
IBM ILOG Solver

Reference Manual

June 2009

Copyright © International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Table of Contents
About This Manual..1

Concepts...3

Group optim.concert..34

Group optim.concert.extensions..39

Group optim.concert.solver...40

Group optim.concert.xml...42

Group optim.solver...43

Group optim.solver.iim..55

Class IloSolutionPool::AddedEvent...58

Class IloAlgorithm::CannotExtractException..59

Class IloAlgorithm::CannotRemoveException..60

Class IloSolutionPool::EndEvent..61

Class IloPoolOperator::Event..62

Class IloSolutionPool::Event...63

Class IloAlgorithm::Exception..64

Class IlcAnyArray...65

Class IlcAnyDeltaPossibleIterator..68

Class IlcAnyDeltaRequiredIterator..69

Class IlcAnyExp..70

Class IlcAnyExpIterator...75

Class IlcAnyPredicate..77

Class IlcAnyPredicateI...79

Class IlcAnySelect..81

Class IlcAnySet...83

Class IlcAnySetArray...86

Class IlcAnySetIterator..89

Class IlcAnySetSelect..91

Class IlcAnySetVar...93

Class IlcAnySetVarArray..98

i

Table of Contents
Class IlcAnySetVarArrayIterator...101

Class IlcAnyToIntExpFunction..102

Class IlcAnyToIntFunction..104

Class IlcAnyTupleSet...106

Class IlcAnyVar...109

Class IlcAnyVarArray...112

Class IlcAnyVarArrayIterator...118

Class IlcAnyVarDeltaIterator...119

Class IlcBoolVar...121

Class IlcBoolVarArray..123

Class IlcBox..126

Class IlcBoxIterator..131

Class IlcConstAnyArray...132

Class IlcConstFloatArray...134

Class IlcConstIntArray...137

Class IlcConstraint...139

Class IlcConstraintAggregator..142

Class IlcConstraintArray..143

Class IlcConstraintI..145

Class IlcDemon...149

Class IlcDemonI..151

Class IlcFloatArray...153

Class IlcFloatExp..156

Class IlcFloatExpIterator..164

Class IlcFloatSet...166

Class IlcFloatSetIterator...169

Class IlcFloatVar...171

Class IlcFloatVarArray...176

Class IlcFloatVarDeltaIterator..183

ii

Table of Contents
Class IlcGoal...185

Class IlcGoalI..187

Class IlcIndex..190

Class IlcIntArray...192

Class IlcIntDeltaPossibleIterator...195

Class IlcIntDeltaRequiredIterator..196

Class IlcIntExp..197

Class IlcIntExpIterator..204

Class IlcIntPredicate...206

Class IlcIntPredicateI..208

Class IlcIntSelect..210

Class IlcIntSelectEvalI..212

Class IlcIntSelectI...213

Class IlcIntSet...214

Class IlcIntSetArray..217

Class IlcIntSetIterator...220

Class IlcIntSetSelect...222

Class IlcIntSetVar...224

Class IlcIntSetVarArray..230

Class IlcIntSetVarArrayIterator..233

Class IlcIntToFloatExpFunction..234

Class IlcIntToFloatExpFunctionI...236

Class IlcIntToIntExpFunction..237

Class IlcIntToIntExpFunctionI...239

Class IlcIntToIntStepFunction...240

Class IlcIntToIntStepFunctionCursor...246

Class IlcIntTupleSet..248

Class IlcIntVar...251

Class IlcIntVarArray..255

iii

Table of Contents
Class IlcIntVarArrayIterator...264

Class IlcIntVarDeltaIterator..265

Class IlcMemoryManagerI..267

Class IlcMTNodeEvaluatorI..269

Class IlcMTSearchLimitI..271

Class IlcMTSearchSelectorI...273

Class IlcNeighborIdentifier..275

Class IlcNodeEvaluator..277

Class IlcNodeEvaluatorI...278

Class IlcPathTransit...280

Class IlcPathTransitEvalI...282

Class IlcPathTransitI..283

Class IlcPrintTrace...284

Class IlcRandom...286

Class IlcRevAny..289

Class IlcRevBool...291

Class IlcRevFloat..293

Class IlcRevInt..295

Class IlcSearchLimit...297

Class IlcSearchLimitI..298

Class IlcSearchMonitor..300

Class IlcSearchMonitorI...301

Class IlcSearchNode..304

Class IlcSearchSelector...307

Class IlcSearchSelectorI..308

Class IlcSoftConstraint..311

Class IlcSoftCtHandler...313

Class IlcTrace..317

Class IlcTraceI...318

iv

Table of Contents
Class IloAlgorithm..329

Class IloAllDiff..336

Class IloAllMinDistance...338

Class IloAnd..340

Class IloAnyArray...343

Class IloAnyBinaryPredicate...345

Class IloAnySet...347

Class IloAnySetValueSelector...351

Class IloAnySetValueSelectorI..353

Class IloAnySetVar...355

Class IloAnySetVarArray...359

Class IloAnyTernaryPredicate...361

Class IloAnyTupleSet...363

Class IloAnyTupleSetIterator...365

Class IloAnyValueSelector..366

Class IloAnyValueSelectorI...368

Class IloAnyVar..370

Class IloAnyVarArray...372

Class IloArray<>...374

Class IloBarrier...377

Class IloBaseEnvMutex...379

Class IloBestSelector<,>..380

Class IloBoolArray..383

Class IloBoolVar...385

Class IloBoolVarArray..387

Class IloBox..390

Class IloBranchSelector..392

Class IloBranchSelectorI...393

Class IloCsvReader::IloColumnHeaderNotFoundException..394

v

Table of Contents
Class IloComparator<>..395

Class IloCompositeComparator<>..398

Class IloCondition..399

Class IloConstraint...402

Class IloConstraintArray..404

Class IloCPConstraintI...406

Class IloCPTrace..408

Class IloCPTraceI...409

Class IloCsvLine...410

Class IloCsvReader..414

Class IloCsvReader::IloCsvReaderParameterException..421

Class IloCsvTableReader...422

Class IloCustomizableGoal..426

Class IloDiff...429

Class IloDistribute..431

Class IloCsvReader::IloDuplicatedTableException...434

Class IloEAOperatorFactory..435

Class IloEmptyHandleException...440

Class IloEnv..441

Class IloEnvironmentMismatch..446

Class IloEvaluator<>..447

Class IloEvent...449

Class IloException..450

Class IloExplainer...451

Class IloExplicitEvaluator<>..453

Class IloExpr...456

Class IloExprArray..463

Class IloExtractable..465

Class IloExtractableArray..470

vi

Table of Contents
Class IloExtractableVisitor..472

Class IloFastMutex...474

Class IloCsvReader::IloFieldNotFoundException...477

Class IloCsvReader::IloFileNotFoundException...478

Class IloFunction<,>...479

Class IloGoal...480

Class IloGoalI..482

Class IloIfThen..484

Class IloIIM..486

Class IloCsvReader::IloIncorrectCsvReaderUseException..488

Class IloIntArray...489

Class IloIntBinaryPredicate...492

Class IloIntervalList..494

Class IloIntervalListCursor..498

Class IloIntExpr...501

Class IloIntExprArg..503

Class IloIntExprArray...504

Class IloIntSet...506

Class IloIntSetValueSelector...511

Class IloIntSetValueSelectorI..513

Class IloIntSetVar...515

Class IloIntSetVarArray..519

Class IloIntTernaryPredicate...521

Class IloIntTupleSet...523

Class IloIntTupleSetIterator...525

Class IloIntValueSelector...526

Class IloIntValueSelectorI..528

Class IloIntVar...530

Class IloIntVarArray...535

vii

Table of Contents
Class IloInverse..538

Class IloIterator<>..540

Class IloLargeNHoodI..542

Class IloLexicographicComparator<>..546

Class IloCsvReader::IloLineNotFoundException..547

Class IloListener...548

Class IloMetaHeuristic...549

Class IloMetaHeuristicI..553

Class IloModel...557

Class IloMultipleEvaluator<,>..560

Class IloMutexDeadlock...562

Class IloMutexNotOwner...563

Class IloMutexProblem..564

Class IloNeighborIdentifier..565

Class IloNHood...567

Class IloNHoodArray..571

Class IloNHoodI..573

Class IloNHoodModifierI..577

Class IloNodeEvaluator..581

Class IloNodeEvaluatorI...583

Class IloNot...585

Class IloNumArray..587

Class IloNumExpr...589

Class IloNumExprArg...592

Class IloNumExprArray..593

Class IloNumToAnySetStepFunction...595

Class IloNumToAnySetStepFunctionCursor...603

Class IloNumToNumSegmentFunction..606

Class IloNumToNumSegmentFunctionCursor..612

viii

Table of Contents
Class IloNumToNumStepFunction..615

Class IloNumToNumStepFunctionCursor..620

Class IloNumVar...622

Class IloNumVarArray..627

Class IloObjective...631

Class IloOr...636

Class IloPack...639

Class IloParallelSolver...641

Class IloParetoComparator<>...645

Class IloPathLength...646

Class IloPathTransitI..650

Class IloPoolOperator..651

Class IloPoolOperatorFactory...655

Class IloPoolProc...660

Class IloPredicate<>...663

Class IloRandom...664

Class IloRandomSelector<,>...667

Class IloRange..669

Class IloRangeArray...674

Class IloRouletteWheelSelector<,>...680

Class IloSearchLimit..682

Class IloSearchLimitI...684

Class IloSearchSelector...686

Class IloSearchSelectorI..688

Class IloSelector<,>..690

Class IloSemaphore...691

Class IloSequence..693

Class IloSolution...695

Class IloSolutionDeltaCheck...705

ix

Table of Contents
Class IloSolutionDeltaCheckI..707

Class IloSolutionIterator<>..708

Class IloSolutionManip..709

Class IloSolutionPool...710

Class IloSolver..715

Class IloSolverExplainer..744

Class IloCsvReader::IloTableNotFoundException..745

Class IloTabuSearch..746

Class IloTimer...748

Class IloTournamentSelector<,>...750

Class IloTranslator<,>..752

Class IloVisitor<,>...753

Class IloXmlContext...754

Class IloXmlInfo..760

Class IloXmlReader..771

Class IloXmlWriter..776

Class IloPoolOperator::InvocationEvent..780

Class IloAnySet::Iterator..781

Class IloExplicitEvaluator::Iterator...783

Class IloIntSet::Iterator..785

Class IloModel::Iterator..787

Class IloSolution::Iterator..788

Class IloSolutionPool::Iterator..790

Class IloExpr::LinearIterator...792

Class IloCsvReader::LineIterator..794

Class IloCsvTableReader::LineIterator...796

Class IloNumExpr::NonLinearExpression...798

Class IloAlgorithm::NotExtractedException..799

Class IloSolutionPool::RemovedEvent..800

x

Table of Contents
Class IloPoolOperator::SuccessEvent...801

Class IloCsvReader::TableIterator..802

Enumeration IlcErrorType..803

Enumeration IlcFilterLevel...806

Enumeration IlcFilterLevelConstraint...807

Enumeration IlcFloatDisplay...808

Enumeration IlcPruneMode...810

Enumeration Status..811

Enumeration IloDeleterMode...812

Enumeration Type..813

Enumeration Sense..814

Enumeration FailureStatus..815

Enumeration IloSynchronizeMode..816

Global function IloPiecewiseLinear..818

Global function IlcChooseMinMinInt..819

Global function IlcMax...820

Global function IlcMax...821

Global function IlcMax...822

Global function IlcMax...823

Global function IloFloor...824

Global function IloFloor...825

Global function IloBFSEvaluator...826

Global function IlcChooseFirstUnboundAnySet...827

Global function IloSwap...828

Global function IlcImpactInformation...829

Global function IloOrGoal..830

Global function IloMaximizeVar..831

Global function IloGenerateBounds...832

Global function IlcCos..833

xi

Table of Contents
Global function IlcNullIntersect...834

Global function IlcMinDistance...835

Global function IlcTan..836

Global function IloMonotonicIncreasingNumExpr..837

Global function IlcMTBFSEvaluator..838

Global function IloIfThenElse..839

Global function IloIfThenElse..840

Global function IloEqMax...841

Global function IloStoreSolution...842

Global function IlcComputeMin...843

Global function IloChooseMinMaxInt...844

Global function IloSum..845

Global function IloAbstraction..846

Global function IlcChooseFirstUnboundBool..847

Global function IlcChooseMaxMaxInt...848

Global function IlcLinearCtAggregator..849

Global function IloRestartGoal..850

Global function IloFirstSolution..851

Global function IlcTableConstraint...852

Global function IloRestoreSolution..854

Global function IlcSquare..855

Global function operator!...856

Global function operator!...857

Global function operator!...858

Global function IlcNull..859

Global function IlcLocalImpactVarEvaluator...860

Global function IloAdd...861

Global function IloOrLimit...862

Global function IlcReductionInformation...863

xii

Table of Contents
Global function IloTimeLimit...864

Global function IlcChooseFirstUnboundInt...865

Global function IloSource..866

Global function IlcChooseMinRegretMin...867

Global function IloBestSolutionComparator..868

Global function IloEqUnion...869

Global function IloEqUnion...870

Global function IlcPiecewiseLinear..871

Global function IloDDSEvaluator..872

Global function IloCeil..873

Global function IloCeil..874

Global function IloImprove..875

Global function IlcChooseMaxRegretMax..876

Global function IlcSetMax..877

Global function IlcEqUnion..878

Global function IlcEqUnion..879

Global function IlcEqUnion..881

Global function IlcEqUnion..882

Global function ILORTTIN..884

Global function IloIntersection..885

Global function operator%...886

Global function operator%...887

Global function IlcComputeMax..888

Global function IlcAbstraction..889

Global function IloMinimize...890

Global function IlcSum...891

Global function IlcSum...892

Global function IlcSum...893

Global function IlcSum...894

xiii

Table of Contents
Global function operator+..895

Global function operator+..896

Global function operator+..897

Global function operator+..898

Global function operator+..899

Global function operator+..900

Global function IloTest...901

Global function IloIsNAN...902

Global function IloChooseMinRegretMin...903

Global function IlcOr..904

Global function IlcMonotonicIncreasingFloatExp...905

Global function IlcArcTan..906

Global function IlcChooseMinMaxFloat...907

Global function IlcSuccessRateValueEvaluator..908

Global function IloCommitDelta..909

Global function IlcChooseFirstUnboundAny...910

Global function IlcApply..911

Global function IloWorstSolutionComparator...912

Global function IloGetClone..913

Global function IlcNotMember...914

Global function IlcNotMember...915

Global function IlcGenerate...916

Global function IloBestInstantiate..918

Global function IloLeLex..919

Global function IlcBestGenerate...920

Global function IloLimitSearch..921

Global function IlcScalProd...922

Global function IlcBestInstantiate...923

Global function IlcBestInstantiate...924

xiv

Table of Contents
Global function IlcBestInstantiate...925

Global function IloChooseMaxRegretMax..926

Global function IlcChooseMinSizeFloat...927

Global function IloDifference...928

Global function IloDifference...929

Global function IlcChooseMinRegretMax...930

Global function IloSetToValue...931

Global function IlcRestartGoal..932

Global function IloPower...933

Global function IloSelectSolutions...934

Global function IlcSetOf...935

Global function IloSelectSearch..936

Global function IloMaximize..937

Global function IloLog..938

Global function IlcReductionVarEvaluator...939

Global function IlcMember...940

Global function IlcMember...941

Global function IloDisableNANDetection...942

Global function operator<<..943

Global function operator<<..944

Global function operator<<..945

Global function operator<<..946

Global function operator<<..947

Global function operator<<..948

Global function operator-...949

Global function operator-...950

Global function operator-...951

Global function operator-...952

Global function operator-...953

xv

Table of Contents
Global function IloComposePareto...954

Global function IloSelectProcessor..955

Global function IlcChooseMinSizeInt...956

Global function IlcDistribute..957

Global function IlcLeLex..959

Global function IlcArcSin...960

Global function operator new..961

Global function operator new..962

Global function IloMax...963

Global function IloMax...964

Global function IloMax...965

Global function IloTableConstraint...966

Global function IlcPathLength...967

Global function operator==..969

Global function operator==..970

Global function operator==..971

Global function operator==..972

Global function operator==..973

Global function operator==..974

Global function operator==..975

Global function operator==..976

Global function IloSplit..977

Global function IlcSplit...978

Global function IloChangeValue...979

Global function IloDFSEvaluator...980

Global function IlcAbs..981

Global function IlcAllDiffAggregator..982

Global function IlcRandomVarEvaluator..983

Global function IlcSin...984

xvi

Table of Contents
Global function IlcDegreeInformation..985

Global function IlcDegreeVarEvaluator..986

Global function IlcEqAbstraction..987

Global function IloEqSum..988

Global function IloRandomize...989

Global function IlcSizeVarEvaluator...990

Global function operator!=..991

Global function operator!=..992

Global function operator!=..993

Global function operator!=..994

Global function IloDestroyAll..995

Global function operator/...996

Global function operator/...997

Global function operator/...998

Global function IloAddConstraint...999

Global function IloDichotomize...1000

Global function IlcMinimizeVar...1001

Global function IloGoalFail..1002

Global function operator<=..1003

Global function operator<=..1004

Global function operator<=..1005

Global function operator<=..1006

Global function operator<=..1007

Global function IlcImpactValueEvaluator...1008

Global function IlcChooseMinSizeAnySet...1009

Global function IlcChooseFirstUnboundFloat...1010

Global function IlcChooseMaxMinInt..1011

Global function IloChooseMaxSizeInt..1012

Global function IloExecuteProcessor...1013

xvii

Table of Contents
Global function IlcPower..1014

Global function IlcAllDiff..1015

Global function IloSetMax..1016

Global function IloChooseMaxRegretMin..1017

Global function IloAllNullIntersect..1018

Global function IloChooseMinSizeInt...1019

Global function IlcSuccessRateVarEvaluator..1020

Global function IloChooseMaxMaxInt...1021

Global function IloEqIntersection...1022

Global function IloBoolAbstraction..1023

Global function IlcAnd...1024

Global function IlcEqPartition...1025

Global function IlcIfThen..1026

Global function IloNullIntersect..1027

Global function IloEndMT..1028

Global function operator>>..1029

Global function operator>>..1030

Global function IlcLimitSearch..1031

Global function IlcMTMinimizeVar..1032

Global function operator>..1033

Global function operator>..1034

Global function operator>..1035

Global function operator>..1036

Global function IloUpdate..1037

Global function IlcChooseFirstUnboundIntSet..1038

Global function IloSample...1039

Global function IlcAllMinDistance...1040

Global function IloBestGenerate...1041

Global function IlcUnion..1042

xviii

Table of Contents
Global function IlcUnion..1044

Global function IlcUnion..1046

Global function IlcUnion..1047

Global function IloStoreBestSolution...1048

Global function IloFlip..1049

Global function IlcSizeOverDegreeVarEvaluator...1050

Global function IloGoalTrue..1051

Global function IloMonotonicDecreasingNumExpr...1052

Global function IloChooseMaxMinInt...1053

Global function ilc_trace_stop_here...1054

Global function IlcSubsetEq..1055

Global function IlcMonotonicDecreasingFloatExp..1056

Global function IlcGoalFail..1057

Global function operator&&...1058

Global function operator&&...1059

Global function operator&&...1060

Global function operator&&...1061

Global function IlcArcCos..1062

Global function IlcDegToRad..1063

Global function IlcGoalTrue...1064

Global function IloMin..1065

Global function IloMin..1066

Global function IloMin..1067

Global function IlcSolveBounds...1068

Global function IlcEqIntersection...1069

Global function IloPartition..1070

Global function IlcPartition..1071

Global function IlcLogicAggregator...1072

Global function IlcBFSEvaluator...1073

xix

Table of Contents
Global function IloFailLimit...1074

Global function IloAndGoal...1075

Global function IlcIntersection..1076

Global function IlcChooseMaxRegretMin...1077

Global function IloEnableNANDetection..1078

Global function IloSubsetEq..1079

Global function IloIDFSEvaluator..1080

Global function IloScanDeltas...1081

Global function IloSBSEvaluator..1082

Global function IloRound...1083

Global function IloInstantiate..1084

Global function IloUnion..1085

Global function IloUnion..1086

Global function IlcImpactVarEvaluator...1087

Global function IloScanNHood..1088

Global function IlcChooseMinSizeAny...1089

Global function IloChooseMinMinInt..1090

Global function IloRemoveValue...1091

Global function IlcElementNEq...1092

Global function IlcElementNEq...1093

Global function IlcChooseMaxSizeInt...1094

Global function IlcRadToDeg..1095

Global function ilc_fail_stop_here..1096

Global function IlcLog..1097

Global function IloScalProd...1098

Global function IloScalProd...1099

Global function IloScalProd...1100

Global function IloScalProd...1101

Global function IloSolutionEvaluator...1102

xx

Table of Contents
Global function IloSolutionEvaluator...1103

Global function IloSolutionEvaluator...1104

Global function IloSolutionEvaluator...1105

Global function operator>=..1106

Global function operator>=..1107

Global function operator>=..1108

Global function operator>=..1109

Global function IloMinimizeVar...1110

Global function IlcElementEq..1111

Global function IlcElementEq..1112

Global function IloCompose..1113

Global function IloSolveOnce..1114

Global function IlcOnce...1115

Global function IloTestDelta..1116

Global function IloEqPartition...1117

Global function IloSetMin..1118

Global function IloInitMT..1119

Global function IlcLeOffset..1120

Global function IlcInverse..1121

Global function IlcInverse..1122

Global function IlcMin..1123

Global function IlcMin..1124

Global function IlcMin..1125

Global function IlcMin..1126

Global function IloDiv...1127

Global function IloUpdateBestSolution..1128

Global function IlcChooseMaxMinFloat...1129

Global function IlcEqBoolAbstraction..1130

Global function IlcCard..1131

xxi

Table of Contents
Global function IlcCard..1133

Global function IlcChooseMinSizeIntSet..1134

Global function IlcSetValue...1135

Global function IlcChooseMinMaxInt..1136

Global function operator<..1137

Global function operator<..1138

Global function operator<..1139

Global function operator<..1140

Global function IloLexicographic..1141

Global function IlcDichotomize...1142

Global function IloCard..1143

Global function IlcGenerateBounds...1144

Global function IlcGeLex...1145

Global function IlcSelectSearch..1146

Global function IloMember..1147

Global function IloMember..1148

Global function IloMember..1149

Global function IlcChooseMaxMaxFloat...1150

Global function IloArcCos...1151

Global function IlcSetMin...1152

Global function IloChooseMinRegretMax..1153

Global function IloConcatenate...1154

Global function IloApplyMetaHeuristic...1155

Global function IloAbs...1156

Global function IloSingleMove..1157

Global function IlcChooseMinMinFloat..1159

Global function IlcSubset..1160

Global function IlcExponent..1161

Global function IloGenerate...1162

xxii

Table of Contents
Global function IloChooseFirstUnboundInt...1163

Global function IloReplaceSolutions..1164

Global function IloSquare..1165

Global function IloSetValue...1166

Global function IloGeLex...1167

Global function IloRandomPerturbation..1168

Global function IlcRemoveValue...1169

Global function IloComposeLexical..1170

Global function IloSubset..1171

Global function IloNotify..1172

Global function IlcPack..1173

Global function IlcPack..1174

Global function IlcPack..1175

Global function IloEqMin...1176

Global function IloLimitOperator..1177

Global function IloContinue...1178

Global function IlcSequence...1179

Global function IlcChooseMaxSizeFloat..1180

Global function IloExponent..1181

Global function IloInitializeImpactGoal..1182

Global function IlcAllNullIntersect..1183

Global function IlcRandomValueEvaluator..1184

Global function IloNotMember..1185

Global function IloNotMember..1186

Global function IloNotMember..1187

Global function IloApply..1188

Global function IloApply..1189

Global function IlcInstantiate..1190

Global function IlcInstantiate..1191

xxiii

Table of Contents
Global function IlcInstantiate..1192

Global function IlcBranchImpactVarEvaluator..1193

Global function IlcBoolAbstraction..1194

Global function operator||..1195

Global function operator||..1196

Global function operator||..1197

Global function operator||..1198

Global function operator*..1199

Global function operator*..1200

Global function operator*..1201

Global function operator*..1202

Global function operator*..1203

Global function IloSimulatedAnnealing..1204

Global function IloStart..1206

Macro ILCANYPREDICATE0..1207

Macro ILCARRAY..1208

Macro ILCARRAY2..1209

Macro IlcChooseAnyIndex1...1210

Macro IlcChooseAnyIndex2...1211

Macro IlcChooseFloatIndex1...1212

Macro IlcChooseFloatIndex2...1213

Macro IlcChooseIndex1..1214

Macro IlcChooseIndex2..1215

Macro ILCCTDEMON0..1216

Macro ILCGOAL0..1218

Macro IlcHalfPi..1219

Macro IlcInfinity..1220

Macro IlcIntMax...1221

Macro IlcIntMin..1222

xxiv

Table of Contents
Macro ILCINTPREDICATE0..1223

Macro IlcPi...1225

Macro IlcQuarterPi..1226

Macro ILCREV...1227

Macro ILCSTLBEGIN..1229

Macro IlcThreeHalfPi..1230

Macro IlcTwoPi..1231

Macro ILOANYBINARYPREDICATE0..1232

Macro ILOANYTERNARYPREDICATE0..1233

Macro IloChooseIntIndex...1234

Macro ILOCLIKECOMPARATOR0...1235

Macro ILOCOMPARATOR0..1236

Macro ILOCPCONSTRAINTWRAPPER0...1238

Macro ILOCPGOALWRAPPER0..1240

Macro ILOCPTRACEWRAPPER0..1242

Macro ILODECLDEFAULTCOMPARATOR...1243

Macro ILODEFAULTCOMPARATOR...1244

Macro ILODEFINELNSFRAGMENT0...1245

Macro ILOEVALUATOR0..1246

Macro IloFloatArray..1248

Macro IloFloatVar..1249

Macro IloFloatVarArray..1250

Macro IloHalfPi..1251

Macro ILOIIMLISTENER0...1252

Macro ILOIIMOP0..1253

Macro ILOINTBINARYPREDICATE0..1254

Macro ILOINTTERNARYPREDICATE0..1255

Macro ILOMULTIPLEEVALUATOR0..1256

Macro IloPi...1257

xxv

Table of Contents
Macro ILOPREDICATE0...1258

Macro IloQuarterPi..1260

Macro ILOSELECTOR0...1261

Macro ILOSTLBEGIN..1262

Macro IloThreeHalfPi..1263

Macro ILOTRANSLATOR...1264

Macro IloTwoPi...1265

Macro ILOVISITOR0..1266

Typedef IlcAny..1267

Typedef IlcBool...1268

Typedef IlcChooseAnyIndex..1269

Typedef IlcChooseAnySetIndex..1270

Typedef IlcChooseFloatIndex..1271

Typedef IlcChooseIntIndex..1272

Typedef IlcChooseIntSetIndex..1273

Typedef IlcEvalAny...1274

Typedef IlcEvalAnySet...1275

Typedef IlcEvalInt...1276

Typedef IlcEvalIntSet..1277

Typedef IlcFloat..1278

Typedef IlcFloatFunction...1279

Typedef IlcFloatVarRef...1280

Typedef IlcInt...1281

Typedef IlcIntVarRef...1282

Typedef IlcPathTransitFunction..1283

Typedef IloAny..1284

Typedef IloBool...1285

Typedef IloInt..1286

Typedef IloNum...1287

xxvi

Table of Contents
Typedef IloNumFunction..1288

Typedef IloPathTransitFunction..1289

Typedef IloPoolProcArray..1290

Typedef IloSolutionArray...1291

Typedef IloSolutionPoolEvaluator..1292

Typedef IloSolutionPoolSelector..1293

Variable ILC_NO_MEMORY_MANAGER...1294

Variable IlcFloatMax...1295

Variable IlcFloatMin..1296

Variable ILO_NO_MEMORY_MANAGER...1297

Variable IloInfinity...1298

Variable IloIntMax...1299

Variable IloIntMin..1300

xxvii

About This Manual
This reference manual documents the IBM® ILOG® Concert Technology and IBM ILOG Solver libraries.

Group Summary

optim.concert The IBM® ILOG® Concert API.

optim.concert.extensions The IBM® ILOG® Concert Extensions Library.

optim.concert.solver The IBM® ILOG® Concert Solver API.

optim.concert.xml The IBM ILOG Concert Serialization API.

optim.solver The IBM® ILOG® Solver API.

optim.solver.iim The IBM® ILOG® Iterative Improvement Methods Optimization Components (IIM)
API.

What is Solver?

Solver is a C++ library for constraint programming. This library is not a new programming language: it lets you
use data structures and control structures provided by C++. Thus, the Solver part of an application can be
completely integrated with the rest of that application (for example, the graphic interface, connections to
databases, etc.) because it can share the same objects.

What Is Concert Technology?

Concert Technology offers a C++ library of classes and functions that enable you to design models of problems
for both math programming (including linear programming, mixed integer programming, quadratic programming,
and network programming) and constraint programming solutions.

This library is not a new programming language: it lets you use data structures and control structures provided by
C++. Thus, the Concert Technology part of an application can be completely integrated with the rest of that
application (for example, the graphic interface, connections to databases, etc.) because it can share the same
objects.

Furthermore, you can use the same objects to model your problem whether you choose a constraint
programming or math programming approach. In fact, Concert Technology enables you to combine these
technologies simultaneously.

What You Need to Know

This manual assumes that you are familiar with the operating system where you are using Solver. Since Solver is
written for C++ developers, this manual assumes that you can write C++ code and that you have a working
knowledge of your C++ development environment.

Notation

Throughout this manual, the following typographic conventions apply:

Samples of code are written in this typeface.•
The names of constructors and member functions appear in this typeface in the section where they
are documented.

•

Important ideas are emphasized like this.•

1

Naming Conventions

The names of types, classes, and functions defined in the Solver library begin with Ilo or Ilc. Names beginning
with Ilo (for optimization) indicate components suitable for models; they are recommended for use with
IBM ILOG Concert Technology. Names beginning with Ilc (for constraint programming) indicate components
suitable for use inside a search; they are necessary when you extend the Solver library yourself by nesting
search components within goals or constraints or by deriving your own classes from Ilc components.

The names of classes are written as concatenated, capitalized words. For example:

IlcIntVar

A lower case letter begins the first word in names of arguments, instances, and member functions. Other words
in such a name begin with a capital letter. For example,

aVar

IlcIntVar::getValue

There are no public data members in Solver except in goals and demons. (See for an explanation of goals and
demons.)

Accessors begin with the keyword get followed by the name of the data member. Accessors for Boolean
members begin with is followed by the name of the data member. Like other member functions, the first word in
such a name begins with a lower case letter, and any other words in the name begin with a capital letter.

Modifiers begin with the keyword set followed by the name of the data member.

class Task {
public:
 Task(char* name, IlcInt duration);
 ~Task();
 IlcInt getDuration() const;
 void setDuration(IlcInt duration);
 IlcBool isCritical() const;
 void setCritic(IlcBool critic);
};

2

Concepts

Arrays

For most basic classes (such as IloNumVar or IloConstraint) in Concert Technology, there is also a
corresponding class of arrays where the elements of the array are instances of that basic class. For example,
elements of an instance of IloConstraintArray are instances of the class IloConstraint.

Arrays in an Environment

Every array must belong to an environment (an instance of IloEnv). In other words, when you create a Concert
Technology array, you pass an instance of IloEnv as a parameter to the constructor. All the elements of a given
array must belong to the same environment.

Extensible Arrays

Concert Technology arrays are extensible. That is, you can add elements to the array dynamically. You add
elements by means of the add member function of the array class.

You can also remove elements from an array by means of its remove member function.

References to an array change whenever an element is added to or removed from the array.

Arrays as Handles

Like other Concert Technology objects, arrays are implemented by means of two classes: a handle class
corresponding to an implementation class. An object of the handle class contains a data member (the handle
pointer) that points to an object (its implementation object) of the corresponding implementation class. As a
Concert Technology user, you will be working primarily with handles.

Copying Arrays

Many handles may point to the same implementation object. This principle holds true for arrays as well as other
handle classes in Concert Technology. When you want to create more than one handle for the same
implementation object, you should use either the copy constructor or the assignment operator of the array class.
For example,

 IloNumArray array(env); // creates a handle pointing to new impl
 IloNumArray array1(array); // creates a handle pointing to same impl
 IloNumArray array2; // creates an empty handle
 array2 = array; // sets impl of handle array2 to impl of array

Programming Hint: Using Arrays Efficiently

If your application only reads an array (that is, if your function does not modify an element of the array), then we
recommend that you pass the array to your function as a const parameter. This practice forces Concert
Technology to access the const conversion of the index operator (that is, operator[]), which is faster.

Assert and NDEBUG

Most member functions of classes in Concert Technology are inline functions that contain an assert statement.
This statement asserts that the invoking object and the member function parameters are consistent; in some
member functions, the assert statement checks that the handle pointer is non-null. These statements can be

3

suppressed by the macro NDEBUG. This option usually reduces execution time. The price you pay for this choice
is that attempts to access through null pointers are not trapped and usually result in memory faults.

Compilation with assert statements will not prevent core dumps by incorrect code. Instead, compilation with
assert statements moves the execution of the incorrect code (the core dump, for example) to a place where
you can see what is causing the problem in a source code debugger. Correctly written code will never cause one
of these Concert Technology assert statements to fail.

Column-Wise Modeling

Concert Technology supports column-wise modeling, a technique widely used in the math programming and
operations research communities to build a model column by column. In Concert Technology, creating a new
column is comparable to creating a new variable and adding it to a set of constraints. You use an instance of
IloNumColumn to do so. An instance of IloNumColumn allows you to specify to which constraints or other
extractable objects Concert Technology should add the new variable along with its data. For example, in a linear
programming problem (an LP), if the new variable will appear in some linear constraints as ranges (instances of
IloRange), you need to specify the list of such constraints along with the non zero coefficients (a value of
IloNum) for each of them.

You then create a new column in your model when you create a new variable with an instance of
IloNumColumn as its parameter. When you create the new variable, Concert Technology will add it along with
appropriate parameters to all the extractable objects you have specified in the instance of IloNumColumn.

Instead of building an instance of IloNumColumn, as an alternative, you can use a column expression directly in
the constructor of the variable. You can also use instances of IloNumColumn within column expressions.

The following undocumented classes provide the underlying mechanism for column-wise modeling:

IloAddValueToObj•
IloAddValueToRange•

The following operators are useful in column-wise modeling:

in the class IloRange,•

IloAddValueToRange operator() (IloNum value);

in the class IloObjective,•

IloAddValueToObj operator () (IloNum value);

That is, the operator () in extractable classes, such as IloRange or IloObjective, creates descriptors of
how Concert Technology should add the new, yet-to-be-created variable to the invoking extractable object.

You can use the operator + to link together the objects returned by operator () to form a column. You can
then use an instance of IloNumColumn to build up column expressions within a programming loop and thus
save them for later use or to pass them to functions.

Here is how to use an instance of IloNumColumn with operators from IloRange and IloObjective to create
a column with a coefficient of 2 in the objective, with 10 in range1, and with 3 in range2. The example then
uses that column when it creates the new variable newvar1, and it uses column expressions when it creates
newvar2 and newvar3.

 IloNumColumn col = obj(2) + range1(10) + range2(3);
 IloNumVar newvar1(col);
 IloNumVar newvar2(col + range3(17));
 IloNumVar newvar3(range1(1) + range3(3));

In other words, given an instance obj of IloObjective and the instances range1, range2, and range3 of
IloRange, those lines create the new variables newvar1, newvar2, and newvar3 and add them as linear

4

terms to obj, range1, and range3 in the following way:

 obj: + 2*newvar1 + 2*newvar2
 range1: +10*newvar1 + 10*newvar2 + 1*newvar3
 range2: + 3*newvar1 + 3*newvar2
 range3: + 17*newvar2 +3*newvar3

For more information, refer to the documentation of IloNumColumn,IloObjective, and IloRange.

Lazy Copy

Concert Technology makes a lazy copy when you use any of the following objects inside a predefined Concert
Technology object:

an expression (an instance of IloExpr or one of its subclasses),•
a column (an instance of IloNumColumn),•
or a set (such as an instance of IloIntSet).•

That is, a physical copy of those objects is created only when needed.

In Concert Technology, expressions, columns, and sets are implemented by handle classes and corresponding
implementation classes. One or more handles may point to the same implementation object. For example, many
instances of the handle class IloNumColumn may point to the same implementation object.

A handle may be empty; that is, it may point to 0 (zero). You can test whether a handle is empty by means of the
member function handle.getImpl. If that member function returns 0, the handle points to a null
implementation.

When you modify an expression, a column, or a set that has been used in a Concert Technology object, Concert
Technology considers whether the handle you are modifying is the sole reference to the corresponding
implementation object. If so, Concert Technology simply makes the modification.

In contrast, if the handle you are modifying points to an implementation object that is used by other objects
predefined in Concert Technology, Concert Technology first copies the implementation object for the handle you
are modifying and then makes the modification. The other handles pointing to the original implementation object
remain unchanged and your modification has no impact on them.

Examples:

Here is an example illustrating lazy copy of variables:

 IloEnv env;
 IloIntVar a1(env, 0, 10);
 IloIntVar a2(env, 0, 10);
 IloIntVar a3(env, 0, 10);
 IloExpr e = a1+ a2;;
 IloConstraint ct = e <= 10;
 e += a3;
 return 0;

Because of the lazy copy, even though a3 was added to A, ct uses only a1 and a2.

Normalization: Reducing Linear Terms

Normalizing is sometimes known as reducing the terms of a linear expression.

Linear expressions consist of terms made up of constants and variables related by arithmetic operations; for
example, x + 3y is a linear expression of two terms consisting of two variables. In some expressions, a given
variable may appear in more than one term, for example, x + 3y +2x. Concert Technology has more than one
way of dealing with linear expressions in this respect, and you control which way Concert Technology treats

5

expressions from your application.

In one mode, Concert Technology analyzes linear expressions that your application passes it and attempts to
reduce them so that a given variable appears in only one term in the linear expression. This is the default mode.
You set this mode with the member function IloEnv::setNormalizer(IloTrue).

In the other mode, Concert Technology assumes that no variable appears in more than one term in any of the
linear expressions that your application passes to Concert Technology. We call this mode assume normalized
linear expressions. You set this mode with the member function IloEnv::setNormalizer(IloFalse).

In classes such as IloExpr or IloRange, there are member functions that check the setting of the member
function IloEnv::setNormalizer in the environment and behave accordingly. The documentation of those
member functions indicates how they behave with respect to normalization.

When you set IloEnv::setNormalizer(IloFalse), those member functions assume that no variable
appears in more than one term in a linear expression. This mode may save time during computation, but it entails
the risk that a linear expression may contain one or more variables, each of which appears in one or more terms.
Such a case may cause certain assertions in member functions of a class to fail if you do not compile with the
flag -DNDEBUG.

By default, those member functions attempt to reduce expressions. This mode may require more time during
preliminary computation, but it avoids of the possibility of a failed assertion in case of duplicates.

For more information, refer to the documentation of IloEnv,IloExpr, and IloRange.

Notification

You may modify the elements of a model in Concert Technology. For example, you may add or remove
constraints, change the objective, add or remove columns, add or remove rows, and so forth.

In order to maintain consistency between a model and the algorithms that may use it, Concert Technology
notifies algorithms about changes in the objects that the algorithms have extracted. In this manual, member
functions that are part of this notification system are indicated like this:

Note

This member function notifies Concert Technology algorithms about this change of this invoking object.

Deletion of Extractables

As a modeling layer, Concert allows the creation and destruction of extractables. This is accessible through the
method IloExtractable::end() and IloExtractableArray::endElements() method. The goal of
these methods is to reclaim memory associated with the deleted objects while maintaining the safest possible
Concert environment. In this context, a safe Concert environment is defined by the property that no object points
to a deleted object; this is referred to as a dangling pointer in C++.

There exist two paradigms to ensure the safeness of the delete operation. The first, linear mode, comes from
math programming and is possible only on extractables and objects used in linear programming. The second,
safe generic mode, is more strict and is valid on all Concert extractables.

You can access both paradigms by calling IloEnv::setDeleter(IloDeleterMode mode), where mode
may be IloLinearDeleterMode or IloSafeDeleterMode.

Linear Mode

To use linear mode, you must either

call IloEnv::setDeleter(IloLinearDeleterMode), or•

6

refrain from calling IloEnv::setDeleter(), as it is the default mode.•

In linear mode, the following behavior is implemented:

If a range constraint is deleted, it is removed from the models that contain it.•
If a variable is deleted, its coefficient is set to 0 in the ranges, expressions, and objectives where it
appears. The variable is removed from the SOS1, SOS2, and IloConversion where it appears.

•

Example

This example tests the linear mode deletion of a variable x.

 void TestLinearDeleter() {
 IloEnv env;
 env.out() << "TestLinearDeleter" << endl;
 try {
 IloModel model(env);
 IloNumVar x(env, 0, 10, "x");
 IloNumVar y(env, 0, 10, "y");
 IloConstraint con = (x + y <= 0);
 IloConstraint con2 = y >= 6;
 IloNumVarArray ar(env, 2, x, y);
 IloSOS1 sos(env, ar, "sos");
 model.add(con);
 model.add(con2);
 model.add(sos);
 env.out() << "Before Delete" << endl;
 env.out() << model << endl;
 x.end();
 con2.end();
 env.out() << "After Delete" << endl;
 env.out() << model << endl;
 } catch (IloException& e) {
 cout << "Error : " << e << endl;
 }
 env.end();
 }

The example produces the following output:

 TestLinearDeleter
 Before Delete
 IloModel model0 = {
 IloRange rng3(1 * x + 1 * y) <= 0

 IloRange rng46 <=(1 * y)

 IloSOS1I (sos)
 _varArray [x(F)[0..10], y(F)[0..10]]
 _valArray []

 }

 After Delete
 IloModel model0 = {
 IloRange rng3(1 * y) <= 0

 IloSOS1I (sos)
 _varArray [y(F)[0..10]]
 _valArray []
 }

Safe Generic Mode

To use safe generic mode, you must:

call IloEnv::setDeleter(IloSafeDeleterMode), and•
add #include <ilconcert/ilodeleter.h> to your program.•

7

In this mode, the environment builds a dependency graph between all extractables. This graph contains all
extractables created

after a call to IloEnv::setDeleter(IloSafeDeleterMode) and•
before a call to IloEnv::unsetDeleter().•

Objects not managed by this dependency graph are referred to here as "nondeletable". An attempt to delete a
nondeletable object will throw an exception.

We recommended that you create this graph just after the creation of the environment and that you refrain from
using IloEnv::unsetDeleter. We make these recommendations because building an incomplete
dependency graph is very error prone and should only be attempted by advanced users. A good example of this
incomplete graph is the separation of a model between a nondeletable base model and deletable extensions of
this base model.

Calling IloExtractable::end() on extractable xi will succeed only if no other extractable uses extractable
xi. If this is not the case, a call to IloExtractable::end() will throw an exception
IloDeleter::RequiresAnotherDeletionException indicating which extractable uses the extractable that
you want to delete.

Example

This example shows an attempt to delete one extractable that is used by another.

 void TestSafeDeleter() {
 IloEnv env;
 env.out() << "TestSafeDeleter" << endl;
 env.setDeleter(IloSafeDeleterMode);
 try {
 IloModel model(env);
 IloNumVar x(env, 0, 10);
 IloNumVar y(env, 0, 10);
 IloConstraint con = (x + y <= 0);
 try {
 x.end();
 } catch (IloDeleter::RequiresAnotherDeletionException &e) {
 cout << "Caught " << e << endl;
 e.getUsers()[0].end();
 e.end();
 }
 x.end();
 } catch (IloException& e) {
 cout << "Error : " << e << endl;
 }
 env.unsetDeleter();
 env.end();
 }

The example produces the following output:

 TestSafeDeleter
 Caught You cannot end x1(F)[0..10] before IloRange rng3(1 * x1 + 1 * x2) <= 0

To address this, you should use the IloExtractableArray::endElements() method. With this method, all
extractables appearing in the array are deleted one after another. Thus, if an extractable is used by another
extractable and this other extractable is deleted before the first one, the system will not complain and will not
throw an exception.

Example

This example illustrates the use of the endElements() method

 void TestSafeDeleterWithArray() {
 IloEnv env;
 env.out() << "TestSafeDeleterWithArray" << endl;

8

 env.setDeleter(IloSafeDeleterMode);
 try {
 IloModel model(env);
 IloNumVar x(env, 0, 10);
 IloNumVar y(env, 0, 10);
 IloConstraint con = (x + y <= 0);
 IloExtractableArray ar(env, 2, con, x);
 ar.endElements();
 } catch (IloException& e) {
 cout << "Error : " << e << endl;
 }
 env.unsetDeleter();
 env.end();
 }

The example will not throw an exception.

Note

Please note that in this last example, the constraint con must appear before the variable x as it will be deleted
before the variable x.

Obsolete Functions & Classes

Obsolete Function or Class Replaced By

IloNumSet IloIntSet

IloNumSetVar IloIntSetVar

IloNumSetVarArray IloIntSetVarArray

IloExprBase
IloNumExprArg and
IloIntExprArg

IloExprNode
IloNumExprArg and
IloIntExprArg

IloExprArg
IloNumExprArg and
IloIntExprArg

IloExprI
IloNumLinTermI
(undocumented)

Assert and NDEBUG - Solver

Most member functions of handle classes in Solver are inline functions that contain an assert statement. This
statement checks that the handle pointer is non-null. These statements can be suppressed by the macro
NDEBUG. This option usually reduces execution time. The price you pay for this choice is that attempts to access
through null pointers are not trapped and usually result in memory faults.

Choice Point

The ideas of success and failure are used to express algorithms with choices. Indeed, a goal can be defined as a
choice between different goals. Such a goal is called a choice point.

A choice point is created by the execution of the goal IlcOr. A choice point can be labeled when it is created so
that you can direct Solver to return to it explicitly.

Here's how a choice point is executed in a depth first search:

9

The state of Solver is saved, including the state of the goal stack.•
The first subgoal is added to the top of the goal stack.•
The other subgoals are saved as untried subgoals for the choice point.•
Then the first subgoal is popped from the goal stack and executed. If this subgoal fails, the state of
Solver is restored, and the first untried choice is pushed onto the goal stack. This activity is called
backtracking. Backtracking is done as long as no subgoal succeeds. If no subgoal succeeds, the choice
point fails.

•

Thus a Solver user can define an algorithm without knowing in advance which subgoal will succeed. This kind of
programming is often called non-deterministic programming.

See the concept Goal for more information.

See Also

IlcAnd, IlcGoal, IlcGoalI, IlcOr

Constraints-Predefined

For the basic classes of Solver, there are predefined constraints ready to use in your applications. This table
offers easy access to predefined constraints for basic Solver classes. Complete documentation of each class and
each predefined constraint appears in alphabetic order by class name and by function name in this reference
manual.

For element constraints, see the function IlcTableConstraint.

For this class: These constraints are predefined:

IlcAnyVarArray

IlcAllDiff

IlcDistribute

IlcTableConstraint

IlcAnySetVar

IlcEqIntersection

IlcEqPartition

IlcEqUnion for sets of integer or enumerated expressions

IlcEqUnion for sets of integer or enumerated values

IlcEqUnion for sets of sets

IlcEqUnion for sets

IlcMember of a set

IlcNotMember for sets

IlcNullIntersect

IlcSubset

IlcSubsetEq

IlcUnion for sets of integer or enumerated expressions

IlcUnion for sets of integer or enumerated values

IlcUnion for sets of sets

10

IlcUnion for sets

IlcAnySetVarArray

IlcAllNullIntersect

IlcEqIntersection

IlcEqPartition

IlcEqUnion for sets

IlcPartition

IlcUnion for sets

IlcFloatExp

IlcNull

IlcFloatVar

IlcTableConstraint

IlcIntExp

IlcLeOffset

IlcIntArray

IlcMember of an array

IlcIntVar

IlcTableConstraint

IlcMinDistance

IlcIntVarArray

IlcAllDiff

IlcAllMinDistance

IlcDistribute

IlcInverse

IlcPathLength

IlcSequence

IlcTableConstraint

IlcIntSetVar

IlcEqIntersection

IlcEqPartition

IlcEqUnion for sets of integer or enumerated expressions

IlcEqUnion for sets of integer or enumerated values

IlcEqUnion for sets of sets

IlcEqUnion for sets

IlcMember of a set

IlcNotMember for sets

11

IlcNullIntersect

IlcSetOf

IlcSubset

IlcSubsetEq

IlcUnion for sets of integer or enumerated expressions

IlcUnion for sets of integer or enumerated values

IlcUnion for sets of sets

IlcUnion for sets

IlcIntSetVarArray

IlcAllNullIntersect

IlcEqIntersection

IlcEqPartition

IlcEqUnion for sets

IlcPartition

IlcUnion for sets

Domain-Delta

The domain-delta is a special set where the modifications of the domain of a constrained variable are stored.
This domain-delta can be accessed (by means of member functions of the class of the constrained variable)
during the propagation of the constraints posted on that constrained variable. When all the constraints posted on
that constrained variable have been processed, then the domain-delta is cleared. If the variable is modified
again, then the whole process starts over again. The state of the domain-delta is reversible.

The domain-delta can be traversed by an iterator, an instance of IlcAnyVarDeltaIterator,
IlcFloatVarDeltaIterator, or IlcIntVarDeltaIterator.

Delta Sets of Constrained Set Variables

When a propagation event is triggered for a constrained set variable (that is, an instance of IlcIntSetVar or
IlcAnySetVar), the constrained set variable is pushed into the constraint propagation queue if it was not
already in the queue. Moreover, modifications of the domain of the constrained set variable are stored in two
special sets, the delta sets (analogous to the domain-delta of a constrained integer variable).

One delta set stores the values removed from the possible set of the constrained set variable, and it is known as
the possible-delta set. The other delta set stores the values added to the required set of the constrained set
variable, and it is known as the required-delta set.

Solver provides iterators to traverse the delta sets of a constrained set variable. Those iterators are instances of
the classes IlcIntDeltaPossibleIterator, IlcIntDeltaRequiredIterator,
IlcAnyDeltaPossibleIterator, or IlcAnyDeltaRequiredIterator.

When all the constraints posted on that constrained set variable have been processed, then the delta sets are
cleared. If the variable is modified again, then the whole process starts over again. The state of the delta sets is
reversible.

The order in which elements of the delta sets are traversed is not predictable. Each newly removed element will
be traversed only once.

See the concept Propagation for more information.

12

See Also

IlcAnyDeltaPossibleIterator , IlcAnyDeltaRequiredIterator, IlcAnySetVar, IlcAnyVarDeltaIterator,
IlcFloatVarDeltaIterator, IlcIntDeltaPossibleIterator, IlcIntDeltaRequiredIterator, IlcIntSetVar, IlcIntVarDeltaIterator

Failure

The concept of failure in Solver changed between version 4.4 and version 5.x. In version 4.4, a failure occurred
whenever the member function IlcManager::fail executed.

In version 5.x, the member functions IlcConstraintI::fail and IlcGoalI::fail as well as the function
IloGoalFail cause failure.

Global Modifiers

Solver offers predefined means of controlling its overall behavior. These means are known as global modifiers
because they modify globally the behavior you can expect from Solver in your application. You can use global
modifiers only in the member function IloSolver::solve.

One category of global modifiers includes the search limits:
IloSolver::setFailLimit♦
IloSolver::setOrLimit♦
IloSolver::setTimeLimit♦

Those member functions are implemented by search objects. These search objects can be used with
goals:

IloFailLimit♦
IloOrLimit♦
IloTimeLimit♦

•

Another category of global modifiers includes the objective minimization step:
IloSolver::setOptimizationStep♦
The last parameter of the function IloMinimizeVar♦

•

Generic Constraint

A generic constraint is a constraint shared by an array of variables. For example, IlcAllDiff is a generic constraint
that insures that all the elements of a given array are different from one another. Solver provides generic
constraints to save memory since, if you use them, you can avoid allocating one object per variable.

The array makes it easier to implement generic constraints. In fact, member functions of Solver array classes are
available to post such generic constraints. A generic constraint is then allocated and recorded only once for all
the variables in a given array. This fact represents a significant economy in memory, compared to allocating and
recording one constraint per variable.

You create a generic constraint simply by stating the constraint over generic variables. Each generic variable
stands for all the elements of an array of constrained variables. In order to create generic variables for an array of
constrained expressions, Solver provides the class IlcIndex.

See Also

IlcCard, IlcIndex

Goal

Goals are the building blocks used to implement search algorithms in Solver. Both predefined search algorithms
and user-defined search algorithms can be expressed in Solver through goals.

13

Like other Solver entities, a goal is implemented by two objects: a handle (an instance of the class IlcGoal) that
contains a data member (the handle pointer) that points to an implementation object (an instance of the class
IlcGoalI allocated on the Solver heap).

Among other member functions, the class IlcGoalI has a virtual member function, execute, without arguments,
which implements the execution of the goal. The execute member function must return another goal: the
subgoal of the goal under execution. If the execute member function returns 0 (zero), then no subgoal has to be
executed.

A goal can either succeed or fail. A goal fails if a fail member function (such as IlcGoalI::fail, for example) is
called during its execution. A goal succeeds if it does not fail.

Goal execution is controlled by the member function IloSolver::next and implemented by a goal stack. The first
time this member function is called, it pushes all the goals that have been added to the invoking solver onto the
goal stack. Then it pops the top of the stack, and if there is a goal there, it executes that goal. When the
execution of the current goal is complete, its subgoal is executed (if the current goal has any subgoals). If there
are no remaining subgoals, then the next goal on top of the stack is popped. The member function next stops
when the goal stack is empty.

See the concept Choice Point for more information.

See Also

ILCGOAL0, IlcGoal, IlcGoalI

Goals Predefined

For the basic classes of Solver, there are predefined goals ready to use in your applications. This table offers
easy access to predefined goals for basic Solver classes. Complete documentation of each class and each
predefined goal is found in this reference manual.

For this class: These goals are predefined:

IlcAnySetVar

IlcBestInstantiate

IlcInstantiate

IlcAnySetVarArray

IlcBestGenerate

IlcGenerate

IlcAnyVar

IlcBestInstantiate

IlcInstantiate

IlcAnyVarArray

IlcBestGenerate

IlcGenerate

IlcBoolVarArray

IlcGenerate

IlcFloatVar

IlcInstantiate

14

IlcBestInstantiate

IlcGenerateBounds

IlcSetMax

IlcSetMin

IlcSetValue

IlcFloatVarArray

IlcBestGenerate

IlcGenerate

IlcGenerateBounds

IlcSplit

IlcGoal

IlcAnd

IlcOr

IlcIntSetVar

IlcBestInstantiate

IlcInstantiate

IlcIntSetVarArray

IlcBestGenerate

IlcGenerate

IlcIntVar

IlcBestInstantiate

IlcInstantiate

IlcRemoveValue

IlcSetMax

IlcSetMin

IlcSetValue

IlcDichotomize

IlcIntVarArray

IlcBestGenerate

IlcGenerate

IloAnySetVar

IloBestInstantiate

IloInstantiate

IloAnySetVarArray

IloBestGenerate

IloGenerate

15

IloAnyVar

IloBestInstantiate

IloInstantiate

IloAnyVarArray

IloBestGenerate

IloGenerate

IloNumSetVar

IloBestInstantiate

IloInstantiate

IloNumSetVarArray

IloBestGenerate

IloGenerate

IloNumVar

IloGenerateBounds

IloInstantiate

IloBestInstantiate

IloRemoveValue (for type Int only

IloSetMax

IloSetMin

IloSetValue

IloDichotomize

IloNumVarArray

IloBestGenerate

IloGenerate

IloGenerateBounds

IloSplit

IloDichotomize

Handle Class - Solver

Most Solver entities are implemented by means of two classes: a handle class and an implementation class,
where an object of the handle class contains a data member (the handle pointer) that points to an object (its
implementation object) of the corresponding implementation class. As a Solver user, you will be working primarily
with handles.

As handles, these objects should be passed by value, and they should be created as automatic objects, where
“automatic” has the usual C++ meaning.

The name of the implementation class consists of the name of the corresponding handle class followed by the
letter I to indicate implementation. For example, the class IlcConstraint is a handle class; the class
IlcConstraintI is the corresponding implementation class.

16

Member functions of a handle class correspond to member functions of the same name in the implementation
class.

Iterator

An iterator is an object that traverses a set of other objects. There is an underlying data structure associated with
an iterator. The iterator contains a traversal state of this data structure. Besides its constructors and destructors,
an iterator generally has member functions to access the element at the current position, to check whether the
iterator has passed the end position, and to shift the iterator to the next position.

The container for the iterator to scan (for example, an array of elements) is a Solver handle. Likewise, the data in
the container (in our example, an element) is also a Solver handle. In both cases—the container and the
data—the handle points to an implementation object. From this point of view, you can see that an iterator
semantically resembles a string: the container is like the array that defines a string; the data is like characters in
the string; a handle pointing to a null implementation object is like the null pointer that customarily terminates a
string.

See Also

IlcAnyDeltaPossibleIterator, IlcAnyDeltaRequiredIterator, IlcAnySetIterator, IlcAnyVarArrayIterator,
IlcIntDeltaPossibleIterator, IlcIntDeltaRequiredIterator, IlcIntSetIterator, IlcAnyExpIterator,
IlcAnySetVarArrayIterator, IlcAnyVarDeltaIterator, IlcIntExpIterator, IlcIntSetVarArrayIterator,
IlcIntVarArrayIterator, IlcIntVarDeltaIterator

Propagation

When you post a constraint, the constraint is used immediately to reduce the domains of the constrained
variables that it involves. Solver reduces a domain by removing those values that cannot satisfy the constraint
and thus cannot participate in a solution.

Posting a constraint is reversible: the constraint is removed when Solver backtracks to choice points set before
that constraint was posted.

If constraint propagation causes a domain to be reduced to a single value, then the constrained variable will be
bound to that remaining value.

In addition, when you post a constraint, the constraint is saved so that whenever any of the variables to which it
applies is modified, the constraint will be activated, and the modification will be transmitted to the other variables
that the constraint involves. This activity is called constraint propagation.

The algorithm used for constraint propagation in Solver is straightforward in principle. Solver maintains a queue
of variables, called the constraint propagation queue. When a constrained variable is modified, that variable is
put at the end of that queue if it is not already in the queue. As long as there are variables in that queue, the
algorithm takes the first variable from the queue. We then say this particular variable is in process.

When a variable is processed, it is first removed from the propagation queue. Then each constraint posted on
that variable is examined. For one such constraint, all the variables on which it is posted are in turn examined:
their domains are reduced by removing those values that are inconsistent with it. If a variable is already in
process, then this domain reduction will be deferred until it is no longer in process. If some of these variables are
modified during this activity, they, too, are put into the queue if they are not yet in the queue. The algorithm
continues as long as there is a variable in the queue to process. The algorithm automatically reduces domains as
necessary and halts in either of two situations: when all domains contain only values consistent with the
constraints, or when a domain becomes empty. For performance considerations, it does not carry out all the
reductions theoretically possible.

This algorithm has several important properties:

This algorithm always halts.•

17

It lets you use constraints (such as arithmetic constraints, for example) on more than two variables at a
time.

•

It lets you handle problems dynamically; that is, you can solve problems where new constraints can be
added during the search for a solution.

•

Regardless of the order in which the constraints are considered, the domains will always be the same at
the end of the execution of the propagation.

•

See the concepts Choice Point, Domain-Delta, Goal, Propagation Events, Reversibility, and State for more
information.

See Also

IlcConstraint

Propagation Events

The examination of the constraints on a variable is triggered by any modification of that variable. There are
several kinds of modifications, depending on the class of variable under consideration. We refer to a propagation
event as the modification of a constrained variable. There is a key word associated with each of these
propagation events.

There are three propagation events:

whenValue means that a value has been assigned to the constrained variable.•
whenRange indicates that at least one of the boundaries (the minimum or the maximum) of the domain
has been changed. This event is also generated when the variable is bound (in the sense of “assigned a
value”).

•

whenDomain indicates that the domain of a variable has been modified, either when an element is
removed from the domain, or when a boundary is modified, or when the variable is bound.

•

The propagation events that are possible depend on the type of constrained variable under consideration. The
following chart shows the correspondence between events and types of variables.

whenValue whenRange whenDomain

IlcIntExp yes yes yes

IlcAnyExp yes yes

IlcFloatExp yes yes

IlcIntSetVar yes yes

IlcAnySetVar yes yes

These events are triggered only if the variable is actually modified. For example, attempting to remove a value
that is not in the domain triggers no event.

These events are used to control when a constraint should be examined. In fact, a constraint can be associated
with a given event for a given variable. For example, when a variable is processed in the constraint propagation
algorithm, if the whenDomain event is the only triggered event, all the constraints associated with the
whenDomain event are examined. Any constraints associated with the whenRange or the whenValue events
are not examined. These events are thus used for posting constraints.

See the concepts Choice Point, Propagation, and Reversibility for more information.

See Also

IlcConstraint

18

Reversibility

A reversible class is one where the data members will be restored automatically by Solver when it backtracks.

Objects that use only reversible classes are called reversible objects.

All Solver objects are reversible objects.

Thus, the state of Solver variables, including their domains and the constraints posted on them, are automatically
restored when Solver backtracks.

Functions that use only reversible assignments are called reversible functions.

All Solver functions and member functions are reversible functions unless otherwise documented.

In particular, all the member functions and predefined functions for posting constraints in Solver are reversible.
Thus, the state of constrained variables, including their domains and the constraints posted on them, is
automatically restored when Solver backtracks. Solver saves the state before the function call.

See the concepts Propagation and State for more information.

See Also

IlcConstraint

Selectors

Selectors are objects which select one object from a container of objects based on some selection criteria. In
particular, selectors are used in Solver search goals to select the decision that will be taken at a search node. For
example, a selector could be used to select which variable to explore or to select which value to assign to a given
variable at a search node.

Selectors of objects of class Object from a container Container are instances of the template class
IloSelector<Object,Container>.

For example, selectors of integer variables from an integer variable array are instances of
IloSelector<IlcIntVar,IlcIntVarArray>.

A selector implements a function IloBool IloSelector<Object,Container>::select(Object&
selected, Container c) that returns IloFalse if and only if no object could be selected and, otherwise,
binds the variable selected given as the first argument to the selected object.

When the selector is used by a search goal, the member function select is called during the execution of the
goal to perform the selection of the next decision.

Selectors can either be created on a Concert environment (IloEnv) or on the reversible heap of a solver
(IloSolver) depending on the signature that is used to construct the selector.

There are two ways to define a selector:

by hard coding the selection of an object using the ILOSELECTORi macros•
by using the predefined selector class IloBestSelector•

When it is possible, IBM advises you to use the second approach as it is more flexible and modular.

The first way to define a selector is to use the ILOSELECTORi macros to define the selection code of a selector.
Within the code of the macro, the user specifies which element Object of the given container of type
Container is selected by invoking the select(Object) method.

19

For example, you could define a selector of integer variables from an integer variable array that selects a random
variable in the array using the following code. This selector has one data field that stores a random generator.

ILOSELECTOR1(RandomVariableSelector,
 IlcIntVar,
 IlcIntVarArray, array,
 IloRandom, random) {
 select(array[random.getInt(array.getSize()-1)]); // Selected object
}

This macro defines the following two functions, which return a selector allocated either on a Concert environment
(IloEnv) or on the reversible heap of a solver (IloSolver).

IloEnv env;
IloSolver solver = ...;
IloRandom random = ...;
IloSelector<IlcIntVar,IlcIntVarArray> sel1 = RandomVariableSelector(env, random);
IloSelector<IlcIntVar,IlcIntVarArray> sel2 = RandomVariableSelector(solver, random);

An instance of a variable can then be selected as follows:

IlcIntVarArray array = ...;
IlcIntVar selected;
IlcBool isSelected = sel2.select(selected, array);

The second way to define a selector is to use the predefined class IloBestSelector, which makes the best
selection based on criteria that are supplied by parameters. There are many cases where, in order to select an
object from a container, all the objects in the container need to be visited, filtered by a predicate, and then
compared so that the best object from this comparison will be the selected one.

Such selectors are created using instances of IloBestSelector<Object,Container> which is a subclass
of IloSelector<Object,Container>. This is a flexible and modular way to build a selector and IBM
recommends that, when possible, you use this approach.

The IloBestSelector constructor can take up to three parameters:

a visitor that allows you to specify how to visit the objects of an instance of container Container•
a predicate that allows you to filter objects from the container that cannot be selected•
a comparator that allows you to compare the candidate objects that have not been filtered and select
the best among them

•

In addition, evaluators that evaluate an object and return an IloNum value can be used to build comparators.
Translators, which translate objects of one type to another type, can be used to create both evaluators and
predicates.

The concepts of visitor, predicate, comparator, evaluator, and translator are described in the following sections.

Visitors

A visitor IloVisitor<class Object,class Container> is a class that allows you to traverse each of the
elements of type Object of a container class Container. For instance, a visitor can be used to specify how to
traverse the set of variables IloIntVar of an array of variables IloIntVarArray.

Visitors can be created in three ways:

by using the predefined default visitors in Solver•
by defining your own default visitor using the macro ILODEFAULTVISITOR•
by defining a new visitor using the ILOVISITORi macros•

For a pair of classes <Object,Container>, you can define at most one visitor that will be considered as the
default visitor for objects of type Object in container Container. By default, if no visitor is given at the
construction of an instance of IloBestSelector<Object,Container>, the default visitor for the pair
<Object,Container> will be used.

20

The following default visitors are predefined in Solver:

<IloInt,IloIntArray>•
<IloNum,IloNumArray>•
<IloBool,IloBoolArray>•
<IloIntVar,IloIntVarArray>•
<IloNumVar,IloNumVarArray>•
<IloBoolVar,IloBoolVarArray>•
<IlcIntVar,IlcIntVarArray>•
<IlcFloatVar,IlcFloatVarArray>•
<IlcInt,IlcIntArray>•
<IlcFloat,IlcFloatArray>•

These visitors traverse the elements of the arrays by increasing index from 0 until array.getSize()-1.

The macro ILODEFAULTVISITOR allows you to define a new default visitor for your own classes of objects and
containers. Within the code of this macro, the function visit(Object) allows you to specify the visited objects.

For example, here is how the default visitor for integer variables in an integer variable array is defined in Solver:

ILODEFAULTVISITOR(IloIntVar,IloIntVarArray,array) {
 const IloInt size = array.getSize();
 for (IloInt i=0; i<size; ++i)
 visit(array[i]);
}

The ILOVISITORi macros allow you to define a new visitor with i data members.

For instance, the visitor defined in the following sample only visits the n first variables in an array of variables, n
being a data field of the visitor:

ILOVISITOR1(VisitNFirst,
 IlcIntVar,
 IlcIntVarArray, array,
 IlcInt, n) {
 const IloInt imax = IlcMin(n, array.getSize());
 for (IloInt i=0; i<imax; ++i)
 visit(array[i]);
}

An instance of such a visitor to visit the 10 first variables of an array can then be constructed as follows:

IloVisitor<IlcIntVar,IlcIntVarArray> visitor = VisitNFirst(solver, 10);

Predicates

A predicate on objects of type Object is a class that implements a test on an object and returns an IloBool
value. Predicates on objects of type Object are instances of the template class IloPredicate<Object>.

Predicates are used in selectors to filter the set of candidate objects for selection.

The test function of a predicate is the member function IloBool operator()(Object obj, IloAny nu
=0). This function returns IloTrue if and only if the object satisfies the predicate. An optional context nu can be
passed to the test function in cases where the result of the test depends on some contextual information. When
predicates are used in an instance of IloBestSelector<Object,Container>, the selector tests each visited
object passing the instance of Container as context to the test function of the predicate.

Predicates can either be created on a Concert environment (IloEnv) or on the reversible heap of a solver
(IloSolver) depending on the signature that is used to construct the predicate.

There are two ways to define a predicate:

by defining a new predicate using the macros ILOPREDICATEi or ILOCTXPREDICATEi•
by composing existing predicates•

21

The first way to create a predicate is to use the ILOPREDICATEi macros to define new predicates with i data
members. The ILOCTXPREDICATEi macros define new predicates in the same way as the ILOPREDICATEi
macros, except that you can add a context.

For example, the following code instantiates a predicate that tests whether or not an integer variable is bound:

ILOPREDICATE0(IsBound,
 IlcIntVar, v) {
 return v.isBound();
}

The slightly more complex predicate that follows instantiates a predicate that tests whether an instance of
IloIntVar is bound or not in a solver. The solver is stored as a data field of the predicate.

ILOPREDICATE1(IsBoundInSolver,
 IloIntVar, v,
 IloSolver, solver) {
 return solver.isBound(v);
}

An instance of such a predicate can be allocated on a Concert environment as follows:

IloEnv env;
IloSolver solver1 = ...;
IloPredicate<IloIntVar> p1 = IsBoundInSolver(env, solver1);

Testing whether a given variable v is bound in solver solver1 can then be performed as follows:

IloIntVar v = ...;
IloBool vIsBoundInSolver1 = p1(v);

The second way to create a predicate is to compose subordinate predicates using the logical operators !, &&,
and || and the function IloIfThenElse.

For instance, if pi are predicates on objects of type <Object>, a composite predicate on objects of type
<Object> can be defined as follows:

IloPredicate<Object> cp = IloIfThenElse(p0, p1&&!p2, p3) || p4;

Predicate cp will be true on an instance of object Object if and only if for that instance, p4 is true or, in case p0
is true, then p1 is true and p2 is false, otherwise (if p0 is false), p3 is true.

Predicates on objects of different types cannot be composed together. This will raise an error at compilation time.

Composite predicates, when invoked with a context, will pass this context to their subordinate predicates.

Comparators

A comparator is a class that implements a comparison between two objects. Comparators of objects of type
Object are instances of the template class IloComparator<Object>.

Comparators are used in selectors to compare the candidate objects that have not been filtered and select the
best among them.

There are two main comparison functions of a comparator: operator() and isBetterThan.

The function operator() takes two objects, o1 and o2, and by default returns -1, 0, or 1 depending on whether
o1 is respectively better, equal or worse than o2. The optional argument nu is a context that can be used for the
comparison:

IloInt operator()(IloObject o1, IloObject o2, IloAny nu = 0) const;

The function isBetterThan takes two objects, o1 and o2, and returns IloTrue if and only if o1 is preferred to
o2. The optional argument nu is a context that can be used for the comparison:

22

IloBool isBetterThan(IloObject o1, IloObject o2, IloAny nu = 0) const;

Comparators can either be created on a Concert environment (IloEnv) or on the reversible heap of a solver
(IloSolver) depending on the signature that is used to construct the comparator.

There are three ways to create comparators:

by defining a new comparator using the ILOCOMPARATORi, ILOCTXCOMPARATORi,
ILOCLIKECOMPARATORi, and ILOCTXCLIKECOMPARATORi macros

•

by composing subordinate comparators using functions such as IloComposeLexical and
IloComposePareto

•

by using an evaluator to create a comparator•

The first way to define a new comparator is to use macros to define the comparator. Comparators defined with
ILOCOMPARATORi define a comparator with i data fields that must return a Boolean value equal to IloTrue if
and only if the comparator's left-hand side is better than its right-hand side. The ILOCTXCOMPARATORi macros
define new comparators in the same way, except that you can add a context for comparison.

For example, the following comparator compares the values of two IloNumVar variables in a solution. The
solution is a context of the comparison.

ILOCTXCOMPARATOR0(HasValueSmallerThan,
 IloIntVar, v1, v2,
 IloSolution, sol) {
 return sol.getValue(v1) < sol.getValue(v2);
}

An instance of this comparator can be created as follows:

IloEnv env;
IloComparator<IloIntVar> comp = HasValueSmallerThan(env);

And it can be invoked as follows:

IloIntVar v1 = ...;
IloIntVar v2 = ...;
IloSolution sol = ...;
IloBool v1SmallerThanv2InSol = comp(v1,v2,&sol);

Comparators defined with ILOCLIKECOMPARATORi and ILOCTXCLIKECOMPARATORi are very similar to the
ones defined by ILOCOMPARATORi and ILOCTXCOMPARATORi except for the return type of the comparison. The
comparators defined by the ILOCLIKECOMPARATORi and ILOCTXCLIKECOMPARATORi macros return an
integer equal to -1 if the comparator's left-hand side is better than its right-hand side, an integer equal to +1 if the
comparator's right-hand side is better than its left-hand side, and an integer equal to 0 in cases where they are
not comparable.

The second way to define a comparator is to compose subordinate comparators. The class
IloCompositeComparator allows you to define a subclass of comparator that is composed of a list of
subordinate comparators. New comparators can be added to this list by using the member function add.

Two of the most useful types of comparator composition are lexical composition and Pareto composition.

The following code defines a new comparator of objects of type Object as a lexical composition of n
comparators.

IloLexicalComparator<Object> lc = IloComposeLexical(c1,c2,...,cn);

The composite comparator lc will prefer an object x to an object y if and only if there exists a comparator ci in
the list of subordinate comparators such that:

ci prefers x to y and•
all the previous comparators cj in the list (j<i) could not express any preference between x and y•

23

The following code defines a new comparator of objects of type Object as a Pareto composition of n
comparators.

IloComparator<Object> pc = IloComposePareto(c1,c2,...,cn);

The composite comparator pc will prefer an object x to an object y if and only if

there is no comparator in the list of subordinate comparators that prefers y to x and•
there exists at least one comparator in the list of subordinate comparators that prefers x to y•

The third way to define a comparator is very common. The first step is to define an evaluator that evaluates the
objects and returns a numeric evaluation and then compare the objects depending on this evaluation by
preferring the one with the lowest or greatest evaluation.

Evaluators and evaluator-based comparators are described in the next section.

Evaluators

An evaluator of objects of type Object is a class that implements an evaluation of an object and returns an
IloNum value. Evaluators of objects of type Object are instances of the template class
IloEvaluator<Object>.

The evaluation function of an evaluator is the member function IloNum operator()(Object obj, IloAny
nu =0). This function returns an evaluation of the instance of the object given as an argument. An optional
context nu can be passed to the evaluation function in cases where the result of the evaluation depends on some
contextual information.

The member functions makeLessThanComparator and makeGreaterThanComparator are available on the
evaluator base class IloEvaluator to build and return a comparator based on the invoking evaluator.

Evaluators can either be created on a Concert environment (IloEnv) or on the reversible heap of a solver
(IloSolver) depending on the signature that is used to construct the evaluator.

There are two ways to define an evaluator:

by defining a new evaluator using the ILOEVALUATORi and ILOCTXEVALUATORi macros•
by composing existing subordinate evaluators•

The first way to create an evaluator is to use the ILOEVALUATORi macros to define new evaluators with i data
members. The ILOCTXEVALUATORi macros define new evaluators in the same way as the ILOEVALUATORi
macros, except that you can add a context.

For example, the following code instantiates an evaluator that returns the size of a variable's domain:

ILOEVALUATOR0(DomainSize,
 IlcIntVar, v) {
 return v.getSize();
}

The slightly more complex evaluator in the following sample instantiates an evaluator that returns the value of an
IloIntVar in a solution. The instance of the solution is passed as a context to the evaluation function.

ILOCTXEVALUATOR0(ValueInSolution,
 IloIntVar, v,
 IloSolution, sol) {
 return sol.getValue(v);
}

An instance of such an evaluator can be allocated on a Concert environment as follows:

IloEnv env;
IloEvaluator<IloIntVar> eval = ValueInSolution(env);

Evaluating a given variable v in the context of a given solution sol can then be performed as follows:

24

IloIntVar v = ...;
IloSolution sol = ...;
IloNum value = eval(v,&sol);

The second way to define an evaluator is to compose subordinate evaluators using algebraic operators such as
+, -, *, /, IloMin, and IloMax and miscellaneous functions such as IloCeil or IloFloor.

For instance, if ei are evaluators on objects of type <Object>, a composite evaluator on objects of type
<Object> can be defined as follows:

IloEvaluator<Object> ce = e1 * IloMin(e2 + IloFloor(3*e3), -e4)

Evaluators on objects of different types cannot be composed together. This will raise an error at compilation time.

Composite evaluators, when invoked with a context, will pass this context to their subordinate evaluators.

Composing evaluators and predicates

Evaluators can also be composed with predicates to build new evaluators. Likewise, predicates can be built as a
composition of evaluators.

For example, the function IloIfThenElse allows you to instantiate a conditional evaluator that, depending on
the test performed by a predicate p, will return the value of different evaluators (e1 if p is true, e2 otherwise):

IloEvaluator<Object> ce = IloIfThenElse(p, e1, e2);

Composite predicates can also be built as a composition of evaluators with the operators ==, !=, <, <=, >= and
>.

For example, the following predicate will return IloTrue on an instance of Object, if and only if, for this
instance, the evaluation of e1 is lower than the evaluation of e2:

IloPredicate<Object> p = (e1<e2);

Composite evaluators and predicates, when invoked with a context, will pass this context to their subordinate
evaluators or predicates.

Translators

The template class IloTranslator<ObjectOut,ObjectIn> allows you to translate any object of type
ObjectIn into a unique object of type ObjectOut.

Translators can be used to create both evaluators and predicates.

A translator IloTranslator<ObjectOut,ObjectIn> defines a translation member function that, given an
input object o and an optional context, returns an output object that is the translation of the object passed as
argument:

ObjectOut operator()(ObjectIn o, IloAny nu=0)

Translators can be used to define new predicates and evaluators by using the composition operator <<.

Translators can either be created on a Concert environment (IloEnv) or on the reversible heap of a solver
(IloSolver) depending on the signature that is used to construct the translator.

A new translator can be defined using the macro ILOTRANSLATOR.

For example, suppose an evaluator is available that returns the size of an instance of the Solver class
IlcIntSet as defined in the following sample:

ILOEVALUATOR0(SetSize,
 IlcIntSet, set) {
 return set.getSize();
}

25

Now suppose that you want to define an evaluator of an IlcIntSetVar that returns the size of its required set.
You could write it explicitly as follows:

ILOEVALUATOR0(RequiredSetSize,
 IlcIntSetVar, v) {
 return v.getRequiredSet().getSize();
}

An alternative is to define an object that automatically translates an instance of IlcIntSetVar into its unique
required set and then compose this translator with the evaluator of IlcIntSet to build a new evaluator of
IlcIntSetVar.

For instance in the above example, a translator that returns the required set of an IlcIntSetVar can be
defined as follows:

ILOTRANSLATOR(RequiredSetTranslator,
 IlcIntSet,
 IlcIntSetVar, v) {
 return v.getRequiredSet();
}

The above translator that returns the required set of an IlcIntSetVar can then be composed with the
evaluator of IlcIntSet to build a new evaluator of IlcIntSetVar:

IloEvaluator<IlcIntSet> sizeOfSet = SetSize(solver);
IloTranslator<IlcIntSet,IlcIntSetVar> requiredSet = RequiredSetTranslator(solver);
IloEvaluator<IlcIntSetVar> requiredSetSize = sizeOfSet << requiredSet;

Note that such composed evaluators and predicates, when invoked with a context, will pass this context to their
subordinate evaluators/predicates and translators.

Example of a Selector

To demonstrate the concepts explained in this section, the following code sample gives a full example of a
complex selector of IlcIntSetVar in an IlcIntSetVarArray that:

will only consider the variables with an even index in the array (this is done with a new visitor)•
will only consider unbound variables with a non-empty required set (this is done with a predicate)•
will select an eligible variable with the smallest difference between the size of the possible set and the
size of the required set, using the smallest size of possible set to break ties (this is done with a lexical
comparator)

•

ILOVISITOR0(VarWithEvenIndex,
 IlcIntSetVar,
 IlcIntSetVarArray, array) {
 const IloInt size = array.getSize();
 for (IloInt i=0; i<size; i+=2)
 visit(array[i]);
}

ILOPREDICATE0(IsBound,
 IlcIntSetVar, v) {
 return v.isBound();
}

ILOEVALUATOR0(SetSize,
 IlcIntSet, set) {
 return set.getSize();
}

ILOTRANSLATOR(RequiredSetTranslator,
 IlcIntSet,
 IlcIntSetVar, v) {
 return v.getRequiredSet();
}

ILOTRANSLATOR(PossibleSetTranslator,
 IlcIntSet,
 IlcIntSetVar, v) {

26

 return v.getPossibleSet();
}

IloSolver s = ...;

IloEvaluator<IlcIntSetVar> sizeReq = SetSize(s) << RequiredSetTranslator(s);
IloEvaluator<IlcIntSetVar> sizePos = SetSize(s) << PossibleSetTranslator(s);

IloSelector<IlcIntSetVar,IlcIntSetVarArray> selector =
 IloBestSelector(VarWithEvenIndex(s),
 !IsBound(s) && (0 < sizeReq),
 IloComposeLexical((sizePos-sizeReq).makeLessThanComparator(), sizePos.makeLessThanComparator()));

See Also

IloBestSelector, IloComparator, IloCompositeComparator, IloEvaluator, IloLexicographicComparator,
IloParetoComparator, IloPredicate, IloSelector, IloTranslator, IloVisitor, ILOCLIKECOMPARATOR0,
ILOCOMPARATOR0, ILODEFAULTVISITOR, ILOEVALUATOR0, ILOPREDICATE0, ILOSELECTOR0,
ILOTRANSLATOR, ILOVISITOR0, IloCeil, IloComposeLexical, IloComposePareto, IloFloor, IloIfThenElse,
IloMax, IloMin.

State

In order to be able to search for solutions, a solver (that is, an instance of IloSolver) must save certain
information, including the state of solver objects such as:

the values of all the Solver variables associated with that solver,•
the domains of all the Solver variables associated with that solver,•
all the constraints that have been posted on the variables associated with that solver.•

The state of a solver also includes memory usage, object values, any search space already explored, and so on.

States are used during the search for a solution. The most important feature of states is that they can be
restored.

In other words, during the execution of a Solver program, a state can be created, then execution proceeds, then
that previously created state may be restored. In such a case, we say that Solver backtracks to the previously
created state.

See the concepts Choice Point, Propagation, and Reversibility for more information.

See Also

IlcConstraint

Addition of a soft constraint to the solver

A soft constraint is a constraint which can be violated. IBM® ILOG® Solver provides the user with a mechanism
which is able to deal with such constraints.

The mechanism used by IBM ILOG Solver to handle soft constraints

Suppose you would like the constraint ct to be a soft constraint.

In other words, the constraint ct could be violated without triggering a general failure.

IBM ILOG Solver defines a mechanism that gives you all the modifications that could happen in ct if it was
defined as a hard constraint.

27

Soft constraints are implemented by a copy mechanism. Thus, if the soft constraint is violated, no general failure
is triggered, and if some variables of the soft constraint are modified then the consequences of these
modifications are not studied because it is acceptable to violate the constraint ct.

Here is a more precise description of this copy mechanism:

The variables on which the constraint ct is defined are copied. These variables are called the copied
variables of ct. The variables from which the copies are made are called the original variables.

•

A new constraint corresponding to the constraint ct is defined on the copied variables of ct. This
constraint is called the soft constraint of ct, and ct is called the original constraint

•

Each time an original variable of ct is modified the corresponding copied variable of ct is accordingly
modified.

•

If the soft constraint is violated no global fail is triggered.•

It is also possible to link demons to the soft constraint. There are two types of demons:

Demons that are called when the soft constraint is violated•
Demons that are called when a copied variable is modified•

In addition a soft constraint is linked to a specific variable called the status variable. This variable is a 0-1
integer variable, which takes the value 1 if the soft constraint must be satisfied and the value 0 if the soft
constraint must be violated.

Note

A soft constraint can be defined only for constraints that involve only IlcIntVar variables.

Soft constraints are managed using the class IlcSoftConstraint

Example

This section presents a simple example of use of the soft constraints new functionality.

This example solve a problem of minimization of the number of violated constraints A set of constraint is
considered and a new constraint is defined. This new constraint (IlcManageSoftCtI in the code) creates as many
soft constraint as the array of constraint contains elements and use a variable which counts the number of
violated constraints (variable _obj in the code). This variable is linked to the violated constraints thanks to a
demon. Each time a constraint is violated this demon is called, and it increments the counter of violation.

/*
 Here is a simple example using soft constraints
 */

#include <ilsolver/ilosolverint.h>
#include <ilsolver/disjunct.h>

ILOSTLBEGIN

class IlcManageSoftCtI : public IlcConstraintI {
 IlcConstraintArray _cons;
 IlcRevInt _numFails;
 IlcIntVar _obj;
 IlcSoftCtHandler _sh;
public:
 IlcManageSoftCtI(IlcConstraintArray cons, IlcIntVar obj):
 IlcConstraintI(cons.getManager()), _cons(cons), _obj(obj), _sh(cons.getManager(),100){}
 void post();
 void propagate();
 void softCtFailDemon(const IlcInt softCtIndex);
 void softCtVarDemon(const IlcInt softCtIndex);
};

ILCCTDEMON1(mySoftCtVarDemon,IlcManageSoftCtI,softCtVarDemon, IlcInt,i);
ILCCTDEMON1(mySoftCtFailDemon,IlcManageSoftCtI,softCtFailDemon, IlcInt, i);

28

void IlcManageSoftCtI::softCtFailDemon(const IlcInt softCtIndex){
 // this demon is called when the soft constraint of index softCtIndex is violated
 // the number of fails is incremented, that is
 // the variable _obj, counting the number of violations, is incremented
 // any other action could be done here
 getManager().out() << "constraint: " << _cons[softCtIndex];
 getManager().out() << "is violated" << endl;
 _numFails.setValue(getManager(),_numFails.getValue() +1);
 _obj.setMin(_numFails.getValue());
}

void IlcManageSoftCtI::softCtVarDemon(const IlcInt softCtIndex){
 // this function is called each time a variable involved in the soft constraint is modified
 IlcSoftConstraint softCt=_sh.getSoftConstraint(softCtIndex);
 const IlcInt cvar=softCt.getCopiedVarInProcess();
 getManager().out() << "the copied variable of the variable: ";
 getManager().out() << _sh.getVar(_sh.getVarOfCopiedVar(cvar));
 getManager().out() << " of the constraint: " << _cons[softCtIndex];
 getManager().out() << " has been modified" << endl;
 getManager().out() << "the copied variable is: ";
 getManager().out() << _sh.getCopiedVar(cvar) << endl;
}

void IlcManageSoftCtI::post(){
}

void IlcManageSoftCtI::propagate(){
 // for each constraint in array _cons, a corresponding soft constraint is defined
 // and the demons are linked to the possible modifications
 const IlcInt numCt=_cons.getSize();
 for(IlcInt i=0;i<numCt;i++){
 // creation of the soft constraint
 IlcSoftConstraint softCt=_sh.createSoftConstraint(_cons[i]);
 // addition of demons
 softCt.whenFail(mySoftCtFailDemon(getManager(),this,i));
 softCt.whenDomainReduction(mySoftCtVarDemon(getManager(),this,i));
 // addition of the soft constraint
 add(softCt);
 }
 _sh.getImpl()->printCvars();
 _sh.getImpl()->printSoftCts();
 _sh.getImpl()->printVars();
}

IlcConstraint IlcManageSoftCt(IlcConstraintArray cons,IlcIntVar obj){
 return new (cons.getManager().getHeap()) IlcManageSoftCtI(cons,obj);
}

ILOCPCONSTRAINTWRAPPER2(IloManageSoftCt, solver, IloConstraintArray, _cons, IloIntVar, _obj){
 use(solver, _cons);
 use(solver, _obj);
 return IlcManageSoftCt(solver.getConstraintArray(_cons),
 solver.getIntVar(_obj));
}

int main(int argc, char** argv) {
 IloEnv env;
 try {
 IloModel model(env);

 // 3 variables are defined
 IloIntVarArray vars(env,3,0,1);

 vars[0].setName("x0");
 vars[1].setName("x1");
 vars[2].setName("x2");

 // 3 constraints are defined
 IloConstraintArray cons(env,3);
 cons[0] = (vars[0]!=vars[1]);
 cons[1] = (vars[0]!=vars[2]);
 cons[2] = (vars[1]!=vars[2]);

 // an objective is defined

29

 IloIntVar obj(env,0,3);

 // in order to define these constraints as soft constraints a new constraint is defined
 // this constraint creates a soft constraint for each constraint of cons array
 // on the other hand, this constraint ensures that the objective corresponds to the number of
 // constraints that are violated
 model.add(IloManageSoftCt(env, cons, obj));

 // we search for a solution minimizing the number of violations
 model.add(IloMinimize(env, obj));

 IloSolver solver(model);
 solver.startNewSearch(IloGenerate(env,vars));
 while(solver.next()){
 solver.out() << "obj = " << solver.getIntVar(obj)
 << endl << solver.getIntVarArray(vars) << endl << endl;
 }
 solver.endSearch();
 }
 catch (IloException& ex) {
 cout << "Error: " << ex << endl;
 }
 env.end();
 return 0;
}

Table Constraints

Table constraints are constraints that are used frequently in constraint applications. There are two broad
categories of use:

when external data defines a relation•
when you want to improve the efficiency of the solving process by modeling a subproblem as a table
constraint

•

External data as constraints

In many constraint applications, it is necessary to process a huge quantity of data. For instance, the features of
some products can be described as a relation in a database or in text files.

Consider as an example a bicycle factory that can produce thousands of different models. For each model of
bicycle, a relation associates the features of that bicycle such as size, weight, color, price. This information can
be used in a constraint programming application that allows a customer to find the bicycle that most closely fits a
specification. This application benefits from a table constraint: this constraint takes a relation (a set of k-ary
tuples) and an array of k variables and guarantees that the values of the variables correspond to a tuple of the
relation.

In the bicycle example, you first define the relation as an IloIntTupleSet:

IloIntTupleSet bicycleTable(env, 5);
while (thereIsTupleToBeRead()) {
 IloIntArray aTuple(env,5);
 aTuple = myReadTupleFunction();
 // aTuple[0]= the id of a type of bicycle
 // aTuple[1]= its size
 // aTuple[2]= its weight
 // aTuple[3]= its color
 // aTuple[4]= its price
 bicycleTable.add(aTuple);
}

Then define an array of integer variables x, and assume x[0] represents the id of the bicycle, x[1] its size,
x[2] its weight, x[3] its color, and x[4] its price:

IloIntVarArray x(env, 5);

30

Finally, add a table constraint on x that forces the values of x to be one of the combinations defined in the tuple
set:

model.add(IloTableConstraint(env, x, bicycleTable, IloTrue);

If you are looking for two bicycles of size 2 and 4 with the same color, add another array of integer variables y to
represent the second bicycle along with another table constraint (notice that the tuple set is shared between the
two table constraints):

IloIntVarArray y(env, 5);
model.add(IloTableConstraint(env, y, bicycleTable, IloTrue);
model.add(x[1]== 2);
model.add(y[1]== 4);
model.add(x[3]==y[3]);

There are several ways to express a table constraint:

The tuple set may indicate the combinations of values that satisfy the constraint, as in the above
example.

•

The tuple set may also indicate the combinations of values that do no satisfy the constraint.•
The combinations of values may be expressed by a predicate.•
The combinations of values may be expressed by an array whose index corresponds to one variable
and values to a second variable.

•

See IloTableConstraint for the complete description of the different table constraints.

Improving efficiency: a table constraint for a subproblem

A modeling trick that may sometimes dramatically reduce the CPU time needed to solve a problem consists in
identifying a difficult subproblem, computing all the solutions of the subproblem, and storing them in a table
constraint. This approach is not restricted to constraint programming, it is a general approach: facing a difficult
problem, it is often easier to solve it by:

decomposing the problem into subproblems,1.
solving the different subproblems, and2.
connecting the solutions of the subproblems to produce a solution to the whole problem.3.

A table constraint forces the values of the variables of the subproblem to be one of the solutions of the
subproblem. Thus the connection of the solution of the subproblem with the remainder of the problem is
automatically handled. The advantage of this approach is that when searching for a solution of the whole
problem, instead of always retrieving the solutions of the subproblem in the search, the table constraint forces
values to one of these solutions. In other terms, the work of solving the subproblem is factorized and done only
once, before the search, and not several times during the search (which is potentially a huge number of times).

This approach also has a drawback: the solutions of the subproblem must be found first so this must be practical
(the solutions should not be too numerous). Tables with several hundreds of thousands of tuples can be handled,
but subproblems with billions of solutions cannot be handled in this way. Nevertheless, note that it is possible to
set a bound on the number of solutions of the subproblem to precompute and store in the table. In this case, the
problem solved is a restriction of the initial problem, but this may be useful in practice.

An example of such an approach is available in the file dinner.cpp in the examples/src directory.

Obsolete Functions & Classes - Solver

The macro ILSOLVER4 makes code written with Solver 4.0 through 4.4 compatible with Solver 5.x.

Obsolete Function or Class Use This Instead

ILCDEMON ILCCTDEMON

31

IloConstAnyArray IloArray

IloConstIntArray IloArray

IloConstNumArray IloArray

ILOCPGOAL ILOCPGOALWRAPPER and ILCGOAL

IlcInitFloat no longer needed

IlcIsInitDone no longer needed

IlcManager::add IloSolver::add

IlcManager::addReversibleAction IloSolver::addReversibleAction

IlcManager::closeLogFile See the IBM ILOG Concert Technology API

IlcManager::commit IloSolver::endSearch

IlcManager::end IloSolver::end

IlcManager::fail IloSolver::fail

IlcManager::getDefault Precision IloSolver::getDefaultPrecision

IlcManager::getErrorReporter
IloException in IBM ILOG Concert Technology
API

IlcManager::getHeap IloSolver::getHeap

IlcManager::getMemoryUsage IloSolver::getMemoryUsage

IlcManager::getNumberOfChoicePoints IloSolver::getNumberOfChoicePoints

IlcManager::getNumberOfConstraints IloSolver::getNumberOfConstraints

IlcManager::getNumberOfFails IloSolver::getNumberOfFails

IlcManager::getNumberOfVariables IloSolver::getNumberOfVariables

IlcManager::getStream See the IBM ILOG Concert Technology API

IlcManager::getTime IloSolver::getTime

IlcManager::getTraceMode IlcTrace

IlcManager::IlcManager IloSolver::IloSolver

IlcManager::nextSolution IloSolver::next

IlcManager::openLogFile See the IBM ILOG Concert Technology API

IlcManager::out
IloAlgorithm::out in IBM ILOG Concert Technology
API

IlcManager::parseTrace IlcTrace

IlcManager::printInformation IloSolver::printInformation

IlcManager::remove IloModel::remove in IBM ILOG Concert Technology API

IlcManager::restart IloSolver::restartSearch

IlcManager::setDefaultPrecision IloSolver::setDefaultPrecision

IlcManager::setErrorReporter IloException in IBM ILOG Concert Technology API

IlcManager::setFailLimit IloSolver::setFailLimit

32

IlcManager::setObjMin IloSolver::setObjMin

IlcManager::setObjMin(-objective) IloSolver::setObjMin(-objective)

IlcManager::setOrLimit IloSolver::setOrLimit

IlcManager::setStream See the IBM ILOG Concert Technology API

IlcManager::setTimeLimit IloSolver::setTimeLimit

IlcManager::setTraceHook IlcTrace

IlcManager::solve IloSolver::solve

IlcManager::solveAll IloSolver::solve

IlcSearch::end IloSolver::endSearch

IlcSearch::next IloSolver::next

IlcSearch::restart IloSolver::restartSearch

IlcSearch::setObjMin IloSolver::setObjMin

IlcSearch::setObjMin(-objective) IloSolver::setObjMin(-objective)

IlcSearchSelectorI::registerSolution IlcSearchSelectorI::whenLeaf

IlcSearchSelectorI::update IlcSearchSelectorI::updateObjective

IlcSearchSelectorI::updateTo IlcSearchSelectorI::updateObjectiveTo

IlcSearchSelectorI::whenFinished IlcSearchSelectorI::whenFinishedTree

IloSolver::newSearch IloSolver::startNewSearch

IlcTraceHook IlcTrace

IlcTraceHookI IlcTraceI

33

Group optim.concert
The IBM® ILOG® Concert API.

Class Summary

IloAlgorithm The base class of algorithms in Concert Technology.

IloAlgorithm::CannotExtractException The class of exceptions thrown if an object cannot be extracted from a
model.

IloAlgorithm::CannotRemoveException The class of exceptions thrown if an object cannot be removed from a
model.

IloAlgorithm::Exception The base class of exceptions thrown by classes derived from
IloAlgorithm.

IloAlgorithm::NotExtractedException The class of exceptions thrown if an extractable object has no value in
the current solution of an algorithm.

IloAllDiff For constraint programming: constrains integer variables to assume
different values in a model.

IloAllMinDistance For constraint programming: constraint on the minimum absolute
distance between a pair of variables in an array.

IloAnd Defines a logical conjunctive-AND among other constraints.

IloArray A template to create classes of arrays for elements of a given class.

IloBarrier A system class to synchronize threads at a specified number.

IloBaseEnvMutex A class to initialize multithreading in an application.

IloBoolArray The array class of the basic Boolean class for a model.

IloBoolVar An instance of this class represents a constrained Boolean variable in
a Concert Technology model.

IloBoolVarArray The array class of the Boolean variable class.

IloCondition Provides synchronization primitives adapted to Concert Technology for
use in a parallel application.

IloConstraint An instance of this class is a constraint in a model.

IloConstraintArray The array class of constraints for a model.

IloDiff Constraint that enforces inequality.

IloDistribute For constraint programming:: a counting constraint in a model.

IloEmptyHandleException The class of exceptions thrown if an empty handle is passed.

IloEnv The class of environments for models or algorithms in Concert
Technology.

IloEnvironmentMismatch This exception is thrown if you try to build an object using objects from
another environment.

IloException Base class of Concert Technology exceptions.

IloExpr An instance of this class represents an expression in a model.

IloExprArray The array class of the expressions class.

IloExpr::LinearIterator An iterator over the linear part of an expression.

IloExtractable Base class of all extractable objects.

IloExtractableArray An array of extractable objects.

IloExtractableVisitor The class for inspecting all nodes of an expression.

IloFastMutex

34

Synchronization primitives adapted to the needs of Concert
Technology.

IloFunction For constraint programming: A template for creating a handle class to
the implementation class built by the template IloFunctionI.

IloIfThen This class represents a condition constraint.

IloIntArray The array class of the basic integer class.

IloIntBinaryPredicate For constraint programming: binary predicates operating on arbitrary
objects in a model.

IloIntExpr The class of integer expressions in Concert Technology.

IloIntExprArg A class used internally in Concert Technology.

IloIntExprArray The array class of the integer expressions class.

IloIntSet An instance of this class offers a convenient way to represent a set of
integer values.

IloIntSet::Iterator This class is an iterator that traverses the elements of a finite set of
numeric values.

IloIntSetVar The class IloIntSetVar represents a set of integer values.

IloIntSetVarArray The array class of the set variable class for integer values.

IloIntTernaryPredicate For constraint programming: ternary predicates operating on arbitrary
objects in a model.

IloIntTupleSet Ordered set of values represented by an array.

IloIntTupleSetIterator Class of iterators to traverse enumerated values of a tuple-set.

IloIntVar An instance of this class represents a constrained integer variable in a
Concert Technology model.

IloIntVarArray The array class of the integer constrained variables class.

IloInverse For constraint programming: constrains elements of one array to be
inverses of another.

IloIterator A template to create iterators for a class of extractable objects.

IloModel Class for models.

IloModel::Iterator Nested class of iterators to traverse the extractable objects in a model.

IloMutexDeadlock The class of exceptions thrown due to mutex deadlock.

IloMutexNotOwner The class of exceptions thrown.

IloMutexProblem Exception.

IloNot Negation of its argument.

IloNumArray The array class of the basic floating-point class.

IloNumExpr The class of numeric expressions in a Concert model.

IloNumExprArg A class used internally in Concert Technology.

IloNumExprArray The array class of the numeric expressions class.

IloNumExpr::NonLinearExpression The class of exceptions thrown if a numeric constant of a nonlinear
expression is set or queried.

IloNumToAnySetStepFunction Represents a step function that associates sets with intervals.

IloNumToAnySetStepFunctionCursor Allows you to inspect the contents of an
IloNumToAnySetStepFunction.

IloNumToNumSegmentFunction Piecewise linear function over a segment.

IloNumToNumSegmentFunctionCursor Cursor over segments of a piecewise linear function.

IloNumToNumStepFunction Represents a step function that is defined everywhere on an interval.

35

IloNumToNumStepFunctionCursor Allows you to inspect the contents of an instance of
IloNumToNumStepFunction.

IloNumVar An instance of this class represents a numeric variable in a model.

IloNumVarArray The array class of IloNumVar.

IloObjective An instance of this class is an objective in a model.

IloOr Represents a disjunctive constraint.

IloPack For constraint programming: maintains the load of containers, given
weighted, assigned items.

IloRandom This handle class produces streams of pseudo-random numbers.

IloRange An instance of this class is a range in a model.

IloRangeArray The array class of ranges for a model.

IloSemaphore Provides synchronization primitives.

IloSequence For constraint programming: a sequence constraint in a model.

IloSolution Instances of this class store solutions to problems.

IloSolutionIterator This template class creates a typed iterator over solutions.

IloSolution::Iterator It allows you to traverse the variables in a solution.

IloSolutionManip An instance of this class accesses a specific part of a solution.

IloTimer Represents a timer.

Typedef Summary

IloAny For constraint programming: the type for objects as variables in enumerations or sets.

IloBool Type for Boolean values.

IloInt Type for signed integers.

IloNum Type for numeric values as floating-point numbers.

IloSolutionArray Type definition for arrays of IloSolution instances.

Macro Summary

IloFloatVar An instance of this class represents a constrained floating-point
variable in Concert Technology.

IloFloatVarArray The array class of IloFloatVar.

IloHalfPi Half pi.

ILOINTBINARYPREDICATE0 For constraint programming: defines a predicate class.

ILOINTTERNARYPREDICATE0 For constraint programming: defines a predicate class.

IloPi Pi.

IloQuarterPi Quarter pi.

ILOSTLBEGIN Macro for STL.

IloThreeHalfPi Three half-pi.

IloTwoPi Two pi.

Enumeration Summary

IloAlgorithm::Status An enumeration for the class IloAlgorithm.

IloDeleterMode An enumeration to set the mode of an IloDeleter.

IloNumVar::Type An enumeration for the class IloNumVar.

36

IloObjective::Sense Specifies objective as minimization or maximization.

Function Summary

IloAbs Returns the absolute value of its argument.

IloAbstraction For constraint programming: returns a constraint that abstracts the values of
one array into the abstract value of another array.

IloAdd Template to add elements to a model.

IloArcCos Trigonometric functions.

IloBoolAbstraction For constraint programming: creates a constraint to abstract an array of
Boolean variables.

IloCeil Returns the least integer value not less than its argument.

IloDisableNANDetection Disables NaN (Not a number) detection.

IloDiv Integer division function.

IloEnableNANDetection Enables NaN (Not a number) detection.

IloEndMT Ends multithreading.

IloExponent Returns the exponent of its argument.

IloFloor Returns the largest integer value not greater than the argument.

IloGetClone Creates a clone.

IloInitMT Initializes multithreading.

IloIsNAN Tests whether a double value is a NaN.

IloLexicographic Returns a constraint which maintains two arrays to be lexicographically
ordered.

IloLog Returns the natural logarithm of its argument.

IloMax Returns a numeric value representing the max of numeric values.

IloMaximize Defines a maximization objective.

IloMember For constraint programming: creates and returns a constraint forcing
element to be a member of setVar.

IloMin Returns a numeric value representing the min of numeric values.

IloMinimize Defines a minimization objective.

IloMonotonicDecreasingNumExpr For constraint programming: creates a new constrained expression equal to
f(x).

IloMonotonicIncreasingNumExpr For constraint programming: creates a new constrained expression equal to
f(x).

IloNotMember For constraint programming: creates and returns a constraint forcing expr
not to be a member of elements.

IloPiecewiseLinear Represents a continuous or discontinuous piecewise linear function.

IloPower Returns the power of its arguments.

IloRound Computes the nearest integer value to its argument.

IloScalProd Represents the scalar product.

IloScalProd Represents the scalar product.

IloScalProd Represents the scalar product.

IloScalProd Represents the scalar product.

IloSquare Returns the square of its argument.

IloSum Returns a numeric value representing the sum of numeric values.

37

operator new Overloaded C++ new operator.

operator! Overloaded C++ operator for negation.

operator!= Overloaded C++ operator.

operator% Returns an expression equal to the modulo of its arguments.

operator% Returns an expression equal to the modulo of its arguments.

operator&& Overloaded C++ operator for conjunctive constraints.

operator* Returns an expression equal to the product of its arguments.

operator+ Returns an expression equal to the sum of its arguments.

operator- Returns an expression equal to the difference of its arguments.

operator/ Returns an expression equal to the quotient of its arguments.

operator< overloaded C++ operator

operator<< Overloaded C++ operator.

operator<< Overloaded C++ operator.

operator<=

operator<= overloaded C++ operator

operator==

operator== Overloaded C++ operator.

operator> overloaded C++ operator

operator>= overloaded C++ operator

operator>> Overloaded C++ operator redirects input.

operator|| Overloaded C++ operator for a disjunctive constraint.

Variable Summary

ILO_NO_MEMORY_MANAGER OS environment variable controls Concert Technology memory manager.

IloInfinity Largest double-precision floating-point number.

IloIntMax Largest integer.

IloIntMin Least integer.

Concert Technology offers a C++ library of classes and functions that enable you to design models of problems
for both math programming (including linear programming, mixed integer programming, quadratic programming,
and network programming) and constraint programming solutions.

38

Group optim.concert.extensions
The IBM® ILOG® Concert Extensions Library.

Class Summary

IloCsvLine Represents a line in a csv file.

IloCsvReader Reads a formatted csv file.

IloCsvReader::IloColumnHeaderNotFoundException Exception thrown for unfound header.

IloCsvReader::IloCsvReaderParameterException Exception thrown for incorrect arguments in constructor.

IloCsvReader::IloDuplicatedTableException Exception thrown for tables of same name in csv file.

IloCsvReader::IloFieldNotFoundException Exception thrown for field not found.

IloCsvReader::IloFileNotFoundException Exception thrown when file is not found.

IloCsvReader::IloIncorrectCsvReaderUseException Exception thrown for call to inappropriate csv reader.

IloCsvReader::IloLineNotFoundException Exception thrown for unfound line.

IloCsvReader::IloTableNotFoundException Exception thrown for unfound table.

IloCsvReader::LineIterator Line-iterator for csv readers.

IloCsvReader::TableIterator Table-iterator of csv readers.

IloCsvTableReader Reads a csv table with format.

IloCsvTableReader::LineIterator Line-iterator for csv table readers.

IloIntervalList Represents a list of nonoverlapping intervals.

IloIntervalListCursor Inspects the intervals of an interval list.

Function Summary

IloDifference Creates and returns the difference between two interval lists.

IloDifference Creates and returns a function equal to the difference between the functions.

IloIntersection creates and returns a function equal to the intersection between the functions.

IloMax Creates and returns a function equal to the maximal value of its argument functions.

IloMin Creates and returns a function equal to the minimal value of its argument functions.

IloUnion Represents a function equal to the union of the functions.

IloUnion Creates and returns the union of two interval lists.

operator* Creates and returns a function equal to its argument function multiplied by a given factor.

operator+ Creates and returns a function equal the sum of its argument functions.

operator- Creates and returns a function equal to the difference between its argument functions.

operator<< Overloaded operator for csv output.

operator== Returns IloTrue for same interval lists.

operator== overloaded operator.

operator== Overloaded operator tests equality of numeric functions.

39

Group optim.concert.solver
The IBM® ILOG® Concert Solver API.

Class Summary

IloAnyArray For IBM® ILOG® Solver: array class of the enumerated type definition IloAny.

IloAnyBinaryPredicate For IBM ILOG Solver: defines binary predicates on objects in a model.

IloAnySet::Iterator For IBM® ILOG® Solver: an iterator to traverse the elements of IloAnySet.

IloAnySetVar For IBM® ILOG® Solver: a class to represent a set of enumerated values as a
constrained variable.

IloAnySetVarArray For IBM® ILOG® Solver: array class of the set variable class IloAnySetVar.

IloAnyTernaryPredicate For IBM ILOG Solver: defines ternary predicates on objects in a model.

IloAnyTupleSet Ordered set of values as an array.

IloAnyTupleSetIterator Iterator to traverse enumerated values of a tuple-set.

IloAnyVar For IBM® ILOG® Solver: a class to represent an enumerated variable.

IloAnyVarArray For IBM® ILOG® Solver: a class to represent an array of enumerated variables.

IloBox For IBM ILOG Solver: multidimensional boxes for multidimensional placement
problems.

IloPathLength For IBM® ILOG® Solver: a constraint on accumulations along a path.

IloPathTransitI For IBM® ILOG® Solver: a transit function in a path constraint.

Typedef Summary

IloNumFunction For IBM® ILOG® Solver: the type for a pointer to a numeric function.

IloPathTransitFunction For IBM® ILOG® Solver: a pointer to a function that computes a transit cost of
connecting two nodes.

Macro Summary

ILOANYBINARYPREDICATE0 For IBM ILOG Solver: defines a binary predicate class.

ILOANYTERNARYPREDICATE0 For IBM® ILOG® Solver: defines a ternary predicate class.

IloFloatArray IloFloatArray is the array class of the basic floating-point class.

Function Summary

IloAllNullIntersect For IBM® ILOG® Solver: a constraint forcing one set to have no elements in common with
another set.

IloCard For constraint programming: creates and returns a constrained numeric variable that
represents the number of elements in vars.

IloEqIntersection For IBM® ILOG® Solver: a constraint forcing the intersection of two sets to the elements of
a third set.

IloEqMax For IBM® ILOG® Solver: a constraint forcing a variable to the maximum of returned values.

IloEqMin For IBM® ILOG® Solver: a constraint forcing a variable to the minium of returned values.

IloEqPartition For IBM® ILOG® Solver: a constraint forcing the value of a variable to be required by one
set variable in an array.

IloEqSum For IBM® ILOG® Solver: a constraint forcing a variable to the sum of returned values.

IloEqUnion For IBM® ILOG® Solver: a constraint forcing the union of two sets to be the elements of a
third set.

40

IloEqUnion For IBM® ILOG® Solver : a constraint forcing the union of two sets to be the elements of a
third set.

IloNullIntersect For IBM® ILOG® Solver: a constraint forcing one set to have no elements in common with
another set.

IloPartition For IBM® ILOG® Solver: a constraint forcing each value of an array to be required by one
set variable in an array.

IloSubset For IBM® ILOG® Solver: a constraint forcing one set to be strictly a subset of another set.

IloSubsetEq For IBM® ILOG® Solver: a constraint forcing one set to be a subset of or equivalent to
another set.

IloTableConstraint For IBM® ILOG® Solver: defines simple constraints that are not predefined.

This group contains IBM ILOG Concert classes and functions specific to IBM ILOG Solver or common to IBM
ILOG CP Optimizer and IBM ILOG Solver.

41

Group optim.concert.xml
The IBM ILOG Concert Serialization API.

Class Summary

IloXmlContext

IloXmlInfo

IloXmlReader

IloXmlWriter

42

Group optim.solver
The IBM® ILOG® Solver API.

Class Summary

IlcAnyArray

IlcAnyDeltaPossibleIterator

IlcAnyDeltaRequiredIterator

IlcAnyExp

IlcAnyExpIterator

IlcAnyPredicate

IlcAnyPredicateI

IlcAnySelect

IlcAnySet

IlcAnySetArray

IlcAnySetIterator

IlcAnySetSelect

IlcAnySetVar

IlcAnySetVarArray

IlcAnySetVarArrayIterator

IlcAnyToIntExpFunction

IlcAnyToIntFunction

IlcAnyTupleSet

IlcAnyVar

IlcAnyVarArray

IlcAnyVarArrayIterator

IlcAnyVarDeltaIterator

IlcBoolVar

IlcBoolVarArray

IlcBox

IlcBoxIterator

IlcConstAnyArray

IlcConstFloatArray

IlcConstIntArray

IlcConstraint

IlcConstraintAggregator

IlcConstraintArray

IlcConstraintI

IlcDemon

IlcDemonI

IlcFloatArray

IlcFloatExp

43

IlcFloatExpIterator

IlcFloatSet

IlcFloatSetIterator

IlcFloatVar

IlcFloatVarArray

IlcFloatVarDeltaIterator

IlcGoal

IlcGoalI

IlcIndex

IlcIntArray

IlcIntDeltaPossibleIterator

IlcIntDeltaRequiredIterator

IlcIntExp

IlcIntExpIterator

IlcIntPredicate

IlcIntPredicateI

IlcIntSelect

IlcIntSelectEvalI

IlcIntSelectI

IlcIntSet

IlcIntSetArray

IlcIntSetIterator

IlcIntSetSelect

IlcIntSetVar

IlcIntSetVarArray

IlcIntSetVarArrayIterator

IlcIntToFloatExpFunction

IlcIntToFloatExpFunctionI

IlcIntToIntExpFunction

IlcIntToIntExpFunctionI

IlcIntToIntStepFunction

IlcIntToIntStepFunctionCursor

IlcIntTupleSet

IlcIntVar

IlcIntVarArray

IlcIntVarArrayIterator

IlcIntVarDeltaIterator

IlcMTNodeEvaluatorI

IlcMTSearchLimitI

IlcMTSearchSelectorI

IlcMemoryManagerI

44

IlcNodeEvaluator

IlcNodeEvaluatorI

IlcPathTransit

IlcPathTransitEvalI

IlcPathTransitI

IlcPrintTrace

IlcRandom

IlcRevAny

IlcRevBool

IlcRevFloat

IlcRevInt

IlcSearchLimit

IlcSearchLimitI

IlcSearchMonitor

IlcSearchMonitorI

IlcSearchNode

IlcSearchSelector

IlcSearchSelectorI

IlcSoftConstraint

IlcSoftCtHandler

IlcTrace

IlcTraceI

IloAnySetValueSelector

IloAnySetValueSelectorI

IloAnyValueSelector

IloAnyValueSelectorI

IloBestSelector

IloBranchSelector

IloBranchSelectorI

IloCPConstraintI

IloCPTrace

IloCPTraceI

IloComparator

IloCompositeComparator

IloCustomizableGoal

IloEvaluator

IloExplainer

IloGoal

IloGoalI

IloIntSetValueSelector

IloIntSetValueSelectorI

45

IloIntValueSelector

IloIntValueSelectorI

IloLexicographicComparator This class composes comparators lexicographically.

IloNodeEvaluator

IloNodeEvaluatorI

IloParallelSolver

IloParetoComparator This class performs Pareto comparison of objects.

IloPredicate

IloSearchLimit

IloSearchLimitI

IloSearchSelector

IloSearchSelectorI

IloSelector

IloSolver

IloSolverExplainer

IloTranslator

IloVisitor

Typedef Summary

IlcAny

IlcBool

IlcChooseAnyIndex

IlcChooseAnySetIndex

IlcChooseFloatIndex

IlcChooseIntIndex

IlcChooseIntSetIndex

IlcEvalAny

IlcEvalAnySet

IlcEvalInt

IlcEvalIntSet

IlcFloat

IlcFloatFunction

IlcFloatVarRef

IlcInt

IlcIntVarRef

IlcPathTransitFunction

Macro Summary

ILCANYPREDICATE0

ILCARRAY

ILCARRAY2

IlcChooseAnyIndex1

46

IlcChooseAnyIndex2

IlcChooseFloatIndex1

IlcChooseFloatIndex2

IlcChooseIndex1

IlcChooseIndex2

ILCCTDEMON0

ILCGOAL0

IlcHalfPi

IlcInfinity

IlcIntMax

IlcIntMin

ILCINTPREDICATE0

IlcPi

IlcQuarterPi

ILCREV

ILCSTLBEGIN

IlcThreeHalfPi

IlcTwoPi

IloChooseIntIndex

ILOCLIKECOMPARATOR0

ILOCOMPARATOR0

ILOCPCONSTRAINTWRAPPER0

ILOCPGOALWRAPPER0

ILOCPTRACEWRAPPER0

ILOEVALUATOR0

ILOPREDICATE0

ILOSELECTOR0

ILOTRANSLATOR

ILOVISITOR0

Enumeration Summary

IlcErrorType

IlcFilterLevel

IlcFilterLevelConstraint

IlcFloatDisplay

IlcSearchMonitorI::IlcPruneMode

IloSolver::FailureStatus

IloSynchronizeMode

Function Summary

ilc_fail_stop_here

ilc_trace_stop_here

47

IlcAbs

IlcAbstraction

IlcAllDiff

IlcAllDiffAggregator

IlcAllMinDistance

IlcAllNullIntersect

IlcAnd

IlcApply

IlcArcCos

IlcArcSin

IlcArcTan

IlcBestGenerate

IlcBestInstantiate

IlcBestInstantiate

IlcBestInstantiate

IlcBFSEvaluator

IlcBoolAbstraction

IlcBranchImpactVarEvaluator

IlcCard

IlcCard

IlcChooseFirstUnboundAny

IlcChooseFirstUnboundAnySet

IlcChooseFirstUnboundBool

IlcChooseFirstUnboundFloat

IlcChooseFirstUnboundInt

IlcChooseFirstUnboundIntSet

IlcChooseMaxMaxFloat

IlcChooseMaxMaxInt

IlcChooseMaxMinFloat

IlcChooseMaxMinInt

IlcChooseMaxRegretMax

IlcChooseMaxRegretMin

IlcChooseMaxSizeFloat

IlcChooseMaxSizeInt

IlcChooseMinMaxFloat

IlcChooseMinMaxInt

IlcChooseMinMinFloat

IlcChooseMinMinInt

IlcChooseMinRegretMax

IlcChooseMinRegretMin

IlcChooseMinSizeAny

48

IlcChooseMinSizeAnySet

IlcChooseMinSizeFloat

IlcChooseMinSizeInt

IlcChooseMinSizeIntSet

IlcComputeMax

IlcComputeMin

IlcCos

IlcDegreeInformation

IlcDegreeVarEvaluator

IlcDegToRad

IlcDichotomize

IlcDistribute

IlcElementEq

IlcElementEq

IlcElementNEq

IlcElementNEq

IlcEqAbstraction

IlcEqBoolAbstraction

IlcEqIntersection

IlcEqPartition

IlcEqUnion

IlcEqUnion

IlcEqUnion

IlcEqUnion

IlcExponent

IlcGeLex

IlcGenerate

IlcGenerateBounds

IlcGoalFail

IlcGoalTrue

IlcIfThen

IlcImpactInformation

IlcImpactValueEvaluator

IlcImpactVarEvaluator

IlcInstantiate

IlcInstantiate

IlcInstantiate

IlcIntersection

IlcInverse

IlcInverse

IlcLeLex

49

IlcLeOffset

IlcLimitSearch

IlcLinearCtAggregator

IlcLocalImpactVarEvaluator

IlcLog

IlcLogicAggregator

IlcMax

IlcMax

IlcMax

IlcMax

IlcMember

IlcMember

IlcMin

IlcMin

IlcMin

IlcMin

IlcMinDistance

IlcMinimizeVar

IlcMonotonicDecreasingFloatExp

IlcMonotonicIncreasingFloatExp

IlcMTBFSEvaluator

IlcMTMinimizeVar

IlcNotMember

IlcNotMember

IlcNull

IlcNullIntersect

IlcOnce

IlcOr

IlcPack

IlcPack

IlcPack

IlcPartition

IlcPathLength

IlcPiecewiseLinear

IlcPower

IlcRadToDeg

IlcRandomValueEvaluator

IlcRandomVarEvaluator

IlcReductionInformation

IlcReductionVarEvaluator

IlcRemoveValue

50

IlcRestartGoal

IlcScalProd

IlcSelectSearch

IlcSequence

IlcSetMax

IlcSetMin

IlcSetOf

IlcSetValue

IlcSin

IlcSizeOverDegreeVarEvaluator

IlcSizeVarEvaluator

IlcSolveBounds

IlcSplit

IlcSquare

IlcSubset

IlcSubsetEq

IlcSuccessRateValueEvaluator

IlcSuccessRateVarEvaluator

IlcSum

IlcSum

IlcSum

IlcSum

IlcTableConstraint

IlcTan

IlcUnion

IlcUnion

IlcUnion

IlcUnion

IloAddConstraint

IloAndGoal

IloApply

IloApply

IloBestGenerate

IloBestInstantiate

IloBFSEvaluator

IloCeil

IloChooseFirstUnboundInt

IloChooseMaxMaxInt

IloChooseMaxMinInt

IloChooseMaxRegretMax

IloChooseMaxRegretMin

51

IloChooseMaxSizeInt

IloChooseMinMaxInt

IloChooseMinMinInt

IloChooseMinRegretMax

IloChooseMinRegretMin

IloChooseMinSizeInt

IloComposeLexical Creates a lexicographic composite comparator from existing comparators.

IloComposePareto Initializes a Pareto composite comparator from existing comparators.

IloDDSEvaluator

IloDFSEvaluator

IloDichotomize

IloFailLimit

IloFirstSolution

IloFloor

IloGeLex

IloGenerate

IloGenerateBounds

IloGoalFail

IloGoalTrue

IloIDFSEvaluator

IloIfThenElse Creates a conditional predicate.

IloIfThenElse Creates a conditional evaluator.

IloInitializeImpactGoal

IloInstantiate

IloLeLex

IloLimitSearch

IloMax

IloMaximizeVar

IloMin

IloMinimizeVar

IloOrGoal

IloOrLimit

IloRemoveValue

IloRestartGoal

IloRestoreSolution

ILORTTIN

IloSBSEvaluator

IloSelectSearch

IloSetMax

IloSetMin

IloSetValue

52

IloSolveOnce

IloSplit

IloStoreBestSolution

IloStoreSolution

IloTimeLimit

IloUpdateBestSolution

operator new

operator!

operator! Creates a predicate by negation.

operator!=

operator!=

operator!= Creates a non-equality predicate from two evaluators.

operator&&

operator&& Creates a predicate performing AND on two predicates.

operator*

operator*

operator+

operator+

operator-

operator-

operator-

operator/

operator/

operator< Creates a less-than predicate from two evaluators.

operator<

operator<

operator<<

operator<<

operator<< Creates translated predicate.

operator<= Creates a less-than-or-equal predicate from two evaluators.

operator<=

operator<=

operator== Creates an equality predicate from two evaluators.

operator==

operator==

operator>

operator> Creates a greater-than predicate from two evaluators.

operator>

operator>=

operator>= Creates a greater-than-or-equal predicate from two evaluators.

operator>=

53

operator||

operator|| Creates a predicate performing OR on two predicates.

Variable Summary

ILC_NO_MEMORY_MANAGER

IlcFloatMax

IlcFloatMin

The IBM® ILOG® Solver API.

54

Group optim.solver.iim
The IBM® ILOG® Iterative Improvement Methods Optimization Components (IIM) API.

Class Summary

IlcNeighborIdentifier

IloEAOperatorFactory A factory for generating operators over arrays of variables.

IloEvent Basic event class.

IloExplicitEvaluator An evaluator whose evaluations are specified explicitly.

IloExplicitEvaluator::Iterator An iterator which will iterate over all evaluated objects in an explicit
evaluator.

IloIIM Management class for IIM components.

IloLargeNHoodI Special neighborhood implementation for Large Neighborhood
Search.

IloListener The listener class.

IloMetaHeuristic

IloMetaHeuristicI

IloMultipleEvaluator An explicit evaluator which can be refreshed from a container class.

IloNHood

IloNHoodArray

IloNHoodI

IloNHoodModifierI

IloNeighborIdentifier

IloPoolOperator The pool operator class.

IloPoolOperator::Event Event produced by pool operators.

IloPoolOperatorFactory An operator factory class providing services for simplifying operator
creation.

IloPoolOperator::InvocationEvent The event produced by pool operators when they are invoked.

IloPoolOperator::SuccessEvent The event produced by pool operators when they are involved in the
production of a solution.

IloPoolProc Pool processor.

IloRandomSelector A selector which chooses objects randomly.

IloRouletteWheelSelector A selector which chooses objects following a roulette wheel rule.

IloSolutionDeltaCheck

IloSolutionDeltaCheckI

IloSolutionPool A pool of solutions.

IloSolutionPool::AddedEvent

IloSolutionPool::EndEvent

IloSolutionPool::Event

IloSolutionPool::Iterator

IloSolutionPool::RemovedEvent

IloTabuSearch

IloTournamentSelector A selector which chooses objects following a tournament rule.

55

Typedef Summary

IloPoolProcArray An array of pool processors.

IloSolutionPoolEvaluator An explicit evaluator of solution pools.

IloSolutionPoolSelector A selector which selects solutions from pools.

Macro Summary

ILODECLDEFAULTCOMPARATOR Macro for declaring a default comparator.

ILODEFAULTCOMPARATOR Macro for defining a default comparator.

ILODEFINELNSFRAGMENT0 Macro for more easily creating LNS neighborhoods.

ILOIIMLISTENER0 A macro to define custom listeners.

ILOIIMOP0 This macro is used to define operators.

ILOMULTIPLEEVALUATOR0 Defines an evaluator that performs an evaluation of all objects within a
container.

Function Summary

IloApplyMetaHeuristic

IloBestSolutionComparator A solution comparator that prefers higher quality solutions.

IloChangeValue

IloCommitDelta

IloCompose

IloConcatenate

IloContinue

IloDestroyAll Creates a processor which destroys supplied pool elements.

IloExecuteProcessor Casts a pool processor into an IloGoal for execution via an instance of
IloSolver.

IloFlip

IloImprove

IloLimitOperator Limits the execution of a pool operator.

IloNotify

IloRandomize

IloRandomPerturbation Returns a goal which randomly permutes the search tree branches of another
goal.

IloReplaceSolutions Returns a processor that will replace elements from a supplied pool with elements
of the input pool.

IloSample

IloScanDeltas

IloScanNHood

IloSelectProcessor A pool processor which is a selection from a set of others.

IloSelectSolutions Creates a pool processor which selects using a standard Solver selector.

IloSetToValue

IloSimulatedAnnealing

IloSingleMove

IloSolutionEvaluator Evaluates the value of a Boolean variable in a solution.

56

IloSolutionEvaluator Evaluates the objective value of a solution.

IloSolutionEvaluator Evaluates the value of a floating point variable in a solution.

IloSolutionEvaluator Evaluates the value of an integer variable in a solution.

IloSource Creates a solution source from a goal and a solution prototype.

IloStart

IloSwap

IloTest

IloTestDelta

IloUpdate A goal to update a multiple evaluator.

IloWorstSolutionComparator A solution comparator that prefers lower quality solutions.

operator&& Produces the conjunction of two operators.

operator*

operator+

operator+

operator>> Returns a chain of two pool processors.

operator|| Produces the disjunction of two operators.

The IBM® ILOG® Iterative Improvement Methods Optimization Components (IIM) API.

57

Class IloSolutionPool::AddedEvent
Definition file: ilsolver/iimpool.h
Include file: <ilsolver/iim.h>

brief Event class used to notify the addition of an IloSolution to an IloSolutionPool.

This event class is used to notify any listeners that have been attached to the pool using
IloSolutionPool::addListener whenever an object of type IloSolution is added to an
IloSolutionPool using IloSolutionPool::add.

See Also: IloSolutionPool::addListener, IloSolutionPool::add

Method Summary

public IloSolution getSolution() const

Inherited Methods from Event

getPool

Methods

public IloSolution getSolution() const

brief Returns the added IloSolution.

This function returns the added object of type IloSolution.

58

Class IloAlgorithm::CannotExtractException
Definition file: ilconcert/iloalg.h

The class of exceptions thrown if an object cannot be extracted from a model.
If an attempt to extract an object from a model fails, this exception is thrown.

Method Summary

public void end()

public const IloAlgorithmI * getAlgorithm() const

public IloExtractableArray & getExtractables()

Inherited Methods from IloException

end, getMessage

Methods

public void end()

This member function deletes the invoking exception. That is, it frees memory associated with the invoking
exception.

public const IloAlgorithmI * getAlgorithm() const

The member function getAlgorithm returns the algorithm from which the exception was thrown.

public IloExtractableArray & getExtractables()

The member function getExtractables returns the extractable objects that triggered the exception.

59

Class IloAlgorithm::CannotRemoveException
Definition file: ilconcert/iloalg.h

The class of exceptions thrown if an object cannot be removed from a model.
If an attempt to remove an extractable object from a model fails, this exception is thrown.

Method Summary

public void end()

public const IloAlgorithmI * getAlgorithm() const

public IloExtractableArray & getExtractables()

Inherited Methods from IloException

end, getMessage

Methods

public void end()

This member function deletes the invoking exception. That is, it frees memory associated with the invoking
exception.

public const IloAlgorithmI * getAlgorithm() const

The member function getAlgorithm returns the algorithm from which the exception was thrown.

public IloExtractableArray & getExtractables()

The member function getExtractables returns the extractable objects that triggered the exception.

60

Class IloSolutionPool::EndEvent
Definition file: ilsolver/iimpool.h
Include file: <ilsolver/iim.h>

brief Event class used to notify the destruction of an IloSolutionPool.

This event class is used to notify any listeners that have been attached to the pool using
IloSolutionPool::addListener whenever an object of type IloSolutionPool is destroyed using
IloSolutionPool:end.

See Also: IloSolutionPool::addListener, IloSolutionPool::end

Inherited Methods from Event

getPool

61

Class IloPoolOperator::Event
Definition file: ilsolver/iimoperator.h
Include file: <ilsolver/iim.h>

Event produced by pool operators.
This class describes events produced by pool operators. Whenever a pool operator is invoked or participates in
the creation of a solution (succeeds), it emits an event of this type. These events can be listened to by attaching
listeners to operators or to the factories which produce them. Normally, you will not be involved in the creation of
events, but will only listen to them via listeners; the operators themselves are the creators of events.

See Also: IloPoolOperator::addListener, IloPoolOperatorFactory::addListener, ILOIIMLISTENER0, IloListener

Method Summary

public IloPoolOperator getOperator() const

Returns the operator involved.

public IloSolver getSolver() const

Returns the solver used during execution of the operator.

Methods

public IloPoolOperator getOperator() const

Returns the operator involved.

This member function returns the operator op that creates the pool operator event.

public IloSolver getSolver() const

Returns the solver used during execution of the operator.

This member function returns the solver solver used during the execution of the operator.

62

Class IloSolutionPool::Event
Definition file: ilsolver/iimpool.h

brief A general event for IloSolutionPool objects which indicates that the pool has changed in some way.

This event class describes a general event for IloSolutionPool objects which indicates that the pool has
changed in some way. This event notifies any listeners that have been attached to the pool using
IloSolutionPool::addListener.

See Also: ILOIIMLISTENER0, IloSolutionPool::addListener

Method Summary

public IloSolutionPool getPool() const

Methods

public IloSolutionPool getPool() const

brief Returns the pool involved in the event.

This function returns the pool invoked in the event.

63

Class IloAlgorithm::Exception
Definition file: ilconcert/iloalg.h

The base class of exceptions thrown by classes derived from IloAlgorithm.
IloAlgorithm is the base class of algorithms in Concert Technology.

The class IloAlgorithm::Exception, derived from the class IloException, is the base class of exceptions
thrown by classes derived from IloAlgorithm.

On platforms that support C++ exceptions, when exceptions are enabled, the member function
IloAlgorithm::extract will throw an exception if you attempt to extract an unsuitable object from your model for an
algorithm. An extractable object is unsuitable for an algorithm if there is no member function to extract the object
from your model to that algorithm.

For example, an attempt to extract more than one objective into an algorithm that accepts only one objective will
throw an exception.

Similarly, the member function IloAlgorithm::getValue will throw an exception if you attempt to access the value of
a variable that has not yet been bound to a value.

See Also: IloAlgorithm, IloException

Constructor Summary

public Exception(const char * str)

Inherited Methods from IloException

end, getMessage

Constructors

public Exception(const char * str)

This constructor creates an exception thrown from a member of IloAlgorithm. The exception contains the
message string str, which can be queried with the member function IloException::getMessage.

64

Class IlcAnyArray
Definition file: ilsolver/anyexp.h
Include file: <ilsolver/ilosolver.h>

IlcAnyArray is the array class for the basic pointer class. It is a handle class.

An object of this class contains a pointer to another object allocated on the Solver heap. Exploiting handles in this
way greatly simplifies the programming interface since the handle can then be an automatic object: as a
developer using handles, you do not have to worry about memory allocation.

Empty Handle or Null Array

It is possible to create a null array, or in other words, an empty handle. When you do so, only these operations
are allowed on that null array:

copy: You can assign the null array to a new array.•
access its size: The member function getSize for the null array returns 0 (zero).•
create an iterator: You can create an iterator to traverse the null array. The member function ok
returns IlcFalse for a null array.

•

Attempts to access a null array in any other way will throw an exception (an instance of
IloSolver::SolverErrorException).

See Also: IlcAnyExp, IlcAnySet, IlcConstAnyArray, operator<<

Constructor Summary

public IlcAnyArray()

public IlcAnyArray(IlcInt * impl)

public IlcAnyArray(IlcAny * impl)

public IlcAnyArray(IloSolver solver, IlcInt size, IlcAny * values)

public IlcAnyArray(IloSolver solver, IlcInt size, const IlcAny exp0, const IlcAny
exp...)

public IlcAnyArray(IloSolver solver, IlcInt size)

Method Summary

public IlcInt * getImpl() const

public IlcInt getSize() const

public IloSolver getSolver() const

public void operator=(const IlcAnyArray & h)

public IlcAnyExp operator[](const IlcIntExp rank) const

public IlcAny & operator[](IlcInt i) const

Constructors

public IlcAnyArray()

This constructor creates an empty handle. You must initialize it before you use it.

65

public IlcAnyArray(IlcInt * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcAnyArray(IlcAny * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcAnyArray(IloSolver solver, IlcInt size, IlcAny * values)

This constructor creates an array of pointers containing the values in the array values. The argument size
must be the length of the array values; it must also be strictly greater than 0 (zero). Solver does not keep a
pointer to the array values.

public IlcAnyArray(IloSolver solver, IlcInt size, const IlcAny exp0, const IlcAny
exp...)

This constructor accepts a variable number of arguments. Its first argument, size, indicates the length of the
array that this constructor will create; size must be the same as the number of instances of IlcAny passed as
arguments; it must also be strictly greater than 0 (zero). The constructor creates an array of the values indicated
by the other arguments (the instances of IlcAny).

public IlcAnyArray(IloSolver solver, IlcInt size)

This constructor creates an array of size elements. The elements of this array are not initialized. The argument
size must be strictly greater than 0 (zero).

Methods

public IlcInt * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IlcInt getSize() const

This member function returns the number of elements in the invoking array.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public void operator=(const IlcAnyArray & h)

66

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public IlcAnyExp operator[](const IlcIntExp rank) const

This subscripting operator returns a constrained enumerated expression. For clarity, let's call A the invoking
array. When rank is bound to the value i, the value of the expression is A[i]. More generally, the domain of
the expression is the set of values A[i] where the i are in the domain of rank.

public IlcAny & operator[](IlcInt i) const

This operator returns a reference to the element at rank i. This operator can be used for accessing the element
or for modifying it.

67

Class IlcAnyDeltaPossibleIterator
Definition file: ilsolver/ilcset.h
Include file: <ilsolver/ilosolver.h>

An instance of the class IlcAnyDeltaPossibleIterator is an iterator that traverses the elements of the
possible delta set of an instance of IlcAnySetVar (a constrained set variable). The order in which the iterator
traverses the possible delta set is not predictable.

For more information, see the concepts Propagation, Domain-Delta, and Iterator.

See Also: IlcAnyDeltaRequiredIterator, IlcAnySetVar

Constructor Summary

public IlcAnyDeltaPossibleIterator(IlcAnySetVar var)

Method Summary

public IlcBool ok() const

public IlcAny operator*() const

public IlcAnyDeltaPossibleIterator & operator++()

Constructors

public IlcAnyDeltaPossibleIterator(IlcAnySetVar var)

This constructor creates an iterator associated with var to traverse the values belonging to its possible delta set.

Methods

public IlcBool ok() const

This member function returns IlcTrue if there is a current element and the iterator points to it. Otherwise, it
returns IlcFalse.

public IlcAny operator*() const

This operator returns the current element, the one to which the invoking iterator points.

public IlcAnyDeltaPossibleIterator & operator++()

This operator advances the iterator to point to the next value in the possible delta set.

68

Class IlcAnyDeltaRequiredIterator
Definition file: ilsolver/ilcset.h
Include file: <ilsolver/ilosolver.h>

An instance of the class IlcAnyDeltaRequiredIterator is an iterator that traverses the elements of the
required delta set of an instance of IlcAnySetVar (a constrained set variable). The order in which the iterator
traverses the required delta set is not predictable.

For more information, see the concepts Propagation, Domain-Delta, and Iterator.

See Also: IlcAnyDeltaPossibleIterator, IlcAnySetVar

Constructor Summary

public IlcAnyDeltaRequiredIterator(IlcAnySetVar var)

Method Summary

public IlcBool ok() const

public IlcAny operator*() const

public IlcAnyDeltaRequiredIterator & operator++()

Constructors

public IlcAnyDeltaRequiredIterator(IlcAnySetVar var)

This constructor creates an iterator associated with var to traverse the values belonging to its required delta set.

Methods

public IlcBool ok() const

This member function returns IlcTrue if there is a current element and the iterator points to it. Otherwise, it
returns IlcFalse.

public IlcAny operator*() const

This operator returns the current element, the one to which the invoking iterator points.

public IlcAnyDeltaRequiredIterator & operator++()

This operator advances the iterator to point to the next value in the required delta set.

69

Class IlcAnyExp
Definition file: ilsolver/anyexp.h
Include file: <ilsolver/ilosolver.h>

In order to state constraints on arbitrary objects, Solver defines classes of constrained enumerated expressions
and variables. In particular, the class IlcAnyExp is the root for constrained enumerated expressions. A
constrained enumerated variable is itself a constrained enumerated expression: the class IlcAnyVar is a
subclass of IlcAnyExp.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

Domain

Each constrained enumerated expression has a domain representing the possible values that can be assigned to
the expression. These values are of type IlcAny. That is, they are pointers. Those pointers can be pointers to
any C++ entity, including objects and instances of user-defined classes.

When the domain contains only one possible value, we say that the expression is bound.

The domain of a constrained enumerated expression can be reduced to the point of being empty. In such a case,
failure is triggered since no solution is then possible.

Implementation Class

The implementation class for IlcAnyExp is the class IlcIntExpI. In other words, both classes IlcIntExp
and IlcAnyExp have the same implementation class. The member functions for IlcAnyExp cast their IlcAny
arguments into instances of IlcInt, then call member functions of IlcIntExpI, and cast back the result, if
needed.

For example, the member function setValue could be defined like this:

 void IlcAnyExp::setValue(IlcAny value) const {
 assert(getImpl());
 getImpl()->setValue((IlcInt) value);
 }

Backtracking and Reversibility

All the member functions and operators defined for this class and capable of modifying constrained variables are
reversible. In particular, the changes made by constraint-posting functions are made with reversible assignments.
Thus, the value, the domain, and the constraints posted on any constrained variable are restored when Solver
backtracks.

For more information, see the concept Propagation.

A modifier is a member function that reduces the domain of a constrained enumerated expression, if it can. A
modifier is not stored, in contrast to a constraint. If the constrained enumerated expression is a constrained
enumerated variable, the modifications due to the modifier are stored in its domain. Otherwise, the effect of the
modifier is propagated to the subexpressions of the constrained enumerated expression. If the domain becomes
empty, a failure occurs. If the domain does not become empty, propagation events are generated for that
expression. Modifiers are usually used to define new classes of constraints.

See Also: IlcAnyExpIterator, IlcAnySet, IlcAnyVar, IlcAnyVarArray, operator<<

70

Constructor Summary

public IlcAnyExp()

public IlcAnyExp(IlcIntExpI * impl)

Method Summary

public IlcAnyExp getCopy(IloSolver solver) const

public IlcIntExpI * getImpl() const

public const char * getName() const

public IlcAny getObject() const

public IlcInt getSize() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public IlcAny getValue() const

public IlcBool isBound() const

public IlcBool isInDomain(IlcAny value) const

public void operator=(const IlcAnyExp & h)

public void removeDomain(IlcAnyArray array)

public void removeDomain(IlcAnySet set)

public void removeValue(IlcAny value) const

public void setDomain(IlcAnyArray array)

public void setDomain(IlcAnySet set)

public void setDomain(IlcAnyExp var)

public void setName(const char * name) const

public void setObject(IlcAny object) const

public void setValue(IlcAny value) const

public void whenDomain(IlcDemon demon) const

public void whenValue(IlcDemon demon) const

Constructors

public IlcAnyExp()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcAnyExp(IlcIntExpI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IlcAnyExp getCopy(IloSolver solver) const

This member function returns a copy of the invoking expression and associates that copy with solver.

public IlcIntExpI * getImpl() const

71

This constructor creates an object by copying another one. This constructor creates an object by copying another
one. This member function returns a pointer to the implementation object of the invoking handle.

public const char * getName() const

This member function returns the name of the invoking object.

public IlcAny getObject() const

This member function returns a pointer to the external object associated with the invoking object, if there is such
an association. It returns 0 (zero) otherwise.

public IlcInt getSize() const

This member function returns the number of elements in the domain of the invoking expression. In particular, it
returns 1 if the invoking constrained enumerated expression is bound.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IloSolverI * getSolverI() const

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

public IlcAny getValue() const

This member function returns the value of the invoking constrained enumerated expression if that object is
bound; otherwise, Solver will throw an exception (an instance of IloSolver::SolverErrorException). To
avoid errors with getValue, you can test expressions by means of isBound.

public IlcBool isBound() const

This member function returns IlcTrue if the invoking constrained enumerated expression is bound, that is, if its
domain contains only one element. Otherwise, the member function returns IlcFalse.

public IlcBool isInDomain(IlcAny value) const

This member function returns IlcTrue if value is in the domain of the invoking constrained enumerated
expression. Otherwise, the member function returns IlcFalse.

public void operator=(const IlcAnyExp & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public void removeDomain(IlcAnyArray array)

72

This member function removes all the elements of the array indicated by array from the domain of the invoking
constrained expression. If the domain thus becomes empty, then failure occurs. Otherwise, if the domain is
modified, the corresponding propagation events are generated. The effects of this member function are
reversible.

public void removeDomain(IlcAnySet set)

This member function removes all the elements of the set indicated by set from the domain of the invoking
constrained expression. If the domain thus becomes empty, then failure occurs. Otherwise, if the domain is
modified, the corresponding propagation events are generated. The effects of this member function are
reversible.

public void removeValue(IlcAny value) const

This member function removes value from the domain of the invoking constrained expression. If the domain
thus becomes empty, then failure occurs. Otherwise, if the domain is modified, the domain propagation event is
generated. Moreover, if the invoking constrained enumerated expression becomes bound, then the value
propagation event is also generated. The effects of this member function are reversible.

When it removes a value from a domain, Solver may need to allocate more memory for the representation of the
remaining domain. The amount of memory allocated depends on the size of the domain of the variable.

public void setDomain(IlcAnyArray array)

This member function removes all the elements that are not in the array indicated by array from the domain of
the invoking constrained expression. If the domain thus becomes empty, then failure occurs. Otherwise, if the
domain is modified, the corresponding propagation events are generated. The effects of this member function are
reversible.

public void setDomain(IlcAnySet set)

This member function removes all the elements that are not in the set indicated by set from the domain of the
invoking constrained expression. If the domain thus becomes empty, then failure occurs. Otherwise, if the
domain is modified, the corresponding propagation events are generated. The effects of this member function are
reversible.

public void setDomain(IlcAnyExp var)

This member function removes all the elements that are not in domain of var from the domain of the invoking
constrained expression. If the domain thus becomes empty, then failure occurs. Otherwise, if the domain is
modified, the corresponding propagation events are generated. The effects of this member function are
reversible.

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

public void setObject(IlcAny object) const

73

This member function establishes a link between the invoking object and an external object of which the invoking
object might be a data member.

public void setValue(IlcAny value) const

This member function removes all the elements that are different from value from the domain of the invoking
constrained enumerated expression. This has two possible outcomes:

If value was not in the domain of the invoking constrained enumerated expression, the domain
becomes empty, and failure occurs.

•

If value was in the domain, then value becomes the value of the expression, and the value and
domain propagation events are generated.

•

The effects of this member function are reversible.

public void whenDomain(IlcDemon demon) const

This member function associates demon with the domain propagation event of the invoking constrained
expression. Whenever the domain of the invoking constrained expression changes, the demon will be executed
immediately.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
Whenever the domain of the invoking constrained expression changes, the constraint will be propagated.

public void whenValue(IlcDemon demon) const

This member function associates demon with the value propagation event of the invoking constrained
expression. Whenever the invoking constrained expression becomes bound, the demon will be executed
immediately.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
Whenever the invoking constrained expression becomes bound, the constraint will be propagated.

74

Class IlcAnyExpIterator
Definition file: ilsolver/anyexp.h
Include file: <ilsolver/ilosolver.h>

An instance of the class IlcAnyExpIterator traverses the values belonging to the domain of a constrained
enumerated expression (instance of IlcAnyExp or IlcAnyVar).

For more information, see the concept Iterator.

See Also: IlcAnyExp, IlcAnyVar

Constructor and Destructor Summary

public IlcAnyExpIterator(IlcAnyExp exp)

Method Summary

public IlcBool ok() const

public IlcAny operator*() const

public IlcAnyExpIterator & operator++()

Constructors and Destructors

public IlcAnyExpIterator(IlcAnyExp exp)

This constructor creates an iterator associated with exp to traverse the values belonging to the domain of exp.

Methods

public IlcBool ok() const

This member function returns IlcTrue if there is a current element and the iterator points to it. Otherwise, it
returns IlcFalse.

To traverse the values belonging to the domain of a costrained enumerated expression, use the following code:

 IlcAny val;
 for (IlcAnyExpIterator iter(exp); iter.ok(); ++iter){
 val = *iter;
 // do something with val
 }

public IlcAny operator*() const

This operator returns the current element, the one to which the invoking iterator points.

public IlcAnyExpIterator & operator++()

75

This operator advances the iterator to point to the next value in the domain of the constrained enumerated
expression.

76

Class IlcAnyPredicate
Definition file: ilsolver/ilcany.h
Include file: <ilsolver/ilosolver.h>

This class makes it possible for you to define predicates operating on arbitrary objects. A predicate is an object
with a method (IlcAnyPredicate::isTrue) that checks whether or not a property is satisfied by an ordered
set of (pointers to) objects. The ordered set is conventionally represented in Solver by an instance of
IlcAnyArray.

Defining a New Class of Predicates

Predicates, like other Solver objects, depend on two classes: a handle class, IlcAnyPredicate, and an
implementation class, IlcAnyPredicateI, where an object of the handle class contains a data member (the
handle pointer) that points to an object (its implementation object) of an instance of IlcAnyPredicateI
allocated on the Solver heap. As a Solver user, you will be working primarily with handles.

If you define a new class of predicates yourself, you must define its implementation class together with the
corresponding virtual member function isTrue, as well as a member function that returns an instance of the
handle class IlcAnyPredicate.

Arity

As a developer, you can use predicates in Solver applications to define your own constraints that have not
already been predefined in Solver. In that case, the arity of the predicate (that is, the number of constrained
variables involved in the predicate, and thus the size of the array that the member function
IlcAnyPredicate::isTrue must check) must be less than or equal to three.

See Also: IlcAnyArray, ILCANYPREDICATE0, IlcIntPredicate, IlcTableConstraint

Constructor Summary

public IlcAnyPredicate()

public IlcAnyPredicate(IlcAnyPredicateI * impl)

Method Summary

public IlcAnyPredicateI * getImpl() const

public IlcBool isTrue(IlcAnyArray val)

public void operator=(const IlcAnyPredicate & h)

Constructors

public IlcAnyPredicate()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcAnyPredicate(IlcAnyPredicateI * impl)

This constructor creates a handle object from a pointer to an implementation object.

77

Methods

public IlcAnyPredicateI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public IlcBool isTrue(IlcAnyArray val)

This member function calls the member function IlcAnyPredicateI::isTrue.

public void operator=(const IlcAnyPredicate & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

78

Class IlcAnyPredicateI
Definition file: ilsolver/ilcany.h
Include file: <ilsolver/ilosolver.h>

IlcAnyPredicateI is the implementation class of IlcAnyPredicate, which makes it possible for you to
define predicates on arbitrary objects in Solver. A predicate is an object with a method
(IlcAnyPredicateI::isTrue) that checks whether or not a property is satisfied by an ordered set of
(pointers to) objects. Conventionally in Solver, the ordered set of objects is represented by an instance of
IlcIntArray.

Defining a New Class of Predicates

Predicates, like other Solver objects, depend on two classes: a handle class, IlcAnyPredicate, and an
implementation class, IlcAnyPredicateI, where an object of the handle class contains a data member (the
handle pointer) that points to an object (its implementation object) of an instance of IlcAnyPredicateI
allocated on the Solver heap. As a Solver user, you will be working primarily with handles.

If you define a new class of predicates yourself, you must define its implementation class together with the
corresponding virtual member function isTrue, as well as a member function that returns an instance of the
handle class IlcAnyPredicate.

Arity

As a developer, you can use predicates in Solver applications to define your own constraints that have not
already been predefined in Solver. In that case, the arity of the predicate (that is, the number of constrained
variables involved in the predicate, and thus the size of the array that the member function
IlcAnyPredicateI::isTrue must check) must be less than or equal to three.

See Also: IlcAnyArray, ILCANYPREDICATE0, IlcIntPredicateI, IlcTableConstraint

Constructor and Destructor Summary

public IlcAnyPredicateI()

public ~IlcAnyPredicateI()

Method Summary

public virtual IlcBool isTrue(IlcAnyArray val)

Constructors and Destructors

public IlcAnyPredicateI()

This constructor creates an implementation object of a predicate. This constructor should not be called directly
because this is an abstract class. This constructor is called automatically in the constructors of its subclasses.

public ~IlcAnyPredicateI()

As this class is to be subclassed, a virtual destructor is provided.

79

Methods

public virtual IlcBool isTrue(IlcAnyArray val)

This member function must be redefined when you derive a new subclass of IlcAnyPredicateI. This member
function must return IlcTrue if the invoking predicate is satisfied by the elements contained in the array val.
Otherwise, it must return IlcFalse.

80

Class IlcAnySelect
Definition file: ilsolver/ilcany.h
Include file: <ilsolver/ilosolver.h>

Solver lets you control the order in which the values in the domain of a constrained variable are tried during the
search for a solution.

This class is the handle class of the object that chooses the value to try when the constrained variable under
consideration is a constrained enumerated variable (that is, an instance of IlcAnyVar).

An object of this handle class uses the virtual member function IlcIntSelectI::select from its
implementation class to choose a value in the domain of the constrained variable under consideration during the
search for a solution.

See the example in IlcIntSelect for a model of how to create and use a selector.

See Also: IlcEvalAny, IlcIntSelectI, IlcIntSelectEvalI, IloAnyValueSelector, IloAnyValueSelectorI

Constructor Summary

public IlcAnySelect()

public IlcAnySelect(IlcIntSelectI * impl)

public IlcAnySelect(const IlcAnySelect & selector)

public IlcAnySelect(IloSolver s, IlcEvalAny function)

Method Summary

public IlcIntSelectI * getImpl() const

public void operator=(const IlcAnySelect & h)

Constructors

public IlcAnySelect()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcAnySelect(IlcIntSelectI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcAnySelect(const IlcAnySelect & selector)

This copy constructor accepts a reference to an implementation object and creates the corresponding handle
object.

public IlcAnySelect(IloSolver s, IlcEvalAny function)

81

This constructor creates a new selector from an evaluation function. The implementation object of the newly
created handle is an instance of the class IlcIntSelectEvalI constructed with the evaluation function
indicated by the argument function.

Methods

public IlcIntSelectI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public void operator=(const IlcAnySelect & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

82

Class IlcAnySet
Definition file: ilsolver/anyexp.h
Include file: <ilsolver/ilosolver.h>

Finite sets of pointers are instances of the handle class IlcAnySet. These sets are used by Solver to represent
the domains of enumerated constrained variables and to represent the values of constrained set variables.
Solver provides an efficient, optimized implementation of finite sets as bit vectors. These finite sets are known
formally as instances of the handle classes IlcAnySet or IlcIntSet, depending on whether their elements
are pointers or integers.

The elements of finite sets of type IlcAnySet are pointers of type IlcAny. In other words, finite sets of pointers
are really sets of pointers to objects of any C++ class.

This class is likely to evolve in future releases of Solver in order to comply with the Standard Template Library
adopted by the C++ standard committee.

See Also: IlcAnySetIterator, IlcAnySetVar, IlcAnyArray, IlcAnySetArray, operator<<

Constructor Summary

public IlcAnySet()

public IlcAnySet(IlcIntSetI * impl)

public IlcAnySet(IloSolver solver, const IlcAnyArray array, IlcBool
fullSet=IlcTrue)

Method Summary

public IlcBool add(IlcAny elt)

public IlcAnySet copy() const

public IlcIntSetI * getImpl() const

public IlcInt getSize() const

public IloSolver getSolver() const

public IlcBool isIn(IlcAny elt) const

public void operator=(const IlcAnySet & h)

public IlcBool remove(IlcAny elt)

Constructors

public IlcAnySet()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcAnySet(IlcIntSetI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcAnySet(IloSolver solver, const IlcAnyArray array, IlcBool

83

fullSet=IlcTrue)

This constructor creates a finite set of pointers containing the elements of array. If array contains multiple
copies of a given value, that value will appear only once in the newly created finite set. If the argument fullset
is equal to IlcTrue, the default value, the finite set will initially contain all its possible values. Otherwise, the
finite set will initially be empty. In any case, the possible elements of the finite set are exactly those elements in
array.

Methods

public IlcBool add(IlcAny elt)

This member function adds elt to the invoking finite set if elt is a possible member of that set and if elt is not
already in that set. When both conditions are met, this member function returns IlcTrue. Otherwise, it returns
IlcFalse. The effects of this member function are reversible.

public IlcAnySet copy() const

This member function creates and returns a finite set that contains the same elements as the invoking finite set.

public IlcIntSetI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public IlcInt getSize() const

This member function returns the size of a finite set. Clearly, this member function is useful for testing whether
the invoking finite set is empty or not.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IlcBool isIn(IlcAny elt) const

This member function is a predicate that indicates whether or not elt is in the invoking finite set. It returns
IlcTrue if elt is in the set; otherwise, it returns IlcFalse.

public void operator=(const IlcAnySet & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public IlcBool remove(IlcAny elt)

84

This member function removes elt from the invoking finite set. This member function returns IlcFalse if elt
was not in that invoking set. Otherwise, it returns IlcTrue. The effects of this member function are reversible.

85

Class IlcAnySetArray
Definition file: ilsolver/ilcset.h
Include file: <ilsolver/ilosolver.h>

An instance of IlcAnySetArray represents an array of sets, instances of IlcAnySet. Its implementation class
is the undocumented class IlcIntSetArrayI.

For each basic type, Solver defines a corresponding array class. This array class is a handle class. In other
words, an object of this class contains a pointer to another object allocated on the Solver heap. Exploiting
handles in this way greatly simplifies the programming interface since the handle can then be an automatic
object: as a developer using handles, you do not have to worry about memory allocation.

Empty Handle or Null Array

It is possible to create a null array, or in other words, an empty handle. When you do so, only these operations
are allowed on that null array:

copy: You can assign the null array to a new array.•
access its size: The member function getSize for the null array returns 0 (zero).•
create an iterator: You can create an iterator to traverse the null array. The member function ok
returns IlcFalse for a null array.

•

Attempts to access a null array in any other way will throw an exception (an instance of
IloSolver::SolverErrorException).

See Also: IlcAnyArray, IlcAnySet

Constructor Summary

public IlcAnySetArray()

public IlcAnySetArray(IlcIntSetArrayI * impl)

public IlcAnySetArray(IloSolver solver, IlcInt size, IlcAnySet * values)

public IlcAnySetArray(IloSolver solver, IlcInt size, IlcAnyArray array)

public IlcAnySetArray(IloSolver solver, IlcInt size, const IlcAnySet exp...)

Method Summary

public IlcIntSetArrayI * getImpl() const

public const char * getName() const

public IlcInt getSize() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public void operator=(const IlcAnySetArray & h)

public IlcAnySet & operator[](IlcInt i) const

public void setName(const char * name) const

Constructors

public IlcAnySetArray()

86

This constructor creates an empty handle. You must initialize it before you use it.

public IlcAnySetArray(IlcIntSetArrayI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcAnySetArray(IloSolver solver, IlcInt size, IlcAnySet * values)

This constructor creates an array of sets; the length of that array is size; its elements are initialized with the
values indicated by values.

public IlcAnySetArray(IloSolver solver, IlcInt size, IlcAnyArray array)

This constructor creates an array of sets; the length of that array is size; its elements are initialized with the
values indicated by array.

public IlcAnySetArray(IloSolver solver, IlcInt size, const IlcAnySet exp...)

This constructor creates an array of sets; the length of that array is size; its elements are initialized with the
arguments of type IlcAnySet. The number of arguments of type IlcAnySet must be the same as size.

Methods

public IlcIntSetArrayI * getImpl() const

This constructor creates an object by copying another one. This member function returns a pointer to the
implementation object of the invoking handle.

public const char * getName() const

This member function returns the name of the invoking object.

public IlcInt getSize() const

This member function returns the number of elements in the invoking array.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IloSolverI * getSolverI() const

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

public void operator=(const IlcAnySetArray & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

87

public IlcAnySet & operator[](IlcInt i) const

This operator returns a reference to the element at rank i. This operator can be used for accessing the element
or for modifying it.

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

88

Class IlcAnySetIterator
Definition file: ilsolver/anyexp.h
Include file: <ilsolver/ilosolver.h>

An instance of the class IlcAnySetIterator is an iterator that traverses the elements of a finite set of pointers
(instance of IlcAnySet).

For more information, see the concept Iterator.

See Also: IlcAnySet

Constructor Summary

public IlcAnySetIterator(IlcAnySet set)

Method Summary

public IlcBool ok() const

public IlcAny operator*() const

public IlcAnySetIterator & operator++()

Constructors

public IlcAnySetIterator(IlcAnySet set)

This constructor creates an iterator associated with set to traverse its elements.

Methods

public IlcBool ok() const

This member function returns IlcTrue if there is a current element and the invoking iterator points to it.
Otherwise, it returns IlcFalse.

To traverse the elements of a finite set of pointers, use the following code:

 IlcAny val;
 for(IlcAnySetIterator iter(set); iter.ok(); ++iter){
 val = *iter;
 // do something with val
 }

public IlcAny operator*() const

This operator returns the current element, the one to which the invoking iterator points.

public IlcAnySetIterator & operator++()

89

This operator advances the iterator to point to the next value in the set.

90

Class IlcAnySetSelect
Definition file: ilsolver/ilcset.h
Include file: <ilsolver/ilosolver.h>

Solver lets you control the order in which the values in the domain of a constrained set variable are tried during
the search for a solution.

This class is the handle class of the object that chooses the value to try when the constrained set variable under
consideration is a constrained enumerated set variable (that is, an instance of IlcAnySetVar).

An object of this handle class uses the virtual member function IlcIntSetSelectI::select from its
implementation class to choose a value in the domain of the constrained enumerated set variable under
consideration during the search for a solution.

Example

Here is an example of how to create your own set selector.

 class myAnySetSelect: public IlcIntSetSelectI {
 public:
 myAnySetSelect(){};
 virtual IlcInt select(IlcIntSetVar var);
 };
 IlcInt myAnySetSelect::select(IlcIntSetVar var) {
 for(IlcIntSetIterator iter(var.getPossibleSet());
 iter.ok();
 ++iter); {
 if (!var.isRequired(*iter)) return *iter;
 }
 return 0;
 }
 IlcAnySetSelect mySelect(IloSolver s) {
 return new (s.getHeap()) myAnySetSelect();
 }

Here is how you use it during a search (inside a goal or constraint, for example).

 IlcInstantiate(var, mySelect(s));

See Also: IlcEvalAnySet, IloInstantiate, IlcIntSetSelect, IloAnySetValueSelector, IloAnySetValueSelectorI

Constructor Summary

public IlcAnySetSelect()

public IlcAnySetSelect(IlcIntSetSelectI * impl)

public IlcAnySetSelect(const IlcAnySetSelect & sel)

public IlcAnySetSelect(IloSolver s, IlcEvalAnySet function)

Method Summary

public IlcIntSetSelectI * getImpl() const

public void operator=(const IlcAnySetSelect & h)

91

Constructors

public IlcAnySetSelect()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcAnySetSelect(IlcIntSetSelectI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcAnySetSelect(const IlcAnySetSelect & sel)

This copy constructor accepts a reference to an implementation object and creates the corresponding handle
object.

public IlcAnySetSelect(IloSolver s, IlcEvalAnySet function)

This constructor creates a new enumerated set selector from an evaluation function. The implementation object
of the newly created handle is an instance of the class IlcIntSetSelectEvalI constructed with the
evaluation function indicated by the argument function.

Methods

public IlcIntSetSelectI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public void operator=(const IlcAnySetSelect & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

92

Class IlcAnySetVar
Definition file: ilsolver/ilcset.h
Include file: <ilsolver/ilosolver.h>

A constrained set variable is any instance of the class IlcAnySetVar or IlcIntSetVar. The value of a
variable belonging to the class IlcAnySetVar is an instance of the class IlcAnySet. The value of a variable
belonging to the class IlcIntSetVar is an instance of the class IlcIntSet. These two classes are handle
classes. They both have the same implementation class, IlcIntSetVarI.

Domain

The domain associated with a constrained set variable is a set of sets. Solver represents this kind of domain by
its upper and lower bounds. The upper bound is the union of all the possible values for the variable, that is the
union of all the element-sets of the domain. The lower bound is the intersection of all the possible values of the
variables, that is the intersection of all the element-sets of the domain.

In other words, the domain of a constrained set variable is represented by two sets:

the required set, that is, the set of those elements that belong to all the possible values of the variable
(the lower bound);

•

the possible set, that is the set of those elements that belong to at least one of the possible values of the
variable (the upper bound).

•

The possible set contains the required set by construction. The value, the possible set, and the required set of a
constrained set variable are all instances of the classes IlcAnySet or IlcIntSet. When a constrained set
variable is bound, the required elements are the same as the possible ones, and they are the elements of the
value of the variable.

Delta Sets and Propagation

When a propagation event is triggered for a constrained set variable, the variable is pushed into the constraint
propagation queue if it was not already in the queue. Moreover, the modifications of the domain of the
constrained set variable are stored in two special sets. The first set stores the values removed from the possible
set of the constrained set variable, and it is called the possible-delta set. The second one stores the values
added to the required set of the constrained set variable, and it is called the required-delta set. These delta sets
can be accessed during the propagation of the constraints posted on that variable. When all the constraints
posted on that variable have been processed, then the delta sets are cleared. If the variable is modified again,
then the whole process begins again. The state of the delta sets is reversible.

Failure

The domain of a costrained set variable can be reduced until it is empty, that is, to the point that the required set
is not included in the possible set. In such a case, failure occurs since at that point, no solution is possible.

Cardinality (Size of a Set)

It is also possible to constrain the cardinality of the value of a constrained set variable. A constrained set variable
contains a data member that is a constrained integer variable (called the cardinality variable); it represents how
many elements are in the value of the set variable. The minimum of the cardinality variable is always greater than
or equal to the size of the required set. Its maximum is always less than or equal to the size of the possible set.
The functions IlcCard (for sets and for indices) access cardinality.

Backtracking and Reversibility

All member functions defined for this class and capable of modifying constrained set variables are reversible. In
particular, the changes made by constraint-posting functions are made with reversible assignments. Thus, the
value, domain, and constraints posted on any constrained set variables are restored when Solver backtracks.

93

Modifiers for a constrained set variable reduce its domain. They are usually used when you define a new class of
constraints.

See Also: IlcAnyDeltaPossibleIterator, IlcAnyDeltaRequiredIterator, IlcAnySet, IlcAnySetVarArray, IlcCard,
IlcCard, IlcIntersection, IlcUnion, operator<<

Constructor Summary

public IlcAnySetVar()

public IlcAnySetVar(IlcIntSetVarI * impl)

public IlcAnySetVar(IloSolver solver, IlcAnyArray array, const char * name=0)

Method Summary

public void addRequired(IlcAny elt) const

public IlcAnySetVar getCopy(IloSolver solver) const

public IlcIntSetVarI * getImpl() const

public const char * getName() const

public IlcAny getObject() const

public IlcAnySet getPossibleSet() const

public IlcAnySet getRequiredSet() const

public IlcInt getSize() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public IlcAnySet getValue() const

public IlcBool isBound() const

public IlcBool isInDomain(IlcAnySet set) const

public IlcBool isInProcess() const

public IlcBool isPossible(IlcAny elt) const

public IlcBool isRequired(IlcAny elt) const

public void operator=(const IlcAnySetVar & h)

public void removePossible(IlcAny elt) const

public void setDomain(IlcAnySetVar var) const

public void setName(const char * name) const

public void setObject(IlcAny object) const

public void whenDomain(const IlcDemon demon) const

public void whenValue(const IlcDemon demon) const

Constructors

public IlcAnySetVar()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcAnySetVar(IlcIntSetVarI * impl)

This constructor creates a handle object from a pointer to an implementation object.

94

public IlcAnySetVar(IloSolver solver, IlcAnyArray array, const char * name=0)

This constructor creates a constrained set of pointers with no required elements; its possible elements are the
pointers in array, an array of pointers.

Methods

public void addRequired(IlcAny elt) const

The way this member function behaves depends on whether its argument elt is a member of the required or
possible set of the invoking object. If elt is already in the required set of the invoking object, then this member
function does nothing. If elt is in the possible set of the invoking object, but not yet in the required set, then this
member function adds elt to the required set. If elt is not in the possible set of the invoking object, then failure
occurs.

public IlcAnySetVar getCopy(IloSolver solver) const

This member function returns a copy of the invoking constrained set variable and associates that copy with the
solver indicated by solver.

public IlcIntSetVarI * getImpl() const

This constructor creates an object by copying another one. This constructor creates an object by copying another
one. This member function returns a pointer to the implementation object of the invoking handle.

public const char * getName() const

This member function returns the name of the invoking object.

public IlcAny getObject() const

This member function returns a pointer to the external object associated with the invoking object, if there is such
an association. It returns 0 (zero) otherwise.

public IlcAnySet getPossibleSet() const

This member function returns the possible set of the invoking constrained set variable.

public IlcAnySet getRequiredSet() const

This member function returns the required set of the invoking constrained set variable.

public IlcInt getSize() const

This member function returns one plus the difference between the cardinality of the set of possible elements and
the cardinality of the set of required elements. Don't confuse the size of the domain of the constrained set
variable (returned by this member function) with the cardinality of the set to which the variable is bound (that is,
the size of the value of the variable). The cardinality of the set variable itself is a constrained integer variable
returned by the function IlcCard.

95

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IloSolverI * getSolverI() const

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

public IlcAnySet getValue() const

This member function returns the value of the invoking constrained set variable if that variable has been bound;
otherwise, it will throw an exception (an instance of IloSolver::SolverErrorException).

public IlcBool isBound() const

This member function returns IlcTrue if the constrained set variable has been bound, that is, if its set of
required elements is equal to its set of possible elements. Otherwise, the member function returns IlcFalse.

public IlcBool isInDomain(IlcAnySet set) const

This member function returns IlcTrue if and only if the finite set indicated by set satisfies the following
conditions:

The set contains all the required elements of the invoking constrained set variable.•
Each element of the set is a possible element of the invoking constrained set variable.•

public IlcBool isInProcess() const

This member function returns IlcTrue if the invoking constrained set variable is currently being processed by
the constraint propagation algorithm. Only one variable can be in process at a time.

public IlcBool isPossible(IlcAny elt) const

This member function returns IlcTrue if elt is a possible element in the invoking constrained set variable. It
returns IlcFalse otherwise. This member function could be defined as getPossibleSet().isIn(elt).

public IlcBool isRequired(IlcAny elt) const

This member function returns IlcTrue if elt is a required element in the invoking constrained set variable. It
returns IlcFalse otherwise. This member function could be defined as getRequiredSet().isIn(elt).

public void operator=(const IlcAnySetVar & h)

96

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public void removePossible(IlcAny elt) const

The way this member function behaves depends on whether its argument elt is a member of the required or
possible set of the invoking object. If elt is in the required set of the invoking object, then failure occurs. If elt is
in the possible set of the invoking object, but not in the required set, then this member function removes elt from
the possible set. If elt is not in the possible set, then this member function does nothing.

public void setDomain(IlcAnySetVar var) const

This member function reduces the domain of the invoking constrained set variable so that its domain becomes
included in the domain of the constrained set variable var.

If the invoking variable is already bound, then this member function considers whether its value belongs to the
domain of var. If its value does not belong to the domain of var, then failure occurs.

If the invoking variable is not yet bound, then its required set is replaced by its union with the required set of var,
and its possible set is replaced by its intersection with the possible set of var. If the resulting required set is not
included in the resulting possible set, then failure occurs. If the resulting required set contains the same elements
as the resulting possible set, then the invoking variable is bound to that remaining value. In any case, if the
invoking variable is modified, the constraints posted on it are activated.

The effects of this member function are reversible.

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

public void setObject(IlcAny object) const

This member function establishes a link between the invoking object and an external object of which the invoking
object might be a data member.

public void whenDomain(const IlcDemon demon) const

This member function associates demon with the domain propagation event of the invoking constrained set
variable. Whenever the domain of the invoking constrained set variable changes, the demon will be executed
immediately.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
Whenever the domain of the invoking constrained set variable changes, the constraint will be propagated.

public void whenValue(const IlcDemon demon) const

This member function associates demon with the value propagation event of the invoking constrained set
variable. Whenever the invoking constrained set variable becomes bound, the demon will be executed
immediately.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
Whenever the invoking constrained set variable becomes bound, the constraint will be propagated.

97

Class IlcAnySetVarArray
Definition file: ilsolver/ilcset.h
Include file: <ilsolver/ilosolver.h>

An array of constrained set variables of pointers is an instance of the class IlcAnySetVarArray. The elements
of such an array are instances of IlcAnySetVar.

Empty Handle or Null Array

It is possible to create a null array, or in other words, an empty handle. When you do so, only these operations
are allowed on that null array:

copy: You can assign the null array to a new array.•
access its size: The member function getSize for the null array returns 0 (zero).•
create an iterator: You can create an iterator to traverse the null array. The member function ok
returns IlcFalse for a null array.

•

Attempts to access a null array in any other way will throw an exception (an instance of
IloSolver::SolverErrorException).

See Also: IlcAnySetVar, IlcAnySetVarArrayIterator, operator<<

Constructor Summary

public IlcAnySetVarArray()

public IlcAnySetVarArray(IlcIntSetVarArrayI * impl)

public IlcAnySetVarArray(IloSolver solver, IlcInt size)

public IlcAnySetVarArray(IloSolver s, IlcInt size, IlcAnyArray array)

public IlcAnySetVarArray(IloSolver solver, IlcInt size ILCPARAM, const
IlcAnySetVar v1, const IlcAnySetVar v2)

Method Summary

public IlcAnySetVarArray getCopy(IloSolver solver) const

public IlcIntSetVarArrayI * getImpl() const

public const char * getName() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public void operator=(const IlcAnySetVarArray & h)

public IlcAnySetVar & operator[](IlcInt index) const

public void setName(const char * name) const

Constructors

public IlcAnySetVarArray()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcAnySetVarArray(IlcIntSetVarArrayI * impl)

98

This constructor creates a handle object from a pointer to an implementation object.

public IlcAnySetVarArray(IloSolver solver, IlcInt size)

This constructor creates an array of size uninitialized constrained set variables. The index range of the array is
[0 size), where 0 is included but size is excluded. The argument size must be strictly greater than 0 (zero).
Each element of the array must be assigned a value before the array can be used.

public IlcAnySetVarArray(IloSolver s, IlcInt size, IlcAnyArray array)

This constructor creates an array of size constrained set variables. The index range of the array is [0 size),
where 0 is included but size is excluded. The argument size must be strictly greater than 0 (zero). Each
constrained variable has no required elements; its possible elements are the pointers in array, an array of
pointers.

public IlcAnySetVarArray(IloSolver solver, IlcInt size ILCPARAM, const IlcAnySetVar
v1, const IlcAnySetVar v2)

This constructor creates an array of size elements. The argument size must be strictly greater than 0 (zero).
The elements must be successive. If size is different from the number of instances of IlcAnySetVar passed
to the constructor, then the behavior of this constructor is undefined and unlikely to be what you want.

Methods

public IlcAnySetVarArray getCopy(IloSolver solver) const

This member function returns a copy of the invoking array of constrained set variables and associates that copy
with the solver indicated by solver.

public IlcIntSetVarArrayI * getImpl() const

This constructor creates an object by copying another one. This member function returns a pointer to the
implementation object of the invoking handle.

public const char * getName() const

This member function returns the name of the invoking object.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IloSolverI * getSolverI() const

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

public void operator=(const IlcAnySetVarArray & h)

99

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public IlcAnySetVar & operator[](IlcInt index) const

This operator returns a reference to the element at rank i. This operator can be used for accessing (that is,
simply reading) the element or for modifying (that is, writing) it.

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

100

Class IlcAnySetVarArrayIterator
Definition file: ilsolver/ilcset.h
Include file: <ilsolver/ilosolver.h>

Instances of the class IlcAnySetVarArrayIterator traverse the values of an array of sets of constrained
enumerated variables.

For more information, see the concept Iterator.

See Also: IlcAnySetVar, IlcAnySetVarArray, IlcIntSetVarArrayIterator

Constructor and Destructor Summary

public IlcAnySetVarArrayIterator(const IlcAnySetVarArray array)

Method Summary

public IlcBool next(IlcAnySetVar & variable)

Inherited Methods from IlcIntSetVarArrayIterator

next

Constructors and Destructors

public IlcAnySetVarArrayIterator(const IlcAnySetVarArray array)

This constructor creates an iterator to traverse the values belonging to an array of sets of constrained
enumerated variables. This iterator lets you iterate forward over the complete index range of the array.

Methods

public IlcBool next(IlcAnySetVar & variable)

This member function takes a reference to a constrained enumerated set variable and returns a Boolean value. It
begins with the first element. It returns IlcFalse if there is no other element on which to iterate and IlcTrue
otherwise. When it returns IlcTrue, it writes the next element of the iterator (forward iteration) to the argument.

101

Class IlcAnyToIntExpFunction
Definition file: ilsolver/accessor.h
Include file: <ilsolver/ilosolver.h>

It is sometimes useful to associate a constrained variable with an element of the domain of a constrained
variable. If the elements of a domain are objects, the associated values can correspond to a specific constrained
attribute of these objects.

The following constraints and expressions use this kind of indirection: IlcSum, IlcMin, IlcMax, and
IlcUnion.

IlcAnyToIntExpFunction is the handle class of the object that makes the correspondence between an object
element and a constrained integer expression or variable.

An object of this handle class uses the virtual member function IlcIntToIntExpFunctionI::getValue from its
implementation class to obtain the associated constrained variable or expression of an element of a domain.

See Also: IlcIntToIntExpFunctionI

Constructor Summary

public IlcAnyToIntExpFunction()

public IlcAnyToIntExpFunction(IlcIntToIntExpFunctionI * impl)

Method Summary

public IlcIntToIntExpFunctionI * getImpl() const

public IlcIntExp getValue(IlcAny elt) const

public void operator=(const IlcAnyToIntExpFunction & h)

Constructors

public IlcAnyToIntExpFunction()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcAnyToIntExpFunction(IlcIntToIntExpFunctionI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IlcIntToIntExpFunctionI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

102

public IlcIntExp getValue(IlcAny elt) const

This member function returns the integer value associated with the object element elt.

public void operator=(const IlcAnyToIntExpFunction & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

103

Class IlcAnyToIntFunction
Definition file: ilsolver/accessor.h
Include file: <ilsolver/ilosolver.h>

It is sometimes useful to associate a constrained variable with an element of the domain of a constrained
variable. If the elements of a domain are objects, the associated values can correspond to a specific constrained
attribute of these objects.

The following constraints and expressions use this kind of indirection: IlcSum, IlcMin, IlcMax, and
IlcUnion.

IlcAnyToIntFunction is the handle class of the object that makes the correspondence between an object
element and an integer value.

An object of this handle class uses the virtual member function IlcIntToIntExpFunctionI::getValue from its
implementation class to obtain the associated constrained variable or expression of an element of a domain.

See Also: IlcIntToIntExpFunctionI

Constructor Summary

public IlcAnyToIntFunction()

public IlcAnyToIntFunction(IlcIntToIntFunctionI * impl)

Method Summary

public IlcIntToIntFunctionI * getImpl() const

public IlcInt getValue(IlcAny elt) const

public void operator=(const IlcAnyToIntFunction & h)

Constructors

public IlcAnyToIntFunction()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcAnyToIntFunction(IlcIntToIntFunctionI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IlcIntToIntFunctionI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

104

public IlcInt getValue(IlcAny elt) const

This member function returns the integer value associated with the object element elt.

public void operator=(const IlcAnyToIntFunction & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

105

Class IlcAnyTupleSet
Definition file: ilsolver/ilcany.h
Include file: <ilsolver/ilosolver.h>

A tuple is an ordered set of values represented by an array. A set of tuples is represented by an instance of
IlcAnyTupleSet. That is, the elements of a tuple set are tuples. The number of values in a tuple is known as
the arity of the tuple, and the arity of the tuples in a set is called the arity of the set. (In contrast, the number of
tuples in the set is known as the cardinality of the set.)

As a handle class, IlcAnyTupleSet manages certain set operations efficiently. In particular, elements can be
added to such a set. It is also possible to search a given set with the member function
IlcAnyTupleSet::isIn to see whether or not the set contains a given element.

In addition, a set of tuples can represent a constraint defined on a constrained variable, either as the set of
allowed combinations of values of the constrained variable on which the constraint is defined, or as the set of
forbidden combinations of values.

There are a few conventions governing tuple sets:

When you create the set, you must specify the arity of the tuple-elements it contains.•
You use the member function IlcAnyTupleSet::add to add tuples to the set.•
Before searching to determine whether or not a tuple belongs to a given set, you must close the set by
calling the member function IlcAnyTupleSet::close. This operation—closing the set—improves
the performance of certain other operations on the set.

•

Solver will throw an exception (an instance of IloSolver::SolverErrorException) if you attempt:

to add a tuple with a different number of variables from the arity of the set;•
to add an element to a set that has already been closed;•
to search for a tuple with an arity different from the set arity;•
to search for a tuple in a set that has not been closed yet;•
to define a constraint on a tuple set that has not been closed already.•

You do not have to worry about memory allocation. If you respect these conventions, Solver manages allocation
and de-allocation transparently for you.

See Also: IlcAnyArray, IlcTableConstraint

Constructor Summary

public IlcAnyTupleSet()

public IlcAnyTupleSet(IlcECSetOfSharedTupleI * impl)

public IlcAnyTupleSet(IloSolver solver, IlcInt arity)

Method Summary

public void add(IlcAnyArray tuple) const

public void close() const

public IlcECSetOfSharedTupleI * getImpl() const

public IlcBool isClosed() const

public IlcBool isIn(IlcAnyArray tuple) const

public void operator=(const IlcAnyTupleSet & h)

106

public void setBigTuple() const

public void setHoloTuple() const

public void setSimpleTuple() const

Constructors

public IlcAnyTupleSet()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcAnyTupleSet(IlcECSetOfSharedTupleI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcAnyTupleSet(IloSolver solver, IlcInt arity)

This constructor creates a set of tuples (an instance of the class IlcAnyTupleSet) with the arity indicated by
arity.

Methods

public void add(IlcAnyArray tuple) const

This member function adds a tuple represented by the array tuple to the invoking set. If you attempt to add an
element that is already in the set, that element will not be added again. Added elements are not copied; that is,
there is no memory duplication. Solver will throw an exception (an instance of
IloSolver::SolverErrorException) if the set has already been closed. Solver also will throw an exception
if the size of the array is not equal to the arity of the invoking set.

public void close() const

This member function closes the invoking set. That is, it states that all the tuples in the set are known so efficient
data structures can be defined and exploited.

public IlcECSetOfSharedTupleI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public IlcBool isClosed() const

This member function returns IlcTrue if the invoking set has been closed. Otherwise, it returns IlcFalse.

public IlcBool isIn(IlcAnyArray tuple) const

107

This member function returns IlcTrue if tuple belongs to the invoking set. Otherwise, it returns IlcFalse.
Solver will throw an exception (an instance of IloSolver::SolverErrorException) if the set has not yet
been closed. Solver will also throw an exception if the size of the array is not equal to the arity of the invoking set.

public void operator=(const IlcAnyTupleSet & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public void setBigTuple() const

This member function states that the tuples in the set will be compile in a specific data structure. It must be called
before close().

public void setHoloTuple() const

This member function states that the tuples in the set will be compile in a specific data structure. It must be called
before close().

public void setSimpleTuple() const

This member function states that the tuples in the set will be compile in a specific data structure (the one by
default). It must be called before close().

108

Class IlcAnyVar
Definition file: ilsolver/anyexp.h
Include file: <ilsolver/ilosolver.h>

In order to state constraints on arbitrary objects, Solver defines classes of constrained enumerated variables and
expressions. IlcAnyVar, the class of constrained enumerated variables, derives from its root class,
IlcAnyExp, the class of constrained enumerated expressions.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

Backtracking and Reversibility

All the member functions and operators defined for this class and capable of modifying constrained variables are
reversible. In particular, the changes made by constraint-posting functions are made with reversible assignments.
Thus, the value, the domain, and the constraints posted on any constrained variable are restored when Solver
backtracks.

Domain-Delta and Propagation

When a propagation event is triggered for a constrained variable, the variable is pushed into the propagation
queue if it was not already in the queue. Moreover, the modifications of the domain of the constrained variable
are stored in a special set called the domain-delta. This domain-delta can be accessed during the propagation of
the constraints posted on that variable. When all the constraints posted on that variable have been processed,
then the domain-delta is cleared. If the variable is modified again, then the whole process begins again. The state
of the domain-delta is reversible.

See Also: IlcAnyExp, IlcAnyExpIterator, IlcAnyVarArray, IlcAnyVarDeltaIterator

Constructor Summary

public IlcAnyVar(IloSolver solver, const IlcAnyArray values, const char * name=0)

public IlcAnyVar()

public IlcAnyVar(IlcIntExpI * impl)

public IlcAnyVar(const IlcAnyExp exp)

Method Summary

public IlcBool isInDelta(IlcAny value) const

public IlcBool isInProcess() const

public void operator=(const IlcAnyExp & exp)

public void operator=(const IlcAnyVar & exp)

Inherited Methods from IlcAnyExp

getCopy, getImpl, getName, getObject, getSize, getSolver, getSolverI, getValue,
isBound, isInDomain, operator=, removeDomain, removeDomain, removeValue,
setDomain, setDomain, setDomain, setName, setObject, setValue, whenDomain,
whenValue

109

Constructors

public IlcAnyVar(IloSolver solver, const IlcAnyArray values, const char * name=0)

This constructor creates a constrained enumerated variable with a domain containing exactly those pointers that
belong to values, an array of pointers. The optional argument name, if provided, becomes the name of the
constrained enumerated variable.

public IlcAnyVar()

This constructor creates a constrained enumerated variable which is empty, that is, whose handle pointer is null.
This object must then be assigned before it can be used, exactly as when you, as a developer, declare a pointer.

public IlcAnyVar(IlcIntExpI * impl)

This constructor creates a handle object (an instance of the class IlcAnyVar) from a pointer to an object (an
instance of the implementation class IlcIntExpI).

public IlcAnyVar(const IlcAnyExp exp)

To transform a constrained enumerated expression (which computes its domain from its subexpressions) into a
constrained enumerated variable (which stores its domain), you can use this constructor. It associates a domain
with the constrained enumerated expression exp. This expression thus becomes a constrained enumerated
variable. Moreover, the newly created constrained enumerated variable points to the same implementation object
as exp. (You can also use the assignment operator for the same purpose.)

Methods

public IlcBool isInDelta(IlcAny value) const

This member function returns IlcTrue if the argument value belongs to the domain-delta of the invoking
constrained variable. This member function can be applied only to the variable currently in process.

public IlcBool isInProcess() const

This member function returns IlcTrue if the invoking constrained variable is currently being processed by the
constraint propagation algorithm. Only one variable can be in process at a time.

public void operator=(const IlcAnyExp & exp)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the argument exp. After the execution of this operator, the invoking object and the exp
object both point to the same implementation object. Moreover, this assignment operator associates a domain
with the constrained enumerated expression exp, which is thus transformed into a constrained enumerated
variable.

public void operator=(const IlcAnyVar & exp)

110

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the argument exp. After the execution of this operator, the invoking object and the exp
object both point to the same implementation object. This assignment operator has no effect on its argument.

111

Class IlcAnyVarArray
Definition file: ilsolver/anyexp.h
Include file: <ilsolver/ilosolver.h>

The class IlcAnyVarArray is the class for an array of instances of IlcAnyVar. Three integers—indexMin,
indexMax, and indexStep—play an important role in such an array of constrained enumerated variables. The
index of those variables ranges from indexMin, inclusive, to indexMax, exclusive, in steps of indexStep. The
index of the first variable in the array is indexMin; the second one is indexMin+indexStep, and so forth. The
quantity indicated by indexMax-indexMin must be a multiple of indexStep.

Generic Constraints

The array makes it easier to implement generic constraints. In this context, a generic constraint is a constraint
that applies to all of the variables in the array. Member functions of the array class are available to post such
generic constraints. A generic constraint is then allocated and recorded only once for all the variables in the
array. This fact represents a significant economy in memory, compared to allocating and recording one constraint
per variable.

Interval Constraints

Arrays of constrained variables also allow you to define interval constraints which propagate in a global way
when the domains of one or more constrained variables in the array are modified. Propagation is then performed
through a goal. Member functions such as whenValueInterval or whenDomainInterval associate goals
with propagation events for this purpose.

Reversibility

All the functions and member functions capable of modifying arrays of constrained enumerated variables are
reversible. In particular, when modifiers and functions posting constraints are called, the state before their call will
be saved by Solver.

Empty Handle 0r Null Array

It is possible to create a null array, or in other words, an empty handle. When you do so, only these operations
are allowed on that null array:

copy: You can assign the null array to a new array.•
access its size: The member function getSize for the null array returns 0 (zero).•
create an iterator: You can create an iterator to traverse the null array. The member function ok
returns IlcFalse for a null array.

•

Attempts to access a null array in any other way will throw an exception (an instance of
IloSolver::SolverErrorException).

See Also: IlcAnyVar, IlcAnyVarArrayIterator, IlcIndex, operator<<

Constructor Summary

public IlcAnyVarArray()

public IlcAnyVarArray(IlcIntVarArrayI * impl)

public IlcAnyVarArray(IloSolver solver, IlcInt size)

public IlcAnyVarArray(IloSolver s, IlcInt indexMin, IlcInt indexMax, IlcInt
indexStep, const IlcAnyVar prototype)

112

Method Summary

public IlcAnyVarArray getCopy(IloSolver solver) const

public IlcInt getDomainIndexMax() const

public IlcInt getDomainIndexMin() const

public IlcIntVarArrayI * getImpl() const

public IlcInt getIndexMax() const

public IlcInt getIndexMin() const

public IlcInt getIndexStep() const

public IlcInt getIndexValue() const

public const char * getName() const

public IlcInt getSize() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public IlcInt getValueIndexMax() const

public IlcInt getValueIndexMin() const

public IlcAnyVar getVariable(IlcInt index, IlcBool before=IlcFalse) const

public void operator=(const IlcAnyVarArray & h)

public IlcAnyExp operator[](IlcIntExp var) const

public IlcAnyExp operator[](IlcIndex & I) const

public IlcAnyVar & operator[](IlcInt index) const

public void setName(const char * name) const

public void whenDomain(const IlcDemon demon)

public void whenDomainInterval(const IlcDemon demon)

public void whenValue(const IlcDemon demon)

public void whenValueInterval(const IlcDemon demon)

Constructors

public IlcAnyVarArray()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcAnyVarArray(IlcIntVarArrayI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcAnyVarArray(IloSolver solver, IlcInt size)

This constructor creates an uninitialized array of length size. The argument size must be strictly greater than 0
(zero). The index range of the array is [0 size). Each element of the array must be assigned before the array
can be used.

public IlcAnyVarArray(IloSolver s, IlcInt indexMin, IlcInt indexMax, IlcInt
indexStep, const IlcAnyVar prototype)

This constructor creates an array of copies of the given constrained enumerated variable prototype. Each copy

113

initially has the same domain as prototype currently has, but the copies do not share the constraints of
prototype. That is, the copies are independent. The index range of the array is [indexMin indexMax). The
step of the array is indexStep. Solver will throw an exception (an instance of
IloSolver::SolverErrorException) if any of the following conditions occur:

indexMin is not strictly less than indexMax;•
indexStep is not strictly positive;•
(indexMax-indexMin) is not a multiple of indexStep.•

This constructor keeps no pointer to the prototype variable. That variable may be an automatic object
allocated on the C++ stack.

