IlcTransitionCostObject, IlcUnaryResource

736

Macro IlcTransitionTime
Definition file: ilsched/schedule.h

IlcTransitionTime(fct)

This macro defines a function that returns an instance of the class IlcTransitionTimeObject. Such an
object can be passed to constructors of the classes IlcUnaryResource and IlcStateResource. In that
case, the object defines which transition time function will be used for the resource being constructed.

Example

The call IlcTransitionTime(functionName) defines the following function:

 IlcTransitionTimeObject functionNameObject(IloSolver s0);

The argument functionName should be a pointer to a function that takes two instances of the class
IlcResourceConstraint as its arguments and returns an integer.

Here is an example of such a function:

 IlcInt myTransTimeFct(const IlcResourceConstraint rct1,
 const IlcResourceConstraint rct2)
 {
 return (rct1.getActivity().getDurationMin() +
 rct2.getActivity().getDurationMin());
 }

Now using that function and the call IlcTransitionTime(myTransTimeFct), you can define the following
function:

 IlcTransitionTimeObject myTransTimeFctObject(IloSolver s0);

This last function can be used to define the transition time of a resource, like this:

 IlcUnaryResource resource(schedule, myTransTimeFctObject(solver));

See Also: IlcStateResource, IlcTransitionTimeObject, IlcUnaryResource

737

Macro ILCUSERSHIFTOBJECT
Definition file: ilsched/shifts.h

ILCUSERSHIFTOBJECT(name, start, end, ilcAct, isMin)

This macro defines a user shift object, subclass of IlcUserShiftObject), named name. The referenced
arguments start and end define the interval [start, end) to be propagated. This time interval corresponds
to a possible position for the activity ilcAct. When the argument isMin is true, the interval [start, end) is
the first possible position of the activity, that is, [startMin, endMin). Otherwise, the interval is the last
possible position, that is, [startMax, endMax). Then the body of the macro has to affect valid values to
start and end arguments.

Notice that the written code must return IlcTrue when the computed interval [start, end) is valid, and
returns IlcFalse in case of fail.

For example, the following code defines a shift object that forbide beginning or ending during a week-end:

 ILCUSERSHIFTOBJECT(userWeekEndShift, start, end, ilcAct, isMin) {
 const IlcInt delta = (isMin) ? 7 : 4;
 if (start % 7 > 4) then start = (start / 7) *7 + delta;
 if (end % 7 > 4) then end = (end / 7) *7 + delta;
 return IlcTrue;
 }

The use of this macro is the only way to define a new subclass of IlcShiftObject.

Since the argument nameI (name followed by "I") is used to name the use shift object class, it is not possible to
use the same nameI for other classes.

See Also: IlcCalendar, IlcShiftObject

738

Macro ILORCTEXTUREFACTORY0
Definition file: ilsched/ilotextureparami.h

ILORCTEXTUREFACTORY0(nameI, solver)
ILORCTEXTUREFACTORY1(nameI, solver, t1, a1)
ILORCTEXTUREFACTORY2(nameI, solver, t1, a1, t2, a2)
ILORCTEXTUREFACTORY3(nameI, solver, t1, a1, t2, a2, t3, a3)
ILORCTEXTUREFACTORY4(nameI, solver, t1, a1, t2, a2, t3, a3, t4, a4)

This macro defines an RC Texture factory, a subclass of IloRCTextureFactoryI named nameI. The
argument solver is the name of the IloSolver that performs the extraction. Within the macro, this name
denotes the solver currently performing the extraction. The types and names of the data members must be
supplied as arguments to the macro. Each data member is defined by its type ti and a name ai. The call to the
macro must be followed immediately by the body of the extract member function of the factory class being
defined. It must return a pointer to an instance of IlcRCTextureFactoryI that corresponds to the extracted
object. Besides the definition of the class nameI, this macro also defines a function named name that creates an
instance of the class nameI and returns an instance of the class IloRCTextureFactoryI* that points to it.

