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P R E F A C E
Welcome to IBM ILOG Solver

IBM® ILOG® Solver is a C++ library for solving complex combinatorial problems in 
diverse areas including production planning, resource allocation, time tabling, personnel 
scheduling, cutting materials, blending mixtures, assigning radio frequencies, and many 
others.

IBM ILOG Solver is based on IBM ILOG Concert Technology. Concert Technology offers a 
C++ library of classes and functions that enable you to define models for optimization 
problems and to apply algorithms to those models. Concert Technology supports algorithms 
for both constraint programming and mathematical programming (including linear 
programming, mixed integer programming, quadratic programming, and network 
programming) solutions. 

For more information about IBM ILOG Solver and IBM ILOG Concert Technology, see 
Chapter 1, Constraint Programming with IBM ILOG Solver. 

About this manual

This is the IBM ILOG Solver User’s Manual. It is composed of chapters that use a 
procedural-based learning strategy as well as more conceptual chapters. Each procedural-
based lesson is built around a sample problem, and a user works on a partially completed 
code example. As you follow the steps in the lesson, you complete the code and learn about 
concepts. Then, you compile and run the code and analyze the results. At the end of each 
lesson, there are review exercises. 
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The manual is designed to be used by C++ programmers who may or may not have any 
knowledge of constraint programming. The ideal usage context for this manual is sitting in 
front of your computer, with IBM ILOG Concert Technology and IBM ILOG Solver 
installed. You work through the lessons and exercises. 

If you are a novice Solver user, start at the beginning of this manual, since the lessons build 
on each other. If you are a more experienced Solver user, you can jump ahead to a later part 
of the manual, focusing on more advanced topics. 

How this manual is organized

This manual is divided into six parts: 

◆ Part I, The Basics

◆ Part II, More on Modeling

◆ Part III, More on Solving

◆ Part IV, Extending the Library

◆ Part V, Local Search

◆ Part VII, Developing Solver Applications

Prerequisites

Solver requires a working knowledge of C++. However, it does not require you to learn a 
new language since it does not impose any syntactic extensions on C++.

If you are experienced in constraint programming or operations research, you are probably 
already familiar with many concepts used in this manual. However, no experience in 
constraint programming or operations research is required to use this manual. 

You should have IBM ILOG Solver and IBM ILOG Concert Technology installed in your 
development environment before starting to use this manual. You should be able to compile, 
link, and execute a sample program provided with IBM ILOG Solver before starting to use 
this manual. For more information, see the sections Installing IBM ILOG Solver and Linking 
IBM ILOG Solver.    

Related documentation

The following documentation ships with IBM ILOG Solver and will be useful for you to 
refer to as you complete the lessons and exercises:

◆ The IBM ILOG Solver Reference Manual fully documents all the Solver C++ classes and 
member functions used in the User’s Manual. The Reference Manual also explains 
certain concepts more formally. The Reference Manual provides the last word on any 
given topic. 
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◆ The IBM ILOG Solver Release Notes list new and improved features, changes in the 
library and documentation, and issues addressed for each release.

Installing IBM ILOG Solver

In this manual, it is assumed that you have already successfully installed the IBM ILOG 
Solver and IBM ILOG Concert Technology libraries on your platform (that is, the 
combination of hardware and software you are using). If this is not the case, you will find 
installation instructions in the jacket of the CD-ROM of the standard distribution of Solver. 
The instructions cover all the details you need to know to install Concert Technology and 
Solver on your system. 

Linking IBM ILOG Solver

When you use Solver, you link the IBM ILOG Solver and IBM ILOG Concert Technology 
libraries to your application. The command that you use for linking depends on your 
platform. In the standard distribution of the product, you will find a file that contains details 
appropriate to your platform and that points you toward a subdirectory containing a suitable 
makefile or project. If you are using UNIX, you will find the information in 
YourSolverHome/README; on a PC, you will find comparable information in 
YourSolverHome/readme.htm

Typographic and naming conventions

The names of types, classes, and functions defined in the library begin with Ilo or Ilc. 
Those beginning with Ilo are predefined modeling and solving classes, functions, and types 
provided with Solver and Concert Technology. You can use classes, functions, and types in 
the Solver library that begin with Ilc to customize your code and extend the library. For 
more information, see Part IV, Extending the Library. 

The name of a class is written as concatenated words with the first letter of each word in 
upper case. For example,

A lower case letter begins the first word in names of arguments, instances, and member 
functions. Other words in the identifier begin with an upper case letter. For example,

IloIntVar

IloIntVar aVar; 
IloIntVarArray::add;
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Names of data members begin with an underscore, like this:

Generally, accessors begin with the key word get. Accessors for Boolean members begin 
with is. Modifiers begin with set.

To make porting easier from platform to platform, Solver and Concert Technology isolate 
characteristics that vary from system to system. For that reason, use the following names for 
basic types in C++: 

◆ IloInt stands for signed long integers 

◆ IloAny stands for pointers (void*) 

◆ IloNum stands for double precision floating-point values 

◆ IloBool stands for Boolean values: IloTrue and IloFalse 

You are not obliged to use these identifiers, but it is highly recommended if you plan to port 
your application to other platforms.

Important ideas are italicized the first time they appear.

IBM software support handbook

This guide contains important information on the procedures and practices followed in the 
service and support of your IBM products. It does not replace the contractual terms and 
conditions under which you acquired specific IBM Products or Services. Please review it 
carefully. You may want to bookmark the site so you can refer back as required to the latest 
information. We are interested in continuing to improve your IBM support experience, and 
encourage you to provide feedback by clicking the Feedback link in the left navigation bar 
on any page. The "IBM Software Support Handbook" can be found on the web at 

http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html

Accessing software support

When calling or submitting a problem to IBM Software Support about a particular service 
request, please have the following information ready: 

class Bin {
public:
  IloIntVar       _type;
  IloIntVar       _capacity;
  IloIntVarArray  _contents;
  Bin (IloModel    mod,
       IloIntArray Capacity,
       IloInt      nTypes,
       IloInt      nComponents);
  void display(const IloSolver sol);
};
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IBM Customer Number 

The machine type/model/serial number (for Subscription and Support calls) 

Company name 

Contact name 

Preferred means of contact (voice or email) 

Telephone number where you can be reached if request is voice 

Related product and version information 

Related operating system and database information 

Detailed description of the issue 

Severity of the issue in relationship to the impact of it affecting your business needs 

Contact via web

Open service requests is a tool to help clients find the right place to open any problem, 
hardware or software, in any country where IBM does business. This is the starting place 
when it is not evident where to go to open a service request. 

Service Request (SR) tool offers Passport Advantage clients for distributed platforms online 
problem management to open, edit and track open and closed PMRs by customer number. 
Timesaving options: create new PMRs with prefilled demographic fields; describe problems 
yourself and choose severity; submit PMRs directly to correct support queue; attach 
troubleshooting files directly to PMR; receive alerts when IBM updates PMR; view reports 
on open and closed PMRs. 

You can find information about assistance for SR at http://www.ibm.com/software/support/
help-contactus.html.

System Service Request (SSR) tool is similar to Electronic Service request in providing 
online problem management capability for clients with support offerings in place on System 
i, System p, System z, TotalStorage products, Linux, Windows, Dynix/PTX, Retail, OS/2, 
Isogon, Candle on OS/390 and Consul z/OS legacy products. 

IBMLink - SoftwareXcel support contracts offer clients on the System z platform the 
IBMLink online problem management tool to open problem records and ask usage questions 
on System z software products. You can open, track, update, and close a defect or problem 
record; order corrective/preventive/toleration maintenance; search for known problems or 
technical support information: track applicable problem reports: receive alerts on high 
impact problems and fixes in error; and view planning information for new releases and 
preventive maintenance. 
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Contact via phone

If you have an active service contract maintenance agreement with IBM , or are covered by 
Program Services, you may contact customer support teams via telephone. For individual 
countries, please visit the Technical Support section of the IBM Directory of worldwide 
contacts via http://www.ibm.com/planetwide/.
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Part I



The Basics

This part consists of the following lessons:

◆ Chapter 1, Constraint Programming with IBM ILOG Solver

◆ Chapter 2, Modeling and Solving a Simple Problem: Map Coloring

◆ Chapter 3, Using Arrays and Basic Search: Changing Money

◆ Chapter 4, Searching with Predefined Goals: Magic Square

◆ Chapter 5, Using Objectives: Map Coloring with Minimum Colors



C H A P T E R
1

Constraint Programming with IBM ILOG
Solver

In this lesson, you will learn how to:

◆ use the three-stage method to describe, model, and solve problems

◆ identify decision variables and constraints

◆ understand basic search and constraint propagation

◆ compile a sample program to make sure your installation is working correctly

IBM® ILOG® Solver is a C++ library that uses constraint programming to find solutions to 
optimization problems. One of the key advantages of constraint programming lies in the fact 
that it dissociates the representation of the problem, called the model, from the search 
algorithms used to solve it. 

IBM ILOG Solver is based on IBM ILOG Concert Technology. Concert Technology is a 
C++ library that allows you to model optimization problems independently of the algorithms 
used to solve the problem. It provides an extensible modeling layer adapted to a variety of 
algorithms ready to use off the shelf. This modeling layer enables you to change your model, 
without rewriting your application. 

Concert Technology supports algorithms for both constraint programming and mathematical 
programming (including linear programming, mixed integer programming, quadratic 
programming, and network programming) solutions.
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This library is not a new programming language: it lets you use data structures and control 
structures provided by C++. Thus, the Concert Technology part of an application can be 
completely integrated with the rest of that application (for example, the graphic interface, 
connections to databases, and so on) because it can share the same objects. 

The three-stage method

To find a solution to a problem using IBM® ILOG® Solver, you use a three-stage method: 
describe, model, and solve. 

The first stage is to describe the problem in natural language. For more information, see the 
section “Describe” on page 30.

The second stage is to use Concert Technology classes to model the problem. The model is 
composed of decision variables and constraints. Decision variables are the unknown 
information in a problem. Each decision variable has a domain of possible values. The 
constraints are limits or restrictions on combinations of values for these decision variables. 
The model may also contain an objective, an expression that can be maximized or 
minimized. For more information, see the section “Model” on page 31.

The third stage is to use Solver classes to solve the problem. Solving the problem consists of 
finding a value for each decision variable while simultaneously satisfying the constraints and 
maximizing or minimizing an objective, if one is included in the model. Solver uses two 
techniques for solving optimization problems: search strategies and constraint propagation. 
For more information, see the section “Solve” on page 32. 

In this lesson, you will describe, model, and solve a simple problem to understand the basic 
concepts in constraint programming. The problem is to find values for x and y from the 
following information:

◆ x + y = 17

◆ x - y = 5

◆ x can be any integer from 5 through 12

◆ y can be any integer from 2 through 17 

Describe

The first stage is to describe the problem in natural language. 

What is the unknown information—the decision variables—in this problem? 

What are the values of x and y?
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What are the limits or restrictions on combinations of these values—the constraints—in this 
problem?

◆ x + y = 17

◆ x - y = 5

Though the Describe stage of the process may seem trivial in a simple problem like this one, 
you will find that taking the time to fully describe a more complex problem is vital for 
creating a successful program. You will be able to code your program more quickly and 
effectively if you take the time to describe the model, isolating the decision variables and 
constraints. 

Model

The second stage is to use Concert Technology classes to model the problem. The model is 
composed of decision variables and constraints. The model may also contain an objective, 
although in this case it does not. For more information on modeling with an objective, see 
Chapter 5, Using Objectives: Map Coloring with Minimum Colors.

Decision variables

Decision variables are the unknown information in a problem. Decision variables differ from 
normal C++ variables in that you can place constraints on the values of decision variables. 
For this reason, decision variables are also known as constrained variables. In this example, 
the decision variables are x and y.

Each decision variable has a domain of possible values. In this example, the domain of 
decision variable x is [5..12], or all integers from 5 to 12. The domain of decision variable 
y is [2..17], or all integers from 2 to 17. 

Constraints

Constraints are limits on the combinations of values for variables. There are two constraints 
on the decision variables in this example: x + y = 17 and x - y = 5. 

Note: In Solver and Concert Technology, square brackets denote the domain of decision 
variables. For example, [5 12] denotes a domain as a set consisting of precisely two 
integers, 5 and 12. In contrast, [5..12] denotes a domain as a range of integers, that is, 
the interval of integers from 5 to 12, so it consists of 5, 6, 7, 8, 9, 10, 11, and 12. 
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Solve

The third stage is to use Solver classes to search for a solution and solve the problem. 
Solving the problem consists of finding a value for each variable while simultaneously 
satisfying the constraints and maximizing or minimizing an objective, if one is included in 
the model. For more information on solving a problem with an objective, see Chapter 5, 
Using Objectives: Map Coloring with Minimum Colors. 

Solver uses two techniques to find a solution: search strategies and constraint propagation. 
Additionally, Solver performs two types of constraint propagation: initial constraint 
propagation and constraint propagation during search. Figure 1.1 shows the basic process 
used by Solver to find a solution. The concepts in the diagram will become clearer as you 
read later sections.

Figure 1.1

Figure 1.1  The solve process
32 I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L



Search space

Solver looks for a solution in the search space. The search space is all possible combinations 
of values. For this simple problem, the search space is shown in Table 1.1. One way to find a 
solution would be to explicitly study each combination of values until a solution was found. 
Even for this simple problem, this approach is obviously time-consuming and inefficient. 
For a more complicated problem with many variables, the approach would be unrealistic.   

Initial constraint propagation

First, Solver performs an initial constraint propagation. The initial constraint propagation 
removes all values from domains that will not take part in any solution. Before propagation, 
the domains are:

Table 1.1 Search space

x=5, y=2 x=6, y=2 x=7, y=2 x=8, y=2 x=9, y=2 x=10, y=2 x=11, y=2 x=12, y=2

x=5, y=3 x=6, y=3 x=7, y=3 x=8, y=3 x=9, y=3 x=10, y=3 x=11, y=3 x=12, y=3

x=5, y=4 x=6, y=4 x=7, y=4 x=8, y=4 x=9, y=4 x=10, y=4 x=11, y=4 x=12, y=4

x=5, y=5 x=6, y=5 x=7, y=5 x=8, y=5 x=9, y=5 x=10, y=5 x=11, y=5 x=12, y=5

x=5, y=6 x=6, y=6 x=7, y=6 x=8, y=6 x=9, y=6 x=10, y=6 x=11, y=6 x=12, y=6

x=5, y=7 x=6, y=7 x=7, y=7 x=8, y=7 x=9, y=7 x=10, y=7 x=11, y=7 x=12, y=7

x=5, y=8 x=6, y=8 x=7, y=8 x=8, y=8 x=9, y=8 x=10, y=8 x=11, y=8 x=12, y=8

x=5, y=9 x=6, y=9 x=7, y=9 x=8, y=9 x=9, y=9 x=10, y=9 x=11, y=9 x=12, y=9

x=5, y=10 x=6, y=10 x=7, y=10 x=8, y=10 x=9, y=10 x=10, y=10 x=11, y=10 x=12, y=10

x=5, y=11 x=6, y=11 x=7, y=11 x=8, y=11 x=9, y=11 x=10, y=11 x=11, y=11 x=12, y=11

x=5, y=12 x=6, y=12 x=7, y=12 x=8, y=12 x=9, y=12 x=10, y=12 x=11, y=12 x=12, y=12

x=5, y=13 x=6, y=13 x=7, y=13 x=8, y=13 x=9, y=13 x=10, y=13 x=11, y=13 x=12, y=13

x=5, y=14 x=6, y=14 x=7, y=14 x=8, y=14 x=9, y=14 x=10, y=14 x=11, y=14 x=12, y=14

x=5, y=15 x=6, y=15 x=7, y=15 x=8, y=15 x=9, y=15 x=10, y=15 x=11, y=15 x=12, y=15

x=5, y=16 x=6, y=16 x=7, y=16 x=8, y=16 x=9, y=16 x=10, y=16 x=11, y=16 x=12, y=16

x=5, y=17 x=6, y=17 x=7, y=17 x=8, y=17 x=9, y=17 x=10, y=17 x=11, y=17 x=12, y=17

D(x) = [5 6 7 8 9 10 11 12]
D(y) = [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17]
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To get an idea of how initial constraint propagation works, consider the constraint 
x + y = 17. If you take the smallest number in the domain of x, which is 5, and add it to the 
largest number in the domain of y, which is 17, the answer is 22. This combination of values 
(x = 5, y = 17) violates the constraint x + y = 17. The only value of x that would work 
with y = 17 is x = 0. However, there is no value of 0 in the domain of x, so y cannot be 
equal to 17. The value y = 17 cannot take part in any solution. Solver removes the value 
y = 17 from the domain of y. Similarly, Solver removes the following values from the 
domain of y: 13, 14, 15, and 16. 

Likewise, if you take the largest number in the domain of x, which is 12, and add it to the 
smallest number in the domain of y, which is 2, the answer is 14. This combination of values 
(x = 12, y = 2) violates the constraint x + y = 17. The only value of x that would work 
with y = 2 is x = 15. However, there is no value of 15 in the domain of x, so y cannot be 
equal to 2. The value of y = 2 cannot take part in any solution. Solver removes the value 
y = 2 from the domain of y. For the same reason, Solver removes the following values from 
the domain of y: 2, 3, and 4.

After initial propagation for the constraint x + y = 17, the domains are:

Now, examine the constraint x - y = 5. If you take the value 5 in the domain of x, you can 
see that the only value of y that would work with x = 5 is y = 0. However, there is no value 
of 0 in the domain of y, so x cannot equal 5. The value x = 5 cannot take part in any 
solution. Solver removes the value x = 5 from the domain of x. Using similar logic, Solver 
removes the following values from the domain of x: 6, 7, 8, and 9. Likewise, Solver removes 
the following values from the domain of y: 8, 9, 10, 11, and 12.

After initial propagation for both constraints, the search space has been greatly reduced in 
size. The domains are now:

Search tree

After initial constraint propagation, the search space is greatly reduced. This remaining part 
of the search space, where Solver will use a search strategy to search for a solution, is called 
the search tree. The root of the tree is the starting point in the search for a solution; each 
branch descending from the root represents an alternative in the search. Figure 1.2 shows a 
graphic representation of the search tree for this problem.

D(x) = [5 6 7 8 9 10 11 12]
D(y) = [5 6 7 8 9 10 11 12]

D(x) = [10 11 12]
D(y) = [5 6 7]
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Figure 1.2

Figure 1.2  Search tree

Search strategy

Solver uses a search strategy to guide the search for a solution. A search strategy is a way to 
“try” a value for a variable to see if this will lead to a solution. To demonstrate how Solver 
uses search strategies to find a solution, consider a search strategy that takes variable x and 
assigns it the lowest value in the domain of x. For the first search move in this strategy, 
Solver assigns the value 10 to the variable x. 

Figure 1.3

Figure 1.3  Search strategy- assign variable x the lowest value in its domain, 10

Constraint propagation during search

Solver performs constraint propagation during search. This constraint propagation differs 
from the initial constraint propagation. The initial constraint propagation removes all values 
from domains that will not take part in any solution. Constraint propagation during search 
removes all values from the current domains that violate the constraints. You can think of 
constraint propagation during search in the following way. In order to “try” a value for a 
variable, Solver creates “test” or current domains. When constraint propagation removes 
values from domains during search, values are only removed from these “test” domains. 
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Examine the search tree. The search strategy has assigned the value 10 to the variable x. You 
try the value y = 5. This combination of values (x = 10, y = 5) violates the constraint 
x + y = 17. Solver removes the value y = 5 from the current domain of y. Next, you try the 
value y = 6. This combination of values (x = 10, y = 6) violates the constraint x + y = 17. 
Solver removes the value y = 6 from the current domain of y. Next, you try the value y = 7. 
This combination of values (x = 10, y = 7) satisfies the constraint x + y = 17. However, it 
violates the constraint x - y = 5. Solver removes the value y = 7 from the current domain of 
y. 

Figure 1.4

Figure 1.4  Search tree after constraint propagation during search

Backtrack

Using constraint propagation during search, Solver has removed the following values from 
the “test” or current domain of y: 5, 6, and 7. This means that there is no value of y that can 
combine with the value x = 10 and satisfy all the constraints. In other words, Solver has 
determined that the value x = 10 cannot take part in any solution. Solver removes the value 
x = 10 from the domain of x—not a “test” or current domain, but the actual domain of x. 
However, no values of y have been removed from the actual domain of y. They have only 
been removed from the “test” or current domain used in the search move x = 10. These 
values of y may still take part in a solution with a different value of x. 

At this point, Solver needs to backtrack up the search tree and try a different value for the 
variable x. Backtracking gives Solver the flexibility to make search moves that can be 
wrong. An alternative can be tried and, if it does not succeed, can be reversed.
36 I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L



Figure 1.5

Figure 1.5  Backtrack

Continue with search strategy: Try another branch

After backtracking, the branch of the search tree that starts with x = 10 has been removed 
from the search tree. Solver has tried to find a solution in this branch and failed. The next 
move in the search strategy is to take variable x and assign it the lowest value in the domain 
of x, which is now [11 12]. Solver takes variable x and assigns it the value 11. Solver then 
searches for a solution in this branch of the search tree. The “test” or current domain of y 
includes the following values: 5, 6, and 7. 

Figure 1.6

Figure 1.6  Try another branch in the search tree

After this second search move, constraint propagation during search again removes values 
from the “test” or current domains that violate the constraints. 

Examine the constraints. The search strategy has assigned the value 11 to the variable x. You 
try the value y = 5. This combination of values (x = 11, y = 5) violates the constraint 
x + y = 17. Solver removes the value y = 5 from the “test” or current domain of y. Next, 
you try the value y = 6. This combination of values (x = 11, y = 6) satisfies the constraint 
x + y = 17. This combination of values also satisfies the constraint x - y = 5. 
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Solution

Solver has found a solution to the problem using a search strategy and constraint 
propagation during search. The combination of values (x = 11, y = 6) satisfies both 
constraints. There is no need to further explore the search tree because a solution has been 
found.

Figure 1.7

Figure 1.7  Solution

This simple example demonstrates the basic concepts of search strategies and constraint 
propagation. To summarize, solving a problem consists of finding a value for each decision 
variable while simultaneously satisfying the constraints. Solver uses two techniques to find a 
solution: search strategies and constraint propagation. Additionally, Solver performs two 
types of constraint propagation: initial constraint propagation and constraint propagation 
during search.

The initial constraint propagation removes all values from domains that will not take part in 
any solution. After initial constraint propagation, the search space is greatly reduced. This 
remaining part of the search space, where Solver will use a search strategy to search for a 
solution, is called the search tree. A search strategy is a way to “try” a value for a variable to 
see if this will lead to a solution. Solver performs constraint propagation during search. 
Constraint propagation during search removes all values from the current or “test” domains 
that violate the constraints. If Solver cannot find a solution in one branch of the search tree, 
Solver backtracks up the search tree. Backtracking gives Solver the flexibility to make 
search moves that can be wrong. An alternative can be tried and, if it does not succeed, can 
be reversed. Solver continues to search using the search strategy and constraint propagation 
during search until a solution is found. 

Compile and test

This first lesson is designed to help you understand the basic concepts in constraint 
programming. In future lessons, you will work through problems by describing, modeling, 
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and solving problems using IBM® ILOG® Concert Technology and IBM ILOG Solver 
classes. In this lesson, you are provided with the completed example code so that you can 
test your installation of Solver.

In Chapter 2, Modeling and Solving a Simple Problem: Map Coloring, you will learn about 
the classes and member functions used in this program. 

The following code models and solves the problem introduced in this lesson:

Open the example file YourSolverHome/examples/src/intro.cpp in your 
development environment. To test your installation of Solver, compile and run the program. 
If you have questions, see Installing IBM ILOG Solver in the Preface of this manual. When 
you run the program, you should get the following results: 

Review exercises

For answers, see “Suggested answers” on page 40.

1. To find a solution to a problem using IBM® ILOG® Solver, you use the three-stage 
method: describe, model, and solve. What does each of these stages involve?

2. What are decision variables?

#include <ilsolver/ilosolverint.h>
ILOSTLBEGIN

int main(){
  IloEnv env;
  try {
    IloModel model(env);
    IloIntVar x(env, 5, 12);
    IloIntVar y(env, 2, 17);
    model.add(x + y == 17);
    model.add(x - y == 5);
    IloSolver solver(model);
    if (solver.solve()){
      solver.out() << "x = " << solver.getValue(x) << endl;
      solver.out() << "y = " << solver.getValue(y) << endl;
    }
  }
  catch (IloException& ex) {
    cout << "Error: " << ex << endl;
  }
  env.end();
  return 0;
}

x = 11
y = 6
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3. What are constraints?

4. What are the two techniques that Solver uses to find a solution? 

Suggested answers

Exercise 1

To find a solution to a problem using IBM® ILOG® Solver, you use the three-stage method: 
describe, model, and solve. What does each of these stages involve?

Suggested Answer

1. Describe

Write a natural language description of problem. 

2. Model

Use Concert Technology classes to model the problem: declare the variables (unknowns) 
in the problem and add constraints on the variables to the model.

3. Solve

Use Solver classes to search for a solution.

Exercise 2

What are decision variables?

Suggested Answer

Decision variables are the unknown information in a problem. Each decision variable has a 
domain of possible values.

Exercise 3

What are constraints?

Suggested Answer

Constraints are limits on the combinations of values for variables.

Exercise 4

What are the two techniques that Solver uses to find a solution?
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Suggested Answer

Solver uses two techniques to find a solution: search strategies and constraint propagation. 
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C H A P T E R
2

Modeling and Solving a Simple Problem:
Map Coloring

In this lesson, you will learn how to: 

◆ use the classes IloEnv and IloModel to create an environment and a model

◆ use the class IloIntVar to declare constrained integer variables

◆ place simple arithmetic constraints on integer variables

◆ use the class IloSolver to search for solutions

You will learn how to model and solve a simple problem, a map coloring problem. To find a 
solution to this problem using Solver, you will use the three-stage method: describe, model, 
and solve. 

Describe

The problem involves choosing colors for the countries on a map in such a way that at most 
four colors (blue, white, yellow, green) are used, and no neighboring countries are the same 
color. In this exercise, you will find a solution for a map coloring problem with six countries: 
Belgium, Denmark, France, Germany, Luxembourg, and the Netherlands. Map coloring 
problems are closely related to graph coloring problems and have many real world 
applications. For more information, see Chapter 12, Setting Filter Levels: Coloring Graphs.
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Figure 2.1 

Figure 2.1  Map for coloring

The first step in modeling and solving a problem is to write a natural language description of 
the problem, identifying the decision variables and the constraints on these variables. 

Write a natural language description of this problem. Answer these questions:

◆ What are the decision variables or unknowns in this problem? 

◆ What are the constraints on these variables?

Discussion

What is known? 

◆ You have six known countries on a map. 

Step 1 Describe the problem

Decision variables and constraints

Decision variables are the unknown information in a problem. Each decision variable has a
domain of possible values. 

Constraints are limits or restrictions on combinations of values for decision variables. 

For more information on decision variables and constraints, see the section “Model” on
page 31.
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◆ You have four known colors. 

What is unknown? 

◆ The unknown is the connection between the country and the color: what color is each 
country? In other words, there are six variables; each variable represents the color of a 
specific country on the map. Each decision variable has four possible values: blue, white, 
yellow, or green. 

What are the constraints? 

◆ In this case, each constraint is that a country cannot be the same color as its neighbors. In 
other words, if the value of the variable representing the color of Belgium is blue, then 
the value of the variable representing the color of Germany cannot also be blue, since 
they are neighboring countries.

Model

Once you have written a description of your problem, you can use Concert Technology 
classes to model it. After you create a model of your problem, you can use Solver classes 
and member functions to search for a solution.

Open the example file YourSolverHome/examples/src/tutorial/
color_partial.cpp in your development environment. This file is a program that is only 
partially completed. You will fill in the blanks in each step in this lesson. At the end, you 
will have completed the program code and you can compile and run the program.

In this exercise, you use constrained integer variables and therefore you use the include file 
<ilsolver/ilosolverint.h>. To catch exceptions, you use a try/catch block. The 
code for creating the array of names for the color values and for printing out the solution is 
provided.  

The first step in converting your natural language description of the problem into code using 
Concert Technology classes is to create an environment and a model.

Step 2 Open the example file

Note: When you compile the library with STL support, the macro ILOSTLBEGIN is 
equivalent to using namespace std. On other ports, it is a machine instruction that 
does nothing. 
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Add the following code after the comment //Create the environment 

An environment, an instance of the class IloEnv, manages internal modeling issues. It 
handles output, memory management for modeling objects, and termination of search 
algorithms. Normally an application needs only one environment, but you can create as 
many environments as you wish.

The initialization of the environment creates internal data structures to be used in the rest of 
the code. Once this is done, you can create a model. A model, an instance of the class 
IloModel, is a container for modeling objects such as variables and constraints. A model is 
created using an environment.

Add the following code after the comment //Create the model 

After solving your problem, you can reclaim memory for all modeling objects and clean up 
internal data structures by calling IloEnv::end for every environment you have created. 
This should be always be done before you exit your application. This is already included in 
the exercise code.

Concert Technology gives you the means to represent the unknowns in this problem—the 
color of each country on the map—as constrained integer variables. A constrained integer 
variable is a variable that takes integers as possible values. The possible values are 
represented as a domain of integers with an upper bound and a lower bound. The variables 
are said to be constrained because you can place constraints on them.

Constrained integer variables are represented by the class IloIntVar in Concert 
Technology. The first parameter of the class IloIntVar constructor is always the 
environment. The second parameter is the lower bound of the domain of possible values, 
which defaults to 0. The third parameter is the upper bound of the domain of possible values. 
The upper bound defaults to IloIntMax, which represents the largest possible positive 

Step 3 Create the environment

  IloEnv env;

Step 4 Create the model

    IloModel model(env);

IloInt

IloInt is a type definition that represents signed integers in Concert Technology.
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integer on a given platform. The fourth parameter is an optional name used for debug and 
trace purposes. Here is a constructor:

After you create an environment and a model, you declare the constrained integer variables, 
one for each country. Each variable represents the unknown information—the color of the 
country. Each constrained integer variable takes a value in the domain of integers from 0 to 
3. These values represent the possible colors:

◆ The value 0 represents the color blue.

◆ The value 1 represents the color white.

◆ The value 2 represents the color yellow.

◆ The value 3 represents the color green. 

These decision variables will contain the solution to the problem, once it is solved. 

Add the following code after the comment //Declare the decision variables 

Concert Technology allows you to express constraints involving integer variables using the 
following operators:

◆ equality ==

◆ less than or equal to <=

◆ less than <

◆ greater than or equal to >=

◆ greater than >

◆ not equal to !=

In this example, you use a constraint to require that when two countries are neighbors, they 
cannot be the same color. For example, the statement Belgium != France indicates that 
France and Belgium are neighbors, so they should not share the same color. Explicitly, it 
means that the value Solver finds for the constrained integer variable Belgium cannot equal 
the value Solver finds for the constrained integer variable France.

IloIntVar(const IloEnv env, 
          IloInt lb = 0, 
          IloInt ub = IloIntMax
          const char* name = 0);

Step 5 Declare the decision variables

    IloIntVar Belgium(env, 0, 3), Denmark(env, 0, 3), 
      France(env, 0, 3), Germany(env, 0, 3), 
      Luxembourg(env, 0, 3), Netherlands(env, 0, 3);
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You use the member function IloModel::add to add constraints to the model. You must 
explicitly add a constraint to the model or Solver will not be able to use it in the search for a 
solution.

Add the following code after the comment //Add the constraints 

Solve

Solving a problem using constraint programming consists of finding a value for each 
variable so that all constraints are satisfied. You may not always know beforehand whether 
there is a solution that satisfies all the constraints of the problem. In some cases, there may 
be no solution. In other cases, there may be many solutions to a problem. 

You use an instance of the class IloSolver to solve a problem expressed in a model. The 
constructor for IloSolver takes an instance of IloModel as a parameter. 

Add the following code after the comment //Create an instance of IloSolver

You now use the member function IloSolver::solve, which solves a problem by using a 
default goal to launch the search. Goals are the mechanism by which Solver implements 
search strategies. But how do you decide what search strategy to use? The default goal 
defines the search strategy when you do not specify a goal. Using a default goal allows you 

Step 6 Add the constraints

    model.add(Belgium != France); 
    model.add(Belgium != Germany); 
    model.add(Belgium != Netherlands);
    model.add(Belgium != Luxembourg);
    model.add(Denmark != Germany ); 
    model.add(France != Germany); 
    model.add(France != Luxembourg); 
    model.add(Germany != Luxembourg);
    model.add(Germany != Netherlands); 

How Solver finds a solution

Solver uses two techniques to find a solution: search strategies and constraint
propagation. 

For more information, see the section “Solve” on page 32.

Step 7 Create an instance of IloSolver

    IloSolver solver(model);
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to concentrate on modeling the problem, without knowing the details of the search strategy. 
The default goal is one of a set of predefined goals that Solver offers (more on this in 
Chapter 4, Searching with Predefined Goals: Magic Square). You can also write your own 
goals (more on this in Part IV, Extending the Library). 

Add the following code after the comment //Search for a solution 

The member function IloSolver::solve returns a Boolean value of type IloBool. If a 
solution is found, an IloTrue value is returned and the program displays the solution. 

The member function IloSolver::getValue returns the value Solver found for the 
variable. When you print the solution, you associate each value with the name of a color 
using the array Names[]. The value 0 is associated with Names[0], which is the first array 
element “blue”; the value 1 is associated with Names[1], which is the second array element 
“white”; and so on. The array Names[] is already created for you in the exercise code. 

The member function IloAlgorithm::getStatus returns a status indicating information 
about the solution that Solver has found. IloAlgorithm::out is the communication 
stream for general output. These general purpose functions and streams are members of 
IloAlgorithm, the base class for algorithms in Concert Technology. You can use 
IloAlgorithm to employ different algorithms in solving problems represented with 
Concert Technology modeling classes. IloSolver is a subclass of IloAlgorithm. 

Step 8 Search for a solution

    if (solver.solve()) 

IloBool

IloBool is a type definition that represents Boolean values in Concert Technology.  

Those values are IloTrue and IloFalse. Booleans are, in fact, integers of type
IloInt. IloFalse is 0 (zero), and IloTrue is 1 (one). 

      solver.out() << solver.getStatus() << " Solution" << endl;
      solver.out() << "Belgium:     " 
                   << Names[(IloInt)solver.getValue(Belgium)]     << endl;
      solver.out() << "Denmark:     " 
                   << Names[(IloInt)solver.getValue(Denmark)]     << endl;
      solver.out() << "France:      " 
                   << Names[(IloInt)solver.getValue(France)]      << endl;
      solver.out() << "Germany:     " 
                   << Names[(IloInt)solver.getValue(Germany)]     << endl;
      solver.out() << "Luxembourg:  " 
                   << Names[(IloInt)solver.getValue(Luxembourg)]  << endl;
      solver.out() << "Netherlands: " 
                   << Names[(IloInt)solver.getValue(Netherlands)] << endl;
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Compile and run the program. You should get the following results:

As you can see, all four colors are used.

The complete program is listed in “Complete program” on page 52. You can also view it 
online in the YourSolverHome/examples/src/color.cpp file. 

Review exercises

1. What is a constrained integer variable?

2. What are goals?

3. Change the code so that Germany and Denmark are always the same color. Except for 
Germany and Denmark, no two neighboring countries are the same color.

4. Change the original code to include Switzerland in the map. Switzerland shares borders 
with France and Germany. No two neighboring countries are the same color.

Suggested answers

Exercise 1

What is a constrained integer variable?

Note: If there is more than one set of values for the variables that satisfy the constraints of 
the problem, there is more than one solution. Within your problem, there may be certain 
criteria that make one such set of values more appropriate than another as a solution. This 
appropriateness is usually measured in terms of a cost function that can be optimized. You 
can read more on this in Chapter 5, Using Objectives: Map Coloring with Minimum 
Colors.

Step 9 Compile and run the program

FEASIBLE Solution
Belgium:     blue
Denmark:     blue
France:      white
Germany:     yellow
Luxembourg:  green
Netherlands: white
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Suggested Answer

A constrained integer variable is a decision variable that takes integers as possible values. 
The possible values are represented as a domain of integers with an upper bound and a lower 
bound. 

Exercise 2

What are goals?

Suggested Answer

Goals are the mechanism by which Solver implements search strategies.

Exercise 3

Change the code so that Germany and Denmark are always the same color. Except for 
Germany and Denmark, no two neighboring countries are the same color.

Suggested Answer

The code that has changed from color.cpp follows. You can view the complete program 
online in the file YourSolverHome/examples/src/color_ex3.cpp.

You should obtain the following result:

Exercise 4

Change the original code to include Switzerland in the map. Switzerland shares borders with 
France and Germany. No neighboring countries are the same color.

Suggested Answer

The code that has changed from color.cpp follows. You can view the complete program 
online in the file YourSolverHome/examples/src/color_ex4.cpp.

    model.add(Denmark == Germany ); 

FEASIBLE Solution
Belgium:     blue
Denmark:     yellow
France:      white
Germany:     yellow
Luxembourg:  green
Netherlands: white
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The declaration of the variables is changed as follows: 

These additional constraints are added to the model

This code is added to the solution display:

You should obtain the following results:

Complete program

The complete map coloring program follows. You can also view it online in the file 
YourSolverHome/examples/src/color.cpp. 

#include <ilsolver/ilosolverint.h>
ILOSTLBEGIN

const char* Names[] = {"blue", "white", "yellow", "green"}; 

int main(){
  IloEnv env;
  try {
    IloModel model(env);
    IloIntVar Belgium(env, 0, 3), Denmark(env, 0, 3), 
      France(env, 0, 3), Germany(env, 0, 3), 
      Luxembourg(env, 0, 3), Netherlands(env, 0, 3);
    model.add(Belgium != France); 
    model.add(Belgium != Germany); 
    model.add(Belgium != Netherlands);
    model.add(Belgium != Luxembourg);
    model.add(Denmark != Germany ); 
    model.add(France != Germany); 

    IloIntVar Belgium(env, 0, 3), Denmark(env, 0, 3), France(env, 0, 3), 
      Germany(env, 0, 3), Luxembourg(env, 0, 3), Netherlands(env, 0, 3),
      Switzerland(env, 0, 3);

    model.add(France != Switzerland);
    model.add(Germany != Switzerland);

      solver.out() << "Switzerland:  "
                   << Names[(IloInt)solver.getValue(Switzerland)] << endl;

FEASIBLE Solution
Belgium:     blue
Denmark:     blue
France:      white
Germany:     yellow
Luxembourg:  green
Netherlands: white
Switzerland: blue
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    model.add(France != Luxembourg); 
    model.add(Germany != Luxembourg);
    model.add(Germany != Netherlands); 
    IloSolver solver(model);
    if (solver.solve()) 
      {    
      solver.out() << solver.getStatus() << " Solution" << endl;
      solver.out() << "Belgium:     " 
                   << Names[(IloInt)solver.getValue(Belgium)]     << endl;
      solver.out() << "Denmark:     " 
                   << Names[(IloInt)solver.getValue(Denmark)]     << endl;
      solver.out() << "France:      " 
                   << Names[(IloInt)solver.getValue(France)]      << endl;
      solver.out() << "Germany:     " 
                   << Names[(IloInt)solver.getValue(Germany)]     << endl;
      solver.out() << "Luxembourg:  " 
                   << Names[(IloInt)solver.getValue(Luxembourg)]  << endl;
      solver.out() << "Netherlands: " 
                   << Names[(IloInt)solver.getValue(Netherlands)] << endl;
    }
  }
  catch (IloException& ex) {
    cout << "Error: " << ex << endl;
  }
  env.end();
  return 0;
}

Results
FEASIBLE Solution
Belgium:     blue
Denmark:     blue
France:      white
Germany:     yellow
Luxembourg:  green
Netherlands: white
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C H A P T E R
3

Using Arrays and Basic Search:
Changing Money

In this lesson, you will learn how to: 

◆ use the class IloIntVarArray to declare arrays of constrained integer variables

◆ use the function IloScalProd

◆ use the member functions IloSolver::startNewSearch, IloSolver::next, and 
IloSolver::endSearch to control the search for solutions

Describe

Assume that you want to pay for an item that costs 1.23 euros. You have a mixture of coins 
of the following types: 1 euro cent, 10 euro cents, 20 euro cents, and 1 euro. To make the 
problem more interesting, assume that you have only 5 coins of 1 euro cent. You want to 
identify all possible solutions to this problem—all possible combinations of coins that will 
add up to 1.23 euros.

Write a natural language description of this problem. Answer these questions:

Step 1 Describe the problem
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◆ What are the decision variables or unknowns in this problem? 

◆ What are the constraints on these variables?

Discussion

Try modeling the problem as an equation. Where a is the number of coins of 1 cent, b is the 
number of coins of 10 cents, c is the number of coins of 20 cents and d is the number of 1 
euro coins:

123 = (a*1) + (b*10) + (c*20) + (d*100) 

What is known? 

◆ There are four types of coins: 1 cent, 10 cents, 20 cents, and 1 euro (or 100 cents).

What is unknown? 

◆ The number of coins of each type needed to make the purchase.

What are the constraints? 

◆ The sum of the coins must equal 1.23 euros (or 123 cents).

◆ The number of coins of 1 cent must be less than or equal to 5. 

By describing the unknown information as the number of coins of each type, you are 
grouping the unknowns into types. This removes symmetric solutions from the model and 
thus significantly cuts back the number of possible (symmetric) solutions. 

To demonstrate this concept in simple terms, think about the coins of 1 cent. You can use up 
to 5 coins of 1 cent. If you have 5 individual coins and you want to track whether each 
individual coin is used, you need to create 5 different decision variables, one to represent 
each coin. However, it is not important to know whether any individual coin is used or not. It 
is important to know how many of each type of coin are used. Therefore, you need only 
create one decision variable to represent the number of 1 cent coins. 