Methods

public IlcAnyVarArray getCopy(IloSolver solver) const

This member function returns a copy of the invoking array of constrained variables and associates that copy with
the solver indicated by solver.

public IlcInt getDomainIndexMax() const

When it is called during the execution of a constraint or a demon associated with an array by the member
function whenDomainInterval, this member function returns the maximum of the range of the array
[indexMin indexMax) over which some removal of values has occurred. The returned value of this member
function is not meaningful outside the execution of a goal associated with the array by the member function
whenDomainInterval.

public IlcInt getDomainIndexMin() const

When it is called during the execution of a constraint or a demon associated with an array by the member
function whenDomainInterval, this member function returns the minimum of the range of the array
[indexMin indexMax) over which some removal of values has occurred. The returned value of this member
function is not meaningful outside the execution of a goal associated with the array by the member function
whenDomainInterval.

public IlcIntVarArrayI * getImpl() const

This constructor creates an object by copying another one. This member function returns a pointer to the
implementation object of the invoking handle.

public IlcInt getIndexMax() const

This member function returns the maximal index of the invoking array of constrained enumerated variables.

public IlcInt getIndexMin() const

This member function returns the minimal index of the invoking array of constrained enumerated variables.

public IlcInt getIndexStep() const

114

This member function returns the index step of the invoking array of constrained enumerated variables. The
meaning of this index step is that the indexed variable value may change only at indices equal to
(getIndexMin() + i * getIndexStep()).

public IlcInt getIndexValue() const

When it is called during the execution of a constraint or a demon associated with an array by the member
functions whenValue, whenDomain, or whenRange, this member function returns the index in the invoking
array of the constrained variable that triggered the propagation event. Calling this member function outside the
execution of the goal will throw an exception (an instance of IloSolver::SolverErrorException) with the
message “unbound index”.

public const char * getName() const

This member function returns the name of the invoking object.

public IlcInt getSize() const

This member function returns the number of variables in the invoking array.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IloSolverI * getSolverI() const

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

public IlcInt getValueIndexMax() const

When it is called during the execution of a constraint or a demon associated with an array by the member
function whenValueInterval, this member function returns the maximum of the range of the array
[indexMin indexMax) over which some binding has occurred. The returned value of this member function is
not meaningful outside the execution of a goal associated with the array by the member function
whenValueInterval.

public IlcInt getValueIndexMin() const

When it is called during the execution of a constraint or a demon associated with an array by the member
function whenValueInterval, this member function returns the minimum of the range of the array [indexMin
indexMax) over which some binding has occurred. The returned value of this member function is not
meaningful outside the execution of a goal associated with the array by the member function
whenValueInterval.

public IlcAnyVar getVariable(IlcInt index, IlcBool before=IlcFalse) const

115

This member function returns the variable corresponding to the given index in the invoking array of constrained
enumerated variables. However, if before is IlcTrue, then getVariable returns the variable before the
variable at the given index. Solver will throw an exception (an instance of
IloSolver::SolverErrorException) with the message "bad index" if the given index is not a valid one
for the invoking array of constrained enumerated variables. Solver will throw the same exception if index=0 and
before=IlcTrue.

If t is an array of constrained enumerated variables, then these three expressions return the same value:

 t.getVariable(index, IlcFalse)

 t.getVariable(index + 1, IlcTrue)

 t[index]

public void operator=(const IlcAnyVarArray & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public IlcAnyExp operator[](IlcIntExp var) const

This subscripting operator returns a constrained enumerated expression. For clarity, let's call A the invoking
array. When var is bound to the value i, then the domain of the variable is the domain of A[i]. More generally,
the domain of the variable is the union of the domains of the expressions A[i] where the i are in the domain of
var.

public IlcAnyExp operator[](IlcIndex & I) const

This operator returns a generic variable, which is a constrained variable representing an element of the array.
That generic variable is said to "stem from" the index i.

public IlcAnyVar & operator[](IlcInt index) const

This subscripting operator returns a reference to a constrained enumerated variable corresponding to the given
index in the invoking array of constrained enumerated variables. Solver will throw an exception (an instance of
IloSolver::SolverErrorException) with the message “bad index” if the given index is not a valid one
for the invoking array of constrained integer variables.

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

public void whenDomain(const IlcDemon demon)

This member function associates demon with the domain propagation event of every variable in the invoking
array. Whenever a value is removed from the domain of any of the variables in the invoking array, the demon will
be executed immediately.

When the demon is executed, the index of the constrained variable that triggered the domain event can be
known by a call to the member function getIndexValue.

116

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
When a value is removed from the domain of any of the variables in the invoking array, the constraint will be
propagated.

public void whenDomainInterval(const IlcDemon demon)

This member function associates demon with the domain propagation event of every variable in the invoking
array. It specifies that a given demon reacts globally to modifications of the domains of a collection of variables in
the array. Whenever a domain propagation event or a series of such events occurs, the demon will be executed
immediately.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
Whenever a domain propagation event or a series of such events occurs, the constraint will be propagated.

A call to the demon signifies that some removal of values from domain(s) occurred over the index range
[indexMin indexMax). It does not mean that values have been removed from the domains of all the variables
in the range.

public void whenValue(const IlcDemon demon)

This member function associates demon with the value propagation event of every variable in the invoking array.
When one of the variables in the array receives a value, the demon will be executed immediately.

When the demon is executed, the index of the bound constrained variable can be known by a call to the member
function getIndexValue.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
When one of the variables in the array receives a value, the constraint will be propagated.

public void whenValueInterval(const IlcDemon demon)

This member function associates demon with the value propagation event of every variable in the invoking array.
It specifies that a given demon reacts globally to the binding of a collection of variables in the array. When a
value propagation event or a series of such events occurs, the demon will be executed immediately.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
When a value propagation event or a series of such events occurs, the constraint will be propagated.

A call to the demon signifies that some variable binding occurred over the index range [indexMin indexMax).
It does not mean that all the variables in the range have been bound.

117

Class IlcAnyVarArrayIterator
Definition file: ilsolver/anyexp.h
Include file: <ilsolver/ilosolver.h>

Solver provides iterators to traverse the values of an array of constrained enumerated variables. Those iterators
are instances of the class IlcAnyVarArrayIterator. An instance of that class iterates forward over a
subinterval [indexMin indexMax) of the index range of the array.

For more information, see the concept Iterator.

See Also: IlcAnyVar, IlcAnyVarArray

Constructor and Destructor Summary

public IlcAnyVarArrayIterator(const IlcAnyVarArray array)

Method Summary

public IlcBool next(IlcAnyVar & variable)

public IlcBool ok() const

Constructors and Destructors

public IlcAnyVarArrayIterator(const IlcAnyVarArray array)

This constructor creates an iterator to traverse the values belonging to the array of constrained enumerated
variables. This iterator lets you iterate forward over the complete index range of the array.

Methods

public IlcBool next(IlcAnyVar & variable)

This member function takes a reference to a constrained enumerated variable and returns a Boolean value. It
begins with the first element. It returns IlcFalse if there is no other element on which to iterate and IlcTrue
otherwise. When it returns IlcTrue, it writes the next element of the iterator (forward iteration) to the argument.

public IlcBool ok() const

This member function returns IlcTrue if there is a current element and the invoking iterator points to it.
Otherwise, it returns IlcFalse.

To traverse the elements of a finite set of pointers, use the following code:

 IlcAny val;
 for(IlcAnySetIterator iter(set); iter.ok(); ++iter){
 val = *iter;
 // do something with val
 }

118

Class IlcAnyVarDeltaIterator
Definition file: ilsolver/anyexp.h
Include file: <ilsolver/ilosolver.h>

An instance of the class IlcAnyVarDeltaIterator is an iterator that traverses the values belonging to the
domain-delta of a constrained enumerated variable (that is, an instance of IlcAnyVar).

For more information, see the concepts Propagation, Iterator, and Domain-Delta.

See Also: IlcAnyVar

Constructor and Destructor Summary

public IlcAnyVarDeltaIterator(const IlcAnyVar var)

Method Summary

public IlcBool ok() const

public IlcAny operator*() const

public IlcAnyVarDeltaIterator & operator++()

Inherited Methods from IlcIntVarDeltaIterator

ok, operator*, operator++

Constructors and Destructors

public IlcAnyVarDeltaIterator(const IlcAnyVar var)

This constructor creates an iterator associated with var to traverse the values belonging to the domain-delta of
var.

Methods

public IlcBool ok() const

This member function returns IlcTrue if there is a current element and the invoking iterator points to it.
Otherwise, it returns IlcFalse.

To traverse the values belonging to the domain-delta of a constrained enumerated variable, use the following
code:

 IlcAny val;
 for(IlcAnyVarDeltaIterator iter(set); iter.ok(); ++iter){
 val = *iter;
 // do something with val
 }

public IlcAny operator*() const

119

This operator returns the current element, the one to which the invoking iterator points.

public IlcAnyVarDeltaIterator & operator++()

This operator advances the iterator to point to the next value in the domain-delta of the constrained enumerated
variable.

120

Class IlcBoolVar
Definition file: ilsolver/numi.h
Include file: <ilsolver/ilosolver.h>

Constrained Boolean variables are variables whose possible values are IlcTrue and IlcFalse. These
variables are instances of the class IlcBoolVar, which is a subclass of the class IlcConstraint. This class
inherits the member functions, isTrue and isFalse, as well as the operators defined for IlcConstraint, of
course.

A constrained Boolean expression can be transformed into a constrained Boolean variable by means of the class
constructor or the assignment operator. The effect of either of those is to associate a domain with the constrained
Boolean expression.

See Also: IlcBoolAbstraction, IlcBoolVarArray, IlcConstraint, IlcGoal

Constructor Summary

public IlcBoolVar(IloSolver solver, const char * name=0)

public IlcBoolVar(const IlcConstraint exp)

public IlcBoolVar()

Method Summary

public IlcBool isBound()

public void operator=(const IlcBoolVar & exp)

public void operator=(const IlcConstraint & exp)

Inherited Methods from IlcConstraint

getImpl, getName, getObject, getParentDemon, getSolver, isFalse, isTrue, setName,
setObject

Inherited Methods from IlcDemon

getConstraint, getImpl, getSolver, operator=

Constructors

public IlcBoolVar(IloSolver solver, const char * name=0)

This constructor creates a constrained Boolean variable with a domain containing IlcTrue and IlcFalse. The
optional argument name, if provided, becomes the name of the constrained Boolean variable.

public IlcBoolVar(const IlcConstraint exp)

This constructor associates a domain with the constrained Boolean expression, exp. That expression thus
becomes a constrained Boolean variable. Moreover, the newly created constrained Boolean variable points to

121

the same implementation object as exp.

public IlcBoolVar()

This constructor creates a constrained Boolean variable which is empty, that is, whose handle pointer is null. This
object must then be assigned before it can be used, exactly as when you declare a pointer.

Methods

public IlcBool isBound()

This member function indicates whether or not its invoking object is bound to a value in its domain.

public void operator=(const IlcBoolVar & exp)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the argument exp. After the execution of this operator, the invoking object and exp both
point to the same implementation object. This assignment operator has no effect on its argument.

public void operator=(const IlcConstraint & exp)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the argument exp. After the execution of this operator, the invoking object and the exp
object both point to the same implementation object. Moreover, this assignment operator associates a domain
with the constrained Boolean expression exp, which is thus transformed into a constrained Boolean variable.

122

Class IlcBoolVarArray
Definition file: ilsolver/numi.h
Include file: <ilsolver/ilosolver.h>

The class IlcBoolVarArray is the class for an array of instances of IlcBoolVar.

Generic Constraints

The array makes it easier to implement generic constraints. In this context, a generic constraint is a constraint
that applies to all of the variables in the array. Member functions of the array class are available to post such
generic constraints. A generic constraint is then allocated and recorded only once for all the variables in the
array. This fact represents a significant economy in memory, compared to allocating and recording one constraint
per variable.

Backtracking and Reversibility

All the functions and member functions capable of modifying arrays of constrained Boolean variables are
reversible. In particular, when modifiers and functions that post constraints are called, the state before their call
will be saved by Solver.

Empty Handle or Null Array

It is possible to create a null array, or in other words, an empty handle. When you do so, only these operations
are allowed on that null array:

copy: You can assign the null array to a new array.•
access its size: The member function getSize for the null array returns 0 (zero).•
create an iterator: You can create an iterator to traverse the null array. The member function ok
returns IlcFalse for a null array.

•

Attempts to access a null array in any other way will throw an exception (an instance of
IloSolver::SolverErrorException).

See Also: IlcAbstraction, IlcBoolAbstraction, IlcIndex

Constructor Summary

public IlcBoolVarArray()

public IlcBoolVarArray(IlcBoolVarArrayI * impl)

public IlcBoolVarArray(const IlcBoolVarArray & array)

public IlcBoolVarArray(IloSolver solver, IlcInt size)

Method Summary

public void display(ostream & stream) const

public IlcBoolVar & getElem(IlcInt index) const

public IlcBoolVarArrayI * getImpl() const

public IlcInt getSize() const

public IloSolver getSolver() const

public void operator=(const IlcBoolVarArray & array)

public IlcBoolVar & operator[](IlcInt index) const

123

Constructors

public IlcBoolVarArray()

This constructor creates an uninitialized array of constrained Boolean variables. The index range of the array is
undefined. The array must be assigned before it can be used.

public IlcBoolVarArray(IlcBoolVarArrayI * impl)

This constructor creates a handle object (an instance of the class IlcBoolVarArray) from a pointer to an
object (an instance of the implementation class IlcBoolVarArrayI).

public IlcBoolVarArray(const IlcBoolVarArray & array)

This copy constructor creates a new instance of IlcBoolVarArray. After execution of this constructor, both the
newly created array and array point to the same implementation object.

public IlcBoolVarArray(IloSolver solver, IlcInt size)

This constructor creates an instance of IlcBoolVarArray and adds it to those belonging to solver. The
parameter size, of course, indicates the size of the new array.

Methods

public void display(ostream & stream) const

This member function is called by the operator <<. The name of the invoking array, if it has been assigned with
setName, or the string IlcBoolVarArrayI, otherwise, will be printed on the given output stream, followed by
the display of all the elements of the array enclosed by brackets.

public IlcBoolVar & getElem(IlcInt index) const

This member function returns a reference to the constrained Boolean variable located at index in the invoking
array.

public IlcBoolVarArrayI * getImpl() const

This member function returns a pointer to the implementation object of the invoking array.

public IlcInt getSize() const

This member function returns an integer that indicates the size of the invoking array.

public IloSolver getSolver() const

124

This member function returns an instance of IloSolver associated with the invoking array.

public void operator=(const IlcBoolVarArray & array)

This assignment operator copies array into the invoking constrained Boolean array by assigning an address to
the handle pointer of the invoking object. That address is the location of the implementation object of the
argument array.

public IlcBoolVar & operator[](IlcInt index) const

This subscripting operator returns a reference to a constrained Boolean variable corresponding to the given
index in the invoking array of constrained Boolean variables. Solver will throw an exception (an instance of
IloSolver::SolverErrorException) with the message "bad index" if the given index is not a valid one
for the invoking array of constrained Boolean variables.

125

Class IlcBox
Definition file: ilsolver/ilcbox.h
Include file: <ilsolver/ilosolver.h>

Instances of the class IlcBox are multidimensional boxes that appear in multidimensional placement problems.
To solve packing or placement problems, you may need to be able to place boxes within a given container. In
such a situation, both the boxes to place and the container to hold them are instances of the class IlcBox.

To specify the containment constraint that a given container holds a given box, use the member function
IlcBox::contains.

Backtracking and Reversibility

All the member functions and operators defined for this class and capable of modifying constrained variables are
reversible. In particular, the changes made by constraint-posting functions are made with reversible assignments.
Thus the value of the domain, and the constraints posted on any constrained variable are restored when Solver
backtracks.

For more information, see IloBox.

See Also: IlcBoxIterator, IlcFilterLevelConstraint, IloBox

Constructor and Destructor Summary

public IlcBox(IlcInt dimensions, IlcIntVarArray origin, IlcIntArray size)

Method Summary

public IlcConstraint contains(IlcBox box)

public IlcBool doesNotOverlapInDimension(IlcBox box1, IlcBox box2, IlcInt
dimension)

public IlcBool doesOverlapInDimension(IlcBox box1, IlcBox box2, IlcInt
dimension)

public IlcBool doesPrecedeInDimension(IlcBox box1, IlcBox box2, IlcInt
dimension)

public IlcInt getDimensions()

public IlcBoxI * getImpl() const

public IlcConstraint getNotOverlapConstraint()

public IlcAny getObject() const

public IlcIntVar getOrigin(IlcInt dimension)

public IlcInt getSize(IlcInt dimension)

public IloSolver getSolver() const

public IlcBool isContained(IlcBox box)

public IlcConstraint notOverlapInDimension(IlcBox box1, IlcBox box2, IlcInt
dimension)

public IlcBool notOverlapInDimensionKnown(IlcBox box1, IlcBox box2, IlcInt

126

dimension)

public IlcConstraint overlapInDimension(IlcBox box1, IlcBox box2, IlcInt
dimension)

public IlcBool overlapInDimensionKnown(IlcBox box1, IlcBox box2, IlcInt
dimension)

public IlcConstraint precedenceInDimension(IlcBox box1, IlcBox box2, IlcInt
dimension)

public IlcBool precedenceInDimensionKnown(IlcBox box1, IlcBox box2, IlcInt
dimension)

public void setObject(IlcAny object)

Inherited Methods from IlcConstraint

getImpl, getName, getObject, getParentDemon, getSolver, isFalse, isTrue, setName,
setObject

Inherited Methods from IlcDemon

getConstraint, getImpl, getSolver, operator=

Constructors and Destructors

public IlcBox(IlcInt dimensions, IlcIntVarArray origin, IlcIntArray size)

This constructor creates a box according to the specifications passed in the parameters. The parameter
dimensions indicates the number of dimensions the box has. The arrays origin and size must contain the
same number of elements as the number of dimensions of the box. In dimension i, the box extends from
origin[i] to origin[i] + size[i]. For example, the statement

 IlcBox(2,IlcIntVarArray(s,2,IlcIntVar(s,3,3),IlcIntVar(s,0,0)), IlcIntArray(s,2,8,4));

creates a box as shown in the illustration below.

Methods

public IlcConstraint contains(IlcBox box)

This member function creates a constraint that requires the invoking box to contain box. The parameter box
should have the same number of dimensions as the invoking box.

This member function is reversible. That is, if a failure causes Solver to backtrack to an earlier choice point, the
effect of the contains statement is undone automatically.

public IlcBool doesNotOverlapInDimension(IlcBox box1, IlcBox box2, IlcInt
dimension)

127

This member function returns IlcTrue if the corresponding notOverlapInDimension constraint is verified.
Otherwise, it returns IlcFalse.

public IlcBool doesOverlapInDimension(IlcBox box1, IlcBox box2, IlcInt dimension)

This member function returns IlcTrue if the corresponding overlapInDimension constraint is verified.
Otherwise, it returns IlcFalse.

public IlcBool doesPrecedeInDimension(IlcBox box1, IlcBox box2, IlcInt dimension)

This member function returns IlcTrue if the corresponding precedenceInDimension constraint is verified.
Otherwise, it returns IlcFalse.

public IlcInt getDimensions()

This member function returns the number of dimensions of the invoking box.

public IlcBoxI * getImpl() const

This member function returns the implementation object of the invoking object. You can use this member function
to check whether a constraint is empty.

public IlcConstraint getNotOverlapConstraint()

This member function returns a constraint that specifies that none of the boxes contained in the invoking box can
overlap simultaneously along all of their dimensions.

The filter level of this constraint can be set using IloSolver::setFilterLevel. Currently two filter levels are
allowed, IlcLow, the default, and IlcBasic, which is slower but propagates more. You can specify the default
filter level of this constraint using the method IloSolver::setDefaultFilterLevel.

public IlcAny getObject() const

This member function returns the object associated with the invoking box.

public IlcIntVar getOrigin(IlcInt dimension)

This member function returns the origin of the invoking box along dimension dimension.

public IlcInt getSize(IlcInt dimension)

This member function returns the length of the invoking box along dimension dimension.

128

public IloSolver getSolver() const

This member function returns the solver associated with the invoking box.

public IlcBool isContained(IlcBox box)

This member function returns IlcTrue if the invoking box object is contained in box. Otherwise, it returns
IlcFalse.

public IlcConstraint notOverlapInDimension(IlcBox box1, IlcBox box2, IlcInt
dimension)

This member function specifies the constraint that if box1 and box2 are contained in the invoking box, then
box1 and box2 must not overlap along dimension dimension.

public IlcBool notOverlapInDimensionKnown(IlcBox box1, IlcBox box2, IlcInt
dimension)

This member function returns IlcTrue if the truth value of the corresponding notOverlapInDimension
constraint is known. Otherwise, it returns IlcFalse.

public IlcConstraint overlapInDimension(IlcBox box1, IlcBox box2, IlcInt dimension)

This member function specifies the constraint that if box1 and box2 are contained in the invoking box, then
box1 and box2 must overlap along dimension dimension.

public IlcBool overlapInDimensionKnown(IlcBox box1, IlcBox box2, IlcInt dimension)

This member function returns IlcTrue if the truth value of the corresponding overlapInDimension constraint
is known. Otherwise, it returns IlcFalse.

public IlcConstraint precedenceInDimension(IlcBox box1, IlcBox box2, IlcInt
dimension)

This member function specifies the constraint that if box1 and box2 are contained in the invoking box, then
box1 must precede box2 in dimension.

public IlcBool precedenceInDimensionKnown(IlcBox box1, IlcBox box2, IlcInt
dimension)

This member function returns IlcTrue if the truth value of the corresponding precedenceInDimension
constraint is known. Otherwise, it returns IlcFalse.

public void setObject(IlcAny object)

129

This member function sets the object associated with the invoking box to object.

130

Class IlcBoxIterator
Definition file: ilsolver/ilcbox.h
Include file: <ilsolver/ilosolver.h>

An instance of this class is an iterator capable of traversing the boxes contained in an instance of IlcBox.

See Also: IlcBox

Constructor Summary

public IlcBoxIterator(IlcBox box)

Method Summary

public IlcBool next(IlcBox & next_box)

Constructors

public IlcBoxIterator(IlcBox box)

This constructor creates an iterator to traverse the boxes contained in the box box.

Methods

public IlcBool next(IlcBox & next_box)

This member function advances the iterator to the next box contained in box. The IlcBoxIterator::next
method returns IlcTrue if there is a next box and IlcFalse otherwise.

131

Class IlcConstAnyArray
Definition file: ilsolver/anyexp.h
Include file: <ilsolver/ilosolver.h>

IlcConstAnyArray is the unchanging, constant array class for the basic enumerated class. You cannot modify
the values of elements of such an array. When you build an instance of this class, its constructor systematically
copies the array passed to it. This is a handle class. The implementation class for IlcConstAnyArray is the
undocumented class IlcConstIntArrayI. Instances of this class are useful, for example, in the function
IlcTableConstraint when you want to share an array rather than copy it.

See Also: IlcAnyArray, IlcTableConstraint, operator<<

Constructor Summary

public IlcConstAnyArray()

public IlcConstAnyArray(IlcConstIntArrayI * impl)

public IlcConstAnyArray(IloSolver s, IlcInt size, IlcAny * values)

public IlcConstAnyArray(IloSolver solver, IlcInt size, const IlcAny exp0, const
IlcAny exp...)

public IlcConstAnyArray(IloSolver solver, IlcAnyArray array)

Method Summary

public void display(ostream & str) const

public IlcConstIntArrayI * getImpl() const

public IlcInt getSize() const

public IloSolver getSolver() const

public void operator=(const IlcConstAnyArray & h)

public IlcAny operator[](IlcInt i) const

Constructors

public IlcConstAnyArray()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcConstAnyArray(IlcConstIntArrayI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcConstAnyArray(IloSolver s, IlcInt size, IlcAny * values)

This constructor creates a constant array containing the values in the array values. The argument size must
be the length of the array values; it must also be strictly greater than 0 (zero). Solver does not keep a pointer to
the array values.

132

public IlcConstAnyArray(IloSolver solver, IlcInt size, const IlcAny exp0, const
IlcAny exp...)

This constructor accepts a variable number of arguments. Its first argument, size, indicates the length of the
array that this constructor will create; size must be the same as the number of instances of IlcAny passed as
arguments; it must also be strictly greater than 0 (zero). The constructor creates a constant array of the values
indicated by the other arguments.

public IlcConstAnyArray(IloSolver solver, IlcAnyArray array)

This constructor creates a constant version of array.

Methods

public void display(ostream & str) const

This member function is called by the operator <<. The string IlcConstIntArrayI will be printed on the
given output stream, followed by the display of all the elements of the array enclosed by brackets.

public IlcConstIntArrayI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public IlcInt getSize() const

This member function returns the number of elements in the array.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public void operator=(const IlcConstAnyArray & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public IlcAny operator[](IlcInt i) const

This operator returns the element at index i. This operator can be used for accessing (that is, simply reading) the
element.

133

Class IlcConstFloatArray
Definition file: ilsolver/fltexp.h
Include file: <ilsolver/ilosolver.h>

IlcConstFloatArray is the unchanging, constant array class for the basic floating-point class. You cannot
modify the values of elements of such an array. When you build an instance of this class, its constructor
systematically copies the array passed to it. This is a handle class. The implementation class for
IlcConstFloatArray is the undocumented class IlcConstFloatArrayI. Instances of this class are useful,
for example, in the function IlcTableConstraint when you want to share an array rather than copy it.

See Also: IlcFloatArray, IlcTableConstraint, operator<<

Constructor Summary

public IlcConstFloatArray()

public IlcConstFloatArray(IlcConstFloatArrayI * impl)

public IlcConstFloatArray(IloSolver s, IlcInt size, IlcFloat * values)

public IlcConstFloatArray(IloSolver s, IlcFloatArray array)

public IlcConstFloatArray(IloSolver solver, IlcInt size, IlcFloat exp0, IlcFloat
exp...)

public IlcConstFloatArray(IloSolver solver, IlcInt size, IlcInt exp0, IlcInt
exp...)

Method Summary

public void display(ostream & strm) const

public IlcConstFloatArrayI * getImpl() const

public IlcInt getSize() const

public IloSolver getSolver() const

public void operator=(const IlcConstFloatArray & h)

public IlcFloat operator[](IlcInt i) const

Constructors

public IlcConstFloatArray()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcConstFloatArray(IlcConstFloatArrayI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcConstFloatArray(IloSolver s, IlcInt size, IlcFloat * values)

This constructor creates a constant array containing the values in the array values. The argument size must
be the length of the array values; it must also be strictly greater than 0 (zero). Solver does not keep a pointer to

134

the array values.

public IlcConstFloatArray(IloSolver s, IlcFloatArray array)

This constructor creates a constant array where the values of the elements cannot be changed from the
elements of array.

public IlcConstFloatArray(IloSolver solver, IlcInt size, IlcFloat exp0, IlcFloat
exp...)

This constructor accepts a variable number of arguments. Its first argument, size, indicates the length of the
array that this constructor will create; size must be the same as the number of instances of IlcFloat passed
as arguments; it must also be strictly greater than 0 (zero). The constructor creates a constant array of the values
indicated by the other arguments.

public IlcConstFloatArray(IloSolver solver, IlcInt size, IlcInt exp0, IlcInt
exp...)

This constructor accepts a variable number of arguments. Its first argument, size, indicates the length of the
array that this constructor will create; size must be the same as the number of instances of IlcInt passed as
arguments; it must also be strictly greater than 0 (zero). The constructor creates a constant array of the values
indicated by the other arguments. The other arguments must all be of the same type. Do not mix the type of
elements in a given array.

Methods

public void display(ostream & strm) const

This member function is called by the operator <<. The string IlcConstFloatArrayI will be printed on the
given output stream, followed by the display of all the elements of the array enclosed by brackets.

public IlcConstFloatArrayI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public IlcInt getSize() const

This member function returns the number of elements in the array.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public void operator=(const IlcConstFloatArray & h)

135

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public IlcFloat operator[](IlcInt i) const

This operator returns the element at index i. This operator can be used for accessing (that is, simply reading) the
element.

136

Class IlcConstIntArray
Definition file: ilsolver/intexp.h
Include file: <ilsolver/ilosolver.h>

IlcConstIntArray is the unchanging, constant array class for the basic integer class. You cannot modify the
values of elements of such an array. When you build an instance of this class, its constructor systematically
copies the array passed to it. This is a handle class. The implementation class for IlcConstIntArray is the
undocumented class IlcConstIntArrayI. Instances of this class are useful, for example, in the function
IlcTableConstraint when you want to share an array rather than copy it.

See Also: IlcIntArray, IlcTableConstraint, operator<<

Constructor Summary

public IlcConstIntArray()

public IlcConstIntArray(IlcConstIntArrayI * impl)

public IlcConstIntArray(IloSolver s, IlcIntArray array)

public IlcConstIntArray(IloSolver s, IlcInt size, IlcInt * values)

public IlcConstIntArray(IloSolver solver, IlcInt size, IlcInt exp0, IlcInt exp...)

Method Summary

public void display(ostream & str) const

public IlcConstIntArrayI * getImpl() const

public IlcInt getSize() const

public IloSolver getSolver() const

public void operator=(const IlcConstIntArray & h)

public IlcInt operator[](IlcInt i) const

Constructors

public IlcConstIntArray()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcConstIntArray(IlcConstIntArrayI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcConstIntArray(IloSolver s, IlcIntArray array)

This constructor creates a constant array where the values of the elements cannot be changed from the
elements of array.

public IlcConstIntArray(IloSolver s, IlcInt size, IlcInt * values)

137

This constructor creates a constant array containing the values in the array values. The argument size must
be the length of the array values; it must also be strictly greater than 0 (zero). Solver does not keep a pointer to
the array values.

public IlcConstIntArray(IloSolver solver, IlcInt size, IlcInt exp0, IlcInt exp...)

This constructor accepts a variable number of arguments. Its first argument, size, indicates the length of the
array that this constructor will create; size must be the same as the number of instances of IlcInt passed as
arguments; it must also be strictly greater than 0 (zero). The constructor creates a constant array of the values
indicated by the other arguments.

Methods

public void display(ostream & str) const

This member function is called by the operator <<. The string IlcConstIntArrayI will be printed on the
given output stream, followed by the display of all the elements of the array enclosed by brackets.

public IlcConstIntArrayI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public IlcInt getSize() const

This member function returns the number of elements in the array.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public void operator=(const IlcConstIntArray & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public IlcInt operator[](IlcInt i) const

This operator returns the element at index i. This operator can be used for accessing (that is, simply reading) the
element.

138

Class IlcConstraint
Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

A constraint is an object in Solver. Like other Solver entities, a constraint is implemented by means of two
classes: a handle class and an implementation class. In other words, an instance of the class IlcConstraint
(a handle) contains a data member (the handle pointer) that points to an instance of the class IlcConstraintI
(its implementation object).

Parent of a Constraint

When you use the member function IloSolver::add to add the constraint C to the constraint P, then we say
that the constraint P is the parent of constraint C.

If there is no other constraint associated with a given constraint as its parent, then we say that the constraint is its
own parent, and we also say that it is an external constraint. In that case, the member function
IlConstraint::getParentDemon returns 0 (zero, an empty handle).

Parents of constraints are useful in the trace mechanism of Solver.

Constraints as Boolean Expressions

You might also think of a constraint as a Boolean expression with a value of either IlcFalse or IlcTrue. The
value of the expression depends on the satisfiability of the constraint: if the constraint cannot be violated, then
the expression is bound to IlcTrue; if the constraint cannot be satisfied, then the expression is bound to
IlcFalse. We sometimes call a constraint, a constrained Boolean expression. These expressions can be
constrained themselves, and they can be combined with logical operators: or, and, and not.

Posting Constraints

When you create a constraint, Solver does not automatically take it into account. You must explicitly add the
constraint to a model and extract the model for an algorithm.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

Constructor Summary

public IlcConstraint()

public IlcConstraint(const IlcConstraint & c)

public IlcConstraint(IlcConstraintI * impl)

Method Summary

public IlcConstraintI * getImpl() const

public char * getName() const

public IlcAny getObject() const

139

public IlcDemon getParentDemon() const

public IloSolver getSolver() const

public IlcBool isFalse() const

public IlcBool isTrue() const

public void setName(const char * name) const

public void setObject(IlcAny object) const

Inherited Methods from IlcDemon

getConstraint, getImpl, getSolver, operator=

Constructors

public IlcConstraint()

This constructor creates a constraint which is empty, that is, one whose handle pointer is null. This object must
then be assigned before it can be used, exactly as when you declare a pointer.

public IlcConstraint(const IlcConstraint & c)

This copy constructor creates a reference to a constraint. That constraint and c both point to the same
implementation object.

public IlcConstraint(IlcConstraintI * impl)

This constructor creates a handle object (an instance of the class IlcConstraint) from a pointer to an object
(an instance of the implementation class IlcConstraintI).

Methods

public IlcConstraintI * getImpl() const

This member function returns the implementation object of the invoking object. You can use this member function
to check whether a constraint is empty.

public char * getName() const

This member function returns the name of the invoking handle, if the handle has a name. Otherwise, it returns
the empty string.

public IlcAny getObject() const

It is possible to associate some object (other than the implementation object) with a handle. This member
function accesses such an associated object. It returns a pointer to the associated object, if one exists.
Otherwise, the member function returns the null pointer.

140

public IlcDemon getParentDemon() const

When you use the macro ILCCTDEMON0 to construct a class of demons, then each demon of that class may be
associated with a constraint as the parent of that constraint. This member function returns the handle of the
demon associated with the invoking constraint. If there is no demon explicitly associated as the parent of the
invoking constraint, then this member function returns the invoking constraint itself.

public IloSolver getSolver() const

This member function returns the solver (a handle) of the invoking constraint.

public IlcBool isFalse() const

When this member function returns IlcTrue, the invoking constraint cannot be satisfied, no matter what.

For example, consider the constraint x <= y. If the domain of x is [0, 10] and the domain of y is [10, 20],
then the constraint is necessarily satisfied. In contrast, if the domain of x is [11, 20] and the domain of y is
[0, 10], then the constraint is necessarily violated (that is, it cannot be satisfied).

public IlcBool isTrue() const

When this member function returns IlcTrue, the invoking constraint is necessarily satisfied, no matter what.

public void setName(const char * name) const

This member function sets the name of the invoking handle to a copy of the given name. This is a reversible
action: the new name is allocated on the Solver heap, and the previous name is automatically restored upon
backtracking. This member function keeps no pointer to the string name.

public void setObject(IlcAny object) const

It is possible to associate some object (other than the implementation object) with a handle by means of this
member function. If the invoking handle has no associated object, then object becomes the associated object.
If the invoking handle already has an associated object, Solver will throw an exception (an instance of
IloSolver::SolverErrorException). The argument object must not be the null pointer; otherwise,
Solver will throw an exception (an instance of IloSolver::SolverErrorException).

141

Class IlcConstraintAggregator
Definition file: ilsolver/ilosolverhandle.h
Include file: <ilsolver/ilosolver.h>

A constraint aggregator is an object that is attached to an instance of IloSolver using the function:

 void IloSolver::use(IlcConstraintAggregator agg) const;

It enhances the instance of IloSolver by improving propagation or by providing additional information.

See Also: IlcAllDiffAggregator, IlcLogicAggregator, IlcLinearCtAggregator, IlcReductionInformation,
IlcDegreeInformation, IlcImpactInformation

142

Class IlcConstraintArray
Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

The class IlcConstraintArray is the class for an array of instances of IlcConstraint.

It is a handle class. The implementation class for IlcConstraintArray is the undocumented class
IlcConstraintArrayI. An object of this class contains a pointer to a constraint allocated on the Solver heap.
Exploiting handles in this way greatly simplifies the programming interface since the handle can then be an
automatic object. When you use handles you do not have to worry about memory allocation.

Empty Handle or Null Array

It is possible to create a null array, or in other words, an empty handle. When you do so, only these operations
are allowed on that null array:

copy: You can assign the null array to a new array.•
access its size: The member function getSize for the null array returns 0 (zero).•
create an iterator: You can create an iterator to traverse the null array. The member function ok
returns IlcFalse for a null array.

•

Attempts to access a null array in any other way will throw an exception (an instance of
IloSolver::SolverErrorException).

See Also: IlcConstraint, operator<<

Constructor Summary

public IlcConstraintArray()

public IlcConstraintArray(IlcConstraintArrayI * impl)

public IlcConstraintArray(IloSolver solver, IlcInt size)

Method Summary

public void display(ostream & stream) const

public IlcConstraintArrayI * getImpl() const

public IlcInt getSize() const

public IloSolver getSolver() const

public void operator=(const IlcConstraintArray & array)

public IlcConstraint & operator[](IlcInt rank) const

Constructors

public IlcConstraintArray()

This constructor creates a void array. In other words, the array is an empty handle with a null handle pointer. The
elements of this array must then be assigned before it is used, exactly as when you declare any other pointer.

public IlcConstraintArray(IlcConstraintArrayI * impl)

143

This constructor creates a handle object (an instance of the class IlcConstraintArray) from a pointer to an
object (an instance of the implementation class IlcConstraintArrayI).

public IlcConstraintArray(IloSolver solver, IlcInt size)

This constructor creates an array of size elements. The elements of this array are not initialized. The argument
size must be strictly greater than 0 (zero). Each element of the array must be assigned before the array can be
used.

Methods

public void display(ostream & stream) const

This member function is called by the operator <<.

public IlcConstraintArrayI * getImpl() const

This member function returns a pointer to the implementation object of the invoking array. You can use this
member function to check whether an array is empty.

public IlcInt getSize() const

This member function returns the number of constraints in the invoking array.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking array.

public void operator=(const IlcConstraintArray & array)

This assignment operator copies array into the invoking array by assigning an address to the handle pointer of
the invoking object. That address is the location of the implementation object of the argument array.

public IlcConstraint & operator[](IlcInt rank) const

This subscripting operator returns a reference to a constraint corresponding to the given index in the invoking
array of constraints.

144

Class IlcConstraintI
Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

A constraint is an object in Solver. Like other Solver entities, a constraint is implemented by means of two
classes: a handle class and an implementation class. In other words, an instance of the class IlcConstraint
(a handle) contains a data member (the handle pointer) that points to an instance of the class IlcConstraintI
(its implementation object).

Two member functions in this class actually implement the semantics of a constraint: isViolated and
propagate. When you are defining a new class of constraint, you must define the member function
propagate. That member function defines how the domain of a constrained variable must be reduced by the
constraint. (Defining isViolated is not usually mandatory. Its definition is mandatory if you want to use the new
class of constraint as a metaconstraint, for example in a Boolean formula.)

A constraint must be stored when it is posted so that it can be used by the propagation algorithm later. The
member function post must be defined for that purpose. In other words, if you are defining a new class of
constraint, when you define the implementation class for it, you must define this post member function as well.

A constraint can be used in a Boolean formula. In other words, you can combine constraints by means of the
usual Boolean operators to produce other constraints. In order to use a constraint in that way, if you are defining
a new class of constraints, then you must define the member functions metaPost, makeOpposite, and
isViolated.

For more information, see the concepts Propagation and Propagation Events.

See Also: IlcConstraint, ILCCTDEMON0, IlcDemonI, IlcGoalI

Constructor and Destructor Summary

public IlcConstraintI(IloSolver solver)

Method Summary

public virtual void display(ostream & str) const

public void fail(IlcAny label=0)

public IlcConstraintI * getCopy(IlcManagerI *=0)

public IlcDemonI * getParentDemonI() const

public virtual IlcBool isAConstraint() const

public virtual IlcBool isViolated() const

protected virtual IlcConstraintI * makeCopy(IlcManagerI *) const

public virtual IlcConstraintI * makeOpposite() const

public virtual void metaPostDemon(IlcDemonI * metaconstraint)

public virtual void post()

public virtual void propagate()

public void push()

145

public void push(IlcInt priority)

Inherited Methods from IlcDemonI

getConstraintI, getSolver, getSolverI, isAConstraint, propagate

Constructors and Destructors

public IlcConstraintI(IloSolver solver)

This constructor creates a constraint implementation. This constructor should not be called directly because this
is an abstract class. This constructor is called automatically in the constructors of its subclasses.

Methods

public virtual void display(ostream & str) const

By default, this virtual member function puts the name of the invoking constraint (if it has a name) on the output
stream indicated by its argument; if the invoking constraint has no name, this virtual member function puts the
string IlcConstraintI on that stream. When you define a new class of constraint, of course, you can redefine
this behavior.

public void fail(IlcAny label=0)

This member function causes the invoking constraint to fail at the choice point indicated by label.

public IlcConstraintI * getCopy(IlcManagerI *=0)

This member function returns a pointer to a copy of the invoking implementation object.

public IlcDemonI * getParentDemonI() const

If the invoking constraint is defined at the top level (that is, it is not nested; it is inside another constraint), then
this member function returns the constraint itself. If the invoking constraint is inside another constraint or inside a
demon, then this member function returns that other constraint or demon.

public virtual IlcBool isAConstraint() const

This member function returns IlcTrue if the invoking constraint derives from IlcConstraintI; it returns
IlcFalse otherwise.

public virtual IlcBool isViolated() const

If this member function returns IlcTrue, the invoking constraint cannot be satisfied. This member function may
return IlcFalse even if the constraint can not be satisfied. However, it should never return IlcTrue if there is
a possibility of satisfying the constraint. This provision is made for cases where it can be computationally
expensive to determine whether the constraint can be satisfied or not; in such a case, the function should return
IlcFalse. Consistent with this remark, the default behavior defined in the class IlcConstraintI for this

146

member function is to return IlcFalse.

Since this virtual member function implements part of the semantics of an invoking constraint, it is not mandatory
to redefine it in all cases when you define a new class of constraint. It is mandatory if you want to use instances
of the new class in Boolean expressions, as explained about logical Boolean operators for the class
IlcConstraint.

public virtual IlcConstraintI * makeOpposite() const

The negation of a constraint must also be a constraint. Semantically, this virtual member function expresses that
principle. It is called to create the negation of the invoking constraint. This member function is called only once by
Solver. Solver stores its results in order to avoid unnecessary computations.

This virtual member function must be defined when you define a new class of constraint if you want to use
instances of the constraint in Boolean expressions, as explained about logical Boolean operators for the class
IlcConstraint.

public virtual void metaPostDemon(IlcDemonI * metaconstraint)

When a Boolean expression is posted on constraints, the expression has to be examined whenever the truth
value of one of the constraints appearing in it changes. That is, a constraint is posted on the constraints
appearing in the expression. Since it is a constraint on constraints, we call it a metaconstraint. The virtual
member function metaPostDemon must be defined when you are defining a new class of constraints if you plan
to use instances of the new class in Boolean expressions, as explained about logical Boolean operators for the
class IlcConstraint.

This virtual member function is called to post its argument, a metaconstraint, on the invoking constraint. The
metaconstraint should be associated with all the propagation events of the expressions appearing in the invoking
constraint that may result in the unsatisfiability of the invoking constraint. Normally, these propagation events are
the same events that are used in the post member function.

Thus the implementation of metaPostDemon is very similar to the implementation of post. The main difference
is that metaPostDemon associates propagation events with the demon passed as an argument, whereas post
associates propagation events with the invoking constraint.

public virtual void post()

A constraint must be stored when it is posted so that it can be used by the propagation algorithm later. This
member function must be defined for that purpose. In other words, if you are defining a new class of constraint,
when you define the implementation class for it, you must define this pure virtual member function. It is called to
attach the invoking constraint to the constrained expressions that the constraint involves.

This member function must associate the invoking constraint with propagation events triggered by the
expressions it is constraining. This association is carried out by the member functions whenValue,
whenDomain, whenRange (member functions of the classes IlcIntExp, IlcAnyExp, IlcFloatExp,
IlcIntSetVar, IlcAnySetVar, etc.).

We strongly recommend that you do not modify variables in the scope of this member function. In other words,
you should not call a modifier on a constrained variable within your definition of this virtual member function.
Instead, you should make such changes (if they are necessary in your application) in your definition of the
propagate member function.

public virtual void propagate()

147

This pure virtual member function must be redefined when you define a new class of constraints. It defines how
the domains of constrained variables must be reduced by the invoking constraint. It is called by the constraint
propagation algorithm in order to execute the propagation of the invoking constraint. This member function
should reduce the domains of the constrained expressions involved in the invoking constraint by removing the
values that cannot satisfy the invoking constraint.

While there is an active demon, you must not start another search in the same solver (the instance of
IloSolver in which the invoking constraint exists). In practice, this rule means that you should not call
IloSolver::solve from inside the member function IlcConstraintI::propagate.

public void push()

This member function pushes the invoking constraint onto the constraint priority queue. Solver will use the default
priority in the queue.

public void push(IlcInt priority)

This member function pushes the invoking constraint onto the constraint priority queue. The argument priority
indicates its priority in the queue.

protected virtual IlcConstraintI * makeCopy(IlcManagerI *) const

This virtual member function returns a pointer to a copy of the invoking implementation object and associates that
copy with solver. When you derive a new class of constraints, you must, of course, define this virtual member
function appropriately. In particular, you must insure that the copy of the constraint is built with a copy of each
constrained variable involved in the constraint. In other words, makeCopy should copy the subobjects of the
constraint; to do so, it should use the member function getCopy.

For example, if we define an equality constraint between two constrained integer variables _x and _y, we should
implement makeCopy for that constraint like this:

 IlcConstraintI* MyEqCt::makeCopy(IloSolverI* solver) const {
 return new (solver) MyEqCt(_x,getCopy(solver),
 _y.getCopy(solver));
 }

148

Class IlcDemon
Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

Instances of IlcDemon are handles to demons. Demons differ from goals in these ways:

Demons are executed immediately.•
You must associate a constraint with a demon. The member function IlcDemon::getConstraint
returns the constraint associated with a demon.

•

For more information, see the concepts Propagation and Propagation Events.

See Also: ILCCTDEMON0, IlcDemonI, IlcTraceI

Constructor Summary

public IlcDemon()

public IlcDemon(IlcDemonI * impl)

public IlcDemon(const IlcDemon & demon)

Method Summary

public IlcConstraint getConstraint() const

public IlcDemonI * getImpl() const

public IloSolver getSolver() const

public void operator=(const IlcDemon & h)

Constructors

public IlcDemon()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcDemon(IlcDemonI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcDemon(const IlcDemon & demon)

This constructor creates a handle demon from the reference indicated by demon.

Methods

public IlcConstraint getConstraint() const

149

This member function returns a handle of the constraint associated with the invoking demon. If there is no such
constraint, this member function returns 0 (zero). The invoking demon is known as the parent of the constraint.

public IlcDemonI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public void operator=(const IlcDemon & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

150

Class IlcDemonI
Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

Instances of IlcDemonI are called demons. Demons differ from goals in these ways:

Demons are executed immediately.•
You must associate a constraint with a demon. The member function IlcDemonI::getConstraintI
returns the constraint associated with a demon.

•

For more information, see the concepts Propagation and Propagation Events.

See Also: IlcConstraintI, IlcGoalI, ILCCTDEMON0

Constructor and Destructor Summary

public IlcDemonI(IloSolver solver, IlcConstraintI * ct=0)

Method Summary

public IlcConstraintI * getConstraintI() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public virtual IlcBool isAConstraint() const

public virtual void propagate()

Constructors and Destructors

public IlcDemonI(IloSolver solver, IlcConstraintI * ct=0)

This constructor creates a demon implementation. This constructor should not be called directly because this is
an abstract class. This constructor is called automatically in the constructors of its subclasses. The constraint
passed as a parameter is the constraint constraint associated with this demon.

Methods

public IlcConstraintI * getConstraintI() const

This member function returns a pointer to the implementation of the constraint associated with the invoking
demon. The demon is known as the parent of the constraint.

public IloSolver getSolver() const

151

This member function returns the solver (a handle) of the invoking demon implementation.

public IloSolverI * getSolverI() const

This member function returns a pointer to the implementation object of the solver where the invoking demon was
extracted.

public virtual IlcBool isAConstraint() const

This member function returns IlcTrue if the invoking demon is an instance of IlcConstraintI; it returns
IlcFalse otherwise. In other words, it lets you know whether the invoking demon is a constraint or a demon.

public virtual void propagate()

This member function propagates the invoking demon. Normally, an implementation of this virtual member
function will call a member function of the associated constraint.

152

Class IlcFloatArray
Definition file: ilsolver/fltexp.h
Include file: <ilsolver/ilosolver.h>

For each basic type, Solver defines a corresponding array class. This array class is a handle class. In other
words, an object of this class contains a pointer to another object allocated on the Solver heap associated with a
solver (an instance of IloSolver). Exploiting handles in this way greatly simplifies the programming interface
since the handle can then be an automatic object: as a developer using handles, you do not have to worry about
memory allocation.

IlcFloatArray is the array class for the basic floating-point class. It is a handle class. The implementation
class for IlcFloatArray is the undocumented class IlcFloatArrayI.

Empty Handle or Null Array

It is possible to create a null array, or in other words, an empty handle. When you do so, only these operations
are allowed on that null array:

copy: You can assign the null array to a new array.•
access its size: The member function getSize for the null array returns 0 (zero).•
create an iterator: You can create an iterator to traverse the null array. The member function ok
returns IlcFalse for a null array.

•

Attempts to access a null array in any other way will throw an exception (an instance of
IloSolver::SolverErrorException).

See Also: IlcConstFloatArray, IlcFloat, operator<<

Constructor Summary

public IlcFloatArray()

public IlcFloatArray(IlcFloatArrayI * impl)

public IlcFloatArray(IloSolver s, IlcInt size, IlcFloat * values)

public IlcFloatArray(IloSolver solver, IlcInt size, IlcFloat prototype=0)

public IlcFloatArray(IloSolver solver, IlcInt size, IlcFloat exp0, IlcFloat exp1,
...)

public IlcFloatArray(IloSolver solver, IlcInt size, IlcInt exp0, IlcInt exp1, ...)

Method Summary

public IlcFloatArrayI * getImpl() const

public IlcInt getSize() const

public IloSolver getSolver() const

public void operator=(const IlcFloatArray & h)

public IlcFloat & operator[](IlcInt i) const

Constructors

public IlcFloatArray()

153

This constructor creates an empty handle. You must initialize it before you use it.

public IlcFloatArray(IlcFloatArrayI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcFloatArray(IloSolver s, IlcInt size, IlcFloat * values)

This constructor creates an array of floating-point numbers containing the values in the array values. The
argument size must be the length of the array values. It must also be strictly greater than 0 (zero). Solver does
not keep a pointer to the array values. When you create an array of floating-point values, the elements of the
array must be of the same type (for example, all floating-point, or all integer, but not a mixture of the two)
because those types are not necessarily the same size in C++. You can write this:

 IlcFloatArray arrayok (s, 3, 1., 3., 2.);

or this:

 IlcFloatArray arrayOK(s, 3, 1, 3, 2);

but not this:

 IlcFloatArray notok(s, 3, 1., 3, 2.); // bad idea

in which some values are floating-point, some are integer, and consequently of different sizes in C++.

public IlcFloatArray(IloSolver solver, IlcInt size, IlcFloat prototype=0)

This constructor creates an array of size elements. The argument size must be strictly greater than 0 (zero).
The elements of this array are not initialized.

public IlcFloatArray(IloSolver solver, IlcInt size, IlcFloat exp0, IlcFloat exp1,
...)

This constructor accepts a variable number of arguments. Its first argument, size, indicates the length of the
array that this constructor will create; size must be the number of arguments minus one (that is, the number of
arguments of type IlcFloat); it must also be strictly greater than 0 (zero). The constructor creates an array of
the values indicated by the other arguments. The arguments, exp0, exp1, etc. are all of the same type. Do not
mix types within an array.

public IlcFloatArray(IloSolver solver, IlcInt size, IlcInt exp0, IlcInt exp1, ...)

This constructor accepts a variable number of arguments. Its first argument, size, indicates the length of the
array that this constructor will create; size must be the number of arguments minus one (that is, the number of
arguments of type IlcInt); it must also be strictly greater than 0 (zero). The constructor creates an array of the
values indicated by the other arguments. The arguments, exp0, exp1, etc. are all of the same type. Do not mix
types within an array.

154

Methods

public IlcFloatArrayI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public IlcInt getSize() const

This member function returns the number of elements in the invoking array.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public void operator=(const IlcFloatArray & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public IlcFloat & operator[](IlcInt i) const

This operator returns a reference to the element at rank i. This operator can be used for accessing (that is,
simply reading) the element or for modifying (that is, writing) it.

155

Class IlcFloatExp
Definition file: ilsolver/fltexp.h
Include file: <ilsolver/ilosolver.h>

The class IlcFloatExp is the root for constrained floating-point expressions. A constrained floating-point
expression computes its domain from the domains of its subexpressions.

In fact, a constrained floating-point variable itself is a constrained floating-point expression: the class
IlcFloatVar is a subclass of IlcFloatExp, so a constrained floating-point variable is simply a constrained
floating-point expression whose domain is stored. Since the number of elements in the domain of a constrained
continuous floating-point variable is very high (typically millions), there is usually an interval associated with the
variable to represent its domain. The domain of a constrained discrete floating-point variable (that is, one
constructed by IlcFloatVar) can be explicitly enumerated so its domain is represented by an array.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

Precision

In Solver, all computations on floating-point values are computed in doubleprecision mode, that is, 64 bits on
most hardware.

A relativeprecision is associated with each constrained floating-point expression in Solver. This relative precision
is taken into account during constraint propagation: if the size of the interval associated with a floating-point
expression is less than the precision associated with that expression, then we consider the expression as bound
to the mean value in that interval. In other words, the expression is bound to the average value in a such an
interval. Consequently, in this context, precision represents a degree of uncertainty about this value. More
formally, we say that a constrained floating-point variable x with a precision indicated by precision is bound
when its associated interval is bounded by min and max such that ((max - min)/(max{1, |min|}) <=
precision.

The smaller the precision of a variable, the more precise are computations with it, but such computations can
take more time, of course.

To compare a constrained floating-point expression to 0 (zero), use the function IlcNull.

Domain

The domain of a constrained floating-point expression (an instance of IlcFloatExp) is computed from the
domains of its subexpressions. For example, if x and y are both instances of IlcFloatExp, then the domain of
x+y contains the range [x.getMin()+y.getMin(), x.getMax()+y.getMax()]. (In contrast, the domain
of a constrained floating-point variable (an instance of IlcFloatVar) is stored.) The domain of a constrained
floating-point expression can be reduced to the point of being empty. In such a case, failure is triggered by
means of the function IlcFail since no solution is then possible.

Checking Overflow and Underflow

Solver explicitly checks floating-point computations for overflow and underflow.

IEEE 754 is a standard proposed by the Institute of Electronic and Electrical Engineers for computing
floating-point arithmetic. The implementation of floating-point numbers in Solver conforms to this standard. See
the Solver User's Manual for a discussion of floating-point arithmetic.

Backtracking and Reversibility

156

All the member functions and operators defined for this class and capable of modifying constrained variables are
reversible. In particular, the changes made by constraint-posting functions are made with reversible assignments.
Thus, the value, the domain, and the constraints posted on any constrained variable are restored when Solver
backtracks.

For more information, see the concept Propagation.

A modifier is a member function that reduces the domain of a constrained floating-point expression, if it can. The
modifier is not stored, in contrast to a constraint. If the constrained floating-point expression is a constrained
floating-point variable, the modifications due to the modifier call are stored in its domain. Otherwise, the effect of
the modifier is propagated to the subexpressions of the constrained floating-point expression. If the domain
becomes empty, failure occurs. Modifiers are usually used to define new classes of constraints.

See Also: IlcAbs, IlcCos, IlcExponent, IlcFloatExpIterator, IlcFloatSet, IlcFloatVar, IlcFloatVarDeltaIterator,
IlcLog, IlcMax, IlcMin, IlcMonotonicDecreasingFloatExp, IlcMonotonicIncreasingFloatExp, IlcNull, IlcPower,
IlcScalProd, IlcSin, IlcSolveBounds, IlcSquare, IlcSum, IlcTan, operator+, operator-, operator*, operator/,
operator<<

Constructor Summary

public IlcFloatExp()

public IlcFloatExp(IlcFloatExpI * impl)

public IlcFloatExp(IlcIntExp exp)

Method Summary

public void display(ostream & str) const

public IlcFloatExp getCopy() const

public IlcFloatExpI * getImpl() const

public IlcFloat getMax() const

public IlcFloat getMin() const

public const char * getName() const

public IlcFloat getNextHigher(IlcFloat val) const

public IlcFloat getNextLower(IlcFloat val) const

public IlcAny getObject() const

public IlcFloat getPrecision() const

public IlcFloat getSize() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public IlcBool isBound() const

public IlcBool isInDomain(IlcFloat value) const

public void operator=(const IlcFloatExp & h)

public void removeDomain(IlcFloatSet domain)

public void removeDomain(IlcFloatArray domain)

public void removeRange(IlcFloat min, IlcFloat max) const

public void removeValue(IlcFloat val) const

public void setDomain(IlcFloatArray domain)

public void setDomain(IlcFloatSet domain)

public void setDomain(IlcFloatExp var)

157

public void setMax(IlcFloat max) const

public void setMin(IlcFloat min) const

public void setName(const char * name) const

public void setObject(IlcAny object) const

public void setPrecision(IlcFloat precision)

public void setRange(IlcFloat min, IlcFloat max) const

public void whenDomain(const IlcDemon ct) const

public void whenRange(const IlcDemon demon) const

public void whenValue(const IlcDemon demon) const

Constructors

public IlcFloatExp()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcFloatExp(IlcFloatExpI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcFloatExp(IlcIntExp exp)

A constrained integer expression in Solver can be seen as a constrained floating-point expression since integers
can be converted to floating-point values. This constructor is for casting a constrained integer expression into a
constrained floating-point expression. This constructor creates a constrained floating-point expression which is
constrained to be equal to the constrained integer expression exp. In other words, you can use this constructor
to define a constrained floating-point expression to be equal to a constrained integer expression. Such a
floating-point expression can then be used like any other constrained floating-point expression. It is thus possible
to combine integers and floating-point expressions within a constraint.

Usually, casting a constrained integer expression to a constrained floating-point expression is done automatically
by the compiler, so you don't ordinarily need to use this constructor. In fact, you should use it only if your compiler
warns you that something is wrong when you combine constrained floating-point and integer expressions.

Methods

public void display(ostream & str) const

This member function puts the invoking object on the output stream indicated by its argument.

public IlcFloatExp getCopy() const

This member function returns a copy of invoking constrained floating-point expression and associates that copy
with solver.

public IlcFloatExpI * getImpl() const

This constructor creates an object by copying another one. This constructor creates an object by copying another
one. This member function returns a pointer to the implementation object of the invoking handle.

158

public IlcFloat getMax() const

This member function returns the maximum value of the invoking object.

public IlcFloat getMin() const

This member function returns the minimum value of the invoking object.

public const char * getName() const

This member function returns the name of the invoking object.

public IlcFloat getNextHigher(IlcFloat val) const

This member function applies only to discrete floating-point expressions (that is, those created with an explicitly
enumerated domain by the constructor IlcFloatVar). This member function returns the least floating-point
value that is greater than or equal to val from the domain of the invoking discrete floating-point expression.

If you apply this member function to a continuous floating-point expression (that is, an instance of IlcFloatExp
not constructed by IlcFloatVar), it will throw an exception (an instance of
IloSolver::SolverErrorException).

public IlcFloat getNextLower(IlcFloat val) const

This member function applies only to discrete floating-point expressions (that is, those created with an explicitly
enumerated domain by the constructor IlcFloatVar). This member function returns the greatest floating-point
value that is less than or equal to val from the domain of the invoking discrete floating-point expression.

If you apply this member function to a continuous floating-point expression (that is, an instance of IlcFloatExp
not constructed by IlcFloatVar), it will throw an exception (an instance of
IloSolver::SolverErrorException).

public IlcAny getObject() const

This member function returns a pointer to the external object associated with the invoking object, if there is such
an association. It returns 0 (zero) otherwise.

public IlcFloat getPrecision() const

This member function returns the precision of the invoking constrained floating-point expression. We say that a
constrained floating-point variable x with a precision indicated by precision is bound when its associated

interval is bounded by min and max such that

The smaller the precision of a variable, the more precise are computations with it, but such computations can
take more time, of course.

public IlcFloat getSize() const

This member function returns the width of the domain of the invoking constrained floating-point expression. By
width of the domain, we mean the difference between the two boundaries of the domain.

159

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IloSolverI * getSolverI() const

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

public IlcBool isBound() const

This member function returns IlcTrue if the invoking constrained floating-point expression is bound. Otherwise,
the member function returns IlcFalse.

public IlcBool isInDomain(IlcFloat value) const

This member function returns IlcTrue if value is in the domain of the invoking constrained floating-point
expression. Otherwise, the member function returns IlcFalse.

public void operator=(const IlcFloatExp & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public void removeDomain(IlcFloatSet domain)

This member function applies only to discrete floating-point expressions (that is, those created with an explicitly
enumerated domain by the constructor IlcFloatVar). This member function removes the values indicated by
the set domain from the domain of the invoking discrete floating-point expression.

If you apply this member function to a continuous floating-point expression (that is, an instance of IlcFloatExp
not constructed by IlcFloatVar), it will throw an exception (an instance of
IloSolver::SolverErrorException).

public void removeDomain(IlcFloatArray domain)

This member function applies only to discrete floating-point expressions (that is, those created with an explicitly
enumerated domain by the constructor IlcFloatVar). This member function removes the values indicated by
the array domain from the domain of the invoking discrete floating-point expression.

If you apply this member function to a continuous floating-point expression (that is, an instance of IlcFloatExp
not constructed by IlcFloatVar), it will throw an exception (an instance of
IloSolver::SolverErrorException).

public void removeRange(IlcFloat min, IlcFloat max) const

This member function applies only to discrete floating-point expressions (that is, those created with an explicitly
enumerated domain by the constructor IlcFloatVar). This member function removes all the values between

160

min and max, inclusive, from the domain of the invoking discrete floating-point expression.

If you apply this member function to a continuous floating-point expression (that is, an instance of IlcFloatExp
not constructed by IlcFloatVar), it will throw an exception (an instance of
IloSolver::SolverErrorException).

public void removeValue(IlcFloat val) const

This member function applies only to discrete floating-point expressions (that is, those created with an explicitly
enumerated domain by the constructor IlcFloatVar). This member function removes val from the domain of
the invoking discrete floating-point expression. If val was not in the domain of the invoking discrete expression,
then this member function does nothing.

If you apply this member function to a continuous floating-point expression (that is, an instance of IlcFloatExp
not constructed by IlcFloatVar), it will throw an exception (an instance of
IloSolver::SolverErrorException).

When it removes a value from a domain, Solver may need to allocate more memory for the representation of the
remaining domain. The amount of memory allocated depends on the size of the domain of the variable.

public void setDomain(IlcFloatArray domain)

This member function applies only to discrete floating-point expressions (that is, those created with an explicitly
enumerated domain by the constructor IlcFloatVar). This member function assigns domain as the domain of
the invoking discrete floating-point expression.

If you apply this member function to a continuous floating-point expression (that is, an instance of IlcFloatExp
not constructed by IlcFloatVar), it will throw an exception (an instance of
IloSolver::SolverErrorException).

public void setDomain(IlcFloatSet domain)

This member function applies only to discrete floating-point expressions (that is, those created with an explicitly
enumerated domain by the constructor IlcFloatVar). This member function assigns domain as the domain of
the invoking discrete floating-point expression.

If you apply this member function to a continuous floating-point expression (that is, an instance of IlcFloatExp
not constructed by IlcFloatVar), it will throw an exception (an instance of
IloSolver::SolverErrorException).

public void setDomain(IlcFloatExp var)

This member function applies only to discrete floating-point expressions (that is, those created with an explicitly
enumerated domain by the constructor IlcFloatVar). This member function assigns var as the domain of the
invoking discrete floating-point expression.

If you apply this member function to a continuous floating-point expression (that is, an instance of IlcFloatExp
not constructed by IlcFloatVar), it will throw an exception (an instance of
IloSolver::SolverErrorException).

public void setMax(IlcFloat max) const

161

This member function removes all the elements that are greater than max from the domain of the invoking
constrained expression. If the domain thus becomes empty, then the function IlcFail is called. Otherwise, if
the domain is modified, the propagation event range is generated. Moreover, if the invoking constrained
floating-point expression becomes bound, then the propagation event value is also generated. The effects of
this member function are reversible.

public void setMin(IlcFloat min) const

This member function removes all the elements that are less than min from the domain of the invoking
constrained expression. If the domain thus becomes empty, then t he function IlcFail is called. Otherwise, if
the domain is modified, the propagation event range is generated. Moreover, if the invoking constrained
floating-point expression becomes bound, then the propagation event value is also generated. The effects of
this member function are reversible.

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

public void setObject(IlcAny object) const

This member function establishes a link between the invoking object and an external object of which the invoking
object might be a data member.

public void setPrecision(IlcFloat precision)

This member function sets the precision of the invoking constrained floating-point expression. This is a
non-reversible action.

public void setRange(IlcFloat min, IlcFloat max) const

This member function removes all the elements that are either less than min or greater than max from the
domain of the invoking constrained expression. If the domain thus becomes empty, then the function IlcFail is
called. Otherwise, if the domain is modified, the propagation event range is generated. Moreover, if the invoking
constrained floating-point expression becomes bound, then the propagation event value is also generated. The
effects of this member function are reversible.

public void whenDomain(const IlcDemon ct) const

This member function applies only to discrete floating-point expressions (that is, those created with an explicitly
enumerated domain by the constructor IlcFloatVar). This member function associates the demon ct with the
domain event of the invoking discrete floating-point expression. When the domain of the discrete expression
changes, the demon executes immediately.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
Whenever the domain of the invoking constrained expression changes, the constraint will be propagated.

If you apply this member function to a continuous floating-point expression (that is, an instance of IlcFloatExp
not constructed by IlcFloatVar), it will throw an exception (an instance of
IloSolver::SolverErrorException).

public void whenRange(const IlcDemon demon) const

162

This member function associates demon with the range event of the invoking constrained expression. Whenever
one of the boundaries of the domain of the invoking constrained expression changes, the demon will be executed
immediately.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
Whenever one of the boundaries of the domain of the invoking constrained expression changes, the constraint
will be propagated.

public void whenValue(const IlcDemon demon) const

This member function associates demon with the value event of the invoking constrained expression. Whenever
the invoking constrained expression becomes bound, the demon will be executed immediately.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
Whenever the invoking constrained expression becomes bound, the constraint will be propagated.

163

Class IlcFloatExpIterator
Definition file: ilsolver/fltexp.h
Include file: <ilsolver/ilosolver.h>

An instance of the class IlcFloatExpIterator is an iterator that traverses the values belonging to the
domain of a constrained discrete floating-point expression. A discrete floating-point variable is an instance of
IlcFloatVar defined by this constructor:

IlcFloatVar

In other words, it is a floating-point variable with an enumerated domain.

An iterator of this class will not traverse the domain of a continuous floating-point variable (that is, one created by
the other constructors of IlcFloatVar) because its domain is represented by an interval (not an enumerated
set).

For more information, see the concept Iterator.

See Also: IlcFloatExp, IlcFloatVar

Constructor and Destructor Summary

public IlcFloatExpIterator(IlcFloatExp exp)

Method Summary

public IlcBool ok() const

public IlcFloat operator*() const

public IlcFloatExpIterator & operator++()

Constructors and Destructors

public IlcFloatExpIterator(IlcFloatExp exp)

This constructor creates an iterator associated with exp to traverse the values belonging to the domain of exp.
exp must be a discrete floating-point expression.

Methods

public IlcBool ok() const

This member function returns IlcTrue if there is a current element and the iterator points to it. Otherwise, it
returns IlcFalse.

To traverse the values belonging to the domain of a constrained discrete floating-point expression, use the
following code:

 IlcFloat val;
 for (IlcFloatExpIterator iter(exp); iter.ok(); ++iter){
 val = *iter;
 // do something with val
 }

164

public IlcFloat operator*() const

This operator returns the current element, the one to which the invoking iterator points.

public IlcFloatExpIterator & operator++()

This operator advances the iterator to point to the next value in the domain of the constrained discrete
floating-point expression.

165

Class IlcFloatSet
Definition file: ilsolver/fltexp.h
Include file: <ilsolver/ilosolver.h>

Finite sets of discrete, enumerated floating-point numbers are instances of the handle class IlcFloatSet.
These sets are used by Solver to represent the domains of enumerated constrained variables and to represent
the values of constrained set variables. Solver provides an efficient, optimized implementation of finite sets of
floating-point numbers. These finite sets are known formally as instances of the handle class IlcFloatSet.

The elements of finite sets of type IlcFloatSet are floating-point numbers of type IlcFloat. The
implementation class for finite sets of floating-point numbers is the undocumented class IlcFloatSetI.

To traverse an existing finite set, either exhaustively or in search of an element, Solver provides iterators (such
as instances of IlcFloatSetIterator). An iterator is an object constructed from a data structure (such as a
set or an array) and contains a traversal state of this data structure.

See Also: IlcFloat, IlcFloatExp, IlcFloatExpIterator, IlcFloatSetIterator, IlcFloatVar, IlcFloatVarDeltaIterator

Constructor Summary

public IlcFloatSet()

public IlcFloatSet(IlcFloatSetI * impl)

public IlcFloatSet(const IlcFloatArray array, IlcBool fullSet=IlcTrue)

public IlcFloatSet(IloSolver solver, const IlcFloatArray array, IlcBool
fullSet=IlcTrue)

Method Summary

public IlcBool add(IlcFloat elt)

public IlcFloatSet copy() const

public IlcFloatSetI * getImpl() const

public IlcInt getSize() const

public IloSolver getSolver() const

public IlcBool isIn(IlcFloat elt) const

public void operator=(const IlcFloatSet & h)

public IlcBool remove(IlcFloat elt)

Constructors

public IlcFloatSet()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcFloatSet(IlcFloatSetI * impl)

This constructor creates a handle object from a pointer to an implementation object.

166

public IlcFloatSet(const IlcFloatArray array, IlcBool fullSet=IlcTrue)

This constructor also creates a finite set of floating-point numbers containing the elements of array.

public IlcFloatSet(IloSolver solver, const IlcFloatArray array, IlcBool
fullSet=IlcTrue)

This constructor creates a finite set of floating-point numbers containing the elements of array. If array
contains multiple copies of a given value, that value will appear only one time in the newly created finite set. If the
argument fullSet is equal to IlcTrue, its default value, the finite set will initially contain all its possible values.
Otherwise, the finite set will initially be empty. In any case, the possible elements of the finite set are exactly
those elements in array.

Methods

public IlcBool add(IlcFloat elt)

This member function adds elt to the invoking finite set if elt is a possible member of that set and if elt is not
already in that set. When both conditions are met, this member function returns IlcTrue. Otherwise, it returns
IlcFalse. The effects of this member function are reversible.

public IlcFloatSet copy() const

This member function creates and returns a finite set that contains the same elements as the invoking finite set.

public IlcFloatSetI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public IlcInt getSize() const

This member function returns the size of a finite set. Clearly, this member function is useful for testing whether
the invoking finite set is empty or not.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IlcBool isIn(IlcFloat elt) const

This member function is a predicate that indicates whether or not elt is in the invoking finite set. It returns
IlcTrue if elt is in the set; otherwise, it returns IlcFalse.

167

public void operator=(const IlcFloatSet & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public IlcBool remove(IlcFloat elt)

This member function removes elt from the invoking finite set. This member function returns IlcTrue if elt
was not in that invoking set; otherwise, it returns IlcFalse. The effects of this member function are reversible.

168

Class IlcFloatSetIterator
Definition file: ilsolver/fltexp.h
Include file: <ilsolver/ilosolver.h>

An instance of the class IlcFloatSetIterator is an iterator that traverses the elements of a finite set of
discrete floating-point numbers (instance of IlcFloatSet).

For more information, see the concept Iterator.

See Also: IlcFloatSet

Constructor Summary

public IlcFloatSetIterator(IlcFloatSet set)

Method Summary

public IlcBool ok() const

public IlcFloat operator*() const

public IlcFloatSetIterator & operator++()

Constructors

public IlcFloatSetIterator(IlcFloatSet set)

This constructor creates an iterator associated with set to traverse its elements.

Methods

public IlcBool ok() const

This member function returns IlcTrue if there is a current element and the invoking iterator points to it.
Otherwise, it returns IlcFalse.

To traverse the elements of a finite set of discrete floating-point numbers, use the following code:

 IlcAny val;
 for(IlcFloatSetIterator iter(set); iter.ok(); ++iter){
 val = *iter;
 // do something with val
 }

public IlcFloat operator*() const

This operator returns the current element, the one to which the invoking iterator points.

public IlcFloatSetIterator & operator++()

169

This operator advances the iterator to point to the next value in the set.

170

Class IlcFloatVar
Definition file: ilsolver/fltexp.h
Include file: <ilsolver/ilosolver.h>

The class IlcFloatVar is a subclass of IlcFloatExp. A constrained floating-point variable (an instance of
IlcFloatVar) is a constrained floating-point expression that stores its domain (instead of computing the
domain from the domains of its subexpressions). The domain of a constrained floating-point variable contains
values of type IlcFloat.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

Continuous and Discrete Enumerated Floating-Point Variables

Solver offers two different kinds of constrained floating-point variables: continuous and discrete or enumerated.
Both kinds of variables assume values of type IlcFloat. They differ in the way their domains are represented,
however.

A continuous floating-point variable is any instance of IlcFloatExp or IlcFloatVar not created by
IlcFloatVar For continuous floating-point variables, the number of elements in the domain is very high
(typically millions). Consequently, Solver associates an interval with the variable to represent its domain.
Because it is not practical to count the elements in the domain of a continuous floating-point variable, there are
no iterators for traversing the domain of continuous floating-point variables.

For users of Solver prior to version 5, these continuous variables defined on intervals were the only constrained
floating-point variables available. Continuous floating-point variables are still available in Solver version 5; in
addition, there are now also discrete or enumerated floating-point variables.

In contrast to continuous floating-point variables, discrete floating-point variables can be enumerated. That is,
their domain can be counted explicitly. Consequently, Solver associates an enumerated set with the variable to
represent its domain. To create a discrete floating-point variable, use the constructor

IlcFloatVar

With that constructor, you explicitly enumerate the values that the discrete variable may assume. This constructor
offers the only way to create a discrete floating-point variable with an enumerated domain.

Failure

If the boundaries of the domain are identical and equal to minus infinity or plus infinity, then failure is triggered
since no finite solution is then possible. That situation can happen with the following declaration, for example:

 IloSolver s;
 IlcFloatVar x(s,0,10);
 IlcFloatVar y=IlcLog(x);
 s.add(x == 0);

Those lines cause failure since the minimal and maximal boundaries of y are equal to minus infinity.

Domain-Delta And Propagation

When a propagation event is triggered for a constrained variable, the variable is pushed into the propagation
queue if it was not already in the queue. Moreover, the modifications of the domain of the constrained variable
are stored in a special set called the domain-delta. This domain-delta can be accessed during the propagation of
the constraints posted on that variable. When all the constraints posted on that variable have been processed,
then the domain-delta is cleared. If the variable is modified again, then the whole process begins again. The state

171

of the domain-delta is reversible.

For discrete floating-point variables (that is, instances of IlcFloatVar created by the constructor
IlcFloatVar) to traverse their domain-delta, Solver offers iterators of the class
IlcFloatVarDeltaIterator.

Backtracking and Reversibility

All the member functions and operators defined for this class and capable of modifying constrained variables are
reversible. In particular, the changes made by constraint-posting functions are made with reversible assignments.
Thus, the value, the domain, and the constraints posted on any constrained variable are restored when Solver
backtracks.

See Also: IlcFloat, IlcFloatExp, IlcFloatExpIterator, IlcFloatSet, IlcFloatVarArray, IlcFloatVarDeltaIterator,
IlcSolveBounds

Constructor Summary

public IlcFloatVar()

public IlcFloatVar(IloSolver solver, IlcFloat min, IlcFloat max, const char *
name=0)

public IlcFloatVar(IloSolver solver, IlcFloat min, IlcFloat max, IlcFloat
precision, const char * name=0)

public IlcFloatVar(IloSolver solver, const IlcFloatArray array, const char *
name=0)

public IlcFloatVar(IlcFloatVarI * impl)

public IlcFloatVar(IlcIntVar var)

public IlcFloatVar(const IlcFloatExp exp)

Method Summary

public IlcFloat getMax() const

public IlcFloat getMaxDelta() const

public IlcFloat getMin() const

public IlcFloat getMinDelta() const

public IlcFloat getOldMax() const

public IlcFloat getOldMin() const

public IlcBool isInDelta(IlcFloat value) const

public IlcBool isInProcess() const

public void operator=(const IlcFloatVar & exp)

public void operator=(const IlcFloatExp & exp)

Inherited Methods from IlcFloatExp

display, getCopy, getImpl, getMax, getMin, getName, getNextHigher, getNextLower,
getObject, getPrecision, getSize, getSolver, getSolverI, isBound, isInDomain,
operator=, removeDomain, removeDomain, removeRange, removeValue, setDomain,
setDomain, setDomain, setMax, setMin, setName, setObject, setPrecision, setRange,
whenDomain, whenRange, whenValue

172

Constructors

public IlcFloatVar()

This constructor creates a constrained floating-point variable which is empty, that is, whose handle pointer is null.
This object must then be assigned before it can be used, exactly as when you, as a developer, declare a pointer.
To check whether a floating-point variable is empty, use the member function IlcFloatExp::getImpl.

public IlcFloatVar(IloSolver solver, IlcFloat min, IlcFloat max, const char *
name=0)

This constructor creates a continuous constrained floating-point variable with a domain containing all the
floating-point values between min and max, inclusive. If min is greater than max, the function IlcFail is called.
The optional argument name, if provided, becomes the name of the constrained floating-point variable. The
precision associated with the constrained floating-point variable will be the default precision of Solver.

public IlcFloatVar(IloSolver solver, IlcFloat min, IlcFloat max, IlcFloat
precision, const char * name=0)

This constructor creates a continuous constrained floating-point variable with a domain containing all the
floating-point values between min and max, inclusive. If min is greater than max, the function IlcFail is called.
The argument precision becomes the precision associated with the constrained floating-point variable. If the
optional argument name is provided, it becomes the name of the constrained floating-point variable.

For example, here's how to create a constrained floating-point variable with a minimum of 0, a maximum of 10,
and a name.

 IlcFloatVar x (s, 0, 10, "x");

Here's how to create a constrained floating-point variable with an associated precision of 10-4.

 IlcFloatVar x (s, 0, 100, 1e-4);

You can specify both the name and the precision at the same time, like this:

 IlcFloatVar x (s, -100, 100, 1e-4, "x");

public IlcFloatVar(IloSolver solver, const IlcFloatArray array, const char *
name=0)

This constructor creates a discrete constrained floating-point variable. Its domain is enumerated by the array
array.

public IlcFloatVar(IlcFloatVarI * impl)

This constructor creates a handle object (an instance of the class IlcFloatVar from a pointer to an object (an
instance of the class IlcFloatVarI.

public IlcFloatVar(IlcIntVar var)

173

This constructor creates an instance of the class IlcFloatVar. This instance is constrained to be equal to the
argument var.

public IlcFloatVar(const IlcFloatExp exp)

This constructor associates a domain with the continuous constrained floating-point expression exp. Moreover,
the newly created floating-point variable points to the same implementation object as exp. In other words, this
constructor transforms a constrained floating-point expression (which computes its domain from its
subexpressions) into a constrained floating-point variable (which stores its domain).

Methods

public IlcFloat getMax() const

This member function returns the maximum of the domain of the invoking object.

public IlcFloat getMaxDelta() const

This member function returns the difference between the maximum of the domain of the invoking constrained
variable and the maximum of its domain-delta. This member function can be applied only to the variable currently
in process.

public IlcFloat getMin() const

This member function returns the minimum of the domain of the invoking object.

public IlcFloat getMinDelta() const

This member function returns the difference between the minimum of the domain of the invoking constrained
variable and the minimum of its domain-delta. This member function can be applied only to the variable currently
in process.

For example, to know whether the minimum of a constrained floating-point variable x has been modified since
the last time the constraints posted on x were processed, it is sufficient to test the value of x.getMinDelta().
If that test returns 0, then the minimum of x has not been modified.

public IlcFloat getOldMax() const

This member function returns the maximum of the domain-delta of the invoking constrained variable. This
member function can be applied only to the variable currently in process.

public IlcFloat getOldMin() const

This member function returns the minimum of the domain-delta of the invoking constrained variable. This
member function can be applied only to the variable currently in process.

public IlcBool isInDelta(IlcFloat value) const

174

This member function returns IlcTrue if the argument value belongs to the domain-delta of the invoking
constrained variable. This member function can be applied only to the variable currently in process.

public IlcBool isInProcess() const

This member function returns IlcTrue if the invoking constrained variable is currently being processed by the
constraint propagation algorithm. Only one variable can be in process at a time.

public void operator=(const IlcFloatVar & exp)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the argument exp. After the execution of this operator, the invoking object and the exp
object both point to the same implementation object. This assignment operator has no effect on its argument.

public void operator=(const IlcFloatExp & exp)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the argument exp. After the execution of this operator, the invoking object and exp both
point to the same implementation object. Moreover, this assignment operator associates a domain with the
constrained floating-point expression exp, which is thus transformed into a constrained floating-point variable.

175

Class IlcFloatVarArray
Definition file: ilsolver/fltexp.h
Include file: <ilsolver/ilosolver.h>

The class IlcFloatVarArray is the class for an array of instances of IlcFloatVar. Three
integers—indexMin, indexMax, and indexStep—play an important role in such an array of constrained
floating-point variables. The index of those variables ranges from indexMin, inclusive, to indexMax, exclusive,
in steps of indexStep. The index of the first variable in the array is indexMin; the second one is
indexMin+indexStep, and so forth. The quantity indicated by indexMax-indexMin must be a multiple of
indexStep.

Generic Constraints

The array makes it easier to implement generic constraints. In this context, a generic constraint is a constraint
that applies to all of the variables in the array. Member functions of the array class are available to post such
generic constraints. A generic constraint is then allocated and recorded only once for all the variables in the
array. This fact represents a significant economy in memory, compared to allocating and recording one constraint
per variable.

Interval Constraints

Arrays of constrained variables also allow you to define interval constraints which propagate in a global way
when the domains of one or more constrained variables in the array are modified. Propagation is then performed
through a goal. Member functions such as whenValueInterval or whenRangeInterval associate goals with
propagation events for this purpose.

Backtracking and Reversibility

All the functions and member functions capable of modifying arrays of constrained floating-point variables are
reversible. In particular, when modifiers and functions that post constraints are called, the state before their call
will be saved by Solver.

Empty Handle or Null Array

It is possible to create a null array, or in other words, an empty handle. When you do so, only these operations
are allowed on that null array:

copy: You can assign the null array to a new array.•
access its size: The member function getSize for the null array returns 0 (zero).•
create an iterator: You can create an iterator to traverse the null array. The member function ok
returns IlcFalse for a null array.

•

Attempts to access a null array in any other way will throw an exception (an instance of
IloSolver::SolverErrorException).

See Also: IlcFloatVar, operator<<

Constructor Summary

public IlcFloatVarArray()

public IlcFloatVarArray(IlcFloatVarArrayI * impl)

public IlcFloatVarArray(IloSolver solver, IlcInt size)

public IlcFloatVarArray(IloSolver solver, IlcInt size ILCPARAM, const IlcFloatVar
v1, const IlcFloatVar v2)

176

public IlcFloatVarArray(IloSolver m, IlcInt size, IlcFloat min, IlcFloat max)

Method Summary

public IlcFloatVarArray getCopy(IloSolver solver) const

public IlcFloatVarArrayI * getImpl() const

public IlcInt getIndexMax() const

public IlcInt getIndexMin() const

public IlcInt getIndexStep() const

public IlcInt getIndexValue() const

public IlcFloat getMaxMax() const

public IlcFloat getMaxMax(IlcInt indexMin, IlcInt indexMax) const

public IlcFloat getMaxMin() const

public IlcFloat getMaxMin(IlcInt indexMin, IlcInt indexMax) const

public IlcFloat getMinMax() const

public IlcFloat getMinMax(IlcInt indexMin, IlcInt indexMax) const

public IlcFloat getMinMin() const

public IlcFloat getMinMin(IlcInt indexMin, IlcInt indexMax) const

public const char * getName() const

public IlcInt getRangeIndexMax() const

public IlcInt getRangeIndexMin() const

public IlcInt getSize() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public IlcInt getValueIndexMax() const

public IlcInt getValueIndexMin() const

public IlcFloatVar getVariable(IlcInt index, IlcBool before=IlcFalse)
const

public void operator=(const IlcFloatVarArray & h)

public IlcFloatVar & operator[](IlcInt index) const

public void setName(const char * name) const

public void whenRange(const IlcDemon demon)

public void whenRangeInterval(const IlcDemon demon)

public void whenValue(const IlcDemon demon)

public void whenValueInterval(const IlcDemon demon)

Constructors

public IlcFloatVarArray()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcFloatVarArray(IlcFloatVarArrayI * impl)

This constructor creates a handle object from a pointer to an implementation object.

177

public IlcFloatVarArray(IloSolver solver, IlcInt size)

This constructor creates an uninitialized array of length size. The index range of the array is [0 size). The
argument size must be strictly greater than 0 (zero). Each element of the array must be assigned before the
array can be used.

public IlcFloatVarArray(IloSolver solver, IlcInt size ILCPARAM, const IlcFloatVar
v1, const IlcFloatVar v2)

This constructor creates an array of length size. Its constrained variables are initialized with the list of variables
provided as arguments to the constructor. The number of IlcFloatVar arguments must be equal to size. The
argument size must be strictly greater than 0 (zero).

public IlcFloatVarArray(IloSolver m, IlcInt size, IlcFloat min, IlcFloat max)

This constructor creates an array of size constrained variables. The argument size must be strictly greater
than 0 (zero). Each constrained variable has a domain containing all floating-point values between min and max.

Methods

public IlcFloatVarArray getCopy(IloSolver solver) const

This member function returns a copy of the invoking array of constrained variables and associates that copy with
solver.

public IlcFloatVarArrayI * getImpl() const

This constructor creates an object by copying another one. This member function returns a pointer to the
implementation object of the invoking handle.

public IlcInt getIndexMax() const

This member function returns the maximal index of the invoking array of constrained variables.

public IlcInt getIndexMin() const

This member function returns the minimal index of the invoking array of constrained variables.

public IlcInt getIndexStep() const

This member function returns the index step of the invoking array of constrained variables. The meaning of this
index step is that the indexed variable value may change only at indices equal to (getIndexMin() + i *
getIndexStep()).

public IlcInt getIndexValue() const

178

When it is called during the execution of a constraint or goal associated with an array by the member functions
whenValue or whenDomain, this member function returns the index in the invoking array of the constrained
variable that triggered the propagation event. Calling this member function outside the execution of the goal will
throw an exception (an instance of IloSolver::SolverErrorException) with the message "unbound
index".

public IlcFloat getMaxMax() const

This member function returns the largest of the maximal values of the variables belonging to the invoking array of
constrained variables.

public IlcFloat getMaxMax(IlcInt indexMin, IlcInt indexMax) const

This member function returns the largest of the maximal values of the variables belonging to the invoking array of
constrained variables. The arguments indexMin and indexMax are provided, only those variables that
correspond to indices in the range [indexMin indexMax) are considered. Solver will throw an exception (an
instance of IloSolver::SolverErrorException with the message "bad index interval" if the given
indexMin and indexMax are not valid indices for the invoking array of constrained variables or if indexMin is
not strictly less than indexMax.

public IlcFloat getMaxMin() const

This member function returns the largest of the minimal values of the variables belonging to the invoking array of
constrained variables.

public IlcFloat getMaxMin(IlcInt indexMin, IlcInt indexMax) const

This member function returns the largest of the minimal values of the variables belonging to the invoking array of
constrained variables. The arguments indexMin and indexMax are provided, only those variables that
correspond to indices in the range [indexMin indexMax) are considered. Solver will throw an exception (an
instance of IloSolver::SolverErrorException with the message "bad index interval" if the given
indexMin and indexMax are not valid indices for the invoking array of constrained variables or if indexMin is
not strictly less than indexMax.

public IlcFloat getMinMax() const

This member function returns the smallest of the maximal values of the variables belonging to the invoking array
of constrained variables.

public IlcFloat getMinMax(IlcInt indexMin, IlcInt indexMax) const

This member function returns the smallest of the maximal values of the variables belonging to the invoking array
of constrained variables. The arguments indexMin and indexMax are provided, only those variables that
correspond to indices in the range [indexMin indexMax) are considered. Solver will throw an exception (an
instance of IloSolver::SolverErrorException with the message "bad index interval" if the given
indexMin and indexMax are not valid indices for the invoking array of constrained variables or if indexMin is
not strictly less than indexMax.

public IlcFloat getMinMin() const

179

This member function returns the smallest of the minimal values of the variables belonging to the invoking array
of constrained variables.

public IlcFloat getMinMin(IlcInt indexMin, IlcInt indexMax) const

This member function returns the smallest of the minimal values of the variables belonging to the invoking array
of constrained variables. The arguments indexMin and indexMax are provided, only those variables that
correspond to indices in the range [indexMin indexMax) are considered. Solver will throw an exception (an
instance of IloSolver::SolverErrorException with the message "bad index interval" if the given
indexMin and indexMax are not valid indices for the invoking array of constrained variables or if indexMin is
not strictly less than indexMax.

public const char * getName() const

This member function returns the name of the invoking object.

public IlcInt getRangeIndexMax() const

When it is called during the execution of a goal associated with an array by the member function
whenRangeInterval, this member function returns the maximum of the range of the array [indexMin
indexMax) over which some removal of values has occurred. The returned value of this member function is not
meaningful outside the execution of a goal associated with the array by the member function
whenRangeInterval.

public IlcInt getRangeIndexMin() const

When it is called during the execution of a goal associated with an array by the member function
whenRangeInterval, this member function returns the minimum of the range of the array [indexMin
indexMax) over which some removal of values has occurred. The returned value of this member function is not
meaningful outside the execution of a goal associated with the array by the member function
whenRangeInterval.

public IlcInt getSize() const

This member function returns the number of variables in the invoking array.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IloSolverI * getSolverI() const

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

public IlcInt getValueIndexMax() const

180

When it is called during the execution of a goal associated with an array by the member function
whenValueInterval, this member function returns the maximum of the range of the array [indexMin
indexMax) over which some binding has occurred. The returned value of this member function is not
meaningful outside the execution of a goal associated with the array by the member function
whenValueInterval.

public IlcInt getValueIndexMin() const

When it is called during the execution of a goal associated with an array by the member function
whenValueInterval, this member function returns the minimum of the range of the array [indexMin
indexMax) over which some binding has occurred. The returned value of this member function is not
meaningful outside the execution of a goal associated with the array by the member function
whenValueInterval.

public IlcFloatVar getVariable(IlcInt index, IlcBool before=IlcFalse) const

This member function returns the variable corresponding to the given index in the invoking array of constrained
variables. However, if before is IlcTrue, then getVariable returns the variable before the variable at the
given index. Solver will throw an exception (an instance of IloSolver::SolverErrorException) with the
message "bad index" if the given index is not a valid one for the invoking array of constrained variables.

public void operator=(const IlcFloatVarArray & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public IlcFloatVar & operator[](IlcInt index) const

This subscripting operator returns a reference to a constrained variable corresponding to the given index in the
invoking array of constrained variables. Solver will throw an exception (an instance of
IloSolver::SolverErrorException) with the message "bad index" if the given index is not a valid one
for the invoking array of constrained variables.

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

public void whenRange(const IlcDemon demon)

This member function associates demon with the range propagation event of every variable in the invoking array.
Whenever any bound of any of the variables in the array is modified, the demon will be executed immediately.

When the demon is executed, the index of the constrained integer variable that has triggered the range event can
be known by a call to the member function getIndexValue.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
Whenever any bound of any of the variables in the array is modified, the constraint will be propagated.

public void whenRangeInterval(const IlcDemon demon)

181

This member function associates demon with the range propagation event of every variable in the invoking array.
It specifies that a given demon reacts globally to modifications of the boundaries of a collection of variables in the
array. Whenever a range propagation event or a series of such events occurs, the demon will be executed
immediately.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
Whenever a range propagation event or a series of such events occurs, the constraint will be propagated.

A call to the demon signifies that some modification of the boundaries occurred to variables over the index range
[indexMin indexMax). It does not mean that all the variables in the range had their boundaries modified.

public void whenValue(const IlcDemon demon)

This member function associates demon with the value propagation event of every variable in the invoking array.
When one of the variables in the array receives a value, the demon is executed immediately.

When the demon is executed, the index of the bound constrained variable can be known by a call to the member
function getIndexValue.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
When one of the variables in the array receives a value, the constraint will be propagated.

public void whenValueInterval(const IlcDemon demon)

This member function associates demon with the value propagation event of every variable in the invoking array.
It specifies that a given demon reacts globally to the binding of a collection of variables in the array. When a
value propagation event or a series of such events occurs, the demon will be executed immediately.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
When a value propagation event or a series of such events occurs, the constraint will be propagated.

A call to the demon signifies that some variable binding occurred over the index range [indexMin indexMax).
It does not mean that all the variables in the range have been bound.

182

Class IlcFloatVarDeltaIterator
Definition file: ilsolver/fltexp.h
Include file: <ilsolver/ilosolver.h>

An instance of the class IlcFloatVarDeltaIterator is an iterator that traverses the values belonging to the
domain-delta of a constrained discrete floating-point variable (that is, an instance of IlcFloatVar created by
the constructor IlcFloatVar).

A discrete floating-point variable has an enumerated domain. Consequently, its domain-delta is also enumerated
and can thus be traversed by an iterator.

An iterator from this class will not traverse the domain-delta of a continuous floating-point variable (that is, one
created by any of the other constructors of IlcFloatVar) because the domain and domain-delta of a
continuous floating-point variable are represented by an interval (not by an enumerated set of values). Any
attempt to traverse the domain-delta of a continuous floating-point variable will throw an exception (an instance of
IloSolver::SolverErrorException).

For more information, see the concepts Propagation, Domain-Delta, and Iterator.

See Also: IlcFloatExp, IlcFloatVar

Constructor and Destructor Summary

public IlcFloatVarDeltaIterator(const IlcFloatVar var)

Method Summary

public IlcBool ok() const

public IlcFloat operator*() const

public IlcFloatVarDeltaIterator & operator++()

Constructors and Destructors

public IlcFloatVarDeltaIterator(const IlcFloatVar var)

This constructor creates an iterator associated with var to traverse the values belonging to the domain-delta of
var.

Methods

public IlcBool ok() const

This member function returns IlcTrue if there is a current element and the iterator points to it. Otherwise, it
returns IlcFalse.

To traverse the values belonging to the domain-delta of a constrained discrete floating-point variable, use the
following code:

 IlcFloat val;

 for (IlcFloatVarDeltaIterator iter(var); iter.ok(); ++iter){

183

 val = *iter;

 // do something with val

 }

public IlcFloat operator*() const

This operator returns the current element, the one to which the invoking iterator points.

public IlcFloatVarDeltaIterator & operator++()

This operator advances the iterator to point to the next value in the domain-delta of the constrained discrete
floating-point variable.

184

Class IlcGoal
Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

Goals are the building blocks of search algorithms in Solver. Goals depend on two classes: IlcGoal and
IlcGoalI. The class IlcGoal is the handle class. An instance of the class IlcGoal contains a data member
(the handle pointer) that points to an instance of the class IlcGoalI (the implementation object) allocated on
the Solver heap. If you define a new class of goals, you must define the implementation class together with the
corresponding virtual member function, execute, and a member function that returns an instance of the handle
class IlcGoal.

For more information, see the concept Goal.

See Also: IlcAnd, ILCGOAL0, IlcGoalI, IlcOr, IloGoalFail, operator<<

Constructor Summary

public IlcGoal()

public IlcGoal(IlcGoalI * impl)

public IlcGoal(const IlcGoal & goal)

Method Summary

public IlcGoalI * getImpl() const

public const char * getName() const

public IlcAny getObject() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public void operator=(const IlcGoal & h)

public void setName(const char * name) const

public void setObject(IlcAny object) const

Constructors

public IlcGoal()

This constructor creates a goal which is empty, that is, one whose handle pointer is null. This object must then be
assigned before it can be used, exactly as when you declare a pointer.

This constructor creates a handle object (an instance of the class IlcGoal) from a pointer to an implementation
object (an instance of the implementation class IlcGoalI).

This member function returns a pointer to the implementation object of the invoking handle, a goal.

This member function returns the solver (a handle, an instance of IloSolver) associated with the invoking goal.

This assignment operator copies goal into the invoking goal by assigning an address to the handle pointer of the
invoking object. That address is the location of the implementation object of the argument goal.

This constructor creates an empty handle. You must initialize it before you use it.

185

public IlcGoal(IlcGoalI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcGoal(const IlcGoal & goal)

This copy constructor creates a reference to a goal. That goal and goal both point to the same implementation
object.

Methods

public IlcGoalI * getImpl() const

This constructor creates an object by copying another one. This constructor creates an object by copying another
one. This member function returns a pointer to the implementation object of the invoking handle.

public const char * getName() const

This member function returns the name of the invoking object.

public IlcAny getObject() const

This member function returns a pointer to the external object associated with the invoking object, if there is such
an association. It returns 0 (zero) otherwise.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IloSolverI * getSolverI() const

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

public void operator=(const IlcGoal & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

public void setObject(IlcAny object) const

This member function establishes a link between the invoking object and an external object of which the invoking
object might be a data member.

186

Class IlcGoalI
Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

Goals are the building blocks of search algorithms in Solver. Goals as they are represented in a Solver search
(for example, inside a constraint or inside another goal) depend on two classes: IlcGoal and IlcGoalI. The
class IlcGoal is the handle class. An instance of the class IlcGoal contains a data member (the handle
pointer) that points to an instance of the class IlcGoalI (the implementation object) allocated on the Solver
heap.

For goals to use in an IBM® ILOG® Concert Technology model, see IloGoal.

If you define a new class of goals for use during a Solver search, you must define the implementation class
together with the corresponding virtual member function, execute, and a function that returns an instance of the
handle class IlcGoal.

A goal can be defined in terms of other goals, called its subgoals. See the functions IlcAnd and IlcOr for
examples. A subgoal is not executed immediately. In fact, it is added to the goal stack, and the execute
member function of the current goal terminates before the subgoal is executed. When the execution of the goal
itself is complete, the subgoal will be returned.

A goal can also be defined as a choice between other goals. This choice is implemented by the function IlcOr.

For more information, see the concept Goal.

See Also: ILCGOAL0, IlcGoal, operator<<

Constructor and Destructor Summary

public IlcGoalI(IloSolver solver)

Method Summary

public virtual IlcGoal execute()

public void fail(IlcAny label=0)

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public virtual IlcBool isAConstraint() const

Constructors and Destructors

public IlcGoalI(IloSolver solver)

This constructor creates a goal implementation. This constructor should not be called directly because this is an
abstract class. This constructor is called automatically in the constructors of its subclasses.

187

Methods

public virtual IlcGoal execute()

This member function must be redefined when you derive a new subclass of IlcGoalI. This member function is
called when the invoking goal is popped from the goal stack and executed. This member function should return 0
if the invoking goal has no subgoals. Otherwise it should return the subgoal of the goal.

Example

Here's how to define a class of goals without subgoals. This goal merely prints the integer passed as its
argument.

 class PrintXI :public IlcGoalI {
 IlcInt x;
 public:
 PrintXI(IloSolver s, IlcInt xx): IlcGoal(s), x(xx){}
 ~PrintXI(){}
 IlcGoal execute() {
 IloSolver s = getSolver();
 s.out() << "PrintX: a goal with one data member" << endl;
 s.out() << x << endl;
 return 0;
 }
 };

 IlcGoal PrintX(IloSolver s, IlcInt x) {
 return new (s.getHeap()) PrintXI(s, x);
 }

The macro ILCGOAL makes it easier to define goals.

Here's an example of a goal with one subgoal:

 ILCGOAL0(Print()){
 IloSolver s = getSolver();
 s.out() << "before one subgoal" << endl;
 return PrintX(s,2);
 }

A goal can also be defined as a choice between other goals. This choice is implemented by the function IlcOr.
For example, the following goal has three choices:

 ILCGOAL0(PrintOne) {
 IloSolver s = getSolver();
 s.out() << "print one" << endl;
 return IlcOr(PrintX(s,1), PrintX(s,2), PrintX(s,3)));
 }

public void fail(IlcAny label=0)

This member function causes the invoking goal to fail. The optional argument label makes the invoking goal fail
at the choice point named label.

public IloSolver getSolver() const

This member function returns the solver (a handle) of the invoking goal implementation.

public IloSolverI * getSolverI() const

188

This member function returns a pointer to the implementation object of the solver where the invoking goal was
extracted.

public virtual IlcBool isAConstraint() const

This member function lets you know whether the active demon is a constraint (in that case, it returns IlcTrue or
a goal (in that case, it returns IlcFalse).

189

Class IlcIndex
Definition file: ilsolver/index.h
Include file: <ilsolver/ilosolver.h>

To create a generic constraint, you need generic variables. In order to create generic variables for an array of
constrained expressions, Solver provides this class IlcIndex.

A generic constraint is a constraint shared by an array of variables. For example, IlcAllDiff is a generic
constraint that insures that all the elements of a given array are different from one another. Solver provides
generic constraints to save memory since, if you use them, you can avoid allocating one object per variable.

You create a generic constraint simply by stating the constraint over generic variables. Each generic variable
stands for all the elements of an array of constrained variables.

In that sense, generic variables are only syntactic objects provided by Solver to support generic constraints, and
they can be used only for creating generic constraints. To create a generic variable, you use the operator [].
The argument passed to that operator is known as the index for that generic variable; we say that the generic
variable stems from that index.

An index is simply a syntactical means for creating generic variables for an array of constrained variables. The
index has no value, and no value can be assigned to it. Any attempt to access the value of an index will throw an
exception (an instance of IloSolver::SolverErrorException).

See Also: IlcAnyVarArray, IlcCard, IlcIntVarArray, IlcSetOf

Constructor Summary

public IlcIndex(IlcIndexI * impl)

public IlcIndex(IloSolver solver)

Method Summary

public IlcIndexI * getImpl() const

Constructors

public IlcIndex(IlcIndexI * impl)

This constructor creates a handle object (an instance of the class IlcIndex) from a pointer to an object (an
instance of the implementation class IlcIndexI).

public IlcIndex(IloSolver solver)

This constructor creates an index which will be managed by solver.

Methods

public IlcIndexI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle, an index.

190

191

Class IlcIntArray
Definition file: ilsolver/intexp.h
Include file: <ilsolver/ilosolver.h>

IlcIntArray is the array class for the basic integer class. It is a handle class.

For each basic type, Solver defines a corresponding array class. This array class is a handle class. In other
words, an object of this class contains a pointer to another object allocated on the Solver heap associated with a
solver (an instance of IloSolver). Exploiting handles in this way greatly simplifies the programming interface
since the handle can then be an automatic object: as a developer using handles, you do not have to worry about
memory allocation.

Empty Handle or Null Array

It is possible to create a null array, or in other words, an empty handle. When you do so, only these operations
are allowed on that null array:

copy: You can assign the null array to a new array.•
access its size: The member function getSize for the null array returns 0 (zero).•
create an iterator: You can create an iterator to traverse the null array. The member function ok
returns IlcFalse for a null array.

•

Attempts to access a null array in any other way will throw an exception (an instance of
IloSolver::SolverErrorException).

See Also: IlcConstIntArray, IlcIntExp, IlcIntSet, operator<<

Constructor Summary

public IlcIntArray()

public IlcIntArray(IlcInt * impl)

public IlcIntArray(IloSolver solver, IlcInt size, IlcInt * values)

public IlcIntArray(IloSolver solver, IlcInt size, IlcInt prototype=0)

public IlcIntArray(IloSolver solver, IlcInt size, IlcInt exp0, IlcInt exp...)

Method Summary

public IlcInt * getImpl() const

public IlcInt getSize() const

public IloSolver getSolver() const

public void operator=(const IlcIntArray & h)

public IlcIntExp operator[](const IlcIntExp rank) const

public IlcInt & operator[](IlcInt i) const

Constructors

public IlcIntArray()

This constructor creates an empty handle. You must initialize it before you use it.

192

public IlcIntArray(IlcInt * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcIntArray(IloSolver solver, IlcInt size, IlcInt * values)

This constructor creates an array of integers containing the values in the array values. The argument size
must be the length of the array values; it must also be strictly greater than 0 (zero). Solver does not keep a
pointer to the array values.

Here is one way to create an array containing the integers 1, 3, 2.

 IlcInt values [3];
 values[0] = 1;
 values[1] = 3;
 values[2] = 2;
 IlcIntArray array1 (s, 3, values);

public IlcIntArray(IloSolver solver, IlcInt size, IlcInt prototype=0)

This constructor creates an array of size elements. The argument size must be strictly greater than 0 (zero).
The elements of this array are initialized to the value of prototype.

public IlcIntArray(IloSolver solver, IlcInt size, IlcInt exp0, IlcInt exp...)

This constructor accepts a variable number of arguments. Its first argument, size, indicates the length of the
array that this constructor will create; size must be the number of arguments minus one; it must also be strictly
greater than 0 (zero). The constructor creates an array of the values indicated by the other arguments.

Here is another way to create an array containing the integers 1,3,2.

 IlcIntArray array2 (s, 3, 1, 3, 2);

Methods

public IlcInt * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IlcInt getSize() const

This member function returns the number of elements in the array.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

193

public void operator=(const IlcIntArray & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public IlcIntExp operator[](const IlcIntExp rank) const

This subscripting operator returns a constrained integer expression. For clarity, let's call A the invoking array.
When rank is bound to the value i, the value of the expression is A[i]. More generally, the domain of the
expression is the set of values A[i] where the i are in the domain of rank.

public IlcInt & operator[](IlcInt i) const

This operator returns a reference to the element at rank i. This operator can be used for accessing (that is,
simply reading) the element or for modifying (that is, writing) it.

Here is still another way to create an array containing the integers 1, 3, 2.

 IlcIntArray array5 (s, 3);
 array5[0] = 1;
 array5[1] = 3;
 array5[2] = 2;

194

Class IlcIntDeltaPossibleIterator
Definition file: ilsolver/ilcset.h
Include file: <ilsolver/ilosolver.h>

An instance of the class IlcIntDeltaPossibleIterator is an iterator that traverses the elements of the
possible delta set of an instance of IlcIntSetVar (a constrained set variable). The order in which the iterator
traverses the possible delta set is not predictable.

For more information, see the concepts Propagation, Domain-Delta, and Iterator.

See Also: IlcIntDeltaRequiredIterator, IlcIntSetVar

Constructor Summary

public IlcIntDeltaPossibleIterator(IlcIntSetVar var)

Method Summary

public IlcBool ok() const

public IlcInt operator*() const

public IlcIntDeltaPossibleIterator & operator++()

Constructors

public IlcIntDeltaPossibleIterator(IlcIntSetVar var)

This constructor creates an iterator associated with var to traverse the values belonging to its possible delta set.

Methods

public IlcBool ok() const

This member function returns IlcTrue if there is a current element and the iterator points to it. Otherwise, it
returns IlcFalse.

public IlcInt operator*() const

This operator returns the current element, the one to which the invoking iterator points.

public IlcIntDeltaPossibleIterator & operator++()

This operator advances the iterator to point to the next value in the possible delta set.

195

Class IlcIntDeltaRequiredIterator
Definition file: ilsolver/ilcset.h
Include file: <ilsolver/ilosolver.h>

An instance of the class IlcIntDeltaRequiredIterator is an iterator that traverses the elements of the
required delta set of an instance of IlcIntSetVar (a constrained set variable). The order in which the iterator
traverses the required delta set is not predictable.

For more information, see the concepts Propagation, Domain-Delta, and Iterator.

See Also: IlcIntDeltaPossibleIterator, IlcIntSetVar

Constructor Summary

public IlcIntDeltaRequiredIterator(IlcIntSetVar var)

Method Summary

public IlcBool ok() const

public IlcInt operator*() const

public IlcIntDeltaRequiredIterator & operator++()

Constructors

public IlcIntDeltaRequiredIterator(IlcIntSetVar var)

This constructor creates an iterator associated with var to traverse the values belonging to its required delta set.

Methods

public IlcBool ok() const

This member function returns IlcTrue if there is a current element and the iterator points to it. Otherwise, it
returns IlcFalse.

public IlcInt operator*() const

This operator returns the current element, the one to which the invoking iterator points.

public IlcIntDeltaRequiredIterator & operator++()

This operator advances the iterator to point to the next value in the required delta set.

196

Class IlcIntExp
Definition file: ilsolver/intexp.h
Include file: <ilsolver/ilosolver.h>

In a typical application exploiting Solver, the unknowns of the problem will be expressed as constrained
variables. The most commonly used class of constrained variables is the class of constrained integer variables.
IlcIntExp, the class of constrained integer expressions, is the root class of a group of classes for expressing
constraints on integer variables.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

Domain

The domain of a constrained integer expression is computed from the domains of its subexpressions. For
example, the domain of the expression x+y contains the range [x.getMin()+y.getMin(),
x.getMax()+y.getMax()].

A constrained integer variable is a constrained expression that stores its domain instead of computing it from its
subexpressions. The domain of a constrained integer variable contains values of type IlcInt. This domain is
represented by an interval when the values are consecutive or by an enumeration of integers otherwise.

Constrained integer variables can be combined with arithmetic operators to yield constrained integer
expressions. Each constrained integer expression has a minimum and a maximum. We say that the expression
is bound if its minimum equals its maximum.

The domain of a constrained integer expression can be reduced to the point of being empty. In such a case,
failure occurs since no solution is then possible.

Expression versus Variable

IlcIntVar is a subclass deriving from IlcIntExp. Another way of saying that idea is that a constrained
variable is a constrained expression that happens to store its domain. You can convert a constrained integer
expression (which computes its domain) into a constrained integer variable (which stores its domain) by either of
two means: by the casting constructor of IlcIntVar or by the assignment operator of IlcIntVar. For more
information, see Chapter 3, “Constrained Integer Variables,” in the IBM ILOG Solver User's Manual.

Overflow and Underflow

Previous versions of Solver did not check for integer overflow nor underflow, and we formerly recommended that
users with concerns about overflow and underflow should use floating-point variables. However, as of version 5,
Solver manages integer overflow and underflow in these ways:

The arithmetic operators +, *, -, / do not cause overflow in Solver.•
The member function IlcIntExp::getSize returns IlcIntMax whenever max - min is greater
than IlcIntMax.

•

If an integer expression overflows negatively (that is, if a bound is less than IlcIntMin), then Solver
replaces that bound by IlcIntMin.

•

If an integer expression overflows positively (that is, if a bound is greater than IlcIntMax) then Solver
replaces that bound by IlcIntMax.

•

The value IlcIntMin - 1 (sometimes known as the Joker) is treated correctly as long as you do not
use it in expressions in +, *, -, /.

•

Solver evaluates the expression 0/0 as the interval [IlcIntMin..IlcIntMax].•

Backtracking and Reversibility

197

All the member functions and operators defined for this class and capable of modifying constrained variables are
reversible. In particular, the changes made by constraint-posting functions are made with reversible assignments.
Thus, the value, the domain, and the constraints posted on any constrained variable are restored when Solver
backtracks.

Modifiers

For modifiers of IlcIntExp, see the concept Propagation Events.

For more information, see the concept Propagation.

A modifier is a member function that reduces the domain of a constrained integer expression, if it can. The
modifier is not stored, in contrast to a constraint. If the constrained integer expression is a constrained integer
variable, the modifications due to the modifier call are stored in its domain. Otherwise, the effect of the modifier is
propagated to the subexpressions of the constrained integer expression. If the domain becomes empty, a failure
is triggered by a call to the member function IloSolver::fail. Modifiers are usually used to define new
classes of constraints.

See Also: IlcAbs, IlcIntExpIterator, IlcIntSet, IlcIntVar, IlcIntVarArray, IlcMax, IlcMin, IlcScalProd, IlcSquare,
IlcSum, operator+, operator/, operator*, operator-, operator-, operator<<

Constructor Summary

public IlcIntExp()

public IlcIntExp(IlcIntExpI * impl)

public IlcIntExp(IlcConstraint bexp)

public IlcIntExp(IlcBoolVar bexp)

Method Summary

public IlcIntExp getCopy(IloSolver solver) const

public IlcIntExpI * getImpl() const

public IlcInt getMax() const

public IlcInt getMin() const

public const char * getName() const

public IlcInt getNextHigher(IlcInt threshold) const

public IlcInt getNextLower(IlcInt threshold) const

public IlcAny getObject() const

public IlcInt getSize() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public IlcInt getValue() const

public IlcBool isBound() const

public IlcBool isInDomain(IlcInt value) const

public void operator=(const IlcIntExp & h)

public void removeDomain(IlcIntSet set)

public void removeDomain(IlcIntArray array)

public void removeRange(IlcInt min, IlcInt max) const

public void removeValue(IlcInt value) const

public void setDomain(IlcIntArray array)

198

public void setDomain(IlcIntSet set)

public void setDomain(IlcIntExp var)

public void setMax(IlcInt max) const

public void setMin(IlcInt min) const

public void setName(const char * name) const

public void setObject(IlcAny object) const

public void setRange(IlcInt min, IlcInt max) const

public void setValue(IlcInt value) const

public void whenDomain(const IlcDemon demon) const

public void whenRange(const IlcDemon demon) const

public void whenValue(const IlcDemon demon) const

Constructors

public IlcIntExp()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcIntExp(IlcIntExpI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcIntExp(IlcConstraint bexp)

A constrained Boolean expression in Solver can be seen as a 0-1 (that is, binary) constrained integer expression
where IlcFalse corresponds to 0, and IlcTrue corresponds to 1. This constructor creates a constrained
integer expression which is equal to the truth value of the argument bexp. In other words, you can use this
constructor to cast a constraint to a constrained integer expression.

Such a constrained integer expression can then be used like any other constrained integer expression. It is thus
possible to express sums of constraints. For example, the following code expresses the idea that three variables
cannot all be equal.

 m.add((x != y) + (y != z) + (z != x) >= 2);

public IlcIntExp(IlcBoolVar bexp)

A constrained Boolean variable in Solver can be seen as a 0-1 (that is, binary) constrained integer expression
where IlcFalse corresponds to 0, and IlcTrue corresponds to 1. This constructor creates a constrained
integer expression which is equal to the truth value of the argument bexp. In other words, -* you can use this
constructor to cast a Boolean variable to a 8 constrained integer expression.

Methods

public IlcIntExp getCopy(IloSolver solver) const

This member function returns a copy of the invoking constrained integer expression and associates that copy
with solver.

public IlcIntExpI * getImpl() const

199

This constructor creates an object by copying another one. This constructor creates an object by copying another
one. This member function returns a pointer to the implementation object of the invoking handle.

public IlcInt getMax() const

This member function returns the maximum of the domain of the invoking object.

public IlcInt getMin() const

This member function returns the minimum of the domain of the invoking object.

public const char * getName() const

This member function returns the name of the invoking object.

public IlcInt getNextHigher(IlcInt threshold) const

If threshold is greater than or equal to the maximum of the domain of the invoking constrained integer
expression, then this member function returns threshold. Otherwise, it returns the first element that is strictly
greater than threshold in the domain of the invoking constrained integer expression.

public IlcInt getNextLower(IlcInt threshold) const

If threshold is less than or equal to the minimum of the domain of the invoking constrained integer expression,
then this member function returns threshold. Otherwise, it returns the first element that is strictly less than
threshold in the domain of the invoking constrained integer expression.

public IlcAny getObject() const

This member function returns a pointer to the external object associated with the invoking object, if there is such
an association. It returns 0 (zero) otherwise.

public IlcInt getSize() const

This member function returns the number of elements in the domain of the invoking expression. In particular, it
returns 1 if the invoking constrained integer expression is bound, and it returns IlcIntMax whenever max -
min is greater than IlcIntMax.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IloSolverI * getSolverI() const

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

200

public IlcInt getValue() const

This member function returns the value of the invoking constrained integer expression if that object is bound;
otherwise, Solver will throw an exception (an instance of IloSolver::SolverErrorException). To avoid
errors with getValue, you can test expressions by means of isBound.

public IlcBool isBound() const

This member function returns IlcTrue if the invoking constrained integer expression is bound, that is, if its
minimum equals its maximum. Otherwise, the member function returns IlcFalse.

public IlcBool isInDomain(IlcInt value) const

This member function returns IlcTrue if value is in the domain of the invoking constrained integer expression.
Otherwise, the member function returns IlcFalse.

public void operator=(const IlcIntExp & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public void removeDomain(IlcIntSet set)

This member function removes all the elements of the set indicated by set from the domain of the invoking
constrained expression. If the domain thus becomes empty, then the member function IloSolver::fail is
called. Otherwise, if the domain is modified, the corresponding propagation events are generated. The effects of
this member function are reversible.

public void removeDomain(IlcIntArray array)

This member function removes all the elements of the array indicated by array from the domain of the invoking
constrained expression. If the domain thus becomes empty, then the member function IloSolver::fail is
called. Otherwise, if the domain is modified, the corresponding propagation events are generated. The effects of
this member function are reversible.

public void removeRange(IlcInt min, IlcInt max) const

This member function removes all the elements that are both greater than or equal to min and less than or equal
to max from the domain of the invoking constrained expression. If the domain thus becomes empty, then the
member function IloSolver::fail is called. Otherwise, if the domain is modified, the domain propagation
event is generated. If min or max was one of the bounds of the domain, then the range propagation event is
generated, too. Moreover, if the invoking constrained integer expression becomes bound, then the value
propagation event is also generated. The effects of this member function are reversible.

public void removeValue(IlcInt value) const

This member function removes value from the domain of the invoking constrained expression. If the domain
thus becomes empty, then the member function IloSolver::fail is called. Otherwise, if the domain is

201

modified, the domain propagation event is generated. If value was one of the bounds of the domain, then the
range propagation event is generated, too. Moreover, if the invoking constrained integer expression becomes
bound, then the value propagation event is also generated. The effects of this member function are reversible.

public void setDomain(IlcIntArray array)

This member function removes all the elements that are not in the array indicated by array from the domain of
the invoking constrained expression. If the domain thus becomes empty, then the member function
IloSolver::fail is called. Otherwise, if the domain is modified, the corresponding propagation events are
generated. The effects of this member function are reversible.

public void setDomain(IlcIntSet set)

This member function removes all the elements that are not in the set indicated by set from the domain of the
invoking constrained expression. If the domain thus becomes empty, then the member function
IloSolver::fail is called. Otherwise, if the domain is modified, the corresponding propagation events are
generated. The effects of this member function are reversible.

public void setDomain(IlcIntExp var)

This member function removes all the elements that are not in domain of var from the domain of the invoking
constrained expression. If the domain thus becomes empty, then the member function IloSolver::fail is
called. Otherwise, if the domain is modified, the corresponding propagation events are generated. The effects of
this member function are reversible.

public void setMax(IlcInt max) const

This member function removes all the elements that are greater than max from the domain of the invoking
constrained expression. If the domain thus becomes empty, then the member function IloSolver::fail is
called. Otherwise, if the domain is modified, the range and domain propagation events are generated. Moreover,
if the invoking constrained integer expression becomes bound, then the value propagation event is also
generated. The effects of this member function are reversible.

public void setMin(IlcInt min) const

This member function removes all the elements that are less than min from the domain of the invoking
constrained expression. If the domain thus becomes empty, then the member function IloSolver::fail is
called. Otherwise, if the domain is modified, the range and domain propagation events are generated. Moreover,
if the invoking constrained integer expression becomes bound, then the value propagation event is also
generated. The effects of this member function are reversible.

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

public void setObject(IlcAny object) const

This member function establishes a link between the invoking object and an external object of which the invoking
object might be a data member.

202

public void setRange(IlcInt min, IlcInt max) const

This member function removes all the elements that are either less than min or greater than max from the
domain of the invoking constrained expression. If the domain thus becomes empty, then the member function
IloSolver::fail is called. Otherwise, if the domain is modified, the propagation events range and domain
are generated. Moreover, if the invoking constrained integer expression becomes bound, then the value
propagation event is also generated. The effects of this member function are reversible.

public void setValue(IlcInt value) const

This member function removes all the elements that are different from value from the domain of the invoking
constrained integer expression. This has two possible outcomes:

If value was not in the domain of the invoking constrained integer expression, the domain becomes
empty, and the member function IloSolver::fail is called.

•

If value was in the domain, then value becomes the value of the expression, and the value, range,
and domain propagation events are generated.

•

The effects of this member function are reversible.

public void whenDomain(const IlcDemon demon) const

This member function associates demon with the domain event of the invoking constrained expression.
Whenever the domain of the invoking constrained expression changes, the demon will be executed immediately.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
Whenever the domain of the invoking constrained expression changes, the constraint will be propagated.

public void whenRange(const IlcDemon demon) const

This member function associates demon with the range event of the invoking constrained expression. Whenever
one of the bounds of the domain of the invoking constrained expression changes, the demon will be executed
immediately.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
Whenever one of the bounds of the domain of the invoking constrained expression changes, the constraint will
be propagated.

public void whenValue(const IlcDemon demon) const

This member function associates demon with the value event of the invoking constrained expression. Whenever
the invoking constrained expression becomes bound, the demon will be executed immediately.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
Whenever the invoking constrained expression becomes bound, the constraint will be propagated.

203

Class IlcIntExpIterator
Definition file: ilsolver/intexp.h
Include file: <ilsolver/ilosolver.h>

An instance of the class IlcIntExpIterator is an iterator that traverses the values belonging to the domain of
a constrained integer expression (an instance of IlcIntExp or IlcIntVar).

For more information, see the concept Iterator.

See Also: IlcIntExp, IlcIntVar

Constructor Summary

public IlcIntExpIterator(IlcIntExp exp)

Method Summary

public IlcBool ok() const

public IlcInt operator*() const

public IlcIntExpIterator & operator++()

Constructors

public IlcIntExpIterator(IlcIntExp exp)

This constructor creates an iterator associated with exp to traverse the values belonging to the domain of exp.

Methods

public IlcBool ok() const

This member function returns IlcTrue if there is a current element and the iterator points to it. Otherwise, it
returns IlcFalse.

To traverse the values belonging to the domain of a constrained integer expression, use the following code:

 IlcInt val;
 for (IlcIntExpIterator iter(exp); iter.ok(); ++iter){
 val = *iter;
 // do something with val
 }

public IlcInt operator*() const

This operator returns the current element, the one to which the invoking iterator points.

public IlcIntExpIterator & operator++()

204

This operator advances the iterator to point to the next value in the domain of the constrained integer expression.

205

Class IlcIntPredicate
Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This class makes it possible for you to define integer predicates. An integer predicate is an object with a method
(IlcIntPredicate::isTrue) that checks whether or not a property is satisfied by an ordered set of integers.
The ordered set of integers is conventionally represented in Solver by an instance of IlcIntArray.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

Defining a New Class of Integer Predicates

Integer predicates, like other Solver objects, depend on two classes: a handle class, IlcIntPredicate, and an
implementation class, IlcIntPredicateI, where an object of the handle class contains a data member (the
handle pointer) that points to an object (its implementation object), an instance of IlcIntPredicateI allocated
on the Solver heap. As a Solver user, you will be working primarily with handles.

If you define a new class of integer predicates yourself, you must define its implementation class together with
the corresponding virtual member function IlcIntPredicateI::isTrue, as well as a member function that
returns an instance of the handle class IlcIntPredicate.

Arity

As a developer, you can use predicates in Solver applications to define your own constraints that have not
already been predefined in Solver. In that case, the arity of the predicate (that is, the number of constrained
variables involved in the predicate, and thus the size of the array that the member function
IlcIntPredicate::isTrue must check) must be less than or equal to three.

See Also: ILCANYPREDICATE0, IlcIntArray, ILCINTPREDICATE0, IlcIntPredicateI, IlcTableConstraint

Constructor Summary

public IlcIntPredicate()

public IlcIntPredicate(IlcIntPredicateI * impl)

Method Summary

public IlcIntPredicateI * getImpl() const

public IlcBool isTrue(IlcIntArray val)

public void operator=(const IlcIntPredicate & h)

Constructors

public IlcIntPredicate()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcIntPredicate(IlcIntPredicateI * impl)

This constructor creates a handle object from a pointer to an implementation object.

206

Methods

public IlcIntPredicateI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public IlcBool isTrue(IlcIntArray val)

This member function calls the member function isTrue of the implementation class IlcIntPredicateI.

public void operator=(const IlcIntPredicate & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

207

Class IlcIntPredicateI
Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

IlcIntPredicateI is the implementation class of IlcIntPredicate, which makes it possible for you to
define integer predicates in Solver. An integer predicate is an object with a method
(IlcIntPredicateI::isTrue) that checks whether or not a property is satisfied by an ordered set of integers.
Conventionally in Solver, the ordered set of integers is represented by an instance of IlcIntArray.

Defining Your Own Class of Integer Predicates

Integer predicates, like other Solver objects, depend on two classes: a handle class, IlcIntPredicate, and an
implementation class, IlcIntPredicateI, where an object of the handle class contains a data member (the
handle pointer) that points to an object (its implementation object), an instance of IlcIntPredicateI allocated
on the Solver heap. As a Solver user, you will be working primarily with handles.

If you define a new class of integer predicates yourself, you must define its implementation class together with
the corresponding virtual member function IlcIntPredicateI::isTrue, as well as a member function that
returns an instance of the handle class IlcIntPredicate.

Arity

As a developer, you can use predicates in Solver applications to define your own constraints that have not
already been predefined in Solver. In that case, the arity of the predicate (that is, the number of constrained
variables involved in the predicate, and thus the size of the array that the member function
IlcIntPredicateI::isTrue must check) must be less than or equal to three.

See Also: IlcIntArray, IlcIntPredicate, IlcTableConstraint

Constructor and Destructor Summary

public IlcIntPredicateI()

public ~IlcIntPredicateI()

Method Summary

public virtual IlcBool isTrue(IlcIntArray val)

Constructors and Destructors

public IlcIntPredicateI()

This constructor creates an implementation object of an integer predicate. This constructor should not be called
directly because this is an abstract class. This constructor is called automatically in the constructors of its
subclasses.

public ~IlcIntPredicateI()

As this class is to be subclassed, a virtual destructor is provided.

208

Methods

public virtual IlcBool isTrue(IlcIntArray val)

This member function must be redefined when you derive a new subclass of IlcIntPredicateI. This member
function must return IlcTrue if the invoking predicate is satisfied by the elements contained in the array val.
Otherwise, it must return IlcFalse.

209

Class IlcIntSelect
Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

Solver lets you control the order in which the values in the domain of a constrained variable are tried during the
search for a solution.

This class is the handle class of the object that chooses the value to try when the constrained variable under
consideration is a constrained integer variable (that is, an instance of IlcIntVar).

An object of this handle class uses the virtual member function IlcIntSelectI::select from its
implementation class to choose a value in the domain of the constrained integer variable under consideration
during the search for a solution.

See Also: IlcEvalInt, IlcIntSelectI, IlcIntSelectEvalI, IloIntValueSelector, IloIntValueSelectorI

Constructor Summary

public IlcIntSelect()

public IlcIntSelect(IlcIntSelectI * impl)

public IlcIntSelect(const IlcIntSelect & selector)

public IlcIntSelect(IloSolver s, IlcEvalInt function)

Method Summary

public IlcIntSelectI * getImpl() const

public void operator=(const IlcIntSelect & h)

Constructors

public IlcIntSelect()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcIntSelect(IlcIntSelectI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcIntSelect(const IlcIntSelect & selector)

This copy constructor accepts a reference to an implementation object and creates the corresponding handle
object.

public IlcIntSelect(IloSolver s, IlcEvalInt function)

This constructor creates a new integer selector from an evaluation function. The implementation object of the
newly created handle is an instance of the class IlcIntSelectEvalI constructed with the evaluation function

210

indicated by the argument function.

Methods

public IlcIntSelectI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public void operator=(const IlcIntSelect & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

211

Class IlcIntSelectEvalI
Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

Solver lets you control the order in which the values in the domain of a constrained variable are tried during the
search for a solution.

This class is an implementation class. It is the predefined subclass of IlcIntSelectI that you use for the
purpose of defining a new choice criterion expressed by an evaluation function on the domain of a constrained
integer variable under consideration during the solution search. That evaluation function is of type IlcEvalInt
to make the choice on the domain of a constrained integer variable.

See Also: IlcEvalInt, IlcIntSelect, IlcIntSelectI

Constructor Summary

public IlcIntSelectEvalI(IlcEvalInt function)

Method Summary

public virtual IlcInt select(IlcIntVar var)

Inherited Methods from IlcIntSelectI

select

Constructors

public IlcIntSelectEvalI(IlcEvalInt function)

This constructor creates an implementation object accompanied by an evaluation function. Objects of this class
use that evaluation function to choose a value from the domain of a constrained integer variable during the
search for a solution.

Methods

public virtual IlcInt select(IlcIntVar var)

This virtual member function returns one of the values of the domain of the constrained integer variable var. In
order to do this, it calls the evaluation function for each value in the domain of the constrained integer variable
var. For each of these values, the evaluation function is called with the value and the variable as arguments.
Then the member function select returns the value for which the evaluation function returned the smallest
integer.

212

Class IlcIntSelectI
Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

Solver lets you control the order in which the values in the domain of a constrained variable are tried during the
search for a solution.

This class is the implementation class for IlcIntSelect, the class of the object that chooses the value to try
when the constrained variable under consideration is a constrained integer variable (that is, an instance of
IlcIntVar).

The virtual member function in IlcIntSelectI chooses a value in the domain of the constrained integer
variable under consideration.

To define new selection criteria, you can define a subclass of IlcIntSelectI. If those criteria can be
expressed by an evaluation function, then you can use the predefined subclass IlcIntSelectEvalI for that
purpose.

See Also: IlcEvalInt, IlcIntSelect, IlcIntSelectEvalI, IloIntValueSelector, IloIntValueSelectorI

Constructor and Destructor Summary

public IlcIntSelectI()

public ~IlcIntSelectI()

Method Summary

public virtual IlcInt select(IlcIntVar var)

Constructors and Destructors

public IlcIntSelectI()

This constructor creates an implementation object.

public ~IlcIntSelectI()

As this class is to be subclassed, a virtual destructor is provided.

Methods

public virtual IlcInt select(IlcIntVar var)

This virtual member function returns one of the values of the domain of the constrained integer variable var. Its
default implementation for the class IlcIntSelectI returns the minimum of the domain.

213

Class IlcIntSet
Definition file: ilsolver/intexp.h
Include file: <ilsolver/ilosolver.h>

Finite sets of integers are instances of the handle class IlcIntSet. These sets are used by Solver to represent
the domains of enumerated constrained variables and to represent the values of constrained set variables.
Solver provides an efficient, optimized implementation of finite sets as bit vectors. These finite sets are known
formally as instances of the handle classes IlcAnySet or IlcIntSet, depending on whether their elements
are pointers or integers.

The elements of finite sets of type IlcIntSet are integers of type IlcInt. The implementation class for finite
sets of integers is the undocumented class IlcIntSetI.

To traverse an existing finite set, either exhaustively or in search of an element, Solver provides iterators (such
as instances of IlcIntSetIterator). An iterator is an object constructed from a data structure and contains a
traversal state of this data structure.

Note

An IlcIntSet object should not contain an integer of value IlcIntMax . If an integer of value of
IlcIntMax is included in an IlcIntSet object, an error can occur when iterating over the set.

See Also: IlcIntArray, IlcIntSetArray, IlcIntSetIterator, IlcIntSetVar, operator<<

Constructor Summary

public IlcIntSet()

public IlcIntSet(IlcIntSetI * impl)

public IlcIntSet(IloSolver s, IlcInt min, IlcInt max, IlcBool fullSet=IlcTrue)

public IlcIntSet(const IlcIntArray array, IlcBool fullSet=IlcTrue)

public IlcIntSet(IloSolver s, const IlcIntArray array, IlcBool fullSet=IlcTrue)

Method Summary

public IlcBool add(IlcInt elt)

public IlcIntSet copy() const

public IlcIntSetI * getImpl() const

public IlcInt getSize() const

public IloSolver getSolver() const

public IlcBool isIn(IlcInt elt) const

public void operator=(const IlcIntSet & h)

public IlcBool remove(IlcInt elt)

Constructors

public IlcIntSet()

This constructor creates an empty handle. You must initialize it before you use it.

214

public IlcIntSet(IlcIntSetI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcIntSet(IloSolver s, IlcInt min, IlcInt max, IlcBool fullSet=IlcTrue)

This constructor creates a finite set of integers ranging from min to max included. If min is greater than max, then
the empty set is created. If the argument fullset is equal to IlcTrue, the default value, the finite set will
initially contain all its possible values. Otherwise, the finite set will initially be empty.

public IlcIntSet(const IlcIntArray array, IlcBool fullSet=IlcTrue)

This constructor also creates a finite set of integers containing the elements of array.

public IlcIntSet(IloSolver s, const IlcIntArray array, IlcBool fullSet=IlcTrue)

This constructor creates a finite set of integers containing the elements of array. If array contains multiple
copies of a given value, that value will appear only one time in the newly created finite set. If the argument
fullset is equal to IlcTrue, its default value, the finite set will initially contain all its possible values.
Otherwise, the finite set will initially be empty. In any case, the possible elements of the finite set are exactly
those elements in array.

Methods

public IlcBool add(IlcInt elt)

This member function adds elt to the invoking finite set if elt is a possible member of that set and if elt is not
already in that set. When both conditions are met, this member function returns IlcTrue. Otherwise, it returns
IlcFalse. The effects of this member function are reversible.

public IlcIntSet copy() const

This member function creates and returns a finite set that contains the same elements as the invoking finite set.

public IlcIntSetI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public IlcInt getSize() const

This member function returns the size of a finite set. Clearly, this member function is useful for testing whether
the invoking finite set is empty or not.

215

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IlcBool isIn(IlcInt elt) const

This member function is a predicate that indicates whether or not elt is in the invoking finite set. It returns
IlcTrue if elt is in the set; otherwise, it returns IlcFalse.

public void operator=(const IlcIntSet & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public IlcBool remove(IlcInt elt)

This member function removes elt from the invoking finite set. This member function returns IlcFalse if elt
was not in that invoking set. Otherwise, it returns IlcTrue. The effects of this member function are reversible.

216

Class IlcIntSetArray
Definition file: ilsolver/intset.h
Include file: <ilsolver/ilosolver.h>

An instance of IlcIntSetArray represents an array of sets, instances of IlcIntSet.

For each basic type, Solver defines a corresponding array class. This array class is a handle class. In other
words, an object of this class contains a pointer to another object allocated on the Solver heap. Exploiting
handles in this way greatly simplifies the programming interface since the handle can then be an automatic
object: as a developer using handles, you do not have to worry about memory allocation.

Empty Handle or Null Array

It is possible to create a null array, or in other words, an empty handle. When you do so, only these operations
are allowed on that null array:

copy: You can assign the null array to a new array.•
access its size: The member function getSize for the null array returns 0 (zero).•
create an iterator: You can create an iterator to traverse the null array. The member function ok
returns IlcFalse for a null array.

•

Attempts to access a null array in any other way will throw an exception (an instance of
IloSolver::SolverErrorException).

See Also: IlcIntSet, operator<<

Constructor Summary

public IlcIntSetArray()

public IlcIntSetArray(IlcIntSetArrayI * impl)

public IlcIntSetArray(IloSolver solver, IlcInt size, IlcIntSet * values)

public IlcIntSetArray(IloSolver solver, IlcInt size, IlcIntArray array)

public IlcIntSetArray(IloSolver solver, IlcInt size, const IlcIntSet exp...)

Method Summary

public IlcIntSetArrayI * getImpl() const

public const char * getName() const

public IlcInt getSize() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public void operator=(const IlcIntSetArray & h)

public IlcIntSet & operator[](IlcInt i) const

public void setName(const char * name) const

Constructors

public IlcIntSetArray()

217

This constructor creates an empty handle. You must initialize it before you use it.

public IlcIntSetArray(IlcIntSetArrayI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcIntSetArray(IloSolver solver, IlcInt size, IlcIntSet * values)

This constructor creates an array of sets; the length of that array is size; its elements are initialized with the
values indicated by values.

public IlcIntSetArray(IloSolver solver, IlcInt size, IlcIntArray array)

This constructor creates an array of sets; the length of that array is size; its elements are initialized with the
values indicated by array.

public IlcIntSetArray(IloSolver solver, IlcInt size, const IlcIntSet exp...)

This constructor creates an array of sets; the length of that array is size; its elements are initialized with the
arguments of type IlcIntSet. The number of arguments of type IlcIntSet must be the same as size.

Methods

public IlcIntSetArrayI * getImpl() const

This constructor creates an object by copying another one. This member function returns a pointer to the
implementation object of the invoking handle.

public const char * getName() const

This member function returns the name of the invoking object.

public IlcInt getSize() const

This member function returns the number of elements in the invoking array.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IloSolverI * getSolverI() const

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

public void operator=(const IlcIntSetArray & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

218

public IlcIntSet & operator[](IlcInt i) const

This operator returns a reference to the element at rank i. This operator can be used for accessing (that is,
simply reading) the element or for modifying (that is, writing) it.

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

219

Class IlcIntSetIterator
Definition file: ilsolver/intexp.h
Include file: <ilsolver/ilosolver.h>

An instance of the class IlcIntSetIterator is an iterator that traverses the elements of finite sets of integers
(instances of IlcIntSet).

For more information, see the concept Iterator.

See Also: IlcIntSet

Constructor Summary

public IlcIntSetIterator(IlcIntSet set)

Method Summary

public IlcBool ok() const

public IlcInt operator*() const

public IlcIntSetIterator & operator++()

Constructors

public IlcIntSetIterator(IlcIntSet set)

This constructor creates an iterator associated with set to traverse its elements.

Methods

public IlcBool ok() const

This member function returns IlcTrue if there is a current element and the invoking iterator points to it.
Otherwise, it returns IlcFalse.

To traverse the elements of a finite set integers, use the following code:

 IlcAny val;
 for(IlcIntSetIterator iter(set); iter.ok(); ++iter){
 val = *iter;
 // do something with val
 }

public IlcInt operator*() const

This operator returns the current element, the one to which the invoking iterator points.

public IlcIntSetIterator & operator++()

220

This operator advances the iterator to point to the next value in the set.

221

Class IlcIntSetSelect
Definition file: ilsolver/intset.h
Include file: <ilsolver/ilosolver.h>

Solver lets you control the order in which the values in the domain of a constrained set variable are tried during
the search for a solution.

This class is the handle class of the object that chooses the value to try when the constrained set variable under
consideration is a constrained integer set variable (that is, an instance of IlcIntSetVar).

An object of this handle class uses the undocumented virtual member function IlcIntSetSelectI::select
from its implementation class to choose a value in the domain of the constrained integer variable under
consideration during the search for a solution.

See the example in IlcIntSelect or the example in IlcAnySetSelect for a model of how to create and use
a selector.

See Also: IlcEvalIntSet, IloInstantiate, IloIntSetValueSelector, IloIntSetValueSelectorI

Constructor Summary

public IlcIntSetSelect()

public IlcIntSetSelect(IlcIntSetSelectI * impl)

public IlcIntSetSelect(IloSolver solver, IlcEvalIntSet function)

Method Summary

public IlcIntSetSelectI * getImpl() const

public void operator=(const IlcIntSetSelect & h)

public IlcInt select(IlcIntSetVar var) const

Constructors

public IlcIntSetSelect()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcIntSetSelect(IlcIntSetSelectI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcIntSetSelect(IloSolver solver, IlcEvalIntSet function)

This constructor creates a new integer set selector from an evaluation function. The implementation object of the
newly created handle is an instance of the class IlcIntSetSelectEvalI constructed with the evaluation
function indicated by the argument function.

222

Methods

public IlcIntSetSelectI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public void operator=(const IlcIntSetSelect & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public IlcInt select(IlcIntSetVar var) const

This member function uses the virtual member function of its implementation class to select a constrained integer
set variable.

223

Class IlcIntSetVar
Definition file: ilsolver/intset.h
Include file: <ilsolver/ilosolver.h>

A constrained set variable is any instance of the class IlcIntSetVar or IlcAnySetVar. The value of a
variable belonging to the class IlcIntSetVar is an instance of the class IlcIntSet. The value of a variable
belonging to the class IlcAnySetVar is an instance of the class IlcAnySet. These two classes are handle
classes. They both have the same implementation class, IlcIntSetVarI.

Domain

The domain associated with a constrained set variable is a set of sets. Solver represents this kind of domain by
its upper and lower bounds. The upper bound is the union of all the possible values for the variable, that is the
union of all the element-sets of the domain. The lower bound is the intersection of all the possible values of the
variables, that is the intersection of all the element-sets of the domain.

In other words, the domain of a constrained set variable is represented by two sets:

the required set, that is, the set of those elements that belong to all the possible values of the variable
(the lower bound);

•

the possible set, that is the set of those elements that belong to at least one of the possible values of the
variable (the upper bound).

•

The possible set contains the required set by construction. The value, the possible set, and the required set of a
constrained set variable are all instances of the classes IlcAnySet or IlcIntSet. When a constrained set
variable is bound, the required elements are the same as the possible ones, and they are the elements of the
value of the variable.

Delta Sets and Propagation

When a propagation event is triggered for a constrained set variable, the variable is pushed into the constraint
propagation queue if it was not already in the queue. Moreover, the modifications of the domain of the
constrained set variable are stored in two special sets. The first set stores the values removed from the possible
set of the constrained set variable, and it is called the possible-delta set. The second one stores the values
added to the required set of the constrained set variable, and it is called the required-delta set. These delta sets
can be accessed during the propagation of the constraints posted on that variable. When all the constraints
posted on that variable have been processed, then the delta sets are cleared. If the variable is modified again,
then the whole process begins again. The state of the delta sets is reversible.

Failure

The domain of a constrained set variable can be reduced until it is empty, that is, to the point that the required set
is not included in the possible set. In such a case, failure is triggered since at that point, no solution is possible.

Cardinality (Size of Set)

It is also possible to constrain the cardinality of the value of a constrained set variables. A constrained set
variables contains a data member that is constrained integer variable (called the cardinality variable); it
represents how many elements are in the value of the set variable. The minimum of the cardinality variable is
always greater than or equal to the size of the required set. Its maximum is always less than or equal to the size
of the possible set. The functions IlcCard (for sets and for indices) access cardinality.

Backtracking and Reversibility

All member functions defined for this class and capable of modifying constrained set variables are reversible. In
particular, the changes made by constraint-posting functions are made with reversible assignments. Thus, the
value, domain, and constraints posted on any constrained set variables are restored when Solver backtracks.

224

A modifier is a member function that reduces the domain of a constrained integer set variable, if it can. The
modifier is not stored, in contrast to a constraint. If the domain becomes empty, a failure occurs. Modifiers are
usually used to define new classes of constraints.

See Also: IlcCard, IlcCard, IlcIntersection, IlcIntSet, IlcIntSetIterator, IlcIntSetVarArray, IlcMember, IlcUnion,
operator<<

Constructor Summary

public IlcIntSetVar()

public IlcIntSetVar(IlcIntSetVarI * impl)

public IlcIntSetVar(IloSolver solver, IlcInt min, IlcInt max, const char * name=0)

public IlcIntSetVar(IloSolver solver, const IlcIntArray array, const char *
name=0)

Method Summary

public void addRequired(IlcInt elt) const

public IlcIntSetVar getCopy(IloSolver solver) const

public IlcIntSetVarI * getImpl() const

public const char * getName() const

public IlcAny getObject() const

public IlcIntSet getPossibleSet() const

public IlcIntSet getRequiredSet() const

public IlcInt getSize() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public IlcIntSet getValue() const

public IlcBool isBound() const

public IlcBool isInDomain(IlcIntSet set) const

public IlcBool isInProcess() const

public IlcBool isPossible(IlcInt elt) const

public IlcBool isRequired(IlcInt elt) const

public void operator=(const IlcIntSetVar & h)

public void removePossible(IlcInt elt) const

public void setDomain(IlcIntSetVar var) const

public void setName(const char * name) const

public void setObject(IlcAny object) const

public void whenDomain(IlcDemon demon) const

public void whenValue(IlcDemon demon) const

Constructors

public IlcIntSetVar()

This constructor creates an empty handle. You must initialize it before you use it.

225

public IlcIntSetVar(IlcIntSetVarI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcIntSetVar(IloSolver solver, IlcInt min, IlcInt max, const char * name=0)

This constructor creates a constrained set of integers with no required elements; its possible elements range
from min to max, included. If min is greater than max, this constructor will throw an exception (an instance of
IloSolver::SolverErrorException).

public IlcIntSetVar(IloSolver solver, const IlcIntArray array, const char * name=0)

This constructor creates a constrained set of integers with no required elements; its possible elements are the
integers in array, an array of integers.

Methods

public void addRequired(IlcInt elt) const

The way this member function behaves depends on whether its argument elt is a member of the required or
possible set of the invoking object. If elt is already in the required set of the invoking object, then this member
function does nothing. If elt is in the possible set of the invoking object, but not yet in the required set, then this
member function adds elt to the required set. If elt is not in the possible set of the invoking object, then this
member function indicates a failure.

public IlcIntSetVar getCopy(IloSolver solver) const

This member function returns a copy of the invoking constrained set variable and associates that copy with
solver.

public IlcIntSetVarI * getImpl() const

This constructor creates an object by copying another one. This constructor creates an object by copying another
one. This member function returns a pointer to the implementation object of the invoking handle.

public const char * getName() const

This member function returns the name of the invoking object.

public IlcAny getObject() const

This member function returns a pointer to the external object associated with the invoking object, if there is such
an association. It returns 0 (zero) otherwise.

public IlcIntSet getPossibleSet() const

This member function returns the possible set of the invoking constrained set variable

public IlcIntSet getRequiredSet() const

This member function returns the required set of the invoking constrained set variable.

226

public IlcInt getSize() const

This member function returns one plus the difference between the cardinality of the set of possible elements and
the cardinality of the set of required elements. Don't confuse the size of the domain of the constrained set
variable (returned by this member function) with the cardinality of the set to which the variable is bound (that is,
the size of the value of the variable). The cardinality of the set variable itself is a constrained integer variable
returned by the function IlcCard.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IloSolverI * getSolverI() const

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

public IlcIntSet getValue() const

This member function returns the value of the invoking constrained set variable if that variable has been bound;
otherwise, it will throw an exception (an instance of IloSolver::SolverErrorException).

public IlcBool isBound() const

This member function returns IlcTrue if the constrained set variable has been bound, that is, if its set of
required elements is equal to its set of possible elements. Otherwise, the member function returns IlcFalse.

public IlcBool isInDomain(IlcIntSet set) const

This member function returns IlcTrue if and only if the finite set indicated by set satisfies the following
conditions:

The set contains all the required elements of the invoking constrained set variable.•
Each element of set is a possible element of the invoking constrained set variable.•

public IlcBool isInProcess() const

This member function returns IlcTrue if the invoking constrained set variable is currently being processed by
the constraint propagation algorithm. Only one variable can be in process at a time.

public IlcBool isPossible(IlcInt elt) const

This member function returns IlcTrue if elt is a possible element in the invoking constrained set variable. It
returns IlcFalse otherwise. This member function could be defined as getPossibleSet().isIn(elt).

227

public IlcBool isRequired(IlcInt elt) const

This member function returns IlcTrue if elt is a required element in the invoking constrained set variable. It
returns IlcFalse otherwise. This member function could be defined as getRequiredSet().isIn(elt).

public void operator=(const IlcIntSetVar & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public void removePossible(IlcInt elt) const

The way this member function behaves depends on whether its argument elt is a member of the required set of
the invoking object. If elt is in the required set of the invoking object, then this member function indicates a
failure. If elt is in the possible set of the invoking object, but not in the required set, then this member function
removes elt from the possible set.

public void setDomain(IlcIntSetVar var) const

This member function reduces the domain of the invoking constrained set variable so that its domain becomes
included in the domain of the constrained set variable var.

If the invoking variable is already bound, then this member function considers whether its value belongs to the
domain of var. If its value does not belong to the domain of var, then the member function indicates failure.

If the invoking variable is not yet bound, then its required set is replaced by its union with the required set of var,
and its possible set is replaced by its intersection with the possible set of var. If the resulting required set is not
included in the resulting possible set, then the member function indicates failure. If the resulting required set
contains the same elements as the resulting possible set, then the invoking variable is bound to that remaining
value. In any case, if the invoking variable is modified, the constraints posted on it are activated.

The effects of this member function are reversible.

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

public void setObject(IlcAny object) const

This member function establishes a link between the invoking object and an external object of which the invoking
object might be a data member.

public void whenDomain(IlcDemon demon) const

This member function associates demon with the domain propagation event of the invoking constrained set
variable. Whenever the domain of the invoking constrained set variable changes, the demon will be executed
immediately.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
Whenever the domain of the invoking constrained set variable changes, the constraint will be propagated.

public void whenValue(IlcDemon demon) const

228

This member function associates demon with the value propagation event of the invoking constrained set
variable. Whenever the invoking constrained set variable becomes bound, the demon will be executed
immediately.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
Whenever the invoking constrained set variable becomes bound, the constraint will be propagated.

229

Class IlcIntSetVarArray
Definition file: ilsolver/intset.h
Include file: <ilsolver/ilosolver.h>

An array of constrained set variables of integers is an instance of the class IlcIntSetVarArray. The elements
of such an array are instances of IlcIntSetVar.

Empty Handle or Null Array

It is possible to create a null array, or in other words, an empty handle. When you do so, only these operations
are allowed on that null array:

copy: You can assign the null array to a new array.•
access its size: The member function getSize for the null array returns 0 (zero).•
create an iterator: You can create an iterator to traverse the null array. The member function ok
returns IlcFalse for a null array.

•

Attempts to access a null array in any other way will throw an exception (an instance of
IloSolver::SolverErrorException).

See Also: IlcIntSetVar, IlcIntSetVarArrayIterator, operator<<

Constructor Summary

public IlcIntSetVarArray()

public IlcIntSetVarArray(IlcIntSetVarArrayI * impl)

public IlcIntSetVarArray(IloSolver solver, IlcInt size)

public IlcIntSetVarArray(IloSolver solver, IlcInt size, IlcInt min, IlcInt max)

public IlcIntSetVarArray(IloSolver s, IlcInt size, IlcIntArray array)

public IlcIntSetVarArray(IloSolver solver, IlcInt size ILCPARAM, const
IlcIntSetVar v1, const IlcIntSetVar v2)

Method Summary

public IlcIntSetVarArray getCopy(IloSolver solver) const

public IlcIntSetVarArrayI * getImpl() const

public const char * getName() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public void operator=(const IlcIntSetVarArray & h)

public IlcIntSetVar & operator[](IlcInt index) const

public void setName(const char * name) const

Constructors

public IlcIntSetVarArray()

This constructor creates an empty handle. You must initialize it before you use it.

230

public IlcIntSetVarArray(IlcIntSetVarArrayI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcIntSetVarArray(IloSolver solver, IlcInt size)

This constructor creates an array of size uninitialized constrained set variables. The argument size must be
strictly greater than 0 (zero). The index range of the array is [0 size), where 0 is included but size is
excluded. Each element of the array must be assigned a value before the array can be used.

public IlcIntSetVarArray(IloSolver solver, IlcInt size, IlcInt min, IlcInt max)

This constructor creates an array of size constrained set variables. The index range of the array is [0 size)
where 0 is included, but size is excluded. The argument size must be strictly greater than 0 (zero). None of the
constrained variables has any required elements; for each of the constrained variables, the possible elements
range from min to max, included.

public IlcIntSetVarArray(IloSolver s, IlcInt size, IlcIntArray array)

This constructor creates an array of size constrained set variables. The argument size must be strictly greater
than 0 (zero). The index range of the array is [0 size), where 0 is included but size is excluded. Each
constrained variable has no required elements; its possible elements are the pointers in array, an array of
pointers.

public IlcIntSetVarArray(IloSolver solver, IlcInt size ILCPARAM, const IlcIntSetVar
v1, const IlcIntSetVar v2)

This constructor creates an array of size elements. The elements must be successive. If size is different from
the number of instances of IlcIntSetVar passed to the constructor, then the behavior of this constructor is
undefined and unlikely to be what you want. The argument size must be strictly greater than 0 (zero).

Methods

public IlcIntSetVarArray getCopy(IloSolver solver) const

This member function returns a copy of the invoking array of constrained set variables and associates that copy
with solver.

public IlcIntSetVarArrayI * getImpl() const

This constructor creates an object by copying another one. This member function returns a pointer to the
implementation object of the invoking handle.

public const char * getName() const

This member function returns the name of the invoking object.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

231

public IloSolverI * getSolverI() const

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

public void operator=(const IlcIntSetVarArray & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public IlcIntSetVar & operator[](IlcInt index) const

This subscripting operator returns a reference to the variable at rank index in the invoking array. The fact the
operator returns a reference makes it possible for you, as a developer, to assign the corresponding constrained
expression.

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

232

Class IlcIntSetVarArrayIterator
Definition file: ilsolver/intset.h
Include file: <ilsolver/ilosolver.h>

Instances of the class IlcIntSetVarArrayIterator traverse the values of an array of sets of constrained
integer variables.

For more information, see the concept Iterator.

See Also: IlcIntSetVar, IlcIntSetVarArray

Constructor and Destructor Summary

public IlcIntSetVarArrayIterator(const IlcIntSetVarArray array)

Method Summary

public IlcBool next(IlcIntSetVar & variable)

Constructors and Destructors

public IlcIntSetVarArrayIterator(const IlcIntSetVarArray array)

This constructor creates an iterator to traverse the values belonging to an array of sets of constrained integer
variables. This iterator lets you iterate forward over the complete index range of the array.

Methods

public IlcBool next(IlcIntSetVar & variable)

This member function takes a reference to a constrained integer set variable and returns a Boolean value. It
begins with the first element. It returns IlcFalse if there is no other element on which to iterate and IlcTrue
otherwise. When it returns IlcTrue, it writes the next element of the iterator (forward iteration) to the argument.

233

Class IlcIntToFloatExpFunction
Definition file: ilsolver/accessor.h
Include file: <ilsolver/ilosolver.h>

It is sometimes useful to associate a constrained variable with an element of the domain of a constrained
variable. If the elements of a domain are objects, the associated values can correspond to a specific constrained
attribute of these objects.

The following constraints and expressions use this kind of indirection: IlcSum, IlcMin, IlcMax, and
IlcUnion.

IlcIntToFloatExpFunction is the handle class of the object that makes the correspondence between an
integer element and a constrained floating-point expression or variable.

An object of this handle class uses the virtual member function IlcIntToFloatExpFunctionI::getValue from its
implementation class to obtain the associated constrained variable or expression of an element of a domain.

See Also: IlcIntToFloatExpFunctionI

Constructor Summary

public IlcIntToFloatExpFunction()

public IlcIntToFloatExpFunction(IlcIntToFloatExpFunctionI * impl)

Method Summary

public IlcIntToFloatExpFunctionI * getImpl() const

public IlcFloatExp getValue(IlcInt i) const

public void operator=(const IlcIntToFloatExpFunction & h)

Constructors

public IlcIntToFloatExpFunction()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcIntToFloatExpFunction(IlcIntToFloatExpFunctionI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IlcIntToFloatExpFunctionI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

234

public IlcFloatExp getValue(IlcInt i) const

This member function returns the constrained floating-point variable or expression associated with the integer
element i.

public void operator=(const IlcIntToFloatExpFunction & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

235

Class IlcIntToFloatExpFunctionI
Definition file: ilsolver/accessi.h
Include file: <ilsolver/ilsolver.h>

This class is the implementation class for IlcIntToFloatExpFunction, the class of the object that makes the
association between an integer value and a constrained floating-point variable or expression.

The virtual member function getValue returns the constrained variable or expression associated with a given
value. To define an association class, you have to derive this class, and overload the getValue virtual member
function.

The following constraints and expressions use this kind of indirection: IlcSum, IlcMin, IlcMax, and
IlcUnion.

See Also: IlcIntToFloatExpFunction

Constructor and Destructor Summary

public IlcIntToFloatExpFunctionI()

public ~IlcIntToFloatExpFunctionI()

Method Summary

public virtual IlcFloatExp getValue(IlcInt e)

Constructors and Destructors

public IlcIntToFloatExpFunctionI()

This constructor creates an implementation object.

public ~IlcIntToFloatExpFunctionI()

As this class is to be subclassed, a virtual destructor is provided

Methods

public virtual IlcFloatExp getValue(IlcInt e)

This member function must return the constrained floating-point variable or expression associated with the
integer element e.

236

Class IlcIntToIntExpFunction
Definition file: ilsolver/accessor.h
Include file: <ilsolver/ilosolver.h>

It is sometimes useful to associate a constrained variable with an element of the domain of a constrained
variable. If the elements of a domain are objects, the associated values can correspond to a specific constrained
attribute of these objects.

The following constraints and expressions use this kind of indirection: IlcSum, IlcMin, IlcMax, and
IlcUnion.

IlcIntToIntExpFunction is the handle class of the object that makes the correspondence between an
integer element and a constrained integer expression or variable.

An object of this handle class uses the virtual member function IlcIntToIntExpFunctionI::getValue from its
implementation class to obtain the associated constrained variable or expression of an element of a domain.

See Also: IlcIntToIntExpFunctionI

Constructor Summary

public IlcIntToIntExpFunction()

public IlcIntToIntExpFunction(IlcIntToIntExpFunctionI * impl)

Method Summary

public IlcIntToIntExpFunctionI * getImpl() const

public IlcIntExp getValue(IlcInt i) const

public void operator=(const IlcIntToIntExpFunction & h)

Constructors

public IlcIntToIntExpFunction()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcIntToIntExpFunction(IlcIntToIntExpFunctionI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IlcIntToIntExpFunctionI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

237

public IlcIntExp getValue(IlcInt i) const

This member function returns the constrained integer variable or expression associated with the integer element
i.

public void operator=(const IlcIntToIntExpFunction & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

238

Class IlcIntToIntExpFunctionI
Definition file: ilsolver/accessi.h
Include file: <ilsolver/ilsolver.h>

This class is the implementation class for IlcIntToIntExpFunction, the class of the object that makes the
association between an integer value and a constrained integer variable or expression.

The virtual member function getValue returns the constrained variable or expression associated with a given
value. To define an association class, you have to derive this class, and overload the getValue virtual member
function.

The following constraints and expressions use this kind of indirection: IlcSum, IlcMin, IlcMax, and
IlcUnion.

See Also: IlcIntToIntExpFunction, IlcAnyToIntExpFunction, IlcAnyToIntFunction

Constructor and Destructor Summary

public IlcIntToIntExpFunctionI()

public ~IlcIntToIntExpFunctionI()

Method Summary

public virtual IlcIntExp getValue(IlcInt e)

Constructors and Destructors

public IlcIntToIntExpFunctionI()

This constructor creates an implementation object.

public ~IlcIntToIntExpFunctionI()

As this class is to be subclassed, a virtual destructor is provided

Methods

public virtual IlcIntExp getValue(IlcInt e)

This member function must return the constrained variable or expression associated with the integer element e.

239

Class IlcIntToIntStepFunction
Definition file: ilsolver/segfunc.h
Include file: <ilsolver/ilosolver.h>

An instance of IlcIntToIntStepFunction represents a step function over integers which is defined
everywhere on an interval [xmin,xmax). Each interval [x1,x2) over which the function has the same value is
called a step. The member functions of the class IlcIntToIntStepFunction are not reversible.

See Also: IlcIntToIntStepFunctionCursor, IlcMax, IlcMin, operator+, operator-, operator-, operator*, operator==,
operator<=, operator>=

Constructor Summary

public IlcIntToIntStepFunction()

public IlcIntToIntStepFunction(IlcSegmentedFunctionI * impl)

public IlcIntToIntStepFunction(IloSolver solver, IlcInt xmin=IlcIntMin, IlcInt
xmax=IlcIntMax, IlcInt dval=0)

public IlcIntToIntStepFunction(IloSolver solver, IlcIntArray x, IlcIntArray v,
IlcInt xmin=IlcIntMin, IlcInt xmax=IlcIntMax)

Method Summary

public void addValue(IlcInt x1, IlcInt x2, IlcInt v)

public void dilate(IlcInt k)

public IlcInt getArea(IlcInt x1, IlcInt x2) const

public IlcInt getDefinitionIntervalMax() const

public IlcInt getDefinitionIntervalMin() const

public IlcSegmentedFunctionI * getImpl() const

public IlcInt getMax(IlcInt x1, IlcInt x2) const

public IlcInt getMin(IlcInt x1, IlcInt x2) const

public const char * getName() const

public IlcAny getObject() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public IlcInt getValue(IlcInt x) const

public void operator*=(IlcInt k)

public void operator+=(const IlcIntToIntStepFunction & fct)

public void operator-=(const IlcIntToIntStepFunction & fct)

public void operator=(const IlcIntToIntStepFunction & h)

public void setMax(const IlcIntToIntStepFunction & fct)

public void setMax(IlcInt x1, IlcInt x2, IlcInt v)

public void setMin(const IlcIntToIntStepFunction & fct)

public void setMin(IlcInt x1, IlcInt x2, IlcInt v)

public void setName(const char * name) const

240

public void setObject(IlcAny object) const

public void setPeriodic(const IlcIntToIntStepFunction & fp,
IlcInt x0, IlcInt n=IlcIntMax, IlcInt dval=0)

public void setSteps(IlcIntArray x, IlcIntArray v)

public void setValue(IlcInt x1, IlcInt x2, IlcInt v)

public void shift(IlcInt dx, IlcInt dval=0)

Constructors

public IlcIntToIntStepFunction()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcIntToIntStepFunction(IlcSegmentedFunctionI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcIntToIntStepFunction(IloSolver solver, IlcInt xmin=IlcIntMin, IlcInt
xmax=IlcIntMax, IlcInt dval=0)

This constructor creates an integer step function defined everywhere on the interval [xmin,xmax) with the
same value dval.

public IlcIntToIntStepFunction(IloSolver solver, IlcIntArray x, IlcIntArray v,
IlcInt xmin=IlcIntMin, IlcInt xmax=IlcIntMax)

This constructor creates an integer step function defined everywhere on the interval [xmin,xmax); its steps are
defined by the two arrays of parameters, x and v.

More precisely, if n is the size of array x, the size of array v must be n+1 and, if the created function is defined
on the interval [xmin,xmax), its values will be:

v[0] on interval [xmin,x[0]),•
v[i] on interval [x[i-1],x[i]) for all i in [0,n-1], and•
v[n] on interval [x[n-1],xmax).•

Methods

public void addValue(IlcInt x1, IlcInt x2, IlcInt v)

This member function increases the value of the invoking integer step function by v everywhere on the interval
[x1,x2).

public void dilate(IlcInt k)

This member function multiplies the scale of x by k for the invoking integer step function. The parameter k must
be a positive integer.

More precisely, if the invoking function was defined over an interval [xmin,xmax), it will be redefined over the
interval [k*xmin,k*xmax) and the value at x will be the former value at x/k.

241

public IlcInt getArea(IlcInt x1, IlcInt x2) const

This member function returns the sum of the invoking integer step function over the interval [x1,x2).

If the interval [x1,x2) is not included in the interval of definition of the invoking function, Solver will throw an
exception (an instance of IloSolver::SolverErrorException).

public IlcInt getDefinitionIntervalMax() const

This member function returns the rightmost point of the interval of definition of the invoking step function.

public IlcInt getDefinitionIntervalMin() const

This member function returns the leftmost point of the interval of definition of the invoking step function.

public IlcSegmentedFunctionI * getImpl() const

This constructor creates an object by copying another one. This constructor creates an object by copying another
one. This member function returns a pointer to the implementation object of the invoking handle.

public IlcInt getMax(IlcInt x1, IlcInt x2) const

This member function returns the maximal value of the invoking integer step function on the interval [x1,x2). If
the interval [x1,x2) is not included in the interval of definition of the invoking function, Solver will throw an
exception (an instance of IloSolver::SolverErrorException).

public IlcInt getMin(IlcInt x1, IlcInt x2) const

This member function returns the minimal value of the invoking integer step function on the interval [x1,x2). If
the interval [x1,x2) is not included in the interval of definition of the invoking function, Solver will throw an
exception (an instance of IloSolver::SolverErrorException).

public const char * getName() const

This member function returns the name of the invoking object.

public IlcAny getObject() const

This member function returns a pointer to the external object associated with the invoking object, if there is such
an association. It returns 0 (zero) otherwise.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IloSolverI * getSolverI() const

242

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

public IlcInt getValue(IlcInt x) const

This member function returns the value of the invoking integer step function at x. If x does not belong to the
interval of definition of the invoking function, Solver will throw an exception (an instance of
IloSolver::SolverErrorException).

public void operator*=(IlcInt k)

This operator multiplies the value of the invoking integer step function by a factor k everywhere on the interval of
definition.

public void operator+=(const IlcIntToIntStepFunction & fct)

This operator adds the parameter function fct to the invoking integer step function.

public void operator-=(const IlcIntToIntStepFunction & fct)

This operator subtracts the parameter function fct from the invoking integer step function.

public void operator=(const IlcIntToIntStepFunction & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public void setMax(const IlcIntToIntStepFunction & fct)

This member function sets the value of the invoking integer step function to be the maximum between the current
value and the value of fct everywhere on the interval of definition of the invoking function. The interval of
definition of fct must be the same as that of the invoking step function.

public void setMax(IlcInt x1, IlcInt x2, IlcInt v)

This member function sets the value of the invoking integer step function to be the maximum between the current
value and v everywhere on the interval [x1,x2).

public void setMin(const IlcIntToIntStepFunction & fct)

This member function sets the value of the invoking integer step function to be the minimum between the current
value and the value of fct everywhere on the interval of definition of the invoking function. The interval of
definition of fct must be the same as the one of the invoking step function.

public void setMin(IlcInt x1, IlcInt x2, IlcInt v)

243

This member function sets the value of the invoking integer step function to be the minimum between the current
value and v everywhere on the interval [x1,x2).

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

public void setObject(IlcAny object) const

This member function establishes a link between the invoking object and an external object of which the invoking
object might be a data member.

public void setPeriodic(const IlcIntToIntStepFunction & fp, IlcInt x0, IlcInt
n=IlcIntMax, IlcInt dval=0)

This member function initializes the invoking function as an integer step function that repeats the step function
fp, n times after x0.

More precisely, if fp is defined on [xfpmin,xfpmax) and if the invoking function is defined on [xmin,xmax),
the value of the invoking function will be:

dval on [xmin, x0),•
fp((x-x0) % (xfpmax-xfpmin)) for x in [x0, Min(x0+n*(xfpmax-xfpmin), xmax)), and•
dval on [Min(x0+n*(xfpmax-xfpmin), xmax), xmax)•

public void setSteps(IlcIntArray x, IlcIntArray v)

This member function initializes the invoking function as an integer step function whose steps are defined by the
two parameters arrays x and v.

More precisely, if n is the size of array x, size of array v must be n+1 and, if the invoking function is defined on
the interval [xmin,xmax), its values will be:

v[0] on interval [xmin,x[0]),•
v[i] on interval [x[i-1],x[i]) for all i in [0,n-1], and•
v[n] on interval [x[n-1],xmax).•

public void setValue(IlcInt x1, IlcInt x2, IlcInt v)

This member function sets the value of the invoking integer step function to be v on the interval [x1,x2).

public void shift(IlcInt dx, IlcInt dval=0)

This member function shifts the invoking function from dx to the right if dx > 0 or from -dx to the left if dx < 0.
It has no effect if dx = 0.

More precisely, if the invoking function is defined on [xmin,xmax) and dx > 0, the new value of the invoking
function is:

dval on the interval [xmin,xmin+dx),•
for all x in [xmin+dx,xmax): former value at x-dx.•

If dx < 0, the new value of the invoking function is:

244

for all x in [xmin,xmax+dx): former value at x-dx,•
dval on the interval [xmax+dx,xmax).•

245

Class IlcIntToIntStepFunctionCursor
Definition file: ilsolver/segfunc.h
Include file: <ilsolver/ilosolver.h>

An instance of the class IlcIntToIntStepFunctionCursor allows you to inspect the contents of an integer
step function. A segment of an integer step function is defined as an interval [x1, x2) over which the value of
the function is the same. Cursors iterate forward or backward over the segments of an integer step function.

Note

The structure of the integer step function must not be changed while a cursor is inspecting it. Therefore
functions that change the structure of the step function, such as IlcIntToIntStepFunction::setValue
should not be called while a cursor is in use.

See Also: IlcIntToIntStepFunction

Constructor and Destructor Summary

public IlcIntToIntStepFunctionCursor(const IlcIntToIntStepFunction &, IlcInt x)

Method Summary

public IlcInt getSegmentMax() const

public IlcInt getSegmentMin() const

public IlcInt getValue() const

public IlcBool ok() const

public void operator++()

public void operator--()

Constructors and Destructors

public IlcIntToIntStepFunctionCursor(const IlcIntToIntStepFunction &, IlcInt x)

This constructor creates a cursor to inspect the integer step function argument. This cursor lets you iterate
forward or backward over the segments of the function. The cursor initially indicates the segment of the function
that contains x.

Methods

public IlcInt getSegmentMax() const

This member function returns the rightmost point of the segment currently indicated by the cursor.

public IlcInt getSegmentMin() const

This member function returns the leftmost point of the segment currently indicated by the cursor.

246

public IlcInt getValue() const

This member function returns the value of the segment currently indicated by the cursor.

public IlcBool ok() const

This member function returns IlcFalse if the cursor does not currently indicate a segment included in the
interval of definition of the integer step function. Otherwise, it returns IlcTrue.

An attempt to use the cursor after ok() returns IlcFalse leads to undefined behavior.

public void operator++()

This operator moves the cursor to the segment adjacent to the current segment (forward move).

public void operator--()

This operator moves the cursor to the segment adjacent to the current segment (backward move).

247

Class IlcIntTupleSet
Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

An integer tuple is an ordered set of integer values. A set of integer tuples is represented by an instance of
IlcIntTupleSet. That is, the elements of an integer tuple set are integer tuples. The number of values in a
tuple is known as the arity of the tuple, and the arity of the tuples in a set is called the arity of the set. (In contrast,
the number of tuples in the set is known as the cardinality of the set.)

As a handle class, IlcIntTupleSet manages certain set operations efficiently. In particular, elements can be
added to such a set. It is also possible to search a given set with the member function
IlcIntTupleSet::isIn to see whether or not the set contains a given element.

In addition, a set of integer tuples can represent a constraint defined on a constrained integer variable, either as
the set of allowed combinations of values of the constrained variable on which the constraint is defined, or as the
set of forbidden combinations of values.

There are a few conventions governing integer tuple sets:

When you create the set, you must specify the arity of the tuple-elements it contains.•
You use the member function IlcIntTupleSet::add to add integer tuples to the set.•
Before searching to determine whether or not an integer tuple belongs to a given set, you must close
the set by calling the member function IlcIntTupleSet::close. This operation—-closing the
set—-improves the performance of certain other operations on the set.

•

Solver will throw an exception (an instance of IloSolver::SolverErrorException) if you attempt:

to add an integer tuple with a different number of variables from the arity of the set;•
to add an element to a set that has already been closed;•
to search for an integer tuple with an arity different from the set arity;•
to search for an integer tuple in a set that has not been closed yet;•
to define a constraint on an integer tuple set that has not been closed already.•

You do not have to worry about memory allocation. If you respect these conventions, Solver manages allocation
and de-allocation transparently for you.

See Also: IlcTableConstraint

Constructor Summary

public IlcIntTupleSet()

public IlcIntTupleSet(IlcECSetOfSharedTupleI * impl)

public IlcIntTupleSet(IloSolver solver, IlcInt arity)

Method Summary

public void add(IlcIntArray tuple) const

public void close() const

public IlcECSetOfSharedTupleI * getImpl() const

public IlcBool isClosed() const

public IlcBool isIn(IlcIntArray tuple) const

public void operator=(const IlcIntTupleSet & h)

248

public void setBigTuple() const

public void setHoloTuple() const

public void setSimpleTuple() const

Constructors

public IlcIntTupleSet()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcIntTupleSet(IlcECSetOfSharedTupleI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcIntTupleSet(IloSolver solver, IlcInt arity)

This constructor creates a set of integer tuples (an instance of the class IlcIntTupleSet) with the arity
indicated by arity.

Methods

public void add(IlcIntArray tuple) const

This member function adds an integer tuple represented by the array tuple to the invoking set. If you attempt to
add an element that is already in the set, that element will not be added again; in other words, Solver respects
the definition of a set as containing exclusive elements with no duplicates. Added elements are not copied; that
is, there is no memory duplication. Solver will throw an exception (an instance of
IloSolver::SolverErrorException) if the set has already been closed. Solver will throw an exception (an
instance of IloSolver::SolverErrorException) if the size of the array is not equal to the arity of the
invoking set.

public void close() const

This member function closes the invoking set. That is, it states that all the tuples in the set are known so efficient
data structures can be defined and exploited.

public IlcECSetOfSharedTupleI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public IlcBool isClosed() const

This member function returns IlcTrue if the invoking set has been closed. Otherwise, it returns IlcFalse.

249

public IlcBool isIn(IlcIntArray tuple) const

This member function returns IlcTrue if tuple belongs to the invoking set. Otherwise, it returns IlcFalse.
Solver will throw an exception (an instance of IloSolver::SolverErrorException) if the set has not yet
been closed. Solver will throw an exception (an instance of IloSolver::SolverErrorException) if the size
of the array is not equal to the arity of the invoking set.

public void operator=(const IlcIntTupleSet & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public void setBigTuple() const

This member function states that the tuples in the set will be compile in a specific data structure. It must be called
before close().

public void setHoloTuple() const

This member function states that the tuples in the set will be compile in a specific data structure. It must be called
before close().

public void setSimpleTuple() const

This member function states that the tuples in the set will be compile in a specific data structure (the one by
default). It must be called before close().

250

Class IlcIntVar
Definition file: ilsolver/intexp.h
Include file: <ilsolver/ilosolver.h>

In a typical application exploiting Solver, the unknowns of the problem will be expressed as constrained
variables. The most commonly used class of constrained variables is the class of constrained integer variables.
IlcIntVar is one of a group of classes for expressing constraints on constrained integer variables. In fact,
IlcIntVar (the class of constrained integer variables) is a subclass of IlcIntExp, the class of constrained integer
expressions. A constrained integer variable is a constrained integer expression whose domain is explicitly stored.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

Domain

The domain of a constrained integer expression is computed from the domains of its subexpressions. For
example, the domain of the expression x+y contains the range [x.getMin()+y.getMin(),
x.getMax()+y.getMax()].

A constrained integer variable is a constrained expression that stores its domain instead of computing it from its
subexpressions. The domain of a constrained integer variable contains values of type IlcInt. This domain is
represented by an interval when the values are consecutive or by an enumeration of integers otherwise.

You can convert a constrained integer expression (which computes its domain) into a constrained integer
variable (which stores its domain) by either of two means: by the casting constructor or by the assignment
operator.

Domain-Delta and Propagation

When a propagation event is triggered for a constrained variable, the variable is pushed into the propagation
queue if it was not already in the queue. Moreover, the modifications of the domain of the constrained variable
are stored in a special set called the domain-delta. This domain-delta can be accessed during the propagation of
the constraints posted on that variable. When all the constraints posted on that variable have been processed,
then the domain-delta is cleared. If the variable is modified again, then the whole process begins again. The state
of the domain-delta is reversible.

Backtracking and Reversibility

All the member functions and operators defined for this class and capable of modifying constrained variables are
reversible. In particular, the changes made by constraint-posting functions are made with reversible assignments.
Thus, the value, the domain, and the constraints posted on any constrained variable are restored when Solver
backtracks.

See Also: IlcIntExp, IlcIntExpIterator, IlcIntVarArray, IlcIntVarDeltaIterator, IlcTableConstraint

Constructor Summary

public IlcIntVar()

public IlcIntVar(IloSolver s, IlcInt min, IlcInt max, const char * name=0)

public IlcIntVar(IloSolver s, const IlcIntArray values, const char * name=0)

public IlcIntVar(IlcIntVarI * impl)

public IlcIntVar(const IlcIntExp exp)

251

Method Summary

public IlcInt getMax() const

public IlcInt getMaxDelta() const

public IlcInt getMin() const

public IlcInt getMinDelta() const

public IlcInt getOldMax() const

public IlcInt getOldMin() const

public IlcBool isInDelta(IlcInt value) const

public IlcBool isInProcess() const

public void operator=(const IlcIntVar & exp)

public void operator=(const IlcIntExp & exp)

Inherited Methods from IlcIntExp

getCopy, getImpl, getMax, getMin, getName, getNextHigher, getNextLower, getObject,
getSize, getSolver, getSolverI, getValue, isBound, isInDomain, operator=,
removeDomain, removeDomain, removeRange, removeValue, setDomain, setDomain,
setDomain, setMax, setMin, setName, setObject, setRange, setValue, whenDomain,
whenRange, whenValue

Constructors

public IlcIntVar()

This constructor creates a constrained integer variable which is empty, that is, whose handle pointer is null. This
object must then be assigned before it can be used, exactly as when you, as a developer, declare a pointer.

public IlcIntVar(IloSolver s, IlcInt min, IlcInt max, const char * name=0)

This constructor creates a constrained integer variable with a domain containing all the integer values between
min and max, inclusive. If min is greater than max, the function IlcFail is called. The optional argument name,
if provided, becomes the name of the constrained integer variable.

For example, if we want to create a constrained integer variable with the domain [0 ... 10], then we use the
constructor like this:

 IlcIntVar var (s, 0, 10);

public IlcIntVar(IloSolver s, const IlcIntArray values, const char * name=0)

In case you want to create a constrained integer variable where the domain is not an interval of integers, this
constructor creates a constrained integer variable with a domain containing exactly those integers that belong to
values, an array of integers. The optional argument name, if provided, becomes the name of the constrained
integer variable.

Here's how to use that constructor to create a constrained integer variable with a domain of non-consecutive
integers.

 IlcIntArray values (s, 10, 28, 45, 65, 78, 90, 102, 113,

252

 123, 123, 138);
 IlcIntVar aVar (values);

public IlcIntVar(IlcIntVarI * impl)

This constructor creates a handle object (an instance of the class IlcIntVar from a pointer to an object (an
instance of the class IlcIntVarI.

public IlcIntVar(const IlcIntExp exp)

To transform a constrained integer expression (which computes its domain from its subexpressions) into a
constrained integer variable (which stores its domain), you can use this constructor. It associates a domain with
the constrained integer expression exp. This expression thus becomes a constrained integer variable. Moreover,
the newly created constrained integer variable points to the same implementation object as exp. (You can also
use the assignment operator for the same purpose.)

Methods

public IlcInt getMax() const

This member function returns the maximum of the domain of the invoking object.

public IlcInt getMaxDelta() const

This member function returns the difference between the maximum of the domain of the invoking constrained
variable and the maximum of its domain-delta. This member function can be applied only to the variable currently
in process.

For example, to know whether the maximum of a constrained integer variable x has been modified since the last
time the constraints posted on x were processed, it is sufficient to test the value of x.getMaxDelta(). If that
test returns 0, then the maximum of x has not been modified.

public IlcInt getMin() const

This member function returns the minimum of the domain of the invoking object.

public IlcInt getMinDelta() const

This member function returns the difference between the minimum of the domain of the invoking constrained
variable and the minimum of its domain-delta. This member function can be applied only to the variable currently
in process.

For example, to know whether the minimum of a constrained integer variable x has been modified since the last
time the constraints posted on x were processed, it is sufficient to test the value of x.getMinDelta(). If that
test returns 0, then the minimum of x has not been modified.

public IlcInt getOldMax() const

253

This member function returns the maximum of the domain-delta of the invoking constrained variable. This
member function can be applied only to the variable currently in process.

public IlcInt getOldMin() const

This member function returns the minimum of the domain-delta of the invoking constrained variable. This
member function can be applied only to the variable currently in process.

public IlcBool isInDelta(IlcInt value) const

This member function returns IlcTrue if the argument value belongs to the domain-delta of the invoking
constrained variable. This member function can be applied only to the variable currently in process.

public IlcBool isInProcess() const

This member function returns IlcTrue if the invoking constrained variable is currently being processed by the
constraint propagation algorithm. Only one variable can be in process at a time.

public void operator=(const IlcIntVar & exp)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the argument exp. After the execution of this operator, the invoking object and the exp
object both point to the same implementation object. This assignment operator has no effect on its argument.

public void operator=(const IlcIntExp & exp)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

254

Class IlcIntVarArray
Definition file: ilsolver/intexp.h
Include file: <ilsolver/ilosolver.h>

The class IlcIntVarArray is the class for an array of instances of IlcIntVar. Three integers—indexMin,
indexMax, and indexStep—play an important role in such an array of constrained integer variables. The index
of those variables ranges from indexMin, inclusive, to indexMax, exclusive, in steps of indexStep. The index
of the first variable in the array is indexMin; the second one is indexMin+indexStep, and so forth. The
quantity indexMax-indexMin must be a multiple of indexStep.

Generic Constraints

The array makes it easier to implement generic constraints. In this context, a generic constraint is a constraint
that applies to all of the variables in the array. Member functions of the array class are available to post such
generic constraints. A generic constraint is then allocated and recorded only once for all the variables in the
array. This fact represents a significant economy in memory, compared to allocating and recording one constraint
per variable.

Interval Constraints

Arrays of constrained variables also allow you to define interval constraints which propagate in a global way
when the domains of one or more constrained variables in the array are modified. Propagation is then performed
through a goal. Member functions such as whenValueInterval, whenRangeInterval, or
whenDomainInterval associate goals with propagation events for this purpose.

Backtracking and Reversibility

All the functions and member functions capable of modifying arrays of constrained integer variables are
reversible. In particular, when modifiers and functions that post constraints are called, the state before their call
will be saved by Solver.

Empty Handle or Null Array

It is possible to create a null array, or in other words, an empty handle. When you do so, only these operations
are allowed on that null array:

copy: You can assign the null array to a new array.•
access its size: The member function getSize for the null array returns 0 (zero).•
create an iterator: You can create an iterator to traverse the null array. The member function ok
returns IlcFalse for a null array.

•

Attempts to access a null array in any other way will throw an exception (an instance of
IloSolver::SolverErrorException).

See Also: IlcAbstraction, IlcIndex, IlcIntVar, IlcIntVarArrayIterator, operator<<

Constructor Summary

public IlcIntVarArray()

public IlcIntVarArray(IlcIntVarArrayI * impl)

public IlcIntVarArray(IloSolver solver, IlcInt size)

public IlcIntVarArray(IloSolver solver, IlcInt size ILCPARAM, const IlcIntVar v1,
const IlcIntVar v2)

public IlcIntVarArray(IloSolver solver, IlcInt size, IlcInt min, IlcInt max)

255

public IlcIntVarArray(IloSolver s, IlcInt indexMin, IlcInt indexMax, IlcInt
indexStep, const IlcIntVar prototype)

Method Summary

public IlcIntVarArray getCopy(IloSolver solver) const

public IlcInt getDomainIndexMax() const

public IlcInt getDomainIndexMin() const

public IlcIntVarArrayI * getImpl() const

public IlcInt getIndexMax() const

public IlcInt getIndexMin() const

public IlcInt getIndexStep() const

public IlcInt getIndexValue() const

public IlcInt getMaxMax() const

public IlcInt getMaxMax(IlcInt indexMin, IlcInt indexMax) const

public IlcInt getMaxMin() const

public IlcInt getMaxMin(IlcInt indexMin, IlcInt indexMax) const

public IlcInt getMinMax() const

public IlcInt getMinMax(IlcInt indexMin, IlcInt indexMax) const

public IlcInt getMinMin() const

public IlcInt getMinMin(IlcInt indexMin, IlcInt indexMax) const

public const char * getName() const

public IlcInt getRangeIndexMax() const

public IlcInt getRangeIndexMin() const

public IlcInt getSize() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public IlcInt getValueIndexMax() const

public IlcInt getValueIndexMin() const

public IlcIntVar getVariable(IlcInt index, IlcBool before=IlcFalse) const

public void operator=(const IlcIntVarArray & h)

public IlcIntExp operator[](const IlcIntExp exp) const

public IlcIntExp operator[](IlcIndex & I) const

public IlcIntVar & operator[](IlcInt index) const

public void setName(const char * name) const

public void whenDomain(const IlcDemon demon)

public void whenDomainInterval(const IlcDemon demon)

public void whenRange(const IlcDemon demon)

public void whenRangeInterval(const IlcDemon demon)

public void whenValue(const IlcDemon demon)

public void whenValueInterval(const IlcDemon demon)

256

Constructors

public IlcIntVarArray()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcIntVarArray(IlcIntVarArrayI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcIntVarArray(IloSolver solver, IlcInt size)

This constructor creates an uninitialized array of length size. The argument size must be strictly greater than 0
(zero). The index range of the array is [0 size). Each element of the array must be assigned before the array
can be used.

public IlcIntVarArray(IloSolver solver, IlcInt size ILCPARAM, const IlcIntVar v1,
const IlcIntVar v2)

This constructor creates an array of length size. Its constrained integer variables are initialized with the list of
variables provided as arguments to the constructor. The number of IlcIntVar arguments must be equal to
size. The argument size must be strictly greater than 0 (zero).

public IlcIntVarArray(IloSolver solver, IlcInt size, IlcInt min, IlcInt max)

This constructor creates an array of size constrained integer variables. The argument size must be strictly
greater than 0 (zero). Each constrained integer variable has a domain containing all integer values between min
and max.

public IlcIntVarArray(IloSolver s, IlcInt indexMin, IlcInt indexMax, IlcInt
indexStep, const IlcIntVar prototype)

This constructor creates an array of copies of the given constrained integer variable prototype. Each copy
initially has the same domain as prototype currently has, but the copies do not share the constraints of
prototype. That is, they are independent of it.

The index range of the array is [indexMin indexMax). The step of the array is indexStep. Solver will throw
an exception (an instance of IloSolver::SolverErrorException) if any of the following conditions occur:

indexMin is not strictly less than indexMax;•
indexStep is not strictly positive;•
(indexMax-indexMin) is not a multiple of indexStep.•

This constructor keeps no pointer to the prototype variable. That variable may be an automatic object
allocated on the C++ stack.

Methods

public IlcIntVarArray getCopy(IloSolver solver) const

This member function returns a copy of the invoking array of constrained variables and associates that copy with
solver.

257

public IlcInt getDomainIndexMax() const

When it is called during the execution of a goal associated with an array by the member function
whenDomainInterval, this member function returns the maximum of the range of the array [indexMin
indexMax) over which some removal of values has occurred. The returned value of this member function is not
meaningful outside the execution of a goal associated with the array by the member function
whenDomainInterval.

public IlcInt getDomainIndexMin() const

When it is called during the execution of a goal associated with an array by the member function
whenDomainInterval, this member function returns the minimum of the range of the array [indexMin
indexMax) over which some removal of values has occurred. The returned value of this member function is not
meaningful outside the execution of a goal associated with the array by the member function
whenDomainInterval.

public IlcIntVarArrayI * getImpl() const

This constructor creates an object by copying another one. This member function returns a pointer to the
implementation object of the invoking handle.

public IlcInt getIndexMax() const

This member function returns the maximal index of the invoking array of constrained integer variables.

public IlcInt getIndexMin() const

This member function returns the minimal index of the invoking array of constrained integer variables.

public IlcInt getIndexStep() const

This member function returns the index step of the invoking array of constrained integer variables. The meaning
of this index step is that the indexed variable value may change only at indices equal to (getIndexMin() + i
* getIndexStep()).

public IlcInt getIndexValue() const

When it is called during the execution of a constraint or demon associated with an array by the member functions
whenValue, whenDomain, or whenRange, this member function returns the index in the invoking array of the
constrained variable that triggered the propagation event. Calling this member function outside the execution of
the goal will throw an exception (an instance of IloSolver::SolverErrorException) with the message
“unbound index”.

public IlcInt getMaxMax() const

This member function returns the largest of the maximal values of the variables belonging to the invoking array of
constrained integer variables.

258

public IlcInt getMaxMax(IlcInt indexMin, IlcInt indexMax) const

This member function returns the largest of the maximal values of the variables belonging to the invoking array of
constrained integer variables. The arguments indexMin and indexMax are provided, only those variables that
correspond to indices in the range [indexMin indexMax) are considered. Solver will throw an exception (an
instance of IloSolver::SolverErrorException with the message "bad index interval" if the given
indexMin and indexMax are not valid indices for the invoking array of constrained variables or if indexMin is
not strictly less than indexMax.

public IlcInt getMaxMin() const

This member function returns the largest of the minimal values of the variables belonging to the invoking array of
constrained integer variables.

public IlcInt getMaxMin(IlcInt indexMin, IlcInt indexMax) const

This member function returns the largest of the minimal values of the variables belonging to the invoking array of
constrained integer variables. The arguments indexMin and indexMax are provided, only those variables that
correspond to indices in the range [indexMin indexMax) are considered. Solver will throw an exception (an
instance of IloSolver::SolverErrorException with the message "bad index interval" if the given
indexMin and indexMax are not valid indices for the invoking array of constrained variables or if indexMin is
not strictly less than indexMax.

public IlcInt getMinMax() const

This member function returns the smallest of the maximal values of the variables belonging to the invoking array
of constrained integer variables.

public IlcInt getMinMax(IlcInt indexMin, IlcInt indexMax) const

This member function returns the smallest of the maximal values of the variables belonging to the invoking array
of constrained integer variables. The arguments indexMin and indexMax are provided, only those variables
that correspond to indices in the range [indexMin indexMax) are considered. Solver will throw an exception
(an instance of IloSolver::SolverErrorException with the message "bad index interval" if the
given indexMin and indexMax are not valid indices for the invoking array of constrained variables or if
indexMin is not strictly less than indexMax.

public IlcInt getMinMin() const

This member function returns the smallest of the minimal values of the variables belonging to the invoking array
of constrained integer variables.

public IlcInt getMinMin(IlcInt indexMin, IlcInt indexMax) const

This member function returns the smallest of the minimal values of the variables belonging to the invoking array
of constrained integer variables. The arguments indexMin and indexMax are provided, only those variables
that correspond to indices in the range [indexMin indexMax) are considered. Solver will throw an exception
(an instance of IloSolver::SolverErrorException with the message "bad index interval" if the

259

given indexMin and indexMax are not valid indices for the invoking array of constrained variables or if
indexMin is not strictly less than indexMax.

public const char * getName() const

This member function returns the name of the invoking object.

public IlcInt getRangeIndexMax() const

When it is called during the execution of a goal associated with an array by the member function
whenRangeInterval, this member function returns the maximum of the range of the array [indexMin
indexMax) over which some removal of values has occurred. The returned value of this member function is not
meaningful outside the execution of a goal associated with the array by the member function
whenRangeInterval.

public IlcInt getRangeIndexMin() const

When it is called during the execution of a goal associated with an array by the member function
whenRangeInterval, this member function returns the minimum of the range of the array [indexMin
indexMax) over which some removal of values has occurred. The returned value of this member function is not
meaningful outside the execution of a goal associated with the array by the member function
whenRangeInterval.

public IlcInt getSize() const

This member function returns the number of variables in the invoking array.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IloSolverI * getSolverI() const

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

public IlcInt getValueIndexMax() const

When it is called during the execution of a goal associated with an array by the member function
whenValueInterval, this member function returns the maximum of the range of the array [indexMin
indexMax) over which some binding has occurred. The returned value of this member function is not
meaningful outside the execution of a goal associated with the array by the member function
whenValueInterval.

public IlcInt getValueIndexMin() const

When it is called during the execution of a goal associated with an array by the member function
whenValueInterval, this member function returns the minimum of the range of the array [indexMin

260

indexMax) over which some binding has occurred. The returned value of this member function is not
meaningful outside the execution of a goal associated with the array by the member function
whenValueInterval.

public IlcIntVar getVariable(IlcInt index, IlcBool before=IlcFalse) const

This member function returns the variable corresponding to the given index in the invoking array of constrained
integer variables. However, if before is IlcTrue, then getVariable returns the variable before the variable
at the given index. Solver will throw an exception (an instance of IloSolver::SolverErrorException)
with the message "bad index" if the given index is not a valid one for the invoking array of constrained integer
variables.