The use of this macro is the only way to define a new subclass of IloRCTextureFactoryI.

Since the argument name is used to name the factory class, it is not possible to use the same name for other
classes.

Example

This example shows how to define a factory with two data members.

 ILORCTEXTUREFACTORY2(MyRCTextureFactory, mySolver,
 IloInt, iloInt,
 IloNumVar, iloVar) {
 use(mySolver, iloVar);
 IlcIntVar ilcVar = mySolver.getIntVar(iloVar);
 return new (mySolver.getHeap()) MyIlcRCTextureFactory(mySolver,
 iloInt, ilcVar);
 }

For more information, see Texture Measurements.

See Also: IloRCTextureFactoryI, IloRCTextureFactory, IlcRCTextureFactoryI, IlcRCTextureFactory

739

Macro ILOTEXTURECRITICALITYCALCULATOR0
Definition file: ilsched/ilotextureparami.h

ILOTEXTURECRITICALITYCALCULATOR0(nameI, solver)
ILOTEXTURECRITICALITYCALCULATOR1(nameI, solver, t1, a1)
ILOTEXTURECRITICALITYCALCULATOR2(nameI, solver, t1, a1, t2, a2)
ILOTEXTURECRITICALITYCALCULATOR3(nameI, solver, t1, a1, t2, a2, t3, a3)
ILOTEXTURECRITICALITYCALCULATOR4(nameI, solver, t1, a1, t2, a2, t3, a3, t4, a4)

This macro defines an texture criticality calculator, a subclass of IloTextureCriticalityCalculatorI
named nameI. The argument solver is the name of the IloSolver that performs the extraction. Within the
macro, this name denotes the solver currently performing the extraction. When n is greater than 0 (zero), the
types and names of the data members must be supplied as arguments to the macro. Each data member is
defined by its type ti and a name ai. The call to the macro must be followed immediately by the body of the
extract member function of the criticality calculator class being defined. It must return a pointer to an instance
of IlcTextureCriticalityCalculatorI that corresponds to the extracted object. Besides the definition of
the class nameI, this macro also defines a function named name that creates an instance of the class nameI and
returns an instance of the class IloTextureCriticalityCalculatorI* that points to it.

The use of this macro is the only way to define a new subclass of IloTextureCriticalityCalculatorI.

Since the argument name is used to name the texture criticality calculator class, it is not possible to use the same
name for other classes.

See the ILORCTEXTUREFACTORY0 macro for an analogous example of how this macro can be used.

For more information, see Texture Measurements.

See Also: IloTextureCriticalityCalculatorI, IloTextureCriticalityCalculator, IlcTextureCriticalityCalculatorI,
IlcTextureCriticalityCalculator

740

Macro ILOTRANSITIONCOSTOBJECT0
Definition file: ilsched/ilotransition.h

ILOTRANSITIONCOSTOBJECT0(_this, solver)
ILOTRANSITIONCOSTOBJECT4(_this, solver, t1, a1, t2, a2, t3, a3, t4, a4)
ILOTRANSITIONCOSTOBJECT3(_this, solver, t1, a1, t2, a2, t3, a3)
ILOTRANSITIONCOSTOBJECT2(_this, solver, t1, a1, t2, a2)
ILOTRANSITIONCOSTOBJECT1(_this, solver, t1, a1)

This macro defines a transition cost object, subclass of IloTransitionCostObjectI, named nameI. The
argument solver is the name of the IloSolver that performs the extraction. Within the code of the macro, this
name will denote the solver currently performing the extraction. When n is greater than 0 (zero), the types and
names of the data members must be supplied as arguments to the macro. Each data member is defined by its
type ti and a name ai. The call to the macro must be followed immediately by the body of the extract member
function of the transition cost object class being defined. It must return a pointer to an instance of
IlcTransitionCostObjectI that corresponds to the extracted object. Besides the definition of the class
nameI, this macro also defines a function named name that creates an instance of the class nameI and that
returns an instance of the class IloTransitionCostObject that points to it.