Reduce symmetry

The apparent complexity of a problem can often be reduced to a much smaller practical
complexity by detecting intrinsic symmetries. One way to reduce symmetry in a problem is
to group variables by type.

Group by type

When two or more variables have identical characteristics, it is pointless to differentiate
them. It is better to design a model that takes into account the types into which these
symmetric variables can be grouped. Each such type, of course, quantitatively handles the
elements that belong to it. 
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By grouping by types, you cut down on the number of variables and improve the efficacy of 
your solution search. This is just one example of how thoughtful modeling practices can 
improve search results. 

Model

Once you have written a description of your problem, you can use Concert Technology 
classes to model it. Before declaring the variables and adding constraints, you must create an 
environment and a model. Once you create a model of your problem, you can use Solver 
classes to search for a solution.

Open the example file YourSolverHome/examples/src/tutorial/
money_partial.cpp in your development environment. In this exercise, you use arrays of 
constrained integer variables and therefore you use the include file <ilsolver/
ilosolverint.h>. The code for printing out the solution is provided. The number of types 
of coins, nCoins, is set to 4 in this problem and the amount of the purchase, Sum, is set to 
123.

The first step in converting your natural language description of the problem into code using 
Concert Technology classes is to create an environment and a model.

Add the following code after the comment //Create the environment 

Add the following code after the comment //Create the model 

Concert Technology gives you the means to represent the unknowns in this problem—the 
number of coins of each type—as an array of constrained integer variables. You associate 
one constrained integer variable in the array with each type of coin.

Arrays of constrained integer variables are represented by the class IloIntVarArray in 
Concert Technology. The first parameter of the constructor is the environment. The second 
parameter is the number of variables in the array. Arrays are extensible, so you can later 

Step 2 Open the example file

Step 3 Create the environment

  IloEnv env;

Step 4 Create the model

    IloModel model(env);
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increase or reduce this number. The third and fourth parameters are the lower and upper 
bounds of the domain of possible values for each variable in the array. When you use an 
array, you can access a variable in that array by its index, and the operator[] is overloaded 
for this purpose. Here is a constructor:

After you create an environment and a model, you declare the array of constrained integer 
variables. Each variable in the array represents the unknown information—the number of 
coins of that type. These decision variables will contain the solutions to the problem, once it 
is solved.

Add the following code after the comment //Declare the decision variables 

The number of variables in the array can be no larger than the number of different types of 
coins, nCoins, which is set to 4 in this problem. The lower bound of the domain of possible 
values for each variable is 0, meaning that no coin of that type is used. The upper bound of 
the domain of possible values for each variable is Sum, set to 123 in this problem, which 
would be the largest possible value if the entire purchase amount were composed only of 1 
cent coins. (This is not a possible solution in this problem because there is a constraint that 
only 5 coins of this type are available.)

Now you add the constraint that the sum of the coins must equal 1.23 euros (or 123 cents). 
To express this constraint, you use the Concert Technology function IloScalProd.  
IloScalProd takes two arguments, both arrays, and returns an instance of IloExprBase 
that represents the scalar product of the two arrays. The scalar product is also called the 
inner product or the weighted sum. The class IloExprBase is used internally by Concert 
Technology to build expressions. You should not use IloExprBase directly. Here is a 
constructor for IloScalProd:

     IloIntVarArray (const IloEnv env,
                     IloInt n,
                     IloNum lb,
                     IloNum ub);

Step 5 Declare the decision variables

    IloIntVarArray coins(env, nCoins, 0, Sum);

IloExprBase IloScalProd(const IloNumArray vals, const IloNumVarArray vars); 
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You use the array of constrained variables that you just created, coins, as one argument. 
The array represents the number of each type of coin. What are you going to use as the other 
argument? You need to create another array that represents the value of each type of coin. 
Since you know the value of each type of coin, this array is not an array of variables, but 
instead an array of integer values. This array represents the coefficients of the equation you 
used to model the problem. 

Arrays of integer values are represented in Concert Technology by the class IloIntArray. 
The first parameter of the constructor is the environment. The second parameter is the 
number of integer values in the array, which is extensible. The elements of the new array 
take the corresponding values: v0, v1, ..., v(n-1). When you use an array, you can access a 
value in that array by its index, and the operator[] is overloaded for this purpose. Here is a 
constructor: 

Add the following code after the comment //Declare the array of coefficients 

Now that you have declared the array of variables coins and the array of coefficients 
coeffs that are used in IloScalProd, you can add constraints to the model. You must 
explicitly add a constraint to the model or Solver will not be able to use it in the search for a 
solution.

Add the following code after the comment //Add the constraint using 
IloScalProd 

IloNum

IloNum is a type definition that represents numeric values as floating-point numbers in
Concert Technology. By its nature, IloNum can include IloInt. 

Likewise, the class IloIntArray is a subclass of IloNumArray and the class
IloIntVarArray is a subclass of IloNumVarArray. 

You will learn more about using floating-point numbers and variables in Chapter 11, Using
Constrained Floating-Point Variables: Modeling Equations.

     IloIntArray(const IloEnv env, IloInt n, const IloInt v0, ...);

Step 6 Declare the array of coefficients

    IloIntArray coeffs(env, nCoins, 1, 10, 20, 100);

Step 7 Add the constraint using IloScalProd

    model.add(IloScalProd(coins, coeffs) == Sum);
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Now you add the second constraint that the number of coins of 1 cent must be less than or 
equal to 5. You used the operator != in Chapter 2, Modeling and Solving a Simple Problem: 
Map Coloring to express the idea that two or more variables cannot assume the same value. 
In this lesson, you use the operator <= to express the idea that the number of coins of 1 cent 
must be less than or equal to 5. 

Add the following code after the comment 
//Add the constraint on the number of 1 cent coins

Solve

Solving a problem using constraint programming consists of finding a value for each 
variable that satisfies the constraints. In this problem, there will be more than one solution 
that satisfies the constraints. You can use Solver to find multiple solutions for the problem 
and display them.

You start by creating an instance of the class IloSolver to solve the problem expressed in 
the model.

Add the following code after the comment //Create an instance of IloSolver

In Chapter 2, Modeling and Solving a Simple Problem: Map Coloring, you used the member 
function IloSolver::solve to search for a solution. In this lesson, you want to search for 
all the possible solutions so you will use three other member functions of the class 
IloSolver to do this. You first use the member function IloSolver::startNewSearch, 
which uses a default goal to launch the search. 

Add the following code after the comment //Search for a solution 

Step 8 Add the constraint on the number of 1 cent coins

    model.add(coins[0] <= 5);

Step 9 Create an instance of IloSolver

    IloSolver solver(model);

Step 10 Search for a solution

    solver.startNewSearch();
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Next, you use a while loop and the member function IloSolver::next to search for 
multiple solutions. IloSolver::next searches for the next solution in the search tree. 

As you learned in Chapter 2, Modeling and Solving a Simple Problem: Map Coloring, 
Solver uses search strategies to guide the search. Goals are the mechanism by which Solver 
implements search strategies. 

The member function IloSolver::next, like  IloSolver::solve, controls the 
execution of goals. The first time one of these member functions is called, it creates a goal 
stack, an internal data structure that Solver uses to manage goals during a solution search. 

The member function IloSolver::next returns a Boolean value of type IloBool. If a 
solution is found, an IloTrue value is returned and the program displays the solution.

After the while loop terminates, you must use the member function 
IloSolver::endSearch to terminate the search and delete internal objects created by 
Solver to carry out the search (such as the search tree, goal stack, and so on). 

The member functions and streams IloAlgorithm::out and IloSolver::getValue 
are used to display the solution. The following code is provided for you: 

The search space and search tree

The search space is all possible combinations of values. When you model a problem, aim
to reduce the search space. In this lesson, you reduced symmetry and limited the number
of constrained variables. By doing so, you reduced the size of the search space.

After initial constraint propagation, the search space is greatly reduced. This remaining
part of the search space is called the search tree. Solver uses search strategies to search
for a solution in the search tree.

For more information on the search space, the search tree, and initial constraint
propagation, see the section “Solve” on page 32.

    IloInt solutionCounter = 0;
    while(solver.next()) {
      solver.out() << "solution  " << ++solutionCounter << ":\t";
      for (IloInt i = 0; i < nCoins; i++)
        solver.out() << solver.getValue(coins[i]) << " ";
      solver.out() << endl;
    }
    solver.endSearch();
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Compile and run the program. You should get the following results:

As you can see, there are nine solutions:

◆ a solution that uses 3 coins of 1 cent, 1 coin of 20 cents, and 1 coin of 1 euro 

◆ a solution that uses 3 coins of 1 cent and 6 coins of 20 cents 

◆ a solution that uses 3 coins of 1 cent, 2 coins of 10 cents, and 1 coin of 1 euro 

◆ a solution that uses 3 coins of 1 cent, 2 coins of 10 cents, and 5 coins of 20 cents

◆ a solution that uses 3 coins of 1 cent, 4 coins of 10 cents, and 4 coins of 20 cents

◆ a solution that uses 3 coins of 1 cent, 6 coins of 10 cents, and 3 coins of 20 cents

◆ a solution that uses 3 coins of 1 cent, 8 coins of 10 cents, and 2 coins of 20 cents

◆ a solution that uses 3 coins of 1 cent, 10 coins of 10 cents, and 1 coin of 20 cents

◆ a solution that uses 3 coins of 1 cent and 12 coins of 10 cents

The complete program is listed in “Complete program” on page 66. You can also view it 
online in the file YourSolverHome/examples/src/money.cpp. 

Review exercises

For answers, see “Suggested answers” on page 63.

1. What are the search space and the search tree?

2. Why should you reduce symmetry in a model? 

Step 11 Compile and run the program

[1, 10, 20, 100]
solution  1:    3 0 1 1
solution  2:    3 0 6 0
solution  3:    3 2 0 1
solution  4:    3 2 5 0
solution  5:    3 4 4 0
solution  6:    3 6 3 0
solution  7:    3 8 2 0
solution  8:    3 10 1 0
solution  9:    3 12 0 0
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3. Change the code to solve the following problem. Assume that you want to pay for an 
item that costs 1.23 euros. You have a mixture of coins: 1 euro cent, 2 euro cents, 5 euro 
cents, 10 euro cents, 20 euro cents, and 1 euro. To make the problem more interesting, 
assume that you have only 5 coins of 1 euro cent, 5 coins of 2 euro cents, and 10 coins of 
5 euro cents. You must also use at least 1 coin of 1 euro (100 cents).

4. Use what you have learned in this lesson to model and solve the following problem. You 
are the manager of a coffee shop. You sell a house blend that is composed of the 
following five types of coffee: Costa Rican (cost per unit is $2), Hawaiian (cost per unit 
$5), Jamaican (cost per unit $3), Kenyan (cost per unit $9), and Nicaraguan (cost per unit 
$4). You need to make a batch of the house blend. In this batch, you must use at least 2 
units of each type of coffee. You can use no more than 3 units of the Costa Rican coffee, 
no more than 3 units of the Jamaican coffee, and no more than 4 units of the Kenyan 
coffee. You want the total cost for the batch of house blend to be equal to $100. Write a 
natural language description of this problem and then model and solve it.

Suggested answers

Exercise 1

What are the search space and the search tree?

Suggested Answer

The search space is all possible combinations of values. After initial constraint propagation, 
the search space is greatly reduced. The part of the search space that remains is called the 
search tree. Solver uses search strategies to search for a solution in the search tree.

Exercise 2

Why should you reduce symmetry in a model? 

Suggested Answer

By detecting and removing intrinsic symmetries, parts of the search tree can be safely 
ignored. This reduces the computational effort required to solve the problem. 

Exercise 3

Assume that you want to pay for an item that costs 1.23 euros. You have a mixture of coins: 
1 euro cent, 2 euro cents, 5 euro cents, 10 euro cents, 20 euro cents, and 1 euro. To make the 
problem more interesting, assume that you have only 5 coins of 1 euro cent, 5 coins of 2 euro 
cents, and 10 coins of 5 euro cents. You must also use at least 1 coin of 1 euro (100 cents).
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Suggested Answer

The code that has changed from money.cpp follows. You can view the complete program 
online in the file YourSolverHome/examples/src/money_ex3.cpp.

The coefficients change as follows:

These additional constraints are added to the model:

You should obtain the following results:

Exercise 4

Use what you have learned in this lesson to model and solve the following problem. You are 
the manager of a coffee shop. You sell a house blend that is composed of the following five 
types of coffee: Costa Rican (cost per unit is $2), Hawaiian (cost per unit $5), Jamaican (cost 
per unit $3), Kenyan (cost per unit $9), and Nicaraguan (cost per unit $4). You need to make 
a batch of the house blend. In this batch, you must use at least 2 units of each type of coffee. 
You can use no more than 3 units of the Costa Rican coffee, no more than 3 units of the 
Jamaican coffee, and no more than 4 units of the Kenyan coffee. You want the total cost for 
the batch of house blend to be equal to $100. Write a natural language description of this 
problem and then model and solve it.

    IloInt nCoins = 6, Sum = 123;
    IloIntArray coeffs(env, nCoins, 1, 2, 5, 10, 20, 100);

    model.add(coins[1] <= 5);
    model.add(coins[2] <= 10);
    model.add(coins[5] >= 1);

[1, 2, 5, 10, 20, 100]
solution  1:    0 4 1 1 0 1
solution  2:    0 4 3 0 0 1
solution  3:    1 1 0 0 1 1
solution  4:    1 1 0 2 0 1
solution  5:    1 1 2 1 0 1
solution  6:    1 1 4 0 0 1
solution  7:    2 3 1 1 0 1
solution  8:    2 3 3 0 0 1
solution  9:    3 0 0 0 1 1
solution  10:   3 0 0 2 0 1
solution  11:   3 0 2 1 0 1
solution  12:   3 0 4 0 0 1
solution  13:   3 5 0 1 0 1
solution  14:   3 5 2 0 0 1
solution  15:   4 2 1 1 0 1
solution  16:   4 2 3 0 0 1
solution  17:   5 4 0 1 0 1
solution  18:   5 4 2 0 0 1
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Suggested Answer

Describe

◆ The known information is that there are 5 types of coffee. You know the price per unit of 
each type of coffee. The unknown information is the number of units of each type of 
coffee needed to make the batch of house blend. The constraints are: the total cost of the 
house blend equals $100; you must use at least 2 units of each type; and you can use no 
more than 3 units of Costa Rican coffee, no more than 3 units of Jamaican coffee, and no 
more than 4 units of the Kenyan coffee. 

Model

◆ As in the changing money problem, you model the decision variables—the number of 
units of each type of coffee—using IloIntVarArray. You create an array of 
coefficients, which represent the price of each type of coffee. You use these two arrays as 
arguments of IloScalProd to constrain that the total cost for the house blend equals 
$100. You use IloModel::add to add the constraints on how many units of each type 
are allowed in the house blend to the model. 

Solve

◆ You solve the problem in the same way as you solved the changing money example, 
using IloSolver::startNewSearch, IloSolver::next, and 
IloSolver::endSearch.

The complete program follows. You can also view it online in the file YourSolverHome/
examples/src/money_ex4.cpp.

#include <ilsolver/ilosolverint.h>
ILOSTLBEGIN

int main() {
  IloEnv env;
  try {
    IloModel model(env);
    IloInt nCoffee = 5, Sum = 100;
    IloIntArray coeffs(env, nCoffee, 2, 5, 3, 9, 4);
    env.out() << coeffs << endl;
    IloIntVarArray units(env, nCoffee, 0, Sum);
    model.add(units[0] >= 2);
    model.add(units[1] >= 2);
    model.add(units[2] >= 2);
    model.add(units[3] >= 2);
    model.add(units[4] >= 2);
    model.add(units[0] <= 3);
    model.add(units[2] <= 3);
    model.add(units[4] <= 4);
    model.add(IloScalProd(units, coeffs) == Sum);
    IloSolver solver(model);
    solver.startNewSearch();
    IloInt solutionCounter = 0;
    while(solver.next()) {
      solver.out() << "solution  " << ++solutionCounter << ":\t";
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      for (IloInt i = 0; i < nCoffee; i++)
        solver.out() << solver.getValue(units[i]) << " ";
      solver.out() << endl;
    }
    solver.endSearch();
  }
  catch (IloException& ex) {
    cout << "Error: " << ex << endl;
  }
  env.end();
  return 0;
}

Results
[2, 5, 3, 9, 4]
solution 1:     2 2 2 8 2
solution 2:     2 3 2 7 3
solution 3:     2 4 2 6 4
solution 4:     2 5 3 6 2
solution 5:     2 6 3 5 3
solution 6:     2 7 3 4 4
solution 7:     2 11 2 3 2
solution 8:     2 12 2 2 3
solution 9:     3 2 3 7 3
solution 10:    3 3 3 6 4
solution 11:    3 7 2 5 2
solution 12:    3 8 2 4 3
solution 13:    3 9 2 3 4
solution 14:    3 10 3 3 2
solution 15:    3 11 3 2 3

Complete program

The complete changing money program follows. You can also view it online in the file 
YourSolverHome/examples/src/money.cpp. 

#include <ilsolver/ilosolverint.h>
ILOSTLBEGIN

int main() {
  IloEnv env;
  try {
    IloModel model(env);
    IloInt nCoins = 4, Sum = 123;
    IloIntArray coeffs(env, nCoins, 1, 10, 20, 100);
    env.out() << coeffs << endl;
    IloIntVarArray coins(env, nCoins, 0, Sum);
    model.add(coins[0] <= 5);
    model.add(IloScalProd(coins, coeffs) == Sum);
    IloSolver solver(model);
    solver.startNewSearch();
    IloInt solutionCounter = 0;
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    while(solver.next()) {
      solver.out() << "solution  " << ++solutionCounter << ":\t";
      for (IloInt i = 0; i < nCoins; i++)
        solver.out() << solver.getValue(coins[i]) << " ";
      solver.out() << endl;
    }
    solver.endSearch();
  }
  catch (IloException& ex) {
    cout << "Error: " << ex << endl;
  }
  env.end();
  return 0;
}

Results
[1, 10, 20, 100]
solution  1:    3 0 1 1
solution  2:    3 0 6 0
solution  3:    3 2 0 1
solution  4:    3 2 5 0
solution  5:    3 4 4 0
solution  6:    3 6 3 0
solution  7:    3 8 2 0
solution  8:    3 10 1 0
solution  9:    3 12 0 0
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C H A P T E R
4

Searching with Predefined Goals:
Magic Square

In this lesson, you will learn how to: 

◆ use expressions with IloExpr 

◆ use the predefined constraint IloAllDiff 

◆ use the predefined goal IloGenerate and its parameters 

◆ use the member function IloSolver::printInformation to display details about 
the solution search

Describe

The problem in this lesson is to find the number in each position in a magic square. A magic 
square is a square matrix where the sum of every row, column, and main diagonal is the 
same value; the numbers in the magic square are consecutive and start with 1. For example, 
here is a magic square of size 3:

8  3  4 

1  5  9 
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The first step in modeling and solving a problem is to write a natural language description of 
the problem, identifying the decision variables and the constraints on these variables. 

Write a natural language description of this problem. Answer these questions:

◆ What are decision variables or unknowns in this problem? 

◆ What are the constraints on these variables?

Discussion

As in Chapter 3, Using Arrays and Basic Search: Changing Money, try modeling the 
problem using equations. Consider a magic square of size n. It contains n2 elements, so that 
the sum of all its elements is the sum of the first n2 positive integers. The sum of the first n2 
natural numbers can be calculated like this: n2(n2 + 1)/2. 

Because this is a magic square, each row has the same sum, r. The number of rows equals n. 
The sum of all the rows, nr, also equals the sum of all the elements. Therefore, 
nr = n2(n2 + 1)/2 or r = n(n2 + 1)/2. The sum of each column or main diagonal must 
equal the sum of each row. Therefore, all rows, columns, and main diagonals have a sum of 
n(n2 + 1)/2.

For example, a magic square of size n = 3 contains n2 or 9 elements. These elements are the 
first nine natural numbers: 1, 2, 3, 4, 5, 6, 7, 8, and 9. The sum of these elements is 
n2(n2 + 1)/2 or 45. There are 3 rows. Each row has the same sum, r. The sum of all the 
rows, 3*r, equals n22(n2 + 1)/2 or 45. Since each row has the same sum, the sum of each 
row is 45/3 or 15. The sum of each column or main diagonal must equal the sum of each 
row. Therefore, all rows, columns, and main diagonals have a sum of 15.

You can check this for yourself, using the n = 3 magic square:

6  7  2 

Step 1 Describe the problem

8  3  4 =15

1  5  9 =15

6  7  2 =15

=15 =15 =15 =15 =15

8  3  4 
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What is known? 

◆ For a magic square of size n, you have n2 numbers, starting at 1 and going consecutively 
to n2. 

What is unknown? 

◆ The number in each position in the square.

What are the constraints? 

◆ Each number must be different from all the others.

◆ The sum of each row must equal n(n2 + 1)/2.

◆ The sum of each column must equal n(n2 + 1)/2.

◆ The sum of the first main diagonal (from upper left-hand corner to lower right-hand 
corner) must equal n(n2 + 1)/2.

◆ The sum of the second main diagonal (from lower left-hand corner to upper right-hand 
corner) must equal n(n2 +  1)/2.

Model

Once you have written a description of your problem, you can use Concert Technology 
classes to model it. 

Open the example file YourSolverHome/examples/src/tutorial/
magicsq_partial.cpp in your development environment. In this exercise, you use arrays 
of constrained integer variables and therefore you use the include file <ilsolver/
ilosolverint.h>. This example accepts command line arguments, but is set to default to 
a magic square of size 5. Some of the code for adding constraints to the model is provided 
for you, as is the code for printing out the solution. 

As you know by now, the first step in converting your natural language description of the 
problem into code using Concert Technology classes is to create an environment and a 
model. This code is provided for you:

Concert Technology gives you the means to represent the unknown information in this 
problem—the number in each position in the square—as an array of constrained integer 

Step 2 Open the example file

int main(int argc, char* argv[]){
  IloEnv env;
  try {
    IloModel model(env);
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variables. After you create an environment and a model, you declare the variables as an 
instance of IloIntVarArray with n2 elements, ranging from 1 to n2. These decision 
variables will contain the solution to the problem, once it is solved.

Add the following code after the comment //Declare the decision variables 

This array will give you the number in each position in a magic square of size n. The 
element [0] in the array is the number in the first position in the magic square (row 0, 
column 0)—remember that Solver arrays start at [0]. The element [1] in the array is the 
number in the second position in the magic square (row 0, column 1), and so on. 

You use two nested “for” loops to create a matrix to represent the magic square. In this 
matrix, each element of the array squares is situated in a particular row, column, or main 
diagonal. You will use loops like this to create the constraints on the sums of rows, columns, 
and main diagonals. 

Examine the following matrix: 

In this matrix, the variable i represents the row number. The variable j represents the 
column number. For a magic square of size n=3, the following matrix is created:

You can use these loops to identify the elements that make up each row. Once you have 
identified these elements, you can place constraints on their sums. 

To model the sum of each row you use expressions, which are represented by the class 
IloExpr in Concert Technology. Values may be combined with variables to form 

Step 3 Declare the decision variables

    IloIntVarArray square(env, n*n, 1, n*n);

for (i = 0; i < n; i++){
  for (j = 0; j < n; j ++)
    square[n*i+j];
}    

j = 0 
column 0

j = 1
column 1

j = 2
column 2

i = 0
row 0

3*0 + 0 = 0
square[0]

3*0 + 1 = 1
square[1]

3*0 + 2 = 2
square[2]

i = 1
row 1

3*1 + 0 = 3
square[3]

3*1 + 1 = 4
square[4]

3*1 + 2 = 5
square[5]

i = 2
row 2

3*2 + 0 = 6
square[6]

3*2 + 1 = 7
square[7]

3*2 + 2 = 8
square[8]
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expressions. The first parameter of the constructor is always the environment. Here is a 
constructor:

To combine values with variables to form an expression, you can use the operators:

◆ addition +

◆ subtraction -

◆ multiplication *

◆ division /

◆ self-assigned addition +=

◆ self-assigned subtraction -=

You use IloExpr and “for” loops to add the constraints on the sum of each row to the 
model. The constraints on columns and main diagonals, which are declared in a similar 
fashion, are provided for you in the code.

Add the following code after the comment //Add the constraints on rows

In this code, the variable i represents the row and the variable j represents the column. You 
create an expression exp for the first row i = 0. Using the nested loop with variable j, you 
traverse that row, column by column, and use the self-assigned addition operator += to add 
the elements of the array square that are located in that row. You then add a constraint to 
the model that the expression exp for each row equals sum. In the code provided for you, 
sum is declared to equal n(n2 + 1)/2. Then you add the constraints for the other rows. 

The member function IloExpr::end lets Solver know that an IloExpr object will no 
longer be directly used. Solver can still use the object indirectly, for example through a 

IloExpr(const IloEnv env);

Step 4 Add the constraints on rows

    for (i = 0; i < n; i++){
      IloExpr exp(env);
      for(j = 0; j < n; j++)
        exp += square[n*i+j];
      model.add(exp == sum);
      exp.end();
    }

IloAllDiff

Using predefined constraints, such as IloAllDiff, makes modeling simpler.

The single global constraint IloAllDiff on n variables is logically equivalent to n(n+1)/
2 instances of the “not equal” constraint, !=, between each pair of variables in the set.
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constraint that is built on this object. Solver will not delete the object until it is no longer 
used either directly or indirectly.

Now you add the constraint that all the numbers in the square must be different. To do this, 
you use the Concert Technology predefined constraint IloAllDiff. It states that the value 
of each variable in an array must be different from that of every other variable in that array. 
The first parameter is the environment. The second parameter is the array of variables. The 
third parameter is an optional name used for debug and trace purposes. Here is a constructor:

Add the following code after the comment //Add the constraint IloAllDiff 

Solve

After you have declared the decision variables and added the constraints to the model, you 
are ready to search for a solution. In this lesson, you use the predefined goal IloGenerate 
to search for a solution instead of using a default goal. The predefined goal IloGenerate 
allows you to control a choice in the solution search: you choose which constrained variable 
Solver tries first. 

The predefined goal IloGenerate takes an environment as the first parameter and an array 
of constrained variables as the second parameter. When Solver executes IloGenerate, this 
goal gives a value to each variable in that array. The third parameter IloChooseIntIndex 
determines the order in which variables are chosen. The default is 
IloChooseFirstUnboundInt, which will choose the first variable that is not yet bound. 
Here is a constructor:

The goal IloGenerate uses the following algorithm:

IloAllDiff(const IloEnv env, 
           const IloNumVarArray vars = 0, 
           const char* name = 0); 

Step 5 Add the constraint IloAllDiff

    model.add(IloAllDiff(env, square));

Bound variables

Each decision variable is associated with a set of possible values called the domain of the
variable. When the domain of a variable contains only one value, the variable is bound.

IloGoal IloGenerate(IloEnv env, 
                    IloNumVarArray vars,
                    IloChooseIntIndex = IloChooseFirstUnboundInt);
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As long as there exist any unknown variables:

◆ choose one of those variables 

◆ choose a value to assign to this variable

◆ assign the value to the variable—the variable is now bound

After this search move, Solver performs constraint propagation during search. 

The most critical parameter of IloGenerate is, without doubt, the choice of variable 
because that choice affects performance so directly. If you start your search with the 
“wrong” variable, you will effectively lose a great deal of computation time. Of course, the 
“right” order for choosing the variables depends very much on the nature of the problem. 

You can use the following parameters to choose the order in which variables are bound in the 
goal IloGenerate:

◆ IloChooseMinSizeInt chooses the variable with the smallest domain.

◆ IloChooseMaxSizeInt chooses the variable with the largest domain. 

◆ IloChooseMinMinInt chooses the variable with the least minimal bound. 

◆ IloChooseMaxMinInt chooses the variable with the greatest minimal bound. 

◆ IloChooseMinMaxInt chooses the variable with the least maximal bound. 

◆ IloChooseMaxMaxInt chooses the variable with the greatest maximal bound. 

Given the variety of problems in the real world, there are no definitive rules for choosing the 
best strategy. However, propagation in Solver rests on eliminating branches in the search 
tree. The sooner Solver can remove or prune branches of the search tree, the more efficiently 
it works. The predefined goal IloGenerate controls which branches of that tree are 
examined and in which order.

A good strategy—as good as a strategy can be and still be general—is to choose first the 
variable with the smallest domain using the parameter IloChooseMinSizeInt. This 
choice usually develops a search tree where pruning a branch will eliminate a great many 
possibilities, known as the first-fail principle. First-fail is so named because it is a good idea 
to make the search fail as soon as possible, thereby eliminating a whole branch of the search 
tree without having spent too much time searching it; to that end, first-fail usually chooses 
the “most difficult” variable first. 

You start the solution search by creating an instance of the class IloSolver to solve the 
problem expressed in the model.
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Add the following code after the comment //Create an instance of IloSolver

Next you create an instance of the predefined goal IloGenerate. The first parameter is the 
environment and the second parameter is the array of variables square. Since you do not 
know whether any particular strategy makes sense in this case, use IloChooseMinSizeInt 
as the third parameter. 

Add the following code after the comment //Create the goal 

You now use the member function IloSolver::solve. In this lesson, you use goal as a 
parameter of IloSolver::solve. As you have used the parameter 
IloChooseMinSizeInt, Solver would normally first choose the unbound variable with the 
smallest domain and select a value for this variable. However, all the variables have the same 
initial domain in this problem. Therefore, Solver chooses the first variable that is not yet 
bound and selects a value (by default the minimum value in the domain). Solver then 
propagates the changes resulting from this decision. Solver next chooses the unbound 
variable with the smallest domain and propagates the effects of this decision, and so on. If a 
decision leads to a situation where a constraint is not satisfied, it is undone and Solver 
backtracks to the last decision.

Add the following code after the comment //Search for a solution 

The member function IloSolver::solve returns a Boolean value of type IloBool. If a 
solution is found, an IloTrue value is returned and the program displays the solution. The 
member functions and streams IloAlgorithm::out and IloSolver::getValue display 
the solution. The member function IloSolver::printInformation displays 
information about the solution search, including number of variables, number of constraints, 
elapsed time since creation of search, number of fails, and number of choice points. The 
number of choice points is linked to the number of explored alternatives in the search tree. 
The number of fails is the number of incorrect decisions at choice points. 

Step 6 Create an instance of IloSolver

    IloSolver solver(model);

Step 7 Create the goal

    IloGoal goal = IloGenerate(env, square, IloChooseMinSizeInt);

Step 8 Search for a solution

    if (solver.solve(goal))
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IloSolver::printInformation also provides information about the size of the goal 
stack, memory usage, and so on. 

A matrix created by two “for” loops is again used to display the elements of the array 
square in the format of a square.

The following code is provided for you: 

Compile and run the program. The program finds a solution for a magic square of size 
n = 5. You can use command line arguments to try to find magic squares of other sizes. You 
should get the following results for a magic square of size n = 5, though the information 
displayed by IloSolver::printInformation will vary depending on platform, 
machine, configuration, and so on.

The complete program is listed in “Complete program” on page 83. You can also view it 
online in the file YourSolverHome/examples/src/magicsq.cpp. 

      {
      for (i = 0; i < n; i++){
        for (j = 0; j < n; j++)
          solver.out() << " " << solver.getValue(square[n*i+j]);
        solver.out() << endl;
      }
      solver.out() << endl;
    }
    else
      solver.out() << "No solution " << endl;
      solver.printInformation();

Step 9 Compile and run the program

 1 2 13 24 25
 3 23 17 6 16
 20 21 11 8 5
 22 4 14 18 7
 19 15 10 9 12

Number of fails               : 791
Number of choice points       : 799
Number of variables           : 25
Number of constraints         : 13
Reversible stack (bytes)      : 8064
Solver heap (bytes)           : 20124
Solver global heap (bytes)    : 4044
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 11152
Total memory used (bytes)     : 55516
Elapsed time since creation   : 0.11
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Review exercises

For answers, see “Suggested answers” on page 78.

1. What information does the member function IloSolver::printInformation 
display?

2. How does the predefined goal IloGenerate work?

3. Use the magic square code that you just wrote and experiment with changing the order in 
which variables are bound in the solution search. Note how the number of fails, number 
of choice points, and elapsed time since creation change as you try the following 
parameters for the goal IloGenerate: the default (IloChooseFirstUnboundInt), 
IloChooseMinSizeInt, IloChooseMaxSizeInt, IloChooseMinMinInt, 
IloChooseMaxMinInt, IloChooseMinMaxInt, and IloChooseMaxMaxInt. 

To do this, write a line of code for each IloGenerate goal, using the default and the six 
other parameters. Comment out all the goals except for the one you are testing. Then 
comment out that goal and test another. 

4. Change the program to search for a Gnomon magic square, which is a n = 4 magic 
square in which the elements in each quarter (2 x 2 corner) have the same sum.

Suggested answers 

Exercise 1

What information does the member function IloSolver::printInformation display?

Suggested Answer

The member function IloSolver::printInformation displays information about the 
solution search, including number of variables, number of constraints, elapsed time since 
creation of search, number of fails, and number of choice points. 
IloSolver::printInformation also provides information about the size of the goal 
stack, memory usage, and so on.

Exercise 2

How does the predefined goal IloGenerate work?

Suggested Answer

As long as there exist any unknown variables:

1. choose one of those variables 
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2. choose a value to assign to this variable

3. assign the value to the variable

Exercise 3

Use the magic square code that you just wrote and experiment with changing the order in 
which variables are bound in the solution search. Note how the number of fails, number of 
choice points, and elapsed time since creation change as you try the following parameters for 
the goal IloGenerate: the default (IloChooseFirstUnboundInt), 
IloChooseMinSizeInt, IloChooseMaxSizeInt, IloChooseMinMinInt, 
IloChooseMaxMinInt, IloChooseMinMaxInt, and IloChooseMaxMaxInt.

To do this, write a line of code for each IloGenerate goal, using the default and the six 
other parameters. Comment out all the goals except for the one you are testing. Then 
comment out that goal and test another. 

Suggested Answer

Results will vary widely depending on the strategy you choose. In the results provided in the 
following sections, using the parameter IloChooseMinSizeInt solved the problem the 
most quickly, in less than one tenth of a second. Solving the problem using the parameter 
IloChooseMaxSizeInt took over 16 minutes. These results vividly demonstrate the 
importance of parameter choice for the goal IloGenerate. The results may vary depending 
on platform, machine, configuration, and so on.

The code that has changed from magicsq.cpp follows. You can view the complete program 
online in the file YourSolverHome/examples/src/magicsq_ex3.cpp. 

You should get the following results, though the information displayed by 
IloSolver::printInformation will vary depending on platform, machine, 
configuration, and so on.

//Feasible Solution using IloGoal goal = IloGenerate(env, square);
 1 2 13 24 25
 3 22 19 6 15
 23 16 10 11 5
 21 7 9 20 8
 17 18 14 4 12

Number of fails               : 5486
Number of choice points       : 5497
Number of variables           : 25

    IloGoal goal = IloGenerate(env, square);
    //IloGoal goal = IloGenerate(env, square, IloChooseMinSizeInt);
    //IloGoal goal = IloGenerate(env, square, IloChooseMaxSizeInt);
    //IloGoal goal = IloGenerate(env, square, IloChooseMinMinInt);
    //IloGoal goal = IloGenerate(env, square, IloChooseMaxMinInt);
    //IloGoal goal = IloGenerate(env, square, IloChooseMinMaxInt);
    //IloGoal goal = IloGenerate(env, square, IloChooseMaxMaxInt);
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Number of constraints         : 13
Reversible stack (bytes)      : 8064
Solver heap (bytes)           : 24144
Solver global heap (bytes)    : 4044
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 11152
Total memory used (bytes)     : 59536
Elapsed time since creation   : 0.371
//Feasible Solution using IloGoal goal = IloGenerate(env, square, 
IloChooseMinSizeInt);
 1 2 13 24 25
 3 23 17 6 16
 20 21 11 8 5
 22 4 14 18 7
 19 15 10 9 12

Number of fails               : 791
Number of choice points       : 799
Number of variables           : 25
Number of constraints         : 13
Reversible stack (bytes)      : 8064
Solver heap (bytes)           : 20124
Solver global heap (bytes)    : 4044
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 11152
Total memory used (bytes)     : 55516
Elapsed time since creation   : 0.09
//Feasible Solution using IloGoal goal = IloGenerate(env, square, 
IloChooseMaxSizeInt);
 1 2 24 21 17
 3 16 12 11 23
 25 18 13 5 4
 22 10 7 20 6
 14 19 9 8 15

Number of fails               : 15650718
Number of choice points       : 15650729
Number of variables           : 25
Number of constraints         : 13
Reversible stack (bytes)      : 12084
Solver heap (bytes)           : 28164
Solver global heap (bytes)    : 4044
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 11152
Total memory used (bytes)     : 67576
Elapsed time since creation   : 997.564

//Feasible Solution using IloGoal goal = IloGenerate(env, square, 
IloChooseMinMinInt);
 1 2 24 21 17
 3 16 12 11 23
 25 18 13 5 4
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 22 10 7 20 6
 14 19 9 8 15

Number of fails               : 1325537
Number of choice points       : 1325548
Number of variables           : 25
Number of constraints         : 13
Reversible stack (bytes)      : 12084
Solver heap (bytes)           : 24144
Solver global heap (bytes)    : 4044
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 11152
Total memory used (bytes)     : 63556
Elapsed time since creation   : 97.169
//Feasible Solution using IloGoal goal = IloGenerate(env, square, 
IloChooseMaxMinInt);
 1 2 13 24 25
 3 23 17 6 16
 20 21 11 8 5
 22 4 14 18 7
 19 15 10 9 12

Number of fails               : 849
Number of choice points       : 859
Number of variables           : 25
Number of constraints         : 13
Reversible stack (bytes)      : 8064
Solver heap (bytes)           : 20124
Solver global heap (bytes)    : 4044
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 11152
Total memory used (bytes)     : 55516
Elapsed time since creation   : 0.1
//Feasible Solution using IloGoal goal = IloGenerate(env, square, 
IloChooseMinMaxInt);
 1 2 13 24 25
 3 23 19 4 16
 22 15 10 12 6
 21 8 9 20 7
 18 17 14 5 11

Number of fails               : 612
Number of choice points       : 623
Number of variables           : 25
Number of constraints         : 13
Reversible stack (bytes)      : 8064
Solver heap (bytes)           : 16104
Solver global heap (bytes)    : 4044
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 11152
Total memory used (bytes)     : 51496
Elapsed time since creation   : 0.09
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//Feasible Solution using IloGoal goal = IloGenerate(env, square, 
IloChooseMaxMaxInt);
 1 2 13 24 25
 3 22 19 6 15
 23 16 10 11 5
 21 7 9 20 8
 17 18 14 4 12

Number of fails               : 9020
Number of choice points       : 9029
Number of variables           : 25
Number of constraints         : 13
Reversible stack (bytes)      : 12084
Solver heap (bytes)           : 24144
Solver global heap (bytes)    : 4044
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 11152
Total memory used (bytes)     : 63556
Elapsed time since creation   : 0.601

Exercise 4

Change the program to search for a Gnomon magic square, which is a n = 4 magic square in 
which the elements in each quarter (2 x 2 corner) have the same sum.

Suggested Answer

Describe

◆ You describe the problem in the same way as you described the magic square problem, 
except that there are additional constraints: the sum of each quarter (2 x 2 corner) must 
equal n(n2 + 1)/2. 

Model

◆ You model the problem in the same way as you modeled the magic square problem, 
except that you add four additional constraints to the model. You use IloExpr and “for” 
loops to add the constraints on the sum of each quarter to the model. 

Solve

◆ You solve the problem in the same way as you solved the magic square problem. 

The code that has changed from magicsq.cpp follows. You can view the complete program 
online in the file YourSolverHome/examples/src/magicsq_ex4.cpp.
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The size of the magic square is set to 4:

You should add the following additional constraints:

You should obtain the following result:

Complete program

The complete magic squares program follows. You can also view it online in the file 
YourSolverHome/examples/src/magicsq.cpp. 

int main() {
  IloEnv env;
  try {
    IloModel model(env);
    IloInt n = 4;

    // Constraint on upper left quarter
    IloExpr exp3(env);
    for (i = 0; i < 2; i++)
      for(j = 0; j < 2; j++)
        exp3 += square[i+n*j];
        model.add(exp3 == sum);
        exp3.end();
    // Constraint on upper right quarter
    IloExpr exp4(env);
    for (i = 2; i < n; i++)
      for(j = 0; j < 2; j++)
        exp4 += square[i+n*j];
        model.add(exp4 == sum);
        exp4.end();
    // Constraint on lower left quarter
    IloExpr exp5(env);
    for (i = 0; i < 2; i++)
      for(j = 2; j < n; j++)
        exp5 += square[i+n*j];
        model.add(exp5 == sum);
        exp5.end();
    // Constraint on lower right quarter
    IloExpr exp6(env);
    for (i = 2; i < n; i++)
      for(j = 2; j < n; j++)
        exp6 += square[i+n*j];
        model.add(exp6 == sum);
        exp6.end();

Feasible Solution
 1 4 13 16
 14 15 2 3
 8 5 12 9
 11 10 7 6
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#include <ilsolver/ilosolverint.h>
ILOSTLBEGIN

int main(int argc, char* argv[]){
  IloEnv env;
  try {
    IloModel model(env);
    IloInt n = (argc > 1) ? atoi(argv[1]) : 5;
    IloInt sum = n*(n*n+1)/2;
    IloInt i, j;
    IloIntVarArray square(env, n*n, 1, n*n);
    model.add(IloAllDiff(env, square));
    // Constraints on rows
    for (i = 0; i < n; i++){
      IloExpr exp(env);
      for(j = 0; j < n; j++)
        exp += square[n*i+j];
      model.add(exp == sum);
      exp.end();
    }
    // Constraints on columns
    for (i = 0; i < n; i++){
      IloExpr exp(env);
      for(j = 0; j < n; j++)
        exp += square[n*j+i];
      model.add(exp == sum);
      exp.end();
    }
    // Constraint on 1st diagonal
    IloExpr exp1(env);
    for (i = 0; i < n; i++)
      exp1 += square[n*i+i];
    model.add(exp1 == sum);
    exp1.end();
    // Constraint on 2nd diagonal
    IloExpr exp2(env);
    for (i = 0; i < n; i++)
      exp2 += square[n*i+n-i-1];
    model.add(exp2 == sum);
    exp2.end();
    IloSolver solver(model);
    IloGoal goal = IloGenerate(env, square, IloChooseMinSizeInt);
    if (solver.solve(goal))
      {
      for (i = 0; i < n; i++){
        for (j = 0; j < n; j++)
          solver.out() << " " << solver.getValue(square[n*i+j]);
        solver.out() << endl;
      }
      solver.out() << endl;
    }
    else
      solver.out() << "No solution " << endl;
      solver.printInformation();
  }
  catch (IloException& ex) {
    cout << "Error: " << ex << endl;
  }
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  env.end();
  return 0;
}

Results

You should get the following results, though the information displayed by 
IloSolver::printInformation will vary depending on platform, machine, 
configuration, and so on.