If t is an array of constrained integer variables, then these three expressions return the same value:

 t.getVariable(index, IlcFalse)
 t.getVariable(index + 1, IlcTrue)
 t[index]

public void operator=(const IlcIntVarArray & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public IlcIntExp operator[](const IlcIntExp exp) const

This subscripting operator returns a constrained integer expression. For clarity, let's call A the invoking array.
When exp is bound to the value i, then the domain of the expression is the domain of A[i]. More generally, the
domain of the expression is the union of the domains of the expressions A[i] where the i are in the domain of
exp.

public IlcIntExp operator[](IlcIndex & I) const

This operator returns a generic variable, which is a constrained variable representing an element of the array.
That generic variable is said to stem from the index i.

public IlcIntVar & operator[](IlcInt index) const

This subscripting operator returns a reference to a constrained integer variable corresponding to the given index
in the invoking array of constrained integer variables. Solver will throw an exception (an instance of
IloSolver::SolverErrorException) with the message "bad index" if the given index is not a valid one
for the invoking array of constrained integer variables.

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

public void whenDomain(const IlcDemon demon)

This member function associates demon with the domain propagation event of every variable in the invoking
array. Whenever a value is removed from the domain of any of the variables in the invoking array, the demon will
be executed immediately.

261

When the demon is executed, the index of the constrained variable that triggered the domain event can be
known by a call to the member function getIndexValue.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
Whenever a value is removed from the domain of any of the variables in the invoking array, the constraint will be
propagated.

public void whenDomainInterval(const IlcDemon demon)

This member function associates demon with the domain propagation event of every variable in the invoking
array. It specifies that a given demon reacts globally to modifications of the domains of a collection of variables in
the array. Whenever a domain propagation event or a series of such events occurs, the demon will be executed
immediately.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
Whenever a domain propagation event or a series of such events occurs, the constraint will be propagated.

A call to the demon signifies that some removal of values from domain(s) occurred over the index range
[indexMin indexMax). It does not mean that values have been removed from the domains of all the variables
in the range.

public void whenRange(const IlcDemon demon)

This member function associates demon with the range propagation event of every variable in the invoking array.
Whenever any bound of any of the variables in the array is modified, the demon will be executed immediately.

When the demon is executed, the index of the constrained integer variable that has triggered the range event can
be known by a call to the member function getIndexValue.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
Whenever any bound of any of the variables in the array is modified, the constraint will be propagated.

public void whenRangeInterval(const IlcDemon demon)

This member function associates demon with the range propagation event of every variable in the invoking array.
It specifies that a given demon reacts globally to modifications of the boundaries of a collection of variables in the
array. Whenever a range propagation event or a series of such events occurs, the demon will be executed
immediately.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
Whenever a range propagation event or a series of such events occurs, the constraint will be propagated.

A call to the demon signifies that some modification of the boundaries occurred to variables over the index range
[indexMin indexMax). It does not mean that all the variables in the range had their boundaries modified.

public void whenValue(const IlcDemon demon)

This member function associates demon with the value propagation event of every variable in the invoking array.
When one of the variables in the array receives a value, the demon will be executed immediately.

When the demon is executed, the index of the bound constrained variable can be known by a call to the member
function getIndexValue.

262

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
When one of the variables in the array receives a value, the constraint will be propagated.

public void whenValueInterval(const IlcDemon demon)

This member function associates demon with the value propagation event of every variable in the invoking array.
It specifies that a given demon reacts globally to the binding of a collection of variables in the array. When a
value propagation event or a series of such events occurs, the demon will be executed immediately.

Since a constraint is also a demon, a constraint can also be passed as an argument to this member function.
When a value propagation event or a series of such events occurs, the constraint will be propagated.

A call to the demon signifies that some variable binding occurred over the index range [indexMin indexMax).
It does not mean that all the variables in the range have been bound.

263

Class IlcIntVarArrayIterator
Definition file: ilsolver/intexp.h
Include file: <ilsolver/ilosolver.h>

An instance of the class IlcIntVarArrayIterator traverse the values of an array of constrained integer
variables.

For more information, see the concept Iterator.

See Also: IlcIntVar, IlcIntVarArray

Constructor and Destructor Summary

public IlcIntVarArrayIterator(const IlcIntVarArray array)

Method Summary

public IlcBool next(IlcIntVar & variable)

Constructors and Destructors

public IlcIntVarArrayIterator(const IlcIntVarArray array)

This constructor creates an iterator to traverse the values belonging to the array of constrained integer variables.
This iterator lets you iterate forward over the complete index range of the array.

Methods

public IlcBool next(IlcIntVar & variable)

This member function takes a reference to a constrained integer variable and returns a Boolean value. It returns
IlcFalse if there is no other element on which to iterate and IlcTrue otherwise. When it returns IlcTrue, it
writes the next element of the iterator (forward iteration) to the argument.

264

Class IlcIntVarDeltaIterator
Definition file: ilsolver/intexp.h
Include file: <ilsolver/ilosolver.h>

An instance of the class IlcIntVarDeltaIterator is an iterator that traverses the values belonging to the
domain-delta of a constrained integer variable (that is, an instance of IlcIntVar).

For more information, see the concepts Propagation, Domain-Delta, and Iterator.

See Also: IlcIntVar

Constructor and Destructor Summary

public IlcIntVarDeltaIterator(const IlcIntVar var)

Method Summary

public IlcBool ok() const

public IlcInt operator*() const

public IlcIntVarDeltaIterator & operator++()

Constructors and Destructors

public IlcIntVarDeltaIterator(const IlcIntVar var)

This constructor creates an iterator associated with var to traverse the values belonging to the domain-delta of
var.

Methods

public IlcBool ok() const

This member function returns IlcTrue if there is a current element and the iterator points to it. Otherwise, it
returns IlcFalse.

To traverse the values belonging to the domain-delta of a constrained integer variable, use the following code:

 IlcInt val;
 for (IlcIntVarDeltaIterator iter(var); iter.ok(); ++iter){
 val = *iter;
 // do something with val
 }

public IlcInt operator*() const

This operator returns the current element, the one to which the invoking iterator points.

265

public IlcIntVarDeltaIterator & operator++()

This operator advances the iterator to point to the next value in the domain-delta of the constrained integer
variable.

266

Class IlcMemoryManagerI
Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

An instance of this abstract implementation class is a memory manager. Its purpose is to delete automatically
any memory used by a solver (an instance of IloSolver) but not allocated on the Solver heap.

In other words, if your application systematically allocates memory for a solver but does not use reversible
allocation (by using IloSolver::getHeap) to do so, yet you want that memory to be deleted automatically,
you should add a memory manager to the invoking solver to delete that allocated memory.

Use the member function IloSolver::addMemoryManager to add a memory manager to a solver. That
member function will add the memory manager to the list of memory mangers associated with the invoking
solver. Then, when the member function IloEnv::end is called for the invoking solver or when the solver
re-extracts the model during synchronization, the virtual member function IlcMemoryManagerI::end will be
called for all the memory managers on that list.

IlcMemoryManagerI is an abstract implementation class, so every time you define a subclass of this abstract
class, you must redefine the virtual member function IlcMemoryManagerI::end to delete allocated memory
appropriately.

Here is how we recommend that you use this class.

1. Define your own class.

 class MyMemoryManager : public IlcMemoryManagerI{
 void end();
 };
 void MyMemoryManager::end() {
 }

2. At run time, use your new class like this:

 s.addMemoryManager(new (s.getImpl()) MyMemoryManager());

See Also: IloSolver

Constructor and Destructor Summary

public IlcMemoryManagerI()

Method Summary

protected virtual void end()

Constructors and Destructors

public IlcMemoryManagerI()

This constructor creates a memory manager.

267

Methods

protected virtual void end()

This member function automatically deletes memory not allocated on the Solver heap. It must be redefined
appopriately whenever you derive a subclass of IlcMemoryManagerI.

268

Class IlcMTNodeEvaluatorI
Definition file: ilsolver/search.h
Include file: <ilsolver/ilosolver.h>

This implementation class derives from the abstract implementation class IlcNodeEvaluatorI. Instances of
IlcMTNodeEvaluatorI are implementation objects of node evaluators for multithreaded search.

Handle and Implementation Classes

A node evaluator is an object in Concert Technology. Like other Concert Technology entities, a node evaluator is
implemented by means of two classes: a handle class and an implementation class. In other words, an instance
of the class IlcNodeEvaluator (a handle) contains a data member (the handle pointer) that points to an
instance of the class IlcNodeEvaluatorI (its implementation object).

Purpose of a Node Evaluator

A node evaluator is linked to the life cycle of an open node. When a node is created, the member function
evaluate is called to evaluate the node. When the solver has to decide whether it should jump to another node,
it calls the member function subsume.

A node evaluator has its own life cycle:

To be used internally, it must be cloned by Solver code using the member function duplicate.•
When the node evaluator is activated, the member function init is called automatically by Solver
code.

•

Implementing Your Own Node Evaluator

You implement a node evaluator much the same way as you implement a search selector.

The function IlcMTMinimizeVar returns an instance of IlcMTSearchSelector. In the documentation of that
function, we describe part of its implementation details. From that description, you see how a search selector is
used and what you must include in your own implementation of a search selector.

To get an idea of how to implement your own node evaluator, see IlcMTMinimizeVar.

See Also: IlcFloatVarRef, IlcIntVarRef

Constructor Summary

public IlcMTNodeEvaluatorI(IloSolver s, IlcBool duplicate)

Method Summary

public void addFloatVar(IlcFloatVar v, const char * name)

public void addIntVar(IlcIntVar v, const char * name)

public IlcFloatVar getFloatVar(IloSolver s, IlcFloatVarRef ref) const

public IlcFloatVarRef getFloatVarRef(const char *) const

public IlcIntVar getIntVar(IloSolver s, IlcIntVarRef ref) const

public IlcIntVarRef getIntVarRef(const char * name) const

269

Inherited Methods from IlcNodeEvaluatorI

duplicateEvaluator, evaluate, init, subsume

Constructors

public IlcMTNodeEvaluatorI(IloSolver s, IlcBool duplicate)

This constructor creates a node evaluator for multithreaded search. The parameter duplicate indicates
whether the object is an internal copy used by the solver (duplicate = IlcTrue), or whether it is just a
template.

Methods

public void addFloatVar(IlcFloatVar v, const char * name)

This member function stores the constrained floating-point variable v under the name indicated by name.

public void addIntVar(IlcIntVar v, const char * name)

This member function stores the constrained integer variable v under the name indicated by name.

public IlcFloatVar getFloatVar(IloSolver s, IlcFloatVarRef ref) const

This member function retrieves the variable stored by the solver s under the name corresponding to the
reference ref.

public IlcFloatVarRef getFloatVarRef(const char *) const

This member function retrieves all the constrained floating-point variables stored under the name indicated by
name.

public IlcIntVar getIntVar(IloSolver s, IlcIntVarRef ref) const

This member function retrieves the variable stored by the solver s under the name corresponding to the
reference ref.

public IlcIntVarRef getIntVarRef(const char * name) const

This member function retrieves all the constrained integer variables stored under the name indicated by name.

270

Class IlcMTSearchLimitI
Definition file: ilsolver/search.h
Include file: <ilsolver/ilosolver.h>

This implementation class derives from the abstract implementation class IlcSearchLimitI. Instances of
IlcMTSearchLimitI are implementation objects of search limits for multithreaded search.

Handle and Implementation Classes

A search limit is an object in Concert Technology. Like other Concert Technology entities, a search limit is
implemented by means of two classes: a handle class and an implementation class. In other words, an instance
of the class IlcMTSearchLimit (a handle) contains a data member (the handle pointer) that points to an
instance of the class IlcMTSearchLimitI (its implementation object).

Purpose of a Search Limit

A search limit is used to prune part of the search tree. The member function check indicates whether the limit
has been reached.

A search limit has its own life cycle:

To be used internally by Concert Technology code, it has to be cloned by the member function
duplicate.

•

When it is activated, the member function init is called automatically by Concert Technology code.•

Implementing Your Own Search Limit

You implement a search limit much the same way as you implement a search selector.

The function IlcMTMinimizeVar returns an instance of IlcMTSearchSelector. In the documentation of that
function, we describe part of its implementation details. From that description, you see how a search selector is
used and what you must include in your own implementation of a search selector.

To get an idea of how to implement your own search limit, see IlcMTMinimizeVar.

See Also: IlcMTSearchLimitI, IlcIntVarRef

Constructor Summary

public IlcMTSearchLimitI(IloSolver s, IlcBool duplicate)

Method Summary

public void addFloatVar(IlcFloatVar v, const char * name)

public void addIntVar(IlcIntVar v, const char * name)

public IlcFloatVar getFloatVar(IloSolver s, IlcFloatVarRef ref) const

public IlcFloatVarRef getFloatVarRef(const char *) const

public IlcIntVar getIntVar(IloSolver s, IlcIntVarRef ref) const

public IlcIntVarRef getIntVarRef(const char * name) const

Inherited Methods from IlcSearchLimitI

271

check, duplicateLimit, init

Constructors

public IlcMTSearchLimitI(IloSolver s, IlcBool duplicate)

This constructor creates a search limit for multithreaded search. The parameter duplicate indicates whether
the object is an internal copy used by the solver (duplicate = IlcTrue), or whether it is just a template.

Methods

public void addFloatVar(IlcFloatVar v, const char * name)

This member function stores the constrained floating-point variable v under the name indicated by name.

public void addIntVar(IlcIntVar v, const char * name)

This member function stores the constrained integer variable v under the name indicated by name.

public IlcFloatVar getFloatVar(IloSolver s, IlcFloatVarRef ref) const

This member function retrieves the variable stored by the solver s under the name corresponding to the
reference ref.

public IlcFloatVarRef getFloatVarRef(const char *) const

This member function retrieves all the constrained floating-point variables stored under the name indicated by
name.

public IlcIntVar getIntVar(IloSolver s, IlcIntVarRef ref) const

This member function retrieves the variable stored by the solver s under the name corresponding to the
reference ref.

public IlcIntVarRef getIntVarRef(const char * name) const

This member function retrieves all the constrained integer variables stored under the name indicated by name.

272

Class IlcMTSearchSelectorI
Definition file: ilsolver/search.h
Include file: <ilsolver/search.h>

This implementation class derives from the abstract implementation class IlcSearchSelectorI. Instances of
IlcMTSearchSelectorI are implementation objects of search selectors for multithreaded search.

Handle and Implementation Classes

A search selector is an object in Concert Technology. Like other Concert Technology entities, a search selector
is implemented by means of two classes: a handle class and an implementation class. In other words, an
instance of the class IlcMTSearchSelector (a handle) contains a data member (the handle pointer) that
points to an instance of the class IlcMTSearchSelectorI (its implementation object).

Purpose of Search Selector

A search selector has several purposes when it is used internally by Concert Technology code:

To implement a minimization process by the member functions update, updateTo, and
saveObjectiveValue.

•

To implement a filter on open nodes by the member functions evaluate and isFeasible.•
To manage selected nodes by the member functions registerSolution, whenFinished,
getCurrentNode, activateNode, and closeNode.

•

A search selector has its own life cycle. To be used internally by Concert Technology code, it has to be cloned by
the duplicate member function.

Implementing Your Own Search Selector

The function IlcMTMinimizeVar returns an instance of IlcMTSearchSelector. In the documentation of that
function, we describe part of its implementation details. From that description, you can get an idea of how a
search selector is used and what you must include in your own implementation of a search selector. See
IlcMTMinimizeVar.

See Also: IlcFloatVarRef, IlcIntVarRef, IlcMTMinimizeVar

Constructor Summary

public IlcMTSearchSelectorI(IloSolver s, IlcBool duplicate)

Method Summary

public void addFloatVar(IlcFloatVar v, const char * name)

public void addIntVar(IlcIntVar v, const char * name)

public IlcFloatVar getFloatVar(IloSolver s, IlcFloatVarRef ref) const

public IlcFloatVarRef getFloatVarRef(const char *) const

public IlcIntVar getIntVar(IloSolver s, IlcIntVarRef ref) const

public IlcIntVarRef getIntVarRef(const char * name) const

Inherited Methods from IlcSearchSelectorI

273

activateNode, closeNode, duplicateSelector, evaluate, getCurrentNode, isFeasible,
saveObjectiveValue, updateObjective, updateObjectiveTo, whenFinishedTree, whenLeaf

Constructors

public IlcMTSearchSelectorI(IloSolver s, IlcBool duplicate)

This constructor creates a search selector for multithreaded search. The parameter duplicate indicates
whether the object is an internal copy used by the solver (duplicate = IlcTrue), or whether it is just a
template.

Methods

public void addFloatVar(IlcFloatVar v, const char * name)

This member function stores the constrained floating-point variable v under the name indicated by name.

public void addIntVar(IlcIntVar v, const char * name)

This member function stores the constrained integer variable v under the name indicated by name.

public IlcFloatVar getFloatVar(IloSolver s, IlcFloatVarRef ref) const

This member function retrieves the variable stored by the solver s under the name corresponding to the
reference ref.

public IlcFloatVarRef getFloatVarRef(const char *) const

This member function retrieves all the constrained floating-point variables stored under the name indicated by
name.

public IlcIntVar getIntVar(IloSolver s, IlcIntVarRef ref) const

This member function retrieves the variable stored by the solver s under the name corresponding to the
reference ref.

public IlcIntVarRef getIntVarRef(const char * name) const

This member function retrieves all the constrained integer variables stored under the name indicated by name.

274

Class IlcNeighborIdentifier
Definition file: ilsolver/iimnhood.h
Include file: <ilsolver/ilosolver.h>

This class communicates information between instances of local search goals. This class is used by
IloScanNHood and IloScanDeltas to store information about the currently instantiated neighbor. This class
is used by IloTest and IloNotify to find out the details of the currently instantiated neighbor. This
information can be communicated by passing the same instance of IlcNeighborIdentifier to such goals in
a composed goal.

See Also: IloScanNHood, IloScanDeltas, IloTest, IloNotify, IloSingleMove, IloSolver, IloNeighborIdentifier, IloIIM

Constructor Summary

public IlcNeighborIdentifier()

public IlcNeighborIdentifier(IlcNeighborIdentifierI * impl)

public IlcNeighborIdentifier(IloSolver solver)

Method Summary

public IloSolution getAtDelta() const

public IloInt getAtIndex() const

public IlcNeighborIdentifierI * getImpl() const

public void operator=(const IlcNeighborIdentifier & h)

public void setAtDelta(IloSolution delta)

public void setAtIndex(IloInt index)

Constructors

public IlcNeighborIdentifier()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcNeighborIdentifier(IlcNeighborIdentifierI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcNeighborIdentifier(IloSolver solver)

This constructor creates an instance of IlcNeighborIdentifier allocated on solver.

Methods

public IloSolution getAtDelta() const

275

This member function returns the solution passed in the previous call to
IlcNeighborIdentifier::setAtDelta. This set is carried out automatically by IloScanNHood and
IloScanDeltas before succeeding. The solution returned by this method represents the solution delta that was
applied by IloScanNHood or IloScanDeltas to reach the current leaf node.

public IloInt getAtIndex() const

This member function returns the index passed in the previous call to
IlcNeighborIdentifier::setAtIndex. This set is carried out automatically by IloScanNHood and
IloScanDeltas before succeeding. The index returned by this method represents the neighborhood index (for
IloScanNHood) or the index in the array of deltas (for IloScanDeltas) that corresponds to the solution delta
leading to the current leaf node.

public IlcNeighborIdentifierI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public void operator=(const IlcNeighborIdentifier & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public void setAtDelta(IloSolution delta)

This member function sets the stored delta to delta. Normally this action is performed by IloScanNHood or
IloScanDeltas. As a user, you should not normally need to use this member function.

public void setAtIndex(IloInt index)

This member function sets the stored index to index. Normally this action is performed by IloScanNHood or
IloScanDeltas. As a user, you should not normally need to use this member function.

276

Class IlcNodeEvaluator
Definition file: ilsolver/search.h
Include file: <ilsolver/ilosolver.h>

An instance of the class IlcNodeEvaluator represents a node evaluator, a function that evaluates open nodes
before they are stored. A node evaluation is a value of type IlcFloat. A node evaluation comes into play after a
failure when the solver asks for a new open node to explore. Solver selects the node with the minimum
evaluation to be the new open node to explore.

See Also: IloSolver, IlcBFSEvaluator, IlcDDSEvaluator, IlcDFSEvaluator, IlcIDFSEvaluator, IlcSBSEvaluator

Constructor Summary

public IlcNodeEvaluator()

public IlcNodeEvaluator(IlcNodeEvaluatorI * impl)

Method Summary

public IlcNodeEvaluatorI * getImpl() const

public void operator=(const IlcNodeEvaluator & h)

Constructors

public IlcNodeEvaluator()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcNodeEvaluator(IlcNodeEvaluatorI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IlcNodeEvaluatorI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public void operator=(const IlcNodeEvaluator & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

277

Class IlcNodeEvaluatorI
Definition file: ilsolver/search.h
Include file: <ilsolver/ilosolver.h>

A node evaluator is an object in Solver. Like other Solver entities, a node evaluator is implemented by means of
two classes: a handle class and an implementation class. In other words, an instance of the class
IlcNodeEvaluator (a handle) contains a data member (the handle pointer) that points to an instance of the
class IlcNodeEvaluatorI (its implementation object).

A node evaluator is linked to the life cycle of an open node. When a node is created, the method evaluate is
called to evaluate the node. When the solver has to decide if it should jump to another node, the method
subsume is called.

A node evaluator has its own life cycle:

To be used internally by Solver code, it must be cloned by the member function duplicate.•
When the node evaluator is activated, Solver calls the member function init.•

See Also: IlcNodeEvaluator, IlcSearchNode, IloApply

Constructor and Destructor Summary

public IlcNodeEvaluatorI(IloSolver solver, IlcBool duplicate)

public ~IlcNodeEvaluatorI()

Method Summary

public virtual IlcNodeEvaluatorI * duplicateEvaluator(IloSolver solver)

public virtual IlcFloat evaluate(const IlcSearchNode n) const

public virtual void init(const IlcSearchNode node)

public virtual IlcBool subsume(IlcFloat evalBest, IlcFloat
evalCurrent) const

Constructors and Destructors

public IlcNodeEvaluatorI(IloSolver solver, IlcBool duplicate)

This constructor creates an instance of the class IlcNodeEvaluatorI using solver. The parameter
duplicate indicates whether the object is an internal copy used by the solver (duplicate = IlcTrue), or
whether it is just a template. This constructor should not be called directly, as this class is an abstract class. This
constructor is called automatically in the constructor of its subclasses.

public ~IlcNodeEvaluatorI()

This destructor is called automatically by the destructor of its subclasses. It frees memory used by the invoking
objects.

278

Methods

public virtual IlcNodeEvaluatorI * duplicateEvaluator(IloSolver solver)

This member function is called internally to duplicate the current node evaluator. When you use this member
function, the duplicate parameter in the IlcNodeEvaluatorI constructor should be equal to IlcTrue.

public virtual IlcFloat evaluate(const IlcSearchNode n) const

When an open node n is created, this member function is called to evaluate the node. It returns a floating-point
value which is the evaluation of the node. An evaluation of IlcInfinity means that the node should be
discarded.

When you implement your own version of this virtual member function, you should make sure that your
implementation is independent of the state of the solver (the instance of IloSolver where the invoking node
evaluator is working). This signature includes const for that reason to prevent accumulated effects of multiple
calls to this member function.

public virtual void init(const IlcSearchNode node)

When the goal IlcApply executes, it calls this method with the current node, node, being passed as parameter.
The purpose of this method is to store a reference state for the node evaluator.

public virtual IlcBool subsume(IlcFloat evalBest, IlcFloat evalCurrent) const

During the search, the solver must decide if it should postpone the evaluation of the current node and move to
another open node. This decision is based on the result of the subsume method. The subsume method is called
with two floating-point values as parameters. The first value corresponds to the evaluation of the best open node,
the second to the evaluation of the current node. This method returns IlcTrue to indicate that the solver should
postpone the evaluation of the current node and continue with the evaluation of the best open node.

When you implement your own version of this member function, you should make sure that your implementation
is independent of the state of the solver (the instance of IloSolver where the invoking node evaluator is
working). Your implementation of subsume should decide statically whether one node subsumes another. This
signature includes const for that reason to prevent accumulated effects of multiple calls to this member function.

279

Class IlcPathTransit
Definition file: ilsolver/ilcpath.h
Include file: <ilsolver/ilosolver.h>

Solver lets you define the transit function in a path constraint (the cost for linking two nodes together).

This class is the handle class of the object that defines this transit function.

An object of this handle class uses the virtual member function IlcPathTransitI::transit from its
implementation class to define the transit function to apply in the path constraint in which it is used.

See Also: IlcPathLength, IlcPathTransitEvalI, IlcPathTransitFunction, IlcPathTransitI

Constructor Summary

public IlcPathTransit(const IlcPathTransit & trans)

public IlcPathTransit(IlcPathTransitI * trans)

public IlcPathTransit(IloSolver s, IlcPathTransitFunction func)

Method Summary

public IlcPathTransitI * getImpl() const

Constructors

public IlcPathTransit(const IlcPathTransit & trans)

This copy constructor accepts a reference to an implementation object and creates the corresponding handle
object.

public IlcPathTransit(IlcPathTransitI * trans)

This constructor creates a handle that corresponds to the same implementation object that trans indicates.

public IlcPathTransit(IloSolver s, IlcPathTransitFunction func)

This constructor creates a new transit function from an evaluation function. The implementation object of the
newly created handle is an instance of the class IlcPathTransitEvalI constructed with the evaluation
function indicated by the argument func.

Methods

public IlcPathTransitI * getImpl() const

This member function returns a pointer to the implementation object corresponding to the invoking handle.

Example

280

The simplest way to define a new transit function is to define an evaluation function. For example, the following
code defines a transit function that returns the distance from node i to node j.

 IlcFloat** Distance;
 IlcFloat GetDistance(IlcInt i, IlcInt j){
 return Distance[i][j];
 }

Then you create a transition object like this:

 IlcPathTransit transition(GetDistance);

However, this approach is not very efficient if the transit function depends on more than the indexes of two
nodes. In that example, you saw that we needed to have a global distance array, a situation that we generally
want to avoid. Another approach is to define a new transit function like this: define the virtual function transit
for this subclass, as well as a function that returns a handle.

#include <ilsolver/ilcpath.h>
 class IlcGetDistanceI: public IlcPathTransitI {
 IlcFloat** distance;
 public:
 IlcGetDistanceI(); //Allocates and fills distance
 virtual IlcFloat transit(IlcInt i, IlcInt j);
 };
 IlcFloat transit(IlcInt i, IlcInt j) {
 return distance[i][j];
 }
 IlcPathTransit GetDistance(IloSolver s) {
 return new (s.getHeap()) IlcGetDistanceI();
 }

Then with the newly defined class, you create a transition object like this:

 IlcPathTransit distance = GetDistance(s);

281

Class IlcPathTransitEvalI
Definition file: ilsolver/ilcpath.h
Include file: <ilsolver/ilosolver.h>

Solver lets you define the transit function in a path constraint (the cost for linking two nodes together).

This class is an implementation class, a predefined subclass of IlcPathTransitI, that you use to define a
new transition function expressed by an evaluation function. This evaluation function is of type
IlcPathTransitFunction.

See Also: IlcPathLength, IlcPathTransit, IlcPathTransitFunction, IlcPathTransitI

Constructor Summary

public IlcPathTransitEvalI(IlcPathTransitFunction function)

Method Summary

public virtual IlcFloat transit(IlcInt i, IlcInt j)

Inherited Methods from IlcPathTransitI

transit

Constructors

public IlcPathTransitEvalI(IlcPathTransitFunction function)

This constructor creates a new transit function from an evaluation function. Objects of this class use the
evaluation function indicated by the argument function to define the transition costs used in the path
constraint.

Methods

public virtual IlcFloat transit(IlcInt i, IlcInt j)

This virtual member function returns the transition cost from node i to node j. In order to do this, it calls the
evaluation function.

282

Class IlcPathTransitI
Definition file: ilsolver/ilcpath.h
Include file: <ilsolver/ilosolver.h>

Solver lets you define the transit function in a path constraint (the cost for linking two nodes together).

This class is the implementation class for IlcPathTransit, the class of object that defines a transit function for
the path constraint. The virtual member function in IlcPathTransitI returns the transition cost for connecting
two nodes together.

To express new transit functions, you can define a subclass of IlcPathTransitI. If this transition can be
expressed by an evaluation function, then you can use the predefined subclass IlcPathTransitEvalI for that
purpose.

See Also: IlcPathLength, IlcPathTransit, IlcPathTransitEvalI, IlcPathTransitFunction

Constructor and Destructor Summary

public IlcPathTransitI()

public ~IlcPathTransitI()

Method Summary

public virtual IlcFloat transit(IlcInt i, IlcInt j)

Constructors and Destructors

public IlcPathTransitI()

This constructor creates an implementation object.

public ~IlcPathTransitI()

As this class is to be subclassed, a virtual destructor is provided

Methods

public virtual IlcFloat transit(IlcInt i, IlcInt j)

This virtual member function returns the transition cost from node i to node j. Its default implementation returns
0 (zero) as the value of every transition.

283

Class IlcPrintTrace
Definition file: ilsolver/ilctrace.h
Include file: <ilsolver/ilctrace.h>

An instance of this class is part of the Solver trace mechanism. An instance of this class prints trace events.

Example

Here is an example of how to use a print trace.

 IlcPrintTrace trace(solver, IlcTraceVars | IlcTraceFail);

See Also: IlcTrace, IlcTraceI

Constructor and Destructor Summary

public IlcPrintTrace(IloSolver s, IlcUInt flags=4, const char * name=0)

public IlcPrintTrace(IlcPrintTraceI * impl)

Method Summary

public IlcPrintTraceI * getImpl() const

public void operator=(const IlcPrintTrace & trace)

public const IlcPrintTrace & trace(IlcAnySetVar) const

public const IlcPrintTrace & trace(IlcIntSetVar) const

public const IlcPrintTrace & trace(IlcFloatVar) const

public const IlcPrintTrace & trace(IlcAnyVar) const

public const IlcPrintTrace & trace(IlcIntVar) const

Constructors and Destructors

public IlcPrintTrace(IloSolver s, IlcUInt flags=4, const char * name=0)

This constructor creates a print trace. The parameter flags indicates which events it traces. See the topic Trace
Events in the class IlcTraceI for a list of the possible flags.

public IlcPrintTrace(IlcPrintTraceI * impl)

This constructor creates a handle (an instance of the class IlcPrintTrace) from a pointer to an
implementation object (an instance of the implementation class IlcPrintTraceI).

Methods

public IlcPrintTraceI * getImpl() const

284

This member function returns a pointer to the implementation object of the invoking print trace.

public void operator=(const IlcPrintTrace & trace)

This operator assigns trace to the invoking print trace. After calling this operator, both handles point to the
same implementation object.

public const IlcPrintTrace & trace(IlcAnySetVar) const

These member functions hook a variable; that is, they offer a link between a print trace and a variable. (For users
of previous versions of Solver, this member function resembles the trace hook mechanism.)

public const IlcPrintTrace & trace(IlcIntSetVar) const

These member functions hook a variable; that is, they offer a link between a print trace and a variable. (For users
of previous versions of Solver, this member function resembles the trace hook mechanism.)

public const IlcPrintTrace & trace(IlcFloatVar) const

These member functions hook a variable; that is, they offer a link between a print trace and a variable. (For users
of previous versions of Solver, this member function resembles the trace hook mechanism.)

public const IlcPrintTrace & trace(IlcAnyVar) const

These member functions hook a variable; that is, they offer a link between a print trace and a variable. (For users
of previous versions of Solver, this member function resembles the trace hook mechanism.)

public const IlcPrintTrace & trace(IlcIntVar) const

These member functions hook a variable; that is, they offer a link between a print trace and a variable. (For users
of previous versions of Solver, this member function resembles the trace hook mechanism.)

285

Class IlcRandom
Definition file: ilsolver/random.h
Include file: ilsolver/random.h

Objects of this class produce streams of pseudo-random numbers. You can use objects of this class to create a
search with a random element. This class will produce the same stream of random numbers in recompute mode
as when it was in compute mode.

For more information, see the member function IloSolver::isInRecomputeMode.

For more information, see IloRandom.

See Also: IloRandom

Constructor Summary

public IlcRandom()

public IlcRandom(IlcRandomI * impl)

public IlcRandom(IloSolver m, IlcInt seed=0)

Method Summary

public void copy(IloRandom rnd)

public void copy(IlcRandom rnd)

public void copyTo(IloRandom rnd)

public IlcFloat getFloat() const

public IlcRandomI * getImpl() const

public IlcInt getInt(IlcInt n) const

public const char * getName() const

public IlcAny getObject() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public void operator=(const IlcRandom & h)

public void reSeed(IlcInt seed)

public void setName(const char * name) const

public void setObject(IlcAny object) const

Constructors

public IlcRandom()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcRandom(IlcRandomI * impl)

This constructor creates a handle object from a pointer to an implementation object.

286

public IlcRandom(IloSolver m, IlcInt seed=0)

This constructor creates a random number generator, initially seeded with the seed seed.

Methods

public void copy(IloRandom rnd)

This member function copies the state of a Concert Technology random number generator to the invoking one.
After the copy, both generators will produce the same stream of pseudo-random numbers.

public void copy(IlcRandom rnd)

This member function copies the state of another random number generator to the invoking one. After the copy,
both generators will produce the same stream of pseudo-random numbers.

public void copyTo(IloRandom rnd)

This member function copies the state of the invoking generator to a Concert Technology random number
generator. After the copy, both generators will produce the same stream of pseudo-random numbers.

public IlcFloat getFloat() const

This member function returns a floating point number drawn uniformly from the range [0..1).

public IlcRandomI * getImpl() const

This constructor creates an object by copying another one. This constructor creates an object by copying another
one. This member function returns a pointer to the implementation object of the invoking handle.

public IlcInt getInt(IlcInt n) const

This member function returns a integer number drawn uniformly from the range [0..n).

public const char * getName() const

This member function returns the name of the invoking object.

public IlcAny getObject() const

This member function returns a pointer to the external object associated with the invoking object, if there is such
an association. It returns 0 (zero) otherwise.

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IloSolverI * getSolverI() const

287

This member function returns a pointer to the implementation object of the solver where the invoking object was
extracted.

public void operator=(const IlcRandom & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

public void reSeed(IlcInt seed)

This member function reseeds the generator with seed seed.

public void setName(const char * name) const

This member function sets the name of the invoking object to a copy of name. This assignment is a reversible
action.

public void setObject(IlcAny object) const

This member function establishes a link between the invoking object and an external object of which the invoking
object might be a data member.

288

Class IlcRevAny
Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

IlcRevAny is a reversible version of the basic predefined Solver type, IlcAny. The reversible version makes it
easier to restore a previous state. This class has a value data member corresponding to IlcAny. This value data
member is automatically restored when Solver backtracks.

This class is not a handle class. Objects of this class should be used directly, that is, not through pointers to
them. Do not create instances of IlcRevAny as automatic objects (that is, as objects allocated on the C++
stack). Do not pass them by value.

An object of the class IlcRevAny is automatically cast to the basic type IlcAny, if needed. Instances of this
reversible class can be used as data members. However, do not use them as types for automatic variables,
where “automatic” has its usual C++ meaning, as this practice would create memory-access errors. Do not pass
them as arguments.

An instance of IlcRevAny behaves very much like an instance of IlcAny; the difference in their behavior has
to do with assignments. Indeed, all reversible assignments are undone when Solver backtracks.

Unfortunately, the class IlcRevAny is not typed. The pointers are of type IlcAny and thus give no indication of
the type of objects they point to. See the macro ILCREV for a way to define a reversible class for typed pointers
yourself.

For more information, see the concepts State and Reversibility.

See Also: IlcRevBool, IlcRevFloat, IlcRevInt

Constructor Summary

public IlcRevAny(IloSolver s, IlcAny initValue=0)

Method Summary

public IlcAny getValue() const

public operator IlcAny() const

public void setValue(IloSolver solver, IlcAny value)

Constructors

public IlcRevAny(IloSolver s, IlcAny initValue=0)

The constructor creates a new object, an instance of IlcRevAny. It is more memory-efficient than the
constructor without arguments.

Methods

public IlcAny getValue() const

This member function accesses the value of the invoking instance of IlcRevAny.

289

public operator IlcAny() const

This operator returns the value of the instance of IlcRevAny. In other words, this operator automatically casts
an instance of IlcRevAny into an instance of IlcAny.

public void setValue(IloSolver solver, IlcAny value)

This member function modifies the value of the invoking object by reversibly assigning value to it. When Solver
backtracks, this reversible modification will be undone.

290

Class IlcRevBool
Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

IlcRevBool is a reversible version of the basic predefined Solver type, IlcBool. The reversible version makes
it easier to restore a previous state. This class has a value data member corresponding to IlcBool. This value
data member is automatically restored when Solver backtracks.

This class is not a handle class. Objects of this class should be used directly, that is, not through pointers to
them. Do not create instances of IlcRevBool as automatic objects (that is, as objects allocated on the C++
stack). Do not pass them by value.

An object of the class IlcRevBool is automatically cast to the basic type IlcBool, if needed. Instances of this
reversible class can be used as data members. However, do not use them as types for automatic variables,
where “automatic” has its usual C++ meaning, as this practice would create memory-access errors. Do not pass
them as arguments.

An instance of IlcRevBool behaves very much like an instance of IlcBool; the difference in their behavior
has to do with assignments. Indeed, all reversible assignments are undone when Solver backtracks.

For more information, see the concepts State and Reversibility.

See Also: IlcRevAny, IlcRevFloat, IlcRevInt

Constructor Summary

public IlcRevBool(IloSolver solver, IlcBool initValue=IlcFalse)

Method Summary

public IlcBool getValue() const

public operator IlcBool() const

public void setValue(IloSolver solver, IlcBool value)

Constructors

public IlcRevBool(IloSolver solver, IlcBool initValue=IlcFalse)

The constructor creates a new object, an instance of IlcRevBool. It is more memory-efficient than the
constructor without arguments.

Methods

public IlcBool getValue() const

This member function accesses the value of the instance of IlcRevBool.

public operator IlcBool() const

291

This operator returns the value of the instance of IlcRevBool. In other words, this operator automatically casts
an instance of IlcRevBool into an instance of IlcBool.

public void setValue(IloSolver solver, IlcBool value)

This operator modifies the value of an instance of IlcRevBool by assigning value to it. When Solver
backtracks, this reversible modification will be undone.

292

Class IlcRevFloat
Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

IlcRevFloat is a reversible version of the basic predefined Solver type, IlcFloat. The reversible version
makes it easier to restore a previous state. This class has a value data member corresponding to IlcFloat.
This value data member is automatically restored when Solver backtracks.

This class is not a handle class. Objects of this class should be used directly, that is, not through pointers to
them. Do not create instances of IlcRevFloat as automatic objects (that is, as objects allocated on the C++
stack). Do not pass them by value.

An object of the class IlcRevFloat is automatically cast to the basic type IlcFloat, if needed. Instances of
this reversible class can be used as data members. However, do not use them as types for automatic variables,
where “automatic” has its usual C++ meaning, as this practice would create memory-access errors. Do not pass
them as arguments.

An instance of IlcRevFloat behaves very much like an instance of IlcFloat; the difference in their behavior
has to do with assignments. Indeed, all reversible assignments are undone when Solver backtracks.

For more information, see the concepts State and Reversibility.

See Also: IlcRevAny, IlcRevBool, IlcRevInt

Constructor Summary

public IlcRevFloat()

public IlcRevFloat(IloSolver solver, IlcFloat initValue=0.)

Method Summary

public IlcFloat getValue() const

public operator IlcFloat() const

public void setValue(IloSolver solver, IlcFloat value)

Constructors

public IlcRevFloat()

The constructor creates a new object, an instance of IlcRevFloat. It is less memory-efficient than the
constructor with a solver as its argument.

public IlcRevFloat(IloSolver solver, IlcFloat initValue=0.)

The constructor creates a new object, an instance of IlcRevFloat. It is more memory-efficient than the
constructor without arguments.

293

Methods

public IlcFloat getValue() const

This member function accesses the value of the instance of IlcRevFloat.

public operator IlcFloat() const

This operator returns the value of the instance of IlcRevFloat. In other words, this operator automatically
casts an instance of IlcRevFloat into an instance of IlcFloat.

public void setValue(IloSolver solver, IlcFloat value)

This member function modifies the value of the invoking object by reversibly assigning value to it. When Solver
backtracks, this reversible modification will be undone.

294

Class IlcRevInt
Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

IlcRevInt is a reversible version of the basic predefined Solver type, IlcInt. The reversible version makes it
easier to restore a previous state. This class has a value data member corresponding to IlcInt. This value data
member is automatically restored when Solver backtracks.

This class is not a handle class. Objects of this class should be used directly, that is, not through pointers to
them. Do not create instances of IlcRevInt as automatic objects (that is, as objects allocated on the C++
stack). Do not pass them by value.

An object of the class IlcRevInt is automatically cast to the basic type IlcInt, if needed. Instances of this
reversible class can be used as data members. However, do not use them as types for automatic variables,
where “automatic” has its usual C++ meaning, as this practice would create memory-access errors. Do not pass
them as arguments.

An instance of IlcRevInt behaves very much like an instance of IlcInt; the difference in their behavior has
to do with assignments. Indeed, all reversible assignments are undone when Solver backtracks.

For more information, see the concepts State and Reversibility.

See Also: IlcRevAny, IlcRevBool, IlcRevFloat

Constructor Summary

public IlcRevInt(IloSolver solver, IlcInt initValue=0)

Method Summary

public IlcInt getValue() const

public operator IlcInt() const

public void setValue(IloSolver solver, IlcInt value)

Constructors

public IlcRevInt(IloSolver solver, IlcInt initValue=0)

The constructor creates a new object, an instance of IlcRevInt. It is more memory-efficient than the
constructor without arguments.

Methods

public IlcInt getValue() const

This member function accesses the value of the instance of IlcRevInt.

public operator IlcInt() const

295

This operator returns the value of the instance of IlcRevInt. In other words, this operator automatically casts
an instance of IlcRevInt into an instance of IlcInt.

public void setValue(IloSolver solver, IlcInt value)

This member function modifies the value of the invoking object by reversibly assigning value to it. When Solver
backtracks, this reversible modification will be undone.

296

Class IlcSearchLimit
Definition file: ilsolver/search.h
Include file: <ilsolver/ilosolver.h>

The class IloSearchLimit represents search limits in a Concert Technology model. The class
IlcSearchLimit represents search limits internally in a Solver search.

For more information, see the concept Global Modifiers.

See Also: IloSearchLimit

Constructor Summary

public IlcSearchLimit()

public IlcSearchLimit(IlcSearchLimitI * impl)

Method Summary

public IlcSearchLimitI * getImpl() const

public void operator=(const IlcSearchLimit & h)

Constructors

public IlcSearchLimit()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcSearchLimit(IlcSearchLimitI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IlcSearchLimitI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public void operator=(const IlcSearchLimit & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

297

Class IlcSearchLimitI
Definition file: ilsolver/search.h
Include file: <ilsolver/ilosolver.h>

A search limit is an object in Solver. Like other Solver entities, a search limit is implemented by means of two
classes: a handle class and an implementation class. In other words, an instance of the class IlcSearchLimit
(a handle) contains a data member (the handle pointer) that points to an instance of the class
IlcSearchLimitI (its implementation object).

A search limit is used to prune part of the search tree. The member function check indicates whether the limit
has been reached.

A search limit has its own life cycle:

To be used internally, it has to be cloned by the member function duplicate.•
When it is activated, the member function init is called.•

The class IlcSearchLimitI is extendable; in other words, you can write your own search limits. For an
example of how to do so, see the IBM ILOG Solver User's Manual.

See Also: IlcSearchLimit, IlcSearchNode, IloLimitSearch, IloSearchLimitI

Constructor and Destructor Summary

public IlcSearchLimitI(IloSolver solver, IlcBool duplicate)

public ~IlcSearchLimitI()

Method Summary

public virtual IlcBool check(const IlcSearchNode node) const

public virtual IlcSearchLimitI * duplicateLimit(IloSolver solver)

public virtual void init(const IlcSearchNode node)

Constructors and Destructors

public IlcSearchLimitI(IloSolver solver, IlcBool duplicate)

This constructor creates an instance of the class IlcSearchLimitI using solver. The parameter duplicate
indicates if the object is an internal copy used by the solver (duplicate = IlcTrue), or if it is just a template.
This constructor should not be called directly as this class is an abstract class. This constructor is called
automatically in the constructor of its subclasses.

public ~IlcSearchLimitI()

This destructor is called automatically by the destructor of its subclasses. It frees memory used by the objects.

298

Methods

public virtual IlcBool check(const IlcSearchNode node) const

This member function is called with the current node as parameter to check whether the limit implemented by the
object has been reached. If the limit has been reached, this virtual member function should return IlcTrue.
Afterwards, the unexplored search tree covered by this limit will be simply discarded.

When you implement this virtual member function yourself, you should make sure that your implementation
decides exactly one time (that is, once and for all) whether a limit has been reached. Once the limit has been
reached, it will not be called again, and all nodes covered by the limit will be discarded. The signature includes
const for that reason to avoid accumulated effects of multiple calls of this member function.

public virtual IlcSearchLimitI * duplicateLimit(IloSolver solver)

This member function is called internally to duplicate the current search limit. When you use this function, the
duplicate parameter in the IlcSearchLimitI constructor should be equal to IlcTrue.

public virtual void init(const IlcSearchNode node)

When the goal IlcLimitSearch executes, it calls this method with the current node passed as its parameter.
The purpose of this method is to store a reference state for the node evaluator.

299

Class IlcSearchMonitor
Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

Instances of this class represent search monitors. A search monitor watches and reports events in a search. See
the virtual member functions of its implementation class, IlcSearchMonitorI, to get an idea of what monitors
can do in your application.

See Also: IlcSearchMonitorI

Constructor Summary

public IlcSearchMonitor()

public IlcSearchMonitor(IlcSearchMonitorI * impl)

Method Summary

public IlcSearchMonitorI * getImpl() const

public void operator=(const IlcSearchMonitor & h)

Constructors

public IlcSearchMonitor()

This constructor creates a handle (an instance of the class IlcSearchMonitor) from a pointer to an
implementation object (an instance of the implementation class IlcSearchMonitorI).

This constructor creates an empty handle. You must initialize it before you use it.

public IlcSearchMonitor(IlcSearchMonitorI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IlcSearchMonitorI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public void operator=(const IlcSearchMonitor & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

300

Class IlcSearchMonitorI
Definition file: ilsolver/search.h
Include file: <ilsolver/ilosolver.h>

A search monitor watches and reports events in a search. Specifically, it offers member functions capable of
reporting such events as the creation of a search node, the destruction of a search node, failure of the search,
and so forth.

A search monitor is an object in Solver. Like other Solver entities, a search monitor is implemented by means of
two classes: a handle class and an implementation class. In other words, an instance of the class
IlcSearchMonitor (a handle) contains a data member (the handle pointer) that points to an instance of the
class IlcSearchMonitorI (its implementation object).

See Also: IlcNodeEvaluator, IlcSearchLimit, IlcSearchMonitor, IlcSearchNode, IlcSearchSelector,
IlcSearchSelectorI, IloApply, IloLimitSearch, IloSelectSearch

Constructor and Destructor Summary

public IlcSearchMonitorI()

public ~IlcSearchMonitorI()

Method Summary

protected virtual void whenBeginMove(const IlcSearchNode node)

protected virtual void whenCreate(const IlcSearchNode node)

protected virtual void whenEndMove(const IlcSearchNode node)

protected virtual void whenFail(const IlcSearchNode node)

protected virtual void whenInMove(const IlcSearchNode node)

protected virtual void whenOpen(const IlcSearchNode node, IlcBool recompute)

protected virtual void whenPrune(const IlcSearchNode node,
IlcSearchMonitorI::IlcPruneMode mode)

protected virtual void whenSolution(const IlcSearchNode node)

Inner Enumeration

IlcSearchMonitorI::IlcPruneMode

Constructors and Destructors

public IlcSearchMonitorI()

This constructor creates an instance of the class IlcSearchMonitorI. This constructor should not be called
directly as this class is an abstract class. This constructor is called automatically in the constructor of its
subclasses.

public ~IlcSearchMonitorI()

As this class is to be subclassed, a virtual destructor is provided.

301

Methods

protected virtual void whenCreate(const IlcSearchNode node)

Solver calls this member function when it creates a node.

protected virtual void whenFail(const IlcSearchNode node)

Solver calls this member function when the search fails. Unless the search is already complete, Solver normally
backtracks and recomputes after this member function.

protected virtual void whenSolution(const IlcSearchNode node)

Solver calls this member function when it exits successfully from the search.

protected virtual void whenPrune(const IlcSearchNode node,
IlcSearchMonitorI::IlcPruneMode mode)

Solver calls this member function when it prunes the frontier of nodes in the search tree. The parameter mode
indicates the reason for pruning when it prunes an open node belonging to the frontier of nodes in the search
tree.

protected virtual void whenOpen(const IlcSearchNode node, IlcBool recompute)

Solver calls this member function when it explores a node. The parameter recompute indicates whether Solver
is recomputing (IlcTrue) or not (IlcFalse) at the time of the call.

protected virtual void whenBeginMove(const IlcSearchNode node)

Solver calls this member function when it has decided to move from one node to in the search tree.

protected virtual void whenInMove(const IlcSearchNode node)

Solver calls this member function after it backtracks. The backtrack may be because of a failure or because of a
move from one node to another.

protected virtual void whenEndMove(const IlcSearchNode node)

Solver calls this member function after a recomputation following a backtrack.

Inner Enumerations

302

Enumeration IlcPruneMode

Definition file: ilsolver/search.h
Include file: <ilsolver/ilosolver.h>

The values in this enumeration indicate why Solver prunes the nodes of a search tree.

See Also: IlcSearchMonitorI

Fields:

searchNotFailed

searchFailedNormally

killedBySelector

killedByLimit

killedByLabel

killedByEvaluator

killedByExit

303

Class IlcSearchNode
Definition file: ilsolver/search.h
Include file: <ilsolver/ilosolver.h>

Instances of this class represent nodes in the search tree of a parallel search. Most of its member functions
access information of use to node evaluators. Node evaluators are documented in the class
IlcNodeEvaluator.

The following figure illustrates a search tree consisting of its root node and choice points. Its maximum or-depth
is three. It shows the number of discrepancies at the leaves. A discrepancy corresponds to the or-depth of that
search node minus its left-depth.

See Also: IlcNodeEvaluator

Constructor Summary

public IlcSearchNode()

public IlcSearchNode(IlcSearchNodeI * impl)

Method Summary

public IlcFloat getBitsetValue(IlcInt start, IlcInt length) const

public IlcInt getDepth() const

public IlcSearchNodeI * getImpl() const

public IlcInt getLastDiscrepancyDepth(IlcInt offset) const

public IlcInt getLeftDepth() const

public IlcInt getRightDepth() const

public IloSolver getSolver() const

public IloSolverI * getSolverI() const

public void operator=(const IlcSearchNode & h)

304

Constructors

public IlcSearchNode()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcSearchNode(IlcSearchNodeI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IlcFloat getBitsetValue(IlcInt start, IlcInt length) const

Node evaluators use this member function. It first converts the path from the root to the node into a bitset, where
0 (zero) is a left move and 1 (one) a right move. Then it extracts from this bitset a sub-bitset starting from the
position indicated by the parameter start and extending. It then converts this extracted bitset into an integer,
using the convention that the least significant bit is to the left (corresponding to the choice points closer to the
root of the search tree). This member function then casts this integer into a IlcFloat value and returns it.

public IlcInt getDepth() const

Node evaluators use this member function. It returns the or-depth of the invoking search node.

public IlcSearchNodeI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public IlcInt getLastDiscrepancyDepth(IlcInt offset) const

Node evaluators use this member function. It returns the or-depth of a particular node in the search tree; that
node is the one located at offset number of right moves along the path from the root of the search tree to the
invoking node.

public IlcInt getLeftDepth() const

Node evaluators use this member function. It returns the number of left moves in the path starting from the root of
the search tree to the position of the invoking node.

public IlcInt getRightDepth() const

Node evaluators use this member function. It returns the number of right moves in the path starting from the root
of the search tree to the position of the invoking node.

305

public IloSolver getSolver() const

This member function returns the solver that the invoking node belongs to.

public IloSolverI * getSolverI() const

This member function returns the implementation of the solver that the invoking node belongs to.

public void operator=(const IlcSearchNode & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

306

Class IlcSearchSelector
Definition file: ilsolver/search.h
Include file: <ilsolver/ilosolver.h>

Instances of this class represent search selectors. A search selector acts as a filter during the search. The
function IloMinimizeVar, for example, creates and returns a search selector for use in your applications.

See Also: IlcNodeEvaluator, IloFirstSolution, IloMinimizeVar, IloSelectSearch

Constructor Summary

public IlcSearchSelector()

public IlcSearchSelector(IlcSearchSelectorI * impl)

Method Summary

public IlcSearchSelectorI * getImpl() const

public void operator=(const IlcSearchSelector & h)

Constructors

public IlcSearchSelector()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcSearchSelector(IlcSearchSelectorI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IlcSearchSelectorI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public void operator=(const IlcSearchSelector & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

307

Class IlcSearchSelectorI
Definition file: ilsolver/search.h
Include file: <ilsolver/ilosolver.h>

The class IlcSearchSelector represents search selectors internally in the Solver search. The class
IloSearchSelector represents search selectors in a Concert Technology model. Search selectors are useful
as filters during a Solver search.

A search selector is an object in Solver. Like other Solver entities, a search selector is implemented by means of
two classes: a handle class and an implementation class. In other words, an instance of the class
IlcSearchSelector (a handle) contains a data member (the handle pointer) that points to an instance of the
class IlcSearchSelectorI (its implementation object).

A search selector has several purposes:

To implement a minimization process using the member functions update, updateTo, and
saveObjectiveValue.

•

To implement a filter on open nodes using the member functions evaluate and isFeasible.•
To manage selected nodes using the member functions registerSolution, whenFinished,
getCurrentNode, activateNode, and closeNode.

•

A search selector has its own life cycle. To be used internally, it has to be cloned by the duplicate member
function.

See Also: IlcSearchNode, IlcSearchSelector

Constructor and Destructor Summary

public IlcSearchSelectorI(IloSolver solver, IlcBool duplicate)

public ~IlcSearchSelectorI()

Method Summary

public void activateNode(IloSolver solver, IlcSearchNode
n)

public void closeNode(IlcSearchNode n)

public virtual IlcSearchSelectorI * duplicateSelector(IloSolver solver)

public virtual IlcFloat evaluate(const IlcSearchNode node) const

public IlcSearchNode getCurrentNode(IloSolver solver)

public virtual IlcBool isFeasible(IlcFloat eval) const

public void saveObjectiveValue(IloSolver solver, IloNum
newVal)

public virtual void updateObjective(IloSolver solver)

public virtual void updateObjectiveTo(IloSolver solver, IloNum
newVal)

public virtual void whenFinishedTree(IloSolver solver, IlcBool
toKill)

public virtual void whenLeaf(IloSolver solver)

308

Constructors and Destructors

public IlcSearchSelectorI(IloSolver solver, IlcBool duplicate)

This constructor creates an instance of the class IlcSearchSelectorI using the solver. The parameter
duplicate indicates whether the object is an internal copy used by the solver (duplicate = IlcTrue), or
if it is just a template. This constructor should not be called directly as this class is an abstract class. This
constructor is called automatically in the constructor of its subclasses.

public ~IlcSearchSelectorI()

This destructor is called automatically by the destructor of its subclasses. It frees memory used by the objects.

Methods

public void activateNode(IloSolver solver, IlcSearchNode n)

This member function should be called only from within the whenFinished member function. It indicates that
this node n is in fact selected (which is the purpose of the IlcSelectSearch function).

public void closeNode(IlcSearchNode n)

This member function deletes a node n obtained with the getCurrentNode member function.

public virtual IlcSearchSelectorI * duplicateSelector(IloSolver solver)

This member function is called internally to duplicate the current search selector. When you use this member
function, the duplicate parameter in the IlcSearchSelectorI constructor should be equal to IlcTrue.

public virtual IlcFloat evaluate(const IlcSearchNode node) const

This member function evaluates the node given as a parameter. This evaluation will be used by the isFeasible
member function. Its purpose is to prune nodes before the solver jumps to them.

When you implement this virtual member function yourself, you should make sure that your implementation is
independent of the state of the solver (the instance of IloSolver where the invoking search selector is
working). The signature of this member function includes const for that reason to avoid accumulated effects of
multiple calls of this member function.

public IlcSearchNode getCurrentNode(IloSolver solver)

This member function returns a copy of the current search node. It should be called only from the
registerSolution member function. To discard a node obtained by this member function, you must use the
closeNode member function.

public virtual IlcBool isFeasible(IlcFloat eval) const

309

This member function uses the eval parameter which comes from the evaluate member function. A return
value of IlcFalse indicates that it is safe to discard this node and not to evaluate it. The return value IlcTrue
indicates that the node will be kept.

When you implement this virtual member function yourself, you should make sure that your implementation is
independent of the state of the solver (the instance of IloSolver where the invoking search selector is
working). The signature of this member function includes const for that reason to avoid accumulated effects of
multiple calls of this member function.

public void saveObjectiveValue(IloSolver solver, IloNum newVal)

This member function is called by the solver when it arrives at a leaf of the search tree associated with the goal
given as a parameter to the IlcSelectSearch function. It may use the member functions getCurrentNode
and closeNode.

public virtual void updateObjective(IloSolver solver)

This member function is used to implement a minimization process. It checks whether a better upper bound on
the objective is known. If this is the case, it adds the corresponding constraint and saves the information using
the saveObjectiveValue member function.

public virtual void updateObjectiveTo(IloSolver solver, IloNum newVal)

This member function is called during recomputation. It adds the same constraint as was posted by the update
member function. The parameter newVal is the one which was saved by the saveObjectiveValue member
function.

public virtual void whenFinishedTree(IloSolver solver, IlcBool toKill)

This member function is called by the solver when it has completely explored the search tree associated with
the goal given as a parameter to the IlcSelectSearch function. It may use the member functions closeNode
and activateNode.

The expected behavior depends on the parameter toKill. If toKill is equal to IlcFalse (which is the usual
case), the search selector proceeds normally. If toKill is equal to IlcTrue, the search selector must not
activate any of the stored nodes, but must kill them all using the closeNode member function.

public virtual void whenLeaf(IloSolver solver)

This member function is called by the solver when it arrives at a leaf of the search tree associated with the goal
given as a parameter to the IlcSelectSearch function. It may use the member functions getCurrentNode
and closeNode.

310

Class IlcSoftConstraint
Definition file: ilsolver/disjunct.h

An instance of the class IlcSoftConstraint can only be created using the member function
IlcSoftConstraint IlcSoftCtHandler::createSoftConstraint(IlcConstraintI*).

The class IlcSoftCtHandler is used to manage the definition of a soft constraint. It contains information
about the copied constraint, the copied variables and their relation to the original constraint and the original
variables.

Method Summary

public IlcInt getCopiedVarInProcess() const

public IlcSoftConstraintI * getImpl() const

public IlcIntVar getStatusVar()

public IlcBool isFailed()

public void whenDomainReduction(IlcDemon demon)

public void whenFail(IlcDemon demon)

Inherited Methods from IlcConstraint

getImpl, getName, getObject, getParentDemon, getSolver, isFalse, isTrue, setName,
setObject

Inherited Methods from IlcDemon

getConstraint, getImpl, getSolver, operator=

Methods

public IlcInt getCopiedVarInProcess() const

This function returns the index of the copied variable which is in process. Indices are described in the class
IlcSoftCtHandler.

public IlcSoftConstraintI * getImpl() const

This member function returns the implementation object of the invoking object. You can use this member function
to check whether a constraint is empty.

public IlcIntVar getStatusVar()

This function returns the status variable of the constraint.

311

public IlcBool isFailed()

This function returns IlcTrue if the copied variable is violated, otherwise it returns IlcFalse.

public void whenDomainReduction(IlcDemon demon)

This function is used to link a demon that will be executed each time a copied variable is modified. The current
modified copied variable can be accessed using the member function IlcInt
IlcSoftConstraint::getCopiedVarInProcess()const.

public void whenFail(IlcDemon demon)

This function is used to link a demon to the event corresponding to the violation of the copied constraint.

312

Class IlcSoftCtHandler
Definition file: ilsolver/disjunct.h

The class IlcSoftCtHandler is used to manage the definition of a soft constraint. It contains information
about the copied constraint, the copied variables and their relation to the original constraint and the original
variables.

The parameter sh of type IlcSoftCtHandler is essential to understand the strength of the mechanism
provided by IBM® ILOG® Solver.

The parameter sh is filled with some information when a soft constraint is created. This is quite useful to
centralize some information when several soft constraints with the same IlcSoftCtHandler as argument.

IlcSoftCtHandler contains the following information:

all the original variables•
all the copied variables•
all the original constraints•
all the soft constraints (i.e. all constraints created by the same IlcSoftHandler parameter)•
the original variable corresponding to a copied variable•
the original constraint corresponding to a soft constraint•
the variables on which constraints are defined•
the constraints in which a variable is involved•

All the functions of this class work with indices. This eases the access to additional data that the user would like
to link to each original variable or to each original constraint.

Constructor Summary

public IlcSoftCtHandler()

public IlcSoftCtHandler(IlcSoftCtHandlerI * impl)

public IlcSoftCtHandler(IloSolver solver, IlcInt sizeMax)

Method Summary

public IlcConstraint getConstraint(const IlcInt ct) const

public IlcIntVar getCopiedVar(const IlcInt cvar) const

public IlcInt getCtOfSoftCt(const IlcInt softCt) const

public IlcInt getFirstCopiedVarOfSoftCt(const IlcInt softCt) const

public IlcInt getFirstCopiedVarOfVar(const IlcInt var) const

public IlcSoftCtHandlerI * getImpl() const

public IlcInt getNextCopiedVarOfSoftCt(const IlcInt softCt, const
IlcInt cvar) const

public IlcInt getNextCopiedVarOfVar(const IlcInt var, const IlcInt
cvar) const

public IlcInt getNumCt() const

public IlcInt getNumCvars() const

public IlcInt getNumVars() const

public IlcSoftConstraint getSoftConstraint(const IlcInt softCt) const

313

public IlcInt getSoftCtOfCopiedVar(const IlcInt cvar) const

public IlcInt getSoftCtOfCt(const IlcInt ct) const

public IloSolver getSolver() const

public IlcIntVar getVar(const IlcInt var) const

public IlcInt getVarOfCopiedVar(const IlcInt cvar) const

public void operator=(const IlcSoftCtHandler & h)

Constructors

public IlcSoftCtHandler()

This constructor creates an empty handle. You must initialize it before you use it.

public IlcSoftCtHandler(IlcSoftCtHandlerI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IlcSoftCtHandler(IloSolver solver, IlcInt sizeMax)

The argument sizeMaxspecifices the maximum number of copied variables that can be handle by the invoked
object.

Methods

public IlcConstraint getConstraint(const IlcInt ct) const

This member function returns the constraint of index ct.

public IlcIntVar getCopiedVar(const IlcInt cvar) const

This member function returns the copied variable of index cvar.

public IlcInt getCtOfSoftCt(const IlcInt softCt) const

This member function returns the index of the constraint from which the soft constraint softct has been copied.

public IlcInt getFirstCopiedVarOfSoftCt(const IlcInt softCt) const

This member function returns the index of the first copied variable on which the soft constraint softct is
defined.

public IlcInt getFirstCopiedVarOfVar(const IlcInt var) const

314

This member function returns the index of the first copied variable of the variable corresponding to index var.

public IlcSoftCtHandlerI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public IlcInt getNextCopiedVarOfSoftCt(const IlcInt softCt, const IlcInt cvar)
const

This member function returns the index of the next copied variable of cvar on which the soft constraint is
defined.

public IlcInt getNextCopiedVarOfVar(const IlcInt var, const IlcInt cvar) const

This member function returns the index of the next copied variable of the copied variable cvar of the variable
corresponding to index var.

public IlcInt getNumCt() const

This member function returns the number of constraints contained in the invoked object.

public IlcInt getNumCvars() const

This member function returns the number of copied variables contained in the invoked object.

public IlcInt getNumVars() const

This member function returns the number of variables contained in the invoked object.

public IlcSoftConstraint getSoftConstraint(const IlcInt softCt) const

This member function returns the copied constraint of index softct.

public IlcInt getSoftCtOfCopiedVar(const IlcInt cvar) const

This member function returns the index of soft constraint softct involving the copied var.

public IlcInt getSoftCtOfCt(const IlcInt ct) const

This member function returns the index of the soft constraint of the constraint ct.

315

public IloSolver getSolver() const

This member function returns an instance of IloSolver associated with the invoking object.

public IlcIntVar getVar(const IlcInt var) const

This member function returns the variable of index var.

public IlcInt getVarOfCopiedVar(const IlcInt cvar) const

This member function returns the index of the original variable from which the copied variable has been copied.

public void operator=(const IlcSoftCtHandler & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

316

Class IlcTrace
Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

An instance of this class is part of the Solver trace mechanism. See the virtual member functions of the class
IlcTraceI to get an idea of what a trace can do in your application.

See Also: IlcPrintTrace, IlcTraceI

Constructor and Destructor Summary

public IlcTrace(IlcTraceI * impl)

Constructors and Destructors

public IlcTrace(IlcTraceI * impl)

This constructor creates a handle (an instance of the class IlcTrace) from a pointer to an implementation
object (an instance of the implementation class IlcTraceI).

317

Class IlcTraceI
Definition file: ilsolver/ilctrace.h
Include file: <ilsolver/ilctrace.h>

An instance of this class is part of the Solver trace mechanism. It enables you to trace such events as failure of a
variable, a demon, or a constraint in a solution search. With an instance of this class, you can access the
modifications of an active demon or an active constraint at any time by calling the member functions:

IlcTraceI::getActiveDemon•
IloSolver::getActiveDemon•
IloSolver::getActiveGoal.•

Trace Events

Solver uses #define to define the events that you can trace with an instance of IlcTraceI:

#define IlcTraceDemons ((IlcUInt) 1)
#define IlcTraceConstraint ((IlcUInt) 2)
#define IlcTraceProcess ((IlcUInt) 4)
#define IlcTraceVars ((IlcUInt) 8)
#define IlcTraceFail ((IlcUInt) 16)
#define IlcTraceNoEvent ((IlcUInt) 32)
#define IlcTraceAllEvent ((IlcUInt) 31)

When you use its constructor to create an instance of IlcTraceI, use one of those values to indicate which
event or events to trace. After you have created a trace (an instance of IlcTraceI) if you want to alter the
events that it traces, use the member functions setTraceDemon, setTraceConstraint, etc., to alter the
trace.

See Also: IlcConstraint, IlcDemon, IlcPrintTrace, IlcTrace

Constructor and Destructor Summary

public IlcTraceI(IloSolver s, IlcUInt flags, const char * name=0)

Method Summary

public virtual void beginAddRequired(const IlcIntSetVar var, IlcInt val)

public virtual void beginBoolVarProcess(const IlcConstraint constraint)

public virtual void beginConstraintPost(const IlcConstraint constraint)

public virtual void beginConstraintPropagate(const IlcConstraint constraint)

public virtual void beginDemonProcess(const IlcDemon demon)

public virtual void beginFloatVarProcess(const IlcFloatExp exp)

public virtual void beginIntSetVarProcess(const IlcIntSetVar var)

public virtual void beginIntVarProcess(const IlcIntExp exp)

public virtual void beginRemovePossible(const IlcIntSetVar var, IlcInt val)

public virtual void beginRemoveValueFloatVar(const IlcFloatExp, IlcFloat val)

public virtual void beginRemoveValueIntVar(const IlcIntExp exp, IlcInt val)

public virtual void beginSetMaxFloatVar(const IlcFloatExp exp, IlcFloat max)

public virtual void beginSetMaxIntVar(const IlcIntExp exp, IlcInt max)

318

public virtual void beginSetMinFloatVar(const IlcFloatExp exp, IlcFloat min)

public virtual void beginSetMinIntVar(const IlcIntExp exp, IlcInt min)

public virtual void beginSetValueFloatVar(const IlcFloatExp, IlcFloat val)

public virtual void beginSetValueIntVar(const IlcIntExp exp, IlcInt val)

public virtual void defineIlcOr(IlcInt nbOr)

public virtual void endAddRequired(const IlcIntSetVar var, IlcInt val)

public virtual void endBoolVarProcess(const IlcConstraint constraint)

public virtual void endConstraintPost(const IlcConstraint constraint)

public virtual void endConstraintPropagate(const IlcConstraint constraint)

public virtual void endDemonProcess(const IlcDemon demon)

public virtual void endFloatVarProcess(const IlcFloatExp exp)

public virtual void endIntSetVarProcess(const IlcIntSetVar var)

public virtual void endIntVarProcess(const IlcIntExp exp)

public virtual void endRemovePossible(const IlcIntSetVar var, IlcInt val)

public virtual void endRemoveValueFloatVar(const IlcFloatExp exp, IlcFloat val)

public virtual void endRemoveValueIntVar(const IlcIntExp exp, IlcInt val)

public virtual void endSetMaxFloatVar(const IlcFloatExp exp, IlcFloat max)

public virtual void endSetMaxIntVar(const IlcIntExp exp, IlcInt max)

public virtual void endSetMinFloatVar(const IlcFloatExp exp, IlcFloat min)

public virtual void endSetMinIntVar(const IlcIntExp exp, IlcInt min)

public virtual void endSetValueFloatVar(const IlcFloatExp exp, IlcFloat val)

public virtual void endSetValueIntVar(const IlcIntExp exp, IlcInt val)

public virtual void failDemon(const IlcDemon demon)

public virtual void failFloatVar(const IlcFloatExp exp)

public virtual void failIntSetVar(const IlcIntSetVar var)

public virtual void failIntVar(const IlcIntExp exp)

public virtual void failManager(IlcInt nbFails)

public IlcDemon getActiveDemon()

public ostream & getStream() const

public IlcBool isAllTraced() const

public IlcBool isConstraintTraced() const

public IlcBool isDemonTraced() const

public IlcBool isFailTraced() const

public IlcBool isNoneTraced() const

public IlcBool isProcessTraced() const

public IlcBool isVarTraced() const

public void setTraceAllEvents()

public void setTraceConstraint(IlcBool condition)

public void setTraceDemons(IlcBool condition)

public void setTraceFail(IlcBool condition)

public void setTraceNoEvent()

319

public void setTraceProcess(IlcBool condition)

public void setTraceVars(IlcBool condition)

public void trace(IlcAnySetVar) const

public void trace(IlcIntSetVar) const

public void trace(IlcFloatVar) const

public void trace(IlcAnyVar) const

public void trace(IlcIntVar) const

Constructors and Destructors

public IlcTraceI(IloSolver s, IlcUInt flags, const char * name=0)

This constructor creates a trace for the solver s. The parameter flags indicates which events should be traced.

Methods

public virtual void beginAddRequired(const IlcIntSetVar var, IlcInt val)

Solver calls this member function when it begins to add the element val to the set of required elements of the
set variable var. (In this context, set means a group or collection of elements.) If the modification does not alter
var, then Solver does not call this member function.

If you want to use this facility, you must redefine this virtual member function.

public virtual void beginBoolVarProcess(const IlcConstraint constraint)

Solver calls this member function when it begins to process a Boolean variable (that is, when the Boolean
variable is in process). If the modification does not alter the Boolean variable, then Solver does not call this
member function.

If you want to use this facility, you must define this virtual member function.

public virtual void beginConstraintPost(const IlcConstraint constraint)

Solver calls this member function when it begins to post constraint.

If you want to use this facility, you must define this virtual member function.

public virtual void beginConstraintPropagate(const IlcConstraint constraint)

Solver calls this member function when it begins to propagate the constraint constraint (that is, immediately
before it calls the propagate member function for the constraint).

If you want to use this facility, you must define this virtual member function.

public virtual void beginDemonProcess(const IlcDemon demon)

320

Solver calls this member function when it begins to process demon (that is, immediately before it propagates
demon).

If you want to use this facility, you must define this virtual member function.

public virtual void beginFloatVarProcess(const IlcFloatExp exp)

Solver calls this member function when it begins to process a floating-point expression (that is, when the
floating-point expression is in process).

If you want to use this facility, you must define this virtual member function.

public virtual void beginIntSetVarProcess(const IlcIntSetVar var)

Solver calls this member function when it begins to process an integer set variable, that is, when the integer set
variable is in process. In this context, set means a group or collection of elements.

If you want to use this facility, you must define this virtual member function.

public virtual void beginIntVarProcess(const IlcIntExp exp)

Solver calls this member function when it begins to process an integer expression (that is, when the integer
expression is in process).

If you want to use this facility, you must define this virtual member function.

public virtual void beginRemovePossible(const IlcIntSetVar var, IlcInt val)

Solver calls this member function immediately before it removes val from the set of possible elements of the
integer set variable var. (In this context, set means a group or collection of elements.) In other words, var has
not yet been modified when it is passed to this member function. Normally, if the modification does not alter var,
then Solver does not call this member function. However, this modification necessarily modifies var.

If you want to use this facility, you must define this virtual member function.

public virtual void beginRemoveValueFloatVar(const IlcFloatExp, IlcFloat val)

Solver calls this member function immediately before it removes val from the domain of exp. In other words,
exp has not yet been modified when it is passed to this member function. Normally, if the modification does not
alter exp, then Solver does not call this member function. However, this modification necessarily modifies exp.

If you want to use this facility, you must define this virtual member function.

public virtual void beginRemoveValueIntVar(const IlcIntExp exp, IlcInt val)

Solver calls this member function immediately before it removes val from the domain of exp. In other words,
exp has not yet been modified when it is passed to this member function. Normally, if the modification does not
alter exp, then Solver does not call this member function. However, this modification necessarily modifies exp.

If you want to use this facility, you must define this virtual member function.

321

public virtual void beginSetMaxFloatVar(const IlcFloatExp exp, IlcFloat max)

Solver calls this member function immediately before it sets max as the maximum of exp. (In this context, set
means to assign.) In other words, exp has not yet been modified when it is passed to this member function.
Normally, if the modification does not alter exp, then Solver does not call this member function. However, this
modification necessarily alters exp.

If you want to use this facility, you must define this virtual member function.

public virtual void beginSetMaxIntVar(const IlcIntExp exp, IlcInt max)

Solver calls this member function immediately before it sets max as the maximum of exp. (In this context, set
means to assign.) In other words, exp has not yet been modified when it is passed to this member function.
Normally, if the modification does not alter exp, then Solver does not call this member function. However, this
modification necessarily alters exp.

If you want to use this facility, you must define this virtual member function.

public virtual void beginSetMinFloatVar(const IlcFloatExp exp, IlcFloat min)

Solver calls this member function immediately before it sets min as the minimum of exp. (In this context, set
means to assign.) In other words, exp has not yet been modified when it is passed to this member function.
Normally, if the modification does not alter exp, then Solver does not call this member function. However, this
modification necessarily alters exp.

If you want to use this facility, you must define this virtual member function.

public virtual void beginSetMinIntVar(const IlcIntExp exp, IlcInt min)

Solver calls this member function immediately before it sets min as the minimum of exp. (In this context, set
means to assign.) In other words, exp has not yet been modified when it is passed to this member function.
Normally, if the modification does not alter exp, then Solver does not call this member function. However, this
modification necessarily alters exp.

If you want to use this facility, you must define this virtual member function.

public virtual void beginSetValueFloatVar(const IlcFloatExp, IlcFloat val)

Solver calls this member function immediately after it sets val as the value of exp (that is, after it instantiates
exp). (In this context, set means to assign.) If the modification does not alter exp, then Solver does not call this
member function.

If you want to use this facility, you must define this virtual member function.

public virtual void beginSetValueIntVar(const IlcIntExp exp, IlcInt val)

Solver calls this member function when it sets val as the value of exp. (In this context, set means to assign.)
That is, Solver calls this member function immediately before it instantiates exp. In other words, exp has not yet
been modified when it is passed to this member function. Normally, if the modification does not alter exp, then
Solver does not call this member function. However, instantiation necessarily modifies exp.

322

If you want to use this facility, you must define this virtual member function.

public virtual void defineIlcOr(IlcInt nbOr)

Solver calls this member function when it sets a choice point.

If you want to use this facility, you must define this virtual member function.

public virtual void endAddRequired(const IlcIntSetVar var, IlcInt val)

Solver calls this member function immediately after it adds the element val to the set of required elements of the
set variable var. (In this context, set means a group or collection of elements.) If the modification does not alter
var, then Solver does not call this member function.

If you want to use this facility, you must redefine this virtual member function.

public virtual void endBoolVarProcess(const IlcConstraint constraint)

Solver calls this member function immediately after the Boolean variable indicated by constraint is processed.

If you want to use this facility, you must define this virtual member function

public virtual void endConstraintPost(const IlcConstraint constraint)

Solver calls this member function immediately after it calls the post member function for constraint (that is,
while constraint is in process).

If you want to use this facility, you must define this virtual member function.

public virtual void endConstraintPropagate(const IlcConstraint constraint)

Solver calls this member function immediately after it calls the propagate member function for the constraint
constraint (that is, while the constraint is in process).

If you want to use this facility, you must define this virtual member function.

public virtual void endDemonProcess(const IlcDemon demon)

Solver calls this member function immediately after it calls the propagate member function for demon (that is,
while demon is in process).

If you want to use this facility, you must define this virtual member function.

public virtual void endFloatVarProcess(const IlcFloatExp exp)

Solver calls this member function immediately after exp is processed.

If you want to use this facility, you must define this virtual member function

323

public virtual void endIntSetVarProcess(const IlcIntSetVar var)

Solver calls this member function immediately after the integer set variable var is processed. (In this context, set
means a group or collection of elements.)

If you want to use this facility, you must define this virtual member function.

public virtual void endIntVarProcess(const IlcIntExp exp)

Solver calls this member function immediately after exp is processed. If the modification does not alter exp, then
Solver does not call this member function.

If you want to use this facility, you must define this virtual member function.

public virtual void endRemovePossible(const IlcIntSetVar var, IlcInt val)

Solver calls this member function immediately after it removes val from the set of possible elements of the
integer set variable var. (In this context, set means a group or collection of elements.) If the modification does
not alter var, then Solver does not call this member function.

If you want to use this facility, you must define this virtual member function.

public virtual void endRemoveValueFloatVar(const IlcFloatExp exp, IlcFloat val)

Solver calls this member function immediately after it removes val from the domain of exp. If the modification
does not alter exp, then Solver does not call this member function.

If you want to use this facility, you must define this virtual member function.

public virtual void endRemoveValueIntVar(const IlcIntExp exp, IlcInt val)

Solver calls this member function immediately after it removes val from the domain of exp. If the modification
does not alter exp, then Solver does not call this member function.

If you want to use this facility, you must define this virtual member function.

public virtual void endSetMaxFloatVar(const IlcFloatExp exp, IlcFloat max)

Solver calls this member function immediately after it sets max as the maximum of exp. (In this context, set
means to assign.) If the modification does not alter exp, then Solver does not call this member function.

If you want to use this facility, you must define this virtual member function.

public virtual void endSetMaxIntVar(const IlcIntExp exp, IlcInt max)

Solver calls this member function immediately after it sets max as the maximum of exp. (In this context, set
means to assign.) If the modification does not alter exp, then Solver does not call this member function.

324

If you want to use this facility, you must define this virtual member function.

public virtual void endSetMinFloatVar(const IlcFloatExp exp, IlcFloat min)

Solver calls this member function immediately after it sets min as the minimum of exp. (In this context, set
means to assign.) If the modification does not alter exp, then Solver does not call this member function.

If you want to use this facility, you must define this virtual member function.

public virtual void endSetMinIntVar(const IlcIntExp exp, IlcInt min)

Solver calls this member function immediately after it sets min as the minimum of exp. (In this context, set
means to assign.) If the modification does not alter exp, then Solver does not call this member function.

If you want to use this facility, you must define this virtual member function.

public virtual void endSetValueFloatVar(const IlcFloatExp exp, IlcFloat val)

Solver calls this member function immediately after it sets val as the value of exp (that is, after it instantiates
exp). (In this context, set means to assign.) If the modification does not alter exp, then Solver does not call this
member function.

If you want to use this facility, you must define this virtual member function.

public virtual void endSetValueIntVar(const IlcIntExp exp, IlcInt val)

Solver calls this member function immediately after it sets val as the value of exp (that is, after it instantiates
exp). (In this context, set means to assign.) If the modification does not alter exp, then Solver does not call this
member function.

If you want to use this facility, you must define this virtual member function.

public virtual void failDemon(const IlcDemon demon)

Solver calls this member function when demon triggers a failure.

If you want to use this facility, you must define this virtual member function.

public virtual void failFloatVar(const IlcFloatExp exp)

Solver calls this member function when the modification of exp triggers a failure.

If you want to use this facility, you must define this virtual member function.

public virtual void failIntSetVar(const IlcIntSetVar var)

Solver calls this member function when the modification of the integer set variable var triggers a failure. (In this
context, set means a group or collection of elements.)

325

If you want to use this facility, you must define this virtual member function.

public virtual void failIntVar(const IlcIntExp exp)

Solver calls this member function when the modification of exp triggers a failure. You can access the demon or
constraint where exp triggered the failure; to do so, use the member function IlcTraceI::getActiveDemon.

If you want to use this facility, you must define this virtual member function.

public virtual void failManager(IlcInt nbFails)

Solver calls this member function after it calls the member function IlcGoal::fail or
IlcConstraint::fail (that is, when a failure occurs). You can access the current number of failures through
the parameter nbFails.

public IlcDemon getActiveDemon()

This member function returns the demon that is currently active (if there is one). It will return an empty handle if
there is no active demon.

Since a constraint is also a demon (that is, IlcConstraint derives from IlcDemon), you can also use this
member function to access the currently active constraint. You may also access any constraint associated with
an active demon in these ways:

 IlcDemon::getConstraint();

or

 getActiveDemon().getConstraint();

public ostream & getStream() const

This member function indicates which stream will be used for output of the trace.

public IlcBool isAllTraced() const

This member function indicates whether all events are being traced.

public IlcBool isConstraintTraced() const

This member function indicates whether calls to post and propagate constraints are being traced.

public IlcBool isDemonTraced() const

This member function indicates whether calls to propagate demons are being traced.

public IlcBool isFailTraced() const

326

This member function indicates whether failures are being traced.

public IlcBool isNoneTraced() const

This member function indicates whether no events are being traced.

public IlcBool isProcessTraced() const

This member function indicates whether the variables in process are being traced.

public IlcBool isVarTraced() const

This member function indicates whether all variables are being traced.

public void setTraceAllEvents()

This member function traces all events.

public void setTraceConstraint(IlcBool condition)

If a constraint is pushed onto the propagation queue, then this member function traces it if condition is true. In
general, this member function traces the posting and propagation of constraints.

public void setTraceDemons(IlcBool condition)

This member function traces all calls to all demons, including constraints, if condition is true. (A constraint is
also a demon.)

public void setTraceFail(IlcBool condition)

This member function traces failures if condition is true. (For users of previous versions of Solver, this
member function replaces setFailHook.)

public void setTraceNoEvent()

This member function traces no events. That is, it turns off event tracing.

public void setTraceProcess(IlcBool condition)

This member function traces all the variables that are in process if condition is true.

327

public void setTraceVars(IlcBool condition)

This member function traces the modifications of variables if condition is true.

public void trace(IlcAnySetVar) const

This member function hooks a variable; that is, it offers a link between a trace and a variable. (For users of
previous versions of Solver, this member function resembles the trace hook mechanism.)

public void trace(IlcIntSetVar) const

This member function hooks a variable; that is, it offers a link between a trace and a variable. (For users of
previous versions of Solver, this member function resembles the trace hook mechanism.)

public void trace(IlcFloatVar) const

This member function hooks a variable; that is, it offers a link between a trace and a variable. (For users of
previous versions of Solver, this member function resembles the trace hook mechanism.)

public void trace(IlcAnyVar) const

This member function hooks a variable; that is, it offers a link between a trace and a variable. (For users of
previous versions of Solver, this member function resembles the trace hook mechanism.)

public void trace(IlcIntVar) const

This member function hooks a variable; that is, it offers a link between a trace and a variable. (For users of
previous versions of Solver, this member function resembles the trace hook mechanism.)

328

Class IloAlgorithm
Definition file: ilconcert/iloalg.h

The base class of algorithms in Concert Technology.
An instance of IloAlgorithm represents an algorithm in Concert Technology.

In general terms, you define a model, and Concert Technology extracts objects from it for your target algorithm
and then solves for solutions.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

Status

The member function getStatus returns a status showing information about the currently extracted model and
the solution (if there is one). For explanations of the status, see the nested enumeration
IloAlgorithm::Status.

Exceptions

The class IloAlgorithm::Exception, derived from the class IloException, is the base class of
exceptions thrown by classes derived from IloAlgorithm. For an explanation of exceptions thrown by
instances of IloAlgorithm, see IloAlgorithm::Exception.

Streams and Output

The class IloAlgorithm supports these communication streams:

ostream& IloAlgorithm::error() const; for error messages.•
ostream& IloAlgorithm::out() const; for general output.•
ostream& IloAlgorithm::warning() const; for warning messages about nonfatal conditions.•

Child classes:

the class IloCplex in the IBM ILOG CPLEX Reference Manual•
the class IloCP in the IBM ILOG CP Optimizer Reference Manual.•
the class IloSolver in the IBM ILOG Solver Reference Manual .•

See Also: IloEnv, IloModel, IloAlgorithm::Status, IloAlgorithm::Exception

Constructor Summary

public IloAlgorithm(IloAlgorithmI * impl=0)

Method Summary

public void clear() const

public void end()

public ostream & error() const

public void extract(const IloModel) const

public IloEnv getEnv() const

329

public IloInt getIntValue(const IloIntVar) const

public void getIntValues(const IloIntVarArray, IloIntArray) const

public IloModel getModel() const

public IloNum getObjValue() const

public IloAlgorithm::Status getStatus() const

public IloNum getTime() const

public IloNum getValue(const IloNumExprArg) const

public IloNum getValue(const IloObjective) const

public IloNum getValue(const IloIntVar) const

public IloNum getValue(const IloNumVar) const

public void getValues(const IloIntVarArray, IloNumArray) const

public void getValues(const IloNumVarArray, IloNumArray) const

public IloBool isExtracted(const IloExtractable) const

public ostream & out() const

public void printTime() const

public void resetTime() const

public void setError(ostream &)

public void setOut(ostream &)

public void setWarning(ostream &)

public IloBool solve() const

public ostream & warning() const

Inner Enumeration

IloAlgorithm::Status An enumeration for the class IloAlgorithm.

Inner Class

IloAlgorithm::CannotExtractException The class of exceptions thrown if an object cannot be extracted
from a model.

IloAlgorithm::CannotRemoveException The class of exceptions thrown if an object cannot be removed
from a model.

IloAlgorithm::Exception The base class of exceptions thrown by classes derived from
IloAlgorithm.

IloAlgorithm::NotExtractedException The class of exceptions thrown if an extractable object has no
value in the current solution of an algorithm.

Constructors

public IloAlgorithm(IloAlgorithmI * impl=0)

This constructor creates an algorithm in Concert Technology from its implementation object. This is the default
constructor.

330

Methods

public void clear() const

This member function clears the current model from the algorithm.

public void end()

This member function deletes the invoking algorithm. That is, it frees memory associated with the invoking
algorithm.

public ostream & error() const

This member function returns a reference to the stream currently used for error messages from the invoking
algorithm. IloAlgorithm::error is initialized with the value of IloEnv::error.

public void extract(const IloModel) const

This member function extracts the extractable objects from a model into the invoking algorithm if a member
function exists to extract the objects from the model for the invoking algorithm. Not all extractable objects can be
extracted by all algorithms; see the documentation of the algorithm class you are using for a list of extractable
classes it supports.

When you use this member function to extract extractable objects from a model, it extracts all the elements of
that model for which Concert Technology creates the representation of the extractable object suitable for the
invoking algorithm.

The attempt to extract may fail. In case such a failure occurs, Concert Technology throws the exception
CannotExtractException on platforms that support C++ exceptions when exceptions are enabled.

For example, a failure will occur if you attempt to extract more than one objective for an invoking algorithm that
accepts only one objective, and Concert Technology will throw the exception MultipleObjException.

public IloEnv getEnv() const

This member function returns the environment of the invoking algorithm.

public IloInt getIntValue(const IloIntVar) const

This member function returns the integer value of an integer variable in the current solution of the invoking
algorithm. For example, to access the variable, use the member function getIntValue(var) where var is an
instance of the class IloIntVar.

If there is no value to return for var, this member function raises an error. This member function throws the
exception NotExtractedException if there is no value to return (for example, if var was not extracted by the
invoking algorithm).

public void getIntValues(const IloIntVarArray, IloIntArray) const

331

This member function accepts an array of variables vars and puts the corresponding values into the array vals;
the corresponding values come from the current solution of the invoking algorithm. The array vals must be a
clean, empty array when you pass it to this member function.

If there are no values to return for vars, this member function raises an error. On platforms that support C++
exceptions, when exceptions are enabled, this member function throws the exception
NotExtractedException in such a case.

public IloModel getModel() const

This member function returns the model of the invoking algorithm.

public IloNum getObjValue() const

This member function returns the numeric value of the objective function associated with the invoking algorithm.

public IloAlgorithm::Status getStatus() const

This member function returns a status showing information about the current model and the solution. For
explanations of the status, see the nested enumeration IloAlgorithm::Status.

public IloNum getTime() const

This member function returns the amount of time elapsed in seconds since the most recent reset of the invoking
algorithm. (The member function IloAlgorithm::printTime directs the output of getTime to the output
channel of the invoking algorithm.)

See Also: IloTimer

public IloNum getValue(const IloNumExprArg) const

This member function returns the value of an expression in the current solution of the invoking algorithm. For
example, to access the expression, use the member function getValue(expr) where expr is an instance of
the class IloNumExprArg.

If there is no value to return for expr, this member function raises an error. This member function throws the
exception NotExtractedException if there is no value to return (for example, if expr was not extracted by
the invoking algorithm).

public IloNum getValue(const IloObjective) const

This member function returns the value of an objective in the current solution of the invoking algorithm. For
example, to access the objective, use the member function getValue(obj) where obj is an instance of the
class IloObjective.

If there is no value to return for obj, this member function raises an error. This member function throws the
exception NotExtractedException if there is no value to return (for example, if obj was not extracted by the
invoking algorithm).

332

public IloNum getValue(const IloIntVar) const

This member function returns the numeric value of an integer variable in the current solution of the invoking
algorithm. For example, to access the variable, use the member function getValue(var) where var is an
instance of the class IloIntVar.

If there is no value to return for var, this member function raises an error. This member function throws the
exception NotExtractedException if there is no value to return (for example, if var was not extracted by the
invoking algorithm).

public IloNum getValue(const IloNumVar) const

This member function returns the numeric value of a numeric variable in the current solution of the invoking
algorithm. For example, to access the value of the variable, use the member function getValue(var) where
var is an instance of the class IloNumVar.

If there is no value to return for var, this member function raises an error. This member function throws the
exception NotExtractedException if there is no value to return (for example, if var was not extracted by the
invoking algorithm).

public void getValues(const IloIntVarArray, IloNumArray) const

This member function accepts an array of variables vars and puts the corresponding values into the array vals;
the corresponding values come from the current solution of the invoking algorithm. The array vals must be a
clean, empty array when you pass it to this member function.

If there are no values to return for vars, this member function raises an error. On platforms that support C++
exceptions, when exceptions are enabled, this member function throws the exception
NotExtractedException in such a case.

public void getValues(const IloNumVarArray, IloNumArray) const

This member function accepts an array of variables vars and puts the corresponding values into the array vals;
the corresponding values come from the current solution of the invoking algorithm. The array vals must be a
clean, empty array when you pass it to this member function.

If there are no values to return for vars, this member function raises an error. On platforms that support C++
exceptions, when exceptions are enabled, this member function throws the exception
NotExtractedException in such a case.

public IloBool isExtracted(const IloExtractable) const

This member function returns IloTrue if extr has been extracted for the invoking algorithm; otherwise, it
returns IloFalse.

public ostream & out() const

This member function returns a reference to the stream currently used for logging. General output from the
invoking algorithm is accessible through this member function. IloAlgorithm::out is initialized with the value
of IloEnv::out.

333

public void printTime() const

This member function directs the output of the member function IloAlgorithm::getTime to an output
channel of the invoking algorithm. (The member function IloAlgorithm::getTime accesses the elapsed time
in seconds since the most recent reset of the invoking algorithm.)

public void resetTime() const

This member function resets the timer on the invoking algorithm. The type of timer is platform dependent. On
Windows systems, the time is elapsed wall clock time. On UNIX systems, the time is CPU time.

public void setError(ostream &)

This member function sets the stream for errors generated by the invoking algorithm. By default, the stream is
defined by an instance of IloEnv as cerr.

public void setOut(ostream &)

This member function redirects the out() stream with the stream given as an argument.

This member function can be used with IloEnv::getNullStream to suppress screen output by redirecting it
to the null stream.

public void setWarning(ostream &)

This member function sets the stream for warnings from the invoking algorithm. By default, the stream is defined
by an instance of IloEnv as cout.

public IloBool solve() const

This member function solves the current model in the invoking algorithm. In other words, solve works with all
extractable objects extracted from the model for the algorithm. The member function returns IloTrue if it finds a
solution (not necessarily an optimal one). Here is an example of its use:

 if (algo.solve()) {
 algo.out() << "Status is " << algo.getStatus() << endl;
 };

If an objective of the model has been extracted into the invoking algorithm, this member function solves the
model to optimality. If there is currently no objective, this member function searches for the first feasible solution.
A feasible solution is not necessarily optimal, though it satisfies all constraints.

public ostream & warning() const

This member function returns a reference to the stream currently used for warnings from the invoking algorithm.
IloAlgorithm::warning is initialized with the value of IloEnv::warning.

334

Inner Enumerations

Enumeration Status

Definition file: ilconcert/iloalg.h

An enumeration for the class IloAlgorithm.
IloAlgorithm is the base class of algorithms in Concert Technology, and IloAlgorithm::Status is an
enumeration limited in scope to the class IloAlgorithm. The member function IloAlgorithm::getStatus
returns a status showing information about the current model and the solution.

Unknown specifies that the algorithm has no information about the solution of the model.

Feasible specifies that the algorithm found a feasible solution (that is, an assignment of values to variables that
satisfies the constraints of the model, though it may not necessarily be optimal). The member functions
IloAlgorithm::getValue access this feasible solution.

Optimal specifies that the algorithm found an optimal solution (that is, an assignment of values to variables that
satisfies all the constraints of the model and that is proved optimal with respect to the objective of the model).
The member functions IloAlgorithm::getValue access this optimal solution.

Infeasible specifies that the algorithm proved the model infeasible; that is, it is not possible to find an
assignment of values to variables satisfying all the constraints in the model.

Unbounded specifies that the algorithm proved the model unbounded.

InfeasibleOrUnbounded specifies that the model is infeasible or unbounded.

Error specifies that an error occurred and, on platforms that support exceptions, that an exception has been
thrown.

See Also: IloAlgorithm, operator<<

Fields:

Unknown

Feasible

Optimal

Infeasible

Unbounded

InfeasibleOrUnbounded

Error

335

Class IloAllDiff
Definition file: ilconcert/ilomodel.h

For constraint programming: constrains integer variables to assume different values in a model.
An instance of this class is a constraint that forces constrained integer variables to assume different values from
one another in a model. In other words, no two of those integer variables will have the same integer value when
this constraint is satisfied.

In order for the constraint to take effect, you must add it to a model with the template IloAdd or the member
function IloModel::add and extract the model for an algorithm with the member function
IloAlgorithm::extract.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

What Is Extracted

All the variables (that is, instances of IloIntVar or one of its subclasses) that have appeared as an argument of a
constructor of IloAllDiff and all variables that have been explicitly added to the instance of IloAllDiff will
be extracted by an algorithm (such as an instance of IloCP or IloSolver, that extracts that constraint.

IloCplex does not extract instances of IloAllDiff.

See Also: IloAdd, IloConstraint, IloDiff

Constructor Summary

public IloAllDiff()

public IloAllDiff(IloAllDiffI * impl)

public IloAllDiff(const IloEnv env, const IloIntVarArray vars, const char *
name=0)

Method Summary

public IloAllDiffI * getImpl() const

Inherited Methods from IloConstraint

getImpl

Inherited Methods from IloIntExprArg

getImpl

Inherited Methods from IloNumExprArg

getImpl

336

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

Constructors

public IloAllDiff()

This constructor creates an empty handle. You must initialize it before you use it.

public IloAllDiff(IloAllDiffI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IloAllDiff(const IloEnv env, const IloIntVarArray vars, const char * name=0)

This constructor creates a constraint that forces all the integer variables in vars to assume different values from
each other. If vars is empty, this constructor creates an empty instance of IloAllDiff, and then you must fill
the constraint; that is, you must put variables into the array. You must add this constraint to a model and extract
the model for an algorithm in order for it to be taken into account.

Methods

public IloAllDiffI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

337

Class IloAllMinDistance
Definition file: ilconcert/ilomodel.h

For constraint programming: constraint on the minimum absolute distance between a pair of variables in an
array.
An instance of the class IloAllMinDistance is a constraint that makes sure that the absolute distance
between any pair of variables in an array of constrained integer variables will be greater than or equal to a given
integer.

What Is Extracted

All the variables that have been added to the model and that have not been removed from it will be extracted
when the algorithm IloCP or IloSolver extracts the constraint.

IloCplex does not extract this constraint.

See Also: IloAllDiff

Constructor Summary

public IloAllMinDistance()

public IloAllMinDistance(IloAllMinDistanceI * impl)

public IloAllMinDistance(const IloEnv env, const IloIntVarArray vars, IloInt k,
const char * name=0)

Method Summary

public IloAllMinDistanceI * getImpl() const

Inherited Methods from IloConstraint

getImpl

Inherited Methods from IloIntExprArg

getImpl

Inherited Methods from IloNumExprArg

getImpl

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

338

Constructors

public IloAllMinDistance()

This constructor creates an empty handle. You must initialize it before you use it.

public IloAllMinDistance(IloAllMinDistanceI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IloAllMinDistance(const IloEnv env, const IloIntVarArray vars, IloInt k,
const char * name=0)

This constructor returns a constraint that insures that the absolute distance between any pair of variables in the
array vars will be greater than or equal to k. You must add this constraint to a model and extract the model for
an algorithm in order for it to be taken into account.

Methods

public IloAllMinDistanceI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

339

Class IloAnd
Definition file: ilconcert/ilomodel.h

Defines a logical conjunctive-AND among other constraints.
An instance of IloAnd represents a conjunctive constraint. In other words, it defines a logical conjunctive-AND
among any number of constraints. It lets you represent a constraint on constraints in your model. Since an
instance of IloAnd is a constraint itself, you can build up extensive conjunctions by adding constraints to an
instance of IloAnd by means of the member function IloAnd::add. You can also remove constraints from an
instance of IloAnd by means of the member function IloAnd::remove.

The elements of a conjunctive constraint must be in the same environment.

In order for the constraint to take effect, you must add it to a model with the template IloAdd or the member
function IloModel::add and extract the model for an algorithm with the member function
IloAlgorithm::extract.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

Conjunction of Goals

If you want to represent the conjunction of goals (rather than constraints) in your model, then you should consider
the function IloAndGoal (documented in the IBM ILOG Solver Reference Manual).

What Is Extracted

All the constraints (that is, instances of IloConstraint or one of its subclasses) that have been added to a
conjunctive constraint (an instance of IloAnd) and that have not been removed from it will be extracted when an
algorithm such as IloCplex, IloCP, or IloSolver extracts the constraint.

Example

For example, you may write:

 IloAnd and(env);
 and.add(constraint1);
 and.add(constraint2);
 and.add(constraint3);

Those lines are equivalent to :

 IloAnd and = constraint1 && constraint2 && constraint3;

See Also: IloConstraint, IloOr, operator&&

Constructor Summary

public IloAnd()

340

public IloAnd(IloAndI * impl)

public IloAnd(const IloEnv env, const char * name=0)

Method Summary

public void add(const IloConstraintArray array) const

public void add(const IloConstraint constraint) const

public IloAndI * getImpl() const

public void remove(const IloConstraintArray array) const

public void remove(const IloConstraint constraint) const

Inherited Methods from IloConstraint

getImpl

Inherited Methods from IloIntExprArg

getImpl

Inherited Methods from IloNumExprArg

getImpl

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

Constructors

public IloAnd()

This constructor creates an empty handle. You must initialize it before you use it.

public IloAnd(IloAndI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IloAnd(const IloEnv env, const char * name=0)

This constructor creates a conjunctive constraint for use in the environment env. In order for the constraint to
take effect, you must add it to a model with the template IloAdd or the member function IloModel::add and
extract the model for an algorithm with the member function IloAlgorithm::extract.

The optional argument name is set to 0 by default.

Methods

public void add(const IloConstraintArray array) const

This member function makes all the elements in array elements of the invoking conjunctive constraint. In other
words, it applies the invoking conjunctive constraint to all the elements of array.

Note

341

The member function add notifies Concert Technology algorithms about this change to the invoking object.

public void add(const IloConstraint constraint) const

This member function makes constraint one of the elements of the invoking conjunctive constraint. In other
words, it applies the invoking conjunctive constraint to constraint.

Note

The member function add notifies Concert Technology algorithms about this change to the invoking object.

public IloAndI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public void remove(const IloConstraintArray array) const

This member function removes all the elements of array from the invoking conjunctive constraint so that the
invoking conjunctive constraint no longer applies to any of those elements.

Note

The member function remove notifies Concert Technology algorithms about this change to the invoking object.

public void remove(const IloConstraint constraint) const

This member function removes constraint from the invoking conjunctive constraint so that the invoking
conjunctive constraint no longer applies to constraint.

Note

The member function remove notifies Concert Technology algorithms about this change to the invoking object.

342

Class IloAnyArray
Definition file: ilconcert/iloany.h

For IBM® ILOG® Solver: array class of the enumerated type definition IloAny.
For each basic type, Concert Technology defines a corresponding array class. IloAnyArray is the array class
of the basic enumerated type definition (IloAny) for a model.

Instances of IloAnyArray are extensible. That is, you can add more elements to such an array. References to
an array change whenever an element is added to or removed from the array.

If you would like to represent a set of enumerated values (that is, no repeated elements, no order among
elements), consider an instance of IloAnySet.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

See Also: IloAny, IloAnySet, operator>>, operator<<

Constructor Summary

public IloAnyArray(IloDefaultArrayI * i=0)

public IloAnyArray(const IloAnyArray & copy)

public IloAnyArray(const IloEnv env, IloInt n=0)

public IloAnyArray(const IloEnv env, IloInt n, const IloAny p0, const IloAny p1,
...)

Method Summary

public void add(const IloAny p)

public IloBool contains(IloAny e) const

Constructors

public IloAnyArray(IloDefaultArrayI * i=0)

This constructor creates an empty array of elements. You cannot create instances of the undocumented class
IloDefaultArrayI. As an argument in this default constructor, it allows you to pass 0 (zero) as a value to an
optional argument in functions and member functions that accept an array as an argument.

public IloAnyArray(const IloAnyArray & copy)

This copy constructor creates a handle to the array of pointers specified by copy.

public IloAnyArray(const IloEnv env, IloInt n=0)

This constructor creates an array of n elements, all of which are empty handles.

343

public IloAnyArray(const IloEnv env, IloInt n, const IloAny p0, const IloAny p1,
...)

This constructor creates an array of n elements for use in a model.

Methods

public void add(const IloAny p)

This member function appends p to the invoking array.

public IloBool contains(IloAny e) const

This member function checks whether the value is contained or not.

344

Class IloAnyBinaryPredicate
Definition file: ilconcert/ilotupleset.h

For IBM ILOG Solver: defines binary predicates on objects in a model.
This class makes it possible for you to define binary predicates operating on arbitrary objects in a model. A
predicate is an object with a member function (such as IloAnyBinaryPredicate::isTrue) that checks
whether or not a property is satisfied by an ordered set of (pointers to) objects.

Defining a New Class of Predicates

Predicates, like other Concert Technology objects, depend on two classes: a handle class,
IloAnyBinaryPredicate, and an implementation class, such as IloAnyBinaryPredicateI, where an
object of the handle class contains a data member (the handle pointer) that points to an object (its
implementation object) of an instance of IloAnyBinaryPredicateI allocated in a Concert Technology
environment. As a Concert Technology user, you will be working primarily with handles.

If you define a new class of predicates yourself, you must define its implementation class together with the
corresponding virtual member function isTrue, as well as a member function that returns an instance of the
handle class IloAnyBinaryPredicate.

Arity

As a developer, you can use predicates in Concert Technology applications to define your own constraints that
have not already been predefined in Concert Technology. In that case, the arity of the predicate (that is, the
number of constrained variables involved in the predicate, and thus the size of the array that the member function
IloAnyBinaryPredicate::isTrue must check) must be two.

See Also: IloTableConstraint

Constructor and Destructor Summary

public IloAnyBinaryPredicate()

public IloAnyBinaryPredicate(IloAnyBinaryPredicateI * impl)

Method Summary

public IloAnyBinaryPredicateI * getImpl() const

public IloBool isTrue(const IloAny val1, const IloAny val2)

public void operator=(const IloAnyBinaryPredicate & h)

Constructors and Destructors

public IloAnyBinaryPredicate()

This constructor creates an empty binary predicate. In other words, the predicate is an empty handle with a null
handle pointer. You must assign the elements of the predicate before you attempt to access it, just as you would
any other pointer. Any attempt to access it before this assignment will throw an exception (an instance of
IloSolver::SolverErrorException).

public IloAnyBinaryPredicate(IloAnyBinaryPredicateI * impl)

345

This constructor creates a handle object (an instance of the class IloAnyBinaryPredicate) from a pointer to
an implementation object (an instance of the implementation class IlcAnyPredicateI, documented in the IBM
ILOG Solver Reference Manual).

Methods

public IloAnyBinaryPredicateI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloBool isTrue(const IloAny val1, const IloAny val2)

This member function returns IloTrue if the values val1 and val2 make the invoking binary predicate valid. It
returns IloFalse otherwise.

public void operator=(const IloAnyBinaryPredicate & h)

This assignment operator copies h into the invoking predicate by assigning an address to the handle pointer of
the invoking object. That address is the location of the implementation object of the argument h. After execution
of this operator, both the invoking predicate and h point to the same implementation object.

346

Class IloAnySet
Definition file: ilconcert/iloanyset.h

A class to represent a set of enumeration values.
An instance of this class represents a set of enumerated values. The same enumerated value will not appear
more than once in a set. The elements of a set are not ordered. The class IloAnySet::Iterator offers you a
way to traverse the elements of such a set.

If you are considering modeling issues where you want to represent repeated elements or where you want to
exploit an indexed order among the elements, then you might want to look at the class IloAnyArray instead of
this class for sets.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

See Also: IloAny, IloAnyArray, IloAnySet::Iterator

Constructor Summary

public IloAnySet(const IloEnv env, const IloAnyArray array, IloBool
withIndex=IloFalse)

public IloAnySet(const IloEnv env, IloBool withIndex=IloFalse)

Method Summary

public void add(IloAnySet set)

public void add(IloAny elt)

public IloBool contains(IloAnySet set) const

public IloBool contains(IloAny elt) const

public IloAnySet copy() const

public void empty()

public IloAny getNext(IloAny value, IloInt n=1) const

public IloAny getNextC(IloAny value, IloInt n=1) const

public IloAny getPrevious(IloAny value, IloInt n=1) const

public IloAny getPreviousC(IloAny value, IloInt n=1) const

public IloInt getSize() const

public IloBool intersects(IloAnySet set) const

public void remove(IloAnySet set)

public void remove(IloAny elt)

public void setIntersection(IloAnySet set)

public void setIntersection(IloAny elt)

Inner Class

347

IloAnySet::Iterator For IBM® ILOG® Solver: an iterator to traverse the elements of IloAnySet.

Constructors

public IloAnySet(const IloEnv env, const IloAnyArray array, IloBool
withIndex=IloFalse)

This constructor creates a set of enumerated values for env from the elements in array. The optional flag
withIndex corresponds to the activation or not of internal Hash Tables to improve speed of add/getIndex
methods.

public IloAnySet(const IloEnv env, IloBool withIndex=IloFalse)

This constructor creates an empty set (no elements) for env. You must use the member function
IloAnySet::add to fill this set with elements. The optional flag withIndex corresponds to the activation or not
of internal Hash Tables to improve speed of add/getIndex methods.

Methods

public void add(IloAnySet set)

This member function adds set to the invoking set. By adds, we mean that the invoking set becomes the union
of its former elements and the elements of set.

public void add(IloAny elt)

This member function adds elt to the invoking set. By adds, we mean that the invoking set becomes the union
of its former elements and the new elt.

public IloBool contains(IloAnySet set) const

This member function returns a Boolean value (zero or one) that specifies whether set intersects the invoking
set. The value one specifies that the invoking set contains all the elements of set, and that the intersection of the
invoking set with set is precisely set. The value zero specifies that the intersection of the invoking set set is not
precisely set.

public IloBool contains(IloAny elt) const

This member function returns a Boolean value (zero or one) that specifies whether elt is an element of the
invoking set. The value one specifies that the invoking set contains elt; the value zero specifies that the
invoking set does not contain elt.

public IloAnySet copy() const

This member functions creates a clone of the array.

public void empty()

348

This member function removes the elements from the invoking set. In other words, the invoking set becomes the
empty set.

public IloAny getNext(IloAny value, IloInt n=1) const

This method return the value next to the given argument in the set.

If the given value does not exist, it throws an exception

If no value follows, i.e. you are at the end of the set, it throws an exception

See also getNextC, getPreviousC for circular search.

public IloAny getNextC(IloAny value, IloInt n=1) const

This method return the value next to the given argument in the set.

If the given value does not exist, it throws an exception

If no value follows, i.e. you are at the end of the set, it will give you the first value (circular search)

See also getNext, getPrevious.

public IloAny getPrevious(IloAny value, IloInt n=1) const

This method return the value previous to the given argument in the set.

If the given value does not exist, it throws an exception

If no value is previous, i.e. you are at the beginning of the set, it throws an exception

See also getNextC, getPreviousC for circular search.

public IloAny getPreviousC(IloAny value, IloInt n=1) const

This method return the value previous to the given argument in the set.

If the given value does not exist, it throws an exception

If no value is prvious, i.e. you are at the beginning of the set, it will give you the last value (circular search)

See also getNext, getPrevious.

public IloInt getSize() const

This member function returns an integer specifying the size of the invoking set (that is, how many elements it
contains).

public IloBool intersects(IloAnySet set) const

349

This member function returns a Boolean value (zero or one) that specifies whether set intersects the invoking
set. The value one specifies that the intersection of set and the invoking set is not empty (at least one element in
common); the value zero specifies that the intersection of set and the invoking set is empty (no elements in
common).

public void remove(IloAnySet set)

This member function removes all the elements of set from the invoking set.

public void remove(IloAny elt)

This member function removes elt from the invoking set.

public void setIntersection(IloAnySet set)

This member function changes the invoking set so that it includes only the elements of set. In other words, the
invoking set becomes the intersection of its former elements with the elements of set.

public void setIntersection(IloAny elt)

This member function changes the invoking set so that it includes only the element specified by elt. In other
words, the invoking set becomes the intersection of its former elements with elt.

350

Class IloAnySetValueSelector
Definition file: ilsolver/ilosolverset.h
Include file: <ilsolver/ilosolver.h>

Solver lets you create value selectors to control the order in which the values in the domain of a set of
constrained enumerated variables are tried during the search for a solution.

The class IloAnySetValueSelector represents value selectors in an IBM® ILOG® Concert Technology
model. The class IlcAnySetSelect represents value selectors internally in a Solver search.

This class is the handle class of the modeling object that wraps the search object. When search starts,
IloAnySetValueSelectorI is extracted into an instance of IlcAnySetSelectI.

See Also: IlcAnySetSelect, IloAnySetValueSelectorI

Constructor Summary

public IloAnySetValueSelector()

public IloAnySetValueSelector(IloAnySetValueSelectorI * impl)

Method Summary

public IloAnySetValueSelectorI * getImpl() const

public void operator=(const IloAnySetValueSelector & h)

Constructors

public IloAnySetValueSelector()

This constructor creates an empty handle. You must initialize it before you use it.

public IloAnySetValueSelector(IloAnySetValueSelectorI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IloAnySetValueSelectorI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public void operator=(const IloAnySetValueSelector & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

351

352

Class IloAnySetValueSelectorI
Definition file: ilsolver/ilosolverset.h
Include file: <ilsolver/ilosolver.h>

This class is the implementation class for IloAnySetValueSelector.

The class IloAnySetValueSelectorI is the implementation class for value selectors in an IBM® ILOG®
Concert Technology model. The class IlcAnySetSelectI is the implementation class for value selectors
internally in a Solver search.

This class is the modeling object that wraps the search object. When search starts,
IloAnySetValueSelectorI is extracted into an instance of IlcAnySetSelectI.

To define new selection criteria, you define both a subclass of IloAnySetValueSelectorI and a subclass of
IlcAnySetSelectI.

See Also: IlcAnySetSelect, IloAnySetValueSelector

Constructor and Destructor Summary

public IloAnySetValueSelectorI(IloEnvI *)

public ~IloAnySetValueSelectorI()

Method Summary

public virtual void display(ostream &) const

public virtual IlcAnySetSelect extract(const IloSolver solver) const

public IloEnvI * getEnv() const

public virtual IloAnySetValueSelectorI * makeClone(IloEnvI * env) const

Constructors and Destructors

public IloAnySetValueSelectorI(IloEnvI *)

This constructor creates an instance of the class IloAnySetValueSelectorI. This constructor should not be
called directly as this class is an abstract class. This constructor is called automatically in the constructor of its
subclasses.

public ~IloAnySetValueSelectorI()

This destructor is called automatically by the destructor of its subclasses. It frees memory used by the invoking
object.

Methods

public virtual void display(ostream &) const

This member function prints the invoking value selector on an output stream.

353

public virtual IlcAnySetSelect extract(const IloSolver solver) const

In general terms, in Concert Technology, the objects of a model must be extracted for an algorithm (an instance
of one of the subclasses of IloAlgorithm, such as IloSolver). This member function returns the internal
value selector extracted for solver from the invoking value selector of a model.

public IloEnvI * getEnv() const

This member function returns the environment to which the invoking value selector belongs. A value selector
belongs to exactly one environment; different environments cannot share the same value selector.

public virtual IloAnySetValueSelectorI * makeClone(IloEnvI * env) const

This member function is called internally to duplicate the current value selector.

354

Class IloAnySetVar
Definition file: ilconcert/iloanyset.h

For IBM® ILOG® Solver: a class to represent a set of enumerated values as a constrained variable.
An instance of this class offers a convenient way to represent a set of enumerated values as a constrained
variable in Concert Technology.

A constrained variable representing a set of enumerated values (that is, an instance of IloAnySetVar) is
defined in terms of two other sets: its required elements and its possible elements. Its required elements are
those that must be in the set. Its possible elements are those that may be in the set. This class offers member
functions for accessing the required and possible elements of a set of enumerated values.

The function IloCard offers you a way to constrain the number of elements in a set variable. That is, IloCard
constrains the cardinality of a set variable.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

See Also: IloAnySet, IloAnySetVarArray, IloCard, IloEqIntersection, IloEqUnion, IloExtractable, IloMember,
IloModel, IloNotMember, IloNullIntersect, IloSubset, IloSubsetEq

Constructor Summary

public IloAnySetVar()

public IloAnySetVar(IloIntSetVarI * impl)

public IloAnySetVar(const IloEnv env, const IloAnyArray possible, const char *
name=0)

public IloAnySetVar(const IloEnv env, const IloAnyArray possible, const
IloAnyArray required, const char * name=0)

public IloAnySetVar(const IloAnyCollection possible, const char * name=0)

public IloAnySetVar(const IloAnyCollection possible, const IloAnyCollection
required, const char * name=0)

Method Summary

public void addPossible(IloAny elt) const

public void addRequired(IloAny elt) const

public IloIntSetVarI * getImpl() const

public void getPossibleSet(IloAnySet set) const

public IloAnySet getPossibleSet() const

public IloAnySet::Iterator getPossibleSetIterator() const

public void getRequiredSet(IloAnySet set) const

public IloAnySet getRequiredSet() const

public IloAnySet::Iterator getRequiredSetIterator() const

public void removePossible(IloAny elt) const

public void removeRequired(IloAny elt) const

355

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

Constructors

public IloAnySetVar()

This constructor creates an empty handle. You must initialize it before you use it.

public IloAnySetVar(IloIntSetVarI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IloAnySetVar(const IloEnv env, const IloAnyArray possible, const char *
name=0)

This constructor creates a constrained set variable from the values in possible and makes the set variable part
of the environment specified by env, where the set consists of enumerated values. By default, its name is the
empty string, but you can specify a name of your own choice.

public IloAnySetVar(const IloEnv env, const IloAnyArray possible, const IloAnyArray
required, const char * name=0)

With this constructor, you can specify both the required and the possible sets that characterize the instance
of IloAnySetVar that it creates. By default, its name is the empty string, but you can specify a name of your
own choice.

public IloAnySetVar(const IloAnyCollection possible, const char * name=0)

This constructor creates a constrained set variable and makes it part of the environment env, where the set
consists of integer values.

public IloAnySetVar(const IloAnyCollection possible, const IloAnyCollection
required, const char * name=0)

This constructor creates a constrained set variable and makes it part of the environment env, where the set
consists of integer values.

Methods

public void addPossible(IloAny elt) const

This member function adds elt to the set of possible elements of the invoking set variable.

Note

The member function addPossible notifies Concert Technology algorithms about this change of this invoking
object.

356

public void addRequired(IloAny elt) const

This member function adds elt to the set of required elements of the invoking set variable.

Note

The member function addRequired notifies Concert Technology algorithms about this change of this invoking
object.

public IloIntSetVarI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public void getPossibleSet(IloAnySet set) const

This member function accesses the possible elements of the invoking set variable and puts those elements into
its argument set.

public IloAnySet getPossibleSet() const

This member function returns the possible elements of the invoking set variable.

public IloAnySet::Iterator getPossibleSetIterator() const

This member function returns an IloAnySet::Iterator to traverse the possible elements of the invoking set
variable.

public void getRequiredSet(IloAnySet set) const

This member function accesses the required elements of the invoking set variable and puts those elements into
its argument set.

public IloAnySet getRequiredSet() const

This member function returns the required elements of the invoking set variable.

public IloAnySet::Iterator getRequiredSetIterator() const

This member function returns an IloAnySet::Iterator to traverse the required elements of the invoking set
variable.

public void removePossible(IloAny elt) const

This member function removes elt as a possible element of the invoking set variable.

357

Note

The member function removePossible notifies Concert Technology algorithms about this change of this
invoking object.

public void removeRequired(IloAny elt) const

This member function removes elt as a required element of the invoking set variable.

Note

The member function removeRequired notifies Concert Technology algorithms about this change of this
invoking object.

358

Class IloAnySetVarArray
Definition file: ilconcert/iloanyset.h

For IBM® ILOG® Solver: array class of the set variable class IloAnySetVar.
For each basic type, Concert Technology defines a corresponding array class. IloAnySetVarArray is the
array class of the set variable class for enumerated values (IloAnySetVar) in a model.

Instances of IloAnySetVarArray are extensible. That is, you can add more elements to such an array.
References to an array change whenever an element is added or removed from the array.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

For more information on arrays, see the concept Arrays

See Also: IloAnySetVar, IloModel, operator<<

Constructor Summary

public IloAnySetVarArray(IloDefaultArrayI * i=0)

public IloAnySetVarArray(const IloEnv env, IloInt n=0)

Method Summary

public void add(IloInt more, const IloAnySetVar x)

public void add(const IloAnySetVar x)

public void add(const IloAnySetVarArray array)

public IloAnySetVar operator[](IloInt i) const

public IloAnySetVar & operator[](IloInt i)

Inherited Methods from IloExtractableArray

add, add, add, endElements, setNames

Constructors

public IloAnySetVarArray(IloDefaultArrayI * i=0)

This constructor creates an empty extensible array of set variables, where each set is a set of enumerated
values. You cannot create instances of the undocumented class IloDefaultArrayI. As an argument in this
default constructor, it allows you to pass 0 (zero) as a value to an optional argument in functions and member
functions that accept an array as an argument.

public IloAnySetVarArray(const IloEnv env, IloInt n=0)

This constructor creates an extensible array of n set variables, where each set is a set of enumerated values.
Initially, the n elements are empty handles.

359

Methods

public void add(IloInt more, const IloAnySetVar x)

This member function appends x to the invoking array multiple times. The argument more specifies how many
times.

public void add(const IloAnySetVar x)

This member function appends x to the invoking array.

public void add(const IloAnySetVarArray array)

This member function appends the elements in array to the invoking array.

public IloAnySetVar operator[](IloInt i) const

This operator returns a reference to the object located in the invoking array at the position specified by the index
i. On const arrays, Concert Technology uses the const operator:

 IloAnySetVar operator[] (IloInt i) const;

public IloAnySetVar & operator[](IloInt i)

This operator returns a reference to the object located in the invoking array at the position specified by the index
i.

360

Class IloAnyTernaryPredicate
Definition file: ilconcert/ilotupleset.h

For IBM ILOG Solver: defines ternary predicates on objects in a model.
This class makes it possible for you to define ternary predicates operating on arbitrary objects in a model. A
predicate is an object with a member function (such as IloAnyTernaryPredicate::isTrue) that checks
whether or not a property is satisfied by an ordered set of (pointers to) objects. A ternary predicate checks an
ordered set of three objects.

Defining a New Class of Predicates

Predicates, like other Concert Technology objects, depend on two classes: a handle class,
IloAnyTernaryPredicate, and an implementation class, such as IloAnyTernaryPredicateI, where an
object of the handle class contains a data member (the handle pointer) that points to an object (its
implementation object) of an instance of IloAnyTernaryPredicateI allocated in a Concert Technology
environment. As a Concert Technology user, you will be working primarily with handles.

If you define a new class of predicates yourself, you must define its implementation class together with the
corresponding virtual member function isTrue, as well as a member function that returns an instance of the
handle class IloAnyTernaryPredicate.

Arity

As a developer, you can use predicates in Concert Technology applications to define your own constraints that
have not already been predefined in Concert Technology. In that case, the arity of the predicate (that is, the
number of constrained variables involved in the predicate, and thus the size of the array that the member function
IloAnyTernaryPredicate::isTrue must check) must be three.

See Also: IloTableConstraint

Constructor and Destructor Summary

public IloAnyTernaryPredicate()

public IloAnyTernaryPredicate(IloAnyTernaryPredicateI * impl)

Method Summary

public IloAnyTernaryPredicateI * getImpl() const

public IloBool isTrue(const IloAny val1, const IloAny val2,
const IloAny val3)

public void operator=(const IloAnyTernaryPredicate & h)

Constructors and Destructors

public IloAnyTernaryPredicate()

This constructor creates an empty ternary predicate. In other words, the predicate is an empty handle with a null
handle pointer. You must assign the elements of the predicate before you attempt to access it, just as you would
any other pointer. Any attempt to access it before this assignment will throw an exception (an instance of
IloSolver::SolverErrorException).

public IloAnyTernaryPredicate(IloAnyTernaryPredicateI * impl)

361

This constructor creates a handle object (an instance of the class IloAnyTernaryPredicate) from a pointer
to an implementation object (an instance of the implementation class IloAnyTernaryPredicateI).

Methods

public IloAnyTernaryPredicateI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloBool isTrue(const IloAny val1, const IloAny val2, const IloAny val3)

This member function returns IloTrue if the values val1, val2, and val3 make the invoking ternary predicate
valid. It returns IloFalse otherwise.

public void operator=(const IloAnyTernaryPredicate & h)

This assignment operator copies h into the invoking predicate by assigning an address to the handle pointer of
the invoking object. That address is the location of the implementation object of the argument h. After execution
of this operator, both the invoking predicate and h point to the same implementation object.

362

Class IloAnyTupleSet
Definition file: ilconcert/ilotupleset.h

Ordered set of values as an array.
A tuple is an ordered set of values represented by an array. A set of enumerated tuples in a model is represented
by an instance of IloAnyTupleSet. That is, the elements of a tuple set are tuples of enumerated values (such
as pointers). The number of values in a tuple is known as the arity of the tuple, and the arity of the tuples in a set
is called the arity of the set. (In contrast, the number of tuples in the set is known as the cardinality of the set.)

As a handle class, IloAnyTupleSet manages certain set operations efficiently. In particular, elements can be
added to such a set. It is also possible to search a given set with the member function
IloAnyTupleSet::isIn to see whether or not the set contains a given element.

In addition, a set of tuples can represent a constraint defined on a constrained variable, either as the set of
allowed combinations of values of the constrained variable on which the constraint is defined, or as the set of
forbidden combinations of values.

There are a few conventions governing tuple sets:

When you create the set, you must specify the arity of the tuple-elements it contains.•
You use the member function IloAnyTupleSet::add to add tuples to the set. You can add tuples to
the set in a model; you cannot add tuples to an instance of this class during a search, nor inside a
constraint, nor inside a goal.

•

Concert Technology will throw an exception (an instance of IloSolver::SolverErrorException) if you
attempt:

to add a tuple with a different number of variables from the arity of the set;•
to search for a tuple with an arity different from the set arity.•

You do not have to worry about memory allocation. If you respect these conventions, Concert Technology
manages allocation and de-allocation transparently for you.

See Also the class IlcIntTupleSet in the IBM ILOG CP Optimizer Reference Manual and the ILOG Solver
Reference Manual.

See Also: IloAnyTupleSetIterator, IloTableConstraint, IloExtractable

Constructor Summary

public IloAnyTupleSet(const IloEnv env, const IloInt arity)

Method Summary

public IloBool add(const IloAnyArray tuple) const

public IloInt getArity() const

public IloAnyTupleSetI * getImpl() const

public IloBool isIn(const IloAnyArray tuple) const

public IloBool remove(const IloAnyArray tuple) const

363

Constructors

public IloAnyTupleSet(const IloEnv env, const IloInt arity)

This constructor creates a set of tuples (an instance of the class IloAnyTupleSet) with the arity specified by
arity.

Methods

public IloBool add(const IloAnyArray tuple) const

This member function adds a tuple represented by the array tuple to the invoking set. If you attempt to add an
element that is already in the set, that element will not be added again. Added elements are not copied; that is,
there is no memory duplication. Concert Technology will throw an exception if the size of the array is not equal to
the arity of the invoking set. You may use this member function to add tuples to the invoking set in a model; you
may not add tuples in this way during a search, inside a constraint, or inside a goal. For those purposes, see
IlcIntTupleSet, documented in the IBM ILOG CP Optimizer Reference Manual and the IBM ILOG Solver
Reference Manual.

public IloInt getArity() const

This member function returns the arity of the tupleset.

public IloAnyTupleSetI * getImpl() const

This member function returns a pointer to the implementation object of the invoking extractable object. This
member function is useful when you need to be sure that you are using the same copy of the invoking extractable
object in more than one situation.

public IloBool isIn(const IloAnyArray tuple) const

This member function returns IloTrue if tuple belongs to the invoking set. Otherwise, it returns IloFalse.
Concert Technology will throw an exception if the size of the array is not equal to the arity of the invoking set.

public IloBool remove(const IloAnyArray tuple) const

This member function removes tuple from the invoking set in a model. You may use this member function to
remove tuples from the invoking set in a model; you may not remove tuples in this way during a search, inside a
constraint, or inside a goal. For those purposes, see IlcIntTupleSet documented in the IBM ILOG CP
Optimizer Reference Manual and the IBM ILOG Solver Reference Manual.

364

Class IloAnyTupleSetIterator
Definition file: ilconcert/ilotupleset.h

Iterator to traverse enumerated values of a tuple-set.
An instance of the class IloAnyTupleSetIterator is an iterator that traverses the elements of a finite set of
tuples of enumerated values (instance of IloAnyTupleSet).

See Also the class IlcAnyTupleSet in the IBM ILOG Solver Reference Manual.

Constructor Summary

public IloAnyTupleSetIterator(const IloEnv env, IloAnyTupleSet tset)

Method Summary

public IloAnyArray operator*() const

Constructors

public IloAnyTupleSetIterator(const IloEnv env, IloAnyTupleSet tset)

This constructor creates an iterator associated with tSet to traverse its elements.

Methods

public IloAnyArray operator*() const

This operator returns the current element, the one to which the invoking iterator points.

365

Class IloAnyValueSelector
Definition file: ilsolver/ilosolverany.h
Include file: <ilsolver/ilosolver.h>

Solver lets you create value selectors to control the order in which the values in the domain of a constrained
enumerated variable are tried during the search for a solution.

The class IloAnyValueSelector represents value selectors in a Concert Technology model. The class
IlcAnySelect represents value selectors internally in a Solver search.

This class is the handle class of the modeling object that wraps the search object. When search starts,
IloAnyValueSelectorI is extracted into an instance of IlcAnySelectI.

See Also: IlcAnySelect, IloAnyValueSelectorI

Constructor Summary

public IloAnyValueSelector()

public IloAnyValueSelector(IloAnyValueSelectorI * impl)

Method Summary

public IloAnyValueSelectorI * getImpl() const

public void operator=(const IloAnyValueSelector & h)

Constructors

public IloAnyValueSelector()

This constructor creates an empty handle. You must initialize it before you use it.

public IloAnyValueSelector(IloAnyValueSelectorI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IloAnyValueSelectorI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public void operator=(const IloAnyValueSelector & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

366

367

Class IloAnyValueSelectorI
Definition file: ilsolver/ilosolverany.h
Include file: <ilsolver/ilosolver.h>

This class is the implementation class for IloAnyValueSelector.

The class IloAnyValueSelectorI is the implementation class for value selectors in a Concert Technology
model. The class IlcAnySelectI is the implementation class for value selectors internally in a Solver search.

This class is the modeling object that wraps the search object. When search starts, IloAnyValueSelectorI is
extracted into an instance of IlcAnySelectI.

To define new selection criteria, you define both a subclass of IloAnyValueSelectorI and a subclass of
IlcAnySelectI.

See Also: IlcAnySelect, IloAnyValueSelector

Constructor and Destructor Summary

public IloAnyValueSelectorI(IloEnvI *)

public ~IloAnyValueSelectorI()

Method Summary

public virtual void display(ostream &) const

public virtual IlcAnySelect extract(const IloSolver solver) const

public IloEnvI * getEnv() const

public virtual IloAnyValueSelectorI * makeClone(IloEnvI * env) const

Constructors and Destructors

public IloAnyValueSelectorI(IloEnvI *)

This constructor creates an instance of the class IloAnyValueSelectorI. This constructor should not be
called directly as this class is an abstract class. This constructor is called automatically in the constructor of its
subclasses.

public ~IloAnyValueSelectorI()

This destructor is called automatically by the destructor of its subclasses. It frees memory used by the invoking
object.

Methods

public virtual void display(ostream &) const

This member function prints the invoking value selector on an output stream.

368

public virtual IlcAnySelect extract(const IloSolver solver) const

In general terms, in Concert Technology, the objects of a model must be extracted for an algorithm (an instance
of one of the subclasses of IloAlgorithm, such as IloSolver). This member function returns the internal
value selector extracted for solver from the invoking value selector of a model.

public IloEnvI * getEnv() const

This member function returns the environment to which the invoking value selector belongs. A value selector
belongs to exactly one environment; different environments cannot share the same value selector.

public virtual IloAnyValueSelectorI * makeClone(IloEnvI * env) const

This member function is called internally to duplicate the current value selector.

369

Class IloAnyVar
Definition file: ilconcert/iloany.h

For IBM® ILOG® Solver: a class to represent an enumerated variable.
An instance of this class offers a convenient way to represent an enumerated variable in Concert Technology.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

See Also: IloAny, IloAnyVarArray, IloExtractable, IloModel

Constructor Summary

public IloAnyVar()

public IloAnyVar(IloNumVarI * impl)

public IloAnyVar(const IloEnv env, const IloAnyArray array, const char * name=0)

Method Summary

public IloNumVarI * getImpl() const

public void getPossibleValues(IloAnyArray values) const

public void setPossibleValues(const IloAnyArray values)

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

Constructors

public IloAnyVar()

This constructor creates an empty handle. You must initialize it before you use it.

public IloAnyVar(IloNumVarI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IloAnyVar(const IloEnv env, const IloAnyArray array, const char * name=0)

This constructor creates a constrained enumerated variable from the values in array and makes the variable
part of the environment specified by env. By default, its name is the empty string, but you can specify a name of
your own choice.

Methods

public IloNumVarI * getImpl() const

370

This member function returns a pointer to the implementation object of the invoking handle.

public void getPossibleValues(IloAnyArray values) const

This constructor creates a constrained enumerated variable from the given collection.

This member function accesses the possible values of the invoking enumerated variable and puts those values
into its argument values.

public void setPossibleValues(const IloAnyArray values)

This member function sets values as the domain of the invoking enumerated variable.

371

Class IloAnyVarArray
Definition file: ilconcert/iloany.h

For IBM® ILOG® Solver: a class to represent an array of enumerated variables.
For each basic type, Concert Technology defines a corresponding array class. IloAnyVarArray is the array
class of the enumerated variable class (IloAnyVar) for a model. The parent class for IloAnyVarArray is the
class IloExtractableArray.

Instances of IloAnyVarArray are extensible. That is, you can add more elements to such an array.
References to an array change whenever an element is added or removed from the array.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

See Also: IloAnyVar, IloModel, operator<<

Constructor Summary

public IloAnyVarArray(IloDefaultArrayI * i=0)

public IloAnyVarArray(const IloEnv env, IloInt n=0)

Method Summary

public void add(IloInt more, const IloAnyVar x)

public void add(const IloAnyVar x)

public void add(const IloAnyVarArray array)

public IloAnyVar operator[](IloInt i) const

public IloAnyVar & operator[](IloInt i)

Inherited Methods from IloExtractableArray

add, add, add, endElements, setNames

Constructors

public IloAnyVarArray(IloDefaultArrayI * i=0)

This constructor creates an empty extensible array of enumerated variables. You cannot create instances of the
undocumented class IloDefaultArrayI. As an argument in this default constructor, it allows you to pass 0
(zero) as a value to an optional argument in functions and member functions that accept an array as an
argument.

public IloAnyVarArray(const IloEnv env, IloInt n=0)

This constructor creates an extensible array of n enumerated variables. Initially, the n elements are empty
handles.

372

Methods

public void add(IloInt more, const IloAnyVar x)

This member function appends x to the invoking array multiple times. The argument more specifies how many
times.

public void add(const IloAnyVar x)

This member function appends x to the invoking array.

public void add(const IloAnyVarArray array)

This member function appends the elements in array to the invoking array.

public IloAnyVar operator[](IloInt i) const

This operator returns a reference to the object located in the invoking array at the position specified by the index
i. On const arrays, Concert Technology uses the const operator:

 IloAnyVar operator[] (IloInt i) const;

public IloAnyVar & operator[](IloInt i)

This operator returns a reference to the object located in the invoking array at the position specified by the index
i.

373

Class IloArray<>
Definition file: ilconcert/iloenv.h

A template to create classes of arrays for elements of a given class.
This C++ template creates a class of arrays for elements of a given class. In other words, you can use this
template to create arrays of Concert Technology objects; you can also use this template to create arrays of
arrays (that is, multidimensional arrays).

In its synopsis, X represents a class, x is an instance of the class X. This template creates the array class
(IloArrayX) for any class in Concert Technology, including classes with names in the form IloXArray, such
as IloExtractableArray. Concert Technology predefines the array classes listed here as See Also. The
member functions defined by this template are documented in each of those predefined classes.

The classes you create in this way consist of extensible arrays. That is, you can add elements to the array as
needed.

Deleting Arrays

The member function end created by this template deletes only the array; the member function does not delete
the elements of the array.

Copying Arrays

Like certain other Concert Technology classes, a class of arrays created by IloArray is a handle class
corresponding to an implementation class. In other words, an instance of an IloArray class is a handle pointing
to a corresponding implementation object. More than one handle may point to the same implementation object.

Input and Output of Multidimensional Arrays

The template operator >> makes it possible to read numeric values from a file in the format [x, y, z,
...] where x, y, z are the results of the operator >> for class X. Class X must provide a default constructor
for operator >> to work. That is, the statement X x; must work for X. This input operator is limited to numeric
values.

Likewise, the template operator << makes it possible to write to a file in the format [x, y, z, ...] where
x, y, z are the results of the operator << for class X. (This output operator is not limited to numeric values, as
the input operator is.)

These two operators make it possible to read and write multidimensional arrays of numeric values like this:

 IloArray<IloArray<IloIntArray> >

(Notice the space between > > at the end of that statement. It is necessary in C++.)

However, there is a practical limit of four on the number of dimensions supported by the input operator for
reading multidimensional arrays. This limit is due to the inability of certain C++ compilers to support templates
correctly. Specifically, you can read input by means of the input operator for multidimensional arrays of one, two,
three, or four dimensions. There is no such limit on the number of dimensions with respect to the output operator
for multidimensional arrays.

See Also these classes in the IBM ILOG CPLEX Reference Manual: IloSemiContVarArray, IloSOS1Array,
IloSOS2Array, IloNumColumnArray.

See Also these classes in the IBM ILOG Solver Reference Manual: IloAnyArray, IloAnySetVarArray,
IloAnyVarArray, IloFloatArray, IloFloatVarArray.

374

See Also: IloBoolArray, IloBoolVarArray, IloConstraintArray, IloExprArray, IloExtractableArray, IloIntArray,
IloIntVarArray, IloNumVarArray, IloRangeArray, IloSolutionArray

Constructor Summary

public IloArray(IloEnv env, IloInt max=0)

Method Summary

public void add(IloArray< X > ax) const

public void add(IloInt more, X x) const

public void add(X x) const

public void clear()

public void end()

public IloEnv getEnv() const

public IloInt getSize() const

public X & operator[](IloInt i)

public const X & operator[](IloInt i) const

public void remove(IloInt first, IloInt nb=1)

Constructors

public IloArray(IloEnv env, IloInt max=0)

This constructor creates an array of max elements, all of which are empty handles.

Methods

public void add(IloArray< X > ax) const

This member function appends the elements in ax to the invoking array.

public void add(IloInt more, X x) const

This member function appends x to the invoking array multiple times. The argument more specifies how many
times.

public void add(X x) const

This member function appends x to the invoking array.

public void clear()

This member function removes all the elements from the invoking array. In other words, it produces an empty
array.

375

public void end()

This member function first removes the invoking extractable object from all other extractable objects where it is
used (such as a model, ranges, etc.) and then deletes the invoking extractable object. That is, it frees all the
resources used by the invoking object. After a call to this member function, you cannot use the invoking
extractable object again.

public IloEnv getEnv() const

This member function returns the environment where the invoking array was created. The elements of the
invoking array belong to the same environment.

public IloInt getSize() const

This member function returns an integer specifying the size of the invoking array. An empty array has size 0
(zero).

public X & operator[](IloInt i)

This operator returns a reference to the object located in the invoking array at the position specified by the index
i.

public const X & operator[](IloInt i) const

This operator returns a reference to the object located in the invoking array at the position specified by the index
i. On const arrays, Concert Technology uses the const operator:

 IloArray operator[] (IloInt i) const;

public void remove(IloInt first, IloInt nb=1)

This member function removes elements from the invoking array. It begins removing elements at the index
specified by first, and it removes nb elements (nb = 1 by default).

376

Class IloBarrier
Definition file: ilconcert/ilothread.h

A system class to synchronize threads at a specified number.
The class IloBarrier provides synchronization primitives adapted to Concert Technology. A barrier, an
instance of this class, serves as a rendezvous for a specific number of threads. After you create a barrier for n
threads, the first n-1 threads to reach that barrier will be blocked. The nth thread to arrive at the barrier completes
the synchronization and wakes up the n-1 threads already waiting at that barrier. When the nth thread arrives, the
barrier resets itself. Any other thread that arrives at this point is blocked and will participate in a new barrier of
size n.

Note

The class IloBarrier has nothing to do with the IBM ILOG CPLEX barrier optimizer.

System Class

IloBarrier is a system class.

Most Concert Technology classes are actually handle classes whose instances point to objects of a
corresponding implementation class. For example, instances of the Concert Technology class IloNumVar are
handles pointing to instances of the implementation class IloNumVarI. Their allocation and de-allocation in a
Concert Technology environment are managed by an instance of IloEnv.

However, system classes, such as IloBarrier, differ from that Concert Technology pattern. IloBarrier is
an ordinary C++ class. Its instances are allocated on the C++ heap.

Instances of IloBarrier are not automatically de-allocated by a call to IloEnv::end. You must explicitly
destroy instances of IloBarrier by means of a call to the delete operator (which calls the appropriate
destructor) when your application no longer needs instances of this class.

Furthermore, you should not allocate—neither directly nor indirectly—any instance of IloBarrier in a Concert
Technology environment because the destructor for that instance of IloBarrier will never be called
automatically by IloEnv::end when it cleans up other Concert Technology objects in that Concert Technology
environment.

For example, it is not a good idea to make an instance of IloBarrier part of a conventional Concert
Technology model allocated in a Concert Technology environment because that instance will not automatically
be de-allocated from the Concert Technology environment along with the other Concert Technology objects.

De-allocating Instances of IloBarrier

Instances of IloBarrier differ from the usual Concert Technology objects because they are not allocated in a
Concert Technology environment, and their de-allocation is not managed automatically for you by
IloEnv::end. Instead, you must explicitly destroy instances of IloBarrier by calling the delete operator
when your application no longer needs those objects.

See Also: IloCondition, IloFastMutex

Constructor Summary

public IloBarrier(int count)

Method Summary

377

public int wait()

Constructors

public IloBarrier(int count)

This constructor creates an instance of IloBarrier of size count and allocates it on the C++ heap (not in a
Concert Technology environment).

Methods

public int wait()

The first count-1 calls to this member function block the calling thread. The last call (that is, the call numbered
count) wakes up all the count-1 waiting threads. Once a thread has been woken up, it leaves the barrier.
When a thread leaves the barrier (that is, when it returns from the wait call), it will return either 1 (one) or 0
(zero). If the thread returns 0, the barrier is not yet empty. If the thread returns 1, it was the last thread at the
barrier.

A nonempty barrier contains blocked threads or exiting threads.

378

Class IloBaseEnvMutex
Definition file: ilconcert/iloenv.h

A class to initialize multithreading in an application.
An instance of this base class in the function IloInitMT initializes multithreading in a Concert Technology
application. For a general purpose mutex, see the class IloFastMutex.

See Also: IloFastMutex, IloInitMT

Method Summary

public virtual void lock()

public virtual void unlock()

Methods

public virtual void lock()

This member function locks a mutex.

public virtual void unlock()

This member function unlocks a mutex.

379

Class IloBestSelector<,>
Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

The IloBestSelector template class is a subclass of selector that implements the selection of an object of
type IloObject provided by a container of typeIloContainer based on:

A visitor of type IloVisitor<IloObject,IloContainer>•
A predicate of type IloPredicate<IloObject>•
A comparator of type IloComparator<IloObject>•

The selector will select an instance of IloObject visited by the visitor that satisfies the predicate and that is the
best according to the comparator.

In the case where no visitor is provided, the selector uses the default visitor provided for the template
<IloObject,IloContainer> (see macro ILODEFAULTVISITOR). In the case where no predicate is provided,
the default is a predicate that always returns IloTrue. In the case where no comparator is provided, the default
is a comparator that considers all objects as being equal.

For more information, see Selectors.

See Also: IloVisitor, IloPredicate, IloComparator

Constructor Summary

public IloBestSelector(IloMemoryManager manager)

Creates a selector returning an IloObject from an IloContainer.

public IloBestSelector(IloVisitor< IloObject, IloContainer > visitor,
IloPredicate< IloObject > pred=0, IloComparator< IloObject > cmp=0)

Creates a selector returning an IloObject from an IloContainer.

public IloBestSelector(IloPredicate< IloObject > pred, IloComparator< IloObject >
cmp=0)

Creates a selector returning an IloObject from an IloContainer.

public IloBestSelector(IloComparator< IloObject > cmp)

Creates a selector returning an IloObject from an IloContainer.

public IloBestSelector(IloVisitor< IloObject, IloContainer > visitor,
IloComparator< IloObject > cmp)

Creates a selector returning an IloObject from an IloContainer.

Method Summary

public IloComparator< IloObject > getComparator() const

Returns the selector's comparator.

public IloPredicate< IloObject > getPredicate() const

380

Returns the selector's predicate.

public IloVisitor< IloObject, IloContainer > getVisitor() const

Returns the selector's visitor.

Inherited Methods from IloSelector

select

Constructors

public IloBestSelector(IloMemoryManager manager)

Creates a selector returning an IloObject from an IloContainer.

internal

This constructor creates a selector that uses a default visitor allocated on the memory mananger manager.

public IloBestSelector(IloVisitor< IloObject, IloContainer > visitor, IloPredicate<
IloObject > pred=0, IloComparator< IloObject > cmp=0)

Creates a selector returning an IloObject from an IloContainer.

This constructor creates a selector that uses the visitor visitor, the predicate pred, and the comparator cmp
given as arguments.

public IloBestSelector(IloPredicate< IloObject > pred, IloComparator< IloObject >
cmp=0)

Creates a selector returning an IloObject from an IloContainer.

This constructor creates a selector that uses the predicate pred and the comparator cmp given as arguments.

public IloBestSelector(IloComparator< IloObject > cmp)

Creates a selector returning an IloObject from an IloContainer.

This constructor creates a selector that uses the comparator cmp given as argument.

public IloBestSelector(IloVisitor< IloObject, IloContainer > visitor,
IloComparator< IloObject > cmp)

Creates a selector returning an IloObject from an IloContainer.

This constructor creates a selector that uses the visitor visitor and the comparator cmp given as arguments.

Methods

public IloComparator< IloObject > getComparator() const

Returns the selector's comparator.

This member function returns the comparator associated with the invoking selector.

381

public IloPredicate< IloObject > getPredicate() const

Returns the selector's predicate.

This member function returns the predicate associated with the invoking selector.

public IloVisitor< IloObject, IloContainer > getVisitor() const

Returns the selector's visitor.

This member function returns the visitor associated with the invoking selector.

382

Class IloBoolArray
Definition file: ilconcert/iloenv.h

The array class of the basic Boolean class for a model.
IloBoolArray is the array class of the basic Boolean class for a model. It is a handle class. The
implementation class for IloBoolArray is the undocumented class IloBoolArrayI.

Instances of IloBoolArray are extensible. (They differ from instances of IlcBoolArray in this respect.)
References to an array change whenever an element is added to or removed from the array.

For each basic type, Concert Technology defines a corresponding array class. That array class is a handle class.
In other words, an object of that class contains a pointer to another object allocated in a Concert Technology
environment associated with a model. Exploiting handles in this way greatly simplifies the programming interface
since the handle can then be an automatic object: as a developer using handles, you do not have to worry about
memory allocation.

As handles, these objects should be passed by value, and they should be created as automatic objects, where
“automatic” has the usual C++ meaning.

Member functions of a handle class correspond to member functions of the same name in the implementation
class.

Assert and NDEBUG

Most member functions of the class IloBoolArray are inline functions that contain an assert statement. This
statement checks that the handle pointer is not null. These statements can be suppressed by the macro NDEBUG.
This option usually reduces execution time. The price you pay for this choice is that attempts to access through
null pointers are not trapped and usually result in memory faults.

See Also: IloBool

Constructor Summary

public IloBoolArray(IloArrayI * i=0)

public IloBoolArray(const IloEnv env, IloInt n=0)

public IloBoolArray(const IloEnv env, IloInt n, const IloBool v0, const IloBool
v1...)

Method Summary

public void add(IloInt more, const IloBool x)

public void add(const IloBool x)

public void add(const IloBoolArray x)

Inherited Methods from IloIntArray

contains, contains, discard, discard, operator[], operator[], operator[],
toNumArray

383

Constructors

public IloBoolArray(IloArrayI * i=0)

This constructor creates an array of Boolean values from an implementation object.

public IloBoolArray(const IloEnv env, IloInt n=0)

This constructor creates an array of n Boolean values for use in a model in the environment specified by env. By
default, its elements are empty handles.

public IloBoolArray(const IloEnv env, IloInt n, const IloBool v0, const IloBool
v1...)

This constructor creates an array of n Boolean values; the elements of the new array take the corresponding
values: v0, v1, ...,v(n-1).

Methods

public void add(IloInt more, const IloBool x)

This member function appends x to the invoking array of Boolean values; it appends x more times.

public void add(const IloBool x)

This member function appends the value x to the invoking array.

public void add(const IloBoolArray x)

This member function appends the values in the array x to the invoking array.

384

Class IloBoolVar
Definition file: ilconcert/iloexpression.h

An instance of this class represents a constrained Boolean variable in a Concert Technology model.
Boolean variables are also known as binary decision variables. They can assume the values 0 (zero) or 1 (one).

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

What Is Extracted

An instance of IloBoolVar is extracted by IloSolver (documented in the IBM ILOG Solver Reference
Manual) as an instance of the class IlcBoolVar (also documented in the IBM ILOG Solver Reference Manual).

An instance of IloBoolVar is extracted by IloCplex (documented in the IBM ILOG CPLEX Reference
Manual) as a column representing a numeric variable of type Bool with bounds as specified by IloBoolVar.

See Also: IloIntVar, IloNumVar

Constructor Summary

public IloBoolVar(IloEnv env, IloInt min=0, IloInt max=1, const char * name=0)

public IloBoolVar(IloEnv env, const char * name)

public IloBoolVar(const IloAddNumVar & column, const char * name=0)

Inherited Methods from IloIntVar

getImpl, getLB, getMax, getMin, getUB, setBounds, setLB, setMax, setMin,
setPossibleValues, setUB

Inherited Methods from IloIntExprArg

getImpl

Inherited Methods from IloNumExprArg

getImpl

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

385

Constructors

public IloBoolVar(IloEnv env, IloInt min=0, IloInt max=1, const char * name=0)

This constructor creates a Boolean variable and makes it part of the environment env. By default, the Boolean
variable assumes a value of 0 (zero) or 1 (one). By default, its name is the empty string, but you can specify a
name of your own choice.

public IloBoolVar(IloEnv env, const char * name)

This constructor creates a Boolean variable and makes it part of the environment env. By default, its name is the
empty string, but you can specify a name of your own choice.

public IloBoolVar(const IloAddNumVar & column, const char * name=0)

This constructor creates an instance of IloBoolVar like this:

IloNumVar(column, 0.0, 1.0, ILOBOOL, name);

386

Class IloBoolVarArray
Definition file: ilconcert/iloexpression.h

The array class of the Boolean variable class.
For each basic type, Concert Technology defines a corresponding array class. IloBoolVarArray is the array
class of the Boolean variable class for a model. It is a handle class.

Instances of IloBoolVarArray are extensible.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

See Also: IloBoolVar

Constructor Summary

public IloBoolVarArray(IloDefaultArrayI * i=0)

public IloBoolVarArray(const IloEnv env, IloInt n)

public IloBoolVarArray(const IloEnv env, const IloNumColumnArray columnarray)

Method Summary

public void add(IloInt more, const IloBoolVar x)

public void add(const IloBoolVar x)

public void add(const IloBoolVarArray x)

public IloBoolVar operator[](IloInt i) const

public IloBoolVar & operator[](IloInt i)

public IloIntExprArg operator[](IloIntExprArg anIntegerExpr) const

Inherited Methods from IloIntVarArray

add, add, add, endElements, operator[], operator[], operator[], toNumVarArray

Inherited Methods from IloIntExprArray

add, add, add, endElements, operator[], operator[], operator[]

Inherited Methods from IloExtractableArray

add, add, add, endElements, setNames

Constructors

public IloBoolVarArray(IloDefaultArrayI * i=0)

387

This constructor creates an empty extensible array of Boolean variables.

public IloBoolVarArray(const IloEnv env, IloInt n)

This constructor creates an extensible array of n Boolean variables.

public IloBoolVarArray(const IloEnv env, const IloNumColumnArray columnarray)

This constructor creates an extensible array of Boolean variables from a column array.

Methods

public void add(IloInt more, const IloBoolVar x)

This member function appends x to the invoking array of Boolean variables. The argument more specifies how
many times.

public void add(const IloBoolVar x)

This member function appends the value x to the invoking array.

public void add(const IloBoolVarArray x)

This member function appends the variables in the array x to the invoking array.

public IloBoolVar operator[](IloInt i) const

This operator returns a reference to the extractable object located in the invoking array at the position specified
by the index i. On const arrays, Concert Technology uses the const operator:

 IloBoolVar operator[] (IloInt i) const;

public IloBoolVar & operator[](IloInt i)

This operator returns a reference to the extractable object located in the invoking array at the position specified
by the index i.

public IloIntExprArg operator[](IloIntExprArg anIntegerExpr) const

This subscripting operator returns an expression argument for use in a constraint or expression. For clarity, let's
call A the invoking array. When anIntegerExpr is bound to the value i, the domain of the expression is the
domain of A[i]. More generally, the domain of the expression is the union of the domains of the expressions
A[i] where the i are in the domain of anIntegerExpr.

This operator is also known as an element expression.

388

389

Class IloBox
Definition file: ilconcert/ilobox.h

For IBM ILOG Solver: multidimensional boxes for multidimensional placement problems.
Instances of the class IloBox are multidimensional boxes that appear in multidimensional placement problems.
To solve packing or placement problems, you may need to be able to place boxes within a given container. In
such a situation, both the boxes to place and the container to hold them are instances of the class IloBox.

To specify the containment relation that a given container holds a given box, use the member function
IloBox::contains.

See Also the class IlcBox in the IBM ILOG Solver Reference Manual and the class
IlcFilterLevelConstraint in the IBM ILOG Solver Reference Manual.

Constructor Summary

public IloBox()

public IloBox(IloBoxI * impl)

public IloBox(const IloEnv env, IloInt dimensions, const IloIntVarArray origin,
const IloIntArray size)

Method Summary

public IloInt getDimensions()

public IloBoxI * getImpl() const

public IloIntVar getOrigin(IloInt dimension)

public IloInt getSize(IloInt dimension)

Inherited Methods from IloConstraint

getImpl

Inherited Methods from IloIntExprArg

getImpl

Inherited Methods from IloNumExprArg

getImpl

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

390

Constructors

public IloBox()

This constructor creates an empty handle. You must initialize it before you use it.

public IloBox(IloBoxI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IloBox(const IloEnv env, IloInt dimensions, const IloIntVarArray origin,
const IloIntArray size)

This constructor creates a box according to the specifications passed in the arguments. The argument
dimensions specifies the number of dimensions the box has. The arrays origin and size must contain the
same number of elements as the number of dimensions of the box. In dimension i, the box extends from
origin[i] to origin[i] + size[i]. For example, the statement

 IloBox(env, 2, IloIntVarArray (env, 2, 3, 0), IloIntArray(env, 2, 8, 4));

creates a box as shown in this illustration.

Methods

public IloInt getDimensions()

This member function returns the number of dimensions of the invoking box.

public IloBoxI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloIntVar getOrigin(IloInt dimension)

This member function returns the origin of the invoking box along the dimension specified by dimension.

public IloInt getSize(IloInt dimension)

This member function returns the length of the invoking box along the dimension specified by dimension.

391

Class IloBranchSelector
Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

An instance of this class represents a branch selector in a Concert Technology model. Branch selectors are
useful in goals (such as the goal returned by IloApply or other instances of IloGoal) to shape the exploration
of the search tree during the search for a solution.

Constructor Summary

public IloBranchSelector()

public IloBranchSelector(IloBranchSelectorI * impl)

Method Summary

public IloBranchSelectorI * getImpl() const

public void operator=(const IloBranchSelector & h)

Constructors

public IloBranchSelector()

This constructor creates an empty handle. You must initialize it before you use it.

public IloBranchSelector(IloBranchSelectorI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IloBranchSelectorI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public void operator=(const IloBranchSelector & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

392

Class IloBranchSelectorI
Definition file: ilsolver/ilosolverint.h

The class IloBranchSelector represents branch selectors in a Concert Technology model. The class
IlcBranchSelector represents branch selectors internally in a Solver search.

A branch selector is used to shape the explored part of the search tree.

This class is the implementation class for IloBranchSelector.

Constructor and Destructor Summary

public ~IloBranchSelectorI()

Method Summary

public virtual void display(ostream &) const

public virtual IlcBranchSelector extract(const IloSolver solver) const

public virtual IloBranchSelectorI * makeClone(IloEnvI * env) const

Constructors and Destructors

public ~IloBranchSelectorI()

This destructor is called automatically by the destructor of its subclasses. It frees memory used by the invoking
object.

Methods

public virtual void display(ostream &) const

This member function prints the invoking branch selector on an output stream.

public virtual IlcBranchSelector extract(const IloSolver solver) const

In general terms, in Concert Technology, the objects of a model must be extracted for an algorithm (an instance
of one of the subclasses of IloAlgorithm, such as IloSolver). This member function returns the internal
branch selector extracted for solver from the invoking branch selector of a model.

public virtual IloBranchSelectorI * makeClone(IloEnvI * env) const

This member function is called internally to duplicate the current branch selector.

393

Class IloCsvReader::IloColumnHeaderNotFoundException
Definition file: ilconcert/ilocsvreader.h

Exception thrown for unfound header.
This exception is thrown by the member functions listed below if a header (column name) that you use does not
exist.

IloCsvLine::getFloatByHeader•
IloCsvLine::getIntByHeader•
IloCsvLine::getStringByHeader•
IloCsvLine::getFloatByHeaderOrDefaultValue•
IloCsvLine::getIntByHeaderOrDefaultValue•
IloCsvLine::getStringByHeaderOrDefaultValue•
IloCsvReader::getPosition•
IloCsvTableReader::getPosition•

394

Class IloComparator<>
Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

A comparator is a class that implements a comparison between two objects. IloComparator is a template
class, meaning that it can be instantiated to define a comparator for user-defined classes.

A comparator can be constructed from a single evaluator (see member functions
IloEvaluator::makeLessThanComparator, IloEvaluator::makeGreaterThanComparator), from a
composition of evaluators (IloLexicographicComparator, IloParetoComparator), or by using macros
(ILOCOMPARATOR0 and ILOCLIKECOMPARATOR0).

There are two main comparison functions of a comparator: operator() and isBetterThan.

The function operator() takes two objects, o1 and o2, and by default returns -1, 0, or 1 depending on whether
o1 is respectively better, equal or worse than o2. The optional argument nu is a context that can be used for the
comparison:

 IloInt operator()(IloObject o1, IloObject o2, IloAny nu = 0) const;

The function isBetterThan takes two objects, o1 and o2, and returns IloTrue if and only if o1 is preferred to
o2. The optional argument nu is a context that can be used for the comparison:

 IloBool isBetterThan(IloObject o1, IloObject o2, IloAny nu = 0) const;

It is possible to combine comparators and evaluators into more complicated comparators. See
IloLexicographicComparator and IloParetoComparator.

For more information, see Selectors.

See Also: IloEvaluator, IloLexicographicComparator, IloParetoComparator, ILOCOMPARATOR0,
ILOCLIKECOMPARATOR0

Method Summary

public IloBool isBetterOrEqual(IloObject left, IloObject
right, IloAny nu=0) const

Returns IloTrue when the left-hand side is better than or equal
to the right-hand side.

public IloBool isBetterThan(IloObject left, IloObject right,
IloAny nu=0) const

Returns IloTrue when the left-hand side is better than the
right-hand side.

public IloBool isEqual(IloObject left, IloObject right, IloAny
nu=0) const

Returns IloTrue if and only if the left-hand side is of equal
quality to the right-hand side.

395

public IloBool isWorseOrEqual(IloObject left, IloObject right,
IloAny nu=0) const

Returns IloTrue when the left-hand side is worse than or equal
to the right-hand side.

public IloBool isWorseThan(IloObject left, IloObject right,
IloAny nu=0) const

Returns IloTrue when the left-hand side is worse than the
right-hand side.

public IloComparator< IloObject > makeInverse() const

Inverts the sense of a comparator. The returned comparator
compares as the invoking comparator, but with the objects being
compared interchanged.

public IloInt operator()(IloObject left, IloObject right,
IloAny nu=0) const

Methods

public IloBool isBetterOrEqual(IloObject left, IloObject right, IloAny nu=0) const

Returns IloTrue when the left-hand side is better than or equal to the right-hand side.

This member function returns IloTrue if and only if the the left-hand side object left is better than or equal to
the right-hand side object right. The parameter nu is a context that will be passed to the evaluator(s) of the
comparator.

the comparator

public IloBool isBetterThan(IloObject left, IloObject right, IloAny nu=0) const

Returns IloTrue when the left-hand side is better than the right-hand side.
This member function returns IloTrue if and only if the the left-hand side object left is better than the
right-hand side object right. The parameter nu is a context that will be passed to the evaluator(s) of the
comparator.

the comparator

public IloBool isEqual(IloObject left, IloObject right, IloAny nu=0) const

Returns IloTrue if and only if the left-hand side is of equal quality to the right-hand side.
This member function returns IloTrue if and only if the the left-hand side object left is equal to the right-hand
side object right. The parameter nu is a context that will be passed to the evaluator(s) of the comparator.

the comparator

public IloBool isWorseOrEqual(IloObject left, IloObject right, IloAny nu=0) const

Returns IloTrue when the left-hand side is worse than or equal to the right-hand side.
This member function returns IloTrue if and only if the the left-hand side object left is worse than or equal to
the right-hand side object right. The parameter nu is a context that will be passed to the evaluator(s) of the
comparator.

the comparator

public IloBool isWorseThan(IloObject left, IloObject right, IloAny nu=0) const

Returns IloTrue when the left-hand side is worse than the right-hand side.

396

This member function returns IloTrue if and only if the the left-hand side object left is worse than the
right-hand side object right. The parameter nu is a context that will be passed to the evaluator(s) of the
comparator.

the comparator

public IloComparator< IloObject > makeInverse() const

Inverts the sense of a comparator. The returned comparator compares as the invoking comparator, but with the
objects being compared interchanged.
This member function returns a comparator that inverts the sense of the invoking comparator. The returned
comparator interchanges the objects to be compared.

public IloInt operator()(IloObject left, IloObject right, IloAny nu=0) const

This member function implements the comparison of two objects based on the evaluator with which the invoking
comparator was created and based on the sense of comparison of the invoking comparator. This member
function returns -1, 0, or 1 depending on whether object left is considered to be better, equal, or worse than
object right. The parameter nu is a context that will be passed to the evaluator(s) of the comparator.

the comparator

397

Class IloCompositeComparator<>
Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

A composite comparator is a comparator that relies on a list of subordinate comparators (for example, a
lexicographical or a Pareto comparator). The member function add allows you to add a new subordinate
comparator to this list.

For more information, see Selectors.

See Also: IloParetoComparator, IloLexicographicComparator

Method Summary

public void add(IloComparator< IloObject > comparator)

Inherited Methods from IloComparator

isBetterOrEqual, isBetterThan, isEqual, isWorseOrEqual, isWorseThan, makeInverse,
operator()

Methods

public void add(IloComparator< IloObject > comparator)

This member function adds a new comparator comparator to the end of the list of comparators of the
composite comparator.

398

Class IloCondition
Definition file: ilconcert/ilothread.h

Provides synchronization primitives adapted to Concert Technology for use in a parallel application.
The class IloCondition provides synchronization primitives adapted to Concert Technology for use in a
parallel application.

An instance of the class IloCondition allows several threads to synchronize on a specific event. In this
context, inter-thread communication takes place through signals. A thread expecting a condition of the
computation state (say, conditionC) to be true before it executes a treatmentT can wait until the condition is
true. When computation reaches a state where conditionC holds, then another thread can signal this fact by
notifying a single waiting thread or by broadcasting to all the waiting threads that conditionC has now been
met.

The conventional template for waiting on conditionC looks like this:

 mutex.lock();
 while (conditionC does not hold)
 condition.wait(&mutex);
 doTreatmentT();
 mutex.unlock();

That template has the following properties:

The whole fragment is a critical section so that the evaluation of conditionC is protected. (Indeed, it
would be unsafe to evaluate conditionC while at the same time another thread modifies the
computation state and affects the truth value of conditionC.) The pair of member functions
IloFastMutex::lock and IloFastMutex::unlock delimit the critical section.

•

When a thread enters the wait call, the mutex is automatically unlocked by the system.•
The loop that repeatedly checks conditionC is essential to the correctness of the code fragment. It
protects against the following possibility: between the time that a thread modifies the computation state
(so that conditionC holds) and notifies a waiting thread and the moment the waiting thread wakes up,
the computation state might have been changed by another thread, and conditionC might very well
be false.

•

Upon returning from the wait call, the mutex is locked. The operation of waking up and locking the
mutex is atomic. In other words, nothing can happen between the waking and the locking.

•

System Class

IloCondition is a system class.

Most Concert Technology classes are actually handle classes whose instances point to objects of a
corresponding implementation class. For example, instances of the Concert Technology class IloNumVar are
handles pointing to instances of the implementation class IloNumVarI. Their allocation and de-allocation on the
Concert Technology heap are managed by an instance of IloEnv.

However, system classes, such as IloCondition, differ from that Concert Technology pattern.
IloCondition is an ordinary C++ class. Its instances are allocated on the C++ heap.

Instances of IloCondition are not automatically de-allocated by a call to IloEnv::end. You must explicitly
destroy instances of IloCondition by means of a call to the delete operator (which calls the appropriate
destructor) when your application no longer needs instances of this class.

Furthermore, you should not allocate—neither directly nor indirectly—any instance of IloCondition on the
Concert Technology heap because the destructor for that instance of IloCondition will never be called
automatically by IloEnv::end when it cleans up other Concert Technology objects on the Concert Technology
heap.

399

For example, it is not a good idea to make an instance of IloCondition part of a conventional Concert
Technology model allocated on the Concert Technology heap because that instance will not automatically be
de-allocated from the Concert Technology heap along with the other Concert Technology objects.

De-allocating Instances of IloCondition

Instances of IloCondition differ from the usual Concert Technology objects because they are not allocated on
the Concert Technology heap, and their de-allocation is not managed automatically for you by IloEnv::end.
Instead, you must explicitly destroy instances of IloCondition by calling the delete operator when your
application no longer needs those objects.

See Also: IloFastMutex

Constructor and Destructor Summary

public IloCondition()

public ~IloCondition()

Method Summary

public void broadcast()

public void notify()

public void wait(IloFastMutex * m)

Constructors and Destructors

public IloCondition()

This constructor creates an instance of IloCondition and allocates it on the C++ heap (not in a Concert
Technology environment). The instance contains data structures specific to an operating system.

public ~IloCondition()

The delete operator calls this destructor to de-allocate an instance of IloCondition. This destructor is called
automatically by the runtime system. The destructor de-allocates data structures (specific to an operating
system) of the invoking condition.

Methods

public void broadcast()

This member function wakes all threads currently waiting on the invoking condition. If there are no threads
waiting, this member function does nothing.

public void notify()

This member function wakes one of the threads currently waiting on the invoking condition.

public void wait(IloFastMutex * m)

400

This member function first puts the calling thread to sleep while it unlocks the mutex m. Then, when either of the
member functions broadcast or notify wakes up that thread, this member function acquires the lock on m and
returns.

401

Class IloConstraint
Definition file: ilconcert/iloexpression.h

An instance of this class is a constraint in a model.
To create a constraint, you can:

use a constructor from a subclass of IloConstraint, such as IloRange, IloAllDiff, etc. For
example:

•

 IloAllDiff allDiff(env, vars);

use a logical operator between constraints to return a constraint. For example, you can use the logical
operators on other constraints, like this:

•

 IloOr myOr = myConstraint1 || myConstraint2;

use an arithmetic operator between a numeric variable and an expression to return a constraint. For
example, you can use the arithmetic operators on numeric variables or expressions, like this:

•

 IloRange rng = (x + 3*y <= 7);

After you create a constraint, you must explicitly add it to the model in order for it to be taken into account. To do
so, use the member function IloModel::add or the template IloAdd. Then extract the model for an algorithm
with the member function IloAlgorithm::extract.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

See Also: IloConstraintArray, IloModel, IloRange

402

Constructor Summary

public IloConstraint()

public IloConstraint(IloConstraintI * impl)

Method Summary

public IloConstraintI * getImpl() const

Inherited Methods from IloIntExprArg

getImpl

Inherited Methods from IloNumExprArg

getImpl

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

Constructors

public IloConstraint()

This constructor creates an empty handle. You must initialize it before you use it.

public IloConstraint(IloConstraintI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IloConstraintI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

403

Class IloConstraintArray
Definition file: ilconcert/iloexpression.h

The array class of constraints for a model.
For each basic type, Concert Technology defines a corresponding array class. IloConstraintArray is the
array class of constraints for a model.

Instances of IloConstraintArray are extensible. That is, you can add more elements to such an array.
References to an array change whenever an element is added or removed from the array.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

Arrays

See Also: IloConstraint, operator>>, operator<<

Constructor Summary

public IloConstraintArray(IloDefaultArrayI * i=0)

public IloConstraintArray(const IloConstraintArray & copy)

public IloConstraintArray(const IloEnv env, IloInt n=0)

Method Summary

public void add(IloInt more, const IloConstraint x)

public void add(const IloConstraint x)

public void add(const IloConstraintArray x)

public IloConstraint operator[](IloInt i) const

public IloConstraint & operator[](IloInt i)

Inherited Methods from IloExtractableArray

add, add, add, endElements, setNames

Constructors

public IloConstraintArray(IloDefaultArrayI * i=0)

This constructor creates an empty array. You cannot create instances of the undocumented class
IloDefaultArrayI. As an argument in this default constructor, it allows you to pass 0 (zero) as a value to an
optional argument in functions and member functions that accept an array as an argument.

public IloConstraintArray(const IloConstraintArray & copy)

404

This copy constructor makes a copy of the array specified by copy.

public IloConstraintArray(const IloEnv env, IloInt n=0)

This constructor creates an array of n elements, each of which is an empty handle.

Methods

public void add(IloInt more, const IloConstraint x)

This member function appends constraint to the invoking array multiple times. The argument more specifies
how many times.

public void add(const IloConstraint x)

This member function appends constraint to the invoking array.

public void add(const IloConstraintArray x)

This member function appends the elements in array to the invoking array.

public IloConstraint operator[](IloInt i) const

This operator returns a reference to the constraint located in the invoking array at the position specified by the
index i. On const arrays, Concert Technology uses the const operator:

 IloConstraint operator[] (IloInt i) const;

public IloConstraint & operator[](IloInt i)

This operator returns a reference to the constraint located in the invoking array at the position specified by the
index i.

405

Class IloCPConstraintI
Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

The class IloCPConstraintI simplifies writing a new constraint using IBM® ILOG® Concert Technology. You
can use the macro ILOCPCONSTRAINTWRAPPER to create a subclass of the class IloCPConstraintI with
up to 4 data members.

If you want to create a constraint class with more than 4 data members, you must explicitly define a subclass of
the class IloCPConstraintI. To do this, you must do the following:

define the subclass•
add the macro ILOCPCONSTRAINTWRAPPERDECL in the class definition•
write the constructor•
add the macro ILOCPCONSTRAINTWRAPPERIMPL in the source file•
define the virtual member function makeClone•
define a function which creates an instance of the new subclass and returns a handle of this object (You
must make a call to the static method initTypeIndex once before using the generated constraint.
Therefore, it is recommended to include this call in the function.)

•

define the virtual member function extract.•

You can use the example in ILOCPCONSTRAINTWRAPPER as a model for writing your own new constraint
explicitly.

See Also: ILOCPCONSTRAINTWRAPPER0

Constructor and Destructor Summary

public IloCPConstraintI(IloEnvI *, const char *)

public ~IloCPConstraintI()

Method Summary

public virtual void display(ostream & out) const

public virtual IlcConstraint extract(const IloSolver solver) const

public virtual IloExtractableI * makeClone(IloEnvI * env) const

public void use(const IloSolver solver, const
IloExtractableArray extarray) const

public void use(const IloSolver solver, const IloExtractable
ext) const

406

Constructors and Destructors

public IloCPConstraintI(IloEnvI *, const char *)

This constructor creates an instance of the class IloCPConstraintI. This constructor is called automatically in
the constructor of its subclasses.

public ~IloCPConstraintI()

This destructor is called automatically by the destructor of its subclasses. It frees memory used by the invoking
object.

Methods

public virtual void display(ostream & out) const

This member function prints the invoking constraint on an output stream.

public virtual IlcConstraint extract(const IloSolver solver) const

In general terms, in Concert Technology, the objects of a model must be extracted for an algorithm (an instance
of one of the subclasses of IloAlgorithm, such as IloSolver). This member function returns the internal
constraint extracted for solver from the invoking constraint of a model.

public virtual IloExtractableI * makeClone(IloEnvI * env) const

This member function is called internally to duplicate the current constraint.

public void use(const IloSolver solver, const IloExtractableArray extarray) const

This member function forces the extraction of an array of extractables and its subextractables.

public void use(const IloSolver solver, const IloExtractable ext) const

This member function forces the extraction of an extractable and its subextractables.

407

Class IloCPTrace
Definition file: ilsolver/ilosolverhandle.h
Include file: <ilsolver/ilosolver.h>

An instance of this class is used to wrap the Solver trace mechanism. It enables you to set a trace at the start of
a search.

See Also: IloCPTraceI, ILOCPTRACEWRAPPER0

Constructor Summary

public IloCPTrace()

public IloCPTrace(IloCPTraceI * impl=0)

Method Summary

public IloCPTraceI * getImpl() const

Constructors

public IloCPTrace()

This constructor creates a trace at the start of search.

public IloCPTrace(IloCPTraceI * impl=0)

This constructor creates a trace from its implementation object.

Methods

public IloCPTraceI * getImpl() const

This member function returns a pointer to the implentation object of the invoking trace. This member function is
useful when you need to be sure that you are using the same copy of the invoking trace in more than one
situation.

408

Class IloCPTraceI
Definition file: ilsolver/ilosolverhandle.h
Include file: <ilsolver/ilosolver.h>

An instance of this class is used to wrap the Solver trace mechanism. It enables you to set a trace at the start of
a search.

A trace wrapper is implemented by means of two classes: a handle class and an implementation class. In other
words, an instance of the class IloCPTrace (a handle) contains a data member (the handle pointer) that points
to an instance of the class IloCPTraceI (its implementation object).

See Also: IloCPTrace, ILOCPTRACEWRAPPER0

Constructor and Destructor Summary

public IloCPTraceI()

public ~IloCPTraceI()

Method Summary

public virtual void execute(const IloSolver solver) const

Constructors and Destructors

public IloCPTraceI()

This constructor creates a trace at the start of a search.

public ~IloCPTraceI()

This destructor is called automatically by the destructor of its subclasses. It frees memory used by the objects.

Methods

public virtual void execute(const IloSolver solver) const

Solver calls this member function when it starts the search.

If you want to use this facility, you must define this virtual member function. This member function should not be
called at the same time as any other side effects of the search, such as filter levels.

409

Class IloCsvLine
Definition file: ilconcert/ilocsvreader.h

Represents a line in a csv file.
An instance of IloCsvLine represents a single line in a file of comma-separated values (csv file).

Constructor and Destructor Summary

public IloCsvLine()

public IloCsvLine(IloCsvLineI * impl)

public IloCsvLine(const IloCsvLine & csvLine)

Method Summary

public void copy(const IloCsvLine)

public IloBool emptyFieldByHeader(const char * name) const

public IloBool emptyFieldByPosition(IloInt i) const

public void end()

public IloNum getFloatByHeader(const char * name) const

public IloNum getFloatByHeaderOrDefaultValue(const char * name, IloNum
defaultValue) const

public IloNum getFloatByPosition(IloInt i) const

public IloNum getFloatByPositionOrDefaultValue(IloInt i, IloNum
defaultValue) const

public IloCsvLineI * getImpl() const

public IloInt getIntByHeader(const char * name) const

public IloInt getIntByHeaderOrDefaultValue(const char * name, IloInt
defaultValue) const

public IloInt getIntByPosition(IloInt i) const

public IloInt getIntByPositionOrDefaultValue(IloInt i, IloInt
defaultValue) const

public IloInt getLineNumber() const

public IloInt getNumberOfFields() const

public char * getStringByHeader(const char * name) const

public char * getStringByHeaderOrDefaultValue(const char * name, const
char * defaultValue) const

public char * getStringByPosition(IloInt i) const

public char * getStringByPositionOrDefaultValue(IloInt i, const char *
defaultValue) const

public void operator=(const IloCsvLine & csvLine)

public IloBool printValueOfKeys() const

410

Constructors and Destructors

public IloCsvLine()

This constructor creates a csv line object whose handle pointer is null. This object must be assigned before it can
be used.

public IloCsvLine(IloCsvLineI * impl)

This constructor creates a handle object (an instance of IloCsvLine) from a pointer to an implementation
object (an instance of the class IloCsvLineI).

public IloCsvLine(const IloCsvLine & csvLine)

This copy constructor creates a handle from a reference to a csv line object. The csv line object and csvLine
both point to the same implementation object.

Methods

public void copy(const IloCsvLine)

This member function returns the real number of the invoking csv line in the data file.

public IloBool emptyFieldByHeader(const char * name) const

This member function returns IloTrue if the field denoted by the string name in the invoking csv line is empty.
Otherwise, it returns IloFalse

public IloBool emptyFieldByPosition(IloInt i) const

This member function returns IloTrue if the field denoted by i in the invoking csv line is empty. Otherwise, it
returns IloFalse

public void end()

This member function deallocates the memory used by the csv line. If you no longer need a csv line, you can call
this member function to reduce memory consumption.

public IloNum getFloatByHeader(const char * name) const

This member function returns the float contained in the field name in the invoking csv line.

If you have a loop in which you are getting a string, integer, or float by header on several lines with the same
header name, it is better for performance to get the position of the header named name using the member
function IloCsvReader::getPosition(name) than using IloCsvLine::getFloatByPosition (position
of name in the header line).

411

public IloNum getFloatByHeaderOrDefaultValue(const char * name, IloNum
defaultValue) const

This member function returns the float contained in the field name in the invoking csv line if this field contains a
value. Otherwise, it returns defaultValue.

public IloNum getFloatByPosition(IloInt i) const

This member function returns the float contained in the field i in the invoking csv line.

public IloNum getFloatByPositionOrDefaultValue(IloInt i, IloNum defaultValue) const

This member function returns the float contained in the field i in the invoking csv line if this field contains a value.
Otherwise, it returns defaultValue.

public IloCsvLineI * getImpl() const

This member function returns a pointer to the implementation object corresponding to the invoking csv line.

public IloInt getIntByHeader(const char * name) const

This member function returns the integer contained in the field name in the invoking csv line.

If you have a loop in which you are getting a string, integer, or float by header on several lines with the same
header name, it is better for performance to get the position of the header named name using the member
function IloCsvReader::getPosition(name) than using IloCsvLine::getIntByPosition (position of
name in the header line).

public IloInt getIntByHeaderOrDefaultValue(const char * name, IloInt defaultValue)
const

This member function returns the integer contained in the field name in the invoking csv line if this field contains a
value. Otherwise, it returns defaultValue.

public IloInt getIntByPosition(IloInt i) const

This member function returns the integer contained in the field i in the invoking csv line.

public IloInt getIntByPositionOrDefaultValue(IloInt i, IloInt defaultValue) const

This member function returns the integer contained in the field i in the invoking csv line if this field contains a
value. Otherwise, it returns defaultValue.

public IloInt getLineNumber() const

412

This member function returns the real number of the invoking csv line in the data file.

public IloInt getNumberOfFields() const

This member function returns the number of fields in the line.

public char * getStringByHeader(const char * name) const

This member function returns a reference to the string contained in the field name in the invoking csv line.

If you have a loop in which you are getting a string, integer, or float by header on several lines with the same
header name, it is better for performance to get the position of the header named name using the member
function IloCsvReader::getPosition(name) than using IloCsvLine::getStringByPosition
(position of name in the header line).

public char * getStringByHeaderOrDefaultValue(const char * name, const char *
defaultValue) const

This member function returns the string contained in the field name in the invoking csv line if this field contains a
value. Otherwise, it returns defaultValue.

public char * getStringByPosition(IloInt i) const

This member function returns a reference to the string contained in the field number i in the invoking csv line.

public char * getStringByPositionOrDefaultValue(IloInt i, const char *
defaultValue) const

This member function returns the string contained in the field i in the invoking csv line if this field contains a
value. Otherwise, it returns defaultValue.

public void operator=(const IloCsvLine & csvLine)

This operator assigns an address to the handle pointer of the invoking csv line. This address is the location of the
implementation object of the argument csvLine.

After execution of this operator, the invoking csv line and csvLine both point to the same implementation object.

public IloBool printValueOfKeys() const

This member function prints the values of the keys fields in this line.

413

Class IloCsvReader
Definition file: ilconcert/ilocsvreader.h

Reads a formatted csv file.
An instance of IloCsvReader reads a file of comma-separated values of a specified format. The csv file can be
a multitable or a single table file. Empty lines and commented lines are allowed everywhere in the file.

Format of multitable files

The first column of the table must contain the name of the table.

Each table can begin with a line containing column headers, the first field of this line must have this format:
tableName|NAMES

The keys can be specified in the data file by adding a line at the beginning of the table. This line is formatted as
follows:

the first field is tableName|KEYS•
the other fields have the value 1 if the corresponding column is a key for the table; if not they have the
value 0.

•

If this line doesn't exist, all columns form a key. If you need to get a line having a specific value for a field, you
must add the key line in which you specify that this field is a key for the table.

Any line containing '|' in its first field is ignored by the reader.

A table can be split in several parts in the file (for example, you have a part of table TA, then table TB, then the
end of table TA).

Example

 NODES|NAMES,node_type,node_name,xcoord,ycoord
 NODES|KEYS,1,1,0,0
 NODES,1,node1,0,1
 NODES,1,node2,0,2
 NODES,2,node1,0,4

Format of single table files

The line containing the column headers, if it exists, must have a first field of the following format: Field|NAMES.

Table keys can be specified by adding a line at the beginning of the table. This line must have a first field with
this format: tableName|KEYS. If this line doesn't exist, all columns form a key.

Example

 Field|NAMES,nodeName,xCoord,yCoord
 Field|KEYS,1,0,0
 node1,0,1
 node2,0,2

Constructor and Destructor Summary

public IloCsvReader()

public IloCsvReader(IloCsvReaderI * impl)

414

public IloCsvReader(const IloCsvReader & csv)

public IloCsvReader(IloEnv env, const char * problem, IloBool multiTable=IloFalse,
IloBool allowTableSplitting=IloFalse, const char * separator=",;\t", const
char decimalp='.', const char quote='\"', const char comment='#')

Method Summary

public void end()

public IloNum getCsvFormat()

public IloCsvLine getCurrentLine() const

public IloEnv getEnv() const

public IloNum getFileVersion()

public IloCsvReaderI * getImpl() const

public IloCsvLine getLineByKey(IloInt numberOfKeys, const char *, ...)

public IloCsvLine getLineByNumber(IloInt i)

public IloInt getNumberOfColumns()

public IloInt getNumberOfItems()

public IloInt getNumberOfKeys() const

public IloInt getNumberOfTables()

public IloInt getPosition(const char * headingName) const

public IloCsvTableReader getReaderForUniqueTableFile() const

public const char * getRequiredBy()

public IloCsvTableReader getTable()

public IloCsvTableReader getTableByName(const char * name)

public IloCsvTableReader getTableByNumber(IloInt i)

public IloBool isHeadingExists(const char * headingName) const

public void operator=(const IloCsvReader & csv)

public IloBool printKeys() const

Inner Class

IloCsvReader::IloColumnHeaderNotFoundException Exception thrown for unfound header.

IloCsvReader::IloCsvReaderParameterException Exception thrown for incorrect arguments in constructor.

IloCsvReader::IloDuplicatedTableException Exception thrown for tables of same name in csv file.

IloCsvReader::IloFieldNotFoundException Exception thrown for field not found.

IloCsvReader::IloFileNotFoundException Exception thrown when file is not found.

IloCsvReader::IloIncorrectCsvReaderUseException Exception thrown for call to inappropriate csv reader.

IloCsvReader::IloLineNotFoundException Exception thrown for unfound line.

IloCsvReader::IloTableNotFoundException Exception thrown for unfound table.

IloCsvReader::LineIterator Line-iterator for csv readers.

IloCsvReader::TableIterator Table-iterator of csv readers.

Constructors and Destructors

public IloCsvReader()

415

This constructor creates a csv reader object whose handle pointer is null. This object must be assigned before it
can be used.

public IloCsvReader(IloCsvReaderI * impl)

This constructor creates a handle object (an instance of IloCsvReader) from a pointer to an implementation
object (an instance of the class IloCsvReaderI).

public IloCsvReader(const IloCsvReader & csv)

This copy constructor creates a handle from a reference to a csv reader object. Both the csv reader object and
csv point to the same implementation object.

public IloCsvReader(IloEnv env, const char * problem, IloBool multiTable=IloFalse,
IloBool allowTableSplitting=IloFalse, const char * separator=",;\t", const char
decimalp='.', const char quote='\"', const char comment='#')

This constructor creates a csv reader object for the file problem in the environment env. If the argument
isCached has the value IloTrue, the data of the file will be stored in the memory.

The cached mode is useful only if you need to read lines by keys. It needs consequent memory consumption and
takes time to load data according to the csv file size.

If the argument isMultiTable has the value IloTrue, the file problem is read as a multitable file. The default
value is IloFalse.

If the argument allowTableSplitting has the value IloFalse, splitting the table into several parts in the file
is not permitted. The default value is IloFalse.

The string separator represents the characters used as separator in the data file. The default values are , ;
t.

The character decimal represents the character used to write decimal numbers in the data file. The default
value is . (period).

The character quote represents the character used to quote expressions.

The character comment represents the character used at the beginning of each commented line. The default
value is #.

Methods

public void end()

This member function deallocates the memory used by the csv reader. If you no longer need a csv reader, you
can reduce memory consumption by calling this member function.

public IloNum getCsvFormat()

This member function returns the format of the csv data file. This format is identified in the data file by
ILOG_CSV_FORMAT.

416

Example

ILOG_CSV_FORMAT;1

getCsvFormat() returns 1.

Note

This member function can be used only if isMultiTable has the value IloTrue.

public IloCsvLine getCurrentLine() const

This member function returns the last line read by getLineByKey or getLineByNumber.

Note

This member function can be used only if isMultiTable has the value IloFalse.

public IloEnv getEnv() const

This member function returns the environment object corresponding to the invoking csv reader.

public IloNum getFileVersion()

This member function returns the version of the csv data file. This information is identified in the data file by
ILOG_DATA_SCHEMA.

Example

ILOG_DATA_SCHEMA;PROJECTNAME;0.9

getFileVersion() returns 0.9.

Note

This member function can be used only if isMultiTable has the value IloTrue.

public IloCsvReaderI * getImpl() const

This member function returns a pointer to the implementation object corresponding to the invoking csv reader.

public IloCsvLine getLineByKey(IloInt numberOfKeys, const char *, ...)

This member function takes numberOfKeys arguments; these arguments are used as one key to identify a line.
It returns an instance of IloCsvLine representing the line having (key1, key2, ...) in the data file. If the
number of keys specified is less than the number of keys in the table, this member function throws an exception.
Each time getLineByNumber or getLineByKey is called, the previous line read by one of these methods is
deleted.

417

Note

This member function can be used only if isMultiTable has the value IloFalse.

public IloCsvLine getLineByNumber(IloInt i)

This member function returns an instance of IloCsvLine representing the line numbered i in the data file. If i
does not exist, this member function throws an exception. Each time getLineByNumber or getLineByKey is
called, the previous line read by one of these methods is deleted.

Note

This member function can be used only if isMultiTable has the value IloFalse.

public IloInt getNumberOfColumns()

This member function returns the number of columns in the table. If the first column contains the name of the
table it is ignored.

Note

This member function can be used only if isMultiTable has the value IloFalse.

public IloInt getNumberOfItems()

This member function returns the number of lines of the table excluding blank lines, commented lines, and the
header line.

Note

This member function can be used only if isMultiTable has the value IloFalse.

public IloInt getNumberOfKeys() const

This member function returns the number of keys for the table.

Note

This member function can be used only if isMultiTable has the value IloFalse.

public IloInt getNumberOfTables()

This member function returns the number of tables in the data file.

public IloInt getPosition(const char * headingName) const

418

This member function returns the position (column number) of the headingName in the file.

Note

This member function can be used only if isMultiTable has the value IloFalse.

public IloCsvTableReader getReaderForUniqueTableFile() const

This member function returns an IloCsvTableReader for the unique table contained in the csv data file.

Note

This member function can be used only if isMultiTable has the value IloFalse.

public const char * getRequiredBy()

This member function returns the name of the project that uses the csv data file. This information is identified in
the data file by ILOG_DATA_SCHEMA.

Example

ILOG_DATA_SCHEMA;PROJECTNAME;0.9

getRequiredBy() returns PROJECTNAME.

Note

This member function can be used only if isMultiTable has the value IloTrue.

public IloCsvTableReader getTable()

This member function returns an instance of IloCsvTableReader representing the unique table in the data file.

Note

This member function can be used only if isMultiTable has the value IloFalse.

public IloCsvTableReader getTableByName(const char * name)

This member function returns an instance of IloCsvTableReader representing the table named name in the
data file.

Note

This member function can be used only if isMultiTable has the value IloTrue.

public IloCsvTableReader getTableByNumber(IloInt i)

419

This member function returns an instance of IloCsvTableReader representing the table numbered i in the
data file.

Note

This member function can be used only if isMultiTable has the value IloTrue.

public IloBool isHeadingExists(const char * headingName) const

This member function returns IloTrue if the column header headingName exists. Otherwise, it returns
IloFalse.

Note

This member function can be used only if isMultiTable has the value IloFalse.

public void operator=(const IloCsvReader & csv)

This operator assigns an address to the handle pointer of the invoking csv reader. This address is the location of
the implementation object of the argument csv.