The use of this macro is the only way to define a new subclass of IloTransitionCostObjectI.

Since the argument name is used to name the transition cost object class, it is not possible to use the same
name for other classes.

For an example on the use of this macro, see information for the similar macro ILOTRANSITIONTIMEOBJECT0.

For more information, see Transition Costs.

See Also: IloTransitionCostObject, IloTransitionCostObjectI, IloTransitionCost

741

Macro ILOTRANSITIONTIMEOBJECT0
Definition file: ilsched/ilotransition.h

ILOTRANSITIONTIMEOBJECT0(_this, solver)
ILOTRANSITIONTIMEOBJECT4(_this, solver, t1, a1, t2, a2, t3, a3, t4, a4)
ILOTRANSITIONTIMEOBJECT3(_this, solver, t1, a1, t2, a2, t3, a3)
ILOTRANSITIONTIMEOBJECT2(_this, solver, t1, a1, t2, a2)
ILOTRANSITIONTIMEOBJECT1(_this, solver, t1, a1)

This macro defines a transition time object, a subclass of IloTransitionTimeObjectI named nameI. The
argument solver is the name of the IloSolver that performs the extraction. Within the macro, this name
denotes the solver currently performing the extraction. When n is greater than 0 (zero), the types and names of
the data members must be supplied as arguments to the macro. Each data member is defined by its type ti and
a name ai. The call to the macro must be followed immediately by the body of the extract member function of the
transition time object class being defined. It must return a pointer to an instance of
IlcTransitionTimeObjectI that corresponds to the extracted object. Besides the definition of the class
nameI, this macro also defines a function named name that creates an instance of the class nameI and that
returns an instance of the class IloTransitionTimeObject that points to it.

The use of this macro is the only way to define a new subclass of IloTransitionTimeObjectI.

Since the argument name is used to name the transition time object class, it is not possible to use the same
name for some other classes.

Example

This example shows how to define a transition time object with two data members. The first one is a constant that
corresponds to the transition time between any pair of resource constraints when the transition time is
considered. The second one is a Concert Technology boolean variable that states whether or not the transition
time is to be considered.

 ILOTRANSITIONTIMEOBJECT2(MyIloTTObject, mySolver,
 IloInt, delay,
 IloNumVar, iloVar) {
 use(mySolver, iloVar);
 IlcIntVar ilcVar = mySolver.getIntVar(iloVar);
 return new (mySolver.getHeap()) MyIlcTTObjectI(mySolver, delay, ilcVar);
 }

Here is how the corresponding IlcTransitionTimeObject could be defined:

 class MyIlcTTObjectI :public IlcTransitionTimeObjectI {
 private:
 IlcInt _delay;
 IlcIntVar _ilcVar;
 public:
 MyIlcTTObjectI(IloSolver solver, IlcInt delay, IlcIntVar ilcVar);
 ~MyIlcTTObjectI(){};
 IlcInt getTransitionTime(const IlcResourceConstraint,
 const IlcResourceConstraint) const {
 if (_ilcVar.getMin() == 1)
 return _delay;
 return 0;
 }
 };

 MyIlcTTObjectI::MyIlcTTObjectI(IloSolver solver,
 IlcInt delay, IlcIntVar ilcVar)
 :IlcTransitionTimeObjectI(),
 _delay (delay),
 _ilcVar (ilcVar)
 {};

The following statement creates an instance of the class MyIloTTObjectI and returns a handle that points to it.

742

 IloTransitionTimeObject myTTObj = MyIloTTObject(env, delay, iloVar);

This transition time could, for instance, be associated with a resource res by creating a transition time as follows:

 IloTransitionTime(res, myTTObj);

For more information, see Transition Times.