 1 2 13 24 25
 3 23 17 6 16
 20 21 11 8 5
 22 4 14 18 7
 19 15 10 9 12

Number of fails               : 791
Number of choice points       : 799
Number of variables           : 25
Number of constraints         : 13
Reversible stack (bytes)      : 8064
Solver heap (bytes)           : 20124
Solver global heap (bytes)    : 4044
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 11152
Total memory used (bytes)     : 55516
Elapsed time since creation   : 0.11
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C H A P T E R
5

Using Objectives: Map Coloring with
Minimum Colors

In this lesson, you will learn how to: 

◆ use objectives

◆ relax constraints

◆ use metaconstraints

◆ use enumerated variables

◆ use IloAnyVar, IloObjective, and IloMaximize

Describe

You will model and solve a map coloring problem similar to the one that you worked on in 
Chapter 2, Modeling and Solving a Simple Problem: Map Coloring. As you remember, that 
problem involves choosing colors for the countries on a map in such a way that at most four 
colors (blue, white, yellow, green) are used, and no neighboring countries are the same color. 
In this lesson, you will find a solution for a map coloring problem with six countries: 
Belgium, Denmark, France, Germany, Luxembourg, and the Netherlands. However, in this 
lesson only three colors (blue, white, and yellow) can be used to color the map.
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In this problem, three colors are not going to be enough to color the map in such a way that 
no neighboring countries are the same color. So, what is the best approach for dealing with 
this situation? One option is to select what countries will share a color. If you look at the 
map, you could guess that if you removed one country, for example Luxembourg, from the 
set of constraints that no neighboring countries are the same color, you might be able to find 
a solution using just three colors. This is known as relaxing constraints. 

However, you might want to try to have Luxembourg be a different color from some its 
neighbors, even if it cannot be a different color from all its neighbors. Suppose that you 
would most like to have Germany and Luxembourg be different colors if possible, then 
Belgium and Luxembourg if possible, and then France and Luxembourg if possible. You can 
represent these wishes as an objective. The relative importance of different constraints can 
be expressed in an objective. You can also use an objective to select the most appropriate 
solution when a problem has more than one solution—if there is more than one set of values 
for the variables that satisfy the constraints of the problem. 

Relaxing constraints

Relaxing constraints means to remove some of the constraints from the model of an
insolvable problem in order to find a solution. The constraints that remain must still be
satisfied. 

Objective

An objective is an expression which can be maximized or minimized. The relative
importance of different constraints can be expressed in an objective. 
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Figure 5.1

Figure 5.1  Map for coloring

Write a natural language description of this problem. Answer these questions:

◆ What is known?

◆ What are the decision variables or unknowns in this problem? 

◆ What are the constraints on these variables?

◆ What constraints can be relaxed?

◆ What is the objective?

Discussion

What is known? 

◆ You have six countries on a map. 

◆ You have three colors. 

What are the decision variables? 

◆ The unknown is the connection between the country and the color. In other words, there 
are six variables; each variable represents the color of a specific country on the map. 

Step 1 Describe the problem
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What are the constraints? 

◆ Each constraint is that a country cannot be the same color as its neighbors, except for 
Luxembourg.

What are the relaxed constraints? 

◆ Luxembourg must be a different color than its neighbors: Germany, Belgium, and 
France.

What is the objective?

◆ Try to avoid having Luxembourg share a color with its neighbors in the following order 
of priority: Germany, Belgium, and France.

Model

Once you have written a description of your problem, you can use Concert Technology 
classes to model it. 

Open the example file YourSolverHome/examples/src/tutorial/
colormin_partial.cpp in your development environment.   

In this exercise, you use constrained enumerated variables (more on this later) and therefore 
you use the include file <ilsolver/ilosolverany.h>. 

The first step in converting your natural language description of the problem into code using 
Concert Technology classes is to create an environment and a model. Since you already 
know how to do this, it is provided for you in the exercise code:

After you create an environment and a model, you declare the variables. In Chapter 2, 
Modeling and Solving a Simple Problem: Map Coloring, you used constrained integer 
variables, instances of the class IloIntVar, to represent the colors of the different 
countries. Each variable had a possible integer value of 0 to 3, representing the colors blue 
(0), white (1), yellow (2), and green (3). In this lesson, you will use constrained enumerated 
variables to represent the unknown information—the color of the country. 

Constrained enumerated variables represent constrained variables whose values are objects. 
There is no restriction on the type of the values for constrained enumerated variables 
because these variables work with only the addresses of their values. This class of variable 

Step 2 Open the example file

int main(){
  IloEnv env;
  try {
    IloModel model(env);
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may not seem necessary to you for simple problems, but as your application grows bigger, 
using object encoding instead of integer encoding can prove quite practical. If you use 
objects directly as values, you can simplify the representation of your problem, making the 
model and implementation more intuitive. In this way, object encoding leads to programs 
that are more legible and more efficient since they are more straightforward. 

Concert Technology uses instances of the class IloAnyVar to represent constrained 
enumerated variables. The first parameter of the constructor is the environment.The second 
parameter is an array of IloAny objects. These represent the possible values for the variable 
represented by the instance of IloAnyVar. The last parameter is an optional name used for 
debug and trace purposes. Here is a constructor:

Before creating the constrained enumerated variables to represent the colors of the different 
countries, you create an instance of IloAnyArray to represent the colors. The first 
parameter is the environment and the second parameter is the size of the array. The other 
parameters are the IloAny objects in the array. Here is a constructor:

Add the following code after the comment //Create the array of values

The array Colors contains three objects of type IloAny, blue, white, and yellow, 
representing the three colors available for coloring the map. 

Next, you declare the constrained enumerated variables, one for each country. Each variable 
represents the unknown information—the color of the country. The possible values of the 
variable are those given in the array Colors. These decision variables will contain the 
solution to the problem, once it is solved.

IloAny 

IloAny is a type definition that represents objects in a model handled by Concert
Technology  enumerated variables. A pointer to any object, whether a predefined Concert
Technology type or an instance of a C++ class, is implicitly converted to IloAny.

IloAnyVar(const IloEnv env,
          const IloAnyArray array,
          const char* name = 0);

 IloAnyArray(const IloEnv env, IloInt n, 
             const IloAny p0, 
             const IloAny p1, . . .);

Step 3 Create the array of values

    IloAnyArray Colors(env, 3, blue, white, yellow);
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Add the following code after the comment //Create the decision variables

Now, you add the set of constraints that all neighboring countries, with the exception of 
Luxembourg, cannot be the same color. Since you have already done this in Chapter 2, 
Modeling and Solving a Simple Problem: Map Coloring, this code is provided for you: 

Then you create an objective. This objective will express the relative importance, in order of 
priority, of the following relaxed constraints:

◆ Germany and Luxembourg are different colors if possible.

◆ Belgium and Luxembourg are different colors if possible.

◆ France and Luxembourg are different colors if possible. 

An objective is simply an expression which can be maximized or minimized. In this case, 
you are going to maximize the expression. You need to find a way to model the three relaxed 
constraints and assign a relative importance to them. You already know how to model the 
three relaxed constraints using the != operator: 

Now instead of adding them directly to the model, you combine them, creating a 
metaconstraint. You can do this because constraints have value. The value of a constraint is 
IloTrue if the constraint is satisfied or IloFalse if the constraint is not satisfied. Another 
way of looking at the value of a constraint is as a Boolean value that can be represented as a 
binary integer. In this representation, constraints that are true have an integer value of 1 and 
constraints that are false have an integer value of 0. This convention makes it possible to use 
constraints themselves in an expression. You can use arithmetic or logical operators with 

Step 4 Create the decision variables

    IloAnyVar Belgium(env, Colors), Denmark(env, Colors),
              France(env, Colors), Germany(env, Colors),
              Luxembourg(env, Colors), Netherlands(env, Colors);

    model.add(France != Belgium);
    model.add(France != Germany);
    model.add(Belgium != Netherlands);
    model.add(Germany != Netherlands);
    model.add(Germany != Denmark);
    model.add(Germany != Belgium);

Luxembourg != Germany
Luxembourg != Belgium
Luxembourg != France
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constraints, combine them with each other, or maximize an expression that contains 
constraints.

To create the objective, you use the function IloMaximize, which creates an instance of the 
class IloObjective. The function IloMaximize takes the environment as its first 
parameter and an expression as its second parameter. The last parameter is an optional name 
used for debug and trace purposes. Here is a constructor for IloMaximize:  

Add the following code after the comment //Create the objective

When you create the objective, you use the multiplication operator to link each of the 
relaxed constraints with a coefficient that represents the relative importance of that relaxed 
constraint. If the constraint is true, the coefficient will be multiplied by 1. If the constraint is 
false, the coefficient will be multiplied by 0. You create a metaconstraint by combining the 
three relaxed constraints in an expression. When Solver searches for a solution, it tries to 
maximize the value of this expression. Therefore, the relaxed constraints which have a larger 
coefficient (because they are considered more important) will be more likely to form part of 
the solution. 

For example, if Solver found a solution where France and Luxembourg were different 
colors, then the relaxed constraint Luxembourg != France would be true and would be 
represented by the integer value of 1. If, in the same solution, Luxembourg was the same 
color as both Germany and Belgium, then the relaxed constraints Luxembourg != 
Germany and Luxembourg != Belgium would both be false and would be represented by 
the integer value of 0. The expression would then be:

(257 * 1) + (9043 * 0) + (568 * 0) = 257

Metaconstraints

Metaconstraints are created by combining constraints. Constraints can be combined by
using arithmetic and logical operators. Constraints can be imposed on other constraints. 

For more information on metaconstraints, see “More on metaconstraints” on page 96.

IloObjective IloMaximize(const IloEnv env,
                         const IloExpr expr, 
                         const char* name=0);

Step 5 Create the objective

    IloObjective obj = IloMaximize(env, 9043 * (Luxembourg != Germany)
                                      +  568 * (Luxembourg != Belgium)
                                      +  257 * (Luxembourg != France));
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You use the member function IloModel::add to add the objective to the model. You must 
explicitly add an objective to the model or Solver will not be able to use it in the search for a 
solution.

Add the following code after the comment //Add the objective to the model

Solve

Solving the problem consists of finding a value for each variable that satisfies the constraints 
and maximizes the objective containing the relaxed constraints. 

Add the following code after the comment //Create an instance of IloSolver

You now use the member function IloSolver::solve, which solves a problem by using a 
default goal to launch the search. 

Add the following code after the comment //Search for a solution 

Step 6 Add the objective to the model

    model.add(obj);

Step 7 Create an instance of IloSolver

    IloSolver solver(model);

Step 8 Search for a solution

    if (solver.solve())
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You use the member functions and streams IloAlgorithm::getStatus, 
IloSolver::getValue, and the function print to display the solution. These are already 
provided for you in the exercise code. 

Compile and run the program. You should get the following results:

As you can see, only three colors are used. The “unrelaxed” constraints are all satisfied. The 
objective is maximized. The relaxed constraint Luxembourg != Germany is satisfied. This 
adds 9043 to the expression. The relaxed constraint Luxembourg != Belgium is also 
satisfied. This adds 568 to the expression. This gives a value of 9611 to the objective. The 
only way that the value of this objective expression could be greater would be if the relaxed 
constraint Luxembourg != France were also satisfied. However, this is not a possible 
solution since it would mean that “unrelaxed” constraints would not be satisfied.   

      {
      solver.out() << solver.getStatus() << " Solution" << endl;
      solver.out() << "Objective = " << solver.getValue(obj) << endl;
      print(solver, "Belgium:     ", Belgium);
      print(solver, "Denmark:     ", Denmark);
      print(solver, "France:      ", France);
      print(solver, "Germany:     ", Germany);
      print(solver, "Netherlands: ", Netherlands);
      print(solver, "Luxembourg:  ", Luxembourg);
    }

Step 9 Compile and run the program

Optimal Solution
Objective = 9611
Belgium:     white
Denmark:     blue
France:      blue
Germany:     yellow
Netherlands: blue
Luxembourg:  blue
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The complete program is listed in “Complete program” on page 99. You can also view it 
online in the file YourSolverHome/examples/src/colormin.cpp.    

Review exercises

For answers, see “Suggested answers” on page 97.

1. What is relaxing constraints?

2. What is an objective?

3. Add an objective to the changing money problem you worked on in Chapter 3, Using 
Arrays and Basic Search: Changing Money. Assume that you want to pay for an item 
that costs 1.23 euros. You have a mixture of coins of the following types: 1 euro cent, 10 
euro cents, 20 euro cents, and 1 euro. To make the problem more interesting, assume that 
you have only 5 coins of 1 euro cent. You prefer to pay for the item using as many of 
your lower denomination coins as possible. Create an objective that uses the following 
coefficients to represent the importance of using each type of coin: 1000 (1 euro cent), 
800 (10 euro cents), 300 (20 euro cents), and 10 (1 euro). Change the code so that you 
only search for one maximized solution.

More on metaconstraints

Metaconstraints are created by combining constraints or placing constraints on other
constraints. Metaconstraints are based on the idea that constraints have value. Solver
handles constraints not only as if they have a Boolean value, such as true or false, but
effectively as if the value is 0 or 1. This allows you to combine constraints into expressions
or impose constraints on constraints, as you have done in this lesson. 

Constraints can be combined using arithmetic operators. You can also use the following
logical operators to combine constraints:

◆ not (!)

◆ and (&&)

◆ or (||)

◆ exclusive or (!=) (This overloaded C++ operator constrains its two arguments to be
unequal—different from each other.) 

◆ equivalence (==)

◆ implication (<=) (This overloaded operator is also the “less than or equal to” operator.
When its arguments are constraints, this operator functions as the implication operator.
The argument on the left side of the operator implies the argument on the right side of
the operator.) 
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4. Add a different objective to the original changing money problem you worked on in 
Chapter 3, Using Arrays and Basic Search: Changing Money. This time, instead of 
trying to pay for the item using as many of your lower denomination coins as possible as 
in Exercise 3, try to use as few coins as possible. Assume that you want to pay for an 
item that costs 1.23 euros. You have a mixture of coins of the following types: 1 euro 
cent, 10 euro cents, 20 euro cents, and 1 euro. To make the problem more interesting, 
assume that you have only 5 coins of 1 euro cent. Create an objective that minimizes the 
number of coins using the function IloMinimize. Change the code so that you only 
search for the minimized solution.

Suggested answers

Exercise 1

What is relaxing constraints?

Suggested Answer

Relaxing constraints means to remove some of the constraints from the model of an 
insolvable problem in order to find a solution. The constraints that remain must still be 
satisfied. 

Exercise 2

What is an objective?

Suggested Answer

An objective is an expression that can be maximized or minimized. The relative importance 
of different constraints can be expressed in an objective.

An objective can also be used to select the most appropriate solution when a problem has 
more than one solution. 

Exercise 3

Add an objective to the changing money problem you worked on in Chapter 3, Using Arrays 
and Basic Search: Changing Money. Assume that you want to pay for an item that costs 1.23 
euros. You have a mixture of coins of the following types: 1 euro cent, 10 euro cents, 20 euro 
cents, and 1 euro. To make the problem more interesting, assume that you have only 5 coins 
of 1 euro cent. You prefer to pay for the item using as many of your lower denomination 
coins as possible. Create an objective that uses the following coefficients to represent the 
importance of using each type of coin: 1000 (1 euro cent), 800 (10 euro cents), 300 (20 euro 
cents), and 10 (1 euro). Change the code so that you only search for one maximized solution. 
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Suggested Answer

The code that has changed from money.cpp follows. You can view the complete program 
online in the file YourSolverHome/examples/src/colormin_ex3.cpp. 

You add the objective:

You change the following code to display the solution:

You should get the following results:

Exercise 4

Add a different objective to the original changing money problem you worked on in 
Chapter 3, Using Arrays and Basic Search: Changing Money. This time, instead of trying to 
pay for the item using as many of your lower denomination coins as possible as in Exercise 
3, try to use as few coins as possible. Assume that you want to pay for an item that costs 1.23 
euros. You have a mixture of coins of the following types: 1 euro cent, 10 euro cents, 20 euro 
cents, and 1 euro. To make the problem more interesting, assume that you have only 5 coins 
of 1 euro cent. Create an objective that minimizes the number of coins using the function 
IloMinimize. Change the code so that you only search for one minimized solution.

Suggested Answer

The code that has changed from money.cpp follows. You can view the complete program 
online in the file YourSolverHome/examples/src/colormin_ex4.cpp. 

    IloObjective obj = IloMaximize(env, (1000 * (coins[0]))
                                      +  (800 * (coins[1]))
                                      +  (300 * (coins[2]))
                                      +   (10 * (coins[3])));
    model.add(obj);

    if (solver.solve())
      {
      solver.out() << solver.getStatus() << " Solution" << endl;
      solver.out() << "Objective = " << solver.getValue(obj) << endl;
      for (IloInt i = 0; i < nCoins; i++)
        solver.out() << solver.getValue(coins[i]) << " ";     
        solver.out() << endl;
    }
    else
      solver.out() << "No Solution" << endl;

[1, 10, 20, 100]
Optimal Solution
Objective = 12600
3 12 0 0
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You add the following objective:

You change the following code to display the solution:

You should get the following results:

Complete program

The complete map coloring with minimum colors program follows. You can also view it 
online in the file YourSolverHome/examples/src/colormin.cpp. 

#include <ilsolver/ilosolverany.h>
ILOSTLBEGIN

char blue[]="blue";
char white[]="white";
char yellow[]="yellow";

void print(IloSolver solver, char* name, IloAnyVar color) {
        solver.out() << name << (char*)solver.getAnyValue(color) << endl;
}

int main(){
  IloEnv env;
  try {
    IloModel model(env);
    IloAnyArray Colors(env, 3, blue, white, yellow);
    IloAnyVar Belgium(env, Colors), Denmark(env, Colors),
              France(env, Colors), Germany(env, Colors),
              Luxembourg(env, Colors), Netherlands(env, Colors);
    model.add(France != Belgium);
    model.add(France != Germany);
    model.add(Belgium != Netherlands);
    model.add(Germany != Netherlands);
    model.add(Germany != Denmark);

    IloObjective obj = IloMinimize(env, coins[0] + coins[1] + coins[2] + 
coins[3]);

      if (solver.solve())
        {
        for (IloInt i = 0; i < nCoins; i++)
        solver.out() << solver.getValue(coins[i]) << " ";
        solver.out() << endl;
      }
    else
    solver.out() << "No Solution" << endl;

[1, 10, 20, 100]
3 0 1 1
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    model.add(Germany != Belgium);
    IloObjective obj = IloMaximize(env, 9043 * (Luxembourg != Germany)
                                      +  568 * (Luxembourg != Belgium)
                                      +  257 * (Luxembourg != France));
    model.add(obj);
    IloSolver solver(model);
    if (solver.solve())
      {
      solver.out() << solver.getStatus() << " Solution" << endl;
      solver.out() << "Objective = " << solver.getValue(obj) << endl;
      print(solver, "Belgium:     ", Belgium);
      print(solver, "Denmark:     ", Denmark);
      print(solver, "France:      ", France);
      print(solver, "Germany:     ", Germany);
      print(solver, "Netherlands: ", Netherlands);
      print(solver, "Luxembourg:  ", Luxembourg);
    }
    else
      solver.out() << "No Solution" << endl;
  }
  catch (IloException& ex) {
    cerr << "Error: " << ex << endl;
  }
  env.end();
  return 0;
}

Results
Optimal Solution
Objective = 9611
Belgium:     white
Denmark:     blue
France:      blue
Germany:     yellow
Netherlands: blue
Luxembourg:  blue
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Part II



More on Modeling

This part consists of the following lessons:

◆ Chapter 6, Using the Distribute Constraint: Car Sequencing

◆ Chapter 7, Using Set Variables: Crew Scheduling

◆ Chapter 8, Combining Constraints: Bin Packing

◆ Chapter 9, Using Table Constraints: Scheduling Teams

◆ Chapter 10, Reducing Symmetry: Configuring Racks

◆ Chapter 11, Using Constrained Floating-Point Variables: Modeling Equations



C H A P T E R
6

Using the Distribute Constraint:
Car Sequencing

In this lesson, you will learn how to: 

◆ use the predefined constraint IloDistribute 

◆ model a simplified version of an industrial optimization problem, car sequencing

Describe

A car sequencing problem is an example of an industrial optimization problem. Cars are 
available with many different options. Car color, leather seats, wood interior, sunroof, type 
of motor, Global Positioning System (GPS), air conditioning, and so on are all examples of 
options. Cars can be configured with different sets of options. For example, a manufacturer 
will produce a certain number of blue cars with leather seats, wood interior, and air 
conditioning, a certain number of green cars with sunroof and GPS, and so on for each 
model of car. 

The problem in car sequencing is to determine the order in which cars of each configuration 
should be assembled. The assembly line must produce a certain number of cars of each 
configuration. Not every car can be fitted with every option, due to technical limitations. For 
technical and financial reasons, the order in which cars are sent along the assembly line, or 
the sequence of the cars, is important.   
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The sunroof option is one example of how technical limitations restrict the number of cars 
with a certain option and restrict the order of the cars on the assembly line. As the car moves 
along the assembly line, a machine and crew move along with it, installing the sunroof. The 
machine can only move a certain distance along the assembly line. In the time it takes the 
machine to move along the assembly line with the car, the sunroof is installed. After the 
sunroof is installed, the machine moves back to its original position on the assembly line. At 
this stage, however, several cars have already passed the starting point of the sunroof 
machine and crew. Therefore, only the next car to pass the starting point can have the 
sunroof option. Those cars that have already passed cannot have it installed. It is important 
that cars that require a sunroof are in the right place at the right time or in the correct 
sequence. If an option becomes so popular that it needs to be installed on every car, then the 
assembly line is modified to reflect this.

The car paint color option is another example of how technical limitations restrict the 
number of cars with a certain option and restrict the order of the cars on the assembly line. 
The machine that paints the car must be serviced after every four cars. The paint is emptied, 
the tubes and pipes are cleaned, and a new color of paint is added. Only four cars can be 
painted a certain color before the machine is serviced. Then four cars can be painted another 
color before the machine is again serviced. The order of these cars is important to make sure 
that the color of the car is matched with the other options in a particular configuration. 

In this lesson, you will a model a simplified car sequencing problem to learn how to use the 
distribute constraint. The distribute constraint is a constraint that is much more complex than 
the constraints you have worked with so far. For a more complex model of a car sequencing 
problem, see Chapter 18, Writing a Goal: Car Sequencing. 

Assume that you have eight cars to paint in three available colors: green, yellow, and blue. 
Due to technical limitations on the assembly line, no more than three cars can be painted 
green, exactly three cars must be painted yellow, and no more than two cars can be painted 
blue. Due to limitations on the order of the cars, the first car off the assembly line cannot be 
painted green.

The first step in modeling and solving a problem is to write a natural language description of 
the problem, identifying the decision variables and the constraints on these variables. 

Write a natural language description of this problem. Answer these questions:

◆ What are the decision variables or unknowns in this problem? 

◆ What are the constraints on these variables?

Discussion

What is known? 

Step 1 Describe the problem
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◆ there are eight cars that must be painted in order on the assembly line

◆ there are three paint colors: green, yellow, and blue

What is unknown?

◆  the color each car is painted

What are the constraints? 

◆ no more than three cars can be painted green

◆ exactly three cars must be painted yellow

◆ no more than two cars can be painted blue

◆ the first car cannot be painted green

Model

Once you have written a description of your problem, you can use Concert Technology 
classes to model it. Before declaring the decision variables and adding constraints, you must 
create an environment and a model. Once you create a model of your problem, you can use 
Solver classes to search for a solution.

In the lessons so far, you created decision variables that contained the solution to the 
problem, once it was solved. In this part, you will use decision variables in more 
sophisticated ways. You will still declare decision variables that will contain the solution to 
the problem, but you will also declare other decision variables that are used in finding the 
solution. 

Open the example file YourSolverHome/examples/src/tutorial/
carseq_basic_partial.cpp in your development environment. In this exercise, you use 
arrays of constrained integer variables and therefore you use the include file <ilsolver/
ilosolverint.h>. The number of cars, nbCars, is set to 8 in this problem and the number 
of colors, nbColors, is set to 3.

As you know by now, the first step in converting your natural language description of the 
problem into code using Concert Technology classes is to create an environment and a 
model. This code is provided for you:

Step 2 Open the example file

int main() {
  IloEnv env;
  try {
    IloModel model(env);
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Concert Technology gives you the means to represent the unknown information in this 
problem—the color each car is painted—as an array of constrained integer variables. You 
use IloIntVarArray to create an array. Each element in the array will represent the color 
of a car, and so each variable can take a value from 0 to nbColors-1. The array of decision 
variables  cars will contain the solution to the problem, once it is solved.   

Add the following code after the comment //Declare the decision variables 

To represent the constraint that the first car off the assembly line cannot be painted green, 
you could declare an array of values to represent the three colors and then use the arithmetic 
constraint != to represent that the first car off the assembly line cannot be painted green. 

But how are you going to represent the other constraints? No more than three cars can be 
painted green, exactly three cars must be painted yellow, and no more than two cars can be 
painted blue. It is also important to know the order of the cars on the assembly line, since the 
first car off the assembly line cannot be painted green. You need a constraint that allows you 
to count the number of variables (the cars) that take a given value (the color of paint) in an 
array, while respecting the order of the variables. 

Concert Technology provides a type of global constraint that does just that. The global 
constraint IloDistribute allows you to count the number of variables that take a given 
value. 

Step 3 Declare the decision variables

    IloIntVarArray cars(env, nbCars, 0, nbColors-1);

Global constraints 

Global constraints make it possible to express complicated relations between variables,
relations that would require an exponential number of arithmetic constraints, or relations
that could not be expressed at all in arithmetic terms.

The predefined constraint IloAllDiff is a global constraint that can be substituted for a
very large number of arithmetic inequality constraints (!=). 

It would not be possible to express the predefined constraint IloDistribute using only
arithmetic constraints.
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IloDistribute takes the following parameters: the environment, a counting array, an 
array of values, and an array of constrained variables. The last parameter is an optional name 
used for debug and trace purposes. Here is a constructor:

The constraint IloDistribute takes three arrays: cards, values, and vars. The 
constrained variables in the array cards are equal to the number of occurrences in the array 
vars of the values in the array values. More precisely, for each i, cards[i] is equal to 
the number of occurrences of values[i] in the array vars. 

What do you need to do to use the constraint IloDistribute in your car sequencing 
model? You need to create the three arrays (cards, values, and vars) before you can add 
the constraint IloDistribute to the model:

◆ You have already declared an array of decision variables cars. This array corresponds to 
the array vars in the constructor of IloDistribute. 

◆ Next, you use IloIntArray to declare an array of values colors. In this simple 
example, the array colors represents the three colors the cars can be painted. This array 
corresponds to the array values in the constructor.

◆ Finally, you need to create the cards array of cardinal numbers used to count the 
variables. The cards array must be the same size as the colors array. The cards array 
is used to provide the information to link each color with the number of times it can be 
used in configuring the cars. First, you create cards, an instance of IloIntVarArray 
of the same size as the array colors. Then, you use the variables in the array cards to 
represent the number of times each value in the array colors can be used as a value in 
the array of variables cars. 

Add the following code after the comment //Declare the array of values

Now you declare the counting array cards. For each i, cards[i] is equal to the number of 
occurrences of colors[i] in the array cars. For example, the color green is represented by 
the element [0] in the array colors. Since no more than three cars can be painted green, 
you set the element [0] in the array of counting variables cards to be equal to a constrained 
integer variable with a domain of 0 to 3. 

 IloDistribute (const IloEnv env, 
                const IloIntVarArray cards,
                const IloNumArray values,
                const IloNumVarArray vars,
                const char* name = 0);

Step 4 Declare the array of values

    IloIntArray colors(env, 3, 0, 1, 2);
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Add the following code after the comment 
//Declare the array of decision variables cards

Though cards is an array of decision variables, it will not contain the solution to the 
problem once it is solved. This array of decision variables is instead used in creating the 
IloDistribute constraint.

Now that you have declared the three arrays that are used in IloDistribute, you can add 
the constraint to the model. 

Add the following code after the comment //Add the distribute constraint 

You also add the arithmetic constraint != to represent that the first car off the assembly line 
cannot be painted green. Explicitly, this constraint means that the value Solver finds for the 
first element in the array of constrained integer variables cars cannot equal the value for the 
color green.

Add the following code after the comment
//Add the constraint that the first car cannot be green 

Solve

After you have declared the decision variables and added the constraints to the model, you 
are ready to search for a solution. In this lesson, you use the predefined goal IloGenerate 
to search for a solution, as you did in Chapter 4, Searching with Predefined Goals: 
Magic Square. The predefined goal IloGenerate allows you to control a choice in the 
solution search: you choose which constrained variable Solver tries to bind first. 

Step 5 Declare the array of decision variables cards

    IloIntVarArray cards(env, nbColors);
    cards[0] = IloIntVar(env, 0, 3);
    cards[1] = IloIntVar(env, 3, 3);
    cards[2] = IloIntVar(env, 0, 2);

Step 6 Add the distribute constraint

    model.add(IloDistribute(env, cards, colors, cars));

Step 7 Add the constraint that the first car cannot be green

    model.add(cars[0] != 0);
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You start the solution search by creating an instance of the class IloSolver to solve the 
problem expressed in the model.

Add the following code after the comment //Create an instance of IloSolver

You now use the member function IloSolver::solve. In this lesson, you use the 
predefined goal IloGenerate as a parameter of IloSolver::solve. The predefined goal 
itself takes the following parameters: the environment, the array of variables cars, and 
IloChooseMinSizeInt. From the array of variables cars, Solver will first choose the 
unbound variable with the smallest domain and select a value from that domain. Solver will 
propagate the effects of this decision and repeat the process, moving to the variable with the 
next smallest domain. If a decision leads to a situation where a constraint is not satisfied, it is 
undone and Solver backtracks to the last decision.

Add the following code after the comment //Search for a solution 

The member functions and streams IloAlgorithm::out and IloSolver::getValue 
are used to display the solution. When you print the solution, you associate each value with 
the name of a color using the array Names[], which is provided for you in the exercise code. 
As in Chapter 4, Searching with Predefined Goals: Magic Square, the member function 
IloSolver::printInformation displays information about the solution search, 
including number of variables, number of constraints, elapsed time since creation of search, 
number of fails, and number of choice points. 

The following code is provided for you: 

Step 8 Create an instance of IloSolver

    IloSolver solver(model);

Step 9 Search for a solution

    if (solver.solve(IloGenerate(env, cars, IloChooseMinSizeInt)))

      {
      solver.out() << solver.getStatus() << " Solution" << endl;
      for (i = 0; i < nbCars; i++) {
        solver.out() << "Car " << i+1 <<  " color:     "
                     << Names[(IloInt)solver.getValue(cars[i])]     
                     << endl;
      }
    }
    else
      solver.out() << "No solution " << endl;
      solver.printInformation();
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Compile and run the program. You should get the following results, though the information 
displayed by IloSolver::printInformation will vary depending on platform, 
machine, configuration, and so on.

As you can see, three cars are painted green; three cars are painted yellow; and two cars are 
painted blue. The first car off the assembly line is not painted green. This is obviously a very 
simple example with a very straightforward result. You will model and solve a more 
complex car sequencing problem, involving different options and configurations, in 
Chapter 18, Writing a Goal: Car Sequencing.

The complete program is listed in “Complete program” on page 115. You can also view it 
online in the file YourSolverHome/examples/src/carseq_basic.cpp. 

Review exercises

For answers, see “Suggested answers” on page 111.

1. What are global constraints? 

2. What parameters does the global constraint IloDistribute take?

Step 10 Compile and run the program

Feasible Solution
Car 1 color:     yellow
Car 2 color:     green
Car 3 color:     green
Car 4 color:     green
Car 5 color:     yellow
Car 6 color:     yellow
Car 7 color:     blue
Car 8 color:     blue
Number of fails               : 0
Number of choice points       : 6
Number of variables           : 12
Number of constraints         : 2
Reversible stack (bytes)      : 4044
Solver heap (bytes)           : 8064
Solver global heap (bytes)    : 4044
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 11152
Total memory used (bytes)     : 39436
Elapsed time since creation   : 0.17
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3. Modify the car sequencing problem. Assume that you have 20 cars to paint in 4 available 
colors: green, yellow, blue, and white. Due to technical limitations on the assembly line, 
no more than 6 cars can be painted green, exactly 5 cars must be painted yellow, no more 
than 7 cars can be painted blue, and no less than 5 cars and no more than 12 cars can be 
painted white. The first car off the assembly line cannot be painted green.

4. Use the IloDistribute constraint to solve for a magic sequence. A magic sequence is 
a sequence of n + 1 values (x0, x1, …, xn) such that 0 appears in the sequence x0 times, 
1 appears x1 times, …, and n appears in the sequence xn times. The numbers in the 
magic sequence have a sum equal to n + 1.    

For example, for n = 3, the following sequence is a solution: (1, 2, 1, 0). That is, 0 is 
present once, 1 is present twice, 2 is present once, and 3 is not present (present zero 
times, as it were). 

Describe, model, and solve this problem. Write the code so that you can solve magic 
sequences of different sizes, but find a solution for a magic sequence of size n = 10. 
This is a problem with a high level of modeling difficulty.

Suggested answers

Exercise 1

What are global constraints?

Suggested Answer

Global constraints make it possible to express complicated relations between variables, 
relations that would require an exponential number of arithmetic constraints, or relations that 
could not be expressed at all in arithmetic terms.

Exercise 2

What parameters does the global constraint IloDistribute take?

Suggested Answer

IloDistribute takes the following parameters: the environment, a counting array, an 
array of values, and an array of constrained variables. 

Exercise 3

Modify the car sequencing problem. Assume that you have 20 cars to paint in 4 available 
colors: green, yellow, blue, and white. Due to technical limitations on the assembly line, no 
more than 6 cars can be painted green, exactly 5 cars must be painted yellow, no more than 7 
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cars can be painted blue, and no less than 5 cars and no more than 12 cars can be painted 
white. The first car off the assembly line cannot be painted green.

Suggested Answer

The code that has changed from carseq_basic.cpp follows. You can view the complete 
program online in the file YourSolverHome/examples/src/carseq_basic_ex3.cpp.

Add the fourth color to the array Names:

The following code changes the number of cars and colors:

You modify the distribute constraint:

You should get the following results, though the information displayed by 
IloSolver::printInformation will vary depending on platform, machine, 
configuration, and so on.

Feasible Solution
Car 1 color:     yellow
Car 2 color:     green
Car 3 color:     green
Car 4 color:     green
Car 5 color:     green
Car 6 color:     green
Car 7 color:     green
Car 8 color:     yellow
Car 9 color:     yellow
Car 10 color:     yellow
Car 11 color:     yellow
Car 12 color:     blue
Car 13 color:     blue
Car 14 color:     blue
Car 15 color:     blue
Car 16 color:     white
Car 17 color:     white
Car 18 color:     white
Car 19 color:     white
Car 20 color:     white
Number of fails               : 0
Number of choice points       : 15

const char* Names[] = {"green", "yellow", "blue", "white"};

    const IloInt nbCars    = 20;
    const IloInt nbColors = 4;

    IloIntArray colors(env, 4, 0, 1, 2, 3);
    IloIntVarArray cards(env, nbColors);
    cards[0] = IloIntVar(env, 0, 6);
    cards[1] = IloIntVar(env, 5, 5);
    cards[2] = IloIntVar(env, 0, 7);
    cards[3] = IloIntVar(env, 5, 12);
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Number of variables           : 25
Number of constraints         : 2
Reversible stack (bytes)      : 4044
Solver heap (bytes)           : 12084
Solver global heap (bytes)    : 4044
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 11152
Total memory used (bytes)     : 43456
Elapsed time since creation   : 0.16

Exercise 4

Use the IloDistribute constraint to solve for a magic sequence. A magic sequence is a 
sequence of n + 1 values (x0, x1, …, xn) such that 0 appears in the sequence x0 times, 1 
appears x1 times, …, and n appears in the sequence xn times. The numbers in the magic 
sequence have a sum equal to n + 1.    

For example, for n = 3, the following sequence is a solution: (1, 2, 1, 0). That is, 0 is 
present once, 1 is present twice, 2 is present once, and 3 is not present (present zero times, as 
it were). 

Describe, model, and solve this problem. Write the code so that you can solve magic 
sequences of different sizes, but find a solution for a magic sequence of size n = 10. This is 
a problem with a high level of modeling difficulty.

Suggested Answer

Describe

◆ The known information is the size of the magic sequence. The unknown information is 
the sequence of numbers. The first constraint is that the numbers in the magic sequence 
have a sum equal to n + 1. The second constraint is that the number 0 appears in the 
sequence x0 times, 1 appears x1 times, and so on. 

Model

◆ To represent the numbers in the sequence, you use an array of integer variables vars. 
You also create an array of coefficients coeffs. This array contains the numbers 0, 1, 2, 
3, and so on. 

To model the first constraint that the numbers in the magic sequence have a sum equal 
to n + 1, you use IloScalProd to constrain that the sum of each variable times its 
coefficient is equal to n + 1. For example, using the magic sequence given in the 
exercise for n = 3, which is (1, 2, 1, 0), this equation is:

(x0)(0) + (x1)(1) + (x2)(2) + (x3)(3) = n + 1, which is equivalent to 

(1)(0) + (2)(1) + (1)(2) + (0)(3) = 4
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To model the second constraint that the number 0 appears in the sequence x0 times, 1 
appears x1 times, and so on, you use the IloDistribute constraint. As you 
remember, IloDistribute takes three arrays as parameters: an array of variables 
used to count, an array of values, and an array of variables. In this exercise, the array 
of values is  coeffs and the array of variables is vars, the sequence of numbers. You 
need to use an array to count how many times each value in coeffs can be used as a 
value in the array of variables vars. In this problem, the array of variables vars is 
also used as the counting array. This contributes to the difficulty level of modeling this 
problem. For example, using the magic sequence given in the exercise for n = 3, 
which is (1, 2, 1, 0), the IloDistribute constraint would work as follows:

counting array vars: [1, 2, 1, 0]

array of values coeffs: [0, 1, 2, 3]

array of variables vars: [1, 2, 1, 0]

As you can see, the first element in the array of values coeffs, 0, appears in the array 
of variables vars 1 time. This is because the first element in the counting array, which 
is also vars, is 1. 

Solve

◆ You solve the problem in the same way as you solved the car sequencing example, using 
the predefined goal IloGenerate.

The complete program follows. You can also view it online in the file YourSolverHome/
examples/src/carseq_basic_ex4.cpp.

# include <ilsolver/ilosolverint.h>

ILOSTLBEGIN

int main(int argc, char** argv){
  IloEnv env;
  try {
    IloModel model(env);
    IloInt n = (argc > 1) ? atoi(argv[1]) : 10;
    IloInt i;
    IloIntVarArray vars(env, n + 1, 0, n + 1);
    IloIntArray coeffs(env, n + 1);
    for (i = 0; i < n + 1; i++)
      coeffs[i] = i;
    model.add(IloDistribute(env, vars, coeffs, vars));
    // redundant constraint
    model.add(IloScalProd(vars,coeffs) == n + 1);
    IloSolver solver(model);
    if (solver.solve(IloGenerate(env, vars, IloChooseMinSizeInt))) {
      for (i = 0; i < n + 1; i++)
        solver.out() << solver.getValue(vars[i]) << " ";
      solver.out() << endl;
    } 
    else
      solver.out() << "No solution" << endl;
114 I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L



    solver.printInformation();
  }
  catch (IloException& ex) {
    cerr << "Error: " << ex << endl;
  }
  env.end();
  return 0;
}

Results

You should get the following results, though the information displayed by 
IloSolver::printInformation will vary depending on platform, machine, 
configuration, and so on.

7 2 1 0 0 0 0 1 0 0 0 
Number of fails               : 5
Number of choice points       : 6
Number of variables           : 23
Number of constraints         : 14
Reversible stack (bytes)      : 4044
Solver heap (bytes)           : 12084
Solver global heap (bytes)    : 8088
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 11144
Total memory used (bytes)     : 47492
Running time since creation   : 0.01

Complete program

The complete simplified car sequencing program follows. You can also view it online in the 
file YourSolverHome/examples/src/carseq_basic.cpp. 