After execution of this operator, both the invoking csv reader and csv point to the same implementation object.

public IloBool printKeys() const

This member function prints the column header of keys if the header exists. Otherwise, it prints the column
numbers of keys.

Note

This member function can be used only if isMultiTable has the value IloFalse.

420

Class IloCsvReader::IloCsvReaderParameterException
Definition file: ilconcert/ilocsvreader.h

Exception thrown for incorrect arguments in constructor.
This exception is thrown in the constructor of the csv reader if the argument values used in the csv reader
constructor are incorrect.

421

Class IloCsvTableReader
Definition file: ilconcert/ilocsvreader.h

Reads a csv table with format.
An instance of IloCsvTableReader is used to read a table of comma-separated values (csv) with a specified
format.

An instance is built using a pointer to an implementation class of IloCsvReader, which must be created first.

Constructor and Destructor Summary

public IloCsvTableReader()

public IloCsvTableReader(IloCsvTableReaderI * impl)

public IloCsvTableReader(const IloCsvTableReader & csv)

public IloCsvTableReader(IloCsvReaderI * csvReaderImpl, const char * name=0)

Method Summary

public void end()

public IloCsvLine getCurrentLine() const

public IloEnv getEnv() const

public IloCsvTableReaderI * getImpl() const

public IloCsvLine getLineByKey(IloInt numberOfKeys, const char *, ...)

public IloCsvLine getLineByNumber(IloInt i)

public const char * getNameOfTable() const

public IloInt getNumberOfColumns()

public IloInt getNumberOfItems()

public IloInt getNumberOfKeys() const

public IloInt getPosition(const char *) const

public IloBool isHeadingExists(const char * headingName) const

public void operator=(const IloCsvTableReader & csv)

public IloBool printKeys() const

Inner Class

IloCsvTableReader::LineIterator Line-iterator for csv table readers.

Constructors and Destructors

public IloCsvTableReader()

This constructor creates a table csv reader object whose handle pointer is null. This object must be assigned
before it can be used.

public IloCsvTableReader(IloCsvTableReaderI * impl)

422

This constructor creates a handle object (an instance of IloCsvReader) from a pointer to an implementation
object (an instance of the class IloCsvReaderI).

public IloCsvTableReader(const IloCsvTableReader & csv)

This copy constructor creates a handle from a reference to a table csv reader object.

The table csv reader object and csv both point to the same implementation object.

public IloCsvTableReader(IloCsvReaderI * csvReaderImpl, const char * name=0)

This constructor creates a table csv reader object using the implementation class of a csv reader csvimpl. The
second argument is the name of the table.

Methods

public void end()

This member function deallocates the memory used by the table csv reader.

If you no longer need the table csv reader, calling this member function can reduce memory consumption.

public IloCsvLine getCurrentLine() const

This member function returns the last line read using getLineByKey or getLineByNumber.

public IloEnv getEnv() const

This member function returns the environment object corresponding to the invoking table csv reader.

public IloCsvTableReaderI * getImpl() const

This member function returns a pointer to the implementation object corresponding to the invoking table csv
reader.

public IloCsvLine getLineByKey(IloInt numberOfKeys, const char *, ...)

This member function takes numberOfKeys arguments. These arguments are used as one key to identify a line.
If the specified number of keys is less than the number of keys of the table, this member function throws an
exception.

Otherwise, it returns an instance of IloCsvLine representing the line having (key1, key2, ...) in the data
file.

public IloCsvLine getLineByNumber(IloInt i)

423

This member function returns an instance of IloCsvLine representing the line number i in the data file if it
exists. Otherwise, it throws an exception.

Each time getLineByNumber or getLineByKey is called, the previous line read by one of those methods is
deleted.

public const char * getNameOfTable() const

This member function returns the name of the table.

public IloInt getNumberOfColumns()

This member function returns the number of columns in the table. If the first column contains the name of the
table, it is ignored.

public IloInt getNumberOfItems()

This member function returns the number of lines of the table excluding blank lines, commented lines, and the
header line.

Note

This member function can be used only if isMultiTable has the value IloFalse.

public IloInt getNumberOfKeys() const

This member function returns the number of keys in the table.

public IloInt getPosition(const char *) const

This member function returns the position (column number) of headingName in the table.

public IloBool isHeadingExists(const char * headingName) const

This member function returns IloTrue if the column header named headingName exists. Otherwise, it returns
IloFalse.

public void operator=(const IloCsvTableReader & csv)

This operator assigns an address to the handle pointer of the invoking table csv reader.

This address is the location of the implementation object of the argument csv.

After execution of this operator, the invoking table csv reader and csv both point to the same implementation
object.

424

public IloBool printKeys() const

This member function prints the column headers of keys if they exist. Otherwise, it prints the column numbers of
keys.

425

Class IloCustomizableGoal
Definition file: ilsolver/custgoal.h
Include file: <ilsolver/ilosolver.h>

This class is a goal for instantiating an array of integer variables. It implements a family of strategies based on
filters. It selects an uninstantiated variable x and a value v in the domain of x and creates the choice point
IlcOr(IlcSetValue(x, v), IlcRemoveValue(x, v)). If the value returned by
IloCustomizableGoal::getBestGenerate is IloTrue, it then selects another variable, otherwise it
selects another value for the variable x. The goal succeeds when all variables of the array are instantiated.

To select variables and values, the goal uses an ordered list of filters for variables and an ordered list of filters for
values.

In its simplest form, a filter for variables is defined by an evaluator taking an IlcIntVar as argument. A filter
keeps the variables with the smallest evaluation and discards the others. The filters are applied in the order of
addition to the IloCustomizableGoal instance. The first filter keeps the best variables. If several variables
remain, the next filter is applied. If no more filters remain, the variable with the smallest index in the array given in
the constructor is selected.

A value for the selected variable is selected by values filters. In its simplest form, a filter for values is defined by
an evaluator taking an IlcInt (the value) as argument and an IloIntVar as a context (the selected variable is
passed as a context). Filters for values operate in the same way as filters for variables. When several values
remain after having applied all the filters, the smallest value is selected.

By default an instance of IloCustomizableGoal contains two filters for variables: the first one selects the
variables with the largest impact and the second one selects randomly. It contains two selectors for values: the
first one selects the value with the smallest impact and the second one selects randomly. When adding a filter for
variables (or, respectively, values), the default filters for variables (or, respectively, values) are discarded.

More complex filters can be added to keep more variables than just the ones with the smallest evaluation. For an
example of how to use IloCustomizableGoal, see "Using Impacts during Search" in the IBM ILOG Solver
User's Manual.

See Also: IlcImpactValueEvaluator, IlcSuccessRateValueEvaluator, IlcRandomValueEvaluator,
IlcImpactVarEvaluator, IlcSuccessRateVarEvaluator, IlcLocalImpactVarEvaluator, IlcRandomVarEvaluator,
IlcSizeVarEvaluator, IlcDegreeVarEvaluator, IlcSizeOverDegreeVarEvaluator, IlcReductionVarEvaluator,
IlcBranchImpactVarEvaluator

Constructor Summary

public IloCustomizableGoal(IloEnv env, IloIntVarArray x)

Method Summary

public void addAbsoluteToleranceFilter(IloEvaluator< IlcInt > e, IlcFloat tol)

public void addAbsoluteToleranceFilter(IloEvaluator< IlcIntVar > e, IlcFloat
tol)

public void addFilter(IloEvaluator< IlcInt > e)

public void addFilter(IloEvaluator< IlcIntVar > e)

public void addMinNumberFilter(IloEvaluator< IlcInt > e, IlcFloat number)

public void addMinNumberFilter(IloEvaluator< IlcIntVar > e, IlcFloat number)

426

public void addMinProportionFilter(IloEvaluator< IlcInt > e, IlcFloat
proportion)

public void addMinProportionFilter(IloEvaluator< IlcIntVar > e, IlcFloat
proportion)

public void addRelativeToleranceFilter(IloEvaluator< IlcInt > e, IlcFloat tol)

public void addRelativeToleranceFilter(IloEvaluator< IlcIntVar > e, IlcFloat
tol)

public IlcBool getBestGenerate()

public void setBestGenerate(IloBool best)

Inherited Methods from IloGoal

end, getEnv, getImpl, getName, getObject, setName, setObject

Constructors

public IloCustomizableGoal(IloEnv env, IloIntVarArray x)

This constructor creates a customizable goal on the environment env. The parameter x is the array of variables
to perform search on.

Methods

public void addAbsoluteToleranceFilter(IloEvaluator< IlcInt > e, IlcFloat tol)

This member function adds a filter for values that keeps the values that are at a distance of at most tol from the
best evaluation.

public void addAbsoluteToleranceFilter(IloEvaluator< IlcIntVar > e, IlcFloat tol)

This member function adds a filter for variables that keeps the variables that are at a distance of at most tol
from the best evaluation.

public void addFilter(IloEvaluator< IlcInt > e)

This member function adds a basic filter for values that keeps all the values with the smallest evaluation.

public void addFilter(IloEvaluator< IlcIntVar > e)

This member function adds a basic filter for variables that keeps all the variables with the smallest evaluation.

public void addMinNumberFilter(IloEvaluator< IlcInt > e, IlcFloat number)

This member function adds a filter for values that keeps at least number of the values with the smallest
evaluation.

427

public void addMinNumberFilter(IloEvaluator< IlcIntVar > e, IlcFloat number)

This member function adds a filter for variables that keeps at least number of the variables with the smallest
evaluation.

public void addMinProportionFilter(IloEvaluator< IlcInt > e, IlcFloat proportion)

This member function adds a filter for values that keeps at least a proportion p of the values with the smallest
evaluation. The value p must be greater than 0 and less than or equal to 1.

public void addMinProportionFilter(IloEvaluator< IlcIntVar > e, IlcFloat
proportion)

This member function adds a filter for variables that keeps at least a proportion p of the variables with the
smallest evaluation. The value p must be greater than 0 and less than or equal to 1.

public void addRelativeToleranceFilter(IloEvaluator< IlcInt > e, IlcFloat tol)

This member function adds a filter for values that keeps the values that are at a relative distance of at most tol
from the best evaluation.

public void addRelativeToleranceFilter(IloEvaluator< IlcIntVar > e, IlcFloat tol)

This member function adds a filter for variables that keeps the variables that are at a relative distance of at most
tol from the best evaluation.

public IlcBool getBestGenerate()

This member function returns the Boolean value set by IloCustomizableGoal::setBestGenerate.

public void setBestGenerate(IloBool best)

This member function turns the best generate strategy on and off for the invoking solver. If the value of best is
IloTrue, the goal performs a best generate strategy: when an instantiation x == a fails, the goal again
evaluates all variables to select a variable. If the value of best is IloFalse, the goal does not perform a best
generate strategy: when an instantiation x == a fails, the goal tries another value for the same variable x. The
default value is IloFalse.

428

Class IloDiff
Definition file: ilconcert/ilomodel.h

Constraint that enforces inequality.
An instance of this class is a constraint that enforces inequality (that is, “not equal” as specified by !=) in Concert
Technology.

To create a constraint, you can:

use the inequality operator!= on constrained variables (instances of IloNumVar and its subclasses)
or expressions (instances of IloExpr and its subclasses).

•

use a constructor from this class.•

In order for the constraint to take effect, you must add it to a model with the template IloAdd or the member
function IloModel::add and extract the model for an algorithm with the member function
IloAlgorithm::extract.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

See Also: IloAllDiff, IloConstraint, IloExpr, IloNumVar

Constructor Summary

public IloDiff()

public IloDiff(IloDiffI * impl)

public IloDiff(const IloEnv env, const IloNumExprArg expr1, const IloNumExprArg
expr2, const char * name=0)

public IloDiff(const IloEnv env, const IloNumExprArg expr1, IloNum val, const char
* name=0)

Method Summary

public IloDiffI * getImpl() const

Inherited Methods from IloConstraint

getImpl

Inherited Methods from IloIntExprArg

getImpl

Inherited Methods from IloNumExprArg

getImpl

429

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

Constructors

public IloDiff()

This constructor creates an empty handle. You must initialize it before you use it.

public IloDiff(IloDiffI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IloDiff(const IloEnv env, const IloNumExprArg expr1, const IloNumExprArg
expr2, const char * name=0)

This constructor creates a constraint that enforces inequality (!=) in a model between the two expressions that
are passed as its arguments. You must use the template IloAdd or the member function IloModel::add to
add this constraint to a model in order for it to be taken into account.

The optional argument name is set to 0 by default.

public IloDiff(const IloEnv env, const IloNumExprArg expr1, IloNum val, const char
* name=0)

This constructor creates a constraint that enforces inequality (!=) in a model between the expression expr1 and
the floating-point value that are passed as its arguments. You must use the template IloAdd or the member
function IloModel::add to add this constraint to a model in order for it to be taken into account.

The optional argument name is set to 0 by default.

Methods

public IloDiffI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

430

Class IloDistribute
Definition file: ilconcert/ilomodel.h

For constraint programming:: a counting constraint in a model.
An instance of this class is a counting constraint in a model. You can use an instance of this class to count the
number of occurrences of several values among the constrained variables in an array of constrained variables.
You can also use an instance of this class to force the constrained variables of an array to assume values in
such a way that only a limited number of the constrained variables assume each value.

For example, if we have five cars to paint in three available colors, then we might refer to the cars as c1, c2, c3,
c4, c5, and the colors as p1, p2, p3. If we can allow no more than three cars to be painted p1, exactly three cars
to be painted p2, and no more than one car to be painted p3, then we can represent our problem informally in
terms of this constraint like this:

 cards = [[0,3], [3,3], [0,1]]

 values = [p1, p2, p3]

 vars = [c1, c2, c3, c4, c5]

In more formal terms, the constrained variables in the array cards are equal to the number of occurrences in the
array vars of the values in the array values. More precisely, for each i, cards[i] is equal to the number of
occurrences of values[i] in the array vars. After propagation of this constraint, the minimum of cards[i] is
at least equal to the number of variables contained in vars bound to the value at values[i]; and the maximum
of cards[i] is at most equal to the number of variables contained in vars that contain the value at values[i]
in their domain.

The arrays cards and values must be the same length; otherwise, Concert Technology throws an exception on
platforms that support C++ exceptions when exceptions are enabled.

When an instance of this class is created by a constructor with only cards and vars as arguments (that is, there
is no values argument), then the array of values that are being counted must be an array of consecutive
integers starting with 0 (zero). In that case, for each i, cards[i] is equal to the number of occurrences of i in
the array vars. After propagation of this constraint, the minimum of cards[i] is at least equal to the number of
variables contained in vars bound to the value i; and the maximum of cards[i] is at most equal to the
number of variables contained in vars that contain i in their domain.

In order for the constraint to take effect, you must add it to a model with the template IloAdd or the member
function IloModel::add and extract the model for an algorithm with the member function
IloAlgorithm::extract.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

See Also: IloConstraint, IloSequence

Constructor Summary

public IloDistribute()

431

public IloDistribute(IloDistributeI * impl)

public IloDistribute(const IloEnv env, const IloIntVarArray cards, const
IloIntArray values, const IloIntVarArray vars, const char * name=0)

public IloDistribute(const IloEnv env, const IloIntVarArray cards, const
IloIntVarArray vars, const char * name=0)

Method Summary

public IloDistributeI * getImpl() const

Inherited Methods from IloConstraint

getImpl

Inherited Methods from IloIntExprArg

getImpl

Inherited Methods from IloNumExprArg

getImpl

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

Constructors

public IloDistribute()

This constructor creates an empty handle. You must initialize it before you use it.

public IloDistribute(IloDistributeI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IloDistribute(const IloEnv env, const IloIntVarArray cards, const
IloIntArray values, const IloIntVarArray vars, const char * name=0)

This constructor creates a counting constraint in a model. You must use the template IloAdd or the member
function IloModel::add to add this constraint to a model and then use IloAlgorithm::extract to extract
the model for an algorithm in order for the constraint to be taken into account.

The arrays cards and values must be the same length; otherwise Concert Technology throws the exception
InvalidArraysException.

public IloDistribute(const IloEnv env, const IloIntVarArray cards, const
IloIntVarArray vars, const char * name=0)

This constructor creates a counting constraint in a model. You must use the template IloAdd or the member
function IloModel::add to add this constraint to a model and then use IloAlgorithm::extract to extract
the model for an algorithm in order for the constraint to be taken into account.

432

Methods

public IloDistributeI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

433

Class IloCsvReader::IloDuplicatedTableException
Definition file: ilconcert/ilocsvreader.h

Exception thrown for tables of same name in csv file.
This exception is thrown in the constructor of the csv reader if you read a multitable file in which two tables have
the same name but table splitting has not been specified.

434

Class IloEAOperatorFactory
Definition file: ilsolver/iimarrayops.h
Include file: <ilsolver/iim.h>

A factory for generating operators over arrays of variables.
This factory provides a set of parameters as well as functions that build operators based on these parameters.

Assuming that you have already created:

A solution prototype: (prototype).•
An array of decision variables (vars).•

Then the following code creates two operators which operate on vars.

 IloEAOperatorFactory factory(env, vars);
 factory.setPrototype(prototype);
 factory.setSearchLimit(IloFailLimit(env, 100));
 IloPoolProc mut = factory.mutate(1.0 / vars.getSize(), "mutate");
 IloPoolProc xo = factory.uniformXover(0.5, "uXover");

Note

Due to the backtracking abilities of available operators, it is often necessary to set a search limit to avoid
lengthy searches.

Constructor Summary

public IloEAOperatorFactory(IloEAOperatorFactoryI * impl=0)

Initializes the handle.

public IloEAOperatorFactory(IloEnv env, IloIntVarArray scope)

Creates an operator factory.

public IloEAOperatorFactory(IloEnv env, IloBoolVarArray scope)

Creates an operator factory.

Method Summary

public IloEAOperatorFactoryI * getImpl() const

Returns the pointer to the implementation class.

public IloNum getLeaveFactor() const

Returns the probability, for each variable, of being left unbound by
created operators.

public IloPoolOperator mutate(IloNum mutationProb, const char * name=0)
const

Creates a mutation operator.

public IloPoolOperator onePointXover(const char * name=0) const

435

Creates a one-point crossover operator.

public IloPoolOperator randomize(const char * name=0) const

Creates a randomization operator.

public IloPoolOperator relax(const char * name=0) const

Creates a uniform relaxation operator.

public IloPoolOperator relaxSequence(IloNum breakProbability, const char
* name=0) const

Relaxes random parts of the array.

public void setLeaveFactor(IloNum leaveFactor) const

Specifies the probability, for each variable, of being left unbound by
created operators.

public IloPoolOperator swap(const char * name=0) const

Creates a swap operator.

public IloPoolOperator translocate(const char * name=0) const

Creates a translocation operator.

public IloPoolOperator transpose(const char * name=0) const

Creates a transposition operator.

public IloPoolOperator twoPointXover(const char * name=0) const

Creates a two-point crossover operator.

public IloPoolOperator uniformXover(const char * name=0) const

Creates a uniform crossover operator with crossover rate 0.5.

public IloPoolOperator uniformXover(IloNum xoverRate, const char *
name=0) const

Creates a uniform crossover operator.

Inherited Methods from IloPoolOperatorFactory

addAfterOperate, addBeforeOperate, addListener, end, getAfterOperate,
getBeforeOperate, getEnv, getName, getObject, getPrototype, getSearchLimit,
operator(), removeListener, setAfterOperate, setBeforeOperate, setName, setObject,
setPrototype, setSearchLimit

Constructors

public IloEAOperatorFactory(IloEAOperatorFactoryI * impl=0)

Initializes the handle.

This constructor creates a handle object (an instance of the class IloEAOperatorFactory) from a pointer to
an implementation object (an instance of the class IloEAOperatorFactoryI).

public IloEAOperatorFactory(IloEnv env, IloIntVarArray scope)

Creates an operator factory.

436

This constructor creates an operator factory associated with the environment env which will produce operators
on the array of integer variables scope.

public IloEAOperatorFactory(IloEnv env, IloBoolVarArray scope)

Creates an operator factory.

This constructor creates an array operator factory associated with the environment env which will produce
operators on the array of Boolean variables scope.

Methods

public IloEAOperatorFactoryI * getImpl() const

Returns the pointer to the implementation class.

This member function returns the implementation object of the invoking handle.

public IloNum getLeaveFactor() const

Returns the probability, for each variable, of being left unbound by created operators.

This member function returns the probability, for each array cell, of being left unbound by created operators. It
returns the probability set at the previous call to IloEAOperatorFactory::setLeaveFactor or to 0.0 if no
probability was set.

public IloPoolOperator mutate(IloNum mutationProb, const char * name=0) const

Creates a mutation operator.

This operator selects one parent and produces a solution by inheriting its values. Each inherited value is mutated
with a given mutation probability mutationProb. name, if provided becomes the name of the newly created
operator.

public IloPoolOperator onePointXover(const char * name=0) const

Creates a one-point crossover operator.

This recombination operator selects two parents and produces a new solution by inheriting values from the
second parent for array indices greater than a randomly chosen cut point. Other values are inherited from the first
parent. name, if provided becomes the name of the newly created operator.

public IloPoolOperator randomize(const char * name=0) const

Creates a randomization operator.

This operator instantiates variables by choosing random values in their domain. name, if provided becomes the
name of the newly created operator.

public IloPoolOperator relax(const char * name=0) const

Creates a uniform relaxation operator.

This operator selects one parent and produces a new solution by leaving some variables unbound. The
probability of leaving a variable unbound is given by the leaveFactor parameter of this factory. name, if

437

provided becomes the name of the newly created operator.

See Also: IloEAOperatorFactory::setLeaveFactor, IloEAOperatorFactory::getLeaveFactor

public IloPoolOperator relaxSequence(IloNum breakProbability, const char * name=0)
const

Relaxes random parts of the array.

This operator selects one parent and produces a new solution by copying the parent values with the exception of
randomly chosen value sequences. The given probability breakProbability specifies, for each array site, the
likelihood of starting (or ending) a relaxed sequence. name, if provided becomes the name of the newly created
operator.

public void setLeaveFactor(IloNum leaveFactor) const

Specifies the probability, for each variable, of being left unbound by created operators.

This member function specifies the probability leaveFactor, for each cell, of being left unbound by created
operators.

Note

You must specify a completion goal (with the IloPoolOperatorFactory::setAfterOperate or
IloPoolOperatorFactory::addAfterOperate methods) if the leaveFactor parameter is non-zero.
This goal should bind the variables that remain unbound.

public IloPoolOperator swap(const char * name=0) const

Creates a swap operator.

This swap operator selects a parent solution, chooses two random locations of the accessed array, and attempts
to exchange their values. Upon failure, it backtracks to choose different exchange locations and fails when all
exchange points have been tried. name, if provided becomes the name of the newly created operator.

public IloPoolOperator translocate(const char * name=0) const

Creates a translocation operator.

This translocation operator selects a parent solution and then chooses a random interval of the accessed array
and a random insertion point. It then attempts to create a solution in which the sequence delimited by the chosen
interval will be moved to the insertion point. Upon failure, it backtracks to choose a different insertion point. When
this fails, it backtracks to change the interval to try to move. It fails when all intervals and insertion points have
been tried. name, if provided becomes the name of the newly created operator.

public IloPoolOperator transpose(const char * name=0) const

Creates a transposition operator.

This transposition operator selects a parent solution and chooses a random interval of the accessed array. It then
attempts to create a solution in which the sequence delimited by the chosen interval will be reversed. Upon
failure, it backtracks to choose a different interval and fails when all intervals have been tried. name, if provided
becomes the name of the newly created operator.

public IloPoolOperator twoPointXover(const char * name=0) const

438

Creates a two-point crossover operator.

This recombination operator selects two parents and produces a solution by inheriting values from the second
parent for array indices contained between two randomly chosen cut points. Other values are inherited from the
first parent. Upon failure, this goal backtracks by trying other cut points. name, if provided becomes the name of
the newly created operator.

public IloPoolOperator uniformXover(const char * name=0) const

Creates a uniform crossover operator with crossover rate 0.5.

This recombination operator selects two parents and produces a new solution by inheriting values from the first
or second parent based on a crossover rate of 0.5. This goal does not backtrack. name, if provided becomes the
name of the newly created operator.

public IloPoolOperator uniformXover(IloNum xoverRate, const char * name=0) const

Creates a uniform crossover operator.

This recombination operator selects two parents and produces a new solution by inheriting values from the first
or second parent based on the given crossover rate. This goal does not backtrack. The parameter xoverRate
sets the probability of each feature being exchanged. name, if provided becomes the name of the newly created
operator.

439

Class IloEmptyHandleException
Definition file: ilconcert/iloenv.h

The class of exceptions thrown if an empty handle is passed.
The exception IloEmptyHandleException is thrown if an empty handle is passed as an argument to a
method, function, or class constructor.

Constructor and Destructor Summary

public IloEmptyHandleException()

public IloEmptyHandleException(const char * message)

Inherited Methods from IloException

end, getMessage

Constructors and Destructors

public IloEmptyHandleException()

public IloEmptyHandleException(const char * message)

This constructor creates an exception containing the message string message.

440

Class IloEnv
Definition file: ilconcert/iloenv.h

The class of environments for models or algorithms in Concert Technology.
An instance of this class is an environment, managing memory and identifiers for modeling objects. Every
Concert Technology object, such as an extractable object, a model, or an algorithm, must belong to an
environment. In C++ terms, when you construct a model (an instance of IloModel) or an algorithm (an instance
of IloCplex, IloCP, or IloSolver, for example), then you must pass one instance of IloEnv as an argument
of that constructor.

Environment and Memory Management

An environment (an instance of IloEnv) efficiently manages memory allocations for the objects constructed with
that environment as an argument. For example, when Concert Technology objects in your model are extracted
by an algorithm, those extracted objects are handled as efficiently as possible with respect to memory
management; there is no unnecessary copying that might cause memory explosions in your application on the
part of Concert Technology.

When your application deletes an instance of IloEnv, Concert Technology will automatically delete all models
and algorithms depending on that environment as well. You delete an environment by calling the member
function env.end.

The memory allocated for Concert Technology arrays, expressions, sets, and columns is not freed until all
references to these objects have terminated and the objects themselves have been deleted.

Certain classes documented in this manual, such as IloFastMutex, are known as system classes. They do not
belong to a Concert Technology environment; in other words, an instance of IloEnv is not an argument in their
constructors. As a consequence, a Concert Technology environment does not attempt to manage their memory
allocation and de-allocation; a call of IloEnv:end will not delete an instance of a system class. These system
classes are clearly designated in this documentation, and the appropriate constructors and destructors for them
are documented in this manual as well.

Environment and Initialization

An instance of IloEnv in your application initializes certain data structures and modeling facilities for Concert
Technology. For example, IloEnv initializes the symbolic constant IloInfinity.

The environment also specifies the current assumptions about normalization or the reduction of terms in linear
expressions. For an explanation of this concept, see the concept Normalization: Reducing Linear Terms

Environment and Communication Streams

An instance of IloEnv in your application initializes the default output streams for general information, for error
messages, and for warnings.

Environment and Extractable Objects

Every extractable object in your problem must belong to an instance of IloEnv. In C++ terms, in the constructor
of certain extractable objects that you create, such as a constrained variable, you must pass an instance of
IloEnv as an argument to specify which environment the extractable object belongs to. An extractable object
(that is, an instance of IloExtractable or one of its derived subclasses) is tied throughout its lifetime to the
environment where it is created. It can be used only with extractable objects belonging to the same environment.
It can be extracted only for an algorithm attached to the same environment.

Two different environments cannot share the same extractable object.

441

You can extract objects from only one environment into a given algorithm. In other words, algorithms do not
extract objects from two or more different environments.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

See Also: IloException, IloModel, operator new

Constructor Summary

public IloEnv()

public IloEnv(IloEnvI * impl)

Method Summary

public void end()

public ostream & error() const

public IloExtractableI * getExtractable(IloInt id)

public IloEnvI * getImpl() const

public IloInt getMaxId() const

public IloInt getMemoryUsage() const

public ostream & getNullStream() const

public IloRandom getRandom() const

public IloNum getTime() const

public IloInt getTotalMemoryUsage() const

public const char * getVersion() const

public IloBool isValidId(IloInt id) const

public ostream & out() const

public void printTime() const

public void setDeleter(IloDeleterMode mode) const

public void setError(ostream & s)

public void setNormalizer(IloBool val) const

public void setOut(ostream & s)

public void setWarning(ostream & s)

public void unsetDeleter() const

public ostream & warning() const

Constructors

public IloEnv()

This constructor creates an environment to manage the extractable objects in Concert Technology.

public IloEnv(IloEnvI * impl)

This constructor creates an environment (a handle) from its implementation object.

442

Methods

public void end()

When you call this member function, it cleans up the invoking environment. In other words, it deletes all the
extractable objects (instances of IloExtractable and its subclasses) created in that environment and frees
the memory allocated for them. It also deletes all algorithms (instances of IloAlgorithm and its subclasses)
created in that environment and frees memory allocated for them as well, including the representations of
extractable objects extracted for those algorithms.

public ostream & error() const

This member function returns a reference to the output stream currently used for error messages from the
invoking environment. It is initialized as cerr.

public IloExtractableI * getExtractable(IloInt id)

This member function returns the extractable associated with the specified identifier id.

public IloEnvI * getImpl() const

This member function returns the implementation object of the invoking environment.

public IloInt getMaxId() const

This member function returns the highest id of all extractables int the current IloEnv

public IloInt getMemoryUsage() const

This member function returns a value in bytes specifying how full the heap is.

public ostream & getNullStream() const

This member function calls the null stream of the environment. This member function can be used with
IloAlgorithm::setOut() to suppress screen output by redirecting it to the null stream.

public IloRandom getRandom() const

Each instance of IloEnv contains a random number generator, an instance of the class IloRandom. This
member function returns that IloRandom instance.

public IloNum getTime() const

443

This member function returns the amount of time elapsed in seconds since the construction of the invoking
environment. (The member function IloEnv::printTime directs this information to the output stream of the
invoking environment.)

public IloInt getTotalMemoryUsage() const

This member function returns a value in bytes specifying how large the heap is.

public const char * getVersion() const

This member function returns a string specifying the version of IBM® ILOG® Concert Technology.

public IloBool isValidId(IloInt id) const

This methods tells you if the current id is associated with a live extractable.

public ostream & out() const

This member function returns a reference to the output stream currently used for logging. General output from
the invoking environment is accessible through this member function. By default, the logging output stream is
defined by an instance of IloEnv as cout.

public void printTime() const

This member function directs the output of the member function IloEnv::getTime to the output stream of the
invoking environment. (The member function IloEnv::getTime accesses the elapsed time in seconds since
the creation of the invoking environment.)

public void setDeleter(IloDeleterMode mode) const

This member function sets the mode for the deletion of extractables, as described in the concept Deletion of
Extractables. The mode can be IloLinearDeleterMode or IloSafeDeleterMode.

public void setError(ostream & s)

This member function sets the stream for errors generated by the invoking environment. By default, the stream is
defined by an instance of IloEnv as cerr.

public void setNormalizer(IloBool val) const

This member function turns on or off the facilities in Concert Technology for normalizing linear expressions.
Normalizing linear expressions is also known as reducing the terms of a linear expression. In this context, a
linear expression that does not contain multiple terms with the same variable is said to be normalized. The
concept in this manual offers examples of this idea.

444

When val is IloTrue, (the default), then Concert Technology analyzes linear expressions to determine whether
any variable appears more than once in a given linear expression. It then combines terms in the linear
expression to eliminate any duplication of variables. This mode may require more time during preliminary
computation, but it avoids the possibility of an assertion failing in the case of duplicated variables in the terms of
a linear expression.

When val is IloFalse, then Concert Technology assumes that all linear expressions in the invoking
environment have already been processed to reduce them to their most efficient form. In other words, Concert
Technology assumes that linear expressions have been normalized. This mode may save time during
computation, but it entails the risk that a linear expression may contain one or more variables, each of which
appears in one or more terms. This situation will cause certain assert statements in Concert Technology to fail
if you do not compile with the flag -DNDEBUG.

public void setOut(ostream & s)

This member function redirects the out() stream with the stream given as an argument.

This member function can be used with IloEnv::getNullStream to suppress screen output by redirecting it
to the null stream.

public void setWarning(ostream & s)

This member function sets the stream for warnings from the invoking environment. By default, the stream is
defined by an instance of IloEnv as cout.

public void unsetDeleter() const

This member function unsets the mode for the deletion of extractables, as described in the concept Deletion of
Extractables.

public ostream & warning() const

This member function returns a reference to the output stream currently used for warnings from the invoking
environment. By default, the warning output stream is defined by an instance of IloEnv as cout.

445

Class IloEnvironmentMismatch
Definition file: ilconcert/iloenv.h

This exception is thrown if you try to build an object using objects from another environment.
The IloEnvironmentMismatch exception is thrown if you try to build an object using objects from another
environment.

Constructor and Destructor Summary

public IloEnvironmentMismatch()

public IloEnvironmentMismatch(const char * message)

public ~IloEnvironmentMismatch()

Inherited Methods from IloException

end, getMessage

Constructors and Destructors

public IloEnvironmentMismatch()

public IloEnvironmentMismatch(const char * message)

public ~IloEnvironmentMismatch()

446

Class IloEvaluator<>
Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

The IloEvaluator template class is the base class for all evaluators. An evaluator is a class that implements
an evaluation on an object (using operator()) and returns an IloNum value. Such classes can be used (along
with classes of IloPredicate) to parameterize selectors used in goal-based search.

Evaluators can easily be built by using the ILOEVALUATOR0 macros or by composing existing evaluators and
predicates.

For more information, see Selectors.

See Also: IloPredicate, IloTranslator, IloComparator

Method Summary

public IloComparator< IloObject > makeGreaterThanComparator() const

Creates an evaluator-based comparator.

public IloComparator< IloObject > makeLessThanComparator() const

Creates an evaluator-based comparator.

public IloNum operator()(IloObject o, IloAny nu=0) const

Evaluates an object.

Methods

public IloComparator< IloObject > makeGreaterThanComparator() const

Creates an evaluator-based comparator.

This member function returns a comparator based on the invoking evaluator that prefers the objects with the
highest value. More precisely, the comparator will return 1, 0, or -1 if the value of its left hand side is respectively
greater than, equivalent, or less than the value of its right hand side.

public IloComparator< IloObject > makeLessThanComparator() const

Creates an evaluator-based comparator.

This member function returns a comparator based on the invoking evaluator that prefers the objects with the
smallest value. More precisely, the comparator will return 1, 0, or -1 if the value of its left hand side is respectively
less than, equivalent, or greater than the value of its right hand side.

public IloNum operator()(IloObject o, IloAny nu=0) const

Evaluates an object.

447

This operator implements the evaluation of o, an instance of class IloObject, given a context nu. If the
evaluator is a composite evaluator (see operators on evaluators), the context is also passed to the components
(evaluators or predicates) of the composite evaluator.

448

Class IloEvent
Definition file: ilsolver/iimevent.h
Include file: <ilsolver/iim.h>

Basic event class.
Events are sent out by IIM (Iterative Improvement Methods) objects such as solution pools and pool operators.
Normally, you will be interested in specific subclasses of events, and will create listeners to listen to those
specific events.

See Also: IloListener, ILOIIMLISTENER0

449

Class IloException
Definition file: ilconcert/ilosys.h

Base class of Concert Technology exceptions.
This class is the base class for exceptions in Concert Technology. An instance of this class represents an
exception on platforms that support exceptions when exceptions are enabled.

See Also: IloEnv, operator<<

Constructor and Destructor Summary

protected IloException(const char * message=0, IloBool deleteMessage=IloFalse)

Method Summary

public virtual void end()

public virtual const char * getMessage() const

Constructors and Destructors

protected IloException(const char * message=0, IloBool deleteMessage=IloFalse)

This protected constructor creates an exception.

Methods

public virtual void end()

This member function deletes the invoking exception. That is, it frees memory associated with the invoking
exception.

public virtual const char * getMessage() const

This member function returns the message (a character string) of the invoking exception.

450

Class IloExplainer
Definition file: ilsolver/iloexplain.h
Include file: <ilsolver/iloexplain.h>

Solver provides the ability to explain why a particular solution has been proposed. The class IloExplainer
defines the abstract protocol of this explanation facility. This protocol consists of three queries:

Why is a constraint ct satisfied?•
Why is a constraint ct violated?•
Why does a failure (that is, inconsistency) occur?•

Subclasses of the class IloExplainer may use different deduction mechanisms for finding explanations. The
subclass IloSolverExplainer uses the constraint propagation mechanism of Solver as a deduction
mechanism.

Note

This functionality is available for pure Solver code only. It will not work on IBM® ILOG® Dispatcher or IBM
ILOG Scheduler code.

Attribute Summary

protected IloExplainerI * _impl

Method Summary

public void end()

public IloExplainerI * getImpl() const

public IloModel why(IloConstraint ct)

public IloModel whyFail()

public IloModel whyNot(IloConstraint ct)

Attributes

protected IloExplainerI * _impl

This constructor creates a handle of an explanation object with the implementation object impl.

Methods

public void end()

This member function terminates the explainer and frees internally allocated memory.

public IloExplainerI * getImpl() const

This member function returns the implementation object of the invoking explanation object.

451

public IloModel why(IloConstraint ct)

If the constraint ct is satisfied in the solution of the invoking explainer, this member function returns an argument
for ct. The argument is a minimal subset of the set of constraints of this solution that is sufficient to deduce the
constraint ct. The argument is represented by an instance of the class IloModel. If the constraint ct is not
satisfied in the solution of the invoking explainer, an exception IloExplainer::NoExplanationException
is raised. If ct is an IloExistsComponent constraint, the argument shows why the associated component was
included in the configuration.

public IloModel whyFail()

If the solution of the invoking explainer is inconsistent (that is, it leads to a failure when extracted by a solver),
this member function returns a conflict. The conflict is a minimal subset of the set of constraints of this solution
that is sufficient to produce a failure. The conflict is represented by an instance of the class IloModel. If the
solution of the invoking explainer is consistent, an exception IloExplainer::NoExplanationException is
raised.

public IloModel whyNot(IloConstraint ct)

If the constraint ct is violated in the solution of the invoking explainer, this member function returns a
counterargument for ct. The counterargument is a minimal subset of the set of constraints of this solution that is
sufficient to refute the constraint ct. The counterargument is represented by an instance of the class IloModel.
If the constraint ct is not violated in the solution of the invoking explainer, an exception
IloExplainer::NoExplanationException is raised.

452

Class IloExplicitEvaluator<>
Definition file: ilsolver/iimmulti.h
Include file: <ilsolver/iim.h>

An evaluator whose evaluations are specified explicitly.
There are various situations in which the evaluations on which some decisions are based do not change
throughout a whole program or stage of a program. In this instance, it can be useful (for reasons of efficiency) to
store object evaluations explicitly, rather than recalculate them each time. This class is a special type of evaluator
which, when asked to evaluate an object, returns the evaluation from its store.

See Also: IloComparator, ILODEFAULTCOMPARATOR

Constructor Summary

public IloExplicitEvaluator(IloEnv env, IloComparator< IloObject > cmp=0)

Creates an instance of an explicit evaluator.

Method Summary

public IloNum getEvaluation(IloObject obj) const

Retrieves the evaluation of an object.

public IloInt getNumberOfEvaluations() const

Delivers the number of evaluations stored in the evaluator.

public IloBool hasEvaluation(IloObject obj) const

Determines of an object has an evaluation.

public void removeAllEvaluations()

Removes all evaluations from the evaluator.

public void removeEvaluation(IloObject obj)

Removes an evaluation from the evaluator.

public void setEvaluation(IloObject obj, IloNum eval)

Sets the evaluation of an object.

Inherited Methods from IloEvaluator

makeGreaterThanComparator, makeLessThanComparator, operator()

Inner Class

IloExplicitEvaluator::Iterator An iterator which will iterate over all evaluated objects in an explicit evaluator.

453

Constructors

public IloExplicitEvaluator(IloEnv env, IloComparator< IloObject > cmp=0)

Creates an instance of an explicit evaluator.

This constructor creates an instance of an explicit evaluator from an environment env and an optional
comparator cmp. In order to correctly retrieve object evaluations, this class needs to know how to compare the
objects being evaluated, so that when you ask for an evaluation of an object, the evaluator can look up this object
in its store. To do this, you may pass a comparator cmp which can make this comparison. Note that this
comparator is not used to determine if one object is more favorable than another (for example see
IloBestSolutionComparator), but should compare the objects themselves.

If no comparator is passed, the evaluator tries to find one by looking for those defined using
ILODEFAULTCOMPARATOR. If such a comparator has been defined, it will be used for object comparison. The
Solver IIM library has default comparators pre-defined for classes IloSolution and IloPoolProc. The code
for the default comparator for an IloPoolOperator could be defined as follows:

ILODEFAULTCOMPARATOR(IloPoolOperator, a, b) {
 return a.getImpl() < b.getImpl();
}

See Also: IloComparator, IloSolution, IloPoolProc, IloBestSolutionComparator, ILODEFAULTCOMPARATOR

Methods

public IloNum getEvaluation(IloObject obj) const

Retrieves the evaluation of an object.

This member function retieves the valuation of an object obj previously set using
IloExplicitEvaluator::setEvaluation. If the object in question has no evaluation associated with it in
the invoking object, and exception (of type IloException) is raised.

Note

This function exists mostly for symmetry with the IloExplicitEvaluator::setEvaluation member
function. Normally the evaluation of an object will be retieved via the paranthesis operator on the evaluator.
That is, for an evaluator of type IloExplicitEvaluator, evaluator.getEvaluation(obj) and
evaluator(obj) are equivalent.

public IloInt getNumberOfEvaluations() const

Delivers the number of evaluations stored in the evaluator.

This member function returns the number of evaluations which have been added to the evaluator. It can be
useful for dimensioning arrays and so forth before iterating over the evaluations.

public IloBool hasEvaluation(IloObject obj) const

Determines of an object has an evaluation.

This member function determines if a given object obj has had an evaluation set via
IloExplicitEvaluator::setEvaluation.

public void removeAllEvaluations()

454

Removes all evaluations from the evaluator.

The member function removes all evaluations from the evaluation, and is particularly useful when you wish to
start again with an empty evaluator.

public void removeEvaluation(IloObject obj)

Removes an evaluation from the evaluator.

The member function removes the evaluation of a particular object obj from the evaluator. This does not mean
that the evaluation is set to a particular value (for example zero), but that after the call, the invoking evaluator will
have no evaluation at all for the specified object.

public void setEvaluation(IloObject obj, IloNum eval)

Sets the evaluation of an object.

This member function is used to set the evaluation of an object obj to value eval. If the given object has no
evaluation in the invoking evaluation, that object is added together with its new evaluation. Otherwise, the
evaluation of the specified object is changed to the newly specified value.

455

Class IloExpr
Definition file: ilconcert/iloexpression.h

An instance of this class represents an expression in a model.
An instance of IloExpr is a handle.

Expressions in Environments

The variables in an expression must all belong to the same environment as the expression itself. In other words,
you must not mix variables from different environments within the same expression.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

Programming Hint: Creating Expressions

In addition to using a constructor of this class to create an expression, you may also initialize an instance of
IloExpr as a C++ expression built from variables of a model. For example:

 IloNumVar x;
 IloNumVar y;
 IloExpr expr = x + y;

Programming Hint: Empty Handles and Null Expressions

This statement creates an empty handle:

IloExpr e1;

You must initialize it before you use it. For example, if you attempt to use it in this way:

e1 += 10; // BAD IDEA

Without the compiler option -DNDEBUG, that line will cause an assert statement to fail because you are
attempting to use an empty handle.

In contrast, the following statement

IloExpr e2(env);

creates a handle to a null expression. You can use this handle to build up an expression, for example, in this
way:

e2 += 10; // OK

Normalizing Linear Expressions: Reducing the Terms

Normalizing is sometimes known as reducing the terms of a linear expression.

Linear expressions consist of terms made up of constants and variables related by arithmetic operations; for
example, x + 3y is a linear expression of two terms consisting of two variables. In some expressions, a given
variable may appear in more than one term, for example, x + 3y +2x. Concert Technology has more than one

456

way of dealing with linear expressions in this respect, and you control which way Concert Technology treats
expressions from your application.

In one mode, Concert Technology analyzes linear expressions that your application passes it and attempts to
reduce them so that a given variable appears in only one term in the linear expression. This is the default mode.
You set this mode with the member function IloEnv::setNormalizer(IloTrue).

In the other mode, Concert Technology assumes that no variable appears in more than one term in any of the
linear expressions that your application passes to Concert Technology. We call this mode assume normalized
linear expressions. You set this mode with the member function IloEnv::setNormalizer(IloFalse).

Certain constructors and member functions in this class check this setting in the environment and behave
accordingly: they assume that no variable appears in more than one term in a linear expression. This mode may
save time during computation, but it entails the risk that a linear expression may contain one or more variables,
each of which appears in one or more terms. Such a case may cause certain assertions in member functions of
this class to fail if you do not compile with the flag -DNDEBUG.

Certain constructors and member functions in this class check this setting in the environment and behave
accordingly: they attempt to reduce expressions. This mode may require more time during preliminary
computation, but it avoids of the possibility of a failed assertion in case of duplicates.

See Also: IloExprArray, IloModel

Constructor Summary

public IloExpr()

public IloExpr(IloNumExprI * expr)

public IloExpr(const IloNumLinExprTerm term)

public IloExpr(const IloIntLinExprTerm term)

public IloExpr(IloNumExprArg)

public IloExpr(const IloEnv env, IloNum=0)

Method Summary

public IloNum getConstant() const

public IloNumLinTermI * getImpl() const

public IloExpr::LinearIterator getLinearIterator() const

public IloBool isNormalized() const

public IloInt normalize() const

public IloExpr & operator*=(IloNum val)

public IloExpr & operator+=(const IloIntLinExprTerm term)

public IloExpr & operator+=(const IloNumLinExprTerm term)

public IloExpr & operator+=(const IloIntVar var)

public IloExpr & operator+=(const IloNumVar var)

public IloExpr & operator+=(const IloNumExprArg expr)

public IloExpr & operator+=(IloNum val)

public IloExpr & operator-=(const IloIntLinExprTerm term)

public IloExpr & operator-=(const IloNumLinExprTerm term)

public IloExpr & operator-=(const IloIntVar var)

public IloExpr & operator-=(const IloNumVar var)

public IloExpr & operator-=(const IloNumExprArg expr)

457

public IloExpr & operator-=(IloNum val)

public IloExpr & operator/=(IloNum val)

public void remove(const IloNumVarArray vars)

public void setConstant(IloNum cst)

public void setLinearCoef(const IloNumVar var, IloNum value)

public void setLinearCoefs(const IloNumVarArray vars,
IloNumArray values)

public void setNumConstant(IloNum constant)

Inherited Methods from IloNumExpr

getImpl, operator*=, operator+=, operator+=, operator-=, operator-=, operator/=

Inherited Methods from IloNumExprArg

getImpl

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

Inner Class

IloExpr::LinearIterator An iterator over the linear part of an expression.

Constructors

public IloExpr()

This constructor creates an empty handle. You must initialize it before you use it.

public IloExpr(IloNumExprI * expr)

This constructor creates an expression from a pointer to the implementation class of numeric expressions
IloNumExprI*.

public IloExpr(const IloNumLinExprTerm term)

This constructor creates an integer expression with linear terms using the undocumented class
IloNumLinExprTerm.

public IloExpr(const IloIntLinExprTerm term)

This constructor creates an integer expression with linear terms using the undocumented class
IloIntLinExprTerm.

public IloExpr(IloNumExprArg)

458

This constructor creates an expression using the undocumented class IloNumExprArg.

public IloExpr(const IloEnv env, IloNum=0)

This constructor creates an expression in the environment specified by env. It may be used to build other
expressions from variables belonging to env. You must not mix variables of different environments within an
expression.

Methods

public IloNum getConstant() const

This member function returns the constant term in the invoking expression.

public IloNumLinTermI * getImpl() const

This member function returns the implementation object of the invoking enumerated variable.

public IloExpr::LinearIterator getLinearIterator() const

This methods returns a linear iterator on the invoking expression.

public IloBool isNormalized() const

This member function returns IloTrue if the invoking expression has been normalized using
IloExpr::normalize.

public IloInt normalize() const

This member function normalizes the invoking linear expression. Normalizing is sometimes known as reducing
the terms of a linear expression. That is, if there is more than one linear term using the same variable in the
invoking linear expression, then this member function merges those linear terms into a single term expressed in
that variable. The return value specifies the number of merged terms.

For example, 1*x + 17*y - 3*x becomes 17*y - 2*x, and the member function returns 1 (one).

If you attempt to use this member function on a nonlinear expression, it throws an exception.

public IloExpr & operator*=(IloNum val)

This operator is recommended for building a Concert Technology expression in a loop. It is more efficient than x
= x * ...

public IloExpr & operator+=(const IloIntLinExprTerm term)

459

This operator is recommended for building a Concert Technology expression in a loop. It is more efficient than x
= x + ...

public IloExpr & operator+=(const IloNumLinExprTerm term)

This operator is recommended for building a Concert Technology expression in a loop. It is more efficient than x
= x + ...

public IloExpr & operator+=(const IloIntVar var)

This operator is recommended for building a Concert Technology expression in a loop. It is more efficient than x
= x + ...

public IloExpr & operator+=(const IloNumVar var)

This operator is recommended for building a Concert Technology expression in a loop. It is more efficient than x
= x + ...

public IloExpr & operator+=(const IloNumExprArg expr)

This operator is recommended for building a Concert Technology expression in a loop. It is more efficient than x
= x + ...

public IloExpr & operator+=(IloNum val)

This operator is recommended for building a Concert Technology expression in a loop. It is more efficient than x
= x + ...

public IloExpr & operator-=(const IloIntLinExprTerm term)

This operator is recommended for building a Concert Technology expression in a loop. It is more efficient than x
= x - ...

public IloExpr & operator-=(const IloNumLinExprTerm term)

This operator is recommended for building a Concert Technology expression in a loop. It is more efficient than x
= x - ...

public IloExpr & operator-=(const IloIntVar var)

This operator is recommended for building a Concert Technology expression in a loop. It is more efficient than x
= x - ...

public IloExpr & operator-=(const IloNumVar var)

460

This operator is recommended for building a Concert Technology expression in a loop. It is more efficient than x
= x - ...

public IloExpr & operator-=(const IloNumExprArg expr)

This operator is recommended for building a Concert Technology expression in a loop. It is more efficient than x
= x - ...

public IloExpr & operator-=(IloNum val)

This operator is recommended for building a Concert Technology expression in a loop. It is more efficient than x
= x - ...

public IloExpr & operator/=(IloNum val)

This operator is recommended for building a Concert Technology expression in a loop. It is more efficient than x
= x / ...

public void remove(const IloNumVarArray vars)

This member function removes all occurrences of all variables listed in the array vars from the invoking
expression. For linear expressions, the effect of this member function is equivalent to setting the coefficient for all
the variables listed in vars to 0 (zero).

public void setConstant(IloNum cst)

This member function assigns cst as the constant term in the invoking expression.

public void setLinearCoef(const IloNumVar var, IloNum value)

This member function assigns value as the coefficient of var in the invoking expression if the invoking
expression is linear. This member function applies only to linear expressions. In other words, you can not use this
member function to change the coefficient of a non linear expression. An attempt to do so will cause Concert
Technology to throw an exception.

public void setLinearCoefs(const IloNumVarArray vars, IloNumArray values)

For each of the variables in vars, this member function assigns the corresponding value of values as its linear
coefficient if the invoking expression is linear. This member function applies only to linear expressions. In other
words, you can not use this member function to change the coefficient of a nonlinear expression. An attempt to
do so will cause Concert Technology to throw an exception.

public void setNumConstant(IloNum constant)

This member function assigns cst as the constant term in the invoking expression.

461

462

Class IloExprArray
Definition file: ilconcert/iloexpression.h

The array class of the expressions class.
For each basic type, Concert Technology defines a corresponding array class. IloExprArray is the array class
of the expressions class (IloExpr) for a model.

Instances of IloExprArray are extensible. That is, you can add more elements to such an array. References to
an array change whenever an element is added to or removed from the array.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

See Also: IloExpr

Constructor Summary

public IloExprArray(IloDefaultArrayI * i=0)

public IloExprArray(const IloEnv env, IloInt n=0)

Method Summary

public IloNumExprArg operator[](IloIntExprArg anIntegerExpr) const

Inherited Methods from IloNumExprArray

add, add, add, endElements, operator[]

Inherited Methods from IloExtractableArray

add, add, add, endElements, setNames

Constructors

public IloExprArray(IloDefaultArrayI * i=0)

This constructor creates an empty array of expressions for use in a model. You cannot create instances of the
undocumented class IloDefaultArrayI. As an argument in this default constructor, it allows you to pass 0
(zero) as a value to an optional argument in functions and member functions that accept an array as an
argument.

public IloExprArray(const IloEnv env, IloInt n=0)

This constructor creates an array of n elements. Initially, the n elements are empty handles.

463

Methods

public IloNumExprArg operator[](IloIntExprArg anIntegerExpr) const

This subscripting operator returns an expression argument for use in a constraint or expression. For clarity, let's
call A the invoking array. When anIntegerExpr is bound to the value i, the domain of the expression is the
domain of A[i]. More generally, the domain of the expression is the union of the domains of the expressions
A[i] where the i are in the domain of anIntegerExpr.

This operator is also known as an element expression.

464

Class IloExtractable
Definition file: ilconcert/iloextractable.h

Base class of all extractable objects.
This class is the base class of all extractable objects (that is, instances of such classes as IloConstraint,
IloNumVar, and so forth). Instances of subclasses of this class represent objects (such as constraints,
constrained variables, objectives, and so forth) that can be extracted by Concert Technology from your model for
use by your application in Concert Technology algorithms.

Not every algorithm can extract every extractable object of a model. For example, a model may include more
than one objective, but you can extract only one objective for an instance of IloCplex.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

Adding Extractable Objects

Generally, for an extractable object to be taken into account by one of the algorithms in Concert Technology, you
must add the extractable object to a model with the member function IloModel::add and extract the model for
the algorithm with the member function IloAlgorithm::extract.

Environment and Extractable Objects

Every extractable object in your model must belong to one instance of IloEnv. An extractable object (that is, an
instance of IloExtractable or one of its derived subclasses) is tied throughout its lifetime to the environment
where it is created. It can be used only with extractable objects belonging to the same environment. It can be
extracted only for an algorithm attached to the same environment.

Notification

When you change an extractable object, for example by removing it from a model, Concert Technology notifies
algorithms that have extracted the model containing this extractable object about the change. Member functions
that carry out such notification are noted in this documentation.

See Also: IloEnv, IloGetClone, IloModel

Constructor Summary

public IloExtractable(IloExtractableI * obj=0)

Method Summary

public IloConstraint asConstraint() const

public IloIntExprArg asIntExpr() const

465

public IloModel asModel() const

public IloNumExprArg asNumExpr() const

public IloObjective asObjective() const

public IloNumVar asVariable() const

public void end()

public IloEnv getEnv() const

public IloInt getId() const

public IloExtractableI * getImpl() const

public const char * getName() const

public IloAny getObject() const

public IloBool isConstraint() const

public IloBool isIntExpr() const

public IloBool isModel() const

public IloBool isNumExpr() const

public IloBool isObjective() const

public IloBool isVariable() const

public void setName(const char * name) const

public void setObject(IloAny obj) const

Constructors

public IloExtractable(IloExtractableI * obj=0)

This constructor creates a handle to the implementation object.

Methods

public IloConstraint asConstraint() const

This method returns the given extractable as a constraint or a null pointer

See IloExtractableVisitor if you want to introspect an expression

See Also: IloExtractableVisitor

public IloIntExprArg asIntExpr() const

This method returns the given extractable as an integer expression or a null pointer

See IloExtractableVisitor if you want to introspect an expression

See Also: IloExtractableVisitor

public IloModel asModel() const

466

This method returns the given extractable as a model or a null pointer

See IloExtractableVisitor if you want to introspect an expression

See Also: IloExtractableVisitor

public IloNumExprArg asNumExpr() const

This method returns the given extractable as a floating expression or a null pointer

See IloExtractableVisitor if you want to introspect an expression

See Also: IloExtractableVisitor

public IloObjective asObjective() const

This method returns the given extractable as an objective or a null pointer

See IloExtractableVisitor if you want to introspect an expression

See Also: IloExtractableVisitor

public IloNumVar asVariable() const

This method returns the given extractable as a variable or a null pointer

See IloExtractableVisitor if you want to introspect an expression

See Also: IloExtractableVisitor

public void end()

This member function first removes the invoking extractable object from all other extractable objects where it is
used (such as a model, ranges, etc.) and then deletes the invoking extractable object. That is, it frees all the
resources used by the invoking object. After a call to this member function, you can not use the invoking
extractable object again.

Note

The member function end notifies Concert Technology algorithms about the destruction of this invoking object.

public IloEnv getEnv() const

This member function returns the environment to which the invoking extractable object belongs. An extractable
object belongs to exactly one environment; different environments can not share the same extractable object.

public IloInt getId() const

This member function returns the ID of the invoking extractable object.

467

public IloExtractableI * getImpl() const

This member function returns a pointer to the implementation object of the invoking extractable object. This
member function is useful when you need to be sure that you are using the same copy of the invoking extractable
object in more than one situation.

public const char * getName() const

This member function returns a character string specifying the name of the invoking object (if there is one).

public IloAny getObject() const

This member function returns the object associated with the invoking object (if there is one). Normally, an
associated object contains user data pertinent to the invoking object.

public IloBool isConstraint() const

This method tells you whether or not the given extractable is a constraint or not

See IloExtractableVisitor if you want to introspect an expression

See Also: IloExtractableVisitor

public IloBool isIntExpr() const

This method tells you whether or not the given extractable is an integer expression or not

See IloExtractableVisitor if you want to introspect an expression

See Also: IloExtractableVisitor

public IloBool isModel() const

This method tells you whether ot not the given extractable is a model or not

See IloExtractableVisitor if you want to introspect an expression

See Also: IloExtractableVisitor

public IloBool isNumExpr() const

This method tells you whether or not the given extractable is a floating expression or not

See IloExtractableVisitor if you want to introspect an expression

See Also: IloExtractableVisitor

468

public IloBool isObjective() const

This method tells you whether or not the given extractable is an objective or not

See IloExtractableVisitor if you want to introspect an expression

See Also: IloExtractableVisitor

public IloBool isVariable() const

This method tells you whether or not the given extractable is a variable or not

See IloExtractableVisitor if you want to introspect an expression

See Also: IloExtractableVisitor

public void setName(const char * name) const

This member function assigns name to the invoking object.

public void setObject(IloAny obj) const

This member function associates obj with the invoking object. The member function getObject accesses this
associated object afterward. Normally, obj contains user data pertinent to the invoking object.

469

Class IloExtractableArray
Definition file: ilconcert/iloextractable.h

An array of extractable objects.
An instance of this class is an array of extractable objects (instances of the class IloExtractable or its
subclasses).

Instances of IloExtractableArray are extensible. That is, you can add more elements to such an array.
References to an array change whenever an element is added to or removed from the array.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

For information on arrays, see the concept Arrays

See Also: IloArray, IloExtractable, operator<<

Constructor Summary

public IloExtractableArray(IloDefaultArrayI * i=0)

public IloExtractableArray(const IloExtractableArray & r)

public IloExtractableArray(const IloEnv env, IloInt n=0)

Method Summary

public void add(IloInt more, const IloExtractable x)

public void add(const IloExtractable x)

public void add(const IloExtractableArray x)

public void endElements()

public void setNames(const char * name)

Constructors

public IloExtractableArray(IloDefaultArrayI * i=0)

This constructor creates an empty array of elements. You cannot create instances of the undocumented class
IloDefaultArrayI. As an argument in this default constructor, it allows you to pass 0 (zero) as a value to an
optional argument in functions and member functions that accept an array as an argument.

470

public IloExtractableArray(const IloExtractableArray & r)

This copy constructor creates a handle to the array of extractable objects specified by r.

public IloExtractableArray(const IloEnv env, IloInt n=0)

This constructor creates an array of n elements, each of which is an empty handle.

Methods

public void add(IloInt more, const IloExtractable x)

This member function appends x to the invoking array multiple times. The argument more specifies how many
times.

public void add(const IloExtractable x)

This member function appends x to the invoking array.

public void add(const IloExtractableArray x)

This member function appends the elements in the arrayx to the invoking array.

public void endElements()

This member function calls IloExtractable::end for each of the elements in the invoking array. This deletes
all the extractables identified by the array, leaving the handles in the array intact. This member function is the
recommended way to delete the elements of an array.

public void setNames(const char * name)

This member function set the name for all elements of the invoking array. All elements must be different,
otherwise raise an error.

471

Class IloExtractableVisitor
Definition file: ilconcert/iloextractable.h

The class for inspecting all nodes of an expression.
The class IloExtractableVisitor is used to introspect a Concert object and inspect all nodes of the
expression.

For example, you can introspect a given expression and look for all the variables within.

You can do this by specializing the visitChildren methods and calling the beginVisit method on the
extractable you want to introspect.

For example, if you visit an IloDiff object, you will visit the first expression, then the second expression. When
visiting the first or second expression, you will visit their sub-expressions, and so on.

Constructor and Destructor Summary

public IloExtractableVisitor()

Method Summary

public virtual void beginVisit(IloExtractableI * e)

public virtual void endVisit(IloExtractableI * e)

public virtual void visitChildren(IloExtractableI * parent, IloExtractableArray
children)

public virtual void visitChildren(IloExtractableI * parent, IloExtractableI *
child)

Constructors and Destructors

public IloExtractableVisitor()

The default constructor.

Methods

public virtual void beginVisit(IloExtractableI * e)

This method begins the introspection.

public virtual void endVisit(IloExtractableI * e)

This method ends the inspection.

public virtual void visitChildren(IloExtractableI * parent, IloExtractableArray
children)

472

This method is called when the member of the object is an array.

For example, when visiting an IloAllDiff(env, [x,y,z]) , you use

 visitChildren(AllDiff, [x,y,z])

public virtual void visitChildren(IloExtractableI * parent, IloExtractableI *
child)

This method is called when visiting a sub-extractable.

For example, if you want to display all the variables in your object, you use:

 visitChildren(IloExtractableI* parent, IloExtractableI* child){
 IloExtractable extr(child); if (child.isVariable()) cout << extr;
 }

If you visit IloDiff(env, X, Y) , for example, you would call this method as:

 visitChildren(Diff, X)

then

 visitChildren(Diff, Y)

473

Class IloFastMutex
Definition file: ilconcert/ilothread.h

Synchronization primitives adapted to the needs of Concert Technology.
The class IloFastMutex provides synchronization primitives adapted to the needs of Concert Technology. In
particular, an instance of the class IloFastMutex is a nonrecursive mutex that implements mutual exclusion
from critical sections of code in multithreaded applications. The purpose of a mutex is to guarantee that
concurrent calls to a critical section of code in a multithreaded application are serialized. If a critical section of
code is protected by a mutex, then two (or more) threads cannot execute the critical section simultaneously. That
is, an instance of this class makes it possible for you to serialize potentially concurrent calls.

Concert Technology implements a mutex by using a single resource that you lock when your application enters
the critical section and that you unlock when you leave. Only one thread can own that resource at a given time.

Protection by a Mutex

A critical section of code in a multithreaded application is protected by a mutex when that section of code is
encapsulated by a pair of calls to the member functions IloFastMutex::lock and IloFastMutex::unlock.

In fact, we say that a pair of calls to the member functions lock and unlock defines a critical section. The
conventional way of defining a critical section looks like this:

 mutex.lock();
 while (conditionC does not hold)
 condition.wait(&mutex);
 doTreatmentT();
 mutex.unlock();

The class IloCondition provides synchronization primitives to express conditions in critical sections of code.

State of a Mutex

A mutex (an instance of IloFastMutex) has a state; the state may be locked or unlocked. You can inquire
about the state of a mutex to determine whether it is locked or unlocked by using the member function
IloFastMutex::isLocked. When a thread enters a critical section of code in a multithreaded application and
then locks the mutex defining that critical section, we say that the thread owns that lock and that lock belongs to
the thread until the thread unlocks the mutex.

Exceptions

The member functions IloFastMutex::lock and IloFastMutex::unlock can throw C++ exceptions when
exceptions are enabled on platforms that support them. These are the possible exceptions:

IloMutexDeadlock: Instances of IloFastMutex are not recursive. Consequently, if a thread locks a
mutex and then attempts to lock that mutex again, the member function lock throws the exception
MutexDeadlock. On platforms that do not support exceptions, it causes the application to exit.

•

IloMutexNotOwner: The thread that releases a given lock (that is, the thread that unlocks a mutex)
must be the same thread that locked the mutex in the first place. For example, if a thread A takes lock L
and thread B attempts to unlock L, then the member function unlock throws the exception
MutexNotOwner. On platforms that do not support exceptions, it causes the application to exit.

•

IloMutexNotOwner: The member function unlock throws this exception whenever a thread attempts
to unlock an instance of IloFastMutex that is not already locked. On platforms that do not support
exceptions, it causes the application to exit.

•

System Class: Memory Management

IloFastMutex is a system class.

474

Most Concert Technology classes are actually handle classes whose instances point to objects of a
corresponding implementation class. For example, instances of the Concert Technology class IloNumVar are
handles pointing to instances of the implementation class IloNumVarI. Their allocation and de-allocation in
internal data structures of Concert Technology are managed by an instance of IloEnv.

However, system classes, such as IloFastMutex, differ from that pattern. IloFastMutex is an ordinary C++
class. Its instances are allocated on the C++ heap.

Instances of IloFastMutex are not automatically de-allocated by a call to IloEnv::end. You must explicitly
destroy instances of IloFastMutex by means of a call to the delete operator (which calls the appropriate
destructor) when your application no longer needs instances of this class.

Furthermore, you should not allocate—neither directly nor indirectly—any instance of IloFastMutex in the
Concert Technology environment because the destructor for that instance of IloFastMutex will never be called
automatically by IloEnv::end when it cleans up other Concert Technology objects in the Concert Technology
environment. In other words, allocation of any instance of IloFastMutex in the Concert Technology
environment will produce memory leaks.

For example, it is not a good idea to make an instance of IloFastMutex part of a conventional Concert
Technology model allocated in the Concert Technology environment because that instance will not automatically
be de-allocated from the Concert Technology environment along with the other Concert Technology objects.

De-allocating Instances of IloFastMutex

Instances of IloFastMutex differ from the usual Concert Technology objects because they are not allocated in
the Concert Technology environment, and their de-allocation is not managed automatically for you by
IloEnv::end. Instead, you must explicitly destroy instances of IloFastMutex by calling the delete operator
when your application no longer needs those objects.

See Also: IloBarrier, IloCondition

Constructor and Destructor Summary

public IloFastMutex()

public ~IloFastMutex()

Method Summary

public int isLocked()

public void lock()

public void unlock()

Constructors and Destructors

public IloFastMutex()

This constructor creates an instance of IloFastMutex and allocates it on the C++ heap (not in the Concert
Technology environment). This mutex contains operating system-specific resources to represent a lock. You may
use this mutex for purposes that are private to a process. Its behavior is undefined for inter-process locking.

public ~IloFastMutex()

The delete operator calls this destructor to de-allocate an instance of IloFastMutex. This destructor is called
automatically by the runtime system. The destructor releases operating system-specific resources of the invoking
mutex.

475

Methods

public int isLocked()

This member function returns a Boolean value that shows the state of the invoking mutex. That is, it tells you
whether the mutex is locked by the calling thread (0) or unlocked (1) or locked by a thread other than the calling
thread (also 1).

public void lock()

This member function acquires a lock for the invoking mutex on behalf of the calling thread. That lock belongs to
the calling thread until the member function unlock is called.

If you call this member function and the invoking mutex has already been locked, then the calling thread is
suspended until the first lock is released.

public void unlock()

This member function releases the lock on the invoking mutex, if there is such a lock.

If you call this member function on a mutex that has not been locked, then this member function throws an
exception if C++ exceptions have been enabled on a platform that supports exceptions. Otherwise, it causes the
application to exit.

476

Class IloCsvReader::IloFieldNotFoundException
Definition file: ilconcert/ilocsvreader.h

Exception thrown for field not found.
This exception is thrown by the IloCsvLine methods listed below if the corresponding field does not exist.

IloCsvLine::getFloatByPosition•
IloCsvLine::getIntByPosition•
IloCsvLine::getStringByPosition•
IloCsvLine::getFloatByHeader•
IloCsvLine::getIntByHeader•
IloCsvLine::getStringByHeader•
IloCsvLine::getFloatByPositionOrDefaultValue•
IloCsvLine::getIntByPositionOrDefaultValue•
IloCsvLine::getStringByPositionOrDefaultValue•
IloCsvLine::getFloatByHeaderOrDefaultValue•
IloCsvLine::getIntByHeaderOrDefaultValue•
IloCsvLine::getStringByHeaderOrDefaultValue•

477

Class IloCsvReader::IloFileNotFoundException
Definition file: ilconcert/ilocsvreader.h

Exception thrown when file is not found.
This exception is thrown in the constructor of the csv reader if a specified file is not found.

478

Class IloFunction<,>
Definition file: ilconcert/iloset.h

For constraint programming: A template for creating a handle class to the implementation class built by the
template IloFunctionI.
Concert Technology offers you the means to define classes of functions that map instances of one class X to
instances of another class Y.

This C++ template creates a class of handles to the implementation class built by the template IloFunctionI.

Normally, you subclass the class IloFunctionI<X,Y> and in doing so, you define its pure virtual member
function:

 virtual Y getValue(X);

Then you use this template to define a handle to that class of type IloFunction<X,Y>.

Definition file:<ilconcert/iloset.h>

479

Class IloGoal
Definition file: ilsolver/ilosolverhandle.h
Include file: <ilsolver/ilosolver.h>

An instance of IloGoal represents a goal, a search primitive, for use in a Concert Technology model. That is, a
goal is a building block in a search for solutions.

The goals listed in See Also are predefined in IBM® ILOG® Solver.

Environment and Goals

Every instance of IloGoal must belong to one instance of IloEnv. A goal (that is, an instance of IloGoal or
one of its derived subclasses) is tied throughout its lifetime to the environment where it is created. It can be used
only with goals and extractable objects belonging to the same environment.

See Also: IloAndGoal, IloApply, IloBestGenerate, IloBestInstantiate, IloDichotomize, IloGenerate, IloGoalFail,
IloGoalTrue, IloInstantiate, IloLimitSearch, IloOrGoal, IloRemoveValue, IloSetMax, IloSetMin, IloSetValue,
ILOCPGOALWRAPPER0

Constructor Summary

public IloGoal()

public IloGoal(IloGoalI * impl=0)

Method Summary

public void end() const

public IloEnv getEnv() const

public IloGoalI * getImpl() const

public const char * getName() const

public IloAny getObject() const

public void setName(const char * name) const

public void setObject(IloAny obj) const

Constructors

public IloGoal()

This constructor creates a goal which is empty, that is, one whose handle pointer is null. This object must then be
assigned before it can be used, exactly as when you declare a pointer.

public IloGoal(IloGoalI * impl=0)

This constructor creates a goal from its implementation object.

480

Methods

public void end() const

This member function ends the corresponding goal and returns the memory to the environment.

public IloEnv getEnv() const

This member function returns the environment to which the invoking goal belongs. A goal belongs to exactly one
environment; different environments can not share the same goal.

public IloGoalI * getImpl() const

This member function returns a pointer to the implentation object of the invoking goal. This member function is
useful when you need to be sure that you are using the same copy of the invoking goal in more than one
situation.

public const char * getName() const

This member function returns a character string specifying the name of the invoking object (if there is one).

public IloAny getObject() const

This member function returns the object associated with the invoking object (if there is one). Normally, an
associated object contains user data pertinent to the invoking object.

public void setName(const char * name) const

This member function assigns name to the invoking object.

public void setObject(IloAny obj) const

This member function associates obj with the invoking object. The member function getObject accesses this
associated object afterward. Normally, obj contains user data pertinent to the invoking object.

481

Class IloGoalI
Definition file: ilsolver/ilosolverhandle.h
Include file: <ilsolver/ilosolver.h>

The class IloGoal represents goals in an IBM® ILOG® Concert Technology model. The class IlcGoal
represents goals internally in a Solver search. A goal is a building block in a Solver search.

A goal is an object in Solver. Like other Solver entities, a goal is implemented by means of two classes: a handle
class and an implementation class. In other words, an instance of the class IloGoal (a handle) contains a data
member (the handle pointer) that points to an instance of the class IloGoalI (its implementation object).

See Also: IloGoal, ILOCPGOALWRAPPER0

Constructor and Destructor Summary

public IloGoalI(IloEnvI *)

public ~IloGoalI()

Method Summary

public virtual void display(ostream &) const

public virtual IlcGoal extract(const IloSolver solver) const

public virtual IloGoalI * makeClone(IloEnvI * env) const

Constructors and Destructors

public IloGoalI(IloEnvI *)

This constructor creates an instance of the class IloGoalI. This constructor should not be called directly as this
class is an abstract class. This constructor is called automatically in the constructor of its subclasses.

public ~IloGoalI()

This destructor is called automatically by the destructor of its subclasses. It frees memory used by the invoking
object.

Methods

public virtual void display(ostream &) const

This member function prints the invoking goal on an output stream.

public virtual IlcGoal extract(const IloSolver solver) const

482

In general terms, in Concert Technology, the objects of a model must be extracted for an algorithm (an instance
of one of the subclasses of IloAlgorithm, such as IloSolver). This member function returns the internal
goal extracted for solver from the invoking goal of a model.

public virtual IloGoalI * makeClone(IloEnvI * env) const

This member function is called internally to duplicate the current goal

483

Class IloIfThen
Definition file: ilconcert/ilomodel.h

This class represents a condition constraint.
An instance of IloIfThen represents a condition constraint. Generally, a condition constraint is composed of an
if part (the conditional statement or left side) and a then part (the consequence or right side).

In order for a constraint to take effect, you must add it to a model with the template IloAdd or the member
function IloModel::add and extract the model for an algorithm with the member function
IloAlgorithm::extract.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

See Also: IloConstraint

Constructor Summary

public IloIfThen()

public IloIfThen(IloIfThenI * impl)

public IloIfThen(const IloEnv env, const IloConstraint left, const IloConstraint
right, const char * name=0)

Method Summary

public IloIfThenI * getImpl() const

Inherited Methods from IloConstraint

getImpl

Inherited Methods from IloIntExprArg

getImpl

Inherited Methods from IloNumExprArg

getImpl

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

484

Constructors

public IloIfThen()

This constructor creates an empty handle. You must initialize it before you use it.

public IloIfThen(IloIfThenI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IloIfThen(const IloEnv env, const IloConstraint left, const IloConstraint
right, const char * name=0)

This constructor creates a condition constraint in the environment specified by env. The argument left
specifies the if-part of the condition. The argument right specifies the then-part of the condition. The string
name specifies the name of the constraint; it is 0 (zero) by default. For the constraint to take effect, you must add
it to a model and extract the model for an algorithm.

Methods

public IloIfThenI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

485

Class IloIIM
Definition file: ilsolver/iimextr.h

Management class for IIM components.
This class offers iterative improvement method (IIM) management facilities in much the same way as the
IloSolver class does for pure constraint programming. This class is created from a solver and has the same
life cycle as the solver.

See Also: IloNeighborIdentifier, IlcNeighborIdentifier

Constructor Summary

public IloIIM(IloSolver solver)

This constructor builds an IIM management class from a solver.

Method Summary

public IloSolution getAtDelta(const IloNeighborIdentifier nid) const

This member function returns the solution delta of the neighbor
accepted in the local search using neighbor identifier nid.

public IloInt getAtIndex(const IloNeighborIdentifier nid) const

This member function returns the index of the neighbor accepted in the
local search using neighbor identifier nid.

public IlcNeighborIdentifier getNeighborIdentifier(const IloNeighborIdentifier
nid) const

This member function returns the neighbor identifier extracted from
nid.

public IloSolver getSolver() const

Delivers the solver passed at construction time.

Constructors

public IloIIM(IloSolver solver)

This constructor builds an IIM management class from a solver.

This constructor builds an IIM management class from the solver solver. The life cycle of the constructed class
will be equivalent to that of the solver. When the solver is destroyed, the IIM management object must no longer
be used. If more than one instance of IloIIM is created on the same solver, then these instances will share the
same implementation pointer.

Methods

public IloSolution getAtDelta(const IloNeighborIdentifier nid) const

This member function returns the solution delta of the neighbor accepted in the local search using neighbor
identifier nid.

486

This member function returns the solution delta of the neighbor accepted in the local search using neighbor
identifier nid. The solution delta is specified by the neighborhood and is the set of extractables which change
value together with their new values. This is equivalent to return
getNeighborIdentifier(nid).getAtDelta(); The returned delta does not belong to the user, but the
neighborhood identifier itself: end() must not be called on it.

public IloInt getAtIndex(const IloNeighborIdentifier nid) const

This member function returns the index of the neighbor accepted in the local search using neighbor identifier
nid.

This member function returns the index of the neighbor accepted in the local search using neighbor identifier
nid. This is equivalent to return getNeighborIdentifier(nid).getAtIndex();

public IlcNeighborIdentifier getNeighborIdentifier(const IloNeighborIdentifier nid)
const

This member function returns the neighbor identifier extracted from nid.

This member function returns the neighborhood identifier used inside search which is extracted from the
neighborhood identifier nid used for search specification.

public IloSolver getSolver() const

Delivers the solver passed at construction time.

This member functions returns the solver passed at construction time.

487

Class IloCsvReader::IloIncorrectCsvReaderUseException
Definition file: ilconcert/ilocsvreader.h

Exception thrown for call to inappropriate csv reader.
This exception is thrown in the following member functions if you call them from a reader built as a multitable csv
reader.

IloCsvReader::getLineByNumber•
IloCsvReader::getLineByKey•
IloCsvReader::getNumberOfItems•
IloCsvReader::getNumberOfColumns•
IloCsvReader::getNumberOfKeys•
IloCsvReader::getReaderForUniqueTableFile•
IloCsvReader::getTable•
IloCsvReader::isHeadingExists•
IloCsvReader::printKeys•

This exception is throw in the following member functions if you call them from a reader built as a unique table
csv reader.

IloCsvReader::getCsvFormat•
IloCsvReader::getFileVersion•
IloCsvReader::getTableByName•
IloCsvReader::getTableByNumber•
IloCsvReader::getRequiredBy•

488

Class IloIntArray
Definition file: ilconcert/iloenv.h

The array class of the basic integer class.
IloIntArray is the array class of the basic integer class for a model. It is a handle class. The implementation
class for IloIntArray is the undocumented class IloIntArrayI.

Instances of IloIntArray are extensible. (They differ from instances of IlcIntArray in this respect.)
References to an array change whenever an element is added to or removed from the array.

For each basic type, Concert Technology defines a corresponding array class. That array class is a handle class.
In other words, an object of that class contains a pointer to another object allocated in a Concert Technology
environment associated with a model. Exploiting handles in this way greatly simplifies the programming interface
since the handle can then be an automatic object: as a developer using handles, you do not have to worry about
memory allocation.

As handles, these objects should be passed by value, and they should be created as automatic objects, where
“automatic” has the usual C++ meaning.

Member functions of a handle class correspond to member functions of the same name in the implementation
class.

Assert and NDEBUG

Most member functions of the class IloIntArray are inline functions that contain an assert statement. This
statement checks that the handle pointer is not null. These statements can be suppressed by the macro NDEBUG.
This option usually reduces execution time. The price you pay for this choice is that attempts to access through
null pointers are not trapped and usually result in memory faults.

IloIntArray inherits additional methods from the template IloArray:

IloArray::add•
IloArray::add•
IloArray::clear•
IloArray::getEnv•
IloArray::getSize•
IloArray::remove•
IloArray::operator[]•
IloArray::operator[]•

See Also: IloInt

Constructor Summary

public IloIntArray(IloArrayI * i=0)

public IloIntArray(const IloEnv env, IloInt n=0)

public IloIntArray(const IloEnv env, IloInt n, IloInt v0, IloInt v1...)

Method Summary

public IloBool contains(IloIntArray ax) const

489

public IloBool contains(IloInt value) const

public void discard(IloIntArray ax)

public void discard(IloInt value)

public IloIntExprArg operator[](IloIntExprArg intExp) const

public IloInt & operator[](IloInt i)

public const IloInt & operator[](IloInt i) const

public IloNumArray toNumArray() const

Constructors

public IloIntArray(IloArrayI * i=0)

This constructor creates an array of integers from an implementation object.

public IloIntArray(const IloEnv env, IloInt n=0)

This constructor creates an array of n integers for use in a model in the environment specified by env. By default,
its elements are empty handles.

public IloIntArray(const IloEnv env, IloInt n, IloInt v0, IloInt v1...)

This constructor creates an array of n integers; the elements of the new array take the corresponding values:
v0, v1, ..., v(n-1).

Methods

public IloBool contains(IloIntArray ax) const

This member function checks whether all the values of ax are contained or not.

public IloBool contains(IloInt value) const

This member function checks whether the value is contained or not.

public void discard(IloIntArray ax)

This member function removes elements from the invoking array. It removes the array ax.

public void discard(IloInt value)

This member function removes elements from the invoking array. It removes the element.

public IloIntExprArg operator[](IloIntExprArg intExp) const

490

This subscripting operator returns an expression node for use in a constraint or expression. For clarity, let's call A
the invoking array. When intExp is bound to the value i, then the domain of the expression is the domain of
A[i]. More generally, the domain of the expression is the union of the domains of the expressions A[i] where
the i are in the domain of intExp.

This operator is also known as an element expression.

public IloInt & operator[](IloInt i)

This operator returns a reference to the object located in the invoking array at the position specified by the index
i.

public const IloInt & operator[](IloInt i) const

This operator returns a reference to the object located in the invoking array at the position specified by the index
i. On const arrays, Concert Technology uses the const operator:

 IloArray operator[] (IloInt i) const;

public IloNumArray toNumArray() const

This constructor creates an array of integers from an array of numeric values.

491

Class IloIntBinaryPredicate
Definition file: ilconcert/ilotupleset.h

For constraint programming: binary predicates operating on arbitrary objects in a model.
This class makes it possible for you to define binary predicates operating on arbitrary objects in a model. A
predicate is an object with a member function (such as IloIntBinaryPredicate::isTrue) that checks
whether or not a property is satisfied by an ordered set of (pointers to) objects.

Defining a New Class of Predicates

Predicates, like other Concert Technology objects, depend on two classes: a handle class,
IloIntBinaryPredicate, and an implementation class, such as IloIntBinaryPredicateI, where an
object of the handle class contains a data member (the handle pointer) that points to an object (its
implementation object) of an instance of IloIntBinaryPredicateI allocated in a Concert Technology
environment. As a Concert Technology user, you will be working primarily with handles.

If you define a new class of predicates yourself, you must define its implementation class together with the
corresponding virtual member function isTrue, as well as a member function that returns an instance of the
handle class IloIntBinaryPredicate.

Arity

As a developer, you can use predicates in Concert Technology applications to define your own constraints that
have not already been predefined in Concert Technology. In that case, the arity of the predicate (that is, the
number of constrained variables involved in the predicate, and thus the size of the array that the member function
IloIntBinaryPredicate::isTrue must check) must be two.

See Also these classes in the IBM ILOG CP Optimizer Reference Manual: IloAllowedAssignments,
IloForbiddenAssignments.

See Also these classes in the IBM ILOG Solver Reference Manual: IloTableConstraint.

Constructor and Destructor Summary

public IloIntBinaryPredicate()

public IloIntBinaryPredicate(IloIntBinaryPredicateI * impl)

Method Summary

public IloIntBinaryPredicateI * getImpl() const

public IloBool isTrue(const IloInt val1, const IloInt val2)

public void operator=(const IloIntBinaryPredicate & h)

Constructors and Destructors

public IloIntBinaryPredicate()

This constructor creates an empty binary predicate. In other words, the predicate is an empty handle with a null
handle pointer. You must assign the elements of the predicate before you attempt to access it, just as you would
any other pointer. Int attempt to access it before this assignment will throw an exception (an instance of
IloSolver::SolverErrorException).

492

public IloIntBinaryPredicate(IloIntBinaryPredicateI * impl)

This constructor creates a handle object (an instance of the class IloIntBinaryPredicate) from a pointer to
an implementation object (an instance of the implementation class IlcIntPredicateI, documented in the IBM
ILOG CP Optimizer Reference Manual and the IBM ILOG Solver Reference Manual).

Methods

public IloIntBinaryPredicateI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloBool isTrue(const IloInt val1, const IloInt val2)

This member function returns IloTrue if the values val1 and val2 make the invoking binary predicate valid. It
returns IloFalse otherwise.

public void operator=(const IloIntBinaryPredicate & h)

This assignment operator copies h into the invoking predicate by assigning an address to the handle pointer of
the invoking object. That address is the location of the implementation object of the argument h. After execution
of this operator, both the invoking predicate and h point to the same implementation object.

493

Class IloIntervalList
Definition file: ilconcert/ilointervals.h

Represents a list of nonoverlapping intervals.
An instance of the class IloIntervalList represents a list of nonoverlapping intervals. Each interval
[timeMin, timeMax) from the list is associated with a numeric type.

Note that if n is the number of intervals in the list, the random access to a given interval (see the member
functions IloIntervalList::addInterval, IloIntervalList::contains, and
IloIntervalList::removeInterval) has a worst-case complexity in O(log(n)).

Furthermore, when two consecutive intervals of the list have the same types, these intervals are merged so that
the list is always represented with the minimal number of intervals.

See Also: IloIntervalListCursor, IloUnion, IloDifference

Constructor Summary

public IloIntervalList(const IloEnv env, IloNum min=-IloInfinity, IloNum
max=+IloInfinity, const char * name=0)

public IloIntervalList(const IloEnv env, const IloNumArray times, const
IloNumArray types, const char * name=0)

Method Summary

public void addInterval(IloNum start, IloNum end, IloNum type=0L) const

public void addPeriodicInterval(IloNum start, IloNum duration, IloNum
period, IloNum end, IloNum type=0L) const

public IloBool contains(const IloIntervalList intervals) const

public IloIntervalList copy() const

public void dilate(IloNum k) const

public void empty() const

public IloNum getDefinitionIntervalMax() const

public IloNum getDefinitionIntervalMin() const

public IloBool isEmpty() const

public IloBool isKeptOpen() const

public void keepOpen(IloBool val=IloTrue) const

public void removeInterval(IloNum start, IloNum end) const

public void removeIntervalOnDuration(IloNum start, IloNum duration)
const

public void removePeriodicInterval(IloNum start, IloNum duration,
IloNum period, IloNum end) const

public void setDifference(const IloIntervalList intervals) const

public void setPeriodic(const IloIntervalList intervals, IloNum x0,
IloNum n=IloInfinity) const

public void setUnion(const IloIntervalList intervals) const

494

public void shift(IloNum dx) const

Constructors

public IloIntervalList(const IloEnv env, IloNum min=-IloInfinity, IloNum
max=+IloInfinity, const char * name=0)

This constructor creates a new instance of IloIntervalList and adds it to the set of interval lists managed in
the given environment. The arguments min and max respectively represent the origin and the horizon of the
interval list. The new interval list does not contain any intervals.

public IloIntervalList(const IloEnv env, const IloNumArray times, const IloNumArray
types, const char * name=0)

This constructor creates an interval list whose intervals are defined by the two arrays times and types. More
precisely, if n is the size of array times, then the size of array types must be n-1 and the following contiguous
intervals are created on the interval list: [times[i],times[i+1]) with type types[i] for all i in [0, n-1].

Methods

public void addInterval(IloNum start, IloNum end, IloNum type=0L) const

This member function adds an interval of type type to the invoking interval list. The start time and end time of
that newly added interval are set to start and end. By default, the type of the interval is 0. Adding a new
interval that overlaps with an already existing interval of a different type will override the existing type on the
intersection.

public void addPeriodicInterval(IloNum start, IloNum duration, IloNum period,
IloNum end, IloNum type=0L) const

This member function adds a set of intervals to the invoking interval list. For every i >= 0 such that start + i
* period < end, an interval of [start + i * period, start + duration + i * period) is added.
By default, the type of these intervals is 0. Adding a new interval that overlaps with an already existing interval of
a different type will override the existing type on the intersection.

public IloBool contains(const IloIntervalList intervals) const

This member function returns IloTrue if and only if each interval of intervals is included in an interval of the
invoking interval list, regardless of interval type.

public IloIntervalList copy() const

This member function creates and returns a new interval list that is a copy of the invoking interval list.

public void dilate(IloNum k) const

This member function multiplies by k the scale of times for the invoking interval list. k must be a positive number.

495

public void empty() const

This member function removes all the intervals from the invoking interval list.

public IloNum getDefinitionIntervalMax() const

This member function returns the right most point (horizon) of the definition interval of the invoking interval list.

public IloNum getDefinitionIntervalMin() const

This member function returns the left most point (origin) of the definition interval of the invoking interval list.

public IloBool isEmpty() const

This member function returns IloTrue if and only if the invoking interval list is empty.

public IloBool isKeptOpen() const

This member function returns IloTrue if the interval list must be kept open. Otherwise, it returns IloFalse.

public void keepOpen(IloBool val=IloTrue) const

If the argument val is equal to IloTrue, this member function states that the invoking interval list must be kept
open during the search for a solution to the problem. It means that additional intervals may be added during the
search. Otherwise, if the argument val is equal to IloFalse, it states that all the intervals of the invoking
interval list will be defined in the model before starting to solve the problem. By default, it is supposed that all the
intervals of the invoking interval list are defined in the model before starting to solve the problem.

public void removeInterval(IloNum start, IloNum end) const

This member function removes all intervals on the invoking interval list between start and end. If start is placed
inside an interval [start1, end1), that is, start1 < start < end1, this results in an interval [start1,
start). If end is placed inside an interval [start2, end2) this results in an interval [end, end2).

public void removeIntervalOnDuration(IloNum start, IloNum duration) const

This member function removes all intervals on the invoking resource between start and start+duration.

public void removePeriodicInterval(IloNum start, IloNum duration, IloNum period,
IloNum end) const

This member function removes intervals from the invoking interval list. More precisely, for every i >= 0 such
that start + i * period < end, this function removes all intervals between start + i * period and
start + duration + i * period.

496

public void setDifference(const IloIntervalList intervals) const

This member function removes from the invoking interval list all the intervals contained in the interval list
intervals. The definition interval of the invoking interval list is not changed.

public void setPeriodic(const IloIntervalList intervals, IloNum x0, IloNum
n=IloInfinity) const

This member function initializes the invoking interval list as an interval list that repeats the interval list intervals n
times after x0.

public void setUnion(const IloIntervalList intervals) const

This member function sets the invoking interval list to be the union between the current interval list and the
interval list intervals. An instance of IloException is thrown if two intervals with different types overlap.
The definition interval of the invoking interval list is set to the union between the current definition interval and the
definition interval of intervals.

public void shift(IloNum dx) const

This member function shifts the intervals of the invoking interval list from dx to the right if dx > 0 or from -dx to
the left if dx < 0. It has no effect if dx = 0.

497

Class IloIntervalListCursor
Definition file: ilconcert/ilointervals.h

Inspects the intervals of an interval list.
An instance of the class IloIntervalListCursor allows you to inspect the intervals of an interval list, that is,
an instance of IloIntervalList. Cursors are intended to iterate forward or backward over the intervals of an
interval list.

Note

The structure of the interval list cannot be changed while a cursor is being used to inspect it. Therefore,
functions that change the structure of the interval list, such as IloIntervalList::addInterval, should not be called
while the cursor is being used.

See Also: IloIntervalList

Constructor and Destructor Summary

public IloIntervalListCursor(const IloIntervalList)

public IloIntervalListCursor(const IloIntervalList, IloNum x)

public IloIntervalListCursor(const IloIntervalListCursor &)

Method Summary

public IloNum getEnd() const

public IloNum getStart() const

public IloNum getType() const

public IloBool ok() const

public void operator++()

public void operator--()

public void operator=(const IloIntervalListCursor &)

public void seek(IloNum)

Constructors and Destructors

public IloIntervalListCursor(const IloIntervalList)

This constructor creates a cursor to inspect the interval list argument. This cursor lets you iterate forward or
backward over the intervals of the interval list. The cursor initially specifies the first interval of the interval list.

public IloIntervalListCursor(const IloIntervalList, IloNum x)

This constructor creates a cursor to inspect the interval list intervals. This cursor lets you iterate forward or
backward over the interval list. The cursor initially specifies the interval of the interval list that contains x.

Note that if n is the number of intervals of the interval list given as argument, the worst-case complexity of this
constructor is O(log(n)).

498

public IloIntervalListCursor(const IloIntervalListCursor &)

This constructor creates a new cursor that is a copy of the argument. The new cursor initially specifies the same
interval and the same interval list as the argument cursor.

Methods

public IloNum getEnd() const

This member function returns the end point of the interval currently specified by the cursor.

public IloNum getStart() const

This member function returns the start point of the interval currently specified by the cursor.

public IloNum getType() const

This member function returns the type of the interval currently specified by the cursor.

public IloBool ok() const

This member function returns IloFalse if the cursor does not currently specify an interval included in the
interval list. Otherwise, it returns IloTrue.

public void operator++()

This operator moves the cursor to the interval adjacent to the current interval (forward move).

public void operator--()

This operator moves the cursor to the interval adjacent to the current interval (backward move).

public void operator=(const IloIntervalListCursor &)

This operator assigns an address to the handle pointer of the invoking instance of IloIntervalListCursor.
That address is the location of the implementation object of the argument cursor. After the execution of this
operator, the invoking object and cursor both point to the same implementation object.

public void seek(IloNum)

This member function sets the cursor to specify the first interval of the interval list whose end is strictly greater
than the argument. Note that if n is the number of intervals of the interval list traversed by the invoking iterator,
the worst-case complexity of this member function is O(log(n)). An instance of IloException is thrown if the
argument does not belong to the interval of definition of the invoking interval list.

499

500

Class IloIntExpr
Definition file: ilconcert/iloexpression.h

The class of integer expressions in Concert Technology.
Integer expressions in Concert Technology are represented using objects of type IloIntExpr.

Constructor Summary

public IloIntExpr()

public IloIntExpr(IloIntExprI * impl)

public IloIntExpr(const IloIntExprArg arg)

public IloIntExpr(const IloIntLinExprTerm term)

public IloIntExpr(const IloEnv env, IloInt constant=0)

Method Summary

public IloIntExprI * getImpl() const

public IloIntExpr & operator*=(IloInt val)

public IloIntExpr & operator+=(const IloIntExprArg expr)

public IloIntExpr & operator+=(IloInt val)

public IloIntExpr & operator-=(const IloIntExprArg expr)

public IloIntExpr & operator-=(IloInt val)

Inherited Methods from IloIntExprArg

getImpl

Inherited Methods from IloNumExprArg

getImpl

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

Constructors

public IloIntExpr()

This constructor creates an empty handle. You must initialize it before you use it.

public IloIntExpr(IloIntExprI * impl)

501

This constructor creates a handle object from a pointer to an implementation object.

public IloIntExpr(const IloIntExprArg arg)

This constructor creates an integer expression using the undocumented class IloIntExprArg.

public IloIntExpr(const IloIntLinExprTerm term)

This constructor creates an integer expression with linear terms using the undocumented class
IloIntLinExprTerm.

public IloIntExpr(const IloEnv env, IloInt constant=0)

This constructor creates a constant integer expression with the value constant that the user can modify
subsequently with the operators +=, -=, ∗= in the environment env.

Methods

public IloIntExprI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloIntExpr & operator*=(IloInt val)

This operator is recommended for building a Concert Technology expression in a loop. It is more efficient than x
= x *

public IloIntExpr & operator+=(const IloIntExprArg expr)

This operator is recommended for building a Concert Technology expression in a loop. It is more efficient than x
= x +

public IloIntExpr & operator+=(IloInt val)

This operator is recommended for building a Concert Technology expression in a loop. It is more efficient than x
= x +

public IloIntExpr & operator-=(const IloIntExprArg expr)

This operator is recommended for building a Concert Technology expression in a loop. It is more efficient than x
= x -

public IloIntExpr & operator-=(IloInt val)

This operator is recommended for building a Concert Technology expression in a loop. It is more efficient than x
= x -

502

Class IloIntExprArg
Definition file: ilconcert/iloexpression.h

A class used internally in Concert Technology.
Concert Technology uses instances of these classes internally as temporary objects when it is parsing a C++
expression in order to build an instance of IloIntExpr. As a Concert Technology user, you will not need this
class yourself; in fact, you should not use them directly. They are documented here because the return value of
certain functions, such as IloSum or IloScalProd, can be an instance of this class.

Constructor Summary

public IloIntExprArg()

public IloIntExprArg(IloIntExprI * impl)

Method Summary

public IloIntExprI * getImpl() const

Inherited Methods from IloNumExprArg

getImpl

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

Constructors

public IloIntExprArg()

This constructor creates an empty handle. You must initialize it before you use it.

public IloIntExprArg(IloIntExprI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IloIntExprI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

503

Class IloIntExprArray
Definition file: ilconcert/iloexpression.h

The array class of the integer expressions class.
For each basic type, Concert Technology defines a corresponding array class. IloIntExprArray is the array
class of the integer expressions class (IloIntExpr) for a model.

Instances of IloIntExprArray are extensible. That is, you can add more elements to such an array.
References to an array change whenever an element is added to or removed from the array.

Constructor Summary

public IloIntExprArray(IloDefaultArrayI * i=0)

public IloIntExprArray(const IloEnv env, IloInt n=0)

Method Summary

public void add(IloInt more, const IloIntExpr x)

public void add(const IloIntExpr x)

public void add(const IloIntExprArray array)

public void endElements()

public IloIntExprArg operator[](IloIntExprArg anIntegerExpr) const

public IloIntExpr operator[](IloInt i) const

public IloIntExpr & operator[](IloInt i)

Inherited Methods from IloExtractableArray

add, add, add, endElements, setNames

Constructors

public IloIntExprArray(IloDefaultArrayI * i=0)

This constructor creates an empty array of elements. You cannot create instances of the undocumented class
IloDefaultArrayI. As an argument in this default constructor, it allows you to pass 0 (zero) as a value to an
optional argument in functions and member functions that accept an array as an argument.

public IloIntExprArray(const IloEnv env, IloInt n=0)

This constructor creates an array of n elements. Initially, the n elements are empty handles.

504

Methods

public void add(IloInt more, const IloIntExpr x)

This member function appends x to the invoking array multiple times. The argument more specifies how many
times.

public void add(const IloIntExpr x)

This member function appends x to the invoking array.

public void add(const IloIntExprArray array)

This member function appends the elements in array to the invoking array.

public void endElements()

This member function calls IloExtractable::end for each of the elements in the invoking array. This deletes
all the extractables identified by the array, leaving the handles in the array intact. This member function is the
recommended way to delete the elements of an array.

public IloIntExprArg operator[](IloIntExprArg anIntegerExpr) const

This subscripting operator returns an expression argument for use in a constraint or expression. For clarity, let's
call A the invoking array. When anIntegerExpr is bound to the value i, the domain of the expression is the
domain of A[i]. More generally, the domain of the expression is the union of the domains of the expressions
A[i] where the i are in the domain of anIntegerExpr.

This operator is also known as an element expression.

public IloIntExpr operator[](IloInt i) const

This operator returns a reference to the extractable object located in the invoking array at the position specified
by the index i. On const arrays, Concert Technology uses the const operator:

 IloIntExpr operator[] (IloInt i) const;

public IloIntExpr & operator[](IloInt i)

This operator returns a reference to the extractable object located in the invoking array at the position specified
by the index i.

505

Class IloIntSet
Definition file: ilconcert/iloset.h

An instance of this class offers a convenient way to represent a set of integer values.
An instance of this class offers a convenient way to represent a set of integer values as a constrained variable in
Concert Technology.

An instance of this class represents a set of enumerated values. The same enumerated value will not appear
more than once in a set. The elements of a set are not ordered. The class IloIntSet::Iterator offers you a
way to traverse the elements of such a set.

If you are considering modeling issues where you want to represent repeated elements or where you want to
exploit an indexed order among the elements, then you might want to look at the class IloAnyArray instead of
this class for sets.

See Also: IloExtractable, IloModel, IloIntSetVarArray

Constructor Summary

public IloIntSet(const IloEnv env, const IloIntArray array, IloBool
withIndex=IloFalse)

public IloIntSet(const IloEnv env, const IloNumArray array, IloBool
withIndex=IloFalse)

public IloIntSet(const IloEnv env, IloBool withIndex=IloFalse)

public IloIntSet(IloIntSetI * impl=0)

Method Summary

public void add(IloIntSet set)

public void add(IloInt elt)

public IloBool contains(IloIntSet set) const

public IloBool contains(IloInt elt) const

public void empty()

public IloInt getFirst() const

public IloIntSetI * getImpl() const

public IloInt getLast() const

public IloInt getNext(IloInt value, IloInt offset=1) const

public IloInt getNextC(IloInt value, IloInt offset=1) const

public IloInt getPrevious(IloInt value, IloInt offset=1) const

public IloInt getPreviousC(IloInt value, IloInt offset=1) const

public IloInt getSize() const

public IloBool intersects(IloIntSet set) const

public void remove(IloIntSet set)

506

public void remove(IloInt elt)

public void setIntersection(IloIntSet set)

public void setIntersection(IloInt elt)

Inner Class

IloIntSet::Iterator This class is an iterator that traverses the elements of a finite set of numeric values.

Constructors

public IloIntSet(const IloEnv env, const IloIntArray array, IloBool
withIndex=IloFalse)

This constructor creates a set of integer values in the environment env from the elements in array. The optional
flag withIndex corresponds to the activation or not of internal Hash Tables to improve speed of add/getIndex
methods.

public IloIntSet(const IloEnv env, const IloNumArray array, IloBool
withIndex=IloFalse)

This constructor creates a set of numeric values in the environment env from the elements in array. The
optional flag withIndex corresponds to the activation or not of internal Hash Tables to improve speed of
add/getIndex methods.

public IloIntSet(const IloEnv env, IloBool withIndex=IloFalse)

This constructor creates an empty set (no elements) in the environment env. You must use the member function
IloIntSet::add to fill this set with elements. The optional flag withIndex corresponds to the activation or not
of internal Hash Tables to improve speed of add/getIndex methods.

public IloIntSet(IloIntSetI * impl=0)

This constructor creates a handle to a set of integer values from its implementation object.

Methods

public void add(IloIntSet set)

This member function adds set to the invoking set. Here, "adds" means that the invoking set becomes the union
of its former elements and the elements of set.

To calculate the arithmetic sum of values in an array, use the function IloSum.

public void add(IloInt elt)

This member function adds elt to the invoking set. Here, "adds" means that the invoking set becomes the union
of its former elements and the new elt.

507

public IloBool contains(IloIntSet set) const

This member function returns a Boolean value (zero or one) that specifies whether set contains the invoking set.
The value one specifies that the invoking set contains all the elements of set, and that the intersection of the
invoking set with set is precisely set. The value zero specifies that the intersection of the invoking set and set
is not precisely set.

public IloBool contains(IloInt elt) const

This member function returns a Boolean value (zero or one) that specifies whether elt is an element of the
invoking set. The value one specifies that the invoking set contains elt; the value zero specifies that the
invoking set does not contain elt.

public void empty()

This member function removes the elements from the invoking set. In other words, the invoking set becomes the
empty set.

public IloInt getFirst() const

Returns the first item of the collection.

public IloIntSetI * getImpl() const

This member function returns a pointer to the implementation object of the invoking set.

public IloInt getLast() const

Returns the last item of the collection.

public IloInt getNext(IloInt value, IloInt offset=1) const

This method returns the value next to the given argument in the set.

If the given value does not exist, it throws an exception

If no value follows (that is, you are at the end of the set), it throws an exception.

See also getNextC, getPreviousC for circular search.

 S = {1,2,3,4}
 S.next(2,1) will return 3

public IloInt getNextC(IloInt value, IloInt offset=1) const

This method returns the value next to the given argument in the set.

508

If the given value does not exist, it throws an exception.

If no value follows (that is, you are at the end of the set), it will give you the first value (circular search).

See also getNext, getPrevious.

See Also: IloIntSet::getNext

public IloInt getPrevious(IloInt value, IloInt offset=1) const

This method returns the value previous to the given argument in the set.

If the given value does not exist, it throws an exception

If no value is previous (that is, you are at the beginning of the set), it throws an exception.

See also getNextC, getPreviousC for circular search.

See Also: IloIntSet::getNext

public IloInt getPreviousC(IloInt value, IloInt offset=1) const

This method returns the value previous to the given argument in the set.

If the given value does not exist, it throws an exception.

If no value is previous (that is, you are at the beginning of the set), it will give you the last value (circular search).

See also getNext, getPrevious.

See Also: IloIntSet::getNext

public IloInt getSize() const

This member function returns an integer specifying the size of the invoking set (that is, how many elements it
contains).

public IloBool intersects(IloIntSet set) const

This member function returns a Boolean value (zero or one) that specifies whether set intersects the invoking
set. The value one specifies that the intersection of set and the invoking set is not empty (at least one element in
common); the value zero specifies that the intersection of set and the invoking set is empty (no elements in
common).

public void remove(IloIntSet set)

This member function removes all the elements of set from the invoking set.

public void remove(IloInt elt)

509

This member function removes elt from the invoking set.

public void setIntersection(IloIntSet set)

This member function changes the invoking set so that it includes only the elements of set. In other words, the
invoking set becomes the intersection of its former elements with the elements of set.

public void setIntersection(IloInt elt)

This member function changes the invoking set so that it includes only the element specified by elt. In other
words, the invoking set becomes the intersection of its former elements with elt.

510

Class IloIntSetValueSelector
Definition file: ilsolver/ilosolverset.h
Include file: <ilsolver/ilosolver.h>

Solver lets you create value selectors to control the order in which the values in the domain of a set of
constrained integer variables are tried during the search for a solution.

The class IloIntSetValueSelector represents value selectors in an IBM® ILOG® Concert Technology
model. The class IlcIntSetSelect represents value selectors internally in a Solver search.

This class is the handle class of the modeling object that wraps the search object. When search starts,
IloIntSetValueSelectorI is extracted into an instance of IlcIntSetSelectI.

See Also: IlcIntSetSelect, IloIntSetValueSelectorI

Constructor Summary

public IloIntSetValueSelector()

public IloIntSetValueSelector(IloIntSetValueSelectorI * impl)

Method Summary

public IloIntSetValueSelectorI * getImpl() const

public void operator=(const IloIntSetValueSelector & h)

Constructors

public IloIntSetValueSelector()

This constructor creates an empty handle. You must initialize it before you use it.

public IloIntSetValueSelector(IloIntSetValueSelectorI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IloIntSetValueSelectorI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public void operator=(const IloIntSetValueSelector & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

511

512

Class IloIntSetValueSelectorI
Definition file: ilsolver/ilosolverset.h
Include file: <ilsolver/ilosolver.h>

This class is the implementation class for IloIntSetValueSelector.

The class IloIntSetValueSelectorI is the implementation class for value selectors in an IBM® ILOG®
Concert Technology model. The class IlcIntSetSelectI is the implementation class for value selectors
internally in a Solver search.

This class is the modeling object that wraps the search object. When search starts,
IloIntSetValueSelectorI is extracted into an instance of IlcIntSetSelectI.

To define new selection criteria, you define both a subclass of IloIntSetValueSelectorI and a subclass of
IlcIntSetSelectI.

See Also: IlcIntSetSelect, IloIntSetValueSelector

Constructor and Destructor Summary

public IloIntSetValueSelectorI(IloEnvI *)

public ~IloIntSetValueSelectorI()

Method Summary

public virtual void display(ostream &) const

public virtual IlcIntSetSelect extract(const IloSolver solver) const

public IloEnvI * getEnv() const

public virtual IloIntSetValueSelectorI * makeClone(IloEnvI * env) const

Constructors and Destructors

public IloIntSetValueSelectorI(IloEnvI *)

This constructor creates an instance of the class IloIntSetValueSelectorI. This constructor should not be
called directly as this class is an abstract class. This constructor is called automatically in the constructor of its
subclasses.

public ~IloIntSetValueSelectorI()

This destructor is called automatically by the destructor of its subclasses. It frees memory used by the invoking
object.

Methods

public virtual void display(ostream &) const

This member function prints the invoking value selector on an output stream.

513

public virtual IlcIntSetSelect extract(const IloSolver solver) const

In general terms, in Concert Technology, the objects of a model must be extracted for an algorithm (an instance
of one of the subclasses of IloAlgorithm, such as IloSolver). This member function returns the internal
value selector extracted for solver from the invoking value selector of a model.

public IloEnvI * getEnv() const

This member function returns the environment to which the invoking value selector belongs. A value selector
belongs to exactly one environment; different environments cannot share the same value selector.

public virtual IloIntSetValueSelectorI * makeClone(IloEnvI * env) const

This member function is called internally to duplicate the current value selector.

514

Class IloIntSetVar
Definition file: ilconcert/iloset.h

The class IloIntSetVar represents a set of integer values.
An instance of this class represents a set of integer values. The same integer value will not appear more than
once in a set. The elements of a set are not ordered.

A constrained variable representing a set of integer values (that is, an instance of IloIntSetVar) is defined in
terms of two other sets: its required elements and its possible elements. Its required elements are those that
must be in the set. Its possible elements are those that may be in the set. This class offers member functions for
accessing the required and possible elements of a set of integer values.

The function IloCard offers you a way to constrain the number of elements in a set variable. That is, IloCard
constrains the cardinality of a set variable.

Constructor Summary

public IloIntSetVar()

public IloIntSetVar(IloIntSetVarI * impl)

public IloIntSetVar(const IloEnv env, const IloIntArray array, const char *
name=0)

public IloIntSetVar(const IloEnv env, const IloIntArray possible, const
IloIntArray required, const char * name=0)

public IloIntSetVar(const IloEnv env, const IloNumArray array, const char *
name=0)

public IloIntSetVar(const IloEnv env, const IloNumArray possible, const
IloNumArray required, const char * name=0)

public IloIntSetVar(const IloIntCollection possible, const char * name=0)

public IloIntSetVar(const IloIntCollection possible, const IloIntCollection
required, const char * name=0)

public IloIntSetVar(const IloNumCollection possible, const char * name=0)

public IloIntSetVar(const IloNumCollection possible, const IloNumCollection
required, const char * name=0)

Method Summary

public void addPossible(IloInt elt) const

public void addRequired(IloInt elt) const

public IloIntSetVarI * getImpl() const

public void getPossibleSet(IloIntSet set) const

public IloIntSet getPossibleSet() const

public void getRequiredSet(IloIntSet set) const

public IloIntSet getRequiredSet() const

public void removePossible(IloInt elt) const

public void removeRequired(IloInt elt) const

515

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

Constructors

public IloIntSetVar()

This constructor creates an empty handle. You must initialize it before you use it.

public IloIntSetVar(IloIntSetVarI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IloIntSetVar(const IloEnv env, const IloIntArray array, const char * name=0)

This constructor creates a constrained set variable and makes it part of the environment env, where the set
consists of integer values. By default, its name is the empty string, but you can specify a name of your choice.

public IloIntSetVar(const IloEnv env, const IloIntArray possible, const IloIntArray
required, const char * name=0)

This constructor creates a constrained set variable and makes it part of the environment env, where the set
consists of integer values. The array possible specifies the set of possible elements of the set variable; the
array required specifies the set of required elements of the set variable. By default, its name is the empty
string, but you can specify a name of your choice.

public IloIntSetVar(const IloEnv env, const IloNumArray array, const char * name=0)

This constructor creates a constrained set variable and makes it part of the environment env, where the set
consists of integer values. By default, its name is the empty string, but you can specify a name of your choice.

public IloIntSetVar(const IloEnv env, const IloNumArray possible, const IloNumArray
required, const char * name=0)

This constructor creates a constrained set variable and makes it part of the environment env, where the set
consists of integer values. The numeric array possible specifies the set of possible elements of the set
variable; the numeric array required specifies the set of required elements of the set variable. By default, its
name is the empty string, but you can specify a name of your choice.

public IloIntSetVar(const IloIntCollection possible, const char * name=0)

This constructor creates a constrained set variable and makes it part of the environment env, where the set
consists of integer values.

public IloIntSetVar(const IloIntCollection possible, const IloIntCollection
required, const char * name=0)

516

This constructor creates a constrained set variable and makes it part of the environment env, where the set
consists of integer values.

public IloIntSetVar(const IloNumCollection possible, const char * name=0)

This constructor creates a constrained set variable and makes it part of the environment env, where the set
consists of integer values.

public IloIntSetVar(const IloNumCollection possible, const IloNumCollection
required, const char * name=0)

This constructor creates a constrained set variable and makes it part of the environment env, where the set
consists of integer values.

Methods

public void addPossible(IloInt elt) const

This member function adds elt to the set of possible elements of the invoking set variable.

Note

The member function addPossible notifies Concert Technology algorithms about this change of this invoking
object.

public void addRequired(IloInt elt) const

This member function adds elt to the set of required elements of the invoking set variable.

Note

The member function addRequired notifies Concert Technology algorithms about this change of this invoking
object.

public IloIntSetVarI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public void getPossibleSet(IloIntSet set) const

This member function accesses the possible elements of the invoking set variable and puts those elements into
its argument set.

public IloIntSet getPossibleSet() const

This member function returns the possible elements of the invoking set variable.

517

public void getRequiredSet(IloIntSet set) const

This member function accesses the possible elements of the invoking set variable and puts those elements into
its argument set.

public IloIntSet getRequiredSet() const

This member function returns the required elements of the invoking set variable.

public void removePossible(IloInt elt) const

This member function removes elt as a possible element of the invoking set variable.

Note

The member function removePossible notifies Concert Technology algorithms about this change of this
invoking object.

public void removeRequired(IloInt elt) const

This member function removes elt as a required element of the invoking set variable.

Note

The member function removeRequired notifies Concert Technology algorithms about this change of this
invoking object.

518

Class IloIntSetVarArray
Definition file: ilconcert/iloset.h

The array class of the set variable class for integer values.
For each basic type, Concert Technology defines a corresponding array class. IloIntSetVarArray is the
array class of the set variable class for integer values (IloIntSetVar) in a model.

Instances of IloIntSetVarArray are extensible. That is, you can add more elements to such an array.
References to an array change whenever an element is added or removed from the array.

Constructor Summary

public IloIntSetVarArray(IloDefaultArrayI * i=0)

public IloIntSetVarArray(const IloEnv env, IloInt n=0)

Method Summary

public void add(IloInt more, const IloIntSetVar x)

public void add(const IloIntSetVar x)

public void add(const IloIntSetVarArray array)

public IloIntSetVar operator[](IloInt i) const

public IloIntSetVar & operator[](IloInt i)

Inherited Methods from IloExtractableArray

add, add, add, endElements, setNames

Constructors

public IloIntSetVarArray(IloDefaultArrayI * i=0)

This constructor creates an empty extensible array of set variables. You cannot create instances of the
undocumented class IloDefaultArrayI. As an argument in this default constructor, it allows you to pass 0
(zero) as a value to an optional argument in functions and member functions that accept an array as an
argument.

public IloIntSetVarArray(const IloEnv env, IloInt n=0)

This constructor creates an extensible array of n set variables, where each set is a set of integer values.

Methods

public void add(IloInt more, const IloIntSetVar x)

519

This member function appends x to the invoking array multiple times. The argument more specifies how many
times.

public void add(const IloIntSetVar x)

This member function appends x to the invoking array.

public void add(const IloIntSetVarArray array)

This member function appends the elements in array to the invoking array.

public IloIntSetVar operator[](IloInt i) const

This operator returns a reference to the object located in the invoking array at the position specified by the index
i. On const arrays, Concert Technology uses the const operator:

 IloIntSetVar operator[] (IloInt i) const;

public IloIntSetVar & operator[](IloInt i)

This operator returns a reference to the object located in the invoking array at the position specified by the index
i.

520

Class IloIntTernaryPredicate
Definition file: ilconcert/ilotupleset.h

For constraint programming: ternary predicates operating on arbitrary objects in a model.
This class makes it possible for you to define ternary predicates operating on arbitrary objects in a model. A
predicate is an object with a member function (such as IloIntTernaryPredicate::isTrue) that checks
whether or not a property is satisfied by an ordered set of (pointers to) objects. A ternary predicate checks an
ordered set of three objects.

Defining a New Class of Predicates

Predicates, like other Concert Technology objects, depend on two classes: a handle class,
IloIntTernaryPredicate, and an implementation class, such as IloIntTernaryPredicateI, where an
object of the handle class contains a data member (the handle pointer) that points to an object (its
implementation object) of an instance of IloIntTernaryPredicateI allocated in a Concert Technology
environment. As a Concert Technology user, you will be working primarily with handles.

If you define a new class of predicates yourself, you must define its implementation class together with the
corresponding virtual member function isTrue, as well as a member function that returns an instance of the
handle class IloIntTernaryPredicate.

Arity

As a developer, you can use predicates in Concert Technology applications to define your own constraints that
have not already been predefined in Concert Technology. In that case, the arity of the predicate (that is, the
number of constrained variables involved in the predicate, and thus the size of the array that the member function
IloIntTernaryPredicate::isTrue must check) must be three.

See Also these classes in the IBM ILOG Solver Reference Manual: IloTableConstraint.

Constructor and Destructor Summary

public IloIntTernaryPredicate()

public IloIntTernaryPredicate(IloIntTernaryPredicateI * impl)

Method Summary

public IloIntTernaryPredicateI * getImpl() const

public IloBool isTrue(const IloInt val1, const IloInt val2,
const IloInt val3)

public void operator=(const IloIntTernaryPredicate & h)

Constructors and Destructors

public IloIntTernaryPredicate()

This constructor creates an empty ternary predicate. In other words, the predicate is an empty handle with a null
handle pointer. You must assign the elements of the predicate before you attempt to access it, just as you would
any other pointer. An attempt to access it before this assignment will throw an exception (an instance of
IloSolver::SolverErrorException).

public IloIntTernaryPredicate(IloIntTernaryPredicateI * impl)

521

This constructor creates a handle object (an instance of the class IloIntTernaryPredicate) from a pointer
to an implementation object (an instance of the implementation class IloIntTernaryPredicateI).

Methods

public IloIntTernaryPredicateI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloBool isTrue(const IloInt val1, const IloInt val2, const IloInt val3)

This member function returns IloTrue if the values val1, val2, and val3 make the invoking ternary predicate
valid. It returns IloFalse otherwise.

public void operator=(const IloIntTernaryPredicate & h)

This assignment operator copies h into the invoking predicate by assigning an address to the handle pointer of
the invoking object. That address is the location of the implementation object of the argument h. After execution
of this operator, both the invoking predicate and h point to the same implementation object.

522

Class IloIntTupleSet
Definition file: ilconcert/ilotupleset.h

Ordered set of values represented by an array.
A tuple is an ordered set of values represented by an array. A set of enumerated tuples in a model is represented
by an instance of IloIntTupleSet. That is, the elements of a tuple set are tuples of enumerated values (such
as pointers). The number of values in a tuple is known as the arity of the tuple, and the arity of the tuples in a set
is called the arity of the set. (In contrast, the number of tuples in the set is known as the cardinality of the set.)

As a handle class, IloIntTupleSet manages certain set operations efficiently. In particular, elements can be
added to such a set. It is also possible to search a given set with the member function
IloIntTupleSet::isIn to see whether or not the set contains a given element.

In addition, a set of tuples can represent a constraint defined on a constrained variable, either as the set of
allowed combinations of values of the constrained variable on which the constraint is defined, or as the set of
forbidden combinations of values.

There are a few conventions governing tuple sets:

When you create the set, you must specify the arity of the tuple-elements it contains.•
You use the member function IloIntTupleSet::add to add tuples to the set. You can add tuples to
the set in a model; you cannot add tuples to an instance of this class during a search, nor inside a
constraint, nor inside a goal.

•

Concert Technology will throw an exception if you attempt:

to add a tuple with a different number of variables from the arity of the set;•
to search for a tuple with an arity different from the set arity.•

See Also: IloIntTupleSetIterator, IloExtractable

Constructor Summary

public IloIntTupleSet(const IloEnv env, const IloInt arity)

Method Summary

public IloBool add(const IloIntArray tuple) const

public void end()

public IloInt getArity() const

public IloInt getCardinality() const

public IloIntTupleSetI * getImpl() const

public IloBool isIn(const IloIntArray tuple) const

public IloBool remove(const IloIntArray tuple) const

Constructors

public IloIntTupleSet(const IloEnv env, const IloInt arity)

This constructor creates a set of tuples (an instance of the class IloIntTupleSet) with the arity specified by
arity.

523

Methods

public IloBool add(const IloIntArray tuple) const

This member function adds a tuple represented by the array tuple to the invoking set. If you attempt to add an
element that is already in the set, that element will not be added again. Added elements are not copied; that is,
there is no memory duplication. Concert Technology will throw an exception if the size of the array is not equal to
the arity of the invoking set. You may use this member function to add tuples to the invoking set in a model; you
may not add tuples in this way during a search, inside a constraint, or inside a goal. For those purposes, see
IlcIntTupleSet, documented in the IBM ILOG CP Optimizer Reference Manual and the IBM ILOG Solver
Reference Manual.

public void end()

This member function deletes the invoking set. That is, it frees all the resources used by the invoking object. After
a call to this member function, you cannot use the invoking extractable object again.

public IloInt getArity() const

This member function returns the arity of the tupleset.

public IloInt getCardinality() const

This member function returns the cardinality of the tupleset.

public IloIntTupleSetI * getImpl() const

This member function returns a pointer to the implementation object of the invoking extractable object. This
member function is useful when you need to be sure that you are using the same copy of the invoking extractable
object in more than one situation.

public IloBool isIn(const IloIntArray tuple) const

This member function returns IloTrue if tuple belongs to the invoking set. Otherwise, it returns IloFalse.
Concert Technology will throw an exception if the size of the array is not equal to the arity of the invoking set.

public IloBool remove(const IloIntArray tuple) const

This member function removes tuple from the invoking set in a model. You may use this member function to
remove tuples from the invoking set in a model; you may not remove tuples in this way during a search, inside a
constraint, or inside a goal.

524

Class IloIntTupleSetIterator
Definition file: ilconcert/ilotupleset.h

Class of iterators to traverse enumerated values of a tuple-set.
An instance of the class IloIntTupleSetIterator is an iterator that traverses the elements of a finite set of
tuples of enumerated values (instance of IloIntTupleSet).

See Also the classes IlcIntTupleSet in the IBM ILOG CP Optimizer Reference Manual and the IBM ILOG
Solver Reference Manual.

Constructor Summary

public IloIntTupleSetIterator(const IloEnv env, IloIntTupleSet tset)

Method Summary

public IloIntArray operator*() const

Constructors

public IloIntTupleSetIterator(const IloEnv env, IloIntTupleSet tset)

This constructor creates an iterator associated with tSet to traverse its elements.

Methods

public IloIntArray operator*() const

This operator returns the current element, the one to which the invoking iterator points.

525

Class IloIntValueSelector
Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

Solver lets you create value selectors to control the order in which the values in the domain of a constrained
integer variable are tried during the search for a solution.

The class IloIntValueSelector represents value selectors in an IBM® ILOG® Concert Technology model.
The class IlcIntSelect represents value selectors internally in a Solver search.

This class is the handle class of the modeling object that wraps the search object. When search starts,
IloIntValueSelectorI is extracted into an instance of IlcIntSelectI.

See Also: IlcIntSelect, IlcIntSelectI, IloIntValueSelectorI

Constructor Summary

public IloIntValueSelector()

public IloIntValueSelector(IloIntValueSelectorI * impl)

Method Summary

public IloIntValueSelectorI * getImpl() const

public void operator=(const IloIntValueSelector & h)

Constructors

public IloIntValueSelector()

This constructor creates an empty handle. You must initialize it before you use it.

public IloIntValueSelector(IloIntValueSelectorI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IloIntValueSelectorI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public void operator=(const IloIntValueSelector & h)

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

526

527

Class IloIntValueSelectorI
Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This class is the implementation class for IloIntValueSelector.

The class IloIntValueSelectorI is the implementation class for value selectors in an IBM® ILOG® Concert
Technology model. The class IlcIntSelectI is the implementation class for value selectors internally in a
Solver search.

This class is the modeling object that wraps the search object. When search starts, IloIntValueSelectorI is
extracted into an instance of IlcIntSelectI.

To define new selection criteria, you define both a subclass of IloIntValueSelectorI and a subclass of
IlcIntSelectI.

See Also: IlcIntSelect, IlcIntSelectI, IloIntValueSelector

Constructor and Destructor Summary

public IloIntValueSelectorI(IloEnvI *)

public ~IloIntValueSelectorI()

Method Summary

public virtual void display(ostream &) const

public virtual IlcIntSelect extract(const IloSolver solver) const

public IloEnvI * getEnv() const

public virtual IloIntValueSelectorI * makeClone(IloEnvI * env) const

Constructors and Destructors

public IloIntValueSelectorI(IloEnvI *)

This constructor creates an instance of the class IloIntValueSelectorI. This constructor should not be
called directly as this class is an abstract class. This constructor is called automatically in the constructor of its
subclasses.

public ~IloIntValueSelectorI()

This destructor is called automatically by the destructor of its subclasses. It frees memory used by the invoking
object.

Methods

public virtual void display(ostream &) const

This member function prints the invoking value selector on an output stream.

528

public virtual IlcIntSelect extract(const IloSolver solver) const

In general terms, in Concert Technology, the objects of a model must be extracted for an algorithm (an instance
of one of the subclasses of IloAlgorithm, such as IloSolver). This member function returns the internal
value selector extracted for solver from the invoking value selector of a model.

public IloEnvI * getEnv() const

This member function returns the environment to which the invoking value selector belongs. A value selector
belongs to exactly one environment; different environments cannot share the same value selector.

public virtual IloIntValueSelectorI * makeClone(IloEnvI * env) const

This member function is called internally to duplicate the current value selector.

529

Class IloIntVar
Definition file: ilconcert/iloexpression.h

An instance of this class represents a constrained integer variable in a Concert Technology model.
An instance of this class represents a constrained integer variable in a Concert Technology model. If you are
looking for a class of numeric variables that may assume integer values and may be relaxed to assume
floating-point values, then consider the class IloNumVar. If you are looking for a class of binary decision
variables (that is, variables that assume only the values 0 (zero) or 1 (one), then consider the class
IloBoolVar.

Bounds of an Integer Variable

The lower and upper bound of an instance of this class is an integer.

If you are looking for a symbol to specify an infinite bound, that is, no lower or upper bound, consider IloIntMin
or IloIntMax.

What Is Extracted

An instance of IloIntVar is extracted by IloCP or IloSolver as an instance of IlcIntVar.

An instance of IloIntVar is extracted by IloCplex as a column representing a numeric variable of type Int
with bounds as specified by IloIntVar.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

Note

When numeric bounds are given to an integer variable (an instance of IloIntVar or IloNumVar with Type
= Int) in the constructors or via a modifier (such as setUB, setLB, setBounds), they are inwardly rounded
to an integer value. LB is rounded down and UB is rounded up.

See Also: IloBoolVar, IloNumVar

Constructor Summary

public IloIntVar()

public IloIntVar(IloNumVarI * impl)

public IloIntVar(IloEnv env, IloInt vmin=0, IloInt vmax=IloIntMax, const char *
name=0)

public IloIntVar(const IloAddNumVar & var, IloInt lowerBound=0, IloInt
upperBound=IloIntMax, const char * name=0)

public IloIntVar(const IloEnv env, const IloIntArray values, const char * name=0)

public IloIntVar(const IloAddNumVar & var, const IloIntArray values, const char *
name=0)

530

public IloIntVar(const IloNumVar var)

public IloIntVar(const IloIntRange coll, const char * name=0)

Method Summary

public IloNumVarI * getImpl() const

public IloNum getLB() const

public IloInt getMax() const

public IloInt getMin() const

public IloNum getUB() const

public void setBounds(IloInt lb, IloInt ub) const

public void setLB(IloNum min) const

public void setMax(IloInt max) const

public void setMin(IloInt min) const

public void setPossibleValues(const IloIntArray values) const

public void setUB(IloNum max) const

Inherited Methods from IloIntExprArg

getImpl

Inherited Methods from IloNumExprArg

getImpl

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

Constructors

public IloIntVar()

This constructor creates an empty handle. You must initialize it before you use it.

public IloIntVar(IloNumVarI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IloIntVar(IloEnv env, IloInt vmin=0, IloInt vmax=IloIntMax, const char *
name=0)

This constructor creates an instance of IloIntVar like this:

IloNumVar(env, vmin, vmax, ILOINT, name);

public IloIntVar(const IloAddNumVar & var, IloInt lowerBound=0, IloInt
upperBound=IloIntMax, const char * name=0)

This constructor creates an instance of IloIntVar like this:

531

IloNumVar(column, lowerBound, upperBound, ILOINT, name);

public IloIntVar(const IloEnv env, const IloIntArray values, const char * name=0)

This constructor calls upon its corresponding IloNumVar constructor.

public IloIntVar(const IloAddNumVar & var, const IloIntArray values, const char *
name=0)

This constructor calls upon its corresponding IloNumVar constructor.

public IloIntVar(const IloNumVar var)

This constructor creates a new handle on var if it is of type ILOINT. Otherwise, an exception is thrown.

public IloIntVar(const IloIntRange coll, const char * name=0)

This constructor creates an instance of IloIntVar from the given collection

This constructor creates an instance of IloIntVar from the given collection.

Methods

public IloNumVarI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloNum getLB() const

This member function returns the lower bound of the invoking variable.

public IloInt getMax() const

This member function returns the maximal value of the invoking variable.

public IloInt getMin() const

This member function returns the minimal value of the invoking variable.

public IloNum getUB() const

This member function returns the upper bound of the invoking variable.

public void setBounds(IloInt lb, IloInt ub) const

532

This member function sets lb as the lower bound and ub as the upper bound of the invoking numeric variable.

Note

The member function setBounds notifies Concert Technology algorithms about the change of bounds in this
numeric variable.

public void setLB(IloNum min) const

This member function sets min as the lower bound of the invoking variable.

Note

The member function setLB notifies Concert Technology algorithms about the change of bounds in this
numeric variable.

public void setMax(IloInt max) const

This member function returns the minimal value of the invoking variable to max.

Note

The member function setMax notifies Concert Technology algorithms about the change of bounds in this
numeric variable.

public void setMin(IloInt min) const

This member function returns the minimal value of the invoking variable to min.

Note

The member function setMin notifies Concert Technology algorithms about the change of bounds in this
numeric variable.

public void setPossibleValues(const IloIntArray values) const

This member function sets values as the domain of the invoking integer variable.

Note

The member function setPossibleValues notifies Concert Technology algorithms about the change of
bounds in this numeric variable.

public void setUB(IloNum max) const

This member function sets max as the upper bound of the invoking variable.

Note

533

The member function setUB notifies Concert Technology algorithms about the change of bounds in this
numeric variable.

534

Class IloIntVarArray
Definition file: ilconcert/iloexpression.h

The array class of the integer constrained variables class.
For each basic type, Concert Technology defines a corresponding array class. IloIntVarArray is the array
class of the integer variable class for a model. It is a handle class.

Instances of IloIntVarArray are extensible.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

Elements of the array are handles to integer variables. The lower and upper bounds of an integer variable must
be an integer. See the documentation of IloIntVar for details about bounds of the elements of an array of this
class.

See Also: IloIntVar

Constructor Summary

public IloIntVarArray(IloDefaultArrayI * i=0)

public IloIntVarArray(const IloEnv env, IloInt n=0)

public IloIntVarArray(const IloEnv env, const IloIntArray lb, const IloIntArray
ub)

public IloIntVarArray(const IloEnv env, IloInt lb, const IloIntArray ub)

public IloIntVarArray(const IloEnv env, const IloIntArray lb, IloInt ub)

public IloIntVarArray(const IloEnv env, IloInt n, IloInt lb, IloInt ub)

public IloIntVarArray(const IloEnv env, const IloNumColumnArray columnarray)

public IloIntVarArray(const IloEnv env, const IloNumColumnArray columnarray, const
IloNumArray lb, const IloNumArray ub)

Method Summary

public void add(IloInt more, const IloIntVar x)

public void add(const IloIntVar x)

public void add(const IloIntVarArray x)

public void endElements()

public IloIntVar operator[](IloInt i) const

public IloIntVar & operator[](IloInt i)

public IloIntExprArg operator[](IloIntExprArg anIntegerExpr) const

public IloNumVarArray toNumVarArray() const

535

Inherited Methods from IloIntExprArray

add, add, add, endElements, operator[], operator[], operator[]

Inherited Methods from IloExtractableArray

add, add, add, endElements, setNames

Constructors

public IloIntVarArray(IloDefaultArrayI * i=0)

This constructor creates an empty extensible array of integer variables.

public IloIntVarArray(const IloEnv env, IloInt n=0)

This constructor creates an extensible array of n integer variables.

public IloIntVarArray(const IloEnv env, const IloIntArray lb, const IloIntArray ub)

This constructor creates an extensible array of integer variables with lower and upper bounds as specified.

public IloIntVarArray(const IloEnv env, IloInt lb, const IloIntArray ub)

This constructor creates an extensible array of integer variables with a lower bound and an array of upper
bounds as specified.

public IloIntVarArray(const IloEnv env, const IloIntArray lb, IloInt ub)

This constructor creates an extensible array of integer variables with an array of lower bounds and an upper
bound as specified.

public IloIntVarArray(const IloEnv env, IloInt n, IloInt lb, IloInt ub)

This constructor creates an extensible array of n integer variables, with a lower and an upper bound as specified.

public IloIntVarArray(const IloEnv env, const IloNumColumnArray columnarray)

This constructor creates an extensible array of integer variables from a column array.

public IloIntVarArray(const IloEnv env, const IloNumColumnArray columnarray, const
IloNumArray lb, const IloNumArray ub)

This constructor creates an extensible array of integer variables with lower and upper bounds as specified from a
column array.

536

Methods

public void add(IloInt more, const IloIntVar x)

This member function appends x to the invoking array of integer variables; it appends x more times.

public void add(const IloIntVar x)

This member function appends the value x to the invoking array.

public void add(const IloIntVarArray x)

This member function appends the variables in the array x to the invoking array.

public void endElements()

This member function calls IloExtractable::end for each of the elements in the invoking array. This deletes
all the extractables identified by the array, leaving the handles in the array intact. This member function is the
recommended way to delete the elements of an array.

public IloIntVar operator[](IloInt i) const

This operator returns a reference to the object located in the invoking array at the position specified by the index
i. On const arrays, Concert Technology uses the const operator

 IloIntVar operator[] (IloInt i) const;

public IloIntVar & operator[](IloInt i)

This operator returns a reference to the extractable object located in the invoking array at the position specified
by the index i.

public IloIntExprArg operator[](IloIntExprArg anIntegerExpr) const

This subscripting operator returns an expression argument for use in a constraint or expression. For clarity, let's
call A the invoking array. When anIntegerExpr is bound to the value i, the domain of the expression is the
domain of A[i]. More generally, the domain of the expression is the union of the domains of the expressions
A[i] where the i are in the domain of anIntegerExpr.

This operator is also known as an element expression.

public IloNumVarArray toNumVarArray() const

This member function copies the invoking array into a new IloNumVarArray.

537

Class IloInverse
Definition file: ilconcert/ilomodel.h

For constraint programming: constrains elements of one array to be inverses of another.
An instance of IloInverse represents an inverse constraint. Informally, we say that an inverse constraint works
on two arrays, say, f and invf, so that an element of f composed with the corresponding element of invf
produces the index of that element.

In formal terms, if the length of the array f is n, and the length of the array invf is m, then the inverse constraint
makes sure that:

for all i in the interval [0, n-1], if f[i] is in [0, m-1] then invf[f[i]] == i;•
for all j in the interval [0, m-1], if invf[j] is in [0, n-1] then f[invf[j]] == j.•

In order for a constraint to take effect, you must add it to a model with the template IloAdd or the member
function IloModel::add and extract the model for an algorithm with the member function
IloAlgorithm::extract.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

See Also: IloConstraint

Constructor Summary

public IloInverse()

public IloInverse(IloInverseI * impl)

public IloInverse(const IloEnv env, const IloIntVarArray f, const IloIntVarArray
invf, const char * name=0)

Method Summary

public IloInverseI * getImpl() const

Inherited Methods from IloConstraint

getImpl

Inherited Methods from IloIntExprArg

getImpl

Inherited Methods from IloNumExprArg

getImpl

Inherited Methods from IloExtractable

538

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

Constructors

public IloInverse()

This constructor creates an empty handle. You must initialize it before you use it.

public IloInverse(IloInverseI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IloInverse(const IloEnv env, const IloIntVarArray f, const IloIntVarArray
invf, const char * name=0)

This constructor creates an inverse constraint that if the length of the array f is n, and the length of the array
invf is m, then this function returns a constraint that insures that:

for all i in the interval [0, n-1], if f[i] is in [0, m-1] then invf[f[i]] == i;•
for all j in the interval [0, m-1], if invf[j] is in [0, n-1] then f[invf[j]] == j.•

Methods

public IloInverseI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

539

Class IloIterator<>
Definition file: ilconcert/iloiterator.h

A template to create iterators for a class of extractable objects.
This template creates iterators for a given class of extractable objects (denoted by E in the template) within an
instance of IloEnv.

By default, an iterator created in this way will traverse instances of E and of its subclasses. You can prevent the
iterator from traversing instances of subclasses of E (that is, you can limit its effect) by setting the argument
withSubClasses to IloFalse in the constructor of the iterator.

While an iterator created in this way is working, you must not create nor destroy any extractable objects in the
instance of IloEnv where it is working. In other words, an iterator created in this way works only in a stable
environment.

An iterator created with this template differs from an instance of IloModel::Iterator. An instance of
IloModel::Iterator works only on extractable objects (instances of IloExtractable or its subclasses)
that have explicitly been added to a model (an instance of IloModel). In contrast, an iterator created with this
template will work on all extractable objects within a given environment, whether or not they have been explicitly
added to a model.

See Also: IloEnv, IloExtractable, IloModel, IloModel::Iterator

Constructor Summary

public IloIterator(const IloEnv env, IloBool withSubClasses=IloTrue)

Method Summary

public IloBool ok()

public void operator++()

Constructors

public IloIterator(const IloEnv env, IloBool withSubClasses=IloTrue)

This template constructor creates an iterator for instances of the class E. When the argument withSubClasses
is IloTrue (its default value), the iterator will also work on instances of the subclasses of E. When
withSubClasses is IloFalse, the iterator works only on instances of E.

Example

Here is an example of an iterator created by this template for the class IloNumVar.

 typedef IloIterator<IloNumVar> IloNumVarIterator;

 void displayAllVars(IloEnv env) {
 for (IloNumVarIterator it(env); it.ok(); ++it) {
 IloNumVar ext = *it;
 cout << ext;
 }
 }

540

Methods

public IloBool ok()

This member function returns IloTrue if there is a current element and the iterator points to it. Otherwise, it
returns IloFalse.

public void operator++()

This operator advances the iterator to point to the next value in the iteration.

541

Class IloLargeNHoodI
Definition file: ilsolver/iimlns.h
Include file: <ilsolver/iimlns.h>

Special neighborhood implementation for Large Neighborhood Search.
This class is a special sub-class of IloNHoodI which is designed to ease the writing of Large Neighborhood
Search methods (see the Solver User's Manual). Large Neighborhood Search is a local search technique
which relies on constraint programming to explore a neighborhood which is defined by allowing a subset of the
decision variables to change their value from that taken in the current solution.

Traditional Solver goals are used to perform the exploration of the neighborhood, but the IloNHoodI class is
used to define exactly what variables may change their value. This variable subset is usually referred to as the
solution fragment. Technically, the way in which this fragment is created is to return a solution delta
(IloNHoodI::define) from IloNHoodI::define which includes all the variables of the fragment, but with a
non-restorable status (see IloSolution::setRestorable). This will induce the Solver's local search to
produce a neighbor which has all the variables in the fragment in their uninstantiated state, their domains
reduced only by the propagation of problem constraints. That is, it is as if the variables mentioned in the delta
had their current assignments relaxed. At this point a completion goal can explore all (or some) combinations of
values for these variables, in an attempt to look for a better solution.

This class makes it possible to define deltas as described above without worrying about restore status and so on.
One of the easiest ways to subclass this class is to use the macro ILODEFINELNSFRAGMENT0 (or one of its
variants) which is ideal for most uses. Direct subclassing is seldom necessary, except for more advanced uses.
Whether you use ILODEFINELNSFRAGMENT0, or directly subclass IloLargeNHoodI, the only thing you really
need to worry about is that you call the IloLargeNHoodI::addToFragment member function for each
variable you wish to be able to change its value.

You can operate this class in essentially two modes. The first is the simplest and is used by
ILODEFINELNSFRAGMENT0. This mode supposes that the neighborhood has only one neighbor (which might be
termed a meta-neighbor as it creates the possibility to move to a large number of distinct assignments) and the
solution fragment is defined by the member function IloLargeNHoodI::defineFragment. Diversity of search
is ensured by generating the fragment in a randomized way. In this case,
IloLargeNHoodI::defineFragment is the only function that you need define in the subclass.

In the second mode, the neighborhood can have an arbitrary number of neighbors. Here, diversity is assured via
the number of neighbors (as for traditional neighborhoods), and so randomization is not essential (but also not
forbidden). In this second case, two member functions need to be redefined: IloLargeNHoodI::getSize,
which delivers the number of neighbors, and IloLargeNHoodI::defineFragmentAtIndex which defines the
fragment for a particular index given. As an example of this second kind of neighborhood, consider fragments
defined over an array of variables x of size n. If there is some interest in relaxing a contiguous portion of the
variables, you might consider as fragment i the variables of indices i-k to i+k (ignoring boundary conditions for
now) where k is a non-negative integer.

Note

This class has special versions of the member functions IloLargeNHoodI::start and
IloLargeNHoodI::define. If you must overload one or both of these, you must ensure that you call
IloLargeNHoodI::start or IloLargeNHoodI::define as appropriate in your sub-class.

See Also: ILODEFINELNSFRAGMENT0, IloNHoodI, IloSingleMove, IlcRandom

Constructor and Destructor Summary

public IloLargeNHoodI(IloEnv env, const char * name=0)

542

Creates a neighborhood for Large Neighborhood Search.

Method Summary

public void addToFragment(IloSolver solver, IloAnySetVar var)

public void addToFragment(IloSolver solver, IloIntSetVar var)

public void addToFragment(IloSolver solver, IloAnyVar var)

public void addToFragment(IloSolver solver, IloNumVar var)

public void addToFragment(IloSolver solver, IloIntVar var)

Adds a variable to the fragment being defined.

public IloSolution define(IloSolver solver, IloInt index)

Gets a meta-neighbor from the large neighborhood.

public virtual void defineFragment(IloSolver solver)

Defines a Large Neighborhood Search fragment.

public virtual void defineFragmentAtIndex(IloSolver solver, IloInt index)

Defines a Large Neighborhood Search fragment.

public IloSolution getCurrentSolution() const

Returns the current solution passed to IloLargeNHoodI::start.

public IloInt getSize(IloSolver solver) const

Delivers the size (number of neighbors) of the neighborhood.

public IloBool isInFragment(IloSolver solver, IloExtractable var) const

Indicates if a particular variable is in the fragment.

public void start(IloSolver solver, IloSolution solution)

Starts the large neighborhood.

Inherited Methods from IloNHoodI

define, display, getEnv, getLocalIndex, getLocalNHood, getName, getObject,
getSize, notify, notifyOther, operator delete, reset, setName, setObject, start

Constructors and Destructors

public IloLargeNHoodI(IloEnv env, const char * name=0)

Creates a neighborhood for Large Neighborhood Search.

This constructor creates an instance of a neighborhood to be used with Large Neighborhood Search on an
environment, using env as an allocation environment. The optional name name becomes the name of the newly
created neighborhood.

Methods

public void addToFragment(IloSolver solver, IloIntVar var)
public void addToFragment(IloSolver solver, IloAnySetVar var)
public void addToFragment(IloSolver solver, IloIntSetVar var)
public void addToFragment(IloSolver solver, IloAnyVar var)

543

public void addToFragment(IloSolver solver, IloNumVar var)

Adds a variable to the fragment being defined.

This member function should be called from either IloLargeNHoodI::defineFragment or
IloLargeNHoodI::defineFragmentAtIndex (depending on which one is overloaded) to add a variable to
the fragment currently being defined. You should pass as solver the instance of the Solver received in
IloLargeNHoodI::defineFragment or IloLargeNHoodI::defineFragmentAtIndex. var is the
variable to add to the fragment. If var is already in the fragment, then an exception (an instance of
IloException) is raised. The member function IloLargeNHoodI::isInFragment can be used to
determine if a variable is already in the fragment.

public IloSolution define(IloSolver solver, IloInt index)

Gets a meta-neighbor from the large neighborhood.

Normally, you need not overload this member function. It performs some setup tasks, calls
IloLargeNHoodI::defineFragmentAtIndex, and afterwards builds the solution delta from a record of the
calls that were made to IloLargeNHoodI::addToFragment. It is strongly recommended that you do not
overload this function. If overloading is necessary, you must call IloLargeNHoodI::define(solver,
index) and return the defined solution delta.

public virtual void defineFragment(IloSolver solver)

Defines a Large Neighborhood Search fragment.

When you wish to create a large neighborhood which will use a randomized procedure to generate diverse
fragments, this is the member function you should overload. In this member function, you make a call to
IloLargeNHoodI::addToFragment for each variable you wish to add to the fragment. The default behavior of
this function is to raise an exception (an instance of IloException) indicating that a fragment-defining function
must be overloaded.

See Also: ILODEFINELNSFRAGMENT0

public virtual void defineFragmentAtIndex(IloSolver solver, IloInt index)

Defines a Large Neighborhood Search fragment.

When you wish to create a large neighborhood which will create a distinct set of fragments, this is the member
function (together with IloLargeNHoodI::getSize) that you should overload. The default behavior is to call
IloLargeNHoodI::defineFragment, ignoring the index index.

public IloSolution getCurrentSolution() const

Returns the current solution passed to IloLargeNHoodI::start.

This member function returns the current solution from which fragments are to be defined. This solution was
passed to the IloLargeNHoodI::start function to begin looking for neighbors.

See Also: IloNHoodI::start

public IloInt getSize(IloSolver solver) const

Delivers the size (number of neighbors) of the neighborhood.

This member function should be overloaded if you wish to define a Large Neighborhood Search with more than a
single meta-neighbor. This function should return the number of meta-neighbors (ways of defining a fragment).

544

When this function is overloaded, you should also overload the
IloLargeNHoodI::defineFragmentAtIndex to return the correct fragment for any given index.

public IloBool isInFragment(IloSolver solver, IloExtractable var) const

Indicates if a particular variable is in the fragment.

This member function returns IloTrue if and only if the variable var is in the fragment. Otherwise, it returns
IloFalse. The parameter solver is the instance of IloSolver driving the neighborhood.

public void start(IloSolver solver, IloSolution solution)

Starts the large neighborhood.

Normally, you need not overload this member function. It performs some housekeeping tasks, and keeps
solution locally so that you can access it via IloLargeNHoodI::getCurrentSolution. If you do need to
overload this function, ensure that you call IloLargeNHoodI::start(solver, solution) before any other
code in your function.

545

Class IloLexicographicComparator<>
Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

This class composes comparators lexicographically.
A lexicographic comparator is a composite comparator, CC, made of an ordered set O, of comparators ci. The
result of comparing two objects o1 and o2 with CC, denoted CC(o1, o2), is as follows:

 CC(o1, o2) = 0
 if for all i, ci(o1, o2) = 0, ci element 0

 CC(o1, o2) = ci(o1, o2)
 if ci(o1, o2) != 0 AND
 for all j < i cj(o1, o2) = 0,
 ci, cj element 0

The function IloCompositeComparator::add is available to build a comparator by addition rather than by
specifying all comparators at construction time.

For more information, see Selectors.

See Also: IloComposeLexical

Constructor Summary

public IloLexicographicComparator(IloMemoryManager manager)

Initializes an empty lexicographic comparator.

Inherited Methods from IloCompositeComparator

add

Inherited Methods from IloComparator

isBetterOrEqual, isBetterThan, isEqual, isWorseOrEqual, isWorseThan, makeInverse,
operator()

Constructors

public IloLexicographicComparator(IloMemoryManager manager)

Initializes an empty lexicographic comparator.

This constructor intializes an empty lexicographic comparator allocated on the memory manager manager.

546

Class IloCsvReader::IloLineNotFoundException
Definition file: ilconcert/ilocsvreader.h

Exception thrown for unfound line.
This exception is thrown by the following member functions if the line is not found.

IloCsvTableReader::getLineByKey•
IloCsvTableReader::getLineByNumber•
IloCsvReader::getLineByKey•
IloCsvReader::getLineByNumber•

547

Class IloListener
Definition file: ilsolver/iimevent.h
Include file: <ilsolver/iim.h>

The listener class.
Listeners are IloEvent handlers. You can easily define new listeners by using the ILOIIMLISTENER0 macro
or one of its variants.

See Also: ILOIIMLISTENER0

Method Summary

public void end()

public IloEnv getEnv() const

Methods

public void end()

brief Destroys the object.

This function deletes the object from the environment on which it was allocated and sets the implementation
pointer to zero.

public IloEnv getEnv() const

brief Returns the allocation environment.

This function returns the environment on which the invoking object was allocated.

548

Class IloMetaHeuristic
Definition file: ilsolver/iimmeta.h
Include file: <ilsolver/iimls.h>

This handle class comprises methods that describe a metaheuristic that can be used within local search
procedures. The metaheuristic defines a filter for the set of possible moves that can be taken, and thus provides
search guidance.

The exact choice of which legal move is to be taken is performed by search selectors (objects of type
IloSearchSelector), not by the IloMetaHeuristic class.

Protocol

When used in a local search framework, metaheuristics should be called according to the following protocol:

IloSingleMove adheres to this protocol.

See Also: IloApplyMetaHeuristic, IloMetaHeuristicI, IloNotify, IloScanDeltas, IloScanNHood, IloSingleMove,
IloStart, IloTest

Constructor Summary

public IloMetaHeuristic()

public IloMetaHeuristic(IloMetaHeuristicI * impl)

Method Summary

public IloBool complete()

public void end(IloBool deep=IloTrue)

public IloSolutionDeltaCheck getDeltaCheck() const

549

public IloEnv getEnv()

public IloMetaHeuristicI * getImpl() const

public const char * getName() const

public IloAny getObject() const

public IloBool isFeasible(IloSolver solver, IloSolution delta)
const

public void notify(IloSolver solver, IloSolution delta)

public void operator=(const IloMetaHeuristic & mh)

public void reset()

public void setName(const char * name) const

public void setObject(IloAny obj) const

public IloBool start(IloSolver solver, IloSolution solution)

public IloBool test(IloSolver solver, IloSolution delta)

Constructors

public IloMetaHeuristic()

This constructor creates a metaheuristic whose handle pointer is null. This object must be assigned before it can
be used.

public IloMetaHeuristic(IloMetaHeuristicI * impl)

This constructor creates a handle object (an instance of IloMetaHeuristic) from a pointer to an
implementation object (an instance of IloMetaHeuristicI).

Methods

public IloBool complete()

This member function is normally called when the search has stagnated (typically when no neighborhood moves
can be legally taken). This allows the metaheuristic to perform some action to allow the search to continue, if
desired. If the return value is IloTrue, the metaheuristic wants to end local search at this point.

public void end(IloBool deep=IloTrue)

This member function calls operator delete from the class IloMetaHeuristicI on the implementation
object associated with the invoking handle and sets the implementation pointer to 0. If the invoking metaheuristic
has any children (for instance, if it were constructed using a + operator) then these too will be likewise deleted. If
however, deep has the value IloFalse, then the children are “disconnected” from the parent before delete is
called on the implementation pointer to ensure that the children of the invoking metaheuristic are not destroyed.

public IloSolutionDeltaCheck getDeltaCheck() const

Meta-heuristics are capable of performing “prefiltering” of solution deltas to be applied to a solution.This member
function returns an object that performs the pre-filtering for the metaheuristic. This object may be passed to

550

IloScanNHood.

public IloEnv getEnv()

This member function returns the environment associated with the implementation class.

public IloMetaHeuristicI * getImpl() const

This member function returns the implementation object of the invoking metaheuristic (a handle). You can use
this member function to check whether a metaheuristic is empty.

public const char * getName() const

This member function returns a character string specifying the name of the invoking object (if there is one).

public IloAny getObject() const

This member function returns the object associated with the invoking object (if there is one). Normally, an
associated object contains user data pertinent to the invoking object.

public IloBool isFeasible(IloSolver solver, IloSolution delta) const

This member function is called by the ok() method of the object returned by
IloMetaHeuristic::getDeltaCheck. That object is used in local search procedures to “pre-filter” some
deltas before they are applied to the current solution.

The argument solver indicates the solver that is currently performing a local search using the invoking
metaheuristic.

The user can define this member function to perform the pre-filtering desired. The default behavior is to return
IloTrue, indicating that delta is feasible.

public void notify(IloSolver solver, IloSolution delta)

Call this member function when a neighborhood move is to be taken by local search. At that point, all solution
variables should be instantiated, but not yet saved, in the current solution, thus allowing differences to be
calculated. This can be useful for updating metaheuristic data structures.

The argument solver indicates the solver that is currently performing a local search using the invoking
metaheuristic.

The argument delta holds the solution delta of the move to be taken. This can be gleaned from the reference
parameter atDelta passed to IloScanDeltas or IloScanNHood, and used in IloNotify. While this
parameter can be used in custom metaheuristics, an empty handle can be passed to all of Solver's pre-defined
metaheuristics, as it is not required by them.

public void operator=(const IloMetaHeuristic & mh)

551

This assignment operator copies mh into the invoking metaheuristic by assigning an address to the handle
pointer of the invoking object. That address is the location of the implementation object of the argument mh.

public void reset()

This member function resets the metaheuristic to the state in which it was first created. When metaheuristics
have state, you will typically want to call this member function between two different local searches if the
metaheuristic is to be reused. For metaheuristics which have no state, calling this member function has no effect.
(All of Solver's metaheuristics have state except IloImprove.)

public void setName(const char * name) const

This member function assigns name to the invoking object.

public void setObject(IloAny obj) const

This member function associates obj with the invoking object. The member function getObject accesses this
associated object afterward. Normally, obj contains user data pertinent to the invoking object.

public IloBool start(IloSolver solver, IloSolution solution)

Call this member function when a local search begins to search for a new move to take. The argument solver
indicates the solver that is currently performing a local search using the invoking metaheuristic. The argument
solution is the current solution. If it is illegal for the metaheuristic to start from this point, this member function
returns IloFalse or causes a failure. Otherwise it returns IloTrue.

public IloBool test(IloSolver solver, IloSolution delta)

When all solution variables have been instantiated in local search, call this member function to determine
whether the metaheuristic should allow or reject the solution. If the solution is rejected, this member function
returns IloFalse or causes a failure. Otherwise it returns IloTrue.

The argument solver indicates the solver that is currently performing a local search using the invoking
metaheuristic.

The argument delta holds the solution delta to test. This can be gleaned from the reference parameter
atDelta passed to IloScanDeltas or IloScanNHood, and used in IloTest. While this parameter can be
used in custom metaheuristics, an empty handle can be passed to all of Solver's pre-defined metaheuristics, as it
is not required by them.

552

Class IloMetaHeuristicI
Definition file: ilsolver/iimmeta.h
Include file: <ilsolver/iimls.h>

This implementation class comprises methods that allow you to define your own a metaheuristic which can then
be used within local search procedures. When you define a metaheuristic, you define a filtering of the set of
possible moves that can be taken, and thus can provide search guidance.

The member functions IloMetaHeuristicI::isFeasible, IloMetaHeuristicI::notify,
IloMetaHeuristicI::start, and IloMetaHeuristicI::test are called within search, and the solver
calling these is passed as the first parameter of these member functions.

See Also: IloApplyMetaHeuristic, IloMetaHeuristic, IloNotify, IloScanDeltas, IloScanNHood, IloSingleMove,
IloStart, IloTest

Constructor and Destructor Summary

public IloMetaHeuristicI(IloEnv env, const char * name=0)

public ~IloMetaHeuristicI()

Method Summary

public virtual IloBool complete()

public IloSolutionDeltaCheck getDeltaCheck() const

public char * getName() const

public IloAny getObject()

public virtual IloBool isFeasible(IloSolver solver, IloSolution delta)
const

public virtual void notify(IloSolver solver, IloSolution delta)

public void operator delete(void * p, size_t size)

public virtual void reset()

public void setName(const char * name)

public void setObject(IloAny object)

public virtual IloBool start(IloSolver solver, IloSolution solution)

public virtual IloBool test(IloSolver solver, IloSolution delta)

Constructors and Destructors

public IloMetaHeuristicI(IloEnv env, const char * name=0)

This constructor creates an instance of IloMetaHeuristicI associated with the environment env. The
optional parameter name, if supplied, becomes the name of the metaheuristic.

public ~IloMetaHeuristicI()

Since IloMetaHeuristicI is an abstract class that can be sub-classed, a virtual destructor is provided.

553

Methods

public virtual IloBool complete()

This member should be called by local search procedures when the search has stagnated (typically when no
neighborhood moves can be legally taken). This allows the metaheuristic to perform some action to allow the
search to continue, if desired. If the return value is IloTrue (the default behavior), the metaheuristic wants to
end local search at this point.

public IloSolutionDeltaCheck getDeltaCheck() const

Metaheuristics are capable of performing "pre-filtering" of solution deltas to be applied to a solution. This member
function returns an object that performs the pre-filtering for the metaheuristic.

The implementation of the IloSolutionDeltaCheckI::ok method for this object is to call the
IloMetaHeuristicI::isFeasible method in the invoking object with the proposed delta. Thus, the behavior
of the delta check here is defined by the behavior of the IloMetaHeuristicI::isFeasible method.

public char * getName() const

This member function returns the name specified in the constructor of the object, or specified in the last call to
IloMetaHeuristicI::setName.

public IloAny getObject()

This member function returns the object associated with the invoking neighborhood through the
IloMetaHeuristicI::setObject method.

public virtual IloBool isFeasible(IloSolver solver, IloSolution delta) const

This member function is called by the ok() method of the object returned by
IloMetaHeuristic::getDeltaCheck. That object is used in local search procedures to “pre-filter” some
deltas before they are applied to the current solution.

The argument solver indicates the solver that is currently performing a local search using the invoking
metaheuristic.

The user can define this member function to perform the pre-filtering desired. The default behavior is to return
IloTrue to that the delta is feasible.

public virtual void notify(IloSolver solver, IloSolution delta)

Call this member function when a neighborhood move is to be taken by local search. At that point, all solution
variables should be instantiated, but not yet saved, in the current solution, thus allowing differences to be
calculated. This can be useful for updating metaheuristic data structures. The default behavior is to do nothing.

The argument solver indicates the solver that is currently performing a local search using the invoking
metaheuristic.

554

The argument delta holds the solution delta of the move to be taken. This information is not absolutely
necessary, as variable changes can be worked out from an examination of the variables themselves. Thus,
delta may be an empty handle, for example when this method is called from the IloNotify goal without the
delta parameter. However, when IloSingleMove is used, delta always represents the delta of the move to
be taken.

If delta is not empty, the information it contains can be used to accelerate the notification process for some
metaheuristics or to hold additional information on the move.

public void operator delete(void * p, size_t size)

This operator deletes the memory for the metaheuristic pointed to by p as if its memory was allocated using the
environment handed to the metaheuristic when it was created.

If you want to allocate your metaheuristics on a different heap when subclassing, you should redefine this
operator in the subclass to perform the delete operation appropriate to your heap.

public virtual void reset()

You should define this member function to reset the metaheuristic to the state in which it was first created, unless
your metaheuristic does not have state which it carries from move to move. (All Solver metaheuristics have state
except IloImprove.)

public void setName(const char * name)

This member function sets the name of the invoking object to a copy of name.

public void setObject(IloAny object)

This member function associates object object with the invoking metaheuristic.

public virtual IloBool start(IloSolver solver, IloSolution solution)

This member function should be called when local search begins to search for a new move to take. The
argument solver indicates the solver that is currently performing a local search using the invoking
metaheuristic. The argument solution is the current solution. If it is illegal for the metaheuristic to start from this
point, this member function returns IloFalse or causes a failure. Otherwise it returns IloTrue.

public virtual IloBool test(IloSolver solver, IloSolution delta)

This member function is the principal way in which the metaheuristic guides search by filtering neighbors.

This member function is called when all solution variables have been instantiated in local search, to determine
whether the metaheuristic should allow or reject the solution. If the solution is rejected, this member function
returns IloFalse or causes a failure. Otherwise it returns IloTrue.

The argument solver indicates the solver that is currently performing a local search using the invoking
metaheuristic.

555

The argument delta holds the solution delta to test. This information is not absolutely necessary, as variable
changes can be worked out from an examination of the variables themselves. Thus, delta may be an empty
handle, for example when this method is called from the IloTest goal without the delta parameter. However,
when IloSingleMove is called, delta always represents the delta to be tested.

If delta is not empty, the information it contains can be used to accelerate the notification process for some
metaheuristics or to hold additional information on the move.

556

Class IloModel
Definition file: ilconcert/ilomodel.h

Class for models.
An instance of this class represents a model. A model consists of the extractable objects such as constraints,
constrained variables, objectives, and possibly other modeling objects, that represent a problem. Concert
Technology extracts information from a model and passes the information in an appropriate form to algorithms
that solve the problem. (For information about extracting objects into algorithms, see the member function
IloAlgorithm::extract and the template IloAdd.)

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

Models and Submodels

With Concert Technology, you may create more than one model in a given environment (an instance of IloEnv).
In fact, you can create submodels. That is, you can add one model to another model within the same
environment.

What Is Extracted from a Model

All the extractable objects (that is, instances of IloExtractable or one of its subclasses) that have been
added to a model (an instance of IloModel) and that have not been removed from it will be extracted when an
algorithm extracts the model. An instance of the nested class IloModel::Iterator accesses those
extractable objects.

See Also: IloEnv, IloExtractable, IloModel::Iterator

Constructor Summary

public IloModel()

public IloModel(IloModelI * impl)

public IloModel(const IloEnv env, const char * name=0)

Method Summary

public const IloExtractableArray & add(const IloExtractableArray & x) const

public IloExtractable add(const IloExtractable x) const

public IloModelI * getImpl() const

public void remove(const IloExtractableArray x) const

public void remove(const IloExtractable x) const

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

Inner Class

IloModel::Iterator Nested class of iterators to traverse the extractable objects in a model.

557

Constructors

public IloModel()

This constructor creates an empty handle. You must initialize it before you use it.

public IloModel(IloModelI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IloModel(const IloEnv env, const char * name=0)

This constructor creates a model. By default, the name of the model is the empty string, but you can attribute a
name to the model at its creation.

Methods

public const IloExtractableArray & add(const IloExtractableArray & x) const

This member function adds the array of extractable objects to the invoking model.

Note

The member function add notifies Concert Technology algorithms about this addition to the model.

public IloExtractable add(const IloExtractable x) const

This member function adds the extractable object to the invoking model.

Note

The member function add notifies Concert Technology algorithms about this addition to the model.

public IloModelI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public void remove(const IloExtractableArray x) const

This member function removes the array of extractable objects from the invoking model.

Note

The member function remove notifies Concert Technology algorithms about this removal from the model.

public void remove(const IloExtractable x) const

This member function removes the extractable object from the invoking model.

558

Note

The member function remove notifies Concert Technology algorithms about this removal from the model.

559

Class IloMultipleEvaluator<,>
Definition file: ilsolver/iimmulti.h
Include file: <ilsolver/iim.h>

An explicit evaluator which can be refreshed from a container class.
This class is a simple extension to the IloExplicitEvaluator class, which allows the explicit evaluator to be
filled with the objects (and their evaluations) found in a container class.

This class is best used when a particular container changes relatively infrequently, but at known times. When this
happens, you can update the evaluator explicitly by asking the evaluator to take evaluations from the container.

This class can be created in two ways. The first way of creating an instance of this class is from a subordinate
evaluator, so that when the update from the container happens, this subordinate evaluator is used to evaluate
each member of the container. In this case, the class is used as a kind of manually refreshed cache to avoid
excessive recomputation. The other way of creating an instance of this class is through the use of the
ILOMULTIPLEEVALUATOR0 macro (or one of its variants), which allows complete freedom in how the
evaluations are derived from the objects in the container class.

See Also: ILOMULTIPLEEVALUATOR0

Constructor Summary

public IloMultipleEvaluator(IloEnv env, IloEvaluator< IloObject > evaluator,
IloVisitor< IloObject, IloContainer > visitor=0)

Builds a multiple evaluator from a subordinate evaluator.

Method Summary

public void update(IloContainer container) const

Updates the evaluations of the invoking evaluator.

Inherited Methods from IloExplicitEvaluator

getEvaluation, getNumberOfEvaluations, hasEvaluation, removeAllEvaluations,
removeEvaluation, setEvaluation

Inherited Methods from IloEvaluator

makeGreaterThanComparator, makeLessThanComparator, operator()

Constructors

public IloMultipleEvaluator(IloEnv env, IloEvaluator< IloObject > evaluator,
IloVisitor< IloObject, IloContainer > visitor=0)

Builds a multiple evaluator from a subordinate evaluator.

This constructor builds a multiple evaluator for an environment env, an evaluator evaluator and an optional
visitor visitor. The resulting evaluator will evaluate its objects using evaluator. The visitor visitor will be

560

used to traverse the containers used used to update the evaluator. If no visitor is specified, a default visitor will be
used if it exists. If no default visitor exists, an exception of type IloException is raised.

Methods

public void update(IloContainer container) const

Updates the evaluations of the invoking evaluator.

This member function updates the evaluations stored in the invoking evaluator for each member of the container
container. The member function has two behaviors depending on how the class was created. However,
common to those two behaviors is the initial removal of all evaluations currently contained in the invoking
evaluator.

If the class was created using the ILOMULTIPLEEVALUATOR0 macro (or one of its variants), the user-defined
method of the macro is called, with container passed as argument. This user-defined method will use calls to
IloExplicitEvaluator::setEvaluation to fill the evaluator.

If the class was created from an evaluator, then the visitor (or the default visitor if none was specified) will be
used to traverse container. For each object visited, its evaluation will be performed by evaluator passed at
construction time, and its evaluation will be stored in the invoking evaluator.

561

Class IloMutexDeadlock
Definition file: ilconcert/ilothread.h

The class of exceptions thrown due to mutex deadlock.
This is the class of exceptions thrown if two or more threads become deadlocked waiting for a mutex owned by
the other(s).

562

Class IloMutexNotOwner
Definition file: ilconcert/ilothread.h

The class of exceptions thrown.
The class of exceptions thrown if a thread attempts to unlock a mutex that it does not own.

563

Class IloMutexProblem
Definition file: ilconcert/ilothread.h

Exception.
The class IloMutexProblem is part of the hierarchy of classes representing exceptions in Concert Technology.
Concert Technology uses instances of this class when an error occurs with respect to a mutex, an instance of
IloFastMutex.

An exception is thrown; it is not allocated in a Concert Technology environment; it is not allocated on the C++
heap. It is not necessary for you as a programmer to delete an exception explicitly. Instead, the system calls the
constructor of the exception to create it, and the system calls the destructor of the exception to delete it.

When exceptions are enabled on a platform that supports C++ exceptions, an instance of IloMutexProblem
makes it possible for Concert Technology to throw an exception in case of error. On platforms that do not support
C++ exceptions, an instance of this class makes it possible for Concert Technology to exit in case of error.

Throwing and Catching Exceptions

Exceptions are thrown by value. They are not allocated on the C++ heap, nor in a Concert Technology
environment. The correct way to catch an exception is to catch a reference to the error (specified by the
ampersand &), like this:

 catch(IloMutexProblem& error);

See Also: IloException, IloFastMutex

Constructor Summary

public IloMutexProblem(const char * msg)

Constructors

public IloMutexProblem(const char * msg)

This constructor creates an instance of IloMutexProblem to represent an exception in case of an error involving a
mutex. This instance is not allocated on C++ heap; it is not allocated in a Concert Technology environment
either.

564

Class IloNeighborIdentifier
Definition file: ilsolver/iimnhood.h
Include file: <ilsolver/local.h>

This class communicates information between instances of local search goals. This class is used by
IloScanNHood and IloScanDeltas to store information about the currently instantiated neighbor. This class
is used by IloTest and IloNotify to find out the details of the currently instantiated neighbor. This
information can be communicated by passing the same instance of IloNeighborIdentifier to such goals in
a composed goal.

An instance of this class is extracted by an instance of IloSolver to an instance of
IlcNeighborIdentifier.

See Also: IloScanNHood, IloScanDeltas, IloSolver, IloTest, IloNotify, IloSingleMove, IlcNeighborIdentifier, IloIIM

Constructor Summary

public IloNeighborIdentifier()

public IloNeighborIdentifier(IloNeighborIdentifierI * impl)

public IloNeighborIdentifier(IloEnv env)

Method Summary

public IloNeighborIdentifierI * getImpl() const

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

Constructors

public IloNeighborIdentifier()

This constructor creates an empty handle. You must initialize it before you use it.

public IloNeighborIdentifier(IloNeighborIdentifierI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IloNeighborIdentifier(IloEnv env)

This constructor creates an instance of IloNeighborIdentifier associated with env.

Methods

public IloNeighborIdentifierI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

565

566

Class IloNHood
Definition file: ilsolver/iimnhood.h
Include file: <ilsolver/iimls.h>

This handle class is used to define neighborhood structures that can be used by local search procedures. The
central idea of the neighborhood is to define a set of solution changes, or deltas, that represent alternative moves
that can be taken.

Protocol

The protocol for driving an object of type IloNHood is as follows:

For more information, see IloSolution in the Concert Technology Reference Manual.

See Also: IloConcatenate, IloNHoodI, IloSample, IloScanDeltas, IloScanNHood

Constructor Summary

public IloNHood()

public IloNHood(IloNHoodI * impl)

public IloNHood(const IloNHood & nhood)

Method Summary

public IloSolution define(IloSolver solver, IloInt index)

public void end(IloBool deep=IloTrue)

public IloEnv getEnv() const

public IloNHoodI * getImpl() const

public IloInt getLocalIndex(IloSolver solver, IloInt index) const

public IloNHood getLocalNHood(IloSolver solver, IloInt index) const

public const char * getName() const

public IloAny getObject() const

567

public IloInt getSize(IloSolver solver) const

public void notify(IloSolver solver, IloInt index) const

public void notifyOther(IloSolver solver, IloSolution delta) const

public void operator=(const IloNHood & nhood)

public void reset()

public void setName(const char * name) const

public void setObject(IloAny obj) const

public void start(IloSolver solver, IloSolution current) const

Constructors

public IloNHood()

This constructor creates a neighborhood whose implementation pointer is 0 (zero). The handle must be assigned
before its methods can be used.

public IloNHood(IloNHoodI * impl)

This constructor creates a handle object (an instance of the class IloNHood) from a pointer to an
implementation object (an instance of the class IloNHoodI).

public IloNHood(const IloNHood & nhood)

This constructor creates a handle object from a reference to a neighborhood. After execution, both the newly
constructed handle object and nhood point to the same implementation object.

Methods

public IloSolution define(IloSolver solver, IloInt index)

This member function returns the change in the current solution to be made when making move index in the
neighborhood. The neighbors are numbered from 0. If an empty handle is returned, no change is defined for this
index.

The argument solver indicates the solver that is scanning the invoking neighborhood. (See IloScanNHood.)

public void end(IloBool deep=IloTrue)

This member function calls delete on the implementation object associated with the invoking handle and sets
the implementation pointer to 0. If the invoking neighborhood has any children (for instance, if it were constructed
using a + operator) then these too will be likewise deleted. If, however, deep has the value IloFalse, then the
children are “disconnected” from the parent before delete is called on the implementation pointer to ensure that
the children of the invoking neighborhood are not destroyed.

public IloEnv getEnv() const

568

This member function returns the environment associated with the implementation class.

public IloNHoodI * getImpl() const

This member function returns the implementation object of the invoking handle. You can use this member
function to check whether a neighborhood is empty.

public IloInt getLocalIndex(IloSolver solver, IloInt index) const

This member function converts the index index to the index in the atomic neighborhood responsible for defining
neighbor index. This member function is useful for finding the index in the neighborhood that defined a neighbor
when the invoking neighborhood is made up of neighborhoods combined via concatenation (operator
operator+ or IloConcatenate). It is also useful when the invoking neighborhood has been modified (for
instance via IloRandomize). In typical usage, the index passed originates from an instance of
IloNeighborIdentifier.

public IloNHood getLocalNHood(IloSolver solver, IloInt index) const

This member function returns the atomic neighborhood responsible for defining the neighbor indexed index.
This member function is useful for finding the exact neighborhood that defined a neighbor when the invoking
neighborhood is made up of neighborhoods combined via (operator+ or IloConcatenate). In typical usage,
the index passed originates from an instance of IloNeighborIdentifier.

public const char * getName() const

This member function returns a character string specifying the name of the invoking object (if there is one).

public IloAny getObject() const

This member function returns the object associated with the invoking object (if there is one). Normally, an
associated object contains user data pertinent to the invoking object.

public IloInt getSize(IloSolver solver) const

This member function returns the “size” of the neighborhood, that is, one more than the maximum index that
IloNHood::define can legally be called with. The argument solver indicates the solver that is scanning the
invoking neighborhood. (See IloScanNHood.)

public void notify(IloSolver solver, IloInt index) const

This member function is called when a neighborhood move is about to be taken. It is called with index equal to
the index of the neighbor currently being accepted by local search. The argument solver indicates the solver that
is scanning the invoking neighborhood. (See IloScanNHood.)

At the point of calling, the constrained variables corresponding to the solution passed to IloNHood::start
should be instantiated, but not yet been saved to the current solution. This allows inspection of the differences.
Default behavior is to do nothing.

569

public void notifyOther(IloSolver solver, IloSolution delta) const

This member function is a counterpart to IloNHood::notify. When neighborhoods are joined with
operator+ or IloConcatenate, only one basic neighborhood can have IloNHood::notify called: the one
that defined the delta for the move to be taken. For all other basic neighborhoods, notifyOther is called with
the delta for the move to be taken.

The argument solver indicates the solver that is scanning the invoking neighborhood. (See IloScanNHood.)

public void operator=(const IloNHood & nhood)

This assignment operator copies nhood into the invoking neighborhood by assigning an address to the handle
pointer of the invoking object. That address is the location of the implementation object of the argument nhood.

public void reset()

This member function resets the neighborhood to the state in which it was first created. For neighborhoods which
have no state, calling this member function has no effect. An example of a neighborhood with state is
IloContinue which, after each move, adjusts neighborhood indices to ensure that new indices are explored.
When neighborhoods have state, you will typically want to call this member function between two different local
searches if the neighborhood is to be reused. Most of Solver's neighborhoods are stateless.

public void setName(const char * name) const

This member function assigns name to the invoking object.

public void setObject(IloAny obj) const

This member function associates obj with the invoking object. The member function getObject accesses this
associated object afterward. Normally, obj contains user data pertinent to the invoking object.

public void start(IloSolver solver, IloSolution current) const

This member function announces to the neighborhood that neighbors will be requested of it (through
IloNHood::define), and that current is the reference point of these changes. That is, all changes specified
afterwards via calls to IloNHood::define (until start is called again) should relate to changes of current.

The argument solver indicates the solver that is scanning the invoking neighborhood. (See IloScanNHood.)

570

Class IloNHoodArray
Definition file: ilsolver/iimnhood.h
Include file: <ilsolver/iimls.h>

The class IloNHoodArray is the class for an array of instances of IloNHood.

See Also: IloNHood, IloConcatenate, IloArray

Constructor Summary

public IloNHoodArray()

public IloNHoodArray(IloNHoodArrayI * impl)

public IloNHoodArray(const IloNHoodArray & array)

public IloNHoodArray(IloEnv env, IloInt size)

Method Summary

public IloEnv getEnv() const

public IloNHoodArrayI * getImpl() const

public IloInt getSize() const

public void operator=(const IloNHoodArray & array)

public IloNHood operator[](IloInt i) const

public IloNHood & operator[](IloInt i)

Constructors

public IloNHoodArray()

This constructor creates an uninitialized array of neighborhoods. The index range of the array is undefined. The
array must be assigned before it can be used.

public IloNHoodArray(IloNHoodArrayI * impl)

This constructor creates a handle object (an instance of the class IloNHoodArray) from a pointer to an object
(an instance of the implementation class IloNHoodArrayI).

public IloNHoodArray(const IloNHoodArray & array)

This copy constructor creates a handle from a reference to a neighborhood array. That neighborhood array and
array both point to the same implementation object.

public IloNHoodArray(IloEnv env, IloInt size)

This constructor creates an array of size neighborhoods associated with environment env. The index range of
the array is [0..size), where 0 is included but size is excluded. The argument size must be strictly greater

571

than 0 (zero).

Methods

public IloEnv getEnv() const

This member function returns the environment associated with the invoking array.

public IloNHoodArrayI * getImpl() const

This member function returns the implementation object of the invoking handle. You can use this member
function to check whether an array is empty.

public IloInt getSize() const

This member function returns the number of neighborhoods in the invoking array.

public void operator=(const IloNHoodArray & array)

This assignment operator copies array into the invoking array by assigning an address to the handle pointer of
the invoking object. That address is the location of the implementation object of the argument array.

public IloNHood operator[](IloInt i) const

This subscripting operator returns the neighborhood corresponding to rank i in the invoking neighborhood array.

public IloNHood & operator[](IloInt i)

This operator returns a reference to the element at rank i. This operator can be used for accessing (that is,
simply reading) the element or for modifying (that is, writing) it.

572

Class IloNHoodI
Definition file: ilsolver/iimnhood.h
Include file: <ilsolver/iimls.h>

This abstract implementation class is used to describe a neighborhood structure that can be used by local search
procedures. The central idea of the neighborhood is to define a set of solution changes, or deltas, that represent
alternative moves that can be taken.

You can subclass the IloNHoodI class to define your own neighborhoods.

The member functions IloNHoodI::start, IloNHoodI::define, IloNHoodI::getSize,
IloNHoodI::notify, and IloNHoodI::notifyOther are called within search, and the solver calling these
is passed as the first parameter of these member functions. Solver automatically deletes any deltas you return
from the define method. Therefore, you do not need to handle the memory management of these deltas.
However, this also means that you should not make any further reference to a delta that has been returned from
the define.

For more information, see IloSolution in the Concert Technology Reference Manual.

See Also: IloNHood, IloScanDeltas, IloScanNHood

Constructor and Destructor Summary

public IloNHoodI(IloEnv env, const char * name=0)

public ~IloNHoodI()

Method Summary

public virtual IloSolution define(IloSolver solver, IloInt index)

public virtual void display(ostream & stream) const

public IloEnv getEnv() const

public virtual IloInt getLocalIndex(IloSolver solver, IloInt index) const

public virtual IloNHoodI * getLocalNHood(IloSolver solver, IloInt index) const

public char * getName() const

public IloAny getObject()

public virtual IloInt getSize(IloSolver solver) const

public virtual void notify(IloSolver solver, IloInt index)

public virtual void notifyOther(IloSolver solver, IloSolution solution)

public void operator delete(void * p, size_t size)

public virtual void reset()

public void setName(const char * name)

public void setObject(IloAny object)

public virtual void start(IloSolver solver, IloSolution currentSolution)

573

Constructors and Destructors

public IloNHoodI(IloEnv env, const char * name=0)

This constructor creates a neighborhood. The optional argument name, if supplied, becomes the name of the
neighborhood.

public ~IloNHoodI()

Since IloNHoodI is an abstract class, a virtual destructor is provided.

Methods

public virtual IloSolution define(IloSolver solver, IloInt index)

This virtual member function should return the change in the current solution to be made when making move
number index in the neighborhood. The neighbors are numbered from 0.

public virtual void display(ostream & stream) const

This virtual member function displays the name of the neighborhood, if named. Otherwise, it prints "IloNHoodI",
followed by the address of the invoking object in brackets.

public IloEnv getEnv() const

This member function returns the environment which was passed in the constructor.

public virtual IloInt getLocalIndex(IloSolver solver, IloInt index) const

This member function should convert the index index to the index in the atomic neighborhood responsible for
defining neighbor index. If you define a neighborhood that is a combination of other neighborhoods, you should
define this member function to produce the correct index. By default, this member function returns index.

public virtual IloNHoodI * getLocalNHood(IloSolver solver, IloInt index) const

This member function should return the atomic neighborhood responsible for defining the neighbor indexed
index. If you define a neighborhood that is a combination of other neighborhoods, you should define this
member function to produce the correct atomic neighborhood. By default, this member function returns the
invoking neighborhood.

public char * getName() const

This member function returns the name specified in the constructor of the object, or specified in the last call to
setName.

574

public IloAny getObject()

This member function returns the object associated with the invoking neighborhood through the
IloNHoodI::setObject method.

public virtual IloInt getSize(IloSolver solver) const

This pure virtual member function should return the “size” of the neighborhood, that is, one more than the
maximum index that define can be legally called with.

public virtual void notify(IloSolver solver, IloInt index)

This member function is called when a neighborhood move is about to be taken. It is called with index equal to
the index of the neighbor currently being accepted by local search. If you are using IloSingleMove, then at the
point of calling the constrained variables are instantiated, but not yet saved in the current solution. This permits
inspection of differences between the current solution and the one about to be accepted. The default behavior of
this member function is to do nothing.

public virtual void notifyOther(IloSolver solver, IloSolution solution)

This member function is a counterpart to IloNHoodI::notify. When neighborhoods are joined with
operator+ or IloConcatenate, only one basic neighborhood can have IloNHoodI::notify called: the
one that defined the delta for the move to be taken. For all other basic neighborhoods, notifyOther is called
with the delta for the move to be taken.

The argument solver indicates the solver that is scanning the invoking neighborhood. (See IloScanNHood.)

public void operator delete(void * p, size_t size)

This operator deletes the memory for the neighborhood pointed to by p as if its memory was allocated using the
environment handed to the neighborhood when it was created.

If you want to allocate your neighborhoods on a different heap when subclassing, you should redefine this
operator in the subclass to perform the delete operation appropriate to your heap.

public virtual void reset()

If your neighborhood has state which it carries from move to move, you should define this member function to
reset the neighborhood to the state in which it was first created.

public void setName(const char * name)

This member function sets the name of the invoking object to a copy of name.

public void setObject(IloAny object)

575

This member function associates object object with the invoking neighborhood.

public virtual void start(IloSolver solver, IloSolution currentSolution)

This pure virtual member function announces to the neighborhood that neighbors that neighbors will be
requested of it (through IloNHoodI::define) and that currentSolution is the reference point of these
changes. That is, all changes specified afterwards via calls IloNHoodI::define) (until start is called again)
should related to changes of currentSolution.

576

Class IloNHoodModifierI
Definition file: ilsolver/iimnhood.h
Include file: <ilsolver/iimls.h>

This abstract implementation class is used to describe a neighborhood structure that depends on other “child”
neighborhood structures. Solver neighborhoods such as IloConcatenate, IloRandomize, and
IloContinue belong to this category of neighborhood. Such neighborhoods do not generate neighbors in their
own right, but pass back neighbors produced by their children. The main job of a neighborhood modifier is to
maintain a mapping between the indices of neighbors for the neighborhood modifier and the corresponding child
neighborhoods and indices within these child neighborhoods. The member function IloNHoodModifierI::mapIndex
performs this maintenance. Additional behaviors can be added. One example is to manipulate normally produced
deltas in some way, for instance by adding additional variables, before they are returned.

See Also: IloNHood, IloNHoodI

Constructor and Destructor Summary

public IloNHoodModifierI(IloEnv env, IloNHoodArray a, const char * name=0)

public IloNHoodModifierI(IloEnv env, IloNHood nh, const char * name=0)

public IloNHoodModifierI(IloEnv env, IloNHood nh1, IloNHood nh2, const char *
name=0)

Method Summary

public IloSolution define(IloSolver solver, IloInt index)

public void display(ostream & out) const

public IloInt getLocalIndex(IloSolver solver, IloInt index) const

public IloNHoodI * getLocalNHood(IloSolver solver, IloInt index) const

public IloNHood getNHood(IloInt i) const

public IloInt getNHoodSize(IloInt i) const

public IloInt getNumberOfNHoods() const

public IloInt getSize(IloSolver solver) const

public virtual void mapIndex(IloSolver solver, IloInt index, IloNHood & nhood,
IloInt & offset) const

public void notify(IloSolver solver, IloInt index)

public void notifyOther(IloSolver solver, IloSolution delta)

public void reset()

public void start(IloSolver solver, IloSolution solution)

Inherited Methods from IloNHoodI

define, display, getEnv, getLocalIndex, getLocalNHood, getName, getObject,
getSize, notify, notifyOther, operator delete, reset, setName, setObject, start

577

Constructors and Destructors

public IloNHoodModifierI(IloEnv env, IloNHoodArray a, const char * name=0)

This constructor builds a neighborhood modifier that combines all neighborhoods in the array a. The optional
argument name, if provided, becomes the name of the neighborhood.

public IloNHoodModifierI(IloEnv env, IloNHood nh, const char * name=0)

This constructor builds a neighborhood modifier that depends on just one neighborhood nh. The optional
argument name, if provided, becomes the name of the neighborhood.

public IloNHoodModifierI(IloEnv env, IloNHood nh1, IloNHood nh2, const char *
name=0)

This constructor builds a neighborhood modifier that depends on two neighborhoods, nh1 and nh2. The optional
argument name, if provided, becomes the name of the neighborhood.

Methods

public IloSolution define(IloSolver solver, IloInt index)

This member function calls IloNHoodModifierI::define on one of its child neighborhoods with an
appropriately adjusted index. The computation of the child neighborhood and adjusted index are performed by
the IloNHoodModifierI::mapIndex member function. If you wish define to have some additional behavior, you
can redefine this function. In this case, you must still call IloNHoodModifierI::define(solver, index)
in your subclass and return the delta delivered (or a modified version of it).

public void display(ostream & out) const

This virtual member function displays the name of the neighborhood, if named. Otherwise, it prints "IloNHoodI",
followed by the address of the invoking object in brackets.

public IloInt getLocalIndex(IloSolver solver, IloInt index) const

This member function converts the index index to the index in the atomic neighborhood responsible for defining
neighbor index. To do this, it uses the member function IloNHoodModifierI::mapIndex.

public IloNHoodI * getLocalNHood(IloSolver solver, IloInt index) const

This member function returns the atomic neighborhood responsible for defining the neighbor indexed index. To
do this, it uses the member function IloNHoodModifierI::mapIndex.

public IloNHood getNHood(IloInt i) const

578

This member function delivers the ith neighborhood specified at construction time. If you constructed the
neighborhood modifier with an array, this member function returns the ith element of that array. If you constructed
the neighborhood modifier with two neighborhoods, getNHood(0) returns nhood0 and getNHood(1) returns
nhood1. Finally, if you constructed the neighborhood modifier with only one neighborhood, getNHood(0)
returns that neighborhood.

public IloInt getNHoodSize(IloInt i) const

This member function returns the size of the ith neighborhood specified at construction time. The indexing rules
for neighborhoods are the same as those described in the description for the member function getNHood.
Although this member function is functionally equivalent to getNHood(i).getSize(solver) (given an
instance of IloSolversolver), it can be faster as the size is cached in the neighborhood modifier and not
recomputed from the child neighborhood.

public IloInt getNumberOfNHoods() const

This member function returns the number of neighborhoods specified at construction time. The value returned is
one greater than the legal maximum value with which you can call IloNHoodModifierI::getNHood or
IloNHoodModifierI::getNHoodSize.

public IloInt getSize(IloSolver solver) const

This member function returns the sum of the sizes of the child neighborhoods. You may redefine this behavior if
desired.

public virtual void mapIndex(IloSolver solver, IloInt index, IloNHood & nhood,
IloInt & offset) const

This member function maintains a mapping between the indices of neighbors for the neighborhood modifier and
the corresponding child neighborhoods and indices within these child neighborhoods. You should thus redefine
this member function to convert the index index to a neighborhood nhood and an index offset within that
neighborhood. nhood and offset are passed by reference so that you can fill in the details. solver is the
active solver. An example of how to do this for a modifier which concatenates two neighborhoods is shown in the
Solver User's Manual.

public void notify(IloSolver solver, IloInt index)

This member function calls IloNHoodModifierI::notify on one of its child neighborhoods with an
appropriately adjusted index. The computation of the child neighborhood and adjusted index are performed by
the IloNHoodModifierI::mapIndex member function. For all other child neighborhoods,
IloNHoodModifierI::notifyOther is called. If you wish notify to have some additional behavior, you can
redefine this function. In this case, you must still call IloNHoodModifierI::notify(solver, index) in
your subclass.

public void notifyOther(IloSolver solver, IloSolution delta)

This member function calls notifyOther on all child neighborhoods. If you wish notifyOther to have some
additional behavior, you can redefine this function. In this case, you must still call
IloNHoodModifierI::notifyOther(solver, delta) in your subclass.

579

public void reset()

This member function calls IloNHoodModifierI::reset on all child neighborhoods.

public void start(IloSolver solver, IloSolution solution)

This member function calls start on all child neighborhoods passing the parameters it receives. It then calls
getSize on all child neighborhoods and caches the values returned. These sizes can be later retrieved by
getNHoodSize. If you wish start to have some additional behavior, you can redefine this function. In this
case, you must still call IloNHoodModifierI::start(solver, solution) in your subclass.

580

Class IloNodeEvaluator
Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

An instance of this class represents a node evaluator in a Concert Technology model. A node evaluator offers a
way for an algorithm to discriminate among nodes of the search tree during the search for a solution. A node
evaluator is useful in functions such as IloApply.

There are predefined functions in IBM® ILOG® Solver that create and return a node evaluator:
IloBFSEvaluator, IloDDSEvaluator, IloDFSEvaluator, IloIDFSEvaluator, and IloSBSEvaluator.

See Also: IloApply, IloBFSEvaluator, IloDDSEvaluator, IloDFSEvaluator, IloSBSEvaluator

Constructor Summary

public IloNodeEvaluator()

public IloNodeEvaluator(IloNodeEvaluatorI * impl)

Method Summary

public void end() const

public IloNodeEvaluatorI * getImpl() const

public void operator=(const IloNodeEvaluator & h)

Constructors

public IloNodeEvaluator()

This constructor creates an empty handle. You must initialize it before you use it.

public IloNodeEvaluator(IloNodeEvaluatorI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public void end() const

This member function ends the corresponding node evaluator and returns the memory to the environment.

public IloNodeEvaluatorI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public void operator=(const IloNodeEvaluator & h)

581

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

582

Class IloNodeEvaluatorI
Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

The class IloNodeEvaluator represents objects to evaluate whether or not to explore a node during a Solver
search in an IBM® ILOG® Concert Technology model. The class IlcNodeEvaluator represents node
evaluators internally in a Solver search.