See Also: IloTransitionTimeObject, IloTransitionTimeObjectI, IloTransitionTime, IlcTransitionTimeObjectI

743

Typedef IlcSchedulerTraceFilter
Definition file: ilsched/schedtracei.h
Include file: <ilsched/ilsched.h>

IlcBool(* IlcSchedulerTraceFilter)(IlcBool, IlcSchedulerChange, IlcSolverChange)

An IlcSchedulerTraceFilter allows you to specify which kind of events should be handled by an instance
of IlcSchedulerPrintTrace. It is a pointer to a user-defined function having three arguments and returning a
boolean value.

If a filter is set (see IlcSchedulerPrintTrace::setFilter), the instance of IlcSchedulerPrintTrace
will call this function before handling the event. If the function returns IlcTrue, then the event will be handled.
Otherwise, it is ignored.

typedef IlcBool (*IlcSchedulerTraceFilter)(IlcBool, IlcSchedulerChange, IlcSolverChange);

IlcBool equals IlcTrue if the event is a beginningevent; that is, the event has yet to happen but will happen.
If IlcBool is equal to IlcFalse, it means that the event is an ending event, and that the corresponding
modifications have been made.

IlcSchedulerChange indicates the kind of event that occurs (for example, modification of the start of an
activity or modification of the capacity of a resource constraint).

If the change is related to a Solver variable (such as the start of an activity), then IlcSolverChange indicates
how this object is modified (for example, the minimum is changed). If there is no such Solver variable, then this
argument equals IlcUndefinedSolverChange.

Example

In this example, we do not want to have printouts after the events. If the event is related to an activity, we only
want to know when the start of the activity increases or becomes bound.

In all other cases, the function returns IlcFalse, so that the event will not be handled.

 IlcBool MyFilter(IlcBool isBeginEvent,
 IlcSchedulerChange change,
 IlcSolverChange solverChange) {
 if (!isBeginEvent) {
 return IlcFalse;
 }
 switch (change) {
 case IlcActivityStart:
 return ((solverChange == IlcIntExpSetMin) ||
 (solverChange == IlcIntExpSetValue));
 case IlcActivityEnd:
 case IlcActivityProcessingTime:
 case IlcActivityDuration:
 case IlcActivityDurationOfBreaks:
 case IlcActivityStartOverlap:
 case IlcActivityEndOverlap:
 return IlcFalse;
 default:
 return IlcTrue;
 }
 }

 int main() {

 ...

 IlcSchedulerPrintTrace trace(scheduler);
 trace.setFilter(MyFilter);

 ...