#include <ilsolver/ilosolverint.h>

ILOSTLBEGIN
const char* Names[] = {"green", "yellow", "blue"};
int main() {
  IloEnv env;
  try {
    IloModel model(env);
    const IloInt nbCars    = 8;
    const IloInt nbColors = 3;
    IloInt i;
    IloIntVarArray cars(env, nbCars, 0, nbColors-1);
    IloIntArray colors(env, 3, 0, 1, 2);
    IloIntVarArray cards(env, nbColors);
    cards[0] = IloIntVar(env, 0, 3);
    cards[1] = IloIntVar(env, 3, 3);
    cards[2] = IloIntVar(env, 0, 2);
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    model.add(IloDistribute(env, cards, colors, cars));
    model.add(cars[0] != 0);
    IloSolver solver(model);
    if (solver.solve(IloGenerate(env, cars, IloChooseMinSizeInt)))
      {
      solver.out() << solver.getStatus() << " Solution" << endl;
      for (i = 0; i < nbCars; i++) {
        solver.out() << "Car " << i+1 <<  " color:     "
                     << Names[(IloInt)solver.getValue(cars[i])]     
                     << endl;
      }
    }
    else
      solver.out() << "No solution " << endl;
      solver.printInformation();
  }
  catch (IloException& ex) {
    cout << "Error: " << ex << endl;
  }
  env.end();
  return 0;
}

Results

You should get the following results, though the information displayed by 
IloSolver::printInformation will vary depending on platform, machine, 
configuration, and so on.

Feasible Solution
Car 1 color:     yellow
Car 2 color:     green
Car 3 color:     green
Car 4 color:     green
Car 5 color:     yellow
Car 6 color:     yellow
Car 7 color:     blue
Car 8 color:     blue
Number of fails               : 0
Number of choice points       : 6
Number of variables           : 12
Number of constraints         : 2
Reversible stack (bytes)      : 4044
Solver heap (bytes)           : 8064
Solver global heap (bytes)    : 4044
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 11152
Total memory used (bytes)     : 39436
Elapsed time since creation   : 0.17
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C H A P T E R
7

Using Set Variables: Crew Scheduling

In this lesson, you will learn how to: 

◆ use constrained sets of variables

◆ design a model for extensibility

◆ use IloNumSetVar, IloNumSetVarArray, IloNullIntersect, IloCard, and 
IloEqIntersection

Describe

An airline has to assign flight attendants to flights. There are 10 flights a day. Each flight 
requires a certain number of flight attendants, which varies with the size of the plane. The 
company employs 20 flight attendants, all of whom speak English. 

There are certain constraints on the composition of each crew. Each crew must contain a 
certain minimum number of senior and junior staff and certain minimum numbers of 
attendants fluent in the following languages besides English: French, German, and Spanish. 
Flight attendants must rest at least two flights between assignments.

You will design the model so that it can be extended; the number of flights and the 
constraints on the composition of the crew can be easily adjusted. 
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Here is a table with the 10 flights and their staffing requirements:

Here is a table listing staff and their attributes:

Table 7.1 Flight requirements

Flight 
Number 

Size of 
Crew 

Minimum 
Number of 
Senior Staff 

Minimum 
Number of 
Junior Staff

Minimum 
Number of 
French Staff 

Minimum 
Number of 
German Staff

Minimum 
Number of 
Spanish Staff

#1 4 1 1 1 1 1

#2 5 1 1 1 1 1

#3 5 1 1 1 1 1

#4 6 2 2 2 1 2

#5 7 3 2 2 1 2

#6 4 1 1 1 1 1

#7 5 1 1 1 1 1

#8 6 1 1 1 1 1

#9 6 2 2 1 1 1

#10 7 3 3 1 1 1

Table 7.2 Staff Attributes

Employee Name Experience Level Language Skills other than English

Bill Senior French, Spanish

Bob Senior

Carol Senior

Carolyn Senior

Cathy Junior German

David Junior

Ed Senior

Fred Senior Spanish

Heather Junior Spanish

Inez Junior French, Spanish
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The first step in modeling and solving a problem is to write a natural language description of 
the problem, identifying the decision variables and the constraints on these variables. 

Write a natural language description of this problem. Answer these questions:

◆ What is the known information in this problem?

◆ What are the decision variables or unknowns in this problem? 

◆ What are the constraints on these variables?

Discussion

What is the known information in this problem?

◆ there are 20 flight attendants

◆ there are 10 flights

◆ flight attendant experience level and language skills

What are the decision variables in this problem?

◆ which attendants fly on which flights

What are the constraints in this problem?

Janet Senior

Jean Junior French

Jeremy Junior German

Joe Junior Spanish

Juliet Junior French, German

Marilyn Senior Spanish

Mario Senior German, Spanish

Ron Junior French

Tom Junior German

Tracy Senior

Step 1 Describe the problem

Table 7.2 Staff Attributes (Continued)

Employee Name Experience Level Language Skills other than English
I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L 119



◆ flight attendants must rest at least two flights between assignments

◆ each flight requires a certain crew size

◆ each flight has minimum staffing requirements based on experience level

◆ each flight has minimum staffing requirements based on language skills

Model

Once you have written a description of your problem, you can use Concert Technology 
classes to model it. In this lesson, you declare two functions before the main function. One 
is used to display the solution and the other is used to add constraints to the model. 

As in Chapter 6, Using the Distribute Constraint: Car Sequencing, you use decision 
variables in more sophisticated ways in this lesson. You still declare decision variables that 
will contain the solution to the problem, but you will also declare other decision variables 
that are used in finding the solution. 

Open the example file YourSolverHome/examples/src/tutorial/
crews_partial.cpp in your development environment. In the lessons in Part I, you 
completed most of the exercise code yourself. In this lesson and later lessons, the examples 
are more complex and more of the code is provided for you. You follow the steps to learn 
how to do specific tasks within the example code. 

In this exercise, you use constrained set variables (more on that later) and therefore you use 
the include file <ilsolver/ilosolverset.h>. 

The first step in converting your natural language description of the problem into code using 
Concert Technology classes is to create an environment and a model in the main function. 
The variable i is used in a “for” loop. Since you already know how to do this, it is provided 
for you in the exercise code:

Next, you create the variables to represent the number of crews, nCrews, and the number of 
attributes required for each flight, nAttributes. The attributes include crew experience 
level and language skills. In this lesson, the number of crews is initialized to 10 and the 
number of attributes is initialized to 5 (the minimum number of crew on a flight with a 
senior experience level, a junior experience level, French skills, German skills, and Spanish 

Step 2 Open the example file

int main() {
  IloEnv env;
  try {
    IloModel model(env);
    IloInt i;
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skills.) You can easily increase the number of crews or the number of attributes by changing 
the values of these variables. This code is provided for you:

Then, you represent the data of the program. 

You represent the names of the flight attendants using a C++ enumeration to associate 
meaningful names with the integer values. This code is provided for you:

You create an array Staff to represent all employees. This code is provided for you:

Now, you create arrays to represent all employees by experience level and by language 
skills. If you wanted to extend the example by adding another crew attribute to the model 
(for example, Italian language skills), you would create another array representing the flight 
attendants who possess that attribute. This code is provided for you:

After representing the known information of the problem, you declare the variables. The 
unknown information is the crew composition for each flight (which crew members work on 
which flights). Concert Technology gives you the means to represent the unknowns in this 

    const IloInt nAttributes = 5;
    const IloInt nCrews = 10;

    enum Employee {Bill, Bob, Carol, Carolyn, Cathy,
                   David, Ed, Fred, Heather, Inez,
                   Janet, Jean, Jeremy, Joe, Juliet,
                   Marilyn, Mario, Ron, Tom, Tracy};

    IloNumArray Staff(env, 20,
                      Bill, Bob, Carol, Carolyn, Cathy,
                      David, Ed, Fred, Heather, Inez,
                      Janet, Jean, Jeremy, Joe, Juliet,
                      Marilyn, Mario, Ron, Tom, Tracy);

    IloNumArray SeniorArray(env, 10,
                            Bill, Bob, Carol, Carolyn, Ed,
                            Fred, Janet, Marilyn, Mario, Tracy);
    IloNumArray JuniorArray(env, 10,
                            Cathy, David, Heather, Inez, Jean,
                            Jeremy, Joe, Juliet, Ron, Tom);
    IloNumArray FrenchArray(env, 5, Bill, Inez, Jean, Juliet, Ron);
    IloNumArray GermanArray(env, 5, Cathy, Jeremy, Juliet, Mario, Tom);
    IloNumArray SpanishArray(env, 7, Bill, Fred, Heather, Inez, Joe,
                             Marilyn, Mario);
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problem—the crew composition for each flight—as constrained set variables. A constrained 
set variable is a variable that represents a set of numeric values.

A constrained set variable is defined in terms of two other sets: its required elements and its 
possible elements. Its required elements are those that must be in the set. Its possible 
elements are those that may be in the set. 

Constrained set variables are represented by the class IloNumSetVar in Concert 
Technology. The first parameter of the constructor is the environment. The second parameter 
is the possible elements of the set and the third parameter is the required elements of the set. 
You have the option of creating a name for the variable, but you will not do so in this 
exercise. If only one array is given as a parameter, this array represents the set of possible 
elements. The last parameter is an optional name used for debug and trace purposes. Here is 
a constructor:

You use an instance of IloNumSetVarArray, an array of constrained set numeric variables, 
to represent the crew composition for all flights. These decision variables will contain the 
solution to the problem, once it is solved.

Add the following code after the comment //Declare the decision variables

Each flight crew is represented by an instance of IloNumSetVar and the crews for each of 
the 10 flights are represented by an instance of IloNumSetVarArray. The array is created 

Using constrained sets of variables

A set is a group of elements. These elements have no specific order. You can use
constrained sets of variables to model variables as sets. This is useful for avoiding
symmetric solutions and reducing the complexity of a model.

For example, you could represent each crew member on each flight as a separate
variable. But this would give you many solutions where the order of the crew members
was different, but the actual crew members were the same. 

A better model—one that avoids symmetric solutions—uses a single constrained set of
variables to represent each crew. This model reduces symmetry since it represents a crew
as a set.

     IloNumSetVar(const IloEnv env, 
                  const IloNumArray possible, 
                  const IloNumArray required, 
                  const char* name=0);

Step 3 Declare the decision variables

    IloNumSetVarArray crews(env, nCrews);
    for(i = 0; i < nCrews; i++)
      crews[i] = IloNumSetVar(env, Staff);
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by using a “for” loop to create one instance of IloNumSetVar to represent each crew. Since 
only one array is given as a parameter, this array represents the set of possible elements. The 
set of possible elements for each crew is the array Staff, or all the flight attendants. 

Now that you have added the data and declared the variables, you can add the constraints to 
the model.

First, you add the constraint that the flight attendants must rest at least two flights between 
assignments. To do this, you use the predefined constraint IloNullIntersect. This 
constraint takes two constrained set variables as arguments as well as the environment. It 
forces the set var1 to have no elements in common with the set var2. In other words, the 
intersection of var1 with var2 will be empty when this constraint is satisfied. Here is a 
constructor:

You can use IloNullIntersect to make sure that flight attendants rest at least two flights 
between assignments. 

Add the following code after the comment 
//Add the constraint on resting between flights

You first add the constraint that the intersection of the first crew and the second crew should 
be empty. In other words, these two crews will not share any staff. Then you add the 
constraint that the intersection of the first crew and the third crew should be empty. This is 
repeated in a “for” loop for all the flights, up to and including nCrews-1 or Flight # 9. An 
“if” clause is introduced because there is no need to add the second part of the constraint 
after Flight # 7.

The rest of the constraints, concerning crew size and requirements for experience levels and 
language skills, are added to the model by calling the function TeamConstraints, which is 
declared at the start of the program. This function takes six parameters:

◆ The first argument is model. 

◆ The second argument is an element of the array crews, or the crew members selected for 
each flight. 

IloConstraint IloNullIntersect(const IloEnv env,
                               const IloNumSetVar var1,  
                               const IloNumSetVar var2);

Step 4 Add the constraint on resting between flights

    for(i = 0 ; i < nCrews-1 ; i++) {
      model.add(IloNullIntersect(env, crews[i], crews[i+1]));
      if (i < nCrews-2)
        model.add(IloNullIntersect(env, crews[i], crews[i+2]));
    }
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◆ The third argument is an element of the array crewSize. 

◆ The fourth argument is an element of the array of arrays crewRequirements, or the 
requirements for each flight in terms of crew experience levels and language skills. 

◆ The fifth argument is attributeSets, the data reflecting the experience levels and 
language skills of each flight attendant in sets of decision variables. 

◆ The sixth parameter is dataArrays, the data reflecting experience levels and language 
skills of each flight attendant in numeric arrays.

Add the following code after the comment //Declare the TeamConstraints 
function

Parameters of TeamConstraints

You have already declared the model and the array of set variables crews. The other 
parameters are arrays or elements of arrays that are also declared in the main function: 
crewSize, dataArrays, crewRequirements, and attributeSets. 

crewSize

The array crewSize is declared in the main function. You declare an instance of the class 
IloNumArray with nCrews elements. The elements of this array are the crew size 
requirements for each flight. The following code is provided for you:

crewRequirements

The array crewRequirements is declared in the main function. You use the class 
IloArray to create an array of IloNumArray arrays. The array contains 10 arrays, one for 
each flight. Each element in the array crewRequirements is an array representing the crew 
requirements for each flight. Each array contains nAttributes elements, which is set to 5 
in this example. The first element is the number of required senior staff members and is 
initialized to 1. The second element is the number of required junior staff members and is 
initialized to 1. The third element is the number of required French speakers. The fourth 
element is the number of required German speakers. The fifth element is the number of 

Step 5 Declare the TeamConstraints function

void TeamConstraints(IloModel model,
                     const IloNumSetVar crews,
                     const IloNum crewSize,
                     const IloNumArray crewRequirements,
                     const IloNumSetVarArray attributeSets,
                     const IloArray<IloNumArray> dataArrays)  {
  IloEnv env = model.getEnv();

    IloNumArray crewSize(env, nCrews, 4, 5, 5, 6, 7, 4, 5, 6, 6, 7);
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required Spanish speakers. These three elements are all initialized to 1 because each flight 
must contain at least one of the following: senior staff member, junior staff member, French 
speaker, German speaker, and Spanish speaker. A “for” loop is used to create the 10 arrays. 
The following code is provided:

You use a C++ enumeration to associate meaningful names with the elements of the 
crewRequirements array. This code is provided:

You adjust the crewRequirements arrays for those requirements that are not the same as 
the initialized defaults. For example, Flight #4 has a minimum senior staff requirement of 2, 
not 1. Therefore, you initialize the seniorSet element of crewRequirements[3] to 2. 
The code is provided for you: 

attributeSets

The array of set variables attributeSets is declared in the main function. This is an array 
of sets that represents the experience levels and language skills of each flight attendant. 

First, you create the attribute sets using the class IloNumSetVar. For example, you create 
the set of variables Senior with three parameters. The first parameter is the environment. 
The second parameter, the set of possible values, is the array SeniorArray. The elements 
of SeniorArray are all flight attendants with senior experience levels. The third parameter, 
the set of required values, is the same array SeniorArray. In effect, this means that 
SeniorArray and Senior contain the same exact elements. However, both the numeric 
array, SeniorArray, and the constrained set of variables, Senior, will be used in creating 

    IloArray<IloNumArray> crewRequirements(env, nCrews);
    for (i =0; i < nCrews; i++)
      crewRequirements[i] = IloNumArray(env, nAttributes,
                                        1, 1, 1, 1, 1);

    enum CrewRequirementsElements {SeniorSet, JuniorSet,
                                   FrenchSet, GermanSet, SpanishSet};

      crewRequirements[3][SeniorSet] = 2;
      crewRequirements[3][JuniorSet] = 2;
      crewRequirements[3][FrenchSet] = 2;
      crewRequirements[3][SpanishSet] = 2;
      crewRequirements[4][SeniorSet] = 3;
      crewRequirements[4][JuniorSet] = 2;
      crewRequirements[4][FrenchSet] = 2;
      crewRequirements[4][SpanishSet] = 2;
      crewRequirements[8][SeniorSet] = 2;
      crewRequirements[8][JuniorSet] = 2;
      crewRequirements[9][SeniorSet] = 3;
      crewRequirements[9][JuniorSet] = 3;
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the constraints. Again, if you wanted to add another attribute, you would create a set 
representing the employees with that attribute. The following code is provided for you:

Next, you create the array of constrained set variables attributeSets. This array has 
nAttributes elements. The elements are the five sets of decision variables you just 
created. They will be used in creating constraints. The following code is provided:

dataArrays

The array dataArrays is declared in the main function. You use the class IloArray to 
create an array of IloNumArray arrays. The elements of this array are the five arrays used 
to represent the experience levels and language skills of the employees. This is the same 
information as that represented by attributeSets. Both forms of this data, numeric arrays 
and set variables, are required to create the constraints. The array contains NumAttributes 
elements, which is set to 5 in this example. This array represents all the attributes. If you 
wanted to add another attribute, for example another language skill, you would have to 
create an array representing the flight attendants who had that skill and then add it to the 
array of arrays dataArrays. The following code is provided for you:

Now that you know what the parameters represent, you can add constraints to the 
TeamConstraints function. The first constraint states that the size of the crew should be 
equal to the crew size requirement for the flight. To do this, you use the function IloCard. 
This function constrains the number of elements in a set variable. You use IloCard to 
constrain the size of the set crews to equal CrewSize. 

Add the following code after the comment //Add the constraint on crew size

    IloNumSetVar Senior(env, SeniorArray, SeniorArray);
    IloNumSetVar Junior(env, JuniorArray, JuniorArray);
    IloNumSetVar French(env, FrenchArray, FrenchArray);
    IloNumSetVar German(env, GermanArray, GermanArray);
    IloNumSetVar Spanish(env, SpanishArray, SpanishArray);

    IloNumSetVarArray attributeSets(env, nAttributes, Senior, Junior,
                                    French, German, Spanish);

    IloArray<IloNumArray> dataArrays(env, nAttributes);
    dataArrays[0] = SeniorArray;
    dataArrays[1] = JuniorArray;
    dataArrays[2] = FrenchArray;
    dataArrays[3] = GermanArray;
    dataArrays[4] = SpanishArray; 

Step 6 Add the constraint on crew size

  model.add(IloCard(crews) == crewSize);
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Next, you state the constraint that each crew must contain staff members that meet the 
requirements for experience level and language skills. To do this, you use the predefined 
constraint IloEqIntersection. This constraint takes four parameters, the environment 
and three sets of variables. The constraint forces the intersection of the sets var2 and var3 
to be precisely the elements of the set intersection. Here is a constructor: 

The code works in a loop. The first time you take the intersection of two sets: the set of crew 
members for Flight #1 and the set Senior, representing all employees with a senior 
experience level. The intersection of these sets represents the Flight #1 crew members who 
have a senior experience level. You then add a constraint that the number of crew members 
in this intersection (Flight #1 crew members with a senior experience level) is greater than or 
equal to the crew requirements for senior staff on Flight #1. You then loop back and take the 
intersection of the set of crew members for Flight #1 and the set Junior, representing all 
employees with a junior experience level. The intersection of these sets represents the Flight 
#1 crew members who have a junior experience level. You add the constraint that the number 
of crew members in this intersection (Flight #1 crew members with a junior experience 
level) is greater than or equal to the crew requirements for junior staff on Flight #1. You 
continue looping until you have done this for all the crew requirements: senior experience 
level, junior experience level, French, German, and Spanish.

Add the following code after the comment 
//Add the constraints on crew requirements

The number of times you loop is determined by crewRequirements.getSize. If, for 
example, you call the TeamConstraints function for Flight #1, you would have the 
following scenario. The set of variables intersection has a possible set of the element of 
dataArrays. In the first loop, this element is dataArrays[0] or SeniorArray, an 
IloNumArray which consists of all flight attendants who have a senior experience level. 
You use IloEqIntersection to add the constraint that intersection is a set that 
contains elements that are in both the set crews (the crew for Flight # 1) and the set of the 
specified element of attributeSets. In the first loop, this element is 

IloConstraint IloEqIntersection (const IloEnv env,
                                 const IloNumSetVar intersection,
                                 const IloNumSetVar var2,
                                 const IloNumSetVar var3);

Step 7 Add the constraints on crew requirements

  IloInt size = crewRequirements.getSize();
  for (IloInt i = 0; i < size; i++) {
    IloNumSetVar intersection(env, dataArrays[i]);
    model.add(IloEqIntersection(env, intersection, crews, attributeSets[i]));
    model.add(IloCard(intersection) >= crewRequirements[i]);
    }
}
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attributeSets[0] or Senior, an IloNumSetVar which consists of all flight attendants 
who have a senior experience level. Then you add a constraint using IloCard, to state that 
the number of members in the set intersection must be greater than or equal to the 
specified element of crewRequirements. In the first loop, this element is 
crewRequirements[0] or, in the case of Flight #1, 1 (a minimum of 1 flight attendant 
with a senior experience level must be in the crew). 

After you create the TeamConstraints function, you call it in the main function. A “for” 
loop is used to call the function 10 times, once for each flight. 

Add the following code after the comment //Call the TeamConstraints function

Solve

Now you create an instance of the class IloSolver to solve the problem expressed in the 
model.

Add the following code after the comment //Create an instance of IloSolver

Then you search for a solution using the predefined goal IloGenerate. You use a “for” 
loop to display the solution using the function Print. 

Step 8 Call the TeamConstraints function

    for(i=0; i< nCrews;i++)
      TeamConstraints(model, crews[i], crewSize[i],
                      crewRequirements[i], attributeSets, dataArrays);

Step 9 Create an instance of IloSolver

    IloSolver solver(model);
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Add the following code after the comment //Search for a solution 

You use the Print function to display the solution. You use an iterator to display the values 
in each set in the array of set variables crews. This code is provided for you: 

Step 10 Search for a solution

    if (solver.solve(IloGenerate(env, crews))){
      solver.out() << "Solution" << endl;
      for (IloInt j=0 ; j< crews.getSize() ; j++) {
        solver.out() << "Crew #" << (j+1) << ": " ;
        Print(solver, crews[j], Names);
      }
    }
    else
      solver.out() << "No solution" << endl;
    solver.printInformation();

void Print(IloSolver solver, IloNumSetVar crews, char** Names) {
  for(IloNumSet::Iterator iter(solver.getIntSetValue(crews));iter.ok();++iter){
    solver.out() << Names[(IloInt)*iter] << " ";
  }
  solver.out() << endl;
}

I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L 129



Compile and run the program. You should get the following results, though the information 
displayed by IloSolver::printInformation will vary depending on platform, 
machine, configuration, and so on:

As you can see, the crew members assigned to each flight are displayed. The complete 
program is listed in “Complete program” on page 134. You can also view it online in the file 
YourSolverHome/examples/src/crews.cpp. 

Review exercises

For answers, see “Suggested answers” on page 131.

1. What are some of the benefits of using sets of constrained variables?

2. How does the constraint IloEqIntersection work? 

3. Using the crews example as a starting point, extend the example to deal with a new crew 
requirement. Each flight crew must have at least one Italian speaker, except for Flight #4, 
which must have at least two Italian speakers. The following flight attendants speak 
Italian: Bob, Carol, Janet, Marilyn, and Tracy.

Step 11 Compile and run the program

Solution
Crew #1: Bill Bob Carol Cathy
Crew #2: Carolyn David Ed Fred Juliet
Crew #3: Heather Inez Janet Jeremy Joe
Crew #4: Bill Bob Carol Cathy Jean Marilyn
Crew #5: Carolyn David Ed Fred Juliet Mario Ron
Crew #6: Heather Inez Janet Jeremy
Crew #7: Bill Bob Carol Cathy Jean
Crew #8: Carolyn David Ed Fred Joe Juliet
Crew #9: Heather Inez Janet Jeremy Marilyn Mario
Crew #10: Bill Bob Carol Cathy Jean Ron Tom
Number of fails               : 8
Number of choice points       : 57
Number of variables           : 130
Number of constraints         : 232
Reversible stack (bytes)      : 20124
Solver heap (bytes)           : 112584
Solver global heap (bytes)    : 4044
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 11152
Total memory used (bytes)     : 160036
Elapsed time since creation   : 0.09
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4. Using the original crews example as a starting point, extend the example by adding five 
more flights with the following crew requirements:

Suggested answers

Exercise 1

What are some of the benefits of using sets of constrained variables?

Suggested Answer

You can use constrained sets of variables to represent certain problems as sets. This is useful 
for avoiding symmetric solutions and reducing the apparent complexity of a model.

Exercise 2

How does the constraint IloEqIntersection work? 

Suggested Answer

The constraint IloEqIntersection forces the intersection of two sets to be precisely the 
elements of a third set. 

Exercise 3

Using the crews example as a starting point, extend the example to deal with a new crew 
requirement. Each flight crew must have at least one Italian speaker, except for Flight #4, 
which must have at least two Italian speakers. The following flight attendants speak Italian: 
Bob, Carol, Janet, Marilyn, and Tracy.

Table 7.3 Flight requirements

Flight 
Number 

Size of 
Crew 

Minimum 
Number of 
Senior Staff 

Minimum 
Number of 
Junior Staff

Minimum 
Number of 
French Staff 

Minimum 
Number of 
German Staff

Minimum 
Number of 
Spanish Staff

#11  4 1 1 1 1 1

#12  4 1 1 1 1 1

#13  7 2 3 2 2 2

#14  4 1 1 1 1 1

#15  5 2 1 2 1 2
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Suggested Answer

The code that has changed from crews.cpp follows. You can view the complete program 
online in the file YourSolverHome/examples/src/crews_ex3.cpp.

You change the number of attributes:

You create an array of Italian speakers:

You add an element to dataArrays: 

You create an Italian set of variables:

You add this set of variables to the array of sets of variables and add the requirement that a 
default flight has one Italian speaker:

You add the requirements that Flight #4 have two Italian speakers:

    const IloInt nAttributes = 6;

    IloNumArray ItalianArray(env, 5, Bob, Carol, Janet, Marilyn, Tracy);

    dataArrays[5] = ItalianArray;

    IloNumSetVar Italian(env, ItalianArray, ItalianArray);

    IloNumSetVarArray attributeSets(env, nAttributes, Senior, Junior,
                                    French, German, Spanish, Italian);

    enum CrewRequirementsElements {SeniorSet, JuniorSet, FrenchSet,
                                   GermanSet, SpanishSet, ItalianSet};

   IloArray<IloNumArray> crewRequirements(env, nCrews);
   for (i =0; i < nCrews; i++)
     crewRequirements[i] = IloNumArray(env, nAttributes,
                                       1, 1, 1, 1, 1, 1);

     crewRequirements[3][ItalianSet] = 2;
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You should get the following results, though the information displayed by 
IloSolver::printInformation will vary depending on platform, machine, 
configuration, and so on.

Exercise 4

Using the original crews example as a starting point, extend the example by adding five 
more flights with the crew requirements as shown in Table 7.3 on page 131. 

Suggested Answer

The code that has changed from crews.cpp follows. You can view the complete program 
online in the file YourSolverHome/examples/src/crews_ex4.cpp.

You change the number of crews:

You specify the crew size of the additional flights:

Solution
Crew #1: Bill Bob Carol Cathy
Crew #2: Carolyn David Ed Juliet Marilyn
Crew #3: Fred Heather Inez Janet Jeremy
Crew #4: Bill Bob Carol Cathy Jean Joe
Crew #5: Carolyn David Ed Juliet Marilyn Mario Ron
Crew #6: Fred Inez Janet Jeremy
Crew #7: Bill Bob Carol Cathy Heather
Crew #8: Carolyn David Ed Jean Juliet Marilyn
Crew #9: Fred Inez Janet Jeremy Joe Mario
Crew #10: Bill Bob Carol Cathy Heather Ron Tom
Number of fails               : 44
Number of choice points       : 94
Number of variables           : 152
Number of constraints         : 273
Reversible stack (bytes)      : 24144
Solver heap (bytes)           : 128664
Solver global heap (bytes)    : 4044
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 11152
Total memory used (bytes)     : 180136
Elapsed time since creation   : 0.07

    const IloInt nCrews = 15;

    IloNumArray crewSize(env, nCrews, 4, 5, 5, 6, 7, 4, 5, 6,
                                      6, 7, 4, 4, 7, 4, 5);
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You specify specific crew requirements for the additional flights:

You should get the following results, though the information displayed by 
IloSolver::printInformation will vary depending on platform, machine, 
configuration, and so on.

Complete program

The complete crews program follows. You can also view it online in the file 
YourSolverHome/examples/src/crews.cpp. 

#include <ilsolver/ilosolverset.h>
ILOSTLBEGIN

      crewRequirements[12][SeniorSet] = 2;
      crewRequirements[12][JuniorSet] = 3;
      crewRequirements[12][FrenchSet] = 2;
      crewRequirements[12][GermanSet] = 2;
      crewRequirements[12][SpanishSet] = 2;
      crewRequirements[14][SeniorSet] = 2;
      crewRequirements[14][FrenchSet] = 2;
      crewRequirements[14][SpanishSet] = 2;

Solution
Crew #1: Bill Bob Carol Cathy
Crew #2: Carolyn David Ed Fred Juliet
Crew #3: Heather Inez Janet Jeremy Joe
Crew #4: Bill Bob Carol Cathy Jean Marilyn
Crew #5: Carolyn David Ed Fred Juliet Mario Ron
Crew #6: Heather Inez Janet Jeremy
Crew #7: Bill Bob Carol Cathy Jean
Crew #8: Carolyn David Ed Fred Joe Juliet
Crew #9: Heather Inez Janet Jeremy Marilyn Mario
Crew #10: Bill Bob Carol Cathy Jean Ron Tom
Crew #11: Carolyn David Fred Juliet
Crew #12: Ed Heather Inez Jeremy
Crew #13: Bill Bob Carol Cathy Jean Joe Mario
Crew #14: Carolyn David Fred Juliet
Crew #15: Ed Inez Jeremy Marilyn Ron
Number of fails               : 21
Number of choice points       : 89
Number of variables           : 190
Number of constraints         : 347
Reversible stack (bytes)      : 28164
Solver heap (bytes)           : 164844
Solver global heap (bytes)    : 4044
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 11152
Total memory used (bytes)     : 220336
Elapsed time since creation   : 0.08
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void TeamConstraints(IloModel model,
                     const IloNumSetVar crews,
                     const IloNum crewSize,
                     const IloNumArray crewRequirements,
                     const IloNumSetVarArray attributeSets,
                     const IloArray<IloNumArray> dataArrays)  {
  IloEnv env = model.getEnv();
  model.add(IloCard(crews) == crewSize);
  IloInt size = crewRequirements.getSize();
  for (IloInt i = 0; i < size; i++) {
    IloNumSetVar intersection(env, dataArrays[i]);
    model.add(IloEqIntersection(env, intersection, crews, attributeSets[i]));
    model.add(IloCard(intersection) >= crewRequirements[i]);
    }
}
void Print(IloSolver solver, IloNumSetVar crews, char** Names) {
  for(IloNumSet::Iterator iter(solver.getIntSetValue(crews));iter.ok();++iter){
    solver.out() << Names[(IloInt)*iter] << " ";
  }
  solver.out() << endl;
}
int main() {
  IloEnv env;
  try {
    IloModel model(env);
    IloInt i;
    char* Names[20];

    for (i=0; i < 20; i++){
      Names[i]=new (env) char[10];
    }
    strcpy(Names[0],"Bill");
    strcpy(Names[1],"Bob");
    strcpy(Names[2],"Carol");
    strcpy(Names[3],"Carolyn");
    strcpy(Names[4],"Cathy");
    strcpy(Names[5],"David");
    strcpy(Names[6],"Ed");
    strcpy(Names[7],"Fred");
    strcpy(Names[8],"Heather");
    strcpy(Names[9],"Inez");
    strcpy(Names[10],"Janet");
    strcpy(Names[11],"Jean");
    strcpy(Names[12],"Jeremy");
    strcpy(Names[13],"Joe");
    strcpy(Names[14],"Juliet");
    strcpy(Names[15],"Marilyn");
    strcpy(Names[16],"Mario");
    strcpy(Names[17],"Ron");
    strcpy(Names[18],"Tom");
    strcpy(Names[19],"Tracy");

    enum Employee {Bill, Bob, Carol, Carolyn, Cathy,
                   David, Ed, Fred, Heather, Inez,
                   Janet, Jean, Jeremy, Joe, Juliet,
                   Marilyn, Mario, Ron, Tom, Tracy};
    IloNumArray Staff(env, 20,
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                      Bill, Bob, Carol, Carolyn, Cathy,
                      David, Ed, Fred, Heather, Inez,
                      Janet, Jean, Jeremy, Joe, Juliet,
                      Marilyn, Mario, Ron, Tom, Tracy);
    
    const IloInt nAttributes = 5;
    const IloInt nCrews = 10;
    IloNumSetVarArray crews(env, nCrews);
    for(i = 0; i < nCrews; i++)
      crews[i] = IloNumSetVar(env, Staff);
    IloNumArray SeniorArray(env, 10,
                            Bill, Bob, Carol, Carolyn, Ed,
                            Fred, Janet, Marilyn, Mario, Tracy);
    IloNumArray JuniorArray(env, 10,
                            Cathy, David, Heather, Inez, Jean,
                            Jeremy, Joe, Juliet, Ron, Tom);
   
    IloNumArray FrenchArray(env, 5, Bill, Inez, Jean, Juliet, Ron);
    IloNumArray GermanArray(env, 5, Cathy, Jeremy, Juliet, Mario, Tom);
    IloNumArray SpanishArray(env, 7, Bill, Fred, Heather, Inez, Joe,
                             Marilyn, Mario);

    IloArray<IloNumArray> dataArrays(env, nAttributes);
    dataArrays[0] = SeniorArray;
    dataArrays[1] = JuniorArray;
    dataArrays[2] = FrenchArray;
    dataArrays[3] = GermanArray;
    dataArrays[4] = SpanishArray; 

    IloNumSetVar Senior(env, SeniorArray, SeniorArray);
    IloNumSetVar Junior(env, JuniorArray, JuniorArray);
    IloNumSetVar French(env, FrenchArray, FrenchArray);
    IloNumSetVar German(env, GermanArray, GermanArray);
    IloNumSetVar Spanish(env, SpanishArray, SpanishArray);
    IloNumArray crewSize(env, nCrews, 4, 5, 5, 6, 7, 4, 5, 6, 6, 7);
    IloNumSetVarArray attributeSets(env, nAttributes, Senior, Junior,
                                    French, German, Spanish);

    enum CrewRequirementsElements {SeniorSet, JuniorSet,
                                   FrenchSet, GermanSet, SpanishSet};

    IloArray<IloNumArray> crewRequirements(env, nCrews);
    for (i =0; i < nCrews; i++)
      crewRequirements[i] = IloNumArray(env, nAttributes,
                                        1, 1, 1, 1, 1);
      crewRequirements[3][SeniorSet] = 2;
      crewRequirements[3][JuniorSet] = 2;
      crewRequirements[3][FrenchSet] = 2;
      crewRequirements[3][SpanishSet] = 2;
      crewRequirements[4][SeniorSet] = 3;
      crewRequirements[4][JuniorSet] = 2;
      crewRequirements[4][FrenchSet] = 2;
      crewRequirements[4][SpanishSet] = 2;
      crewRequirements[8][SeniorSet] = 2;
      crewRequirements[8][JuniorSet] = 2;
      crewRequirements[9][SeniorSet] = 3;
      crewRequirements[9][JuniorSet] = 3;
    for(i=0; i< nCrews;i++)
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      TeamConstraints(model, crews[i], crewSize[i],
                      crewRequirements[i], attributeSets, dataArrays);
    for(i = 0 ; i < nCrews-1 ; i++) {
      model.add(IloNullIntersect(env, crews[i], crews[i+1]));
      if (i < nCrews-2)
        model.add(IloNullIntersect(env, crews[i], crews[i+2]));
    }

    IloSolver solver(model);
    if (solver.solve(IloGenerate(env, crews))){
      solver.out() << "Solution" << endl;
      for (IloInt j=0 ; j< crews.getSize() ; j++) {
        solver.out() << "Crew #" << (j+1) << ": " ;
        Print(solver, crews[j], Names);
      }
    }
    else
      solver.out() << "No solution" << endl;
    solver.printInformation();
  }
  catch (IloException& ex) {
    cerr << "Error: " << ex << endl;
  }
  env.end();
  return 0;
}

Results

You should get the following results, though the information displayed by 
IloSolver::printInformation will vary depending on platform, machine, 
configuration, and so on.

Solution
Crew #1: Bill Bob Carol Cathy
Crew #2: Carolyn David Ed Fred Juliet
Crew #3: Heather Inez Janet Jeremy Joe
Crew #4: Bill Bob Carol Cathy Jean Marilyn
Crew #5: Carolyn David Ed Fred Juliet Mario Ron
Crew #6: Heather Inez Janet Jeremy
Crew #7: Bill Bob Carol Cathy Jean
Crew #8: Carolyn David Ed Fred Joe Juliet
Crew #9: Heather Inez Janet Jeremy Marilyn Mario
Crew #10: Bill Bob Carol Cathy Jean Ron Tom
Number of fails               : 8
Number of choice points       : 57
Number of variables           : 130
Number of constraints         : 232
Reversible stack (bytes)      : 20124
Solver heap (bytes)           : 112584
Solver global heap (bytes)    : 4044
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 11152
Total memory used (bytes)     : 160036
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Elapsed time since creation   : 0.09
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C H A P T E R
8

Combining Constraints: Bin Packing

In this lesson, you will learn how to: 

◆ combine constraints using logical operators

◆ modify the model during the solve phase

◆ use IloIfThen, IloRange, and IloRangeArray

Describe

The bin packing problem is a simplified example of a problem found in many industrial 
settings, such as configuration of telecommunications switching equipment. In this lesson, 
you will learn more about modeling techniques, including combining constraints. You will 
also learn how to modify a model during the solve phase—you will add constraints to the 
model during search. 

In this problem you have components of different types and bins of various types. There are 
various constraints on which type of component can go into which type of bin. You must 
find the minimum total number of bins required to contain the components.

In this example there are five types of components: glass, plastic, steel, wood, copper. There 
are three types of bins: red, blue, green. 

Each type of bin has a different capacity: 
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◆ red can contain 3 components

◆ blue can contain 1 component 

◆ green can contain 4 components

Each type of bin can only contain certain types of components:

◆ red can contain glass, wood, copper

◆ blue can contain glass, steel, copper

◆ green can contain plastic, wood, copper

There are also some special requirements on the mixing of component types:

◆ wood requires plastic (a bin that contains wood must also contain plastic, but a bin that 
contains plastic does not necessarily also contain wood)

◆ glass excludes copper (a bin that contains glass cannot also contain copper) 

◆ copper excludes plastic (a bin that contains copper cannot also contain plastic) 

There are some limits on certain types of components in certain types of bins:

◆ red can contain at most 1 component of type wood

◆ green can contain at most 2 components of type wood

The demand for each type of component is: 

◆ 2 components of type glass 

◆ 4 components of type plastic

◆ 3 components of type steel

◆ 6 components of type wood 

◆ 4 components of type copper 

The first step in modeling and solving a problem is to write a natural language description of 
the problem, identifying the decision variables and the constraints on these variables. 

Note: This bin packing example is based on a problem designed by André Vellino. Vellino 
created this bin packing problem while working on a problem dealing with the 
configuration of telecom switching equipment. In this problem, different shelves can 
contain line cards subject to capacity constraints. The shelves have requirement and 
exclusion constraints. The problem is how to distribute components to minimize the number 
of shelves.

Step 1 Describe the problem
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Write a natural language description of this problem. Answer these questions:

◆ What is the known information in this problem?

◆ What are the decision variables or unknowns in this problem? 

◆ What are the constraints on these variables?

◆ What is the objective?

Discussion

What is the known information in this problem?

◆ There are three types of bins: red, blue, green.

◆ There are five types of components: glass, plastic, steel, wood, copper. 

◆ There is the following demand for each type of component: 2 glass components, 4 plastic 
components, 3 steel components, 6 wood components, and 4 copper components.

What are the decision variables in this problem?

◆ What is the type of each bin?

◆ How many components of each type are in each bin?

What are the constraints in this problem?

◆ There are a variety of constraints in this problem. Most of them are summarized in the 
following table:

There are a few other constraints relating to the mixing of different types of components in 
the bins:

◆ wood requires plastic (a bin that contains wood must also contain plastic, but a bin that 
contains plastic does not necessarily also contain wood)

◆ glass excludes copper (a bin that contains glass cannot also contain copper) 

◆ copper excludes plastic (a bin that contains copper cannot also contain plastic) 

Table 8.1 Bin packing constraints

Bin Bin Capacity
Component

 glass  plastic  steel  wood  copper 

red  3  yes at most 1  yes

blue  1  yes  yes   yes

green  4   yes at most 2  yes
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There are constraints relating to the total number of bins:

◆ the sum over all the bins of the quantities of a given component must be equal to the 
demand for that component

◆ the total capacity must be equal to or exceed the total demand

What is the objective?

◆ To minimize the number of bins used 

Model

Once you have written a description of your problem, you can use Concert Technology 
classes to model it. You are going to model the bin packing problem in a different way from 
the way that you have modeled problems in previous lessons. In this lesson, you use classes 
to represent some of the model. You would normally want to create most industrial 
applications in this way, using object orientation.

You are going to create a class Bin. Instances of the class Bin represent the different bins 
used. Each instance of the class Bin will be described by three properties: type, capacity, 
and an array representing the number of each type of component in the bin. Each instance of 
the class Bin also adds the constraints to the model that affect each bin: constraints on bin 
capacity, bin contents, and the mixing of types of components in bins. 

Open the example file YourSolverHome/examples/src/tutorial/
binpacking_partial.cpp in your development environment. 

First, you create an environment and a model. This code is provided for you:

In this lesson, you first define the class Bin with data members, a constructor, and a method 
to display the solution. The data members are the decision variables of the problem: the type 

Step 2 Open the example file

int main(){
  IloEnv env;
  try {
    IloModel model(env);
    IloInt i;
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of bin, the capacity of the bin, and an array representing the number of each type of 
component in the bin. This code is provided for you:

Add the following code after the comment //Declare the constructor

The constructor for an instance of Bin takes four parameters. The first parameter is the 
model. The second parameter is an array Capacity that contains the capacities of the 
different types of bins. The third parameter is nTypes, the number of types of bins. The 
fourth parameter is nComponents, the number of types of components.