A node evaluator is an object in Solver. Like other Solver entities, a node evaluator is implemented by means of
two classes: a handle class and an implementation class. In other words, an instance of the class
IloNodeEvaluator (a handle) contains a data member (the handle pointer) that points to an instance of the
class IloNodeEvaluatorI (its implementation object).

See Also: IloNodeEvaluator

Constructor and Destructor Summary

public ~IloNodeEvaluatorI()

Method Summary

public virtual void display(ostream &) const

public virtual IlcNodeEvaluator extract(const IloSolver solver) const

public virtual IloNodeEvaluatorI * makeClone(IloEnvI * env) const

Constructors and Destructors

public ~IloNodeEvaluatorI()

This destructor is called automatically by the destructor of its subclasses. It frees memory used by the invoking
object.

Methods

public virtual void display(ostream &) const

This member function prints the invoking node evaluator on an output stream.

public virtual IlcNodeEvaluator extract(const IloSolver solver) const

In general terms, in Concert Technology, the objects of a model must be extracted for an algorithm (an instance
of one of the subclasses of IloAlgorithm, such as IloSolver). This member function returns the internal
node evaluator extracted for solver from the invoking node evaluator of a model.

public virtual IloNodeEvaluatorI * makeClone(IloEnvI * env) const

583

This member function is called internally to duplicate the current node evaluator.

584

Class IloNot
Definition file: ilconcert/ilomodel.h

Negation of its argument.
The class IloNot represents a constraint that is the negation of its argument. In order to be taken into account,
this constraint must be added to a model and extracted by an algorithm, such as IloCplex or IloSolver.

See Also: operator!

Constructor Summary

public IloNot()

public IloNot(IloNotI * impl)

Method Summary

public IloNotI * getImpl() const

Inherited Methods from IloConstraint

getImpl

Inherited Methods from IloIntExprArg

getImpl

Inherited Methods from IloNumExprArg

getImpl

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

Constructors

public IloNot()

This constructor creates an empty handle. You must initialize it before you use it.

public IloNot(IloNotI * impl)

This constructor creates a handle object from a pointer to an implementation object.

585

Methods

public IloNotI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

586

Class IloNumArray
Definition file: ilconcert/iloenv.h

The array class of the basic floating-point class.
For each basic type, Concert Technology defines a corresponding array class. IloNumArray is the array class
of the basic floating-point class (IloNum) for a model.

Instances of IloNumArray are extensible. That is, you can add more elements to such an array. References to
an array change whenever an element is added to or removed from the array.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

IloNumArray inherits additional methods from the template IloArray:

IloArray::add•
IloArray::add•
IloArray::add•
IloArray::clear•
IloArray::getEnv•
IloArray::getSize•
IloArray::remove•
IloArray::operator[]•
IloArray::operator[]•

See Also: IloNum, operator>>, operator<<

Constructor Summary

public IloNumArray(IloArrayI * i=0)

public IloNumArray(const IloNumArray & cpy)

public IloNumArray(const IloEnv env, IloInt n=0)

public IloNumArray(const IloEnv env, IloInt n, IloNum f0, IloNum f1, ...)

Method Summary

public IloBool contains(IloNum value) const

public IloNum & operator[](IloInt i)

public const IloNum & operator[](IloInt i) const

public IloNumExprArg operator[](IloIntExprArg intExp) const

public IloIntArray toIntArray() const

Constructors

public IloNumArray(IloArrayI * i=0)

This constructor creates an empty array of floating-point numbers for use in a model. You cannot create
instances of the undocumented class IloDefaultArrayI. As an argument in this default constructor, it allows
you to pass 0 (zero) as a value to an optional argument in functions and member functions that accept an array
as an argument.

587

public IloNumArray(const IloNumArray & cpy)

This copy constructor creates a handle to the array of floating-point objects specified by cpy.

public IloNumArray(const IloEnv env, IloInt n=0)

This constructor creates an array of n elements. Initially, the n elements are empty handles.

public IloNumArray(const IloEnv env, IloInt n, IloNum f0, IloNum f1, ...)

This constructor creates an array of n floating-point objects for use in a model.

Methods

public IloBool contains(IloNum value) const

This member function checks whether the value is contained or not.

public IloNum & operator[](IloInt i)

This operator returns a reference to the object located in the invoking array at the position specified by the index
i.

public const IloNum & operator[](IloInt i) const

This operator returns a reference to the object located in the invoking array at the position specified by the index
i. On const arrays, Concert Technology uses the const operator:

 IloArray operator[] (IloInt i) const;

public IloNumExprArg operator[](IloIntExprArg intExp) const

This subscripting operator returns an expression node for use in a constraint or expression. For clarity, let's call A
the invoking array. When intExp is bound to the value i, then the domain of the expression is the domain of
A[i]. More generally, the domain of the expression is the union of the domains of the expressions A[i] where
the i are in the domain of intExp.

This operator is also known as an element expression.

public IloIntArray toIntArray() const

This member function copies the invoking numeric array to a new instance of IloIntArray, checking the type
of the values during the copy.

588

Class IloNumExpr
Definition file: ilconcert/iloexpression.h

The class of numeric expressions in a Concert model.
Numeric expressions in Concert Technology are represented using the class IloNumExpr.

Constructor Summary

public IloNumExpr()

public IloNumExpr(IloNumExprI * impl)

public IloNumExpr(const IloNumExprArg expr)

public IloNumExpr(const IloEnv env, IloNum=0)

public IloNumExpr(const IloNumLinExprTerm term)

public IloNumExpr(const IloIntLinExprTerm term)

public IloNumExpr(const IloExpr & expr)

Method Summary

public IloNumExprI * getImpl() const

public IloNumExpr & operator*=(IloNum val)

public IloNumExpr & operator+=(const IloNumExprArg expr)

public IloNumExpr & operator+=(IloNum val)

public IloNumExpr & operator-=(const IloNumExprArg expr)

public IloNumExpr & operator-=(IloNum val)

public IloNumExpr & operator/=(IloNum val)

Inherited Methods from IloNumExprArg

getImpl

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

Inner Class

IloNumExpr::NonLinearExpression The class of exceptions thrown if a numeric constant of a nonlinear
expression is set or queried.

589

Constructors

public IloNumExpr()

This constructor creates an empty handle. You must initialize it before you use it.

public IloNumExpr(IloNumExprI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IloNumExpr(const IloNumExprArg expr)

This constructor creates a numeric expression using the undocumented class IloNumExprArg.

public IloNumExpr(const IloEnv env, IloNum=0)

This constructor creates a constant numeric expression with the value n that the user can modify subsequently
with the operators +=, -=, ∗= in the environment specified by env. It may be used to build other expressions
from variables belonging to env.

public IloNumExpr(const IloNumLinExprTerm term)

This constructor creates a numeric expression using the undocumented class IloNumLinExprTerm.

public IloNumExpr(const IloIntLinExprTerm term)

This constructor creates a numeric expression using the undocumented class IloIntLinExprTerm.

public IloNumExpr(const IloExpr & expr)

This is the copy constructor for this class.

Methods

public IloNumExprI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloNumExpr & operator*=(IloNum val)

This operator is recommended for building a Concert Technology expression in a loop. It is more efficient than x
= x * ...

public IloNumExpr & operator+=(const IloNumExprArg expr)

This operator is recommended for building a Concert Technology expression in a loop. It is more efficient than x
= x + ...

590

public IloNumExpr & operator+=(IloNum val)

This operator is recommended for building a Concert Technology expression in a loop. It is more efficient than x
= x + ...

public IloNumExpr & operator-=(const IloNumExprArg expr)

This operator is recommended for building a Concert Technology expression in a loop. It is more efficient than x
= x - ...

public IloNumExpr & operator-=(IloNum val)

This operator is recommended for building a Concert Technology expression in a loop. It is more efficient than x
= x - ...

public IloNumExpr & operator/=(IloNum val)

This operator is recommended for building a Concert Technology expression in a loop. It is more efficient than x
= x / ...

591

Class IloNumExprArg
Definition file: ilconcert/iloexpression.h

A class used internally in Concert Technology.
Concert Technology uses instances of this class internally as temporary objects when it is parsing a C++
expression in order to build an instance of IloNumExpr. As a Concert Technology user, you will not need this
class yourself; in fact, you should not use them directly. They are documented here because the return value of
certain functions, such as IloSum or IloScalProd, can be an instance of this class.

Constructor Summary

public IloNumExprArg()

public IloNumExprArg(IloNumExprI * impl)

Method Summary

public IloNumExprI * getImpl() const

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

Constructors

public IloNumExprArg()

This constructor creates an empty handle. You must initialize it before you use it.

public IloNumExprArg(IloNumExprI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public IloNumExprI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

592

Class IloNumExprArray
Definition file: ilconcert/iloexpression.h

The array class of the numeric expressions class.
For each basic type, Concert Technology defines a corresponding array class. IloNumExprArray is the array
class of the numeric expressions class (IloNumExpr) for a model.

Instances of IloNumExprArray are extensible. That is, you can add more elements to such an array.
References to an array change whenever an element is added to or removed from the array.

Constructor Summary

public IloNumExprArray(IloDefaultArrayI * i=0)

public IloNumExprArray(const IloEnv env, IloInt n=0)

Method Summary

public void add(IloInt more, const IloNumExpr x)

public void add(const IloNumExpr x)

public void add(const IloNumExprArray array)

public void endElements()

public IloNumExprArg operator[](IloIntExprArg anIntegerExpr) const

Inherited Methods from IloExtractableArray

add, add, add, endElements, setNames

Constructors

public IloNumExprArray(IloDefaultArrayI * i=0)

This constructor creates an empty array of numeric expressions for use in a model. You cannot create instances
of the undocumented class IloDefaultArrayI. As an argument in this default constructor, it allows you to
pass 0 (zero) as a value to an optional argument in functions and member functions that accept an array as an
argument.

public IloNumExprArray(const IloEnv env, IloInt n=0)

This constructor creates an array of n elements. Initially, the n elements are empty handles.

593

Methods

public void add(IloInt more, const IloNumExpr x)

This member function appends x to the invoking array. The argument more specifies how many times.

public void add(const IloNumExpr x)

This member function appends x to the invoking array.

public void add(const IloNumExprArray array)

This member function appends the elements in array to the invoking array.

public void endElements()

This member function calls IloExtractable::end for each of the elements in the invoking array. This deletes
all the extractables identified by the array, leaving the handles in the array intact. This member function is the
recommended way to delete the elements of an array.

public IloNumExprArg operator[](IloIntExprArg anIntegerExpr) const

This subscripting operator returns an expression argument for use in a constraint or expression. For clarity, let's
call A the invoking array. When anIntegerExpr is bound to the value i, the domain of the expression is the
domain of A[i]. More generally, the domain of the expression is the union of the domains of the expressions
A[i] where the i are in the domain of anIntegerExpr.

This operator is also known as an element expression.

594

Class IloNumToAnySetStepFunction
Definition file: ilconcert/ilosetfunc.h

Represents a step function that associates sets with intervals.
An instance of IloNumToAnySetStepFunction represents a step function that associates sets with intervals.
It is defined everywhere on an interval [xMin,xMax). Each interval [x1,x2) on which the function has the same set
is called a step.

Note that if n is the number of steps of the function, the random access to a given step (see the member
functions IloNumToAnySetStepFunction::add,
IloNumToAnySetStepFunction::alwaysIntersects, IloNumToAnySetStepFunction::contains,
IloNumToAnySetStepFunction::empty, IloNumToAnySetStepFunction::everContains,
IloNumToAnySetStepFunction::everIntersects, IloNumToAnySetStepFunction::fill,
IloNumToAnySetStepFunction::getComplementSet, IloNumToAnySetStepFunction::getSet,
IloNumToAnySetStepFunction::intersects, IloNumToAnySetStepFunction::isEmpty,
IloNumToAnySetStepFunction::isFull, IloNumToAnySetStepFunction::remove,
IloNumToAnySetStepFunction::set, and IloNumToAnySetStepFunction::setIntersection) has a
worst-case complexity of O(log(n)).

Complementary Representation of Values

IloNumToAnySetStepFunction allows the implicit representation of infinite sets through the representation of
the complement of the actual set value. This, for example, allows you to completely fill a set (using the
IloNumToAnySetStepFunction::fill member function) and then specify the elements that are not in the
set. Under normal circumstances, it is not necessary to know if the value of the step function at a particular point
is represented by the set or its complement: all the member functions that manipulate the step function value will
correctly adapt to either representation. The only case where it is necessary to know the internal representation
is if you want to directly access the set that represents a value (using the
IloNumToAnySetStepFunction::getSet or IloNumToAnySetStepFunction::getComplementSet
member functions). In that circumstance only, it is necessary to use the
IloNumToAnySetStepFunction::usesComplementaryRepresentation member function to determine
the internal representation, and then use either IloNumToAnySetStepFunction::getSet or
IloNumToAnySetStepFunction::getComplementSet depending on the return value of
IloNumToAnySetStepFunction::usesComplementaryRepresentation. Note that
IloNumToAnySetStepFunction::getSet will raise an error if it is used to access a set that is represented
as a complement set. IloNumToAnySetStepFunction::getComplementSet will raise an error if it is used
to access a set that is directly represented.

See Also: IloNumToAnySetStepFunctionCursor

Constructor Summary

public IloNumToAnySetStepFunction(const IloEnv env, IloNum xmin=-IloInfinity,
IloNum xmax=IloInfinity, const char * name=0)

public IloNumToAnySetStepFunction(const IloEnv env, IloNum xmin, IloNum xmax,
const IloAnySet dval, const char * name=0)

Method Summary

public void add(const IloNumToAnySetStepFunction f) const

public void add(IloNum xMin, IloNum xMax, IloAny elt) const

public void add(IloNum xMin, IloNum xMax, const IloAnySet
elts, IloBool complt=IloFalse) const

595

public IloBool alwaysContains(const IloNumToAnySetStepFunction
f) const

public IloBool alwaysContains(IloNum xMin, IloNum xMax, const
IloAnySet elts) const

public IloBool alwaysContains(IloNum xMin, IloNum xMax, IloAny
elt) const

public IloBool alwaysIntersects(const
IloNumToAnySetStepFunction f) const

public IloBool alwaysIntersects(IloNum xMin, IloNum xMax, const
IloAnySet elts) const

public IloBool contains(IloNum x, const IloAnySet elts) const

public IloBool contains(IloNum x, IloAny elt) const

public IloNumToAnySetStepFunction copy() const

public void dilate(IloNum k) const

public void empty(IloNum xMin, IloNum xMax) const

public IloBool everContains(const IloNumToAnySetStepFunction f)
const

public IloBool everContains(IloNum xMin, IloNum xMax, const
IloAnySet elts) const

public IloBool everContains(IloNum xMin, IloNum xMax, IloAny
elt) const

public IloBool everIntersects(const IloNumToAnySetStepFunction
f) const

public IloBool everIntersects(IloNum xMin, IloNum xMax, const
IloAnySet elts) const

public void fill(IloNum xMin, IloNum xMax) const

public IloAnySet getComplementSet(IloNum x) const

public IloNum getDefinitionIntervalMax() const

public IloNum getDefinitionIntervalMin() const

public IloAnySet getSet(IloNum x) const

public IloBool intersects(IloNum x, const IloAnySet elts) const

public IloBool isEmpty(IloNum x) const

public IloBool isFull(IloNum x) const

public void remove(const IloNumToAnySetStepFunction f) const

public void remove(IloNum xMin, IloNum xMax, IloAny elt)
const

public void remove(IloNum xMin, IloNum xMax, const IloAnySet
elts, IloBool complt=IloFalse) const

public void set(IloNum xMin, IloNum xMax, IloAny elt) const

public void set(IloNum xMin, IloNum xMax, const IloAnySet
elts, IloBool complt=IloFalse) const

public void setIntersection(const IloNumToAnySetStepFunction
f) const

public void setIntersection(IloNum xMin, IloNum xMax, IloAny
elt) const

public void setIntersection(IloNum xMin, IloNum xMax, const
IloAnySet elts, IloBool complt=IloFalse) const

596

public void setPeriodic(const IloNumToAnySetStepFunction f,
IloNum x0, IloNum n, const IloAnySet dval) const

public void shift(IloNum dx, const IloAnySet dval) const

public IloBool usesComplementaryRepresentation(IloNum x) const

Constructors

public IloNumToAnySetStepFunction(const IloEnv env, IloNum xmin=-IloInfinity,
IloNum xmax=IloInfinity, const char * name=0)

This constructor creates a step function defined everywhere on the interval [xMin, xMax) with empty set as
the value.

public IloNumToAnySetStepFunction(const IloEnv env, IloNum xmin, IloNum xmax, const
IloAnySet dval, const char * name=0)

This constructor creates a step function defined everywhere on the interval [xMin, xMax) with the same set
dval.

Methods

public void add(const IloNumToAnySetStepFunction f) const

This member function adds the value of f at point x to the value of the invoking step function at point x, for all
points x in the definition interval of the invoking step function. An instance of IloException is thrown if the
definition interval of f is not equal to the definition interval of the invoking step function.

public void add(IloNum xMin, IloNum xMax, IloAny elt) const

This member function adds elt to the value of the invoking step function on the interval [xMin, xMax).

public void add(IloNum xMin, IloNum xMax, const IloAnySet elts, IloBool
complt=IloFalse) const

This member function adds the elements of elts to the value of the invoking step function on the interval
[xMin, xMax).

public IloBool alwaysContains(const IloNumToAnySetStepFunction f) const

This member function returns IloTrue if for all points x on the definition interval of the invoking step function,
the value of f at point x is a subset of the value of the invoking step function at point x. An instance of
IloException is thrown if the definition interval of f is not equal to the definition interval of the invoking step
function.

public IloBool alwaysContains(IloNum xMin, IloNum xMax, const IloAnySet elts) const

597

This member function returns IloTrue if elts is a subset of the value of the invoking step function at all points
on the interval [xMin, xMax).

public IloBool alwaysContains(IloNum xMin, IloNum xMax, IloAny elt) const

This member function returns IloTrue if at all points on the interval [xMin, xMax) the value of the invoking
step function contains elt.

public IloBool alwaysIntersects(const IloNumToAnySetStepFunction f) const

This member function returns IloTrue if for all points x in the definition interval of the invoking step function, the
intersection of f and the invoking step function is not empty. An instance of IloException is thrown if the
definition interval of f is not equal to the definition interval of the invoking step function.

public IloBool alwaysIntersects(IloNum xMin, IloNum xMax, const IloAnySet elts)
const

This member function returns IloTrue if for all x on the interval [xMin, xMax) the intersection of elts and
the value of the invoking step function at point x is not empty.

public IloBool contains(IloNum x, const IloAnySet elts) const

This member function returns IloTrue if elts is a subset of the value of the invoking step function at point x.

public IloBool contains(IloNum x, IloAny elt) const

This member function returns IloTrue if the invoking step function contains element elt at point x.

public IloNumToAnySetStepFunction copy() const

This member function creates and returns a new function that is a copy of the invoking function.

public void dilate(IloNum k) const

This member function multiplies by k the scale of x for the invoking step function. k must be a nonnegative
numeric value. More precisely, if the invoking step function was defined over an interval [xMin, xMax), it will
be redefined over the interval [k*xMin, k*xMax) and the value at x will be the former value at x/k.

public void empty(IloNum xMin, IloNum xMax) const

This member function sets the value of the invoking step function on the interval [xMin, xMax) to be the empty
set.

public IloBool everContains(const IloNumToAnySetStepFunction f) const

598

This member function returns IloTrue if at any point x in the definition interval of the invoking step function, f at
point x is a subset of the invoking step function at point x. An instance of IloException is thrown if the
definition interval of f is not equal to the definition interval of the invoking step function.

public IloBool everContains(IloNum xMin, IloNum xMax, const IloAnySet elts) const

This member function returns IloTrue if at any point on the interval [xMin, xMax)elts is a subset of the
value of the invoking step function.

public IloBool everContains(IloNum xMin, IloNum xMax, IloAny elt) const

This member function returns IloTrue if at any point on the interval [xMin, xMax) the value of the invoking
step function contains elt.

public IloBool everIntersects(const IloNumToAnySetStepFunction f) const

This member function returns IloTrue if at some point x in the definition interval of the invoking step function,
the intersection of f and the invoking step function is not empty. An instance of IloException is thrown if the
definition interval of f is not equal to the definition interval of the invoking step function.

public IloBool everIntersects(IloNum xMin, IloNum xMax, const IloAnySet elts) const

This member function returns IloTrue if at any point x on the interval [xMin, xMax) the intersection of elts
and the value of the invoking step function at point x is not empty.

public void fill(IloNum xMin, IloNum xMax) const

This member function sets the value of the invoking step function on the interval [xMin, xMax) to be the full
set.

public IloAnySet getComplementSet(IloNum x) const

This member function returns the complement of the value of the invoking step function at point x. An instance of
IloException is thrown if the invoking step function at point x does not use the complementary representation.
See Complementary Representation of Values for more information.

public IloNum getDefinitionIntervalMax() const

This member function returns the right-most point of the definition interval of the invoking step function.

public IloNum getDefinitionIntervalMin() const

This member function returns the left-most point of the definition interval of the invoking step function.

public IloAnySet getSet(IloNum x) const

599

This member function returns the value of the invoking step function at point x. An instance of IloException is
thrown if the invoking step function at point x uses the complementary representation. See Complementary
Representation of Values for more information.

public IloBool intersects(IloNum x, const IloAnySet elts) const

This member function returns IloTrue if the intersection of elts and the value of the invoking step function at
point x is not empty.

public IloBool isEmpty(IloNum x) const

This member function returns IloTrue if the function is empty at point x. In other words, a return of IloTrue
means that the member function IloNumToAnySetStepFunction::empty has been applied to point x and no
elements have been subsequently added to the value of the invoking step function at point x.

public IloBool isFull(IloNum x) const

This member function returns IloTrue if the function is full at point x. In other words, a return of IloTrue
means that the member function IloNumToAnySetStepFunction::fill has been applied to point x and no
elements have been subsequently removed from the value of the invoking step function at point x.

public void remove(const IloNumToAnySetStepFunction f) const

This member function removes the value of f from the value of the invoking step function at all points on the
definition interval of the invoking step function. An instance of IloException is thrown if the definition interval
of f is not equal to the definition interval of the invoking step function.

public void remove(IloNum xMin, IloNum xMax, IloAny elt) const

This member function removes elt from the value of the invoking step function on the interval [xMin, xMax).

public void remove(IloNum xMin, IloNum xMax, const IloAnySet elts, IloBool
complt=IloFalse) const

This member function removes all the elements in elts from the value of the invoking step function on the
interval [xMin, xMax).

public void set(IloNum xMin, IloNum xMax, IloAny elt) const

This member function sets the value of the invoking step function to be elt on the interval [xMin, xMax).

public void set(IloNum xMin, IloNum xMax, const IloAnySet elts, IloBool
complt=IloFalse) const

600

This member function sets the value of the invoking step function to be elts on the interval [xMin, xMax).

public void setIntersection(const IloNumToAnySetStepFunction f) const

This member function assigns the value of the invoking step function at all points x on the definition interval of
the invoking step function to be the intersection of the value of f at point x and the value of the invoking step
function at point x. An instance of IloException is thrown if the definition interval of f is not equal to the
definition interval of the invoking step function.

public void setIntersection(IloNum xMin, IloNum xMax, IloAny elt) const

This member function assigns the value of the invoking step function at all points x on the interval [xMin,
xMax) to be the intersection of the set containing elt and the value of the invoking set function at point x.

public void setIntersection(IloNum xMin, IloNum xMax, const IloAnySet elts, IloBool
complt=IloFalse) const

This member function assigns the value of the invoking step function at all points x on the interval [xMin,
xMax) to be the intersection of elts and the value of the invoking set function at point x.

public void setPeriodic(const IloNumToAnySetStepFunction f, IloNum x0, IloNum n,
const IloAnySet dval) const

This member function initializes the invoking step function as a function that repeats the step function f, n times
after x0. More precisely, if f is defined on [xfpMin,xfpMax) and if the invoking step function is defined on
[xMin,xMax), the value of the invoking step function will be:

dval on [xMin, x0),•
f((x-x0) % (xfpMax-xfpMin)) for x in [x0, Min(x0+n*(xfpMax-xfpMin), xMax)), and•
dval on [Min(x0+n*(xfpMax-xfpMin), xMax), xMax)•

public void shift(IloNum dx, const IloAnySet dval) const

This member function shifts the invoking step function from dx to the right if dx > 0, or from -dx to the left if dx
< 0. It has no effect if dx = 0. More precisely, if the invoking step function is defined on [xMin,xMax) and dx
> 0, the new value of the invoking step function is:

dval on the interval [xMin, xMin+dx),•
for all x in [xMin+dx, xMax), the former value at x-dx.•

If dx < 0, the new value of the invoking step function is:

for all x in [xMin, xMax+dx), the former value at x-dx,•
dval on the interval [xMax+dx, xMax).•

public IloBool usesComplementaryRepresentation(IloNum x) const

This member function returns IloTrue if the value of the invoking function at point x is represented by a
complementary set, rather than by directly representing the value as a set itself. See Complementary
Representation of Values for more information.

601

602

Class IloNumToAnySetStepFunctionCursor
Definition file: ilconcert/ilosetfunc.h

Allows you to inspect the contents of an IloNumToAnySetStepFunction.
An instance of the class IloNumToAnySetStepFunctionCursor allows you to inspect the contents of an
IloNumToAnySetStepFunction. A step of a step function is defined as an interval [x1,x2) over which the
value of the function is the same. Cursors are intended to iterate forward or backward over the steps of a step
function.

Note

The structure of the step function cannot be changed while a cursor is being used to inspect it. Therefore,
functions that change the structure of the step function, such as IloNumToAnySetStepFunction::set,
should not be called while the cursor is being used.

See Also: IloNumToAnySetStepFunction

Constructor and Destructor Summary

public IloNumToAnySetStepFunctionCursor(const IloNumToAnySetStepFunction)

public IloNumToAnySetStepFunctionCursor(const IloNumToAnySetStepFunction, IloNum
x)

public IloNumToAnySetStepFunctionCursor(const IloNumToAnySetStepFunctionCursor &)

Method Summary

public IloAnySet getComplementSet() const

public IloNum getSegmentMax() const

public IloNum getSegmentMin() const

public IloAnySet getSet() const

public IloBool isEmpty() const

public IloBool isFull() const

public IloBool ok() const

public void operator++()

public void operator--()

public void operator=(const IloNumToAnySetStepFunctionCursor &)

public void seek(IloNum)

public IloBool usesComplementaryRepresentation() const

Constructors and Destructors

public IloNumToAnySetStepFunctionCursor(const IloNumToAnySetStepFunction)

This constructor creates a cursor to inspect the step function argument. This cursor lets you iterate forward or
backward over the steps of the function. The cursor initially specifies the first step of the function.

public IloNumToAnySetStepFunctionCursor(const IloNumToAnySetStepFunction, IloNum x)

603

This constructor creates a cursor to inspect the step function argument. This cursor lets you iterate forward or
backward over the steps of the function. The cursor initially specifies the step of the function that contains x.

Note that if n is the number of steps of the function given as argument, the worst-case complexity of this
constructor is O(log(n)).

public IloNumToAnySetStepFunctionCursor(const IloNumToAnySetStepFunctionCursor &)

This constructor creates a new cursor that is a copy of the argument. The new cursor initially specifies the same
step and the same function as the argument cursor.

Methods

public IloAnySet getComplementSet() const

This member function returns the set representing the complement of the value of the step currently specified by
the cursor. An instance of IloException is thrown if the value of the step does not use a complementary
representation.

public IloNum getSegmentMax() const

This member function returns the right-most point of the step currently specified by the cursor.

public IloNum getSegmentMin() const

This member function returns the left-most point of the step currently specified by the cursor.

public IloAnySet getSet() const

This member function returns the value of the step currently specified by the cursor. An instance of
IloException is thrown if the value of the step uses a complementary representation.

public IloBool isEmpty() const

This member function returns IloTrue if the value of the current step is the empty set.

public IloBool isFull() const

This member function returns IloTrue if the value of the current step is the full set. (See also:
IloNumToAnySetStepFunction::isFull).

public IloBool ok() const

604

This member function returns IloFalse if the cursor does not currently specify a step included in the definition
interval of the step function. Otherwise, it returns IloTrue.

public void operator++()

This operator moves the cursor to the step adjacent to the current step (forward move).

public void operator--()

This operator moves the cursor to the step adjacent to the current step (backward move).

public void operator=(const IloNumToAnySetStepFunctionCursor &)

This operator assigns an address to the handle pointer of the invoking instance of
IloNumToAnySetStepFunctionCursor. That address is the location of the implementation object of the
argument cursor. After the execution of this operator, the invoking object and cursor both point to the same
implementation object.

public void seek(IloNum)

This member function sets the cursor to specify the step of the function that contains x. Note that if n is the
number of steps of the step function traversed by the invoking iterator, the worst-case complexity of this member
function is O(log(n)). An instance of IloException is thrown if x does not belong to the definition interval of the
invoking function.

public IloBool usesComplementaryRepresentation() const

This member function returns IloTrue if the value of the current step uses the complementary representation.

605

Class IloNumToNumSegmentFunction
Definition file: ilconcert/ilosegfunc.h

Piecewise linear function over a segment.
An instance of IloNumToNumSegmentFunction represents a piecewise linear function that is defined
everywhere on an interval [xMin, xMax). Each interval [x1, x2) on which the function is linear is called a segment.

Note that if n is the number of segments of the function, the random access to a given segment (see the member
functions IloNumToNumSegmentFunction::addValue, IloNumToNumSegmentFunction::getArea,
IloNumToNumSegmentFunction::getValue, IloNumToNumSegmentFunction::setValue) has a
worst-case complexity in O(log(n)).

Furthermore, when two consecutive segments of the function are co-linear, these segments are merged so that
the function is always represented with the minimal number of segments.

See Also: IloNumToNumSegmentFunctionCursor

Constructor Summary

public IloNumToNumSegmentFunction(const IloEnv env, IloNum xmin=-IloInfinity,
IloNum xmax=IloInfinity, IloNum dval=0.0, const char * name=0)

public IloNumToNumSegmentFunction(const IloEnv env, const IloNumArray x, const
IloNumArray v, IloNum xmin=-IloInfinity, IloNum xmax=IloInfinity, const
char * name=0)

public IloNumToNumSegmentFunction(const IloNumToNumStepFunction & numFunction)

Method Summary

public void addValue(IloNum x1, IloNum x2, IloNum v) const

public IloNumToNumSegmentFunction copy() const

public void dilate(IloNum k) const

public IloNum getArea(IloNum x1, IloNum x2) const

public IloNum getDefinitionIntervalMax() const

public IloNum getDefinitionIntervalMin() const

public IloNum getMax(IloNum x1, IloNum x2) const

public IloNum getMin(IloNum x1, IloNum x2) const

public IloNum getValue(IloNum x) const

public void operator*=(IloNum k) const

public void operator+=(const IloNumToNumSegmentFunction fct)
const

public void operator-=(const IloNumToNumSegmentFunction fct)
const

public void setMax(const IloNumToNumSegmentFunction fct)
const

public void setMax(IloNum x1, IloNum v1, IloNum x2, IloNum
v2) const

public void setMax(IloNum x1, IloNum x2, IloNum v) const

606

public void setMin(const IloNumToNumSegmentFunction fct)
const

public void setMin(IloNum x1, IloNum v1, IloNum x2, IloNum
v2) const

public void setMin(IloNum x1, IloNum x2, IloNum v) const

public void setPeriodic(const IloNumToNumSegmentFunction f,
IloNum x0, IloNum n=IloInfinity, IloNum dval=0)
const

public void setPeriodicValue(IloNum x1, IloNum x2, const
IloNumToNumSegmentFunction f, IloNum offset=0)
const

public void setPoints(const IloNumArray x, const IloNumArray
v) const

public void setSlope(IloNum x1, IloNum x2, IloNum v, IloNum
slope) const

public void setValue(IloNum x1, IloNum x2, IloNum v) const

public void shift(IloNum dx, IloNum dval=0) const

Constructors

public IloNumToNumSegmentFunction(const IloEnv env, IloNum xmin=-IloInfinity,
IloNum xmax=IloInfinity, IloNum dval=0.0, const char * name=0)

This constructor creates a piecewise linear function that is constant. It is defined everywhere on the interval
[xmin,xmax) with the same value dval.

public IloNumToNumSegmentFunction(const IloEnv env, const IloNumArray x, const
IloNumArray v, IloNum xmin=-IloInfinity, IloNum xmax=IloInfinity, const char *
name=0)

This constructor creates a piecewise linear function defined everywhere on the interval [xmin, xmax) whose
segments are defined by the two argument arrays x and v. More precisely, the size n of array x must be equal to
the size of array v and, if the created function is defined on the interval [xmin,xmax), its values will be:

v[0] on interval [xmin, x[0]),•
v[i] + (t-x[i])*(v[i+1]-v[i])/(x[i+1]-x[i]) for t in [x[i], x[i+1]) for all i in [0,
n-2] such that x[i-1] <> x[i], and

•

v[n-1] on interval [x[n-1],xmax).•

public IloNumToNumSegmentFunction(const IloNumToNumStepFunction & numFunction)

This copy constructor creates a new piecewise linear function. The new piecewise linear function is a copy of the
step function numFunction. They point to different implementation objects.

Methods

public void addValue(IloNum x1, IloNum x2, IloNum v) const

This member function adds v to the value of the invoking piecewise linear function everywhere on the interval
[x1,x2).

607

public IloNumToNumSegmentFunction copy() const

This member function creates and returns a new function that is a copy of the invoking function.

public void dilate(IloNum k) const

This member function multiplies by k the scale of x for the invoking piecewise linear function. k must be a
nonnegative numeric value. More precisely, if the invoking function was defined over an interval [xMin,xMax),
it will be redefined over the interval [k*xMin,k*xMax) and the value at x will be the former value at x/k.

public IloNum getArea(IloNum x1, IloNum x2) const

This member function returns the area of the invoking piecewise linear function on the interval [x1,x2). An
instance of IloException is thrown if the interval [x1,x2) is not included in the definition interval of the
invoking function.

public IloNum getDefinitionIntervalMax() const

This member function returns the right-most point of the definition interval of the invoking piecewise linear
function.

public IloNum getDefinitionIntervalMin() const

This member function returns the left-most point of the definition interval of the invoking piecewise linear function.

public IloNum getMax(IloNum x1, IloNum x2) const

This member function returns the maximal value of the invoking piecewise linear function on the interval
[x1,x2). An instance of IloException is thrown if the interval [x1,x2) is not included in the definition
interval of the invoking function.

public IloNum getMin(IloNum x1, IloNum x2) const

This member function returns the minimal value of the invoking piecewise linear function on the interval
[x1,x2). An instance of IloException is thrown if the interval [x1,x2) is not included in the definition
interval of the invoking function.

public IloNum getValue(IloNum x) const

This member function returns the value of the function at point x.

public void operator*=(IloNum k) const

608

This operator multiplies by a factor k the value of the invoking piecewise linear function everywhere on the
definition interval.

public void operator+=(const IloNumToNumSegmentFunction fct) const

This operator adds the argument function fct to the invoking piecewise linear function.

public void operator-=(const IloNumToNumSegmentFunction fct) const

This operator subtracts the argument function fct from the invoking piecewise linear function.

public void setMax(const IloNumToNumSegmentFunction fct) const

This member function sets the value of the invoking piecewise linear function to be the maximum between the
current value and the value of fct everywhere on the definition interval of the invoking function. The interval of
definition of fct must be the same as that of the invoking piecewise linear function.

public void setMax(IloNum x1, IloNum v1, IloNum x2, IloNum v2) const

This member function sets the value of the invoking piecewise linear function to be the maximum between the
current value and the value of the linear function:

x --> v1 + (x-x1)*(v2-v1)/(x2-x1) everywhere on the interval [x1, x2).

public void setMax(IloNum x1, IloNum x2, IloNum v) const

This member function sets the value of the invoking piecewise linear function to be the maximum between the
current value and v everywhere on the interval [x1,x2).

public void setMin(const IloNumToNumSegmentFunction fct) const

This member function sets the value of the invoking piecewise linear function to be the minimum between the
current value and the value of fct everywhere on the definition interval of the invoking function. The definition
interval of fct must be the same as the one of the invoking piecewise linear function.

public void setMin(IloNum x1, IloNum v1, IloNum x2, IloNum v2) const

This member function sets the value of the invoking piecewise linear function to be the minimum between the
current value and the value of the linear function:

x --> v1 + (x-x1)*(v2-v1)/(x2-x1) everywhere on the interval [x1,x2).

public void setMin(IloNum x1, IloNum x2, IloNum v) const

This member function sets the value of the invoking piecewise linear function to be the minimum between the
current value and v everywhere on the interval [x1,x2).

609

public void setPeriodic(const IloNumToNumSegmentFunction f, IloNum x0, IloNum
n=IloInfinity, IloNum dval=0) const

This member function initializes the invoking function as a piecewise linear function that repeats the piecewise
linear function f, n times after x0. More precisely, if f is defined on [xfpMin,xfpMax) and if the invoking
function is defined on [xMin,xMax), the value of the invoking function will be:

dval on [xMin, x0),•
f((x-x0) % (xfpMax-xfpMin)) for x in [x0, Min(x0+n*(xfpMax-xfpMin), xMax)), and•
dval on [Min(x0+n*(xfpMax-xfpMin), xMax), xMax)•

public void setPeriodicValue(IloNum x1, IloNum x2, const IloNumToNumSegmentFunction
f, IloNum offset=0) const

This member function changes the value of the invoking function on the interval [x1,x2). On this interval, the
invoking function is set to equal a repetition of the pattern function f with an initial offset of offset. The invoking
function is not modified outside the interval [x1,x2). More precisely, if [min,max) denotes the definition
interval of f, for all t in [x1,x2), the invoking function at t is set to equal f(min +
(offset+t-x1)%(max-min))) where % denotes the modulo operator. By default, the offset is equal to 0.

public void setPoints(const IloNumArray x, const IloNumArray v) const

This member function initializes the invoking function as a piecewise linear function whose segments are defined
by the two argument arrays x and v.

More precisely, the size n of array x must be equal to the size of array v, and if the created function is defined on
the interval [xmin,xmax), its values will be:

v[0] on interval [xmin, x[0]),•
v[i] + (t-x[i])*(v[i+1]-v[i])/(x[i+1]-x[i]) for t in [x[i], x[i+1]) for all i in [0,
n-2] such that x[i-1] ≠ x[i], and

•

v[n-1] on interval [x[n-1],xmax).•

public void setSlope(IloNum x1, IloNum x2, IloNum v, IloNum slope) const

This member function sets the value of the invoking piecewise linear function equal to f, associating for each x in
[x1,x2) -> f(x) = v + slope * (x-x1).

public void setValue(IloNum x1, IloNum x2, IloNum v) const

This member function sets the value of the invoking piecewise linear function to be constant and equal to v on
the interval [x1,x2).

public void shift(IloNum dx, IloNum dval=0) const

This member function shifts the invoking function from dx to the right if dx > 0 or -dx to the left if dx < 0. It
has no effect if dx = 0. More precisely, if the invoking function is defined on [xMin,xMax) and dx > 0, the
new value of the invoking function is:

dval on the interval [xMin,xMin+dx),•

610

for all x in [xMin+dx,xMax), the former value at x-dx.•

If dx < 0, the new value of the invoking function is:

for all x in [xMin,xMax+dx), the former value at x-dx,•
dval on the interval [xMax+dx,xMax).•

611

Class IloNumToNumSegmentFunctionCursor
Definition file: ilconcert/ilosegfunc.h

Cursor over segments of a piecewise linear function.
An instance of the class IloNumToNumSegmentFunctionCursor allows you to inspect the contents of an
IloNumToNumSegmentFunction. A segment of a piecewise linear function is defined as an interval [x1, x2)
over which the function is linear. Cursors are intended to iterate forward or backward over the segments of a
piecewise linear function.

Note

The structure of the piecewise linear function cannot be changed while a cursor is being used to inspect it.
Therefore, functions that change the structure of the piecewise linear function, such as
IloNumToNumStepFunction::setValue, should not be called while the cursor is being used.

See Also: IloNumToNumSegmentFunction

Constructor and Destructor Summary

public IloNumToNumSegmentFunctionCursor(const IloNumToNumSegmentFunction, IloNum
x)

public IloNumToNumSegmentFunctionCursor(const IloNumToNumSegmentFunctionCursor &)

Method Summary

public IloNum getSegmentMax() const

public IloNum getSegmentMin() const

public IloNum getValue(IloNum t) const

public IloNum getValueLeft() const

public IloNum getValueRight() const

public IloBool ok() const

public void operator++()

public void operator--()

public void seek(IloNum)

Constructors and Destructors

public IloNumToNumSegmentFunctionCursor(const IloNumToNumSegmentFunction, IloNum x)

This constructor creates a cursor to inspect the piecewise linear function argument. This cursor lets you iterate
forward or backward over the segments of the function. The cursor initially specifies the segment of the function
that contains x.

Note that if n is the number of steps of the function given as argument, the worst-case complexity of this
constructor is O(log(n)).

public IloNumToNumSegmentFunctionCursor(const IloNumToNumSegmentFunctionCursor &)

612

This constructor creates a new cursor that is a copy of the argument cursor. The new cursor initially specifies
the same segment and the same function as the argument cursor.

Methods

public IloNum getSegmentMax() const

This member function returns the right-most point of the segment currently specified by the cursor.

public IloNum getSegmentMin() const

This member function returns the left-most point of the segment currently specified by the cursor.

public IloNum getValue(IloNum t) const

This member function returns the value of the piecewise linear function at time t. t must be between the
left-most and the right-most point of the segment currently specified by the cursor.

public IloNum getValueLeft() const

This member function returns the value of the function at the left-most point of the segment currently specified by
the cursor.

public IloNum getValueRight() const

This member function returns the value of the function at the right-most point of the segment currently specified
by the cursor.

public IloBool ok() const

This member function returns IloFalse if the cursor does not currently specify a segment included in the
definition interval of the piecewise linear function. Otherwise, it returns IloTrue.

public void operator++()

This operator moves the cursor to the segment adjacent to the current step (forward move).

public void operator--()

This operator moves the cursor to the segment adjacent to the current step (backward move).

public void seek(IloNum)

613

This member function sets the cursor to specify the segment of the function that contains the argument. An
IloException is thrown if the argument does not belong to the definition interval of the piecewise linear
function associated with the invoking cursor.

614

Class IloNumToNumStepFunction
Definition file: ilconcert/ilonumfunc.h

Represents a step function that is defined everywhere on an interval.
An instance of IloNumToNumStepFunction represents a step function that is defined everywhere on an
interval [xMin, xMax). Each interval [x1, x2) on which the function has the same value is called a step.

Note that if n is the number of steps of the function, the random access to a given step (see the member
functions IloNumToNumStepFunction::addValue, IloNumToNumStepFunction::getArea,
IloNumToNumStepFunction::getValue, IloNumToNumStepFunction::setValue) has a worst-case
complexity in O(log(n)).

Furthermore, when two consecutive steps of the function have the same value, these steps are merged so that
the function is always represented with the minimal number of steps.

See Also: IloNumToNumStepFunctionCursor

Constructor Summary

public IloNumToNumStepFunction(const IloEnv env, IloNum xmin=-IloInfinity, IloNum
xmax=IloInfinity, IloNum dval=0.0, const char * name=0)

public IloNumToNumStepFunction(const IloEnv env, const IloNumArray x, const
IloNumArray v, IloNum xmin=-IloInfinity, IloNum xmax=IloInfinity, const
char * name=0)

Method Summary

public void addValue(IloNum x1, IloNum x2, IloNum v) const

public IloNumToNumStepFunction copy() const

public void dilate(IloNum k) const

public IloNum getArea(IloNum x1, IloNum x2) const

public IloNum getDefinitionIntervalMax() const

public IloNum getDefinitionIntervalMin() const

public IloNum getMax(IloNum x1, IloNum x2) const

public IloNum getMin(IloNum x1, IloNum x2) const

public IloNum getValue(IloNum x) const

public void operator*=(IloNum k) const

public void operator+=(const IloNumToNumStepFunction fct) const

public void operator-=(const IloNumToNumStepFunction fct) const

public void setMax(const IloNumToNumStepFunction fct) const

public void setMax(IloNum x1, IloNum x2, IloNum v) const

public void setMin(const IloNumToNumStepFunction fct) const

public void setMin(IloNum x1, IloNum x2, IloNum v) const

public void setPeriodic(const IloNumToNumStepFunction f, IloNum
x0, IloNum n=IloInfinity, IloNum dval=0) const

public void

615

setPeriodicValue(IloNum x1, IloNum x2, const
IloNumToNumStepFunction f, IloNum offset=0) const

public void setSteps(const IloNumArray x, const IloNumArray v)
const

public void setValue(IloNum x1, IloNum x2, IloNum v) const

public void shift(IloNum dx, IloNum dval=0) const

Constructors

public IloNumToNumStepFunction(const IloEnv env, IloNum xmin=-IloInfinity, IloNum
xmax=IloInfinity, IloNum dval=0.0, const char * name=0)

This constructor creates a step function defined everywhere on the interval [xmin, xmax) with the same value
dval.

public IloNumToNumStepFunction(const IloEnv env, const IloNumArray x, const
IloNumArray v, IloNum xmin=-IloInfinity, IloNum xmax=IloInfinity, const char *
name=0)

This constructor creates a step function defined everywhere on the interval [xmin, xmax) whose steps are
defined by the two argument arrays x and v. More precisely, if n is the size of array x, size of array v must be
n+1 and, if the created function is defined on the interval [xmin,xmax), its values will be:

v[0] on interval [xmin,x[0]),•
v[i] on interval [x[i-1],x[i]) for all i in [0,n-1], and•
v[n] on interval [x[n-1],xmax).•

The values in the array are copied, and no modification to the arrays will be taken into account once the
constructor has been called.

Methods

public void addValue(IloNum x1, IloNum x2, IloNum v) const

This member function adds v to the value of the invoking step function everywhere on the interval [x1, x2).

public IloNumToNumStepFunction copy() const

This member function creates and returns a new function that is a copy of the invoking function.

public void dilate(IloNum k) const

This member function multiplies by k the scale of x for the invoking step function. k must be a nonnegative
numeric value. More precisely, if the invoking function was defined over an interval [xMin, xMax), it will be
redefined over the interval [k*xMin, k*xMax) and the value at x will be the former value at x/k.

public IloNum getArea(IloNum x1, IloNum x2) const

616

This member function returns the sum of the invoking step function on the interval [x1, x2). An instance of
IloException is thrown if the interval [x1, x2) is not included in the definition interval of the invoking
function.

public IloNum getDefinitionIntervalMax() const

This member function returns the right-most point of the definition interval of the invoking step function.

public IloNum getDefinitionIntervalMin() const

This member function returns the left-most point of the definition interval of the invoking step function.

public IloNum getMax(IloNum x1, IloNum x2) const

This member function returns the maximal value of the invoking step function on the interval [x1, x2). An
instance of IloException is thrown if the interval [x1, x2) is not included in the definition interval of the
invoking function.

public IloNum getMin(IloNum x1, IloNum x2) const

This member function returns the minimal value of the invoking step function on the interval [x1, x2). An
instance of IloException is thrown if the interval [x1, x2) is not included in the definition interval of the
invoking function.

public IloNum getValue(IloNum x) const

This member function returns the value of the invoking step function at x. An instance of IloException is
thrown if x does not belong to the definition interval of the invoking function.

public void operator*=(IloNum k) const

This operator multiplies by a factor k the value of the invoking step function everywhere on the definition interval.

public void operator+=(const IloNumToNumStepFunction fct) const

This operator adds the argument function fct to the invoking step function.

public void operator-=(const IloNumToNumStepFunction fct) const

This operator subtracts the argument function fct from the invoking step function.

public void setMax(const IloNumToNumStepFunction fct) const

617

This member function sets the value of the invoking step function to be the maximum between the current value
and the value of fct everywhere on the definition interval of the invoking function. The interval of definition of
fct must be the same as that of the invoking step function.

public void setMax(IloNum x1, IloNum x2, IloNum v) const

This member function sets the value of the invoking step function to be the maximum between the current value
and v everywhere on the interval [x1, x2).

public void setMin(const IloNumToNumStepFunction fct) const

This member function sets the value of the invoking step function to be the minimum between the current value
and the value of fct everywhere on the definition interval of the invoking function. The definition interval of fct
must be the same as the one of the invoking step function.

public void setMin(IloNum x1, IloNum x2, IloNum v) const

This member function sets the value of the invoking step function to be the minimum between the current value
and v everywhere on the interval [x1, x2).

public void setPeriodic(const IloNumToNumStepFunction f, IloNum x0, IloNum
n=IloInfinity, IloNum dval=0) const

This member function initializes the invoking function as a step function that repeats the step function f, n times
after x0. More precisely, if f is defined on [xfpMin,xfpMax) and if the invoking function is defined on
[xMin,xMax), the value of the invoking function will be:

dval on [xMin, x0),•
fp((x-x0) % (xfpMax-xfpMin)) for x in [x0, Min(x0+n*(xfpMax-xfpMin), xMax)), and•
dval on [Min(x0+n*(xfpMax-xfpMin), xMax), xMax)•

public void setPeriodicValue(IloNum x1, IloNum x2, const IloNumToNumStepFunction f,
IloNum offset=0) const

This member function changes the value of the invoking function on the interval [x1,x2). On this interval, the
invoking function is set to equal a repetition of the pattern function f with an initial offset of offset. The invoking
function is not modified outside the interval [x1,x2). More precisely, if [min,max) denotes the definition
interval of f, for all t in [x1,x2), the invoking function at t is set to equal f(min +
(offset+t-x1)%(max-min))) where % denotes the modulo operator. By default, the offset is equal to 0.

public void setSteps(const IloNumArray x, const IloNumArray v) const

This member function initializes the invoking function as a step function whose steps are defined by the two
arguments arrays x and v. More precisely, if n is the size of array x, size of array v must be n+1 and, if the
invoking function is defined on the interval [xMin,xMax), its values will be:

v[0] on interval [xMin,x[0]),•
v[i] on interval [x[i-1],x[i]) for all i in [0,n-1], and•
v[n] on interval [x[n-1],xMax).•

618

public void setValue(IloNum x1, IloNum x2, IloNum v) const

This member function sets the value of the invoking step function to be v on the interval [x1, x2).

public void shift(IloNum dx, IloNum dval=0) const

This member function shifts the invoking function from dx to the right if dx > 0 or from -dx to the left if dx < 0.
It has no effect if dx = 0. More precisely, if the invoking function is defined on [xMin,xMax) and dx > 0, the
new value of the invoking function is:

dval on the interval [xMin, xMin+dx),•
for all x in [xMin+dx, xMax), the former value at x-dx.•

If dx < 0, the new value of the invoking function is:

for all x in [xMin, xMax+dx), the former value at x-dx,•
dval on the interval [xMax+dx,xMax).•

619

Class IloNumToNumStepFunctionCursor
Definition file: ilconcert/ilonumfunc.h

Allows you to inspect the contents of an instance of IloNumToNumStepFunction.
An instance of the class IloNumToNumStepFunctionCursor allows you to inspect the contents of an instance
of IloNumToNumStepFunction. A step of a step function is defined as an interval [x1,x2) over which the value
of the function is the same. Cursors are intended to iterate forward or backward over the steps of a step function.

Note

The structure of the step function cannot be changed while a cursor is being used to inspect it. Therefore,
methods that change the structure of the step function, such as IloNumToNumStepFunction::setValue,
should not be called while the cursor is being used.

See Also: IloNumToNumStepFunction

Constructor and Destructor Summary

public IloNumToNumStepFunctionCursor(const IloNumToNumStepFunction, IloNum x)

public IloNumToNumStepFunctionCursor(const IloNumToNumStepFunctionCursor &)

Method Summary

public IloNum getSegmentMax() const

public IloNum getSegmentMin() const

public IloNum getValue() const

public IloBool ok() const

public void operator++()

public void operator--()

public void seek(IloNum)

Constructors and Destructors

public IloNumToNumStepFunctionCursor(const IloNumToNumStepFunction, IloNum x)

This constructor creates a cursor to inspect the step function argument. This cursor lets you iterate forward or
backward over the steps of the function. The cursor initially specifies the step of the function that contains x.

Note that if n is the number of steps of the function given as argument, the worst-case complexity of this
constructor is O(log(n)).

public IloNumToNumStepFunctionCursor(const IloNumToNumStepFunctionCursor &)

This constructor creates a new cursor that is a copy of the argument cursor. The new cursor initially specifies
the same step and the same function as the argument cursor.

620

Methods

public IloNum getSegmentMax() const

This member function returns the right-most point of the step currently specified by the cursor.

public IloNum getSegmentMin() const

This member function returns the left-most point of the step currently specified by the cursor.

public IloNum getValue() const

This member function returns the value of the step currently specified by the cursor.

public IloBool ok() const

This member function returns IloFalse if the cursor does not currently specify a step included in the definition
interval of the step function. Otherwise, it returns IloTrue.

public void operator++()

This operator moves the cursor to the step adjacent to the current step (forward move).

public void operator--()

This operator moves the cursor to the step adjacent to the current step (backward move).

public void seek(IloNum)

This member function sets the cursor to specify the step of the function that contains the argument. An
IloException is thrown if the argument does not belong to the definition interval of the step function
associated with the invoking cursor.

621

Class IloNumVar
Definition file: ilconcert/iloexpression.h

An instance of this class represents a numeric variable in a model.
An instance of this class represents a numeric variable in a model. A numeric variable may be either an integer
variable or a floating-point variable; that is, a numeric variable has a type, a value of the nested enumeration
IloNumVar::Type. By default, its type is Float. It also has a lower and upper bound. A numeric variable
cannot assume values less than its lower bound, nor greater than its upper bound.

If you are looking for a class of variables that can assume only constrained integer values, consider the class
IloIntVar. If you are looking for a class of binary decision variables that can assume only the values 0 (zero)
or 1 (one), then consider the class IloBoolVar.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

Programming Hint

For each enumerated value in the nested enumeration IloNumVar::Type, Concert Technology offers an
equivalent predefined C++ #define to make programming easier. For example, in your applications, you may
write either statement:

 IloNumVar x(env, 0, 17, IloNumVar::Int); // using the enumeration

 IloNumVar x(env, 0, 17, ILOINT); // using the#define

Note

When numeric bounds are given to an integer variable (an instance of IloIntVar or IloNumVar with Type
= Int) in the constructors or via a modifier (setUB, setLB, setBounds), they are inwardly rounded to an
integer value. LB is rounded down and UB is rounded up.

See Also: IloBoolVar, IloIntVar, IloModel, IloNumVarArray, IloNumVar::Type

Constructor Summary

public IloNumVar()

public IloNumVar(IloNumVarI * impl)

public IloNumVar(const IloEnv env, IloNum lb=0, IloNum ub=IloInfinity,
IloNumVar::Type type=Float, const char * name=0)

public IloNumVar(const IloEnv env, IloNum lowerBound, IloNum upperBound, const
char * name)

public IloNumVar(const IloAddNumVar & var, IloNum lowerBound=0.0, IloNum
upperBound=IloInfinity, IloNumVar::Type type=Float, const char * name=0)

public IloNumVar(const IloEnv env, const IloNumArray values, IloNumVar::Type
type=Float, const char * name=0)

public IloNumVar(const IloAddNumVar & var, const IloNumArray values,
IloNumVar::Type type=Float, const char * name=0)

622

public IloNumVar(const IloConstraint constraint)

public IloNumVar(const IloNumRange coll, const char * name=0)

Method Summary

public IloNumVarI * getImpl() const

public IloNum getLB() const

public void getPossibleValues(IloNumArray values) const

public IloNumVar::Type getType() const

public IloNum getUB() const

public void setBounds(IloNum lb, IloNum ub) const

public void setLB(IloNum num) const

public void setPossibleValues(const IloNumArray values) const

public void setUB(IloNum num) const

Inherited Methods from IloNumExprArg

getImpl

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

Inner Enumeration

IloNumVar::Type An enumeration for the class IloNumVar.

Constructors

public IloNumVar()

This constructor creates an empty handle. You must initialize it before you use it.

public IloNumVar(IloNumVarI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IloNumVar(const IloEnv env, IloNum lb=0, IloNum ub=IloInfinity,
IloNumVar::Type type=Float, const char * name=0)

This constructor creates a constrained numeric variable and makes it part of the environment env. By default, the
numeric variable ranges from 0.0 (zero) to the symbolic constant IloInfinity, but you can specify other upper
and lower bounds yourself. By default, the numeric variable assumes floating-point values. However, you can
constrain it to be an integer by setting its type = Int. By default, its name is the empty string, but you can
specify a name of your own choice.

public IloNumVar(const IloEnv env, IloNum lowerBound, IloNum upperBound, const char
* name)

This constructor creates a constrained numeric variable and makes it part of the environment env. The bounds of
the variable are set by lowerBound and upperBound. By default, its name is the empty string, but you can
specify a name of your own choice.

623

public IloNumVar(const IloAddNumVar & var, IloNum lowerBound=0.0, IloNum
upperBound=IloInfinity, IloNumVar::Type type=Float, const char * name=0)

This constructor creates a constrained numeric variable in column format. For more information on adding
columns to a model, refer to the concept Column-Wise Modeling.

public IloNumVar(const IloEnv env, const IloNumArray values, IloNumVar::Type
type=Float, const char * name=0)

This constructor creates a constrained discrete numeric variable and makes it part of the environment env. The
new discrete variable will be limited to values in the set specified by the array values. By default, its name is the
empty string, but you can specify a name of your own choice. You can use the member function
IloNumVar::setPossibleValues with instances created by this constructor.

public IloNumVar(const IloAddNumVar & var, const IloNumArray values,
IloNumVar::Type type=Float, const char * name=0)

This constructor creates a constrained discrete numeric variable from var by limiting its domain to the values
specified in the array values. You may use the member function IloNumVar::setPossibleValues with
instances created by this constructor.

public IloNumVar(const IloConstraint constraint)

This constructor creates a constrained numeric variable which is equal to the truth value of constraint. The
truth value of constraint is either 0 for IloFalse or 1 for IloTrue. You can use this constructor to cast a
constraint to a constrained numeric variable. That constrained numeric variable can then be used like any other
constrained numeric variable. It is thus possible to express sums of constraints, for example. The following line
expresses the idea that all three variables cannot be equal:

 model.add((x != y) + (y != z) + (z != x) >= 2);

public IloNumVar(const IloNumRange coll, const char * name=0)

This constructor creates a constrained discrete numeric variable from the given collection

This constructor creates a constrained discrete numeric variable from the given collection

Methods

public IloNumVarI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloNum getLB() const

This member function returns the lower bound of the invoking numeric variable.

public void getPossibleValues(IloNumArray values) const

624

This member function accesses the possible values of the invoking numeric variable and puts them in the array
values.

public IloNumVar::Type getType() const

This member function returns the type of the invoking numeric variable, specifying whether it is integer (Int) or
floating-point (Float).

public IloNum getUB() const

This member function returns the upper bound of the invoking numeric variable.

public void setBounds(IloNum lb, IloNum ub) const

This member function sets lb as the lower bound and ub as the upper bound of the invoking numeric variable.

Note

The member function setBounds notifies Concert Technology algorithms about this change of bounds in this
numeric variable.

public void setLB(IloNum num) const

This member function sets num as the lower bound of the invoking numeric variable.

Note

The member function setLB notifies Concert Technology algorithms about this change of bound in this
numeric variable.

public void setPossibleValues(const IloNumArray values) const

This member function sets values as the domain of the invoking discrete numeric variable. This member
function can be called only on instances of IloNumVar that have been created with one of the two discrete
constructors; that is, instances of IloNumVar which have been defined by an explicit array of discrete values.

Note

The member function setPossibleValues notifies Concert Technology algorithms about this change of
domain in this discrete numeric variable.

public void setUB(IloNum num) const

This member function sets num as the upper bound of the invoking numeric variable.

625

Note

The member function setUB notifies Concert Technology algorithms about this change of bound in this
numeric variable.

Inner Enumerations

Enumeration Type

Definition file: ilconcert/iloexpression.h

An enumeration for the class IloNumVar.
This nested enumeration enables you to specify whether an instance of IloNumVar is of type integer (Int),
Boolean (Bool), or floating-point (Float).

Programming Hint

For each enumerated value in IloNumVar::Type, there is a predefined equivalent C++ #define in the
Concert Technology include files to make programming easier. For example, instead of writing
IloNumVar::Int in your application, you can write ILOINT. Likewise, ILOFLOAT is defined for
IloNumVar::Float and ILOBOOL for IloNumVar::Bool.

See Also: IloNumVar

Fields:

Int = 1

Float = 2

Bool = 3

626

Class IloNumVarArray
Definition file: ilconcert/iloexpression.h

The array class of IloNumVar.
For each basic type, Concert Technology defines a corresponding array class. IloNumVarArray is the array
class of the numeric variable class for a model.

Instances of IloNumVarArray are extensible. That is, you can add more elements to such an array.
References to an array change whenever an element is added to or removed from the array.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

See Also: IloAllDiff, IloModel, IloNumVar, operator>>, operator<<

Constructor Summary

public IloNumVarArray(IloDefaultArrayI * i=0)

public IloNumVarArray(const IloEnv env, IloInt n=0)

public IloNumVarArray(const IloEnv env, const IloNumArray lb, const IloNumArray
ub, IloNumVar::Type type=ILOFLOAT)

public IloNumVarArray(const IloEnv env, IloNum lb, const IloNumArray ub,
IloNumVar::Type type=ILOFLOAT)

public IloNumVarArray(const IloEnv env, const IloNumArray lb, IloNum ub,
IloNumVar::Type type=ILOFLOAT)

public IloNumVarArray(const IloEnv env, IloInt n, IloNum lb, IloNum ub,
IloNumVar::Type type=ILOFLOAT)

public IloNumVarArray(const IloEnv env, const IloNumColumnArray columnarray,
IloNumVar::Type type=ILOFLOAT)

public IloNumVarArray(const IloEnv env, const IloNumColumnArray columnarray, const
IloNumArray lb, const IloNumArray ub, IloNumVar::Type type=ILOFLOAT)

Method Summary

public void add(IloInt more, const IloNumVar x)

public void add(const IloNumVar x)

public void add(const IloNumVarArray array)

public void endElements()

public IloNumExprArg operator[](IloIntExprArg anIntegerExpr) const

public void setBounds(const IloNumArray lb, const IloNumArray ub)

public IloIntExprArray toIntExprArray() const

public IloIntVarArray toIntVarArray() const

public IloNumExprArray toNumExprArray() const

627

Inherited Methods from IloNumExprArray

add, add, add, endElements, operator[]

Inherited Methods from IloExtractableArray

add, add, add, endElements, setNames

Constructors

public IloNumVarArray(IloDefaultArrayI * i=0)

This constructor creates an empty extensible array of numeric variables. You cannot create instances of the
undocumented class IloDefaultArrayI. As an argument in this default constructor, it allows you to pass 0
(zero) optionally or to use 0 (zero) as a default value of an argument in a constructor.

public IloNumVarArray(const IloEnv env, IloInt n=0)

This constructor creates an extensible array of n numeric variables in env. Initially, the n elements are empty
handles.

public IloNumVarArray(const IloEnv env, const IloNumArray lb, const IloNumArray ub,
IloNumVar::Type type=ILOFLOAT)

This constructor creates an extensible array of numeric variables in env with lower and upper bounds and type
as specified. The instances of IloNumVar to fill this array are constructed at the same time. The length of the
array lb must be the same as the length of the array ub. In other words, lb.getSize == ub.getSize. This
constructor will construct an array with the number of elements in the array ub.

public IloNumVarArray(const IloEnv env, IloNum lb, const IloNumArray ub,
IloNumVar::Type type=ILOFLOAT)

This constructor creates an extensible array of numeric variables in env with lower and upper bounds and type
as specified. The instances of IloNumVar to fill this array are constructed at the same time. The length of the
new array will be the same as the length of the array ub.

public IloNumVarArray(const IloEnv env, const IloNumArray lb, IloNum ub,
IloNumVar::Type type=ILOFLOAT)

This constructor creates an extensible array of numeric variables in env with lower and upper bounds and type
as specified. The instances of IloNumVar to fill this array are constructed at the same time.

public IloNumVarArray(const IloEnv env, IloInt n, IloNum lb, IloNum ub,
IloNumVar::Type type=ILOFLOAT)

This constructor creates an extensible array of n numeric variables in env with lower and upper bounds and type
as specified. The instances of IloNumVar to fill this array are constructed at the same time.

public IloNumVarArray(const IloEnv env, const IloNumColumnArray columnarray,
IloNumVar::Type type=ILOFLOAT)

628

This constructor creates an extensible array of numeric variables with type as specified. The instances of
IloNumVar to fill this array are constructed at the same time.

public IloNumVarArray(const IloEnv env, const IloNumColumnArray columnarray, const
IloNumArray lb, const IloNumArray ub, IloNumVar::Type type=ILOFLOAT)

This constructor creates an extensible array of numeric variables with lower and upper bounds and type as
specified. The instances of IloNumVar to fill this array are constructed at the same time.

Methods

public void add(IloInt more, const IloNumVar x)

This member function appends x to the invoking array multiple times. The argument more specifies how many
times.

public void add(const IloNumVar x)

This member function appends x to the invoking array.

public void add(const IloNumVarArray array)

This member function appends the elements in array to the invoking array.

public void endElements()

This member function calls IloExtractable::end for each of the elements in the invoking array. This deletes
all the extractables identified by the array, leaving the handles in the array intact. This member function is the
recommended way to delete the elements of an array.

public IloNumExprArg operator[](IloIntExprArg anIntegerExpr) const

This subscripting operator returns an expression argument for use in a constraint or expression. For clarity, let's
call A the invoking array. When anIntegerExpr is bound to the value i, the domain of the expression is the
domain of A[i]. More generally, the domain of the expression is the union of the domains of the expressions
A[i] where the i are in the domain of anIntegerExpr.

This operator is also known as an element expression.

public void setBounds(const IloNumArray lb, const IloNumArray ub)

For each element in the invoking array, this member function sets lb as the lower bound and ub as the upper
bound of the corresponding numeric variable in the invoking array.

Note

629

The member function setBounds notifies Concert Technology algorithms about this change of bounds in this
array of numeric variables.

public IloIntExprArray toIntExprArray() const

This member function copies the invoking array to a new IloIntExprArray, checking the type of the variables
during the copy.

public IloIntVarArray toIntVarArray() const

This member function copies the invoking array to a new IloIntVarArray, checking the type of the variables
during the copy.

public IloNumExprArray toNumExprArray() const

This member function copies the invoking array to a new IloNumExprArray, checking the type of the variables
during the copy.

630

Class IloObjective
Definition file: ilconcert/ilolinear.h

An instance of this class is an objective in a model.
An objective consists of its sense (specifying whether it is a minimization or maximization) and an expression.
The expression may be a constant.

An objective belongs to the environment that the variables in its expression belong to. Generally, you will create
an objective, add it to a model, and extract the model for an algorithm.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

What Is Extracted

All the variables (that is, instances of IloNumVar or one of its subclasses) in the objective (an instance of
IloObjective) will be extracted when an algorithm such as IloCplex, documented in the IBM ILOG CPLEX
Reference Manual, extracts the objective.

Multiple Objectives

You may create more than one objective in a model, for example, by creating more than one group. However,
certain algorithms, such as an instance of IloCplex, will throw an exception (on a platform that supports C++
exceptions, when exceptions are enabled) if you attempt to extract more than one objective at a time.

Also see the functions IloMaximize and IloMinimize for “short cuts” to create objectives.

Normalizing Linear Expressions: Reducing the Terms

Normalizing is sometimes known as reducing the terms of a linear expression.

Linear expressions consist of terms made up of constants and variables related by arithmetic operations; for
example, x + 3y is a linear expression of two terms consisting of two variables. In some linear expressions, a
given variable may appear in more than one term, for example, x + 3y +2x. Concert Technology has more than
one way of dealing with linear expressions in this respect, and you control which way Concert Technology treats
linear expressions from your application.

In one mode (the default mode), Concert Technology analyzes expressions that your application passes it and
attempts to reduce them so that a given variable appears in only one term in the expression. You set this mode
with the member function IloEnv::setNormalizer.

Certain constructors and member functions in this class check this setting in the model and behave accordingly:
they attempt to reduce expressions. This mode may require more time during preliminary computation, but it
avoids the possibility of an assertion failing for certain member functions of this class in case of duplicates.

In the other mode, Concert Technology assumes that no variable appears in more than one term in any of the
linear expressions that your application passes to Concert Technology. We call this mode assume no duplicates.
You set this mode with the member function IloEnv::setNormalizer.

Certain constructors and member functions in this class check this setting in the model and behave accordingly:
they assume that no variable appears in more than one term in an expression. This mode may save time during
computation, but it entails the risk that an expression may contain one or more variables, each of which appears
in one or more terms. This situation will cause certain assert statements in Concert Technology to fail if you do
not compile with the flag -DNDEBUG.

631

See Also: IloMaximize, IloMinimize, IloModel, IloObjective::Sense

Constructor Summary

public IloObjective()

public IloObjective(IloObjectiveI * impl)

public IloObjective(const IloEnv env, IloNum constant=0.0, IloObjective::Sense
sense=Minimize, const char * name=0)

public IloObjective(const IloEnv env, const IloNumExprArg expr,
IloObjective::Sense sense=Minimize, const char * name=0)

Method Summary

public IloNum getConstant() const

public IloNumExprArg getExpr() const

public IloObjectiveI * getImpl() const

public IloObjective::Sense getSense() const

public IloAddValueToObj operator()(IloNum value)

public IloAddValueToObj operator()()

public void setConstant(IloNum constant)

public void setExpr(const IloNumExprArg)

public void setLinearCoef(const IloNumVar var, IloNum value)

public void setLinearCoefs(const IloNumVarArray vars, const
IloNumArray values)

public void setSense(IloObjective::Sense sense)

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

Inner Enumeration

IloObjective::Sense Specifies objective as minimization or maximization.

Constructors

public IloObjective()

This constructor creates an empty handle. You must initialize it before you use it.

public IloObjective(IloObjectiveI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IloObjective(const IloEnv env, IloNum constant=0.0, IloObjective::Sense
sense=Minimize, const char * name=0)

This constructor creates an objective consisting of a constant and belonging to env. The sense of the objective
(whether it is a minimization or maximization) is specified by sense; by default, it is a minimization. You may
supply a name for the objective; by default, its name is the empty string. This constructor is useful when you want
to create an empty objective and fill it later by column-wise modeling.

632

public IloObjective(const IloEnv env, const IloNumExprArg expr, IloObjective::Sense
sense=Minimize, const char * name=0)

This constructor creates an objective to add to a model from expr.

After you create an objective from an expression with this constructor, you must use the member function add
explicitly to add your objective to your model or to a group in order for the objective to be taken into account.

Note

When it accepts an expression as an argument, this constructor checks the setting of IloEnv::setNormalizer to
determine whether to assume the expression has already been reduced or to reduce the expression before
using it.

Methods

public IloNum getConstant() const

This member function returns the constant term from the expression of the invoking objective.

public IloNumExprArg getExpr() const

This member function returns the expression of the invoking IloObjective object.

public IloObjectiveI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public IloObjective::Sense getSense() const

This member function returns the sense of the invoking objective, specifying whether the objective is a
minimization (Minimize) or a maximization (Maximize).

public IloAddValueToObj operator()(IloNum value)

This casting operator uses a floating-point value to create an instance of IloAddNumVar or one of its
subclasses and to add that value to that instance. See the concept Column-Wise Modeling for an explanation of
how to use this operator in column-wise modeling.

public IloAddValueToObj operator()()

This casting operator uses a floating-point value to create an instance of IloAddNumVar or one of its
subclasses and to add that value to that instance. If no argument is given, it assumes 1.0. See the concept
Column-Wise Modeling for an explanation of how to use this operator in column-wise modeling.

public void setConstant(IloNum constant)

633

This member function sets constant as the constant term in the invoking objective, and it creates the
appropriate instance of the undocumented class IloChange to notify algorithms about this change of an
extractable object in the model.

Note

The member function setConstant notifies Concert Technology algorithms about this change of this invoking
object.

public void setExpr(const IloNumExprArg)

This member function sets the expression of the invoking IloObjective object.

Note

The member function setExpr notifies Concert Technology algorithms about this change of this invoking
object.

public void setLinearCoef(const IloNumVar var, IloNum value)

This member function sets value as the linear coefficient of the variable var in the invoking objective, and it
creates the appropriate instance of the undocumented class IloChange to notify algorithms about this change
of an extractable object in the model.

Note

The member function setLinearCoef notifies Concert Technology algorithms about this change of this
invoking object.

If you attempt to use setLinearCoef on a nonlinear expression, it will throw an exception on platforms that
support C++ exceptions when exceptions are enabled.

public void setLinearCoefs(const IloNumVarArray vars, const IloNumArray values)

For each of the variables in vars, this member function sets the corresponding value of values (whether
integer or floating-point) as its linear coefficient in the invoking objective, and it creates the appropriate instance
of the undocumented class IloChange to notify algorithms about this change of an extractable object in the
model.

Note

The member function setLinearCoefs notifies Concert Technology algorithms about this change of this
invoking object.

If you attempt to use setLinearCoef on a non linear expression, Concert Technology will throw an exception
on platforms that support C++ exceptions when exceptions are enabled.

public void setSense(IloObjective::Sense sense)

This member function sets sense to specify whether the invoking objective is a maximization (Maximize) or
minimization (Minimize), and it creates the appropriate instance of the undocumented class IloChange to

634

notify algorithms about this change of an extractable object in the model.

Note

The member function setSense notifies Concert Technology algorithms about this change of this invoking
object.

Inner Enumerations

Enumeration Sense

Definition file: ilconcert/ilolinear.h

Specifies objective as minimization or maximization.
An instance of the class IloObjective represents an objective in a model. This nested enumeration is limited
in scope to that class, and its values specify the sense of an objective; that is, whether it is a minimization
(Minimize) or a maximization (Maximize).

See Also: IloObjective

Fields:

Minimize = 1

Maximize = -1

635

Class IloOr
Definition file: ilconcert/ilomodel.h

Represents a disjunctive constraint.
An instance of IloOr represents a disjunctive constraint. In other words, it defines a disjunctive-OR among any
number of constraints. Since an instance of IloOr is a constraint itself, you can build up extensive disjunctions
by adding constraints to an instance of IloOr by means of the member function IloOr::add. You can also
remove constraints from an instance of IloOr by means of the member function IloOr::remove.

The elements of a disjunctive constraint must be in the same environment.

In order for the constraint to take effect, you must add it to a model with the template IloAdd or the member
function IloModel::add and extract the model for an algorithm with the member function
IloAlgorithm::extract.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

Disjunctive Goals

If you would like to represent a disjunctive-OR as a goal (rather than a constraint), then you should consider the
function IloOrGoal, documented in the IBM ILOG Solver Reference Manual.

What Is Extracted

All the constraints (that is, instances of IloConstraint or one of its subclasses) that have been added to a
disjunctive constraint (an instance of IloOr) and that have not been removed from it will be extracted when an
algorithm such as IloCplex, IloCP, or IloSolver extracts the constraint.

Example

For example, you may write:

 IloOr myor(env);
 myor.add(constraint1);
 myor.add(constraint2);
 myor.add(constraint3);

Those lines are equivalent to :

 IloOr or = constraint1 || constraint2 || constraint3;

See Also: IloAnd, IloConstraint, operator||

Constructor Summary

public IloOr()

public IloOr(IloOrI * impl)

636

public IloOr(const IloEnv env, const char * name=0)

Method Summary

public void add(const IloConstraintArray cons) const

public void add(const IloConstraint con) const

public IloOrI * getImpl() const

public void remove(const IloConstraintArray cons) const

public void remove(const IloConstraint con) const

Inherited Methods from IloConstraint

getImpl

Inherited Methods from IloIntExprArg

getImpl

Inherited Methods from IloNumExprArg

getImpl

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

Constructors

public IloOr()

This constructor creates an empty handle. You must initialize it before you use it.

public IloOr(IloOrI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IloOr(const IloEnv env, const char * name=0)

This constructor creates a disjunctive constraint for use in env. The optional argument name is set to 0 by
default.

Methods

public void add(const IloConstraintArray cons) const

This member function makes all the elements in array elements of the invoking disjunctive constraint. In other
words, it applies the invoking disjunctive constraint to all the elements of array.

Note

The member function add notifies Concert Technology algorithms about this change of this invoking object.

637

public void add(const IloConstraint con) const

This member function makes constraint one of the elements of the invoking disjunctive constraint. In other
words, it applies the invoking disjunctive constraint to constraint.

Note

The member function add notifies Concert Technology algorithms about this change of this invoking object.

public IloOrI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

public void remove(const IloConstraintArray cons) const

This member function removes all the elements of array from the invoking disjunctive constraint so that the
invoking disjunctive constraint no longer applies to any of those elements.

Note

The member function remove notifies Concert Technology algorithms about this change of this invoking object.

public void remove(const IloConstraint con) const

This member function removes constraint from the invoking disjunctive constraint so that the invoking
disjunctive constraint no longer applies to constraint.

Note

The member function remove notifies Concert Technology algorithms about this change of this invoking object.

638

Class IloPack
Definition file: ilconcert/ilomodel.h

For constraint programming: maintains the load of containers, given weighted, assigned items.
The IloPack constraint maintains the load of a set of containers or bins, given a set of weighted items and an
assignment of items to containers.

Consider that we have n items and m containers. Each item i has an integer weight w[i] and a constrained integer
variable p[i] associated with it, specifying in which container (numbered contiguously from 0) item i is to be
placed. No item can be split up, and so an item can go in only one container. Associated with each container j is
an integer variable l[j] representing the load in that container; that is, the sum of the weights of the items which
have been assigned to that container. A capacity can be set for each container placing an upper bound on this
load variable. The constraint also ensures that the total sum of the loads of the containers is equal to the sum of
the weights of the items being placed. Finally, the number, or indeed the set of containers used can be specified.
A container is used if at least one item is placed in the container in question.

Constructor Summary

public IloPack()

public IloPack(IloPackI * impl)

public IloPack(const IloEnv env, const IloIntExprArray load, const IloIntExprArray
where, const IloIntArray weight, const char * name=0)

public IloPack(const IloEnv env, const IloIntExprArray load, const IloIntExprArray
where, const IloIntArray weight, const IloIntExpr used, const char *
name=0)

public IloPack(const IloEnv env, const IloIntExprArray load, const IloIntExprArray
where, const IloIntArray weight, const IloIntSetVar used, const char *
name=0)

Method Summary

public IloPackI * getImpl() const

Inherited Methods from IloConstraint

getImpl

Inherited Methods from IloIntExprArg

getImpl

Inherited Methods from IloNumExprArg

getImpl

Inherited Methods from IloExtractable

639

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

Constructors

public IloPack()

This constructor creates an empty handle. You must initialize it before you use it.

public IloPack(IloPackI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IloPack(const IloEnv env, const IloIntExprArray load, const IloIntExprArray
where, const IloIntArray weight, const char * name=0)

This constructor creates a constraint that maintains container loads subject to the assignments of weighted items
to containers.

should be placed in, counting from 0. where and weight must be the same size, otherwise an instance of
IloException is thrown.

public IloPack(const IloEnv env, const IloIntExprArray load, const IloIntExprArray
where, const IloIntArray weight, const IloIntExpr used, const char * name=0)

This constructor creates a constraint that maintains container loads subject to the assignments of weighted items
to containers. The number of containers used is also maintained.

should be placed in, counting from 0. where and weight must be the same size, otherwise an instance of
IloException is thrown.

public IloPack(const IloEnv env, const IloIntExprArray load, const IloIntExprArray
where, const IloIntArray weight, const IloIntSetVar used, const char * name=0)

This constructor creates a constraint that maintains container loads subject to the assignments of weighted items
to containers. The set of containers used is also maintained.

should be placed in, counting from 0. where and weight must be the same size, otherwise an instance of
IloException is thrown. can be obtained from the set by taking the cardinality of the set.
See Also: IloCard

Methods

public IloPackI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

640

Class IloParallelSolver
Definition file: ilsolver/ilopsolver.h
Include file: <ilsolver/ilosolver.h>

IloParallelSolver creates multiple instances of the search engine, one in each thread, sharing the same
search tree. Each of these instances is an instance of IloSolver and the instances are known as workers or
agents. They communicate with each other across a virtual communication layer to carry out load balancing,
propagation of bounds to reduce the search tree, and detection of termination (either because a solution has
been found or because there is no further search to do).

See Also: IloSolver

Constructor Summary

public IloParallelSolver(IloParallelSolverI * impl=0)

public IloParallelSolver(const IloEnv & env, IloInt numberOfWorkers, IloInt=-1,
IloBool trace=IlcFalse)

public IloParallelSolver(const IloModel & model, IloInt numberOfWorkers,
IloInt=-1, IloBool trace=IlcFalse)

Method Summary

public IloBool concurrentSolve(IloArray< IloGoal > goals, IloBool
wait, IloGoal last=0)

public IloParallelSolverI * getImpl() const

public IloInt getSuccessfulWorkerId() const

public IloSolver getWorker(IloInt id) const

public void setFileNodeOptions(IlcInt maxSize, char * prefixName,
IlcBool useCompression, IlcBool useDisk) const

public void setTimeLimit(IloNum limit) const

public void setTrace(IloBool trace) const

public IloBool solve(IloGoal goal) const

public IloBool solve() const

public void unsetLimit() const

Inherited Methods from IloAlgorithm

clear, end, error, extract, getEnv, getIntValue, getIntValues, getModel,
getObjValue, getStatus, getTime, getValue, getValue, getValue, getValue,
getValues, getValues, isExtracted, out, printTime, resetTime, setError, setOut,
setWarning, solve, warning

Constructors

public IloParallelSolver(IloParallelSolverI * impl=0)

This constructor creates an algorithm for IBM® ILOG® Solver.

641

public IloParallelSolver(const IloEnv & env, IloInt numberOfWorkers, IloInt=-1,
IloBool trace=IlcFalse)

This constructor creates an algorithm for IBM ILOG Solver. The parameter numberOfWorkers is used to
configure load balancing.

public IloParallelSolver(const IloModel & model, IloInt numberOfWorkers, IloInt=-1,
IloBool trace=IlcFalse)

This constructor creates an algorithm for IBM ILOG Solver. The parameter numberOfWorkers is used to
configure load balancing.

Methods

public IloBool concurrentSolve(IloArray< IloGoal > goals, IloBool wait, IloGoal
last=0)

This member function solves a problem by using the array of goals goal passed as a parameter. It solves the
same model using different goals. The number of goals must be greater than or equal to the number of workers.
A number of workers n will use the first n elements of the array of goals.

If there is an objective, there is cooperation among the workers. When a worker finds a new feasible solution, the
bound information is propagated to the other workers. If there is no objective, there is no cooperation among the
workers.

If the parameter wait is IloTrue, concurrentSolve will wait for all workers to finish before suceeding and
returning IloTrue. If the parameter wait is IloFalse, concurrentSolve will succeed and return IloTrue
when the first worker finishes.

The third parameter last is an IloGoal that is called by the first worker to finish. This last goal is executed
after exiting from the concurrent part of the search. The parameter last is optional.

public IloParallelSolverI * getImpl() const

This member function returns a pointer to the implementation object corresponding to the invoking parallel solver.

public IloInt getSuccessfulWorkerId() const

This member function returns a positive integer identifying a successful worker (an instance of IloInt). These
identifying numbers start from 0 (zero) and are contiguous. This function can only be used after a successful
IloParallelSolver::solve.

public IloSolver getWorker(IloInt id) const

This member function returns the solver of the worker by identifying number.

public void setFileNodeOptions(IlcInt maxSize, char * prefixName, IlcBool
useCompression, IlcBool useDisk) const

642

Node files make it possible for you to limit the amount of memory Solver uses to store open search nodes. (Open
search nodes in the search are the ones which have not yet been completely explored.) You activate node files
by invoking this member function. This member function sets the options for node files and must be used before
starting a search.

When the memory used to store nodes is greater than maxSize bytes, Solver creates a buffer of one megabyte.
Solver then fills that buffer with open nodes. The parameter maxSize cannot be less than 5 000 000. If the given
parameter is less than 5 000 000, Solver will silently change it to 5 000 000.

If the parameter useCompression is set to IlcTrue, the buffer is compressed. If the parameter useDisk is
set to IlcTrue, this temporary buffer is then flushed from memory and written to disk as a file. The name of the
file is prefixed by prefixName.

If one buffer is not enough to reduce the memory consumption below maxSize, then Solver creates node files
until the memory consumption fits that limit.

public void setTimeLimit(IloNum limit) const

This member function sets a limit on the amount of time spent during a search by
IloParallelSolver::solve.

The limit is set to the current time plus time. The limit is recomputed whenever this member function is called.
When the limit is reached, the search stops and the current call to the member function IloParallelSolver
returns IlcFalse.

On most platforms, the time is measured in elapsed cpu seconds for the search process; on personal computers
with Windows, the time is merely elapsed wall-clock time.

This change will influence any subsequent calls of the member function IloParallelSolver::solve.

public void setTrace(IloBool trace) const

This member function takes a Boolean value as its argument. If this argument is IlcTrue, it activates the trace
functions of Parallel Solver. If the argument is IlcFalse, it inhibits the trace functions.

public IloBool solve(IloGoal goal) const

This member function solves a problem by using the goal passed as a parameter.

The synchronize mode is fixed to be IloSynchronizeAndRestart.

public IloBool solve() const

This member function solves a problem by using a default goal to launch the search.

This member function first checks to see whether a model has already been extracted. If a model has already
been extracted, it then checks whether the model has changed since it was extracted previously. If the model has
changed, then the model is extracted again. If the model has not changed, then it is not extracted again. In other
words, this member function synchronizes with the current model before it starts its search.

When Concert Technology determines at extraction time that the model is infeasible, it skips the remainder of the
extraction, and the first call to the member function solve will report without any search that there is no solution.

643

public void unsetLimit() const

This member function removes any limits, such as a time limit, a limit on the number of choice points, or a limit on
the number of failures, for the invoking solver. This change will influence any subsequent calls of the member
functions IloParallelSolver::solve.

644

Class IloParetoComparator<>
Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

This class performs Pareto comparison of objects.
In a Pareto comparison, an object a is deemed better than an object b if and only if for all subordinate
comparators a is never worse that b and a is strictly better than b in at least one comparison.

Such a comparator is useful when solutions are compared on multiple critera which have equal status.

The function IloCompositeComparator::add is available to you to build up your comparator by addition
rather than specifying all comparators at construction time.

For more information, see Selectors.

See Also: IloComposePareto

Constructor Summary

public IloParetoComparator(IloMemoryManager manager)

Initializes an empty Pareto composite comparator.

Inherited Methods from IloCompositeComparator

add

Inherited Methods from IloComparator

isBetterOrEqual, isBetterThan, isEqual, isWorseOrEqual, isWorseThan, makeInverse,
operator()

Constructors

public IloParetoComparator(IloMemoryManager manager)

Initializes an empty Pareto composite comparator.

This constructor intializes an empty Pareto comparator allocated on the memory manager manager.

645

Class IloPathLength
Definition file: ilconcert/ilomodel.h

For IBM® ILOG® Solver: a constraint on accumulations along a path.
An instance of this class is a path constraint in Concert Technology.

In order for the constraint to take effect, you must add it to a model with the template IloAdd or the member
function IloModel::add and extract the model for an algorithm with the member function
IloAlgorithm::extract.

What IloPathLength Does Not Do

The path-length constraint does not determine whether there is a path between nodes in a graph; rather, it
constrains accumulations (such as flow) along a path. The filtering algorithm associated with this constraint works
on the accumulation variables in the array lengths.

If you are looking for a Hamiltonian path, for example, (that is, one in which each node is visited exactly once),
consider using instead the constraint IloAllDiff on the variables in the array next.

What IloPathLength Does

If we are given

a set of n nodes, known as N,•
a maximum number of paths among those nodes, maxNbPaths,•
a set of maxNbPaths nodes, known as S, for starting nodes,•
a set of maxNbPaths nodes, known as E, for ending nodes,•

then a path constraint insures that there exist at most maxNbPaths paths starting from a node in S, visiting
nodes in N, and ending at a node in E. Furthermore, each node will be visited only once, has only one
predecessor and only one successor, and each node belongs to a path that starts from a node in S and ends at a
node in E.

In particular, in an instance of IloPath, in the arrays next and cumul,

the indices in [0, n-1] correspond to the nodes of N,•
the indices in [n, n+maxNbPaths-1] correspond to the nodes of E,•
and the indices in [n+maxNbPaths, n+2*maxNbPaths-1] correspond to the nodes of S.•

In other words, the size of next and cumul is n+2*maxNbPaths.

next[i] is the node following node i on the current path. cumul[i] is the accumulated cost from the
beginning of the path to node i. The argument transit specifies the transition function.

When this constraint is satisfied, it insures that for all indices i in the range [0, n-1] or in [n+maxNbPaths,
n+2*maxNbPaths-1], if next[i]==j and j is in [0, n+maxNbPaths-1], then cumul[i] +
transit.transit(i,j) <= cumul[j].

When i is in the range [n, n+maxNbPaths-1], next[i] has no meaning because the nodes in E do not have
successors, of course. In this case, the constraint deals with them by setting next[i] to i+maxNbPaths (that

646

is, nodes of S).

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

See Also: IloAllDiff, IloConstraint, IloPathTransitFunction, IloPathTransitI

Constructor Summary

public IloPathLength()

public IloPathLength(IloPathLengthI * impl)

public IloPathLength(const IloEnv env, const IloIntVarArray next, const
IloNumVarArray cumul, IloPathTransitFunction transit, IloInt nbPaths=1,
const char * name=0)

public IloPathLength(const IloEnv env, const IloIntVarArray next, const
IloIntVarArray cumul, IloPathTransitFunction transit, IloInt nbPaths=1,
const char * name=0)

public IloPathLength(const IloEnv env, const IloIntVarArray next, const
IloNumVarArray cumul, IloPathTransitI * pathTransit, IloInt nbPaths=1,
const char * name=0)

public IloPathLength(const IloEnv env, const IloIntVarArray next, const
IloIntVarArray cumul, IloPathTransitI * pathTransit, IloInt nbPaths=1,
const char * name=0)

Method Summary

public IloPathLengthI * getImpl() const

Inherited Methods from IloConstraint

getImpl

Inherited Methods from IloIntExprArg

getImpl

Inherited Methods from IloNumExprArg

getImpl

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

Constructors

public IloPathLength()

This constructor creates an empty handle. You must initialize it before you use it.

public IloPathLength(IloPathLengthI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IloPathLength(const IloEnv env, const IloIntVarArray next, const

647

IloNumVarArray cumul, IloPathTransitFunction transit, IloInt nbPaths=1, const char
* name=0)

This constructor creates a path constraint in an environment.

In order for the constraint to take effect, you must add it to a model with the template IloAdd or the member
function IloModel::add and extract the model for an algorithm with the member function
IloAlgorithm::extract.

If the array next or cumul is not an appropriate length, then on platforms that support C++ exceptions when
exceptions are enabled, this constructor will throw the exception InvalidArraysException.

public IloPathLength(const IloEnv env, const IloIntVarArray next, const
IloIntVarArray cumul, IloPathTransitFunction transit, IloInt nbPaths=1, const char
* name=0)

This constructor creates a path constraint in an environment.

In order for the constraint to take effect, you must add it to a model with the template IloAdd or the member
function IloModel::add and extract the model for an algorithm with the member function
IloAlgorithm::extract.

If the array next or cumul is not an appropriate length, then on platforms that support C++ exceptions when
exceptions are enabled, this constructor will throw the exception InvalidArraysException.

public IloPathLength(const IloEnv env, const IloIntVarArray next, const
IloNumVarArray cumul, IloPathTransitI * pathTransit, IloInt nbPaths=1, const char *
name=0)

This constructor creates a path constraint in an environment.

In order for the constraint to take effect, you must add it to a model with the template IloAdd or the member
function IloModel::add and extract the model for an algorithm with the member function
IloAlgorithm::extract.

If the array next or cumul is not an appropriate length, then on platforms that support C++ exceptions when
exceptions are enabled, this constructor will throw the exception InvalidArraysException.

public IloPathLength(const IloEnv env, const IloIntVarArray next, const
IloIntVarArray cumul, IloPathTransitI * pathTransit, IloInt nbPaths=1, const char *
name=0)

This constructor creates a path constraint in an environment.

In order for the constraint to take effect, you must add it to a model with the template IloAdd or the member
function IloModel::add and extract the model for an algorithm with the member function
IloAlgorithm::extract.

If the array next or cumul is not an appropriate length, then on platforms that support C++ exceptions when
exceptions are enabled, this constructor will throw the exception InvalidArraysException.

648

Methods

public IloPathLengthI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

649

Class IloPathTransitI
Definition file: ilconcert/ilomodel.h

For IBM® ILOG® Solver: a transit function in a path constraint.
You can define the transit function in a path constraint (the cost for linking two nodes together).

This class is the implementation class for IloPathTransit, the class of object that defines a transit function for
the path constraint. The virtual member function transit in IlcPathTransitI returns the transition cost for
connecting two nodes together.

To express new transit functions, you can define a subclass of IlcPathTransitI. If this transition can be
expressed by an evaluation function, then you can use the predefined IloPathFunction for that purpose.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

See Also: IloPathLength, IloPathTransitFunction

Constructor and Destructor Summary

public IloPathTransitI()

Method Summary

public virtual IloPathTransitI * makeClone(IloEnvI *) const

public virtual IloNum transit(IloInt i, IloInt j)

Constructors and Destructors

public IloPathTransitI()

This constructor creates an implementation of a transit function.

Methods

public virtual IloPathTransitI * makeClone(IloEnvI *) const

This virtual member function returns a copy of the invoking object.

public virtual IloNum transit(IloInt i, IloInt j)

This virtual member function returns the transition cost from node i to node j. Its default implementation returns
0 (zero) as the value of every transition.

650

Class IloPoolOperator
Definition file: ilsolver/iimoperator.h
Include file: <ilsolver/iim.h>

The pool operator class.
Pool operators are Solver related entities which take an input in the form of a solution pool and instantiate
Solver's constrained variables to create a solution therein. Importantly, operators can be cast to processors
(IloPoolProc). This cast operator results in a processor which will transform the so-instantiated solver into an
instance of IloSolution, based on a given solution prototype.

You can define custom operators by using the ILOIIMOP0 macro (or a variant). Numerous built-in operators are
also provided, easily accessible from IloEAOperatorFactory.

For the most part, pool operators can be thought of as standard Solver goals with the additional property that
they have access to an input pool of solutions which they use to influence their behavior.

See Also: IloEAOperatorFactory, ILOIIMOP0

Constructor Summary

public IloPoolOperator(IloGoal goal)

Creates an operator from a goal.

Method Summary

public void addListener(IloListener listener) const

Adds a listener to the operator.

public void end()

public const char * getDisplayName() const

Get the display name of an operator.

public IloEnv getEnv() const

public const char * getName() const

public IloAny getObject() const

public IloSolution getPrototype() const

Returns the solution prototype.

public operator IloPoolProc() const

Casts a pool operator to a pool processor.

public IloPoolProc operator()(IlcInt size) const

Specify the number of solutions to produce.

public void removeListener(IloListener listener) const

Removes a listener from an operator.

public void setName(const char * name) const

public void setObject(IloAny obj) const

651

public void setPrototype(IloSolution prototype) const

Sets the solution prototype.

Inner Class

IloPoolOperator::Event Event produced by pool operators.

IloPoolOperator::InvocationEvent The event produced by pool operators when they are invoked.

IloPoolOperator::SuccessEvent The event produced by pool operators when they are involved in the
production of a solution.

Constructors

public IloPoolOperator(IloGoal goal)

Creates an operator from a goal.

This constructor creates an operator from a goal. When the created operator is executed, it will behave exactly
as goal. Most often this constructor is useful when an operator needs to be combined with a goal using goal
&& op or op && goal. The constructor makes sure that a goal can be cast to an operator so that the &&
operator on pool operators can then be applied.

See Also: operator &&(IloPoolOperator, IloPoolOperator)

Methods

public void addListener(IloListener listener) const

Adds a listener to the operator.

This member function adds a listener to the operator. Depending on the type of listener added to the operator,
based on either IloPoolOperator::InvocationEvent or IloPoolOperator::SuccessEvent, the
listener will be activated when the operator is invoked, or when the operator participates in the production of a
solution.

See Also: IloListener, ILOIIMLISTENER0, IloPoolOperator::SuccessEvent, IloPoolOperator::InvocationEvent

public void end()

brief Destroys the object.

This function deletes the object from the environment on which it was allocated and sets the implementation
pointer to zero.

public const char * getDisplayName() const

Get the display name of an operator.

This member function returns the display name of the operator, which is useful for display purposes when type
information is required on the operator. The name returned will be based on the function of the operator.

public IloEnv getEnv() const

brief Returns the allocation environment.

652

This function returns the environment on which the invoking object was allocated.

public const char * getName() const

This member function returns a character string specifying the name of the invoking object (if there is one).

public IloAny getObject() const

This member function returns the object associated with the invoking object (if there is one). Normally, an
associated object contains user data pertinent to the invoking object.

public IloSolution getPrototype() const

Returns the solution prototype.

This member function returns the solution prototype set in the previous call to
IloPoolOperator::setPrototype or an empty handle if none was set.

public operator IloPoolProc() const

Casts a pool operator to a pool processor.

This operator casts a pool operator to a pool processor. Objects of type IloPoolOperator can do very little
work on their own; it is only in casting one to a processor that more useful work can be done with it.

When the cast operator is invoked, a pool processor is created which performs the following when invoked:

Asks for input and supplies it to the operator.•
Invokes the operator.•
Searches for a solution prototype, either in the operator, or, failing this, in the input pool of the
processor.

•

Clones the prototype, saves it, and adds it to the output pool of the processor.•

The resulting pool processor can be used with selectors and other processors via >> to create chains.

public IloPoolProc operator()(IlcInt size) const

Specify the number of solutions to produce.

This operator specifies the number of solutions to produce, which will be at least size solutions. The code
op(n) is shorthand for IloPoolProc(op)(n) where op is of type IloPoolOperator and n is an integer.

public void removeListener(IloListener listener) const

Removes a listener from an operator.

This member function removes a previously added listener from an operator. After the removal, listener will
no longer be called when the operator is invoked or succeeds.

public void setName(const char * name) const

This member function assigns name to the invoking object.

653

public void setObject(IloAny obj) const

This member function associates obj with the invoking object. The member function getObject accesses this
associated object afterward. Normally, obj contains user data pertinent to the invoking object.

public void setPrototype(IloSolution prototype) const

Sets the solution prototype.

This member function sets the solution prototype. It indicates to an operator how the solution produced in
constrained variables should be saved. When a solution needs to be created, the prototype is cloned and the
Solver variables specified in the clone are saved using the IloSolution::store.

Setting the prototype in this manner is not normally necessary, unless quite specialized behavior is required for a
particular operator. Normally, the prototype can be set more simply on an operator factory, ensuring that all
operators produced by the factory will have the correct prototype. Even if this is not done, a prototype can be
found by examination of the input pool of the processor which calls the operator.

654

Class IloPoolOperatorFactory
Definition file: ilsolver/iimoperator.h
Include file: <ilsolver/iim.h>

An operator factory class providing services for simplifying operator creation.
This class eases IloPoolOperator configuration. It allows you to specify common operator parameters at one
time before creating many operators. Objects of this class are usually used through one if its subclasses.

See Also: IloPoolOperator, IloListener, IloSearchLimit

Constructor Summary

public IloPoolOperatorFactory(IloEnv env)

Creates a factory that can be used to configure pool operators.

Method Summary

public void addAfterOperate(IloPoolOperator op) const

Adds a final operator to execute.

public void addBeforeOperate(IloPoolOperator op) const

Adds an initial operator to execute.

public void addListener(IloListener listener) const

Adds a listener to the factory.

public void end()

public IloPoolOperator getAfterOperate() const

Returns the final operator to execute.

public IloPoolOperator getBeforeOperate() const

Returns the initial operator to execute.

public IloEnv getEnv() const

public const char * getName() const

public IloAny getObject() const

public IloSolution getPrototype() const

Returns the solution prototype.

public IloSearchLimit getSearchLimit() const

Returns the search limit.

public IloPoolOperator operator()(IloPoolOperator op, const char * name=0) const

Configures the given pool operator using the factory parameters.

public void removeListener(IloListener listener) const

Removes a listener previously added to the factory.

655

public void setAfterOperate(IloPoolOperator op) const

Sets a final operator to execute.

public void setBeforeOperate(IloPoolOperator op) const

Sets an initial operator to execute.

public void setName(const char * name) const

public void setObject(IloAny obj) const

public void setPrototype(IloSolution prototype) const

Sets the solution prototype used by created operators.

public void setSearchLimit(IloSearchLimit searchLimit) const

Sets a search limit on operators.

Constructors

public IloPoolOperatorFactory(IloEnv env)

Creates a factory that can be used to configure pool operators.

This constructor creates a factory that can be used to configure pool operators. If you wish to create a factory
which build evolutionary operators, use the subclass IloEAOperatorFactory.

Methods

public void addAfterOperate(IloPoolOperator op) const

Adds a final operator to execute.

This member function adds a final operator to execute. Any operator of the factory will have operator op
executed after it. Note that unlike IloPoolOperatorFactory::setAfterOperate, other operators already
set will not be replaced. Also note that op will only be executed if the factory operator executed successfully.

See Also: operator &&(IloPoolOperator, IloPoolOperator) , IloPoolOperator::IloPoolOperator

public void addBeforeOperate(IloPoolOperator op) const

Adds an initial operator to execute.

This member function adds an initial operator to execute. Any operator of the factory will have operator op
executed before it. Note that unlike IloPoolOperatorFactory::setBeforeOperate, other operators
already added will not be replaced.

Note

Note the ordering of execution of "before" operators. If you perform factory.addBeforeOperate(a)
followed by factory.addBeforeOperate(b), then any operator created by the factory will execute b, then
a, then the operator in question.

See Also: operator &&(IloPoolOperator, IloPoolOperator)

public void addListener(IloListener listener) const

Adds a listener to the factory.

656

This member function adds a listener to the factory. Any operator then created by the factory will have the
specified listener added.

See Also: IloPoolOperator::addListener

public void end()

brief Destroys the object.

This function deletes the object from the environment on which it was allocated and sets the implementation
pointer to zero.

public IloPoolOperator getAfterOperate() const

Returns the final operator to execute.

This member function returns the final operator to execute, which was last set using
IloPoolOperatorFactory#setAfterOperator, or an empty handle if no "after" operator was set.

public IloPoolOperator getBeforeOperate() const

Returns the initial operator to execute.

This member function returns the initial operator to execute, which was last set using setBeforeOperator, or
an empty handle if no "before" operator was set.

public IloEnv getEnv() const

brief Returns the allocation environment.

This function returns the environment on which the invoking object was allocated.

public const char * getName() const

This member function returns a character string specifying the name of the invoking object (if there is one).

public IloAny getObject() const

This member function returns the object associated with the invoking object (if there is one). Normally, an
associated object contains user data pertinent to the invoking object.

public IloSolution getPrototype() const

Returns the solution prototype.

This member function returns the solution prototype last set using
IloPoolOperatorFactory::setPrototype or an empty handle if none has been set.

public IloSearchLimit getSearchLimit() const

657

Returns the search limit.

This member function returns the search limit last set using IloPoolOperatorFactory::setSearchLimit
or an empty handle if none was set.

public IloPoolOperator operator()(IloPoolOperator op, const char * name=0) const

Configures the given pool operator using the factory parameters.

This operator configures the given pool operator using the factory parameters. A new operator will be produced
using pool operator op as a template, but which will be parameterized via the parameters of the factory. That is, it
will have a prototype, limit, and listeners added as specified by the factory.

See Also: IloPoolOperator::addListener, IloPoolOperator::setPrototype, IloPoolOperatorFactory::setSearchLimit,
IloPoolOperator::IloPoolOperator

public void removeListener(IloListener listener) const

Removes a listener previously added to the factory.

This member function removes a listener added to the factory. Any operator then created by the factory will no
longer have the specified listener added.

See Also: IloPoolOperator::removeListener

public void setAfterOperate(IloPoolOperator op) const

Sets a final operator to execute.

This member function sets a final operator to execute. Any operator of the factory will have operator op executed
after it. Note that op will only be executed if the factory operator executed successfully.

See Also: operator &&(IloPoolOperator, IloPoolOperator)

public void setBeforeOperate(IloPoolOperator op) const

Sets an initial operator to execute.

This member function sets an initial operator to execute. Any operator then created by the factory will have the
"before" operator op executed before it.

See Also: operator &&(IloPoolOperator, IloPoolOperator)

public void setName(const char * name) const

This member function assigns name to the invoking object.

public void setObject(IloAny obj) const

This member function associates obj with the invoking object. The member function getObject accesses this
associated object afterward. Normally, obj contains user data pertinent to the invoking object.

public void setPrototype(IloSolution prototype) const

658

Sets the solution prototype used by created operators.

This member function sets the solution prototype used by created operators. Any operator created by the factory
will then have its prototype set accordingly.

See Also: IloPoolOperator::setPrototype

public void setSearchLimit(IloSearchLimit searchLimit) const

Sets a search limit on operators.

This member functions sets a search limit on operators. This search limit will apply to any operator then created
by the factory.

659

Class IloPoolProc
Definition file: ilsolver/iimiloproc.h
Include file: <ilsolver/iim.h>

Pool processor.
An IloPoolProc is an object dedicated to solution pool processing. Such pool processors can be chained
together using the >> operator of the C++ language. This chaining specifies how pool elements flow between
processors. For example, the following code solves a goal composed by chaining solution processors:

 IloSolutionPool initialPool = ...;
 IloPoolProc producer = ...;
 IloPoolProc consumer = ...;
 IloSolutionPool resultPool = ...;
 solver.solve(IloExecuteProcessor(
 initialPool >> producer(10) >> consumer >> resultPool
));

The >> operator is overloaded so that:

Pool processors are created for each pool (namely initialPool and resultPool).•
All the processors are chained so that information can be transferred between processors.•

The () operator is overloaded and used to specify how many pool elements should be generated by a
processor. In the above example, the code specifies that producer should generate ten solutions.

Constructor Summary

public IloPoolProc(IloSolutionPool pool)

Creates a pool processor from a solution pool.

Method Summary

public void end()

public const char * getDisplayName() const

Get the "display name" of a processor.

public IloEnv getEnv() const

public const char * getName() const

public IloAny getObject() const

public IloPoolProc operator()(IlcInt size) const

Specifies the desired number of outputs to a processor.

public void setName(const char * name) const

public void setObject(IloAny obj) const

Constructors

public IloPoolProc(IloSolutionPool pool)

Creates a pool processor from a solution pool.

660

This constructor creates a processor from a solution pool. The created processor acts as a type of synchronizer
such that the solutions transferred on the resulting processor's output port will also be placed in the solution pool
pool passed as argument.

The behavior of the created processor will depend upon its environment, and in particular, if the processor is
supplied an input using a >> to its left. If the processor is supplied an input, then the processor places that input
into pool, while also transferring to the output. If, on the other hand, the processor is not supplied any input, then
the contents of pool are placed on the output.

Assuming you have "population" and "offspring" pools as well as a processor "proc" able to process the
population to produce offspring, you can perform a processing chain such as:

 IloPoolProc chain = population >> proc >> offspring;

where the population pool feeds the processor proc, whose result is stored in the offspring pool.

Note

It is often convenient to insert a pool in a processing chain for debugging purposes. For monitoring pool
dynamics, you can add listeners to the pool to be notified when its state changes.

See Also: operator>>

Methods

public void end()

brief Destroys the object.

This function deletes the object from the environment on which it was allocated and sets the implementation
pointer to zero.

public const char * getDisplayName() const

Get the "display name" of a processor.

This member function returns the display name of the processor, which is useful for display purposes when type
information is required on the processor. The name returned will be based on the function of the processor.

public IloEnv getEnv() const

brief Returns the allocation environment.

This function returns the environment on which the invoking object was allocated.

public const char * getName() const

This member function returns a character string specifying the name of the invoking object (if there is one).

public IloAny getObject() const

661

This member function returns the object associated with the invoking object (if there is one). Normally, an
associated object contains user data pertinent to the invoking object.

public IloPoolProc operator()(IlcInt size) const

Specifies the desired number of outputs to a processor.

This operator creates a new pool processor that wraps the invoked pool processor and retrieves the number of
elements specified by size. This operator is used to specify the number of outputs to a processor.

The following code initializes a population with populationSize solutions. In this particular case, the ()
operator is applied to the processor returned by the randomize method of the IloEAOperatorFactory
factory:

 solver.solve(IloExecuteProcessor(
 env, factory.randomize("rand")(populationSize) >> population
));

public void setName(const char * name) const

This member function assigns name to the invoking object.

public void setObject(IloAny obj) const

This member function associates obj with the invoking object. The member function getObject accesses this
associated object afterward. Normally, obj contains user data pertinent to the invoking object.

662

Class IloPredicate<>
Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

The IloPredicate template class is the base class for all predicates. A predicate is a class that implements a
test on an object (using operator()), and returns an IloBool value. Such classes can be used (along with
classes of IloComparator) to parameterize selectors used in goal-based search.

Predicates can easily be built by using the ILOPREDICATE0 macros or by composing existing predicates and
evaluators.

For more information, see Selectors.

See Also: IloComparator, IloEvaluator, IloTranslator

Method Summary

public IloBool operator()(IloObject o, IloAny nu=0) const

Methods

public IloBool operator()(IloObject o, IloAny nu=0) const

This operator implements the test of an instance of class IloObject that may use a user-given context nu. If
the predicate is a composite predicate (see operators on predicates), the context is also passed to components
(predicates and evaluators) involved in the computation of the composite predicate.

663

Class IloRandom
Definition file: ilconcert/ilorandom.h

This handle class produces streams of pseudo-random numbers.
You can use objects of this class to create a search with a random element. You can create any number of
instances of this class; these instances insure reproducible results in multithreaded applications, where the use
of a single source for random numbers creates problems.

See Also the class IloRandomize in the IBM ILOG Solver Reference Manual.

Constructor Summary

public IloRandom()

public IloRandom(const IloEnv env, IloInt seed=0)

public IloRandom(IloRandomI * impl)

public IloRandom(const IloRandom & rand)

Method Summary

public void end()

public IloEnv getEnv() const

public IloNum getFloat() const

public IloRandomI * getImpl() const

public IloInt getInt(IloInt n) const

public const char * getName() const

public IloAny getObject() const

public void reSeed(IloInt seed)

public void setName(const char * name) const

public void setObject(IloAny obj) const

Constructors

public IloRandom()

This constructor creates a random number generator; it is initially an empty handle. You must assign this handle
before you use its member functions.

public IloRandom(const IloEnv env, IloInt seed=0)

This constructor creates an object that generates random numbers. You can seed the generator by supplying a
value for the integer argument seed.

public IloRandom(IloRandomI * impl)

664

This constructor creates a handle object (an instance of the class IloRandom) from a pointer to an
implementation object (an instance of the class IloRandomI).

public IloRandom(const IloRandom & rand)

This constructor creates a handle object from a reference to a random number generator. After execution, both
the newly constructed handle and rand point to the same implementation object.

Methods

public void end()

This member function releases all memory used by the random number generator. After a call to this member
function, you should not use the generator again.

public IloEnv getEnv() const

This member function returns the environment associated with the implementation class of the invoking
generator.

public IloNum getFloat() const

This member function returns a floating-point number drawn uniformly from the interval [0..1).

public IloRandomI * getImpl() const

This member function returns the implementation object of the invoking handle.

public IloInt getInt(IloInt n) const

This member function returns an integer drawn uniformly from the interval [0..n).

public const char * getName() const

This member function returns a character string specifying the name of the invoking object (if there is one).

public IloAny getObject() const

This member function returns the object associated with the invoking object (if there is one). Normally, an
associated object contains user data pertinent to the invoking object.

public void reSeed(IloInt seed)

This member function re-seeds the random number generator with seed.

665

public void setName(const char * name) const

This member function assigns name to the invoking object.

public void setObject(IloAny obj) const

This member function associates obj with the invoking object. The member function getObject accesses this
associated object afterward. Normally, obj contains user data pertinent to the invoking object.

666

Class IloRandomSelector<,>
Definition file: ilsolver/iimmulti.h
Include file: <ilsolver/iim.h>

A selector which chooses objects randomly.
This class is a selector which randomly selects an object from a given container. The selection is unbiased, with
each object having an equal probability of selection.

When you create a random selector, you must pass a visitor object. This visitor will traverse the container from
which you are selecting objects. However, in the case where a default visitor exists for the container, you can
omit the visitor as the default will be used. In addition to the default visitors available in Solver, IIM provides
default visitors for IloSolutionPool and IloPoolProcArray.

The following code shows how to create a random selector and use it to build a pool processor:

 // Selects parents randomly
 IloPoolProc selector = IloSelectSolutions(
 env, IloRandomSelector<IloSolution, IloSolutionPool>(env)
);

Note

An instance of IloRandomSelector which has been transformed into a pool processor using
IloSelectSolutions will always draw its random numbers from the random number generator of the solver
on which it is executing.

See Also: IloSolutionPool, IloPoolProcArray, IloVisitor, IloEvaluator, IloTournamentSelector,
IloRouletteWheelSelector

Constructor Summary

public IloRandomSelector(IloEnv env, IloVisitor< IloObject, IloContainer >
visitor=0)

Builds a random selector.

Method Summary

public IloVisitor< IloObject, IloContainer > getVisitor() const

Delivers the visitor used by the selector.

Inherited Methods from IloSelector

select

Constructors

public IloRandomSelector(IloEnv env, IloVisitor< IloObject, IloContainer >
visitor=0)

Builds a random selector.

667

This constructor builds a random selector from an environment env and an optional visitor visitor. If no visitor
is specified, a default visitor will be used if it exists. If no default visitor exists, an exception of type
IloException is raised.

Methods

public IloVisitor< IloObject, IloContainer > getVisitor() const

Delivers the visitor used by the selector.

This member function returns the visitor passed at construction time or, if no visitor was passed, the default
visitor for the container from which objects are being selected.

668

Class IloRange
Definition file: ilconcert/ilolinear.h

An instance of this class is a range in a model.
This class models a constraint of the form:

 lowerBound <= expression <= upperBound

You can create a range from the constructors in this class or from the arithmetic operators on numeric variables
(instances of IloNumVar and its subclasses) or on expressions (instances of IloExpr and its subclasses):

operator <=•
operator >=•
operator ==•

After you create a constraint, such as an instance of IloRange, you must explicitly add it to the model in order
for it to be taken into account. To do so, use the member function IloModel::add to add the range to a model
and the member function IloAlgorithm::extract to extract the model for an algorithm.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

What Is Extracted

All the variables (that is, instances of IloNumVar or one of its subclasses) in the range (an instance of
IloRange) will be extracted when an algorithm such as IloCplex, documented in the IBM ILOG CPLEX
Reference Manual, extracts the range.

Normalizing Linear Expressions: Reducing the Terms

Normalizing is sometimes known as reducing the terms of a linear expression.

Linear expressions consist of terms made up of constants and variables related by arithmetic operations; for
example, x + 3y. In some linear expressions, a given variable may appear in more than one term, for example, x
+ 3y +2x. Concert Technology has more than one way of dealing with linear expressions in this respect, and you
control which way Concert Technology treats linear expressions from your application.

In one mode (the default mode), Concert Technology analyzes linear expressions that your application passes it,
and attempts to reduce them so that a given variable appears in only one term in the expression. You set this
mode with the member function IloEnv::setNormalizer(IloTrue) .

Certain constructors and member functions in this class check this setting in the model and behave accordingly:
they attempt to reduce expressions. This mode may require more time during preliminary computation, but it
avoids the possibility of an assertion in some of the member functions of this class failing in the case of
duplicates.

In the other mode, Concert Technology assumes that no variable appears in more than one term in any of the
linear expressions that your application passes to Concert Technology. We call this mode assume normalized
linear expressions. You set this mode with the member function IloEnv::setNormalizer(IloFalse).

669

Certain constructors and member functions in this class check this setting in the model and behave accordingly:
they assume that no variable appears in more than one term in an expression. This mode may save time during
computation, but it entails the risk that an expression may contain one or more variables, each of which appears
in one or more terms. This situation will cause certain assert statements in Concert Technology to fail if you do
not compile with the flag -DNDEBUG.

See Also: IloConstraint, IloRangeArray

Constructor Summary

public IloRange()

public IloRange(IloRangeI * impl)

public IloRange(const IloEnv env, IloNum lb, IloNum ub, const char * name=0)

public IloRange(const IloEnv env, IloNum lhs, const IloNumExprArg expr, IloNum
rhs=IloInfinity, const char * name=0)

public IloRange(const IloEnv env, const IloNumExprArg expr, IloNum
rhs=IloInfinity, const char * name=0)

Method Summary

public IloNumExprArg getExpr() const

public IloRangeI * getImpl() const

public IloNum getLB() const

public IloNum getUB() const

public IloAddValueToRange operator()(IloNum value) const

public void setBounds(IloNum lb, IloNum ub)

public void setExpr(const IloNumExprArg expr)

public void setLB(IloNum lb)

public void setLinearCoef(const IloNumVar var, IloNum value)

public void setLinearCoefs(const IloNumVarArray vars, const
IloNumArray values)

public void setUB(IloNum ub)

Inherited Methods from IloConstraint

getImpl

Inherited Methods from IloIntExprArg

getImpl

Inherited Methods from IloNumExprArg

getImpl

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,
getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

670

Constructors

public IloRange()

This constructor creates an empty handle. You must initialize it before you use it.

public IloRange(IloRangeI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IloRange(const IloEnv env, IloNum lb, IloNum ub, const char * name=0)

This constructor creates an empty range constraint. Before you use this constraint, you must fill the range. The
optional argument name is set to 0 by default.

After you create a range constraint, you must explicitly add it to a model in order for it to be taken into account.
To do so, use the member function IloModel::add.

public IloRange(const IloEnv env, IloNum lhs, const IloNumExprArg expr, IloNum
rhs=IloInfinity, const char * name=0)

This constructor creates a range constraint from an expression (an instance of the class IloNumExprArg) and
its upper bound (rhs). The default bound for rhs is the symbolic constant IloInfinity. The optional argument
name is set to 0 by default.

Note

When it accepts an expression as an argument, this constructor checks the setting of
IloEnv::setNormalizer to determine whether to assume the expression has already been reduced or to
reduce the expression before using it.

public IloRange(const IloEnv env, const IloNumExprArg expr, IloNum rhs=IloInfinity,
const char * name=0)

This constructor creates a range constraint from an expression (an instance of the class IloNumExprArg) and
its upper bound (rhs). Its lower bound (lhs) will be -IloInfinity. The default bound for rhs is
IloInfinity. The optional argument name is set to 0 by default.

Note

When it accepts an expression as an argument, this constructor checks the setting of
IloEnv::setNormalizer to determine whether to assume the expression has already been reduced or to
reduce the expression before using it.

Methods

public IloNumExprArg getExpr() const

This member function returns the expression of the invoking IloRange object.

public IloRangeI * getImpl() const

671

This member function returns a pointer to the implementation object of the invoking handle.

public IloNum getLB() const

This member function returns the lower bound of the invoking range.

public IloNum getUB() const

This member function returns the upper bound of the invoking range.

public IloAddValueToRange operator()(IloNum value) const

This operator creates the objects needed internally to represent a range in column-wise modeling. See the
concept Column-Wise Modeling for an explanation of how to use this operator in column-wise modeling.

public void setBounds(IloNum lb, IloNum ub)

This member function sets lb as the lower bound and ub as the upper bound of the invoking range, and it
creates the appropriate instance of the undocumented class IloChange to notify algorithms about this change
of an extractable object in the model.

Note

The member function setBounds notifies Concert Technology algorithms about this change of this invoking
object.

public void setExpr(const IloNumExprArg expr)

This member function sets expr as the invoking range, and it creates the appropriate instance of the
undocumented class IloChange to notify algorithms about this change of an extractable object in the model.

Note

The member function setExpr notifies Concert Technology algorithms about this change of this invoking
object.

public void setLB(IloNum lb)

This member function sets lb as the lower bound of the invoking range, and it creates the appropriate instance
of the undocumented class IloChange to notify algorithms about this change of an extractable object in the
model.

Note

The member function setLB notifies Concert Technology algorithms about this change of this invoking object.

public void setLinearCoef(const IloNumVar var, IloNum value)

672

This member function sets value as the linear coefficient of the variable var in the invoking range, and it
creates the appropriate instance of the undocumented class IloChange to notify algorithms about this change
of an extractable object in the model.

Note

The member function setLinearCoef notifies Concert Technology algorithms about this change of this
invoking object.

If you attempt to use setLinearCoef on a non linear expression, it will throw an exception on platforms that
support C++ exceptions when exceptions are enabled.

public void setLinearCoefs(const IloNumVarArray vars, const IloNumArray values)

For each of the variables in vars, this member function sets the corresponding value of values (whether
integer or floating-point) as its linear coefficient in the invoking range, and it creates the appropriate instance of
the undocumented class IloChange to notify algorithms about this change of an extractable object in the model.

Note

The member function setLinearCoefs notifies Concert Technology algorithms about this change of this
invoking object.

If you attempt to use setLinearCoef on a non linear expression, it will throw an exception on platforms that
support C++ exceptions when exceptions are enabled.

public void setUB(IloNum ub)

This member function sets ub as the upper bound of the invoking range, and it creates the appropriate instance
of the undocumented class IloChange to notify algorithms about this change of an extractable object in the
model.

Note

The member function setUB notifies Concert Technology algorithms about this change of this invoking object.

673

Class IloRangeArray
Definition file: ilconcert/ilolinear.h

The array class of ranges for a model.
For each basic type, Concert Technology defines a corresponding array class. IloRangeArray is the array
class of ranges for a model.

Instances of IloRangeArray are extensible. That is, you can add more elements to such an array. References
to an array change whenever an element is added to or removed from the array.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

For information on arrays, see the concept Arrays

Note

IloRangeArray has access to member functions defined in the IloArray template.

See Also: IloRange, operator>>, operator<<

Constructor Summary

public IloRangeArray(IloDefaultArrayI * i=0)

public IloRangeArray(const IloEnv env, IloInt n=0)

public IloRangeArray(const IloEnv env, IloInt n, IloNum lb, IloNum ub)

public IloRangeArray(const IloEnv env, const IloNumArray lbs, const
IloNumExprArray rows, const IloNumArray ubs)

public IloRangeArray(const IloEnv env, IloNum lb, const IloNumExprArray rows,
const IloNumArray ubs)

public IloRangeArray(const IloEnv env, const IloNumArray lbs, const
IloNumExprArray rows, IloNum ub)

public IloRangeArray(const IloEnv env, IloNum lb, const IloNumExprArray rows,
IloNum ub)

public IloRangeArray(const IloEnv env, const IloIntArray lbs, const
IloNumExprArray rows, const IloIntArray ubs)

public IloRangeArray(const IloEnv env, IloNum lb, const IloNumExprArray rows,
const IloIntArray ubs)

public IloRangeArray(const IloEnv env, const IloIntArray lbs, const
IloNumExprArray rows, IloNum ub)

public IloRangeArray(const IloEnv env, const IloNumArray lbs, const IloNumArray
ubs)

public IloRangeArray(const IloEnv env, const IloIntArray lbs, const IloIntArray
ubs)

674

public IloRangeArray(const IloEnv env, IloNum lb, const IloNumArray ubs)

public IloRangeArray(const IloEnv env, const IloNumArray lbs, IloNum ub)

public IloRangeArray(const IloEnv env, IloNum lb, const IloIntArray ubs)

public IloRangeArray(const IloEnv env, const IloIntArray lbs, IloNum ub)

Method Summary

public void add(IloInt more, const IloRange range)

public void add(const IloRange range)

public void add(const IloRangeArray array)

public IloNumColumn operator()(const IloNumArray vals)

public IloNumColumn operator()(const IloIntArray vals)

public IloRange operator[](IloInt i) const

public IloRange & operator[](IloInt i)

public void setBounds(const IloIntArray lbs, const IloIntArray ubs)

public void setBounds(const IloNumArray lbs, const IloNumArray ubs)

Inherited Methods from IloConstraintArray

add, add, add, operator[], operator[]

Inherited Methods from IloExtractableArray

add, add, add, endElements, setNames

Constructors

public IloRangeArray(IloDefaultArrayI * i=0)

This default constructor creates an empty range array. You cannot create instances of the undocumented class
IloDefaultArrayI. As an argument in this default constructor, it allows you to pass 0 (zero) as a value to an
optional argument in functions and member functions that accept an array as an argument.

public IloRangeArray(const IloEnv env, IloInt n=0)

This constructor creates an array of n elements, each of which is an empty handle.

public IloRangeArray(const IloEnv env, IloInt n, IloNum lb, IloNum ub)

This constructor creates an array of n elements, each with the lower bound lb and the upper bound ub.

public IloRangeArray(const IloEnv env, const IloNumArray lbs, const IloNumExprArray
rows, const IloNumArray ubs)

This constructor creates an array of ranges from rows, an array of expressions. It uses the corresponding
elements of the arrays lbs and ubs to set the lower and upper bounds of elements in the new array. The length
of rows must equal the length of lbs and ubs.

675

public IloRangeArray(const IloEnv env, IloNum lb, const IloNumExprArray rows, const
IloNumArray ubs)

This constructor creates an array of ranges from rows, an array of expressions. The lower bound of every
element in the new array will be lb. The upper bound of each element of the new array will be the corresponding
element of the array ubs. The length of rows must equal the length of ubs.

public IloRangeArray(const IloEnv env, const IloNumArray lbs, const IloNumExprArray
rows, IloNum ub)

This constructor creates an array of ranges from rows, an array of expressions. The upper bound of every
element in the new array will be ub. The lower bound of each element of the new array will be the corresponding
element of the array lbs. The length of rows must equal the length of lbs.

public IloRangeArray(const IloEnv env, IloNum lb, const IloNumExprArray rows,
IloNum ub)

This constructor creates an array of ranges from rows, an array of expressions. The lower bound of every
element in the new array will be lb. The upper bound of every element in the new array will be ub.

public IloRangeArray(const IloEnv env, const IloIntArray lbs, const IloNumExprArray
rows, const IloIntArray ubs)

This constructor creates an array of ranges from rows, an array of expressions. It uses the corresponding
elements of the arrays lbs and ubs to set the lower and upper bounds of elements in the new array. The length
of rows must equal the length of lbs and ubs.

public IloRangeArray(const IloEnv env, IloNum lb, const IloNumExprArray rows, const
IloIntArray ubs)

This constructor creates an array of ranges from rows, an array of expressions. The lower bound of every
element in the new array will be lb. The upper bound of each element of the new array will be the corresponding
element of the array ubs. The length of rows must equal the length of ubs.

public IloRangeArray(const IloEnv env, const IloIntArray lbs, const IloNumExprArray
rows, IloNum ub)

This constructor creates an array of ranges from rows, an array of expressions. The upper bound of every
element in the new array will be ub. The lower bound of each element of the new array will be the corresponding
element of the array lbs. The length of rows must equal the length of lbs.

public IloRangeArray(const IloEnv env, const IloNumArray lbs, const IloNumArray
ubs)

This constructor creates an array of ranges. The number of elements in the new array will be equal to the number
of elements in the arrays lbs (or ubs). The number of elements in lbs must be equal to the number of elements
in ubs. The lower bound of each element in the new array will be equal to the corresponding element in the array
lbs. The upper bound of each element in the new array will be equal to the corresponding element in the array

676

ubs.

public IloRangeArray(const IloEnv env, const IloIntArray lbs, const IloIntArray
ubs)

This constructor creates an array of ranges. The number of elements in the new array will be equal to the number
of elements in the arrays lbs (or ubs). The number of elements in lbs must be equal to the number of elements
in ubs. The lower bound of each element in the new array will be equal to the corresponding element in the array
lbs. The upper bound of each element in the new array will be equal to the corresponding element in the array
ubs.

public IloRangeArray(const IloEnv env, IloNum lb, const IloNumArray ubs)

This constructor creates an array of ranges. The number of elements in the new array will be equal to the number
of elements in the array ubs. The lower bound of every element in the new array will be equal to lb. The upper
bound of each element in the new array will be equal to the corresponding element in the array ubs.

public IloRangeArray(const IloEnv env, const IloNumArray lbs, IloNum ub)

This constructor creates an array of ranges. The number of elements in the new array will be equal to the number
of elements in the array lbs. The upper bound of every element in the new array will be equal to ub. The lower
bound of each element in the new array will be equal to the corresponding element in the array lbs.

public IloRangeArray(const IloEnv env, IloNum lb, const IloIntArray ubs)

This constructor creates an array of ranges. The number of elements in the new array will be equal to the number
of elements in the array ubs. The lower bound of every element in the new array will be equal to lb. The upper
bound of each element in the new array will be equal to the corresponding element in the array ubs.

public IloRangeArray(const IloEnv env, const IloIntArray lbs, IloNum ub)

This constructor creates an array of ranges. The number of elements in the new array will be equal to the number
of elements in the array lbs. The upper bound of every element in the new array will be equal to ub. The lower
bound of each element in the new array will be equal to the corresponding element in the array lbs.

Methods

public void add(IloInt more, const IloRange range)

This member function appends range to the invoking array multiple times. The argument more specifies how
many times.

public void add(const IloRange range)

This member function appends range to the invoking array.

public void add(const IloRangeArray array)

677

This member function appends the elements in array to the invoking array.

public IloNumColumn operator()(const IloNumArray vals)

This operator constructs ranges in column representation. That is, it creates an instance of IloNumColumn that
will add a newly created variable to all the ranged constraints in the invoking object, each as a linear term with
the corresponding value specified in the array values.

public IloNumColumn operator()(const IloIntArray vals)

This operator constructs ranges in column representation. That is, it creates an instance of IloNumColumn that
will add a newly created variable to all the ranged constraints in the invoking object, each as a linear term with
the corresponding value specified in the array values.

public IloRange operator[](IloInt i) const

This operator returns a reference to the object located in the invoking array at the position specified by the index
i. On const arrays, Concert Technology uses the const operator:

 IloRange operator[] (IloInt i) const;

public IloRange & operator[](IloInt i)

This operator returns a reference to the object located in the invoking array at the position specified by the index
i.

public void setBounds(const IloIntArray lbs, const IloIntArray ubs)

This member function does not change the array itself; instead, it changes the bounds of all the ranged
constraints that are elements of the invoking array. At the same time, it also creates an instance of the
undocumented class IloChange to notify Concert Technology algorithms about this change in an extractable
object of the model. The elements of the arrays lbs and ubs may be integer or floating-point values. The size of
the invoking array must be equal to the size of lbs and the size of ubs.

Note

The member function setBounds notifies Concert Technology algorithms about this change of bounds for all
the elements in this invoking array.

public void setBounds(const IloNumArray lbs, const IloNumArray ubs)

This member function does not change the array itself; instead, it changes the bounds of all the ranged
constraints that are elements of the invoking array. At the same time, it also creates an instance of the
undocumented class IloChange to notify Concert Technology algorithms about this change in an extractable
object of the model. The elements of the arrays lbs and ubs may be integer or floating-point values. The size of
the invoking array must be equal to the size of lbs and the size of ubs.

678

Note

The member function setBounds notifies Concert Technology algorithms about this change of bounds for all
the elements in this invoking array.

679

Class IloRouletteWheelSelector<,>
Definition file: ilsolver/iimmulti.h
Include file: <ilsolver/iim.h>

A selector which chooses objects following a roulette wheel rule.
A roulette wheel selection is one where a non-negative evaluation is ascribed to each selectable object. The
probability of selection of a particular object is then equal to its evaluation divided by the sums of the evaluations
of the selectable objects. Roulette wheel selection chooses the nth object with probability (evaluation[n] /
sum(evaluation)). This evaluation is given using an evaluator which will evaluate each object to be selected.

When you create a roulette wheel selector, you must pass a visitor object which can traverse the container from
which you are selecting objects. However, in the case where a default visitor exists for the container in question,
you can omit the visitor and the default will be used. In addition to the default visitors available in Solver, IIM
provides default visitors for IloSolutionPool and IloPoolProcArray.

The following code shows how to declare a roulette wheel selector and use it to build a pool processor:

 IloRouletteWheelSelector<IloSolution,IloSolutionPool>
 rwsel(env, parentEvaluator);
 IloPoolProc selector = IloSelectSolutions(env, rwsel, IloTrue);

This code will select solutions based on an evaluator parentEvaluator, created for instance by
IloSolutionEvaluator. The IloTrue parameter to IloSelectSolutions means that you do not want
duplicates in the resulting selection. Once this selector is created, it can be used to build a reproduction goal:

 IloGoal reproduceGoal = IloExecuteProcessor(
 env, population >> selector >> applyOp(maxOffspring) >> offspring
);

In this goal, the selector is fed by the population pool and will provide parent solutions to the applyOp processor.

Note

An instance of IloRouletteWheelSelector which has been transformed into a pool processor using
IloSelectSolutions will always draw its random numbers from the random number generator of the solver
on which it is executing.

See Also: IloSolutionPool, IloPoolProcArray, IloVisitor, IloEvaluator, IloExplicitEvaluator, IloMultipleEvaluator,
IloUpdate, IloTournamentSelector, IloRandomSelector

Constructor Summary

public IloRouletteWheelSelector(IloEnv env, IloEvaluator< IloObject > evaluator,
IloVisitor< IloObject, IloContainer > visitor=0)

Builds a roulette wheel selector from an evaluator.

Method Summary

public IloEvaluator< IloObject > getEvaluator() const

Delivers the evaluator given at construction time.

public IloVisitor< IloObject, IloContainer > getVisitor() const

680

Delivers the visitor used by the selector.

Inherited Methods from IloSelector

select

Constructors

public IloRouletteWheelSelector(IloEnv env, IloEvaluator< IloObject > evaluator,
IloVisitor< IloObject, IloContainer > visitor=0)

Builds a roulette wheel selector from an evaluator.

This constructor builds a roulette wheel selector from an environment env which will evaluate its objects using an
evaluator evaluator and an optional visitor visitor. Each object visited by visitor will be handed to
evaluator for evaluation. If any evaluation is negative or all evaluations are zero, then an exception (of type
IloException) is raised. If no visitor is specified, a default visitor will be used if it exists. If no default visitor
exists, an exception of type IloException is raised.

Methods

public IloEvaluator< IloObject > getEvaluator() const

Delivers the evaluator given at construction time.

This member function returns the evaluator passed at construction time. If the selector was not constructed using
an evaluator, then an empty handle is returned.

public IloVisitor< IloObject, IloContainer > getVisitor() const

Delivers the visitor used by the selector.

This member function returns the visitor passed at construction time, or, if no visitor was passed, the default
visitor for the container from which object are being selected.

681

Class IloSearchLimit
Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

An instance of this class represents a search limit in a Concert Technology model. Search limits are useful in
goals (such as the goal returned by IloLimitSearch or other instances of IloGoal) to limit the exploration of
the search tree during the search for a solution.

There are predefined functions in Concert Technology that create and return a search limit, such as
IloFailLimit, IloOrLimit, and IloTimeLimit.

See Also: IloFailLimit, IloLimitSearch, IloOrLimit, IloTimeLimit

Constructor Summary

public IloSearchLimit()

public IloSearchLimit(IloSearchLimitI * impl)

Method Summary

public void end() const

public IloSearchLimitI * getImpl() const

public void operator=(const IloSearchLimit & h)

Constructors

public IloSearchLimit()

This constructor creates an empty handle. You must initialize it before you use it.

public IloSearchLimit(IloSearchLimitI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public void end() const

This member function ends the corresponding search limit and returns the memory to the environment.

public IloSearchLimitI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public void operator=(const IloSearchLimit & h)

682

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

683

Class IloSearchLimitI
Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

The class IloSearchLimit represents search limits in a Concert Technology model. The class
IlcSearchLimit represents search limits internally in a Solver search.

A search limit is used to prune part of the search tree.

A search limit is an object in Solver. Like other Solver entities, a search limit is implemented by means of two
classes: a handle class and an implementation class. In other words, an instance of the class IloSearchLimit
(a handle) contains a data member (the handle pointer) that points to an instance of the class
IloSearchLimitI (its implementation object).

See Also: IloSearchLimit

Constructor and Destructor Summary

public IloSearchLimitI(IloEnvI *)

public ~IloSearchLimitI()

Method Summary

public virtual void display(ostream &) const

public virtual IlcSearchLimit extract(const IloSolver solver) const

public virtual IloSearchLimitI * makeClone(IloEnvI * env) const

Constructors and Destructors

public IloSearchLimitI(IloEnvI *)

This constructor creates an instance of the class IloSearchLimitI. This constructor should not be called
directly as this class is an abstract class. This constructor is called automatically in the constructor of its
subclasses.

public ~IloSearchLimitI()

This destructor is called automatically by the destructor of its subclasses. It frees memory used by the invoking
object.

Methods

public virtual void display(ostream &) const

This member function prints the invoking search limit on an output stream.

684

public virtual IlcSearchLimit extract(const IloSolver solver) const

In general terms, in Concert Technology, the objects of a model must be extracted for an algorithm (an instance
of one of the subclasses of IloAlgorithm, such as IloSolver). This member function returns the internal
search limit extracted for solver from the invoking search limit of a model.

public virtual IloSearchLimitI * makeClone(IloEnvI * env) const

This member function is called internally to duplicate the current search limit.

685

Class IloSearchSelector
Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

An instance of this class is a search selector for use in a Concert Technology model. Search selectors are useful
as filters during a search for a solution.

There are predefined functions in IBM® ILOG® Solver that create and return a search selector, such as
IloMinimizeVar.

See Also: IloFirstSolution, IloMaximizeVar, IloMinimizeVar

Constructor Summary

public IloSearchSelector()

public IloSearchSelector(IloSearchSelectorI * impl)

Method Summary

public void end() const

public IloSearchSelectorI * getImpl() const

public void operator=(const IloSearchSelector & h)

Constructors

public IloSearchSelector()

This constructor creates an empty handle. You must initialize it before you use it.

public IloSearchSelector(IloSearchSelectorI * impl)

This constructor creates a handle object from a pointer to an implementation object.

Methods

public void end() const

This member function ends the corresponding search selector and returns the memory to the environment.

public IloSearchSelectorI * getImpl() const

This constructor creates an object by copying another one.

This member function returns a pointer to the implementation object of the invoking handle.

public void operator=(const IloSearchSelector & h)

686

This operator assigns an address to the handle pointer of the invoking object. That address is the location of the
implementation object of the provided argument.

687

Class IloSearchSelectorI
Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

The class IloSearchSelector represents search selectors in a Concert Technology model. The class
IlcSearchSelector represents search selectors internally in a Solver search.

Search selectors are useful to implement minimizations and filters in a Solver search.

A search selector is an object in Solver. Like other Solver entities, a search selector is implemented by means of
two classes: a handle class and an implementation class. In other words, an instance of the class
IloSearchSelector (a handle) contains a data member (the handle pointer) that points to an instance of the
class IloSearchSelectorI (its implementation object).

See Also: IlcSearchSelector, IloSearchSelector

Constructor and Destructor Summary

public IloSearchSelectorI(IloEnvI *)

public ~IloSearchSelectorI()

Method Summary

public virtual void display(ostream &) const

public virtual IlcSearchSelector extract(const IloSolver solver) const

public virtual IloSearchSelectorI * makeClone(IloEnvI * env) const

Constructors and Destructors

public IloSearchSelectorI(IloEnvI *)

This constructor creates an instance of the class IloSearchSelectorI. This constructor should not be called
directly as this class is an abstract class. This constructor is called automatically in the constructor of its
subclasses.

public ~IloSearchSelectorI()

This destructor is called automatically by the destructor of its subclasses. It frees memory used by the invoking
object.

Methods

public virtual void display(ostream &) const

This member function prints the invoking search selector on an output stream.

688

public virtual IlcSearchSelector extract(const IloSolver solver) const

In general terms, in Concert Technology, the objects of a model must be extracted for an algorithm (an instance
of one of the subclasses of IloAlgorithm, such as IloSolver). This member function returns the internal
search selector extracted for solver from the invoking search selector of a model.

public virtual IloSearchSelectorI * makeClone(IloEnvI * env) const

This member function is called internally to duplicate the invoking search selector.

689

Class IloSelector<,>
Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

The IloSelector template class is the base class for all selectors. A selector
IloSelector<IloObject,IloContainer> is a class that implements the selection of an object of type
IloObject from a container of type IloContainer.

Selectors can easily be built with the ILOSELECTOR0 macros or by defining an instance of IloBestSelector
which is a combination of a visitor, a predicate, and a comparator.

For more information, see Selectors.

See Also: ILOSELECTOR0, IloBestSelector

Method Summary

public IloBool select(IloObject & selected, const IloContainer & collection)
const

Selects an object from a collection.

Methods

public IloBool select(IloObject & selected, const IloContainer & collection) const

Selects an object from a collection.

This member function selects an instance of IloObject from the given IloContainer handled by the
selector. If no object can be selected, IloFalse is returned and the argument selected is not assigned. If an
object is selected, IloTrue is returned and selected contains the selected object.

690

Class IloSemaphore
Definition file: ilconcert/ilothread.h

Provides synchronization primitives.
The class IloSemaphore provides synchronization primitives adapted to Concert Technology. This class
supports inter-thread communication in multithread applications. An instance of this class, a semaphore, is a
counter; its value is always positive. This counter can be incremented or decremented. You can always
increment a semaphore, and incrementing is not a blocking operation. However, the value of the counter cannot
be negative, so any thread that attempts to decrement a semaphore whose counter is already equal to 0 (zero) is
blocked until another thread increments the semaphore.

System Class

IloSemaphore is a system class.

Most Concert Technology classes are actually handle classes whose instances point to objects of a
corresponding implementation class. For example, instances of the Concert Technology class IloNumVar are
handles pointing to instances of the implementation class IloNumVarI. Their allocation and de-allocation in a
Concert Technology environment are managed by an instance of IloEnv.

However, system classes, such as IloSemaphore, differ from that pattern. IloSemaphore is an ordinary C++
class. Its instances are allocated on the C++ heap.

Instances of IloSemaphore are not automatically de-allocated by a call to the member function IloEnv::end.
You must explicitly destroy instances of IloSemaphore by means of a call to the delete operator (which calls
the appropriate destructor) when your application no longer needs instances of this class.

Furthermore, you should not allocate—neither directly nor indirectly—any instance of IloSemaphore in a
Concert Technology environment because the destructor for that instance of IloSemaphore will never be called
automatically by IloEnv::end when it cleans up other Concert Technology objects in that Concert Technology
environment.

For example, it is not a good idea to make an instance of IloSemaphore part of a conventional Concert
Technology model allocated in a Concert Technology environment because that instance will not automatically
be de-allocated from the Concert Technology environment along with the other Concert Technology objects.

De-allocating Instances of IloSemaphore

Instances of IloSemaphore differ from the usual Concert Technology objects because they are not allocated in
a Concert Technology environment, and their de-allocation is not managed automatically for you by
IloEnv::end. Instead, you must explicitly destroy instances of IloSemaphore by calling the delete operator
when your application no longer needs those objects.

See Also: IloBarrier, IloCondition

Constructor and Destructor Summary

public IloSemaphore(int value=0)

public ~IloSemaphore()

Method Summary

public void post()

public int tryWait()

public void wait()

691

Constructors and Destructors

public IloSemaphore(int value=0)

This constructor creates an instance of IloSemaphore, initializes it to value, and allocates it on the C++ heap
(not in a Concert Technology environment). If you do not pass a value argument, the constructor initializes the
semaphore at 0 (zero).

public ~IloSemaphore()

The delete operator calls this destructor to de-allocate an instance of IloSemaphore. This destructor is called
automatically by the runtime system. The destructor de-allocates operating system-specific data structures.

Methods

public void post()

This member function increments the invoking semaphore by 1 (one). If there are threads blocked at this
semaphore, then this member function wakes one of them.

public int tryWait()

This member function attempts to decrement the invoking semaphore by 1 (one). If this decrement leaves the
counter positive, then the call succeeds and returns 1 (one). If the decrement would make the counter strictly
negative, then the decrement does not occur, the call fails, and the member function returns 0 (zero).

public void wait()

This member function decrements the invoking semaphore by 1 (one).

If this decrement would make the semaphore strictly negative, then this member function blocks the calling
thread. The thread wakes up when the member function can safely decrement the semaphore without causing
the counter to become negative (for example, if another entity increments the semaphore). If this member
function cannot decrement the invoking semaphore, then it leads to deadlock.

692

Class IloSequence
Definition file: ilconcert/ilomodel.h

For constraint programming: a sequence constraint in a model.
An instance of this class represents a sequence constraint in a model. As you can see from the arguments of its
constructor, an instance of this class makes it possible for you to constrain:

the minimum number of allowable values in the sequence,•
the maximum number of allowable values in the sequence,•
the frequency of allowable values (that is, how often a value occurs in the sequence),•
the number of elements in the sequence.•

In order for the constraint to take effect, you must add it to a model with the template IloAdd or the member
function IloModel::add and extract the model for an algorithm with the member function
IloAlgorithm::extract.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

See Also: IloConstraint, IloDistribute

Constructor Summary

public IloSequence()

public IloSequence(IloSequenceI * impl)

public IloSequence(const IloEnv env, IloInt nbMin, IloInt nbMax, IloInt seqWidth,
const IloIntVarArray vars, const IloIntArray values, const IloIntVarArray
cards, const char * name=0)

Method Summary

public IloSequenceI * getImpl() const

Inherited Methods from IloConstraint

getImpl

Inherited Methods from IloIntExprArg

getImpl

Inherited Methods from IloNumExprArg

getImpl

Inherited Methods from IloExtractable

asConstraint, asIntExpr, asModel, asNumExpr, asObjective, asVariable, end, getEnv,

693

getId, getImpl, getName, getObject, isConstraint, isIntExpr, isModel, isNumExpr,
isObjective, isVariable, setName, setObject

Constructors

public IloSequence()

This constructor creates an empty handle. You must initialize it before you use it.

public IloSequence(IloSequenceI * impl)

This constructor creates a handle object from a pointer to an implementation object.

public IloSequence(const IloEnv env, IloInt nbMin, IloInt nbMax, IloInt seqWidth,
const IloIntVarArray vars, const IloIntArray values, const IloIntVarArray cards,
const char * name=0)

This constructor creates a sequence constraint in an environment. The argument nbMin specifies a minimum
number of allowable values, and nbMax specifies a maximum number of allowable values. The argument
seqWidth specifies the number of elements in a sequence. The argument cards specifies an array of
cardinalities (that is, how many occurrences).

In the new constraint created by this class, the constrained variables in the array cards will be equal to the
number of occurrences in the array vars of the values in the array values such that for each sequence of
seqWidth (a number) consecutive constrained variables of vars, at least nbMin and at most nbMax values
are assigned to a constrained variable of the sequence.

The arrays cards and values must be the same length; otherwise, on platforms where C++ exceptions are
supported and exceptions are enabled, Concert Technology throws the exception InvalidArraysException.

Methods

public IloSequenceI * getImpl() const

This member function returns a pointer to the implementation object of the invoking handle.

694

Class IloSolution
Definition file: ilconcert/ilosolution.h

Instances of this class store solutions to problems.
Instances of this class store solutions to problems. The fundamental property of IloSolution is its ability to
transfer stored values from or to the active objects associated with it. In particular, the member function
IloSolution::store stores the values from algorithm variables while the member function
IloSolution::restore instantiates the actual variables with stored values. Variables in the solution may be
selectively restored. This class also offers member functions to copy and to compare solutions.

Information about these classes of variables can be stored in an instance of IloSolution:

IloAnySet: the required and possible sets are stored; when the variable is bound, the required and
possible sets are equivalent.

•

IloAnyVar: the value of the variable is stored.•
IloBoolVar: the value (true or false) of the variable is stored. Some of the member functions for
IloBoolVar are covered by the member function for IloNumVar, as IloBoolVar is a subclass of
IloNumVar. For example, there is no explicit member function to add objects of type IloBoolVar.

•

IloIntSetVar: the required and possible sets are stored; when the variable is bound, the required
and possible sets are equivalent.

•

IloNumVar: the lower and upper bounds are stored; when the variable is bound, the current lower and
upper bound are equivalent.

•

IloIntVar: the lower and upper bounds are stored; when the variable is bound, the current lower and
upper bound are equivalent.

•

IloIntervalVar: the lower and upper bounds of the start, end, length and size are stored as well as
the presence status.

•

IloObjective: the value of the objective is stored. Objectives are never restored; operations such as
setRestorable cannot change this. More than one instance of IloObjective can be added to a
solution,. In such cases, there is the idea of an active objective, which is returned by
IloSolution::getObjective. The active objective typically specifies the optimization criterion for
the problem to which the solution object is a solution. For example, the IBM ILOG Solver class
IloImprove uses the idea of an active objective.

•

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

Objects of type IloSolution have a scope, comprising the set of variables that have their values stored in the
solution. The scope is given before the basic operations of storing and restoring are performed, via add and
remove methods. For example,

 IloNumVar var(env);
 IloSolution soln(env);
 solution.add(var);

creates a numeric variable and a solution and adds the variable to the solution. Arrays of variables can also be
added to the solution. For example,

 IloNumVarArray arr(env, 10, 0, 1);
 soln.add(arr);

adds 10 variables with range [0...1]. When an array of variables is added to the solution, the array object itself is
not present in the scope of the solution; only the elements are present. If the solution is then stored by means of
soln.store(algorithm), the values of variable var and arr[0] to arr[9] are saved. Any attempt to add a
variable that is already present in a solution throws an exception, an instance of IloException.

695

Accessors allow access to the stored values of the variables, regardless of the state (or existence) of the
algorithm they were stored from. For example,

 cout << "arr[3] = " << soln.getValue(arr[3]) << endl;

Any attempt to access a variable that is not present in the solution throws an instance of IloException.

A variable or an array of variables can be removed from a solution. For example,

 soln.remove(var);

removes var from the scope of the solution; and

 soln.remove(arr);

removes arr[0] to arr[9] from the solution.

Any attempt to remove a variable that is not present in the solution throws an instance of IloException.

See Also these classes in the IBM ILOG Solver Reference Manual: IloAnySetVar, IloAnyVar,
IloIntSetVar, IloStoreSolution, IloFRestoreSolution.

See Also this class in the IBM ILOG CP Optimizer Reference Manual: IloIntervalVar.

See Also: IloNumVar, IloIntVar, IloObjective

Constructor Summary

public IloSolution()

public IloSolution(IloSolutionI * impl)

public IloSolution(const IloSolution & solution)

public IloSolution(IloEnv mem, const char * name=0)

Method Summary

public void add(IloAnySetVarArray a) const

public void add(IloAnySetVar var) const

public void add(IloAnyVarArray a) const

public void add(IloAnyVar var) const

public void add(IloNumVarArray a) const

public void add(IloNumVar var) const

public void add(IloObjective objective) const

public IloBool contains(IloExtractable extr) const

public void copy(IloExtractable extr, IloSolution solution) const

public void copy(IloSolution solution) const

public void end()

public IloEnv getEnv() const

public IloSolutionI * getImpl() const

public IloNum getMax(IloNumVar var) const

public IloNum getMin(IloNumVar var) const

696

public const char * getName() const

public IloAny getObject() const

public IloObjective getObjective() const

public IloNum getObjectiveValue() const

public IloNumVar getObjectiveVar() const

public IloAnySet getPossibleSet(IloAnySetVar var) const

public IloAnySet getRequiredSet(IloAnySetVar var) const

public IloAny getValue(IloAnyVar var) const

public IloNum getValue(IloNumVar var) const

public IloNum getValue(IloObjective obj) const

public IloBool isBetterThan(IloSolution solution) const

public IloBool isBound(IloAnySetVar var) const

public IloBool isBound(IloNumVar var) const

public IloBool isEquivalent(IloExtractable extr, IloSolution solution)
const

public IloBool isEquivalent(IloSolution solution) const

public IloBool isObjectiveSet() const

public IloBool isRestorable(IloExtractable extr) const

public IloBool isWorseThan(IloSolution solution) const

public IloSolution makeClone(IloEnv env) const

public void operator=(const IloSolution & solution)

public void remove(IloExtractableArray extr) const

public void remove(IloExtractable extr) const

public void restore(IloExtractable extr, IloAlgorithm algorithm) const

public void restore(IloAlgorithm algorithm) const

public void setFalse(IloBoolVar var) const

public void setName(const char * name) const

public void setNonRestorable(IloExtractableArray array) const

public void setNonRestorable(IloExtractable extr) const

public void setObject(IloAny obj) const

public void setObjective(IloObjective objective) const

public void setPossibleSet(IloAnySetVar var, IloAnySet possible) const

public void setRequiredSet(IloAnySetVar var, IloAnySet required) const

public void setRestorable(IloExtractableArray array) const

public void setRestorable(IloExtractable ex) const

public void setTrue(IloBoolVar var) const

public void setValue(IloAnyVar var, IloAny value) const

public void setValue(IloObjective objective, IloNum value) const

public void store(IloExtractable extr, IloAlgorithm algorithm) const

public void store(IloAlgorithm algorithm) const

public void unsetObjective() const

697

Inner Class

IloSolution::Iterator It allows you to traverse the variables in a solution.

Constructors

public IloSolution()

This constructor creates a solution whose implementation pointer is 0 (zero). The handle must be assigned
before its methods can be used.

public IloSolution(IloSolutionI * impl)

This constructor creates a handle object (an instance of the class IloSolution) from a pointer to an
implementation object (an instance of the class IloSolutionI).

public IloSolution(const IloSolution & solution)

This constructor creates a handle object from a reference to a solution. After execution, both the newly
constructed handle and solution point to the same implementation object.

public IloSolution(IloEnv mem, const char * name=0)

This constructor creates an instance of the IloSolution class. The optional argument name, if supplied,
becomes the name of the created object.

Methods

public void add(IloAnySetVarArray a) const

This member function adds each element of array to the invoking solution.

public void add(IloAnySetVar var) const

This member function adds the set variable var to the invoking solution.

public void add(IloAnyVarArray a) const

This member function adds each element of array to the invoking solution.

public void add(IloAnyVar var) const

This member function adds the variable var to the invoking solution.

public void add(IloNumVarArray a) const

698

This member function adds each element of array to the invoking solution.

public void add(IloNumVar var) const

This member function adds the variable var to the invoking solution.

public void add(IloObjective objective) const

This member function adds objective to the invoking solution. If the solution has no active objective, then
objective becomes the active objective. Otherwise, the active objective remains unchanged.

public IloBool contains(IloExtractable extr) const

This member function returns IloTrue if extr is present in the invoking object. Otherwise, it returns IloFalse.

public void copy(IloExtractable extr, IloSolution solution) const

This member function copies the saved value of extr from solution to the invoking solution. If extr does not
exist in either solution or the invoking object, this member function throws an instance of IloException. The
restorable status of extr is not copied.

public void copy(IloSolution solution) const

For each variable that has been added to solution, this member function copies its saved data to the invoking
solution. If a particular extractable does not already exist in the invoking solution, it is automatically added first. If
variables were added to the invoking solution, their restorable status is the same as in solution. Otherwise,
their status remains unchanged in the invoking solution.

public void end()

This member function deallocates the memory used to store the solution. If you no longer need a solution, calling
this member function can reduce memory consumption.

public IloEnv getEnv() const

This member function returns the environment specified when the invoking object was constructed.

public IloSolutionI * getImpl() const

This member function returns a pointer to the implementation object corresponding to the invoking solution.

public IloNum getMax(IloNumVar var) const

699

This member function returns the maximal value of the variable var in the invoking solution.

public IloNum getMin(IloNumVar var) const

This member function returns the minimal value of the variable var in the invoking solution.

public const char * getName() const

This member function returns a character string specifying the name of the invoking object (if there is one).

public IloAny getObject() const

This member function returns the object associated with the invoking object (if there is one). Normally, an
associated object contains user data pertinent to the invoking object.

public IloObjective getObjective() const

This member function returns the active objective as set via a previous call to IloSolution::add or
setObjective(IloObjective). If there is no active objective, an empty handle is returned.

public IloNum getObjectiveValue() const

This member function returns the saved value of the current active objective. It can be seen as performing the
action getValue(getObjective()).

public IloNumVar getObjectiveVar() const

If the active objective corresponds to a simple IloNumVar, this member function returns that variable. If there is
no active objective or if the objective is not a simple variable, an empty handle is returned.

public IloAnySet getPossibleSet(IloAnySetVar var) const

This member function returns the set of possible values for the variable var, as stored in the invoking solution.

public IloAnySet getRequiredSet(IloAnySetVar var) const

This member function returns the set of required values for the variable var, as stored in the invoking solution.

public IloAny getValue(IloAnyVar var) const

This member function returns the value of the variable var in the invoking solution.

public IloNum getValue(IloNumVar var) const

700

This member function returns the value of the variable var in the invoking solution. If the saved minimum and
maximum of the variable are not equal, this member function throws an instance of IloException.

public IloNum getValue(IloObjective obj) const

This member function returns the saved value of objective objective in the invoking solution.

public IloBool isBetterThan(IloSolution solution) const

This member function returns IloTrue if the invoking solution and solution have the same objective and if the
invoking solution has a strictly higher quality objective value (according to the sense of the objective). In all other
situations, it returns IloFalse.

public IloBool isBound(IloAnySetVar var) const

This member function returns IloTrue if the stored required and possible sets for the set variable var are equal
in the invoking solution. Otherwise, it returns IloFalse.

public IloBool isBound(IloNumVar var) const

This member function returns IloTrue if var takes a single value in the invoking solution. Otherwise, it returns
IloFalse.

public IloBool isEquivalent(IloExtractable extr, IloSolution solution) const

This member function returns IloTrue if the saved value of extr is the same in the invoking solution and
solution. Otherwise, it returns IloFalse. If extr does not exist in either solution or the invoking object,
the member function throws an instance of IloException.

public IloBool isEquivalent(IloSolution solution) const

This member function returns IloTrue if the invoking object and solution contain the same variables with the
same saved values. Otherwise, it returns IloFalse.

public IloBool isObjectiveSet() const

This member function returns IloTrue if the invoking solution has an active objective. Otherwise, it returns
IloFalse.

public IloBool isRestorable(IloExtractable extr) const

This member function returns IloFalse if setNonRestorable(extr) was called more recently than
setRestorable(extr). Otherwise, it returns IloTrue. This member function always returns IloFalse when
it is passed an IloObjective object.

701

public IloBool isWorseThan(IloSolution solution) const

This member function returns IloTrue if the invoking solution and solution have the same objective and if the
invoking solution has a strictly lower quality objective value (according to the sense of the objective). In all other
situations, it returns IloFalse.

public IloSolution makeClone(IloEnv env) const

This member function allocates a new solution on env and adds to it all variables that were added to the invoking
object. The “restorable” status of all variables in the clone is the same as that in the invoking solution. Likewise,
the active objective in the clone is the same as that in the invoking solution. The newly created solution is
returned.

public void operator=(const IloSolution & solution)

This operator assigns an address to the handle pointer of the invoking solution. That address is the location of
the implementation object of solution. After the execution of this operator, the invoking solution and solution
both point to the same implementation object.

public void remove(IloExtractableArray extr) const

This member function removes each element of array from the invoking solution. If the invoking solution does
not contain all elements of array, the member function throws an instance of IloException.

public void remove(IloExtractable extr) const

This member function removes extractable extr from the invoking solution. If the invoking solution does not
contain extr, the member function throws an instance of IloException.

public void restore(IloExtractable extr, IloAlgorithm algorithm) const

This member function restores the value of the extractable corresponding to extr by reference to algorithm.
The use of this member function depends on the state of algorithm. If algorithm is an instance of the IBM
ILOG Solver class IloSolver, this member function can only be used during search. If extr does not exist in
the invoking solution, the member function throws an instance of IloException.

public void restore(IloAlgorithm algorithm) const

This member function uses algorithm to instantiate the variables in the invoking solution with their saved
values. The value of any objective added to the solution is not restored. The use of this member function
depends on the state of algorithm. If algorithm is an instance of the IBM ILOG Solver class IloSolver,
this member function can only be used during search.

public void setFalse(IloBoolVar var) const

This member function sets the stored value of var to IloFalse in the invoking solution.

702

public void setName(const char * name) const

This member function assigns name to the invoking object.

public void setNonRestorable(IloExtractableArray array) const

This member function specifies to the invoking solution that when the solution is restored by means of
restore(IloAlgorithm) or restore(IloExtractable, IloAlgorithm), no elements of array will be
restored. When an array of variables is added to a solution, each variable is added in a “restorable” state.

public void setNonRestorable(IloExtractable extr) const

This member function specifies to the invoking solution that when the solution is restored by means of
restore(IloAlgorithm) or restore(IloExtractable, IloAlgorithm), extr will not be restored.
When a variable is added to a solution, it is added in a “restorable” state.

public void setObject(IloAny obj) const

This member function associates obj with the invoking object. The member function getObject accesses this
associated object afterward. Normally, obj contains user data pertinent to the invoking object.

public void setObjective(IloObjective objective) const

This member function adds objective to the invoking solution, if it is not already present, and sets the active
objective to objective.

public void setPossibleSet(IloAnySetVar var, IloAnySet possible) const

This member function sets the stored possible values for var as possible in the invoking solution.

public void setRequiredSet(IloAnySetVar var, IloAnySet required) const

This member function sets the stored required values for var as required in the invoking solution.

public void setRestorable(IloExtractableArray array) const

This member function specifies to the invoking solution that when the solution is restored by means of
restore(IloAlgorithm) or restore(IloExtractable, IloAlgorithm), the appropriate element(s) of
array will be restored. When an array of variables is added to a solution, each variable is added in a “restorable”
state. This call has no effect on objects of type IloObjective; objects of this type are never restored.

public void setRestorable(IloExtractable ex) const

703

This member function specifies to the invoking solution that when the solution is restored by means of
restore(IloAlgorithm) or restore(IloExtractable, IloAlgorithm), extr will be restored. When
a variable is added to a solution, it is added in a “restorable” state. This call has no effect on objects of type
IloObjective; objects of that type are never restored.

public void setTrue(IloBoolVar var) const

This member function sets the stored value of var to IloTrue in the invoking solution.

public void setValue(IloAnyVar var, IloAny value) const

This member function sets the value of the variable var to value in the invoking solution.

public void setValue(IloObjective objective, IloNum value) const

This member function sets the value of objective as stored in the invoking solution to value. This member
function should be used with care and only when the objective value of the solution is known exactly.

public void store(IloExtractable extr, IloAlgorithm algorithm) const

This member function stores the value of the extractable corresponding to extr by reference to algorithm. If
extr does not exist in the invoking solution, the member function throws an instance of IloException.

public void store(IloAlgorithm algorithm) const

This member function stores the values of the objects added to the solution by reference to algorithm.

public void unsetObjective() const

This member function asserts that there should be no active objective in the invoking solution, although the
previous active object is still present. A new active objective can be set via IloSolution::add or
IloSolution::setObjective.

704

Class IloSolutionDeltaCheck
Definition file: ilsolver/iimmeta.h
Include file: <ilsolver/iimls.h>

In some instances, the illegality of a solution delta can be determined before the delta is applied to the solution in
question, if knowledge of the problem is available. This handle class can be used to perform such “pre-filtering”,
which can considerably improve the performance of local search procedures.
IloMetaHeuristic::getDeltaCheck returns such a delta checker. This is the most common use of the
class.

See Also: IloMetaHeuristic, IloScanNHood, IloSolutionDeltaCheckI

Constructor Summary

public IloSolutionDeltaCheck()

public IloSolutionDeltaCheck(IloSolutionDeltaCheckI * ck)

Method Summary

public IloEnv getEnv() const

public IloSolutionDeltaCheckI * getImpl() const

public IloBool ok(IloSolver solver, IloSolution delta)

public void operator=(const IloSolutionDeltaCheck & check)

Constructors

public IloSolutionDeltaCheck()

This constructor creates a delta checker whose implementation pointer is 0 (zero). The handle must be assigned
before its methods can be used.

public IloSolutionDeltaCheck(IloSolutionDeltaCheckI * ck)

This constructor creates a handle object (an instance of the class IloSolutionDeltaCheck from a pointer to
an implementation object (an instance of the class IloSolutionDeltaCheckI).

Methods

public IloEnv getEnv() const

This member function returns the environment specified when the implementation object of the invoking object
was constructed.

public IloSolutionDeltaCheckI * getImpl() const

This member function returns a pointer to the implementation object corresponding to the invoking delta checker.

705

public IloBool ok(IloSolver solver, IloSolution delta)

This member function is called with the delta to be checked. If delta is determined to be illegal, this member
function returns IloFalse. Otherwise, it returns IloTrue.

public void operator=(const IloSolutionDeltaCheck & check)

This operator assigns an address to the handle pointer of the invoking delta checker. That address is the location
of the implementation object of check. After the execution of this operator, the invoking delta checker and check
both point to the same implementation object.

706

Class IloSolutionDeltaCheckI
Definition file: ilsolver/iimmeta.h
Include file: <ilsolver/iimls.h>

In some instances, the illegality of a solution delta can be determined before the delta is applied to the solution in
question, if knowledge of the problem is available. This abstract implementation class can be used to perform
such specialized “pre-filtering”, which can improve the performance of local search procedures considerably.

The method IloMetaHeuristic::getDeltaCheck returns a delta checker which uses the method
IloMetaHeuristicI::isFeasible to perform such checks. Therefore, it is not necessary to subclass
IloSolutionDeltaCheck to perform delta checks for metaheuristics.

See Also: IloMetaHeuristic, IloScanNHood, IloSolutionDeltaCheck

Constructor and Destructor Summary

public IloSolutionDeltaCheckI(IloEnv env)

public ~IloSolutionDeltaCheckI()

Method Summary

public IloEnv getEnv() const

public virtual IloBool ok(IloSolver solver, IloSolution delta) const

Constructors and Destructors

public IloSolutionDeltaCheckI(IloEnv env)

This constructor creates an instance of the IloSolutionDeltaCheckI class.

public ~IloSolutionDeltaCheckI()

Since IloSolutionDeltaCheckI is an abstract class, a virtual destructor is provided.

Methods

public IloEnv getEnv() const

This member function returns the environment specified when the invoking object was constructed.

public virtual IloBool ok(IloSolver solver, IloSolution delta) const

This member function is called with the delta to be checked. If delta is determined to be illegal, this member
should return IloFalse. Otherwise, it returns IloTrue.

707

Class IloSolutionIterator<>
Definition file: ilconcert/ilosolution.h

This template class creates a typed iterator over solutions.
You can use this iterator to discover all extractable objects added to a solution and of a particular type. The type
is denoted by E in the template.

This iterator is not robust. If the variable at the current position is deleted from the solution being iterated over,
the behavior of this iterator afterward is undefined.

An iterator created with this template differs from an instance of IloSolution::Iterator. An instance of
IloSolution::Iterator works on all extractable objects within a given solution (an instance of
IloSolution). In contrast, an iterator created with this template only iterates over extractable objects of the
specified type.

See Also: IloSolution, IloSolution::Iterator

Constructor Summary

public IloSolutionIterator(IloSolution s)

Method Summary

public E operator*() const

public void operator++()

Constructors

public IloSolutionIterator(IloSolution s)

This constructor creates an iterator for instances of the class E.

Methods

public E operator*() const

This operator returns the current element, the one to which the invoking iterator points. This current element is a
handle to an extractable object (not a pointer to the implementation object).

public void operator++()

This operator advances the iterator by one position.

708

Class IloSolutionManip
Definition file: ilconcert/ilosolution.h

An instance of this class accesses a specific part of a solution.
To display a specific part of the solution, you construct the class IloSolutionManip from a solution and an
extractable object. You use the operator<< with this constructed class to display information stored on the
specified extractable object in the solution.

See Also: IloSolution, operator<<

Constructor Summary

public IloSolutionManip(IloSolution solution, IloExtractable extr)

Constructors

public IloSolutionManip(IloSolution solution, IloExtractable extr)

This constructor creates an instance of IloSolutionManip from the solution specified by solution and from
the extractable object extr. The constructor throws an exception (an instance of IloException) if extr has
not been added to solution. You can use the operator<< with the newly created object to display the
information in extr stored in solution.

709

Class IloSolutionPool
Definition file: ilsolver/iimpool.h
Include file: <ilsolver/iim.h>

A pool of solutions.
Solution pools are bags of solutions which can be used:

as containers (for example for holding a population of solutions)•
as communication buffers between pool processors•

For example, the following code uses the buffer pool to store intermediate solutions which will be processed by
the consumer processor, then stored in the result pool:

 IloSolutionPool buffer(env);
 IloSolutionPool result(env);
 IloPoolProc producer = ...; // a processor which generates solutions
 IloPoolProc consumer = ...; // a processor which transforms solutions

 IloPoolProc proc = producer >> buffer >> consumer >> result;

Note

IIM provides a default visitor for IloSolutionPool. Thus, selection of a solution from a pool can be
performed without specification of a visitor.

See Also: IloPoolProc, operator>>, IloVisitor, IloSelector, IloSelectSolutions, IloReplaceSolutions, IloSolution

Constructor Summary

public IloSolutionPool(const IloAnyPool & obj)

public IloSolutionPool(IloEnv env, const char * name=0)

Method Summary

public void add(IloSolution elt) const

public void addAll(IloSolutionPool pool) const

public void addListener(IloListener listener) const

public void copy(IloSolutionPool pool) const

public void end()

public void endSolutions() const

public IloComparator< IloSolution > getDefaultComparator() const

public IloEnv getEnv() const

public IloInt getSize() const

public IloComparator< IloSolution > getSortComparator() const

public void remove(IloInt index) const

public void remove(IloSolution elt) const

public void removeAll() const

710

public void removeAll(IloSolutionPool pool) const

public void removeListener(IloListener listener) const

public void setSortComparator(IloComparator< IloSolution
> cmp) const

public void sort() const

public void sort(IloComparator< IloSolution > cmp) const

Inner Class

IloSolutionPool::AddedEvent

IloSolutionPool::EndEvent

IloSolutionPool::Event

IloSolutionPool::Iterator

IloSolutionPool::RemovedEvent

Constructors

public IloSolutionPool(const IloAnyPool & obj)

brief Constructs an 0 from an 1.

Type checking is performed to make sure that obj was constructed as an 0. If this was not the case an
exception is thrown (an instance of IloException).

public IloSolutionPool(IloEnv env, const char * name=0)

brief Creates a pool for storing objects of type 1.

This constructor creates a pool for storing objects of type 1 on the environment env.

Methods

public void add(IloSolution elt) const

brief Adds an element to the pool.

This function adds an element elt, an instance of 1, to the pool.

public void addAll(IloSolutionPool pool) const

brief Adds all the instances of 1 contained in the given pool to the invoking pool.

This function adds all the instances of 1 in the pool pool to the invoking pool.

public void addListener(IloListener listener) const

brief Adds a listener to the pool.

711

This function adds a listener listener to the pool. According to the event type of the listener, the listener will be
called when the pool has an element added or deleted, or when the pool itself is destroyed.

See Also: ILOIIMLISTENER0

public void copy(IloSolutionPool pool) const

brief Copies elements from another pool into the invoking pool.

This function copies elements from the pool pool into the invoking pool. All elements previously in the invoking
pool will first be removed. After execution, both pools will contain the same elements.

public void end()

brief Destroy the pool.

This function destroys the invoking pool, but not its contents.

public void endSolutions() const

brief Destroys all items contained in this 0.

This function destroys all items contained in this 0.

public IloComparator< IloSolution > getDefaultComparator() const

brief Returns the default object comparator which is inherent to the type of pool.

This function returns the default object comparator which is inherent to the type of pool. Normally, you would
never call this function directly. It is typically called from getSortComparator when no sorting comparator has
been set on the pool. For example, IloSolutionPool delivers IloBestSolutionComparator here.

See Also: IloSolutionPool::setSortComparator, IloSolutionPool::getSortComparator, IloBestSolutionComparator

public IloEnv getEnv() const

brief Delivers the environment passed at construction time.

This function returns the environment passed in the constructor.

public IloInt getSize() const

brief Delivers the number of elements comprising the pool.

This function returns the number of elements in the pool.

public IloComparator< IloSolution > getSortComparator() const

712

brief Returns the comparator used for comparing elements of the pool.

This function returns the comparator previously set using setSortComparator. If no sorting comparator has
been set, then the comparator returned is that from getDefaultComparator.

public void remove(IloInt index) const

brief Removes the 1 located at the given index from the pool.

This function removes the instance of 1 located at the given index index from the pool.

public void remove(IloSolution elt) const

brief Removes the given 1 from the pool.

This function removes elt, an instance of 1, from the pool.

public void removeAll() const

brief Removes all the instances of 1 from the pool.

This function removes all the instances of 1 from the pool.

public void removeAll(IloSolutionPool pool) const

brief Removes from this pool all the instances of 1 contained in the given pool.

This function removes all the instances of 1 contained in the pool pool.

public void removeListener(IloListener listener) const

brief Removes a listener from a pool.

This function removes the listener listener from the invoking pool. After execution of this member function,
listener will no longer be called when the pool is modified or destroyed.

public void setSortComparator(IloComparator< IloSolution > cmp) const

brief Sets the comparator used for comparing elements of the pool.

This function sets the comparator cmp used for comparing elements of the pool. The comparator set by this
method will be used by the pool for comparing elements, particularly during the sorting of the pool, and in
retrieving the best and worst elements.

See Also: IloSolutionPool::getSortComparator, IloSolutionPool::sort, IloComparator

public void sort() const

713

brief Sorts the pool using the comparator returned from getSortComparator.

This function sorts the pool using the comparator returned from getSortComparator. After sorting, the indices
of the sorted elements are smaller for preferred elements. In other words, the objects are ranked "best first".

See Also: IloSolutionPool::getSortComparator

public void sort(IloComparator< IloSolution > cmp) const

brief Sorts the pool using the given comparator.

This function sorts the pool using the comparator cmp. After sorting, the indices of the sorted elements are
smaller for preferred elements. In other words, the objects are ranked "best first".

714

Class IloSolver
Definition file: ilsolver/ilosolverhandle.h
Include file: <ilsolver/ilosolver.h>

An instance of this class represents an algorithm for IBM® ILOG® Solver.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

Choice Functions and Criteria

An instance of IloSolver allows you to set parameters to control the order in which constrained variables are
bound to values. You control these search primitives by means of choice functions and criteria. In Concert
Technology, the classes listed in IloChoose support these search primitives in a model.

Enumeration Algorithms

There are enumeration algorithms available in an instance of IloSolver. With IBM ILOG Concert Technology,
you access those enumeration algorithms most easily through predefined goals, such as IloBestGenerate,
IloBestInstantiate, IloGenerate, and IloInstantiate, in a model.

Modifying the Search Globally

These member functions have an overall effect on the search performed by IloSolver::solve. They allow
you to limit the number of failures, the number of choice points, or the amount of time spent in a search.

 void setFailLimit (IloInt numberOfFailures) const;
 void setTimeLimit (IloNum time) const;
 void setOrLimit (IloInt numberOfChoicePoints) const;

The following member function lets you control the granularity of the optimization:

 void setOptimizationStep (IloNum step) const;

Nonlinear Propagation Techniques

When you use the member function IloSolver::useNonLinConstraint, the invoking solver will use
nonlinear propagation techniques for all the nonlinear constraints in your model.

In addition, when the set of nonlinear constraints is a square system of equations or a square system of
inequalities, a global constraint will be posted. This constraint may allow for additional propagation.

Furthermore it may allow you to prove that the solution-interval found for the system of nonlinear constraints
surely contains a solution.

The keep parameter of IloSolver::useNonLinConstraintspecifies whether or not in addition to the
advanced propagation techniques the invoking solver should also use its default propagation. If keep is
IlcTrue constraints are propagated only by the nonlinear propagation techniques; if keep is IlcFalse, the
invoking solver will use nonlinear propagation techniques as well as its default propagation techniques.

By default, when you use nonlinear propagation techniques, the default precision (indicated by
IloSolver::getDefaultPrecision and changed by IloSolver::setDefaultPrecision) is respected.
However, you can set your own value to use with nonlinear constraints and to use in the safety of solutions by
means of the member function IloSolver::setNonLinPrecision and

715

IloSolver::getNonLinPrecision.

Example

Here is an example using nonlinear propagation techniques.

#include <ilconcert/ilomodel.h>
#include <ilconcert/ilosolver.h>

 ILOSTLBEGIN

 int main () {
 try {
 IloEnv env;
 IloModel model(env);

 IloNumVar x(env,-10, 10);
 IloNumVar y(env,-10, 10);
 IloNumVarArray vars(env, 2, x, y);

 model.add(IloSquare(x) + IloSquare(y) == 1);
 model.add(IloSquare(x) == y);

 IloSolver solver(env);
 solver.useNonLinConstraint();
 solver.extract(model);

 solver.startNewSearch(IloSplit(env, vars));

 IloInt nbSol = 0;
 while (solver.next()) {
 nbSol++;
 solver.out() << ?Sol#? << nbSol << ? ?;
 if (solver.isNonLinSafe())
 solver.out() << ?[SAFE] ?;
 solver.out() << endl;
 solver.out() << ?x: ? << solver.getFloatVar(x) <<
 endl;
 solver.out() << ?y: ? << solver.getFloatVar(y) <<
 endl;
 solver.out() << endl;
 }
 env.end();
 }
 catch (IloException& ex) {
 cerr << ?Error: ? << ex << endl;
 }
 return 0;
 }

Here is the result of that program:

 Sol#1 [SAFE]
 x: [0.786151..0.786152]
 y: [0.618033..0.618034]

 Sol#2 [SAFE]
 x: [-0.786152..-0.786151]
 y: [0.618033..0.618034]

Safe Solutions

When it is working with constrained floating-point variables, an instance of IloSolver returns an interval or set
of intervals possibly containing a solution. Practical considerations about the representation of real numbers as
floating-point values on any computing platform make it difficult to predict whether an interval of a given precision
contains a unique solution (that is, an assignment of values to variables that satisfies the constraints of the
problem).

716

However, in some cases, the algorithms of IloSolver can prove the existence of solutions within precisely
defined intervals. In its search for solutions, an instance of IloSolver regards a solution as safe if it is certain
that a solution exists within the most recently returned intervals. When it proves a solution safe, it considers the
model most recently synchronized within a call to the member functions IloSolver::solve or
IloSolver::startNewSearch.

The member function IloSolver::isNonLinSafe applies to the non linear constraints of a problem; it tells
you whether Solver has proved the existence of a solution with respect to the non linear constraints of a problem
within the most recently returned set of intervals. The return value of this member function applies only to the non
linear constraints of a problem; that is, it can prove that the set of non linear constraints has a solution, but it says
nothing about any other constraints in the problem. In some cases, there may be other constraints that are not
non linear (constraints such as IloAllDiff, for example; in other words, constraints that are not non linear
equalities or inequalities) in the problem that make it impossible to find a solution to the problem in its entirety.

Exceptions

Early versions of Solver raised errors in case of anomalous situations. Those errors were associated with an
error code enumerated in IlcErrorType. As of version 5.0, an instance of IloSolver now silently transforms
an error into an exception, that is, an instance of IloSolver::SolverErrorException. The member
function IloSolver::SolverErrorException::getErrorType will return the IlcErrorType.

See Also: IloAddConstraint, IloSynchronizeMode, IloSolver::FailureStatus

Constructor Summary

public IloSolver(const IloEnv & env)

public IloSolver(const IloModel & model)

Method Summary

public void add(const IlcConstraintArray constraints) const

public void add(const IlcConstraint constraint) const

public void addMemoryManager(IlcMemoryManagerI * mm) const

public void addReversibleAction(const IlcGoal goal) const

public void addTrace(IloCPTrace search)

public IloBool assumeStrictNumericalDivision() const

public void assumeStrictNumericalDivision(IloBool snd) const

public void commitSearch(IloAny label) const

public void end()

public void endSearch() const

public void exitSearch() const

public void extract(const IloModel model) const

public void fail(IlcAny label=0) const

public IlcDemon getActiveDemon() const

public IlcGoal getActiveGoal() const

public IlcAnyArray getAnyArray(const IloAnyArray arg) const

public IlcAnySet getAnySet(const IloAnySet arg) const

public IloAnySet getAnySetValue(const IloAnySetVar var) const

public IlcAnySetVar getAnySetVar(const IloAnySetVar var) const

public IlcAnySetVarArray getAnySetVarArray(const IloAnySetVarArray vars)
const

717

public IloAny getAnyValue(const IloAnyVar var) const

public IlcAnyVar getAnyVar(const IloAnyVar var) const

public IlcAnyVarArray getAnyVarArray(const IloAnyVarArray vars) const

public IlcBox getBox(const IloBox) const

public IloNum getBranchImpact(const IloNumVar x) const

public IloNum getBranchImpact(const IlcFloatVar x) const

public IloNum getBranchImpact(const IloIntVar x) const

public IloNum getBranchImpact(const IlcIntVar x) const

public IlcConstraint getConstraint(const IloConstraint ct) const

public IlcInt getCurrentNumberOfNodes() const

public IlcFloat getDefaultPrecision() const

public IloInt getDegree(const IloIntVar x) const

public IloInt getDegree(const IlcIntVar x) const

public IlcFloat getElapsedTime() const

public IloSolver::FailureStatus getFailureStatus() const

public IlcFloatArray getFloatArray(const IloNumArray arg) const

public IlcFloatDisplay getFloatDisplay() const

public IlcFloatExp getFloatExp(const IloNumExprArg expr) const

public IlcFloatVar getFloatVar(const IloNumVar var) const

public IlcFloatVarArray getFloatVarArray(const IloNumVarArray vars) const

public IlcAllocationStack * getHeap() const

public IlcFloat getImpact(const IlcIntVar x) const

public IlcFloat getImpact(const IlcIntVar x, IlcInt v, IlcBool
countFails=IlcTrue) const

public IloSolverI * getImpl() const

public IlcIntArray getIntArray(const IloNumArray arg) const

public IlcIntExp getIntExp(const IloIntExprArg expr) const

public IlcIntSet getIntSet(const IloIntSet arg) const

public IloIntSet getIntSetValue(const IloIntSetVar var) const

public IlcIntSetVar getIntSetVar(const IloIntSetVar var) const

public IlcIntSetVarArray getIntSetVarArray(const IloNumSetVarArray vars)
const

public IlcIntVar getIntVar(const IloNumVar var) const

public IlcIntVarArray getIntVarArray(const IloNumVarArray vars) const

public IlcFloat getLocalImpact(const IlcIntVar x, IlcInt v) const

public IlcFloat getLocalVarImpact(const IlcIntVar x, IlcInt
depth=-1) const

public IloNum getMax(const IloNumVar v) const

public IlcUInt getMaxSearchMemoryUsage() const

public IlcUInt getMemoryUsage() const

public IloNum getMin(const IloNumVar v) const

public IlcFloat getNonLinPrecision() const

718

public IlcInt getNumberOfChoicePoints() const

public IlcInt getNumberOfConstraints() const

public IlcInt getNumberOfCuts() const

public IlcFloat getNumberOfFails(const IlcIntVar x, IlcInt v)
const

public IlcInt getNumberOfFails() const

public IlcInt getNumberOfFiles() const

public IlcFloat getNumberOfInstantiations(const IlcIntVar x,
IlcInt v) const

public IlcInt getNumberOfMoves() const

public IlcInt getNumberOfRecomputed() const

public IlcInt getNumberOfVariables() const

public IloNum getOptimizationStep() const

public IlcAllocationStack * getPersistentHeap() const

public IlcRandom getRandom() const

public IloNum getReduction(const IloNumVar x) const

public IloNum getReduction(const IlcFloatVar x) const

public IloInt getReduction(const IloIntVar x) const

public IloInt getReduction(const IlcIntVar x) const

public IloNum getRelativeOptimizationStep() const

public IlcUInt getSearchMemoryUsage() const

public IlcSearchNode getSearchNode() const

public IlcFloat getSuccessRate(const IlcIntVar x) const

public IlcFloat getSuccessRate(const IlcIntVar x, IlcInt v) const

public IlcFloat getTime() const

public IlcInt getTotalNumberOfNodes() const

public IloNum getValue(const IloNumVar v) const

public IlcInt getWorkerId() const

public IloBool isExtracted(const IloExtractable ext) const

public IloBool isInRecomputeMode() const

public IloBool isInSearch() const

public IloBool isInteger(const IloNumVar var) const

public IloBool isNonLinSafe() const

public IloBool next() const

public void printInformation(ostream & stream) const

public void printInformation() const

public IloBool propagate(const IloConstraint constraint=0,
IloSynchronizeMode mode=IloSynchronizeAndRestart,
IloBool restore=IloFalse) const

public void removeTrace(IloCPTrace search)

public void restartSearch() const

public void setBigTupleSet() const

public void

719

setDefaultFilterLevel(IlcFilterLevelConstraint
ct, IlcFilterLevel level) const

public void setDefaultPrecision(IloNum precision) const

public void setFailLimit(IloInt numberOfFailures) const

public void setFastRestartMode(IloBool mode) const

public void setFileNodeOptions(IlcInt maxSize, char *
prefixName, IlcBool useCompression, IlcBool
useDisk) const

public void setFilterLevel(IlcConstraint ct, IlcFilterLevel
level) const

public void setFilterLevel(IloConstraint oct, IlcFilterLevel
level) const

public void setFloatDisplay(IlcFloatDisplay display) const

public void setHoloTupleSet() const

public void setMax(const IloNumVar v, IloNum n) const

public void setMin(const IloNumVar v, IloNum n) const

public void setMonitor(const IlcSearchMonitor monitor,
IloBool rec) const

public void setNonLinPrecision(IlcFloat p) const

public void setObjMin(const IlcFloatVar & obj, IloNum step,
IloNum r=0.0) const

public void setObjMin(const IlcIntVar & obj, IloInt step=1,
IloNum r=0.0) const

public void setOptimizationStep(IloNum step) const

public void setOrLimit(IloInt numberOfChoicePoints) const

public void setPropagationControl(IloNumVar x) const

public void setPropagationControl(IloIntVar x) const

public void setRelativeOptimizationStep(IloNum step) const

public void setSimpleTupleSet() const

public void setTimeLimit(IloNum time) const

public void setTrace(const IlcTrace trace) const

public void setTraceMode(IloBool trace) const

public void setValue(const IloNumVar v, IloNum n) const

public IloBool solve() const

public IloBool solve(const IlcGoal goal, IloBool
restore=IloFalse) const

public IloBool solve(const IloGoal goal, IloSynchronizeMode
mode=IloSynchronizeAndRestart, IloBool
restore=IloFalse) const

public IloBool solveFeasible() const

public IloBool solveFeasible(const IloGoal goal,
IloSynchronizeMode mode=IloSynchronizeAndRestart,
IloBool restore=IloFalse) const

public void startNewSearch(const IlcGoal goal) const

public void startNewSearch(const IloGoal goal=0,
IloSynchronizeMode mode=IloSynchronizeAndRestart)

720

const

public void unsetLimit() const

public void unuse(const IlcConstraintAggregator a) const

public void use(const IlcConstraintAggregator a) const

public void useHeap(IlcBool useIt) const

public void useLinPropagation(IlcBool keep=IlcTrue, IloNum
precision=0.1) const

public void useNonLinConstraint(IlcBool keep=IlcTrue) const

Inherited Methods from IloAlgorithm

clear, end, error, extract, getEnv, getIntValue, getIntValues, getModel,
getObjValue, getStatus, getTime, getValue, getValue, getValue, getValue,
getValues, getValues, isExtracted, out, printTime, resetTime, setError, setOut,
setWarning, solve, warning

Inner Enumeration

IloSolver::FailureStatus

Constructors

public IloSolver(const IloEnv & env)

This constructor creates an algorithm for IBM® ILOG® Solver.

public IloSolver(const IloModel & model)

This constructor creates an algorithm for IBM ILOG Solver. Actual propagation of all constraints added to the
model model will take place either at the next solve() or at the next solver.next().

Examples:

When you create an algorithm (an instance of IloSolver, for example) and extract a model for it, you can write
either this line:

 IloSolver solver(model);

or these two lines:

 IloSolver solver(env);
 solver.extract(model);

Those two lines may be useful when you want to attach your own specialized extractor to the algorithm you are
creating before you extract a particular model.

Methods

public void add(const IlcConstraintArray constraints) const

This member function adds all the constraints in the array constraints to the invoking solver so that the
invoking solver takes them into account during its search. You can use this member function only during search.

721

public void add(const IlcConstraint constraint) const

This member function adds constraint to the invoking solver so that the invoking solver takes constraint
into account during its search. You can use this member function only during search.

public void addMemoryManager(IlcMemoryManagerI * mm) const

This member function adds the memory manager indicated by mm to the list of memory managers known to the
invoking solver.

When you call the member function IloSolver::end or when the solver re-extracts the model during
synchronization, it will call the virtual member function IlcMemoryManagerI::end for all the memory
managers known to the invoking solver.

The purpose of a memory manager is to delete automatically any memory not allocated through the Solver heap.
Consequently, this member function is conventionally used at run time, like this:

 solver.addMemoryManager(new(solver.getHeap()) MyMemoryManager());

where solver is the invoking solver and MyMemoryManager is a class where you have defined
MyMemoryManager::end to delete memory appropriately.

public void addReversibleAction(const IlcGoal goal) const

This member function adds the goal to the invoking solver. The invoking solver will then treat goal as a
reversible object with respect to memory management, backtracking, choice points, and so forth.

It is possible to “undo” actions that are not simple assignments—such actions as drawing in a graphic interface or
dealing with files.

For managing reversible changes that are not assignments, Solver provides reversible actions. Such actions are
executed when Solver restores the state of the invoking solver. A reversible action is created by the member
function addReversibleAction.

However, it is much more efficient to use the reversible classes—IlcRevInt, IlcRevAny, IlcRevBool,
IlcRevFloat—to manage reversible assignments than to use reversible actions.

In the member function addReversibleAction, the argument goal must be a goal that does not change the
state of the invoking solver. That is, it must not execute any reversible assignments, nor call other goals, nor call
the member function fail. The member function addReversibleAction saves its argument, goal, as a
reversible action. If Solver backtracks to a choice point that was set before this call to addReversibleAction,
then goal will be executed.