744

 }

See Also: IlcSchedulerPrintTrace, IlcSchedulerChange, IlcSolverChange

745

	Table of Contents
	About This Manual
	Concepts
	Union of Neighborhoods
	Intersection of Neighborhoods
	Group optim.scheduler.modeling
	Group optim.scheduler.solving
	Class IloSchedulerSolution::ActivityIterator
	Class IloGranularFunction::Cursor
	Class IlcActivity
	Class IlcActivityDeltaIterator
	Class IlcActivityIterator
	Class IlcAltRCDemon
	Class IlcAltResConstraint
	Class IlcAltResConstraintIterator
	Class IlcAltResSet
	Class IlcAltResSetIterator
	Class IlcAnyTimetable
	Class IlcAnyTimetableCursor
	Class IlcAnyTimetableIterator
	Class IlcCalendar
	Class IlcCapResource
	Class IlcContinuousReservoir
	Class IlcContinuousReservoirIterator
	Class IlcDiscreteEnergy
	Class IlcDiscreteEnergyIterator
	Class IlcDiscreteResource
	Class IlcDiscreteResourceIterator
	Class IlcFollowingActivityIterator
	Class IlcGranularFunction
	Class IlcGranularFunctionCursor
	Class IlcIntervalList
	Class IlcIntervalListCursor
	Class IlcIntTimetable
	Class IlcIntTimetableCursor
	Class IlcIntTimetableIterator
	Class IlcIntToFloatSegmentFunction
	Class IlcIntToFloatSegmentFunctionCursor
	Class IlcPossibleAltResIterator
	Class IlcPrecedenceConstraint
	Class IlcPrecedingActivityIterator
	Class IlcProbabilisticCriticalityCalculatorI
	Class IlcRCTexture
	Class IlcRCTextureESTFactoryI
	Class IlcRCTextureESTI
	Class IlcRCTextureFactory
	Class IlcRCTextureFactoryI
	Class IlcRCTextureI
	Class IlcRCTextureIterator
	Class IlcRCTextureProbabilisticFactoryI
	Class IlcRCTextureProbabilisticI
	Class IlcRCTextureTargetFactoryI
	Class IlcRCTextureTargetI
	Class IlcRelativeDemandCriticalityCalculatorI
	Class IlcReservoir
	Class IlcReservoirIterator
	Class IlcResource
	Class IlcResourceConstraint
	Class IlcResourceConstraintDeltaIterator
	Class IlcResourceConstraintIterator
	Class IlcResourceDemon
	Class IlcResourceIterator
	Class IlcResourceTexture
	Class IlcResourceTextureIterator
	Class IlcSchedule
	Class IlcScheduleDemon
	Class IlcScheduler
	Class IlcSchedulerPrintTrace
	Class IlcSchedulerTrace
	Class IlcSchedulerTraceI
	Class IlcShape
	Class IlcShiftListObject
	Class IlcShiftObject
	Class IlcStateResource
	Class IlcStateResourceIterator
	Class IlcTextureCriticalityCalculator
	Class IlcTextureCriticalityCalculatorI
	Class IlcTimeBoundConstraint
	Class IlcTransitionCostObject
	Class IlcTransitionCostObjectI
	Class IlcTransitionTable
	Class IlcTransitionTimeObject
	Class IlcTransitionTimeObjectI
	Class IlcUnaryResource
	Class IlcUnaryResourceIterator
	Class IlcVariableSlopeShape
	Class IlcWorkServer
	Class IloActivity
	Class IloActivityBasicParam
	Class IloActivityBreakParam
	Class IloActivityConstraintsParam
	Class IloActivityOverlapParam
	Class IloActivityShiftParam
	Class IloAltResConstraintIterator
	Class IloAltResSet
	Class IloCalendar
	Class IloCapResource
	Class IloContinuousReservoir
	Class IloCoverConstraint
	Class IloDiscreteEnergy
	Class IloDiscreteResource
	Class IloGranularFunction
	Class IloPrecedenceConstraint
	Class IloRCTextureFactory
	Class IloRCTextureFactoryI
	Class IloRelocateActivityNHoodI
	Class IloReservoir
	Class IloResource
	Class IloResourceConstraint
	Class IloResourceConstraintIterator
	Class IloResourceParam
	Class IloResourceValue
	Class IloSchedulerEnv
	Class IloSchedulerLargeNHood
	Class IloSchedulerLargeNHoodI
	Class IloSchedulerSolution
	Class IloShape
	Class IloShiftListObject
	Class IloShiftObject
	Class IloStateResource
	Class IloTextureCriticalityCalculator
	Class IloTextureCriticalityCalculatorI
	Class IloTextureParam
	Class IloTimeBoundConstraint
	Class IloTimeWindowNHoodI::IloTimeWindow
	Class IloTimeWindowNHood
	Class IloTimeWindowNHoodI
	Class IloTransitionCost
	Class IloTransitionCostObject