In the constructor, you also declare the decision variables for each instance of Bin.

Add the following code after the comment 
//Declare the decision variables in the constructor

class Bin {
public:
  IloIntVar       _type;
  IloIntVar       _capacity;
  IloIntVarArray  _contents;
  Bin (IloModel    mod,
       IloIntArray Capacity,
       IloInt      nTypes,
       IloInt      nComponents);
  void display(const IloSolver sol);
};

Note: For the sake of clarity in this example, the constrained integer variables are declared 
as public data members. However, good software engineering practices recommend 
private data members in similar cases for large programs.

Step 3 Declare the constructor

Bin::Bin (IloModel model,
          IloIntArray Capacity,
          IloInt nTypes,
          IloInt nComponents) {

Step 4 Declare the decision variables in the constructor

  IloEnv env = model.getEnv();
  _type = IloIntVar(env, 0, nTypes-1);
  _capacity = IloIntVar(env, 0, IloMax(Capacity));
  _contents = IloIntVarArray(env, nComponents, 0, 4);
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The first variable _type is an IloIntVar with a lower bound of 0 and an upper bound of 
nTypes-1. The second variable _capacity is an IloIntVar with a lower bound of 0. The 
upper bound is the maximum value in the array Capacity. The array of variables 
_contents is an IloIntVarArray representing the number of components of each type in 
the bin. The size of the array is nComponents, the lower bound is 0, and the upper bound is 
4.

The decision variables _type and _contents will contain the solution to the problem, once 
it is solved. Declaring a decision variable for _capacity may seem redundant to you, since 
the capacity of a bin can be easily determined from its type. However, the decision variable 
_capacity is used in creating constraints and finding a solution. Since constraints are 
placed on this variable, it needs to be a decision variable.

Next, you create the constraints that affect each bin: constraints on bin capacity, bin 
contents, and the mixing of types of components in bins. All of these constraints have to be 
true for each bin and are created in the constructor of the class. These constraints are called 
class constraints since they will be true for all the instances of Bin. Each constraint must 
also be added to the model using the member function IloModel::add.

Add the following code after the comment 
//Create the capacity constraints in the constructor

The first constraint states that the variable _capacity must be equal to the value in the 
array Capacity corresponding to the type of bin, which is given by the variable _type. The 
second constraint states that the variable _capacity must be greater than or equal to the 
sum of the values in the array _contents, which is the sum of the number of components of 
each type in the bin. The third constraint states that bin must not be empty; 0 must be less 
than the sum of the values in the array _contents. 

Next, you create the constraints that state what type of components can go in what type of 
bin. To do this, you use metaconstraints and the predefined constraint IloIfThen. The 
constructor for IloIfThen creates a condition constraint. The first parameter is the 
environment. The parameter left indicates the IF clause. The parameter right indicates 
the THEN clause. The fourth optional parameter is a name used for debug and trace 
purposes. Here is a constructor for IloIfThen:

Step 5 Create the capacity constraints in the constructor

  model.add(_capacity == Capacity(_type));
  model.add(_capacity >= IloSum(_contents));
  model.add(0. < IloSum(_contents));

     IloIfThen (const IloEnv env,
                const IloConstraint left,
                const IloConstraint right,
                const char* name = 0);
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For example, to create the constraints relating specifically to red bins you use IloIfThen. 
This is a metaconstraint because the constraint IloIfThen is a constraint placed on other 
constraints—the constraints representing the IF and THEN clauses. The IF part of the 
condition is represented by a constraint that uses the logical operator == to evaluate if the 
variable _type is equal to red. The THEN clause then performs an action based on this 
evaluation. The THEN part of the constraint is a metaconstraint itself consisting of three 
constraints joined by the logical AND operator &&. The first constraint uses the logical 
operator == to set the number of components of type plastic equal to 0. The second 
constraint uses the logical operator == to set the number of components of type steel equal 
to 0. The third constraint uses the logical operator <= to set the number of components of 
type wood to less than or equal to 1. In other words, IF the type of bin is equal to red, THEN 
the bin is constrained to have no plastic components, no steel components, and no more than 
1 wood component. 

Add the following code after the comment 
//Create the constraints on bin type red in the constructor

You use the same technique to create the constraints on bins of type blue and green in the 
constructor. This code is provided for you:

You also use metaconstraints, logical operators, and the constraint IloIfThen to state the 
constraints relating to the mixing of different types of components in the bins. This code is 
provided for you:

Step 6 Create the constraints on bin type red in the constructor

  model.add(IloIfThen(env, _type == red,
                      ((_contents[plastic] == 0)
                       && (_contents[steel] == 0)
                       && (_contents[wood] <= 1))));

  model.add(IloIfThen(env, _type == blue,
                      ((_contents[plastic] == 0) && (_contents[wood] == 0))));
  model.add(IloIfThen(env, _type == green,
                      ((_contents[glass] == 0)
                       && (_contents[steel] == 0)
                       && (_contents[wood] <= 2))));

  model.add(IloIfThen(env, _contents[wood] != 0, _contents[plastic] != 0));
  model.add(((_contents[glass] == 0)  || (_contents[copper]  == 0)));
  model.add(((_contents[copper] == 0) || (_contents[plastic] == 0)));
}
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You create the function display to display the solution, including bin type, capacity, and 
the number of each type of component contained in the bin. This code is provided for you:

After you have completed the declaration of the Bin class and its constructor and member 
function, the next step is to create an environment and a model in the main function. The 
variable i will be used in a “for” loop. Since you already know how to do this, it is provided 
for you in the exercise code:

You create and initialize nComponents, representing the number of types of components, 
and nTypes, representing the number of types of bins. This code is provided for you:

You create an array Demand, with nComponents members. This array contains the demand 
for each type of component. There is the following demand for each type of component: 2 
glass components, 4 plastic components, 3 steel components, 6 wood components, and 4 
copper components. This code is provided for you:

You create an array Capacity, with nTypes members. This array contains the capacity of 
each type of bin: red bins have a capacity of 3, blue bins have a capacity of 1, and green bins 
have a capacity of 4. This code is provided for you:

You create two variables, totalDemand and maxBin. The variable totalDemand is equal 
to the sum of the demands for each type of component. In this example, totalDemand 

void Bin::display(const IloSolver solver) {
  _type.getEnv().out() << "Type :\t"
                       << Types[(IloInt)solver.getValue(_type)] << endl;
  _type.getEnv().out() << "Capacity:\t"
                       << solver.getValue(_capacity) << endl;
  IloInt nComponents = _contents.getSize();
  for (IloInt i = 0; i < nComponents; i++)
    if (solver.getValue(_contents[i]) > 0)
      _type.getEnv().out() << Components[i] << " :  \t"
                           << solver.getValue(_contents[i]) << endl;
  _type.getEnv().out() << endl;
}

int main(){
  IloEnv env;
  try {
    IloModel model(env);
    IloInt i;

    const IloInt nComponents = 5;
    const IloInt nTypes = 3;

    IloIntArray Demand(env, nComponents, 2, 4, 3, 6, 4);

    IloIntArray Capacity(env, nTypes, 3, 1, 4);
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equals 19. This is the sum of the demand for each type of component (2 + 4 + 3 + 6 + 4). 
You then set maxBin equal to totalDemand. This means that, at the most, you would need 
one bin for each component. This code is provided for you: 

Next, you use range constraints to implement the following constraints:

◆ the total capacity of all the bins must be at least equal to the total demand for all 
components

◆ the amount of each type of component in all the bins must equal the demand for each 
type of component

You use the predefined constraints IloRange and IloRangeArray. The constructor for 
IloRange creates an empty range. The first parameter is the environment. The second and 
third parameters are the lower and upper bounds of the range. The fourth optional parameter 
is a name used for debug and trace purposes. Here is a constructor:

The constructor for IloRangeArray creates an array of empty ranges. The first parameter 
is the environment. The second and third parameters are arrays. The number of elements in 
the range array will equal the number of elements in the arrays lbs or ubs (which must both 
contain the same number of elements). The lower bound of each element in the range array 
will be equal to the corresponding element in the array lbs. The upper bound of each 
element in the range array will be equal to the corresponding element in the array ubs. Here 
is a constructor:

Add the following code after the comment //Create the range constraints

    IloInt totalDemand = (IloInt)IloSum(Demand);
    const IloInt maxBin = (IloInt)totalDemand;

     IloRange(const IloEnv env,
              IloNum lb,
              IloNum ub,
              const char* name = 0);

IloRangeArray(const IloEnv env,
              const IloNumArray lbs,
              const IloNumArray ubs);

Step 7 Create the range constraints

    IloRange totalCapacityCon(env, totalDemand, IloIntMax);
    model.add(totalCapacityCon);
    IloRangeArray componentsDemandCon(env, Demand, Demand);
    model.add(componentsDemandCon);
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The constraint totalCapacityCon creates an empty range with a lower bound equal to 
totalDemand (or 19 in this example) and an upper bound of IloIntMax. This constraint 
states that the total capacity of all the bins must be at least equal to the total demand for 
components. The constraint componentsDemandCon creates an empty array of ranges. 
Each range in the array has the same lower and upper bound: the values of the array Demand. 
This constraint states that the amount of each type of component in all the bins must equal 
the demand for each type of component. For example, the demand for glass is 2 components. 
Therefore, for this constraint to be satisfied the contents of all the bins must sum to exactly 2 
components of type glass, and likewise for the other types of components. 

Solve

You are going to solve this problem in a different way than you solved other problems. In 
previous lessons, you created a model, declaring variables and adding constraints, and then 
solved the problem.The two stages of modeling and solving were clearly separated. In this 
problem, you solve in an incremental fashion. First you create one bin and fill it, making 
sure that all class constraints are satisfied. If all of the demand for each type of component 
has been met, then you have a solution. If not, Solver creates a second bin and fills it, making 
sure all class constraints are satisfied. When the problem is solved, you can be sure that the 
minimum number of bins has been used because of this incremental process. The objective, 
which is to minimize the number of bins used, is treated implicitly by the incremental 
solving method. It is never formally added to the model. 

This example will show you how to add constraints to the model during the solving phase. In 
this problem, some of the constraints—the range constraints and the constraints to reduce 
symmetry—are defined with respect to the total number of bins used. For example, the 
constraint that the total capacity must exceed the demand depends on the number of bins. As 
a consequence, these constraints have to be redefined at each step since the total number of 
bins used so far changes at each step. This redefinition is carried out inside a “do-while” 
loop. Inside that loop, Solver detects whether a solution has been found yet. If there is no 
solution, Solver increments the number of bins used by one. 
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The following chart shows the process you will use to solve this problem: 

First, you create pointers to the instances of the Bin class. The pointer newBin points to the 
instance of the class Bin just created inside the “do-while” loop. The pointer prevBin 
points to the instance of the class Bin created in the previous “do-while” loop and is 
initialized at 0. The pointer theBins points to an array of all the instances of class Bin 
created so far. The maximum number of possible instances of Bin is maxBin, or 19 in this 
example. 

Add the following code after the comment //Create the pointers to the bins

A Boolean variable solution is created and initialized as false, which means that when you 
start there is no solution. This code is provided for you:

Now you create an instance of the class IloSolver to solve the problem expressed in the 
model.

Add the following code after the comment //Create an instance of IloSolver

solution = false
DO
     create a new bin
     add the bin to the range constraints
     IF there are at least 2 bins
          add the symmetry reduction constraints
     IF no solution is found
          the new bin becomes the previous bin
          increment the number of bins
     ELSE 
          solution = true
WHILE solution = false and the number of bins 
      is less than maxBin, continue DO
IF solution = true
      display the solution

Step 8 Create the pointers to the bins

    Bin* prevBin  =0;
    Bin* newBin;
    Bin** theBins = new Bin*[maxBin];
    IloInt nBins = 1;

    IloBool solution = IloFalse;

Step 9 Create an instance of IloSolver

    IloSolver solver(model);
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You now create the “do-while” loop in the solving phase. The first step in the loop is to 
create a new instance of the class Bin. Solver creates a new instance of class Bin and adds it 
to the array of bins theBins.

Add the following code after the comment //Create an instance of Bin

Next, you add the bins to the range constraints you created in  Step 7 on page 147.

Add the following code after the comment //Add the bin to the range 
constraints

The capacity of the bin is added to the range totalCapacityCon. The capacity of the first 
bin will not equal totalDemand, 19 in this example, so the constraint is not satisfied. In the 
next “do-while” loop, the capacity of the second bin is added to the capacity of the first bin, 
and the sum is tested to see if it is equal to totalDemand. When the sum of the capacities of 
all the bins equals totalDemand, the constraint totalCapacityCon is satisfied.

A “for” loop is used to populate the range array componentsDemandCon. The contents of 
the first bin are added to the range array by component type. For example, if the first bin 
contained 2 components of type glass, the range array componentsDemandCon would be 
[2,0,0,0,0]. In order for this constraint to be satisfied, the range array 
componentsDemandCon needs to equal the array Demand [2,4,3,6,4]. So in this case, 
the constraint would not be satisfied. In the next “do-while” loop, the contents of the second 
bin is added to contents of the first bin, and the sums of each type of component is tested to 
see if they are equal to the elements of the array Demand. When the sums are equal to the 
elements of the array Demand, the constraint componentsDemandCon is satisfied.

After adding the range constraints to the “do-while” solving loop, you now add constraints 
to reduce symmetry if there are at least 2 bins. One way to reduce symmetry is to group 

Step 10 Create an instance of Bin

    do{
      newBin = new Bin(model, Capacity, nTypes, nComponents);
      theBins[nBins-1] = newBin;

Step 11 Add the bin to the range constraints

      totalCapacityCon.setCoef(newBin->_capacity, 1.);
      for (i = 0; i < nComponents; i++)
        componentsDemandCon[i].setCoef(newBin->_contents[i], 1.);
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variables by type. Another way to reduce symmetry is to introduce order among variables, 
which is what you will do in this lesson.

You add constraints that state that the bins must be added in increasing order by type. This 
constraint removes only symmetric solutions; it does not eliminate any “real” solutions. 

For example, if your solution in this problem requires 3 bins, one of each color, all of the 
following solutions are correct:

◆ 1 red bin, 1 blue bin, 1 green bin

◆ 1 red bin, 1 green bin, 1 blue bin

◆ 1 blue bin, 1 green bin, 1 red bin

◆ 1 blue bin, 1 red bin, 1 green bin

◆ 1 green bin, 1 blue bin, 1 red bin

◆ 1 green bin, 1 red bin, 1 blue bin 

These are six different solutions. However, in a physical sense, all of these solutions are 
identical; they all consist of 1 red bin, 1 blue bin, and 1 green bin.

You introduce order by creating two more constraints, which are added to the model during 
the solving phase. The first constraint states that the type of each new bin should be greater 
than or equal to the type of the previous bin. This constraint orders the variables, first 
selecting bins of type red, then bins of type blue, and then bins of type green. After adding 
the constraint to reduce symmetry based on type of bin, you also need a second constraint 
that deals with the fact that there may be more than one bin of any given type in your 
solution. For example, if your solution includes one bin of type red with 1 component of 
type glass, 1 bin of type blue with 1 component of type glass, and 1 bin of type blue with 1 
component of type steel, both of the following results are correct:

Introduce order among variables

There is no need to examine all the possible solutions for variables and their values when
two or more constrained variables satisfy the following conditions: 

◆ the initial domains of these constrained variables are identical

◆ these variables are subject to the same constraints 

◆ the position of the variables can be changed without changing the statement of the
problem

By introducing order among these variables so that only one of these permutations is
found, you minimize the size of the search space.

Note: In problems such as car sequencing, the order of the variables is important. In those 
types of problems, you would not want to introduce an artificial order.
I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L 151



◆ Bin 1: red bin—1 glass, Bin 2: blue bin—1 glass, Bin 3: blue bin—1 steel

◆ Bin 1: red bin—1 glass, Bin 2: blue bin—1 steel, Bin 3: blue bin—1 glass

However, in a physical sense these two solutions are identical. One way to order these 
solutions is to assign a different weight to each type of component. You can use the function 
IloScalProd and the predefined constraint IloIfThen to do this. (The function 
IloScalProd was introduced in Chapter 3, Using Arrays and Basic Search: 
Changing Money.) First you create an array of coefficients. This is provided for you in the 
code:

Then you use IloScalProd to assign a different coefficient to each type of component. For 
example, components of type glass have a coefficient of 625. Components of type steel have 
a coefficient of 25. You add a constraint that states that, if the new bin and the previous bin 
are both the same type of bin, then the IloScalProd of the new bin must be greater than or 
equal to the IloScalProd of the previous bin. In the example just described, the two blue 
bins are the same type. However, they do not have the same IloScalProd. The blue bin 
with 1 component of type glass has a scalar product of 1 * 625 = 625. The blue bin with 1 
component of type steel has a scalar product of 1 * 25 = 25. Therefore, after removing 
symmetric solutions, only this solution will be found:

◆ Bin 1: red bin—1 glass, Bin 2: blue bin—1 steel, Bin 3: blue bin—1 glass

Add the following code after the comments //Add the constraints to reduce 
symmetry

You now search for a solution with the member function IloSolver::solve. The search 
is placed in an “if-else” statement. If the search does not find a solution, the current bin 
becomes the previous bin and the number of bins increments by 1. While there is no solution 
and while the number of bins is less than or equal to maxBin, which is 19 in this example, 
the program returns to the “do” portion of the loop. This loop creates a new bin, adds the 
new bin to the range and symmetry constraints, and searches for a solution. If search finds a 
solution, the variable solution becomes true. The “do-while” loop is broken and Solver 
displays the solution. 

    IloIntArray coef(env, nComponents, 625, 125, 25, 5, 1);

Step 12 Add the constraints to reduce symmetry

      if (prevBin != 0){
        model.add(newBin->_type >= prevBin->_type);
        model.add(IloIfThen(env, prevBin->_type == newBin->_type,
                            IloScalProd(newBin->_contents, coef)
                            >= IloScalProd(prevBin->_contents, coef)  ));
      }
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Add the following code after the comment //Search for a solution 

You use the display function to display the solution: each bin is listed with its type, 
capacity, and contents. This code is provided for you: 

Finally, you clean up the memory. This code is provided for you:

Step 13 Search for a solution

      solver.out() << "Search with " << nBins << endl;
      if (!solver.solve()){
        prevBin = newBin;
        nBins++;
      }
      else
        solution = IloTrue;
    }
    while (!solution && nBins <= maxBin);

    if (solution) {
      for(i = 0; i < nBins; i++){
        theBins[i]->display(solver);
      }
    }

    for  (i = 0; i < nBins; ++i)
      delete theBins[i];
    delete [] theBins;
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Compile and run the program. You should get the following results:

As you can see, the solution requires 8 bins. Each bin is displayed, including its type, 
capacity, and contents. The complete program is listed in “Complete program” on page 157. 
You can also view it online in the file YourSolverHome/examples/src/
binpacking.cpp. 

Step 14 Compile and run the program

Search with 1
Search with 2
Search with 3
Search with 4
Search with 5
Search with 6
Search with 7
Search with 8
Type :  Red
Capacity:       3
Glass :         2

Type :  Blue
Capacity:       1
Steel :         1

Type :  Blue
Capacity:       1
Steel :         1

Type :  Blue
Capacity:       1
Steel :         1

Type :  Green
Capacity:       4
Copper :        4

Type :  Green
Capacity:       4
Plastic :       1
Wood :          2

Type :  Green
Capacity:       4
Plastic :       1
Wood :          2

Type :  Green
Capacity:       4
Plastic :       2
Wood :          2
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Review exercises

For answers, see “Suggested answers” on page 155.

1. What are the parameters of the constructor of the predefined constraint IloIfThen?

2. What are two ways of reducing symmetry in a model? 

3. In the example you have just completed, you reduced symmetry in the model by ordering 
variables. In this exercise, change the order of the variables. Select bins of type green 
first, then bins of type blue, and then bins of type red. The scalar product of the new bin 
should still be greater than or equal to the scalar product of the previous bin. However, 
change the coefficients of types of components so that they are weighted in the following 
descending order: copper, wood, steel, plastic, and glass.

Suggested answers

Exercise 1

What are the parameters of the constructor of the predefined constraint IloIfThen?

Suggested Answer

The constructor for IloIfThen creates a condition constraint. The first parameter is the 
environment. The parameter left indicates the IF clause. The parameter right indicates 
the THEN clause. The fourth optional parameter is a name used for debug and trace 
purposes. 

Exercise 2

What are two ways of reducing symmetry in a model?

Suggested Answer

1. Introduce order among variables.

2. Group variables by type.

Exercise 3

In the example you have just completed, you reduced symmetry in the model by ordering 
variables. In this exercise, change the order of the variables. Select bins of type green first, 
then bins of type blue, and then bins of type red. The scalar product of the new bin should 
still be greater than or equal to the scalar product of the previous bin. However, change the 
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coefficients of types of components so that they are weighted in the following descending 
order: copper, wood, steel, plastic, and glass.

Suggested Answer

The code that has changed from binpacking.cpp follows. You can view the complete 
program online in the file YourSolverHome/examples/src/binpacking_ex3.cpp.

You change the array of coefficients:

You change how the coefficients are weighted:

You should get the following results:

Search with 1
Search with 2
Search with 3
Search with 4
Search with 5
Search with 6
Search with 7
Search with 8
Type :  Green
Capacity:       4
Plastic :       1
Wood :          2

Type :  Green
Capacity:       4
Plastic :       1
Wood :          2

Type :  Green
Capacity:       4
Plastic :       2
Wood :          2

Type :  Green
Capacity:       4
Copper :        4

Type :  Blue
Capacity:       1
Steel :         1

Type :  Blue

    IloIntArray coef     (env, nComponents, 1, 5, 25, 125, 625);

      if (prevBin != 0){
        model.add(newBin->_type <= prevBin->_type);
        model.add(IloIfThen(env, prevBin->_type == newBin->_type,
                            IloScalProd(newBin->_contents, coef)
                            >= IloScalProd(prevBin->_contents, coef)  ));
      }
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Capacity:       1
Steel :         1

Type :  Blue
Capacity:       1
Steel :         1

Type :  Red
Capacity:       3
Glass :         2

Complete program

The complete bin packing program follows. You can also view it online in the file 
YourSolverHome/examples/src/binpacking.cpp. 

#include <ilsolver/ilosolverint.h>
ILOSTLBEGIN
enum Component {glass, plastic, steel, wood, copper};
const char* Components[5] = {"Glass", "Plastic", "Steel", "Wood", "Copper"};

enum Type {red, blue, green};
const char* Types[3] = {"Red", "Blue", "Green"};
class Bin {
public:
  IloIntVar       _type;
  IloIntVar       _capacity;
  IloIntVarArray  _contents;
  Bin (IloModel    mod,
       IloIntArray Capacity,
       IloInt      nTypes,
       IloInt      nComponents);
  void display(const IloSolver sol);
};
Bin::Bin (IloModel model,
          IloIntArray Capacity,
          IloInt nTypes,
          IloInt nComponents) {
  IloEnv env = model.getEnv();
  _type = IloIntVar(env, 0, nTypes-1);
  _capacity = IloIntVar(env, 0, IloMax(Capacity));
  _contents = IloIntVarArray(env, nComponents, 0, 4);
  model.add(_capacity == Capacity(_type));
  model.add(_capacity >= IloSum(_contents));
  model.add(0. < IloSum(_contents));
  model.add(IloIfThen(env, _type == red,
                      ((_contents[plastic] == 0)
                       && (_contents[steel] == 0)
                       && (_contents[wood] <= 1))));
  model.add(IloIfThen(env, _type == blue,
                      ((_contents[plastic] == 0) && (_contents[wood] == 0))));
  model.add(IloIfThen(env, _type == green,
I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L 157



                      ((_contents[glass] == 0)
                       && (_contents[steel] == 0)
                       && (_contents[wood] <= 2))));
  model.add(IloIfThen(env, _contents[wood] != 0, _contents[plastic] != 0));
  model.add(((_contents[glass] == 0)  || (_contents[copper]  == 0)));
  model.add(((_contents[copper] == 0) || (_contents[plastic] == 0)));
}
void Bin::display(const IloSolver solver) {
  _type.getEnv().out() << "Type :\t"
                       << Types[(IloInt)solver.getValue(_type)] << endl;
  _type.getEnv().out() << "Capacity:\t"
                       << solver.getValue(_capacity) << endl;
  IloInt nComponents = _contents.getSize();
  for (IloInt i = 0; i < nComponents; i++)
    if (solver.getValue(_contents[i]) > 0)
      _type.getEnv().out() << Components[i] << " :  \t"
                           << solver.getValue(_contents[i]) << endl;
  _type.getEnv().out() << endl;
}
int main(){
  IloEnv env;
  try {
    IloModel model(env);
    IloInt i;
    const IloInt nComponents = 5;
    const IloInt nTypes = 3;
    IloIntArray Demand(env, nComponents, 2, 4, 3, 6, 4);
    IloIntArray Capacity(env, nTypes, 3, 1, 4);
    IloIntArray coef(env, nComponents, 625, 125, 25, 5, 1);
    IloInt totalDemand = (IloInt)IloSum(Demand);
    const IloInt maxBin = (IloInt)totalDemand;
    Bin* prevBin  =0;
    Bin* newBin;
    Bin** theBins = new Bin*[maxBin];
    IloInt nBins = 1;
    IloBool solution = IloFalse;
    IloRange totalCapacityCon(env, totalDemand, IloIntMax);
    model.add(totalCapacityCon);
    IloRangeArray componentsDemandCon(env, Demand, Demand);
    model.add(componentsDemandCon);
    IloSolver solver(model);
    do{
      newBin = new Bin(model, Capacity, nTypes, nComponents);
      theBins[nBins-1] = newBin;
      totalCapacityCon.setCoef(newBin->_capacity, 1.);
      for (i = 0; i < nComponents; i++)
        componentsDemandCon[i].setCoef(newBin->_contents[i], 1.);
      if (prevBin != 0){
        model.add(newBin->_type >= prevBin->_type);
        model.add(IloIfThen(env, prevBin->_type == newBin->_type,
                            IloScalProd(newBin->_contents, coef)
                            >= IloScalProd(prevBin->_contents, coef)  ));
      }
      solver.out() << "Search with " << nBins << endl;
      if (!solver.solve()){
        prevBin = newBin;
        nBins++;
      }
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      else
        solution = IloTrue;
    }
    while (!solution && nBins <= maxBin);
    if (solution) {
      for(i = 0; i < nBins; i++){
        theBins[i]->display(solver);
      }
    }
    for  (i = 0; i < nBins; ++i)
      delete theBins[i];
    delete [] theBins;
  }
  catch (IloException& ex) {
    cerr << "Error: " << ex << endl;
  }
  env.end();
  return 0;
}

Results
Search with 1
Search with 2
Search with 3
Search with 4
Search with 5
Search with 6
Search with 7
Search with 8
Type :  Red
Capacity:       3
Glass :         2

Type :  Blue
Capacity:       1
Steel :         1

Type :  Blue
Capacity:       1
Steel :         1

Type :  Blue
Capacity:       1
Steel :         1

Type :  Green
Capacity:       4
Copper :        4

Type :  Green
Capacity:       4
Plastic :       1
Wood :          2

Type :  Green
Capacity:       4
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Plastic :       1
Wood :          2

Type :  Green
Capacity:       4
Plastic :       2
Wood :          2
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C H A P T E R
9

Using Table Constraints: Scheduling
Teams

In this lesson, you will learn how to: 

◆ use table constraints

◆ use constraints defined from allowed tuples

◆ use IloTableConstraint and IloNumTupleSet

Describe

In this lesson, you will search for a schedule for a group of sports teams. There are 8 teams 
that play over 7 weeks. In each week there are 4 time periods. (For example, these time 
periods could be Tuesday night, Thursday night, Friday night, and Saturday afternoon.) 
Teams can play at home (in the stadium in their home town) or away (at a stadium in another 
team’s town). Each team must play each other team exactly once. Each team plays only once 
each week. No team plays in the same time period more than twice. 
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The first step in modeling and solving a problem is to write a natural language description of 
the problem, identifying the variables and the constraints on these variables. 

Write a natural language description of this problem. Answer these questions:

◆ What is the known information in this problem?

◆ What are the variables or unknowns in this problem? 

◆ What are the constraints on these variables?

Discussion

What is the known information in this problem?

◆ There are 8 teams. These teams are known as Team 0, Team 1, Team 2, Team 3, Team 4, 
Team 5, Team 6, Team 7. (Solver arrays start at [0].) Teams can play at home (in the 
stadium in their home town) or away (at a stadium in another team’s town).

◆ There are 4 time periods in each week and 7 weeks. 

Here is another way of looking at the information about periods and weeks. The intersection 
of each period and week forms a slot. This slot can be identified by the coordinates: the 
period, the week. There are 28 slots available for matches between teams. The matches can 
be identified by a single integer. 

What are the variables or unknowns in this problem?

Basically, the unknown information is which teams play in which slots. However, this 
information can be broken down into the following variables:

◆ Which team is playing at home in each slot?

Step 1 Describe the problem

Table 9.1 Slots for Scheduling

Week 0 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Period 0
Match 0
Slot (0,0)

Match 1
Slot (0,1)

Match 2
Slot (0,2)

Match 3
Slot (0,3)

Match 4
Slot (0,4)

Match 5
Slot (0,5)

Match 6
Slot (0,6)

Period 1
Match 7
Slot (1,0)

Match 8
Slot (1,1)

Match 9
Slot (1,2)

Match 10
Slot (1,3)

Match 11
Slot (1,4)

Match 12
Slot (1,5)

Match 13
Slot (1,6)

Period 2
Match 14
Slot (2,0)

Match 15
Slot (2,1)

Match 16
Slot (2,2)

Match 17
Slot (2,3)

Match 18
Slot (2,4)

Match 19
Slot (2,5)

Match 20
Slot (2,6)

Period 3
Match 21
Slot (3,0)

Match 22
Slot (3,1)

Match 23
Slot (3,2)

Match 24
Slot (3,3)

Match 25
Slot (3,4)

Match 26
Slot (3,5)

Match 27
Slot (3,6)
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◆ Which team is playing away in each slot?

◆ Which slot? This is a variable represented by the coordinates: the period, the week.

◆ Which match is played in each slot? This variable represents roughly the same 
information as which slot, but is represented by a single integer. 

What are the constraints on these variables?

◆ All matches are different. (Each team must play each other team exactly once.)

◆ Each team must play every week, but only once. 

◆ No team plays in the same time period more than twice. 

◆ The variables (home team, away team, slot, and match) must be linked to each other.

Model

Once you have written a description of your problem, you can use Concert Technology 
classes to model it. 

Open the example file YourSolverHome/examples/src/tutorial/
sports_basic_partial.cpp in your development environment. 

In this exercise, you use constrained integer variables and therefore you use the include file 
<ilsolver/ilosolverint.h>. 

First, you represent the data of the program. The number of team, nbTeams, is set to 8 in this 
example, but can be easily modified. (For this problem, the number of teams must always be 
even. If the number of teams is not even, it is increased by 1.) The number of weeks, 
nbWeeks, is nbTeams-1, or 7 in this example. The number of periods, nbPeriods, is 
nbTeams/2, or 4 in this example. The number of slots, nbSlots, is equal to the number of 
weeks times the number of periods, or 28 in this example. This code is provided for you: 

Step 2 Open the example file

int main(int argc, char** argv){
  IloInt i;
  IloInt j;
  IloInt m;
  IloInt p;
  IloInt w;

  nbTeams = (argc>1? atol(argv[1] ) : 8 );
  if ( nbTeams % 2 ) ++nbTeams;
  nbWeeks = nbTeams-1;
  nbPeriods = nbTeams /2;
  nbSlots = nbWeeks * nbPeriods;
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Next, you create an environment and a model. This code is provided for you:

First, you create a matrix, an array of arrays, to represent the slotVars, the slot variables. 
You use a for loop to create an array with a size of 4 (the number of periods). Then, for each 
period, you create an array of size 7 (the number of weeks). Each variable is represented by 
the coordinates: the period, the week. 

Add the following code after the comment //Create the matrix of slots

You create an array to represent the matchVars, the match variables. The match variables 
are identified by a single integer. The array matchVars has nbSlots elements, or 28 in this 
example. You use two nested for loops. You create one element of the array matchVars for 
each element of the matrix slotVars. For example, to represent the first period of the first 
week, you declare matchVars[0] which corresponds to slotVars[0][0]. (Remember 
that Solver arrays start at [0].) You then loop to the second week in the first period, and 
declare matchVars[1] which corresponds to slotVars[0][1]. The loop continues until 
all matchVars elements are declared.

Add the following code after the comment //Declare the match variables

Next, you declare the home team and away team variables. One matrix of variables is 
created for homeTeamVars and a second matrix is created for awayTeamVars. The lower 
bound of possible values for each variable is 0 and the upper bound is nbTeams-1 or 7. 
These values represent the teams: Team 0, Team 1, Team 2, Team 3, Team 4, Team 5, Team 

  IloEnv env;
    try {
      IloModel model(env);

Step 3 Create the matrix of slots

      IloArray<IloIntVarArray> slotVars(env, nbPeriods);

      for(i = 0; i < nbPeriods; i++)
        slotVars[i] = IloIntVarArray(env, nbWeeks, 0, nbSlots-1);

Step 4 Declare the match variables

      IloIntVarArray matchVars(env, nbSlots);
      IloInt s = 0;
      for (p = 0; p < nbPeriods; ++p) {
        for (w = 0; w < nbWeeks; ++w) {
          matchVars[s] = slotVars[p][w];
          ++s;
        }
      }
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6, Team 7. Each variable can also be represented by its matrix coordinates: the period, the 
week.   

Add the following code after the comment //Declare the home team and away team 
variables

Now that you have declared all the variables, you need a way to link them together. Since the 
matchVars are defined based on slotVars, you can focus on linking slotVars, 
homeTeamVars, and awayTeamVars. Concert Technology offers a way to do this—table 
constraints. Table constraints provide a way to add a constraint using a table, a single store 
of related information. The information can be in the form of combinations of values that are 
allowed or in the form of combinations of values that are forbidden.The information used by 
a table constraint can also be in the form of a predicate. A predicate is a logical formula that 
contains variables. This formula can be evaluated as either true or false. 

To demonstrate how table constraints work, imagine that the teams in this example are split 
into leagues. If Teams 0, 1, 2, and 3 are in League 0 and Teams 4, 5, 6, and 7 are in League 
1, you might want to constrain that only teams in the same league can play each other. You 
could create a table, a set of allowed combinations of values (for example, Team 0 can play 
Team 2), and use the table constraint to state that only these combinations of values are 
allowed. 

In this lesson, you use the table constraint to constrain that only certain configurations of 
home team, away team, and slots are allowed. To do this, you first create a tuple set. An 
integer tuple is an ordered set of values. For example, if you state that Team 1 must play 
Team 2 in Match 7, this is a tuple. You would write it as (1, 2, 7). The number of values in a 
tuple is known as the arity of the tuple. The tuple (1, 2, 7) has an arity of 3. 

Sets of tuples are represented in Concert Technology by an instance of the class 
IloIntTupleSet. The first parameter of the constructor is the environment and the second 
parameter is the arity. You use the member function IloIntTupleSet::add to add tuples 
to the set. Here is a constructor for IloIntTupleSet: 

Now, you create the tuple set. 

Step 5 Declare the home team and away team variables

      IloArray<IloIntVarArray> homeTeamVars(env, nbPeriods);
      IloArray<IloIntVarArray> awayTeamVars(env, nbPeriods);

      for (p = 0; p < nbPeriods; ++p) {
        homeTeamVars[p]  = IloIntVarArray(env, nbWeeks, 0, nbTeams-1);
        awayTeamVars[p] = IloIntVarArray(env, nbWeeks, 0, nbTeams-1);
      }

IloIntTupleSet(IloEnv env, const int arity);
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Figure 9.1

Add the following code after the comment //Create the tuple set 

The set of tuples is created using a matrix (like much else in this lesson). The matrix is 
created using two nested for loops. The variable i represents the home team, the variable j 
represents the away team, and the variable m represents the match. The tuples are derived 
from this matrix. For example, the first tuple (i, j, m) is (0, 1, 0). This means that Team 0 
(home) must play Team 1 (away) in Match 0. You can derive the rest of the tuples in the set 
from this matrix.  

After creating the tuple set, you declare a table constraint to state that these tuples are the 
only allowed combinations of values for the constrained variables. 

Table constraints are represented in Concert Technology by an instance of the class 
IloTableConstraint. The first parameter of the constructor is the environment. The 

Step 6 Create the tuple set

      IloIntTupleSet tuple(env, 3);
      IloInt m = 0;
        for (i=0; i < nbTeams; ++i) {
          for ( j=i+1; j < nbTeams; ++j) {
            tuple.add(IloIntArray(env, 3, i, j, m));
            ++m;
          }
        }
      assert( m == nbSlots );

Table 9.2 Tuple Sets

Team 0 
Home

Team 1 
Home

Team 2 
Home

Team 3 
Home

Team 4 
Home

Team 5 
Home

Team 6
Home

Team 7
Home

Team 0 Away

Team 1 Away Match 0

Team 2 Away Match 1 Match 7

Team 3 Away Match 2 Match 8 Match 13

Team 4 Away Match 3 Match 9 Match 14 Match 18

Team 5 Away Match 4 Match 10 Match 15 Match 19 Match 22

Team 6 Away Match 5 Match 11 Match 16 Match 20 Match 23 Match 25

Team 7 Away Match 6 Match 12 Match 17 Match 21 Match 24 Match 26 Match 27
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second parameter is an array of variables. The third parameter is a set of tuples that 
designates combinations of values. The fourth constraint is a Boolean. If this parameter is 
IloTrue, the tuples represent the allowed values for the array of variables. If this parameter 
is IloFalse, the tuples represent the forbidden values for the array of variables. Here is a 
constructor for IloTableConstraint:

Now, you add the table constraint. This makes sure that home teams, away teams, and slots 
are properly linked. It also forbids impossible schedule combinations. For example, a team 
playing itself would not form part of the allowed set of tuples. 

Add the following code after the comment //Add the table constraint

Again, the code creates a matrix based on periods and weeks. At the place in the matrix 
designated by the coordinates Period 0 and Week 0, you create an array of variables 
slotConsistencyTest. This array has three elements. The first element is 
homeTeamVars[0][0] or the home team playing in the slot Period 0 of Week 0. The 
second element is awayTeamVars[0][0] or the away team playing in the slot Period 0 of 
Week 0. The third element is slotVars[0][0] or the slot representing Period 0 of Week 0 
(and also matchVars[0] which is created from slotVars). Then you add the table 
constraint. It constrains that the three variables in slotConsistencyTest must be 
assigned values that are represented in one of the tuple sets declared in tuple. For example, 
an accepted combination of values is (0, 1, 0). This means that Team 0 must play Team 1 in 
Match 0. 

Now that you have linked the variables, you can add the other constraints. 

You use the predefined constraint IloAllDiff to add the constraint that all matches are 
different. (The constraint IloAllDiff is introduced in Chapter 4, Searching with 

IloConstraint IloTableConstraint(const IloEnv env,
                                 const IloNumVarArray vars,
                                 const IloNumTupleSet set,                             
                                 IloBool compatible);

Step 7 Add the table constraint

      for (p = 0; p < nbPeriods; ++p) {
        for (w = 0; w < nbWeeks; ++w) {
          IloIntVarArray slotConsistencyTest(env, 3);
          slotConsistencyTest[0] = homeTeamVars[p][w];
          slotConsistencyTest[1] = awayTeamVars[p][w];
          slotConsistencyTest[2] = slotVars[p][w];
          model.add(IloTableConstraint(env,
                                       slotConsistencyTest,
                                       tuple,
                                       IloTrue));
        }
      }
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Predefined Goals: Magic Square.) In other words, each team must play each other exactly 
once. In this constraint, you use the array of variables matchVars. Each variable in this 
array has a value of an integer and IloAllDiff constrains that all these values must be 
different. (There are three representations of matches in this model: matchVars, slotVars, 
and the value m representing the match in each tuple. They are linked to each other through 
the table constraint.) 

Add the following code after the comment 
//Add the constraint that all matches are different

You also use IloAllDiff to add the constraint that every team must play each week, but 
only once. For each week, you create an array of variables weekTeams. For each period in 
this week, you create two variables, one to represent the home team playing in that slot and 
one to represent the away team playing in that slot. Then you use IloAllDiff to constrain 
that the 8 variables (one home team and one away team in each of 4 periods) in the array 
weekTeams must all be different. You use a for loop to add this constraint for each week. 

Add the following code after the comment 
//Add the constraint that every team must play each week, but only 

once

You use the predefined constraint IloDistribute to add the constraint that each team 
plays at least once, but no more than twice in each period. As you remember from Chapter 6, 
Using the Distribute Constraint: Car Sequencing, the constraint IloDistribute takes 
three arrays as parameters: cards, values, and vars. The variables in the array cards are 
equal to the number of occurrences in the array vars of the values in the array values. 

Step 8 Add the constraint that all matches are different

      model.add( IloAllDiff(env, matchVars));

Step 9 Add the constraint that every team must play each week, but only 
once

      for (w = 0; w < nbWeeks; ++w) {
        IloIntVarArray weekTeams(env, nbTeams);
        for (p = 0; p < nbPeriods; ++p) {
          weekTeams[2*p]   = homeTeamVars [p][w];
          weekTeams[2*p+1] = awayTeamVars[p][w];
        }
        model.add( IloAllDiff(env, weekTeams) );
      }
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First, you create the array of possible values teamValues. The values in this array represent 
the teams: Team 0, Team 1, Team 2, Team 3, Team 4, Team 5, Team 6, Team 7. 

Add the following code after the comment //Declare the teamValues array

Then, you create the array of variables. For each period, you create an array of variables 
periodTeamVars. For each week in this period, you create two variables, one to represent 
the home team playing in that slot and one to represent the away team playing in that slot. 
These variables can take the values declared in the array teamValues array. 