Since reversible actions do not have subgoals, demons are usually used for implementing them.

The execution of reversible actions is interleaved with the restoration of reversible states. Thus when a reversible
goal is called, the state of the invoking solver is the same as the state of the invoking solver when
addReversibleAction was called.

Reversible actions can be used to display the search for a solution through a graphic user interface. See the
Solver User's Manual for an example (about animating graphic interfaces) showing how to do this.

public void addTrace(IloCPTrace search)

722

This member function adds a hook to set the trace to the start of the search search.

public IloBool assumeStrictNumericalDivision() const

This member function indicates whether the arithmetic division operator / is restricted to numeric division only. If
the return value is IloTrue, operator / is restricted, and integer division is accessible only through the IloDiv
function.

If the return value is IloFalse, operator / * performs division resulting in, in general, a non-integral result.

For compatibility with previous versions of Solver, the default value is IloFalse, meaning the division of two
integer expressions using operator is another integer expression.

public void assumeStrictNumericalDivision(IloBool snd) const

This member function specifies whether the arithmetic division operator / is restricted to numeric division only. If
snd is IloTrue, operator / is restricted, and integer division is accessible only through the IloDiv function.

If snd is IloFalse, operator / performs division resulting in, in general, a non-integral result.

For compatibility with previous versions of Solver, the default value is IloFalse, meaning the division of two
integer expressions using operator is another integer expression.

public void commitSearch(IloAny label) const

This member function commits the current search to be confined to the part of the search tree below the closest
choice point with label label. In case no such choice point exists, this method then commits the search to the
current state and removes all remaining open choice points or open search nodes.

public void end()

This member function "cleans house" by freeing all memory allocated by Solver on the Solver heap for the
invoking solver. Since it destroys the invoking solver and all objects associated with the invoking solver, you must
not use the solver nor any object created with this solver after you call this member function. This member
function is called automatically by IloEnv::end.

If you also want this member function to delete automatically memory that you allocate that is not on the Solver
heap, then you should add a memory manager, an instance of IlcMemoryManagerI, to the list of memory
managers associated with the invoking solver. See the class IlcMemoryManagerI for details.

See Also: IloEnv, IlcMemoryManagerI

public void endSearch() const

This member function terminates a search and deletes the internal objects created by Solver to carry out the
search (such internal objects as the search tree, choice points, goal stack, etc.)

public void exitSearch() const

This member function completely exits the search.

723

public void extract(const IloModel model) const

This member function extracts all the extractable objects added to model for the invoking algorithm. This member
function discards any previously extracted model. Actual propagation of all constraints added to the model model
will take place either at the next solve() or at the next solver.next().

public void fail(IlcAny label=0) const

The failure of a goal is triggered by this member function. In fact, this member function triggers the failure of the
current goal. The execution of the current goal then stops, and execution returns to the last choice point
satisfying the following conditions:

The choice point has at least one remaining untried subgoal.•
The choice point was set after the current call to the member function IloSolver::solve or IloSolver::next.•
If the argument label is not 0 (zero), the choice point has the same label as label.•

If no such choice point exists, then the current call to IloSolver::solve or IloSolver::next terminates and returns
IloFalse.

If fail is called outside a call to IloSolver::solve or a call to IloSolver::next, then an error is raised.

In other words, when the member function fail is called, goal execution resumes at the last choice point with
untried subgoals. It is possible to resume goal execution at an earlier choice point by associating labels with
choice points. Then the member function fail can be called with a label, and in that case, goal execution
resumes at the last choice point with that label.

public IlcDemon getActiveDemon() const

This member function returns the demon currently executing in the invoking solver. It returns an empty handle if
there is no such demon.

public IlcGoal getActiveGoal() const

This member function returns the search goal currently executing in the invoking solver. It returns an empty
handle if there is no such goal.

public IlcAnyArray getAnyArray(const IloAnyArray arg) const

This member function returns the Ilc class (that is, the extracted search class) corresponding to the Ilo class
(that is, the model class) of arg.

public IlcAnySet getAnySet(const IloAnySet arg) const

This member function returns the Ilc class (that is, the extracted search class) corresponding to the Ilo class
(that is, the model class) of arg.

public IloAnySet getAnySetValue(const IloAnySetVar var) const

724

This member function returns the value that var assumes in a solution.

public IlcAnySetVar getAnySetVar(const IloAnySetVar var) const

This member function returns the algorithmically constrained enumerated set variable corresponding to the
modeling variable indicated by var.

public IlcAnySetVarArray getAnySetVarArray(const IloAnySetVarArray vars) const

This member function returns the array of algorithmically constrained enumerated set variables corresponding to
the array of modeling variables indicated by vars.

public IloAny getAnyValue(const IloAnyVar var) const

This member function returns the modeling value that var assumes in a solution.

public IlcAnyVar getAnyVar(const IloAnyVar var) const

This member function returns the algorithmically constrained enumerated variable corresponding to the modeling
variable indicated by var.

public IlcAnyVarArray getAnyVarArray(const IloAnyVarArray vars) const

This member function returns the array of algorithmically constrained enumerated variables corresponding to the
array of modeling variables indicated by vars.

public IlcBox getBox(const IloBox) const

This member function returns the box associated with the IloBox object in the invoking solver.

public IloNum getBranchImpact(const IloNumVar x) const

This member function returns a floating point number between 0 and 1, which represents the proportion of
removed intervals from the intervals of x during the last constraint propagation.

public IloNum getBranchImpact(const IlcFloatVar x) const

This member function returns a floating point number between 0 and 1, which represents the proportion of
removed intervals from the intervals of x during the last constraint propagation.

public IloNum getBranchImpact(const IloIntVar x) const

This member function returns a floating point number between 0 and 1, which represents the proportion of
removed values from the domain of x during the last constraint propagation.

725

public IloNum getBranchImpact(const IlcIntVar x) const

This member function returns a floating point number between 0 and 1, which represents the proportion of
removed values from the domain of x during the last constraint propagation.

public IlcConstraint getConstraint(const IloConstraint ct) const

This member function returns the constraint corresponding to the modeling constraint indicated by ct.

public IlcInt getCurrentNumberOfNodes() const

This member function returns the number of active nodes currently open in the search carried on by the invoking
solver.

public IlcFloat getDefaultPrecision() const

This member function returns the default precision of the invoking solver. That value is used in managing
constrained floating-point expressions (instances of IlcFloatExp and its subclasses) if you associate no other
relative precision with a given expression. That value in a solver is always greater than or equal to 2.10-11. It is
initially 1.10-10

public IloInt getDegree(const IloIntVar x) const

This member function returns the degree of the variable x. The degree is the number of uninstantiated variables
appearing in a constraint where x also appears. This value changes throughout search. This function can be
called only when the aggregator obtained by the function IlcDegreeInformation is used. Moreover, it can be
called only on variables corresponding to IloIntVar appearing in the extracted model.

public IloInt getDegree(const IlcIntVar x) const

This member function returns the degree of the variable x. The degree is the number of uninstantiated variables
appearing in a constraint where x also appears. This value changes throughout search. This function can be
called only when the aggregator obtained by the function IlcDegreeInformation is used. Moreover, it can be
called only on variables corresponding to IloIntVar appearing in the extracted model.

public IlcFloat getElapsedTime() const

This member function displays part of the statistics about the current state of the invoking solver available from
IloSolver::printInformation. In particular, it returns the the elapsed time (sometimes known as wall
clock time) of the solver, in seconds, since the most recent extraction of a model or the most recent
synchronization of a model.

public IloSolver::FailureStatus getFailureStatus() const

This member function returns an identifier (one of the choices of the nested enumeration
IloSolver::FailureStatus) that indicates the failure status of an instance of IloSolver after an

726

unsuccessful IloSolver::solve or IloSolver::next. Possible values of FailureStatus are:

 enum FailureStatus {
 searchHasNotFailed,
 searchFailedNormally,
 searchStoppedByLimit,
 searchStoppedByLabel,
 searchStoppedByExit,
 unknownFailureStatus
 };

public IlcFloatArray getFloatArray(const IloNumArray arg) const

This member function returns the Ilc class (that is, the extracted search class) corresponding to the Ilo class
(that is, the model class) of arg.

public IlcFloatDisplay getFloatDisplay() const

This member function returns a value (one of the choices of the enumeration IlcFloatDisplay) that indicates
how the invoking solver will display the values of constrained floating-point variables as output.

public IlcFloatExp getFloatExp(const IloNumExprArg expr) const

This member function returns the floatting point expression corresponding to the modeling numerical expression
indicated by expr.

public IlcFloatVar getFloatVar(const IloNumVar var) const

This member function returns the algorithmically constrained floating-point variable corresponding to the
modeling variable indicated by var.

public IlcFloatVarArray getFloatVarArray(const IloNumVarArray vars) const

This member function returns the array of algorithmically constrained floating-point variables corresponding to the
modeling variables indicated by vars.

public IlcAllocationStack * getHeap() const

This member function returns a pointer to the heap associated with the invoking solver. Use this member function
with the overloaded new operator, like this new (solver.getHeap()).

public IlcFloat getImpact(const IlcIntVar x) const

This member function returns the impact of a variable. This impact is the sum of the impact of each value in its
current domain.

public IlcFloat getImpact(const IlcIntVar x, IlcInt v, IlcBool countFails=IlcTrue)
const

727

This member function returns the average of observed impacts on the assignment x = v so far. The impact of
an assignment x = v is the proportion of the search space that this assignment eliminates by constraint
propagation. When countFails is set to IloTrue, failures of the assignment are also counted as having an
impact of 1.0. Otherwise they are not taken into account in the average.

public IloSolverI * getImpl() const

This member function returns the undocumented class IloSolverI*.

public IlcIntArray getIntArray(const IloNumArray arg) const

This member function returns the Ilc class (that is, the extracted search class) corresponding to the Ilo class
(that is, the model class) of arg.

public IlcIntExp getIntExp(const IloIntExprArg expr) const

This member function returns the integer expression corresponding to the modeling integer expression indicated
by expr.

public IlcIntSet getIntSet(const IloIntSet arg) const

This member function returns the Ilc class (that is, the extracted search class) corresponding to the Ilo class
(that is, the model class) of arg.

public IloIntSet getIntSetValue(const IloIntSetVar var) const

This member function returns the modeling value that var assumes in a solution.

public IlcIntSetVar getIntSetVar(const IloIntSetVar var) const

This member function returns the algorithmically constrained set variable corresponding to the modeling variable
indicated by var.

public IlcIntSetVarArray getIntSetVarArray(const IloNumSetVarArray vars) const

This member function returns the array of algorithmically constrained integer set variables corresponding to the
array of modeling variables indicated by vars.

public IlcIntVar getIntVar(const IloNumVar var) const

This member function returns the algorithmically constrained integer variable corresponding to the modeling
variable indicated by var.

728

public IlcIntVarArray getIntVarArray(const IloNumVarArray vars) const

This member function returns the array of algorithmically constrained integer variables corresponding to the
modeling variables indicated by vars.

public IlcFloat getLocalImpact(const IlcIntVar x, IlcInt v) const

This member function computes and returns the impact on the assignment x = v. The impact is the proportion
of the search space that this assignment eliminates by constraint propagation at the place where this function is
called.

public IlcFloat getLocalVarImpact(const IlcIntVar x, IlcInt depth=-1) const

This member function computes the impact of the assignment x = v for each value v in the current domain of x
and returns the sum of these impacts.

public IloNum getMax(const IloNumVar v) const

This member function returns the maximum value of the numeric variable v.

public IlcUInt getMaxSearchMemoryUsage() const

This member function returns the maximum amount of memory used to store nodes during the search by the
invoking solver.

public IlcUInt getMemoryUsage() const

This member function displays part of the statistics about the current state of the invoking solver available from
IloSolver::printInformation. In particular, it returns the total memory, in bytes, used by the invoking
solver.

public IloNum getMin(const IloNumVar v) const

This member function returns the minimum value of the numeric variable v.

public IlcFloat getNonLinPrecision() const

When you are using non-linear constraint propagation (by means of the member function
IloSolver::useNonLinConstraint), this member function returns the precision of non-linear constraint
propagation with respect to floating-point values and with respect to the safety of solutions.

public IlcInt getNumberOfChoicePoints() const

729

This member function displays part of the statistics about the current state of the invoking solver available from
IloSolver::printInformation. In particular, it returns the number of choice points since the most recent
extraction or synchronization of a model by the invoking solver.

public IlcInt getNumberOfConstraints() const

This member function displays part of the statistics about the current state of the invoking solver available from
IloSolver::printInformation. In particular, it returns the number of constraints extracted for the invoking
solver.

public IlcInt getNumberOfCuts() const

This member function returns the number of nodes discarded during the search by the invoking solver.

public IlcFloat getNumberOfFails(const IlcIntVar x, IlcInt v) const

This member function returns the number of times the assignment x = v has failed at this point in the search.

public IlcInt getNumberOfFails() const

This member function displays part of the statistics about the current state of the invoking solver available from
IloSolver::printInformation. In particular, it returns the number of failures since the most recent
extraction or synchronization of a model by the invoking solver.

A reset of a model in the invoking solver will occur under any of these conditions:

You explicitly extract a new model into the solver.•
You synchronize the invoking solver after changing the model during a search.•
You synchronize the invoking solver by calling the member function
startNewSearch(IlcSynchronizeAndRestart).

•

public IlcInt getNumberOfFiles() const

This member function returns the number of node files used during the search by the invoking solver.

public IlcFloat getNumberOfInstantiations(const IlcIntVar x, IlcInt v) const

This member function returns the number of times the assignment x = v has been made at this point in the
search.

public IlcInt getNumberOfMoves() const

This member function returns the number of moves performed during the search in the search tree by the
invoking solver since the most recent extraction or synchronization of a model by the invoking solver.

public IlcInt getNumberOfRecomputed() const

730

This member function returns the number of choice points recomputed by the invoking solver since the most
recent extraction or synchronization of a model by the invoking solver.

public IlcInt getNumberOfVariables() const

This member function displays part of the statistics about the current state of the invoking solver available from
IloSolver::printInformation. In particular, it returns the number of constrained variables extracted for the
invoking solver.

public IloNum getOptimizationStep() const

This member function returns the current optimization step. The optimization step indicates how much
improvement there must be between solutions during the search launched by IloSolver::solve.

public IlcAllocationStack * getPersistentHeap() const

This member function returns a pointer to the heap where persistent objects of the search are stored. When the
invoking solver is deleted, this heap will be deleted, too.

public IlcRandom getRandom() const

This member function returns a random number generator. This can be convenient as it can be reduce the
number of places that a random number generator needs to be explicitly passed in user code.

public IloNum getReduction(const IloNumVar x) const

This member function returns the difference between the domain size of x before and after the the last constraint
propagation.

public IloNum getReduction(const IlcFloatVar x) const

This member function returns the difference between the domain size of x before and after the last constraint
propagation.

public IloInt getReduction(const IloIntVar x) const

This member function returns the number of removed values from the domain of x during the last constraint
propagation.

public IloInt getReduction(const IlcIntVar x) const

This member function returns the number of removed values from the domain of x during the last constraint
propagation.

public IloNum getRelativeOptimizationStep() const

731

This member function returns the relative optimization step. For example, if the optimization step is 90%, Solver
searches for a solution where the objective value is less than 90% of the objective value of the best solution
found so far.

public IlcUInt getSearchMemoryUsage() const

This member function returns the amount of memory currently used to store nodes by the invoking solver.

public IlcSearchNode getSearchNode() const

This member function returns the current open node being explored by the invoking solver.

public IlcFloat getSuccessRate(const IlcIntVar x) const

This member function returns the rate of instantiations x = v that fails by considering only values v that are in
the current domain of x.

public IlcFloat getSuccessRate(const IlcIntVar x, IlcInt v) const

This member function returns the success rate of assignment x = v at this point in the search. The success rate
is the proportion of assignments of this kind that does not fail.

public IlcFloat getTime() const

This member function displays part of the statistics about the current state of the invoking solver available from
IloSolver::printInformation. In particular, it returns the total running time of the solver, in seconds, since
the most recent extraction of a model or the most recent synchronization of a model.

public IlcInt getTotalNumberOfNodes() const

This member function returns the total number of nodes created during the search by the invoking solver since
the most recent extraction or synchronization of a model by the invoking solver.

public IloNum getValue(const IloNumVar v) const

This member function returns the value of the numeric variable v.

public IlcInt getWorkerId() const

This member function returns a positive integer identifying the current worker (an instance of IloSolver).
These identifying numbers start from 0 (zero) and are contiguous. In a sequential search, this member function
always returns 0.

732

public IloBool isExtracted(const IloExtractable ext) const

This member function checks whether an extractable ext has been extracted by Solver.

public IloBool isInRecomputeMode() const

This member function returns IloTrue if the invoking solver is jumping from one open node to another using
recomputation. It returns IloFalse otherwise.

public IloBool isInSearch() const

This member function returns IloTrue if the invoking solver is conducting a search; otherwise, it returns
IloFalse.

public IloBool isInteger(const IloNumVar var) const

This member function returns IloTrue if var represents an integer variable in the invoking solver; it returns
IloFalse otherwise.

public IloBool isNonLinSafe() const

This member function applies only to the non linear equalities and inequalities in a model; it says nothing about
constraints that are not non linear equalities or inequalities. It returns IloTrue if the solution returned by the
invoking solver has been proved safe in the sense explained in Safe Solutions. In short, there is a solution (an
assignment of values to variables satisfying all non linear constraints in the model) in the interval returned by the
solver. It returns IloFalse otherwise.

public IloBool next() const

This member function searches for the next solution in the search tree of the invoking IloSolver object.

The first time next is called, it iteratively pops one goal from the goal stack and executes it. The execution of the
goal can add other goals to the stack and can set choice points.

The execution of next terminates in two cases. First, when the goal stack becomes empty, this member function
returns IloTrue. Second, if a failure occurs and no choice point with untried subgoals and correct labels exists,
the member function restores the state of the invoking search and returns IloFalse.

The second execution and subsequent executions of next start from where the preceding execution left off. If a
solution was found, then Solver backtracks and searches for the next solution. If no solution was found, this
member function immediately returns IloFalse.

This member function returns IloTrue when it has found a solution.

public void printInformation(ostream & stream) const

This member function is part of the special purpose debugging features of Solver. It displays statistics about the
current state of the solver since the most recent extraction of a model or the most recent synchronization of a

733

model and prints to stream stream. For more information, see IloSolver::printInformation.

public void printInformation() const

This member function is part of the special purpose debugging features of Solver. It displays statistics about the
current state of the solver since the most recent extraction of a model or the most recent synchronization of a
model.

Specifically, in the output stream indicated by its argument, this member function displays the following
information about memory use by Solver:

the number of failures;•
the number of choice points;•
the number of constrained variables;•
the number of posted constraints to the invoking solver;•
the size of the restoration stack; (This size is proportional to the maximal number of reversible
assignments.)

•

the maximal size of the Solver allocation heap;•
the size of the goal stack; (This number is proportional to the number of calls to the function IlcAnd.)•
the size of the IlcOr stack; (This number is proportional to the number of calls to the function IlcOr.)•
the size of the constraint propagation queue; (This number is proportional to the number of activated
constraints.)

•

the total amount of memory used by Solver for the invoking solver;•
the total running time.•

Each of those numbers can be accessed individually by one of the following member functions.

number of failures - getNumberOfFails•
number of choice points - getNumberOfChoicePoints•
number of constrained variables - getNumberOfVariables•
number of posted constraints - getNumberOfConstraints•
amount of memory used - getMemoryUsage•
total running time - getTime•

Typical output from the member function printInformation looks like this:

 Number of fails : 3306
 Number of choice points : 3310
 Number of variables : 26
 Number of constraints : 21
 Reversible stack (bytes) : 8060
 Solver heap (bytes) : 16100
 And stack (bytes) : 4040
 Or stack (bytes) : 4040
 Constraint queue (bytes) : 4068
 Total memory used (bytes) : 36308
 Total CPU time : 12.29

public IloBool propagate(const IloConstraint constraint=0, IloSynchronizeMode
mode=IloSynchronizeAndRestart, IloBool restore=IloFalse) const

This member function propagates the constraint constraint and synchronizes with the model (or not)
according to the parameter mode. This member functions returns IloTrue if the propagation succeeds;
otherwise, it returns IloFalse. The parameter restore indicates whether or not at the end of the propagation
the invoking solver should restore the state that it was in prior to the search. This restoration of a state influences
only the propagation, not the synchronization with a model. The invoking solver will remain synchronized (or not,
consistent with the mode parameter) after the search regardless of the restore parameter. This member
function must be used at the top level of the search.

734

public void removeTrace(IloCPTrace search)

This member function removes a hook to set the trace from the search search.

public void restartSearch() const

This member function restarts the search at the top of the search tree (that is, before the first call of the member
function next).

It also stores the best value of any objective function that has been defined by IloSolver::setObjMin.

If you have stored an intermediate solution, then you should call restart before you call IloSolver::next so
that next will immediately produce that stored solution.

public void setBigTupleSet() const

This member function controls how Solver manages the propagation of tuple set table constraints. It must be
called before extraction. It allows you to modify the default behavior (set using
IloSolver::setSimpleTupleSet) to accelerate the propagation of table constraints defined by the set of
their allowed tuples when propagation is slow. Typically, this can occur when the tuples are of an arity greater
than three and when they contain numerous tuples. IloSolver::setBigTupleSet uses a data structure that
is very quick, but that consumes a lot of memory.

public void setDefaultFilterLevel(IlcFilterLevelConstraint ct, IlcFilterLevel
level) const

This member function defines the default filter level for a type of constraint, such as the types IlcAllDiff,
IlcDistribute, IlcSequence, and so forth. For each type of constraint (as defined in the enumeration
IlcFilterLevelConstraint) Solver respects a default filter level in propagation. With this member function,
you can reset that default for all constraints of that type.

If you want to reset the default filter level of a given constraint (rather than for all constraints of a given type), then
consider the member function IloSolver::setFilterLevel.

public void setDefaultPrecision(IloNum precision) const

This member function sets the default precision of the invoking solver. That value is used in managing
constrained floating-point expressions (instances of IlcFloatExp and its subclasses) if you associate no other
relative precision with a given expression. In any case, the default precision must be greater than or equal to
2.10-11. When it is less than 2.10-11, the default precision is automatically changed to 2.10-11. This member
function is not reversible. This member function does not change the precision of any constrained floating-point
expressions that have already been created.

public void setFailLimit(IloInt numberOfFailures) const

This member function sets a limit on the number of failures during a search performed by IloSolver::solve
or by IloSolver::startNewSearch.

The limit is set to the current number of fails plus numberOfFailures. The limit is recomputed each time this
member function is called. When the limit is reached, the search stops and the current call to the member

735

function IloSolver::solve returns IloFalse.

The effect of this member function is immediate. This change will influence any subsequent calls of the member
functions IloSolver::startNewSearch and IloSolver::solve.

public void setFastRestartMode(IloBool mode) const

This member function controls initial constraint propagation during a search performed by
IloSolver::startNewSearch. The initial constraint propagation will not be redone if the following conditions
are met:

synchronization mode has been set to IloSynchronizeAndRestart•
the model has not changed since the last search•
the parameter mode is IloTrue•

This mode is not the default.

public void setFileNodeOptions(IlcInt maxSize, char * prefixName, IlcBool
useCompression, IlcBool useDisk) const

Node files make it possible for you to limit the amount of memory Solver uses to store open search nodes. (Open
search nodes in the search are the ones which have not yet been completely explored.) You activate node files
by invoking this member function. This member function sets the options for node files and must be used before
starting a search.

When the memory used to store nodes is greater than maxSize bytes, Solver creates a buffer of one megabyte.
Solver then fills that buffer with open nodes. The parameter maxSize cannot be less than 5 000 000. If the given
parameter is less than 5 000 000, Solver will silently change it to 5 000 000.

If the parameter useCompression is set to IlcTrue, the buffer is compressed. If the parameter useDisk is
set to IlcTrue, this temporary buffer is then flushed from memory and written to disk as a file. The name of the
file is prefixed by prefixName.

If one buffer is not enough to reduce the memory consumption below maxSize, then Solver creates node files
until the memory consumption fits that limit.

public void setFilterLevel(IlcConstraint ct, IlcFilterLevel level) const

This member function defines the filter level for a given constraint. For each type of constraint (as defined in the
enumeration IlcFilterLevelConstraint) Solver respects a default filter level in propagation. With this
member function, you can reset the filter level of a given constraint to override the default filter level of its type.

If you want to reset the default filter level of all constraints of a given type, then consider the member function
setDefaultFilterLevel.

public void setFilterLevel(IloConstraint oct, IlcFilterLevel level) const

This member function defines the filter level for a given constraint. For each type of constraint (as defined in the
enumeration IlcFilterLevelConstraint) Solver respects a default filter level in propagation. With this
member function, you can reset the filter level of a given constraint to override the default filter level of its type.

If you want to reset the default filter level of all constraints of a given type, then consider the member function
setDefaultFilterLevel.

736

public void setFloatDisplay(IlcFloatDisplay display) const

This member function changes the format of the display of floating-point constrained variables. Possible values of
display are:

 enum IlcFloatDisplay {
 IlcStandardDisplay = 0,
 IlcIntScientific = 1,
 IlcIntFixed = 2,
 IlcBasScientific = 3,
 IlcBasFixed = 4
 };

The default value is IlcIntFixed. See the enumeration IlcFloatDisplay for an explanation of those
values.

public void setHoloTupleSet() const

This member function controls how Solver manages the propagation of tuple set table constraints. It must be
called before extraction. It allows you to modify the default behavior (set using
IloSolver::setSimpleTupleSet) to accelerate the propagation of table constraints defined by the set of
their allowed tuples when propagation is slow. Typically, this can occur when the tuples are of an arity greater
than three and when they contain numerous tuples. IloSolver::setHoloTupleSet uses a data structure
that is almost as quick as that used by IloSolver::setBigTupleSet, but that only consumes slightly more
memory than the default IloSolver::setSimpleTupleSet data structure.

public void setMax(const IloNumVar v, IloNum n) const

This member function assigns n as the maximum value of the numeric variable v.

public void setMin(const IloNumVar v, IloNum n) const

This member function assigns n as the minimum value of the numeric variable v.

public void setMonitor(const IlcSearchMonitor monitor, IloBool rec) const

This member function assigns mon as the search monitor for the invoking search. A monitor watches and reports
events in a search. If the IloBool is IlcTrue this monitor is set to monitor all searches including nested
searches. If the IloBool is IlcFalse the monitor is set only for the top level search. This member function
must be used before starting a search.

public void setNonLinPrecision(IlcFloat p) const

This member function sets p as the degree of precision to use with nonlinear propagation techniques (see the
member function IloSolver::useNonLinConstraint) and in determining the safety of nonlinear solutions
(see the member function IloSolver::isNonLinSafe). By default, the nonlinear precision is equal to the
default precision of the invoking solver.

public void setObjMin(const IlcFloatVar & obj, IloNum step, IloNum r=0.0) const

737

This member functions sets an optimization objective to minimize in the invoking search. There is only one
objective at a time for a given search. In other words, each time you call this member function, it replaces the
previous objective (if there was one). Specifically, this member function sets obj as the minimum objective of the
invoking search object and sets step as the step size. That is, it constrains the search to produce solutions that
are at least a step better than the previous solution.

If you want to maximize an objective, then use solver.setObjMin(-obj, step);.

public void setObjMin(const IlcIntVar & obj, IloInt step=1, IloNum r=0.0) const

This member function sets an optimization objective to minimize in the invoking search. There is only one
objective at a time for a given search. In other words, each time you call this member function, it replaces the
previous objective (if there was one). Specifically, this member function sets obj as the minimum objective of the
invoking search object and sets step as the step size. That is, it constrains the search to produce solutions that
are at least a step better than the previous solution.

If you want to maximize an objective, then use solver.setObjMin(-obj, step);.

public void setOptimizationStep(IloNum step) const

This member function sets the step size used to measure improvement between solutions during a search by
IloSolver::solve.

You can also set the step size for a given variable by means of a parameter in the function IloMinimizeVar.

public void setOrLimit(IloInt numberOfChoicePoints) const

This member functions sets a limit on the number of choice points (corresponding to execution of the goal
IlcOr) during a search by IloSolver::solve or by IloSolver::startNewSearch.

The limit is set to the current number of choice points plus numberOfChoicePoints. The limit is recomputed
each time this member function is called. When the limit is reached, the search stops and the current call to the
member function IloSolver::solve returns IloFalse.

The effect of this member function is immediate. This change will influence any subsequent calls of the member
functions IloSolver::startNewSearch and IloSolver::solve.

public void setPropagationControl(IloNumVar x) const

This member function allows you to control propagation for variables that you suspect have become stuck in a
propagation cycle, resulting sometimes in very slow constraint propagation. For example, the domain of variable
x is reduced. This reduction causes the reduction of the domain of variable y, which causes the reduction of the
domain of variable z, and so on, until this cycle of reductions returns to reduce the domain of variable x. This
function must be called before extraction.

public void setPropagationControl(IloIntVar x) const

This member function allows you to control propagation for variables that you suspect have become stuck in a
propagation cycle, resulting sometimes in very slow constraint propagation. For example, the domain of variable
x is reduced. This reduction causes the reduction of the domain of variable y, which causes the reduction of the
domain of variable z, and so on, until this cycle of reductions returns to reduce the domain of variable x. This
function must be called before extraction.

738

public void setRelativeOptimizationStep(IloNum step) const

This member function sets the relative step size used to measure improvement between solutions during a
search by IloSolver::solve. It is used to update the cutoff each time a mixed integer solution is found. The
value is multiplied by the absolute value of the integer objective and subtracted from (added to) the newly found
integer objective when minimizing (maximizing). This forces the mixed integer optimization to ignore integer
solutions that are not at least this amount better than the one found so far. This value must be strictly between 0
and 1.

public void setSimpleTupleSet() const

This member function controls how Solver manages the propagation of tuple set table constraints. It must be
called before extraction. This is the default setting for tuple set constraint propagation. The member functions
IloSolver::setBigTupleSet and IloSolver::setHoloTupleSet allow you to modify this default
behavior to accelerate the propagation of table constraints defined by the set of their allowed tuples when
propagation is slow. Typically, this can occur when the tuples are of arity greater than three and when they
contain numerous tuples.

public void setTimeLimit(IloNum time) const

This member function sets a limit on the amount of time spent during a search by IloSolver::solve or by
IloSolver::startNewSearch.

The limit is set to the current time plus time. The limit is recomputed whenever this member function is called.
When the limit is reached, the search stops and the current call to the member function IloSolver::solve
returns IlcFalse.

The time is measured in elapsed CPU seconds for the search process.

This change will influence any subsequent calls of the member functions IloSolver::startNewSearch and
IloSolver::solve.

public void setTrace(const IlcTrace trace) const

This member function assigns trace as the trace associated with the invoking solver.

public void setTraceMode(IloBool trace) const

This member function turns the trace mechanism on or off for the invoking solver. If the value of trace is
IlcTrue, the trace mechanism turns on. If the value of trace is IlcFalse, the trace mechanism turns off.

public void setValue(const IloNumVar v, IloNum n) const

This member function assigns n as the value of the numeric variable v.

public IloBool solve() const

739

This member function solves a problem by using a default goal to launch the search. It is used only at the top
level of the search.

This member function first checks to see whether a model has already been extracted. If a model has already
been extracted, it then checks whether the model has changed since it was extracted previously. If the model has
changed, then the model is extracted again. If the model has not changed, then it is not extracted again. In other
words, this member function synchronizes with the current model before it starts its search.

When Concert Technology determines at extraction time that the model is infeasible, it skips the remainder of the
extraction, and the first call to the member function solve will report without any search that there is no solution.
If an instance of the class IloObjective has been added to the model, then the solver will search for an
optimal solution.

public IloBool solve(const IlcGoal goal, IloBool restore=IloFalse) const

This member function solves a problem by using the goal goal passed as a parameter. The parameter restore
indicates whether or not at the end of the search the invoking solver should restore the state that it was in prior to
the search. This member function can only be used within a search (for example, inside a goal) not at the top
level.

public IloBool solve(const IloGoal goal, IloSynchronizeMode
mode=IloSynchronizeAndRestart, IloBool restore=IloFalse) const

This member function solves a problem by using the goal passed as a parameter. By means of the mode
parameter, you control how solver synchronizes with the current model. When using the default parameter,
IloSynchronizeAndRestart, the instance of IloSolver will end in a state equivalent to a deletion of the
instance of IloSolver and a reload of the current model. Use the parameter IloSynchronizeAndContinue
only if all changes since the last synchronization are monotonic. In this case, the instance of IloSolver will
apply all the changes from the current state and continue from there. The parameter restore indicates whether
or not at the end of the search the invoking solver should restore the state that it was in prior to the search. This
restoration of a state influences only the search, not the synchronization with a model. This member function is
used only at the top level of the search.

public IloBool solveFeasible() const

This member function behaves exactly like IloSolver::solve, except in the case where the model contains an
objective (an instance of IloObjective). In this case, solveFeasible finds the first solution respecting all the
problem constraints, whereas IloSolver::solve finds a solution respecting all constraints that also optimizes the
objective.

public IloBool solveFeasible(const IloGoal goal, IloSynchronizeMode
mode=IloSynchronizeAndRestart, IloBool restore=IloFalse) const

This member function behaves exactly like IloSolver::solve, except in the case where the model contains an
objective (an instance of IloObjective). In this case, solveFeasible finds the first solution respecting all the
problem constraints, whereas IloSolver::solve finds a solution respecting all constraints that also optimizes the
objective.

public void startNewSearch(const IlcGoal goal) const

This member function starts a new search with goal. This function is only used inside a search.

740

public void startNewSearch(const IloGoal goal=0, IloSynchronizeMode
mode=IloSynchronizeAndRestart) const

This member function starts a new search with goal and synchronizes with the model (or not) according to the
parameter mode. This member function is used only at the top level of the search.

public void unsetLimit() const

This member function removes any limits, such as a time limit, a limit on the number of choice points, or a limit on
the number of failures, for the invoking solver. This change will influence any subsequent calls of the member
functions IloSolver::startNewSearch and IloSolver::solve.

public void unuse(const IlcConstraintAggregator a) const

This member function removes the constraint aggregator agg from the current list of aggregators in the invoking
object.

public void use(const IlcConstraintAggregator a) const

This member function adds the constraint aggregator agg to the current list of aggregators in the invoking object.
This function must be called before model extraction.

public void useHeap(IlcBool useIt) const

If the value of useIt is IlcTrue, then this member function makes the invoking solver use the overloaded new
operator to create objects associated with the invoking solver. Those objects are then allocated on the heap
associated with that solver; they will be de-allocated when you call the member function end for that solver.

If the value of use is IlcFalse, then Concert Technology uses the conventional C++ new operator.

public void useLinPropagation(IlcBool keep=IlcTrue, IloNum precision=0.1) const

This member function changes how Solver handles the propagation of linear constraints. After this member
function is called, all linear constraints added to Solver are no longer handled by the default propagation
mechanism of Solver. Instead they are collected by a global propagation mechanism. This global propagation
can improve performance in cases where the linear constraints reduce the variable domains only by small
increments.

 int main () {
 IloEnv env;
 IloModel model(env);
 IloSolver solver(model);
 IloIntVar var1(env, 0, 20000000);
 IloIntVar var2(env, 0, 20000000);
 model.add(var1 < var2);
 model.add(var1 > var2);

 solver.useLinPropagation();

 if(solver.propagate()) {
 cout << "Propagation succeeded" << endl;
 solver.printInformation();
 }

741

 else {
 cout << "Propagation failed" << endl;
 solver.printInformation();
 }
 env.end();
 return 0;
 }

On this example, the use of useLinPropagation significantly improves the running time. Note, however, that
the aforementioned global propagation mechanism is more costly and hence not always beneficial with regard to
the default propagation mechanism of Solver.

public void useNonLinConstraint(IlcBool keep=IlcTrue) const

This member function tells the invoking solver to use nonlinear propagation techniques. In order to use these
techniques, you must call this member function before you extract your model for the invoking solver. For
example,

 solve.useNonLinConstraint();

Then for all the nonlinear constraints in your model, the invoking solver will use nonlinear propagation
techniques.

In addition, when the set of nonlinear constraints is a square system of equations or a square system of
inequalities, a global constraint will be posted. This constraint may allow for additional propagation.

Furthermore it may allow you to prove that the solution-interval found for the system of nonlinear constraints
surely contains a solution.

The keep parameter specifies whether or not in addition to the advanced propagation techniques the invoking
solver should also use its default propagation. If keep is IlcTrue constraints are propagated only by the
nonlinear propagation techniques; if keep is IlcFalse, the invoking solver will use nonlinear propagation
techniques as well as its default propagation techniques.

The default value of keep is IlcTrue.

Inner Enumerations

Enumeration FailureStatus

Definition file: ilsolver/ilosolverhandle.h
Include file: <ilsolver/ilosolver.h>

The values in this enumeration indicate the failure status of an instance of IloSolver after an unsuccessful
IloSolver::solve or IloSolver::next. The member function IloSolver::getFailureStatus is used to query the failure
status of an instance of IloSolver.

See Also: IloSolver

Fields:

searchHasNotFailed

searchFailedNormally

searchStoppedByLimit

searchStoppedByLabel

742

searchStoppedByExit

unknownFailureStatus

743

Class IloSolverExplainer
Definition file: ilsolver/iloexplain.h
Include file: <ilsolver/iloexplain.h>

Solver now provides the ability to explain why a particular solution has been proposed. An instance of the class
IloSolverExplainer is an explainer that uses the propagation mechanism of an IloSolver for deducing
queries and fails.

Note

This functionality is available for pure Solver code only. It will not work on IBM® ILOG® Dispatcher or IBM
ILOG Scheduler code.

Constructor Summary

public IloSolverExplainer(IloSolverExplainerI * impl=0)

public IloSolverExplainer(IloModel model, IloBool deleteQuery=IloFalse)

Method Summary

public IloSolverExplainerI * getImpl() const

Inherited Methods from IloExplainer

end, getImpl, why, whyFail, whyNot

Constructors

public IloSolverExplainer(IloSolverExplainerI * impl=0)

This constructor creates a handle of a Solver explainer with the implementation object impl. The class
IloSolverExplainerI is not documented.

public IloSolverExplainer(IloModel model, IloBool deleteQuery=IloFalse)

This constructor creates a Solver explainer for the model model. The explanations found by this explainer are
subsets of the set of constraints of model.

Methods

public IloSolverExplainerI * getImpl() const

This member function returns the implementation object of the invoking explanation object.

744

Class IloCsvReader::IloTableNotFoundException
Definition file: ilconcert/ilocsvreader.h

Exception thrown for unfound table.
This exception is thrown by the constructor IloCsvTableReader(IloCsvReaderI *, const char *
name = 0) and by the member functions listed below if the table you want to construct or to get is not found.

IloCsvReader::getTableByNumber•
IloCsvReader::getTableByName•
IloCsvReader::getTable•

745

Class IloTabuSearch
Definition file: ilsolver/iimmeta.h
Include file: <ilsolver/iimls.h>

This class implements a simple tabu search mechanism. The form of tabu search implemented is one where
neighboring moves are forbidden depending on the states of two tabu lists that are maintained internally. These
tabu lists maintain assignments to IloNumVar and IloAnyVar objects that have recently been removed from
the solution (“out” assignments) and have recently been added to the solution (“in” assignments).

The tabu search mechanism uses the following rules:

If a move proposes to add any assignments that were moved out of the solution less than or equal to
forbid moves ago, the move is rejected.

•

If a move proposes to remove any assignments that were moved in to the solution less than or equal to
keep moves ago, the move is rejected.

•

These two rules are overridden if the current solution is of a lower cost than the best cost solution used to start
the metaheuristic.

When a move is accepted and the IloMetaHeuristic::notify method is called for the tabu search
metaheuristic, added new assignments and removed old assignments are recorded in the tabu lists so that they
can be tested in the future.

A call to IloMetaHeuristic::complete “ages” the tabu lists by one iteration, so that from the point of view of
the tabu restriction rules above, it appears that a move has been made. It returns IloTrue if the tabu list was
empty before aging, and IloFalse otherwise.

See Also: IloMetaHeuristic, IloMetaHeuristicI

Constructor Summary

public IloTabuSearch(IloEnv env, IloInt forbid, IloInt keep=0, IloNum step=1e-4)

Method Summary

public IloNum getAspirationStep() const

public IloInt getForbidTenure() const

public IloInt getKeepTenure() const

public void setAspirationStep(IloNum step)

public void setForbidTenure(IloInt t) const

public void setKeepTenure(IloInt t) const

Inherited Methods from IloMetaHeuristic

complete, end, getDeltaCheck, getEnv, getImpl, getName, getObject, isFeasible,
notify, operator=, reset, setName, setObject, start, test

Constructors

public IloTabuSearch(IloEnv env, IloInt forbid, IloInt keep=0, IloNum step=1e-4)

746

This constructor creates a tabu search object associated with the environment env. The parameter forbid
indicates the number of moves to maintain an old removed assignment on the tabu list. The parameter keep, if
supplied, indicates the number of moves to maintain a new added assignment on the tabu list. The parameter
step indicates how much better than the best solution found previously the current solution must be before the
tabu status of any assignments is overridden.

Methods

public IloNum getAspirationStep() const

This member function returns the value of step specified in the constructor or through the previous call to
IloTabuSearch::setAspirationStep.

public IloInt getForbidTenure() const

This member function returns the forbid value specified in the constructor or specified in the last call to
IloTabuSearch::setForbidTenure.

public IloInt getKeepTenure() const

This member function returns the keep value specified in the constructor or specified in the last call to
IloTabuSearch::setKeepTenure.

public void setAspirationStep(IloNum step)

This member function sets the value of the aspiration step to step.

public void setForbidTenure(IloInt t) const

This member function changes the number of moves that forbidden assignments remain on the tabu list. Any
new assignments added remain on the list for t moves; the tenure of assignments already on the list is not
changed.

public void setKeepTenure(IloInt t) const

This member function changes the number of moves that kept assignments remain on the tabu list. Any new
assignments added remain on the list for t moves; the tenure of assignments already on the list is not changed.

747

Class IloTimer
Definition file: ilconcert/iloenv.h

Represents a timer.
An instance of IloTimer represents a timer in a Concert Technology model. It works like a stop watch. The
timer report the CPU time. On multi threaded environment, we summed the CPU time used by each thread.

See Also: IloEnv

Constructor Summary

public IloTimer(const IloEnv env)

Method Summary

public IloEnv getEnv() const

public IloNum getTime() const

public void reset()

public IloNum restart()

public IloNum start()

public IloNum stop()

Constructors

public IloTimer(const IloEnv env)

This constructor creates a timer.

Methods

public IloEnv getEnv() const

This constructor creates an instance of the class IloTimer

This member function returns the environment in which the invoking timer was constructed.

public IloNum getTime() const

This member function returns the accumulated time, in seconds, since one of these conditions:

the first call of the member function start after construction of the invoking timer;•
the most recent call to the member function restart;•
a call to reset.•

public void reset()

748

This member function sets the elapsed time of the invoking timer to 0.0. It also stops the clock.

public IloNum restart()

This member function returns the accumulated time, resets the invoking timer to 0.0, and starts the timer again.
In other words, the member function restart is equivalent to the member function reset followed by start.

public IloNum start()

This member function makes the invoking timer resume accumulating time. It returns the time accumulated so
far.

public IloNum stop()

This member function stops the invoking timer so that it no longer accumulates time.

749

Class IloTournamentSelector<,>
Definition file: ilsolver/iimmulti.h
Include file: <ilsolver/iim.h>

A selector which chooses objects following a tournament rule.
A tournament selection is one where objects compete to be selected and therefore a notion of pairwise
comparable objects is needed. A tournament selector is defined by two objects: the tournament size (referred to
as t) and a comparator. To select an object, the tournament selector selects t objects in a random unbiased way
with replacement, meaning that the same object can be selected more than once. Then, the comparator is used
to select the best of those t objects. In the case of ties (equal quality objects), the object selected first in the initial
round will be chosen. The effect of the tournament size t is to prefer the "better" objects for higher t. t=1
corresponds to random selection, but for normal usage, t is normally a small integer, as if it is too high, only the
very best objects are ever selected.

When you create a tournament selector, you must pass a visitor object which can traverse the container from
which you are selecting objects. However, in the case where a default visitor exists for the container in question,
you can omit the visitor and the default will be used. In addition to the default visitors already in Solver, IIM
provides default visitors for IloSolutionPool and IloPoolProcArray.

The following code shows how to declare a tournament selector and use it to build a pool processor:

 IloTournamentSelector<IloSolution, IloSolutionPool> tsel(
 env, 2, IloBestSolutionComparator(env)
);
 IloPoolProc selector = IloSelectSolutions(env, tsel, IloTrue);

In this example, better objective value solutions are preferred and the tournament size is two.

Note

An instance of IloTournamentSelector which has been transformed into a pool processor using
IloSelectSolutions will always draw its random numbers from the random number generator of the solver
on which it is executing.

See Also: IloSolutionPool, IloPoolProcArray, IloVisitor, IloComparator, IloRandomSelector,
IloRouletteWheelSelector

Constructor Summary

public IloTournamentSelector(IloEnv env, IloInt tournamentSize, IloComparator<
IloObject > cmp, IloVisitor< IloObject, IloContainer > visitor=0)

Builds a tournament selector.

Method Summary

public IloComparator< IloObject > getComparator() const

Delivers the comparator given at construction
time.

public IloInt getTournamentSize() const

750

Delivers the tournament size.

public IloVisitor< IloObject, IloContainer > getVisitor() const

Delivers the visitor used by the selector.

Inherited Methods from IloSelector

select

Constructors

public IloTournamentSelector(IloEnv env, IloInt tournamentSize, IloComparator<
IloObject > cmp, IloVisitor< IloObject, IloContainer > visitor=0)

Builds a tournament selector.

This constructor builds a selector from an environment env which will select objects according to a competitive
"tournament" rule. This constructor uses the comparator cmp to compare objects. The parameter
tournamentSize controls the number of randomly chosen objects to consider each time a selection is made. It
is used to control the size of the competition and thus the bias of the selector towards preferred objects. An
optional visitor visitor can be passed to traverse the container. If no visitor is specified, a default visitor will be
used if it exists. If no default visitor exists, an exception of type IloException is raised.

Methods

public IloComparator< IloObject > getComparator() const

Delivers the comparator given at construction time.

This member function returns the comparator passed at construction time.

public IloInt getTournamentSize() const

Delivers the tournament size.

This member function returns the tournament size given at construction time.

public IloVisitor< IloObject, IloContainer > getVisitor() const

Delivers the visitor used by the selector.

This member function returns the visitor passed at construction time, or, if no visitor was passed, the default
visitor for the container from which objects are being selected.

751

Class IloTranslator<,>
Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

The IloTranslator template class is the base class for all translators. A translator is a class that implements a
translation from an object of class IloObjectIn into an object of class IloObjectOut (using operator()).
Translators allow you to easily define new predicates and evaluators on instances of class IloObjectIn given
a predicate/evaluator on instances of class IloObjectOut. To define a new class of translator, use the macro
ILOTRANSLATOR.

For more information, see Selectors.

See Also: operator<<

Method Summary

public IloObjectOut operator()(const IloObjectIn & o, IloAny nu=0) const

Translates object of type IloObjectIn into an object of type IloObjectOut.

Methods

public IloObjectOut operator()(const IloObjectIn & o, IloAny nu=0) const

Translates object of type IloObjectIn into an object of type IloObjectOut.

This operator translates o, an object of type IloObjectIn, into an object of type IloObjectOut. The
parameter nu allows you to add an optional context.

752

Class IloVisitor<,>
Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

A visitor IloVisitor<class IloObject,class IloContainer> is a class that allows you to traverse
each of the elements of type IloObject of a container class IloContainer. For example, a visitor can be
used to specify how to traverse the set of variables (IloIntVar) of an array of variables (IloIntVarArray).

An instance of visitor can be initialized using the macros ILOVISITOR0 and ILODEFAULTVISITOR.

For more information, see Selectors.

See Also: ILOVISITOR0, ILODEFAULTVISITOR, IloBestSelector

753

Class IloXmlContext
Definition file: ilconcert/iloxmlcontext.h

An instance of IloXmlContext allows you to serialize an IloModel or an IloSolution in XML.

You can write an IloModel using IloXmlContext::writeModel, write an IloSolution using
IloXmlContext::writeSolution, or write both using IloXmlContext::writeModelAndSolution.

You can read an IloModel in XML using IloXmlContext::readModel, read an IloSolution in XML using
IloXmlContext::readSolution, or read both using IloXmlContext::readModelAndSolution.

Other products should add their own serialization class and add them to the plug-in using the member functions
IloXmlContext::registerXML and IloXmlContext::registerXMLArray.

Examples

For example, you can write:

 IloModel model(env);
 IloSolution solution(env);
 ...;
 IloXmlContext context(env);
 context.writeModel(model, "model.xml");
 context.writeSolution(solution, "solution.xml");

or you can write

 IloModel model(env);
 IloSolution solution(env);
 IloXmlContext context(env);
 context.readModel(model, "model.xml");
 context.readSolution(solution, "solution.xml");

See Also: IloXmlReader, IloXmlWriter, IloXmlInfo

Constructor Summary

public IloXmlContext(IloEnv env, const char * name=0)

public IloXmlContext(IloXmlContextI * impl=0)

Method Summary

public void end()

public IloInt getChildIdReadError() const

public const char * getChildTagReadError() const

public IloIntArray getIdListReadError() const

public IloXmlContextI * getImpl() const

public IloInt getParentIdReadError() const

public const char * getParentTagReadError() const

public IloAnyArray getTagListReadError() const

public const char * getWriteError() const

754

public int getWritePrecision() const

public IloBool readExtractable(IloXmlReader reader, IloXmlElement *
element) const

public IloBool readModel(IloModel model, istream & file) const

public IloBool readModel(IloModel model, const char * fileName) const

public IloBool readModelAndSolution(IloModel model, const char *
modelFileName, IloSolution solution, const char *
solutionFileName) const

public IloBool readRtti(IloXmlReader reader, IloXmlElement * element)
const

public IloBool readSolution(IloSolution solution, istream & file) const

public IloBool readSolution(IloSolution solution, const char * fileName)
const

public IloBool readSolutionValue(IloSolution solution, IloXmlElement *
root, IloXmlReader reader) const

public void registerXML(IloTypeIndex index, IloXmlInfo * xmlinfo)
const

public void registerXMLArray(IloXmlInfo * xmlinfo) const

public IloBool setWriteMode(IloInt mode) const

public void setWritePrecision(int writePrecision) const

public IloBool writeExtractable(const IloExtractableI * it, IloXmlWriter
writer, IloXmlElement * masterElement) const

public IloBool writeModel(const IloModel model, const char * fileName)
const

public IloBool writeModelAndSolution(const IloModel model, const char *
modelFileName, const IloSolution solution, const char *
solutionFileName) const

public IloBool writeRtti(const IloRtti * it, IloXmlWriter writer,
IloXmlElement * masterElement) const

public IloBool writeSolution(const IloSolution solution, const char *
fileName) const

public void writeSolutionValue(const IloExtractable it, const
IloSolution solution, IloXmlWriter writer) const

Constructors

public IloXmlContext(IloEnv env, const char * name=0)

This constructor creates an XML context and makes it part of the environment env.

public IloXmlContext(IloXmlContextI * impl=0)

This constructor creates a XML context from its implementation object.

755

Methods

public void end()

This member function deletes the invoking XML context.

public IloInt getChildIdReadError() const

This member function returns the XML ID of the child unparsed XML element in cases where a problem occurs
when reading an IloModel.

public const char * getChildTagReadError() const

This member function returns the XML tag of the child unparsed XML element in cases where a problem occurs
when reading an IloModel

public IloIntArray getIdListReadError() const

This member function returns the XML ID list of the unparsed XML elements in cases where a problem occurs
when reading an IloModel. The list is composed of the tags from the parent to the child elements.

public IloXmlContextI * getImpl() const

This member function returns the IloXmlContextI implementation.

public IloInt getParentIdReadError() const

This member function returns the XML ID of the parent unparsed XML element in cases where a problem occurs
when reading an IloModel.

public const char * getParentTagReadError() const

This member function returns the XML tag of the parent unparsed XML element in cases where a problem occurs
when reading an IloModel.

public IloAnyArray getTagListReadError() const

This member function returns the XML tag list of the unparsed XML elements in cases where a problem occurs
when reading an IloModel. The list is composed of the tags from the parent to the child elements.

public const char * getWriteError() const

This member function returns the name of the extractable called in cases where a problem occurs when reading
an IloModel.

756

public int getWritePrecision() const

This member function returns the write precision for floats

public IloBool readExtractable(IloXmlReader reader, IloXmlElement * element) const

xrefitem deprecated 7
See Also: IloXmlContext::readRtti

public IloBool readModel(IloModel model, istream & file) const

This member function reads model from an XML stream.

public IloBool readModel(IloModel model, const char * fileName) const

This member function reads model from the XML file fileName.

public IloBool readModelAndSolution(IloModel model, const char * modelFileName,
IloSolution solution, const char * solutionFileName) const

This member function reads model and solution from their respective XML files, modelFileName and
solutionFileName.

public IloBool readRtti(IloXmlReader reader, IloXmlElement * element) const

This member function tries to read all extractables from the XML element.

public IloBool readSolution(IloSolution solution, istream & file) const

This member function reads solution from an XML stream.

Note

This member function only works if a model has already been serialized.

public IloBool readSolution(IloSolution solution, const char * fileName) const

This member function reads solution from the XML file fileName.

Note

This member function only works if a model has already been serialized.

public IloBool readSolutionValue(IloSolution solution, IloXmlElement * root,

757

IloXmlReader reader) const

This member function reads an IloSolution object from an XML element.

public void registerXML(IloTypeIndex index, IloXmlInfo * xmlinfo) const

This member function registers the serialization class of an extractable with a linked ID, usually its RTTI index. In
write mode, the RTTI index is used to catch the correct serialization class.

In read mode, IloXmlInfo::getTagName is used to link the correct serialization class to the correct tag.

 IlpXmlContext context(env);
 context.registerXML(IloAllDiffI::GetTypeIndex(), new (env) IloXmlInfo_AllDiff(context));

public void registerXMLArray(IloXmlInfo * xmlinfo) const

This member function registers the serialization class of an array of extractables with a linked ID.

 context.registerXMLArray(new (env) IloXmlInfo_SOS2Array(context));

public IloBool setWriteMode(IloInt mode) const

This member function sets the write mode. The write mode can be set to NoUnknown or EvenUnknown.
NoUnknown throws an exception if an attempt is made to serialize an unknown extractable. EvenUnknown writes
a Unknown tag with the name of the extractable in a type attribute.

public void setWritePrecision(int writePrecision) const

This member function sets the write precision for floats. By default, there is no rounding mode on an IloNum or
an IloNumArray. You can also choose the no rounding mode with the IloNoRoundingMode constant.

public IloBool writeExtractable(const IloExtractableI * it, IloXmlWriter writer,
IloXmlElement * masterElement) const

xrefitem deprecated 8
See Also: IloXmlContext::writeRtti

public IloBool writeModel(const IloModel model, const char * fileName) const

This member function writes model to the file fileNamein XML format.

public IloBool writeModelAndSolution(const IloModel model, const char *
modelFileName, const IloSolution solution, const char * solutionFileName) const

This member function writes model to the file modelFileName and solution to the file solutionFileName
in XML format.

758

public IloBool writeRtti(const IloRtti * it, IloXmlWriter writer, IloXmlElement *
masterElement) const

This member function writes a specified extractable. It is used from the serialization class of an extractable to
write a embedded extractable.

The IloOr object calls this method on its constrained vars.

See Also: IloXmlInfo::writeRtti

public IloBool writeSolution(const IloSolution solution, const char * fileName)
const

This member function writes solution to the file fileName in XML format.

public void writeSolutionValue(const IloExtractable it, const IloSolution solution,
IloXmlWriter writer) const

This member function writes a specified extractable of a solution in XML. It is used from the serialization class of
an extractable to write an embedded extractable.

See Also: IloXmlInfo::writeSolutionValue

759

Class IloXmlInfo
Definition file: ilconcert/iloxmlabstract.h

The class IloXmlInfo allows you to serialize an IloModel or an IloSolution in XML.

Constructor and Destructor Summary

public IloXmlInfo(IloXmlContextI * context, const char * version=0)

public IloXmlInfo()

Method Summary

public IloBool checkAttExistence(IloXmlReader reader,
IloXmlElement * element, const char *
attribute)

public IloBool checkExprExistence(IloXmlReader reader,
IloXmlElement * element, const char *
attribute, IloInt & id)

public IloXmlContextI * getContext()

protected IloBool getIntValArray(IloXmlReader reader,
IloXmlElement * element, IloIntArray &
intArray)

protected IloBool getNumValArray(IloXmlReader reader,
IloXmlElement * element, IloNumArray &
numArray)

public IloBool getRefInChild(IloXmlReader reader,
IloXmlElement * element, IloInt & id)

public virtual const char * getTag()

public virtual IloXmlElement * getTagElement(IloXmlWriter writer, const
IloRtti * exprI)

public static const char * getTagName()

protected IloNumVar::Type getVarType(IloXmlReader reader,
IloXmlElement * element)

protected const char * getVersion()

protected virtual IloRtti * read(IloXmlReader reader, IloXmlElement *
element)

public virtual IloExtractableArray * readArrayFromXml(IloXmlReader reader,
IloXmlElement * element)

public IloBool readExtractable(IloXmlReader reader,
IloXmlElement * element)

public virtual IloRtti * readFrom(IloXmlReader reader,
IloXmlElement * element)

public virtual IloExtractableI * readFromXml(IloXmlReader reader,
IloXmlElement * element)

public IloBool readRtti(IloXmlReader reader,
IloXmlElement * element)

public virtual IloBool

760

readSolution(IloXmlReader reader,
IloSolution solution, IloXmlElement *
element)

protected virtual IloExtractableI * readXml(IloXmlReader reader,
IloXmlElement * element)

protected virtual IloExtractableArray * readXmlArray(IloXmlReader reader,
IloXmlElement * element)

protected IloXmlElement * setBoolArray(IloXmlWriter writer, const
IloBoolArray Array)

public IloXmlElement * setCommonArrayXml(IloXmlWriter writer,
const IloExtractableArray * extractable)

public IloXmlElement * setCommonValueXml(IloXmlWriter writer,
const IloRtti * exprI)

public IloXmlElement * setCommonXml(IloXmlWriter writer, const
IloRtti * exprI)

protected IloXmlElement * setIntArray(IloXmlWriter writer, const
IloIntArray Array)

protected IloXmlElement * setIntSet(IloXmlWriter writer, const
IloIntSet Array)

protected IloXmlElement * setNumArray(IloXmlWriter writer, const
IloNumArray Array)

protected IloXmlElement * setNumSet(IloXmlWriter writer, const
IloNumSet Array)

protected void setVersion(const char * version)

public void setXml(IloXmlWriter writer, IloXmlElement
* element, const IloRtti * exprI)

public virtual int write(IloXmlWriter writer, const
IloExtractableArray * extractable,
IloXmlElement * masterElement)

public virtual IloBool write(IloXmlWriter writer, const IloRtti
* exprI, IloXmlElement * masterElement)

public IloBool writeExtractable(IloXmlWriter writer,
IloXmlElement * element, const
IloExtractable extractable, const char *
attribute=0)

public virtual IloBool writeRef(IloXmlWriter writer, const
IloRtti * exprI, IloXmlElement *
masterElement)

public IloBool writeRtti(IloXmlWriter writer,
IloXmlElement * element, const IloRtti *
rtti, const char * attribute=0)

public virtual void writeSolution(IloXmlWriter writer, const
IloSolution solution, const
IloExtractable extractable)

public void writeSolutionValue(IloXmlWriter writer,
const IloSolution solution, IloXmlElement
* element, const IloRtti * rtti, const
char * attribute)

protected IloBool writeVarArray(IloXmlWriter writer,
IloXmlElement * element, IloSOS2Array
array)

761

protected IloBool writeVarArray(IloXmlWriter writer,
IloXmlElement * element, IloSOS1Array
array)

protected IloBool writeVarArray(IloXmlWriter writer,
IloXmlElement * element,
IloSemiContVarArray array)

protected IloBool writeVarArray(IloXmlWriter writer,
IloXmlElement * element,
IloConstraintArray array)

protected IloBool writeVarArray(IloXmlWriter writer,
IloXmlElement * element, IloRangeArray
array)

protected IloBool writeVarArray(IloXmlWriter writer,
IloXmlElement * element, IloNumVarArray
array)

protected IloBool writeVarArray(IloXmlWriter writer,
IloXmlElement * element,
IloIntSetVarArray array)

protected IloBool writeVarArray(IloXmlWriter writer,
IloXmlElement * element, IloNumExprArray
array)

protected IloBool writeVarArray(IloXmlWriter writer,
IloXmlElement * element, IloIntExprArray
array)

protected IloBool writeVarArray(IloXmlWriter writer,
IloXmlElement * element, IloBoolVarArray
array)

protected IloBool writeVarArray(IloXmlWriter writer,
IloXmlElement * element, IloIntVarArray
array)

public virtual IloBool writeXml(IloXmlWriter writer, const
IloExtractableI * exprI, IloXmlElement *
masterElement)

public virtual IloBool writeXmlRef(IloXmlWriter writer, const
IloExtractableI * exprI, IloXmlElement *
masterElement)

Constructors and Destructors

public IloXmlInfo(IloXmlContextI * context, const char * version=0)

This constructor creates an instance of the handle class IloXmlInfo from a pointer to an instance of the
undocumented implementation class IloXmlContextI.

public IloXmlInfo()

This constructor creates an empty instance of the handle class IloXmlInfo.

762

Methods

public IloBool checkAttExistence(IloXmlReader reader, IloXmlElement * element,
const char * attribute)

Given a specified attribute, this member function checks element to establish whether the attribute exists. If the
attribute does not exist, this member function throws an exception.

You can use this member function to dynamically validate an XML element.

public IloBool checkExprExistence(IloXmlReader reader, IloXmlElement * element,
const char * attribute, IloInt & id)

Given a specified attribute, this member function checks element to establish whether the attribute exists, fills
the id, and checks in the XML context memory whether an object with this id exists.

You can use this member function to dynamically validate an XML element.

Example: in the read method of the IloDiff, check that the IdRef object is already serialized

public IloXmlContextI * getContext()

This member function returns the related IloXmlContextI of the constructor.

protected IloBool getIntValArray(IloXmlReader reader, IloXmlElement * element,
IloIntArray & intArray)

This member function returns the contained IloIntArray in the XML element element.

See Also: IloXmlReader::string2IntArray

protected IloBool getNumValArray(IloXmlReader reader, IloXmlElement * element,
IloNumArray & numArray)

This member function returns the IloNumArray in the XML element element.

See Also: IloXmlReader::string2NumArray

public IloBool getRefInChild(IloXmlReader reader, IloXmlElement * element, IloInt &
id)

Given an XML element, this member function checks for the first value id or RefId in the element and its
children.

public virtual const char * getTag()

This member function returns the related XML tag.

763

public virtual IloXmlElement * getTagElement(IloXmlWriter writer, const IloRtti *
exprI)

For backward compatibility with 2.0 and the XML for IloExtractable objects, if this method is not specialized, by
default the getTagElement method with IloExtractableI will be called

public static const char * getTagName()

This static member function returns the linked XML tag of this serialization class.

protected IloNumVar::Type getVarType(IloXmlReader reader, IloXmlElement * element)

This member function returns the type of an IloNumVar - IloFloat, IloInt, or IloBool - in the XML
element element.

protected const char * getVersion()

This member function returns the version of the object.

protected virtual IloRtti * read(IloXmlReader reader, IloXmlElement * element)

This member function reads an IloRtti from the given XML element.

This is the method to specialize for each serialization class

For backward compatibility with Concert 2.0 and the XML for IloExtractable objects, by default the method
readXml with IloExtractableI will be called

public virtual IloExtractableArray * readArrayFromXml(IloXmlReader reader,
IloXmlElement * element)

This member function reads an array of IloRtti* from the given XML element.

This is the method to specialize when writing a serialization class for an array of extractables.

public IloBool readExtractable(IloXmlReader reader, IloXmlElement * element)

xrefitem deprecated 4

public virtual IloRtti * readFrom(IloXmlReader reader, IloXmlElement * element)

This member function reads an IloRtti from the given XML element. It asks the XML context to read the
extractable in the XML child element using a call to IloXmlContext::readRtti; it then calls
IloXmlInfo::readXml.

For backward compatibility with Concert 2.0 and the XML for IloExtractable objects, by default the method
readFromXml with IloExtractableI will be called

764

public virtual IloExtractableI * readFromXml(IloXmlReader reader, IloXmlElement *
element)

This member function reads an IloRtti from the given XML element. It asks the XML context to read the
extractable in the XML child element using a call to IloXmlContext::readRtti; it then calls
IloXmlInfo::readXml.

xrefitem deprecated 6

public IloBool readRtti(IloXmlReader reader, IloXmlElement * element)

This member function asks the XML context to read the IloRtti in the child element and then calls
IloXmlInfo::readFromXml to read the parent extractable.

public virtual IloBool readSolution(IloXmlReader reader, IloSolution solution,
IloXmlElement * element)

This member function reads a variable for IloSolution from the XML element element.

protected virtual IloExtractableI * readXml(IloXmlReader reader, IloXmlElement *
element)

This member function reads an IloRtti from the given XML element.

This is the method to specialize for each serialization class

xrefitem deprecated 5

protected virtual IloExtractableArray * readXmlArray(IloXmlReader reader,
IloXmlElement * element)

This member function reads an array of IloRtti* from the given XML element.

It is called by the XML context. It first asks the XML context to read from XML child elements using a call to
IloXmlContext::readRtti and then calls IloXmlInfo::readArrayFromXml.

protected IloXmlElement * setBoolArray(IloXmlWriter writer, const IloBoolArray
Array)

This member function creates an XML element containing the IloBoolArray.

See Also: IloXmlWriter::IntArray2String

public IloXmlElement * setCommonArrayXml(IloXmlWriter writer, const
IloExtractableArray * extractable)

This member function creates a XML element with the common header for IloExtractable arrays.

public IloXmlElement * setCommonValueXml(IloXmlWriter writer, const IloRtti *
exprI)

This member function creates an XML element with the given header for IloRtti from IloSolution.

765

public IloXmlElement * setCommonXml(IloXmlWriter writer, const IloRtti * exprI)

This member function creates an XML element with the common header for IloRtti.

protected IloXmlElement * setIntArray(IloXmlWriter writer, const IloIntArray Array)

This member function creates an XML element containing the IloIntArray.

See Also: IloXmlWriter::IntArray2String

protected IloXmlElement * setIntSet(IloXmlWriter writer, const IloIntSet Array)

This member function creates an XML element containing the IloIntSet.

See Also: IloXmlWriter::IntSet2String

protected IloXmlElement * setNumArray(IloXmlWriter writer, const IloNumArray Array)

This member function creates an XML element containing the IloNumArray.

See Also: IloXmlWriter::NumArray2String

protected IloXmlElement * setNumSet(IloXmlWriter writer, const IloNumSet Array)

This member function creates an XML element containing the IloNumSet.

See Also: IloXmlWriter::NumSet2String

protected void setVersion(const char * version)

This member function sets the version of the object.

public void setXml(IloXmlWriter writer, IloXmlElement * element, const IloRtti *
exprI)

This member function adds a name attribute and a ID attribute to the XML element.

public virtual int write(IloXmlWriter writer, const IloExtractableArray *
extractable, IloXmlElement * masterElement)

This member function writes the given IloExtractableArray in XML and adds it to the XML document of
writer. This is the method to specialize when writing a serialization class

public virtual IloBool write(IloXmlWriter writer, const IloRtti * exprI,
IloXmlElement * masterElement)

766

This member function writes the IloRtti object exprI in XML and adds it to the XML document of the
IloXmlWriter object writer.

For backward compatibility with Concert 2.0 and the XML for IloExtractable objects, by default the method
writeXml with IloExtractableI will be called

public IloBool writeExtractable(IloXmlWriter writer, IloXmlElement * element, const
IloExtractable extractable, const char * attribute=0)

xrefitem deprecated 1

See IloXmlContext::writeRtti(IloXmlWriter,IloXmlElement*,const IloRtti*,const char*)
instead. There is no longer need for the extractable argument.

public virtual IloBool writeRef(IloXmlWriter writer, const IloRtti * exprI,
IloXmlElement * masterElement)

This member function writes the IloRtti object exprI in XML as a reference.

For backward compatibility with Concert 2.0 and the XML for IloExtractable objects, by default the method
writeXmlRef with IloExtractableI will be called

public IloBool writeRtti(IloXmlWriter writer, IloXmlElement * element, const
IloRtti * rtti, const char * attribute=0)

This member function writes an embedded extractable. Using the getId() method of the extractable, it adds an
attribute with the ID in the XML element.

For example, used with IloDiff, this member function writes the expression and links it to the XML element via
an IdRef attribute.

 // using an IloDiffI* exprI:
 writeRtti(writer, element,
 (IloRtti*)exprI->getExpr1(),
 IloXmlAttributeDef::Expr1Id);
 writeRtti(writer, element,
 (IloRtti*)exprI->getExpr2(),
 IloXmlAttributeDef::Expr2Id);

See Also: IloXmlContext::writeRtti

public virtual void writeSolution(IloXmlWriter writer, const IloSolution solution,
const IloExtractable extractable)

This member function writes the specified extractable extractable from the IloSolutionsolution in XML
format.

public void writeSolutionValue(IloXmlWriter writer, const IloSolution solution,
IloXmlElement * element, const IloRtti * rtti, const char * attribute)

767

This member function writes an embedded extractable of a solution in XML. Using the getId() method of the
extractable, it adds an attribute with the ID in the XML element.

For example, used with IloDiff, this member function writes the expression and links it to the XML element via
an IdRef attribute.

See Also: IloXmlContext::writeSolutionValue

protected IloBool writeVarArray(IloXmlWriter writer, IloXmlElement * element,
IloSOS2Array array)

This member function writes an IloSOS2Array. It adds an attribute in the XML element element with the ID of
array, serializes array, and, if necessary, serializes the IloSOS2s of array.

protected IloBool writeVarArray(IloXmlWriter writer, IloXmlElement * element,
IloSOS1Array array)

This member function writes an IloSOS1Array. It adds an attribute in the XML element element with the ID of
array, serializes array, and, if necessary, serializes the IloSOS1s of array.

protected IloBool writeVarArray(IloXmlWriter writer, IloXmlElement * element,
IloSemiContVarArray array)

This member function writes an IloSemiContVarArray. It adds an attribute in the XML element element with
the ID of array, serializes array, and, if necessary, serializes the IloSemiContVars of array.

protected IloBool writeVarArray(IloXmlWriter writer, IloXmlElement * element,
IloConstraintArray array)

This member function writes an IloConstraintArray. It adds an attribute in the XML element element with
the ID of array, serializes array, and, if necessary, serializes the IloConstraints of array.

protected IloBool writeVarArray(IloXmlWriter writer, IloXmlElement * element,
IloRangeArray array)

This member function writes an IloRangeArray. It adds an attribute in the XML element element with the ID
of array, serializes array, and, if necessary, serializes the IloRanges of array.

protected IloBool writeVarArray(IloXmlWriter writer, IloXmlElement * element,
IloNumVarArray array)

This member function writes an IloNumVarArray. It adds an attribute in the XML element element with the ID
of array, serializes array, and, if necessary, serializes the IloNumVars of array.

protected IloBool writeVarArray(IloXmlWriter writer, IloXmlElement * element,
IloIntSetVarArray array)

768

This member function writes an IloIntSetVarArray. It adds an attribute in the XML element element with
the ID of array, serializes array, and, if necessary, serializes the IloIntSetVars of array.

protected IloBool writeVarArray(IloXmlWriter writer, IloXmlElement * element,
IloNumExprArray array)

This member function writes an IloNumExprArray. It adds an attribute in the XML element element with the
ID of array, serializes array, and, if necessary, serializes the IloNumExprs of array.

protected IloBool writeVarArray(IloXmlWriter writer, IloXmlElement * element,
IloIntExprArray array)

This member function writes an IloIntExprArray. It adds an attribute in the XML element element with the
ID of array, serializes array, and, if necessary, serializes the IloIntExprs of array.

protected IloBool writeVarArray(IloXmlWriter writer, IloXmlElement * element,
IloBoolVarArray array)

This member function writes an IloBoolVarArray. It adds an attribute in the XML element element with the
ID of array, serializes array, and, if necessary, serializes the IloBoolVars of array.

protected IloBool writeVarArray(IloXmlWriter writer, IloXmlElement * element,
IloIntVarArray array)

This member function writes an IloIntVarArray. It adds an attribute in the XML element element with the ID
of array, serializes array, and, if necessary, serializes the IloIntVars of array.

Example using IloSos containing an IloIntVarArray:

 // Using an IloSOS1I* exprI;

 this.writeVarArray(writer,
 element,
 exprI->getVarArray(),
 IloXmlAttributeDef::IdRef);

This sample adds an IdRef attribute on the SOS XML element, creates an XML element containing the
IloIntVarArray with the list of IloIntVar IDs, and creates a list of XML elements for the IloIntVars.

public virtual IloBool writeXml(IloXmlWriter writer, const IloExtractableI * exprI,
IloXmlElement * masterElement)

This member function writes the IloRtti object exprI in XML and adds it to the XML document of the
IloXmlWriter object writer.

xrefitem deprecated 2

public virtual IloBool writeXmlRef(IloXmlWriter writer, const IloExtractableI *
exprI, IloXmlElement * masterElement)

This member function writes the IloRtti object exprI in XML as a reference.

769

xrefitem deprecated 3

770

Class IloXmlReader
Definition file: ilconcert/iloreader.h

You can use an instance of IloXmlReader to read an IloModel or a IloSolution in XML format.

Constructor Summary

public IloXmlReader(IloEnv env, const char * fileName=0)

public IloXmlReader(IloXmlReaderI * impl)

Method Summary

public IloBool checkRttiOfObjectById(IloTypeIndex RTTI, IloRtti * exprI)

public IloBool checkRttiOfObjectById(IloTypeIndex RTTI, IloInt Xml_Id)

public IloBool checkTypeOfObjectById(IloTypeInfo type, IloInt Xml_Id)

public IloBool checkTypeOfObjectById(IloTypeInfo type, IloRtti * exprI)

public void deleteAllocatedMemory(const char * pointer)

public void deleteAllocatedMemory(char * pointer)

public IloXmlElement * findElement(IloXmlElement * root, const char * tag, const
char * attribute, const char * value)

public IloXmlElement * findElementByTag(IloXmlElement * element, const char *
tag)

public IloInt getChildrenCardinal(IloXmlElement * element)

public IloEnv getEnv()

public IloEnvI * getEnvImpl()

public IloXmlElement * getFirstSubElement(IloXmlElement * element)

public IloBool getIntAttribute(IloXmlElement * element, const char *
attribute, IloInt & value)

public IloBool getNumAttribute(IloXmlElement * element, const char *
attribute, IloNum & value)

public IloAny getObjectById(IloInt id)

public IloXmlElement * getRoot()

public IloIntArray * getSerialized()

public IloIntArray * getSolutionSerialized()

public IloBool isSerialized(IloInt id)

public IloBool openDocument()

public const char * readAttribute(IloXmlElement * element, const char *
attribute)

public const char * readCData(IloXmlElement * element)

public const char * readComment(IloXmlElement * element)

public const char * readData(IloXmlElement * element)

public const char * readText(IloXmlElement * element)

public void setfileName(const char * fileName)

771

public IloInt string2Int(const char * str)

public IloIntArray string2IntArray(const char * str)

public IloIntRange string2IntRange(IloXmlElement * element)

public IloIntSet string2IntSet(const char * str)

public IloNum string2Num(const char * str)

public IloNumArray string2NumArray(const char * str)

Constructors

public IloXmlReader(IloEnv env, const char * fileName=0)

This constructor creates an IloXmlReader object and makes it part of the environment env.

The fileName is set to 0 by default.

public IloXmlReader(IloXmlReaderI * impl)

This constructor creates an XML reader from its implementation object.

Methods

public IloBool checkRttiOfObjectById(IloTypeIndex RTTI, IloRtti * exprI)

This method checks the RTTI of the given object.

public IloBool checkRttiOfObjectById(IloTypeIndex RTTI, IloInt Xml_Id)

This method checks the RTTI of the object referenced by the identifier Xml_Id in the XML. This object must
already be serialized.

public IloBool checkTypeOfObjectById(IloTypeInfo type, IloInt Xml_Id)

This method checks the TypeInfo of the object referenced by the id in the XML. This object must have been
already serialized.

public IloBool checkTypeOfObjectById(IloTypeInfo type, IloRtti * exprI)

This method checks the TypeInfo of the given object

public void deleteAllocatedMemory(const char * pointer)

This member function frees the memory that has been allocated by the XML reader using, for example, the
IloXmlWriter::Int2String member function.

772

public void deleteAllocatedMemory(char * pointer)

This member function frees the memory that has been allocated by the XML reader using, for example, the
IloXmlWriter::Int2String member function.

public IloXmlElement * findElement(IloXmlElement * root, const char * tag, const
char * attribute, const char * value)

This member function examines the XML element root to identify the XML child element denoted by tag,
attribute, and value.

public IloXmlElement * findElementByTag(IloXmlElement * element, const char * tag)

This member function examines the XML element element to identify the XML child element denoted by tag.

public IloInt getChildrenCardinal(IloXmlElement * element)

This member function counts the number of child elements of the XML element element.

public IloEnv getEnv()

This member function gets the IloEnv of the object.

public IloEnvI * getEnvImpl()

This member function gets the implementation of the IloEnv of the object.

public IloXmlElement * getFirstSubElement(IloXmlElement * element)

This member function gets the first child in the XML element element.

public IloBool getIntAttribute(IloXmlElement * element, const char * attribute,
IloInt & value)

This member function checks the existence of attribute in the XML element element and converts it to an
IloInt.

public IloBool getNumAttribute(IloXmlElement * element, const char * attribute,
IloNum & value)

This member function checks the existence of attribute in the XML element element and converts it to an
IloNum.

773

public IloAny getObjectById(IloInt id)

This member function gets the already serialized object of the given identifier id.

 IloDiff Diff(reader.getEnv(),
 IloExpr((IloNumExprI*)reader.getObjectById(IdExpr1)),
 IloExpr((IloNumExprI*)reader.getObjectById(IdExpr2)),
 reader.readAttribute(element, IloXmlAttributeDef::Name));

The sample code creates a IloDiff from a XML element referencing its two expressions with the attributes
IdRef1 and IdRef2.

public IloXmlElement * getRoot()

This member function gets the XML root, that is, the XML document without the header.

public IloIntArray * getSerialized()

This member function gets the IDs of the serialized extractables and the unique IDs of the array of extractables
that were serialized from the model.

public IloIntArray * getSolutionSerialized()

This member function gets the IDs of the serialized extractables and the unique IDs of the array of extractables
that were serialized from the solution.

public IloBool isSerialized(IloInt id)

This member function checks whether the extractable with the ID id in the model has already been serialized.

public IloBool openDocument()

This member function opens the XML document specified in the constructor or with the setFileName method.

public const char * readAttribute(IloXmlElement * element, const char * attribute)

This member function returns the value of the attribute in the XML element element.

public const char * readCData(IloXmlElement * element)

This member function reads the CDATA of the XML element element.

public const char * readComment(IloXmlElement * element)

774

This member function returns the value of the comment in the XML element element.

public const char * readData(IloXmlElement * element)

This member function reads the data of the XML element element.

public const char * readText(IloXmlElement * element)

This member function returns the value of the text contained in the XML element element, independently of its
origin (data or CDATA).

public void setfileName(const char * fileName)

This member function sets fileName as the file from which to read the XML.

public IloInt string2Int(const char * str)

This member function converts str into an IloInt.

public IloIntArray string2IntArray(const char * str)

This member function converts str into an IloIntArray.

public IloIntRange string2IntRange(IloXmlElement * element)

This member function converts str into an IloIntRange.

public IloIntSet string2IntSet(const char * str)

This member function converts str into an IloIntSet.

public IloNum string2Num(const char * str)

This member function converts str into an IloNum.

public IloNumArray string2NumArray(const char * str)

This member function converts str into an IloNumArray.

775

Class IloXmlWriter
Definition file: ilconcert/ilowriter.h

You can use an instance of IloXmlWriter to serialize an IloModel or an IloSolution in XML.

Constructor Summary

public IloXmlWriter(IloEnv env, const char * rootTag, const char * fileName=0)

public IloXmlWriter(IloXmlWriterI * impl)

Method Summary

public void addAttribute(IloXmlElement * element, const char *
attribute, const char * value)

public void addCData(IloXmlElement * element, const char * CData)

public void addComment(IloXmlElement * element, const char * comment)

public void addElement(IloXmlElement * element)

public void addSubElement(IloXmlElement * element, IloXmlElement *
subElement)

public void addText(IloXmlElement * element, const char * text)

public IloXmlElement * createElement(const char * element)

public void deleteAllocatedMemory(const char * pointer)

public void deleteAllocatedMemory(char * pointer)

public IloEnv getEnv()

public IloEnvI * getEnvImpl()

public const char * getfileName()

public IloXmlElement * getRoot()

public IloIntArray * getSerialized()

public IloIntArray * getSolutionSerialized()

public const char * Int2String(const IloInt number)

public const char * IntArray2String(const IloIntArray intArray)

public const char * IntSet2String(const IloIntSet intSet)

public IloBool isSerialized(IloInt id)

public IloBool isSolutionSerialized(IloInt id)

public const char * Num2String(const IloNum number)

public const char * NumArray2String(const IloNumArray numArray)

public const char * NumSet2String(const IloNumSet numSet)

public void setfileName(const char * fileName)

public IloInt string2Int(const char * str)

public IloBool writeDocument()

776

Constructors

public IloXmlWriter(IloEnv env, const char * rootTag, const char * fileName=0)

This constructor creates an IloXmlWriter object and makes it part of the environment env.

The fileName is set to 0 by default.

public IloXmlWriter(IloXmlWriterI * impl)

This constructor creates a XML writer object from its implementation object.

Methods

public void addAttribute(IloXmlElement * element, const char * attribute, const
char * value)

This member function adds an attribute of the specified value to the XML element.

public void addCData(IloXmlElement * element, const char * CData)

This member function adds a CDATA section to the XML element element.

public void addComment(IloXmlElement * element, const char * comment)

This member function adds comment to the XML element element.

public void addElement(IloXmlElement * element)

This member function adds the XML element element to the end of the XML.

public void addSubElement(IloXmlElement * element, IloXmlElement * subElement)

This member function adds a child element, subElement, to the XML element element.

public void addText(IloXmlElement * element, const char * text)

This member function adds text to the specified element.

public IloXmlElement * createElement(const char * element)

This member function creates an empty element with the given tag, element.

777

public void deleteAllocatedMemory(const char * pointer)

This member function frees the memory that has been allocated by the XML reader using, for example, the
IloXmlWriter::Int2String member function.

public void deleteAllocatedMemory(char * pointer)

This member function frees the memory that has been allocated by the XML reader using, for example, the
IloXmlWriter::Int2String member function.

public IloEnv getEnv()

This member function gets the IloEnv of the object.

public IloEnvI * getEnvImpl()

This member function gets the implementation of the IloEnv of the object.

public const char * getfileName()

This member function returns the name of the XML file

public IloXmlElement * getRoot()

This member function gets the root XML element of the XML document.

public IloIntArray * getSerialized()

This member function gets the IDs of the serialized objects of an IloModel.

public IloIntArray * getSolutionSerialized()

This member function gets the IDs of the serialized objects of an IloSolution.

public const char * Int2String(const IloInt number)

This member function converts the IloInt object number into a string, const char*.

public const char * IntArray2String(const IloIntArray intArray)

This member function converts the IloIntArray object intArray into a string, const char*.

778

public const char * IntSet2String(const IloIntSet intSet)

This member function converts the IloIntSet object intSet into a string, const char*.

public IloBool isSerialized(IloInt id)

This member function checks whether an object has been serialized.

public IloBool isSolutionSerialized(IloInt id)

This member function checks whether a solution object has already been serialized.

public const char * Num2String(const IloNum number)

This member function converts the IloNum object number into a string, const char*.

public const char * NumArray2String(const IloNumArray numArray)

This member function converts the IloNumArray object numArray into a string, const char*.

public const char * NumSet2String(const IloNumSet numSet)

This member function converts the IloNumSet object numSet into a string, const char*.

public void setfileName(const char * fileName)

This member function specifies fileName as the name of the XML file.

public IloInt string2Int(const char * str)

This member function converts str into an IloInt.

public IloBool writeDocument()

This member function outputs the XML to the file specified in the constructor or using the setFileName method.
If null, this member function outputs on the cout io.

779

Class IloPoolOperator::InvocationEvent
Definition file: ilsolver/iimoperator.h
Include file: <ilsolver/iim.h>

The event produced by pool operators when they are invoked.
When an operator is invoked, it produces an event of type IloPoolOperator::InvocationEvent. The event
is emitted directly upon entering the operator. For example, assume that an operator was created using op =
op1 && op2. When op is executed, first invocation events for op are produced, and then events for op1 are
produced. If op1 then succeeds, an invocation event for op2 will be produced when it begins execution.

See Also: operator&&, ILOIIMLISTENER0, IloListener

Inherited Methods from Event

getOperator, getSolver

780

Class IloAnySet::Iterator
Definition file: ilconcert/iloanyset.h

For IBM® ILOG® Solver: an iterator to traverse the elements of IloAnySet.
An instance of the nested class IloAnySet::Iterator is an iterator that traverses the elements of a finite set
of pointers (an instance of IloAnySet).

See Also: IloAnySet

Constructor and Destructor Summary

public Iterator(const IloAnySetI * coll)

public Iterator(const IloAnySet coll)

public Iterator(IloGenAlloc * heap, const IloAnySetI * coll)

public ~Iterator()

Method Summary

public IloBool ok() const

public IloAny operator*()

public void operator++()

Constructors and Destructors

public Iterator(const IloAnySetI * coll)

.

public Iterator(const IloAnySet coll)

.

public Iterator(IloGenAlloc * heap, const IloAnySetI * coll)

.

public ~Iterator()

.

781

Methods

public IloBool ok() const

This member function returns IloTrue if there is a current element and the invoking iterator points to it.
Otherwise, it returns IloFalse.

To traverse the elements of a finite set of pointers, use the following code:

 for(IloAnySet::Iterator iter(set); iter.ok(); ++iter){
 IloAny val = *iter;
 // do something with val
 }

public IloAny operator*()

This operator returns the current value.

public void operator++()

This operator advances the iterator to point to the next value in the dataset.

782

Class IloExplicitEvaluator::Iterator
Definition file: ilsolver/iimmulti.h
Include file: <ilsolver/iim.h>

An iterator which will iterate over all evaluated objects in an explicit evaluator.
This iterator iterates over all objects which have evaluations associated with them in an explicit evaluator. The
objects are delivered in an arbitrary order, and do not necessarily correspond to the order in which the objects
were given evaluations (via IloExplicitEvaluator::setEvaluation).

The iterator is robust to removals of objects (via IloExplicitEvaluator::removeEvaluation) at the
iterator position, but if this is done, the iterator should not be incremented or an object will be skipped. Moreover,
ok() should be used to determine if the iterator is still valid.

Constructor Summary

public Iterator(IloExplicitEvaluator< IloObject > ee)

Creates an iterator to iterate over all evaluated objects in an explicit evaluator.

Method Summary

public IloBool ok() const

Determines if the iteration is complete.

public IloObject operator*() const

Accesses the object at the current iterator position.

public Iterator & operator++()

Advances the iterator to the next object.

Constructors

public Iterator(IloExplicitEvaluator< IloObject > ee)

Creates an iterator to iterate over all evaluated objects in an explicit evaluator.

This constructor creates an iterator which will iterate (in no particular order) over all evaluated objects in the
explicit evaluator ee.

Methods

public IloBool ok() const

Determines if the iteration is complete.

This member function should be called before each access to the iteration to determine if the current position is
valid. When this function returns IloTrue, the iterator can safely be accessed (via operator *()), as long as
the explicit evaluator is not changed before the access.

public IloObject operator*() const

783

Accesses the object at the current iterator position.

This operator is used to deliver the current value of the iterator, which is an object which has an evaluation in the
explicit evaluator specified in the constructor of the iterator.

public Iterator & operator++()

Advances the iterator to the next object.

The operator moves the iterator to the next object which has an evaluation in the explicit evaluator being
traversed by the iterator. Note that in the case where the object being pointed to by the iterator has just been
deleted, this operator should not be called; the deletion process automatically advances the iterator in this case.
A reference to the advanced iterator is returned.

784

Class IloIntSet::Iterator
Definition file: ilconcert/iloset.h

This class is an iterator that traverses the elements of a finite set of numeric values.
An instance of the nested class IloIntSet::Iterator is an iterator that traverses the elements of a finite set
of numeric values (an instance of IloIntSet).

See Also: IloIntSet

Constructor and Destructor Summary

public Iterator(const IloIntSet coll)

Method Summary

public IloBool ok() const

public IloInt operator*()

public void operator++()

Constructors and Destructors

public Iterator(const IloIntSet coll)

Creates an iterator over the given set.

Methods

public IloBool ok() const

This member function returns IloTrue if there is a current element and the invoking iterator points to it.
Otherwise, it returns IloFalse.

To traverse the elements of a finite set of pointers, use the following code:

 for(IloIntSet::Iterator iter(set); iter.ok(); ++iter){
 IloInt val = *iter;
 // do something with val
 }

public IloInt operator*()

This operator returns the current value.

785

public void operator++()

This operator advances the iterator to point to the next value in the dataset.

786

Class IloModel::Iterator
Definition file: ilconcert/ilomodel.h

Nested class of iterators to traverse the extractable objects in a model.
An instance of this nested class is an iterator capable of traversing the extractable objects in a model.

An iterator of this class differs from one created by the template IloIterator. Instances of IloIterator
traverse all the extractable objects of a given class (specified by E in the template) within a given environment
(an instance of IloEnv), whether or not those extractable objects have been explicitly added to a model.
Instances of IloModel::Iterator traverse only those extractable objects that have explicitly been added to a
given model (an instance of IloModel).

See Also: IloIterator, IloModel

Constructor Summary

public Iterator(const IloModel model)

Method Summary

public IloBool ok() const

public IloExtractable operator*()

public void operator++()

Constructors

public Iterator(const IloModel model)

This constructor creates an iterator to traverse the extractable objects in the model specified by model.

Methods

public IloBool ok() const

This member function returns IloTrue if there is a current element and the iterator points to it. Otherwise, it
returns IloFalse.

public IloExtractable operator*()

This operator returns the current extractable object, the one to which the invoking iterator points.

public void operator++()

This operator advances the iterator to point to the next extractable object in the model.

787

Class IloSolution::Iterator
Definition file: ilconcert/ilosolution.h

It allows you to traverse the variables in a solution.
Iterator is a class nested in the class IloSolution. It allows you to traverse the variables in a solution. The
iterator scans the objects in the same order as they were added to the solution.

This iterator is not robust. If the variable at the current position is deleted from the solution being iterated over,
the behavior of this iterator afterward is undefined.

iter can be safely used after the following code has executed:•

 IloExtractable elem = *iter;

 ++iter;

 solution.remove(elem);

iter cannot be safely used after the following code has executed:•

 solution.remove(*iter); // bad idea

 ++iter;

See Also: IloIterator, IloSolution

Constructor Summary

public Iterator(IloSolution solution)

Method Summary

public IloBool ok() const

public IloExtractable operator*() const

public Iterator & operator++()

Constructors

public Iterator(IloSolution solution)

This constructor creates an iterator to traverse the variables of solution. The iterator traverses variables in the
same order they were added to solution.

Methods

public IloBool ok() const

This member function returns IloTrue if the current position of the iterator is a valid one. It returns IloFalse if
all variables have been scanned by the iterator.

788

public IloExtractable operator*() const

This operator returns the extractable object corresponding to the variable located at the current iterator position.
If all variables have been scanned, this operator returns an empty handle.

public Iterator & operator++()

This operator moves the iterator to the next variable in the solution.

789

Class IloSolutionPool::Iterator
Definition file: ilsolver/iimpool.h
Include file: <ilsolver/iim.h>

brief Iterates over all the instances of IloSolution in the pool.

An instance of this class is an iterator capable of traversing all instances of IloSolution contained in the pool.

Constructor Summary

public Iterator(IloSolutionPool pool)

Method Summary

public IloBool ok() const

public IloSolution operator*() const

public Iterator & operator++()

Constructors

public Iterator(IloSolutionPool pool)

brief Creates an iterator which will iterate over a pool.

This constructor creates an iterator to traverse the pool pool.

Methods

public IloBool ok() const

brief Indicates whether all items have already been scanned.

This operator returns true if and only if items remain to be scanned.

public IloSolution operator*() const

brief Returns the current item.

This operator returns the current element, the IloSolution to which the invoking iterator points.

public Iterator & operator++()

brief Advances the iterator to the next pool element.

790

This operator advances the iterator to the next pool element and returns a reference to the invoking iterator.

791

Class IloExpr::LinearIterator
Definition file: ilconcert/iloexpression.h

An iterator over the linear part of an expression.
An instance of the nested class IloExpr::LinearIterator is an iterator that traverses the linear part of an
expression.

Example

Start with an expression that contains both linear and non linear terms:

IloExpr e = 2*x + 3*y + cos(x);

Now define a linear iterator for the expression:

IloExpr::LinearIterator it = e.getLinearIterator();

That constructor creates a linear iterator initialized on the first linear term in e, that is, the term (2*x).
Consequently, a call to the member function ok returns IloTrue.

it.ok(); // returns IloTrue

A call to the member function getCoef returns the coefficient of the current linear term.

it.getCoef(); // returns 2 from the term (2*x)

Likewise, the member function getVar returns the handle of the variable of the current linear term.

it.getVar(); // returns handle of x from the term (2*x)

A call to the operator++ at this point advances the iterator to the next linear term, (3*y). The iterator ignores
nonlinear terms in the expression.

 ++it; // goes to next linear term (3*y)
 it.ok(); // returns IloTrue
 it.getCoef(); // returns 3 from the term (3*y)
 it.getVar(); // returns handle of y from the term (3*y)
 ++it; // goes to next linear term, if there is one in the expression
 it.ok(); // returns IloFalse because there is no linear term

Method Summary

public IloNum getCoef() const

public IloNumVar getVar() const

public IloBool ok() const

public void operator++()

Methods

public IloNum getCoef() const

This member function returns the coefficient of the current term.

792

public IloNumVar getVar() const

This member function returns the variable of the current term.

public IloBool ok() const

This member function returns IloTrue if there is a current element and the iterator points to it. Otherwise, it
returns IloFalse.

public void operator++()

This operator advances the iterator to point to the next term of the linear part of the expression.

793

Class IloCsvReader::LineIterator
Definition file: ilconcert/ilocsvreader.h

Line-iterator for csv readers.
LineIterator is a nested class of the class IloCsvReader. It is to be used only with csv reader objects built
to read a unique-table data file.

IloCsvReader::LineIterator allows you to step through all the lines of the csv data file (except blank lines
and commented lines) on which the csv reader was created.

Constructor and Destructor Summary

public LineIterator()

public LineIterator(IloCsvReader csv)

Method Summary

public IloBool ok() const

public IloCsvLine operator*() const

public LineIterator & operator++()

Constructors and Destructors

public LineIterator()

This constructor creates an empty LineIterator object. This object must be assigned before it can be used.

public LineIterator(IloCsvReader csv)

This constructor creates an iterator to traverse all the lines in the csv data file on which the csv reader csv was
created.

The iterator does not traverse blank lines and commented lines.

Methods

public IloBool ok() const

This member function returns IloTrue if the current position of the iterator is a valid one.

It returns IloFalse if the iterator reaches the end of the table.

public IloCsvLine operator*() const

This operator returns the current instance of IloCsvLine (representing the current line in the csv file); the one
to which the invoking iterator points.

794

public LineIterator & operator++()

This left-increment operator shifts the current position of the iterator to the next instance of IloCsvLine
representing the next line in the file.

795

Class IloCsvTableReader::LineIterator
Definition file: ilconcert/ilocsvreader.h

Line-iterator for csv table readers.
LineIterator is a nested class of the class IloCsvTableReader. It allows you to step through all the lines of
a table from a csv data file (except blank lines and commented lines) on which the table csv reader was created.

Constructor and Destructor Summary

public LineIterator()

public LineIterator(IloCsvTableReader csv)

Method Summary

public IloBool ok() const

public IloCsvLine operator*() const

public LineIterator & operator++()

Constructors and Destructors

public LineIterator()

This constructor creates an empty LineIterator object.

This object must be assigned before it can be used.

public LineIterator(IloCsvTableReader csv)

This constructor creates an iterator to traverse all the lines in the table csv data file on which the csv reader csv
was created.

The iterator does not traverse blank lines and commented lines.

Methods

public IloBool ok() const

This member function returns IloTrue if the current position of the iterator is a valid one.

It returns IloFalse if the iterator reaches the end of the table.

public IloCsvLine operator*() const

This operator returns the current instance of IloCsvLine (representing the current line in the csv file); the one
to which the invoking iterator points.

796

public LineIterator & operator++()

This left-increment operator shifts the current position of the iterator to the next instance of IloCsvLine
representing the next line in the file.

797

Class IloNumExpr::NonLinearExpression
Definition file: ilconcert/iloexpression.h

The class of exceptions thrown if a numeric constant of a nonlinear expression is set or queried.

Method Summary

public const IloNumExprArg getExpression() const

Inherited Methods from IloException

end, getMessage

Methods

public const IloNumExprArg getExpression() const

The member function getExpression returns the expression involved in the exception.

798

Class IloAlgorithm::NotExtractedException
Definition file: ilconcert/iloalg.h

The class of exceptions thrown if an extractable object has no value in the current solution of an algorithm.
If an expression, numeric variable, objective, or array of extractable objects has no value in the current solution of
an algorithm, this exception is thrown.

Constructor Summary

public NotExtractedException(const IloAlgorithmI *, const IloExtractable)

Method Summary

public const IloAlgorithmI * getAlgorithm() const

public const IloExtractable & getExtractable()

Inherited Methods from IloException

end, getMessage

Constructors

public NotExtractedException(const IloAlgorithmI *, const IloExtractable)

The constructor NotExtractedException creates an exception thrown from the algorithm object alg for the
extractable object extr.

Methods

public const IloAlgorithmI * getAlgorithm() const

The member function getAlgorithm returns the algorithm from which the exception was thrown.

public const IloExtractable & getExtractable()

The member function getExtractable returns the extractable object that triggered the exception.

799

Class IloSolutionPool::RemovedEvent
Definition file: ilsolver/iimpool.h
Include file: <ilsolver/iim.h>

brief Event class used to notify the removal of an IloSolution from an IloSolutionPool.

This event class is used to notify any listeners that have been attached to the pool using
IloSolutionPool::addListener whenever an object of type IloSolution is removed from an
IloSolutionPool using IloSolutionPool::remove.

See Also: IloSolutionPool::addListener, IloSolutionPool::remove

Method Summary

public IloSolution getSolution() const

Inherited Methods from Event

getPool

Methods

public IloSolution getSolution() const

brief Returns the removed IloSolution.

This function returns the removed object of type IloSolution.

800

Class IloPoolOperator::SuccessEvent
Definition file: ilsolver/iimoperator.h
Include file: <ilsolver/iim.h>

The event produced by pool operators when they are involved in the production of a solution.
When an operator succeeds, it produces an event of type IloPoolOperator::SuccessEvent. This event is
produced when all operators involved in the creation of a solution have succeeded, just after the new solution
has been stored.

For instance, if an operator op has been formed using op = op1 && op2, and when op is executed, op1
succeeds and op2 fails, this is treated as a global failure and no success events are issued. If both op1 and op2
have succeeded, however, success events would be produced for op1, op2 and the combined operator op.

In the case where op has been formed using op = op1 || op2 , if op1 succeeds then success events are
produced for operators op1 and op. Otherwise, if op2 succeeds, success events are produced for operators op2
and op.

See Also: operator&&, operator||, ILOIIMLISTENER0, IloListener

Inherited Methods from Event

getOperator, getSolver

801

Class IloCsvReader::TableIterator
Definition file: ilconcert/ilocsvreader.h

Table-iterator of csv readers.
TableIterator is a nested class of the class IloCsvReader. It is to be used only for multitable files.

IloCsvReader::TableIterator allows you to step through all the tables of the multitable csv data file on
which the csv reader was created.

Constructor and Destructor Summary

public TableIterator(IloCsvReader csv)

Method Summary

public IloBool ok() const

public IloCsvTableReader operator*() const

public TableIterator & operator++()

Constructors and Destructors

public TableIterator(IloCsvReader csv)

This constructor creates an iterator to traverse all the tables in the csv data file on which the csv reader csv was
created.

Methods

public IloBool ok() const

This member function returns IloTrue if the current position of the iterator is a valid one.

It returns IloFalse if the iterator reaches the end of the table.

public IloCsvTableReader operator*() const

This operator returns the current instance of IloCsvTable (representing the current table in the csv file); the
one to which the invoking iterator points.

public TableIterator & operator++()

This left-increment operator shifts the current position of the iterator to the next instance of
IloCsvTableReader representing the next line in the file.

802

Enumeration IlcErrorType
Definition file: ilsolver/ilcerr.h
Include file: <ilsolver/ilosolver.h>

Solver associates an identifier with each error detected at execution time. Those identifiers are defined in the
enumeration IlcErrorType.

As of version 5.0, Solver transforms an error into an instance of IloSolver::SolverErrorException. The
member function getErrorType of that class will return the IlcErrorType.

See Also: IloSolver

Fields:

IlcError_arrayNullSize = 1

IlcError_collectionFilled

IlcError_nullCollectionSize

IlcError_extendExistingValue

IlcError_arrayBadSize

IlcError_arrayBadElement

IlcError_arrayIsNotOrdered

IlcError_badCollection

IlcError_emptyDomain

IlcError_undefValue

IlcError_nullObject

IlcError_alreadyUsed

IlcError_alreadyCalled

IlcError_notCalled

IlcError_mulBadOffset

IlcError_mulBoundVar

IlcError_mulNullValue

IlcError_failOutsideSolve

IlcError_noMoreChoicePoint

IlcError_failBadReturnValue

IlcError_usingUndefStrategy

IlcError_inSolve

IlcError_noMoreMemory

IlcError_deletingHeapObject

IlcError_internalError

IlcError_clauseInPropagation

803

IlcError_clauseNotInSolve

IlcError_unboundVarAfterMinimize

IlcError_badIndex

IlcError_badIndexInterval

IlcError_badIndexStep

IlcError_badArgument

IlcError_scheduleError

IlcError_scheduleAltError

IlcError_badPoints

IlcError_divideByZero

IlcError_keyAccess

IlcError_warnMemory

IlcError_emptyHandle

IlcError_noOpposite

IlcError_noMetaPost

IlcError_assignmentOfVariable

IlcError_notInProcess

IlcError_badEvent

IlcError_notAVariable

IlcError_divisionOfZero

IlcError_compatibility

IlcError_plannerError

IlcError_hybridError

IlcError_arrayRepeatedElement

IlcError_badSizeAllocator

IlcError_arrayAlreadyLocked

IlcError_differentManagers

IlcError_verticalError

IlcError_setAlreadyClosed

IlcError_setNotClosed

IlcError_predicateBadArity

IlcError_persistentHashTable

IlcError_overflowInExpression

IlcError_assertionFailed

IlcError_accessorFunctionBounds

IlcError_accessorPrototype

804

IlcError_notAllExtensibleAccessor

IlcError_getExtendedItemData

IlcError_incorrectSearchUse

IlcError_extensibleSet

IlcError_tooManyVar

IlcError_tooManyCt

IlcError_badConstraintLevel

IlcError_badFilterLevel

IlcError_changeFilterLevel

IlcError_continuousVar

IlcError_storeDuringSearch

805

Enumeration IlcFilterLevel
Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

The values in this enumeration control how much propagation is carried out.

Functions (such as IlcAllDiff, IlcAllMinDistance, IlcAllNullIntersect, IlcDistribute,
IlcPartition, IlcSequence, for example) that return a constraint generally have two signatures: one without
IlcFilterLevel as a parameter, one with IlcFilterLevel as an optional parameter. When you choose the
signature without IlcFilterLevel as a parameter, then Solver uses the default filter level for that type of
constraint to propagate the constraint returned by the function. The default filter level depends on the type of
constraint. Types of constraints are defined by the enumeration IlcFilterLevelConstraint.

It is possible for you to change the default filter level globally by means of the member function
IloSolver::setDefaultFilterLevel.

When you explicitly pass a filter level as a parameter to one of these functions, then you effectively mask the
default filter level.

It is also possible to change the filter level yourself for a given constraint. You do so by means of the member
function IloSolver::setFilterLevel.

In changing a filter level yourself, you can increase the filter level during a search, but you cannot decrease the
filter level during a search. An attempt to decrease the filter level during a search will result in an error raising an
exception

See Also: IlcAllDiff, IlcAllMinDistance, IlcAllNullIntersect, IlcDistribute, IlcEqUnion, IlcFilterLevelConstraint,
IlcPartition, IlcSequence

Fields:

IlcLow = 0L

IloLowLevel = 0L

IlcBasic = 1L

IloBasicLevel = 1L

IlcMedium = 2L

IloMediumLevel = 2L

IlcExtended = 3L

IloExtendedLevel = 3L

806

Enumeration IlcFilterLevelConstraint
Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

The values in this enumeration recognize different types of constraints with respect to filter levels in propagation.

Functions (such as IlcAllDiff, IlcAllMinDistance, IlcAllNullIntersect, IlcDistribute,
IlcPartition, IlcSequence, for example) that return a constraint generally have two signatures: one without
IlcFilterLevel as a parameter, one with IlcFilterLevel as an optional parameter. When you choose the
signature without IlcFilterLevel as a parameter, then Solver uses the default filter level for that type of
constraint to propagate the constraint returned by the function. The default filter level depends on the type of
constraint.

See Also: IlcAllDiff, IlcAllMinDistance, IlcAllNullIntersect, IlcBox, IlcDistribute, IlcPartition, IlcSequence

Fields:

IlcAllDiffCt = 0L

IloAllDiffCt = 0L

IlcDistributeCt = 1L

IloDistributeCt = 1L

IlcSequenceCt = 2L

IloSequenceCt = 2L

IlcAllMinDistanceCt = 3L

IloAllMinDistanceCt = 3L

IlcPartitionCt = 4L

IloPartitionCt = 4L

IlcAllNullIntersectCt = 5L

IloAllNullIntersectCt = 5L

IlcEqUnionCt = 6L

IloEqUnionCt = 6L

IlcNotOverlapCt = 7L

IloNotOverlapCt = 7L

IlcBoxCt = 8L

IloBoxCt = 8L

IlcPairingCt = 9L

IloPairingCt = 9L

807

Enumeration IlcFloatDisplay
Definition file: ilsolver/ilcerr.h
Include file: <ilsolver/ilosolver.h>

The values in this enumeration determine the format in which constrained floating-point variables are displayed.
For example, the member function IloSolver::setFloatDisplay uses values from this enumeration to
determine how to display constrained floating-point variables.

IlcStandardDisplay is the default value. When a constrained floating-point variable is displayed in this
format, its minimal and maximal values are rounded to the nearest value, and the variable is displayed as an
interval defined by these values, like this: [min max].

IlcIntScientific displays a constrained floating-point variable as an interval defined by its minimum and
maximum values, like this: [min max]. The minimal value is rounded toward negative infinity (-?); the maximal
value is rounded toward positive infinity (+?). The values min and max are displayed in scientific notation
d.ddde+dd where d represents a digit and e the base for exponentiation.

IlcIntFixed displays a constrained floating-point variable as an interval defined by its minimum and maximum
values, like this: [min max]. The minimal value is rounded toward negative infinity (-?); the maximal value is
rounded toward positive infinity (+?). The values min and max are displayed in fixed-precision notation
ddddd.dd where d represents a digit.

IlcBasScientific displays a constrained floating-point variable as an interval defined by a base and two
other values: [base + [delta1 delta2]] representing the interval [(base + delta1) (base +
delta2)] . Two cases may arise: the interval contains an integer; the interval does not contain an integer.

The interval contains an integer. In this case, the base is this integer, delta1 is negative, and
delta2 is positive.

•

The interval does not contain an integer. In this case, the base represents the common part. For
example, in IlcBasScientific, a constrained floating-point variable between 1.23456789 and
1.23456890 will be displayed like this: [1.23456 +
[0.78899999998900e-5..0.88999999999700e-5]]

•

If the minimal and maximal values are too far apart and consequently to display a base makes no sense, then a
constrained floating-point variable in IlcBasScientific format is displayed like this: [min max].

IlcBasFixed displays a constrained floating-point variable as an interval defined by a base and two other
values: [base + [delta1 delta2]]. Two cases may arise: the interval contains an integer; the interval does
not contain an integer.

The interval contains an integer. In this case, the base is this integer, delta1 is negative, and
delta2 is positive. For example, in IlcBasFixed, a constrained floating-point variable between
0.99 and 1.01 will be displayed like this: [1.0 +
[-0.100000000000000089e-1..+0.10000000000000009e-1]]

•

The interval does not contain an integer. In this case, the base represents the common part.•

If the minimal and maximal values are too far apart and consequently to display a base makes no sense, then a
constrained floating-point variable in IlcBasFixed format is displayed like this: [min max].

See Also: IloSolver

Fields:

IlcStandardDisplay = 0

IlcIntScientific = 1

IlcIntFixed = 2

IlcBasScientific = 3

808

IlcBasFixed = 4

809

Enumeration IlcPruneMode
Definition file: ilsolver/search.h
Include file: <ilsolver/ilosolver.h>

The values in this enumeration indicate why Solver prunes the nodes of a search tree.

See Also: IlcSearchMonitorI

Fields:

searchNotFailed

searchFailedNormally

killedBySelector

killedByLimit

killedByLabel

killedByEvaluator

killedByExit

810

Enumeration Status
Definition file: ilconcert/iloalg.h

An enumeration for the class IloAlgorithm.
IloAlgorithm is the base class of algorithms in Concert Technology, and IloAlgorithm::Status is an
enumeration limited in scope to the class IloAlgorithm. The member function IloAlgorithm::getStatus
returns a status showing information about the current model and the solution.

Unknown specifies that the algorithm has no information about the solution of the model.

Feasible specifies that the algorithm found a feasible solution (that is, an assignment of values to variables that
satisfies the constraints of the model, though it may not necessarily be optimal). The member functions
IloAlgorithm::getValue access this feasible solution.

Optimal specifies that the algorithm found an optimal solution (that is, an assignment of values to variables that
satisfies all the constraints of the model and that is proved optimal with respect to the objective of the model).
The member functions IloAlgorithm::getValue access this optimal solution.

Infeasible specifies that the algorithm proved the model infeasible; that is, it is not possible to find an
assignment of values to variables satisfying all the constraints in the model.

Unbounded specifies that the algorithm proved the model unbounded.

InfeasibleOrUnbounded specifies that the model is infeasible or unbounded.

Error specifies that an error occurred and, on platforms that support exceptions, that an exception has been
thrown.

See Also: IloAlgorithm, operator<<

Fields:

Unknown

Feasible

Optimal

Infeasible

Unbounded

InfeasibleOrUnbounded

Error

811

Enumeration IloDeleterMode
Definition file: ilconcert/iloenv.h

An enumeration to set the mode of an IloDeleter.
This enumeration allows you to set the IloDeleter mode. The modes IloRecursiveDeleterMode and
IloSmartDeleterMode are not documented and should not be used.

You can set the mode using the member function IloEnv::setDeleter. For a description of deletion in IBM® ILOG®
Concert Technology, refer to Deletion of Extractables.

Fields:

IloLinearDeleterMode = 0

IloSafeDeleterMode = 1

IloRecursiveDeleterMode = 2

IloSmartDeleterMode = 2

812

Enumeration Type
Definition file: ilconcert/iloexpression.h

An enumeration for the class IloNumVar.
This nested enumeration enables you to specify whether an instance of IloNumVar is of type integer (Int),
Boolean (Bool), or floating-point (Float).

Programming Hint

For each enumerated value in IloNumVar::Type, there is a predefined equivalent C++ #define in the
Concert Technology include files to make programming easier. For example, instead of writing
IloNumVar::Int in your application, you can write ILOINT. Likewise, ILOFLOAT is defined for
IloNumVar::Float and ILOBOOL for IloNumVar::Bool.

See Also: IloNumVar

Fields:

Int = 1

Float = 2

Bool = 3

813

Enumeration Sense
Definition file: ilconcert/ilolinear.h

Specifies objective as minimization or maximization.
An instance of the class IloObjective represents an objective in a model. This nested enumeration is limited
in scope to that class, and its values specify the sense of an objective; that is, whether it is a minimization
(Minimize) or a maximization (Maximize).

See Also: IloObjective

Fields:

Minimize = 1

Maximize = -1

814

Enumeration FailureStatus
Definition file: ilsolver/ilosolverhandle.h
Include file: <ilsolver/ilosolver.h>

The values in this enumeration indicate the failure status of an instance of IloSolver after an unsuccessful
IloSolver::solve or IloSolver::next. The member function IloSolver::getFailureStatus is used to query the failure
status of an instance of IloSolver.

See Also: IloSolver

Fields:

searchHasNotFailed

searchFailedNormally

searchStoppedByLimit

searchStoppedByLabel

searchStoppedByExit

unknownFailureStatus

815

Enumeration IloSynchronizeMode
Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

The values in this enumeration indicate how Solver should synchronize changes in a model with its search for
solutions. In general, you cannot modify the current extracted model during a search. In other words, you cannot
change a model while the search is active. A search is active during the call of IloSolver::solve and
between a call of IloSolver::startNewSearch and the corresponding call of IloSolver::endSearch.
You can change the model only at top level (that is, not nested).

Solver buffers changes you make in a model; the buffered changes are not applied immediately. Certain member
functions check that buffer:

The member function IloSolver::solvechecks the buffer at the beginning of its search.•
The member function IloSolver::startNewSearchchecks the buffer before it begins a new search.•

The values of the enumeration IloSynchronize mode serve as parameters to such member functions as
IloSolver::startNewSearch.

IloSynchronizeAndRestart when an instance of IloSolver checks the change buffer, makes the
solver discard the current model, discard information about the current search, possibly extract the new
model including these changes (if necessary), and restart its search “from scratch.”

•

IloSynchronizeAndContinue indicates that the member function IloSolver::startNewSearch
should check the buffer for changes in the model before it begins a new search. For example, in this
mode, the member function will check for such changes in the model as adding or removing an
objective (an instance of IloObjective) or a constraint (an instance of IloConstraint). Then
the solver should synchronize those changes with its search results if possible. When this mode is in
effect, if it is not possible to take the changes into account without extracting the model again, Solver will
throw an exception, IloSolver::IloSynchronizeAndContinueNotPossible .

•

Example

The following lines highlight changes in the model, buffering, and Solver search.

 IloEnv env;
 IloModel model(env);

 // add extractable objects to model

 IloSolver solver(model);
 solver.solve();

 // modify the model (A)

 solver.startNewSearch(mygoal, mode);
 solver.next();
 solver.endSearch();

Solver buffers the changes in part (A). The buffered changes will be taken into account only at top level (not
nested).

While part (A) is going on, (that is, while you are making changes to the model), the solver (the instance of
IloSolver) is not notified about those changes. Instead, Solver silently buffers the changes that will be
checked.

See Also: IloSolver

Fields:

IloNoSynchronization

816

IloSynchronizeAndRestart

IloSynchronizeAndContinue

817

Global function IloPiecewiseLinear
public IloNumExprArg IloPiecewiseLinear(const IloNumExprArg node, const IloNumArray
point, const IloNumArray slope, IloNum a, IloNum fa)
public IloNumExprArg IloPiecewiseLinear(const IloNumExprArg node, IloNum
firstSlope, const IloNumArray point, const IloNumArray value, IloNum lastSlope)

Definition file: ilconcert/iloexpression.h

Represents a continuous or discontinuous piecewise linear function.
The function IloPiecewiseLinear creates an expression node to represent a continuous or discontinuous
piecewise linear function f of the variable x. The signatures of this overloaded function support two different ways
to specify piecewise linear functions. One approach specifies the breakpoints and slopes of the segments of the
PWL function. The other approach specifies the breakpoints and function values of the segments. Both
approaches can specify either continuous or discontinuous piecewise linear functions.

However, the user must take care with the approach that uses breakpoints and slopes to specify a discontinuous
piecewise linear function uniquely. For further explanation about unique specification of discontinuous piecewise
linear functions, see the topic Discontinuous piecewise linear functions in the IBM ILOG CPLEX User's Manual.

In the approach using breakpoints and slopes to specify a PWL function, the array point contains the n
breakpoints of the function such that point[i-1] <= point[i] for i = 1, . . . , n-1. The array slope contains the n+1
slopes of the n+1 segments of the function. The values a and fa must be coordinates of a point such that fa =
f(a).

The argument a cannot be the coordinate of a step. In other words, a must not be the point[i] if point[i]
== point[i-1] or if point[i] == point[i+1].

Example

 IloPiecewiseLinear(x, IloNumArray(env, 2, 10., 20.),
 IloNumArray(env, 3, 0.3, 1., 2.),
 0, 0);

That expression defines a piecewise linear function f having two breakpoints at x = 10 and x = 20, and three
segments; their slopes are 0.3, 1, and 2. The first segment has infinite length and ends at the point (x = 10, f(x) =
3) since f(0) = 0. The second segment starts at the point (x = 10, f(x) = 3) and ends at the point (x = 20, f(x) = 13),
where the third segment starts.

For the approach that defines a piecewise linear function by breakpoints and values, the array point also
contains the n breakpoints of the PWL function. The array value contains the corresponding n values of the
function. The argument firstSlope specifies the slope of the segment to the left of the first breakpoint; the
argument lastSlope specifies the sleop of the segment to the right of the final breakpoint.

For an example and further explanation of this approach of specification by breakpoint and value, see the topic
Discontinuous piecewise linear functions in the IBM ILOG CPLEX User's Manual.

818

Global function IlcChooseMinMinInt
public IlcInt IlcChooseMinMinInt(const IlcIntVarArray vars)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
smallest minimum from among the constrained variables in the array of constrained variables, vars. If all those
variables have been bound already, then this function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseIntIndex, IloGenerate

819

Global function IlcMax
public IlcFloatExp IlcMax(const IlcIntSetVar aSet, const IlcIntToFloatExpFunction
f, const IlcBool makeEmptySetPropagation=IlcTrue)

Definition file: ilsolver/setcst.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a floating-point expression constrained to be the maximum returned by the
function f over its domain, aSet.

See Also: IlcIntSetVar

820

Global function IlcMax
public IlcIntExp IlcMax(const IlcIntSetVar aSet, const IlcIntToIntFunction F, const
IlcBool makeEmptySetPropagation=IlcTrue)
public IlcIntExp IlcMax(const IlcIntSetVar aSet, const IlcIntToIntExpFunction F,
const IlcBool makeEmptySetPropagation=IlcTrue)
public IlcIntExp IlcMax(const IlcAnySetVar aSet, const IlcAnyToIntFunction F, const
IlcBool makeEmptySetPropagation=IlcTrue)
public IlcIntExp IlcMax(const IlcAnySetVar aSet, const IlcAnyToIntExpFunction F,
const IlcBool makeEmptySetPropagation=IlcTrue)

Definition file: ilsolver/setcst.h
Include file: <ilsolver/ilosolver.h>

These functions create and return a new constrained expression equal to the greatest of the values returned by
the function F applied to the elements assigned to the constrained set variable setVar.

The value returned by the function F can be an integer value (IlcInt) or an integer constrained expression
(IlcIntExp).

The minimum value of the expression is the greatest value returned by F when applied to the required elements
of the variable setVar. If there is no required element, the minimum value of the expression corresponds to the
least value returned by F when applied to the possible elements of setVar. When F returns an integer
expression, the maximum value of the expression is computed with the lower bounds of F(x).

The maximum value of the expression is the greatest value returned by F when applied to the possible elements
of the variable setVar. If F returns an integer expression, it corresponds to the greatest upper bound of F(x).

Because the maximum value of an empty set has no meaning, the bounds of this expression are computed only
when the set variable is surely not empty, that is, when its cardinality is greater than 0 (zero). The initial bounds
of the expression are the minimum and the maximum value returned by F when applied to the possible elements
of setVar.

See Also: IlcAnySetVar, IlcIntExp, IlcIntSetVar

821

Global function IlcMax
public IlcIntExp IlcMax(IlcInt exp1, const IlcIntExp exp2)
public IlcFloat IlcMax(const IlcFloat exp1, const IlcFloat exp2)
public IlcIntExp IlcMax(const IlcIntExp exp1, IlcInt exp2)
public IlcIntExp IlcMax(const IlcIntExp exp1, const IlcIntExp exp2)
public IlcIntExp IlcMax(const IlcIntVarArray array)
public IlcInt IlcMax(const IlcIntArray array)
public IlcInt IlcMax(const IlcInt exp1, const IlcInt exp2)
public IlcFloatExp IlcMax(const IlcFloatExp exp1, IlcFloat exp2)
public IlcFloatExp IlcMax(IlcFloat exp1, const IlcFloatExp exp2)
public IlcFloatExp IlcMax(const IlcFloatExp exp1, const IlcFloatExp exp2)
public IlcFloatExp IlcMax(const IlcFloatVarArray array)
public IlcFloat IlcMax(const IlcFloatArray array)
public IlcIntToIntStepFunction IlcMax(const IlcIntToIntStepFunction & f1, const
IlcIntToIntStepFunction & f2)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This function returns the maximum of its argument or arguments.

When its argument is an array of constrained expressions, it creates a new constrained expression equal to the
maximum of the elements in that array.

When its arguments include at least one constrained expression, it creates a new constrained expression equal
to the maximum of the arguments.

When both its arguments are numeric (that is, values of type IloInt or IloNum), it simply creates and returns a
value of that type.

See Also: IlcFloatExp, IlcFloatVarArray, IlcIntExp, IlcIntToIntStepFunction, IlcIntVarArray, IlcMin

822

Global function IlcMax
public IlcIntExp IlcMax(const IlcIntSetVar aSet, const IlcBool
makeEmptySetPropagation=IlcTrue)

Definition file: ilsolver/setcst.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a new constrained expression equal to the greatest of the integer elements that
are assigned to the constrained set variable setVar.

The minimum value of the expression is the largest required integer element of the variable setVar, or, if there
is none, the least possible element.

The maximum value of the expression is the largest possible integer element of the variable setVar.

Because the maximum value of an empty set has no meaning, the bounds of this expression are computed only
when the set variable is surely not empty, that is, when its cardinality is greater than 0 (zero). The initial bounds
of the expression are the minimum and the maximum possible elements.

See Also: IlcIntExp, IlcIntSetVar

823

Global function IloFloor
public IloEvaluator< IloObject > IloFloor(IloEvaluator< IloObject > eval)

Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

This function creates a composite IloEvaluator<IloObject> instance. This evaluator returns the largest
integer value not greater than the float value returned by the evaluator given as argument.

For more information, see Selectors.

824

Global function IloFloor
public IloNum IloFloor(IloNum val)

Definition file: ilconcert/iloenv.h

Returns the largest integer value not greater than the argument.
This function computes the largest integer value not greater than val.

Examples:

 IloFloor(IloInfinity) is IloInfinity.
 IloFloor(-IloInfinity) is -IloInfinity.
 IloFloor(0) is 0.
 IloFloor(0.4) is 0.
 IloFloor(-0.4) is -1.
 IloFloor(0.5) is 0.
 IloFloor(-0.5) is -1.
 IloFloor(0.6) is 0.
 IloFloor(-0.6) is -1.

825

Global function IloBFSEvaluator
public IloNodeEvaluator IloBFSEvaluator(const IloEnv env, const IloNumVar var,
IloNum step=0)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a node evaluator that implements a best first search in a Concert Technology
model.

Nodes are evaluated according to the variable var. As long as the minimum of var is no greater than the
minimum of the evaluation of each open nodes + step, the search continues as a depth-first search. If the
opposite is true, the goal manager postpones the evaluation of the current node and jumps to the best open
node.

This function returns an instance of IloNodeEvaluator for use with the member functions
IloSolver::startNewSearch and IloSolver::solve. An instance of IloSolver extracts the node
evaluator that it returns as an instance of IlcNodeEvaluator for use during a Solver search.

For more information, see IloNullIntersect.

See Also: IlcNodeEvaluator, IloNodeEvaluator, IloNullIntersect

826

Global function IlcChooseFirstUnboundAnySet
public IlcInt IlcChooseFirstUnboundAnySet(const IlcAnySetVarArray vars)

Definition file: ilsolver/ilcset.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the first unbound constrained variable that it
encounters in the array of constrained variables, vars. If all those variables have been bound already, then this
function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseAnySetIndex, IloGenerate

827

Global function IloSwap
public IloNHood IloSwap(IloEnv env, IloNumVarArray vars, const char * name=0)

Definition file: ilsolver/iimnhood.h
Include file: <ilsolver/iimls.h>

This function returns a neighborhood that can be used to swap variable values in a local search problem.

The function defines a “swapping” neighborhood over the variables specified in vars. Specifically, for each pair
of indices a, b drawn from [0, vars.getSize()), such that a < b, a swap of the values of vars[a] and
vars[b] is present in the neighborhood.The optional argument name, if supplied, becomes the name of the
returned neighborhood.

See Also: IloNHood, IloNHoodI

828

Global function IlcImpactInformation
public IlcConstraintAggregator IlcImpactInformation(IloSolver solver,
IloIntVarArray branchVarArray, IloIntVarArray observedVarArray=0)

Definition file: ilsolver/ilosolverhandle.h
Include file: <ilsolver/ilosolver.h>

This aggregator maintains impact information on the variables in array x when they are instantiated with the
following goals:

 IlcGoal IlcSetValue(IlcIntvar x, IlcInt v);
 IlcGoal IlcRemoveValue(IlcIntVar x, IlcInt v);

For more information on impacts, see "Using Impacts during Search" in the IBM ILOG Solver User's Manual.

See Also: IlcSetValue, IlcRemoveValue

829

Global function IloOrGoal
public IloGoal IloOrGoal(const IloEnv env, const IloGoal g1, const IloGoal g2,
IloAny label=0)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a goal. This goal represents the disjunction (that is, logical OR) between its
parameters, g1 and g2. The optional argument label is a name for the goal (that is, a label for the choice point).
If you do not use a label, you can replace the code IloOrGoal(env, g1, g2) by g1 || g2.

If you would like to represent the disjunction of two constraints (rather than two goals), then you should consider
an instance of the class IloOr.

When it takes an instance of the class IloEnv as a parameter, it returns an instance of IloGoal for use with
the member functions IloSolver::startNewSearch and IloSolver::solve. An instance of IloSolver
extracts the goal that it returns as an instance of IlcGoal for use during a Solver search.

See Also: IloGoal, IlcOr

830

Global function IloMaximizeVar
public IloSearchSelector IloMaximizeVar(const IloEnv env, const IloNumVar var,
IloNum step=0)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a search selector to act as a filter during the search for a solution in a Concert
Technology model.

The search selector that this function creates and returns does several things:

It stores the leaf of the search tree corresponding to the optimal value of the variable var and then
reactivates this variable after the complete exploration of the search tree.

•

It manages the lower bound on the objective variable. As soon as a solution of value d is found, the
constraint var >= d + step is added to the model for the remainder of the search.

•

Open nodes are evaluated. The evaluation of an open node is equal to the current maximum of the
variable var when the node is created. When the search requires an open node, it checks whether the
current lower bound on the objective is greater than the evaluation of the node. If so, the node is safely
discarded.

•

This function returns an instance of IloSearchSelector for use with the member functions
IloSolver::startNewSearch and IloSolver::solve. An instance of IloSolver extracts the search
selector that it returns as an instance of IlcSearchSelector for use during a Solver search.

See Also: IloSearchSelector

831

Global function IloGenerateBounds
public IloGoal IloGenerateBounds(const IloEnv env, const IloNumVar var, IloNum
precision)
public IloGoal IloGenerateBounds(const IloEnv env, const IloNumVarArray vars,
IloNum precision)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a goal. The goal efficiently reduces the domain of the floating-point variable
var (or all the domains of all the floating-point variables in the array vars) by propagating any constraints on
var more than usual. It checks whether the boundaries of the domain of var are consistent with all the
constraints posted on var. If that is not the case, then it reduces an interval around var until the boundaries
become consistent up to the precision indicated by precision.

This function works on numerical variables of type Float and type Int.

Use precision to control the effect of this function: if precision is small, the new domain computed by
IloGenerateBounds will be smaller. However, the smaller precision, the longer the computation will take.

When it takes an instance of the class IloEnv as a parameter, it returns an instance of IloGoal for use with
the member functions IloSolver::startNewSearch and IloSolver::solve. An instance of IloSolver
extracts the goal that it returns as an instance of IlcGoal for use during a Solver search.

See Also: IloEnv, IloGoal, IlcGenerateBounds

832

Global function IlcCos
public IlcFloatExp IlcCos(const IlcFloatExp x)
public IlcFloat IlcCos(IlcFloat x)

Definition file: ilsolver/nlinflt.h
Include file: <ilsolver/ilosolver.h>

When its argument is a constrained floating-point expression, this function creates a constrained floating-point
expression (that is, an instance of IlcFloatExp or one of its subclasses) which is equal to the cosine of its
argument x expressed in radians. The effects of this function are reversible.

When its argument is an unconstrained numeric value (that is, a value of type IlcFloat), this function returns
the cosine of its argument.

If you want to manipulate constrained floating-point expressions in degrees, we strongly recommend that you call
the trigonometric functions on variables expressed in radians and then convert the results to degrees (rather than
declaring the constrained floating-point expressions in degrees and then converting them to radians to call the
trigonometric functions).

The reason for that advice is that the method we recommend gives more accurate results in the context of the
usual floating-point pitfalls. See the IBM ILOG Solver User's Manual for an explanation of those pitfalls.

See Also: IlcArcCos, IlcArcSin, IlcArcTan, IlcDegToRad, IlcFloatExp, IlcRadToDeg, IlcSin, IlcTan

833

Global function IlcNullIntersect
public IlcConstraint IlcNullIntersect(IlcAnySetVar a, IlcAnySetVar b)
public IlcConstraint IlcNullIntersect(IlcAnySetVar a, IlcAnySet b)
public IlcConstraint IlcNullIntersect(IlcAnySet a, IlcAnySetVar b)
public IlcConstraint IlcNullIntersect(IlcIntSetVar a, IlcIntSetVar b)
public IlcConstraint IlcNullIntersect(IlcIntSet a, IlcIntSetVar b)
public IlcConstraint IlcNullIntersect(IlcIntSetVar a, IlcIntSet b)

Definition file: ilsolver/ilcset.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a constraint. When that constraint is posted, it constrains its two arguments to
have an empty intersection in any solution.

See Also: IlcConstraint, IlcAnySetVar, IlcIntSetVar

834

Global function IlcMinDistance
public IlcConstraint IlcMinDistance(IlcIntExp x, IlcIntExp y, IlcInt k)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

The function IlcMinDistance creates and returns a constraint. When that constraint is posted, it insures that
the absolute distance between x and y will be greater than or equal to k (that is, |x - y| >= k).

IlcMinDistance(x,y,k) is more efficient than, although logically equivalent to, the code IlcAbs(x-y) >=
k.

IlcAllMinDistance is a similar function operating on all the variables in an array (rather than on two
variables).

See Also: IlcAbs, IlcAllMinDistance

835

Global function IlcTan
public IlcFloatExp IlcTan(const IlcFloatExp x)
public IlcFloat IlcTan(IlcFloat x)

Definition file: ilsolver/nlinflt.h
Include file: <ilsolver/ilosolver.h>

When its argument is a constrained floating-point expression, this function creates a constrained floating-point
expression (that is, an instance of IlcFloatExp or one of its subclasses) which is equal to the tangent of its
argument x expressed in radians. The effects of this function are reversible.

When its argument is an unconstrained numeric value (that is, a value of type IlcFloat), it returns the tangent
of its argument expressed in radians.

If you want to manipulate constrained floating-point expressions in degrees, we strongly recommend that you call
the trigonometric functions on variables expressed in radians and then convert the results to degrees (rather than
declaring the constrained floating-point expressions in degrees and then converting them to radians to call the
trigonometric functions).

The reason for that advice is that the method we recommend gives more accurate results in the context of the
usual floating-point pitfalls.

See Also: IlcArcCos, IlcArcSin, IlcArcTan, IlcCos, IlcDegToRad, IlcFloatExp, IlcHalfPi, IlcPi, IlcQuarterPi,
IlcRadToDeg, IlcSin, IlcThreeHalfPi, IlcTwoPi

836

Global function IloMonotonicIncreasingNumExpr
public IloNumExprArg IloMonotonicIncreasingNumExpr(IloNumExprArg node,
IloNumFunction f, IloNumFunction invf)

Definition file: ilconcert/iloexpression.h

For constraint programming: creates a new constrained expression equal to f(x).
This function creates a new constrained expression equal to f(x). The arguments f and invf must be pointers
to functions of type IlcFloatFunction. Those two functions must be inverses of one another, that is,

invf(f(x)) == x and f(invf(x)) == x for all x.

IloMonotonicIncreasingNumExpr does not verify whether f and invf are inverses of one another. It does
not verify whether they are monotonically increasing either.

837

Global function IlcMTBFSEvaluator
public IlcNodeEvaluator IlcMTBFSEvaluator(IloSolver solver, IlcIntVar v, IlcInt
step=1)
public IlcNodeEvaluator IlcMTBFSEvaluator(IloSolver solver, IlcFloatVar v, IlcFloat
step=1.0)

Definition file: ilsolver/search.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a node evaluator that implements a best first search for a multithreaded search.

Nodes are evaluated according to the variable v. As long as the minimum of v is no greater than the minimum of
the evaluation of each open node + s, the search continues as a depth first search. If the opposite is true, the
solver postpones the evaluation of the current node and jumps to the best open node.

If a variable v appears in more than one agent (that is, more than one worker), then every copy of the variable v
must have the same name.

See Also: IlcFloatVarRef, IlcIntVarRef, IlcMTNodeEvaluatorI

838

Global function IloIfThenElse
public IloPredicate< IloObject > IloIfThenElse(IloPredicate< IloObject > pred,
IloPredicate< IloObject > pred1, IloPredicate< IloObject > pred2)

Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

Creates a conditional predicate.
This function returns a composite predicate which invokes the predicate pred1 when the predicate pred is true
and which invokes the predicate pred2 otherwise.

For more information, see Selectors.

839

Global function IloIfThenElse
public IloEvaluator< IloObject > IloIfThenElse(IloPredicate< IloObject > pred,
IloEvaluator< IloObject > eval1, IloEvaluator< IloObject > eval2)

Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

Creates a conditional evaluator.
This function returns a composite evaluator whose evaluation is equal to the evaluation of eval1 in the case
where the predicate pred is true on the evaluated instance and returns the evaluation of eval2 otherwise.

For more information, see Selectors.

840

Global function IloEqMax
public IloConstraint IloEqMax(const IloEnv, const IloIntSetVar var1, const
IloIntVar var2, const IloIntToIntFunction f)
public IloConstraint IloEqMax(const IloEnv, const IloIntSetVar var1, const
IloIntVar var2, const IloIntToIntVarFunction f)

Definition file: ilconcert/iloset.h

For IBM® ILOG® Solver: a constraint forcing a variable to the maximum of returned values.
This function creates and returns a constraint (an instance of IloConstraint) for use in a model. The constraint
forces var2 to the maximum of the values returned by the function f when it is applied to the variable var1.

In order for the constraint to take effect, you must add it to a model with the template IloAdd or the member
function IloModel::add and extract the model for an algorithm with the member function IloAlgorithm::extract.

841

Global function IloStoreSolution
public IlcGoal IloStoreSolution(IloSolver solver, IloSolution solution)
public IloGoal IloStoreSolution(IloEnv env, IloSolution solution)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function returns a goal which stores solution, just as if solution.store(solver) had been called.
This goal always succeeds.

For more information, see IloSolution.

See Also: IloSolution, IloRestoreSolution, IloStoreBestSolution, IloUpdateBestSolution

842

Global function IlcComputeMin
public IlcFloat IlcComputeMin(IlcFloat value)

Definition file: ilsolver/fltexp.h
Include file: <ilsolver/ilosolver.h>

The function returns 0 (zero) when its argument is 0 (zero). When its argument is non-zero, it returns a value of
type IlcFloat which is less than its argument.

In order to avoid errors due to rounding, Solver uses the technique of outward rounding when working on
intervals. During constraint propagation, when new bounds are computed for the domain of a constrained
floating-point variable, the newly computed interval is slightly expanded: its lower bound is decreased a little bit,
whereas its upper bound is increased a little bit. This practice avoids making intervals smaller than what they
would be with exact computation.

The implementation of this technique conforms to the IEEE 754 standard. In this way, Solver provides for
consistent and more nearly accurate results in basic arithmetic operations and thus avoids some of the
drawbacks of floating-point arithmetic.

Solver uses the function IlcComputeMin when it is enlarging an interval of floating-point values by slightly
decreasing the lower bound of the interval.

See Also: IlcComputeMax, IlcFloat, IlcFloatMax, IlcFloatMin

843

Global function IloChooseMinMaxInt
public IlcInt IloChooseMinMaxInt(const IlcIntVarArray vars)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
smallest maximum from among the constrained variables in the array of constrained variables, vars. If all those
variables have been bound already, then this function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseIntIndex, IloGenerate

844

Global function IloSum
public IloNumExprArg IloSum(const IloNumExprArray exprs)
public IloIntExprArg IloSum(const IloIntExprArray exprs)
public IloNumExprArg IloSum(const IloNumVarArray exprs)
public IloIntExprArg IloSum(const IloIntVarArray exprs)
public IloNum IloSum(const IloNumArray values)
public IloInt IloSum(const IloIntArray values)

Definition file: ilconcert/iloexpression.h

Returns a numeric value representing the sum of numeric values.
These functions return a numeric value representing the sum of numeric values in the array vals, or an instance
of IloNumExprArg, the internal building block of an expression, representing the sum of the variables in the
arrays exprs or values.

845

Global function IloAbstraction
public IloConstraint IloAbstraction(const IloEnv env, const IloIntVarArray y, const
IloIntVarArray x, const IloIntArray values, IloInt abstractValue)
public IloConstraint IloAbstraction(const IloEnv env, const IloAnyVarArray y, const
IloAnyVarArray x, const IloAnyArray values, IloAny abstractValue)

Definition file: ilconcert/ilomodel.h

For constraint programming: returns a constraint that abstracts the values of one array into the abstract value of
another array.
This function returns a constraint that abstracts the values of the elements of one array of constrained variables
(called x) in a model into the abstract value of another array of constrained variables (called y). In other words,
for each element x[i], there is a variable y[i] corresponding to the abstraction of x[i] with respect to an
array of numeric values. That is,

x[i] = v with v in values if and only if y[i] = v;

x[i] = v with v not in values if and only if y[i] = abstractValue.

This constraint maintains a many-to-one mapping that makes it possible to define constraints that impinge only
on a particular set of values from the domains of constrained variables. The abstract value (specified by
abstractValue) must not be in the domain of x[i].

Adding a Constraint to a Model, Extracting a Model for an Algorithm

In order for the constraint returned by IloAbstraction to take effect, you must add it to a model with the
template IloAdd or the member function IloModel::add and extract the model for an algorithm with the
member function IloAlgorithm::extract.

Exceptions

If the arrays x and y are not the same size, this function throws the exception
IloAbstraction::InvalidArraysException.

Example

For simplicity, let's assume that our array x consists of three elements with the domains {3}, {4}, and {5}. We will
also assume that our abstract value is 7, and the values we are interested in are {4, 8, 12, 16}. Then
IloAbstraction produces these elements in the array y:

846

Global function IlcChooseFirstUnboundBool
public IlcInt IlcChooseFirstUnboundBool(const IlcBoolVarArray vars)

Definition file: ilsolver/numi.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the first unbound constrained variable that it
encounters in the array of constrained variables, vars. If all those variables have been bound already, then this
function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IloGenerate

847

Global function IlcChooseMaxMaxInt
public IlcInt IlcChooseMaxMaxInt(const IlcIntVarArray vars)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
greatest maximum from among the constrained variables in the array of constrained variables, vars. If all those
variables have been bound already, then this function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseIntIndex, IloGenerate

848

Global function IlcLinearCtAggregator
public IlcConstraintAggregator IlcLinearCtAggregator(IloSolver solver)

Definition file: ilsolver/ilosolverhandle.h
Include file: <ilsolver/ilosolver.h>

This aggregator groups linear constraints over integer variables whose bounds are 0 and 1 and propagates faster
on the grouped linear constraints.

849

Global function IloRestartGoal
public IloGoal IloRestartGoal(IloEnv env, IloGoal g, IlcInt failLimit, IlcFloat
factor=1.0)

Definition file: ilsolver/ilosolverhandle.h
Include file: <ilsolver/ilosolver.h>

The goal returned by this function performs restart on goal g. This goal creates a choice point where the left
branch calls g with a fail limit of failLimit and then calls itself on the right branch with failLimit =
failLimit * factor (with factor remaining unchanged). In other words, it runs g with a maximum number
of fails equal to failLimit and then it runs it again with failLimit * factor as the new maximum number
of fails and so on. For an example of how to use this goal, see "Using Impacts during Search" in the IBM ILOG
Solver User's Manual.

See Also: IlcRestartGoal

850

Global function IloFirstSolution
public IloSearchSelector IloFirstSolution(const IloEnv env, IloInt n=1)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates a search selector that selects the first n solutions of a search tree.

When this function takes an instance of the class IloEnv as a parameter, it returns an instance of
IloSearchSelector for use with the member functions IloSolver::startNewSearch and
IloSolver::solve. An instance of IloSolver extracts the selector that it returns as an instance of
IlcSearchSelector for use during a Solver search.

See Also: IlcSearchSelector, IloSearchSelector

851

Global function IlcTableConstraint
public IlcConstraint IlcTableConstraint(IlcIntVarArray vars, IlcIntPredicate
predicate)
public IlcConstraint IlcTableConstraint(IlcAnyVarArray vars, IlcAnyPredicate
predicate)
public IlcConstraint IlcTableConstraint(IlcAnyVarArray vars, IlcAnyTupleSet set,
IlcBool compatible)
public IlcConstraint IlcTableConstraint(IlcAnyVar y, IlcConstAnyArray a, IlcIntVar
x)
public IlcConstraint IlcTableConstraint(IlcFloatVar y, IlcConstFloatArray a,
IlcIntVar x)
public IlcConstraint IlcTableConstraint(IlcIntVarArray vars, IlcIntTupleSet set,
IlcBool compatible)
public IlcConstraint IlcTableConstraint(IlcIntVar y, IlcConstIntArray a, IlcIntVar
x)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This function can be used to define simple constraints that are not predefined in Solver for use during a Solver
search, for example, inside a goal or constraint. (For similar functionality to use in an IBM® ILOG® Concert
Technology model, see IloTableConstraint.) This function creates and returns a constraint. That constraint
is defined

for all the constrained variables in the array vars;•
or for the constrained variables x and y.•

The semantics of that generic constraint can be indicated in either one of several ways:

by a predicate; in that case, the argument predicate, of course, indicates that predicate;•
by the values that satisfy the constraint; in that case, the argument set indicates the combinations of
values that satisfy the constraint, and the argument compatible must be IlcTrue;

•

by the values that do not satisfy the constraint; in that case, the argument set indicates the
unsatisfactory combinations of values, and the argument compatible must be IlcFalse;

•

by making the constrained variable y equal to the element of the array a at the index indicated by x. In
other words, y=a[x];. This kind of constraint is sometimes known as an element constraint.

•

The order of the constrained variables in the array vars is important because the same order is respected in the
predicate or the set. That is, IlcTableConstraint passes an array of values to the member function
isTrue for a predicate or to the member function isIn for a set, where the first such value is a value of
vars[0], the second is a value of vars[1], and in general, the ith value is a value of the constrained variable
vars[i].

This function will throw an exception (an instance of IloSolver::SolverErrorException) if any of the
following conditions occur:

the function is called with a predicate as an argument but the size of the array of constrained
variables is greater than three;

•

the size of vars is different from the size of the set.•

This function reduces domains efficiently, but it may take some time to do so. The time it needs for domain
reduction depends on the size of the domains of the constrained variables in vars.

Programming Hint

Solver does not copy the array a when a is an instance of IlcConstAnyArray, IlcConstFloatArray, or
IlcConstIntArray. When a is an instance of one of those constant array classes, then Solver will share the
array among constraints instead of copying it. In fact, if you want to build a table constraint of the form y=a[x],
we strongly recommend that you should use only the function that takes an instance of IlcConstFloatArray
or IlcConstIntArray as an argument. In that spirit, you can build an instance of IlcConstIntArray from

852

an instance of IlcIntArray, or an instance of IlcConstFloatArray from an instance of IlcFloatArray.

Examples:

The following code defines a constraint of arity four such that only these combinations of values are allowed: (0,
1, 1, 2), (1, 0, 2, 3), and (0, 0, 2, 1).

 IlcIntTupleSet set(s,4);
 set.add(IlcIntArray(s,4,0,1,1,2));
 set.add(IlcIntArray(s,4,1,0,2,3));
 set.add(IlcIntArray(s,4,0,0,2,1));
 set.close();

 IlcIntVar x(s,0,1),y(s,0,1),z(s,0,3),t(s,0,2);
 IlcIntVarArray vars(s,4,x,y,z,t);

Inside a goal or constraint now, you can post that constraint by adding it to an instance of IloSolver, like this:

 s.add(IlcTableConstraint(vars,set,IlcTrue));

The following code defines a constraint of arity three. It uses a predicate that is true if the three variables are
pairwise different or the sum of the first two constrained variables is equal to the third variable.

 IlcBool IlcIntPredicateI::isTrue(IlcIntArray val) {
 return((val[0] != val[1] && val[1] != val[2] && val[0] != val[2])
 || (val[0] + val[1] == val[2]));
 }

 IlcIntVar x(s, 0, 3), y(s, 0, 3), z(s, 0, 3);
 IlcIntVarArray vars(s, 3, x, y, z);

Inside a goal or constraint now, you can post this constraint by adding it to an instance of IloSolver, like this:

 s.add(IlcTableConstraint(vars, Predicate(s));

See Also: ILCANYPREDICATE0, IlcAnyTupleSet, IlcConstFloatArray, IlcConstIntArray, IlcConstraint,
ILCINTPREDICATE0, IlcIntPredicate, IlcIntTupleSet, IloTableConstraint

853

Global function IloRestoreSolution
public IlcGoal IloRestoreSolution(IloSolver solver, IloSolution solution)
public IloGoal IloRestoreSolution(IloEnv env, IloSolution solution)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function returns a goal to the specified solver that restores solution, just as if
solution.restore(solver) had been called in search mode. If the restoration is legal, according to the
constraints of the model, the goal succeeds. Otherwise it fails.

For more information, see IloSolution.

See Also: IloSolution, IloStoreBestSolution, IloStoreSolution, IloUpdateBestSolution

854

Global function IlcSquare
public IlcIntExp IlcSquare(const IlcIntExp exp)
public IlcInt IlcSquare(IlcInt i)
public IlcFloatExp IlcSquare(const IlcFloatExp exp)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

When its argument is a constrained expression, this function creates a new constrained expression equal to the
square of its argument exp. This new expression is logically equivalent to exp*exp.

When its argument is an unconstrained numeric value (that is, a value of type IlcInt), this function returns the
square of its argument.

See Also: IlcExponent, IlcFloatExp, IlcIntExp, IlcPower

855

Global function operator!
public IlcConstraint operator!(const IlcConstraint ct)

Definition file: ilsolver/numi.h
Include file: <ilsolver/ilosolver.h>

This operator creates and returns a constraint: the negation of its argument, a constraint.

When you create a constraint, it has no effect until you post it.

See Also: IlcConstraint, operator==, operator<=, operator>=

856

Global function operator!
public IloConstraint operator!(const IloConstraint constraint)

Definition file: ilconcert/ilomodel.h

Overloaded C++ operator for negation.
This overloaded C++ operator returns a constraint that is the negation of its argument. In order to be taken into
account, this constraint must be added to a model and extracted by an algorithm, such as IloCplex or
IloSolver.

857

Global function operator!
public IloPredicate< IloObject > operator!(IloPredicate< IloObject > pred)

Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

Creates a predicate by negation.
This operator creates a new IloPredicate<IloObject> instance from a single
IloPredicate<IloObject> instance. The semantics of the new instance is a logical NOT semantics of the
pred. That is, the new predicate will return IloTrue for a particular object if and only if pred returns IloFalse
for that object.

For more information, see Selectors.

858

Global function IlcNull
public IlcConstraint IlcNull(const IlcFloatExp x)

Definition file: ilsolver/linfloat.h
Include file: <ilsolver/ilosolver.h>

This function is a constraint that forces a constrained floating-point expression to be included in the interval
[-IlcFloatMin, IlcFloatMin]. It is equivalent to -IlcFloatMin <= x <= IlcFloatMin.

This constraint should be used instead of a comparison to 0 (zero). Thus the statement

 s.add(IlcNull(x)); // Good Practice

is better than

 s.add(x==0.); // Bad Practice

The statement we recommend gives more accurate results in the context of the usual floating-point pitfalls.

See Also: IlcConstraint, IlcFloatExp

859

Global function IlcLocalImpactVarEvaluator
public IloEvaluator< IlcIntVar > IlcLocalImpactVarEvaluator(IloEnv env, IloInt
depth)
public IloEvaluator< IlcIntVar > IlcLocalImpactVarEvaluator(IloSolver solver,
IloInt depth)

Definition file: ilsolver/custgoal.h
Include file: <ilsolver/ilosolver.h>

This function returns an instance of the evaluator IloEvaluator<IlcIntVar>. The evaluation returns the
result of the function solver.getLocalImpact(x, depth), where x is the evaluated variable and depth is
given in the context.

860

Global function IloAdd
public X IloAdd(IloModel & mdl, X x)

Definition file: ilconcert/ilomodel.h

Template to add elements to a model.
This C++ template helps when you want to add elements to a model. In those synopses, X represents a class, x
is an instance of the class X. The class X must be IloExtractable, IloExtractableArray, or one of their
subclasses.

If model is an instance of IloModel, derived from IloExtractable, then x will be added to the top level of
that model.

As an alternative to this way of adding extractable objects to a model, you may also use IloModel::add.

This template preserves the original type of its argument x when it returns x. This feature of the template may be
useful, for example, in cases like this:

 IloRange rng = IloAdd(model, 3 * x + y == 17);

For a comparison of these two ways of adding extractable objects to a model, see Adding Extractable Objects in
the documentation of IloExtractable.

See Also: IloAnd, IloExtractable, IloExtractableArray, IloModel, IloOr

861

Global function IloOrLimit
public IloSearchLimit IloOrLimit(const IloEnv env, IloInt numOfChoicePts)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a search limit. Within this limit, the solver explores the search tree for only the
number of choice points indicated by numOfChoicePts. After that limit has been reached, all remaining
unexplored open nodes in the search tree are discarded.

When this function takes an instance of the class IloEnv as a parameter, it returns an instance of
IloSearchLimit for use with the member functions IloSolver::startNewSearch and
IloSolver::solve. An instance of IloSolver extracts the search limit that it returns as an instance of
IlcSearchLimit for use during a Solver search.

See Also: IloLimitSearch, IloSearchLimit, IlcSearchLimit

862

Global function IlcReductionInformation
public IlcConstraintAggregator IlcReductionInformation(IloSolver solver)

Definition file: ilsolver/ilosolverhandle.h
Include file: <ilsolver/ilosolver.h>

This aggregator maintains information about the reduction rate of the domains of variables. It is required to use
the functions:

 IloInt IloSolver::getReduction(const IlcIntVar x) const;
 IloInt IloSolver::getReduction(const IloIntVar x) const;
 IloNum IloSolver::getReduction(const IlcFloatVar x) const;
 IloNum IloSolver::getReduction(const IloNumVar x) const;

See Also: IloSolver::getReduction

863

Global function IloTimeLimit
public IloSearchLimit IloTimeLimit(const IloEnv env, IloNum time)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a search limit. With this limit, the solver explores the search tree for only the
amount of time indicated by time seconds. After that time limit has been reached, all remaining open nodes are
discarded.

When this function takes an instance of the class IloEnv as a parameter, it returns an instance of
IloSearchLimit for use with the member functions IloSolver::startNewSearch and
IloSolver::solve. An instance of IloSolver extracts the search limit that it returns as an instance of
IlcSearchLimit for use during a Solver search.

See Also: IlcSearchLimit, IloSearchLimit

864

Global function IlcChooseFirstUnboundInt
public IlcInt IlcChooseFirstUnboundInt(const IlcIntVarArray vars)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the first unbound constrained variable that it
encounters in the array of constrained variables, vars. If all those variables have been bound already, then this
function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseIntIndex, IloGenerate

865

Global function IloSource
public IloPoolOperator IloSource(IloEnv env, IloGoal goal, IloSolution prototype,
const char * name=0)

Definition file: ilsolver/iimoperator.h
Include file: <ilsolver/iim.h>

Creates a solution source from a goal and a solution prototype.
This function creates an operator which executes the supplied goal goal and will store solutions according to the
prototype prototype passed. It is most useful for creating a set of solutions at the head of a processor chain
where no input solutions are present to be used as prototypes. name, if provided, becomes the name of the new
operator.

IloPoolOperator op = IloSource(goal.getEnv(), goal, prototype) is short for:

 IloPoolOperator op(goal);
 op.setPrototype(prototype);

Note

To produce a variety of solutions, goal should be non-deterministic, either by nature or by intentionally
perturbing using, for example, IloRandomPerturbation.

See Also: IloPoolOperator::IloPoolOperator, IloPoolOperator::setPrototype, IloRandomPerturbation

866

Global function IlcChooseMinRegretMin
public IlcInt IlcChooseMinRegretMin(const IlcIntVarArray vars)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
minimal difference between the minimal possible value and the next minimal possible value from among the
constrained variables in the array of constrained variables, vars. If all those variables have been bound already,
then this function returns -1.

This function is based on the principle of regret. Regret is the difference between what would have been the best
possible decision in a scenario and what was the actual decision.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseIntIndex, IloGenerate

867

Global function IloBestSolutionComparator
public IloComparator< IloSolution > IloBestSolutionComparator(IloEnv env)

Definition file: ilsolver/iimpool.h
Include file: <ilsolver/iim.h>

A solution comparator that prefers higher quality solutions.
This function creates a solution comparator on the environment env that prefers higher quality solutions. This
comparator makes use of IloSolution::isBetterThan in order to make its comparison.

See Also: IloWorstSolutionComparator

868

Global function IloEqUnion
public IloConstraint IloEqUnion(const IloEnv env, const IloIntSetVar var1, const
IloIntSetVar var2, const IloIntToIntFunction f)
public IloConstraint IloEqUnion(const IloEnv env, const IloIntSetVar var1, const
IloIntSetVar var2, const IloIntToIntVarFunction f)
public IloConstraint IloEqUnion(const IloEnv env, const IloIntSetVar var1, const
IloIntSetVar var2, const IloIntToIntSetVarFunction f)

Definition file: ilconcert/iloset.h

For IBM® ILOG® Solver: a constraint forcing the union of two sets to be the elements of a third set.
This function creates and returns a constraint (an instance of IloConstraint) for use in a model. The constraint
forces the union of the values returned by the function f when it operates on var1 to be precisely the elements
of the set var2.

In order for the constraint to take effect, you must add it to a model with the template IloAdd or the member
function IloModel::add and extract the model for an algorithm with the member function IloAlgorithm::extract.

869

Global function IloEqUnion
public IloConstraint IloEqUnion(const IloEnv env, const IloAnySetVar var1, const
IloAnySetVar var2, const IloAnySetVar var3)
public IloConstraint IloEqUnion(const IloEnv env, const IloAnySetVar var, const
IloAnySetVarArray vars)
public IloConstraint IloEqUnion(const IloEnv env, const IloIntSetVar var1, const
IloIntSetVar var2, const IloIntSetVar var3)
public IloConstraint IloEqUnion(const IloEnv, const IloIntSetVar var, const
IloIntSetVarArray vars)

Definition file: ilconcert/iloanyset.h

For IBM® ILOG® Solver : a constraint forcing the union of two sets to be the elements of a third set.
This function creates and returns a constraint (an instance of IloConstraint) for use in a model. When its
arguments are two sets of variables, such as var2 and var3, the constraint forces the union of the sets var2
and var3 to be precisely the elements of the set unionSet. Likewise, when its arguments include an array of
set variables, such as vars, the constraint forces the union of the elements of that array to be unionSet.

In order for the constraint to take effect, you must add it to a model with the template IloAdd or the member
function IloModel::add and extract the model for an algorithm with the member function
IloAlgorithm::extract.

870

Global function IlcPiecewiseLinear
public IlcFloatExp IlcPiecewiseLinear(IlcFloatVar x, IlcFloatArray point,
IlcFloatArray slope, IlcFloat a, IlcFloat fa)

Definition file: ilsolver/ilcsegfn.h
Include file: <ilsolver/ilosolver.h>

The function IlcPiecewiseLinear creates a floating point expression to represent a continuous or
discontinuous piecewise linear function f of the variable x. The array point contains the n breakpoints of the
function such that point [i-1] ≤ point [i] for i = 1, . . ., n-1. The array slope contains the n+1 slopes of the n+1
segments of the function. The values a and fa must be coordinates of a point such that fa = f(a).

When point[i-1] = point[i], there is a step at the x-coordinate point [i-1], and its height is slope [i-1].

When appearing in a constraint posted to Solver, this expression always has the smallest possible interval with
respect to the interval of x and conversely.

Example

The expression

 IlcPiecewiseLinear(x, IlcFloatArray(solver, 2, 10., 20.),
 IlcFloatArray(solver, 3, 0.3, 1., 2.),
 0, 0);

defines a piecewise linear function f having two breakpoints at x = 10 and x = 20, and three segments with slopes
0.3, 1, and 2. The first segment has infinite length and ends at the point x = 10, f(x) = 3 since f(0) = 0. The
second segment starts at the point x = 10, f(x) = 3 and ends at the point x = 20, f(x) = 13 where the third segment
starts.

871

Global function IloDDSEvaluator
public IloNodeEvaluator IloDDSEvaluator(const IloEnv env, IloInt step=4, IloInt
width=2, IloInt maxDiscrepancy=IloIntMax)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a node evaluator (an instance of IloNodeEvaluator) that implements a
variation of Slice-Based Search in a Concert Technology model. (The function IloSBSEvaluator returns a
node evaluator that implements Slice-Based Search.)

In this variation, discrepancies are confined to the top of the search tree. In the first pass, the goal manager
explores nodes with all discrepancies (except width discrepancies) appears with a depth less than step. In the
second pass, it does the same with a depth less than 2*step, and so on. This variation of slice-based search is
more efficient if the search heuristic is very good (that is, if it makes mistakes only in the top of the search tree).

This function returns an instance of IloNodeEvaluator for use with the member functions
IloSolver::startNewSearch and IloSolver::solve. An instance of IloSolver extracts the node
evaluator that it returns as an instance of IlcNodeEvaluator for use during a Solver search.

See Also: IloApply, IlcNodeEvaluator, IloNodeEvaluator, IloSBSEvaluator

872

Global function IloCeil
public IloEvaluator< IloObject > IloCeil(IloEvaluator< IloObject > eval)

Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

This function creates a composite IloEvaluator<IloObject> instance. This evaluator returns the least
integer value not less than the float value returned by the evaluator given as argument.

For more information, see Selectors.

873

Global function IloCeil
public IloNum IloCeil(IloNum val)

Definition file: ilconcert/iloenv.h

Returns the least integer value not less than its argument.
This function computes the least integer value not less than val.

Examples:

 IloCeil(IloInfinity) is IloInfinity.
 IloCeil(-IloInfinity) is -IloInfinity.
 IloCeil(0) is 0.
 IloCeil(0.4) is 1.
 IloCeil(-0.4) is 0.
 IloCeil(0.5) is 1.
 IloCeil(-0.5) is 0.
 IloCeil(0.6) is 1.
 IloCeil(-0.6) is 0.

874

Global function IloImprove
public IloMetaHeuristic IloImprove(IloEnv env, IloNum step=1e-4)

Definition file: ilsolver/iimmeta.h
Include file: <ilsolver/iimls.h>

This function takes an environment and an optional step size, and returns an object of type IloMetaHeuristic
which implements a greedy local search improvement mechanism. If the step size is not supplied, it defaults to
1e-4. When applied to a neighborhood exploration goal, the returned object rejects all movements that do not
improve the cost variable by at least step.

See Also: IloMetaHeuristic, IloScanDeltas, IloScanNHood, IloSingleMove

875

Global function IlcChooseMaxRegretMax
public IlcInt IlcChooseMaxRegretMax(const IlcIntVarArray vars)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
maximal difference between the maximal possible value and the next maximal possible value from among the
constrained variables in the array of constrained variables, vars. If all those variables have been bound already,
then this function returns -1.

This function is based on the principle of regret. Regret is the difference between what would have been the best
possible decision in a scenario and what was the actual decision.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseIntIndex, IloGenerate

876

Global function IlcSetMax
public IlcGoal IlcSetMax(const IlcIntVar var, const IlcInt val)
public IlcGoal IlcSetMax(const IlcFloatVar var, const IlcFloat val)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This function returns a goal which sets the maximum of var to be val.

See Also: IlcSetMin

877

Global function IlcEqUnion
public IlcConstraint IlcEqUnion(IlcIntSetVar unionset, IlcIntSetVar set,
IlcIntToIntFunction F)
public IlcConstraint IlcEqUnion(IlcIntSetVar unionset, IlcAnySetVar set,
IlcAnyToIntFunction F)
public IlcConstraint IlcEqUnion(IlcAnySetVar unionset, IlcIntSetVar set,
IlcIntToAnyFunction F)
public IlcConstraint IlcEqUnion(IlcAnySetVar unionset, IlcAnySetVar set,
IlcAnyToAnyFunction F)

Definition file: ilsolver/setcst.h
Include file: <ilsolver/ilosolver.h>

These functions create and return a constraint that forces the variable unionset to be equal to the union of the
values returned by the function F when applied to the elements of the constrained set variable set.

Adding These Constraints

You may add these constraints only during a Solver search; that is, inside a goal (an instance of IlcGoal) or
inside a constraint (an instance of IlcConstraint). If you are looking for similar functionality in a constraint to
add to a model, see IloEqUnion.

Example

It can be useful to constrain the values of an attribute of a computed set of objects. For example, if we have to
assign crew members to a flight, and if each crew member has an attribute that describes the language he or she
speaks, with this IlcEqUnion constraint, it is possible to post constraints on the set of languages that must be
spoken during a flight.

 enum Language {English, French, German};
 class CrewMember {
 public:
 const char* _name;
 IlcInt _language;
 CrewMember(IloSolver s, const char* name, Language lang);
 };
 //Access to the language spoken by a crew member
 IlcAnyToIntFunction languages;
 //Possible crew members
 IlcAnyArray c(s, 3);
 c[0]= new (s.getHeap()) CrewMember(s, "John", English);
 c[1]= new (s.getHeap()) CrewMember(s, "Kai", German);
 c[2]= new (s.getHeap()) CrewMember(s, "Julie", French);
 //The flight
 IlcAnySetVar crew(s, c, "NewYork-Paris");
 //The languages spoken on this flight
 IlcIntSetVar langs(s, IlcIntArray(s, 3, English, French, German));

Now that we have defined the classes and constraints, we add them during a Solver search, for example, inside
a goal or constraint.

 s.add(IlcEqUnion(langs, crew, languages));
 //At least 2 different languages spoken
 s.add(IlcCard(langs) >= 2);
 //French must be spoken
 s.add(IlcMember(French, langs));

See Also: IlcAnySetVar, IlcIntSetVar, IlcUnion, IloEqUnion

878

Global function IlcEqUnion
public IlcConstraint IlcEqUnion(IlcIntSetVar unionset, IlcIntSetVar set,
IlcIntToIntExpFunction F)
public IlcConstraint IlcEqUnion(IlcIntSetVar unionset, IlcAnySetVar set,
IlcAnyToIntExpFunction F)
public IlcConstraint IlcEqUnion(IlcAnySetVar unionset, IlcIntSetVar set,
IlcIntToAnyExpFunction F)
public IlcConstraint IlcEqUnion(IlcAnySetVar unionset, IlcAnySetVar set,
IlcAnyToAnyExpFunction F)

Definition file: ilsolver/setcst.h
Include file: <ilsolver/ilosolver.h>

These functions create and return a constraint that forces the variable unionset to be equal to the union of the
values returned by the function F when applied to the elements of the constrained set variable set. The values
returned by F are constrained expressions or variables (that is, instances of IlcIntExp, IlcIntVar,
IlcAnyExp, or IlcAnyVar).

Adding These Constraints

You may add these constraints only during a Solver search; that is, inside a goal (an instance of IlcGoal) or
inside a constraint (an instance of IlcConstraint). If you are looking for similar functionality in a constraint to
add to a model, see IloEqUnion.

Example

These IlcEqUnion constraints can be useful to express constraints on the values of a constrained attribute of a
computed set of objects. For example, if we have to connect cards to a rack, and if for each card we also have to
connect one sensor, it is possible to express constraints on the set of sensors connected to the cards in the rack.
To do so, we define the following classes.

 class Sensor {
 public:
 const char* _name;
 Sensor(IloSolver s, const char* name);
 };
 class Card {
 public:
 IlcAnyVar _sensor;
 Card(IloSolver s, IlcAnyArray sensors)
 :_sensor(s, sensors) {}
 };
 //Access to the sensor connected to a card
 IlcAnyToAnyExpFunction sensorsAccess;
 //The possible sensors
 IlcAnyArray sensors(s, 4);
 sensors[0] = new (s.getHeap()) Sensor(s, "Sensor#0");
 sensors[1] = new (s.getHeap()) Sensor(s, "Sensor#1");
 sensors[2] = new (s.getHeap()) Sensor(s, "Sensor#2");
 sensors[3] = new (s.getHeap()) Sensor(s, "Sensor#3");
 //The possible cards
 IlcAnyArray cards(s, 3);
 cards[0] = new (s.getHeap()) Card(s, sensors);
 cards[1] = new (s.getHeap()) Card(s, sensors);
 cards[2] = new (s.getHeap()) Card(s, sensors);
 //The cards connected to the rack
 IlcAnySetVar rackCards(s, cards, "Rack#1");
 //The sensors connected to the rack
 IlcAnySetVar rackSensors(s, sensors);

Now that we have defined the classes and constraints, we add them during a Solver search, for example, inside
a goal or constraint.

 s.add(IlcEqUnion(rackSensors, rackCards, sensorAccess));
 //At most 10 sensors in the rack
 s.add(IlcCard(rackSensors) <= 10);

879

 //sensor#1 in a card of the rack
 s.add(IlcMember(sensors[1], rackSensors));

Of course it is possible to compose several levels of indirection. For example, we can post constraints on the
processes assigned to the sensors which are connected to the cards that are plugged into a rack:

 s.add(IlcEqUnion(rackSensors, rackCards, sensorAccess));
 s.add(IlcEqUnion(rackProcesses, rackSensors, processAccess));

See Also: IlcAnySetVar, IlcIntSetVar, IlcUnion, IloEqUnion

880

Global function IlcEqUnion
public IlcConstraint IlcEqUnion(IlcIntSetVar unionset, IlcIntSetVar var1,
IlcIntSetVar var2)
public IlcConstraint IlcEqUnion(IlcAnySetVar unionset, IlcAnySetVar var1,
IlcAnySetVar var2, IlcFilterLevel level)
public IlcConstraint IlcEqUnion(IlcAnySetVar unionset, IlcAnySetVar var1,
IlcAnySetVar var2)
public IlcConstraint IlcEqUnion(IlcAnySetVar unionset, IlcAnySetVar var1,
IlcAnySetVar var2, IlcAnySetVar intersection)
public IlcConstraint IlcEqUnion(IlcIntSetVar unionset, IlcIntSetVar var1,
IlcIntSetVar var2, IlcFilterLevel level)
public IlcConstraint IlcEqUnion(IlcIntSetVar unionset, IlcIntSetVar var1,
IlcIntSetVar var2, IlcIntSetVar intersection)
public IlcConstraint IlcEqUnion(IlcIntSetVar unionset, IlcIntSetVarArray vars)
public IlcConstraint IlcEqUnion(IlcAnySetVar unionset, IlcAnySetVarArray vars)

Definition file: ilsolver/intset.h
Include file: <ilsolver/ilosolver.h>

These functions create and return a constraint that forces the value of unionset to be equal to the union of its
other parameters (that is, the union of the set variables var1 and var2 or the union of the set variables in the
array vars). The variable unionset and all the variables in vars must be built from the same initial array.

When you pass this function the optional parameter intersection, you enable Solver to propagate at a
stronger filter level. It takes into account the fact that the cardinality of the unionset is equal to the cardinality of
var1 plus the cardinality of var2 minus the cardinality of their intersection.

When you pass this function the optional parameter level, it computes the intersection of var1 and var2
internally and uses that information to extend the filter level during propagation. See the enumeration
IlcFilterLevel for more details about its use.

Adding These Constraints

You may add these constraints only during a Solver search; that is, inside a goal (an instance of IlcGoal) or
inside a constraint (an instance of IlcConstraint). If you are looking for similar functionality in a constraint to
add to a model, see IloEqUnion documented in the Concert Technology Reference Manual.

See Also: IlcAnySetVar, IlcAnySetVarArray, IlcConstraint, IlcFilterLevel, IlcIntSetVar, IlcIntSetVarArray, IlcUnion

881

Global function IlcEqUnion
public IlcConstraint IlcEqUnion(IlcIntSetVar unionset, IlcIntSetVar set,
IlcIntToIntSetVarFunction F)
public IlcConstraint IlcEqUnion(IlcIntSetVar unionset, IlcAnySetVar set,
IlcAnyToIntSetVarFunction F)
public IlcConstraint IlcEqUnion(IlcAnySetVar unionset, IlcIntSetVar set,
IlcIntToAnySetVarFunction F)
public IlcConstraint IlcEqUnion(IlcAnySetVar unionset, IlcAnySetVar set,
IlcAnyToAnySetVarFunction F)

Definition file: ilsolver/setcst.h
Include file: <ilsolver/ilosolver.h>

These functions create and return a constraint that forces the variable unionset to be equal to the union of the
values returned by the function F when applied to the elements of the constrained set variable set. The values
returned by F are constrained set variables (that is, instances of IlcIntSetVar or IlcAnySetVar).

Adding These Constraints

You may add these constraints only during a Solver search; that is, inside a goal (an instance of IlcGoal) or
inside a constraint (an instance of IlcConstraint). If you are looking for similar functionality in a constraint to
add to a model, see IloEqUnion.

Example

These IlcEqUnion constraints can be useful to express constraints on the values of a constrained set attribute
of a computed set of objects. For example, if we have to connect cards to a rack, and if for each card we also
have to connect a set of sensors, it is possible to express constraints on the set of sensors connected to the
cards in the rack.

 class Sensor {
 public:
 const char* _name;
 Sensor(IloSolver s, const char* name);
 };
 class Card {
 public:
 IlcAnySetVar _sensor;
 Card(IloSolver s, IlcAnyArray sensors)
 :_sensor(s, sensors) {}
 };
 //Access to the sensor connected to a card
 IlcAnyToAnySetVarFunction sensorsAccess;
 //The possible sensors
 IlcAnyArray sensors(s, 4);
 sensors[0] = new (s.getHeap()) Sensor(s, "Sensor#0");
 sensors[1] = new (s.getHeap()) Sensor(s, "Sensor#1");
 sensors[2] = new (s.getHeap()) Sensor(s, "Sensor#2");
 sensors[3] = new (s.getHeap()) Sensor(s, "Sensor#3");
 //The possible cards
 IlcAnyArray cards(s, 3);
 cards[0] = new (s.getHeap()) Card(s, sensors);
 cards[1] = new (s.getHeap()) Card(s, sensors);
 cards[2] = new (s.getHeap()) Card(s, sensors);
 //The cards connected to the rack
 IlcAnySetVar rackCards(s, cards, "Rack#1");
 //The sensors connected to the rack
 IlcAnySetVar rackSensors(s, sensors);

Now that we have defined these classes and constraints, we add them during a Solver search, for example,
inside a goal or constraint.

 s.add(IlcEqUnion(rackSensors, rackCards, sensorAccess));
 //At most 10 sensors in the rack
 s.add(IlcCard(rackSensors) <= 10);
 //sensor#1 in a card of the rack

882

 s.add(IlcMember(sensors[1], rackSensors));

Of course it is possible to compose several levels of indirection. For example, we can access the processes
assigned to the sensors which are connected to the cards that are plugged into a rack:

 s.add(IlcEqUnion(rackSensors, rackCards, sensorAccess));
 s.add(IlcEqUnion(rackProcesses, rackSensors, processAccess));

See Also: IlcAnySetVar, IlcIntSetVar, IlcUnion, IloEqUnion

883

Global function ILORTTIN
public ILORTTIN(ILOTEMPLATECLASS_2, (IloDefaultVisitorI, IloObject, IloContainer),
ILOTEMPLATECLASS_2, (IloVisitorI, IloObject, IloContainer), ILOGENTEMPLATE_2,
(class IloObject, class IloContainer))

Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

This macro allows you to define a default visitor for a given object class tx and a given container class tc.

Within the code of this macro, the function void visit(tx object) allows you to specify each visited object.

Here is an example of the actual definition of the default visitor IloVisitor<IloIntVar,IloIntVarArray>:

 ILODEFAULTVISITOR(IloIntVar,IloIntVarArray,array) {
 const IloInt size = array.getSize();
 for (IloInt i=0; i<size; ++i)
 visit(array[i]);
 }

The following default visitors are already defined in Solver:

<IloInt,IloIntArray>•
<IloNum,IloNumArray>•
<IloBool,IloBoolArray>•
<IloIntVar,IloIntVarArray>•
<IloNumVar,IloNumVarArray>•
<IloBoolVar,IloBoolVarArray>•
<IlcIntVar,IlcIntVarArray>•
<IlcFloatVar,IlcFloatVarArray>•
<IlcInt,IlcIntArray>•
<IlcFloat,IlcFloatArray>•

For more information, see Selectors.

See Also: IloBestSelector, IloVisitor, ILOVISITOR0

884

Global function IloIntersection
public IloNumToAnySetStepFunction IloIntersection(const IloNumToAnySetStepFunction
f1, const IloNumToAnySetStepFunction f2)

Definition file: ilconcert/ilosetfunc.h

creates and returns a function equal to the intersection between the functions.
This operator creates and returns a function equal to the intersection between the functions f1 and f2. The
argument functions f1 and f2 must be defined on the same interval. The resulting function is defined on the
same interval as the arguments. See also: IloNumToAnySetStepFunction.

885

Global function operator%
public IloIntExprArg operator%(IloInt x, const IloIntExprArg y)

Definition file: ilconcert/iloexpression.h

Returns an expression equal to the modulo of its arguments.
This operator returns an instance of IloIntExprArg, the internal building block of an expression, representing
the modulo of the integer value x and the expression y.

886

Global function operator%
public IloIntExprArg operator%(const IloIntExprArg x, IloInt y)

Definition file: ilconcert/iloexpression.h

Returns an expression equal to the modulo of its arguments.
This operator returns an instance of IloIntExprArg, the internal building block of an expression, representing
the modulo of the expression x and the integer value y.

887

Global function IlcComputeMax
public IlcFloat IlcComputeMax(IlcFloat value)

Definition file: ilsolver/fltexp.h
Include file: <ilsolver/ilosolver.h>

The function returns 0 (zero) when its argument is 0 (zero). When its argument is non-zero, it returns a value of
type IlcFloat which is greater than its argument.

In order to avoid errors due to rounding, Solver uses the technique of outward rounding when working on
intervals. During constraint propagation, when new bounds are computed for the domain of a constrained
floating-point variable, the newly computed interval is slightly expanded: its lower bound is decreased a little bit,
whereas its upper bound is increased a little bit. This practice avoids making intervals smaller than what they
would be with exact computation.

The implementation of this technique conforms to the IEEE 754 standard for floating-point arithmetic. In this way,
Solver provides for consistent and more nearly accurate results in basic arithmetic operations and thus avoids
some of the drawbacks of floating-point arithmetic.

Solver uses the function IlcComputeMax when it is enlarging an interval of floating-point values by slightly
increasing the upper bound of the interval.

See Also: IlcComputeMin, IlcFloat, IlcFloatMax, IlcFloatMin

888

Global function IlcAbstraction
public IlcIntVarArray IlcAbstraction(IlcIntVarArray vars, IlcIntArray values,
IlcInt abstractValue)
public IlcAnyVarArray IlcAbstraction(IlcAnyVarArray vars, IlcAnyArray values,
IlcInt abstractValue)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns an array of constrained variables for use during a Solver search. The argument
vars should be an array of constrained variables. The argument values is an array of integers or pointers. The
argument abstractValue is a value that must not belong to any of the variables in vars and must not appear
in values.

For each vars[i], Solver creates a variable corresponding to the abstraction of vars[i] with respect to
values. In other words, for every variable in vars, vars[i], Solver creates a variable w[i] such that the
domain of w[i] is equal to the set made up of the value abstractValue plus all those values vars[j] that
also belong to the array values. Then internally, Solver enforces these conditions:

vars[i] is one of the values in the array values if and only if w[i] == vars[i];•
vars[i] is not one of the values in the array values if and only if w[i] == abstractValue.•

This function makes it easy to define constraints that impinge only on a particular set of values from the domains
of constrained variables.

For a function that returns a constraint (rather than an array), see IlcEqAbstraction.

For a constraint suitable for use in a model, see IloAbstraction.

See Also: IloAbstraction, IlcBoolAbstraction, IlcEqAbstraction

889

Global function IloMinimize
public IloObjective IloMinimize(const IloEnv env, IloNum constant=0.0, const char *
name=0)
public IloObjective IloMinimize(const IloEnv env, const IloNumExprArg expr, const
char * name=0)

Definition file: ilconcert/ilolinear.h

Defines a minimization objective.
This function defines a minimization objective in a model. In other words, it simply offers a convenient way to
create an instance of IloObjective with its sense defined as Minimize. However, an instance of
IloObjective created by IloMinimize may not necessarily maintain its sense throughout the lifetime of the
instance. The optional argument name is set to 0 by default.

You may define more than one objective in a model. However, algorithms conventionally take into account only
one objective at a time.

890

Global function IlcSum
public IlcIntExp IlcSum(const IlcIntSetVar setVar, const IlcIntToIntFunction F)
public IlcIntExp IlcSum(const IlcIntSetVar setVar, const IlcIntToIntExpFunction F)
public IlcIntExp IlcSum(const IlcAnySetVar setVar, const IlcAnyToIntFunction F)
public IlcIntExp IlcSum(const IlcAnySetVar setVar, const IlcAnyToIntExpFunction F)

Definition file: ilsolver/setcst.h
Include file: <ilsolver/ilosolver.h>

These functions create and return a new constrained expression equal to the sum of the values returned by the
function F applied to the elements assigned to the constrained set variable setVar.

The value returned by the function F can be an integer value (IlcInt) or a constrained integer expression (an
instance of IlcIntExp).

The minimum value of the expression is a sum of two sums, one based on the function F applied to required
elements of setVar, and the other based on the function F applied to the possible elements of setVar. The
minimum is calculated in this way:

Likewise, the maximum value of the returned expression is a sum of two sums, one based on F applied to the
possible elements of setVar and the other sum based on F applied to required elements of setVar.

The bounds of the expression also depend on the cardinality variable of setVar.

See Also: IlcAnySetVar, IlcIntExp, IlcIntSetVar

891

Global function IlcSum
public IlcFloatExp IlcSum(const IlcIntSetVar aSet, const IlcIntToFloatExpFunction
F)

Definition file: ilsolver/setcst.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a floating-point expression constrained to be the sum of the floating-point
expressions returned by the function F over its domain, aSet.

See Also: IlcIntSetVar

892

Global function IlcSum
public IlcIntExp IlcSum(const IlcIntSetVar setVar)

Definition file: ilsolver/setcst.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a new constrained expression equal to the sum of the elements that are
assigned to the constrained set variable setVar. The set may contain positive or negative integers.

The minimum value of the expression is the sum of the required elements of the variable setVar.

The maximum value of the expression is the sum of the possible elements of the variable setVar.

The bounds of the expression also depend on the cardinality variable of setVar.

See Also: IlcIntExp, IlcIntSetVar

893

Global function IlcSum
public IlcFloatExp IlcSum(const IlcFloatVarArray vars)
public IlcIntExp IlcSum(const IlcIntVarArray array)
public IlcInt IlcSum(const IlcIntArray array)
public IlcFloat IlcSum(const IlcFloatArray array)

Definition file: ilsolver/linfloat.h
Include file: <ilsolver/ilosolver.h>

This function creates a new constrained expression equal to the sum of the constrained expressions in array,
an array of constrained values or variables that may be integer or floating-point.

When its argument is an instance of IlcIntArray or IlcFloatArray, it simply creates and returns the sum of
the elements.

When its argument is an array of constrained integer variables, then its domain is an interval. Its minimum is the
sum of the minimums of the elements of array. Its maximum is the sum of the maximums of the elements of
array.

See Also: IlcFloatExp, IlcFloatVarArray, IlcIntExp, IlcIntVarArray, IlcScalProd

894

Global function operator+
public IloMetaHeuristic operator+(IloMetaHeuristic mh1, IloMetaHeuristic mh2)

Definition file: ilsolver/iimmeta.h
Include file: <ilsolver/iimls.h>

This operator creates a combined metaheuristic. A combined meta-heuristic filters moves at least as strongly as
either mh1 or mh2 alone. In fact, a proposed move is rejected by the resulting metaheuristic if eithermh1 or mh2
would reject the move.

More specficially, for the newly created metaheuristic, all the following member functions call the corresponding
member functions on mh1 and mh2 with the same parameters: reset, start, isFeasible, test, notify,
complete.

With respect to return values, start, isFeasible and test return a true value if and only if both mh1 and mh2
return true values. complete returns a true value if and only if one or both of mh1 and mh2 return a true value.

See Also: IloMetaHeuristic, IloTest, IloStart, IloSolutionDeltaCheck

895

Global function operator+
public IlcFloatExp operator+(const IlcFloatExp exp1, IlcFloat exp2)
public IlcIntExp operator+(const IlcIntExp exp1, IlcInt exp2)
public IlcIntExp operator+(IlcInt exp1, const IlcIntExp exp2)
public IlcIntExp operator+(const IlcIntExp exp1, const IlcIntExp exp2)
public IlcFloatExp operator+(IlcFloat exp1, const IlcFloatExp exp2)
public IlcFloatExp operator+(const IlcFloatExp exp1, const IlcFloatExp exp2)
public IlcIntToIntStepFunction operator+(const IlcIntToIntStepFunction & f1, const
IlcIntToIntStepFunction & f2)

Definition file: ilsolver/linfloat.h
Include file: <ilsolver/ilosolver.h>

This arithmetic operator adds its arguments. It has been overloaded to handle constrained expressions
appropriately. The domain of the resulting expression is computed from the domains of the combined
expressions as you would expect. For example, the domain of x + y is composed of all the sums of a + b
where a ranges over the domain of x and b ranges over the domain of y.

See Also: IlcFloatExp, IlcIntExp, IlcIntToIntStepFunction

896

Global function operator+
public IloNumToNumStepFunction operator+(const IloNumToNumStepFunction f1, const
IloNumToNumStepFunction f2)

Definition file: ilconcert/ilonumfunc.h

Creates and returns a function equal the sum of its argument functions.
This operator creates and returns a function equal the sum of the functions f1 and f2. The argument functions
f1 and f2 must be defined on the same interval. The resulting function is defined on the same interval as the
arguments. See also: IloNumToNumStepFunction.

897

Global function operator+
public IloNHood operator+(IloNHood nhood1, IloNHood nhood2)

Definition file: ilsolver/iimnhood.h

This operator creates a concatenated neighborhood and is shorthand for the following code (assuming the result
is placed in nhood):

 IloEnv env = nhoods.getEnv();
 IloNHoodArray nhoods(env, 2);
 nhoods[0] = nhood1;
 nhoods[1] = nhood2;
 nhood = IloConcatenate(env, nhoods);

See Also: IloConcatenate, IloNHood

898

Global function operator+
public IloNumExprArg operator+(const IloNumExprArg x, const IloNumExprArg y)
public IloNumExprArg operator+(const IloNumExprArg x, IloNum y)
public IloNumExprArg operator+(IloNum x, const IloNumExprArg y)
public IloIntExprArg operator+(const IloIntExprArg x, const IloIntExprArg y)
public IloIntExprArg operator+(const IloIntExprArg x, IloInt y)
public IloIntExprArg operator+(IloInt x, const IloIntExprArg y)

Definition file: ilconcert/iloexpression.h

Returns an expression equal to the sum of its arguments.
This overloaded C++ operator returns an expression equal to the sum of its arguments. Its arguments may be
numeric values, numeric variables, or other expressions.

899

Global function operator+
public IloEvaluator< IloObject > operator+(IloEvaluator< IloObject > left,
IloEvaluator< IloObject > right)
public IloEvaluator< IloObject > operator+(IloEvaluator< IloObject > left, IloNum
c)
public IloEvaluator< IloObject > operator+(IloNum c, IloEvaluator< IloObject >
right)

Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

These operators create a composite IloEvaluator<IloObject> instance. The semantics of the new
evaluator are the addition of the values of the component evaluators. The first function combines two evaluators,
adding their values to generate the combined evaluation. The other two signatures add the value returned by the
evaluator with an IloNum value.

For more information, see Selectors.

900

Global function IloTest
public IloGoal IloTest(IloEnv env, IloMetaHeuristic mh)
public IloGoal IloTest(IloEnv env, IloMetaHeuristic mh, IloNeighborIdentifier nid)
public IlcGoal IloTest(IloSolver solver, IloMetaHeuristic mh, IlcNeighborIdentifier
nid)
public IlcGoal IloTest(IloSolver solver, IloMetaHeuristic mh)

Definition file: ilsolver/iimls.h
Include file: <ilsolver/iimls.h>

These functions return a goal which tests if the current variable instantiation is consistent with a metaheuristic.

If specified, nid is used to communicate the index and the delta of a neighbor supplied by goals
IloScanDeltas and IloScanNHood.

Conversely, when no delta is specified, these functions return a goal that calls mh.test(solver,
IloSolution()). If the testing method does not cause a failure and returns IloTrue, the goal succeeds.
Otherwise it fails.

See Also: IloApplyMetaHeuristic, IloMetaHeuristic, IloNotify, IloScanDeltas, IloScanNHood, IloSingleMove,
IloStart

901

Global function IloIsNAN
public int IloIsNAN(double)

Definition file: ilconcert/ilosys.h

Tests whether a double value is a NaN.
This function tests whether a double value is a NaN (Not a number).

902

Global function IloChooseMinRegretMin
public IlcInt IloChooseMinRegretMin(const IlcIntVarArray vars)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
minimal difference between the minimal possible value and the next minimal possible value from among the
constrained variables in the array of constrained variables, vars. If all those variables have been bound already,
then this function returns -1.

This function is based on the principle of regret. Regret is the difference between what would have been the best
possible decision in a scenario and what was the actual decision.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseIntIndex, IloGenerate

903

Global function IlcOr
public IlcGoal IlcOr(const IlcGoal g1, const IlcGoal g2, IlcAny label=0)
public IlcGoal IlcOr(const IlcGoal g1, const IlcGoal g2, const IlcGoal g3, IlcAny
label=0)
public IlcGoal IlcOr(const IlcGoal g1, const IlcGoal g2, const IlcGoal g3, const
IlcGoal g4, IlcAny label=0)
public IlcGoal IlcOr(const IlcGoal g1, const IlcGoal g2, const IlcGoal g3, const
IlcGoal g4, const IlcGoal g5, IlcAny label=0)

Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

A goal can be defined as a choice between other goals. The function IlcOr implements a goal as a choice
between subgoals (between two and five subgoals). When this goal is executed, the state of Solver, including the
state of the goal stack, is saved. This activity is called setting a choice point. Then all the subgoals are saved as
untried subgoals of the choice point. Then the first untried subgoal is removed from the set of untried subgoals of
the choice point and is called. If it fails, the state of Solver is restored and the next untried subgoal is called, and
so on, until either a subgoal succeeds or until no more untried subgoals remain. In the latter case, the choice
point itself fails. If the optional argument, label, is given, the choice point is labeled with it. The apparent
limitation to five subgoals can be overcome by several calls to IlcOr since it is associative.

If a goal is null (that is, if its implementation is null), it will be silently transformed into a goal that always
succeeds.

Examples:

For example, the following goal has three choices:

 ILCGOAL0(PrintOne) {
 IloSolver s = getSolver();
 s.out() << ?print one? << endl;
 return IlcOr(PrintX(s, 1), PrintX(s, 2), PrintX(s, 3)));
 }

Here is how to define a choice point with eight subgoals:

 IlcOr(IlcOr(g1, g2, g3, g4, g5),
 IlcOr(g6, g7, g8));

For more information, see the concepts Goal and Choice Point.

See Also: IlcAnd, IlcGoal

904

Global function IlcMonotonicIncreasingFloatExp
public IlcFloatExp IlcMonotonicIncreasingFloatExp(IlcFloatExp x, IlcFloatFunction
f, IlcFloatFunction invf, const char * functionName=0)

Definition file: ilsolver/nlinflt.h
Include file: <ilsolver/ilosolver.h>

This function creates a new constrained expression equal f(x). The arguments f and invf must be pointers to
functions of type IlcFloatFunction. Those two functions must be inverses of one another, that is,

invf(f(x)) == x and f(invf(x)) == x for all x.

Those two functions must also be monotonically increasing.

IlcMonotonicIncreasingFloatExp does not verify whether f and invf are inverses of one another. It
does not verify whether they are monotonically increasing either.

The effects of this function are reversible.