	Class IloTransitionCostObjectI
	Class IloTransitionParam
	Class IloTransitionTime
	Class IloTransitionTimeObject
	Class IloTransitionTimeObjectI
	Class IloUnaryResource
	Class IloVariableSlopeShape
	Class IloAltResSet::Iterator
	Class IlcResource::ResourceConstraintDeltaIterator
	Class IlcResource::ResourceConstraintIterator
	Class IloSchedulerSolution::ResourceConstraintIterator
	Class IloSchedulerSolution::ResourceIterator
	Class IlcCalendar::ShiftObjectIterator
	Class IloCalendar::ShiftObjectIterator
	Enumeration IlcActivityIteratorFilter
	Enumeration IlcFailReason
	Enumeration IlcGranularFunctionRoundingMode
	Enumeration IlcPrecedenceConstraintType
	Enumeration IlcResourceConstraintIteratorFilter
	Enumeration RankFilter
	Enumeration IlcSchedVariable
	Enumeration IlcSchedulerChange
	Enumeration Type
	Enumeration IlcSlopeConstraintMode
	Enumeration IlcSolverChange
	Enumeration IlcTimeBoundConstraintType
	Enumeration IlcTimeExtent
	Enumeration IloActivitySelector
	Enumeration IloEnforcementLevel
	Enumeration IloGranularFunctionRoundingMode
	Enumeration IloPrecedenceConstraintType
	Enumeration IloResourceConstraintSelector
	Enumeration IloResourceSelector
	Enumeration IloSchedVariable
	Enumeration IloResourceConstraintIteratorFilter
	Enumeration IloSequenceIndexSelector
	Enumeration Type
	Enumeration IloTimeBoundConstraintType
	Enumeration IloTimeExtent
	Global function IloSetTimesForward
	Global function IlcActivityStartVarBoundPredicate
	Global function IlcResourceConstraintSurelyContributesPredicate
	Global function IlcAltResConstraintNbPossibleEvaluator
	Global function IlcActivityRandomEvaluator
	Global function IlcResourceConstraintCapacityMinEvaluator
	Global function IlcResourceConstraintNextTransitionCostEvaluator
	Global function IlcResourceConstraintCapacityMaxEvaluator
	Global function IlcActivityIntegralExp
	Global function IlcResourceConstraintProvidingConstraintPredicate
	Global function IlcActivityStartMaxEvaluator
	Global function IloTextureSuccessorGoal
	Global function IlcAltResConstraintVariableConstraintPredicate
	Global function IlcResourceIsCapacityResourcePredicate
	Global function IlcResourceConstraintSlopeEvaluator
	Global function IlcResourceIsUnaryResourcePredicate
	Global function IlcActivityIsRankedPredicate
	Global function IlcAssign
	Global function IlcScheduleOrPostpone
	Global function IlcResourceConstraintPossibleLastPredicate
	Global function IloTimeWindowBackwardChronologicalComparator
	Global function IloTimeWindowBackwardChronologicalComparator
	Global function IlcRank
	Global function IlcResourceConstraintSetupPredicate
	Global function IlcResourceConstraintTeardownPredicate
	Global function IloUnionNHood
	Global function IlcActivityResourceConstraintTranslator
	Global function IlcActivityAltResConstraintTranslator
	Global function IlcResourceConstraintPossibleSetupPredicate
	Global function IlcResourceConstraintPossibleFirstPredicate
	Global function IlcActivityIsBreakablePredicate
	Global function IlcRCTextureProbabilisticFactory
	Global function IlcAssignAlternative
	Global function IlcResourceConstraintVariableConstraintPredicate
	Global function IlcActivityProcessingTimeMaxEvaluator
	Global function IlcResourceConstraintStateSetConstraintPredicate
	Global function IlcTryAssign
	Global function IlcScheduleOrPostponeBackward
	Global function IloIntersectNHood
	Global function IlcResourceTextureEvaluator
	Global function IlcResourceIsReservoirPredicate
	Global function IlcResourceConstraintNegativeConstraintPredicate
	Global function IlcRCTextureTargetFactory
	Global function IlcAltResConstraintCapacityEvaluator
	Global function IlcRelativeDemandCriticalityCalculator
	Global function IlcProbabilisticCriticalityCalculator
	Global function IloResourceIntegralConstraint