Add the following code after the comment //Declare the periodTeamVars array

Since you know that teams must play in at least one game, but no more than two games, the 
array cards is easy to create. Each variable in this array can have a value of either 1 or 2. 

Add the following code after the comment //Declare the cards array

Now, you can add the distribute constraint to the model. 

Add the following code after the comment //Add the distribute constraint 

Step 10 Declare the teamValues array

      IloIntArray teams(env, nbTeams);
        for (m = 0; m < nbTeams; ++m)
          teams[m] = m;

Step 11 Declare the periodTeamVars array

          for (p = 0; p < nbPeriods; ++p) {
            IloIntVarArray periodTeams(env, 2*nbWeeks);
            for ( w = 0; w < nbWeeks; ++w) {
              periodTeams[ 2*w ]   = homeTeamVars [p][w];
              periodTeams[ 2*w+1 ] = awayTeamVars[p][w];
            };

Step 12 Declare the cards array

            IloIntVarArray cardVars(env, nbTeams, 1, 2);

Step 13 Add the distribute constraint

            model.add( IloDistribute(env, cardVars, teams, periodTeams) );
          }
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This constraint states that the array of variables periodTeamVars can take any value in the 
array TeamValues. However, the values must all be used at least once, but not more than 
two times. In other words, each team must play at least once, but not more than twice in each 
period. 

Solve

Now you create an instance of the class IloSolver to solve the problem expressed in the 
model.

Add the following code after the comment //Create an instance of IloSolver

Then you search for a solution using the member function IloSolver::solve. The 
solution is displayed using two nested for loops. For each period and week, the home team 
and the away team are displayed. 

Add the following code after the comment //Search for a solution 

Step 14 Create an instance of IloSolver

      IloSolver solver(model);

Step 15 Search for a solution

      if (solver.solve()) {
        cout << endl << "SOLUTION" << endl;
        for (p=0; p < nbPeriods; ++p) {
             cout << "period " << p << " : ";
               for (w=0; w < nbWeeks; ++w) {
               cout << solver.getValue(homeTeamVars[p][w]) << " vs "
                   << solver.getValue(awayTeamVars[p][w]) << " - " ;
             }
         cout << endl;
        }
        solver.printInformation();
          }
      else
        cout << "**** NO SOLUTION ****" << endl;
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Compile and run the program. You should get the following results, though the information 
displayed by IloSolver::printInformation will vary depending on platform, 
machine, configuration, and so on:

The first period (period 0) has the following schedule. In Week 1, Team 0 is home and 
Team 1 is away. In Week 2, Team 0 is home and Team 2 is away. In Week 3, Team 1 is home 
and Team 2 is away. In Week 4, Team 3 is home and Team 4 is away. In Week 5, Team 3 is 
home and Team 5 is away. In Week 6, Team 4 is home and Team 5 is away. In Week 7, Team 
6 is home and Team 7 is away. You can follow the schedule for the other three periods. 

The complete program is listed in “Complete program” on page 172. You can also view it 
online in the file YourSolverHome/examples/src/sports_basic.cpp. 

Review exercises

For answers, see “Suggested answers” on page 171.

1. What is a table constraint?

2. What is a tuple?

3. How would adding a “fake” week 8 to the model affect the problem solution?

Suggested answers

Exercise 1

What is a table constraint?

Suggested Answer

Table constraints provide a way to add a constraint using a table, a single store of related 
information. The information can be in the form of combinations of values that are allowed 

Step 16 Compile and run the program

%
* sports scheduling teams: 8 weeks: 7 periods: 4

SOLUTION
period 0 : 0 vs 1 - 0 vs 2 - 1 vs 2 - 3 vs 4 - 3 vs 5 - 4 vs 5 - 6 vs 7 -
period 1 : 2 vs 3 - 3 vs 6 - 4 vs 6 - 0 vs 7 - 0 vs 4 - 2 vs 7 - 1 vs 5 -
period 2 : 4 vs 7 - 5 vs 7 - 0 vs 5 - 1 vs 6 - 2 vs 6 - 1 vs 3 - 0 vs 3 -
period 3 : 5 vs 6 - 1 vs 4 - 3 vs 7 - 2 vs 5 - 1 vs 7 - 0 vs 6 - 2 vs 4 -
%

I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L 171



or in the form of combinations of values that are forbidden.The information used by a table 
constraint can also come in the form of a predicate. A predicate is a logical formula that 
contains variables. This formula can be evaluated as either true or false.

Exercise 2

What is a tuple? 

Suggested Answer

An tuple is an ordered set of values. For example, if you state that Team 1 must play Team 2 
in Match 7, this is a tuple. You would write it as (1, 2, 7). 

Exercise 3

How would adding a “fake” week 8 to the model affect the problem solution? 

Suggested Answer

By introducing a “fake” week 8 to the model, you can prove that each team plays exactly 
twice in each period and each team plays exactly once in the “fake” week 8. The solver is 
helped by these additional constraints. It can deduce inconsistencies more quickly and 
should be able to find a solution more quickly. 

Complete program

The complete table constraint program follows. You can also view it online in the file 
YourSolverHome/examples/src/sports_basic.cpp. 

#include <ilsolver/ilosolver.h>
ILOSTLBEGIN

IloInt nbTeams;
IloInt nbWeeks;
IloInt nbPeriods;
IloInt nbSlots;

int main(int argc, char** argv){
  IloInt i;
  IloInt j;
  IloInt m;
  IloInt p;
  IloInt w;

  nbTeams = (argc>1? atol(argv[1] ) : 8 );
  if ( nbTeams % 2 ) ++nbTeams;
  nbWeeks = nbTeams-1;
  nbPeriods = nbTeams /2;
  nbSlots = nbWeeks * nbPeriods;
  IloEnv env;
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    try {
      IloModel model(env);

      IloArray<IloIntVarArray> slotVars(env, nbPeriods);

      for(i = 0; i < nbPeriods; i++)
        slotVars[i] = IloIntVarArray(env, nbWeeks, 0, nbSlots-1);
// ie : NumVarMatrix slotVars = IloArray<IloNumVarArray>(env, nbPeriods);
// build copy vector of match variables matrix
      IloIntVarArray matchVars(env, nbSlots);
      IloInt s = 0;
      for (p = 0; p < nbPeriods; ++p) {
        for (w = 0; w < nbWeeks; ++w) {
          matchVars[s] = slotVars[p][w];
          ++s;
        }
      }
      IloArray<IloIntVarArray> homeTeamVars(env, nbPeriods);
      IloArray<IloIntVarArray> awayTeamVars(env, nbPeriods);

      for (p = 0; p < nbPeriods; ++p) {
        homeTeamVars[p]  = IloIntVarArray(env, nbWeeks, 0, nbTeams-1);
        awayTeamVars[p] = IloIntVarArray(env, nbWeeks, 0, nbTeams-1);
      }
// ---------------------------------
// Constraint 1 : each team plays each other exactly once,
// i.e. a match (T1, T2) occurs exactly once.
// ---------------------------------
      model.add( IloAllDiff(env, matchVars));
// ---------------------------------
// Constraint 2 : each week, all teams do play.
// remember 2*nbPeriods == nbTeams.
// ---------------------------------
      for (w = 0; w < nbWeeks; ++w) {
        IloIntVarArray weekTeams(env, nbTeams);
        for (p = 0; p < nbPeriods; ++p) {
          weekTeams[2*p]   = homeTeamVars [p][w];
          weekTeams[2*p+1] = awayTeamVars[p][w];
        }
        model.add( IloAllDiff(env, weekTeams) );
      }
// ---------------------------------
// constraint 3 : in each period, each team plays no more than twice.
// one can demonstrate that the number of occurences of each team in
// one period is at least 1, so we constrain it to be in [1..2]
// ---------------------------------
      IloIntArray teams(env, nbTeams);
        for (m = 0; m < nbTeams; ++m)
          teams[m] = m;
          for (p = 0; p < nbPeriods; ++p) {
            IloIntVarArray periodTeams(env, 2*nbWeeks);
            for ( w = 0; w < nbWeeks; ++w) {
              periodTeams[ 2*w ]   = homeTeamVars [p][w];
              periodTeams[ 2*w+1 ] = awayTeamVars[p][w];
            };
            IloIntVarArray cardVars(env, nbTeams, 1, 2);
            model.add( IloDistribute(env, cardVars, teams, periodTeams) );
          }
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// ---------------------------------
// Constraint 4: link team and match vars with table constraint
// ---------------------------------
      IloIntTupleSet tuple(env, 3);
      IloInt m = 0;
        for (i=0; i < nbTeams; ++i) {
          for ( j=i+1; j < nbTeams; ++j) {
            tuple.add(IloIntArray(env, 3, i, j, m));
            ++m;
          }
        }
      assert( m == nbSlots );
      for (p = 0; p < nbPeriods; ++p) {
        for (w = 0; w < nbWeeks; ++w) {
          IloIntVarArray slotConsistencyTest(env, 3);
          slotConsistencyTest[0] = homeTeamVars[p][w];
          slotConsistencyTest[1] = awayTeamVars[p][w];
          slotConsistencyTest[2] = slotVars[p][w];
          model.add(IloTableConstraint(env,
                                       slotConsistencyTest,
                                       tuple,
                                       IloTrue));
        }
      }
      IloSolver solver(model);
      if (solver.solve()) {
        cout << endl << "SOLUTION" << endl;
        for (p=0; p < nbPeriods; ++p) {
             cout << "period " << p << " : ";
               for (w=0; w < nbWeeks; ++w) {
               cout << solver.getValue(homeTeamVars[p][w]) << " vs "
                   << solver.getValue(awayTeamVars[p][w]) << " - " ;
             }
         cout << endl;
        }
        solver.printInformation();
          }
      else
        cout << "**** NO SOLUTION ****" << endl;
      }
    catch (IloException& ex) {
       cerr << "Error: " << ex << endl;
    }
  env.end();
  return 0;
}

Results

The information displayed by IloSolver::printInformation will vary depending on 
platform, machine, configuration, and so on.

%
* sports scheduling teams: 8 weeks: 7 periods: 4
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SOLUTION
period 0 : 0 vs 1 - 0 vs 2 - 1 vs 2 - 3 vs 4 - 3 vs 5 - 4 vs 5 - 6 vs 7 -
period 1 : 2 vs 3 - 3 vs 6 - 4 vs 6 - 0 vs 7 - 0 vs 4 - 2 vs 7 - 1 vs 5 -
period 2 : 4 vs 7 - 5 vs 7 - 0 vs 5 - 1 vs 6 - 2 vs 6 - 1 vs 3 - 0 vs 3 -
period 3 : 5 vs 6 - 1 vs 4 - 3 vs 7 - 2 vs 5 - 1 vs 7 - 0 vs 6 - 2 vs 4 -
%
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C H A P T E R
10

Reducing Symmetry: Configuring Racks

In this lesson, you will learn how to: 

◆ reduce symmetries in a model

◆ create a class to represent the racks

◆ use the constraints IloScalProd and IloSum 

This chapter solves a configuration problem where electronic cards must be plugged into a 
number of racks at minimal cost.

Describe

A set of electronic cards must be plugged into racks with electric connectors. Different types 
of racks can hold different sets of cards, incurring different costs. Given a set of cards and a 
maximal number of racks to use, you must find a set of (at most) the given number of racks 
to fit in all the cards, while you hold the cost to a minimum.

A rack has the following features:

Note: The subject matter of this chapter lends itself more naturally to a conceptual 
introduction rather than procedural-based learning. It is not presented using steps, as in 
previous chapters in this part.
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◆ a maximal power it can provide

◆ a number of connection slots—each slot can receive one card

◆ its price—the price of a rack depends on its number of connection slots and on the 
maximal power it can provide

For cards, consider only the power they use.

Recognizing the constraints

The constraints of this example can be summarized this way:

◆ plug all given cards into racks

◆ use at most a given number of racks

◆ each rack has a given number of connectors and can receive at most one card per 
connector

◆ the sum of power used by the cards plugged into a rack must be less than or equal to the 
maximal power of this rack

Determining the optimization criterion

As the maximal number of racks to use is fixed, the objective is to find two points about each 
rack used:

◆ the cards it receives

◆ its correct type according to the number of plugged cards and the power it must provide

You will search for a solution that minimizes the total cost (that is, the sum of rack prices). 

Choosing types of racks

For example, assume that there are two possible types of racks and four types of cards that 
use the following power 20, 40, 50, and 75. The features of racks would be given by the 
following chart.

Table 10.1 Rack Type

Rack Type         Power         Connectors         Price

1  150         8                 150 

2  200         16                 200 
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You want to plug in the following cards, using at most 5 racks:

Model

You use Concert Technology classes to model this problem. 

This program reads the description of racks and cards in the file rack.dat. First, the data 
are represented like this in the code: 

One way to model this problem would be to define a class of objects representing the cards. 
Unfortunately, this model is highly symmetrical. With this model, each permutation of two 
cards of the same type gives a new “solution.” Those symmetries increase the size of the 
search space without really offering any more authentic solutions. 

A better way to model the problem is to focus on modeling the racks and reducing 
symmetry. Since the features of racks and the maximal number of racks to use are fixed, you 
can assume that you have n racks, and you want to find for each one:

◆ whether it is used or not

◆ the cards it receives

Table 10.2 Card Type

Card Type         Power         Number

1                 20         10

2                 40         4

3                 50         2

4                 75         1

const IloInt nbRackTypes = 2;
const IloInt maxSlots = 16;
enum {power, price, nbSlot};

IloInt Racks[3][nbRackTypes+1] = {
    { 0, 150, 200 },
    { 0, 150, 200 },
    { 0, 8,    16 }
};

const IloInt nbCardTypes = 4;

const IloInt nbRack = 5;
IloInt nbCards[nbCardTypes] = {10, 4, 2, 1};
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◆ its correct type according to the number of plugged cards and the power it must provide

Rack types are identified by integers. The type zero indicates the unused racks. This 
convention avoids introducing one constrained variable per rack to indicate whether the rack 
is used or not.

You define the class Rack. Its instances have the following characteristics:

◆ type: integer, the type of the rack. It is an unknown so it is represented by a constrained 
integer variable.

◆ price: integer, the price of the rack. This value depends on the type of the rack. It is an 
unknown so it is represented by a constrained integer variable.

To avoid the symmetries introduced by the first model, you manipulate the number of cards 
of a given type plugged into a rack (rather than the cards plugged into a rack). This model 
suppresses the symmetries introduced by the first one and thus reduces the search space.

In this model, each rack has an array of counters. Each counter is associated with a card 
type. It counts the number of cards of this type plugged into this rack. The values of the 
counters are unknowns, so they are represented by constrained integer variables. 

To represent those counters, you add a new data member _counters to the instances of the 
class Rack. For a given rack, this data member contains its array of card counters. It is 
defined like this:

The arrays of card counters associated with racks all have the same size. This size is equal to 
the number of card types, given by nbCardTypes.

Searching for a solution using this model consists of finding, for each rack, the values of its 
associated counters.

Representing the constraints

The type and the power of a given rack are related to each other. In fact, the maximal power 
provided by a rack depends on its type, so its type must be chosen according to the power 
this rack must provide. Solver allows you to easily express this dependence by writing the 
expression rackPower(_type).

This interdependence is implemented through the use of an element constraint. The 
dependence between type and price, and type and number of slots is also implemented with 
such a constraint. 

class Rack {
  public:
    IloIntVar      _type;
    IloIntVar      _price;
    IloIntVarArray _counters;
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Implementing the constraints

This section presents the implementation of the constraints of this problem according to the 
second model. It uses the following notation:

◆ C(a,ct) is the number of cards of type ct plugged into rack a.

◆ power(a) is the maximal power provided by rack a.

◆ numberOfSlots(a) is the number of connection slots provided by rack a.

◆ use(ct) is the power used by a card of type ct.

◆ Nct is the number of card types.

◆ Nrt is the number of rack types.

◆ Nr is the maximal number of racks to use.

◆ cards(ct) is the given number of cards of type ct to plug in.

Constraint: Number of cards

The first constraint states that the number of cards plugged into a rack is less than or equal to 
its number of connection slots.

For each rack a, 

Constraint: Power used

The power used by the cards plugged into rack a must be less than or equal to the maximal 
power it provides. 

Generic constraints and class constraints

Those two constraints—number of cards and power used—are implemented directly by the 
functions IloSum and IloScalProd. These are both generic constraints predefined in the 
Solver library. By generic, it is meant that a single constraint applies to a number of 
constrained variables simultaneously. Those two constraints are added by the constructor of 

C a ct( , )
ct 0=

ct Nct 1–=

∑ numberOfSlots a( )≤

C a ct( , )
ct 0=

ct Nct 1–=

∑ use ct〈 〉 power a( )≤
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the class Rack. In other words, you are using those two generic constraints as class 
constraints. The constructor uses the following code:

In that code, 

◆ nbRackTypes is the number of rack types. The types of racks are represented by 
integers between zero and this number. The type zero indicates the unused racks.

◆ Racks is a two-dimensional array of integers, with the first index accessing the price, 
power, and number of slots of each rack.

The construction T[i] = v (where T is an instance of IloNumVarArray, and i and v are 
instances of IloNumVar) constrains the ith element of T to be equal to v. The code of the 
Rack constructor also shows other ways to use this element constraint. 

Constraint: Demand

To make sure that all cards of a given type are used, you state that the sum of all counters of 
this card type associated with the racks is equal to the given number of those cards:

For each card type ct, 

This constraint is implemented by the function IloSum, a predefined generic constraint that 
applies simultaneously to a number of constrained variables. It is added in the main 
function. 

Rack::Rack(IloModel model, IloIntArray cardPower) {
  IloEnv env = model.getEnv();
  _type = IloIntVar(env, 0, nbRackTypes);
  _counters = IloIntVarArray(env, nbCardTypes, 0, maxSlots);
  _price = IloIntVar(env, 0, 10000);
  IloIntArray prices(env, nbRackTypes + 1);
  IloIntArray rackPower (env, nbRackTypes + 1);
  IloIntArray rackSlot (env, nbRackTypes + 1);
  for (IloInt i=0; i<nbRackTypes + 1; i++) {
    prices[i] = Racks[price][i];
    rackPower[i] = Racks[power][i];
    rackSlot[i] = Racks[nbSlot][i];
  }
  model.add(_price ==  prices(_type));
  model.add(IloScalProd(_counters, cardPower) <= rackPower(_type));
  model.add(IloSum(_counters) <= rackSlot(_type));
}

    // all cards must be plugged
    for(j = 0; j < nbCardTypes; j++){
      IloIntVarArray vars(env,nbRack);
      for(i = 0; i < nbRack; i++)
        vars[i] = racks[i]->_counters[j];
      model.add(IloSum(vars) == nbCards[j]);
    }

C a ct( , )
a 0=

a Nr 1–=

∑ cards ct( )=
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Redundant constraint: Eliminating more symmetry

This model still has a lot of symmetries: any permutation between racks gives a new 
“solution.” You remove these symmetries by defining an order among the configurations of 
each rack. The idea is to state that the type of rack i-1 is greater than the type of rack i. This 
order constraint removes some symmetries.

That redundant constraint is stated like this in the main function:

Cost function

As mentioned earlier, the goal is to minimize the total cost of plugging cards, so the cost 
variable is constrained in the main function like this:

Solve

To search for a solution, you instantiate the type of each rack using IloInstantiate and 
generate the counters of each rack using IloGenerate. Counters with the smallest domain 
are bound first. The function Generate searches for a solution.

    // remove symmetries
    for(i = 1; i < nbRack; i++){
      model.add(racks[i]->_type >= racks[i-1]->_type);
      model.add(IloIfThen(env, racks[i-1]->_type == racks[i]->_type,
                               racks[i-1]->_counters[0] <= racks[i]-
>_counters[0]));
    }

    // cost constraints
    IloIntVarArray prices(env, nbRack);
    for(i=0;i<nbRack;i++)
      prices[i] = racks[i]->_price;

    IloObjective objective = IloMinimize(env, IloSum(prices));
    model.add(objective);

    IloGoal goal = IloGoalTrue(env);
    for(i=0;i<nbRack;i++){
      goal = goal && IloInstantiate(env, racks[i]->_type);
      goal = goal && IloGenerate(env, racks[i]->_counters);
    }
I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L 183



This goal is used in the main function like this: 

Complete program

The complete program follows. You can also view it online in the file YourSolverHome/
examples/src/rack.cpp.

#include <ilsolver/ilosolverint.h>

ILOSTLBEGIN

const IloInt nbRackTypes = 2;
const IloInt maxSlots = 16;
enum {power, price, nbSlot};

IloInt Racks[3][nbRackTypes+1] = {
    { 0, 150, 200 },
    { 0, 150, 200 },
    { 0, 8,    16 }
};

const IloInt nbCardTypes = 4;

const IloInt nbRack = 5;
IloInt nbCards[nbCardTypes] = {10, 4, 2, 1};

class Rack {
  public:
    IloIntVar      _type;
    IloIntVar      _price;

    IloSolver solver(model);

    if (solver.solve(goal)) {
      solver.out() << endl
                   << "Found an " << solver.getStatus()<< " solution at cost "
                   << solver.getValue(objective) << endl << endl;
      for(i = 0; i < nbRack; i++) {
        if (solver.getValue(racks[i]->_type) !=0) {
          solver.out() << "Rack " << i << endl
                       << "Type : " << solver.getValue(racks[i]->_type)
                       << endl << "Price : "
                       << solver.getValue(racks[i]->_price) << endl
                       << "Counters : ";
          for (j = 0; j < nbCardTypes; j++)
            solver.out() << solver.getValue(racks[i]->_counters[j]) << " ";
          solver.out() << endl << endl;
        }
      }
    }
    else
      solver.out() << "No solution" << endl;
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    IloIntVarArray _counters;
  Rack(IloModel model, IloIntArray cardPower);
};

Rack::Rack(IloModel model, IloIntArray cardPower) {
  IloEnv env = model.getEnv();
  _type = IloIntVar(env, 0, nbRackTypes);
  _counters = IloIntVarArray(env, nbCardTypes, 0, maxSlots);
  _price = IloIntVar(env, 0, 10000);
  IloIntArray prices(env, nbRackTypes + 1);
  IloIntArray rackPower (env, nbRackTypes + 1);
  IloIntArray rackSlot (env, nbRackTypes + 1);
  for (IloInt i=0; i<nbRackTypes + 1; i++) {
    prices[i] = Racks[price][i];
    rackPower[i] = Racks[power][i];
    rackSlot[i] = Racks[nbSlot][i];
  }
  model.add(_price ==  prices(_type));
  model.add(IloScalProd(_counters, cardPower) <= rackPower(_type));
  model.add(IloSum(_counters) <= rackSlot(_type));
}

int main () {
  IloEnv env;
  try {
    IloModel model(env);

    IloIntArray cardPower(env, (int)nbCardTypes, 20, 40, 50, 75);
    Rack* racks[nbRack];
    IloInt i,j;
    for (i = 0; i < nbRack; i++)
      racks[i] = new Rack(model, cardPower);
    // all cards must be plugged
    for(j = 0; j < nbCardTypes; j++){
      IloIntVarArray vars(env,nbRack);
      for(i = 0; i < nbRack; i++)
        vars[i] = racks[i]->_counters[j];
      model.add(IloSum(vars) == nbCards[j]);
    }
    // remove symmetries
    for(i = 1; i < nbRack; i++){
      model.add(racks[i]->_type >= racks[i-1]->_type);
      model.add(IloIfThen(env, racks[i-1]->_type == racks[i]->_type,
                               racks[i-1]->_counters[0] <= racks[i]-
>_counters[0]));
    }
    // cost constraints
    IloIntVarArray prices(env, nbRack);
    for(i=0;i<nbRack;i++)
      prices[i] = racks[i]->_price;

    IloObjective objective = IloMinimize(env, IloSum(prices));
    model.add(objective);

    IloGoal goal = IloGoalTrue(env);
    for(i=0;i<nbRack;i++){
      goal = goal && IloInstantiate(env, racks[i]->_type);
      goal = goal && IloGenerate(env, racks[i]->_counters);
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    }
    IloSolver solver(model);

    if (solver.solve(goal)) {
      solver.out() << endl
                   << "Found an " << solver.getStatus()<< " solution at cost "
                   << solver.getValue(objective) << endl << endl;
      for(i = 0; i < nbRack; i++) {
        if (solver.getValue(racks[i]->_type) !=0) {
          solver.out() << "Rack " << i << endl
                       << "Type : " << solver.getValue(racks[i]->_type)
                       << endl << "Price : "
                       << solver.getValue(racks[i]->_price) << endl
                       << "Counters : ";
          for (j = 0; j < nbCardTypes; j++)
            solver.out() << solver.getValue(racks[i]->_counters[j]) << " ";
          solver.out() << endl << endl;
        }
      }
    }
    else
      solver.out() << "No solution" << endl;
    solver.printInformation();
    for (i = 0; i < nbRack; ++i)
      delete racks[i];
  }
  catch (IloException& ex) {
    cout << "Error: " << ex << endl;
  }
  env.end();
  return 0;
}
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Results

Executing this program with those data produces the following output. The optimal solution 
is found very rapidly, but the proof of optimality takes 100 times longer.

Found an OPTIMAL solution at cost 550

Rack 2
Type : 1
Price : 150
Counters : 0 1 2 0

Rack 3
Type : 2
Price : 200
Counters : 0 3 0 1

Rack 4
Type : 2
Price : 200
Counters : 10 0 0 0

Number of fails               : 279
Number of choice points       : 285
Number of variables           : 31
Number of constraints         : 30
Reversible stack (bytes)      : 4044
Solver heap (bytes)           : 20124
Solver global heap (bytes)    : 4044
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 11144
Total memory used (bytes)     : 51488
Running time since creation   : 0.19
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C H A P T E R
11

Using Constrained Floating-Point
Variables: Modeling Equations

 In this lesson, you will learn how to: 

◆ use constrained floating-point variables in expressions 

◆ use predefined functions such as IloExponent, IloPower, and IloLog

◆ use the goals IloDichotomize and IloGenerateBounds

◆ use arrays of constrained floating-point variables

Solver allows you to use constrained floating-point variables using the class IloNumVar. 
Instances of the class IloNumVar have a domain represented by an interval of floating-point 
real numbers. The bounds of the domain are not represented by integers but by doubles 
defined by C++. Consequently, computations with constrained floating-point variables occur 
in double precision.

Note: This chapter is not presented using the three-stage method, as in previous chapters in 
this part. This subject matter lends itself more naturally to a conceptual introduction rather 
than procedural-based learning. However, when confronted with a problem using 
constrained floating-point variables, you should still use the Describe, Model, and Solve 
stages.
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Declaring floating-point variables

You must declare a constrained floating-point variable before you use it, just as you do for 
other constrained variables in Solver. To create a floating-point variable, you create an 
IloNumVar of type Float. 

Here is a constructor for IloNumVar:

An instance of this class represents a numeric variable in a model. A numeric variable may 
be an integer variable, a Boolean variable, or a floating-point variable; that is, a numeric 
variable has a type, a value of the nested enumeration IloNumVar::Type, which can be 
Bool, Int, or Float. By default, its type is Float. It also has a lower and upper bound. A 
numeric variable cannot assume values less than its lower bound, nor greater than its upper 
bound.

Using floating-point variables in expressions

Concert Technology allows you to define expressions involving floating-point variables. For 
example, you can formulate constraints on floating-point expressions by using the operators: 

◆ addition +

◆ subtraction -

◆ multiplication *

◆ division /

You can then use these expression to formulate constraints: 

 IloNumVar(const IloEnv env,
           IloNum lowerBound = 0.0,
           IloNum upperBound = IloInfinity,
           Type type = Float,
           const char* name = 0);

Note: If you are looking for a class of variables that can assume only constrained integer 
values, consider the class IloIntVar. If you are looking for a class of binary decision 
variables that can assume only the values 0 (zero) or 1 (one), then consider the class 
IloBoolVar.

Note: In the context of floating-point expressions, Concert Technology and Solver know 
how to rewrite certain expressions more simply. For example, x+x+y is treated as 2*x+y. 
However, Solver is not a general purpose rewrite system, so an expression like x+y+x 
remains unchanged.
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◆ equality ==

◆ less than or equal to <=

◆ greater than or equal to >=

The following example model and solves a simple equation by mixing constrained integer 
variables and constrained floating-point variables. The floating-point variables are modeled 
using the class IloNumVar. The member function IloSolver::getFloatVar returns the 
algorithmically constrained floating-point variable corresponding to the variable x. Here is 
the example:

The output is:

#include <ilsolver/ilosolverfloat.h>

ILOSTLBEGIN

int main() {

  IloEnv env;
  try {
  IloModel model(env);

  IloNumVar x(env, -2, 2), y(env, -100, 100);
  model.add((x - 1)*(x + 2) == y );
  IloSolver solver(model);
  solver.propagate();
  cout << "y = " << solver.getFloatVar(y) << endl;
}
  catch (IloException& ex) {
          cerr << "Error:" << ex << endl;
  }
  env.end();
  return 0;
}

y = [-12, 4]
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Using predefined functions with floating-point variables

Concert Technology provides many predefined functions to use with floating-point 
variables, such as IloPower and IloExponent. To demonstrate their use, let’s code the 
equation: x + x3 + ex = 10.

When executing this program, you should get the following output.

The complete program is available online in the YourSolverHome/examples/src/
equation.cpp file. 

Using IloDichotomize

The function IloDichotomize creates and returns a goal in a Concert Technology model. 
The goal tries to instantiate constrained floating-point variables. To do so, it recursively 
searches half the domain of each variable at a time. This function works on IloNumVar 
variables or IloNumVarArray arrays of variables. (The type can be either Float or Int.) 

#include <ilsolver/ilosolverfloat.h>

ILOSTLBEGIN

int main(){
  IloEnv env;
  try {
    IloModel model(env);

    IloNumVar x (env, 1, 10);  // Declaring the variable

    // Adding the constraint to the model
    model.add(x + IloPower(x, 3L) + IloExponent(x) == 10.);

    IloSolver solver(model);
    
    if (solver.solve())
      solver.out() << "x = " << solver.getValue(x) << endl;
    solver.printInformation();
  }
  catch (IloException& ex) {
    cout << "Error: " << ex << endl;
  }
  env.end();
  return 0;
}

x = 1.55113
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The following example computes the intersection between the folium of Descartes and an 
exponentially decaying function. It uses the goal returned by IloDichotomize to search 
for a solution. 

For the model of the problem, you use two variables related by the following equations:

x*x/y + y*y/x = 2

y = e-x

Here is the code:. 

The program finds two solutions: 

The complete program is available online in the YourSolverHome/examples/src/
folium.cpp file. 

#include <ilsolver/ilosolverfloat.h>

ILOSTLBEGIN

int main() {
  IloEnv env;
  try {
    IloModel model(env);
    
    IloNumVar x(env, -1e30, 1e30);   // Declaring the variables 
    IloNumVar y(env, -1e30, 1e30);    

    model.add(x*x/y + y*y/x == 2.);  // Posting the constraints
    model.add(y == IloExponent(-x));  

    IloSolver solver(model);
    solver.startNewSearch(IloDichotomize(env, x));

    while (solver.next()) {
      solver.out() << "x = " << solver.getFloatVar(x) << endl;
      solver.out() << "y = " << solver.getFloatVar(y) << endl << endl;
    }
    solver.printInformation();
    solver.endSearch();
  }
  catch (IloException& ex) {
    cout << "Error: " << ex << endl;
  }
  env.end();
  return 0;
}

x = [0.868418..0.868418]
y = [0.419615..0.419615]

x = [0.294563..0.294563]
y = [0.744857..0.744857]
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Using IloGenerateBounds

The function IloGenerateBounds creates and returns a goal. The goal efficiently reduces 
the domain of a floating-point variable by propagating any constraints on that variable more 
than usual. It checks whether the boundaries of the domain of the variable are consistent 
with all the constraints posted on the variable. If that is not the case, then it reduces an 
interval around the variable until the boundaries become consistent up to the precision 
indicated by a precision parameter. If the precision is small, the new domain computed by 
IloGenerateBounds will be smaller. However, the smaller the precision, the longer the 
computation will take. This function works on IloNumVar variables or IloNumVarArray 
arrays of variables. (The type can be either Float or Int.) 

The following example uses the goal returned by IloGenerateBounds to search for a 
solution.

The problem is to find the roots of the following polynomial:

(x + 1)(x + 2)…(x + 20) + 2-23x19
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That example can be coded like this:

That program prints all the roots of the equation.

#include <ilsolver/ilosolverfloat.h>

ILOSTLBEGIN

int main () {
  IloEnv env;
  try {
    IloModel model(env);

    IloNumVar x(env, -1e10, 1e10);

    IloExpr y = x + 1;
    for(IloInt i = 2; i <= 20; i++)
      y = y * (x + i);

    model.add(y + IloPower(2, -23) * IloPower(x, 19) == 0);
    y.end();

    IloSolver solver(env);
    solver.setDefaultPrecision(1e-8);

    solver.out().precision(8);

    solver.extract(model);
    
    solver.startNewSearch(IloGenerateBounds(env, x, 1e-5) && 
                          IloDichotomize(env, x));
    
    while (solver.next()) 
      solver.out() << "x = " << solver.getFloatVar(x) << endl;
    solver.printInformation();
    solver.endSearch();
  }
  catch (IloException& ex) {
    cout << "Error: " << ex << endl;
  }
  env.end();
  return 0;
}

x = [-1..-1]
x = [-2..-2]
x = [-3..-3]
x = [-4..-4]
x = [-4.9999999..-4.9999999]
x = [-6.0000069..-6.0000069]
x = [-6.9996972..-6.9996972]
x = [-8.0072676..-8.0072676]
x = [-8.9172503..-8.9172502]
x = [-20.846908..-20.846908]
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The complete program is available online in the YourSolverHome/examples/src/
wilkins.cpp file. 

Using arrays of floating-point variables

You may often find it useful to design a model of your problem that organizes the unknowns 
into arrays of variables. Concert Technology provides a class of arrays for numerical 
variables, IloNumVarArray.

Let’s assume two constrained floating-point variables, x and y, and one constrained integer 
variable, k. These three variables use the following intervals as their domains:

x ∈ [-5, 108] 

y ∈ [0, 108]

k ∈ [-1000, 1000]

Let’s also assume the following system of equations must be solved:

x3 + 10x = yx - 2k 

kx + 7.7y = 2.4 

(k - 1)y+1 ≤ 10 

(log(y + 2x + 12.) ≤ k + 5. ∨ y ≥ k2) ⇒ (x ≤ 0. ∧ y ≤ 1)

x ≤ 0 ⇒ k > 3

The solution is:

x = -1.285057857952 

y = 0.9792508352872 

k = 4

The complete program follows:

#include <ilsolver/ilosolverfloat.h>

ILOSTLBEGIN

int main(){    
  IloEnv env;
  try {
    IloModel model(env);

    IloNumVar x(env, -5, 1e8);
    IloNumVar y(env, 0, 1e8);
    IloIntVar k(env, -1000, 1000);

    model.add(IloPower(x,3) + 10*x == IloPower(y, x) - IloPower(2, k));
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    model.add(k*x + 7.7*y == 2.4);
    model.add(IloPower(k-1, y+1) <= 10);
    model.add(IloIfThen(env, IloLog(y + 2*x + 12) <= k + 5 || y >= k*k, x <= 0 
&& y <= 1));
    model.add(IloIfThen(env, x <= 0, k > 3));

    IloNumVarArray vars(env, 2, x, y);
    IloSolver solver(env);

    solver.out().precision(16);

    solver.extract(model);

    if (solver.solve(IloGenerateBounds(env, vars, .1))) {
      solver.out() << "x = " <<  solver.getFloatVar(x) << endl;
      solver.out() << "y = " <<  solver.getFloatVar(y) << endl;
      solver.out() << "k = " <<  solver.getIntVar(k) << endl;
    }
    solver.printInformation();
  }
  catch (IloException& ex) {
    cout << "Error: " << ex << endl;
  }
  env.end();
  return 0;
}

Here’s the output of the program.

The complete program is available online in the YourSolverHome/examples/src/
narin.cpp file. 

Factored and canonical forms of expressions

There is no exact method to determine whether it is better to write a constrained expression 
using a factored or canonical form in order for the domains to be maximally reduced. 
Consequently, if you face a problem where this issue is important, you should experiment 
with both factored and canonical forms of constrained expressions to see which gives better 
domain reduction for your particular problem. The following sections demonstrate this 
concept.

Factored and canonical forms: Example 1

Suppose x, y, and z are three variables, and you want to express the following relation:

x = [-1.285057857942743..-1.285057857928474]
y = [0.9792508352918879..0.979250835302613]
k = [4]
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z = (x - 1)*(y + 2)

There are various ways to express the constraint. You can, for example, write the expression 
in a factored form like this:

The output is:

#include <ilsolver/ilosolverfloat.h>

ILOSTLBEGIN

int main() {

  IloEnv env;
  try {
  IloModel model(env);

  IloNumVar x(env, -2, 2), y(env, 0, 10), z(env, -100, 100);
  model.add((x - 1)*(y + 2) == z);
  IloSolver solver(model);
  solver.propagate();
  cout <<  "z = " << solver.getFloatVar(z) << endl;

}
  catch (IloException& ex) {
          cerr << "Error:" << ex << endl;
  }
  env.end();
  return 0;
}

z = [-36, 12]
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You can write the same expression in a canonical algebraic form, like this: 

After propagation, the result is:

With the factored form, you can see that propagation has more severely reduced the domain 
of z, and in terms of performance, that is a good thing.

Because of that observation, you might think that it is always better to write constraints in a 
factored form. However, you will see a counter-example to that hasty generalization.

#include <ilsolver/ilosolverfloat.h>

ILOSTLBEGIN

int main() {

  IloEnv env;
  try {
  IloModel model(env);

  IloNumVar x(env, -2, 2), y(env, 0, 10), z(env, -100, 100);
  model.add(z == x*y - y + 2*x - 2);
  IloSolver solver(model);
  solver.propagate();
  solver.out() << "z = [" << solver.getMin(z)
                          << ", " << solver.getMax(z)
                          << "]" << endl;
}
  catch (IloException& ex) {
          cerr << "Error:" << ex << endl;
  }
  env.end();
  return 0;
}

z = [-36, 22]
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Factored and canonical forms: Example 2

Now suppose that x and y are two constrained variables, and you want to express the 
following relation: y = (x - 1)*(x + 2). If you write it in a factored form, like this: 

The propagation reduces the domain of y:

#include <ilsolver/ilosolverfloat.h>

ILOSTLBEGIN

int main() {

  IloEnv env;
  try {
  IloModel model(env);

  IloNumVar x(env, -2, 2), y(env, -100, 100);
  model.add((x - 1)*(x + 2) == y );
  IloSolver solver(model);
  solver.propagate();
  cout << "y = " << solver.getFloatVar(y) << endl;
}
  catch (IloException& ex) {
          cerr << "Error:" << ex << endl;
  }
  env.end();
  return 0;
}

y = [-12, 4]
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However, if you write it this way:

Then, the domain of y is:

In short, there are situations where the canonical form of an arithmetic expression leads to 
greater domain reduction than does the factored form of the same expression. 

Factored and canonical forms: Using IloGenerateBounds

IloGenerateBounds is a goal that performs efficient domain reduction, regardless of 
whether its arguments are factored or canonical form.

#include <ilsolver/ilosolverfloat.h>

ILOSTLBEGIN

int main() {

  IloEnv env;
  try {
  IloModel model(env);

  IloNumVar x(env, -2, 2), y(env, -100, 100);
  model.add(x*x + x - 2 == y);
  IloSolver solver(model);
  solver.propagate();
  cout << "y = " << solver.getFloatVar(y) << endl;
}
  catch (IloException& ex) {
          cerr << "Error:" << ex << endl;
  }
  env.end();
  return 0;
}

y = [-4, 4]
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Let’s look at an example, where the constraint is not written in a factored form but in 
canonical form, like this:

In this case, the domain of z is:

If you call the function IloGenerateBounds on the variable z, the reduction is efficient 
anyway. In other words, in situations where the form of a floating-point expression (whether 
canonical or factored) is an issue, it’s a good idea to exploit IloGenerateBounds.

#include <ilsolver/ilosolverfloat.h>

ILOSTLBEGIN

int main() {

  IloEnv env;
  try {
  IloModel model(env);

  IloNumVar x(env, -2, 2), y(env, 0, 10), z(env, -100, 100);
  model.add(z == x*y - y + 2*x - 2);
  IloSolver solver(model);
  solver.propagate();
  solver.out() << "z = [" << solver.getMin(z)
                          << ", " << solver.getMax(z)
                          << "]" << endl;
}
  catch (IloException& ex) {
          cerr << "Error:" << ex << endl;
  }
  env.end();
  return 0;
}

z = [-36, 22]
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Here’s the example:

The output is:

IEEE 754 and Solver

There are some special considerations about floating-point arithmetic due to the fact that 
certain floating-point numbers cannot be represented exactly on any given hardware and 
software platform. The Institute of Electronics and Electrical Engineers (IEEE) has 
proposed a widely adopted standard (IEEE 754) for dealing with these variations in a 
consistent and reliable way. Solver conforms to the IEEE 754 floating-point representation.