Examples:

Here's how to define IlcExponent and IlcLog in terms of this function:

 static IlcFloat CallFloatExponent(IlcFloat x) {
 return (x > 709) ? 1e308 : exp(x);
 }
 static IlcFloat CallFloatLog(IlcFloat x) {
 return (x <= 0) ? -1e308 : log(x);
 }
 IlcFloatExp IlcExponent(const IlcFloatExp var) {
 return IlcMonotonicIncreasingFloatExp
 (var, CallFloatExponent,CallFloatLog, ?IlcExponent?);
 }
 IlcFloatExp IlcLog(const IlcFloatExp var) {
 return IlcMonotonicIncreasingFloatExp
 (var, CallFloatLog,CallFloatExponent, ?IlcLog?);
 }

See Also: IlcExponent, IlcFloatExp, IlcFloatFunction, IlcLog, IlcMonotonicDecreasingFloatExp, IlcPower,
IlcSquare

905

Global function IlcArcTan
public IlcFloatExp IlcArcTan(const IlcFloatExp x)
public IlcFloat IlcArcTan(IlcFloat x)

Definition file: ilsolver/nlinflt.h
Include file: <ilsolver/ilosolver.h>

When its argument is a constrained floating-point expression, this function creates a constrained floating-point
expression (that is, an instance of IlcFloatExp or one of its subclasses) which is equal to the arc tangent (in
the range -Pi/2 to Pi/2) of its argument x expressed in radians. The effects of this function are reversible.

When its argument is an unconstrained numeric value (that is, a value of type IlcFloat), it returns the arc
tangent of its argument expressed in radians.

If you want to manipulate constrained floating-point expressions in degrees, we strongly recommend that you call
the trigonometric functions on variables expressed in radians and then convert the results to degrees (rather than
declaring the constrained floating-point expressions in degrees and then converting them to radians to call the
trigonometric functions).

The reason for that advice is that the method we recommend gives more accurate results in the context of the
usual floating-point pitfalls.

See Also: IlcArcCos, IlcArcSin, IlcCos, IlcDegToRad, IlcFloatExp, IlcHalfPi, IlcRadToDeg, IlcPi, IlcQuarterPi,
IlcSin, IlcTan, IlcThreeHalfPi, IlcTwoPi

906

Global function IlcChooseMinMaxFloat
public IlcInt IlcChooseMinMaxFloat(const IlcFloatVarArray vars)

Definition file: ilsolver/linfloat.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
smallest maximum from among the constrained variables in the array of constrained variables, vars. If all those
variables have been bound already, then this function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcFloatVarArray, IloGenerate

907

Global function IlcSuccessRateValueEvaluator
public IloEvaluator< IlcInt > IlcSuccessRateValueEvaluator(IloEnv env)
public IloEvaluator< IlcInt > IlcSuccessRateValueEvaluator(IloSolver solver)

Definition file: ilsolver/custgoal.h
Include file: <ilsolver/ilosolver.h>

This function returns an instance of the evaluator IloEvaluator<IlcInt>. The evaluation returns the result of
the function solver.getSuccessRate(x, a), where x is the selected variable given in context and a is the
value evaluated.

908

Global function IloCommitDelta
public IlcGoal IloCommitDelta(IloSolver solver, IloSolution solution, IloSolution
delta)
public IloGoal IloCommitDelta(IloEnv env, IloSolution solution, IloSolution delta)

Definition file: ilsolver/iimls.h
Include file: <ilsolver/iimls.h>

This function takes solution solution and delta delta, and returns a goal for the specified solver that:

Restores delta.1.
Restores the part of solution that does not appear in delta.2.
Saves the resulting solution. The resulting solution consists of solution as modified by delta.3.

The goal can fail at 1) or 2) if any constraints are violated, that is, the goal fails if the proposed change to the
solution is illegal.

Implementation

IloCommitDelta can be implemented as:

 IlcGoal IloCommitDelta(solver, solution, delta) {
 return IlcAnd(IloTestDelta(solver, solution, delta),
 IloStoreSolution(solver, solution));
 }

For more information, see IloSolution in the Concert Technology Reference Manual.

See Also: IloStoreSolution, IloTestDelta

909

Global function IlcChooseFirstUnboundAny
public IlcInt IlcChooseFirstUnboundAny(const IlcAnyVarArray vars)

Definition file: ilsolver/ilcany.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the first unbound constrained variable that it
encounters in the array of constrained variables, vars. If all those variables have been bound already, then this
function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseAnyIndex, IloGenerate

910

Global function IlcApply
public IlcGoal IlcApply(IlcGoal goal, IlcBranchSelector e)

Definition file: ilsolver/search.h
Include file: <ilsolver/ilosolver.h>

This function returns a goal that applies the evaluator e to the search tree defined by the goal goal. In doing so,
it changes the order of evaluation according to e of the open nodes of the search tree.

See Also: IlcNodeEvaluator

911

Global function IloWorstSolutionComparator
public IloComparator< IloSolution > IloWorstSolutionComparator(IloEnv env)

Definition file: ilsolver/iimpool.h
Include file: <ilsolver/iim.h>

A solution comparator that prefers lower quality solutions.
This function creates a solution comparator on the environment env that prefers lower quality solutions. This
comparator makes use of IloSolution::isWorseThan in order to make its comparison.

See Also: IloBestSolutionComparator

912

Global function IloGetClone
public X IloGetClone(IloEnvI * env, const X x)

Definition file: ilconcert/iloextractable.h

Creates a clone.
This C++ template creates a clone (that is, an exact copy) of an instance of the class X.

913

Global function IlcNotMember
public IlcConstraint IlcNotMember(IlcAny element, IlcAnySetVar var)
public IlcConstraint IlcNotMember(IlcAnyExp element, IlcAnySetVar var)
public IlcConstraint IlcNotMember(IlcIntExp element, IlcIntSetVar var)
public IlcConstraint IlcNotMember(IlcInt element, IlcIntSetVar var)

Definition file: ilsolver/ilcset.h
Include file: <ilsolver/ilosolver.h>

This predefined Solver constraint forces a constrained set variable not to contain a given element. It does so by
creating a constraint that acts on the constrained set variable var. When you post IlcMember, it prevents the
value of var from containing element. The following cases can arise:

If element belongs to the required set of var, then failure occurs.•
If element does not belong to the possible set of var, then nothing happens.•
In any other case, element is removed from the possible set of var, and the constraints posted on
var are activated. If the number of required elements becomes equal to the number of possible
elements as a result of this operation, the value of var becomes the required set.

•

See Also: IlcAnyExp, IlcAnySetVar, IlcConstraint, IlcIntExp, IlcIntSetVar, IlcMember, IlcMember

914

Global function IlcNotMember
public IlcConstraint IlcNotMember(const IlcIntExp exp, const IlcIntArray elements)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This predefined Solver constraint forces a constrained integer expression not to be an element of the array of
integers indicated by elements. When you post IlcNotMember, it does the opposite of IlcMember.

See Also: IlcConstraint, IlcIntExp, IlcMember

915

Global function IlcGenerate
public IlcGoal IlcGenerate(const IlcIntVarArray array, IlcChooseIntIndex
chooseVariable=IlcChooseFirstUnboundInt)
public IlcGoal IlcGenerate(const IlcAnyVarArray array, IlcChooseAnyIndex
chooseVariable=IlcChooseFirstUnboundAny)
public IlcGoal IlcGenerate(const IlcAnyVarArray array, IlcChooseAnyIndex
chooseVariable, IlcAnySelect sel)
public IlcGoal IlcGenerate(const IlcIntVarArray array, IlcChooseIntIndex
chooseVariable, IlcIntSelect select)
public IlcGoal IlcGenerate(const IlcAnySetVarArray array, IlcChooseAnySetIndex
chooseVariable=IlcChooseFirstUnboundAnySet)
public IlcGoal IlcGenerate(const IlcAnySetVarArray array, IlcChooseAnySetIndex
chooseVariable, IlcAnySetSelect select)
public IlcGoal IlcGenerate(const IlcIntSetVarArray array, IlcChooseIntSetIndex
chooseVariable=IlcChooseFirstUnboundIntSet)
public IlcGoal IlcGenerate(const IlcIntSetVarArray array, IlcChooseIntSetIndex
chooseVariable, IlcIntSetSelect select)
public IlcGoal IlcGenerate(const IlcFloatVarArray array, IlcChooseFloatIndex
chooseVariable=IlcChooseFirstUnboundFloat, IlcBool increaseMinFirst=IlcTrue,
IlcFloat prec=0)
public IlcGoal IlcGenerate(IlcBoolVarArray array, IlcChooseBoolIndex
chooseVariable=IlcChooseFirstUnboundBool, IlcBool val=IlcTrue)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

Solver provides an enumeration algorithm with parameters that can be set for choosing the order in which
variables are tried during the search for a solution.

This goal binds each constrained variable in its argument array; it does so by calling the function
IlcInstantiate for each of them. The order in which the variables are bound is controlled by the function
chooseVariable. The argument select is passed to each call to IlcInstantiate, if that argument is
provided.

Implementation

Here's how we could define that goal for IlcIntVar.

 ILCGOAL3(IlcIntGenerate,
 IlcIntVarArray, vars,
 IlcChooseIntIndex, chooseIndex,
 IlcIntSelectI*, select){
 IlcInt index = chooseIndex(vars);
 if(index == -1) return 0;
 return IlcAnd(IlcIntVarInstantiate(getSolver(),
 vars[index],
 select),
 this);
 }

 IlcGoal IlcGenerate(const IlcIntVarArray array,
 IlcChooseIntIndex chooseIndex){
 return IlcIntGenerate(array.getSolver(),
 array,
 chooseIndex,
 0);
 }

 IlcGoal IlcGenerate(const IlcIntVarArray array,
 IlcChooseIntIndex chooseIndex,
 IlcIntSelect select){
 return IlcIntGenerate(array.getSolver(),
 array,
 chooseIndex,
 select.getImpl());

916

 }

See Also: IlcAnySetVarArray, IlcAnyVarArray, IlcBestGenerate, IlcBestInstantiate, IlcDichotomize,
IlcFloatVarArray, IlcGoal, IlcInstantiate, IlcIntSetVarArray, IlcIntVarArray, IlcSolveBounds

917

Global function IloBestInstantiate
public IloGoal IloBestInstantiate(const IloEnv env, const IloNumVar var)
public IloGoal IloBestInstantiate(const IloEnv env, const IloAnyVar var, const
IloAnyValueSelector select)
public IloGoal IloBestInstantiate(const IloEnv env, const IloAnyVar var)
public IloGoal IloBestInstantiate(const IloEnv env, const IloNumVar var, const
IloIntValueSelector select)
public IloGoal IloBestInstantiate(const IloEnv env, const IloIntSetVar var)
public IloGoal IloBestInstantiate(const IloEnv env, const IloAnySetVar var)
public IloGoal IloBestInstantiate(const IloEnv env, const IloIntSetVar var, const
IloIntSetValueSelector select)
public IloGoal IloBestInstantiate(const IloEnv env, const IloAnySetVar var, const
IloAnySetValueSelector select)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a goal, using the numeric selector indicated by select. If the variable var has
already been bound to a value, then this goal does nothing and succeeds. Otherwise, it sets a choice point and
alters the domain of var in an attempt to assign a value to var. The way the goal alters the domain of var
varies, depending on the class of var and its argument select.

When it takes an instance of the class IloEnv as a parameter, it returns an instance of IloGoal for use with
the member functions IloSolver::startNewSearch and IloSolver::solve. An instance of IloSolver
extracts the goal that it returns as an instance of IlcGoal for use during a Solver search.

When the Variable Is Integer or an Enumerated Variable

If its argument var has already been bound, IloBestInstantiate does nothing and succeeds. Otherwise, it
sets a choice point and binds the invoking constrained variable to a value from its domain. If the optional
argument select is provided, then that value is chosen by select; otherwise, the values are tried in ascending
order when the values are integers. If a failure occurs, the tried-and-failed value is removed from the domain, and
IloBestInstantiate succeeds.

When the Variable Is a Set of Variables

If var has already been bound, then IloBestInstantiate does nothing and succeeds. Otherwise, it sets a
choice point, then adds an element of the possible set to the required set of var. The added element is chosen
by select, if that optional argument is provided; otherwise, the values are tried in ascending order when the
values are integers. If failure occurs, the element is removed from the possible set of var, and
IloBestInstantiate succeeds.

Differs from IloInstantiate

This goal differs from the one returned by the function IloInstantiate. This goal tries only one value, chosen
according to select, whereas when a failure occurs, IloInstantiate continues to try other values according
to select until the domain of var is exhausted.

Note

Though this function works on numerical variables of type Float and type Int, it is preferable to use the
function IloDichotomize with floating-point variables.

See Also: IloGoal, IloInstantiate, IlcBestInstantiate

918

Global function IloLeLex
public IloConstraint IloLeLex(IloEnv, IloIntExprArray, IloIntExprArray, const char
*=0)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

The IloLeLex function returns a constraint which maintains two arrays to be lexicographically ordered.

More specifically, IloLeLex(x, y) maintains that x is less than or equal to y in the lexicographical sense of
the term. This mean that either both arrays are equal or that there exists i < size(x) such that for all j < i,
x[j] = y[j] and x[i] < y[i].

Note that the size of the two arrays must be the same.

See Also: IloGeLex, IlcLeLex, IlcGeLex

919

Global function IlcBestGenerate
public IlcGoal IlcBestGenerate(const IlcIntVarArray, IlcChooseIntIndex
chooseVariable=IlcChooseFirstUnboundInt)
public IlcGoal IlcBestGenerate(const IlcAnyVarArray array, IlcChooseAnyIndex
chooseVariable=IlcChooseFirstUnboundAny)
public IlcGoal IlcBestGenerate(const IlcAnyVarArray array, IlcChooseAnyIndex
chooseVariable, IlcAnySelect select)
public IlcGoal IlcBestGenerate(const IlcIntVarArray, IlcChooseIntIndex
chooseVariable, IlcIntSelect select)
public IlcGoal IlcBestGenerate(const IlcAnySetVarArray array, IlcChooseAnySetIndex
chooseVariable=IlcChooseFirstUnboundAnySet)
public IlcGoal IlcBestGenerate(const IlcAnySetVarArray array, IlcChooseAnySetIndex
chooseVariable, IlcAnySetSelect select)
public IlcGoal IlcBestGenerate(const IlcIntSetVarArray array, IlcChooseIntSetIndex
chooseVariable=IlcChooseFirstUnboundIntSet)
public IlcGoal IlcBestGenerate(const IlcIntSetVarArray array, IlcChooseIntSetIndex
chooseVariable, IlcIntSetSelect select)
public IlcGoal IlcBestGenerate(const IlcFloatVarArray array, IlcChooseFloatIndex
chooseIndex, IlcBool increaseMinFirst=IlcTrue, IlcFloat prec=0)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

Solver provides an enumeration algorithm with parameters that can be set for choosing the order in which
variables are tried during the search for a solution. That enumeration algorithm is implemented by the functions
IlcBestGenerate and IlcGenerate.

This goal binds each constrained variable in its argument array; it does so by calling the function
IlcBestInstantiate for each of them. The order in which the variables are bound is controlled by the
function chooseIndex. The argument select is passed to each call to IlcBestInstantiate, if that
argument is provided.

This goal differs from IlcGenerate since it calls IlcBestInstantiate which tries only one value.

See Also: IlcAnySelect, IlcAnySetSelect, IlcBestInstantiate, IlcGenerate, IlcGoal, IlcIntSelect, IlcIntSetSelect,
IlcSolveBounds

920

Global function IloLimitSearch
public IloGoal IloLimitSearch(const IloEnv env, const IloGoal goal, const
IloSearchLimit searchLimit)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a goal that limits the exploration of the search tree defined by goal in the way
directed by searchLimit. All nodes explored after that limit has been met are discarded.

When it takes an instance of the class IloEnv as a parameter, it returns an instance of IloGoal for use with
the member functions IloSolver::startNewSearch and IloSolver::solve. An instance of IloSolver
extracts the goal that it returns as an instance of IlcGoal for use during a Solver search.

IBM® ILOG® Solver offers predefined search limits, instances of the class IloSearchLimit, such as the return
value of the function IloFailLimit, IloOrLimit, and IloTimeLimit.

See Also: IloGoal, IloFailLimit, IloOrLimit, IloSearchLimit, IloTimeLimit, IlcLimitSearch

921

Global function IlcScalProd
public IlcFloatExp IlcScalProd(const IlcFloatVarArray array1, const
IlcFloatVarArray array2)
public IlcIntExp IlcScalProd(const IlcIntVarArray array1, const IlcIntVarArray
array2)
public IlcIntExp IlcScalProd(const IlcIntVarArray array1, const IlcIntArray array2)
public IlcIntExp IlcScalProd(const IlcIntArray array1, const IlcIntVarArray array2)
public IlcInt IlcScalProd(const IlcIntArray array1, const IlcIntArray array2)
public IlcFloatExp IlcScalProd(const IlcFloatVarArray array1, const IlcFloatArray
array2)
public IlcFloatExp IlcScalProd(const IlcFloatArray array1, const IlcFloatVarArray
array2)
public IlcFloat IlcScalProd(const IlcFloatArray array1, const IlcFloatArray array2)

Definition file: ilsolver/nlinflt.h
Include file: <ilsolver/ilosolver.h>

This function returns the scalar product of its arguments, that is:

 (array1[0]*array2[0]) + ... + (array1[size-1]*array2[size-1])

When either of its arguments is an array of constrained expressions, then it creates a new constrained
expression equal to the scalar product of its arguments.

When both its arguments are arrays of simple unconstrained variables (that is, instances of IlcIntArray or
IlcFloatArray), it merely creates and returns the scalar product.

In any case, the two arrays passed as arguments must have the same number of elements.

The effects of this function are reversible.

See Also: IlcFloatExp, IlcFloatVarArray, IlcIntExp, IlcIntVarArray, IlcSum

922

Global function IlcBestInstantiate
public IlcGoal IlcBestInstantiate(const IlcIntVar var)
public IlcGoal IlcBestInstantiate(const IlcAnyVar var)
public IlcGoal IlcBestInstantiate(const IlcAnyVar var, IlcAnySelect select)
public IlcGoal IlcBestInstantiate(const IlcIntVar var, IlcIntSelect select)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This function returns a goal, a primitive in the algorithms that search for solutions. That goal is used to assign a
value to a constrained variable.

If its argument var has already been bound, IlcBestInstantiate does nothing and succeeds. Otherwise, it
sets a choice point and binds the invoking constrained variable to a value from its domain. If the optional
argument select is provided, then that value is chosen by select; otherwise, the values are tried in ascending
order when the values are integers. If a failure occurs, the tried-and-failed value is removed from the domain, and
IlcBestInstantiate succeeds.

This function differs from the function IlcInstantiate in that respect. IlcBestInstantiate tries only one
value, whereas when a failure occurs with IlcInstantiate, Solver continues trying other values until all the
values in the domain of that variable have been tried before it goes on to another variable.

Implementation

This goal can be defined like this for IlcIntVar:

 static
 ILCGOAL2(IlcIntBestInstantiate,
 IlcIntVar, var,
 IlcIntSelectI*, select) {
 if (var.isBound()) return 0;
 IlcInt val = (select)? select->select(var) : var.getMin();
 return IlcOr(var == val,
 var != val);
 }
 IlcGoal IlcBestInstantiate(IlcIntVar var){
 return IlcIntBestInstantiate(var, 0);
 }
 IlcGoal IlcBestInstantiate(IlcIntVar var, IlcIntSelect sel){
 return IlcIntBestInstantiate(var, sel.getImpl());
 }

The code is similar for IlcAnyVar.

For more information, see the concept Choice Point.

See Also: IlcBestGenerate, IlcDichotomize, IlcGoal, IlcInstantiate

923

Global function IlcBestInstantiate
public IlcGoal IlcBestInstantiate(const IlcIntSetVar var)
public IlcGoal IlcBestInstantiate(const IlcAnySetVar var)
public IlcGoal IlcBestInstantiate(const IlcAnySetVar var, IlcAnySetSelect select)
public IlcGoal IlcBestInstantiate(const IlcIntSetVar var, IlcIntSetSelect select)

Definition file: ilsolver/intset.h
Include file: <ilsolver/ilosolver.h>

This function returns a goal, a primitive in the algorithms that search for solutions. That goal is used to assign a
value to a constrained variable. This function differs from the function IlcInstantiate (which tries all values in
a domain); IlcBestInstantiate tries only one possible value. It behaves slightly differently, depending on the
class of its arguments.

If var has already been bound, then IlcBestInstantiate does nothing and succeeds. Otherwise, it sets a
choice point, then adds an element of the possible set to the required set of var. The added element is chosen
by select, if that optional argument is provided; otherwise, the values are tried in ascending order when the
values are integers. If failure occurs, the element is removed from the possible set of var, and
IlcBestInstantiate succeeds.

For more information, see the concept Choice Point.

See Also: IlcBestGenerate, IlcGoal, IlcInstantiate

924

Global function IlcBestInstantiate
public IlcGoal IlcBestInstantiate(const IlcFloatVar var, IlcBool
increaseMinFirst=IlcTrue, IlcFloat prec=0)

Definition file: ilsolver/nlinflt.h
Include file: <ilsolver/ilosolver.h>

This function returns a goal, a primitive in the algorithms that search for solutions. That goal is used to assign a
value to a constrained variable. This function differs from the function IlcInstantiate (which tries all values in
a domain); IlcBestInstantiate tries only one possible value. It behaves slightly differently, depending on the
class of its arguments.

If var has already been bound, then IlcBestInstantiate does nothing and succeeds. Otherwise, it sets a
choice point, then replaces the domain of var by one of its halves. If a failure occurs then, the domain is
replaced by the other half.

The optional argument increaseMinFirst must be a Boolean value, either IlcTrue or IlcFalse. If it is
IlcTrue, then the upper half of the domain is tried first; otherwise, the lower half is tried first.

For more information, see the concept Choice Point.

See Also: IlcBestGenerate, IlcDichotomize, IlcGoal, IlcInstantiate

925

Global function IloChooseMaxRegretMax
public IlcInt IloChooseMaxRegretMax(const IlcIntVarArray vars)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
maximal difference between the maximal possible value and the next maximal possible value from among the
constrained variables in the array of constrained variables, vars. If all those variables have been bound already,
then this function returns -1.

This function is based on the principle of regret. Regret is the difference between what would have been the best
possible decision in a scenario and what was the actual decision.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseIntIndex, IloGenerate

926

Global function IlcChooseMinSizeFloat
public IlcInt IlcChooseMinSizeFloat(const IlcFloatVarArray vars)

Definition file: ilsolver/linfloat.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
smallest domain from among the constrained variables in the array of constrained variables, vars. If all those
variables have been bound already, then this function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcFloatVarArray, IloGenerate

927

Global function IloDifference
public IloIntervalList IloDifference(const IloIntervalList intervals1, const
IloIntervalList intervals2)

Definition file: ilconcert/ilointervals.h

Creates and returns the difference between two interval lists.
This operator creates and returns an interval list equal to the difference between the interval list intervals1
and the interval list intervals2. The arguments intervals1 and intervals2 must be defined on the same
interval. The resulting interval list is defined on the same interval as the arguments. See also
IloIntervalList.

928

Global function IloDifference
public IloNumToAnySetStepFunction IloDifference(const IloNumToAnySetStepFunction
f1, const IloNumToAnySetStepFunction f2)

Definition file: ilconcert/ilosetfunc.h

Creates and returns a function equal to the difference between the functions.
This operator creates and returns a function equal to the difference between the functions f1 and f2. The
argument functions f1 and f2 must be defined on the same interval. The resulting function is defined on the
same interval as the arguments. See also: IloNumToAnySetStepFunction.

929

Global function IlcChooseMinRegretMax
public IlcInt IlcChooseMinRegretMax(const IlcIntVarArray vars)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
minimal difference between the maximal possible value and the next maximal possible value from among the
constrained variables in the array of constrained variables, vars. If all those variables have been bound already,
then this function returns -1.

This function is based on the principle of regret. Regret is the difference between what would have been the best
possible decision in a scenario and what was the actual decision.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseIntIndex, IloGenerate

930

Global function IloSetToValue
public IloNHood IloSetToValue(IloEnv env, IloNumVarArray vars, IloNum value, const
char * name=0)

Definition file: ilsolver/iimnhood.h
Include file: <ilsolver/ilosolver.h>

This function returns a neighborhood of size vars.getSize(), neighbor i of which sets vars[i] = value.
The optional argument name, if supplied, becomes the name of the returned neighborhood.

See Also: IloNHood, IloNHoodI

931

Global function IlcRestartGoal
public IlcGoal IlcRestartGoal(IloSolver solver, IlcGoal g, IlcInt failLimit,
IlcFloat factor=1.0)

Definition file: ilsolver/ilosolverhandle.h
Include file: <ilsolver/ilosolver.h>

The goal returned by this function performs restart on goal g. This goal creates a choice point where the left
branch calls g with a fail limit of failLimit and then calls itself on the right branch with failLimit =
failLimit * factor (with factor remaining unchanged). In other words, it runs g with a maximum number
of fails equal to failLimit and then it runs it again with failLimit * factor as the new maximum number
of fails and so on. For an example of how to use this goal, see "Using Impacts during Search" in the IBM ILOG
Solver User's Manual.

See Also: IloRestartGoal

932

Global function IloPower
public IloNumExprArg IloPower(const IloNumExprArg base, const IloNumExprArg
exponent)
public IloNumExprArg IloPower(const IloNumExprArg base, IloNum exponent)
public IloNumExprArg IloPower(IloNum base, const IloNumExprArg exponent)

Definition file: ilconcert/iloexpression.h

Returns the power of its arguments.
Concert Technology offers predefined functions that return an expression from an algebraic function over
expressions. These predefined functions also return a numeric value from an algebraic function over numeric
values as well.

IloPower returns the result of raising its base argument to the power of its exponent argument, that is,
base**exponent. If base is a floating-point value or variable, then exponent must be greater than or equal to
0 (zero).

What Is Extracted

An instance of IloCplex can extract only quadratic terms that are positive semi-definite when they appear in an
objective function or in constraints of a model.

An instance of IloSolver or an instance of IloCP extracts the object returned by IloPower.

933

Global function IloSelectSolutions
public IloPoolProc IloSelectSolutions(IloEnv env, IloSelector< IloSolution,
IloSolutionPool > selector, IloBool unique=IloFalse)

Definition file: ilsolver/iimiloproc.h

Creates a pool processor which selects using a standard Solver selector.
This function creates a pool processor on the environment env which selects from its input by asking for
successive selections from selector. Selectors can be built-in ones such as IloRandomSelector or ones
created using the ILOSELECTOR0 or ILOCTXSELECTOR0 macros (or their variants). (See ILOSELECTOR0 for
ILOCTXSELECTOR0 documentation.) You can specify if you would like selections to avoid duplicates using the
parameter unique. Set this flag to IloTrue if the pool processor is not to produce duplicates in its output pool.

The following code uses ILOCTXSELECTOR1 to create a custom selector:

ILOCTXSELECTOR1(CustomSelector, IloSolution, IloSolutionPool, in,
 IloSolver, solver, IlcInt, tournamentSize) {
 IloInt size = in.getSize();
 if (size != 0) {
 IlcRandom rnd = solver.getRandom();
 IloSolution candidate = in.getSolution(rnd.getInt(size));
 for (IlcInt tournament = 1; tournament < tournamentSize; tournament++) {
 IloSolution competition = in.getSolution(rnd.getInt(size));
 if (competition.isBetterThan(candidate))
 candidate = competition;
 }
 select(candidate);
 }
}

If selector has been created from ILOCTXSELECTOR1, IloSelectSolutions will ensure that the context
passed will be the instance of the IloSolver on which it is executing.

See Also: IloSelector, ILOSELECTOR0

934

Global function IlcSetOf
public IlcIntSetVar IlcSetOf(IlcIndex & i, IlcConstraint ct)

Definition file: ilsolver/intset.h
Include file: <ilsolver/ilosolver.h>

You can use the function IlcSetOf to reason about a set of constrained variables that all depend on a given
generic constraint.

This function creates a constrained integer set variable, setvar, equal to the set of integer values j such that
the generic constraint denoted by ct is true for j. At all times, all integer values j such that ct is true for j
belong to the required set of setvar; and all integer values k such that ct is not false for k belong to the
possible set of setvar.

The generic constraint ct must have been created with generic variables stemming from the indexi; otherwise,
Solver will throw an exception (an instance of IloSolver::SolverErrorException).

All generic variables of the constraint ct must represent arrays of constrained expressions of the same size;
otherwise, Solver will throw an exception (an instance of IloSolver::SolverErrorException).

Generic Constraints

A generic constraint is a constraint shared by an array of variables. For example, IlcAllDiff is a generic
constraint that insures that all the elements of a given array are different from one another. Solver provides
generic constraints to save memory since, if you use them, you can avoid allocating one object per variable.

You create a generic constraint simply by stating the constraint over generic variables. Each generic variable
stands for all the elements of an array of constrained variables.

In that sense, generic variables are only syntactic objects provided by Solver to support generic constraints, and
they can be used only for creating generic constraints. To create a generic variable, you use the operator [].The
argument passed to that operator is known as the index for that generic variable; we say that the generic variable
stems from that index.

Example

Let's assume we have two arrays, A and B, of constrained integer variables (that is, instances of IlcIntExp or
its subclasses). We want to know the set of elements in those arrays such that A[i] > B[i]. All we have to do
is this:

 IlcIndex i(solver);
 IlcIntSetVar s = IlcSetOf(i, A[i] > B[i]);

That constrained set variable s can, in turn, be constrained by other constraints. For example, we can set its
cardinality (the number of elements in it) to 0 (zero). Doing that amounts to saying that no such i exists such that
A[i] > B[i]. In other words, for all i, A[i] <= B[i].

There is a “shortcut” for constraining the cardinality of the set for which a given constraint is true. That shortcut is
implemented by the function IlcCard.

See Also: IlcCard, IlcDistribute, IlcIndex

935

Global function IloSelectSearch
public IloGoal IloSelectSearch(const IloEnv env, const IloGoal g, const
IloSearchSelector s)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function returns a goal that applies the selector s to the search tree defined by the goal g. As the goal
handler explores the search tree, it gives successful leaves to the selector. When the tree has been fully
explored, the selector is called, and it re-activates the selected nodes.

When it takes an instance of the class IloEnv as a parameter, it returns an instance of IloGoal for use with
the member functions IloSolver::startNewSearch and IloSolver::solve. An instance of IloSolver
extracts the goal that it returns as an instance of IlcGoal for use during a Solver search.

See Also: IlcSearchSelector, IloFirstSolution, IloSearchSelector, IlcSelectSearch

936

Global function IloMaximize
public IloObjective IloMaximize(const IloEnv env, IloNum constant=0.0, const char *
name=0)
public IloObjective IloMaximize(const IloEnv env, const IloNumExprArg expr, const
char * name=0)

Definition file: ilconcert/ilolinear.h

Defines a maximization objective.
This function defines a maximization objective in a model. In other words, it simply offers a convenient way to
create an instance of IloObjective with its sense defined as Maximize. However, an instance of
IloObjective created by IloMaximize may not necessarily maintain its sense throughout the lifetime of the
instance. The optional argument name is set to 0 by default.

You may define more than one objective in a model. However, algorithms conventionally take into account only
one objective at a time.

937

Global function IloLog
public IloNumExprArg IloLog(const IloNumExprArg arg)
public IloNum IloLog(IloNum val)

Definition file: ilconcert/iloexpression.h

Returns the natural logarithm of its argument.
Concert Technology offers predefined functions that return an expression from an algebraic function on
expressions. These predefined functions also return a numeric value from an algebraic function on numeric
values as well.

IloLog returns the natural logarithm of its argument. In order to conform to IEEE 754 standards for floating-point
arithmetic, you should use this function in your Concert Technology applications, rather than the standard C++
log.

938

Global function IlcReductionVarEvaluator
public IloEvaluator< IlcIntVar > IlcReductionVarEvaluator(IloEnv env)
public IloEvaluator< IlcIntVar > IlcReductionVarEvaluator(IloSolver solver)

Definition file: ilsolver/custgoal.h
Include file: <ilsolver/ilosolver.h>

This function returns an instance of the evaluator IloEvaluator<IlcIntVar>. The evaluation returns the
value returned by solver.getReduction(x), where x is the evaluated variable.

939

Global function IlcMember
public IlcConstraint IlcMember(const IlcIntExp exp, const IlcIntArray elements)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This predefined Solver constraint forces the domain of exp to be a subset of or equal to the array elements.
When you post IlcMember, it constrains each value of exp to belong to elements. In other words, any value of
exp that is not in the array elements will be removed from the domain of exp.

See Also: IlcConstraint, IlcIntArray, IlcIntExp, IlcMember, IlcNotMember

940

Global function IlcMember
public IlcConstraint IlcMember(IlcAny element, IlcAnySetVar setVar)
public IlcConstraint IlcMember(IlcAnyExp element, IlcAnySetVar setVar)
public IlcConstraint IlcMember(IlcIntExp element, IlcIntSetVar setVar)
public IlcConstraint IlcMember(IlcInt element, IlcIntSetVar setVar)

Definition file: ilsolver/ilcset.h
Include file: <ilsolver/ilosolver.h>

This predefined Solver constraint forces a constrained set variable to contain a given element. It does so by
creating a constraint that acts on the constrained set variable setVar. When you post IlcMember, it constrains
the value of setVar to contain element. The following cases can arise:

If element belongs to the required set of setVar, then nothing happens.•
If element does not belong to the possible set of setVar, then failure occurs.•
In any other case, element is added to the required set of setVar, and the constraints posted on
setVar are activated. If the number of required elements becomes equal to the number of possible
elements as a result of this operation, the value of setVar becomes the required set.

•

See Also: IlcAnyExp, IlcAnySetVar, IlcConstraint, IlcIntExp, IlcIntSetVar, IlcMember, IlcNotMember

941

Global function IloDisableNANDetection
public void IloDisableNANDetection()

Definition file: ilconcert/ilosys.h

Disables NaN (Not a number) detection.
This function turns off NaN (Not a number) detection.

942

Global function operator<<
public ostream & operator<<(ostream & out, IloAlgorithm::Status st)
public ostream & operator<<(ostream & out, const IloArray< X > & a)
public ostream & operator<<(ostream & out, const IloNumExpr & ext)
public ostream & operator<<(ostream & os, const IloRandom & r)
public ostream & operator<<(ostream & stream, const IloSolution & solution)
public ostream & operator<<(ostream & stream, const IloSolutionManip & fragment)
public ostream & operator<<(ostream & o, const IloException & e)

Definition file: ilconcert/iloalg.h

Overloaded C++ operator.
This overloaded C++ operator directs output to an output stream.

943

Global function operator<<
public ostream & operator<<(ostream & str, const IlcAnyArray & exp)
public ostream & operator<<(ostream & str, const IlcAnySet & exp)
public ostream & operator<<(ostream & str, const IlcAnyExp exp)
public ostream & operator<<(ostream & str, const IlcConstAnyArray & exp)
public ostream & operator<<(ostream & str, const IlcAnyVarArray & exp)
public ostream & operator<<(ostream & str, IlcExpArrayI & array)
public ostream & operator<<(ostream & str, const IlcGoal & f)
public ostream & operator<<(ostream & str, const IlcGoalI & f)
public ostream & operator<<(ostream & str, const IlcDemon & f)
public ostream & operator<<(ostream & str, const IlcDemonI & f)
public ostream & operator<<(ostream & str, const IlcConstraint & f)
public ostream & operator<<(ostream & str, const IlcConstraintArray & exp)
public ostream & operator<<(ostream & str, const IlcFloatSet & exp)
public ostream & operator<<(ostream & str, const IlcFloatExp & exp)
public ostream & operator<<(ostream & str, const IlcFloatVarArray & exp)
public ostream & operator<<(ostream & str, const IlcFloatArray & exp)
public ostream & operator<<(ostream & str, const IlcConstFloatArray & exp)
public ostream & operator<<(ostream & str, const IlcFloatExpI & var)
public ostream & operator<<(ostream & stream, IloNHood nhood)
public ostream & operator<<(ostream & str, const IlcAnySetVar & exp)
public ostream & operator<<(ostream & str, const IlcAnySetVarArray & exp)
public ostream & operator<<(ostream & str, const IlcAnySetArray & exp)
public ostream & operator<<(ostream & str, const IlcIntSet & exp)
public ostream & operator<<(ostream & str, const IlcIntExp & exp)
public ostream & operator<<(ostream & str, const IlcIntArray & exp)
public ostream & operator<<(ostream & str, const IlcConstIntArray & exp)
public ostream & operator<<(ostream & str, const IlcIntVarArray & exp)
public ostream & operator<<(ostream & str, const IlcIntExpI & var)
public ostream & operator<<(ostream & str, const IlcIntSetVar & exp)
public ostream & operator<<(ostream & str, const IlcIntSetVarArray & exp)
public ostream & operator<<(ostream & str, const IlcIntSetArray & exp)
public ostream & operator<<(ostream & str, const IlcExprI & var)

Definition file: ilsolver/anyexp.h
Include file: <ilsolver/ilosolver.h>

This operator directs output to an output stream, usually standard output.

See Also: IlcAnyArray, IlcAnyExp, IlcAnySet, IlcAnySetVar, IlcAnySetVarArray, IlcAnyVarArray,
IlcConstAnyArray, IlcConstFloatArray, IlcConstIntArray, IlcConstraintArray, IlcFloatArray, IlcFloatExp,
IlcFloatVarArray, IlcGoal, IlcGoalI, IlcIntArray, IlcIntExp, IlcIntSet, IlcIntSetArray, IlcIntSetVar, IlcIntSetVarArray,
IlcIntVarArray, IloNHood

944

Global function operator<<
public ostream & operator<<(ostream & out, const IloCsvLine & line)

Definition file: ilconcert/ilocsvreader.h

Overloaded operator for csv output.
This operator has been overloaded to treat an IloCsvLine object appropriately as output. It directs its output to
an output stream (normally, standard output) and displays information about its second argument line.

945

Global function operator<<
public IloEvaluator< IloObjectIn > operator<<(IloEvaluator< IloObject > e,
IloTranslator< IloObject, IloObjectIn > t)

Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

This operator creates a composite IloEvaluator<IloObjectIn> instance. This evaluator first translates an
instance of class IloObjectIn into an instance of class IloObject using the translator, and then uses the
evaluator given in the left side to evaluate this instance.

For more information, see Selectors.

946

Global function operator<<
public ostream & operator<<(ostream & out, const IloExtractable & ext)

Definition file: ilconcert/iloextractable.h

Overloaded C++ operator.
This overloaded C++ operator directs output to an output stream.

947

Global function operator<<
public IloPredicate< IloObjectIn > operator<<(IloPredicate< IloObject > e,
IloTranslator< IloObject, IloObjectIn > t)

Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

Creates translated predicate.
This predicate first translates an instance of class IloObjectIn into an instance of class IloObject using the
translator t, and then uses the predicate e given at the left side to test this instance.

For more information, see Selectors.

948

Global function operator-
public IlcIntExp operator-(const IlcIntExp exp)
public IlcFloatExp operator-(const IlcFloatExp exp)
public IlcIntToIntStepFunction operator-(const IlcIntToIntStepFunction & f1)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This arithmetic operator returns the opposite of its argument. It has been overloaded to handle constrained
expressions appropriately. The domain of the resulting expression is computed from the domain of the original
expression as you would expect.

See Also: IlcIntExp, IlcFloatExp, IlcIntToIntStepFunction

949

Global function operator-
public IloEvaluator< IloObject > operator-(IloEvaluator< IloObject > left,
IloEvaluator< IloObject > right)
public IloEvaluator< IloObject > operator-(IloEvaluator< IloObject > left, IloNum
c)
public IloEvaluator< IloObject > operator-(IloNum c, IloEvaluator< IloObject >
right)
public IloEvaluator< IloObject > operator-(IloEvaluator< IloObject > eval)

Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

These operators create a composite IloEvaluator<IloObject> instance. The semantics of the new
evaluator are the subtraction of the values of the component evaluators. The first function combines two
evaluators, subtracting the value returned by the first by the value returned by the second. The next two functions
combine an IloNum value with an evaluator. In the first of these functions, the IloNum value is subtracted from
the value returned by the evaluator, while in the second of these functions those roles are reversed. The last
function returns the opposite of an evaluator.

For more information, see Selectors.

950

Global function operator-
public IloNumToNumStepFunction operator-(const IloNumToNumStepFunction f1, const
IloNumToNumStepFunction f2)

Definition file: ilconcert/ilonumfunc.h

Creates and returns a function equal to the difference between its argument functions.
This operator creates and returns a function equal to the difference between functions f1 and f2. The argument
functions f1 and f2 must be defined on the same interval. The resulting function is defined on the same interval
as the arguments. See also: IloNumToNumStepFunction.

951

Global function operator-
public IlcFloatExp operator-(const IlcFloatExp exp1, IlcFloat exp2)
public IlcIntExp operator-(const IlcIntExp exp1, const IlcIntExp exp2)
public IlcIntExp operator-(const IlcIntExp exp1, IlcInt exp2)
public IlcIntExp operator-(IlcInt exp1, const IlcIntExp exp2)
public IlcFloatExp operator-(IlcFloat exp1, const IlcFloatExp exp2)
public IlcFloatExp operator-(const IlcFloatExp exp1, const IlcFloatExp exp2)
public IlcIntToIntStepFunction operator-(const IlcIntToIntStepFunction & f1, const
IlcIntToIntStepFunction & f2)

Definition file: ilsolver/linfloat.h
Include file: <ilsolver/ilosolver.h>

This arithmetic operator subtracts its second argument from its first. It has been overloaded to handle
constrained expressions appropriately. The domain of the resulting expression is computed from the domains of
the combined expressions as you would expect.

See Also: IlcFloatExp, IlcIntExp, IlcIntToIntStepFunction

952

Global function operator-
public IloNumExprArg operator-(const IloNumExprArg x, const IloNumExprArg y)
public IloNumExprArg operator-(const IloNumExprArg x, IloNum y)
public IloNumExprArg operator-(IloNum x, const IloNumExprArg y)
public IloIntExprArg operator-(const IloIntExprArg x, const IloIntExprArg y)
public IloIntExprArg operator-(const IloIntExprArg x, IloInt y)
public IloIntExprArg operator-(IloInt x, const IloIntExprArg y)

Definition file: ilconcert/iloexpression.h

Returns an expression equal to the difference of its arguments.
This overloaded C++ operator returns an expression equal to the difference of its arguments. Its arguments may
be numeric values, numeric variables, or other expressions.

953

Global function IloComposePareto
public IloParetoComparator< IloObject > IloComposePareto(IloComparator< IloObject >
a, IloComparator< IloObject > b)
public IloParetoComparator< IloObject > IloComposePareto(IloComparator< IloObject >
a, IloComparator< IloObject > b, IloComparator< IloObject > c)
public IloParetoComparator< IloObject > IloComposePareto(IloComparator< IloObject >
a, IloComparator< IloObject > b, IloComparator< IloObject > c, IloComparator<
IloObject > d)
public IloParetoComparator< IloObject > IloComposePareto(IloComparator< IloObject >
a, IloComparator< IloObject > b, IloComparator< IloObject > c, IloComparator<
IloObject > d, IloComparator< IloObject > e)

Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

Initializes a Pareto composite comparator from existing comparators.
This function creates a Pareto composite comparator from existing comparators.

For more information, see Selectors.

See Also: IloParetoComparator

954

Global function IloSelectProcessor
public IloPoolProc IloSelectProcessor(IloEnv env, IloPoolProcArray procs,
IloSelector< IloPoolProc, IloPoolProcArray > selector, const char * name=0)

Definition file: ilsolver/iimiloproc.h

A pool processor which is a selection from a set of others.
This function creates a pool processor which will act as one of a set of given processors each time it is asked to
produce solutions. The choice of processor is made by a selector object.

The processor generated by IloSelectProcessor works as follows. First, the pool processor to the
processor's right (as defined by operator >>) asks the processor for n solutions. The processor then performs the
following instructions repetitively until at least n solutions have been produced (placed on the output pool of the
processor).

The processor selects a processor p from procs by calling selector.select(p, procs).•
The processor asks p to produce its natural number of solutions.•
The solutions produced by p are placed on the output pool of the processor.•

955

Global function IlcChooseMinSizeInt
public IlcInt IlcChooseMinSizeInt(const IlcIntVarArray vars)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
smallest domain from among the constrained variables in the array of constrained variables, vars. If all those
variables have been bound already, then this function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseIntIndex, IloGenerate

956

Global function IlcDistribute
public IlcConstraint IlcDistribute(IlcIntVarArray cards, IlcAnyArray values,
IlcAnyVarArray vars)
public IlcConstraint IlcDistribute(IlcIntVarArray cards, IlcAnyArray values,
IlcAnyVarArray vars, IlcFilterLevel level)
public IlcConstraint IlcDistribute(IlcIntVarArray cards, IlcIntArray values,
IlcIntVarArray vars, IlcFilterLevel level)
public IlcConstraint IlcDistribute(IlcIntVarArray cards, IlcIntVarArray vars,
IlcFilterLevel level)
public IlcConstraint IlcDistribute(IlcIntVarArray cards, IlcIntArray values,
IlcIntVarArray vars)
public IlcConstraint IlcDistribute(IlcIntVarArray cards, IlcIntVarArray vars)

Definition file: ilsolver/ilcany.h
Include file: <ilsolver/ilosolver.h>

You can use the function IlcDistribute to count the number of occurrences of several values among the
constrained variables in an array of constrained variables. (See the functions IlcCard and IlcSetOf for other
counting constraints.)

This function creates and returns a constraint. That constraint has no effect until you post it. When this constraint
is posted, then the constrained variables in the array cards are equal to the number of occurrences in the array
vars of the values in the array values. More precisely, for each i, cards[i] is equal to the number of
occurrences of values[i] in the array vars. After propagation of this constraint, the minimum of cards[i] is
at least equal to the number of variables contained in vars bound to the value at values[i]; and the maximum
of cards[i] is at most equal to the number of variables contained in vars that contain the value at values[i]
in their domain.

The arrays cards and values must be the same length; otherwise, Solver will throw an exception (an instance
of IloSolver::SolverErrorException).

When this function has only two arguments (that is, there is no values parameter), then the array of values that
are being counted must be an array of consecutive integers starting with 0 (zero). In that case, for each i,
cards[i] is equal to the number of occurrences of i in the array vars. After propagation of this constraint, the
minimum of cards[i] is at least equal to the number of variables contained in vars bound to the value i; and
the maximum of cards[i] is at most equal to the number of variables contained in vars that contain i in their
domain.

If you do not explicitly state a filter level, then Solver will use the default filter level for this constraint. The optional
argument level can take either of two values: IlcBasic or IlcExtended. Its lowest value is IlcBasic. The
amount of domain reduction during propagation depends on that value. See IlcFilterLevel for an
explanation of filter levels and their effect on constraint propagation.

IlcBasic makes the statement

 s.add(IlcDistribute(cards, values, vars));

more efficient and causes more domain reductions than the following code:

 IlcIndex j;
 IlcInt size = cards.getSize();
 for (IlcInt i = 0; i < size; i++)
 s.add(cards[i] == IlcCard(j, vars[j] == values[i])
);

IlcExtended causes more domain reduction than IlcBasic; it also takes longer to run.

Adding These Constraints

You may add these constraints only during a Solver search; that is, inside a goal (an instance of IlcGoal) or
inside a constraint (an instance of IlcConstraint). If you are looking for similar functionality in a constraint to

957

add to a model, see IloDistribute documented in the Concert Technology Reference Manual.

Programming Hint

This statement:

 s.add(IlcDistribute(cards, values, vars));

is more efficient than but equivalent to the following code:

 assert(cards.getSize() == values.getSize());
 IlcInt i;
 IlcIndex j;
 IlcInt size = cards.getSize();
 for(i=0; i<size; i++)
 s.add(cards[i] == IlcCard(j, vars[j] == values[i]));

Programming Hint

This statement:

 s.add(IlcDistribute(cards, vars));

is more efficient than but equivalent to the following code:

 IlcInt size = cards.getSize();
 IlcIntArray values(size);
 for(IlcInt i = 0; i < size; i++)
 values[i] = i;
 s.add(IlcDistribute(cards, values, vars));

See Also: IlcAbstraction, IlcCard, IlcConstraint, IlcFilterLevel, IlcIndex, IlcSequence, IlcSetOf

958

Global function IlcLeLex
public IlcConstraint IlcLeLex(IlcIntVarArray x, IlcIntVarArray y)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

The IlcLeLex function returns a constraint which maintains two arrays to be lexicographically ordered.

More specifically, IlcLeLex(x, y) maintains that x is less than or equal to y in the lexicographical sense of
the term. This mean that either both arrays are equal or that there exists i < size(x) such that for all j < i,
x[j] = y[j] and x[i] < y[i].

Note that the size of the two arrays must be the same.

See Also: IloGeLex, IloLeLex, IlcGeLex

959

Global function IlcArcSin
public IlcFloatExp IlcArcSin(const IlcFloatExp x)
public IlcFloat IlcArcSin(IlcFloat x)

Definition file: ilsolver/nlinflt.h
Include file: <ilsolver/ilosolver.h>

When its argument is a constrained floating-point expression, this function creates a constrained floating-point
expression (that is, an instance of IlcFloatExp or one of its subclasses) which is equal to the arc sine (in the
range -Pi/2 to Pi/2) of its argument x expressed in radians. The effects of this function are reversible.

When its argument is an unconstrained numeric value (that is, a value of type IlcFloat), this function returns
the arc sine of its argument.

If you want to manipulate constrained floating-point expressions in degrees, we strongly recommend that you call
the trigonometric functions on variables expressed in radians and then convert the results to degrees (rather than
declaring the constrained floating-point expressions in degrees and then converting them to radians to call the
trigonometric functions).

The reason for that advice is that the method we recommend gives more accurate results in the context of the
usual floating-point pitfalls.

See Also: IlcArcCos, IlcArcTan, IlcCos, IlcDegToRad, IlcFloatExp, IlcHalfPi, IlcPi, IlcQuarterPi, IlcRadToDeg,
IlcSin, IlcTan, IlcThreeHalfPi, IlcTwoPi

960

Global function operator new
public void * operator new(size_t sz, const IloEnv & env)

Definition file: ilconcert/iloenv.h

Overloaded C++ new operator.
IBM® ILOG® Concert Technology offers this overloaded C++ new operator. This operator is overloaded to
allocate data on internal data structures associated with an invoking environment (an instance of IloEnv). The
memory used by objects allocated with this overloaded operator is automatically reclaimed when you call the
member function IloEnv::end. As a developer, you must not delete objects allocated with this operator
because of this automatic freeing of memory.

In other words, you must not use the delete operator for objects allocated with this overloaded new operator.

The use of this overloaded new operator is not obligatory in Concert Technology applications. You will see
examples of its use in the user's manuals that accompany the IBM® ILOG® optimization products.

961

Global function operator new
public void * operator new(size_t s, IlcAllocationStack * heap)

Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

Solver provides an overloaded new operator. This operator is overloaded to allocate data on the heap associated
with the invoking solver (an instance of IloSolver). The memory used by objects allocated with this operator is
automatically reclaimed in these situations:

whenever Solver backtracks to a choice point set previously;•
when a model (an instance of IloModel) or other extractable objects (instances of
IloExtractable or its subclasses) is re-extracted for a solver (an instance of IloSolver);

•

when the member function end is called for the invoking solver.•

As a developer, you must not delete objects allocated with this operator because of this automatic freeing of
memory.

In other words, the delete operator must not be used for objects allocated on the heap associated with a solver.

The use of this overloaded new operator is not obligatory. In fact, the use of the solver heap is not mandatory.
You determine whether Solver uses the overloaded new operator or the conventional C++ new operator when
you call the member function useHeap. In particular, you can allocate instances of Solver classes using the
standard new operator or even a special purpose allocator. However, some Solver objects contain other objects.
For example, Solver variables contain other objects (finite sets) that represent their domains. These subobjects
are allocated onto the solver allocation heap. Likewise, constraints are allocated onto the solver allocation heap.
Thus, they must not be deleted. Solver manages the corresponding memory transparently.

To allocate an array of size objects of type T on the solver allocation heap, you simply write this:

 T* array = new (s.getHeap()) T [size];

When you do not want to use the solver allocation heap, you write this:

 T* array = new T [size];

When you allocate an array in the way we recommend, it will automatically be de-allocated in either of two
situations: if backtracking occurs to a choice point set before this allocation; if the member function end is called
for the invoking solver.

See Also: IlcMemoryManagerI

962

Global function IloMax
public IloEvaluator< IloObject > IloMax(IloEvaluator< IloObject > left,
IloEvaluator< IloObject > right)
public IloEvaluator< IloObject > IloMax(IloEvaluator< IloObject > left, IloNum c)
public IloEvaluator< IloObject > IloMax(IloNum c, IloEvaluator< IloObject > right)

Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

These functions create a composite IloEvaluator<IloObject> instance. These evaluators return the
greatest value of the float values returned by the two evaluators given as argument, or the least value between
the float value and the evaluator given as argument.

For more information, see Selectors.

963

Global function IloMax
public IloNum IloMax(const IloNumArray vals)
public IloNum IloMax(IloNum val1, IloNum val2)
public IloInt IloMax(const IloIntArray vals)
public IloNumExprArg IloMax(const IloNumExprArray exprs)
public IloIntExprArg IloMax(const IloIntExprArray exprs)
public IloNumExprArg IloMax(const IloNumExprArg x, const IloNumExprArg y)
public IloNumExprArg IloMax(const IloNumExprArg x, IloNum y)
public IloNumExprArg IloMax(IloNum x, const IloNumExprArg y)
public IloIntExprArg IloMax(const IloIntExprArg x, const IloIntExprArg y)
public IloIntExprArg IloMax(const IloIntExprArg x, IloInt y)
public IloNumExprArg IloMax(const IloIntExprArg x, IloNum y)
public IloIntExprArg IloMax(const IloIntExprArg x, int y)
public IloIntExprArg IloMax(IloInt x, const IloIntExprArg y)
public IloNumExprArg IloMax(IloNum x, const IloIntExprArg y)
public IloIntExprArg IloMax(int x, const IloIntExprArg y)

Definition file: ilconcert/iloexpression.h

Returns a numeric value representing the max of numeric values.
These functions compare their arguments and return the greatest value.

964

Global function IloMax
public IloNumToNumStepFunction IloMax(const IloNumToNumStepFunction f1, const
IloNumToNumStepFunction f2)

Definition file: ilconcert/ilonumfunc.h

Creates and returns a function equal to the maximal value of its argument functions.
This operator creates and returns a function equal to the maximal value of the functions f1 and f2. That is, for all
points x in the definition interval, the resulting function is equal to the max(f1(x), f2(x)). The argument
functions f1 and f2 must be defined on the same interval. The resulting function is defined on the same interval
as the arguments. See also: IloNumToNumStepFunction.

965

Global function IloTableConstraint
public IloConstraint IloTableConstraint(const IloEnv env, const IloIntVarArray
vars, const IloIntTupleSet set, IloBool compatible)
public IloConstraint IloTableConstraint(const IloEnv env, const IloIntVar var1,
const IloIntVar var2, const IloIntTupleSet set, IloBool compatible)
public IloConstraint IloTableConstraint(const IloEnv env, const IloIntVar var1,
const IloIntVar var2, const IloIntVar var3, const IloIntTupleSet set, IloBool
compatible)
public IloConstraint IloTableConstraint(const IloEnv env, const IloIntVarArray
vars, const IloIntTernaryPredicate pred)
public IloConstraint IloTableConstraint(const IloEnv env, const IloIntVar var1,
const IloIntVar var2, const IloIntVar var3, const IloIntTernaryPredicate pred)
public IloConstraint IloTableConstraint(const IloEnv env, const IloIntVarArray
vars, const IloIntBinaryPredicate pred)
public IloConstraint IloTableConstraint(const IloEnv env, const IloIntVar var1,
const IloIntVar var2, const IloIntBinaryPredicate pred)
public IloConstraint IloTableConstraint(const IloEnv env, const IloIntVar y, const
IloIntArray a, const IloNumVar x)
public IloConstraint IloTableConstraint(const IloEnv env, const IloAnyVarArray
vars, const IloAnyTupleSet set, IloBool compatible)
public IloConstraint IloTableConstraint(const IloEnv env, const IloAnyVarArray
vars, const IloAnyTernaryPredicate pred)
public IloConstraint IloTableConstraint(const IloEnv env, const IloAnyVarArray
vars, const IloAnyBinaryPredicate pred)
public IloConstraint IloTableConstraint(const IloEnv env, const IloAnyVar y, const
IloAnyArray a, const IloNumVar x)

Definition file: ilconcert/ilotupleset.h

For IBM® ILOG® Solver: defines simple constraints that are not predefined.
This function can be used to define simple constraints that are not predefined. It creates and returns a constraint
for use in an IBM ILOG Concert Technology model. That constraint is defined for all the constrained variables in
the array vars or for the single constrained variable y.

This kind of constraint is sometimes known as an element constraint.

The semantics of that generic constraint can be specified in either one of several ways:

by a predicate; in that case, the argument pred specifies that predicate;•
by the values that satisfy the constraint; in that case, the argument set specifies the combinations of
values that satisfy the constraint, and the argument compatible must be IloTrue;

•

by the values that do not satisfy the constraint; in that case, the argument set specifies the
unsatisfactory combinations of values, and the argument compatible must be IloFalse;

•

by making the constrained variable y equal to the element of the array a at the index specified by x. In
other words, y=a[x];

•

The order of the constrained variables in the array vars is important because the same order is respected in the
predicate pred or the set. That is, IloTableConstraint passes an array of values to the member function
isTrue for a predicate or to the member function isIn for a set, where the first such value is a value of
vars[0], the second is a value of vars[1], and in general, the i-th value is a value of the constrained variable
vars[i].

To avoid exceptions, you must observe the following conditions:

If the function is called with a predicate pred as an argument, the size of the array of constrained
variables must be three.

•

The size of vars is must be the same as the size of the set.•

966

Global function IlcPathLength
public IlcConstraint IlcPathLength(IlcIntVarArray next, IlcFloatVarArray lengths,
IlcPathTransit transit, IlcInt maxNbPaths, IlcWhenEvent event=IlcWhenValue)

Definition file: ilsolver/ilcpath.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a path constraint. Like other Solver constraints, this one must be posted in
order to be taken into account.

What IlcPathLength Does Not Do

The constraint that this function returns does not determine whether there is a path between nodes in a graph;
rather, it constrains accumulations (such as flow) along a path. The filtering algorithm associated with this
constraint works on the accumulation variables in the array lengths.

If you are looking for a Hamiltonian path, for example, (that is, one in which each node is visited exactly once),
consider using instead the constraint IlcAllDiff on the variables in the array next.

What IlcPathLength Does

If we are given

a set of n nodes, known as N,•
a maximum number of paths among those nodes, maxNbPaths,•
a set of maxNbPaths nodes, known as S, for starting nodes,•
a set of maxNbPaths nodes, known as E, for ending nodes,•

then a path constraint insures that there exist at most maxNbPaths paths starting from a node in S, visiting
nodes in N, and ending at a node in E. Furthermore, each node will be visited only once, has only one
predecessor and only one successor, and each node belongs to a path that starts from a node in S and ends at a
node in E.

In particular, in the function IlcPathLength, in the arrays next and lengths,

the indices in [0, n-1] correspond to the nodes of N,•
the indices in [n, n+maxNbPaths-1] correspond to the nodes of E,•
and the indices in [n+maxNbPaths, n+2*maxNbPaths-1] correspond to the nodes of S.•

In other words, the size of next and lengths is n+2*maxNbPaths.

next[i] is the node following node i on the current path. lengths[i] is the accumulated cost from the
beginning of the path to node i. The argument transit indicates the transition function.

When you post this constraint, it insures that for all indices i in the range [0, n-1] or in [n+maxNbPaths,
n+2*maxNbPaths-1], if next[i]==j and j is in [0, n+maxNbPaths-1], then lengths[i] +
transit.transit(i,j) <= lengths[j].

When i is in the range [n, n+maxNbPaths-1], next[i] has no meaning because the nodes in E do not have
successors, of course. In this case, the constraint deals with them by setting next[i] to i+maxNbPaths (that
is, nodes of S).

The argument event can take one of two values: IlcWhenValue or IlcWhenDomain (values of the
enumeration IlcWhenEvent). The behavior of the constraint depends on the chosen value.

IlcWhenValue means that the constraint is associated with the value propagation event of each one of
the constrained variables of next.

•

IlcWhenDomain means that the constraint is associated with the domain propagation event of each
one of the constrained variables of next. This choice causes more domain reduction than the preceding
choice and in consequence takes longer to run.

•

967

If you set the number of paths to zero (maxNbPaths = 0), then you can have as many paths as needed, in case
you do not know the number in advance. In such a case, a node i is at the end of a path if
next[i]>=next.getSize(). Solver recognizes the starting node of such a path by the fact that there is no
node j such that next[j]==i.

See Also: IlcConstraint, IlcInverse, IlcPathTransit, IlcPathTransitEvalI, IlcPathTransitFunction, IlcPathTransitI

968

Global function operator==
public IloConstraint operator==(const IloAnyVar var1, const IloAnyVar var2)
public IloConstraint operator==(const IloAnyVar var1, IloAny val)
public IloConstraint operator==(IloAny val, const IloAnyVar var1)
public IloConstraint operator==(const IloAnySetVar var1, const IloAnySetVar var2)
public IloConstraint operator==(const IloAnySetVar var1, const IloAnySet set)
public IloConstraint operator==(const IloAnySet set, const IloAnySetVar var1)
public IloConstraint operator==(const IloIntSetVar var1, const IloIntSetVar var2)
public IloConstraint operator==(const IloIntSetVar var1, const IloIntSet set)
public IloConstraint operator==(const IloIntSet set, const IloIntSetVar var)

Definition file: ilconcert/iloany.h

This overloaded C++ operator constrains its two arguments to be equal. In order to be taken into account, this
constraint must be added to a model and extracted for an algorithm.

969

Global function operator==
public IloPredicate< IloObject > operator==(IloEvaluator< IloObject > left,
IloEvaluator< IloObject > right)
public IloPredicate< IloObject > operator==(IloEvaluator< IloObject > left, IloNum
threshold)
public IloPredicate< IloObject > operator==(IloNum threshold, IloEvaluator<
IloObject > right)

Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

Creates an equality predicate from two evaluators.
These operators create a new IloPredicate<IloObject> instance by comparing the value returned by an
evaluator with either that of another evaluator or a given value. The semantics of the new predicate is an equality
comparison. The first function creates a predicate which returns IloTrue if and only if the value returned by the
left evaluator is equal to the value returned by the right evaluator. The second function creates a predicate which
returns IloTrue if and only if the value returned by the left evaluator is equal to the value given as argument.
The third function creates a predicate that returns IloTrue if and only if the value given as argument is equal to
the value returned by the right evaluator.

For more information, see Selectors.

970

Global function operator==
public IloBool operator==(const IloIntervalList intervals1, const IloIntervalList
intervals2)

Definition file: ilconcert/ilointervals.h

Returns IloTrue for same interval lists.
This operator returns IloTrue if the interval lists are the same. That is, IloTrue is returned if they have the
same definition interval and if they contain the same intervals. Note that it compares the content of the interval
lists as well as the equality of implementation pointer. See also IloIntervalList.

971

Global function operator==
public IloBool operator==(const IloNumToAnySetStepFunction f1, const
IloNumToAnySetStepFunction f2)

Definition file: ilconcert/ilosetfunc.h

overloaded operator.
This operator returns IloTrue if the functions are the same. That is, IloTrue is returned if they have the same
definition interval and if they have the same value over time. Note that it compares the content of the functions as
well as the equality of implementation pointer. See also: IloNumToAnySetStepFunction.

972

Global function operator==
public IlcBool operator==(const IlcRevAny & rev, IlcAny value)
public IlcBool operator==(const IlcRevBool & rev, IlcBool bexp)
public IlcBool operator==(IlcBool bexp, const IlcRevBool & rev)
public IlcBool operator==(const IlcRevBool & rev1, const IlcRevBool & rev2)
public IlcBool operator==(const IlcRevInt & rev, IlcInt value)
public IlcBool operator==(IlcInt value, const IlcRevInt & rev)
public IlcBool operator==(const IlcRevInt & rev1, const IlcRevInt & rev2)
public IlcBool operator==(IlcAny value, const IlcRevAny & rev)
public IlcBool operator==(const IlcRevAny & rev1, const IlcRevAny & rev2)
public IlcBool operator==(const IlcRevFloat & rev, IlcFloat value)
public IlcBool operator==(IlcFloat value, const IlcRevFloat & rev)
public IlcBool operator==(const IlcRevFloat & rev1, const IlcRevFloat & rev2)
public IlcBool operator==(const IlcIntToIntStepFunction & f1, const
IlcIntToIntStepFunction & f2)

Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

This operator compares its arguments and returns IlcTrue if they are equal; otherwise, it returns IlcFalse.

See Also: IlcRevAny, IlcRevBool, IlcRevFloat, IlcRevInt, IlcIntToIntStepFunction

973

Global function operator==
public IlcConstraint operator==(const IlcIntExp exp1, const IlcIntExp exp2)
public IlcConstraint operator==(const IlcAnyExp exp1, const IlcAnyExp exp2)
public IlcConstraint operator==(const IlcAnyExp exp1, IlcAny exp2)
public IlcConstraint operator==(IlcAny exp1, const IlcAnyExp exp2)
public IlcConstraint operator==(const IlcIntExp exp1, IlcInt exp2)
public IlcConstraint operator==(IlcInt exp1, const IlcIntExp exp2)
public IlcConstraint operator==(IlcAnySetVar set1, IlcAnySetVar set2)
public IlcConstraint operator==(IlcAnySetVar set1, IlcAnySet set2)
public IlcConstraint operator==(IlcAnySet set1, IlcAnySetVar set2)
public IlcConstraint operator==(IlcIntSetVar set1, IlcIntSetVar set2)
public IlcConstraint operator==(IlcIntSet set1, IlcIntSetVar set2)
public IlcConstraint operator==(IlcIntSetVar set1, IlcIntSet set2)
public IlcConstraint operator==(const IlcFloatExp exp1, const IlcFloatExp exp2)
public IlcConstraint operator==(const IlcFloatExp exp1, IlcFloat exp2)
public IlcConstraint operator==(IlcFloat exp1, const IlcFloatExp exp2)
public IlcConstraint operator==(const IlcConstraint ct1, const IlcConstraint ct2)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This operator creates and returns an equality constraint between its arguments.

If one or both of its arguments are constrained set variables (instances of IlcAnySetVar or IlcIntSetVar or
their subclasses), then when you post this constraint, the sets are replaced by their intersection. The constraint is
stored so that any modification of one of those constrained set variables is propagated to the other.

If one or both of its arguments are constrained floating-point or integer variables, then when you post this
constraint, it will be associated with the whenRange propagation event.

When both of its arguments are constraints (instances of IlcConstraint), then the constraint that this operator
creates and returns forces its two arguments to be equivalent.

When you create a constraint, it has no effect until you post it.

See Also: IlcAnyExp, IlcAnySetVar, IlcConstraint, IlcFloatExp, IlcIntExp, IlcIntSetVar

974

Global function operator==
public IloConstraint operator==(IloNumExprArg base, IloNumExprArg expr)
public IloRange operator==(IloNumExprArg base, IloNum val)
public IloRange operator==(IloNum val, IloNumExprArg eb)

Definition file: ilconcert/ilolinear.h

Overloaded C++ operator.
This overloaded C++ operator constrains its two arguments to be equal. In order to be taken into account, this
constraint must be added to a model and extracted for an algorithm.

975

Global function operator==
public IloBool operator==(const IloNumToNumStepFunction f1, const
IloNumToNumStepFunction f2)

Definition file: ilconcert/ilonumfunc.h

Overloaded operator tests equality of numeric functions.
This operator returns IloTrue if the functions f1 and f2 are the same. That is, IloTrue is returned if they
have the same definition interval and if they have the same value over time. Note that it compares the content of
the functions as well as the equality of implementation pointer. See also: IloNumToNumStepFunction.

976

Global function IloSplit
public IloGoal IloSplit(const IloEnv env, const IloNumVarArray vars, IloBool
increaseMinFirst=IloTrue, IloNum precision=0)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a goal in a Concert Technology model. The goal attempts to assign values to
the constrained floating-point variables in the array vars. To do so, IloSplit scans the variables from the first
to the last and repeats its procedure until all the variables are bound.

At each step of the scan, if the current variable is not yet bound, IloSplit sets a choice point, replaces the
domain of the current variable by one of the halves, and examines the next variable.

For example, IloSplit starts with the first variable; if the first variable has not already been bound, IloSplit
sets a choice point, then replaces the domain of that variable by one of the halves; IloSplit then examines the
second variable. In contrast, if the first variable has already been bound, IloSplit examines the second
variable directly.

When the argument increaseMin is IloTrue, the upper half of the domain is tried first. When increaseMin
is IloFalse, the lower half of the domain is tried first.

When the optional argument precision is strictly positive, at each choice point, the domains of the variables
are reduced more than usual. This reduction is the same as the one performed by the goal
IloGenerateBounds.

This function returns an instance of IloGoal for use with the member functions
IloSolver::startNewSearch and IloSolver::solve. IloSplit is extracted to IlcSplit. An instance
of IloSolver extracts the goal that it returns as an instance of IlcGoal for use during a Solver search.

This function works on numerical variables of type Float and type Int.

For an IloNumVarArray, IloSplit is extracted to IlcSplit. IlcSplit differs from IlcGenerate in the way
the variables are chosen. IlcSplit considers first the first variable in the array then the second one and so on.
When it reaches the end of the array it starts again from the beginning.

See Also: IloDichotomize, IloGoal, IlcSplit

977

Global function IlcSplit
public IlcGoal IlcSplit(const IlcFloatVarArray vars, IlcBool
increaseMinFirst=IlcTrue, IlcFloat precSolveBounds=0)

Definition file: ilsolver/nlinflt.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a goal, a primitive in the Solver algorithms that search for solutions. This goal
binds each constrained variable in its argument vars.

IlcSplit scans the variables from the first to the last and repeats its procedure until all the variables are bound.

At each step of the scan, if the current variable is not yet bound, IlcSplit sets a choice point, replaces the
domain of the current variable by one of the halves, and examines the next variable.

The optional argument increaseMinFirst must be a Boolean value, either IlcTrue or IlcFalse. If it is
IlcTrue, then the upper half of the domain is tried first; otherwise, the lower half is tried first.

When the optional argument precSolveBounds is strictly positive, IlcSolveBounds is called before each
choice point.

For example, IlcSplit starts with the first variable; if the first variable has not already been bound, IlcSplit
sets a choice point, then replaces the domain of that variable by one of the halves; IlcSplit then examines the
second variable. In contrast, if the first variable has already been bound, IlcSplit examines the second
variable directly.

See Also: IlcBestGenerate, IlcDichotomize, IlcGenerate, IlcSolveBounds

978

Global function IloChangeValue
public IloNHood IloChangeValue(IloEnv env, IloIntVarArray vars, IloInt min, IloInt
max, const char * name=0)

Definition file: ilsolver/iimnhood.h
Include file: <ilsolver/iimls.h>

This function returns a neighborhood that can be used to change the value of one variable in vars within the
range min and max.

The neighborhood changes the value of a single variable in vars to a new value in the range min to max.
Specifically, for each variable/value pair in vars, and in the range [min, max], there is a neighbor in the
neighborhood that sets the variable to that value. The optional argument name, if supplied, becomes the name of
the returned neighborhood.

See Also: IloNHood, IloNHoodI

979

Global function IloDFSEvaluator
public IloNodeEvaluator IloDFSEvaluator(const IloEnv env)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a node evaluator which implements depth-first search in a Concert Technology
model.

This function returns an instance of IloNodeEvaluator for use with the member functions
IloSolver::startNewSearch and IloSolver::solve. An instance of IloSolver extracts the node
evaluator that it returns as an instance of IlcNodeEvaluator for use during a Solver search.

See Also: IloIDFSEvaluator, IlcNodeEvaluator, IloNodeEvaluator

980

Global function IlcAbs
public IlcIntExp IlcAbs(const IlcIntExp exp)
public IlcFloat IlcAbs(IlcFloat exp)
public IlcInt IlcAbs(IlcInt exp)
public IlcFloatExp IlcAbs(const IlcFloatExp exp)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This function creates a new constrained expression equal to the absolute value of its constrained argument exp.
The effects of this function are reversible.

If its argument is a numeric expression (for example, an ordinary floating-point number), this function simply
returns the absolute value of its argument.

See Also: IlcFloatExp, IlcIntExp

981

Global function IlcAllDiffAggregator
public IlcConstraintAggregator IlcAllDiffAggregator(IloSolver solver)

Definition file: ilsolver/ilosolverhandle.h
Include file: <ilsolver/ilosolver.h>

This aggregator groups binary constraints of difference (x != y) and recognizes alldiff constraints as much as
possible. It posts these constraints at extraction in place of every set of binary difference constraints that
represent an alldiff constraint.

982

Global function IlcRandomVarEvaluator
public IloEvaluator< IlcIntVar > IlcRandomVarEvaluator(IloEnv env)
public IloEvaluator< IlcIntVar > IlcRandomVarEvaluator(IloSolver solver)

Definition file: ilsolver/custgoal.h
Include file: <ilsolver/ilosolver.h>

This function returns an instance of the evaluator IloEvaluator<IlcIntVar>. The evaluation returns a
random value between 0 and 1.

983

Global function IlcSin
public IlcFloatExp IlcSin(const IlcFloatExp x)
public IlcFloat IlcSin(IlcFloat x)

Definition file: ilsolver/nlinflt.h
Include file: <ilsolver/ilosolver.h>

When its argument is a constrained floating-point expression, this function creates a constrained floating-point
expression (that is, an instance of IlcFloatExp or one of its subclasses) which is equal to the sine of its
argument x expressed in radians. The effects of this function are reversible.

When its argument is an unconstrained numeric value (that is, a value of type IlcFloat), this function returns
the sine of its argument.

If you want to manipulate constrained floating-point expressions in degrees, we strongly recommend that you call
the trigonometric functions on variables expressed in radians and then convert the results to degrees (rather than
declaring the constrained floating-point expressions in degrees and then converting them to radians to call the
trigonometric functions).

The reason for that advice is that the method we recommend gives more accurate results in the context of the
usual floating-point pitfalls.

See Also: IlcArcCos, IlcArcSin, IlcArcTan, IlcCos, IlcDegToRad, IlcFloatExp, IlcHalfPi, IlcPi, IlcQuarterPi,
IlcRadToDeg, IlcTan, IlcThreeHalfPi, IlcTwoPi

984

Global function IlcDegreeInformation
public IlcConstraintAggregator IlcDegreeInformation(IloSolver solver)

Definition file: ilsolver/ilosolverhandle.h
Include file: <ilsolver/ilosolver.h>

This aggregator maintains information about the dynamic degree of the domains of variables. It is required to use
the functions:

 IloInt IloSolver::getDegree(const IlcIntVar x) const;
 IloInt IloSolver::getDegree(const IloIntVar x) const;

985

Global function IlcDegreeVarEvaluator
public IloEvaluator< IlcIntVar > IlcDegreeVarEvaluator(IloEnv env)
public IloEvaluator< IlcIntVar > IlcDegreeVarEvaluator(IloSolver solver)

Definition file: ilsolver/custgoal.h
Include file: <ilsolver/ilosolver.h>

This function returns an instance of the evaluator IloEvaluator<IlcIntVar>. The evaluation returns the
result of the function call solver.getDegree(x), where x is the evaluated variable.

986

Global function IlcEqAbstraction
public IlcConstraint IlcEqAbstraction(IlcAnyVarArray ys, IlcAnyVarArray xs,
IlcAnyArray vals, IlcAny abstractValue)
public IlcConstraint IlcEqAbstraction(IlcIntVarArray ys, IlcIntVarArray xs,
IlcIntArray vals, IlcInt abstractValue)

Definition file: ilsolver/ilcany.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a constraint that ys[i] is the abstraction of xs[i] over vals with respect to
abstractValue for use during a Solver search.

The argument xs should be an array of constrained variables. The argument vals is an array of integers or
pointers. The argument abstractValue is a value that must not belong to any of the variables in xs and must
not appear in vals.

For each xs[i], Solver creates a variable corresponding to the abstraction of xs[i] with respect to vals. In
other words, for every variable in xs, xs[i], Solver creates a variable ys[i] such that the domain of ys[i] is
equal to the set made up of the value abstractValue plus all those values xs[j] that also belong to the array
vals. Then internally Solver maintains these conditions:

xs[i] is a value in the array vals if and only if ys[i] == xs[i];•
xs[i] is not a value in the array vals if and only if ys[i] == abstractValue.•

This function makes it easy to define constraints that impinge only on a particular set of values from the domains
of constrained variables.

For a function that returns an array (rather than a constraint), see IlcAbstraction.

For a constraint suitable for use in a model, see IloAbstraction.

See Also: IlcAbstraction, IlcBoolAbstraction, IloAbstraction

987

Global function IloEqSum
public IloConstraint IloEqSum(const IloEnv, const IloIntSetVar var1, const
IloIntVar var2, const IloIntToIntFunction f)
public IloConstraint IloEqSum(const IloEnv, const IloIntSetVar var1, const
IloIntVar var2, const IloIntToIntVarFunction f)

Definition file: ilconcert/iloset.h

For IBM® ILOG® Solver: a constraint forcing a variable to the sum of returned values.
This function creates and returns a constraint (an instance of IloConstraint) for use in a model. The constraint
forces var2 to the sum of the values returned by the function f when it is applied to the variable var1.

In order for the constraint to take effect, you must add it to a model with the template IloAdd or the member
function IloModel::add and extract the model for an algorithm with the member function IloAlgorithm::extract.

988

Global function IloRandomize
public IloNHood IloRandomize(IloEnv env, IloNHood nhood, IloRandom rand, const char
* name=0)

Definition file: ilsolver/iimnhood.h
Include file: <ilsolver/iimls.h>

This function returns a neighborhood that behaves as nhood, except that the neighborhood order is randomly
jumbled each time that the returned neighborhood is started. The argument rand is used to generate the
required random numbers. The optional argument name, if provided, becomes the name of the returned
neighborhood. The returned neighborhood uses memory linear in the size of the neighborhood nhood to store
the randomization order.

This type of randomized neighborhood is extremely useful in local search procedures, as neighbors with low
indices are often preferred to those with high indices simply because they are examined first. This can lead to a
stagnation in the search process, which can be avoided with the use of a randomized neighborhood.

See Also: IloRandom, IloNHood, IloNHoodI

989

Global function IlcSizeVarEvaluator
public IloEvaluator< IlcIntVar > IlcSizeVarEvaluator(IloEnv env)
public IloEvaluator< IlcIntVar > IlcSizeVarEvaluator(IloSolver solver)

Definition file: ilsolver/custgoal.h
Include file: <ilsolver/ilosolver.h>

This function returns an instance of the evaluator IloEvaluator<IlcIntVar>. The evaluation returns the
result of the function call x.getSize(), where x is the evaluated variable.

990

Global function operator!=
public IlcBool operator!=(const IlcRevAny & rev, IlcAny value)
public IlcBool operator!=(const IlcRevBool & rev, IlcBool bexp)
public IlcBool operator!=(IlcBool bexp, const IlcRevBool & rev)
public IlcBool operator!=(const IlcRevBool & rev1, const IlcRevBool & rev2)
public IlcBool operator!=(const IlcRevInt & rev, IlcInt value)
public IlcBool operator!=(IlcInt value, const IlcRevInt & rev)
public IlcBool operator!=(const IlcRevInt & rev1, const IlcRevInt & rev2)
public IlcBool operator!=(IlcAny value, const IlcRevAny & rev)
public IlcBool operator!=(const IlcRevAny & rev1, const IlcRevAny & rev2)
public IlcBool operator!=(const IlcRevFloat & rev, IlcFloat value)
public IlcBool operator!=(IlcFloat value, const IlcRevFloat & rev)
public IlcBool operator!=(const IlcRevFloat & rev1, const IlcRevFloat & rev2)

Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

This operator compares its arguments and returns IlcTrue if they are not equal; otherwise, it returns
IlcFalse.

See Also: IlcRevAny, IlcRevBool, IlcRevFloat, IlcRevInt

991

Global function operator!=
public IlcConstraint operator!=(const IlcIntExp exp1, const IlcIntExp exp2)
public IlcConstraint operator!=(const IlcAnyExp exp1, const IlcAnyExp exp2)
public IlcConstraint operator!=(const IlcAnyExp exp1, IlcAny exp2)
public IlcConstraint operator!=(IlcAny exp1, const IlcAnyExp exp2)
public IlcConstraint operator!=(const IlcIntExp exp1, IlcInt exp2)
public IlcConstraint operator!=(IlcInt exp1, const IlcIntExp exp2)
public IlcConstraint operator!=(IlcAnySetVar set1, IlcAnySetVar set2)
public IlcConstraint operator!=(IlcAnySetVar set1, IlcAnySet set2)
public IlcConstraint operator!=(IlcAnySet set1, IlcAnySetVar set2)
public IlcConstraint operator!=(IlcIntSetVar set1, IlcIntSetVar set2)
public IlcConstraint operator!=(IlcIntSet set1, IlcIntSetVar set2)
public IlcConstraint operator!=(IlcIntSetVar set1, IlcIntSet set2)
public IlcConstraint operator!=(const IlcConstraint ct1, const IlcConstraint ct2)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This operator creates and returns an inequality constraint between its arguments.

When one or both of its arguments are constrained integer expressions, then when you post it, this constraint is
associated with the whenRange propagation event.

When both of its arguments are constraints (instances of IlcConstraint), the constraint that this operator
creates and returns is the exclusive disjunction of its two arguments. That is, the two arguments will be different
from each other.

When you create a constraint, it has no effect until you post it.

See Also: IlcAnyExp, IlcAnySetVar, IlcConstraint, IlcIntExp, IlcIntSetVar, operator==, operator<=, operator>=

992

Global function operator!=
public IloDiff operator!=(IloNumExprArg arg1, IloNumExprArg arg2)
public IloConstraint operator!=(const IloAnyVar var1, const IloAnyVar var2)
public IloConstraint operator!=(const IloAnyVar var1, IloAny val)
public IloConstraint operator!=(IloAny val, const IloAnyVar var1)
public IloConstraint operator!=(const IloAnySetVar var1, const IloAnySetVar var2)
public IloConstraint operator!=(const IloAnySetVar var1, const IloAnySet set)
public IloConstraint operator!=(const IloAnySet set, const IloAnySetVar var1)
public IloDiff operator!=(IloNumExprArg arg, IloNum val)
public IloDiff operator!=(IloNum val, IloNumExprArg arg)
public IloConstraint operator!=(const IloIntSetVar var1, const IloIntSetVar var2)
public IloConstraint operator!=(const IloIntSetVar var, const IloIntSet set)
public IloConstraint operator!=(const IloIntSet set, const IloIntSetVar var)

Definition file: ilconcert/ilomodel.h

Overloaded C++ operator.
This overloaded C++ operator constrains its two arguments to be unequal (that is, different from each other). In
order to be taken into account, this constraint must be added to a model and extracted for an algorithm.

993

Global function operator!=
public IloPredicate< IloObject > operator!=(IloEvaluator< IloObject > left,
IloEvaluator< IloObject > right)
public IloPredicate< IloObject > operator!=(IloEvaluator< IloObject > left, IloNum
threshold)
public IloPredicate< IloObject > operator!=(IloNum threshold, IloEvaluator<
IloObject > right)

Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

Creates a non-equality predicate from two evaluators.
These operators create a new IloPredicate<IloObject> instance by comparing the value returned by an
evaluator with either that of another evaluator or a threshold value. The semantics of the new predicate is a
non-equality comparison. The first function creates a predicate which returns IloTrue if and only if the value
returned by the left evaluator is not equal to the value returned by the right evaluator. The second function
creates a predicate which returns IloTrue if and only if the value returned by the left evaluator is not equal to
the threshold value. The third function creates a predicate that returns IloTrue if and only if the threshold value
is not equal to the value returned by the right evaluator.

For more information, see Selectors.

994

Global function IloDestroyAll
public IloPoolProc IloDestroyAll(IloEnv env)

Definition file: ilsolver/iimiloproc.h
Include file: <ilsolver/iim.h>

Creates a processor which destroys supplied pool elements.
This function creates a processor which destroys supplied pool elements in the allocation environment env.

The following code shows a replacement goal where the entire population is destroyed and replaced by the
contents of the offspring pool:

 // Replace the entire population with offspring
 IloGoal replacementGoal =
 IloExecuteProcessor(env, population >> IloDestroyAll(env)) &&
 IloExecuteProcessor(env, offspring >> population);

995

Global function operator/
public IloNumExprArg operator/(const IloNumExprArg x, const IloNumExprArg y)
public IloNumExprArg operator/(const IloNumExprArg x, IloNum y)
public IloNumExprArg operator/(IloNum x, const IloNumExprArg y)

Definition file: ilconcert/iloexpression.h

Returns an expression equal to the quotient of its arguments.
This overloaded C++ operator returns an expression equal to the quotient of its arguments. Its arguments may be
numeric values or numeric variables. For integer division, use IloDiv.

996

Global function operator/
public IlcFloatExp operator/(const IlcFloatExp exp1, IlcFloat exp2)
public IlcIntExp operator/(const IlcIntExp exp1, IlcInt exp2)
public IlcIntExp operator/(IlcInt exp1, const IlcIntExp exp2)
public IlcIntExp operator/(const IlcIntExp exp1, const IlcIntExp exp2)
public IlcFloatExp operator/(IlcFloat exp1, const IlcFloatExp exp2)
public IlcFloatExp operator/(const IlcFloatExp exp1, const IlcFloatExp exp2)

Definition file: ilsolver/linfloat.h
Include file: <ilsolver/ilosolver.h>

This arithmetic operator divides its first argument by its second. It has been overloaded to handle constrained
expressions appropriately. The domain of the resulting expression is computed from the domains of the
combined expressions as you would expect. If the domains of the dividend and divisor include 0 (zero), then 0/0
is supported; it does not constrain the resulting expression.

See Also: IlcFloatExp, IlcIntExp

997

Global function operator/
public IloEvaluator< IloObject > operator/(IloEvaluator< IloObject > left,
IloEvaluator< IloObject > right)
public IloEvaluator< IloObject > operator/(IloEvaluator< IloObject > left, IloNum
c)
public IloEvaluator< IloObject > operator/(IloNum c, IloEvaluator< IloObject >
right)

Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

These operators create a composite IloEvaluator<IloObject> instance. The semantics of the new
evaluator are the division of the values of the component evaluators. The first function combines two evaluators,
dividing the value returned by the first by the value returned by the second. The other two functions combine an
IloNum value with an evaluator. In the first of these functions, the evaluator is the dividend and the IloNum
value is the divisor, while in the second of these functions, those roles are reversed.

For more information, see Selectors.

998

Global function IloAddConstraint
public IloGoal IloAddConstraint(const IloConstraint constraint)

Definition file: ilsolver/ilosolveri.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a goal for use in a search. This goal will extract the constraint for a solver
(an instance of IloSolver) during a search in a reversible way. In other words, it will be possible for a solver to
backtrack and cancel the constraint during the search. In particular, if the solver backtracks before the execution
of this goal, then it will also backtrack the extraction of the constraint and its addition to the model.

See Also: IloSolver

999

Global function IloDichotomize
public IloGoal IloDichotomize(const IloEnv env, const IloNumVarArray vars, const
IloChooseFloatIndex=IloChooseFirstUnboundFloat, IloBool increaseMin=IloTrue, IloNum
precision=0)
public IloGoal IloDichotomize(const IloEnv env, const IloNumVar var, IloBool
increaseMin=IloTrue, IloNum precision=0)

Definition file: ilsolver/ilosolverfloat.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a goal in a Concert Technology model. The goal attempts to assign values to
the constrained floating-point variables in the array vars. To do so, it recursively searches half the domain of
each variable in the array at a time.

If the current variable is not yet bound, IloDichotomize sets a choice point, replaces the complete domain of
the variable by one half of the domain and calls itself recursively. If failure occurs then, it replaces the domain of
the current variable by the other half, and tries again recursively.

IloDichotomize chooses the order in which to try to bind variables in the array based on the argument of type
IlcChooseFloatIndex. If no choice criterion is passed, IloDichotomize will recursively consider the first
variable in the array until it is instantiated and then proceed to the next one.

When the argument increaseMin is IloTrue, the upper half of the domain is tried first. When increaseMin
is IloFalse, the lower half of the domain is tried first.

When the optional argument precision is strictly positive, at each choice point, the domains of the variables
are reduced more than usual. This reduction is the same as the one performed by the goal
IloGenerateBounds.

This function returns an instance of IloGoal for use with the member functions
IloSolver::startNewSearch and IloSolver::solve. IloDichotomize is extracted to IlcGenerate.
An instance of IloSolver extracts the goal that it returns as an instance of IlcGoal for use during a Solver
search.

This function works on numerical variables of type Float and type Int.

For an IloNumVarArray of either type Float or type Int, IloDichotomize is extracted to IlcGenerate.
IlcGenerate takes a variable (chosen by _choose) and if uninstantiated considers the two halves of the
domain (according to increaseMinFirst. It then repeats this. If no _choose selector is given it will recursively
consider the first variable until it is instantiated and then proceed to the next one.

For an IloNumVar of either type Float or type Int, IloDichotomize is extracted to IlcInstantiate.
IlcInstantiate takes a variable (chosen by _choose) and if uninstantiated considers the two halves of the
domain (according to increaseMinFirst. It then repeats this. If no _choose selector is given it will recursively
consider the first variable until it is instantiated and then proceed to the next one.

See Also: IloGoal, IloSplit, IlcDichotomize, IlcGenerate, IlcInstantiate

1000

Global function IlcMinimizeVar
public IlcSearchSelector IlcMinimizeVar(IloSolver solver, IlcIntVar v, IlcInt
step=1)
public IlcSearchSelector IlcMinimizeVar(IloSolver solver, IlcFloatVar v, IlcFloat
step=1e-4)

Definition file: ilsolver/search.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a search selector that implements a minimization search for the variable v.

The search selector that this function creates and returns does several things:

It stores the leaf of the search tree corresponding to the optimal value of the variable v and then
reactivates this variable after the complete exploration of the search tree defined by the goal passed to
IloSelectSearch.

•

It manages the upper bound on the objective variable. As soon as a solution of value d is found, the
constraint v <= d - step is added to the solver for the remainder of the search tree.

•

Open nodes are evaluated. The evaluation of an open node is equal to the current minimum of the
variable v when the node is created. When the solver asks for an open node, it checks whether the
current upper bound on the objective is less than the evaluation of the node. If so, the node is safely
discarded.

•

See Also: IlcSearchSelector, IloFirstSolution, IloSelectSearch

1001

Global function IloGoalFail
public IloGoal IloGoalFail(const IloEnv env, IloAny label=0)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a goal that always fails. It may be useful when you are searching for all possible
ways to execute another goal. The idea is to try all possible subgoals of all choice points by calling this function
after each successful execution of the other goal, thus causing backtracking in an instance of IloSolver and
launching the search for another execution. You may optionally provide the label of a choice point as an
argument to this function.

When it takes an instance of the class IloEnv as a parameter, it returns an instance of IloGoal for use with
the member functions IloSolver::startNewSearch and IloSolver::solve. An instance of IloSolver
extracts the goal that it returns as an instance of IlcGoal for use during a Solver search.

See Also: IloGoal, IlcGoalFail

1002

Global function operator<=
public IloRange operator<=(const IloRangeBase base, IloNum val)

Definition file: ilconcert/ilolinear.h

This overloaded C++ operator constrains its first argument to be less than or equal to its second argument. In
order to be taken into account, this constraint must be added to a model and extracted for an algorithm.

1003

Global function operator<=
public IloPredicate< IloObject > operator<=(IloEvaluator< IloObject > left,
IloEvaluator< IloObject > right)
public IloPredicate< IloObject > operator<=(IloEvaluator< IloObject > left, IloNum
threshold)
public IloPredicate< IloObject > operator<=(IloNum threshold, IloEvaluator<
IloObject > right)

Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

Creates a less-than-or-equal predicate from two evaluators.
These operators create a new IloPredicate<IloObject> instance by comparing the value returned by an
evaluator with either that of another evaluator or a threshold value. The semantics of the new predicate is a
less-than-or-equal comparison. The first function creates a predicate which returns IloTrue if and only if the
value returned by the left evaluator is less than or equal to the value returned by the right evaluator. The second
function creates a predicate which returns IloTrue if and only if the value returned by the left evaluator is less
than or equal to the threshold value. Finally, the third function creates a predicate that returns IloTrue if and
only if the threshold value is less than or equal to the value returned by the right evaluator.

For more information, see Selectors.

1004

Global function operator<=
public IloConstraint operator<=(IloNumExprArg base, IloNumExprArg base2)
public IloRange operator<=(IloNumExprArg base, IloNum val)
public IloRangeBase operator<=(IloNum val, const IloNumExprArg expr)

Definition file: ilconcert/ilolinear.h

overloaded C++ operator
This overloaded C++ operator constrains its first argument to be less than or equal to its second argument. In
order to be taken into account, this constraint must be added to a model and extracted for an algorithm.

1005

Global function operator<=
public IlcBool operator<=(const IlcRevFloat & rev, IlcFloat value)
public IlcBool operator<=(const IlcRevInt & rev, IlcInt value)
public IlcBool operator<=(IlcInt value, const IlcRevInt & rev)
public IlcBool operator<=(const IlcRevInt & rev1, const IlcRevInt & rev2)
public IlcBool operator<=(IlcFloat value, const IlcRevFloat & rev)
public IlcBool operator<=(const IlcRevFloat & rev1, const IlcRevFloat & rev2)
public IlcBool operator<=(const IlcIntToIntStepFunction & f1, const
IlcIntToIntStepFunction & f2)

Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

This operator compares its arguments; if the first argument is less than or equal to the second, then it returns
IlcTrue; otherwise, it returns IlcFalse.

See Also: IlcRevFloat, IlcRevInt, IlcIntToIntStepFunction

1006

Global function operator<=
public IlcConstraint operator<=(const IlcIntExp exp1, const IlcIntExp exp2)
public IlcConstraint operator<=(const IlcIntExp exp1, IlcInt exp2)
public IlcConstraint operator<=(IlcInt exp1, const IlcIntExp exp2)
public IlcConstraint operator<=(const IlcFloatExp exp1, const IlcFloatExp exp2)
public IlcConstraint operator<=(const IlcFloatExp exp1, IlcFloat exp2)
public IlcConstraint operator<=(IlcFloat exp1, const IlcFloatExp exp2)
public IlcConstraint operator<=(const IlcConstraint ct1, const IlcConstraint ct2)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This operator creates and returns an inequality constraint between its arguments; that is, the first argument must
be less than or equal to the second.

When its arguments are constraints (instances of IlcConstraint), the constraint that this operator creates and
returns is the implication between its arguments: ct1 implies ct2. The implication operator may look strange.
This operator was selected for two reasons. First, there is no operator in C++ that looks like the conventional
implication sign, =>. One possible candidate is -> but because of its purpose in C++, that choice is too
dangerous. Second, if you recall that 1 represents IlcTrue, and 0 represents IlcFalse, then implication is the
“less than or equal to” constraint.

This constraint is associated with the whenRange propagation event after you post it if its arguments are
constrained floating-point expressions or constrained integer expressions.

When you create a constraint, it has no effect until you post it.

See Also: IlcConstraint, IlcFloatExp, IlcIntExp, IlcLeOffset, operator>=, operator!=, operator==

1007

Global function IlcImpactValueEvaluator
public IloEvaluator< IlcInt > IlcImpactValueEvaluator(IloEnv env)
public IloEvaluator< IlcInt > IlcImpactValueEvaluator(IloSolver solver)

Definition file: ilsolver/custgoal.h
Include file: <ilsolver/ilosolver.h>

This function returns an instance of the evaluator IloEvaluator<IlcInt>. The evaluation returns the result of
the function solver.getImpact(x, a), where x is the selected variable given in context and a is the value
evaluated.

1008

Global function IlcChooseMinSizeAnySet
public IlcInt IlcChooseMinSizeAnySet(const IlcAnySetVarArray vars)

Definition file: ilsolver/ilcset.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
smallest domain from among the constrained variables in the array of constrained variables, vars. If all those
variables have been bound already, then this function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseAnySetIndex, IloGenerate

1009

Global function IlcChooseFirstUnboundFloat
public IlcInt IlcChooseFirstUnboundFloat(const IlcFloatVarArray vars)

Definition file: ilsolver/linfloat.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the first unbound constrained variable that it
encounters in the array of constrained variables, vars. If all those variables have been bound already, then this
function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseFloatIndex, IlcChooseFloatIndex1, IlcChooseFloatIndex2,
IlcFloatVarArray, IloGenerate, IlcBoolVarArray

1010

Global function IlcChooseMaxMinInt
public IlcInt IlcChooseMaxMinInt(const IlcIntVarArray vars)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
greatest minimum from among the constrained variables in the array of constrained variables, vars. If all those
variables have been bound already, then this function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseIntIndex, IloGenerate

1011

Global function IloChooseMaxSizeInt
public IlcInt IloChooseMaxSizeInt(const IlcIntVarArray vars)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
greatest domain from among the constrained variables in the array of constrained variables, vars. If all those
variables have been bound already, then this function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseIntIndex, IloGenerate

1012

Global function IloExecuteProcessor
public IloGoal IloExecuteProcessor(IloEnv env, IloPoolProc proc, const char *
name=0)

Definition file: ilsolver/iimoperator.h
Include file: <ilsolver/iim.h>

Casts a pool processor into an IloGoal for execution via an instance of IloSolver.
This function returns a goal that casts a pool processor into an IloGoal for execution using an instance of
IloSolver. The parameter proc is the processor to be converted and the parameter name defines the name of
the newly created goal. The goal is allocated on environment env

1013

Global function IlcPower
public IlcFloatExp IlcPower(const IlcFloatExp x, const IlcFloat p)
public IlcFloatExp IlcPower(const IlcFloatExp x, const IlcInt p)
public IlcFloatExp IlcPower(IlcFloatExp x, IlcFloatExp p)
public IlcFloatExp IlcPower(IlcFloat x, IlcFloatExp p)
public IlcFloat IlcPower(IlcFloat x, IlcFloat p)

Definition file: ilsolver/nlinflt.h
Include file: <ilsolver/ilosolver.h>

This function creates a new constrained expression equal to the base x raised to the power p, that is, xp. If p is a
floating-point value, then x is constrained to be greater than or equal to 0 (zero). The argument p must be
different from 0 (zero). The effects of this function are reversible.

If the arguments are simply floating-point numbers (that is, they are not constrained expressions), it merely
returns an instance of IlcFloat equal to the base raised to the power. The base should be greater than 0
(zero).

The distinction between the two versions (whether the exponent is integer or floating-point) of this function is not
always handled correctly by certain C++ compilers. To cope with their vagaries, if you want to use the integer
exponent version, add L (for long) after the exponent, like this:

 IlcPower(x, 19L);

See Also: IlcExponent, IlcFloatExp, IlcMonotonicDecreasingFloatExp, IlcMonotonicIncreasingFloatExp,
IlcSquare

1014

Global function IlcAllDiff
public IlcConstraint IlcAllDiff(const IlcAnyVarArray array)
public IlcConstraint IlcAllDiff(const IlcAnyVarArray array, IlcFilterLevel level)
public IlcConstraint IlcAllDiff(const IlcIntVarArray array, IlcFilterLevel level)
public IlcConstraint IlcAllDiff(const IlcIntVarArray array)

Definition file: ilsolver/ilcany.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a constraint stating that the constrained enumerated variables of array must
take different values from each other when they are bound. In other words, this constraint extends the operator
!= for an array of constrained variables. This constraint is for use during a Solver search, for example, inside a
goal (an instance of IlcGoal) or inside a constraint (an instance of IlcConstraint). If you are looking for
similar functionality for use in an IBM® ILOG® Concert Technology model, see IloAllDiff.

If you do not explicitly state a filter level, then Solver uses the default filter level for this constraint (that is,
IlcBasic). The optional argument level may take one of the values of the enumeration IlcFilterLevel,
with the exception of the value IlcLow. See IlcFilterLevel for an explanation of filter levels and their effect
on constraint propagation.

You must post the returned constraint in order for it to be taken into account, for example, by adding it to an
instance of IloSolver.

Example

For example, if you are looking for a Hamiltonian path in a graph that contains no directed cycles, (that is, you
are looking for a path that visits each node exactly once) then IlcAllDiff with the parameter IlcExtended
applied to an array consisting of the next nodes in the graph will produce the best propagation. In fact, it will
achieve arc consistency in the search.

For more information, see IloAllDiff.

See Also: IlcAllNullIntersect, IlcAnyVarArray, IlcFilterLevel, IlcIntVarArray, IloAllDiff, operator!=

1015

Global function IloSetMax
public IloGoal IloSetMax(const IloEnv env, const IloNumVar var, IloNum value)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a goal for the constrained numeric variable var with value as its maximum.

When it takes an instance of the class IloEnv as a parameter, it returns an instance of IloGoal for use with
the member functions IloSolver::startNewSearch and IloSolver::solve. An instance of IloSolver
extracts the goal that it returns as an instance of IlcGoal for use during a Solver search.

For more information, see IloNullIntersect.

This function works on numerical variables of type Float and type Int.

See Also: IloGoal, IlcSetMax, IloNullIntersect

1016

Global function IloChooseMaxRegretMin
public IlcInt IloChooseMaxRegretMin(const IlcIntVarArray vars)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
maximal difference between the minimal possible value and the next minimal possible value from among the
constrained variables in the array of constrained variables, vars. If all those variables have been bound already,
then this function returns -1.

This function is based on the principle of least regret. Regret is the difference between what would have been the
best possible decision in a scenario and what was the actual decision.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseIntIndex, IloGenerate

1017

Global function IloAllNullIntersect
public IloConstraint IloAllNullIntersect(const IloEnv env, const IloAnySetVarArray
vars)
public IloConstraint IloAllNullIntersect(const IloEnv env, const IloIntSetVarArray
vars)

Definition file: ilconcert/iloanyset.h

For IBM® ILOG® Solver: a constraint forcing one set to have no elements in common with another set.
This function creates and returns a constraint (an instance of IloConstraint) for use in a model. The
constraint makes sure that for the sets in the array vars, the intersection of vars[i] with vars[j] will be
empty for all i and j when this constraint is satisfied.

In order for the constraint to take effect, you must add it to a model with the template IloAdd or the member
function IloModel::add and extract the model for an algorithm with the member function
IloAlgorithm::extract.

What Is Extracted

All the variables of the set or array that have been added to the model and that have not been removed from it
will be extracted when the algorithm IloSolver (documented in the IBM ILOG Solver Reference Manual)
extracts the constraint.

IloCplex does not extract this constraint.

1018

Global function IloChooseMinSizeInt
public IlcInt IloChooseMinSizeInt(const IlcIntVarArray vars)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
smallest domain from among the constrained variables in the array of constrained variables, vars. If all those
variables have been bound already, then this function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseIntIndex, IloGenerate

1019

Global function IlcSuccessRateVarEvaluator
public IloEvaluator< IlcIntVar > IlcSuccessRateVarEvaluator(IloEnv env)
public IloEvaluator< IlcIntVar > IlcSuccessRateVarEvaluator(IloSolver solver)

Definition file: ilsolver/custgoal.h
Include file: <ilsolver/ilosolver.h>

This function returns an instance of the evaluator IloEvaluator<IlcIntVar>. The evaluation returns the
result of the function solver.getSuccessRate(x), where x is the evaluated variable.

1020

Global function IloChooseMaxMaxInt
public IlcInt IloChooseMaxMaxInt(const IlcIntVarArray vars)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
greatest maximum from among the constrained variables in the array of constrained variables, vars. If all those
variables have been bound already, then this function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseIntIndex, IloGenerate

1021

Global function IloEqIntersection
public IloConstraint IloEqIntersection(const IloEnv env, const IloAnySetVar var1,
const IloAnySetVar var2, const IloAnySetVar var3)
public IloConstraint IloEqIntersection(const IloEnv env, const IloIntSetVar var1,
const IloIntSetVar var2, const IloIntSetVar var3)

Definition file: ilconcert/iloanyset.h

For IBM® ILOG® Solver: a constraint forcing the intersection of two sets to the elements of a third set.
This function creates and returns a constraint (an instance of IloConstraint) for use in Concert Technology.
The constraint forces the intersection of the sets var2 and var3 to be precisely the elements of the set
intersection.

In order for the constraint to take effect, you must add it to a model with the template IloAdd or the member
function IloModel::add and extract the model for an algorithm with the member function
IloAlgorithm::extract.

1022

Global function IloBoolAbstraction
public IloConstraint IloBoolAbstraction(const IloEnv env, const IloBoolVarArray y,
const IloIntVarArray x, const IloIntArray values)
public IloConstraint IloBoolAbstraction(const IloEnv env, const IloBoolVarArray
avars, const IloAnyVarArray vars, const IloAnyArray values)

Definition file: ilconcert/ilomodel.h

For constraint programming: creates a constraint to abstract an array of Boolean variables.
This function creates and returns a constraint that abstracts an array of constrained Boolean variables in a
model. It differs from IloAbstraction in that its y-array is an array of Boolean variables (also known as 0-1
variables or binary variables). Like IloAbstraction, for each element x[i], there is a variable y[i]
corresponding to the abstraction of x[i] with respect to an array of values. That is,

 x[i] = v with v in values if and only if y[i] = IloTrue;

 x[i] = v with v not in values if and only if y[i] = IloFalse.

This constraint maintains a many-to-one mapping that makes it possible to define constraints that impinge only
on a particular set of values from the domains of constrained variables.

Example

For simplicity, assume that an array x consists of three elements with the domains {3}, {4}, and {5}. Assume that
the values we are interested in are {4, 8, 12, 16}. Then IloBoolAbstraction produces the elements of the
array y, like this:

 X & Values Y
 --- ------- -------
 3 4 IloFalse
 4 8 --> IloTrue
 5 12 IloFalse
 16

Adding a Constraint to a Model, Extracting a Model for an Algorithm

In order for the constraint returned by IloBoolAbstraction to take effect, you must add it to a model with the
template IloAdd or the member function IloModel::add and extract the model for an algorithm with the
member function IloAlgorithm::extract.

Exceptions

If the arrays x and y are not the same size, this function throws the exception
IloBoolAbstraction::InvalidArraysException.

1023

Global function IlcAnd
public IlcGoal IlcAnd(const IlcGoal g1, const IlcGoal g2)
public IlcGoal IlcAnd(const IlcGoal g1, const IlcGoal g2, const IlcGoal g3)
public IlcGoal IlcAnd(const IlcGoal g1, const IlcGoal g2, const IlcGoal g3, const
IlcGoal g4)
public IlcGoal IlcAnd(const IlcGoal g1, const IlcGoal g2, const IlcGoal g3, const
IlcGoal g4, const IlcGoal g5)

Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

A goal can be defined in terms of other goals, called its subgoals. The function IlcAnd creates a goal composed
of a sequence of other goals (between two and five subgoals). Executing this goal executes the subgoals from
left to right. That apparent limitation of five subgoals can be overcome by several calls to the function, since
IlcAnd is associative.

If a goal is null (that is, if its implementation is null), it will be silently ignored.

Examples:

First we'll define a goal, PrintX, like this:

 ILCGOAL1(PrintX, IlcInt, value){
 IloSolver s = getSolver();
 s.out() << "PrintX: a goal with one data member" << endl;
 s.out() << value << endl;
 return 0;
 }

Then the following statements:

 s.solve(IlcAnd(PrintX(1), PrintX(2), PrintX(3));

produce the following output:

 PrintX: executing a goal with one data member
 1
 PrintX: executing a goal with one data member
 2
 PrintX: executing a goal with one data member
 3

Here's how to define a choice point with eight subgoals:

 IlcAnd(IlcAnd(g1, g2, g3, g4, g5),
 IlcAnd(g6, g7, g8));

For more information, see the concept Goal.

See Also: IlcGoal, IlcOr

1024

Global function IlcEqPartition
public IlcConstraint IlcEqPartition(IlcIntSetVar set, IlcIntSetVarArray vars)
public IlcConstraint IlcEqPartition(IlcAnySetVar set, IlcAnySetVarArray vars)

Definition file: ilsolver/ilcset.h
Include file: <ilsolver/ilosolver.h>

These functions create and return a constraint that forces the variables vars to be a partition of the variable set.
vars are a partition of set if their union is equal to set and if their intersection is null. The variable set and all
the variables in vars must be built from the same initial array.

See Also: IlcAnySetVar, IlcAnySetVarArray, IlcEqUnion, IlcIntSetVar, IlcIntSetVarArray

1025

Global function IlcIfThen
public void IlcIfThen(const IlcConstraint ct1, const IlcConstraint ct2)

Definition file: ilsolver/numi.h
Include file: <ilsolver/ilosolver.h>

This function constrains its first argument to imply its second argument. That is, if ct1 is satisfied, then ct2 will
be posted; if ct2 is violated, then the opposite of ct1 will be posted. The effects of this function are reversible.

This function is appropriate for use only during a Solver search (that is, inside a constraint or goal). If you are
looking for similar functionality as a constraint to add to a model, consider the function IloIfThen.

Implementation

Inside a goal or constraint, this function is equivalent to these lines:

 void IlcIfThen(IlcConstraint ct1, IlcConstraint ct2){
 IloSolver s = ct1.getSolver();
 s.add(!ct1 || ct2);
 }

For more information, see IloIfThen in the Concert Technology Reference Manual.

See Also: IlcConstraint, IloIfThen

1026

Global function IloNullIntersect
public IloConstraint IloNullIntersect(const IloEnv env, const IloAnySetVar var1,
const IloAnySetVar var2)
public IloConstraint IloNullIntersect(const IloEnv env, const IloAnySet var1, const
IloAnySetVar var2)
public IloConstraint IloNullIntersect(const IloEnv env, const IloAnySetVar var1,
const IloAnySet var2)
public IloConstraint IloNullIntersect(const IloEnv, const IloIntSetVar var1, const
IloIntSetVar var2)
public IloConstraint IloNullIntersect(const IloEnv, const IloIntSet var1, const
IloIntSetVar var2)
public IloConstraint IloNullIntersect(const IloEnv, const IloIntSetVar var1, const
IloIntSet var2)

Definition file: ilconcert/iloanyset.h

For IBM® ILOG® Solver: a constraint forcing one set to have no elements in common with another set.
This function creates and returns a constraint (an instance of IloConstraint) for use in a model. The
constraint forces the set var1 to have no elements in common with the set var2. In other words, the intersection
of var1 with var2 will be empty when this constraint is satisfied.

In order for the constraint to take effect, you must add it to a model with the template IloAdd or the member
function IloModel::add and extract the model for an algorithm with the member function
IloAlgorithm::extract.

1027

Global function IloEndMT
public void IloEndMT()

Definition file: ilconcert/iloenv.h

Ends multithreading.
This function ends multithreading in a Concert Technology application.

1028

Global function operator>>
public istream & operator>>(istream & in, IloNumArray & a)
public istream & operator>>(istream & in, IloIntArray & a)

Definition file: ilconcert/iloenv.h

Overloaded C++ operator redirects input.
This overloaded C++ operator directs input to an input stream.

1029

Global function operator>>
public IloPoolProc operator>>(IloPoolProc producer, IloPoolProc consumer)

Definition file: ilsolver/iimiloproc.h
Include file: <ilsolver/iim.h>

Returns a chain of two pool processors.
This chaining operator >> connects two pool processors such that the output of the first processor is connected
to the input of the second.

When the composite processor is asked to produce output, it passes this request directly to the consumer
processor. The consumer will then pass a request for input to the producer. The producer will then ask for input
from any processor which may afterwards be connected to its left. On receiving the input the producer will
process it, and pass the output to the consumer. The consumer will then in turn process its input and pass the
result into its output pool where it can be picked up by the original processor who asked for the composite
operator to produce output.

1030

Global function IlcLimitSearch
public IlcGoal IlcLimitSearch(IlcGoal goal, IlcSearchLimit searchLimit)

Definition file: ilsolver/search.h
Include file: <ilsolver/ilosolver.h>

This function returns a goal that limits the exploration of the search tree defined by goal with the limit indicated
by searchLimit. All nodes explored after that limit has been met are discarded.

See Also: IlcSearchLimit

1031

Global function IlcMTMinimizeVar
public IlcSearchSelector IlcMTMinimizeVar(IloSolver solver, IlcIntVar v, IlcInt
step=1)
public IlcSearchSelector IlcMTMinimizeVar(IloSolver solver, IlcFloatVar v, IlcFloat
step=1e-4)

Definition file: ilsolver/search.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a search selector that implements a minimization search for multithreaded
search according to the variable v.

If a variable v appears in more than one agent (that is, more than one worker), then every copy of the variable v
must have the same name.

The search selector that this function creates and returns does several things:

It stores the leaf of the search tree corresponding to the optimal value of the variable v and then
reactivates this variable after the complete exploration of the search tree defined by the goal passed to
IlcSelectSearch.

•

It manages the upper bound on the objective variable. As soon as a solution of value d is found, the
constraint v <= d - step is added to the solver for the remainder of the search tree.

•

Open nodes are evaluated. The evaluation of an open node is equal to the current minimum of the
variable v when the node is created. When the solver asks for an open node, it checks whether the
current upper bound on the objective is less than the evaluation of the node. If so, the node is safely
discarded.

•

Implementation

Here we describe important parts of the implementation of this function because it returns an instance of
IlcSearchSelector. If you implement your own search selector, then these implementation details may help
you determine how your search selector is likely to be used and how it should be implemented.

This function works with the implementation class IlcMTMinimizeIntVarI for constrained variables that are
instances of IlcIntVar. The implementation class IlcMTMinimizeIntVarI is a subclass of
IlcMTSearchSelectorI. The multithread class IlcMTMinimizeIntVarI differs from its sequential
correspondent IlcMinimizeIntVarI in the following ways:

IlcMTMinimizeIntVarI has an additional data member, _vars of type IlcIntVarRef. This
data member stores a reference to all copies of the same variable to facilitate direct, simple access to
any one of the copies.

•

The constructor of IlcMTMinimizeIntVarI stores the variable with its name when the variable is
constructed. When the variable is duplicated, the constructor reads the corresponding reference (
IlcIntVarRef) in this way:

•

See Also: IlcMTSearchSelectorI

1032

Global function operator>
public IloConstraint operator>(IloNumExprArg base, IloNumExprArg base2)
public IloConstraint operator>(IloNumExprArg base, IloNum val)
public IloConstraint operator>(IloNum val, IloNumExprArg eb)
public IloConstraint operator>(IloIntExprArg base, IloIntExprArg base2)
public IloConstraint operator>(IloIntExprArg base, IloInt val)
public IloConstraint operator>(IloInt val, IloIntExprArg eb)

Definition file: ilconcert/ilolinear.h

overloaded C++ operator
This overloaded C++ operator constrains its first argument to be strictly greater than its second argument. In
order to be taken into account, this constraint must be added to a model and extracted for an algorithm.

1033

Global function operator>
public IlcConstraint operator>(const IlcIntExp exp1, const IlcIntExp exp2)
public IlcConstraint operator>(const IlcIntExp exp1, IlcInt exp2)
public IlcConstraint operator>(IlcInt exp1, const IlcIntExp exp2)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This operator creates and returns an inequality constraint between its arguments (that is, the first must be strictly
greater than the second).

When its arguments are constrained integer expressions, then when you post it, this constraint is associated with
the whenRange propagation event.

When you create a constraint, it has no effect until you post it.

See Also: IlcConstraint, IlcIntExp, IlcLeOffset, operator<, operator<=, operator>=, operator!=, operator==

1034

Global function operator>
public IloPredicate< IloObject > operator>(IloEvaluator< IloObject > left,
IloEvaluator< IloObject > right)
public IloPredicate< IloObject > operator>(IloEvaluator< IloObject > left, IloNum
threshold)
public IloPredicate< IloObject > operator>(IloNum threshold, IloEvaluator<
IloObject > right)

Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

Creates a greater-than predicate from two evaluators.
These operators create a new IloPredicate<IloObject> instance by comparing the value returned by an
evaluator with either that of another evaluator or a threshold value. The semantics of the new predicate are a
greater-than comparison. The first function creates a predicate which returns IloTrue if and only if the value
returned by the left evaluator is greater than the value returned by the right evaluator. The second function
creates a predicate which returns IloTrue if and only if the value returned by the left evaluator is greater than
the threshold value. The third function creates a predicate that returns IloTrue if and only if the threshold value
is greater than the value returned by the right evaluator.

For more information, see Selectors.

1035

Global function operator>
public IlcBool operator>(const IlcRevFloat & rev, IlcFloat value)
public IlcBool operator>(const IlcRevInt & rev, IlcInt value)
public IlcBool operator>(IlcInt value, const IlcRevInt & rev)
public IlcBool operator>(const IlcRevInt & rev1, const IlcRevInt & rev2)
public IlcBool operator>(IlcFloat value, const IlcRevFloat & rev)
public IlcBool operator>(const IlcRevFloat & rev1, const IlcRevFloat & rev2)

Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

This operator compares its arguments; if the first argument is strictly greater than the second, then it returns
IlcTrue; otherwise, it returns IlcFalse.

See Also: IlcRevFloat, IlcRevInt

1036

Global function IloUpdate
public IloGoal IloUpdate(IloEnv env, IloMultipleEvaluator< IloObject, IloContainer
> me, IloContainer container)

Definition file: ilsolver/iimgoal.h
Include file: <ilsolver/iim.h>

A goal to update a multiple evaluator.
This goal is nothing more than a way to execute IloMultipleEvaluator::update in a goal, which can be
particularly convenient when building goals using genetic algorithms.

The following code prepends a goal which makes sure a evaluator of the population is up-to-date before
embarking on a new genetic algorithm generation.

 generationGoal = IloUpdate(env, parentEvaluator, population)
 && generationGoal;

See Also: IloMultipleEvaluator

1037

Global function IlcChooseFirstUnboundIntSet
public IlcInt IlcChooseFirstUnboundIntSet(const IlcIntSetVarArray vars)

Definition file: ilsolver/intset.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the first unbound constrained variable that it
encounters in the array of constrained variables, vars. If all those variables have been bound already, then this
function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseIntSetIndex, IloGenerate

1038

Global function IloSample
public IloNHood IloSample(IloEnv env, IloNHood nhood, IloNum proportion, const char
* name=0)
public IloNHood IloSample(IloEnv env, IloNHood nhood, IloNum proportion, IloRandom
rand, const char * name=0)

Definition file: ilsolver/iimnhood.h
Include file: <ilsolver/iimls.h>

This function creates a neighborhood that samples a proportion proportion of neighborhood nhood at each
move. Normally, the sampling is done in a round-robin fashion. For example, if the proportion was set to 0.4, then
on the first move the neighborhood would correspond to the first 40% of the neighbors of nhood. On the next
move, the neighborhood would be the next 40% of the neighbors of nhood. On the third move, the neighborhood
would be the last 20% followed by the first 20% of the neighbors of nhood.

This round-robin behavior can be replaced with a completely random behavior by suppling the option argument
rand. In this case, at each move (assuming proportion=0.4) 40% of the neighbors of nhood are sampled
entirely at random by drawing random numbers from rand.

The optional argument name, if provided, becomes the name of the newly created neighborhood.

In such a neighborhood, the member function IloNHood::define defines the appropriate neighbor from
nhood neighborhood using the sampling rule; the functions IloNHood::notify and
IloNHood#notifyOther perform the corresponding actions using the same sampling rule; the function
IloNHood::start calls start for nhood; and the function IloNHood::getSize returns proportion times
nhood.getSize(), rounded to the nearest integer.

This type of neighborhood can be useful for simple diversification of search in a “best accept” context, where the
best move is taken at each step of the search. By limiting the neighborhood at each step, it becomes possible to
move out of local minima more easily. Such a neighborhood can also be useful in conjunction with tabu search.

See Also: IloNHood

1039

Global function IlcAllMinDistance
public IlcConstraint IlcAllMinDistance(IlcIntVarArray vars, IlcInt k)
public IlcConstraint IlcAllMinDistance(IlcIntVarArray vars, IlcInt k,
IlcFilterLevel level)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

The function IlcAllMinDistance creates and returns a constraint. When that constraint is posted, it insures
that the absolute distance between any pair of variables in the array vars will be greater than or equal to k. This
function is for use during a Solver search, for example, inside a goal (an instance of IlcGoal) or inside a
constraint (an instance of IlcConstraint). If you are looking for similar functionality for use in an Concert
Technology model, consider IloAllMinDistance documented in the Concert API.

If you do not explicitly state a filter level, then Solver uses the default filter level for this constraint (that is,
IlcBasic). The optional argument level can take one of the two values: IlcBasic or IlcExtended. The
domain reduction during propagation depends on the value of level. See IlcFilterLevel for an explanation
of filter levels and their effect on constraint propagation.

IlcBasic

IlcBasic is the lowest value.

IlcExtended

IlcExtended causes more domain reduction than IlcBasic; it also takes longer to run.

For more information, see IloAllMinDistance.

See Also: IlcAbs, IlcFilterLevel, IloAllMinDistance

1040

Global function IloBestGenerate
public IloGoal IloBestGenerate(const IloEnv env, const IloNumVarArray vars, const
IloChooseIntIndex=IloChooseFirstUnboundInt)
public IloGoal IloBestGenerate(const IloEnv env, const IloAnyVarArray vars, const
IloChooseAnyIndex=IloChooseFirstUnboundAny)
public IloGoal IloBestGenerate(const IloEnv env, const IloAnyVarArray vars, const
IloChooseAnyIndex choose, const IloAnyValueSelector select)
public IloGoal IloBestGenerate(const IloEnv env, const IloNumVarArray vars, const
IloChooseIntIndex choose, const IloIntValueSelector select)
public IloGoal IloBestGenerate(const IloEnv env, const IloNumSetVarArray vars,
const IloChooseIntSetIndex=IloChooseFirstUnboundIntSet)
public IloGoal IloBestGenerate(const IloEnv env, const IloAnySetVarArray vars,
const IloChooseAnySetIndex=IloChooseFirstUnboundAnySet)
public IloGoal IloBestGenerate(const IloEnv env, const IloNumSetVarArray v, const
IloChooseIntSetIndex i, const IloIntSetValueSelector s)
public IloGoal IloBestGenerate(const IloEnv env, const IloAnySetVarArray v, const
IloChooseAnySetIndex i, const IloAnySetValueSelector s)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a goal, using the criterion indicated by choose and the search selector
indicated by select. This goal is part of the enumeration algorithm available in an instance of IloSolver. It
enables you to set parameters for choosing the order in which variables are tried during the search for a solution.

This goal binds each constrained variable in its argument vars. It does so by calling the function
IloBestInstantiate for each of them. You control the order in which the variables are bound by means of
the criterion choose. The argument select is passed to each call to IloBestInstantiate, if that argument is
provided.

The goal returned by this function differs from the goal returned by IloGenerate: this one calls
IloBestInstantiate, which tries only one value for each variable, whereas IloGenerate calls
IloInstantiate, which may try all values in the domain of each variable.

When this function takes an instance of the class IloEnv as a parameter, it returns an instance of IloGoal for
use with the member functions IloSolver::startNewSearch and IloSolver::solve. An instance of
IloSolver extracts the goal that it returns as an instance of IlcGoal for use during a Solver search.

This function works on numerical variables of type Float and type Int.

See Also: IloBestInstantiate, IloGenerate, IloGoal, IloInstantiate, IlcBestGenerate

1041

Global function IlcUnion
public IlcIntSetVar IlcUnion(IlcIntSetVar set, IlcIntToIntExpFunction F)
public IlcIntSetVar IlcUnion(IlcAnySetVar set, IlcAnyToIntExpFunction F)
public IlcAnySetVar IlcUnion(IlcIntSetVar set, IlcIntToAnyExpFunction F)
public IlcAnySetVar IlcUnion(IlcAnySetVar set, IlcAnyToAnyExpFunction F)

Definition file: ilsolver/setcst.h
Include file: <ilsolver/ilosolver.h>

These functions create and return a new set variable that represents the union of the values returned by the
function F when applied to the elements of the constrained set variable set. The values returned by F are
constrained expressions or variables (that is, instances of IlcIntExp, IlcIntVar, IlcAnyExp, or
IlcAnyVar).

Adding These Constrained Variables

You may add these constrained variables only during a Solver search; that is, inside a goal (an instance of
IlcGoal) or inside a constraint (an instance of IlcConstraint). If you are looking for similar functionality in a
constraint to add to a model, see IloEqUnion.

Example

These IlcUnion functions can be useful to express constraints on the values of a constrained attribute of a
computed set of objects.

For example, if we have to connect cards to a rack, and if for each card we also have to connect one sensor, it is
possible to express constraints on the set of sensors that are connected to the cards in the rack.

 class Sensor {
 public:
 const char* _name;
 Sensor(IloSolver s, const char* name);
 };
 class Card {
 public:
 IlcAnyVar _sensor;
 Card(IloSolver s, IlcAnyArray sensors)
 :_sensor(s, sensors) {}
 };
 //Access to the sensor connected to a card
 IlcAnyToAnyExpFunction sensorsAccess;
 //The possible sensors
 IlcAnyArray sensors(s, 4);
 sensors[0] = new (s.getHeap()) Sensor(s, "Sensor#0");
 sensors[1] = new (s.getHeap()) Sensor(s, "Sensor#1");
 sensors[2] = new (s.getHeap()) Sensor(s, "Sensor#2");
 sensors[3] = new (s.getHeap()) Sensor(s, "Sensor#3");
 //The possible cards
 IlcAnyArray cards(m, 3);
 cards[0] = new (s.getHeap()) Card(s, sensors);
 cards[1] = new (s.getHeap()) Card(s, sensors);
 cards[2] = new (s.getHeap()) Card(s, sensors);
 //The cards connected to the rack
 IlcAnySetVar rackCards(s, cards, "Rack#1");
 //The sensors connected to the rack
 IlcAnySetVar rackSensors = IlcUnion(rackCards, sensorAccess);

Here is how we add these constrained variables inside a constraint:

 //At most 10 sensors in the rack
 s.add(IlcCard(rackSensors) <= 10);
 //sensor#1 in a card of the rack
 s.add(IlcMember(sensors[1], rackSensors));

Of course, it is possible to compose several levels of indirection. For example, we can post constraints on the
processes assigned to the sensors which are connected to the cards that are plugged into a rack:

1042

 IlcUnion(IlcUnion(rackCards, sensorAccess), processAccess);

See Also: IlcAnySetVar, IlcEqUnion, IlcIntSetVar, IloEqUnion

1043

Global function IlcUnion
public IlcIntSetVar IlcUnion(IlcIntSetVar index, IlcIntToIntSetVarFunction f)
public IlcIntSetVar IlcUnion(IlcAnySetVar set, IlcAnyToIntSetVarFunction F)
public IlcAnySetVar IlcUnion(IlcIntSetVar set, IlcIntToAnySetVarFunction F)
public IlcAnySetVar IlcUnion(IlcAnySetVar set, IlcAnyToAnySetVarFunction F)

Definition file: ilsolver/setcst.h
Include file: <ilsolver/ilosolver.h>

These functions create and return a new set variable that represents the union of the values returned by the
function F when applied to the elements of the constrained set variable set. The values returned by F are
constrained set variables (IlcIntSetVar, IlcAnySetVar). These IlcUnion functions can be useful to
express constraints on the values of a constrained set attribute of a computed set of objects.

Adding These Constrained Variables

You may add these constrained variables only during a Solver search; that is, inside a goal (an instance of
IlcGoal) or inside a constraint (an instance of IlcConstraint). If you are looking for similar functionality in a
constraint to add to a model, see IloEqUnion.

Example

For example, if we have to connect cards to a rack, and if for each card we also have to connect a set of sensors,
it is possible to express constraints on the set of sensors that are connected to the cards in the rack.

 class Sensor {
 public:
 const char* _name;
 Sensor(IloSolver s, const char* name);
 };
 class Card {
 public:
 IlcAnySetVar _sensors;
 Card(IloSolver s, IlcAnyArray sensors)
 :_sensors(s, sensors) {}
 };
 //Access to the sensor connected to a card
 IlcAnyToAnySetVarFunction sensorsAccess;
 //The possible sensors
 IlcAnyArray sensors(s, 4);
 sensors[0] = new (s.getHeap()) Sensor(s, "Sensor#0");
 sensors[1] = new (s.getHeap()) Sensor(s, "Sensor#1");
 sensors[2] = new (s.getHeap()) Sensor(s, "Sensor#2");
 sensors[3] = new (s.getHeap()) Sensor(s, "Sensor#3");
 //The possible cards
 IlcAnyArray cards(s, 3);
 cards[0] = new (s.getHeap()) Card(s, sensors);
 cards[1] = new (s.getHeap()) Card(s, sensors);
 cards[2] = new (s.getHeap()) Card(s, sensors);
 //The cards connected to the rack
 IlcAnySetVar rackCards(s, cards, "Rack#1");
 //The sensors connected to the rack
 IlcAnySetVar rackSensors = IlcUnion(rackCards, sensorAccess);

Here is how we add these constrained variables inside a constraint:

 //At most 10 sensors in the rack
 s.add(IlcCard(rackSensors) <= 10);
 //sensor#1 in a card of the rack
 s.add(IlcMember(sensors[1], rackSensors));

Of course, it is possible to compose several levels of indirection. For example, we can access the processes
assigned to the sensors which are connected to the cards that are plugged into a rack:

 IlcUnion(IlcUnion(rackCards, sensorAccess), processAccess);

1044

See Also: IloEqUnion, IlcAnySetVar, IlcEqUnion, IlcIntSetVar

1045

Global function IlcUnion
public IlcIntSetVar IlcUnion(IlcIntSetVar set, IlcIntToIntFunction F)
public IlcIntSetVar IlcUnion(IlcAnySetVar set, IlcAnyToIntFunction F)
public IlcAnySetVar IlcUnion(IlcIntSetVar set, IlcIntToAnyFunction F)
public IlcAnySetVar IlcUnion(IlcAnySetVar set, IlcAnyToAnyFunction F)

Definition file: ilsolver/setcst.h
Include file: <ilsolver/ilosolver.h>

These functions create and return a new set variable that represents the union of the values returned by the
function F when applied to the elements of the constrained set variable set. These functions can be useful to get
and constrain the values of an attribute of a computed set of objects.

Adding These Constrained Variables

You may add these constrained variables only during a Solver search; that is, inside a goal (an instance of
IlcGoal) or inside a constraint (an instance of IlcConstraint). If you are looking for similar functionality in a
constraint to add to a model, see IloEqUnion documented in the ILOG Concert Technology Reference Manual.

Example

For example, if we have to assign crew members to a flight and if each crew member has an attribute that
describes the language he or she speaks, with this IlcUnion expression, it is possible to post constraints on the
set of languages that must be spoken for the flight, like this:

 enum Language {English, French, German};
 class CrewMember {
 public:
 const char* _name;
 IlcInt _language;
 CrewMember(IloSolver s, const char* name, Language lang);
 };
 //Access to the language spoken by a crew member
 IlcAnyToIntFunction languages;
 //Possible crew members
 IlcAnyArray c(s, 3);
 c[0]= new (s.getHeap()) CrewMember(s, "John", English);
 c[1]= new (s.getHeap()) CrewMember(s, "Kai", German);
 c[2]= new (s.getHeap()) CrewMember(s, "Julie", French);
 //The flight
 IlcAnySetVar crew(s, c, "NewYork-Paris");
 //The languages spoken on this flight
 IlcIntSetVar langs = IlcUnion(crew, languages);
 //At least 2 different languages spoken
 s.add(IlcCard(langs) >= 2);
 //French must be spoken
 s.add(IlcMember(French, langs));

See Also: IlcAnySetVar, IlcEqUnion, IlcIntSetVar

1046

Global function IlcUnion
public IlcIntSetVar IlcUnion(IlcIntSetVar var1, IlcIntSetVar var2)
public IlcAnySetVar IlcUnion(IlcAnySetVar var1, IlcAnySetVar var2)
public IlcIntSetVar IlcUnion(IlcIntSetVarArray vars)
public IlcAnySetVar IlcUnion(IlcAnySetVarArray vars)

Definition file: ilsolver/intset.h
Include file: <ilsolver/ilosolver.h>

These functions:

Return the union of var1 and var2. The parameters var1 and var2 must be built on the same
initial array.

•

Create and return a new set variable that represents the union of the variables vars. All the variables
in vars must be built on the same initial array.

•

Adding These Constrained Variables

You may add these constrained variables only during a Solver search; that is, inside a goal (an instance of
IlcGoal) or inside a constraint (an instance of IlcConstraint). If you are looking for similar functionality in a
constraint to add to a model, see IloEqUnion documented in the Concert Technology Reference Manual.

See Also: IlcAnySetVar, IlcAnySetVarArray, IlcCard, IlcEqUnion, IlcIntSetVar, IlcIntSetVarArray

1047

Global function IloStoreBestSolution
public IlcGoal IloStoreBestSolution(IloSolver solver, IloSolution solution)
public IloGoal IloStoreBestSolution(IloEnv env, IloSolution solution)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function returns a goal which stores solution using solution.store(solver), if the value of the
objective of solution is worse than the currently instantiated value. What is considered “worse” depends on the
sense of the objective added to solution.

For more information, see IloSolution.

See Also: IloRestoreSolution, IloSolution, IloStoreSolution, IloUpdateBestSolution

1048

Global function IloFlip
public IloNHood IloFlip(IloEnv env, IloIntVarArray vars, const char * name=0)

Definition file: ilsolver/iimnhood.h
Include file: <ilsolver/iimls.h>

This function returns a neighborhood that can be used to “flip” variables in a local search problem involving
binary variables (those with a value of 0 or 1).

The function defines a neighborhood that flips the value of a single variable in vars. Specifically, for each
variable in vars, there is a neighbor in the neighborhood that flips its value (a change from 0 to 1, or from 1 to 0).
The optional argument name, if supplied, becomes the name of the returned neighborhood.

See Also: IloNHood, IloNHoodI

1049

Global function IlcSizeOverDegreeVarEvaluator
public IloEvaluator< IlcIntVar > IlcSizeOverDegreeVarEvaluator(IloEnv env)
public IloEvaluator< IlcIntVar > IlcSizeOverDegreeVarEvaluator(IloSolver solver)

Definition file: ilsolver/custgoal.h
Include file: <ilsolver/ilosolver.h>

This function returns an instance of the evaluator IloEvaluator<IlcIntVar>. The evaluation returns the
floating-point value IlcFloat(x.getSize()) / solver.getDegree(x), where x is the evaluated variable.

1050

Global function IloGoalTrue
public IloGoal IloGoalTrue(const IloEnv env)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a goal that always succeeds. It is one of the predefined building blocks (or
search primitives) in an IBM® ILOG® Solver search.

This function returns an instance of IloGoal for use with the member functions
IloSolver::startNewSearch and IloSolver::solve. An instance of IloSolver extracts the goal that it
returns as an instance of IlcGoal for use during a Solver search.

See Also: IloGoal

1051

Global function IloMonotonicDecreasingNumExpr
public IloNumExprArg IloMonotonicDecreasingNumExpr(IloNumExprArg node,
IloNumFunction f, IloNumFunction invf)

Definition file: ilconcert/iloexpression.h

For constraint programming: creates a new constrained expression equal to f(x).
This function creates a new constrained expression equal to f(x). The arguments f and invf must be pointers
to functions of type IloNumFunction. Those two functions must be inverses of one another, that is,

invf(f(x)) == x and f(invf(x)) == x for all x.

Those two functions must also be monotonically decreasing.

IloMonotonicDecreasingNumExpr does not verify whether f and invf are inverses of one another. It does
not verify whether they are monotonically decreasing either.

The effects of this function are reversible.

1052

Global function IloChooseMaxMinInt
public IlcInt IloChooseMaxMinInt(const IlcIntVarArray vars)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
greatest minimum from among the constrained variables in the array of constrained variables, vars. If all those
variables have been bound already, then this function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseIntIndex, IloGenerate

1053

Global function ilc_trace_stop_here
public void ilc_trace_stop_here()

Definition file: ilsolver/ilcerr.h
Include file: <ilsolver/ilosolver.h>

The function ilc_trace_stop_here is useful when you are running a Solver program from a debugger. With
it, you can execute the constraint propagation step by step. A breakpoint can be set for the function
ilc_trace_stop_here to stop the program. You do that in this way if you are using dbx, for example:

 (dbx) stop in ilc_trace_stop_here

On some platforms, such as Windows NT, for example, you must prefix an underscore to the name of the
function, like this: _ilc_trace_stop_here.

See Also: IlcTrace, IlcTraceI

1054

Global function IlcSubsetEq
public IlcConstraint IlcSubsetEq(IlcAnySetVar a, IlcAnySetVar b)
public IlcConstraint IlcSubsetEq(IlcAnySet a, IlcAnySetVar b)
public IlcConstraint IlcSubsetEq(IlcAnySetVar a, IlcAnySet b)
public IlcConstraint IlcSubsetEq(IlcIntSetVar a, IlcIntSetVar b)
public IlcConstraint IlcSubsetEq(IlcIntSet a, IlcIntSetVar b)
public IlcConstraint IlcSubsetEq(IlcIntSetVar a, IlcIntSet b)

Definition file: ilsolver/ilcset.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a constraint that a must be a subset of b. (The set a may be equal to the set b.)
To set a strict subset constraint, use the following statement:

 s.add(IlcSubset(set1, set2));

Adding These Constraints

You may add these constraints only during a Solver search; that is, inside a goal (an instance of IlcGoal) or
inside a constraint (an instance of IlcConstraint). If you are looking for similar functionality in a constraint to
add to a model, see IloEqUnion.

See Also: IlcAnySetVar, IlcConstraint, IlcIntSetVar, IlcSubset, IloEqUnion

1055

Global function IlcMonotonicDecreasingFloatExp
public IlcFloatExp IlcMonotonicDecreasingFloatExp(IlcFloatExp x, IlcFloatFunction
f, IlcFloatFunction invf, const char * functionName=0)

Definition file: ilsolver/nlinflt.h
Include file: <ilsolver/ilosolver.h>

This function creates a new constrained expression equal to f(x). The arguments f and invf must be pointers
to functions of type IlcFloatFunction. Those two functions must be inverses of one another, that is,

invf(f(x)) == x and f(invf(x)) == x for all x.

Those two functions must also be monotonically decreasing.

IlcMonotonicDecreasingFloatExp does not verify whether f and invf are inverses of one another. It
does not verify whether they are monotonically decreasing either.

The effects of this function are reversible.

See Also: IlcExponent, IlcFloatExp, IlcFloatFunction, IlcLog, IlcMonotonicIncreasingFloatExp, IlcPower,
IlcSquare

1056

Global function IlcGoalFail
public IlcGoal IlcGoalFail(IloSolver solver, IlcAny label=0)

Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

The function IlcGoalFail calls IloSolver::fail(label) in its body. Thus it always fails.

Example

This function can be used to search for all possible ways to execute a goal. The idea is to try all possible
subgoals of all choice points by calling IlcGoalFail after each successful goal execution. Then Solver
backtracks and searches for another execution.

Thus if the statements

 solver.solve(IlcGoal);

search for one successful execution of the goal, goal, then the statement

 solver.solve(IlcAnd(goal, IlcGoalFail(solver)));

search for all possible executions of goal.

See Also: IlcOr, ILCGOAL0, IlcGoal, IloSolver, IlcAnd

1057

Global function operator&&
public IlcConstraint operator&&(const IlcConstraint ct1, const IlcConstraint ct2)

Definition file: ilsolver/numi.h
Include file: <ilsolver/ilosolver.h>

This operator creates and returns a constraint: the conjunction of its arguments.

When you create a constraint, it has no effect until you post it.

See Also: IlcConstraint

1058

Global function operator&&
public IloAnd operator&&(const IloConstraint constraint1, const IloConstraint
constraint2)

Definition file: ilconcert/ilomodel.h

Overloaded C++ operator for conjunctive constraints.
This overloaded C++ operator creates a conjunctive constraint that represents the conjunction of its two
arguments. The constraint can represent a conjunction of two constraints; of a constraint and another
conjunction; or of two conjunctions. In order to be taken into account, this constraint must be added to a model
and extracted by an algorithm, such as IloCplex or IloSolver.

1059

Global function operator&&
public IloPoolOperator operator&&(IloPoolOperator op1, IloPoolOperator op2)

Definition file: ilsolver/iimoperator.h
Include file: <ilsolver/iim.h>

Produces the conjunction of two operators.
This operator produces a conjunction operator which, when invoked, invokes op1. If successful, it invokes op2. If
op2 then succeeds, the conjunction is deemed to have succeeded.

Note

If no prototype is set on the conjunction, then its prototype is defined to be one from either op1 or op2. If both
suboperators have prototypes defined, that of op2 is chosen.

1060

Global function operator&&
public IloPredicate< IloObject > operator&&(IloPredicate< IloObject > left,
IloPredicate< IloObject > right)

Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

Creates a predicate performing AND on two predicates.
This operator creates a new IloPredicate<IloObject> instance from two IloPredicate<IloObject>
instances. The semantics of the combination of the component predicates is that of logical AND. That is, the
combined predicate will return IloTrue for a particular object if and only if both the component predicates return
IloTrue for that object.

For more information, see Selectors.

1061

Global function IlcArcCos
public IlcFloatExp IlcArcCos(const IlcFloatExp x)
public IlcFloat IlcArcCos(IlcFloat x)

Definition file: ilsolver/nlinflt.h
Include file: <ilsolver/ilosolver.h>

When its argument is a constrained floating-point expression, this function creates a constrained floating-point
expression (that is, an instance of IlcFloatExp or one of its subclasses) which is equal to the arc cosine (in the
range 0 to Pi) of its argument x expressed in radians. The effects of this function are reversible.

When its argument is an unconstrained numeric value (that is, a value of type IlcFloat), this function returns
the arc cosine of its argument.

If you want to manipulate constrained floating-point expressions in degrees, we strongly recommend that you call
the trigonometric functions on variables expressed in radians and then convert the results to degrees (rather than
declaring the constrained floating-point expressions in degrees and then converting them to radians to call the
trigonometric functions).

The reason for that advice is that the method we recommend gives more accurate results in the context of the
usual floating-point pitfalls. See the IBM ILOG Solver User's Manual for an explanation of those pitfalls.

See Also: IlcArcSin, IlcArcTan, IlcCos, IlcDegToRad, IlcFloatExp, IlcHalfPi, IlcQuarterPi, IlcPi, IlcRadToDeg,
IlcSin, IlcTan, IlcThreeHalfPi, IlcTwoPi

1062

Global function IlcDegToRad
public IlcFloat IlcDegToRad(IlcFloat angle)

Definition file: ilsolver/nlinflt.h

This function converts an angle expressed in degrees to an angle expressed in radians.

If you want to manipulate constrained floating-point expressions in degrees, we strongly recommend that you call
the trigonometric functions on variables expressed in radians and then convert the results to degrees (rather than
declaring the constrained floating-point expressions in degrees and then converting them to radians to call the
trigonometric functions).

The reason for that advice is that the method we recommend gives more accurate results in the context of the
usual floating-point pitfalls. See the IBM ILOG Solver User's Manual for an explanation of those pitfalls.

Good practice:

 IloSolver s;
 IlcFloatVar x(s,0,IlcPi);
 IlcFloatExp y=IlcSin(x);
 // ... constraints on x and y ...

1063

Global function IlcGoalTrue
public IlcGoal IlcGoalTrue(IloSolver solver)

Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a goal that always succeeds. It is one of the predefined building blocks (or
search primitives) in an IBM® ILOG® Solver search.

This function returns an instance of IlcGoal for use with the member functions
IloSolver::startNewSearch and IloSolver::solve.

See Also: IlcGoal

1064

Global function IloMin
public IloNumToNumStepFunction IloMin(const IloNumToNumStepFunction f1, const
IloNumToNumStepFunction f2)

Definition file: ilconcert/ilonumfunc.h

Creates and returns a function equal to the minimal value of its argument functions.
This operator creates and returns a function equal to the minimal value of the functions f1 and f2. That is, for all
points x in the definition interval, the resulting function is equal to the min(f1(x), f2(x)). The argument
functions f1 and f2 must be defined on the same interval. The resulting function is defined on the same interval
as the arguments. See also: IloNumToNumStepFunction.

1065

Global function IloMin
public IloNum IloMin(const IloNumArray vals)
public IloNum IloMin(IloNum val1, IloNum val2)
public IloInt IloMin(const IloIntArray vals)
public IloNumExprArg IloMin(const IloNumExprArray exprs)
public IloIntExprArg IloMin(const IloIntExprArray exprs)
public IloNumExprArg IloMin(const IloNumExprArg x, const IloNumExprArg y)
public IloNumExprArg IloMin(const IloNumExprArg x, IloNum y)
public IloNumExprArg IloMin(IloNum x, const IloNumExprArg y)
public IloIntExprArg IloMin(const IloIntExprArg x, const IloIntExprArg y)
public IloIntExprArg IloMin(const IloIntExprArg x, IloInt y)
public IloNumExprArg IloMin(const IloIntExprArg x, IloNum y)
public IloIntExprArg IloMin(const IloIntExprArg x, int y)
public IloIntExprArg IloMin(IloInt x, const IloIntExprArg y)
public IloNumExprArg IloMin(IloNum x, const IloIntExprArg y)
public IloIntExprArg IloMin(int x, const IloIntExprArg y)

Definition file: ilconcert/iloexpression.h

Returns a numeric value representing the min of numeric values.
These functions compare their arguments and return the least value. When its argument is an array, the function
compares the elements of that array and returns the least value.

1066

Global function IloMin
public IloEvaluator< IloObject > IloMin(IloEvaluator< IloObject > left,
IloEvaluator< IloObject > right)
public IloEvaluator< IloObject > IloMin(IloEvaluator< IloObject > left, IloNum c)
public IloEvaluator< IloObject > IloMin(IloNum c, IloEvaluator< IloObject > right)

Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

These functions create a composite IloEvaluator<IloObject> instance. These evaluators return the least
value of the float values returned by the two evaluators given as argument, or the least value between the float
value and the evaluator given as argument.

For more information, see Selectors.

1067

Global function IlcSolveBounds
public void IlcSolveBounds(IlcFloatVar var, IlcFloat prec=.1)
public void IlcSolveBounds(IlcFloatVarArray array, IlcFloat prec=.1)

Definition file: ilsolver/nlinflt.h
Include file: <ilsolver/ilosolver.h>

The function IlcSolveBounds efficiently reduces the domain of a constrained floating-point expression,
regardless of whether the expression is written in canonical or factored form. One version of this function works
on a constrained floating-point variable (that is, an instance of IlcFloatVar); the other works on an array of
constrained floating-point variables (that is, an instance of IlcFloatVarArray).

This function reduces the domain of its argument by propagating constraints more than usual. It checks whether
the boundaries of the domain of its argument are consistent with all the constraints posted on its argument. If that
is not the case, the interval will be reduced until the boundaries become consistent up to the relative precision
indicated by the argument prec. That argument can be used to control the execution of this function. If prec is
small, the new domain computed by IlcSolveBounds will be smaller. However, the smaller prec, the longer
IlcSolveBounds will take.

For more information, see the concept Propagation.

See Also: IlcFloatVar, IlcFloatVarArray

1068

Global function IlcEqIntersection
public IlcConstraint IlcEqIntersection(IlcIntSetVar intersection, IlcIntSetVar
var1, IlcIntSetVar var2)
public IlcConstraint IlcEqIntersection(IlcAnySetVar intersection, IlcAnySetVar
var1, IlcAnySetVar var2)
public IlcConstraint IlcEqIntersection(IlcIntSetVar intersection, IlcIntSetVarArray
vars)
public IlcConstraint IlcEqIntersection(IlcAnySetVar intersection, IlcAnySetVarArray
vars)

Definition file: ilsolver/intset.h
Include file: <ilsolver/ilosolver.h>

These functions:

create and return a constraint that forces the intersection of var1 and var2 to be equal to the value
of intersection;

•

create and return a constraint that forces the intersection of the vars variables to be equal to the value
of intersection. The variable intersection and all the variables in vars must be built on the
same initial array.

•

See Also: IlcAnySetVar, IlcAnySetVarArray, IlcConstraint, IlcIntersection, IlcIntSetVar, IlcIntSetVarArray

1069

Global function IloPartition
public IloConstraint IloPartition(const IloEnv env, const IloAnySetVarArray vars)
public IloConstraint IloPartition(const IloEnv env, const IloAnySetVarArray vars,
const IloAnyArray vals)
public IloConstraint IloPartition(const IloEnv, const IloIntSetVarArray vars)
public IloConstraint IloPartition(const IloEnv, const IloIntSetVarArray vars, const
IloIntArray vals)

Definition file: ilconcert/iloanyset.h

For IBM® ILOG® Solver: a constraint forcing each value of an array to be required by one set variable in an
array.
This function creates and returns a constraint. When that constraint is posted, it insures that each value of the
array vals will be required by exactly one set variable of the array vars.

If the argument vals is not mentioned, the array vals is formed by the union of the values involved in the set
variables of vars.

In this context, a constraint will be posted after it has been added to a model and extracted by a solver (for
example, an instance of IloSolver documented in the IBM ILOG Solver Reference Manual).

1070

Global function IlcPartition
public IlcConstraint IlcPartition(IlcIntSetVarArray vars, IlcIntArray val)
public IlcConstraint IlcPartition(IlcAnySetVarArray vars, IlcAnyArray val,
IlcFilterLevel level)
public IlcConstraint IlcPartition(IlcAnySetVarArray vars, IlcAnyArray val)
public IlcConstraint IlcPartition(IlcIntSetVarArray vars, IlcIntArray val,
IlcFilterLevel level)
public IlcConstraint IlcPartition(IlcAnySetVarArray vars, IlcFilterLevel level)
public IlcConstraint IlcPartition(IlcAnySetVarArray vars)
public IlcConstraint IlcPartition(IlcIntSetVarArray vars, IlcFilterLevel level)
public IlcConstraint IlcPartition(IlcIntSetVarArray vars)

Definition file: ilsolver/ilcset.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a constraint. When that constraint is posted, it insures that each value of the
array val will be required by exactly one set variable of the array vars.

If the argument val is not mentioned, the array val is formed by the union of the values involved in the set
variables of vars.

If you do not explicitly state a filter level, then Solver uses the default filter level for this type of constraint. The
optional argument level can take one of the two values: IlcBasic, IlcExtended. The domain reduction
during propagation depends on the value of level.

IlcBasic is the lowest value.

IlcExtended causes more domain reduction than IlcBasic; it also takes longer to run.

See IlcFilterLevel for an explanation of filter levels and their effect on constraint propagation.

See Also: IlcFilterLevel, IlcAllNullIntersect

1071

Global function IlcLogicAggregator
public IlcConstraintAggregator IlcLogicAggregator(IloSolver solver)

Definition file: ilsolver/ilosolverhandle.h
Include file: <ilsolver/ilosolver.h>

This aggregator groups logical constraints of the form:

 IloIfThen(ct1, ct1)

and

 ct1 == ct2

where ct1 and ct2 are constraints of the type x == a or x != a (where x is an IloIntVar and a an integer
constant). It improves propagation efficiency and reduces memory consumption on these constraints.

1072

Global function IlcBFSEvaluator
public IlcNodeEvaluator IlcBFSEvaluator(IloSolver solver, IlcIntVar var, IlcInt
step=1)
public IlcNodeEvaluator IlcBFSEvaluator(IloSolver solver, IlcFloatVar var, IlcFloat
step=1.0)

Definition file: ilsolver/search.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a node evaluator that implements a best first search.

Nodes are evaluated according to the variable var. As long as the minimum of var is no greater than the
minimum of the evaluation of each open nodes + step, the search continues as a depth-first search. If the
opposite is true, the goal manager postpones the evaluation of the current node and jumps to the best open
node.

See Also: IlcNodeEvaluator

1073

Global function IloFailLimit
public IloSearchLimit IloFailLimit(const IloEnv env, IloInt maxNbFails)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a search limit that limits the exploration of the search tree during the search for
a solution by stopping the search when a given number of failures (maxNbFails) have occurred. A fail limit is
useful in a goal, such as the one returned by the function IloLimitSearch or other instances of IloGoal, to
control the exploration of the search tree.

When this function takes an instance of the class IloEnv as a parameter, it returns an instance of
IloSearchLimit for use with the member functions IloSolver::startNewSearch and
IloSolver::solve. An instance of IloSolver extracts the search limit that it returns as an instance of
IlcSearchLimit for use during a Solver search.

See Also: IloGoal, IloLimitSearch, IloSearchLimit, IlcSearchLimit

1074

Global function IloAndGoal
public IloGoal IloAndGoal(const IloEnv, const IloGoal, const IloGoal)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a goal for use in a search. This goal represents the conjunction (logical AND) of
its two goal arguments. You can replace the code IloAndGoal(env, g1, g2) with g1 && g2.

When it takes an instance of the class IloEnv as a parameter, it returns an instance of IloGoal for use with
the member functions IloSolver::startNewSearch and IloSolver::solve. An instance of IloSolver
extracts the goal that it returns as an instance of IlcGoal for use during a Solver search.

See Also: IlcGoal, IloGoal, IloSolver, IlcAnd

1075

Global function IlcIntersection
public IlcIntSetVar IlcIntersection(IlcIntSetVar var1, IlcIntSetVar var2)
public IlcAnySetVar IlcIntersection(IlcAnySetVar var1, IlcAnySetVar var2)
public IlcIntSetVar IlcIntersection(IlcIntSetVarArray vars)
public IlcAnySetVar IlcIntersection(IlcAnySetVarArray vars)

Definition file: ilsolver/intset.h
Include file: <ilsolver/ilosolver.h>

These functions:

return the intersection of var1 and var2;•
create and return a new set variable that represents the intersection of the vars variables. All the
variables in vars must be built on the same initial array.

•

See Also: IlcAnySetVar, IlcAnySetVarArray, IlcEqIntersection, IlcIntSetVar, IlcIntSetVarArray

1076

Global function IlcChooseMaxRegretMin
public IlcInt IlcChooseMaxRegretMin(const IlcIntVarArray vars)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
maximal difference between the minimal possible value and the next minimal possible value from among the
constrained variables in the array of constrained variables, vars. If all those variables have been bound already,
then this function returns -1.

This function is based on the principle of least regret. Regret is the difference between what would have been the
best possible decision in a scenario and what was the actual decision.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseIntIndex, IloGenerate

1077

Global function IloEnableNANDetection
public void IloEnableNANDetection()

Definition file: ilconcert/ilosys.h

Enables NaN (Not a number) detection.
This function enables your application to detect invalid data as a NaN (Not a number).

1078

Global function IloSubsetEq
public IloConstraint IloSubsetEq(const IloEnv env, const IloAnySetVar var1, const
IloAnySetVar var2)
public IloConstraint IloSubsetEq(const IloEnv env, const IloAnySet var1, const
IloAnySetVar var2)
public IloConstraint IloSubsetEq(const IloEnv env, const IloAnySetVar var1, const
IloAnySet var2)
public IloConstraint IloSubsetEq(const IloEnv, const IloIntSetVar var1, const
IloIntSetVar var2)
public IloConstraint IloSubsetEq(const IloEnv, const IloIntSet var1, const
IloIntSetVar var2)
public IloConstraint IloSubsetEq(const IloEnv, const IloIntSetVar var1, const
IloIntSet var2)

Definition file: ilconcert/iloanyset.h

For IBM® ILOG® Solver: a constraint forcing one set to be a subset of or equivalent to another set.
This function creates and returns a constraint (an instance of IloConstraint) for use in a model. That
constraint forces var1 to be a subset of var2. (The set var1 may be equal to var2; every element of var1 is
also an element of var2.)

In order for the constraint to take effect, you must add it to a model with the template IloAdd or the member
function IloModel::add and extract the model for an algorithm with the member function
IloAlgorithm::extract.

1079

Global function IloIDFSEvaluator
public IloNodeEvaluator IloIDFSEvaluator(const IloEnv env, IloInt max)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a node evaluator that implements limited interleaved depth-first search in a
Concert Technology model. (The function IloDFSEvaluator implements conventional depth-first search.)

The parameter max is the maximum depth where this evaluator is active. Below this depth, it acts as a depth-first
search evaluator.

This function returns an instance of IloNodeEvaluator for use with the member functions
IloSolver::startNewSearch and IloSolver::solve. An instance of IloSolver extracts the node
evaluator that it returns as an instance of IlcNodeEvaluator for use during a Solver search.

See Also: IloDFSEvaluator, IlcNodeEvaluator, IloNodeEvaluator

1080

Global function IloScanDeltas
public IloGoal IloScanDeltas(IloEnv env, IloSolution solution, IloSolutionArray
deltas)
public IloGoal IloScanDeltas(IloEnv env, IloSolution solution, IloSolutionArray
deltas, IloNeighborIdentifier nid)
public IlcGoal IloScanDeltas(IloSolver solver, IloSolution solution,
IloSolutionArray deltas)
public IlcGoal IloScanDeltas(IloSolver solver, IloSolution solution,
IloSolutionArray deltas, IlcNeighborIdentifier nid)

Definition file: ilsolver/iimls.h
Include file: <ilsolver/iimls.h>

These goals scan the array of deltas deltas. These goals test the set of deltas using solution as the current
solution reference. Each leaf node of the above goals corresponds to the application of a different delta from
deltas to the solution solution.

If specified, nid is used to hold the index (in the array of deltas) of the deltas, and the delta itself instantiated at
the current leaf. This can be used to communicate with other goals such as IloNotify and IloTest.

If any applied delta is to be saved back to solution, this must be done explicitly via
solution.store(solver), or using IloStoreSolution.

For more information, see IloSolution in the Concert Technology Reference Manual.

See Also: IloApplyMetaHeuristic, IloNotify, IloScanNHood, IloStoreSolution, IloTest

1081

Global function IloSBSEvaluator
public IloNodeEvaluator IloSBSEvaluator(const IloEnv env, IloInt step=4, IloInt
maxDiscrepancy=IloIntMax)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a node evaluator (an instance of IloNodeEvaluator) that implements
Slice-Based Search in a Concert Technology model.

A discrepancy is a right move in the path from the root of the search tree to the current node. The intuition is that
a left move (the first goal in an IlcOr goal) is better than a right move (the second goal). Thus, by limiting the
number of discrepancies, we try to stick close to the search heuristics (the goals to search for a solution of the
problem being solved).

This implementation of Slice-Based Search divides the search tree into slices. Slice k corresponds to the open
nodes of the search tree with a number of discrepancies between k*step and (k + 1)*step - 1. The node
evaluator indicates that the search should explore slice 0, then slice 1, then slice 2, and so on.

This evaluator also discards nodes with a number of discrepancies greater than maxDiscrepancy. This
technique is appropriate with constraint programming and generally offers better performance than depth-first
search.

This function returns an instance of IloNodeEvaluator for use with the member functions
IloSolver::startNewSearch and IloSolver::solve. An instance of IloSolver extracts the node
evaluator that it returns as an instance of IlcNodeEvaluator for use during a Solver search.

See Also: IloApply, IloNodeEvaluator, IlcNodeEvaluator

1082

Global function IloRound
public IloNum IloRound(IloNum val)

Definition file: ilconcert/iloenv.h

Computes the nearest integer value to its argument.
This function computes the nearest integer value to val. Halfway cases are rounded to the larger in magnitude.

Examples:

 IloRound(IloInfinity) is IloInfinity.
 IloRound(-IloInfinity) is -IloInfinity.
 IloRound(0) is 0.
 IloRound(0.4) is 0.
 IloRound(-0.4) is 0.
 IloRound(0.5) is 1.
 IloRound(-0.5) is -1.
 IloRound(0.6) is 1.
 IloRound(-0.6) is -1.
 IloRound(1e300) is 1e300.
 IloRound(1.0000001e6) is 1e6.
 IloRound(1.0000005e6) is 1.000001e6.

1083

Global function IloInstantiate
public IloGoal IloInstantiate(const IloEnv env, const IloNumVar var)
public IloGoal IloInstantiate(const IloEnv env, const IloAnyVar var, const
IloAnyValueSelector select)
public IloGoal IloInstantiate(const IloEnv env, const IloAnyVar var)
public IloGoal IloInstantiate(const IloEnv env, const IloNumVar var, const
IloIntValueSelector select)
public IloGoal IloInstantiate(const IloEnv env, const IloIntSetVar var)
public IloGoal IloInstantiate(const IloEnv env, const IloAnySetVar var)
public IloGoal IloInstantiate(const IloEnv env, const IloIntSetVar var, const
IloIntSetValueSelector select)
public IloGoal IloInstantiate(const IloEnv env, const IloAnySetVar var, const
IloAnySetValueSelector select)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a goal, using the optional numeric selector. If the variable has already been
bound to a value, then this goal does nothing and succeeds. Otherwise, it sets a choice point and then alters the
domain of the variable in recursive attempts to bind the variable. The way the goal alters the domain of the
variable depends on the class of the variable and its optional selector. In other words, it tries values of the
variable in an intelligent attempt to find a solution.

This function returns an instance of IloGoal for use with the member functions
IloSolver::startNewSearch and IloSolver::solve. An instance of IloSolver extracts the goal that it
returns as an instance of IlcGoal for use during a Solver search.

When the Variable Is an Integer or Enumerated Variable

When the variable is an integer variable or an enumerated variable, this function tries all values in the domain of
the variable in the order indicated by the selector, removing those that fail at each trial, setting a choice point, and
trying again recursively.

When the Variable Is a Set Variable

When the variable is a set variable, this function uses the selector to choose an element from the possible
elements of the set to add to the required set of the variable. By default, the selector tries integers in ascending
order. If failure occurs, the element is removed from the possible set, and another element is tried.

Differs from IloBestInstantiate

This goal differs from the goal returned by the function IloBestInstantiate because this goal will try all
values in the domain of the variable according to the selector until it succeeds or until the domain is exhausted,
whereas IloBestInstantiate tries only one.

Note

Though this function works on numerical variables of type Float and type Int, it is preferable to use the
function IloDichotomize with floating-point variables.

<ilsolver/ilosolverint.>

<ilsolver/ilosolverset.>

See Also: IloBestInstantiate, IloDichotomize, IloGenerate, IloGoal, IlcInstantiate

1084

Global function IloUnion
public IloNumToAnySetStepFunction IloUnion(const IloNumToAnySetStepFunction f1,
const IloNumToAnySetStepFunction f2)

Definition file: ilconcert/ilosetfunc.h

Represents a function equal to the union of the functions.
This operator creates and returns a function equal to the union of the functions f1 and f2. The argument
functions f1 and f2 must be defined on the same interval. The resulting function is defined on the same interval
as the arguments. See also: IloNumToAnySetStepFunction.

1085

Global function IloUnion
public IloIntervalList IloUnion(const IloIntervalList intervals1, const
IloIntervalList intervals2)

Definition file: ilconcert/ilointervals.h

Creates and returns the union of two interval lists.
This operator creates and returns an interval list equal to the union of the interval lists intervals1 and
intervals2. The arguments intervals1 and intervals2 must be defined on the same interval. An
instance of IloException is thrown if two intervals with different types overlap. The resulting interval list is
defined on the same interval as the arguments. See also: IloIntervalList.

1086

Global function IlcImpactVarEvaluator
public IloEvaluator< IlcIntVar > IlcImpactVarEvaluator(IloEnv env)
public IloEvaluator< IlcIntVar > IlcImpactVarEvaluator(IloSolver solver)

Definition file: ilsolver/custgoal.h
Include file: <ilsolver/ilosolver.h>

This function returns an instance of the evaluator IloEvaluator<IlcIntVar>. The evaluation returns the
result of the function solver.getImpact(x), where x is the evaluated variable.

1087

Global function IloScanNHood
public IloGoal IloScanNHood(IloEnv env, IloNHood nhood, IloSolution solution,
IloInt minChunk=IloMinChunk, IloInt maxChunk=IloMaxChunk)
public IloGoal IloScanNHood(IloEnv env, IloNHood nhood, IloSolution solution,
IloSolutionDeltaCheck check, IloInt minChunk=IloMinChunk, IloInt
maxChunk=IloMaxChunk)
public IloGoal IloScanNHood(IloEnv env, IloNHood nhood, IloNeighborIdentifier nid,
IloSolution solution, IloInt minChunk=IloMinChunk, IloInt maxChunk=IloMaxChunk)
public IloGoal IloScanNHood(IloEnv env, IloNHood nhood, IloNeighborIdentifier nid,
IloSolution solution, IloSolutionDeltaCheck check, IloInt minChunk=IloMinChunk,
IloInt maxChunk=IloMaxChunk)
public IlcGoal IloScanNHood(IloSolver solver, IloNHood nhood, IloSolution solution,
IloInt minChunk=IloMinChunk, IloInt maxChunk=IloMaxChunk)
public IlcGoal IloScanNHood(IloSolver solver, IloNHood nhood, IloSolution solution,
IloSolutionDeltaCheck check, IloInt minChunk=IloMinChunk, IloInt
maxChunk=IloMaxChunk)
public IlcGoal IloScanNHood(IloSolver solver, IloNHood nhood, IlcNeighborIdentifier
nid, IloSolution solution, IloInt minChunk=IloMinChunk, IloInt
maxChunk=IloMaxChunk)
public IlcGoal IloScanNHood(IloSolver solver, IloNHood nhood, IlcNeighborIdentifier
nid, IloSolution solution, IloSolutionDeltaCheck check, IloInt
minChunk=IloMinChunk, IloInt maxChunk=IloMaxChunk)

Definition file: ilsolver/iimls.h
Include file: <ilsolver/iimls.h>

These goals scan the neighborhood nhood. Each leaf node of these goals corresponds to a legal neighbor of the
current solution solution.

If specified, nid is used to hold the index and the delta of the neighbor (as with respect to nh.define)
instantiated at the current leaf. This can be used to communicate with other goals such as IloNotify and
IloTest.

If any applied delta is to be saved back to solution, this must be done explicitly via
solution.store(solver), or using IloStoreSolution.

The argument check is used to filter out any unwanted solution deltas received from the neighborhood before
instantiation of constrained variables begins. Meta-heuristics automatically supply such a checking object via
IloMetaHeuristic::getDeltaCheck. If check is not specified, no additional checking is performed.

See Also: IloApplyMetaHeuristic, IloMetaHeuristic, IloNHood, IloNotify, IloScanDeltas, IloSingleMove

1088

Global function IlcChooseMinSizeAny
public IlcInt IlcChooseMinSizeAny(const IlcAnyVarArray vars)

Definition file: ilsolver/ilcany.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
smallest domain from among the constrained variables in the array of constrained variables, vars. If all those
variables have been bound already, then this function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IlcAnyVarArray, IlcChooseAnyIndex

1089

Global function IloChooseMinMinInt
public IlcInt IloChooseMinMinInt(const IlcIntVarArray vars)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
smallest minimum from among the constrained variables in the array of constrained variables, vars. If all those
variables have been bound already, then this function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseIntIndex, IloGenerate

1090

Global function IloRemoveValue
public IloGoal IloRemoveValue(const IloEnv env, const IloNumVar var, IloNum value)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a goal in the environment of the constrained numeric variable var and removes
value as a possible value from the domain of var.

When it takes an instance of the class IloEnv as a parameter, it returns an instance of IloGoal for use with
the member functions IloSolver::startNewSearch and IloSolver::solve. An instance of IloSolver
extracts the goal that it returns as an instance of IlcGoal for use during a Solver search.

For more information, see IloNullIntersect.

This function works only on numerical variables of type Int.

See Also: IloGoal, IlcRemoveValue, IloNullIntersect

1091

Global function IlcElementNEq
public IlcConstraint IlcElementNEq(IlcInt val, IlcIntArray array, IlcIntVar index,
const char * name=0)

Definition file: ilsolver/ilcint.h
Include file: ilsolver/ilosolver.h

This function creates and returns a constraint that forces the the value val to not be equal to the element index
of the array array.

1092

Global function IlcElementNEq
public IlcConstraint IlcElementNEq(IlcIntVar var, IlcIntArray array, IlcIntVar
index, const char * name=0)

Definition file: ilsolver/ilcint.h
Include file: ilsolver/ilosolver.h

This function creates and returns a constraint that forces the the variable var to not be equal to the element
index of the array array.

1093

Global function IlcChooseMaxSizeInt
public IlcInt IlcChooseMaxSizeInt(const IlcIntVarArray vars)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
greatest domain from among the constrained variables in the array of constrained variables, vars. If all those
variables have been bound already, then this function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseIntIndex, IloGenerate

1094

Global function IlcRadToDeg
public IlcFloat IlcRadToDeg(IlcFloat angle)

Definition file: ilsolver/nlinflt.h

This function converts an angle expressed in radians to an angle expressed in degrees.

If you want to manipulate constrained floating-point expressions in degrees, we strongly recommend that you call
the trigonometric functions on variables expressed in radians and then convert the results to degrees (rather than
declaring the constrained floating-point expressions in degrees and then converting them to radians to call the
trigonometric functions).

The reason for that advice is that the method we recommend gives more accurate results in the context of the
usual floating-point pitfalls. See the IBM ILOG Solver User's Manual for an explanation of those pitfalls.

Good practice:

 IloSolver s;
 IlcFloatVar x(s, 0,IlcPi);
 IlcFloatExp y=IlcSin(x);
 // ... constraints on x and y ...

1095

Global function ilc_fail_stop_here
public void ilc_fail_stop_here()

Definition file: ilsolver/ilcerr.h
Include file: <ilsolver/ilosolver.h>

The function ilc_fail_stop_here is useful when you are running a Solver program from a debugger, such as
dbx: you can stop the execution on failures. You can set a breakpoint for the function ilc_fail_stop_here to
stop the program after each failure. You do that like this:

 (dbx) stop in ilc_fail_stop_here

On some platforms, such as Windows NT, for example, you must prefix an underscore to the name of the
function, like this: _ilc_fail_stop_here.

For more information, see the concept Failure.

See Also: IlcTrace, IlcTraceI

1096

Global function IlcLog
public IlcFloatExp IlcLog(const IlcFloatExp x)
public IlcFloat IlcLog(IlcFloat x)

Definition file: ilsolver/nlinflt.h
Include file: <ilsolver/ilosolver.h>

This function creates a new constrained expression equal to the natural logarithm of the constrained expression
x. The effects of this function are reversible. If its argument is an instance of IlcFloat, it simply returns the
natural logarithm of its argument. With Solver, you should use this function instead of the standard C++ function
log.

See Also: IlcExponent, IlcFloatExp, IlcMonotonicIncreasingFloatExp

1097

Global function IloScalProd
public IloNum IloScalProd(const IloNumArray vals1, const IloNumArray vals2)
public IloNum IloScalProd(const IloIntArray vals1, const IloNumArray vals2)
public IloNum IloScalProd(const IloNumArray vals1, const IloIntArray vals2)

Definition file: ilconcert/iloexpression.h

Represents the scalar product.
This function returns a numeric value representing the scalar product of numeric values in the arrays vals1 and
vals2.

1098

Global function IloScalProd
public IloNumExprArg IloScalProd(const IloNumArray values, const IloNumVarArray
vars)
public IloNumExprArg IloScalProd(const IloNumVarArray vars, const IloNumArray
values)
public IloNumExprArg IloScalProd(const IloNumArray values, const IloIntVarArray
vars)
public IloNumExprArg IloScalProd(const IloIntVarArray vars, const IloNumArray
values)
public IloNumExprArg IloScalProd(const IloIntArray values, const IloNumVarArray
vars)
public IloNumExprArg IloScalProd(const IloNumVarArray vars, const IloIntArray
values)
public IloNumExprArg IloScalProd(const IloNumExprArray leftExprs, const
IloNumExprArray rightExprs)

Definition file: ilconcert/iloexpression.h

Represents the scalar product.
This function returns an instance of IloNumExprArg, the internal building block of an expression, representing
the scalar product of the variables in the arrays vars and values or the arrays leftExprs and rightExprs.

1099

Global function IloScalProd
public IloIntExprArg IloScalProd(const IloIntArray values, const IloIntVarArray
vars)
public IloIntExprArg IloScalProd(const IloIntVarArray vars, const IloIntArray
values)
public IloIntExprArg IloScalProd(const IloIntExprArray leftExprs, const
IloIntExprArray rightExprs)

Definition file: ilconcert/iloexpression.h

Represents the scalar product.
This function returns an instance of IloIntExprArg, the internal building block of an integer expression,
representing the scalar product of the variables in the arrays vars and values or the arrays leftExprs and
rightExprs.

1100

Global function IloScalProd
public IloInt IloScalProd(const IloIntArray vals1, const IloIntArray vals2)

Definition file: ilconcert/iloexpression.h

Represents the scalar product.
This function returns an integer value representing the scalar product of integer values in the arrays vals1 and
vals2.

1101

Global function IloSolutionEvaluator
public IloEvaluator< IloSolution > IloSolutionEvaluator(IloEnv env, IloBoolVar var)

Definition file: ilsolver/iimpooleval.h
Include file: <ilsolver/iim.h>

Evaluates the value of a Boolean variable in a solution.
This function creates a solution evaluator on the environment env which evaluates the value of the Boolean
variable var in the solution to be evaluated.

1102

Global function IloSolutionEvaluator
public IloEvaluator< IloSolution > IloSolutionEvaluator(IloEnv env)

Definition file: ilsolver/iimpooleval.h
Include file: <ilsolver/iim.h>

Evaluates the objective value of a solution.
This function creates a solution evaluator on the environment env which evaluates the objective value of a
solution.

1103

Global function IloSolutionEvaluator
public IloEvaluator< IloSolution > IloSolutionEvaluator(IloEnv env, IloNumVar var)

Definition file: ilsolver/iimpooleval.h
Include file: <ilsolver/iim.h>

Evaluates the value of a floating point variable in a solution.
This function creates a solution evaluator on the environment env which evaluates the value of the floating-point
variable var in the solution to be evaluated.

1104

Global function IloSolutionEvaluator
public IloEvaluator< IloSolution > IloSolutionEvaluator(IloEnv env, IloIntVar var)

Definition file: ilsolver/iimpooleval.h
Include file: <ilsolver/iim.h>

Evaluates the value of an integer variable in a solution.
This function creates a solution evaluator on the environment env which evaluates the value of the integer
variable var in the solution to be evaluated.

1105

Global function operator>=
public IloConstraint operator>=(IloNumExprArg base, IloNumExprArg base2)
public IloRange operator>=(IloNumExprArg expr, IloNum val)
public IloRange operator>=(IloNum val, IloNumExprArg eb)

Definition file: ilconcert/ilolinear.h

overloaded C++ operator
This overloaded C++ operator constrains its first argument to be greater than or equal to its second argument. In
order to be taken into account, this constraint must be added to a model and extracted for an algorithm.

1106

Global function operator>=
public IlcBool operator>=(const IlcRevFloat & rev, IlcFloat value)
public IlcBool operator>=(const IlcRevInt & rev, IlcInt value)
public IlcBool operator>=(IlcInt value, const IlcRevInt & rev)
public IlcBool operator>=(const IlcRevInt & rev1, const IlcRevInt & rev2)
public IlcBool operator>=(IlcFloat value, const IlcRevFloat & rev)
public IlcBool operator>=(const IlcRevFloat & rev1, const IlcRevFloat & rev2)
public IlcBool operator>=(const IlcIntToIntStepFunction & f1, const
IlcIntToIntStepFunction & f2)

Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

This operator compares its arguments; if the first argument is greater than or equal to the second, then it returns
IlcTrue; otherwise, it returns IlcFalse.

See Also: IlcRevFloat, IlcRevInt, IlcIntToIntStepFunction

1107

Global function operator>=
public IloPredicate< IloObject > operator>=(IloEvaluator< IloObject > left,
IloEvaluator< IloObject > right)
public IloPredicate< IloObject > operator>=(IloEvaluator< IloObject > left, IloNum
threshold)
public IloPredicate< IloObject > operator>=(IloNum threshold, IloEvaluator<
IloObject > right)

Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

Creates a greater-than-or-equal predicate from two evaluators.
These operators create a new IloPredicate<IloObject> instance by comparing the value returned by an
evaluator with either that of another evaluator or a threshold value. The semantics of the new predicate are a
greater-than-or-equal comparison. The first function creates a predicate which returns IloTrue if and only if the
value returned by the left evaluator is greater than or equal to the value returned by the right evaluator. The
second function creates a predicate which returns IloTrue if and only if the value returned by the left evaluator
is greater than or equal to the threshold value. Finally, the third function creates a predicate that returns
IloTrue if and only if the threshold value is greater than or equal to the value returned by the right evaluator.

For more information, see Selectors.

1108

Global function operator>=
public IlcConstraint operator>=(const IlcIntExp exp1, const IlcIntExp exp2)
public IlcConstraint operator>=(const IlcIntExp exp1, IlcInt exp2)
public IlcConstraint operator>=(IlcInt exp1, const IlcIntExp exp2)
public IlcConstraint operator>=(const IlcFloatExp exp1, const IlcFloatExp exp2)
public IlcConstraint operator>=(const IlcFloatExp exp1, IlcFloat exp2)
public IlcConstraint operator>=(IlcFloat exp1, const IlcFloatExp exp2)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This operator creates and returns an inequality constraint between its arguments (that is, the first must be greater
than or equal to the second).

When its arguments are constrained floating-point or integer expressions, then when it is posted, this constraint
is associated with the whenRange propagation event.

When you create a constraint, it has no effect until you post it.

See Also: IlcConstraint, IlcFloatExp, IlcIntExp, IlcLeOffset, IlcNull, operator<=, operator!=, operator==

1109

Global function IloMinimizeVar
public IloSearchSelector IloMinimizeVar(const IloEnv env, const IloNumVar var,
IloNum step=0)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a search selector to act as a filter during the search for a solution in a Concert
Technology model.

The search selector that this function creates and returns does several things:

It stores the leaf of the search tree corresponding to the optimal value of the variable var and then
reactivates this variable after the complete exploration of the search tree.

•

It manages the upper bound on the objective variable. As soon as a solution of value d is found, the
constraint var <= d - step is added to the model for the remainder of the search.

•

Open nodes are evaluated. The evaluation of an open node is equal to the current minimum of the
variable var when the node is created. When the search requires an open node, it checks whether the
current upper bound on the objective is less than the evaluation of the node. If so, the node is safely
discarded.

•

When this function takes an instance of the class IloEnv as a parameter, it returns an instance of
IloSearchSelector for use with the member functions IloSolver::startNewSearch and
IloSolver::solve. An instance of IloSolver extracts the search selector that it returns as an instance of
IlcSearchSelector for use during a Solver search.

See Also: IloSearchSelector

1110

Global function IlcElementEq
public IlcConstraint IlcElementEq(IlcIntVar var, IlcIntArray array, IlcIntVar
index, const char * name=0)

Definition file: ilsolver/ilcint.h
Include file: ilsolver/ilosolver.h

This function creates and returns a constraint that forces the the variable var to be equal to the element index
of the array array.

1111

Global function IlcElementEq
public IlcConstraint IlcElementEq(IlcInt val, IlcIntArray array, IlcIntVar index,
const char * name=0)

Definition file: ilsolver/ilcint.h
Include file: ilsolver/ilosolver.h

This function creates and returns a constraint that forces the the value val to be equal to the element index of
the array array.

1112

Global function IloCompose
public IloNHood IloCompose(IloEnv env, IloNHood nhood1, IloNHood nhood2, const char
* name=0)

Definition file: ilsolver/iimnhood.h
Include file: <ilsolver/ilosolver.h>

This function creates a composed neighborhood. The neighborhood formed is the product of nhood1 and
nhood2. Specifically, each neighbor specified by nhood1 is composed with each neighbor specified by nhood2.
The size of the resulting neighborhood is the product of the sizes of nhood1 and nhood2. Each call to define
creates a composed delta which is a union of the deltas of the corresponding neighbors of the composed
neighborhoods. This union operates by placing in the composed delta all variables mentioned in either of two
deltas from nhood1 and nhood2. If the delta from nhood1 and that from nhood2 set different values for the
same variable, the value in the delta from nhood2 is used in the composed delta. The optional argument name, if
provided, becomes the name of the newly created neighborhood.

Note

This neighborhood does not provide a chaining of moves (a move from nhood1 followed by a move from
nhood2). It provides simultaneous moves from nhood1 and nhood2. In that sense, only moves from nhood1
and nhood2 that mention different parts of the solution will result in a sensible move; others which mention the
same part of the solution will most likely create unwanted interactions and will typically be illegal.

In such a composed neighborhood, the member function IloNHood::define calls IloNHood::define on
both nhood1 and nhood2, returning the composed solution delta; the function IloNHood::notify notifies
both nhood1 and nhood2; the function IloNHood::start calls IloNHood::start for both nhood1 and
nhood2;and the function IloNHood::getSize returns the product of the sizes of nhood1 and nhood2.

See Also: IloConcatenate, IloNHood, operator*

1113

Global function IloSolveOnce
public IloGoal IloSolveOnce(const IloEnv env, const IloGoal goal)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a goal in a Concert Technology model. This returned goal will solve goal (the
one passed as an argument) in a nested search. This returned goal will search for exactly one solution of goal
(the argument goal). Other solutions will not be tried. If the nested search fails, then the returned goal fails. If the
nested search succeeds, the search will continue from the solution of the nested search.

This function returns an instance of IloGoal for use with the member functions
IloSolver::startNewSearch and IloSolver::solve. An instance of IloSolver extracts the goal that
this function returns as an instance of IlcGoal for use during a Solver search.

See Also: IlcGoal, IloGoal, IloSolver

1114

Global function IlcOnce
public IlcGoal IlcOnce(IlcGoal goal)

Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a goal. This returned goal will solve goal (the one passed as an argument) in a
nested search. This returned goal will search for exactly one solution of goal (the argument goal). Other
solutions will not be tried. If the nested search fails, then the returned goal fails. If the nested search succeeds,
the search will continue from the solution of the nested search.

This function returns an instance of IlcGoal for use with the member functions
IloSolver::startNewSearch and IloSolver::solve.

See Also: IlcGoal

1115

Global function IloTestDelta
public IlcGoal IloTestDelta(IloSolver solver, IloSolution solution, IloSolution
delta)
public IloGoal IloTestDelta(IloEnv env, IloSolution solution, IloSolution delta)

Definition file: ilsolver/iimls.h
Include file: <ilsolver/iimls.h>

These functions take a solution solution and a delta delta, and return a goal that:

Restores delta.1.
Restores the part of solution that does not appear in delta.2.

The goal can fail at 1) or 2) if any constraints are violated, that is, the goal fails if the proposed change to the
solution is illegal. If changes made are to be recorded back into solution, then this process must be performed
afterwards, for example, using solution.store(solver). Alternatively, you can use IloCommitDelta.

Implementation

The execute method for a goal that behaves in this way can be implemented as follows:

 IlcGoal IloTestDelta::execute() {
 delta.restore(solver);
 solution.restore(solver, delta);
 return 0;
 }

For more information, see IloSolution in the Concert Technology Reference Manual.

See Also: IloCommitDelta, IloStoreSolution

1116

Global function IloEqPartition
public IloConstraint IloEqPartition(const IloEnv env, const IloAnySetVar var, const
IloAnySetVarArray vars)
public IloConstraint IloEqPartition(const IloEnv, const IloIntSetVar var, const
IloIntSetVarArray vars)

Definition file: ilconcert/iloanyset.h

For IBM® ILOG® Solver: a constraint forcing the value of a variable to be required by one set variable in an
array.
These functions create and return a constraint. When that constraint is posted, it insures that the value of the
variable var will be required by exactly one set variable of the array vars. In this context, a constraint will be
posted after it has been added to a model and extracted by a solver (for example, an instance of IloSolver
documented in the IBM ILOG Solver Reference Manual).

1117

Global function IloSetMin
public IloGoal IloSetMin(const IloEnv env, const IloNumVar var, IloNum value)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a goal for the constrained numeric variable var with value as its minimum.

When it takes an instance of the class IloEnv as a parameter, it returns an instance of IloGoal for use with
the member functions IloSolver::startNewSearch and IloSolver::solve. An instance of IloSolver
extracts the goal that it returns as an instance of IlcGoal for use during a Solver search.

For more information, see IloNullIntersect.

This function works on numerical variables of type Float and type Int.

See Also: IloGoal, IlcSetMin, IloNullIntersect

1118

Global function IloInitMT
public void IloInitMT()
public void IloInitMT(IloBaseEnvMutex *)

Definition file: ilconcert/iloenv.h

Initializes multithreading.
This function initializes multithreading in a Concert Technology application.

1119

Global function IlcLeOffset
public IlcConstraint IlcLeOffset(const IlcIntExp x, const IlcIntExp y, IlcInt c)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a constraint equivalent to x <= y + c. That constraint is violated when the
minimum of x is greater than the maximum of y + c.

When it is posted, this constraint reacts to the whenRange propagation event.

See Also: IlcConstraint, IlcIntExp, operator==, operator<=, operator>=, operator<, operator>

1120

Global function IlcInverse
public IlcConstraint IlcInverse(IlcIntSetVarArray f, IlcIntVarArray invf)

Definition file: ilsolver/ilcset.h

An instance of IlcInverse represents an inverse constraint between an array on set variables and an array of
variables. Informally, we say that an inverse constraint works on two arrays, say, f and invf, so that an element
of f collects the indexes of the element of invf that points to the first element.

In formal terms, if the length of the array f is n, and the length of the array invf is m, then the inverse constraint
makes sure that:

for all i in the interval [0, n-1] and•
for all j in the interval [0, m-1], then•
j is in f[i] is equivalent to invf[j] == i.•

See Also: IlcConstraint

1121

Global function IlcInverse
public IlcConstraint IlcInverse(IlcIntVarArray f, IlcIntVarArray invf)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

If the length of the array f is n, and the length of the array invf is m, then this function returns a constraint that
insures that:

for all i in the interval [0, n-1], if f[i] is in [0, m-1] then invf[f[i]] == i;•
for all j in the interval [0, m-1], if invf[j] is in [0, n-1] then f[invf[j]] == j.•

See Also: IlcConstraint, IlcIntVarArray, IlcPathLength

1122

Global function IlcMin
public IlcIntExp IlcMin(const IlcIntSetVar aSet, const IlcBool
makeEmptySetPropagation=IlcTrue)

Definition file: ilsolver/setcst.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a new constrained expression equal to the least of the integer elements that are
assigned to the constrained set variable setVar.

The minimum value of the expression is the least possible integer element of the variable setVar.

The maximum value of the expression is the least required integer element of the variable setVar, or, if there is
none, then the greatest possible element.

Because the minimum value of an empty set has no meaning, the bounds of this expression are computed only
when the set variable is surely not empty, that is, when its cardinality is greater than 0 (zero). The initial bounds
of the expression are the minimum and the maximum possible elements.

See Also: IlcIntExp, IlcIntSetVar

1123

Global function IlcMin
public IlcIntExp IlcMin(const IlcIntSetVar aSet, const IlcIntToIntFunction F, const
IlcBool makeEmptySetPropagation=IlcTrue)
public IlcIntExp IlcMin(const IlcIntSetVar aSet, const IlcIntToIntExpFunction F,
const IlcBool makeEmptySetPropagation=IlcTrue)
public IlcIntExp IlcMin(const IlcAnySetVar aSet, const IlcAnyToIntFunction F, const
IlcBool makeEmptySetPropagation=IlcTrue)
public IlcIntExp IlcMin(const IlcAnySetVar aSet, const IlcAnyToIntExpFunction F,
const IlcBool makeEmptySetPropagation=IlcTrue)

Definition file: ilsolver/setcst.h
Include file: <ilsolver/ilosolver.h>

These functions create and return a new constrained expression equal to the least of the values returned by the
function F applied to the elements assigned to the constrained set variable setVar.

The value returned by the function F can be an integer value (IlcInt) or an integer constrained expression
(IlcIntExp).

The minimum value of the expression is the least value returned by F when applied to the possible elements of
the variable setVar. If F returns an integer expression, it corresponds to the least lower bound of F(x).

The maximum value of the expression is the least value returned by F when applied to the required elements of
the variable setVar. If there is no required element, it corresponds to the greatest value returned by F when
applied to the possible elements of setVar. When F returns an integer expression, the maximum value of the
expression is computed with the upper bounds of F(x).

Because the minimum value of an empty set has no meaning, the bounds of this expression are computed only
when the set variable is surely not empty, that is, when its cardinality is greater than 0 (zero). The initial bounds
of the expression are the minimum value and the maximum value returned by F when applied to the possible
elements of setVar.

See Also: IlcAnySetVar, IlcIntExp, IlcIntSetVar

1124

Global function IlcMin
public IlcIntExp IlcMin(IlcInt exp1, const IlcIntExp exp2)
public IlcFloat IlcMin(const IlcFloat exp1, const IlcFloat exp2)
public IlcIntExp IlcMin(const IlcIntExp exp1, IlcInt exp2)
public IlcIntExp IlcMin(const IlcIntExp exp1, const IlcIntExp exp2)
public IlcIntExp IlcMin(const IlcIntVarArray array)
public IlcInt IlcMin(const IlcIntArray array)
public IlcInt IlcMin(const IlcInt exp1, const IlcInt exp2)
public IlcFloatExp IlcMin(const IlcFloatExp exp1, IlcFloat exp2)
public IlcFloatExp IlcMin(IlcFloat exp1, const IlcFloatExp exp2)
public IlcFloatExp IlcMin(const IlcFloatExp exp1, const IlcFloatExp exp2)
public IlcFloatExp IlcMin(const IlcFloatVarArray array)
public IlcFloat IlcMin(const IlcFloatArray array)
public IlcIntToIntStepFunction IlcMin(const IlcIntToIntStepFunction & f1, const
IlcIntToIntStepFunction & f2)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This function returns the minimum of its argument or arguments.

When its argument is an array of constrained expressions, this function creates a new constrained expression
equal to the minimum of its argument.

When at least one of its arguments is a constrained expression, this function creates a new constrained
expression equal to the minimum of its arguments.

When both its arguments are numeric (that is, values of type IloInt or IloNum), it simply creates and returns a
value of that type.

See Also: IlcFloatExp, IlcFloatVarArray, IlcIntExp, IlcIntToIntStepFunction, IlcIntVarArray, IlcMax

1125

Global function IlcMin
public IlcFloatExp IlcMin(const IlcIntSetVar aSet, const IlcIntToFloatExpFunction
f, const IlcBool makeEmptySetPropagation=IlcTrue)

Definition file: ilsolver/setcst.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a floating-point expression constrained to be the minimum returned by the
function f over its domain, aSet.

See Also: IlcIntSetVar

1126

Global function IloDiv
public IloIntExprArg IloDiv(const IloIntExprArg x, const IloIntExprArg y)
public IloIntExprArg IloDiv(const IloIntExprArg x, IloInt y)
public IloIntExprArg IloDiv(IloInt x, const IloIntExprArg y)

Definition file: ilconcert/iloexpression.h

Integer division function.
This function is available for integer division. For numeric division, use operator/.