	Global function IlcResourceConstraintHasNextPredicate
	Global function IlcResourceConstraintStateConstraintPredicate
	Global function IlcResourceConstraintPossiblePrevVisitor
	Global function IloResourceFunctionalConstraint
	Global function IlcResourceConstraintPrevTransitionCostEvaluator
	Global function IlcResourceConstraintSlopeConstraintPredicate
	Global function IlcTestSequencedResource
	Global function IlcResourceRandomEvaluator
	Global function IlcRankBackward
	Global function IloSequenceForward
	Global function IlcTextureSuccessorGoal
	Global function IlcActivityTransitionTypeEvaluator
	Global function IlcActivityPostponedBackwardPredicate
	Global function IlcResourceGlobalSlackEvaluator
	Global function IlcSetTimesBackward
	Global function IlcActivityDurationMinEvaluator
	Global function IlcResourceLocalSlackEvaluator
	Global function IlcSequenceBackward
	Global function IlcResourceIsDiscreteResourcePredicate
	Global function IlcActivityEndMaxEvaluator
	Global function IlcResourceIsContinuousReservoirPredicate
	Global function IlcActivityStartMinEvaluator
	Global function IlcMakeTransitionCost
	Global function IloRankForward
	Global function operator<<
	Global function IloShapeLowerThan
	Global function IloRelocateActivityNHood
	Global function IlcFunctionalExp
	Global function IlcActivityEndVarBoundPredicate
	Global function IloRankBackward
	Global function IlcActivityDurationMaxEvaluator
	Global function IlcTextureAltSuccessorGoal
	Global function IlcResourceConstraintHasPrevPredicate
	Global function IlcResourceIsStateResourcePredicate
	Global function IlcTryRankLast
	Global function IlcMakeTransitionTime
	Global function IlcResourceConstraintPossibleTeardownPredicate
	Global function IlcRCTextureESTFactory
	Global function IlcResourceIsDiscreteEnergyPredicate
	Global function IlcGetThreadId
	Global function IlcResourceConstraintPossibleNextVisitor
	Global function IlcAltResConstraintResourceSelectedPredicate
	Global function IlcResourceRankedPredicate
	Global function IloSequenceBackward
	Global function IlcShapeLowerThan
	Global function IlcResourceHasTexturePredicate
	Global function IlcResourceConstraintRandomEvaluator
	Global function IlcResourceResourceConstraintTranslator
	Global function IlcResourceResourceConstraintTranslator
	Global function IlcResourceSequencedPredicate
	Global function IlcResourceConstraintInwardConstraintPredicate
	Global function IlcActivityEndMinEvaluator
	Global function operator<=
	Global function IloTextureAltSuccessorGoal
	Global function IlcResourceHasBreaksPredicate
	Global function IlcActivityProcessingTimeMinEvaluator
	Global function IloTimeWindowForwardChronologicalComparator
	Global function IloTimeWindowForwardChronologicalComparator
	Global function IlcResourceCapacityEvaluator
	Global function IloAssignAlternative
	Global function IlcResourceEnergyEvaluator
	Global function IlcResourceConstraintCapacityConstraintPredicate
	Global function IloSetTimesBackward
	Global function IlcSequence
	Global function IlcResourceClosedPredicate
	Global function IlcActivityPostponedPredicate
	Global function IlcSetTimes
	Global function IlcTrySetSuccessor
	Global function IlcResourceConstraintVirtualNodePredicate
	Global function IlcTryRankFirst
	Global function IlcActivityProcessingTimeVarBoundPredicate
	Global function IlcResourceHasAltResConstraintPredicate
	Global function IlcResourceConstraintPossiblyContributesPredicate
	Macro ILCALTRCDEMON
	Macro ILCRESOURCEDEMON
	Macro ILCSCHEDULEDEMON
	Macro IlcTransitionCost
	Macro IlcTransitionTime
	Macro ILCUSERSHIFTOBJECT
	Macro ILORCTEXTUREFACTORY0
	Macro ILOTEXTURECRITICALITYCALCULATOR0
	Macro ILOTRANSITIONCOSTOBJECT0
	Macro ILOTRANSITIONTIMEOBJECT0
	Typedef IlcSchedulerTraceFilter