#include <ilsolver/ilosolverfloat.h>

ILOSTLBEGIN

int main() {

  IloEnv env;
  try {
  IloModel model(env);

  IloNumVar x(env, -2, 2), y(env, 0, 10), z(env, -100, 100);
  model.add(z == x*y - y + 2*x - 2);
  IloSolver solver(model);
  solver.solve(IloGenerateBounds(env, z, 1e-5));
  solver.out() << "z = [" << solver.getMin(z)
                          << ", " << solver.getMax(z)
                          << "]" << endl;
}
  catch (IloException& ex) {
          cerr << "Error:" << ex << endl;
  }
  env.end();
  return 0;
}

z = [-36, 15.04]
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Part III



More on Solving

This part consists of the following lessons:

◆ Chapter 12, Setting Filter Levels: Coloring Graphs

◆ Chapter 13, Controlling the Search: Locating Warehouses

◆ Chapter 14, Limits and Problem Decomposition: Locating Warehouses

◆ Chapter 15, Searching for Optimal Solutions: Replanning Warehouses

◆ Chapter 16, Using Parallel Solver: Multithreaded Warehouse Location



C H A P T E R
12

Setting Filter Levels: Coloring Graphs

In this lesson, you will learn how to:

◆ set filter levels on constraints

◆ time the search

◆ use IloBasicLevel, IloMediumLevel, IloExtendedLevel, and 
IloSolver::setDefaultFilterLevel

Describe

In this lesson, you will solve a graph coloring problem. Graph coloring problems may seem 
like puzzles, but they have many applications in industry, including scheduling, testing 
circuit boards, and assigning frequencies for radio and phone communications.

A graph is composed of nodes. Nodes that must be different colors are connected by lines, 
called edges. A clique is a set of nodes where every node is linked to every other node by an 
edge.

These concepts will become clearer if you re-examine the map coloring problem you solved 
in Chapter 2, Modeling and Solving a Simple Problem: Map Coloring. Map coloring 
problems can be represented as graph coloring problems. Each country on the map is a node. 
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Nodes (countries) that must be colored different colors are linked by lines or edges. See 
Figure 12.1.

Figure 12.1

Figure 12.1  Map coloring problem represented as a graph

The nodes are Belgium, Denmark, France, Germany, Luxembourg, and the Netherlands. 
Each pair of neighboring countries is connected by an edge, indicating that these two 
countries cannot share the same color. There are many cliques. For example, France, 
Luxembourg, and Germany are all linked to each other by edges. They form a clique; 
Luxembourg is linked to Germany, Germany is linked to France, and France is linked to 
Luxembourg. However, France, Belgium, and the Netherlands do not represent a clique; 
France is linked to Belgium and Belgium is linked to the Netherlands, but France and the 
Netherlands are not linked to each other.

Two types of cliques, maximal cliques and the largest clique, are interesting for this lesson. 
A maximal clique is a clique such that no other clique contains it. For example, Germany 
and Denmark form a maximal clique, because no other clique contains Denmark. Another 
maximal clique is Germany, France, Luxembourg, and Belgium. Another is Germany, 
Belgium, and the Netherlands. The clique Germany, Luxembourg, and France is NOT a 
maximal clique because the clique Germany, Luxembourg, France, and Belgium contains it.

The largest clique is simply the clique containing the largest number of nodes. In this 
example, the largest clique is Germany, Luxembourg, France, and Belgium.

To convert this map coloring problem into a graph coloring problem, you can extract the 
nodes and edges from the map as shown in Figure 12.2. The problem is now to color the 
nodes in such a way that no pair of nodes connected by an edge are the same color. 
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Figure 12.2

Figure 12.2  Map coloring problem converted to a graph coloring problem

You can solve this graph coloring problem by using the answers you found for the map 
coloring problem in Chapter 2, Modeling and Solving a Simple Problem: Map Coloring. 
Belgium is blue; Denmark is blue; France is white; Germany is yellow; Luxembourg is 
green; and the Netherlands is white. 

Figure 12.2  Map coloring problem solved as graph coloring problem

Many real world problems can be represented as graph coloring problems. In general, the 
graph represents items and the edges represent incompatibilities between items. The 
problem is to find a way to color the graph so that each incompatible pair is colored different 
colors, ideally using the fewest possible colors.

For example, the problem of assigning frequencies is essentially a graph coloring problem. 
In its simplest form, you have a set of frequencies and customers who use these frequencies, 
for example, in a cell phone. Customers who are located within a certain distance of each 
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other cannot share the same frequency—cannot be the same “color”—or there will be 
interference. Customers who are farther apart in distance can share the same frequency—can 
be the same “color.” The problem is to find a solution using the fewest number of 
frequencies—“colors”—while avoiding any interference.

Now that you understand the basic concepts in graph coloring problems, here is the problem 
description for this lesson. You will solve a graph coloring problem for a special kind of 
graph. This graph has n*(n - 1)/2 nodes, where n is an even number. Every node belongs to 
exactly two maximal cliques of size n - 1. 

There is a theorem that states that the minimum number of colors needed to color a graph so 
that two nodes that are linked by an edge are different colors is greater than or equal to the 
size of the largest clique. In this problem, the largest clique is the same size as the maximal 
cliques of size n - 1. Therefore, the minimum number of colors needed to color this graph is 
greater than or equal to n - 1. You will try to color the graph with n - 1 colors and see if it is 
possible. 

For example, if you have a graph with n = 4, there are 6 nodes or 4 * (4 - 1)/2. Every node 
belongs to exactly two maximal cliques of size 3 or 4 - 1. 

Here are the maximal cliques:

◆ clique 0 = [0,1,2]

◆ clique 1 = [0,3,4]

◆ clique 2 = [1,3,5]

◆ clique 3 = [2,4,5]

Here is a diagram with the nodes and maximal cliques. The nodes are node 0, node 1, node 
2, node 3, node 4, and node 5. The edges of clique 0 are blue; the edges of clique 1 are black; 
the edges of clique 2 are white; and the edges of clique 3 are green.

Figure 12.3

Figure 12.3  Graph with nodes and maximal cliques
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As you can see in the diagram, the largest clique is also size 3 or n - 1. Therefore, the 
minimum number of colors needed to color this graph is greater than or equal to 3. You can, 
in fact, color this graph with 3 colors, as shown in the following diagram. None of the nodes 
connected by an edge share a color. 

Figure 12.4

Figure 12.4  Graph with colored nodes

Of course, figuring out how to color a simple graph like this one is easy to do without using 
Solver. However, graphs representing scheduling or frequency assignment problems can 
have hundreds or thousands of nodes. 

The first step in modeling and solving a problem is to write a natural language description of 
the problem, identifying the decision variables and the constraints on these variables. 

Write a natural language description of this problem. Answer these questions:

◆ What is the known information in this problem?

◆ What are the decision variables or unknowns in this problem? 

◆ What are the constraints on these variables?

Discussion

What is the known information in this problem?

◆ the number of nodes in the graph

◆ which nodes belong to which maximal cliques

What are the decision variables or unknowns in this problem?

◆ what are the colors of the nodes

Step 1 Describe the problem
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What are the constraints on these variables?

◆ in each maximal clique, all the nodes must be a different color

Since you know all the maximal cliques, you know all the nodes that are linked to each 
other. Therefore, if all the nodes in each maximal clique are different colors, in the graph as 
a whole, every pair of linked nodes will be different colors.

There is no objective in this problem. You will simply search for the first solution. 

Model

Once you have written a description of your problem, you can use Concert Technology 
classes to model it.

Open the example file YourSolverHome/examples/src/tutorial/
graph_partial.cpp in your development environment.

You want to be able to run this program and test graphs of different sizes, so you create a 
function testGraph to run the test. It has one parameter, nTest, which is the size of the 
maximal cliques of the graph.

Add the following code after the comment //Declare the testGraph function

Next, you create the environment and the model. The parameter nTest is the size of the 
maximal clique, which is n-1 in this problem. Since n must be an even number for this 
problem, you check if nTest is an even number. If it is not, you increment nTest by 1 to get 
the size n of the graph. This code is provided for you:

Step 2 Open the example file

Step 3 Declare the testGraph function

void testGraph(IloInt nTest)

{
  IloEnv env;
  try {
    IloModel model(env);
    IloInt n = (nTest%2)?nTest+1:nTest;
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Then you set the number of nodes, nbNodes, equal to n*(n-1)/2 and the number of colors, 
nbColors, equal to n-1. You declare i and j for use in loops. This code is provided for 
you:

Now you declare the variables, using an instance of IloIntVarArray. The array contains 
nbNodes variables. The variables in the array represent the unknown information—the color 
of each node. Each variable takes a value in the domain of integers from 0 to nbColors-1. 
These values represent the possible colors.

Add the following code after the comment //Declare the decision variables

Now that you have created the variables, you create the maximal cliques using the function 
createClique. The function createClique is declared before the function testGraph. 
It is used to build the cliques. The following code is provided for you:

For each clique, you add the predefined constraint IloAllDiff. This constraint states that 
every node in that maximal clique must be a different color.

Add the following code after the comment 
//Create the cliques and add the IloAllDiff constraint

    IloInt nbNodes = n*(n-1)/2;
    IloInt nbColors = n-1;
    IloInt i, j;

Step 4 Declare the decision variables

    IloIntVarArray vars(env,nbNodes,0,nbColors-1);
    for(i = 0; i < n-2; i++){
      model.add(vars[i] < vars[i+1]);
    }

IloInt createClique(IloInt i, IloInt j, IloInt n){
  if (j >= i) return (i*n-i*(i+1)/2+j-i);
  else return createClique(j,i-1,n);
}

Step 5 Create the cliques and add the IloAllDiff constraint

    for(i = 0; i < n; i++){
      IloIntVarArray clique(env,n-1);
      for(j = 0; j < n-1; j++){
            clique[j] = vars[createClique(i,j, n)];
      }
      model.add(IloAllDiff(env,clique));
    }
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To demonstrate how the createClique function works, consider a graph with n = 4. 
There are 6 or 4 * (4 - 1)/2 nodes. Every node belongs to exactly two maximal cliques of 
size 3 or 4 - 1. 

The “for” loops and the function createClique create these maximal cliques. The 
createClique function takes three parameters: i, j, and n. For i=0 and j=0 and n=4, the 
createClique function returns (i*n - i*(i+1)/2 + j - i) or 
(0*4 - 0*(0 + 1)/2 + 0 - 0) = 0. This corresponds to element [0] in the array vars, or 
node 0. In the second loop using j, i=0 and j=1 and n=4 and the createClique function 
returns 1. This corresponds to element [1] in the array vars, or node 1. In the third loop 
using j, i=0 and j=2 and n=4 and the createClique function returns 2. This corresponds 
to element [2] in the array vars, or node 2. After the loop using j has run three times, the 
code has created an array of variables clique. This array contains three elements: the 
variables representing nodes 0, 1, and 2. You use IloAllDiff to add the constraint to the 
model that these three variables must all be different from each other. This procedure is then 
followed for i=1, and so on. The following table shows the results of the “for” loops for a 
n = 4 graph: 

In other words, there are four maximal cliques:

◆ clique 0 = [0,1,2]

◆ clique 1 = [0,3,4]

◆ clique 2 = [1,3,5]

◆ clique 3 = [2,4,5]

For each clique, you use the predefined constraint IloAllDiff to state that every node in 
that clique must be a different color.

Solve

After you have declared the variables and added the constraints to the model, you are ready 
to search for a solution. In this lesson, you will not actually display the solution to the graph 

j = 0 j = 1 j = 2

i = 0 0 1 2 clique 0

i = 1 0 3 4 clique 1

i = 2 1 3 5 clique 2

i = 3 2 4 5 clique 3
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coloring problem, but instead search to see if a solution is possible. You will learn how to 
time a search and how to use different filter levels for constraints.

First you create an instance of the class IloSolver to solve the problem expressed in the 
model. This code is already provided for you: 

Now, you create an instance of the class IloTimer. This class works like a stop watch and 
you will use it to time how long it takes to find a solution to the graph coloring problem 
using different filter levels. 

Add the following code after the comment //Create the timer

Now, you set filter levels for constraints. Constraint propagation is, of course, more 
sophisticated than discussed in the introductory section “Solve” on page 32 in Chapter 1, 
Constraint Programming with IBM ILOG Solver. Each constraint is associated with a 
filtering algorithm. This filtering algorithm performs domain reductions based on the 
associated constraint—it will remove values from the current domains of variables that do 
not belong to a solution. Constraint propagation is the mechanism used to communicate the 
effects of these domain reductions. 

For some types of constraints, you can set a filter level that specifies the type of filtering 
algorithm. So far, you have looked at two types of constraints. These are: 

◆ binary constraints, such as the inequality constraint x != y, that affect two variables 

◆ global constraints, such as IloAllDiff and IloDistribute, that can be defined as a 
set of non-global constraints

For all constraints except global constraints, the filtering algorithm is always the same. For 
global constraints, the filtering algorithm varies depending on the filter level. There are three 
filter levels for global constraints: IloBasicLevel, IloMediumLevel, and 
IloExtendedLevel. 

To understand the difference between these filter levels, consider the IloAllDiff global 
constraint. You can view this constraint in two ways. It can be seen as a set of inequality != 
constraints or as one global constraint. For example, consider a graph coloring problem with 
three nodes: x, y, and z. All the nodes must be colored a different color. Node x can be 
colored red or blue; node y can be colored red or blue; and node z can be colored red, blue, 
or yellow. If you set the filter level of IloAllDiff to IloBasicLevel, the filtering 
algorithm treats this global constraint as a set of inequality constraints. Looking at each set 

    IloSolver solver(model);

Step 6 Create the timer

    IloTimer timer(env);
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of binary constraints individually, the filtering algorithm is not able to reduce the domains. 
The domains are not reduced after constraint propagation and appear as in Figure 12.5. 

Figure 12.5

Figure 12.5  IloBasicLevel filter level 

If you set the filter level of IloAllDiff to IloExtendedLevel, the filtering algorithm 
treats this global constraint as a truly global constraint. The filtering algorithm is not able to 
reduce the domains of x and y. However, the filtering algorithm can “realize” that between 
them, variables x and y must use both of the values red and blue. This leaves only the value 
of yellow available for variable z. The domain of z is reduced after constraint propagation 
and appears as in Figure 12.6.

Figure 12.6

Figure 12.6  IloExtendedLevel filter level

Given that IloExtendedLevel is the most thorough filter level, why would you use any 
other filter level? There is a tradeoff in using IloExtendedLevel. In general, 
IloExtendedLevel takes longer. The filter level IloBasicLevel is less thorough, but 
faster. IloMediumLevel is a compromise between the two levels—faster than 
IloExtendedLevel and more thorough than IloBasicLevel. However, these are general 
rules and are not true for every situation. Depending on your application, different filter 
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levels may be appropriate. In this lesson, you run each test of the graph with the three filter 
levels and include performance output. You can analyze the different results. 

You use the member function IloSolver::setDefaultFilterLevel to set the filter 
levels for all global constraints. This function takes two parameters: the first specifies the 
type of global constraint, the second specifies the filter level.

Add the following code after the comment //Set the default filter level

Now, you use the member function IloTimer::start to start the timer.

Add the following code after the comment //Start the timer

You search for a solution using the predefined goal IloGenerate. Since you have chosen 
the parameter IloChooseMinSizeInt, Solver will first choose the unbound variable with 
the smallest domain and propagate the effects of this move, and so on. If a search move leads 
to a situation where a constraint is not satisfied, it is undone and Solver backtracks. 

Add the following code after the comment //Search for a solution 

When a solution is found, you display the size of the maximal cliques, the number of 
failures, and the elapsed time. This code is provided for you: 

Note: Filtering algorithms vary depending on the type of global constraint. In general, 
however, the filter levels provide a similar tradeoff between thoroughness and speed. 
IloExtendedLevel is the most thorough, IloBasicLevel the fastest, and 
IloMediumLevel is a compromise between the two.

Step 7 Set the default filter level

    solver.setDefaultFilterLevel(IloAllDiffCt,IloExtendedLevel);

Step 8 Start the timer

    timer.start();

Step 9 Search for a solution

    if (!solver.solve(IloGenerate(env,vars,IloChooseMinSizeInt)))
      solver.out() << "No solution" << endl;

    solver.out() << "IloExtendedLevel \t clique size:" << nTest;
    solver.out() << "\t#fails:\t" << solver.getNumberOfFails() << "\t";
    solver.out() << "cpu time: " << timer.getTime() << " s" << endl;
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Now, you add the code to run the tests using the filter levels IloMediumLevel and 
IloBasicLevel. You will not have the thorough domain reductions that you had using 
IloExtendedLevel. Therefore, it is a good idea to add a redundant constraint to reduce the 
search space. 

As you remember from Chapter 6, Using the Distribute Constraint: Car Sequencing, the 
IloDistribute constraint takes three arrays as parameters: cards, values, and vars. 
The constrained variables in the array cards are equal to the number of occurrences in the 
array vars of the values in the array values. If no values array is specified, this array is 
assumed to be an array of consecutive integers starting at 0. More precisely, for each i, 
cards[i] is equal to the number of occurrences of values[i] in the array vars. 

Add the following code after the comment 
//Add the redundant IloDistribute constraint

Here is an example of how the distribute constraint would work for a graph of size n = 3, 
with 6 nodes and 3 colors. The array cards consists of 3 elements. The elements all have 
the same value—the upper and lower bounds are both nbNodes/nbColors, or 6/3 = 2. 
The array values must be the same size as the array cards, or 3 elements. These are the 
first three consecutive integers starting at 0 and represent the possible colors. There are 6 
variables that represent the color of each node.

In a graph of size n = 3, the array cards is [2, 2, 2]. The array values is [0,1,2]. 
Therefore, the value 0 (element [0] in the array values) must occur 2 (element [0] in the 
array cards) times in the array vars. Likewise, the value 1 must occur 2 times and the 
value 2 must occur 2 times. One possible set of values for the array vars that would satisfy 
this distribute constraint is [0, 2, 1, 1, 2, 0]. The value 0 occurs 2 times, the value 1 
occurs 2 times, and the value 2 occurs 2 times.

Step 10 Add the redundant IloDistribute constraint

    IloIntVarArray cards(env,nbColors,nbNodes/nbColors,
                         nbNodes/nbColors);
    IloConstraint distribute=IloDistribute(env,cards,vars);
    model.add(distribute);

Note: This is just an example of a set of values that would satisfy the distribute constraint. 
It is not necessarily a set of values that would represent a solution to the problem.
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Now you add the default filter level IloMediumLevel. This code is provided for you:

Finally, you run the tests with the default filter level IloBasicLevel. This code is provided 
for you:

In this example, you model and solve the problem in the function testGraph. The main 
function only serves as a way to input the clique size of the graph and to call the function 
testGraph. You run the first test on a graph with a maximal clique size of 27 (378 nodes). 
The second test is run on a graph with a maximal clique size of 29 (435 nodes). The third test 
is run on a graph with a maximal clique size of 31 (496 nodes). This code is provided for 
you:

    solver.setDefaultFilterLevel(IloAllDiffCt,IloMediumLevel);
    timer.restart();
    if (! solver.solve(IloGenerate(env,vars,IloChooseMinSizeInt)))
       solver.out() << "No solution" << endl;
    solver.out() << "IloMediumLevel \t \t clique size:" << nTest;
    solver.out() << "\t#fails:\t" << solver.getNumberOfFails() << "\t";
    solver.out() << "cpu time: " <<  timer.getTime() << " s" << endl;

    solver.setDefaultFilterLevel(IloAllDiffCt,IloBasicLevel);
    timer.restart();
    if (! solver.solve(IloGenerate(env,vars,IloChooseMinSizeInt)))
      solver.out() << "No solution" << endl;
    solver.out() << "IloBasicLevel \t \t clique size:" << nTest;
    solver.out() << "\t#fails:\t" << solver.getNumberOfFails() << "\t";
    solver.out() << "cpu time: " << timer.getTime() << " s" << endl;

int main(int argc, char** argv){
  IloInt b1=(argc>1)?atoi(argv[1]):27;
  IloInt b2=(argc>2)?atoi(argv[2]):b1+4;
  for(IloInt nTest = b1; nTest < b2+1; nTest+=2){
    testGraph(nTest);
  }
  return 0;
}
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Compile and run the program. You should get the following results:

As you can see, Solver found a solution for the graph coloring problem with test runs of 
maximal clique size 27, 29, and 31. The number of failures and the time to solve varies 
depending on the filter level. At these clique sizes, the IloExtendedLevel filter level has 
fewer failures, but takes longer. 

You can experiment by trying different clique sizes. Here is a test run with maximal cliques 
of size 51, 53, and 55. You can observe that the test run with a clique of size 55 follows the 
general pattern. There are fewer fails for IloExtendedLevel, but it takes the longest time 
to solve. However, the test runs of clique size 51 and 53 do not follow the normal pattern. 
This is because this graph coloring problem does not get more difficult in a purely linear 
fashion. Certain clique sizes, regardless of relative size, are very difficult to solve. Often 
these more difficult instances of the problem will solve faster with a filter level of 
IloExtendedLevel or IloMediumLevel. Here are the results:

The following test run on a clique of size 61—a particularly difficult instance of the 
problem—demonstrates the importance of trying different filter levels in your problem. You 

Step 11 Compile and run the program

--------------------------------------
IloExtendedLevel      clique size:27 #fails: 0       cpu time: 0.651 s
IloMediumLevel        clique size:27 #fails: 1       cpu time: 0.09 s
IloBasicLevel         clique size:27 #fails: 1       cpu time: 0.05 s

--------------------------------------
IloExtendedLevel      clique size:29 #fails: 4       cpu time: 0.541 s
IloMediumLevel        clique size:29 #fails: 7       cpu time: 0.11 s
IloBasicLevel         clique size:29 #fails: 23      cpu time: 0.07 s

--------------------------------------
IloExtendedLevel      clique size:31 #fails: 4       cpu time: 0.751 s
IloMediumLevel        clique size:31 #fails: 49      cpu time: 0.16 s
IloBasicLevel         clique size:31 #fails: 65      cpu time: 0.11 s

--------------------------------------
IloExtendedLevel      clique size:51 #fails: 501     cpu time: 9.754 s
IloMediumLevel        clique size:51 #fails: 10906   cpu time: 13.299 s
IloBasicLevel         clique size:51 #fails: 24512   cpu time: 19.578 s

--------------------------------------
IloExtendedLevel      clique size:53 #fails: 2       cpu time: 10.896 s
IloMediumLevel        clique size:53 #fails: 368     cpu time: 1.121 s
IloBasicLevel         clique size:53 #fails: 13159   cpu time: 9.063 s

--------------------------------------
IloExtendedLevel      clique size:55 #fails: 2       cpu time: 13.35 s
IloMediumLevel        clique size:55 #fails: 27      cpu time: 1.221 s
IloBasicLevel         clique size:55 #fails: 94      cpu time: 0.892 s
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will get the following solutions for the filter levels of IloExtendedLevel and 
IloMediumLevel. However, you will not have any response about the test using filter level 
IloBasicLevel for many hours: 

The following test run on a clique size of 71 again demonstrates the general case. The filter 
level IloBasicLevel is fastest and the filter level IloExtendedLevel is the most 
thorough, with only 5 fails: 

The complete program is listed in “Complete program” on page 223. You can also view it 
online in the file YourSolverHome/examples/src/graph.cpp. 

Review exercises

For answers, see “Suggested answers” on page 221.

1. What are some real world examples of graph coloring problems?

2. What is the difference between the filter levels IloExtendedLevel, 
IloMediumLevel, and IloBasicLevel?

3. Remove the redundant IloDistribute constraint from the graph coloring program by 
commenting out the code you added in  Step 10 on page 218. Run the tests on cliques of 
size 27, 29, and 31 and compare the results to those you obtained using the redundant 
constraint. How are they affected?

Suggested answers

Exercise 1

What are some real world examples of graph coloring problems?

Suggested Answer

These include scheduling problems, testing circuit boards, and assigning frequencies.

--------------------------------------
IloExtendedLevel      clique size:61 #fails: 5       cpu time: 22.502 s
IloMediumLevel        clique size:61 #fails: 120408491       cpu time: 172926 s

--------------------------------------
IloExtendedLevel      clique size:71 #fails: 5       cpu time: 49.471 s
IloMediumLevel        clique size:71 #fails: 586     cpu time: 5.217 s
IloBasicLevel         clique size:71 #fails: 1167    cpu time: 4.977 s
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Exercise 2

What is the difference between the filter levels IloExtendedLevel, IloMediumLevel, 
and IloBasicLevel?

Suggested Answer

In general, the filter level IloExtendedLevel is the most thorough, but takes the longest. 
The filter level IloBasicLevel is less thorough, but faster. IloMediumLevel is a 
compromise between the two levels—faster than IloExtendedLevel and more thorough 
than IloBasicLevel. However, these are general rules and are not true for every situation. 

Exercise 3

Remove the redundant IloDistribute constraint from the graph coloring program by 
commenting out the code you added in  Step 10 on page 218. Run the tests on cliques of size 
27, 29, and 31 and compare your results to those you obtained using the redundant 
constraint. How are they affected?

Suggested Answer

The results will vary depending on platform, machine, configuration, and so on.

Results

Results using the IloDistribute constraint:

--------------------------------------
IloExtendedLevel      clique size:27 #fails: 0       cpu time: 0.651 s
IloMediumLevel        clique size:27 #fails: 1       cpu time: 0.09 s
IloBasicLevel         clique size:27 #fails: 1       cpu time: 0.05 s

--------------------------------------
IloExtendedLevel      clique size:29 #fails: 4       cpu time: 0.541 s
IloMediumLevel        clique size:29 #fails: 7       cpu time: 0.11 s
IloBasicLevel         clique size:29 #fails: 23      cpu time: 0.07 s

--------------------------------------
IloExtendedLevel      clique size:31 #fails: 4       cpu time: 0.751 s
IloMediumLevel        clique size:31 #fails: 49      cpu time: 0.16 s
IloBasicLevel         clique size:31 #fails: 65      cpu time: 0.11 s

Results

When you do not use the IloDistribute constraint, there is no effect on the number of 
fails and little effect on the solution time for the IloExtendedLevel filter level for clique 
size 27. However, you will not have any response using filter levels IloMediumLevel and 
IloBasicLevel for many hours. As you can see, the IloDistribute constraint has a 
large impact on performance for these filter levels.
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Results without the IloDistribute constraint:

--------------------------------------
IloExtendedLevel      clique size:27 #fails: 0       cpu time: 0.54 s

Complete program

The complete graph coloring program follows. The results will vary depending on platform, 
machine, configuration, and so on. You can also view it online in the file 
YourSolverHome/examples/src/graph.cpp. 

#include <ilsolver/ilosolverint.h>
ILOSTLBEGIN

IloInt createClique(IloInt i, IloInt j, IloInt n){
  if (j >= i) return (i*n-i*(i+1)/2+j-i);
  else return createClique(j,i-1,n);
}

void testGraph(IloInt nTest)
{
  IloEnv env;
  try {
    IloModel model(env);
    IloInt n = (nTest%2)?nTest+1:nTest;
    env.out() << "--------------------------------------" << endl;
    IloInt nbNodes = n*(n-1)/2;
    IloInt nbColors = n-1;
    IloInt i, j;
    IloIntVarArray vars(env,nbNodes,0,nbColors-1);
    for(i = 0; i < n-2; i++){
      model.add(vars[i] < vars[i+1]);
    }
    for(i = 0; i < n; i++){
      IloIntVarArray clique(env,n-1);
      for(j = 0; j < n-1; j++){
            clique[j] = vars[createClique(i,j, n)];
      }
      model.add(IloAllDiff(env,clique));
    }
    IloSolver solver(model);
    IloTimer timer(env);
    // IloExtendedLevel
    solver.setDefaultFilterLevel(IloAllDiffCt,IloExtendedLevel);
    timer.start();
    if (!solver.solve(IloGenerate(env,vars,IloChooseMinSizeInt)))
      solver.out() << "No solution" << endl;
    solver.out() << "IloExtendedLevel \t clique size:" << nTest;
    solver.out() << "\t#fails:\t" << solver.getNumberOfFails() << "\t";
    solver.out() << "cpu time: " << timer.getTime() << " s" << endl;
    // Redundant constraint for other levels
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    IloIntVarArray cards(env,nbColors,nbNodes/nbColors,
                         nbNodes/nbColors);
    IloConstraint distribute=IloDistribute(env,cards,vars);
    model.add(distribute);
    // IloMediumLevel
    solver.setDefaultFilterLevel(IloAllDiffCt,IloMediumLevel);
    timer.restart();
    if (! solver.solve(IloGenerate(env,vars,IloChooseMinSizeInt)))
       solver.out() << "No solution" << endl;
    solver.out() << "IloMediumLevel \t \t clique size:" << nTest;
    solver.out() << "\t#fails:\t" << solver.getNumberOfFails() << "\t";
    solver.out() << "cpu time: " <<  timer.getTime() << " s" << endl;
    // IloBasicLevel
    solver.setDefaultFilterLevel(IloAllDiffCt,IloBasicLevel);
    timer.restart();
    if (! solver.solve(IloGenerate(env,vars,IloChooseMinSizeInt)))
      solver.out() << "No solution" << endl;
    solver.out() << "IloBasicLevel \t \t clique size:" << nTest;
    solver.out() << "\t#fails:\t" << solver.getNumberOfFails() << "\t";
    solver.out() << "cpu time: " << timer.getTime() << " s" << endl;
    solver.out() << endl;
  }
  catch (IloException& ex) {
    cerr << "Error: " << ex << endl;
  }
  env.end();
}
int main(int argc, char** argv){
  IloInt b1=(argc>1)?atoi(argv[1]):27;
  IloInt b2=(argc>2)?atoi(argv[2]):b1+4;
  for(IloInt nTest = b1; nTest < b2+1; nTest+=2){
    testGraph(nTest);
  }
  return 0;
}

Results

Results: cliques of size 27, 29, and 31

--------------------------------------
IloExtendedLevel      clique size:27 #fails: 0       cpu time: 0.651 s
IloMediumLevel        clique size:27 #fails: 1       cpu time: 0.09 s
IloBasicLevel         clique size:27 #fails: 1       cpu time: 0.05 s

--------------------------------------
IloExtendedLevel      clique size:29 #fails: 4       cpu time: 0.541 s
IloMediumLevel        clique size:29 #fails: 7       cpu time: 0.11 s
IloBasicLevel         clique size:29 #fails: 23      cpu time: 0.07 s

--------------------------------------
IloExtendedLevel      clique size:31 #fails: 4       cpu time: 0.751 s
IloMediumLevel        clique size:31 #fails: 49      cpu time: 0.16 s
IloBasicLevel         clique size:31 #fails: 65      cpu time: 0.11 s
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Results

Results: cliques of size 51, 53, and 55

--------------------------------------
IloExtendedLevel      clique size:51 #fails: 501     cpu time: 9.754 s
IloMediumLevel        clique size:51 #fails: 10906   cpu time: 13.299 s
IloBasicLevel         clique size:51 #fails: 24512   cpu time: 19.578 s

--------------------------------------
IloExtendedLevel      clique size:53 #fails: 2       cpu time: 10.896 s
IloMediumLevel        clique size:53 #fails: 368     cpu time: 1.121 s
IloBasicLevel         clique size:53 #fails: 13159   cpu time: 9.063 s

--------------------------------------
IloExtendedLevel      clique size:55 #fails: 2       cpu time: 13.35 s
IloMediumLevel        clique size:55 #fails: 27      cpu time: 1.221 s
IloBasicLevel         clique size:55 #fails: 94      cpu time: 0.892 s

Results

Results: cliques of size 61

--------------------------------------
IloExtendedLevel      clique size:61 #fails: 5       cpu time: 22.502 s
IloMediumLevel        clique size:61 #fails: 120408491       cpu time: 172926 s

Results

Results: cliques of size 71

--------------------------------------
IloExtendedLevel      clique size:71 #fails: 5       cpu time: 49.471 s
IloMediumLevel        clique size:71 #fails: 586     cpu time: 5.217 s
IloBasicLevel         clique size:71 #fails: 1167    cpu time: 4.977 s
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C H A P T E R
13

Controlling the Search:
Locating Warehouses

In this lesson, you will learn how to: 

◆ use node evaluators

◆ use search selectors

◆ use Depth-First Search (DFS) and Slice-Based Search (SBS)

◆ use IloInstantiate, IloNodeEvaluator, IloSBSEvaluator, IloApply, 
IloSearchSelector, IloMinimizeVar, and IloSelectSearch

Describe

In this lesson, you will solve a logistics problem. A company has 10 stores. Each store must 
be supplied by one supplier warehouse. The company has five possible locations where it 
has property and can build a supplier warehouse: Bonn, Bordeaux, London, Paris, and 
Rome. The warehouse locations have different capacities. A warehouse built in Bonn or 
Paris could supply only one store. A warehouse built in London could supply two stores; a 
warehouse built in Rome could supply three stores; and a warehouse built in Bordeaux could 
supply four stores. The supply costs vary for each store, depending on which warehouse is 
the supplier. For example, a store that is located in Paris would have low supply costs if it 
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were supplied by a warehouse also in Paris. That same store would have much higher supply 
costs if it were supplied by the other warehouses. 

In a real world problem, the cost of building a warehouse would vary depending on 
warehouse location. To keep this problem simple in order to focus on search strategies, the 
cost of building any warehouse is set to 30.   

The problem is to find the most cost-effective solution to this problem, while making sure 
that each store is supplied by a warehouse. Table 13.1 gives the relative cost of supplying 
each existing store from each of the potential supplier warehouse sites. 

The first step in modeling and solving a problem is to write a natural language description of 
the problem, identifying the decision variables and the constraints on these variables. 

Write a natural language description of this problem. Answer these questions:

◆ What is the known information in this problem?

◆ What are the decision variables or unknowns in this problem? 

◆ What are the constraints on these variables?

◆ What is the objective?

Table 13.1 Relative supply costs for stores

 Bonn Bordeaux  London  Paris  Rome

store 0  20  24  11  25  30

store 1  28  27  82  83  74

store 2  74  97  71  96  70

store 3  02  55  73  69  61

store 4  46  96  59  83  04

store 5  42  22  29  67  59

store 6  01  05  73  59  56

store 7  10  73  13  43  96

store 8  93  35  63  85  46

store 9  47  65  55  71  95

Step 1 Describe the problem
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Discussion

What is the known information in this problem?

◆ there are 10 stores

◆ there are five potential supplier warehouse sites

◆ the cost of building the warehouses

◆ the relative cost of supplying each existing store from each of the potential warehouse 
site

What are the decision variables in this problem?

◆ which supplier warehouse should supply each store

What are the constraints on these variables?

◆ each warehouse can only supply a certain number of stores

What is the objective?

◆ to find the most cost-effective solution, one that takes into account both the costs of 
supplying individual stores and the costs of building warehouses

Model

Once you have written a description of your problem, you can use Concert Technology 
classes to model it. 

Open the example file YourSolverHome/examples/src/tutorial/
storesbs_partial.cpp in your development environment. 

First, you represent the warehouse locations using C++ enumerations to associate 
meaningful names with values. This code is provided for you:

Step 2 Open the example file

const char* Suppliers[] = {"Bonn", "Bordeaux", "London", "Paris", "Rome"};
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As usual, you declare an environment and a model. You declare i and j for use in loops. 
This code is provided for you:

In this lesson, you will input data from the file YourSolverHome/examples/data/
store.dat. The following code is provided for you: 

Here is the data from the file YourSolverHome/examples/data/store.dat:

The first line of data, 30, is the cost associated with building a warehouse. The second part of 
the data is a matrix representing the relative cost of supplying each existing store from each 
of the potential warehouse sites. This is the information presented in Table 13.1 on page 228. 
The last line of data is the capacity of each potential supplier warehouse: Bonn 1, Bordeaux 
4, London 2, Paris 1, and Rome 3. 

You model the cost associated with building a supplier warehouse as an integer 
buildingCost. You model the matrix of relative supply costs as an instance of 
IloIntArray2, an array of arrays. You model the capacities of the potential warehouses as 
an instance of IloIntArray. 

int main(int argc, char** argv){
  IloEnv env;
  try {
    IloModel model(env);
    IloInt i, j;

    const char* fileName;
    if ( argc != 2 ) {
      env.warning() << "usage: " << argv[0] << " <filename>" << endl;
      env.warning() << "Using default file" << endl;
      fileName = "../../../examples/data/store.dat";
    } else
      fileName = argv[1];

    ifstream file(fileName);
    if ( !file )
      throw FileError();

30
[[20, 24, 11, 25, 30],
 [28, 27, 82, 83, 74],
 [74, 97, 71, 96, 70],
 [2,  55, 73, 69, 61],
 [46, 96, 59, 83, 4],
 [42, 22, 29, 67, 59],
 [1,  5,  73, 59, 56],
 [10, 73, 13, 43, 96],
 [93, 35, 63, 85, 46],
 [47, 65, 55, 71, 95]]
[1, 4, 2, 1, 3]
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Add the following code after the comment //Model the data 

Now, you input the data. The overloaded C++ operator >> directs input to an input stream. 

Add the following code after the comment //Input the data

You create variables to represent the number of stores, nStores, and the number of supplier 
warehouses, nSuppliers. The number of stores can be deduced from the size of the 
costMatrix array of arrays. The number of supplier warehouses can be deduced from the 
size of the capacity array. This allows you to easily extend the example by using another 
data file. This code is provided for you:

Now you declare the decision variables. The first array of decision variables represents the 
unknown information in this problem—which supplier warehouse should supply each store. 
To represent this information, you declare an array of variables supplier. The array 
supplier represents the supplier warehouse selected for each store. This array has 
nStores elements or, in this example, 10. The possible values for these variables represent 
the supplier warehouses. In this example, a value of 0 represents Bonn, a value of 1 
represents Bordeaux, a value of 2 represents London, a value of 3 represents Paris, and a 
value of 4 represents Rome. The array of decision variables supplier will contain the 
solution to the problem, once it is solved.

Add the following code after the comment 
//Declare the supplier decision variables

Step 3 Model the data

    IloInt       buildingCost;
    IloIntArray2 costMatrix(env);
    IloIntArray  capacity(env);

Step 4 Input the data

    file >> buildingCost >> costMatrix >> capacity;

    IloInt nStores    = costMatrix.getSize();
    IloInt nSuppliers = capacity.getSize();

Step 5 Declare the supplier decision variables

    IloIntVarArray supplier(env, nStores, 0, nSuppliers-1);
I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L 231



You also declare three other arrays of decision variables that will be used in creating the 
constraints. The array of variables cost represents the relative cost of supplying each 
existing store from each of the potential warehouse site. It has nStores elements or, in this 
example, 10. 

Add the following code after the comment //Declare the cost decision variables

The array of decision variables open represents whether a potential supplier warehouse site 
is open or not—whether the warehouse should be built. It has nSuppliers elements or, in 
this example, 5. There are two possible values for each variable. The value is 1 if the 
warehouse is open and 0 if the warehouse is not open. 

Add the following code after the comment 
//Declare the warehouse open decision variables

You create a decision variable to represent the total cost in the problem. This total cost is 
defined as a constraint later in this section. It reflects a balance between finding the lowest 
relative supply costs for each store and the cost of building more warehouses.

Add the following code after the comment 
//Declare the totalCost decision variable

Now, you add the constraints. The first constraint states that the cost associated with each 
store is equal to the relative cost given in the matrix for this store and the supplier that has 
been selected for it. Using a “for” loop, this constraint is added for each store. For example, 
if store 0 is supplied by the Rome warehouse, then cost[0] is equal to the value in 
costMatrix represented by store 0 and the supplier for store 0. The element [i] denotes 
the row and the element (supplier[i]) denotes the column. In this case, the value at 
[0]— or row 0—and supplier[0]—or Rome, column 4—is 30. See Table 13.1 on 
page 228.

Step 6 Declare the cost decision variables

    IloIntVarArray cost(env, nStores, 0, 99999);

Step 7 Declare the warehouse open decision variables

    IloIntVarArray open(env, nSuppliers, 0,1);

Step 8 Declare the totalCost decision variable

    IloIntVar totalCost(env, 0, 999999);
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Add the following code after the comment 
//Add the constraints on relative cost 

Next, you add the constraint that states that the supplier warehouse used in the previous 
constraint must be open—in other words, the warehouse must be built if a store is going to 
be supplied by it. For example, if store 0 is supplied by the Rome warehouse, this constraint 
states that the value of the open variable associated with the Rome warehouse must be equal 
to 1. The Rome warehouse must be built. 

Add the following code after the comment 
//Add the constraint on open warehouses

Next, you add the constraints relating to supplier warehouse capacity. To do this, you need to 
find a way to add the number of stores being supplied by a warehouse and make sure that 
this number does not exceed the capacity of the warehouse. You can use the Concert 
Technology function IloSum to do this. This function returns a numeric value representing 
the sum of the variables in an array. Here is a constructor for IloSum:

To add the constraints on warehouse capacity, you use two “for” loops. For each supplier 
warehouse j, you create a temporary array, temp, representing whether a store is supplied 
by that supplier. The array temp has nStores elements or 10 in this example. For each store 
k, add a constraint that if the supplier of that store equals j, then temp [k] equals 1. If the 
store is not supplied by supplier j, then temp[k] equals 0. Then, use the function IloSum 
to sum up the variables in the array temp. This sum will equal the number of stores supplied 
by the supplier warehouse j. This sum is constrained to be less than or equal to the capacity 
of supplier warehouse j. You add these constraints for all the supplier warehouses, 5 in this 
example.

Step 9 Add the constraints on relative cost

    for (i = 0; i < nStores; i++){
      model.add(cost[i] == costMatrix[i](supplier[i]));

Step 10 Add the constraints on open warehouses

      model.add(open(supplier[i])==1 );
    }

IloExpr IloSum(const IloNumVarArray vars);
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Add the following code after the comment 
//Add the constraints on warehouse capacity

Finally, you use the function IloSum to add the constraints on total cost to the model. There 
are two cost issues in this problem. First, you want to supply each store with the warehouse 
that is the most cost-efficient. However, you also want to minimize the number of open 
warehouses since it costs a certain amount, 30 in this example, to open an warehouse. 
Therefore, the total cost is constrained to be equal to the sum of the relative costs of 
supplying each store from its supplier warehouse plus the number of open warehouses 
multiplied by the cost to build each warehouse. No explicit objective is added to the model 
in the problem, since total cost is minimized during search using a search selector. For more 
information on using search selectors, see “Solve” on page 234. 