1127

Global function IloUpdateBestSolution
public IlcGoal IloUpdateBestSolution(IloSolver solver, IloSolution best,
IloSolution soln)
public IloGoal IloUpdateBestSolution(IloEnv env, IloSolution best, IloSolution
current)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function returns a goal that copies the values of variables in current to those in best if the value of the
objective of current is better than that of best. What is considered better depends on the sense of the
objective added to solution. This goal always succeeds.

This function can be implemented as follows:

 IlcGoal IlcUpdateBestSolutionI::execute() {
 if (current.isBetterThan(best)) best.copy(current);
 return 0;
 }

For more information, see IloSolution.

See Also: IloRestoreSolution, IloSolution, IloStoreBestSolution, IloStoreSolution

1128

Global function IlcChooseMaxMinFloat
public IlcInt IlcChooseMaxMinFloat(const IlcFloatVarArray vars)

Definition file: ilsolver/linfloat.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
greatest minimum from among the constrained variables in the array of constrained variables, vars. If all those
variables have been bound already, then this function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseFirstUnboundFloat, IlcFloatVarArray, IloGenerate

1129

Global function IlcEqBoolAbstraction
public IlcConstraint IlcEqBoolAbstraction(IlcBoolVarArray ys, IlcAnyVarArray xs,
IlcAnyArray vals)
public IlcConstraint IlcEqBoolAbstraction(IlcBoolVarArray ys, IlcIntVarArray xs,
IlcIntArray vals)

Definition file: ilsolver/ilcany.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a constraint that ys[i] is the Boolean abstraction of xs[i] with respect to
vals for use in a Solver search.

The argument xs should be an array of constrained variables. The argument vals is an array of integers or
pointers.

For each xs[i], Solver creates the Boolean abstraction of xs[i] with respect to vals. In other words, for every
variable in xs, xs[i], Solver creates a Boolean variable ys[i] such that ys[i]=0 if and only if xs[i] cannot
be bound with a value of vals, and ys[i]=1 if and only if xs[i] will necessarily be bound with a value of
vals. Then Solver insures that this property holds after the definition of the Boolean abstraction.

For a function that returns the array ys, rather than a constraint, see IlcBoolAbstraction.

For a constraint suitable for use in a model, see IloBoolAbstraction.

See Also: IlcAbstraction, IlcBoolAbstraction, IloBoolAbstraction

1130

Global function IlcCard
public IlcIntExp IlcCard(IlcIndex & i, IlcConstraint ct)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

You use the function IlcCard to control the size of a set of constraints during a Solver search. For similar
functionality in a model, consider IloCard documented in the IBM ILOG Concert API.

This function creates and returns a constrained integer expression. At all times, that expression is greater than or
equal to the number of integer values j such that the constraint ct is true for j. That expression is also less than
or equal to the number of integer values j such that the constraint ct is not false for j.

The generic constraint ct must have been created with generic variables stemming from the index i (an
argument passed to IlcCard); otherwise, Solver will throw an exception (an instance of
IloSolver::SolverErrorException).

All generic variables of the constraint ct must represent arrays of constrained expressions of the same size;
otherwise, Solver will throw an exception (an instance of IloSolver::SolverErrorException).

To count the number of occurrences of several values, use the function IlcDistribute.

Generic Constraints

A generic constraint is a constraint shared by an array of variables. For example, IlcAllDiff is a generic
constraint that insures that all the elements of a given array are different from one another. Solver provides
generic constraints to save memory since, if you use them, you can avoid allocating one object per variable.

You create a generic constraint simply by stating the constraint over generic variables. Each generic variable
stands for all the elements of an array of constrained variables.

In that sense, generic variables are only syntactic objects provided by Solver to support generic constraints, and
they can be used only for creating generic constraints. To create a generic variable, you use the operator [].
The argument passed to that operator is known as the index for that generic variable; we say that the generic
variable stems from that index.

Implementation

This function can be implemented like this:

 IlcIntExp IlcCard(IlcIndex& i, IlcConstraint ct) {
 return IlcCard(IlcSetOf(i, ct));
 }

Example

Here's how to count the number of expressions in two arrays of constrained integer variables x and y such that
x[I] == y[I] + 2:

 IlcIndex I(s);
 IlcIntVar number = IlcCard(I, x[I] == y[I] + 2);

A very common use of generic constraints is to put limits on the number of times that a value can appear in a
given array of variables. For example, we could use the class IlcIndex and the function IlcCard to define a
function IlcCount like this:

 IlcConstraint IlcCount(IloSolver s,
 IlcIntVar card,
 IlcInt val,
 IlcIntVarArray vars){
 IlcIndex i(s);
 return card == IlcCard(i, vars[i] == val);
 }

1131

If that constraint is posted, then it constrains card to be equal to the number of occurrences of val in the arrays
vars. At any given moment, the minimum of card is at least equal to the number of variables contained in vars
bound to the value val; and the maximum of card is at most equal to the number of variables contained in vars
that contain val in their domain.

See Also: IlcCard, IloCard, IlcConstraint, IlcDistribute, IlcIndex, IlcIntExp, IlcSetOf

1132

Global function IlcCard
public IlcIntVar IlcCard(IlcAnySetVar var)
public IlcIntExp IlcCard(IlcIntSetVar set)

Definition file: ilsolver/ilcset.h
Include file: <ilsolver/ilosolver.h>

A constrained set variable contains a constrained integer variable (called the cardinality variable) that represents
the cardinality of the value of the constrained set variable. You can constrain that cardinality and thus control the
size of a constrained set variable.

This function returns a constrained integer variable which is constrained to be equal to the cardinality of the
domain of the invoking constrained set variable. Every call to IlcCard returns the same constrained integer
variable for use during a Solver search. For similar functionality in a model, consider IloCard documented in the
Concert API.

The size of the required set of the constrained set variable is less than or equal to the minimum of the domain of
the constrained integer variable. The maximum of the domain of the constrained integer variable is less than or
equal to the size of the possible set. More formally,

 cardinal(required) <= min(var) <= max(var) <= cardinal(possible)

Examples:

Here's what we write in order to constrain the value of a given constrained set variable of pointers, setVar, to
contain at least four elements:

 s.add(IlcCard(setVar) >= 4); // setVar defined before

Here's what we write in order to constrain the value of a given constrained set variable of integers, setVar, to
contain at least four elements:

 s.add(IlcCard(setVar) >= 4); // setVar defined before

See Also: IlcAnySetVar, IlcCard, IlcIntSetVar, IlcIntVar, IlcSequence, IloCard

1133

Global function IlcChooseMinSizeIntSet
public IlcInt IlcChooseMinSizeIntSet(const IlcIntSetVarArray)

Definition file: ilsolver/intset.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
smallest domain from among the constrained variables in the array of constrained variables vars. If all those
variables have been bound already, then this function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseIntSetIndex, IloGenerate

1134

Global function IlcSetValue
public IlcGoal IlcSetValue(const IlcIntVar var, const IlcInt val)
public IlcGoal IlcSetValue(const IlcFloatVar var, const IlcFloat val)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This function returns a goal which sets the value of var to be val.

See Also: IlcRemoveValue

1135

Global function IlcChooseMinMaxInt
public IlcInt IlcChooseMinMaxInt(const IlcIntVarArray vars)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
smallest maximum from among the constrained variables in the array of constrained variables, vars. If all those
variables have been bound already, then this function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseIntIndex, IloGenerate

1136

Global function operator<
public IloPredicate< IloObject > operator<(IloEvaluator< IloObject > left,
IloEvaluator< IloObject > right)
public IloPredicate< IloObject > operator<(IloEvaluator< IloObject > left, IloNum
threshold)
public IloPredicate< IloObject > operator<(IloNum threshold, IloEvaluator<
IloObject > right)

Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

Creates a less-than predicate from two evaluators.
These operators create a new IloPredicate<IloObject> instance by comparing the value returned by an
evaluator with either that of another evaluator or a threshold value. The semantics of the new predicate is a
less-than comparison. The first function creates a predicate which returns IloTrue if and only if the value
returned by the left evaluator is less than the value returned by the right evaluator. The second function creates a
predicate which returns IloTrue if and only if the value returned by the left evaluator is less than the threshold
value. The third function creates a predicate that returns IloTrue if and only if the threshold value is less than
the value returned by the right evaluator.

For more information, see Selectors.

1137

Global function operator<
public IlcBool operator<(const IlcRevFloat & rev, IlcFloat value)
public IlcBool operator<(const IlcRevInt & rev, IlcInt value)
public IlcBool operator<(IlcInt value, const IlcRevInt & rev)
public IlcBool operator<(const IlcRevInt & rev1, const IlcRevInt & rev2)
public IlcBool operator<(IlcFloat value, const IlcRevFloat & rev)
public IlcBool operator<(const IlcRevFloat & rev1, const IlcRevFloat & rev2)

Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>

This operator compares its arguments; if the first argument is strictly less than the second, then it returns
IlcTrue; otherwise, it returns IlcFalse.

See Also: IlcRevFloat, IlcRevInt

1138

Global function operator<
public IloConstraint operator<(IloNumExprArg base, IloNumExprArg base2)
public IloConstraint operator<(IloNumExprArg base, IloNum val)
public IloConstraint operator<(IloNum val, const IloNumExprArg expr)
public IloConstraint operator<(IloIntExprArg base, IloIntExprArg base2)
public IloConstraint operator<(IloIntExprArg base, IloInt val)

Definition file: ilconcert/ilolinear.h

overloaded C++ operator
This overloaded C++ operator constrains its first argument to be strictly less than its second argument. In order to
be taken into account, this constraint must be added to a model and extracted for an algorithm.

1139

Global function operator<
public IlcConstraint operator<(const IlcIntExp exp1, const IlcIntExp exp2)
public IlcConstraint operator<(const IlcIntExp exp1, IlcInt exp2)
public IlcConstraint operator<(IlcInt exp1, const IlcIntExp exp2)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This operator creates and returns an inequality constraint between its arguments (that is, the first must be strictly
less than the second).

When its arguments are integer expressions, then when you post it, this constraint is associated with the
whenRange propagation event.

When you create a constraint, it has no effect until you post it.

See Also: IlcConstraint, IlcIntExp, IlcLeOffset, operator>, operator<=, operator>=, operator!=, operator==

1140

Global function IloLexicographic
public IloConstraint IloLexicographic(IloEnv env, IloIntExprArray x,
IloIntExprArray y, const char *=0)

Definition file: ilconcert/ilomodel.h

Returns a constraint which maintains two arrays to be lexicographically ordered.
The IloLexicographic function returns a constraint which maintains two arrays to be lexicographically
ordered.

More specifically, IloLexicographic(x, y) maintains that x is less than or equal to y in the lexicographical
sense of the term. This means that either both arrays are equal or that there exists i < size(x) such that for
all j < i, x[j] = y[j] and x[i] < y[i].

Note that the size of the two arrays must be the same.

1141

Global function IlcDichotomize
public IlcGoal IlcDichotomize(const IlcIntVar var, IlcBool increaseMin=IlcTrue)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a goal, a primitive in the algorithms that search for solutions. It is used to assign
a value to a constrained variable. It handles constrained integer variables in the way that the function
IlcInstantiate handles constrained floating-point variables by recursively searching half of the domain of its
argument.

If its argument var has already been bound, then IlcDichotomize does nothing and succeeds. Otherwise,
IlcDichotomize sets a choice point, then replaces the domain of var by one of the halves, and calls itself
recursively. If failure occurs then, the domain is replaced by the other half, and IlcDichotomize is called
recursively.

The optional argument increaseMin must be either IlcTrue or IlcFalse. If it is IlcTrue, then the upper
half of the domain is tried first; otherwise, the lower half is tried first.

See Also: IlcBestInstantiate, IlcGoal, IlcInstantiate, IlcIntVar, IlcSplit

1142

Global function IloCard
public IloIntVar IloCard(IloAnySetVar vars)

Definition file: ilconcert/iloanyset.h

For constraint programming: creates and returns a constrained numeric variable that represents the number of
elements in vars.
This function creates and returns a constrained numeric variable that represents the number of elements in vars.
In other words, it constrains the cardinality of a set variable.

For example, to constrain mySet to contain four or more elements, you can use IloCard in the following way:

 model.add (IloCard (mySet) >= 4);

1143

Global function IlcGenerateBounds
public IlcGoal IlcGenerateBounds(IlcFloatVar var, IlcFloat prec=.1)
public IlcGoal IlcGenerateBounds(IlcFloatVarArray array, IlcFloat prec=0.1)

Definition file: ilsolver/nlinflt.h
Include file: <ilsolver/ilosolver.h>

The function IlcGenerateBounds creates a goal that will try to reduce the bounds of variables.

For more information, see the concept Propagation.

See Also: IlcFloatVar, IlcFloatVarArray, IlcSolveBounds

1144

Global function IlcGeLex
public IlcConstraint IlcGeLex(IlcIntVarArray x, IlcIntVarArray y)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

The IlcGeLex function returns a constraint which maintains two arrays to be lexicographically ordered.

More specifically, IlcGeLex(x, y) maintains that x is greater than or equal to y in the lexicographical sense of
the term. This mean that either both arrays are equal or that there exists i < size(x) such that for all j < i,
x[j] = y[j] and x[i] > y[i].

Note that the size of the two arrays must be the same.

See Also: IloLeLex, IlcLeLex, IloGeLex

1145

Global function IlcSelectSearch
public IlcGoal IlcSelectSearch(IlcGoal goal, IlcSearchSelector selector)

Definition file: ilsolver/search.h
Include file: <ilsolver/ilosolver.h>

This goal applies the selector selector to the search tree defined by the goal goal. As the goal manager
explores the search tree, it gives successful leaves to the selector. When the tree has been fully explored, the
selector is called, and it re-activates the selected nodes.

See Also: IlcSearchSelector

1146

Global function IloMember
public IloConstraint IloMember(const IloEnv env, const IloAnyVar element, const
IloAnySetVar setVar)

Definition file: ilconcert/iloanyset.h

show solver

1147

Global function IloMember
public IloConstraint IloMember(const IloEnv, const IloNumExprArg expr, const
IloNumArray elements)
public IloConstraint IloMember(const IloEnv, const IloIntExprArg expr, const
IloIntArray elements)
public IloConstraint IloMember(const IloEnv, const IloIntVar var1, const
IloIntSetVar var2)
public IloConstraint IloMember(const IloEnv, IloInt var1, const IloIntSetVar var2)

Definition file: ilconcert/ilomodel.h

For constraint programming: creates and returns a constraint forcing element to be a member of setVar.
This function creates and returns a constraint (an instance of IloConstraint) for use in a model. The
constraint forces expr to be a member of elements.

In order for the constraint to take effect, you must add it to a model with the template IloAdd or the member
function IloModel::add and extract the model for an algorithm with the member function
IloAlgorithm::extract.

1148

Global function IloMember
public IloConstraint IloMember(const IloEnv env, IloAny element, const IloAnySetVar
setVar)

Definition file: ilconcert/iloanyset.h

show solver

1149

Global function IlcChooseMaxMaxFloat
public IlcInt IlcChooseMaxMaxFloat(const IlcFloatVarArray vars)

Definition file: ilsolver/linfloat.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
greatest maximum from among the constrained variables in the array of constrained variables, vars. If all those
variables have been bound already, then this function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseFloatIndex, IlcFloatVarArray, IloGenerate

1150

Global function IloArcCos
public IloNumExprArg IloArcCos(const IloNumExprArg arg)
public IloNum IloCos(IloNum val)
public IloNum IloSin(IloNum val)
public IloNum IloTan(IloNum val)
public IloNum IloArcCos(IloNum val)
public IloNum IloArcSin(IloNum val)
public IloNum IloArcTan(IloNum val)
public IloNumExprArg IloSin(const IloNumExprArg arg)
public IloNumExprArg IloCos(const IloNumExprArg arg)
public IloNumExprArg IloTan(const IloNumExprArg arg)
public IloNumExprArg IloArcSin(const IloNumExprArg arg)
public IloNumExprArg IloArcTan(const IloNumExprArg arg)

Definition file: ilconcert/iloexpression.h

Trigonometric functions.
Concert Technology offers predefined functions that return an expression from a trigonometric function on an
expression. These predefined functions also return a numeric value from a trigonometric function on a numeric
value as well.

Programming Hint

If you want to manipulate constrained floating-point expressions in degrees, we strongly recommend that you call
the trigonometric functions on variables expressed in radians and then convert the results to degrees (rather than
declaring the constrained floating-point expressions in degrees and then converting them to radians to call the
trigonometric functions).

The reason for that advice is that the method we recommend gives more accurate results in the context of the
usual floating-point pitfalls.

1151

Global function IlcSetMin
public IlcGoal IlcSetMin(const IlcIntVar var, const IlcInt val)
public IlcGoal IlcSetMin(const IlcFloatVar, const IlcFloat)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This function returns a goal which sets the minimum of var to be val.

See Also: IlcSetMax

1152

Global function IloChooseMinRegretMax
public IlcInt IloChooseMinRegretMax(const IlcIntVarArray vars)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
minimal difference between the maximal possible value and the next maximal possible value from among the
constrained variables in the array of constrained variables, vars. If all those variables have been bound already,
then this function returns -1.

This function is based on the principle of regret. Regret is the difference between what would have been the best
possible decision in a scenario and what was the actual decision.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseIntIndex, IloGenerate

1153

Global function IloConcatenate
public IloNHood IloConcatenate(IloEnv env, IloNHoodArray nhoods, const char *
name=0)

Definition file: ilsolver/iimnhood.h
Include file: <ilsolver/iimls.h>

This function creates a concatenated neighborhood. The neighborhood formed is the concatenation of all the
neighborhoods in nhoods. The optional argument name, if provided, becomes the name of the newly created
neighborhood.

In a concatenated neighborhood, the indices of the newly created neighborhood map directly to indices in the
sub-neighborhoods, according to the order in which the sub-neighborhoods are specified. For example, suppose
we concatenate neighborhoods n1, n2, and n3, with sizes s1, s2, and s3 respectively. The newly created
neighborhood n will have size s1+s2+s3, with indices 0 to s1-1 corresponding to neighborhood n1, s1 to s1+s2-1
corresponding to neighborhood n2, and the remainder of the indices corresponding to neighborhood n3.

In such a neighborhood, the member function IloNHood::define calls define on the appropriate
sub-neighborhood with the index properly adjusted as described above; the function IloNHood::notify
performs notification to the appropriate sub-neighborhood with the index likewise adjusted; the function
IloNHood::start calls start for each sub-neighborhood; and the function IloNHood::getSize adds
together all sizes returned by the sub-neighborhoods.

In concatenated neighborhoods, only the basic neighborhood that defined the delta for the move to be taken can
have IloNHood::notify called. For all other basic neighborhoods, IloNHood#notifyOther is called with
the delta for the move to be taken.

See Also: IloCompose, IloNHood, operator+

1154

Global function IloApplyMetaHeuristic
public IlcGoal IloApplyMetaHeuristic(IloSolver solver, IloSolution solution,
IloMetaHeuristic mh, IlcGoal nhoodScanGoal)
public IloGoal IloApplyMetaHeuristic(IloEnv env, IloSolution solution,
IloMetaHeuristic mh, IloGoal nhoodScanGoal)

Definition file: ilsolver/iimls.h
Include file: <ilsolver/iimls.h>

This function applies a metaheuristic filter mh to the nodes of a goal nhoodScanGoal which is used for exploring
possible moves for a local search procedure (for example, IloScanNHood or IloScanDeltas). The function
returns a new goal with the metaheuristic filter applied.

Implementation

IloApplyMetaHeuristic can be implemented like this:

 IlcGoal IloApplyMetaHeuristic(IloSolver solver,
 IloSolution solution,
 IloMetaHeuristic mh,
 IlcGoal nhoodScanGoal) {
 return IlcAnd(IloStart(solver, mh, solution),
 nhoodScanGoal,
 IloTest(solver, mh));
 }

or this:

 IloGoal IloApplyMetaHeuristic(IloEnv env,
 IloSolution solution,
 IloMetaHeuristic mh,
 IloGoal nhoodScanGoal) {
 return IloStart(env, mh, solution) && nhoodScanGoal
 && IloTest(env, mh);
 }

See Also: IloMetaHeuristic, IloNotify, IloScanDeltas, IloScanNHood, IloSingleMove, IloStart, IloTest

1155

Global function IloAbs
public IloNumExprArg IloAbs(const IloNumExprArg arg)
public IloNum IloAbs(IloNum val)
public IloNum IloPower(IloNum val1, IloNum val2)
public IloIntExprArg IloAbs(const IloIntExprArg arg)

Definition file: ilconcert/iloexpression.h

Returns the absolute value of its argument.
Concert Technology offers predefined functions that return an expression from an algebraic function on
expressions. These predefined functions also return a numeric value from an algebraic function on numeric
values as well.

IloAbs returns the absolute value of its argument.

What Is Extracted

IloAbs is extracted by an instance of IloCplex and linearized automatically.

IloAbs is extracted by an instance of IloCP or IloSolver as an instance of IlcAbs.

1156

Global function IloSingleMove
public IlcGoal IloSingleMove(IloSolver solver, IloSolution s, IloNHood nh,
IloMetaHeuristic mh, IlcSearchSelector sel, IlcGoal subgoal, IlcNeighborIdentifier
nid, IloInt minChunk=IloMinChunk, IloInt maxChunk=IloMaxChunk)
public IloGoal IloSingleMove(IloEnv env, IloSolution soln, IloNHood nhood,
IloMetaHeuristic mh, IloSearchSelector sel, IloGoal subGoal, IloNeighborIdentifier
nid, IloInt minChunk=IloMinChunk, IloInt maxChunk=IloMaxChunk)
public IloGoal IloSingleMove(IloEnv env, IloSolution soln, IloNHood nhood,
IloMetaHeuristic mh, IloSearchSelector sel, IloGoal subGoal, IloInt
minChunk=IloMinChunk, IloInt maxChunk=IloMaxChunk)
public IloGoal IloSingleMove(IloEnv env, IloSolution solution, IloNHood nh)
public IloGoal IloSingleMove(IloEnv env, IloSolution solution, IloNHood nh,
IloMetaHeuristic mh, IloSearchSelector sel)
public IloGoal IloSingleMove(IloEnv env, IloSolution solution, IloNHood nh,
IloMetaHeuristic mh)
public IloGoal IloSingleMove(IloEnv env, IloSolution solution, IloNHood nh,
IloSearchSelector sel)
public IloGoal IloSingleMove(IloEnv env, IloSolution solution, IloNHood nh, IloGoal
subGoal)
public IloGoal IloSingleMove(IloEnv env, IloSolution solution, IloNHood nh,
IloMetaHeuristic mh, IloGoal subGoal)
public IloGoal IloSingleMove(IloEnv env, IloSolution solution, IloNHood nh,
IloSearchSelector sel, IloGoal subGoal)
public IlcGoal IloSingleMove(IloSolver solver, IloSolution solution, IloNHood
nhood, IloMetaHeuristic mh, IlcSearchSelector sel, IlcGoal subgoal, IloInt
minChunk=IloMinChunk, IloInt maxChunk=IloMaxChunk)

Definition file: ilsolver/iimls.h
Include file: <ilsolver/iimls.h>

This function returns a goal that makes a single local move as defined by a neighborhood, a metaheuristic, and a
move selection method. The goal scans the neighborhood nhood using solution as the current solution. The
metaheuristic mh is used to filter moves, and the search selector sel to choose a single move from those that
become available. Additionally, a goal subgoal can be executed after the deltas from the neighborhood are
applied to the current solution. A neighbor identifier nid can be specified which can, on successful completion of
a move, be used to provide information about the neighbor.

If no metaheuristic is specified, no metaheuristic filtering is performed. If no selector is specified,
IloFirstSolution is assumed. If no subgoal is specified, none is executed.

If a successful move can be found, the goal succeeds. The constrained variables are in the state corresponding
to the application of the move. This new state is saved to solution before the goal succeeds. If no successful
move can be found, the goal fails, and solution is left unchanged.

When IloSingleMove is used, the IloMetaHeuristic::test and IloMetaHeuristic::notify
methods of the supplied metaheuristic are supplied with the relevant solution delta, and the neighborhood is
notified with the index of the chosen neighbor. This is done through sharing of the neighbor identifier among
IloScanNHood, IloTest, and IloNotify.

Implementation

The execute method of this goal can be implemented as follows:

 IlcGoal IlcSingleMoveI::execute(){
 IlcGoal scan = IloScanNHood(solver, nh, nid, solution, mh.getDeltaCheck());
 IlcGoal testGoal = IloTest(solver, mh, nid);
 IlcGoal exploreNHood = IlcAnd(IloStart(solver, mh, solution),
 scan,
 testGoal,
 subgoal,
 testGoal);

1157

 IlcGoal saveGoal = IlcAnd(IloNotify(solver, nh, nid),
 IloNotify(solver, mh, nid),
 IloStoreSolution(solver, solution));

 return IlcAnd(IlcSelectSearch(exploreNHood, sel), saveGoal);
 }

See Also: IlcNeighborIdentifier, IloApplyMetaHeuristic, IloMetaHeuristic, IloNeighborIdentifier, IloNHood,
IloNotify, IloScanNHood

1158

Global function IlcChooseMinMinFloat
public IlcInt IlcChooseMinMinFloat(const IlcFloatVarArray vars)

Definition file: ilsolver/linfloat.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
smallest minimum from among the constrained variables in the array of constrained variables, vars. If all those
variables have been bound already, then this function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcFloatVarArray, IloGenerate

1159

Global function IlcSubset
public IlcConstraint IlcSubset(IlcAnySetVar a, IlcAnySetVar b)
public IlcConstraint IlcSubset(IlcAnySet a, IlcAnySetVar b)
public IlcConstraint IlcSubset(IlcAnySetVar a, IlcAnySet b)
public IlcConstraint IlcSubset(IlcIntSetVar a, IlcIntSetVar b)
public IlcConstraint IlcSubset(IlcIntSet a, IlcIntSetVar b)
public IlcConstraint IlcSubset(IlcIntSetVar a, IlcIntSet b)

Definition file: ilsolver/ilcset.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a constraint that a must be a strict subset of b. That is, they cannot be equal,
and every element of a is also an element of b.

See Also: IlcAnySetVar, IlcCard, IlcConstraint, IlcIntSetVar, IlcSubsetEq

1160

Global function IlcExponent
public IlcFloatExp IlcExponent(const IlcFloatExp x)
public IlcFloat IlcExponent(IlcFloat x)

Definition file: ilsolver/nlinflt.h
Include file: <ilsolver/ilosolver.h>

This function creates a new constrained expression equal to the exponentiation of the constrained expression x.
The effects of this function are reversible. If its argument is an instance of IlcFloat, it simply returns the
exponentiation of its argument. With Solver, you should use this function instead of the standard C++ function
exp in order to conform to the IEEE 754 standard for floating-point calculations.

See Also: IlcFloatExp, IlcMonotonicIncreasingFloatExp, IlcPower, IlcSquare

1161

Global function IloGenerate
public IloGoal IloGenerate(const IloEnv env, const IloNumVarArray vars, const
IloChooseIntIndex=IloChooseFirstUnboundInt)
public IloGoal IloGenerate(const IloEnv env, const IloAnyVarArray vars, const
IloChooseAnyIndex=IloChooseFirstUnboundAny)
public IloGoal IloGenerate(const IloEnv env, const IloAnyVarArray vars, const
IloChooseAnyIndex choose, const IloAnyValueSelector select)
public IloGoal IloGenerate(const IloEnv env, const IloNumVarArray vars, const
IloChooseIntIndex choose, const IloIntValueSelector select)
public IloGoal IloGenerate(const IloEnv env, const IloNumSetVarArray vars, const
IloChooseIntSetIndex=IloChooseFirstUnboundIntSet)
public IloGoal IloGenerate(const IloEnv env, const IloAnySetVarArray vars, const
IloChooseAnySetIndex=IloChooseFirstUnboundAnySet)
public IloGoal IloGenerate(const IloEnv env, const IloNumSetVarArray vars, const
IloChooseIntSetIndex choose, const IloIntSetValueSelector select)
public IloGoal IloGenerate(const IloEnv env, const IloAnySetVarArray vars, const
IloChooseAnySetIndex choose, const IloAnySetValueSelector select)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a goal, using the criterion indicated by choose and the selector indicated by
select. This goal is part of the enumeration algorithm available in an instance of IloSolver. It enables you to
set parameters for choosing the order in which variables are tried during the search for a solution.

This goal binds each constrained variable in its argument vars. It does so by calling the function
IloInstantiate for each of them. You control the order in which the variables are bound by means of the
criterion choose.

The goal returned by this function differs from the one returned by IloBestGenerate: IloBestGenerate
calls IloBestInstantiate, which tries only one value for each variable, whereas this one calls
IloInstantiate, which may try all the values in the domain of each variable.

When it takes an instance of the class IloEnv as a parameter, it returns an instance of IloGoal for use with
the member functions IloSolver::startNewSearch and IloSolver::solve. An instance of IloSolver
extracts the goal that this function returns as an instance of IlcGoal for use during a Solver search.

This function works on numerical variables of type Float and type Int.

See Also: IloBestGenerate, IloGoal, IloInstantiate, IlcGenerate

1162

Global function IloChooseFirstUnboundInt
public IlcInt IloChooseFirstUnboundInt(const IlcIntVarArray vars)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the first unbound constrained variable that it
encounters in the array of constrained variables, vars. If all those variables have been bound already, then this
function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseIntIndex, IloGenerate

1163

Global function IloReplaceSolutions
public IloPoolProc IloReplaceSolutions(IloEnv env, IloSolutionPool target,
IloSolutionPoolSelector selector=0)

Definition file: ilsolver/iimproc.h
Include file: <ilsolver/iim.h>

Returns a processor that will replace elements from a supplied pool with elements of the input pool.
This function creates a processor from an environment env, a solution pool target and a selector of solutions
selector. The idea of the processor is to replace some of the solutions in target by those which are the input
of the processor, such as to keep the size of target constant. The (optional) selector selector decides which
solutions should be replaced. If none is specified, a selector selecting the worst solutions is used. The solutions
identified by the selector are removed from the target and output by the processor.

The processor works as follows:

Let n be the number of solutions in the input pool.1.
selector is asked n times to select a solution from target.2.
Each solution selected is removed from target and added to the processor's output pool.3.
All solutions in the input pool are added to target.4.

The following code creates a processor which will replace some members of the population by offspring. The
choice of population members to remove is made by a tournament selector, with a tournament size of 3. The
tournament selector favors worse solutions so that poorer members of the population are replaced. Replaced
solutions (dead ones) are supplied to the IloDestroyAll processor which will destroy them and reclaim the
memory used:

 IloSolutionPool offspring(env, "offspring");
 IloTournamentSelector<IloSolution,IloSolutionPool> deadSelector(
 env, 3, IloWorstSolutionComparator(env)
);
 IloGoal replacementGoal = IloExecuteProcessor(env,
 offspring >>
 IloReplaceSolutions(env, population, deadSelector) >>
 IloDestroyAll(env)
);

1164

Global function IloSquare
public IloNumExprArg IloSquare(const IloNumExprArg arg)
public IloNum IloSquare(IloNum val)
public IloInt IloSquare(IloInt val)
public IloInt IloSquare(int val)
public IloIntExprArg IloSquare(const IloIntExprArg arg)

Definition file: ilconcert/iloexpression.h

Returns the square of its argument.
Concert Technology offers predefined functions that return an expression from an algebraic function over
expressions. These predefined functions also return a numeric value from an algebraic function over numeric
values as well.

IloSquare returns the square of its argument (that is, val*val or expr*expr).

What Is Extracted

IloSquare is extracted by an instance of IloCplex as a quadratic term. If the quadratic term is positive
semi-definite, it may appear in an objective function or constraint.

IloSquare is extracted by an instance of IloCP or IloSolver as an instance of IlcSquare.

1165

Global function IloSetValue
public IloGoal IloSetValue(const IloEnv env, const IloNumVar var, IloNum value)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a goal for the constrained numeric variable var and sets value as its value.

When it takes an instance of the class IloEnv as a parameter, it returns an instance of IloGoal for use with
the member functions IloSolver::startNewSearch and IloSolver::solve. An instance of IloSolver
extracts the goal that it returns as an instance of IlcGoal for use during a Solver search.

For more information, see IloNullIntersect.

This function works on numerical variables of type Float and type Int.

See Also: IloGoal, IlcSetValue, IloNullIntersect

1166

Global function IloGeLex
public IloConstraint IloGeLex(IloEnv, IloIntExprArray, IloIntExprArray, const char
*=0)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

The IloGeLex function returns a constraint which maintains two arrays to be lexicographically ordered.

More specifically, IloGeLex(x, y) maintains that x is greater than or equal to y in the lexicographical sense of
the term. This mean that either both arrays are equal or that there exists i < size(x) such that for all j < i,
x[j] = y[j] and x[i] > y[i].

Note that the size of the two arrays must be the same.

See Also: IloLeLex, IlcLeLex, IlcGeLex

1167

Global function IloRandomPerturbation
public IloGoal IloRandomPerturbation(IloEnv env, IloGoal goal, IloNum probability)
public IlcGoal IlcRandomPerturbation(IlcGoal goal, IlcFloat probability)

Definition file: ilsolver/iimgoal.h
Include file: <ilsolver/iim.h>

Returns a goal which randomly permutes the search tree branches of another goal.
This function returns a goal which randomly permutes the search tree branches of another goal in the
environment env. The idea of the perturbation branch selector is to swap, with a given probability probability
the branches of each IlcOr constructed by the goal goal. In this way, randomized versions of standard goals
can be created, which is a simple way to create randomized populations for evolutionary algorithms. This goal
draws random numbers from the generator of the solver on which it is used.

1168

Global function IlcRemoveValue
public IlcGoal IlcRemoveValue(const IlcIntVar var, const IlcInt val)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This function returns a goal which removes the value val from the variable var.

See Also: IlcSetValue

1169

Global function IloComposeLexical
public IloLexicographicComparator< IloObject > IloComposeLexical(IloComparator<
IloObject > a, IloComparator< IloObject > b)
public IloLexicographicComparator< IloObject > IloComposeLexical(IloComparator<
IloObject > a, IloComparator< IloObject > b, IloComparator< IloObject > c)
public IloLexicographicComparator< IloObject > IloComposeLexical(IloComparator<
IloObject > a, IloComparator< IloObject > b, IloComparator< IloObject > c,
IloComparator< IloObject > d)
public IloLexicographicComparator< IloObject > IloComposeLexical(IloComparator<
IloObject > a, IloComparator< IloObject > b, IloComparator< IloObject > c,
IloComparator< IloObject > d, IloComparator< IloObject > e)

Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

Creates a lexicographic composite comparator from existing comparators.
This function creates a lexicographic composite comparator from existing comparators.

For more information, see Selectors.

See Also: IloLexicographicComparator

1170

Global function IloSubset
public IloConstraint IloSubset(const IloEnv env, const IloAnySetVar var1, const
IloAnySetVar var2)
public IloConstraint IloSubset(const IloEnv env, const IloAnySet var1, const
IloAnySetVar var2)
public IloConstraint IloSubset(const IloEnv env, const IloAnySetVar var1, const
IloAnySet var2)
public IloConstraint IloSubset(const IloEnv, const IloIntSetVar var1, const
IloIntSetVar var2)
public IloConstraint IloSubset(const IloEnv, const IloIntSet var1, const
IloIntSetVar var2)
public IloConstraint IloSubset(const IloEnv, const IloIntSetVar var1, const
IloIntSet var2)

Definition file: ilconcert/iloanyset.h

For IBM® ILOG® Solver: a constraint forcing one set to be strictly a subset of another set.
This function creates and returns a constraint (an instance of IloConstraint) for use in a model. That
constraint forces var1 to be strictly a subset of var2. That is, there is at least one element of var2 not in var1,
and all elements of var1 are in var2.

In order for the constraint to take effect, you must add it to a model with the template IloAdd or the member
function IloModel::add and extract the model for an algorithm with the member function
IloAlgorithm::extract.

1171

Global function IloNotify
public IloGoal IloNotify(IloEnv env, IloNHood nhood, IloNeighborIdentifier nid)
public IloGoal IloNotify(IloEnv env, IloMetaHeuristic mh)
public IloGoal IloNotify(IloEnv env, IloMetaHeuristic mh, IloNeighborIdentifier
nid)
public IlcGoal IloNotify(IloSolver solver, IloNHood nhood, IlcNeighborIdentifier
nid)
public IlcGoal IloNotify(IloSolver solver, IloMetaHeuristic mh,
IlcNeighborIdentifier nid)
public IlcGoal IloNotify(IloSolver solver, IloMetaHeuristic mh)

Definition file: ilsolver/iimls.h
Include file: <ilsolver/iimls.h>

These functions return goals that perform notification to either a metaheuristic or a neighborhood that a move is
being taken.

If specified, nid is used to communicate the index and the delta of a neighbor supplied by IloScanDeltas and
IloScanNHood.

Conversely, IloNotify(IloSolver solver, IloMetaHeuristic mh) returns a goal for the specified
solver that calls mh.notify(solver, IloSolution()) before succeeding.

See Also: IloMetaHeuristic, IloNHood, IloScanDeltas, IloScanNHood, IloSingleMove, IloTest

1172

Global function IlcPack
public IlcConstraint IlcPack(IlcIntVarArray load, IlcIntVarArray where, IlcIntArray
weight, IlcIntVar used)

Definition file: ilsolver/ilcint.h
Include file: ilsolver/ilosolver.h

The IlcPack function returns a constraint which maintains the load of a set of containers, given a set of
weighted items and an assignment of items to containers. Consider that we have n items and m containers. Each
item i has an integer weight w[i] and a constrained integer variable p[i] associated with it indicating in which
container (numbered contiguously from 0) item i is to be placed. No item can be split up, and so can go in only
one container. Also associated with each container j is an integer variable l[j] representing the load in that
container; that is, the sum of the weights of the items which have been assigned to that container. A capacity can
be set for each container placing an upper bound on this load variable. The constraint also ensures that the total
sum of the loads of the containers is equal to the sum of the weights of the items being placed. The number of
containers which are used is also maintained, the definition of usage being that at least one item is placed in the
container.

1173

Global function IlcPack
public IlcConstraint IlcPack(IlcIntVarArray load, IlcIntVarArray where, IlcIntArray
weight, IlcIntSetVar used)

Definition file: ilsolver/ilcint.h
Include file: ilsolver/ilosolver.h

The IlcPack function returns a constraint which maintains the load of a set of containers, given a set of
weighted items and an assignment of items to containers. Consider that we have n items and m containers. Each
item i has an integer weight w[i] and a constrained integer variable p[i] associated with it indicating in which
container (numbered contiguously from 0) item i is to be placed. No item can be split up, and so can go in only
one container. Also associated with each container j is an integer variable l[j] representing the load in that
container; that is, the sum of the weights of the items which have been assigned to that container. A capacity can
be set for each container placing an upper bound on this load variable. The constraint also ensures that the total
sum of the loads of the containers is equal to the sum of the weights of the items being placed. The indices of the
set of containers used is also maintained, the definition of usage being that at least one item is placed in the
container.

See Also: IlcCard

1174

Global function IlcPack
public IlcConstraint IlcPack(IlcIntVarArray load, IlcIntVarArray where, IlcIntArray
weight)

Definition file: ilsolver/ilcint.h
Include file: ilsolver/ilosolver.h

The IlcPack function returns a constraint which maintains the load of a set of containers, given a set of
weighted items and an assignment of items to containers. Consider that we have n items and m containers. Each
item i has an integer weight w[i] and a constrained integer variable p[i] associated with it indicating in which
container (numbered contiguously from 0) item i is to be placed. No item can be split up, and so can go in only
one container. Also associated with each container j is an integer variable l[j] representing the load in that
container; that is, the sum of the weights of the items which have been assigned to that container. A capacity can
be set for each container placing an upper bound on this load variable. The constraint also ensures that the total
sum of the loads of the containers is equal to the sum of the weights of the items being placed.

1175

Global function IloEqMin
public IloConstraint IloEqMin(const IloEnv, const IloIntSetVar var1, const
IloIntVar var2, const IloIntToIntFunction f)
public IloConstraint IloEqMin(const IloEnv, const IloIntSetVar var1, const
IloIntVar var2, const IloIntToIntVarFunction f)

Definition file: ilconcert/iloset.h

For IBM® ILOG® Solver: a constraint forcing a variable to the minium of returned values.
This function creates and returns a constraint (an instance of IloConstraint) for use in a model. The constraint
forces var2 to be the minimum of the values returned by the function f when it is applied to the variable var1.

In order for the constraint to take effect, you must add it to a model with the template IloAdd or the member
function IloModel::add and extract the model for an algorithm with the member function IloAlgorithm::extract.

1176

Global function IloLimitOperator
public IloPoolOperator IloLimitOperator(IloEnv env, IloPoolOperator op,
IloSearchLimit limit, const char * name=0)

Definition file: ilsolver/iimoperator.h
Include file: <ilsolver/iim.h>

Limits the execution of a pool operator.
This function creates a new operator which behaves as the passed operator op but which is limited in its search
by the limit limit. name, if provided, becomes the name of the newly limited operator.

1177

Global function IloContinue
public IloNHood IloContinue(IloEnv env, IloNHood nhood, IloInt offset=0, const char
* name=0)

Definition file: ilsolver/iimnhood.h
Include file: <ilsolver/iimls.h>

This function returns a neighborhood that behaves like nhood, except that when a neighborhood move is taken
(as notified to the neighborhood through IloNHood::notify), subsequent scanning begins from index index
+ offset + 1, modulo the size of neighborhood nhood.

This type of neighborhood modification can be useful in a first-acceptance scenario where reinvestigating already
explored indices is often less fruitful that exploring new indices.

See Also: IloNHood, IloNHoodI

1178

Global function IlcSequence
public IlcConstraint IlcSequence(IlcInt nbMin, IlcInt nbMax, IlcInt seqWidth,
IlcIntVarArray vars, IlcIntArray values, IlcIntVarArray cards)
public IlcConstraint IlcSequence(IlcInt nbMin, IlcInt nbMax, IlcInt seqWidth,
IlcIntVarArray vars, IlcIntArray values, IlcIntVarArray cards, IlcFilterLevel
level)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a constraint that works on sequences.

A sequence constraint groups several constraints created by the functions IlcCard or IlcDistribute into
only one constraint in order to reduce domains of constrained variables more effectively.

The parameter nbMin indicates a minimum number of allowable values, and nbMax indicates a maximum
number of allowable values. The parameter seqWidth indicates the number of elements in a sequence. The
parameter cards indicates an array of cardinalities (that is, how many occurrences).

In the new constraint created by this function, the constrained variables in the array cards will be equal to the
number of occurrences in the array vars of the values in the array values such that for each sequence of
seqWidth (a number) consecutive constrained variables of vars at least nbMin and at most nbMax values of
values are assigned to a constrained variable of the sequence.

The arrays cards and values must be the same length; otherwise, Solver will throw an exception (an instance
of IloSolver::SolverErrorException). However, note that the array vars can contain values other than
those that appear in the array values.

If you do not explicitly state a filter level, then Solver uses the default filter level for this constraint. The optional
argument level can take values of the enumeration IlcFilterLevel. Its lowest value is IlcBasic. The
amount of domain reduction during propagation depends on that value. The value IlcExtended causes more
domain reduction than does IlcBasic; it also takes longer to run. See IlcFilterLevel for an explanation of
filter levels and their effect on constraint propagation.

See Also: IlcCard, IlcDistribute, IlcFilterLevel

1179

Global function IlcChooseMaxSizeFloat
public IlcInt IlcChooseMaxSizeFloat(const IlcFloatVarArray vars)

Definition file: ilsolver/linfloat.h
Include file: <ilsolver/ilosolver.h>

This function returns the index (greater than or equal to 0 (zero)) of the unbound constrained variable with the
greatest domain from among the constrained variables in the array of constrained variables, vars. If all those
variables have been bound already, then this function returns -1.

This function is a predefined choice function, one of the criteria that you can use to set parameters for the order
in which Solver binds constrained variables during the search for a solution.

See Also: IloBestGenerate, IlcChooseFirstUnboundFloat, IlcFloatVarArray, IloGenerate

1180

Global function IloExponent
public IloNumExprArg IloExponent(const IloNumExprArg arg)
public IloNum IloExponent(IloNum val)

Definition file: ilconcert/iloexpression.h

Returns the exponent of its argument.
Concert Technology offers predefined functions that return an expression from an algebraic function on
expressions. These predefined functions also return a numeric value from an algebraic function on numeric
values as well.

IloExponent returns the exponentiation of its argument. In order to conform to IEEE 754 standards for
floating-point arithmetic, you should use this function in your Concert Technology applications, rather than the
standard C++ exp.

1181

Global function IloInitializeImpactGoal
public IloGoal IloInitializeImpactGoal(IloEnv env, IloInt depth=-1)

Definition file: ilsolver/custgoal.h
Include file: <ilsolver/ilosolver.h>

This function returns a goal that initializes impact values by performing a dichotomic search on each variable for
which the impact is going to be maintained (given as a parameter of the function IlcImpactInformation).
The maximum depth of the diochotomic search is depth. A larger depth provides more accurate impacts, but the
goal needs more time to compute these impacts. When depth is equal to -1, there is no depth limit.

See Also: IlcImpactInformation

1182

Global function IlcAllNullIntersect
public IlcConstraint IlcAllNullIntersect(IlcIntSetVarArray array)
public IlcConstraint IlcAllNullIntersect(IlcAnySetVarArray array, IlcFilterLevel
level)
public IlcConstraint IlcAllNullIntersect(IlcAnySetVarArray array)
public IlcConstraint IlcAllNullIntersect(IlcIntSetVarArray array, IlcFilterLevel
level)

Definition file: ilsolver/ilcset.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a constraint. This constraint insures that the intersection is empty between any
two constrained set variables in the array of its argument. In other words, this function extends
IlcNullIntersect to arrays of constrained set variables. This function is for use during Solver search, for
example, inside a goal (an instance of IlcGoal) or inside a constraint (an instance of IlcConstraint). If you
are looking for similar functionality for use in a Concert Technology model, consider IloAllNullIntersect.

When you create a constraint, it has no effect until you post it, for example, by adding it to an instance of
IloSolver.

If you do not explicitly state a filter level, then Solver uses the default filter level for this constraint (that is,
IlcLow). The optional argument level can take one of three values: IlcLow, IlcBasic, IlcExtended.
Domain reduction during propagation depends on the value of level. See IlcFilterLevel for an explanation
of filter levels and their effect on constraint propagation.

IlcLow (default)

With this choice the statement

 IlcAllNullIntersect(IlcIntSetVarArray array,IlcLow)

is more efficient, but leads to the same domain reduction as the following code:

 IlcInt size=array.getSize();
 for(IlcInt i=0;i<size-1;i++){
 for(IlcInt j=i+1;j<size;j++){
 m.add(IlcNullIntersect(array[i],array[j]);
 }
 }

IlcBasic

This choice causes more domain reduction than IlcLow; it also takes longer to run.

IlcExtended

This choice causes more domain reduction than IlcBasic; it also takes longer to run.

For more information, see IloNullIntersect.

See Also: IlcAnySetVarArray, IlcCard, IlcIntSetVarArray, IlcNullIntersect, IlcFilterLevel, IlcPartition,
IloAllNullIntersect

1183

Global function IlcRandomValueEvaluator
public IloEvaluator< IlcInt > IlcRandomValueEvaluator(IloEnv env)
public IloEvaluator< IlcInt > IlcRandomValueEvaluator(IloSolver solver)

Definition file: ilsolver/custgoal.h
Include file: <ilsolver/ilosolver.h>

This function returns an instance of the evaluator IloEvaluator<IlcInt>. The evaluation returns a random
value between 0 and 1.

1184

Global function IloNotMember
public IloConstraint IloNotMember(const IloEnv env, const IloAnyVar var1, const
IloAnySetVar var2)

Definition file: ilconcert/iloanyset.h

show solver

1185

Global function IloNotMember
public IloConstraint IloNotMember(const IloEnv env, IloAny val, const IloAnySetVar
var2)

Definition file: ilconcert/iloanyset.h

show solver

1186

Global function IloNotMember
public IloConstraint IloNotMember(const IloEnv, const IloNumExprArg expr, const
IloNumArray elements)

Definition file: ilconcert/ilomodel.h

For constraint programming: creates and returns a constraint forcing expr not to be a member of elements.
This function creates and returns a constraint (an instance of IloConstraint) for use in a model. The
constraint forces expr not to be a member of elements.

In order for the constraint to take effect, you must add it to a model with the template IloAdd or the member
function IloModel::add and extract the model for an algorithm with the member function
IloAlgorithm::extract.

1187

Global function IloApply
public IloGoal IloApply(const IloEnv env, const IloGoal goal, const
IloBranchSelector branchSelector)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function returns a goal that applies the branch selector s to the search tree defined by the goal g. As the
goal handler explores the search tree, each choice point is controlled by the branch selector.

It takes an instance of the class IloEnv as a parameter, it returns an instance of IloGoal for use with the
member functions IloSolver::startNewSearch and IloSolver::solve. An instance of IloSolver
extracts the goal that it returns as an instance of IlcGoal for use during a Solver search.

See Also: IlcBranchSelector

1188

Global function IloApply
public IloGoal IloApply(const IloEnv env, const IloGoal g, const IloNodeEvaluator
e)

Definition file: ilsolver/ilosolverint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a goal for use in a search. This goal applies the evaluator e to the search tree
defined by the goal g. In doing so, it changes the order of evaluation according to e of the open nodes of the
search tree defined by g.

When it takes an instance of the class IloEnv (documented in the Concert Technology Reference
Manual) as a parameter, it returns an instance of IloGoal for use with the member functions
IloSolver::startNewSearch and IloSolver::solve. An instance of IloSolver extracts the goal that it
returns as an instance of IlcGoal for use during a Solver search.

See Also: IlcGoal, IloGoal, IloSolver, IlcApply

1189

Global function IlcInstantiate
public IlcGoal IlcInstantiate(const IlcIntVar var)
public IlcGoal IlcInstantiate(const IlcAnyVar var)
public IlcGoal IlcInstantiate(const IlcAnyVar var, IlcAnySelect select)
public IlcGoal IlcInstantiate(const IlcIntVar var, IlcIntSelect select)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a goal, a primitive in the algorithms that search for solutions. The goal
IlcInstantiate assigns a value to a constrained variable. It uses choice points so that if a failure occurs as a
result of that reversible assignment, another value will be assigned to the constrained variable so that the search
can continue.

If var has already been bound, then IlcInstantiate does nothing and succeeds. Otherwise,
IlcInstantiate sets a choice point, then assigns a value to the constrained variable. In case of failure, the
tried-and-failed value is removed from the domain of the constrained variable, and another value not yet used is
tried until a value assignment succeeds or the domain is exhausted. In that latter case, the domain becomes
empty, and failure occurs. The values are selected by the select object, if it is provided. Otherwise, values are
tried by default in ascending order.

Implementation

Here's how we could define that goal for IlcIntVar, using the constraints == and != directly as goals
themselves.

 static ILCGOAL2(IlcIntInstantiate,
 IlcIntVar, var,
 IlcIntSelectI*, select) {
 if (var.isBound()) return 0;
 IlcInt val = (select)? select->select(var) : var.getMin();
 return IlcOr(var == val, IlcAnd(var != val,
 this));
 }
 IlcGoal IlcInstantiate(IlcIntVar var){
 return IlcIntInstantiate(var, 0);
 }
 IlcGoal IlcInstantiate(IlcIntVar var, IlcIntSelect sel){
 return IlcIntInstantiate(var, sel.getImpl());
 }

For more information, see the concept Choice Point.

See Also: IlcAnySelect, IlcBestInstantiate, IlcDichotomize, IlcGenerate, IlcGoal, IlcIntSelect

1190

Global function IlcInstantiate
public IlcGoal IlcInstantiate(const IlcIntSetVar var)
public IlcGoal IlcInstantiate(const IlcAnySetVar var)
public IlcGoal IlcInstantiate(const IlcAnySetVar var, IlcAnySetSelect select)
public IlcGoal IlcInstantiate(const IlcIntSetVar var, IlcIntSetSelect select)

Definition file: ilsolver/intset.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a goal, a primitive in the algorithms that search for solutions. The goal
IlcInstantiate assigns a value to a constrained variable. It uses choice points so that if a failure occurs as a
result of that reversible assignment, another value will be assigned to the constrained variable so that the search
can continue. Its behavior varies slightly, depending on the class of its arguments.

If var has already been bound, IlcInstantiate does nothing and succeeds. Otherwise, IlcInstantiate
sets a choice point, then adds an element of the possible set to the required set of var. The added element is
chosen by select, if it is provided. If select has not been provided, the values are tried in ascending order
when the values are integers. If failure occurs, the element is removed from the possible set of var, and another
element is tried.

For more information, see the concept Choice Point.

See Also: IlcAnySetSelect, IlcAnySetVar, IlcBestGenerate, IlcBestInstantiate, IlcGenerate, IlcIntSetSelect,
IlcIntSetVar

1191

Global function IlcInstantiate
public IlcGoal IlcInstantiate(const IlcFloatVar var, IlcBool
increaseMinFirst=IlcTrue, IlcFloat prec=0)

Definition file: ilsolver/nlinflt.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns a goal, a primitive in the algorithms that search for solutions. Its behavior varies
slightly, depending on the class of its arguments.

The algorithm that IlcInstantiate uses for constrained integer variables and constrained enumerated
variables tries every value in the domain. Since the number of elements in the domain of a constrained
floating-point variable is very high (typically millions), that approach would not be very efficient. Consequently,
IlcInstantiate handles the domain of a constrained floating-point variable differently. The idea is to
recursively split the domain of the constrained floating-point variable into two parts.

If var is already bound, then IlcInstantiate does nothing and succeeds. Otherwise, IlcInstantiate sets
a choice point, then replaces the domain of var by one of its halves, and calls itself recursively. The function
stops when the variable is bound or when it is known with a precision smaller than prec. If a failure occurs, then
the domain is replaced by the other half, and IlcInstantiate is called recursively.

The optional argument increaseMin should be a Boolean value, either IlcTrue or IlcFalse. If
increaseMinFirst is IlcTrue, then the upper half domain is tried first; otherwise, the lower half is tried first.

This algorithm is available explicitly for constrained integer variables as the function IlcDichotomize.

For more information, see the concept Choice Point.

See Also: IlcBestInstantiate, IlcDichotomize, IlcGenerate, IlcGoal

1192

Global function IlcBranchImpactVarEvaluator
public IloEvaluator< IlcIntVar > IlcBranchImpactVarEvaluator(IloEnv env)
public IloEvaluator< IlcIntVar > IlcBranchImpactVarEvaluator(IloSolver solver)

Definition file: ilsolver/custgoal.h
Include file: <ilsolver/ilosolver.h>

This function returns an instance of the evaluator IloEvaluator<IlcIntVar>. The evaluation returns the
result of the function solver.getBranchImpact(x), where x is the evaluated variable.

1193

Global function IlcBoolAbstraction
public IlcBoolVarArray IlcBoolAbstraction(IlcIntVarArray vars, IlcIntArray values)
public IlcBoolVarArray IlcBoolAbstraction(IlcAnyVarArray vars, IlcAnyArray values)

Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

This function creates and returns an array of constrained Boolean variables for using during a Solver search. The
argument vars should be an array of constrained variables. The argument values is an array of integers or
pointers.

For each vars[i], Solver creates the Boolean abstraction of vars[i] with respect to values. In other words,
for every variable in vars, vars[i], Solver creates a constrained Boolean variable w[i] such that w[i]=0 if
and only if vars[i] cannot be bound with a value of values and w[i]=1 if and only if vars[i] will
necessarily be bound with a value of values. Then Solver insures that these properties hold after the definition
of the Boolean abstraction.

For a function that returns a constraint (rather than an array), see IlcEqBoolAbstraction.

For a constraint suitable for use in a model, see IloBoolAbstraction.

See Also: IlcAbstraction, IlcEqBoolAbstraction, IloBoolAbstraction

1194

Global function operator||
public IloPoolOperator operator||(IloPoolOperator op1, IloPoolOperator op2)

Definition file: ilsolver/iimoperator.h
Include file: <ilsolver/iim.h>

Produces the disjunction of two operators.
This disjunction of operators is an operator which, when invoked, invokes op1. If successful, the operator
succeeds. Otherwise, the disjunction invokes op2. If op2 succeeds, the disjunction succeeds, otherwise it fails.

Note

If no prototype is set on the disjunction, then its prototype is defined to be one from either op1 or op2. The
choice is dynamic and depends on whether op1 or op2 produced the solution.

1195

Global function operator||
public IlcConstraint operator||(const IlcConstraint ct1, const IlcConstraint ct2)

Definition file: ilsolver/numi.h
Include file: <ilsolver/ilosolver.h>

This operator creates and returns a constraint: the disjunction of its arguments.

When you create a constraint, it has no effect until you post it.

See Also: IlcConstraint

1196

Global function operator||
public IloOr operator||(const IloConstraint constraint1, const IloConstraint
constraint2)

Definition file: ilconcert/ilomodel.h

Overloaded C++ operator for a disjunctive constraint.
This overloaded C++ operator creates a disjunctive constraint that represents the disjunction of its two
arguments. The constraint can represent a disjunction of two constraints; of a constraint and another disjunction;
or of two disjunctions. In order to be taken into account, this constraint must be added to a model and extracted
by an algorithm, such as IloCplex or IloSolver.

1197

Global function operator||
public IloPredicate< IloObject > operator||(IloPredicate< IloObject > left,
IloPredicate< IloObject > right)

Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

Creates a predicate performing OR on two predicates.
This operator creates a new IloPredicate<IloObject> instance from two IloPredicate<IloObject>
instances. The semantics of the combination of the component predicates is that of logical OR. That is, the
combined predicate will return IloTrue for a particular object if and only if one of the component predicates
return IloTrue for that object.

For more information, see Selectors.

1198

Global function operator*
public IloNHood operator*(IloNHood nhood1, IloNHood nhood2)

Definition file: ilsolver/iimnhood.h
Include file: <ilsolver/ilosolver.h>

This operator creates a composed neighborhood. The neighborhood formed is the “product” of nhood1 and
nhood2. See IloCompose for full documentation of this operator.

See Also: IloCompose, IloNHood, operator+

1199

Global function operator*
public IlcFloatExp operator*(const IlcFloatExp exp1, IlcFloat exp2)
public IlcIntExp operator*(const IlcIntExp exp1, IlcInt exp2)
public IlcIntExp operator*(IlcInt exp1, const IlcIntExp exp2)
public IlcIntExp operator*(const IlcIntExp exp1, const IlcIntExp exp2)
public IlcFloatExp operator*(IlcFloat exp1, const IlcFloatExp exp2)
public IlcFloatExp operator*(const IlcFloatExp exp1, const IlcFloatExp exp2)
public IlcIntToIntStepFunction operator*(const IlcIntToIntStepFunction & f1, IlcInt
k)
public IlcIntToIntStepFunction operator*(IlcInt k, const IlcIntToIntStepFunction &
f1)

Definition file: ilsolver/linfloat.h
Include file: <ilsolver/ilosolver.h>

This arithmetic operator multiplies its arguments. It has been overloaded to handle constrained expressions
appropriately. The domain of the resulting expression is computed from the domains of the combined
expressions as you would expect.

Example

The following code from the example sendmory.cpp in the standard distribution creates several constrained
expressions.

 IloSolver s;
 IlcIntVar S(s, 1, 9, "S"), E(s, 0, 9, "E"), N(s, 0, 9, "N"),
 D(s, 0, 9, "D"), M(s, 1, 9, "M"), O(s, 0, 9, "O"),
 R(s, 0, 9, "R"), Y(s, 0, 9, "Y");
 IlcIntExp send = 1000*S + 100*E + 10*N + D;
 IlcIntExp more = 1000*M + 100*O + 10*R + E;
 IlcIntExp money = 10000*M + 1000*O + 100*N + 10*E + Y;

See Also: IlcFloatExp, IlcIntExp, IlcIntToIntStepFunction

1200

Global function operator*
public IloEvaluator< IloObject > operator*(IloEvaluator< IloObject > left,
IloEvaluator< IloObject > right)
public IloEvaluator< IloObject > operator*(IloEvaluator< IloObject > left, IloNum
c)
public IloEvaluator< IloObject > operator*(IloNum c, IloEvaluator< IloObject >
right)

Definition file: ilsolver/iloselector.h
Include file: <ilsolver/iloselector.h>

These operators create a composite IloEvaluator<IloObject> instance. The semantics of the new
evaluator are the multiplication of the values of the component evaluators. The first function combines two
evaluators, multiplying their values to generate the combined evaluation. The other two signatures multiply the
value returned by the evaluator with an IloNum value.

For more information, see Selectors.

1201

Global function operator*
public IloNumLinExprTerm operator*(const IloNumVar x, IloInt num)
public IloNumLinExprTerm operator*(IloInt num, const IloNumVar x)
public IloNumLinExprTerm operator*(const IloIntVar x, IloNum num)
public IloNumLinExprTerm operator*(IloNum num, const IloIntVar x)
public IloIntLinExprTerm operator*(const IloIntVar x, IloInt num)
public IloNumExprArg operator*(const IloNumExprArg x, const IloNumExprArg y)
public IloNumExprArg operator*(const IloNumExprArg x, IloNum y)
public IloNumExprArg operator*(IloNum x, const IloNumExprArg y)
public IloIntExprArg operator*(const IloIntExprArg x, const IloIntExprArg y)
public IloIntExprArg operator*(const IloIntExprArg x, IloInt y)

Definition file: ilconcert/iloexpression.h

Returns an expression equal to the product of its arguments.
This overloaded C++ operator returns an expression equal to the product of its arguments. Its arguments may be
numeric values, numeric variables, or other expressions.

1202

Global function operator*
public IloNumToNumStepFunction operator*(const IloNumToNumStepFunction f1, IloNum
k)
public IloNumToNumStepFunction operator*(IloNum k, const IloNumToNumStepFunction
f1)

Definition file: ilconcert/ilonumfunc.h

Creates and returns a function equal to its argument function multiplied by a given factor.
These operators create and return a function equal to the function f1 multiplied by a factor k everywhere on the
definition interval. The resulting function is defined on the same interval as the argument function f1. See also:
IloNumToNumStepFunction.

1203

Global function IloSimulatedAnnealing
public IloMetaHeuristic IloSimulatedAnnealing(IloEnv env, IloRandom rand, IloNum
startTemperature, IloNum reductionFactor, IloNum cutoffProbability=1e-5, IloNum
freezingTemperature=0.0)
public IloMetaHeuristic IloSimulatedAnnealing(IloEnv env, IloNum & temperature,
IloRandom rand, IloNum startTemperature, IloNum reductionFactor, IloNum
cutoffProbability=1e-5, IloNum freezingTemperature=0.0)

Definition file: ilsolver/iimmeta.h
Include file: <ilsolver/iimls.h>

This function returns a metaheuristic that implements a simulated annealing behavior. This metaheuristic
discards neighbors using a probabilistic rule based on the cost of the neighbor and a notion of temperature. We
will describe the operation of this metaheuristic as if it is performing a minimization procedure, but maximization
can also be performed. Given a current solution of cost c, a neighbor of cost c+d, a temperature of T, and a
random number r in the range [0..1), then the neighbor is accepted under the following condition:

r <= exp(-d / T)

When the increase in cost d is not strictly positive, the move is never rejected. When the increase in cost
provided by the move is positive, the move is rejected probabilistically. Larger increases in cost and lower
temperatures both make rejection of the move more likely. The current temperature is maintained internally by
the returned metaheuristic or stored in the variable temperature, so that it can be inspected if desired.

The random number generator rand is used to generate the numbers r for the rule above. A non-reversible
random number generator is recommended, as a reversible one generates the same random number for each
leaf tested. To avoid the problem of the different state of the random number generator during re-computation,
the simulated annealing test above is only performed when in the original computation mode. No neighbors are
rejected when recomputing.

The overall idea of simulated annealing is to begin search at a high temperature to allow degrading moves to be
taken readily— which allows the search to wander. Over time, the temperature is reduced, causing the search to
be less inclined to accept degrading moves. The parameter startTemperature defines the temperature at
which to begin the simulated annealing metaheuristic. Each time that the notify method is called for the
returned metaheuristic, the temperature is reduced by the following rule.

 currentTemperature = currentTemperature * reductionFactor

where reductionFactor can range from 0 to 1. Usually, reduction factors are greater than 0.99. A high
reduction factor results in slower cooling and, usually, in a better final solution. However, the search takes longer
to stabilize in this condition.

If the parameter cutoffProbability is specified, it can be used as an efficiency measure. If the chance of
accepting a neighbor according to the above probability equation is less than cutoffProbability, then it is
rejected. This is done at each move by setting the upper bound on the cost equal to:

c - T * ln (cutoffProbability)

where c is the current cost and T is the current temperature. This allows pruning of neighbors with cost greater
than this value without using the probabilistic rule. A cutoff probability of 0 results in a “pure' simulated annealing
algorithm.

The parameter freezingTemperature can be specified to define a lower limit on the temperature reduction.
Calling IloMetaHeuristic::complete on the returned metaheuristic returns IloTrue if and only if this
temperature has been met.

Note

1204

If you are using a neighborhood with the simulated annealing metaheuristic, it is advisable to randomize the
neighborhood via IloRandomize, otherwise there will be a bias for accepting moves from the beginning of the
neighborhood. In addition, it is also advisable to select the first move accepted by the simulated annealing
metaheuristic, as this most faithfully follows the original simulated annealing algorithm.

For more information, see IloRandom in the Concert Technology Reference Manual.

See Also: IloFirstSolution, IloMetaHeuristic, IloRandomize

1205

Global function IloStart
public IlcGoal IloStart(IloSolver solver, IloMetaHeuristic mh, IloSolution
solution)
public IloGoal IloStart(IloEnv env, IloNHood nhood, IloSolution solution)
public IloGoal IloStart(IloEnv env, IloMetaHeuristic mh, IloSolution solution)
public IlcGoal IloStart(IloSolver solver, IloNHood nhood, IloSolution solution)

Definition file: ilsolver/iimls.h
Include file: <ilsolver/iimls.h>

These functions return goals that start either a metaheuristic or a neighborhood.

When mh is passed as a parameter, these functions return a goal which calls mh.start(solver, solution).
If this call does not cause a failure and returns IloTrue, the goal succeeds. Otherwise it fails.

When nhood is passed as a parameter, these functions return a goal which calls nhood.start(solver,
solution) before succeeding. You should not normally need to use this goal as IloScanNHood automatically
performs this action.

Use of the IloSingleMove goal renders the use of both forms of IloStart unnecessary.

See Also: IloStart, IloApplyMetaHeuristic, IloMetaHeuristic, IloNHood, IloNotify, IloScanNHood, IloSingleMove,
IloTest

1206

Macro ILCANYPREDICATE0
Definition file: ilsolver/ilcany.h

ILCANYPREDICATE0(name)
ILCANYPREDICATE1(name, type1, nameArg1)
ILCANYPREDICATE2(name, type1, nameArg1, type2, nameArg2)
ILCANYPREDICATE3(name, type1, nameArg1, type2, nameArg2, type3, nameArg3)
ILCANYPREDICATE4(name, type1, nameArg1, type2, nameArg2, type3, nameArg3, type4,
nameArg4)
ILCANYPREDICATE5(name, type1, nameArg1, type2, nameArg2, type3, nameArg3, type4,
nameArg4, type5, nameArg5)
ILCANYPREDICATE6(name, type1, nameArg1, type2, nameArg2, type3, nameArg3, type4,
nameArg4, type5, nameArg5, type6, nameArg6)

This macro defines a predicate class named nameI with n data members. When n is greater than 0, the types
and names of the data members must be supplied as arguments to the macro. Each data member is defined by
its type Ti and a name datai. The call to the macro must be followed immediately by the body of the isTrue
member function of the predicate class being defined. Besides the definition of the class nameI, this macro also
defines a function named name that creates an instance of the class nameI and that returns an instance of the
class IlcAnyPredicate that points to it.

Solver does not check the arity of the predicate that you defined. It assumes that the size of the array (an
instance of IlcAnyArray) passed as an argument to the member function IlcAnyPredicate::isTrue will
always be the same. It also assumes that the name of the array passed as an argument is val. That is, you must
use that name to define a predicate.

You are not obliged to use this macro to define predicates on arbitrary objects. When the macro seems too
restrictive for your purposes, we recommend that you define a predicate class directly by subclassing
IlcAnyPredicateI.

Since the argument name is used to name the predicate class, it is not possible to use the same name for several
predicate definitions.

For an example of how to use a similar macro, see the macro ILCINTPREDICATE0.

See Also: IlcAnyArray, ILCANYPREDICATE0, ILCINTPREDICATE0, IlcTableConstraint

1207

Macro ILCARRAY
Definition file: ilsolver/basic.h

ILCARRAY(t)

This macro defines one-dimensional arrays for a given type of object, where type must be the name of a handle
class. The macro creates an implementation class, named typeArrayI, and a handle class, named
typeArray. (You should replace type by the actual name of the original handle class.) Instances of these
classes are arrays of elements of the given handle class type.

Example

This statement

 ILCARRAY(IlcIntervalActivity);

creates the handle class IlcIntervalActivityArray and the implementation class
IlcIntervalActivityArrayI.

This macro could be implemented like this:

#define ILCARRAY(type)
 ILCARRAY2(name2(type,Array),type)

See Also: ILCARRAY2, IlcChooseAnyIndex1, IlcChooseAnyIndex2

1208

Macro ILCARRAY2
Definition file: ilsolver/basic.h

ILCARRAY2(name, t)

This macro defines a handle class for one-dimensional arrays of a given type of object, where type may be
either the name of a handle class or the name of a class followed by *. The macro creates an implementation
class, nameI, and a handle class, name. (You should replace name by the identifier you want to use for the new
class.) Instances of this new class are arrays of elements of the given type.

Example

This statement

 ILCARRAY2(MyClassArray, MyClass*);

creates a handle class MyClassArray of pointers to objects of the class MyClass.

See Also: ILCARRAY, IlcChooseAnyIndex1, IlcChooseAnyIndex2

1209

Macro IlcChooseAnyIndex1
Definition file: ilsolver/basic.h

IlcChooseAnyIndex1(name, t, var, condition, criterion)

This macro defines a new choice function (a criterion) in Solver for setting parameters on the search for a
solution; you use this macro if you have one integer criterion. (The “Any” in its name refers to the fact that you
can use any type as long as type indicates a handle class.)

This macro defines a choice function for objects of the type indicated by type. The name of the function will be
name. This function will take an array (an instance of typeArray) of elements (instances of type). The
argument, criterion, should be a C++ expression of type IlcInt. In that expression, the object to evaluate
must be denoted byvar. The function named name returns the index of the object of the type indicated by type
from among those objects for which condition is IlcTrue and that minimizes the expression criterion. If
condition is IlcFalse for all objects, then this function returns -1.

See Also: ILCARRAY, ILCARRAY2, IlcChooseAnyIndex2

1210

Macro IlcChooseAnyIndex2
Definition file: ilsolver/basic.h

IlcChooseAnyIndex2(name, t, var, condition, criterion1, criterion2)

This macro defines a new choice function (a criterion) in Solver for setting parameters on the search for a
solution; you use this macro if you have two integer criteria. (The “Any” in its name refers to the fact that you can
use any type as long as type indicates a handle class.)

This macro defines a choice function for objects of the type indicated by type. The name of the function will be
name. This function will take an array (an instance of typeArray) of elements (instances of type). The
argument, criterion, should be a C++ expression of type IlcInt. In that expression, the object to evaluate
must be denoted byvar. The function named name returns the index of the object of the type indicated by type
from among those objects for which condition is IlcTrue and that minimizes the expressions criterion1
and criterion2. If more than one object satisfies condition and minimizes criterion1, then criterion2
will be used to distinguish between them. If condition is IlcFalse for all objects, then this function returns -1.

See Also: ILCARRAY, ILCARRAY2, IlcChooseAnyIndex1

1211

Macro IlcChooseFloatIndex1
Definition file: ilsolver/critmac.h

IlcChooseFloatIndex1(name, criterion, type)

This macro defines a new choice function (a criterion) in Solver for setting parameters on the search for a
solution; you use this macro if you have one floating-point criterion.

This macro defines a choice function for constrained variables of type varType. The name of the function will be
name. The second argument, criterion, should be a C++ expression of type IlcFloat. In that expression,
the constrained variable to evaluate must be denoted byvar. The index of the variable in the array is varIndex.
The function named name returns the index of the constrained variable of type varType that minimizes the
expression criterion. If all the constrained variables have already been bound, then this function returns -1.

Example

As an example of how to use that macro, the predefined criteria for constrained floating-point variables could be
defined in the following way:

 IlcChooseFloatIndex1
 (IlcChooseMinSizeFloat, var.getSize(), IlcFloatVar)
 IlcChooseFloatIndex1
 (IlcChooseMaxSizeFloat,-var.getSize(), IlcFloatVar)
 IlcChooseFloatIndex1(IlcChooseMinMinFloat, var.getMin(), IlcFloatVar)
 IlcChooseFloatIndex1(IlcChooseMinMaxFloat, var.getMax(), IlcFloatVar)
 IlcChooseFloatIndex1
 (IlcChooseMaxMinFloat, -var.getMin(), IlcFloatVar)
 IlcChooseFloatIndex1
 (IlcChooseMaxMaxFloat, -var.getMax(), IlcFloatVar)

See Also: IlcChooseFirstUnboundFloat, IlcChooseFloatIndex, IlcChooseMaxMaxFloat, IlcChooseMaxMinFloat,
IlcChooseMaxSizeFloat, IlcChooseMinMaxFloat, IlcChooseMinMinFloat, IlcChooseMinSizeFloat

1212

Macro IlcChooseFloatIndex2
Definition file: ilsolver/critmac.h

IlcChooseFloatIndex2(name, criterion1, criterion2, type)

This macro defines a new choice function (a criterion) in Solver for setting parameters on the search for a
solution; you use this macro if you have two floating-point criteria.

This macro defines a choice function for constrained variables of type varType. The name of the function will be
name. The second and third arguments, criterion1 and criterion2, should be C++ expressions of type
IlcFloat. In these expressions, the constrained variable to evaluate must be denoted byvar. The index of the
variable in the array is varIndex. The function named name returns the index of the constrained variable of type
varType that minimizes the expressions criterion1 and criterion2. If more than one constrained variable
minimizes the first criterion, then the second criterion will be used to distinguish between them. If all the
constrained variables have already been bound, then this function returns -1.

See Also: IlcChooseFirstUnboundFloat, IlcChooseFloatIndex, IlcChooseMaxMaxFloat, IlcChooseMaxMinFloat,
IlcChooseMaxSizeFloat, IlcChooseMinMaxFloat, IlcChooseMinMinFloat, IlcChooseMinSizeFloat

1213

Macro IlcChooseIndex1
Definition file: ilsolver/critmac.h

IlcChooseIndex1

This macro defines a new choice function (a criterion) in Solver for setting parameters on the search for a
solution, you use this macro if you have one integer criterion.

This macro defines a choice function for constrained variables of type varType. The name of the function will be
name. The second argument, criterion, should be a C++ expression of type IlcInt. In that expression, the
constrained variable to evaluate must be denoted by var. The index of the variable in the array is varIndex.
The function named name returns the index of the constrained variable of type varType that minimizes the
expression criterion. If all the constrained variables have already been bound, then this function returns -1.

Example

As an example of how to use IlcChooseIndex1, the predefined criteria for constrained integer variables could be
defined in the following way with this macro:

 IlcChooseIndex1(IlcChooseMinSizeInt, var.getSize(), IlcIntVar);
 IlcChooseIndex1(IlcChooseMaxSizeInt, -var.getSize(), IlcIntVar);
 IlcChooseIndex1(IlcChooseMinMinInt, var.getMin(), IlcIntVar);
 IlcChooseIndex1(IlcChooseMinMaxInt, var.getMax(), IlcIntVar);
 IlcChooseIndex1(IlcChooseMaxMinInt, -var.getMin(), IlcIntVar);
 IlcChooseIndex1(IlcChooseMaxMaxInt, -var.getMax(), IlcIntVar);

Other classes of variables can also be used:

 IlcChooseIndex1(IlcChooseMinSizeAny, var.getSize(), IlcAnyVar);

Implementation

Here's how this macro might be implemented.

#define IlcChooseIndex1(name, criterion, type)
 IlcInt name (IlcInt theIlcChooseIndexSize,
 name2(type,I**) vars) {
 IlcInt varIndex;
 type var;
 name2(type,I**) tmp=vars;
 IlcInt indexBest=-1;
 IlcInt value, min = IlcIntMax;
 for (varIndex=0;
 varIndex<theIlcChooseIndexSize;
 varIndex++, tmp++) {
 var = type(*tmp);
 if (!var.isBound()) {
 value = criterion;
 if (min > value) {
 indexBest = varIndex;
 min = value;
 }
 }
 }
 return indexBest;
 }
 IlcInt name (const name2(type,Array) array){
 return name (array.getSize(), array.getImpl()->getArray());
 }

See Also: IlcChooseFirstUnboundInt, IlcChooseIndex2, IlcChooseIntIndex, IlcChooseMaxMaxInt,
IlcChooseMaxMinInt, IlcChooseMaxSizeInt, IlcChooseMinMaxInt, IlcChooseMinMinInt, IlcChooseMinSizeInt

1214

Macro IlcChooseIndex2
Definition file: ilsolver/critmac.h

IlcChooseIndex2

This macro defines a new choice function (a criterion) in Solver for setting parameters on the search for a
solution; you use this macro if you have two integer criteria.

This macro defines a choice function for constrained variables of type varType. The name of the function will be
name. The second and third arguments, criterion1 and criterion2, should be C++ expressions of type
IlcInt. In these expressions, the constrained variable to evaluate must be denoted byvar. The index of the
variable in the array is varIndex. The function named name returns the index of the constrained variable of type
varType that minimizes the expressions criterion1 and criterion2. If more than one constrained variable
minimizes the first criterion, then the second criterion will be used to distinguish between them. If all the
constrained variables have already been bound, then this function returns -1.

Implementation

Here's how this macro might be implemented.

#define IlcChooseIndex2(name, criterion1, criterion2, type)
 IlcInt name (IlcInt theIlcChooseIndexSize,
 name2(type, I**) vars) {
 IlcInt varIndex;
 type var;
 name2(type,I**) tmp=vars;
 IlcInt indexBest = -1;
 IlcInt value1, min1 = IlcIntMax;
 IlcInt value2, min2 = IlcIntMax;
 for (varIndex=0; varIndex < theIlcChooseIndexSize; varIndex++, tmp++)
 {
 var = type(*tmp);
 if (!var.isBound()) {
 value1 = criterion1;
 if (value1 < min1) {
 min1 = value1;
 indexBest = varIndex;
 min2 = criterion2;
 }
 else {
 if (value1 == min1) {
 value2 = criterion2;
 if (value2 < min2) {
 min2 = value2;
 indexBest = varIndex;
 }
 }
 }
 }
 }
 return indexBest;
 }
 IlcInt name (const name2(type,Array) array){
 return name (array.getSize(), array.getImpl()->getArray());
 }

See Also: IlcChooseFirstUnboundInt, IlcChooseIndex1, IlcChooseIntIndex, IlcChooseMaxMaxInt,
IlcChooseMaxMinInt, IlcChooseMaxSizeInt, IlcChooseMinMaxInt, IlcChooseMinMinInt, IlcChooseMinSizeInt

1215

Macro ILCCTDEMON0
Definition file: ilsolver/basic.h

ILCCTDEMON0(name, IlcCtClass, IlcFnName)
ILCCTDEMON1(name, IlcCtClass, IlcFnName, t1, nA1)
ILCCTDEMON2(name, IlcCtClass, IlcFnName, t1, nA1, t2, nA2)
ILCCTDEMON3(name, IlcCtClass, IlcFnName, t1, nA1, t2, nA2, t3, nA3)
ILCCTDEMON4(name, IlcCtClass, IlcFnName, t1, nA1, t2, nA2, t3, nA3, t4, nA4)
ILCCTDEMON5(name, IlcCtClass, IlcFnName, t1, nA1, t2, nA2, t3, nA3, t4, nA4, t5,
nA5)
ILCCTDEMON6(name, IlcCtClass, IlcFnName, t1, nA1, t2, nA2, t3, nA3, t4, nA4, t5,
nA5, t6, nA6)

This macro defines a demon class named nameI with n data members. When n is greater than 0, the types and
names of the data members must be supplied as arguments to the macro. Each data member is defined by its
type Ti and a name datai. Besides the definition of the class nameI, this macro also defines a function named
name that creates an instance of the class nameI and that returns an instance of the class IlcDemon that points
to it.

An instance of a class of demons created in this way can serve as a parent of constraints. The member function
IlcConstraint::getParentDemon accesses the demon-parent of a constraint.

You are not obliged to use this macro to define demons. When the macro seems too restrictive for your
purposes, we recommend that you define a demon class directly.

Since the argument name is used to name the demon class, it is not possible to use the same name for several
demon definitions.

Example

Here's how to define a demon that calls the function MyConstraintI::reduceDomain(IlcIntVar var);
of the constraint ct:

 ILCCTDEMON1 (CallReduceDomain, MyConstraintI,
 reduceDomain, IlcIntVar, var);

This macro then generates code similar to the following lines:

 class CallReduceDomainI: public IlcDemonI {
 IlcIntVar var;
 public:
 CallReduceDomainI(IloSolver s,
 MyConstraintI* ct,
 IlcIntVar avar):
 IlcDemonI(s,ct), var(avar) {}
 ~CallReduceRomainI(){}
 void propagate();
 };
 IlcDemon CallReduceDomain(IloSolver s,
 MyConstraintI* ct,
 IlcIntVar var){
 return new (s.getHeap())
 CallReduceDomainI(s,ct,var);
 }
 void CallReduceDomainI::propagate(){
 ((MyConstraintI*)getConstraint())->reduceDomain(var);
 }

The following statement creates an instance of the class CallReduceDomainI and returns a handle that points
to it.

 CallReduceDomain(s,ct,var);

For more information, see the concepts Propagation and Propagation Events.

1216

See Also: IlcConstraintI, IlcDemonI, IlcGoalI

1217

Macro ILCGOAL0
Definition file: ilsolver/basic.h

ILCGOAL0(name)
ILCGOAL1(name, t1, nA1)
ILCGOAL2(name, t1, nA1, t2, nA2)
ILCGOAL3(name, t1, nA1, t2, nA2, t3, nA3)
ILCGOAL4(name, t1, nA1, t2, nA2, t3, nA3, t4, nA4)
ILCGOAL5(name, t1, nA1, t2, nA2, t3, nA3, t4, nA4, t5, nA5)
ILCGOAL6(name, t1, nA1, t2, nA2, t3, nA3, t4, nA4, t5, nA5, t6, nA6)

This macro defines a goal class named nameI with n data members. When n is greater than 0 (zero), the types
and names of the data members must be supplied as arguments to the macro. Each data member is defined by
its type Ti and a name datai. The call to the macro must be followed immediately by the body of the execute
member function of the goal class being defined. Besides the definition of the class nameI, this macro also
defines a function named name whose first argument is IloSolver s, and the n following ones correspond to
the n data members. This function creates an instance of the class nameI, fills the data members with its n last
arguments, and returns an instance of the class IlcGoal that points to it.

You are not obliged to use this macro to define goals. When the macro seems too restrictive for your purposes,
we recommend that you define a goal class directly.

Since the argument name is used to name the goal class, it is not possible to use the same name for several goal
definitions.

Examples:

Here's how to define a goal with one data member:

 ILCGOAL1(PrintX, IlcInt, x){
 IloSolver s = getSolver();
 s.out() << "PrintX: a goal with one data member" << endl;
 s.out() << x << endl;
 return 0;
 }

This macro generates code similar to the following lines:

 class PrintXI : public IlcGoalI {
 public:
 IlcInt x;
 PrintXI(IloSolver solver, IlcInt);
 IlcGoal execute();
 };
 PrintXI::PrintXI(IloSolver solver, IlcInt arg1)
 :IlcGoalI(solver), x(arg1){}
 IlcGoal PrintX(IloSolver s, IlcInt x){
 return new (s.getHeap()) PrintXI(s.getImpl(), x);
 }
 IlcGoal PrintXI :: execute() {
 IloSolver s = getSolver();
 s.out() << "PrintX: a goal with one data member" << endl;
 s.out() << x << endl;
 return 0;
 }

The following statement creates an instance of the class PrintXI and returns a handle that points to it.

 PrintX(s, 2);

See Also: IlcGoal, IlcGoalI

1218

Macro IlcHalfPi
Definition file: ilsolver/linfloat.h

IlcHalfPi

This global floating-point constant is an approximation of one-half of Pi.

See Also: IlcArcCos, IlcArcSin, IlcArcTan, IlcCos, IlcPi, IlcQuarterPi, IlcSin, IlcTan, IlcThreeHalfPi, IlcTwoPi

1219

Macro IlcInfinity
Definition file: ilsolver/ilcerr.h

IlcInfinity

This global floating-point constant is equal to the IEEE 754 special value “plus infinity.” Depending on the
compiler, this constant is displayed variously as Infinity, ++, inf, etc.

IEEE 754 is a standard proposed by the Institute of Electronic and Electrical Engineers for computing
floating-point arithmetic. The implementation of floating-point numbers in Solver conforms to this standard. See
the Solver User's Manual for a discussion of floating-point arithmetic.

See Also: IlcFloat, IlcFloatMax

1220

Macro IlcIntMax
Definition file: ilsolver/ilcerr.h

IlcIntMax

This constant represents the largest possible positive integer on a given platform.

The member function IlcIntExp::getSize (indicating the number of values in the domain of an integer
expression) returns IlcIntMax whenever max - min (the difference between the upper and lower bounds of
the domain of the expression) is greater than IlcIntMax.

If an integer expression overflows positively (that is, if a bound is greater than IlcIntMax) then Solver replaces
that bound by IlcIntMax.

Solver evaluates the expression 0/0 as the interval [IlcIntMin..IlcIntMax].

See Also: IlcInt, IlcIntMin

1221

Macro IlcIntMin
Definition file: ilsolver/ilcerr.h

IlcIntMin

This constant represents the smallest possible negative integer on a given platform.

If an integer expression (that is, an instance of IlcIntExp or one of its subclasses) overflows negatively (that is,
if a bound is less than IlcIntMin), then Solver replaces that bound by IlcIntMin.

The value IlcIntMin - 1 (sometimes known as the Joker) is treated correctly.

Solver evaluates the expression 0/0 as the interval [IlcIntMin..IlcIntMax].

See Also: IlcInt, IlcIntMax

1222

Macro ILCINTPREDICATE0
Definition file: ilsolver/ilcint.h

ILCINTPREDICATE0(name)
ILCINTPREDICATE1(name, type1, nameArg1)
ILCINTPREDICATE2(name, type1, nameArg1, type2, nameArg2)
ILCINTPREDICATE3(name, type1, nameArg1, type2, nameArg2, type3, nameArg3)
ILCINTPREDICATE4(name, type1, nameArg1, type2, nameArg2, type3, nameArg3, type4,
nameArg4)
ILCINTPREDICATE5(name, type1, nameArg1, type2, nameArg2, type3, nameArg3, type4,
nameArg4, type5, nameArg5)
ILCINTPREDICATE6(name, type1, nameArg1, type2, nameArg2, type3, nameArg3, type4,
nameArg4, type5, nameArg5, type6, nameArg6)

This macro defines an integer predicate class named nameI with n data members. When n is greater than 0
(zero), the types and names of the data members must be supplied as arguments to the macro. Each data
member is defined by its type Ti and a name datai. The call to the macro must be followed immediately by the
body of the isTrue member function of the integer predicate class being defined. Besides the definition of the
class nameI, this macro also defines a function named name that creates an instance of the class nameI and
that returns an instance of the class IlcIntPredicate that points to it.

Solver does not check the arity of the predicate that you defined. It assumes that the size of the array (an
instance of IlcIntArray) passed as an argument to the member function IlcIntPredicate::isTrue will
always be the same. It also assumes that the name of the array passed as an argument is val. That is, you must
use that name to define a predicate.

You are not obliged to use this macro to define integer predicates. When the macro seems too restrictive for your
purposes, we recommend that you define an integer predicate class directly.

Since the argument name is used to name the integer predicate class, it is not possible to use the same name for
several integer predicate definitions.

Example

Here's how to define an integer predicate with one data member:

 ILCINTPREDICATE1(AllLessThanX, IlcInt, x){
 return (val[0] < x && val[1] < x && val[2] <
 x);
 }

That predicate is a ternary predicate, so it assumes that the array passed an argument to the member function
IlcIntPredicate::isTrue is of size three. The predicate is true if all the values are less than the integer x.

That macro generates code similar to the following lines:

 class AllLessThanXI : public IlcIntPredicateI {
 IlcInt x;
 public:
 AllLessThanXI(IlcInt xx):x(xx){}
 ~AllLessThanXI(){}
 IlcBool isTrue(IlcIntArray val);
 };
 IlcIntPredicate AllLessThanX(IloSolver s, IlcInt xx){
 return new (s.getHeap()) AllLessThanXI(xx);
 }
 IlcBool AllLessThanXI::isTrue(IlcIntArray val){
 return (val[0] < x && val[1] < x && val[2] <
 x);
 }

The following statement creates an instance of the class AllLessThanXI and returns a handle that points to it.

 AllLessThanX(s, 4);

1223

See Also: IlcIntArray, IlcIntPredicate, IlcIntPredicateI, IlcTableConstraint

1224

Macro IlcPi
Definition file: ilsolver/linfloat.h

IlcPi

This global floating-point constant is an approximation of Pi.

See Also: IlcArcCos, IlcArcSin, IlcArcTan, IlcCos, IlcDegToRad, IlcHalfPi, IlcQuarterPi, IlcRadToDeg, IlcSin,
IlcTan, IlcThreeHalfPi, IlcTwoPi

1225

Macro IlcQuarterPi
Definition file: ilsolver/linfloat.h

IlcQuarterPi

This global floating-point constant approximates one-quarter of Pi.

See Also: IlcArcCos, IlcArcSin, IlcArcTan, IlcCos, IlcDegToRad, IlcHalfPi, IlcPi, IlcRadToDeg, IlcSin, IlcTan,
IlcThreeHalfPi, IlcTwoPi

1226

Macro ILCREV
Definition file: ilsolver/basic.h

ILCREV(t)

This macro defines a reversible class for pointers to objects of the class indicated by its argument type. The
macro is currently useful because the class IlcRevAny is not typed; the pointers in objects of that class are of
type IlcInt and thus give no indication of the type of objects they point to. In future releases, this macro will be
replaced by a class template. Solver does not yet use templates because they are not yet correctly supported by
all C++ compilers.

This macro makes use of IlcRev, the root class of the reversible classes IlcRevAny, IlcRevBool,
IlcRevFloat, and IlcRevInt. That is, IlcRev is the base class in the macro. This class is not intended for
direct instantiation. In other words, you should not call its constructors directly yourself. Here is its synopsis.

 class IlcRev{
 public:
 IlcRev();
 IlcRev(IloSolver s);
 ~IlcRev(){}
 };

To see how the macro works, let's assume that T is the name of a class. Then the following statement creates a
class of objects that each behave as a reversible pointer to an object of class T.

 ILCREV(T);

That statement defines the following class, IlcRevT.

 class IlcRevT : public IlcRev{
 public:
 operator T * () const;
 T * operator ->() const;
 T * getValue() const;
 void setValue(IloSolver solver, T * value);
 };
 IlcBool operator == (const IlcRevT& rev, T * cst);
 IlcBool operator == (T * cst, const IlcRevT& rev);
 IlcBool operator == (const IlcRevT& rev1, const IlcRevT& rev2);
 IlcBool operator != (const IlcRevT& rev, T * cst);
 IlcBool operator != (T * cst, const IlcRevT& rev);
 IlcBool operator != (const IlcRevT& rev1, const IlcRevT&
 rev2);

The operators and member functions of that class behave like those of the class IlcRevInt, with the exception
of the operator ->.

 T* IlcRevT::operator ->() const;

This overloaded operator returns the address of the object pointed to by the invoking object of IlcRevT.

Example

Here's an example showing how to have a data member for which all modifications are reversible.

 class Dummy;

 ILCREV(Dummy);

 class Dummy {
 IloSolver _s;
 IlcRevInt _data; // reversible
 IlcRevDummy _next; // reversible
 IlcInt _state; // not reversible
 public:
 Dummy(IloSolver s, IlcInt i, IlcInt state):

1227

 _s(s),_data(i), _state(state){}
 ~Dummy(){}
 IlcInt getData() const { return _data; }
 void setData(IlcInt i) {
 _data.setValue(_s, i);
 }
 Dummy* getNext() const { return _next; }
 void setNext(Dummy* next) {
 _next.setValue(_s, next);
 }
 IlcInt getNextData() const;
 };
 IlcInt Dummy::getNextData() const {
 if (_next)
 return _next->getData(); // uses overloaded ->
 }

The value of data members of that class will be restored automatically by Solver when it backtracks because they
have been defined with the reversible classes, IlcRevInt and IlcRevDummy.

For more information, see the concepts State and Reversibility.

See Also: IlcRevAny

1228

Macro ILCSTLBEGIN
Definition file: ilsolver/ilcerr.h

ILCSTLBEGIN

This macro enables you run examples either with the STL (Standard Template Library) of Microsoft Visual C++ or
with other platforms. ILCSTLBEGIN is present after the last #include of each source example. It is defined as:

 using namespace std

when the STL is used (ports of type stat_sta, stat_mta or stat_mda); otherwise, its value is simply null.

1229

Macro IlcThreeHalfPi
Definition file: ilsolver/linfloat.h

IlcThreeHalfPi

This global floating-point constant approximates one and a half times the value of Pi.

See Also: IlcArcCos, IlcArcSin, IlcArcTan, IlcCos, IlcDegToRad, IlcHalfPi, IlcQuarterPi, IlcPi, IlcRadToDeg,
IlcSin, IlcTan, IlcTwoPi

1230

Macro IlcTwoPi
Definition file: ilsolver/linfloat.h

IlcTwoPi

This global floating-point constant approximates twice the value of Pi.

See Also: IlcArcCos, IlcArcSin, IlcArcTan, IlcCos, IlcDegToRad, IlcHalfPi, IlcQuarterPi, IlcPi, IlcRadToDeg,
IlcSin, IlcTan, IlcThreeHalfPi

1231

Macro ILOANYBINARYPREDICATE0
Definition file: ilconcert/ilotupleset.h

ILOANYBINARYPREDICATE0(name)
ILOANYBINARYPREDICATE1(name, type1, nameArg1)
ILOANYBINARYPREDICATE2(name, type1, nameArg1, type2, nameArg2)
ILOANYBINARYPREDICATE3(name, type1, nameArg1, type2, nameArg2, type3, nameArg3)
ILOANYBINARYPREDICATE4(name, type1, nameArg1, type2, nameArg2, type3, nameArg3,
type4, nameArg4)
ILOANYBINARYPREDICATE5(name, type1, nameArg1, type2, nameArg2, type3, nameArg3,
type4, nameArg4, type5, nameArg5)
ILOANYBINARYPREDICATE6(name, type1, nameArg1, type2, nameArg2, type3, nameArg3,
type4, nameArg4, type5, nameArg5, type6, nameArg6)

For IBM ILOG Solver: defines a binary predicate class.
This macro defines a predicate class named nameI with n data members for use in a model. When n is greater
than 0 (zero), the types and names of the data members must be supplied as arguments to the macro. Each data
member is defined by its type Ti and a name datai. The call to the macro must be followed immediately by the
body of the isTrue member function of the predicate class being defined. Besides the definition of the class
nameI, this macro also defines a function named name that creates an instance of the class nameI and that
returns an instance of the class IloAnyBinaryPredicate that points to it.

You are not obliged to use this macro to define binary predicates on arbitrary objects. When the macro seems
too restrictive for your purposes, we recommend that you define a predicate class directly by subclassing
IlcAnyPredicateI, documented in the IBM ILOG Solver Reference Manual.

Since the argument name is used to name the predicate class, it is not possible to use the same name for several
predicate definitions.

See Also: IloAnyBinaryPredicate

1232

Macro ILOANYTERNARYPREDICATE0
Definition file: ilconcert/ilotupleset.h

ILOANYTERNARYPREDICATE0(name)
ILOANYTERNARYPREDICATE1(name, type1, nameArg1)
ILOANYTERNARYPREDICATE2(name, type1, nameArg1, type2, nameArg2)
ILOANYTERNARYPREDICATE3(name, type1, nameArg1, type2, nameArg2, type3, nameArg3)
ILOANYTERNARYPREDICATE4(name, type1, nameArg1, type2, nameArg2, type3, nameArg3,
type4, nameArg4)
ILOANYTERNARYPREDICATE5(name, type1, nameArg1, type2, nameArg2, type3, nameArg3,
type4, nameArg4, type5, nameArg5)
ILOANYTERNARYPREDICATE6(name, type1, nameArg1, type2, nameArg2, type3, nameArg3,
type4, nameArg4, type5, nameArg5, type6, nameArg6)

For IBM® ILOG® Solver: defines a ternary predicate class.
This macro defines a predicate class named nameI with n data members for use in a model. When n is greater
than 0, the types and names of the data members must be supplied as arguments to the macro. Each data
member is defined by its type Ti and a name datai. The call to the macro must be followed immediately by the
body of the isTrue member function of the predicate class being defined. Besides the definition of the class
nameI, this macro also defines a function named name that creates an instance of the class nameI and that
returns an instance of the class IloAnyTernaryPredicate that points to it.

You are not obliged to use this macro to define ternary predicates on arbitrary objects. When the macro seems
too restrictive for your purposes, we recommend that you define a predicate class directly by subclassing
IlcAnyPredicateI (documented in the IBM ILOG Solver Reference Manual).

Since the argument name is used to name the predicate class, it is not possible to use the same name for several
predicate definitions.

See Also: IloAnyTernaryPredicate

1233

Macro IloChooseIntIndex
Definition file: ilsolver/ilosolverint.h

IloChooseIntIndex

This macro creates a pointer to a function that takes an array of constrained integer expressions and returns an
integer.

In its search primitives for finding solutions, Solver lets you set parameters for choosing the order in which
constrained variables are bound. You do so by means of choice functions called criteria.

See Also: IloBestGenerate, IloChooseFirstUnboundInt, IlcChooseIntIndex, IlcChooseMaxMaxInt,
IlcChooseMaxMinInt, IlcChooseMaxRegretMax, IlcChooseMaxRegretMin, IlcChooseMaxSizeInt,
IlcChooseMinMaxInt, IlcChooseMinMinInt, IlcChooseMinRegretMax, IlcChooseMinRegretMin,
IlcChooseMinSizeInt, IloGenerate

1234

Macro ILOCLIKECOMPARATOR0
Definition file: ilsolver/iloselector.h

ILOCLIKECOMPARATOR0(comparatorName, tx, nx1, nx2)
ILOCLIKECOMPARATOR1(comparatorName, tx, nx1, nx2, td, nd)
ILOCLIKECOMPARATOR2(comparatorName, tx, nx1, nx2, td1, nd1, td2, nd2)
ILOCLIKECOMPARATOR3(comparatorName, tx, nx1, nx2, td1, nd1, td2, nd2, td3, nd3)
ILOCLIKECOMPARATOR4(comparatorName, tx, nx1, nx2, td1, nd1, td2, nd2, td3, nd3,
td4, nd4)
ILOCLIKECOMPARATOR5(comparatorName, tx, nx1, nx2, td1, nd1, td2, nd2, td3, nd3,
td4, nd4, td5, nd5)
ILOCLIKECOMPARATOR6(comparatorName, tx, nx1, nx2, td1, nd1, td2, nd2, td3, nd3,
td4, nd4, td5, nd5, td6, nd6)
ILOCLIKECOMPARATOR7(comparatorName, tx, nx1, nx2, td1, nd1, td2, nd2, td3, nd3,
td4, nd4, td5, nd5, td6, nd6, td7, nd7)
ILOCTXCLIKECOMPARATOR0(comparatorName, tx, nx1, nx2, tu, nu)
ILOCTXCLIKECOMPARATOR1(comparatorName, tx, nx1, nx2, tu, nu, td, nd)
ILOCTXCLIKECOMPARATOR2(comparatorName, tx, nx1, nx2, tu, nu, td1, nd1, td2, nd2)
ILOCTXCLIKECOMPARATOR3(comparatorName, tx, nx1, nx2, tu, nu, td1, nd1, td2, nd2,
td3, nd3)
ILOCTXCLIKECOMPARATOR4(comparatorName, tx, nx1, nx2, tu, nu, td1, nd1, td2, nd2,
td3, nd3, td4, nd4)
ILOCTXCLIKECOMPARATOR5(comparatorName, tx, nx1, nx2, tu, nu, td1, nd1, td2, nd2,
td3, nd3, td4, nd4, td5, nd5)
ILOCTXCLIKECOMPARATOR6(comparatorName, tx, nx1, nx2, tu, nu, td1, nd1, td2, nd2,
td3, nd3, td4, nd4, td5, nd5, td6, nd6)
ILOCTXCLIKECOMPARATOR7(comparatorName, tx, nx1, nx2, tu, nu, td1, nd1, td2, nd2,
td3, nd3, td4, nd4, td5, nd5, td6, nd6, td7, nd7)

The ILOCLIKECOMPARATORi macros can be used to generate comparators over arbitrary objects.

The macros take four mandatory parameters:

The name of the comparator to generate•
The type of the objects to compare•
The name of the first object to compare•
The name of the second object to compare•

After this, depending on the macro used, optional parameters can be provided as argument pairs of type and
name.

The body of the macro must return an integer which is equal to -1 if the comparator's left-hand side is better than
its right-hand side, to 1 if the comparator's left-hand side is worse than its right-hand side, and to 0 otherwise.

The macro ILOCTXCLIKECOMPARATORi can be used to handle a user-given context (name nu and type tu) at
comparison time.

See macro ILOCOMPARATOR0 for an example of comparators defined using a macro.

For more information, see Selectors.

1235

Macro ILOCOMPARATOR0
Definition file: ilsolver/iloselector.h

ILOCOMPARATOR0(comparatorName, tx, nx1, nx2)
ILOCOMPARATOR1(comparatorName, tx, nx1, nx2, td, nd)
ILOCOMPARATOR2(comparatorName, tx, nx1, nx2, td1, nd1, td2, nd2)
ILOCOMPARATOR3(comparatorName, tx, nx1, nx2, td1, nd1, td2, nd2, td3, nd3)
ILOCOMPARATOR4(comparatorName, tx, nx1, nx2, td1, nd1, td2, nd2, td3, nd3, td4,
nd4)
ILOCOMPARATOR5(comparatorName, tx, nx1, nx2, td1, nd1, td2, nd2, td3, nd3, td4,
nd4, td5, nd5)
ILOCOMPARATOR6(comparatorName, tx, nx1, nx2, td1, nd1, td2, nd2, td3, nd3, td4,
nd4, td5, nd5, td6, nd6)
ILOCOMPARATOR7(comparatorName, tx, nx1, nx2, td1, nd1, td2, nd2, td3, nd3, td4,
nd4, td5, nd5, td6, nd6, td7, nd7)
ILOCTXCOMPARATOR0(comparatorName, tx, nx1, nx2, tu, nu)
ILOCTXCOMPARATOR1(comparatorName, tx, nx1, nx2, tu, nu, td, nd)
ILOCTXCOMPARATOR2(comparatorName, tx, nx1, nx2, tu, nu, td1, nd1, td2, nd2)
ILOCTXCOMPARATOR3(comparatorName, tx, nx1, nx2, tu, nu, td1, nd1, td2, nd2, td3,
nd3)
ILOCTXCOMPARATOR4(comparatorName, tx, nx1, nx2, tu, nu, td1, nd1, td2, nd2, td3,
nd3, td4, nd4)
ILOCTXCOMPARATOR5(comparatorName, tx, nx1, nx2, tu, nu, td1, nd1, td2, nd2, td3,
nd3, td4, nd4, td5, nd5)
ILOCTXCOMPARATOR6(comparatorName, tx, nx1, nx2, tu, nu, td1, nd1, td2, nd2, td3,
nd3, td4, nd4, td5, nd5, td6, nd6)
ILOCTXCOMPARATOR7(comparatorName, tx, nx1, nx2, tu, nu, td1, nd1, td2, nd2, td3,
nd3, td4, nd4, td5, nd5, td6, nd6, td7, nd7)

The ILOCOMPARATORi macros can be used to generate comparators over arbitrary objects.

The macros take four mandatory parameters which are:

The name of the comparator to generate•
The type of the objects to compare•
The name of the first object to compare•
The name of the second object to compare•

After this, depending on the macro used, optional parameters can be provided as argument pairs of type and
name.

The body of the macro must return a Boolean value (IloBool) which is IloTrue if the comparator's left-hand
side is better than its right-hand side.

Using ILOCOMPARATORi

For example, the following code defines a comparator that compares the value of two IlcFloatVar variables
(provided the variables are bound):

 ILOCOMPARATOR0(CompareGreaterThan, IlcFloatVar, v1, v2) {
 return v1.getValue() > v2.getValue();
 }

This comparator can be invoked as follows:

 IloComparator<IlcFloatVar> cmp = CompareGreaterThan(getSolver());
 IloBool value = cmp(var1, var2);

Using ILOCTXCOMPARATORi

1236

The macro ILOCTXCOMPARATORi can be used to handle a user-given context (name nu and type tu) at
comparison time. The following comparator uses a contextual tolerance factor:

 ILOCTXCOMPARATOR0(CompareGreaterThanWithTolerance,IlcFloatVar, v1, v2, IlcFloat, tolerance) {
 return (v1.getValue() - v2.getValue() > tolerance);
 }

This comparator can be invoked as follows:

 IloComparator<IlcFloatVar> cmp = CompareGreaterThanWithTolerance(getSolver());
 IlcFloat tolerance = 0.8;
 IloBool value = cmp(var1, var2, (IloAny)&tolerance);

For more information, see Selectors.

1237

Macro ILOCPCONSTRAINTWRAPPER0
Definition file: ilsolver/ilosolverint.h

ILOCPCONSTRAINTWRAPPER0(_this, solver)
ILOCPCONSTRAINTWRAPPER1(_this, solver, t1, a1)
ILOCPCONSTRAINTWRAPPER2(_this, solver, t1, a1, t2, a2)
ILOCPCONSTRAINTWRAPPER3(_this, solver, t1, a1, t2, a2, t3, a3)
ILOCPCONSTRAINTWRAPPER4(_this, solver, t1, a1, t2, a2, t3, a3, t4, a4)
ILOCPCONSTRAINTWRAPPER5(_this, solver, t1, a1, t2, a2, t3, a3, t4, a4, t5, a5)
ILOCPCONSTRAINTWRAPPER6(_this, solver, t1, a1, t2, a2, t3, a3, t4, a4, t5, a5, t6,
a6)

This macro defines a constraint class named _thisI with n data members. When n is greater than zero, the
types and names of the data members must be supplied as arguments to the macro. Each data member is
defined by its type ti and a name ai.

Since the argument this is used to name the constraint class, it is not possible to use the same name for
several constraints.

You can use the macro ILOCPCONSTRAINTWRAPPER to wrap an existing instance of IlcConstraint when
you want to use it within Concert Technology model objects. In order to use an instance of IlcConstraint in
that way, you need to follow these steps:

Use the macro to wrap the instance of IlcConstraint in an instance of IloConstraint.1.
Extract your model and model objects for an instance of IloSolver by calling the member function
IloSolver::extract. During extraction, IloSolver::extract will put back the instance of
IloConstraint.

2.

You must use the following IloCPConstraintI member functions to force extraction of an extractable or an array of
extractables:

 void use(const IloSolver solver, const IloExtractable ext)const;
 void use(const IloSolver solver, const IloExtractableArray
 extArray)const;

Example

Here's how to define a constraint wrapper with one data member:

 ILOCPCONSTRAINTWRAPPER1(IloFreqConstraint, solver, IloIntVarArray, _vars) {
 use(solver, _vars);
 return IlcFreqConstraint(solver, solver.getIntVarArray(_vars));
 }

In order to use IloSolver::getIntVarArray, the object must be extracted. To force extraction of an
extractable or an array of extractables, pass them as parameters of the use method.

That macro generates code similar to the following lines:

 class IloFreqConstraintI : public IloCPConstraintI {

 ILOCPCONSTRAINTWRAPPERDECL

 private:

 IloIntVarArray _vars;

 public:

 IloFreqConstraintI(IloEnvI*, const IloIntVarArray&, const char*);

 virtual IloExtractableI* makeClone(IloEnvI*) const;

1238

 virtual void display(ostream & out) const;

 IlcConstraint extract(const IloSolver) const;

 };

 ILOCPCONSTRAINTWRAPPERIMPL(IloFreqConstraintI)

 IloFreqConstraintI::IloFreqConstraintI(IloEnvI* env,

 const IloIntVarArray& T_vars,

 const char* name) :

 IloCPConstraintI (env, name), _vars ((IloIntVarArray&)T_vars) {}

 IloExtractableI* IloFreqConstraintI::makeClone(IloEnvI* env) const {

 IloIntVarArray targ1 = IloGetClone(env, _vars);

 return new (env) IloFreqConstraintI(env,

 (const IloIntVarArray &)targ1,

 (const char*)0);

 }

 void IloFreqConstraintI::display(ostream& out) const {

 out << "IloFreqConstraintI" << " (";

 if (getName()) out << getName();

 else out << getId(); out << ")" << endl;

 out << " " << "_vars" << " " << _vars <<
 endl;

 }

 IloConstraint IloFreqConstraint(IloEnv env,

 IloIntVarArray _vars,

 const char* name=0) {

 IloFreqConstraintI::InitTypeIndex();

 return new (env) IloFreqConstraintI(env.getImpl(), _vars, name);

 }

 IlcConstraint IloFreqConstraintI::extract(const IloSolver& solver) const
 {

 use(solver, _vars);

 return IlcFreqConstraint(solver, solver.getIntVarArray(_vars));

 }

See Also: IloSolver, IloCPConstraintI

1239

Macro ILOCPGOALWRAPPER0
Definition file: ilsolver/ilosolverint.h

ILOCPGOALWRAPPER0(_this, solver)
ILOCPGOALWRAPPER1(_this, solver, t1, a1)
ILOCPGOALWRAPPER2(_this, solver, t1, a1, t2, a2)
ILOCPGOALWRAPPER3(_this, solver, t1, a1, t2, a2, t3, a3)
ILOCPGOALWRAPPER4(_this, solver, t1, a1, t2, a2, t3, a3, t4, a4)
ILOCPGOALWRAPPER5(_this, solver, t1, a1, t2, a2, t3, a3, t4, a4, t5, a5)

This macro defines a goal class named _thisI with n data members. When n is greater than zero, the types
and names of the data members must be supplied as arguments to the macro. Each data member is defined by
its type ti and a name ai.

You can use the macro ILOCPGOALWRAPPER to wrap an existing instance of IlcGoal when you want to use it
within Concert Technology model objects. In order to use an instance of IlcGoal in that way, you need to follow
these steps:

Use the macro to wrap the instance of IlcGoal in an instance of IloGoal.1.
Use the IloGoal generated by IloSolver::solve and IloSolver:startNewSearch.2.

Example

Here's how to define a goal wrapper with one data member:

 ILOCPGOALWRAPPER1(MyGenerate, solver, IloIntVarArray, vars) {
 return IlcGenerate(solver.getIntVarArray(vars), IlcChooseMinSizeMin);
 }

That macro generates code similar to the following lines:

 class MyGenerateConcertI : public IloGoalI {
 IloIntVarArray vars ;
 public:
 MyGenerateConcertI (IloEnvI*, IloIntVarArray);
 ~MyGenerateConcertI ();
 virtual IlcGoal extract(const IloSolver) const;
 virtual IloGoalI* makeClone(IloEnvI*) const;
 };

 MyGenerateConcertI::MyGenerateConcertI(IloEnvI* env,
 IloIntVarArray varsvars) :
 IloGoalI(env), vars (varsvars) {}

 MyGenerateConcertI::~MyGenerateConcertI () {}

 IloGoalI* MyGenerateConcertI::makeClone(IloEnvI* env) const {
 IloIntVarArray na1 = IloGetClone(env, vars);
 return new (env) MyGenerateConcertI(env, na1);
 }

 IloGoal MyGenerate (IloEnv env, IloIntVarArray varsvars) {
 return new (env) MyGenerateConcertI (env.getImpl(), varsvars);
 }

 IlcGoal MyGenerateConcertI::extract(const IloSolver solver) const {
 return IlcGenerate(solver.getIntVarArray(vars), IlcChooseMinSizeMin);
 }

The extraction of a goal does not extract and must not extract its arguments. Therefore, when using a goal you
must make sure that the arguments will be extracted by the model. A good way to ensure this is to add the
arguments to the models.

This is illustrated by the following example:

 IloEnv env;

1240

 IloModel model(env);
 IloIntVar x(env, 0, 10);
 model.add(x); // This is mandatory otherwise the variable will not be
 extracted
 IloSolver solver(model);
 solver.solve(IloInstantiate(env, x));
 env.end();

See Also: IloSolver

1241

Macro ILOCPTRACEWRAPPER0
Definition file: ilsolver/ilosolverint.h

ILOCPTRACEWRAPPER0(_this, solver)
ILOCPTRACEWRAPPER1(_this, solver, t1, a1)
ILOCPTRACEWRAPPER2(_this, solver, t1, a1, t2, a2)
ILOCPTRACEWRAPPER3(_this, solver, t1, a1, t2, a2, t3, a3)
ILOCPTRACEWRAPPER4(_this, solver, t1, a1, t2, a2, t3, a3, t4, a4)
ILOCPTRACEWRAPPER5(_this, solver, t1, a1, t2, a2, t3, a3, t4, a4, t5, a5)
ILOCPTRACEWRAPPER6(_this, solver, t1, a1, t2, a2, t3, a3, t4, a4, t5, a5, t6, a6)

This macro defines a trace class named _thisI with n data members. When n is greater than zero, the types
and names of the data members must be supplied as arguments to the macro. Each data member is defined by
its type ti and a name ai.

You can use the macro ILOCPTRACEWRAPPER to wrap an existing instance of IlcTrace when you want to use
it within Concert Technology objects. In order to use an instance of IlcTrace in that way, you need to follow
these steps:

Use the macro to wrap the instance of IlcTrace in an instance of IloCPTrace.1.
Use IloSolver::addTrace to add the trace to the model.2.

Example

Here is how to define a trace wrapper with no (zero) data members:

 ILOCPTRACEWRAPPER0(PrintConstraintTrace, solver) {
 solver.setTraceMode(IlcTrue);
 IlcPrintTrace trace(solver, IlcTraceConstraint);
 solver.setTrace(trace);
 }

That macro generates code similar to the following lines:

 class PrintConstraintTraceConcertI : public IloCPTraceI {
 public:
 PrintConstraintTraceConcertI();
 ~PrintConstraintTraceConcertI();
 virtual void execute(const IloSolver solver) const;
 };
 PrintConstraintTraceConcertI::PrintConstraintTraceConcertI() :
 IloCPTraceI() {}
 PrintConstraintTraceConcertI::~PrintConstraintTraceConcertI() {}
 IloCPTrace PrintConstraintTrace(IloEnv env) {
 return new (env) PrintConstraintTraceConcertI();
 }
 void PrintConstraintTraceConcertI::execute(const IloSolver solver) const
 {
 solver.setTraceMode(IlcTrue);
 IlcPrintTrace trace(solver, IlcTraceConstraint);
 solver.setTrace(trace);
 }

See Also: IloCPTrace, IloCPTraceI

1242

Macro ILODECLDEFAULTCOMPARATOR
Definition file: ilsolver/iimmulti.h

ILODECLDEFAULTCOMPARATOR(IloObject)

Macro for declaring a default comparator.
This macro declares a special template function which is called when a default comparator is needed (for
instance by class IloExplicitEvaluator). It should be used in conjunction with ILODEFAULTCOMPARATOR
when the defined comparator function is in a different source file. Normally, this macro will be used in a header
file.

See Also: ILODEFAULTCOMPARATOR

1243

Macro ILODEFAULTCOMPARATOR
Definition file: ilsolver/iimmulti.h

ILODEFAULTCOMPARATOR(IloObject, o1, o2)

Macro for defining a default comparator.
This macro can be used for a default comparator for a particular object type. The macro creates a special
template function which delivers a comparator which will compare objects of a given type. The macro takes three
arguments, the first being the object type and the next two being the names of the two objects to compare. The
body of the comparator should be written in exactly the same way as for ILOCOMPARATOR0, where a true value
is returned if and only if the first parameter is considered smaller than the second. Note that as this comparison is
considered to be innate to the object type, no additional parameters can be specified. The generated template
function can be called by classes that need to compare objects (normally for equality). For example, see the
IloExplicitEvaluator class.

See Also: ILODECLDEFAULTCOMPARATOR, IloExplicitEvaluator

1244

Macro ILODEFINELNSFRAGMENT0
Definition file: ilsolver/iimlns.h

ILODEFINELNSFRAGMENT0(NAME, S)
ILODEFINELNSFRAGMENT1(NAME, S, T1, P1)
ILODEFINELNSFRAGMENT2(NAME, S, T1, P1, T2, P2)
ILODEFINELNSFRAGMENT3(NAME, S, T1, P1, T2, P2, T3, P3)
ILODEFINELNSFRAGMENT4(NAME, S, T1, P1, T2, P2, T3, P3, T4, P4)
ILODEFINELNSFRAGMENT5(NAME, S, T1, P1, T2, P2, T3, P3, T4, P4, T5, P5)
ILODEFINELNSFRAGMENT6(NAME, S, T1, P1, T2, P2, T3, P3, T4, P4, T5, P5, T6, P6)
ILODEFINELNSFRAGMENT7(NAME, S, T1, P1, T2, P2, T3, P3, T4, P4, T5, P5, T6, P6, T7,
P7)

Macro for more easily creating LNS neighborhoods.
This macro simplifies subclassing the class IloLargeNHoodI in order to create large neighborhoods. When you
use this macro, you are in fact subclassing IloLargeNHoodI and redefining the method
IloLargeNHoodI::defineFragment. Thus, in the body of the macro, you should make calls to the function
addToFragment to add each variable you wish to the fragment.

This macro takes two mandatory parameters. The first is the name of a function which will be generated that will
create the large neighborhood. The second is the name of an instance of IloSolver which is driving the local
search. After these two mandatory parameters, depending on the particular version of the macro employed, you
pass optional parameters in the usual way using pairs of type and name.

An example of the use of this macro from the YourSolverHomeexamplessrclstalent.cpp example is
shown below:

ILODEFINELNSFRAGMENT1(SegmentLNSNHood, solver, IloIntVarArray, x) {
 IlcRandom r = solver.getRandom();
 IloInt a = r.getInt(x.getSize());
 IloInt b = r.getInt(x.getSize());
 if (a > b) { IloInt tmp = a; a = b; b = tmp; }
 for (IlcInt i = a; i <= b; i++)
 addToFragment(solver, x[i]);
}

1245

Macro ILOEVALUATOR0
Definition file: ilsolver/iloselector.h

ILOEVALUATOR0(name, tx, nx)
ILOEVALUATOR1(name, tx, nx, td, nd)
ILOEVALUATOR2(name, tx, nx, td1, nd1, td2, nd2)
ILOEVALUATOR3(name, tx, nx, td1, nd1, td2, nd2, td3, nd3)
ILOEVALUATOR4(name, tx, nx, td1, nd1, td2, nd2, td3, nd3, td4, nd4)
ILOEVALUATOR5(name, tx, nx, td1, nd1, td2, nd2, td3, nd3, td4, nd4, td5, nd5)
ILOEVALUATOR6(name, tx, nx, td1, nd1, td2, nd2, td3, nd3, td4, nd4, td5, nd5, td6,
nd6)
ILOEVALUATOR7(name, tx, nx, td1, nd1, td2, nd2, td3, nd3, td4, nd4, td5, nd5, td6,
nd6, td7, nd7)
ILOCTXEVALUATOR0(name, tx, nx, tu, nu)
ILOCTXEVALUATOR1(name, tx, nx, tu, nu, td, nd)
ILOCTXEVALUATOR2(name, tx, nx, tu, nu, td1, nd1, td2, nd2)
ILOCTXEVALUATOR3(name, tx, nx, tu, nu, td1, nd1, td2, nd2, td3, nd3)
ILOCTXEVALUATOR4(name, tx, nx, tu, nu, td1, nd1, td2, nd2, td3, nd3, td4, nd4)
ILOCTXEVALUATOR5(name, tx, nx, tu, nu, td1, nd1, td2, nd2, td3, nd3, td4, nd4, td5,
nd5)
ILOCTXEVALUATOR6(name, tx, nx, tu, nu, td1, nd1, td2, nd2, td3, nd3, td4, nd4, td5,
nd5, td6, nd6)
ILOCTXEVALUATOR7(name, tx, nx, tu, nu, td1, nd1, td2, nd2, td3, nd3, td4, nd4, td5,
nd5, td6, nd6, td7, nd7)

The macros ILOEVALUATORi and ILOCTXEVALUATORi define one function named name that creates and
returns an instance of an evaluator of objects of class tx with i data members of type td1...tdi.
ILOCTXEVALUATORi allows an additional dynamic evaluation context to be passed to be used inside the
user-defined evaluation function.

This function's signature returns an evaluator allocated on an environment or on a solver heap:

 IloEvaluator<tx> name(IloEnv, td1, ..., tdi);
 IloEvaluator<tx> name(IloSolver, td1, ..., tdi);

Note the important difference between data members and contexts. For a given instance of evaluator, data
members represent a unique instance of object linked with the evaluator and given at construction time, whereas
the context is given in the evaluation function at evaluation time and thus may change depending on the instance
of object that is evaluated:

 IloEvaluator<tx>::operator()(tx nx, IloAny nu)

The two following examples show how to define an evaluator that evaluates the value of an instance of
IloNumVar in a solution.

Example 1

In the first case, it is assumed that you may have to evaluate variables in different instances of solution so that
the solution must be given as a context to the evaluation function:

 ILOCTXEVALUATOR0(ValueInContextualSolution,
 IloNumVar, v,
 IloSolution, solution) {
 assert(solution.isBound(v));
 return solution.getValue(v);
 }

The macro above defines the following function:

 IloEvaluator<IloNumVar> ValueInContextualSolution(IloEnv);

1246

The evaluation function must be given the address of a solution handle as context:

 IloEnv env;
 IloNumVar v = ...;
 IloSolution solution = ...;
 IloEvaluator<IloNumVar> eval1 = ValueInContextualSolution(env);
 IloNum val = eval1(v, &solution);

Example 2

In the second case, it is assumed that you only have one instance of solution in the problem and that all the
evaluations will use this solution so that the solution can be represented as a data member of the evaluator.

 ILOEVALUATOR1(ValueInTheSolution,
 IloFloatVar, v,
 IloSolution, solution) {
 assert(solution.isBound(v));
 return solution.getValue(v);
 }

The macro above defines the following function:

 IloEvaluator<IloNumVar> ValueInTheSolution(IloEnv, IloSolution);

The evaluation function does not use any context:

 IloEnv env;
 IloNumVar v = ...;
 IloSolution solution = ...;
 IloEvaluator<IloNumVar> eval2 = ValueInTheSolution(env, solution);
 IloNum val = eval2(v);

For more information, see Selectors.

1247

Macro IloFloatArray
Definition file: ilconcert/iloenv.h

IloFloatArray

IloFloatArray is the array class of the basic floating-point class.
IloFloatArray is the array class of the basic floating-point class for a model. It is a handle class. The
implementation class for IloFloatArray is the undocumented class IloFloatArrayI.

Instances of IloFloatArray are extensible. (They differ from instances of IlcFloatArray in this respect.
IlcFloatArray is documented in the IBM ILOG Solver Reference Manual and the IBM ILOG CP Optimizer
Reference Manual.)

For each basic type, Concert Technology defines a corresponding array class. That array class is a handle class.
In other words, an object of that class contains a pointer to another object allocated on the Concert Technology
heap associated with a model. Exploiting handles in this way greatly simplifies the programming interface since
the handle can then be an automatic object: as a developer using handles, you do not have to worry about
memory allocation.

As handles, these objects should be passed by value, and they should be created as automatic objects, where
“automatic” has the usual C++ meaning.

Member functions of a handle class correspond to member functions of the same name in the implementation
class.

Assert and NDEBUG

Most member functions of the class IloFloatArray are inline functions that contain an assert statement.
This statement checks that the handle pointer is not null. These statements can be suppressed by the macro
NDEBUG. This option usually reduces execution time. The price you pay for this choice is that attempts to access
through null pointers are not trapped and usually result in memory faults.

See Also: IloNum

1248

Macro IloFloatVar
Definition file: ilconcert/iloexpression.h

IloFloatVar

An instance of this class represents a constrained floating-point variable in Concert Technology.
An instance of this class represents a constrained floating-point variable in Concert Technology.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

See Also: IloFloatVarArray, IloNumVar

1249

Macro IloFloatVarArray
Definition file: ilconcert/iloexpression.h

IloFloatVarArray

The array class of IloFloatVar.
For each basic type, Concert Technology defines a corresponding array class. IloFloatVarArray is the array
class of the floating-point variable class for a model. It is a handle class.

Instances of IloFloatVarArray are extensible.

Most member functions in this class contain assert statements. For an explanation of the macro NDEBUG (a
way to turn on or turn off these assert statements), see the concept Assert and NDEBUG.

See Also: IloFloatVar

1250

Macro IloHalfPi
Definition file: ilconcert/ilosys.h

IloHalfPi

Half pi.
Concert Technology predefines conventional trigonometric constants to conform to IEEE 754 standards for
quarter pi, half pi, pi, three-halves pi, and two pi.

 extern const IloNum IloHalfPi; // = 1.57079632679489661923

1251

Macro ILOIIMLISTENER0
Definition file: ilsolver/iimevent.h

ILOIIMLISTENER0(N, ET, E)
ILOIIMLISTENER1(N, ET, E, T1, V1)
ILOIIMLISTENER2(N, ET, E, T1, V1, T2, V2)
ILOIIMLISTENER3(N, ET, E, T1, V1, T2, V2, T3, V3)
ILOIIMLISTENER4(N, ET, E, T1, V1, T2, V2, T3, V3, T4, V4)
ILOIIMLISTENER5(N, ET, E, T1, V1, T2, V2, T3, V3, T4, V4, T5, V5)
ILOIIMLISTENER6(N, ET, E, T1, V1, T2, V2, T3, V3, T4, V4, T5, V5, T6, V6)
ILOIIMLISTENER7(N, ET, E, T1, V1, T2, V2, T3, V3, T4, V4, T5, V5, T6, V6, T7, V7)
ILOIIMLISTENER8(N, ET, E, T1, V1, T2, V2, T3, V3, T4, V4, T5, V5, T6, V6, T7, V7,
T8, V8)

A macro to define custom listeners.
The body of this macro defines a piece of code to execute when the object to which the listener is added emits
the event in question. No value is returned from a listener.

The listener macro takes three mandatory parameters:

The name of the listener•
The type of event to listen for•
The name of the event received•

Depending on the specific macro used, optional parameters can be added using pairs of arguments specifying
the parameter type and the parameter name.

The following code from the example YourSolverHomeexamplessrcea1max_listen.cpp defines a listener
which monitors operator invocation:

ILOIIMLISTENER0(OperatorListener, IloPoolOperator::InvocationEvent, event) {
 IloPoolOperator op = event.getOperator();
 OperatorStatistics * stat = GetOperatorStatistics(op);
 stat->invocations++;
}

See Also: IloListener, IloEvent

1252

Macro ILOIIMOP0
Definition file: ilsolver/iimoperator.h

ILOIIMOP0(N, S)

This macro is used to define operators.
This macro is used to define operators. For the most part, operators can be thought of as standard Solver goals
with the additional property that they have access to an input pool of solutions which they use to influence their
behavior. The macro must be followed by the user defined method body which must return a (possibly null)
continuation goal.

When the operator is converted to a processor, the resulting processor will capture the state of the solver as a
solution and store it in the output pool of the processor.

A set of ILOIIMOP0..7 macros allows you to define parameters that can be used in the user defined method.
Two parameters are mandatory:

the name of the operator to be created•
an expression indicating the number of input solutions required by the operator (this can be a numerical
constant, or a more general expression)

•

After the mandatory parameters, optional parameters can be given depending on the version of the macro
chosen. These are specified by pairs of object type followed by object name.

Certain services are available to the selector:

getSolver() gets the current solver•
getInputPool() delivers the input pool of the operator•

The following code from the YourSolverHomeexamplessrceabinpack.cpp example begins to define the
genetic operator:

ILOIIMOP5(PackingOperator, numParents,
 IloInt, numParents,
 IloIntVarArray, load,
 IloIntVarArray, where,
 IloIntArray, weight,
 IloIntVar, used) {
 IloSolver solver = getSolver();
 IloInt numItems = weight.getSize();
 IloInt numBins = solver.getMax(used);
 IloSolutionPool parents = getInputPool();
 IloInt numParents = parents.getSize();
 IloInt reqdMeanLoad = (IloSum(weight) + numBins - 1) / numBins;
 IlcRandom rnd = solver.getRandom();
 IloInt targetBin = rnd.getInt(numBins);
 IloInt currentBin = 0;
 IloInt tries = 0;

 while (currentBin < targetBin && tries < numParents * numBins) {

Note that here the second parameter of the macro, which is the number of input solutions the operator requires,
is a variable which is passed as the first optional parameter of the macro. This is a simple way to write operators
which can be instantiated to receive different numbers of parents.

Note

The user defined method will be invoked as many times as necessary to produce the number of solutions
required by the consumer processor linked to this operator's output.

See Also: IloPoolOperator::operator IloPoolProc, operator>>

1253

Macro ILOINTBINARYPREDICATE0
Definition file: ilconcert/ilotupleset.h

ILOINTBINARYPREDICATE0(name)
ILOINTBINARYPREDICATE1(name, type1, nameArg1)
ILOINTBINARYPREDICATE2(name, type1, nameArg1, type2, nameArg2)
ILOINTBINARYPREDICATE3(name, type1, nameArg1, type2, nameArg2, type3, nameArg3)
ILOINTBINARYPREDICATE4(name, type1, nameArg1, type2, nameArg2, type3, nameArg3,
type4, nameArg4)
ILOINTBINARYPREDICATE5(name, type1, nameArg1, type2, nameArg2, type3, nameArg3,
type4, nameArg4, type5, nameArg5)
ILOINTBINARYPREDICATE6(name, type1, nameArg1, type2, nameArg2, type3, nameArg3,
type4, nameArg4, type5, nameArg5, type6, nameArg6)

For constraint programming: defines a predicate class.
This macro defines a predicate class named nameI with n data members for use in a model. When n is greater
than 0, the types and names of the data members must be supplied as arguments to the macro. Each data
member is defined by its type Ti and a name datai. The call to the macro must be followed immediately by the
body of the isTrue member function of the predicate class being defined. Besides the definition of the class
nameI, this macro also defines a function named name that creates an instance of the class nameI and that
returns an instance of the class IloIntBinaryPredicate that points to it.

You are not obliged to use this macro to define binary predicates on arbitrary objects. When the macro seems
too restrictive for your purposes, we recommend that you define a predicate class directly by subclassing
IlcIntPredicateI, documented in the IBM ILOG CP Optimizer Reference Manual and the IBM ILOG Solver
Reference Manual.

Since the argument name is used to name the predicate class, it is not possible to use the same name for several
predicate definitions.

See Also: IloIntBinaryPredicate

1254

Macro ILOINTTERNARYPREDICATE0
Definition file: ilconcert/ilotupleset.h

ILOINTTERNARYPREDICATE0(name)
ILOINTTERNARYPREDICATE1(name, type1, nameArg1)
ILOINTTERNARYPREDICATE2(name, type1, nameArg1, type2, nameArg2)
ILOINTTERNARYPREDICATE3(name, type1, nameArg1, type2, nameArg2, type3, nameArg3)
ILOINTTERNARYPREDICATE4(name, type1, nameArg1, type2, nameArg2, type3, nameArg3,
type4, nameArg4)
ILOINTTERNARYPREDICATE5(name, type1, nameArg1, type2, nameArg2, type3, nameArg3,
type4, nameArg4, type5, nameArg5)
ILOINTTERNARYPREDICATE6(name, type1, nameArg1, type2, nameArg2, type3, nameArg3,
type4, nameArg4, type5, nameArg5, type6, nameArg6)

For constraint programming: defines a predicate class.
This macro defines a predicate class named nameI with n data members for use in a model. When n is greater
than 0, the types and names of the data members must be supplied as arguments to the macro. Each data
member is defined by its type Ti and a name datai. The call to the macro must be followed immediately by the
body of the isTrue member function of the predicate class being defined. Besides the definition of the class
nameI, this macro also defines a function named name that creates an instance of the class nameI and that
returns an instance of the class IloIntTernaryPredicate that points to it.

You are not obliged to use this macro to define ternary predicates on arbitrary objects. When the macro seems
too restrictive for your purposes, we recommend that you define a predicate class directly by subclassing
IlcIntPredicateI (documented in the IBM ILOG CP Optimizer Reference Manual and the IBM ILOG Solver
Reference Manual).

Since the argument name is used to name the predicate class, it is not possible to use the same name for several
predicate definitions.

See Also: IloIntTernaryPredicate

1255

Macro ILOMULTIPLEEVALUATOR0
Definition file: ilsolver/iimmulti.h

ILOMULTIPLEEVALUATOR0(name, tx, tc, nc)

Defines an evaluator that performs an evaluation of all objects within a container.
This macro allows you to create an evaluator that performs an evaluation of all objects within a container. The
macro defines a function which creates an instance of IloMultipleEvaluator, whose purpose is to keep an
evaluation of each object in a specified container.

Normally, you would create an instance of IloEvaluator to evaluate each object in a container. However,
sometimes you need to know all the objects at once in order to perform the evaluation, which is when you should
use this macro. For example, an evaluator which produces as evaluation the rank of an object according to its
quality compared to the other solutions requires this type of evaluation.

The four mandatory arguments of this macro are:

the name of the function to be generated•
the type of object to be evaluated•
the type of container used to contain the objects•
the name of the container•

Depending on the exact version of the macro you use, you may then add arguments, which will be present in the
generated function, using pairs of argument-type,argument-name in the macro.

The function, setEvaluation is available to you in the macro, with the same semantics as
IloExplicitEvaluator::setEvaluation. You should call this function as many times as necessary to fill
up the evaluator with evaluations from the pool.

The following code shows a multiple evaluator which takes two additional parameters: another evaluator and a
power parameter. The user-defined method raises values obtained from the given evaluator to the given power:

// Raise the result of an evaluator to a given power, and normalizes
ILOMULTIPLEEVALUATOR2(PowerEvaluator, IloSolution, IloSolutionPool, pool,
 IloSolutionPoolEvaluator, eval,
 IloNum, power) {
 eval.update(pool);
 IloNum sum = 0.0;
 for (IloSolutionPool::Iterator it1(pool); it1.ok(); ++it1)
 sum += pow(eval(*it1), power);
 for (IloSolutionPool::Iterator it2(pool); it2.ok(); ++it2)
 setEvaluation(*it2, pow(eval(*it2), power) / sum);
}

Notice that in this code sample, a subordinate multiple evaluator on solutions is passed as parameter. Here, the
subordinate evaluator is updated to make sure its values are up to date before using them. This structure is
relatively common practice.

See Also: IloEvaluator, IloMultipleEvaluator, IloSolutionPoolEvaluator

1256

Macro IloPi
Definition file: ilconcert/ilosys.h

IloPi

Pi.
Concert Technology predefines conventional trigonometric constants to conform to IEEE 754 standards for
quarter pi, half pi, pi, three-halves pi, and two pi.

 extern const IloNum IloPi; // = 3.14159265358979323846

1257

Macro ILOPREDICATE0
Definition file: ilsolver/iloselector.h

ILOPREDICATE0(name, tx, nx)
ILOPREDICATE1(name, tx, nx, td, nd)
ILOPREDICATE2(name, tx, nx, td1, nd1, td2, nd2)
ILOPREDICATE3(name, tx, nx, td1, nd1, td2, nd2, td3, nd3)
ILOPREDICATE4(name, tx, nx, td1, nd1, td2, nd2, td3, nd3, td4, nd4)
ILOPREDICATE5(name, tx, nx, td1, nd1, td2, nd2, td3, nd3, td4, nd4, td5, nd5)
ILOPREDICATE6(name, tx, nx, td1, nd1, td2, nd2, td3, nd3, td4, nd4, td5, nd5, td6,
nd6)
ILOPREDICATE7(name, tx, nx, td1, nd1, td2, nd2, td3, nd3, td4, nd4, td5, nd5, td6,
nd6, td7, nd7)
ILOCTXPREDICATE0(name, tx, nx, tu, nu)
ILOCTXPREDICATE1(name, tx, nx, tu, nu, td, nd)
ILOCTXPREDICATE2(name, tx, nx, tu, nu, td1, nd1, td2, nd2)
ILOCTXPREDICATE3(name, tx, nx, tu, nu, td1, nd1, td2, nd2, td3, nd3)
ILOCTXPREDICATE4(name, tx, nx, tu, nu, td1, nd1, td2, nd2, td3, nd3, td4, nd4)
ILOCTXPREDICATE5(name, tx, nx, tu, nu, td1, nd1, td2, nd2, td3, nd3, td4, nd4, td5,
nd5)
ILOCTXPREDICATE6(name, tx, nx, tu, nu, td1, nd1, td2, nd2, td3, nd3, td4, nd4, td5,
nd5, td6, nd6)
ILOCTXPREDICATE7(name, tx, nx, tu, nu, td1, nd1, td2, nd2, td3, nd3, td4, nd4, td5,
nd5, td6, nd6, td7, nd7)

The macros ILOPREDICATEi and ILOCTXPREDICATEi define one function named name that creates and
returns an instance of a predicate on objects of class tx with i data members of type td1...tdi.
ILOCTXPREDICATEi allows an additional context to be passed to be used inside the user-defined test function.

This function's signature returns a predicate allocated on an environment or on a solver heap:

 IloPredicate<tx> name(IloEnv, td1, ..., tdi)
 IloPredicate<tx> name(IloSolver, td1, ..., tdi)

Note the important difference between data members and contexts. For a given instance of predicate, data
members represent a unique instance of object linked with the predicate and given at construction time, whereas
contexts are given in the test function IloPredicate<tx>::operator()(tx nx, IloAny nu) and thus
may change depending on the instance of object that is tested.

The two examples below show how to define a predicate that tests whether an instance of IloNumVar is bound
in a solution.

Example 1

In the first case, it is assumed that you may have to test variables in different instances of solution so that the
solution must be given as a context to the test function:

 ILOCTXPREDICATE0(IsBoundInContextualSolution,
 IloNumVar, v,
 IloSolution, solution) {
 return solution.isBound(v);
 }

The above macro invocation defines the following function:

 IloPredicate<IloNumVar> IsBoundInContextualSolution(IloEnv);

The test function must be given the address of the solution handle as context:

 IloEnv env;
 IloNumVar v = ...;

1258

 IloSolution solution = ...;
 IloPredicate<IloNumVar> pred1 = IsBoundInContextualSolution(env);
 IloBool bound = pred1(v, &solution);

Example 2

In the second case, it is assumed that you only have one instance of solution in the problem and all the tests
will use this solution so that the solution can be represented as a data member of the predicate.

 ILOPREDICATE1(IsBoundInTheSolution,
 IloNumVar, v,
 IloSolution, solution) {
 return solution.isBound(v);
 }

The macro above defines the following function:

 IloPredicate<IloNumVar> IsBoundInTheSolution(IloEnv, IloSolution);

The test function does not use any context:

 IloEnv env;
 IloNumVar v = ...;
 IloSolution solution = ...;
 IloPredicate<IloNumVar> pred2 = IsBoundInTheSolution(env, solution);
 IloBool bound = pred2(v);

For more information, see Selectors.

1259

Macro IloQuarterPi
Definition file: ilconcert/ilosys.h

IloQuarterPi

Quarter pi.
Concert Technology predefines conventional trigonometric constants to conform to IEEE 754 standards for
quarter pi, half pi, pi, three-halves pi, and two pi.

 extern const IloNum IloQuarterPi; // = 0.78539816339744830962

1260

Macro ILOSELECTOR0
Definition file: ilsolver/iloselector.h

ILOSELECTOR0(name, tx, tc, nc)
ILOSELECTOR1(name, tx, tc, nc, td, nd)
ILOSELECTOR2(name, tx, tc, nc, td1, nd1, td2, nd2)
ILOSELECTOR3(name, tx, tc, nc, td1, nd1, td2, nd2, td3, nd3)
ILOSELECTOR4(name, tx, tc, nc, td1, nd1, td2, nd2, td3, nd3, td4, nd4)
ILOSELECTOR5(name, tx, tc, nc, td1, nd1, td2, nd2, td3, nd3, td4, nd4, td5, nd5)
ILOSELECTOR6(name, tx, tc, nc, td1, nd1, td2, nd2, td3, nd3, td4, nd4, td5, nd5,
td6, nd6)
ILOSELECTOR7(name, tx, tc, nc, td1, nd1, td2, nd2, td3, nd3, td4, nd4, td5, nd5,
td6, nd6, td7, nd7)

The ILOSELECTORi macros define several functions named name that create and return an instance of selector
of objects of class tx with a selection function using i extra fields of type td1...tdi.

The signatures of these functions are:

IloSelector<tx,tc> name(IloEnv), that returns a selector allocated on the environment; and•
IloSelector<tx,tc> name(IloSolver), that returns a selector allocated on the solver•

The user-written code specifies which element of the given collection of type tc is selected by invoking the
select(tx) method.

Example

The following code defines a selector which randomly selects a variable in an array:

 ILOSELECTOR0(RandomVariableInArraySelector,
 IlcIntVar,
 IlcIntVarArray, array) {
 IlcInt index = array[0].getManager().getRandom().getInt(array.getSize()-1);
 select(array[index]);
 }

This macro defines the following function:

 IloSelector<IlcIntVar,IlcIntVarArray> RandomVariableInArraySelector(IloSolver);

For example, the following code defines an instance of a selector to select a random variable in an
IlcIntVarArray:

 IloSolver solver = ...;
 IloSelector<IlcIntVar,IlcIntVarArray> randomVariableInArraySelector = RandomVariableInArraySelector(solver);
 IlcIntVarArray array = ...;
 IlcIntVar selected;
 IlcBool isSelected = randomVariableInArraySelector.select(selected, array);

For more information, see Selectors.

1261

Macro ILOSTLBEGIN
Definition file: ilconcert/ilosys.h

ILOSTLBEGIN

Macro for STL.
This macro enables you run your application either with the STL (Standard Template Library) of Microsoft Visual
C++ or with other platforms. It is defined as:

 using namespace std

when the STL is used (ports of type stat_sta, stat_mta or stat_mda); otherwise, its value is simply null.

1262

Macro IloThreeHalfPi
Definition file: ilconcert/ilosys.h

IloThreeHalfPi

Three half-pi.
Concert Technology predefines conventional trigonometric constants to conform to IEEE 754 standards for
quarter pi, half pi, pi, three-halves pi, and two pi.

 extern const IloNum IloThreeHalfPi; // = 4.71238898038468985769

1263

Macro ILOTRANSLATOR
Definition file: ilsolver/iloselector.h

ILOTRANSLATOR(name, IloObjectOut, IloObjectIn, nx)

This macro defines a translator class that translates objects of type IloObjectIn into objects of type
IloObjectOut. This macro defines a class name which is a subclass of template class
IloTranslator<IloObjectOut,IloObjectIn>. The use of this macro is the only way to define a new
subclass of translator.

Example

This example shows how to define a translator that translates an instance of IlcIntSetVar into an IlcIntSet
that represents the required set of the IlcIntSetVar:

 ILOTRANSLATOR(RequiredSetTranslator,
 IlcIntSet,
 IlcIntSetVar, v) {
 return v.getRequiredSet();
 }

This macro defines a class RequiredSetTranslator which is a subclass of
IloTranslator<IlcIntSet,IlcIntSetVar> that can be used to transform a predicate or evaluator on
IlcIntSet into the corresponding predicate or evaluator on IlcIntSetVar using operator<< as illustrated
in the following code:

 IloTranslator<IlcIntSet,IlcIntSetVar> tr = RequiredSetTranslator(solver);
 IloEvaluator<IlcIntSet> setSizeEvaluator = ...;
 IloEvaluator<IlcIntSetVar> requiredSetSizeEvaluator = setSizeEvaluator << tr;

For more information, see Selectors.

See Also: operator<<, operator<<

1264

Macro IloTwoPi
Definition file: ilconcert/ilosys.h

IloTwoPi

Two pi.
Concert Technology predefines conventional trigonometric constants to conform to IEEE 754 standards for
quarter pi, half pi, pi, three-halves pi, and two pi.

 extern const IloNum IloTwoPi; // = 6.28318530717958647692

1265

Macro ILOVISITOR0
Definition file: ilsolver/iloselector.h

ILOVISITOR0(name, tx, tc, nc)
ILOVISITOR1(name, tx, tc, nc, td, nd)
ILOVISITOR2(name, tx, tc, nc, td1, nd1, td2, nd2)
ILOVISITOR3(name, tx, tc, nc, td1, nd1, td2, nd2, td3, nd3)
ILOVISITOR4(name, tx, tc, nc, td1, nd1, td2, nd2, td3, nd3, td4, nd4)
ILOVISITOR5(name, tx, tc, nc, td1, nd1, td2, nd2, td3, nd3, td4, nd4, td5, nd5)
ILOVISITOR6(name, tx, tc, nc, td1, nd1, td2, nd2, td3, nd3, td4, nd4, td5, nd5,
td6, nd6)
ILOVISITOR7(name, tx, tc, nc, td1, nd1, td2, nd2, td3, nd3, td4, nd4, td5, nd5,
td6, nd6, td7, nd7)

The ILOVISITORi macros allow you to define a new visitor of name name for a given object class tx and a
given container class tc with i data members of type td1...tdi.

This function's signature returns a visitor allocated on an environment or on a solver heap:

 IloVisitor<tx,tc> name(IloEnv, td1, ..., tdi);
 IloVisitor<tx,tc> name(IloSolver, td1, ..., tdi);

Within the code of this macro, the function void visit(tx object) allows you to specify each visited object
whereas the function IloBool keepVisiting() returns IloFalse if it is not necessary to visit objects
anymore.

Here is an example that defines a new visitor IntVarArrayBackwardVisitor, an instance of
IloVisitor<IloIntVar,IloIntVarArray> that visits all the variables of an integer variable array in
backward order:

 ILOVISITOR0(IntVarArrayBackwardVisitor,IloIntVar,IloIntVarArray,array) {
 for (IloInt i=array.getSize()-1; i>=0; --i)
 visit(array[i]);
 }

For more information, see Selectors.

See Also: IloVisitor, IloBestSelector

1266

Typedef IlcAny
Definition file: ilsolver/ilcerr.h
Include file: <ilsolver/ilosolver.h>

IloAny IlcAny

This type represents objects handled by Solver enumerated variables and by Solver set variables. A pointer to
any object, whether a predefined Solver type or an instance of a C++ class, is implicitly converted to IlcAny. By
using this type, you can be sure that the Solver components of your application will port without any source
change in this respect across different hardware platforms.

See Also: IlcAnyArray, IlcRevAny

1267

Typedef IlcBool
Definition file: ilsolver/ilcerr.h
Include file: <ilsolver/ilosolver.h>

IloBool IlcBool

This type represents Boolean values in Solver; those values are IlcTrue and IlcFalse. Booleans are, in fact,
integers of the type IlcInt: IlcFalse is 0 (zero), and IlcTrue is 1 (one). This type anticipates the built-in
bool type proposed for standard C++. By using this type, you can be sure that the Solver components of your
application will port without any source change in this respect across different hardware platforms.

See Also: IlcBoolVar, IlcRevBool

1268

Typedef IlcChooseAnyIndex
Definition file: ilsolver/ilcany.h
Include file: <ilsolver/ilosolver.h>

IlcInt(* IlcChooseAnyIndex)(const IlcAnyVarArray)

This C++ type represents a pointer to a function that takes an array of constrained enumerated variables and
returns an integer.

In its search primitives for finding solutions, Solver lets you set parameters for choosing the order in which
constrained variables are bound. You do so by means of choice functions called criteria.

The choice functions for constrained enumerated variables (that is, instances of IlcAnyExp or its subclasses)
should have a signature of this type.

See Also: IlcAnyVarArray, IloBestGenerate, IlcChooseFirstUnboundAny, IlcChooseIndex1, IlcChooseIndex2,
IlcChooseMinSizeAny, IloGenerate, IlcBoolVarArray

1269

Typedef IlcChooseAnySetIndex
Definition file: ilsolver/ilcset.h
Include file: <ilsolver/ilosolver.h>

IlcInt(* IlcChooseAnySetIndex)(const IlcAnySetVarArray)

This C++ type represents a pointer to a function that takes an array of constrained enumerated set variables and
returns an integer.

In its search primitives for finding solutions, Solver lets you set parameters for choosing the order in which
constrained variables are bound. You do so by means of choice functions called criteria.

The choice functions for constrained enumerated set variables (that is, instances of IlcAnySetVar or its
subclasses) should have a signature of this type.

See Also: IlcAnySetVarArray, IloBestGenerate, IlcChooseFirstUnboundAnySet, IlcChooseIndex1,
IlcChooseIndex2, IlcChooseMinSizeAnySet, IloGenerate

1270

Typedef IlcChooseFloatIndex
Definition file: ilsolver/linfloat.h
Include file: <ilsolver/ilosolver.h>

IlcInt(* IlcChooseFloatIndex)(const IlcFloatVarArray)

This C++ type represents a pointer to a function that takes an array of constrained floating-point variables and
returns an integer.

In its search primitives for finding solutions, Solver lets you set parameters for choosing the order in which
constrained variables are bound. You do so by means of choice functions called criteria.

The choice functions for constrained floating-point expressions (that is, instances of IlcFloatExp or its
subclasses) should have a signature of this type.

See Also: IloBestGenerate, IlcChooseFloatIndex1, IlcChooseFloatIndex2, IlcChooseFirstUnboundFloat,
IlcChooseMaxMaxFloat, IlcChooseMaxMinFloat, IlcChooseMaxSizeFloat, IlcChooseMinMaxFloat,
IlcChooseMinMinFloat, IlcChooseMinSizeFloat, IlcFloatVarArray, IloGenerate

1271

Typedef IlcChooseIntIndex
Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

IlcInt(* IlcChooseIntIndex)(const IlcIntVarArray)

This C++ type represents a pointer to a function that takes an array of constrained integer expressions and
returns an integer.

In its search primitives for finding solutions, Solver lets you set parameters for choosing the order in which
constrained variables are bound. You do so by means of choice functions called criteria.

The choice functions for constrained integer variables (that is, instances of IlcIntExp or its subclasses) should
have a signature of this type.

See Also: IloBestGenerate, IlcChooseFirstUnboundInt, IlcChooseIndex1, IlcChooseIndex2, IlcChooseIntIndex,
IlcChooseMaxMaxInt, IlcChooseMaxMinInt, IlcChooseMaxSizeInt, IlcChooseMaxRegretMax,
IlcChooseMaxRegretMin, IlcChooseMinMaxInt, IlcChooseMinMinInt, IlcChooseMinRegretMax,
IlcChooseMinRegretMin, IlcChooseMinSizeInt, IloGenerate, IlcIntVarArray

1272

Typedef IlcChooseIntSetIndex
Definition file: ilsolver/intset.h
Include file: <ilsolver/ilosolver.h>

IlcInt(* IlcChooseIntSetIndex)(const IlcIntSetVarArray)

This C++ type represents a pointer to a function that takes an array of constrained integer set variables and
returns an integer.

In its search primitives for finding solutions, Solver lets you set parameters for choosing the order in which
constrained variables are bound. You do so by means of choice functions called criteria.

The choice functions for constrained integer set variables (that is, instances of IlcIntSetVar or its subclasses)
should have a signature of this type.

See Also: IloBestGenerate, IlcChooseFirstUnboundIntSet, IlcChooseIndex1, IlcChooseIndex2,
IlcChooseMinSizeIntSet, IloGenerate, IlcIntSetVarArray

1273

Typedef IlcEvalAny
Definition file: ilsolver/ilcany.h
Include file: <ilsolver/ilosolver.h>

IlcInt(* IlcEvalAny)(const IlcAny val, IlcAnyVar var)

This C++ type represents a pointer to a function that takes two arguments and returns an integer. The second of
those two arguments is a constrained enumerated variable (that is, an instance of IlcAnyExp or one of its
subclasses), and the first argument is a pointer.

Solver lets you control the order in which the values in the domain of a constrained variable are tried during the
search for a solution. The choice of the next value to try for a constrained enumerated variable is made by an
object of the class IlcAnySelect. Such an object usually uses an evaluation function of the type
IlcEvalAny.

See Also: IlcAnySelect, IlcAnyVar, IloInstantiate

1274

Typedef IlcEvalAnySet
Definition file: ilsolver/ilcset.h
Include file: <ilsolver/ilosolver.h>

IlcInt(* IlcEvalAnySet)(IlcAny val, IlcAnySetVar var)

This C++ type represents a pointer to a function that takes two arguments and returns an integer. The second of
those two arguments is a constrained enumerated set variable (that is, an instance of IlcAnySetVar or one of
its subclasses), and the first argument is a pointer.

Solver lets you control the order in which the values in the domain of a constrained variable are tried during the
search for a solution. The choice of the next value to try for a constrained enumerated set variable is made by an
object of the class IlcAnySetSelect. Such an object usually uses an evaluation function of the type
IlcEvalAnySet.

See Also: IlcAnySetSelect, IlcAnySetVar, IloInstantiate

1275

Typedef IlcEvalInt
Definition file: ilsolver/ilcint.h
Include file: <ilsolver/ilosolver.h>

IlcInt(* IlcEvalInt)(IlcInt val, IlcIntVar var)

This C++ type represents a pointer to a function that takes two arguments and returns an integer. The second of
those two arguments is a constrained integer variable (that is, an instance of IlcIntExp or one of its
subclasses), and the first argument is an integer.

Solver lets you control the order in which the values in the domain of a constrained variable are tried during the
search for a solution. The choice of the next value to try for a constrained integer variable is made by an object of
the class IlcIntSelect. Such an object usually uses an evaluation function of the type IlcEvalInt.

See Also: IloBestInstantiate, IloInstantiate, IlcIntSelect, IlcIntSelectEvalI, IlcIntSelectI

1276

Typedef IlcEvalIntSet
Definition file: ilsolver/intset.h
Include file: <ilsolver/ilosolver.h>

IlcInt(* IlcEvalIntSet)(IlcInt val, IlcIntSetVar var)

This C++ type represents a pointer to a function that takes two arguments and returns an integer. The second of
those two arguments is a constrained integer set variable (that is, an instance of IlcIntSetVar or one of its
subclasses), and the first argument is an integer.

Solver lets you control the order in which the values in the domain of a constrained variable are tried during the
search for a solution. The choice of the next value to try for a constrained integer set variable is made by an
object of the class IlcIntSetSelect. Such an object usually uses an evaluation function of the type
IlcEvalIntSet.

See Also: IlcIntSetSelect, IlcIntSetVar, IloInstantiate

1277

Typedef IlcFloat
Definition file: ilsolver/ilcerr.h
Include file: <ilsolver/ilosolver.h>

IloNum IlcFloat

This type represents floating-point numbers handled by Solver floating-point variables. This type corresponds to
the type double. By using this type, you can be sure that the Solver components of your application will port
without any source change in this respect across different hardware platforms.

IEEE 754 is a standard proposed by the Institute of Electronic and Electrical Engineers for computing
floating-point arithmetic. The implementation of floating-point numbers in Solver conforms to this standard. See
the IBM ILOG Solver User's Manual for a discussion of floating-point arithmetic.

See Also: IlcComputeMax, IlcComputeMin, IlcFloatArray, IlcFloatMax, IlcFloatMin

1278

Typedef IlcFloatFunction
Definition file: ilsolver/flti.h
Include file: <ilsolver/ilosolver.h>

IlcFloat(* IlcFloatFunction)(IlcFloat)

This C++ type represents a pointer to a function that takes an argument of type IlcFloat and returns an object
of type IlcFloat. This type is the type of the function passed as a parameter to the function
IlcMonotonicIncreasingFloatExp.

See Also: IlcMonotonicIncreasingFloatExp, IlcMonotonicDecreasingFloatExp

1279

Typedef IlcFloatVarRef
Definition file: ilsolver/search.h
Include file: <ilsolver/ilosolver.h>

IlcFloatExpI ** IlcFloatVarRef

This type definition creates a reference to a floating-point variable. A node evaluator, such as an instance of
IlcMTBFSEvaluator, might use this type definition.

See Also: IlcMTBFSEvaluator

1280

Typedef IlcInt
Definition file: ilsolver/ilcerr.h
Include file: <ilsolver/ilosolver.h>

IloInt IlcInt

This type represents signed integers handled by Solver variables. All C++ integers are implicitly converted to
IlcInt. By using this type, you can be sure that the Solver components of your application will port without any
source change in this respect across different hardware platforms.

See Also: IlcIntArray, IlcIntMax, IlcIntMin, IlcRevInt

1281

Typedef IlcIntVarRef
Definition file: ilsolver/search.h
Include file: <ilsolver/ilosolver.h>

IlcIntExpI ** IlcIntVarRef

This type definition creates a reference to an integer variable. A node evaluator, such as an instance of
IlcMTBFSEvaluator, might use this type definition.

See Also: IlcMTBFSEvaluator

1282

Typedef IlcPathTransitFunction
Definition file: ilsolver/ilcpath.h
Include file: <ilsolver/ilosolver.h>

IlcFloat(* IlcPathTransitFunction)(IlcInt, IlcInt)

This C++ type represents a pointer to a function that takes two arguments and returns a floating-point number.
The two arguments are the indices of nodes. The function should return a transit cost for connecting the two
nodes. This transit cost can be the distance between the nodes or the cost of a path visiting either of the nodes.
This kind of function is known as a transit function.

See Also: IlcPathLength, IlcPathTransit, IlcPathTransitEvalI, IlcPathTransitI

1283

Typedef IloAny
Definition file: ilconcert/ilosys.h

void *ILO_MAY_ALIAS IloAny

For constraint programming: the type for objects as variables in enumerations or sets.
This type definition represents objects in a model handled by Concert Technology enumerated variables and by
Concert Technology set variables. A pointer to any object, whether a predefined Concert Technology type or an
instance of a C++ class, is implicitly converted to IloAny. By using this type, you can be sure that these
components of your application will port without any source change across different hardware platforms.

See Also: IloModel

1284

Typedef IloBool
Definition file: ilconcert/ilosys.h

IloInt IloBool

Type for Boolean values.
This type definition represents Boolean values in Concert Technology. Those values are IloTrue and
IloFalse. Booleans are, in fact, integers of type IloInt. IloFalse is 0 (zero), and IloTrue is 1 (one). This
type anticipates the built-in bool type proposed for standard C++. By using this type, you can be sure that the
Concert Technology components of your application will port in this respect without source changes across
different hardware platforms.

See Also: IloBoolArray, IloInt, IloModel, IloNum

1285

Typedef IloInt
Definition file: ilconcert/ilosys.h

long IloInt

Type for signed integers.
This type definition represents signed integers in Concert Technology.

See Also: IloBool, IloModel, IloNum

1286

Typedef IloNum
Definition file: ilconcert/ilosys.h

double IloNum

Type for numeric values as floating-point numbers.
This type definition represents numeric values as floating-point numbers in Concert Technology.

See Also: IloModel, IloInt

1287

Typedef IloNumFunction
Definition file: ilconcert/ilosys.h

IloNum(* IloNumFunction)(IloNum)

For IBM® ILOG® Solver: the type for a pointer to a numeric function.
This C++ type represents a pointer to a function that takes an argument of type IloNum and returns an object of
type IloNum. This type is the type of the function passed as an argument to the function
IloMonotonicDecreasingNumExpr.

See Also: IloMonotonicDecreasingNumExpr, IloMonotonicIncreasingNumExpr

1288

Typedef IloPathTransitFunction
Definition file: ilconcert/ilomodel.h

IloNum(* IloPathTransitFunction)(IloInt i, IloInt j)

For IBM® ILOG® Solver: a pointer to a function that computes a transit cost of connecting two nodes.
This C++ type definition represents a pointer to a function that takes two arguments and returns a floating-point
number. The two arguments are the indices of nodes. The function should return a transit cost for connecting the
two nodes. This transit cost can be the distance between the nodes or the cost of a path visiting either of the
nodes. This kind of function is known as a transit function.

See Also: IloPathLength, IloPathTransitI

1289

Typedef IloPoolProcArray
Definition file: ilsolver/iimiloproc.h

IloArray< IloPoolProc > IloPoolProcArray

An array of pool processors.
This typedef creates an array of pool processors. This C++ typedef is provided for convenience.

Note

IIM provides a default visitor for this type. Thus, selection of a pool processor from an array can be performed
without specification of a visitor.

See Also: IloVisitor, IloSelector, IloBestSelector

1290

Typedef IloSolutionArray
Definition file: ilconcert/ilosolution.h

IloSimpleArray< IloSolution > IloSolutionArray

Type definition for arrays of IloSolution instances.
This type definition represents arrays of instances of IloSolution.

Instances of IloSolutionArray are extensible. That is, you can add more elements to such an array.
References to an array change whenever an element is added or removed from the array.

See Also: IloSolution

1291

Typedef IloSolutionPoolEvaluator
Definition file: ilsolver/iimmulti.h
Include file: <ilsolver/iim.h>

IloMultipleEvaluator< IloSolution, IloSolutionPool > IloSolutionPoolEvaluator

An explicit evaluator of solution pools.
This typedef allows you to write less code when you heavily use IIM selector classes.

1292

Typedef IloSolutionPoolSelector
Definition file: ilsolver/iimiloproc.h
Include file: <ilsolver/iim.h>

IloSelector< IloSolution, IloSolutionPool > IloSolutionPoolSelector

A selector which selects solutions from pools.
This typedef allows you to write less code when you heavily use IIM selector classes.

1293

Variable ILC_NO_MEMORY_MANAGER
Definition file: ilsolver/basic.h
Include file: <ilsolver/ilosolver.h>
This operating-system environment variable enables you to control the memory manager of Solver. It replaces
IloSolver::useHeap. Solver uses its own memory manager to provide faster memory allocation for certain
Solver objects. The use of this memory manager can hide memory problems normally detected by memory
usage applications (such as Rational Purify, for example). If you are working in a software development
environment capable of detecting bad memory access, you can use this operating-system environment variable
to turn off the Solver memory manager in order to detect such anomalies during software development. This
environment variable also applies to reversible memory. For example, if you are working in such a development
environment on a personal computer running Microsoft NT, use this statement:

 set ILC_NO_MEMORY_MANAGER=1

If you are working on a UNIX platform, using a C-shell, here is one way of setting this environment variable:

 setenv ILC_NO_MEMORY_MANAGER

1294

Variable IlcFloatMax
Definition file: ilsolver/flti.h
Include file: <ilsolver/ilosolver.h>
This global floating-point constant is equal to the highest floating-point number according to IEEE 754.

IEEE 754 is a standard proposed by the Institute of Electronic and Electrical Engineers for computing
floating-point arithmetic. The implementation of floating-point numbers in Solver conforms to this standard. See
the IBM ILOG Solver User's Manual for a discussion of floating-point arithmetic.

See Also: IlcComputeMax, IlcComputeMin, IlcFloat, IlcFloatMin, IlcInfinity

1295

Variable IlcFloatMin
Definition file: ilsolver/linfloat.h
Include file: <ilsolver/ilosolver.h>
This global floating-point constant is equal to the smallest, strictly positive, normalized floating-point number
according to IEEE 754.

IEEE 754 is a standard proposed by the Institute of Electronic and Electrical Engineers for computing
floating-point arithmetic. The implementation of floating-point numbers in Solver conforms to this standard. See
the IBM ILOG Solver User's Manual for a discussion of floating-point arithmetic.

See Also: IlcComputeMax, IlcComputeMin, IlcFloat, IlcFloatMax, IlcInfinity

1296

Variable ILO_NO_MEMORY_MANAGER
Definition file: ilconcert/ilosys.h
OS environment variable controls Concert Technology memory manager.
This operating-system environment variable enables you to control the memory manager of Concert Technology.

Concert Technology uses its own memory manager to provide faster memory allocation for certain Concert
Technology objects. The use of this memory manager can hide memory problems normally detected by memory
usage applications (such as Rational Purify, for example). If you are working in a software development
environment capable of detecting bad memory access, you can use this operating-system environment variable
to turn off the Concert Technology memory manager in order to detect such anomalies during software
development.

For example, if you are working in such a development environment on a personal computer running Microsoft
XP, use this statement:

 set ILO_NO_MEMORY_MANAGER=1

If you are working on a UNIX platform, using a C-shell, here is one way of setting this environment variable:

 setenv ILO_NO_MEMORY_MANAGER

1297

Variable IloInfinity
Definition file: ilconcert/ilosys.h
Largest double-precision floating-point number.
This symbolic constant represents the largest double-precision floating-point number on a given platform. It is
initialized when you create an instance of IloEnv. In practice, when you use this symbolic constant as an upper
bound of a variable in your model, you are effectively stating that the variable is unbounded.

See the IBM ILOG Solver Reference Manual and User's Manual for details about how IBM® ILOG® Solver treats
floating-point calculations in instances of IloSolver in conformity with IEEE 754. In particular, IBM ILOG Solver
offers other symbolic constants, such as IlcIntMax or IlcFloatMax that may be more appropriate for your
application if you do not intend to state that your variables are effectively unbounded.

See the IBM ILOG CPLEX Reference Manual and User's Manual for details about how IBM ILOG CPLEX treats
floating-point calculations in instances of IloCplex.

See Also: IloEnv

1298

Variable IloIntMax
Definition file: ilconcert/ilosys.h
Largest integer.
These symbolic constants represent the largest integer on a given platform.

1299

Variable IloIntMin
Definition file: ilconcert/ilosys.h
Least integer.
These symbolic constants represent the least integer on a given platform.

1300

	Table of Contents
	About This Manual
	Concepts
	Group optim.concert
	Group optim.concert.extensions
	Group optim.concert.solver
	Group optim.concert.xml
	Group optim.solver
	Group optim.solver.iim
	Class IloSolutionPool::AddedEvent
	Class IloAlgorithm::CannotExtractException
	Class IloAlgorithm::CannotRemoveException
	Class IloSolutionPool::EndEvent
	Class IloPoolOperator::Event
	Class IloSolutionPool::Event
	Class IloAlgorithm::Exception
	Class IlcAnyArray
	Class IlcAnyDeltaPossibleIterator
	Class IlcAnyDeltaRequiredIterator
	Class IlcAnyExp
	Class IlcAnyExpIterator
	Class IlcAnyPredicate
	Class IlcAnyPredicateI
	Class IlcAnySelect
	Class IlcAnySet
	Class IlcAnySetArray
	Class IlcAnySetIterator
	Class IlcAnySetSelect
	Class IlcAnySetVar
	Class IlcAnySetVarArray
	Class IlcAnySetVarArrayIterator
	Class IlcAnyToIntExpFunction
	Class IlcAnyToIntFunction
	Class IlcAnyTupleSet
	Class IlcAnyVar
	Class IlcAnyVarArray
	Class IlcAnyVarArrayIterator
	Class IlcAnyVarDeltaIterator
	Class IlcBoolVar
	Class IlcBoolVarArray
	Class IlcBox
	Class IlcBoxIterator
	Class IlcConstAnyArray
	Class IlcConstFloatArray
	Class IlcConstIntArray
	Class IlcConstraint
	Class IlcConstraintAggregator
	Class IlcConstraintArray
	Class IlcConstraintI
	Class IlcDemon
	Class IlcDemonI
	Class IlcFloatArray
	Class IlcFloatExp
	Class IlcFloatExpIterator
	Class IlcFloatSet
	Class IlcFloatSetIterator
	Class IlcFloatVar
	Class IlcFloatVarArray
	Class IlcFloatVarDeltaIterator
	Class IlcGoal
	Class IlcGoalI
	Class IlcIndex
	Class IlcIntArray
	Class IlcIntDeltaPossibleIterator
	Class IlcIntDeltaRequiredIterator
	Class IlcIntExp
	Class IlcIntExpIterator
	Class IlcIntPredicate
	Class IlcIntPredicateI
	Class IlcIntSelect
	Class IlcIntSelectEvalI
	Class IlcIntSelectI
	Class IlcIntSet
	Class IlcIntSetArray
	Class IlcIntSetIterator
	Class IlcIntSetSelect
	Class IlcIntSetVar
	Class IlcIntSetVarArray
	Class IlcIntSetVarArrayIterator
	Class IlcIntToFloatExpFunction
	Class IlcIntToFloatExpFunctionI
	Class IlcIntToIntExpFunction
	Class IlcIntToIntExpFunctionI
	Class IlcIntToIntStepFunction
	Class IlcIntToIntStepFunctionCursor
	Class IlcIntTupleSet
	Class IlcIntVar
	Class IlcIntVarArray
	Class IlcIntVarArrayIterator
	Class IlcIntVarDeltaIterator
	Class IlcMemoryManagerI
	Class IlcMTNodeEvaluatorI
	Class IlcMTSearchLimitI
	Class IlcMTSearchSelectorI
	Class IlcNeighborIdentifier
	Class IlcNodeEvaluator
	Class IlcNodeEvaluatorI
	Class IlcPathTransit
	Class IlcPathTransitEvalI
	Class IlcPathTransitI
	Class IlcPrintTrace
	Class IlcRandom
	Class IlcRevAny
	Class IlcRevBool
	Class IlcRevFloat
	Class IlcRevInt
	Class IlcSearchLimit
	Class IlcSearchLimitI
	Class IlcSearchMonitor
	Class IlcSearchMonitorI
	Class IlcSearchNode
	Class IlcSearchSelector
	Class IlcSearchSelectorI
	Class IlcSoftConstraint
	Class IlcSoftCtHandler
	Class IlcTrace
	Class IlcTraceI
	Class IloAlgorithm
	Class IloAllDiff
	Class IloAllMinDistance
	Class IloAnd
	Class IloAnyArray
	Class IloAnyBinaryPredicate
	Class IloAnySet
	Class IloAnySetValueSelector
	Class IloAnySetValueSelectorI
	Class IloAnySetVar
	Class IloAnySetVarArray
	Class IloAnyTernaryPredicate
	Class IloAnyTupleSet
	Class IloAnyTupleSetIterator
	Class IloAnyValueSelector
	Class IloAnyValueSelectorI
	Class IloAnyVar
	Class IloAnyVarArray
	Class IloArray<>
	Class IloBarrier
	Class IloBaseEnvMutex
	Class IloBestSelector<,>
	Class IloBoolArray
	Class IloBoolVar
	Class IloBoolVarArray
	Class IloBox
	Class IloBranchSelector
	Class IloBranchSelectorI
	Class IloCsvReader::IloColumnHeaderNotFoundException
	Class IloComparator<>
	Class IloCompositeComparator<>
	Class IloCondition
	Class IloConstraint
	Class IloConstraintArray
	Class IloCPConstraintI
	Class IloCPTrace
	Class IloCPTraceI
	Class IloCsvLine
	Class IloCsvReader
	Class IloCsvReader::IloCsvReaderParameterException
	Class IloCsvTableReader
	Class IloCustomizableGoal
	Class IloDiff
	Class IloDistribute
	Class IloCsvReader::IloDuplicatedTableException
	Class IloEAOperatorFactory
	Class IloEmptyHandleException
	Class IloEnv
	Class IloEnvironmentMismatch
	Class IloEvaluator<>
	Class IloEvent
	Class IloException
	Class IloExplainer
	Class IloExplicitEvaluator<>
	Class IloExpr
	Class IloExprArray
	Class IloExtractable
	Class IloExtractableArray
	Class IloExtractableVisitor
	Class IloFastMutex
	Class IloCsvReader::IloFieldNotFoundException
	Class IloCsvReader::IloFileNotFoundException
	Class IloFunction<,>
	Class IloGoal
	Class IloGoalI
	Class IloIfThen
	Class IloIIM
	Class IloCsvReader::IloIncorrectCsvReaderUseException
	Class IloIntArray
	Class IloIntBinaryPredicate
	Class IloIntervalList
	Class IloIntervalListCursor
	Class IloIntExpr
	Class IloIntExprArg
	Class IloIntExprArray
	Class IloIntSet
	Class IloIntSetValueSelector
	Class IloIntSetValueSelectorI
	Class IloIntSetVar
	Class IloIntSetVarArray
	Class IloIntTernaryPredicate
	Class IloIntTupleSet
	Class IloIntTupleSetIterator
	Class IloIntValueSelector
	Class IloIntValueSelectorI
	Class IloIntVar
	Class IloIntVarArray
	Class IloInverse
	Class IloIterator<>
	Class IloLargeNHoodI
	Class IloLexicographicComparator<>
	Class IloCsvReader::IloLineNotFoundException
	Class IloListener
	Class IloMetaHeuristic
	Class IloMetaHeuristicI
	Class IloModel
	Class IloMultipleEvaluator<,>
	Class IloMutexDeadlock
	Class IloMutexNotOwner
	Class IloMutexProblem
	Class IloNeighborIdentifier
	Class IloNHood
	Class IloNHoodArray
	Class IloNHoodI
	Class IloNHoodModifierI
	Class IloNodeEvaluator
	Class IloNodeEvaluatorI
	Class IloNot
	Class IloNumArray
	Class IloNumExpr
	Class IloNumExprArg
	Class IloNumExprArray
	Class IloNumToAnySetStepFunction
	Class IloNumToAnySetStepFunctionCursor
	Class IloNumToNumSegmentFunction
	Class IloNumToNumSegmentFunctionCursor
	Class IloNumToNumStepFunction
	Class IloNumToNumStepFunctionCursor
	Class IloNumVar
	Class IloNumVarArray
	Class IloObjective
	Class IloOr
	Class IloPack
	Class IloParallelSolver
	Class IloParetoComparator<>
	Class IloPathLength
	Class IloPathTransitI
	Class IloPoolOperator
	Class IloPoolOperatorFactory
	Class IloPoolProc
	Class IloPredicate<>
	Class IloRandom
	Class IloRandomSelector<,>
	Class IloRange
	Class IloRangeArray
	Class IloRouletteWheelSelector<,>
	Class IloSearchLimit
	Class IloSearchLimitI
	Class IloSearchSelector
	Class IloSearchSelectorI
	Class IloSelector<,>
	Class IloSemaphore
	Class IloSequence
	Class IloSolution
	Class IloSolutionDeltaCheck
	Class IloSolutionDeltaCheckI
	Class IloSolutionIterator<>
	Class IloSolutionManip
	Class IloSolutionPool
	Class IloSolver
	Class IloSolverExplainer
	Class IloCsvReader::IloTableNotFoundException
	Class IloTabuSearch
	Class IloTimer
	Class IloTournamentSelector<,>
	Class IloTranslator<,>
	Class IloVisitor<,>
	Class IloXmlContext
	Class IloXmlInfo
	Class IloXmlReader
	Class IloXmlWriter
	Class IloPoolOperator::InvocationEvent
	Class IloAnySet::Iterator
	Class IloExplicitEvaluator::Iterator
	Class IloIntSet::Iterator
	Class IloModel::Iterator
	Class IloSolution::Iterator
	Class IloSolutionPool::Iterator
	Class IloExpr::LinearIterator
	Class IloCsvReader::LineIterator
	Class IloCsvTableReader::LineIterator
	Class IloNumExpr::NonLinearExpression
	Class IloAlgorithm::NotExtractedException
	Class IloSolutionPool::RemovedEvent
	Class IloPoolOperator::SuccessEvent
	Class IloCsvReader::TableIterator
	Enumeration IlcErrorType
	Enumeration IlcFilterLevel
	Enumeration IlcFilterLevelConstraint
	Enumeration IlcFloatDisplay
	Enumeration IlcPruneMode
	Enumeration Status
	Enumeration IloDeleterMode
	Enumeration Type
	Enumeration Sense
	Enumeration FailureStatus
	Enumeration IloSynchronizeMode
	Global function IloPiecewiseLinear
	Global function IlcChooseMinMinInt
	Global function IlcMax
	Global function IlcMax
	Global function IlcMax
	Global function IlcMax
	Global function IloFloor
	Global function IloFloor
	Global function IloBFSEvaluator
	Global function IlcChooseFirstUnboundAnySet
	Global function IloSwap
	Global function IlcImpactInformation
	Global function IloOrGoal
	Global function IloMaximizeVar
	Global function IloGenerateBounds
	Global function IlcCos
	Global function IlcNullIntersect
	Global function IlcMinDistance
	Global function IlcTan
	Global function IloMonotonicIncreasingNumExpr
	Global function IlcMTBFSEvaluator
	Global function IloIfThenElse
	Global function IloIfThenElse
	Global function IloEqMax
	Global function IloStoreSolution
	Global function IlcComputeMin
	Global function IloChooseMinMaxInt
	Global function IloSum
	Global function IloAbstraction
	Global function IlcChooseFirstUnboundBool
	Global function IlcChooseMaxMaxInt
	Global function IlcLinearCtAggregator
	Global function IloRestartGoal
	Global function IloFirstSolution
	Global function IlcTableConstraint
	Global function IloRestoreSolution
	Global function IlcSquare
	Global function operator!
	Global function operator!
	Global function operator!
	Global function IlcNull
	Global function IlcLocalImpactVarEvaluator
	Global function IloAdd
	Global function IloOrLimit
	Global function IlcReductionInformation
	Global function IloTimeLimit
	Global function IlcChooseFirstUnboundInt
	Global function IloSource
	Global function IlcChooseMinRegretMin
	Global function IloBestSolutionComparator
	Global function IloEqUnion
	Global function IloEqUnion
	Global function IlcPiecewiseLinear
	Global function IloDDSEvaluator
	Global function IloCeil
	Global function IloCeil
	Global function IloImprove
	Global function IlcChooseMaxRegretMax
	Global function IlcSetMax
	Global function IlcEqUnion
	Global function IlcEqUnion
	Global function IlcEqUnion
	Global function IlcEqUnion
	Global function ILORTTIN
	Global function IloIntersection
	Global function operator%
	Global function operator%
	Global function IlcComputeMax
	Global function IlcAbstraction
	Global function IloMinimize
	Global function IlcSum
	Global function IlcSum
	Global function IlcSum
	Global function IlcSum
	Global function operator+
	Global function operator+
	Global function operator+
	Global function operator+
	Global function operator+
	Global function operator+
	Global function IloTest
	Global function IloIsNAN
	Global function IloChooseMinRegretMin
	Global function IlcOr
	Global function IlcMonotonicIncreasingFloatExp
	Global function IlcArcTan
	Global function IlcChooseMinMaxFloat
	Global function IlcSuccessRateValueEvaluator
	Global function IloCommitDelta
	Global function IlcChooseFirstUnboundAny
	Global function IlcApply
	Global function IloWorstSolutionComparator
	Global function IloGetClone
	Global function IlcNotMember
	Global function IlcNotMember
	Global function IlcGenerate
	Global function IloBestInstantiate
	Global function IloLeLex
	Global function IlcBestGenerate
	Global function IloLimitSearch
	Global function IlcScalProd
	Global function IlcBestInstantiate
	Global function IlcBestInstantiate
	Global function IlcBestInstantiate
	Global function IloChooseMaxRegretMax
	Global function IlcChooseMinSizeFloat
	Global function IloDifference
	Global function IloDifference
	Global function IlcChooseMinRegretMax
	Global function IloSetToValue
	Global function IlcRestartGoal
	Global function IloPower
	Global function IloSelectSolutions
	Global function IlcSetOf
	Global function IloSelectSearch
	Global function IloMaximize
	Global function IloLog
	Global function IlcReductionVarEvaluator
	Global function IlcMember
	Global function IlcMember
	Global function IloDisableNANDetection
	Global function operator<<
	Global function operator<<
	Global function operator<<
	Global function operator<<
	Global function operator<<
	Global function operator<<
	Global function operator-
	Global function operator-
	Global function operator-
	Global function operator-
	Global function operator-
	Global function IloComposePareto
	Global function IloSelectProcessor
	Global function IlcChooseMinSizeInt
	Global function IlcDistribute
	Global function IlcLeLex
	Global function IlcArcSin
	Global function operator new
	Global function operator new
	Global function IloMax
	Global function IloMax
	Global function IloMax
	Global function IloTableConstraint
	Global function IlcPathLength
	Global function operator==
	Global function operator==
	Global function operator==
	Global function operator==
	Global function operator==
	Global function operator==
	Global function operator==
	Global function operator==
	Global function IloSplit
	Global function IlcSplit
	Global function IloChangeValue
	Global function IloDFSEvaluator
	Global function IlcAbs
	Global function IlcAllDiffAggregator
	Global function IlcRandomVarEvaluator
	Global function IlcSin
	Global function IlcDegreeInformation
	Global function IlcDegreeVarEvaluator
	Global function IlcEqAbstraction
	Global function IloEqSum
	Global function IloRandomize
	Global function IlcSizeVarEvaluator
	Global function operator!=
	Global function operator!=
	Global function operator!=
	Global function operator!=
	Global function IloDestroyAll
	Global function operator/
	Global function operator/
	Global function operator/
	Global function IloAddConstraint
	Global function IloDichotomize
	Global function IlcMinimizeVar
	Global function IloGoalFail
	Global function operator<=
	Global function operator<=
	Global function operator<=
	Global function operator<=
	Global function operator<=
	Global function IlcImpactValueEvaluator
	Global function IlcChooseMinSizeAnySet
	Global function IlcChooseFirstUnboundFloat
	Global function IlcChooseMaxMinInt
	Global function IloChooseMaxSizeInt
	Global function IloExecuteProcessor
	Global function IlcPower
	Global function IlcAllDiff
	Global function IloSetMax
	Global function IloChooseMaxRegretMin
	Global function IloAllNullIntersect
	Global function IloChooseMinSizeInt
	Global function IlcSuccessRateVarEvaluator
	Global function IloChooseMaxMaxInt
	Global function IloEqIntersection
	Global function IloBoolAbstraction
	Global function IlcAnd
	Global function IlcEqPartition
	Global function IlcIfThen
	Global function IloNullIntersect
	Global function IloEndMT
	Global function operator>>
	Global function operator>>
	Global function IlcLimitSearch
	Global function IlcMTMinimizeVar
	Global function operator>
	Global function operator>
	Global function operator>
	Global function operator>
	Global function IloUpdate
	Global function IlcChooseFirstUnboundIntSet
	Global function IloSample
	Global function IlcAllMinDistance
	Global function IloBestGenerate
	Global function IlcUnion
	Global function IlcUnion
	Global function IlcUnion
	Global function IlcUnion
	Global function IloStoreBestSolution
	Global function IloFlip
	Global function IlcSizeOverDegreeVarEvaluator
	Global function IloGoalTrue
	Global function IloMonotonicDecreasingNumExpr
	Global function IloChooseMaxMinInt
	Global function ilc_trace_stop_here
	Global function IlcSubsetEq
	Global function IlcMonotonicDecreasingFloatExp
	Global function IlcGoalFail
	Global function operator&&
	Global function operator&&
	Global function operator&&
	Global function operator&&
	Global function IlcArcCos
	Global function IlcDegToRad
	Global function IlcGoalTrue
	Global function IloMin
	Global function IloMin
	Global function IloMin
	Global function IlcSolveBounds
	Global function IlcEqIntersection
	Global function IloPartition
	Global function IlcPartition
	Global function IlcLogicAggregator
	Global function IlcBFSEvaluator
	Global function IloFailLimit
	Global function IloAndGoal
	Global function IlcIntersection
	Global function IlcChooseMaxRegretMin
	Global function IloEnableNANDetection
	Global function IloSubsetEq
	Global function IloIDFSEvaluator
	Global function IloScanDeltas
	Global function IloSBSEvaluator
	Global function IloRound
	Global function IloInstantiate
	Global function IloUnion
	Global function IloUnion
	Global function IlcImpactVarEvaluator
	Global function IloScanNHood
	Global function IlcChooseMinSizeAny
	Global function IloChooseMinMinInt
	Global function IloRemoveValue
	Global function IlcElementNEq
	Global function IlcElementNEq
	Global function IlcChooseMaxSizeInt
	Global function IlcRadToDeg
	Global function ilc_fail_stop_here
	Global function IlcLog
	Global function IloScalProd
	Global function IloScalProd
	Global function IloScalProd
	Global function IloScalProd
	Global function IloSolutionEvaluator
	Global function IloSolutionEvaluator
	Global function IloSolutionEvaluator
	Global function IloSolutionEvaluator
	Global function operator>=
	Global function operator>=
	Global function operator>=
	Global function operator>=
	Global function IloMinimizeVar
	Global function IlcElementEq
	Global function IlcElementEq
	Global function IloCompose
	Global function IloSolveOnce
	Global function IlcOnce
	Global function IloTestDelta
	Global function IloEqPartition
	Global function IloSetMin
	Global function IloInitMT
	Global function IlcLeOffset
	Global function IlcInverse
	Global function IlcInverse
	Global function IlcMin
	Global function IlcMin
	Global function IlcMin
	Global function IlcMin
	Global function IloDiv
	Global function IloUpdateBestSolution
	Global function IlcChooseMaxMinFloat
	Global function IlcEqBoolAbstraction
	Global function IlcCard
	Global function IlcCard
	Global function IlcChooseMinSizeIntSet
	Global function IlcSetValue
	Global function IlcChooseMinMaxInt
	Global function operator<
	Global function operator<
	Global function operator<
	Global function operator<
	Global function IloLexicographic
	Global function IlcDichotomize
	Global function IloCard
	Global function IlcGenerateBounds
	Global function IlcGeLex
	Global function IlcSelectSearch
	Global function IloMember
	Global function IloMember
	Global function IloMember
	Global function IlcChooseMaxMaxFloat
	Global function IloArcCos
	Global function IlcSetMin
	Global function IloChooseMinRegretMax
	Global function IloConcatenate
	Global function IloApplyMetaHeuristic
	Global function IloAbs
	Global function IloSingleMove
	Global function IlcChooseMinMinFloat
	Global function IlcSubset
	Global function IlcExponent
	Global function IloGenerate
	Global function IloChooseFirstUnboundInt
	Global function IloReplaceSolutions
	Global function IloSquare
	Global function IloSetValue
	Global function IloGeLex
	Global function IloRandomPerturbation
	Global function IlcRemoveValue
	Global function IloComposeLexical
	Global function IloSubset
	Global function IloNotify
	Global function IlcPack
	Global function IlcPack
	Global function IlcPack
	Global function IloEqMin
	Global function IloLimitOperator
	Global function IloContinue
	Global function IlcSequence
	Global function IlcChooseMaxSizeFloat
	Global function IloExponent
	Global function IloInitializeImpactGoal
	Global function IlcAllNullIntersect
	Global function IlcRandomValueEvaluator
	Global function IloNotMember
	Global function IloNotMember
	Global function IloNotMember
	Global function IloApply
	Global function IloApply
	Global function IlcInstantiate
	Global function IlcInstantiate
	Global function IlcInstantiate
	Global function IlcBranchImpactVarEvaluator
	Global function IlcBoolAbstraction
	Global function operator||
	Global function operator||
	Global function operator||
	Global function operator||
	Global function operator*
	Global function operator*
	Global function operator*
	Global function operator*
	Global function operator*
	Global function IloSimulatedAnnealing
	Global function IloStart
	Macro ILCANYPREDICATE0
	Macro ILCARRAY
	Macro ILCARRAY2
	Macro IlcChooseAnyIndex1
	Macro IlcChooseAnyIndex2
	Macro IlcChooseFloatIndex1
	Macro IlcChooseFloatIndex2
	Macro IlcChooseIndex1
	Macro IlcChooseIndex2
	Macro ILCCTDEMON0
	Macro ILCGOAL0
	Macro IlcHalfPi
	Macro IlcInfinity
	Macro IlcIntMax
	Macro IlcIntMin
	Macro ILCINTPREDICATE0
	Macro IlcPi
	Macro IlcQuarterPi
	Macro ILCREV
	Macro ILCSTLBEGIN
	Macro IlcThreeHalfPi
	Macro IlcTwoPi
	Macro ILOANYBINARYPREDICATE0
	Macro ILOANYTERNARYPREDICATE0
	Macro IloChooseIntIndex
	Macro ILOCLIKECOMPARATOR0
	Macro ILOCOMPARATOR0
	Macro ILOCPCONSTRAINTWRAPPER0
	Macro ILOCPGOALWRAPPER0
	Macro ILOCPTRACEWRAPPER0
	Macro ILODECLDEFAULTCOMPARATOR
	Macro ILODEFAULTCOMPARATOR
	Macro ILODEFINELNSFRAGMENT0
	Macro ILOEVALUATOR0
	Macro IloFloatArray
	Macro IloFloatVar
	Macro IloFloatVarArray
	Macro IloHalfPi
	Macro ILOIIMLISTENER0
	Macro ILOIIMOP0
	Macro ILOINTBINARYPREDICATE0
	Macro ILOINTTERNARYPREDICATE0
	Macro ILOMULTIPLEEVALUATOR0
	Macro IloPi
	Macro ILOPREDICATE0
	Macro IloQuarterPi
	Macro ILOSELECTOR0
	Macro ILOSTLBEGIN
	Macro IloThreeHalfPi
	Macro ILOTRANSLATOR
	Macro IloTwoPi
	Macro ILOVISITOR0
	Typedef IlcAny
	Typedef IlcBool
	Typedef IlcChooseAnyIndex
	Typedef IlcChooseAnySetIndex
	Typedef IlcChooseFloatIndex
	Typedef IlcChooseIntIndex
	Typedef IlcChooseIntSetIndex
	Typedef IlcEvalAny
	Typedef IlcEvalAnySet
	Typedef IlcEvalInt
	Typedef IlcEvalIntSet
	Typedef IlcFloat
	Typedef IlcFloatFunction
	Typedef IlcFloatVarRef
	Typedef IlcInt
	Typedef IlcIntVarRef
	Typedef IlcPathTransitFunction
	Typedef IloAny
	Typedef IloBool
	Typedef IloInt
	Typedef IloNum
	Typedef IloNumFunction
	Typedef IloPathTransitFunction
	Typedef IloPoolProcArray
	Typedef IloSolutionArray
	Typedef IloSolutionPoolEvaluator
	Typedef IloSolutionPoolSelector
	Variable ILC_NO_MEMORY_MANAGER
	Variable IlcFloatMax
	Variable IlcFloatMin
	Variable ILO_NO_MEMORY_MANAGER
	Variable IloInfinity
	Variable IloIntMax
	Variable IloIntMin