Add the following code after the comment //Add the constraint on total cost 

Solve

In this lesson, you will learn how to control the search using node evaluators and search 
selectors. Goals are the mechanism by which Solver implements search strategies. Goals are 
a bit like building blocks—goals can be created by combining other goals and a function that 
returns a goal can take other goals as parameters. You will perform five steps to create a final 
goal:

◆ You use the functions IloGenerate and IloInstantiate to return three goals, one 
goal for each of the following decision variables: cost, supplier, and totalCost. 
Then, you create combinedGoal by joining these three goals with logical AND 
operators. 

◆ Next, you create a node evaluator, SBSNodeEvaluator. 

Step 11 Add the constraints on warehouse capacity

    for (j = 0; j < nSuppliers; j++ ) {
      IloIntVarArray temp(env, nStores, 0, 1);
      for (IloInt k = 0; k < nStores; k++)
        model.add(temp[k] == (supplier[k] == j));
      model.add(IloSum(temp) <= capacity[j]);
    }

Step 12 Add the constraint on total cost

    model.add(totalCost == IloSum(cost) + IloSum(open) * buildingCost);
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◆ Then, you use the function IloApply. This function takes combinedGoal and 
SBSNodeEvaluator as parameters and returns SBSNodeEvaluatorGoal. 

◆ Then, you create a search selector, minimizeSearchSelector, using the totalCost 
decision variable. The objective, which is to minimize the total cost, is treated implicitly 
by the search selector. 

◆ Finally, you use the function IloSelectSearch. This function takes 
SBSNodeEvaluatorGoal and minimizeSearchSelector as parameters and returns 
finalGoal. 

The member function IloSolver::solve takes finalGoal as a parameter and searches 
for a solution. Figure 13.1 demonstrates this procedure.

Figure 13.1

Figure 13.1  Creating a final goal

First, you create combinedGoal using logical AND operators. You are already familiar 
with the predefined goal IloGenerate. The goal IloGenerate takes an array of decision 
variables as a parameter and calls the function IloInstantiate on each variable in the 
array. The function IloInstantiate takes a decision variable and binds a value to it. 

The first goal binds each decision variable in the array of variables cost using the principle 
of least regret, or minimizing regret. The IloGenerate parameter 
IloChooseMaxRegretMin is explained after the following step. The second goal binds 
each decision variable in the array of variables supplier in the default way, choosing the 
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first unbound variable. The third goal uses the function IloInstantiate to bind the 
decision variable totalCost. 

Add the following code after the comment //Create the combinedGoal 

As you may remember from Chapter 4, Searching with Predefined Goals: Magic Square, the 
predefined goal IloGenerate allows you to control a choice in the solution search by a 
parameter which determines which constrained variable Solver tries first. In this lesson, you 
use the parameter IloChooseMaxRegretMin for the array of variables cost. This 
parameter uses the principle of least regret to guide the search strategy. Regret is the 
difference between what would have been the best decision in a scenario and what was the 
actual decision. In the case of choosing a variable, Solver will select the value for the 
variable where the difference between the smallest possible value and the next smallest value 
is maximal. 

The following table shows the relative supply costs for the stores. The best decision for each 
individual store is the warehouse with the lowest relative cost. The second best decision is 
the warehouse with the second lowest relative cost. The lowest and second lowest costs are 
in bold. 

Step 13 Create the combinedGoal

    IloGoal combinedGoal = IloGenerate(env, cost, IloChooseMaxRegretMin) &&
                           IloGenerate(env, supplier) &&
                           IloInstantiate(env, totalCost);

Table 13.2 Relative supply costs for stores showing regret

 Bonn Bordeaux  London  Paris  Rome

Difference 
between 
lowest cost 
and second 
lowest cost

store0  20  24  11  25  30 9

store1  28  27  82  83  74 1

store2  74  97  71  96  70 1

store3  02  55  73  69  61 53

store4  46  96  59  83  04 42

store5  42  22  29  67  59 7

store6  01  05  73  59  56 4

store7  10  73  13  43  96 3
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To illustrate the principle of least regret, examine one small decision. The supplier 
warehouse located in Bonn has a capacity of one store. Which store should be supplied by 
the warehouse in Bonn? Two likely candidates are store 3, with a relative cost of 2, and store 
6, with a relative cost of 1. If you just looked at this information, you would likely make the 
decision to use the Bonn warehouse to supply store 6, since the relative cost is lower. 
However, choosing the Bonn warehouse to supply store 6 will force store 3 to be supplied by 
the Bordeaux warehouse, with the next lowest relative cost for store 3. You can also imagine 
what would happen if you choose the Bonn warehouse to supply store 3 and forced store 6 to 
be supplied by the Bordeaux warehouse, with the next lowest relative cost for store 6. Take a 
closer look at the two scenarios.       

You can see that Scenario B is a much better choice for the total cost, even though the 
original choice to supply store 3 from the Bonn warehouse rather than store 6 is a slightly 
more costly decision than its inverse. You can use the principle of least regret to make just 
this kind of decision. If you had examined the difference between the lowest relative cost 
and the next lowest relative cost for store 3, you would see that it is 53. The difference for 

store8  93  35  63  85  46 11

store9  47  65  55  71  95 8

Table 13.3 Scenario A

Scenario A  Warehouse  Relative Cost 

store6 Bonn 1

store3 Bordeaux 55

Total cost Scenario A 56

Table 13.4 Scenario B

Scenario B  Warehouse  Relative Cost 

store6 Bordeaux 2

store3 Bonn 5

Total cost Scenario B 7

Table 13.2 Relative supply costs for stores showing regret

 Bonn Bordeaux  London  Paris  Rome

Difference 
between 
lowest cost 
and second 
lowest cost
I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L 237



store 6 is only 4. In deciding which store to supply from Bonn, choose the store with the 
largest difference. This decision will give you the lowest total cost and cause the least regret. 

Now that you have created combinedGoal, you create a node evaluator and a search 
selector. Before you can do this, you need to learn more about search trees, nodes, and 
selectors. As you remember from Chapter 1, Constraint Programming with IBM ILOG 
Solver, the search tree is the part of the search space remaining after initial constraint 
propagation. In the search tree, Solver will use a search strategy to search for a solution. 
Chapter 1, Constraint Programming with IBM ILOG Solver contained many diagrams of the 
search tree to help you visualize the search process. These diagrams were simplified 
versions of the search tree. Solver actually performs a binarization of the search tree, 
representing every choice as a binary decision. Figure 13.2 is a binary representation of the 
search tree originally shown in Figure 1.2 on page 35. As you can see in Figure 13.2, every 
decision is a binary one. For example, if Solver selects the value 10 for variable x, there are 
now two choices. Solver can either try the value 5 for variable y or choose not to try value 5 
for variable y. If Solver chooses not to try value 5 for variable y, Solver is again confronted 
with two choices. Solver can now either try the value 6 for variable y or the value 7 for 
variable y. 

Figure 13.2

Figure 13.2  Binarization of the search tree

A search tree is composed of nodes connected by branches. The root of the tree is the 
starting point in the search for a solution; each branch descending from the root represents a 
decision in the search. At the beginning of the search, all the nodes in the tree are unexplored 
nodes. Solver starts the search at the root node. At this point, the root node is called an open 
node, since no decision has yet been made. There are two possible decisions to make at this 
open node—these two possible decisions are called leaves. Solver selects a leaf. The root 
node is now a closed node, since a decision has been made. The selected leaf is now a branch 
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and the node at the other end of this branch is now the open node. Two leaves come off this 
open node, representing two possible decisions. Tree traversal is the technique used to 
explore the search tree. As Solver traverses a search tree, it builds an active path. Each node, 
except for the terminal ones, has one or more child nodes and is called the parent of its child 
nodes. Removing branches from the search tree is pruning. Node evaluators guide how 
Solver traverses the search tree—which nodes are evaluated and in what order. Search 
selectors determine how Solver makes decisions at open nodes—a search selector guides the 
selection of a leaf.

These concepts are shown in Figure 13.3. 

Figure 13.3

Figure 13.3  Parts of the search tree

As a default, Solver uses Depth-First Search (DFS) to traverse the search tree and control the 
order of node evaluation—Depth-First Search is the default node evaluator. Depth-First 
Search explores the search tree in a “left-to-right” fashion. It searches by selecting the left 
leaf at each open node until the end of the search space is reached. If it does not find a 
solution, it backtracks and tries again. Figure 13.4 shows tree traversal using Depth-First 
Search (DFS). The numbers at the bottom represent the order in which paths are created by 
the search strategy. 
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Figure 13.4

Figure 13.4  Search tree using the Depth-First Search (DFS) strategy

Depth-First Search is a straightforward approach to searching for a solution. However, 
sometimes you may have some knowledge about the search tree—you may know that 
certain parts of the search tree are more likely to contain a solution. In this case, you may 
want to change the order of node evaluation, since you think that certain nodes are more 
likely to lead to a solution. To do this, you can use a different node evaluator. There are 
several predefined functions in Solver that create and return node evaluators. To learn more 
about them, see Chapter 12. In this lesson, you will use the predefined function 
IloSBSEvaluator to create and return a node evaluator based on the principle of Slice-
Based Search (SBS). 

Usually, you have some kind of strategy to solve your problem. Therefore, you hope that 
Solver will not make many mistakes as it searches for a solution. In search trees, right moves 
are considered mistakes and left moves are considered correct decisions. So, if you think you 
have a good search strategy, it would make sense to look for a solution first among the nodes 
in paths that have fewer right moves. By searching first among the paths with fewer right 
moves you are saying you believe in your search strategy and you are trying to stick to it. 
240 I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L



Slice-Based Search (SBS) does this. It looks first in the paths of the tree with fewer right 
moves. A right move in the path from the root of the search tree to the current node is known 
as a discrepancy. By looking first in paths with fewer right moves, Slice-Based Search cuts 
the search tree in slices.

The function IloSBSEvaluator creates and returns an instance of IloNodeEvaluator 
that implements Slice-Based Search. The first parameter is the environment. The second 
parameter is step. Solver will look first at paths that have a number of discrepancies, or 
right moves, less than or equal to step. The third parameter is maxDiscrepancy. If this 
parameter is used, Solver will discard nodes with a number of discrepancies greater than 
maxDiscrepancy. The default value for maxDiscrepancy is IloIntMax, which means 
that Solver will not discard any nodes based on this parameter. Here is a constructor for 
IloSBSEvaluator

Figure 13.5 shows a search tree that has been traversed with a node evaluator using Slice-
Based Search with a discrepancy of 1. The numbers in row 1 represent the order in which 
paths are evaluated. As you can see, Solver searches in slices as opposed to the “left-to-
right” strategy of Depth-First Search (DFS). Solver first evaluates paths 1, 2, and 3. It then 
jumps to path 4 and then jumps again to path 5. It jumps back to path 6 and so on. The 
numbers in row 2 represent the number of discrepancies, or right moves, in each path. As 
you can see, Solver first search the paths with 0 or 1 discrepancy, then the paths with 2 
discrepancies, then the paths with 3 discrepancies, and finally the path with 4 discrepancies.

IloNodeEvaluator IloSBSEvaluator(IloEnv env,
                                 IloInt step = 4,
                                 IloInt maxDiscrepancy = IloIntMax);
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Figure 13.5

Figure 13.5  Search tree using the Slice-Based Search (SBS) strategy with a discrepancy of 1

Now that you understand the concepts behind node evaluators, you can create one. The node 
evaluator SBSNodeEvaluator will first search paths in the search tree with 4 or less 
discrepancies. 

Add the following code after the comment //Create the node evaluator 

Now that you have created the node evaluator, you need to apply it to combinedGoal, the 
goal you created in Step 13 on page 236. To do this you use the function IloApply. This 
function takes combinedGoal and SBSNodeEvaluator as parameters and returns 

Step 14 Create the node evaluator

    IloNodeEvaluator SBSNodeEvaluator = IloSBSEvaluator(env, 4);
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SBSNodeEvaluatorGoal. It applies the node evaluator SBSNodeEvaluator to the goal 
combinedGoal.

Add the following code after the comment //Create the SBSNodeEvaluatorGoal 

Now that you have created and applied a node evaluator, you create a search selector. This 
search selector will guide the search at each open node. In this problem, you want to select 
the leaf at each open node that will minimize the total cost of the solution. To do this, you 
use the function IloMinimizeVar. This function returns an instance of the class 
IloSearchSelector. It takes three parameters: the environment, the variable to be 
minimized, and a step. Here is a constructor:

The search selector IloMinimizeVar does several things:

◆ It stores the leaf of the search tree that represents a solution with the optimal value of the 
variable var—in this example, the solution with the lowest totalCost. After the search 
tree has been completely explored, it reactivates this value. In other words, it stores the 
leaf representing the current best solution and gives the search the ability to go back to 
that leaf if it does not find a better solution.

◆ When a solution is found, it adds a constraint that var must be less than or equal to the 
solution minus step. For example, if the search selector (with step = 0.1) finds a 
solution with totalCost equal to 300, it adds a constraint that totalCost must be less 
than or equal to 300 - 0.1 or 299.9 for the remainder of the search. 

Add the following code after the comment //Create the search selector 

Now that you have created the search selector minimizeSearchSelector, you need to 
apply it to  SBSNodeEvaluatorGoal, the goal you created in  Step 15 on page 243. To do 
this, you use the function IloSelectSearch. This function takes 
SBSNodeEvaluatorGoal and minimizeSearchSelector as parameters and returns 

Step 15 Create the SBSNodeEvaluatorGoal

    IloGoal SBSNodeEvaluatorGoal = IloApply(env, combinedGoal,
                                            SBSNodeEvaluator);

IloSearchSelector IloMinimizeVar(IloEnv env, 
                                 IloNumVar var, 
                                 IloNum step = 0);

Step 16 Create the search selector

    IloSearchSelector minimizeSearchSelector = IloMinimizeVar(env,
                                                             totalCost,
                                                             0.1);
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finalGoal. It applies the search selector minimizeSearchSelector to the goal 
SBSNodeEvaluatorGoal.

Add the following code after the comment //Create the finalGoal 

Now, you create an instance of IloSolver to solve the problem expressed in the model. 
This code is provided for you: 

You now use the member function IloSolver::solve to search for a solution. In this 
lesson, you use finalGoal as a parameter of IloSolver::solve. 

Add the following code after the comment //Search for a solution

The member functions and streams IloAlgorithm::out and IloSolver::getValue 
are used to display the solution. When you print the solution, you associate the value for the 
supplier warehouse variable supplier with the warehouse location using the array 

Step 17 Create the finalGoal

    IloGoal finalGoal = IloSelectSearch(env, SBSNodeEvaluatorGoal,
                                        minimizeSearchSelector);

    IloSolver solver(model);

Step 18 Search for a solution

    if (solver.solve(finalGoal))
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Suppliers[], which is provided for you in the exercise code. The following code is 
provided for you: 

      {
      solver.out() << "------------------------------" << endl;
      solver.out() << "Solution:  " << endl;
      for (i = 0; i < nStores; i ++)
        solver.out() << "Store  " << i << " " << "Warehouse:  "
                     << Suppliers[(IloInt)solver.getValue(supplier[i])]
                     << " " << endl;
        solver.out() << endl;
        for (j = 0; j < nStores ; j ++)
          solver.out() << "Store  " << j << " " << "Cost:  "
                       << solver.getValue(cost[j]) << " " << endl;
          solver.out() << endl;
          solver.out() << "Total cost:  " << solver.getValue(totalCost)
                                          << endl;
          solver.out() << "------------------------------" << endl;

    } 
    else solver.out() << "No solution" << endl;
    solver.printInformation();
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Compile and run the program. You should get the following results, though the information 
displayed by IloSolver::printInformation will vary depending on platform, 
machine, configuration, and so on:

Step 19 Compile and run the program

Using default file
Cost to build a warehouse:
30
Relative costs for stores:
[[20, 24, 11, 25, 30], [28, 27, 82, 83, 74], [74, 97, 71, 96, 70], [2, 55, 73, 
6
9, 61], [46, 96, 59, 83, 4], [42, 22, 29, 67, 59], [1, 5, 73, 59, 56], [10, 73,
13, 43, 96], [93, 35, 63, 85, 46], [47, 65, 55, 71, 95]]
Warehouse capacities:
[1, 4, 2, 1, 3]
------------------------------
Solution:
Store  0 Warehouse:  Rome
Store  1 Warehouse:  Bordeaux
Store  2 Warehouse:  Rome
Store  3 Warehouse:  Bonn
Store  4 Warehouse:  Rome
Store  5 Warehouse:  Bordeaux
Store  6 Warehouse:  Bordeaux
Store  7 Warehouse:  London
Store  8 Warehouse:  Bordeaux
Store  9 Warehouse:  London

Store  0 Cost:  30
Store  1 Cost:  27
Store  2 Cost:  70
Store  3 Cost:  2
Store  4 Cost:  4
Store  5 Cost:  22
Store  6 Cost:  5
Store  7 Cost:  13
Store  8 Cost:  35
Store  9 Cost:  55

Total cost:  383
------------------------------
Number of fails               : 25
Number of choice points       : 27
Number of variables           : 76
Number of constraints         : 76
Reversible stack (bytes)      : 12084
Solver heap (bytes)           : 52284
Solver global heap (bytes)    : 20124
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 11160
Total memory used (bytes)     : 107784
Elapsed time since creation   : 0.02
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As you can see, the solution uses four warehouse sites: Bonn, Bordeaux, London, and Rome. 
All stores are supplied by a supplier warehouse and the total cost is 383. 

The complete program is listed in “Complete program” on page 251. You can also view it 
online in the file YourSolverHome/examples/src/storesbs.cpp. 

Review exercises

For answers, see “Suggested answers” on page 247.

1. What is node evaluator and a search selector?

2. What is Slice-Based Search (SBS)?

3. Modify the program in this lesson to use the data file YourSolverHome/examples/
data/store_ex3.dat. This data file contains information for 30 stores and 15 
warehouses. The ten additional potential warehouse sites are: Munich, Barcelona, 
Prague, Dublin, Madrid, Lisbon, Berlin, Amsterdam, Brussels, and Milan.

4. Modify the file YourSolverHome/examples/src/graph.cpp to use Slice-Based 
Search (SBS) instead of the default Depth-First Search (DFS). Comment out the code 
using the IloBasicLevel filter level. Run the file on the clique set starting with size 61. 
As you remember, this is a particularly difficult instance of the problem to solve. 
Evaluate the solutions you get and compare them to the solution you found in 
Chapter 12, Setting Filter Levels: Coloring Graphs. 

Suggested answers

Exercise 1

What are node evaluators and search selectors?

Suggested Answer

Node evaluators guide how Solver traverses the search tree—which nodes are evaluated and 
in what order. 

Search selectors determine how Solver makes decisions at open nodes—a search selector 
guides the selection of a leaf.

Exercise 2

What is Slice-Based Search (SBS)?
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Suggested Answer

Slice-Based Search is a search strategy that looks first in the paths of the tree with fewer 
right moves, or discrepancies. By looking first in paths with fewer right moves, Slice-Based 
Search cuts the search tree in slices.

Exercise 3

Modify the program in this lesson to use the data file YourSolverHome/examples/data/
store_ex3.dat. This data file contains information for 30 stores and 15 warehouses. The 
ten additional potential warehouse sites are: Munich, Barcelona, Prague, Dublin, Madrid, 
Lisbon, Berlin, Amsterdam, Brussels, and Milan.

Suggested Answer

You can view the complete program online in the file YourSolverHome/examples/src/
storesbs_ex3.cpp. You only need to change the following line of code to add the 
additional warehouse sites to the enumeration:

You change the following line of code to use the new data file: 

Results

The results will vary depending on platform, machine, configuration, and so on. 

Using default file
Cost to build a warehouse:
30
Relative costs for stores:
[[20, 24, 11, 25, 30, 28, 27, 82, 83, 74,
2, 55, 73, 69, 61], [28, 27, 82, 83, 74, 93, 15, 63, 87, 46,
47, 57, 55, 71, 95], [74, 97, 71, 96, 70, 42, 8, 29, 67, 59,
93, 15, 63, 87, 46], [2, 55, 73, 69, 61, 1, 65, 73, 59, 56,
93, 35, 19, 85, 46], [46, 96, 59, 83, 4, 42, 22, 56, 67, 59,
11, 73, 15, 43, 96], [42, 22, 29, 67, 59, 1, 5, 57, 67, 56,
42, 8, 29, 67, 59], [1, 5, 73, 59, 56, 1, 5, 73, 59, 56,
42, 8, 29, 67, 59], [10, 73, 13, 43, 96, 42, 22, 56, 67, 59,
42, 56, 29, 56, 59], [93, 35, 63, 85, 46, 13, 22, 29, 66, 59,
65, 6, 73, 59, 56], [47, 65, 55, 71, 95, 42, 22, 29, 69, 59,
93, 25, 45, 85, 46],
[17, 19, 67, 2, 15, 93, 35, 19, 85, 46,
47, 57, 55, 71, 95], [26, 5, 78, 43, 19, 10, 15, 13, 9, 96,
68, 35, 62, 85, 46], [11, 73, 15, 43, 96, 42, 56, 29, 56, 59,
47, 57, 55, 71, 95], [93, 15, 63, 87, 46, 93, 55, 63, 92, 46,
47, 65, 55, 92, 95], [47, 65, 37, 71, 95, 47, 65, 45, 71, 95,
10, 73, 58, 43, 96], [42, 22, 29, 67, 49, 11, 45, 13, 43, 96,

const char* Suppliers[] = {"Bonn", "Bordeaux", "London", "Paris", "Rome",
                           "Munich", "Barcelona", "Prague", "Dublin", "Madrid",
                           "Lisbon", "Berlin", "Amsterdam", "Brussels", 
"Milan"};

      fileName = "../../../examples/data/store_ex3.dat";
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42, 56, 29, 56, 59], [1, 5, 73, 59, 56, 47, 65, 45, 71, 95,
68, 35, 62, 85, 46], [10, 75, 13, 43, 62, 10, 15, 13, 9, 96,
93, 35, 19, 85, 46], [93, 25, 45, 85, 46, 65, 6, 73, 59, 56,
12, 5, 92, 59, 56], [47, 65, 55, 92, 95, 42, 22, 29, 69, 59,
47, 57, 55, 71, 95],
[42, 8, 29, 67, 59, 93, 35, 89, 85, 46,
47, 65, 56, 71, 95], [1, 5, 57, 67, 56, 42, 22, 56, 67, 5,
65, 6, 73, 59, 56], [10, 15, 13, 9, 96, 42, 22, 29, 69, 59,
47, 57, 55, 71, 95], [68, 35, 62, 85, 46, 93, 35, 19, 85, 46,
47, 57, 55, 71, 95], [47, 57, 55, 71, 95, 42, 22, 29, 69, 59,
93, 25, 45, 85, 46], [42, 22, 29, 69, 59, 1, 65, 73, 59, 56,
93, 35, 19, 85, 46], [1, 65, 73, 59, 56, 1, 65, 73, 59, 56,
93, 35, 19, 85, 46], [10, 73, 13, 83, 96, 11, 45, 13, 43, 96,
42, 56, 29, 56, 59], [93, 35, 19, 85, 46, 93, 35, 19, 85, 46,
47, 57, 55, 71, 95], [47, 65, 45, 71, 95, 28, 27, 82, 83, 74,
2, 55, 73, 69, 61]]
Warehouse capacities:
[5, 9, 12, 3, 4, 6, 8, 1, 6, 11,
3, 10, 8, 9, 3]

------------------------------
Solution:
Store  0 Warehouse:  London
Store  1 Warehouse:  Barcelona
Store  2 Warehouse:  Barcelona
Store  3 Warehouse:  Munich
Store  4 Warehouse:  Lisbon
Store  5 Warehouse:  Munich
Store  6 Warehouse:  Bordeaux
Store  7 Warehouse:  London
Store  8 Warehouse:  Munich
Store  9 Warehouse:  Barcelona
Store  10 Warehouse:  Bordeaux
Store  11 Warehouse:  Bordeaux
Store  12 Warehouse:  London
Store  13 Warehouse:  Bordeaux
Store  14 Warehouse:  Lisbon
Store  15 Warehouse:  Munich
Store  16 Warehouse:  Bordeaux
Store  17 Warehouse:  London
Store  18 Warehouse:  Barcelona
Store  19 Warehouse:  Barcelona
Store  20 Warehouse:  Bordeaux
Store  21 Warehouse:  Bordeaux
Store  22 Warehouse:  London
Store  23 Warehouse:  Bordeaux
Store  24 Warehouse:  Barcelona
Store  25 Warehouse:  Munich
Store  26 Warehouse:  Munich
Store  27 Warehouse:  London
Store  28 Warehouse:  London
Store  29 Warehouse:  Lisbon

Store  0 Cost:  11
Store  1 Cost:  15
Store  2 Cost:  8
Store  3 Cost:  1
Store  4 Cost:  11
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Store  5 Cost:  1
Store  6 Cost:  5
Store  7 Cost:  13
Store  8 Cost:  13
Store  9 Cost:  22
Store  10 Cost:  19
Store  11 Cost:  5
Store  12 Cost:  15
Store  13 Cost:  15
Store  14 Cost:  10
Store  15 Cost:  11
Store  16 Cost:  5
Store  17 Cost:  13
Store  18 Cost:  6
Store  19 Cost:  22
Store  20 Cost:  8
Store  21 Cost:  5
Store  22 Cost:  13
Store  23 Cost:  35
Store  24 Cost:  22
Store  25 Cost:  1
Store  26 Cost:  1
Store  27 Cost:  13
Store  28 Cost:  19
Store  29 Cost:  2

Total cost:  490
------------------------------
Number of fails               : 68415
Number of choice points       : 65840
Number of variables           : 526
Number of constraints         : 526
Reversible stack (bytes)      : 104544
Solver heap (bytes)           : 361824
Solver global heap (bytes)    : 4584576
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 13164
Total memory used (bytes)     : 5076240
Elapsed time since creation   : 86.835

Exercise 4

Modify the file YourSolverHome/examples/src/graph.cpp to use Slice-Based Search 
(SBS) instead of the default Depth-First Search (DFS). Comment out the code using the 
IloBasicLevel filter level. Run the file on the clique set starting with size 61. As you 
remember, this is a particularly difficult instance of the problem to solve. Evaluate the 
solutions you get and compare them to the solution you found in Chapter 12, Setting Filter 
Levels: Coloring Graphs.
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Suggested Answer

The code that has changed from graph.cpp follows. You can also view the complete 
program online in the file YourSolverHome/examples/src/storesbs_ex4.cpp.

You change the goal as follows:

You use this goal to solve the problem:

You should comment out the basic filter level run:

You should get the following results for cliques of size 61 using Slice-Based Search (SBS). 
The results will vary depending on platform, machine, configuration, and so on:

You can compare this to results for cliques of size 61 using the default Depth-First Search 
(DFS). For the IloMediumLevel filter level, the differences are dramatic, both in a greatly 
reduced number of fails and a greatly reduced solution time. The results will vary depending 
on platform, machine, configuration, and so on.

Complete program

The complete locating warehouses program follows. You can also view it online in the file 
YourSolverHome/examples/src/storesbs.cpp. 

    IloGoal goal = IloGenerate(env,vars,IloChooseMinSizeInt);
    IloNodeEvaluator SBSNodeEvaluator = IloSBSEvaluator(env, 4);
    IloGoal finalGoal = IloApply(env, goal, SBSNodeEvaluator);

    if (!solver.solve(finalGoal))

  //IloBasicLevel
  //solver.setDefaultFilterLevel(IloAllDiffCt,IloBasicLevel);
  //timer.restart();
  //if (! solver.solve(finalGoal))
  //  solver.out() << "No solution" << endl;
  //solver.out() << "IloBasicLevel \t \t clique size:" << nTest;
  //solver.out() << "\t#fails:\t" << solver.getNumberOfFails() << "\t";
  //solver.out() << "cpu time: " << timer.getTime() << " s" << endl;
  //solver.out() << endl;

--------------------------------------
IloExtendedLevel      clique size:61 #fails: 5       cpu time: 22.812 s
IloMediumLevel        clique size:61 #fails: 4002    cpu time: 42.26 s

--------------------------------------
IloExtendedLevel      clique size:61 #fails: 5       cpu time: 22.502 s
IloMediumLevel        clique size:61 #fails: 120408491       cpu time: 172926 s
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#include <ilsolver/ilosolverint.h>
ILOSTLBEGIN

class FileError : public IloException {
public:
  FileError() : IloException("Cannot open data file") {}
};

const char* Suppliers[] = {"Bonn", "Bordeaux", "London", "Paris", "Rome"};
int main(int argc, char** argv){
  IloEnv env;
  try {
    IloModel model(env);
    IloInt i, j;
    const char* fileName;
    if ( argc != 2 ) {
      env.warning() << "usage: " << argv[0] << " <filename>" << endl;
      env.warning() << "Using default file" << endl;
      fileName = "../../../examples/data/store.dat";
    } else
      fileName = argv[1];

    ifstream file(fileName);
    if ( !file )
      throw FileError();
    // model data
    IloInt       buildingCost;
    IloIntArray2 costMatrix(env);
    IloIntArray  capacity(env);

    file >> buildingCost >> costMatrix >> capacity;
    IloInt nStores    = costMatrix.getSize();
    IloInt nSuppliers = capacity.getSize();
    env.out() << "Cost to build a warehouse:  " << endl;
    env.out() << buildingCost << endl;
    env.out() << "Relative costs for stores:  " << endl;
    env.out() << costMatrix        << endl;
    env.out() << "Warehouse capacities:  " << endl;
    env.out() << capacity     << endl;

    // build model
    IloIntVarArray supplier(env, nStores, 0, nSuppliers-1);
    IloIntVarArray cost(env, nStores, 0, 99999);
    IloIntVarArray open(env, nSuppliers, 0,1);
    for (i = 0; i < nStores; i++){
      model.add(cost[i] == costMatrix[i](supplier[i]));
      model.add(open(supplier[i])==1 );
    }
    for (j = 0; j < nSuppliers; j++ ) {
      IloIntVarArray temp(env, nStores, 0, 1);
      for (IloInt k = 0; k < nStores; k++)
        model.add(temp[k] == (supplier[k] == j));
      model.add(IloSum(temp) <= capacity[j]);
    }
    IloIntVar totalCost(env, 0, 999999);
    model.add(totalCost == IloSum(cost) + IloSum(open) * buildingCost);
    IloGoal combinedGoal = IloGenerate(env, cost, IloChooseMaxRegretMin) &&
                           IloGenerate(env, supplier) &&
252 I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L



                           IloInstantiate(env, totalCost);
    IloNodeEvaluator SBSNodeEvaluator = IloSBSEvaluator(env, 4);
    IloGoal SBSNodeEvaluatorGoal = IloApply(env, combinedGoal,
                                            SBSNodeEvaluator);
    IloSearchSelector minimizeSearchSelector = IloMinimizeVar(env,
                                                             totalCost,
                                                             0.1);
    IloGoal finalGoal = IloSelectSearch(env, SBSNodeEvaluatorGoal,
                                        minimizeSearchSelector);
    // solve model
    IloSolver solver(model);

    if (solver.solve(finalGoal))
      {
      solver.out() << "------------------------------" << endl;
      solver.out() << "Solution:  " << endl;
      for (i = 0; i < nStores; i ++)
        solver.out() << "Store  " << i << " " << "Warehouse:  "
                     << Suppliers[(IloInt)solver.getValue(supplier[i])]
                     << " " << endl;
        solver.out() << endl;
        for (j = 0; j < nStores ; j ++)
          solver.out() << "Store  " << j << " " << "Cost:  "
                       << solver.getValue(cost[j]) << " " << endl;
          solver.out() << endl;
          solver.out() << "Total cost:  " << solver.getValue(totalCost)
                                          << endl;
          solver.out() << "------------------------------" << endl;

    } 
    else solver.out() << "No solution" << endl;
    solver.printInformation();
  }
  catch (IloException& ex) {
    cout << "Error: " << ex << endl;
  }
  env.end();
  return 0;
}

Results

The results will vary depending on platform, machine, configuration, and so on.

Using default file
Cost to build a warehouse:
30
Relative costs for stores:
[[20, 24, 11, 25, 30], [28, 27, 82, 83, 74], [74, 97, 71, 96, 70], [2, 55, 73, 
6
9, 61], [46, 96, 59, 83, 4], [42, 22, 29, 67, 59], [1, 5, 73, 59, 56], [10, 73,
13, 43, 96], [93, 35, 63, 85, 46], [47, 65, 55, 71, 95]]
Warehouse capacities:
[1, 4, 2, 1, 3]
------------------------------
Solution:
Store  0 Warehouse:  Rome
I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L 253



Store  1 Warehouse:  Bordeaux
Store  2 Warehouse:  Rome
Store  3 Warehouse:  Bonn
Store  4 Warehouse:  Rome
Store  5 Warehouse:  Bordeaux
Store  6 Warehouse:  Bordeaux
Store  7 Warehouse:  London
Store  8 Warehouse:  Bordeaux
Store  9 Warehouse:  London

Store  0 Cost:  30
Store  1 Cost:  27
Store  2 Cost:  70
Store  3 Cost:  2
Store  4 Cost:  4
Store  5 Cost:  22
Store  6 Cost:  5
Store  7 Cost:  13
Store  8 Cost:  35
Store  9 Cost:  55

Total cost:  383
------------------------------
Number of fails               : 25
Number of choice points       : 27
Number of variables           : 76
Number of constraints         : 76
Reversible stack (bytes)      : 12084
Solver heap (bytes)           : 52284
Solver global heap (bytes)    : 20124
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 11160
Total memory used (bytes)     : 107784
Elapsed time since creation   : 0.02
254 I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L



C H A P T E R
14

Limits and Problem Decomposition:
Locating Warehouses

In this lesson, you will learn how to: 

◆ use search limits

◆ decompose problems

◆ use Depth-Bounded Discrepancy Search (DDS)

◆ use IloLimitSearch, IloDDSEvaluator, and IloFailLimit

Describe

In this lesson, you will solve the same problem you solved in Chapter 13, Controlling the 
Search: Locating Warehouses: a logistics problem involving locating supplier warehouses 
for the most cost-efficient solution to supplying stores. For the description of this problem, 
see the section “Describe” on page 227. 

Model

Once you have written a description, you use Concert Technology classes to model it. 
I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L 255



Open the example file YourSolverHome/examples/src/tutorial/
storecpx_partial.cpp in your development environment. 

In this lesson, you model this problem in the same way you modeled the problem in 
Chapter 13, Controlling the Search: Locating Warehouses. See “Model” on page 229.

Solve

In this lesson, you will learn how to decompose a problem and how to set limits on the 
search. Using this approach, Solver will not search the entire search tree and it may miss an 
optimal solution. However, Solver will explore a more promising part of the search tree 
more quickly. You will also learn how to use another search strategy—Depth-Bounded 
Discrepancy Search (DDS). 

In Chapter 13, Controlling the Search: Locating Warehouses, you created goals for three 
decision variables: cost, supplier, and totalCost. These three goals were combined 
into one goal. You then applied a node evaluator to this combined goal. In the search, you 
used a search selector created from the totalCost variable. 

In this lesson, you do not combine the goals at first. You apply node evaluators to the goals 
individually. You add a search limit to the first goal you execute. In the first phase, you 
search the search tree with a goal created from the cost variable. You prune the search tree 
based on a search limit associated with this goal. In the second phase, you search the 
remaining part of the search tree with a goal created from the supplier variable. In both 
phases of the search, you use a search selector created from the totalCost variable. 

You will perform eight steps to create a final goal to be used in search: 

◆ You use the function IloGenerate to return goal1 for the decision variable cost.

◆ You use the function IloApply. This function applies the node evaluator 
IloDDSEvaluator to goal1 and returns applygoal1.

◆ You use the function IloLimitSearch. This function places a fail limit on 
applygoal1 and returns limitgoal1.

◆ You use the function IloGenerate to return goal2 for the decision variable supplier.

◆ You use the function IloApply. This function applies the node evaluator 
IloSBSEvaluator to goal2 and returns applygoal2.

◆ Then, you create combinedGoal by joining the following goals with logical AND 
operators: limitgoal1, applygoal2, and a goal returned by the function 
IloInstantiate for the variable totalCost. Goals that are combined with logical 
AND operators are executed in the order they are declared—from left to right. 

Step 1 Open the example file
256 I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L



◆ Next, you create a search selector, minimizeSearchSelector, from the totalCost 
variable. The objective, which is to minimize the total cost, is treated implicitly by the 
search selector. 

◆ Finally, you use the function IloSelectSearch. This function takes combinedGoal 
and minimizeSearchSelector as parameters and returns finalGoal. 

The member function IloSolver::solve takes finalGoal as a parameter and searches 
for a solution in two phases. In the first phase, Solver searches using the goal limitgoal1. 
The search tree is pruned by this goal. In the second phase, the remaining part of the search 
tree is searched using applygoal2 until a solution is found. The search selector 
minimizeSearchSelector is used in both phases of the search. Figure 14.1 demonstrates 
this procedure.
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Figure 14.1

Figure 14.1  Creating a final goal 

To start, you use the function IloGenerate to return goal1 for the decision variable cost. 
You use the parameter IloChooseMaxRegretMin for the array of variables cost. This 
parameter uses the principle of least regret to guide the search strategy. For more 
information on IloChooseMaxRegretMin, see the section “Solve” on page 234.

Add the following code after the comment //Create goal1

Step 2 Create goal1

    IloGoal goal1 = IloGenerate(env, cost, IloChooseMaxRegretMin);
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Now, you apply a node evaluator to goal1. In this lesson, you apply a node evaluator that 
implements Depth-Bounded Discrepancy Search (DDS). DDS makes the assumption that 
mistakes are more likely near the top of the search tree rather than further down. For this 
reason, this procedure does not count the number of discrepancies but the depth of the last 
one. 

The function IloDDSEvaluator creates and returns an instance of IloNodeEvaluator 
that implements Depth-Bounded Discrepancy Search. The first parameter is the 
environment. The second parameter step. Solver will first explore nodes with a depth less 
than step. After this exploration is complete, it will explore nodes with a depth between 
step and 2 * step, and so on. The third parameter is width. Solver will look first at paths, 
starting from the depth level, that have a number of discrepancies, or right moves, less than 
or equal to width. The fourth parameter is maxDiscrepancy. If this parameter is used, 
Solver will discard nodes with a number of discrepancies greater than maxDiscrepancy. 
The default value for maxDiscrepancy is IloIntMax, which means that Solver will not 
discard any nodes based on this parameter. Here is a constructor:

Figure 14.2 shows a search tree that has been traversed with a node evaluator that 
implements Depth-Bounded Discrepancy Search (DDS) with a depth of 2 and a width of 1. 
The numbers in the first row represent the order in which paths are evaluated. As you can 
see, Solver first evaluates paths 1, 2, and 3. It then jumps to paths 4, 5, and 6. It then jumps to 
paths 7, 8, and 9, and so on. The numbers in the second row represent the number of 
discrepancies, or right moves, in each path after the level of depth 2. This is called the width. 
As you can see, Solver first search the paths with 0 or 1 discrepancy and then the paths with 
2 discrepancies. 

IloNodeEvaluator IloDDSEvaluator(IloEnv env,
                                 IloInt step = 4,
                                 IloInt width = 2,
                                 IloInt maxDiscrepancy = IloIntMax);
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Figure 14.2

Figure 14.2  Search tree using a Depth-Bounded Discrepancy Search (DDS) with a depth of 2 and a 
width of 1.

You now use the function IloApply. This function applies the node evaluator 
IloDDSEvaluator to goal1 and returns applygoal1. The node evaluator will first search 
paths in the search tree with a depth of 3 or less nodes. It will search paths deeper than this 
depth that have a number of discrepancies, or right moves, less than or equal to 1. 

Add the following code after the comment //Create applygoal1

Step 3 Create applygoal1

    IloGoal applygoal1 = IloApply(env, goal1, IloDDSEvaluator(env, 3, 1));
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Now, you will apply a search limit to the goal applygoal1. You will use the function 
IloFailLimit to limit the search after maxNbFails failures have occurred. Here is a 
constructor:

Now, you use the function IloLimitSearch. It takes three parameters: the environment, a 
goal, and a search limit. This function places a fail limit on applygoal1 and returns 
limitgoal1. The fail limit stops the search after 5 failures have occurred. 

Add the following code after the comment //Create limitgoal1

You use the function IloGenerate to return goal2 for the decision variable supplier.

Add the following code after the comment //Create goal2

You now use the function IloApply. This function applies the node evaluator 
IloSBSEvaluator to goal2 and returns applygoal2. This node evaluator will first 
search paths in the search tree with 1 or less discrepancies, or right moves. It will also 
discard nodes with a number of discrepancies greater than or equal to 1. For more 
information on the node evaluator IloSBSEvaluator, see the section “Solve” on page 234 
in Chapter 13, Controlling the Search: Locating Warehouses.

Add the following code after the comment //Create applygoal2

Next, you create combinedGoal by joining the following goals with logical AND 
operators: limitgoal1, applygoal2, and a goal returned by the function 
IloInstantiate for the variable totalCost. 

IloSearchLimit IloFailLimit(IloEnv env, IloInt maxNbFails);

Step 4 Create limitgoal1

    IloGoal limitgoal1 = IloLimitSearch(env, applygoal1, IloFailLimit(env, 5));

Step 5 Create goal2

    IloGoal goal2 = IloGenerate(env, supplier);

Step 6 Create applygoal2

    IloGoal applygoal2 = IloApply(env, goal2, IloSBSEvaluator(env, 1, 1));
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Add the following code after the comment //Create the combinedGoal

Then, you create a search selector, minimizeSearchSelector, from the totalCost 
variable. This search selector stores the leaf of the search tree that represents a solution with 
the optimal value of the variable totalCost. After the search tree has been completely 
explored, it reactivates this value. When a solution is found, it adds a constraint that 
totalCost must be less than or equal to the solution minus 1.

Add the following code after the comment //Create the search selector

Finally, you use the function IloSelectSearch. This function takes combinedGoal and 
minimizeSearchSelector as parameters and returns finalGoal. It applies the search 
selector minimizeSearchSelector to the goal combinedGoal.

Add the following code after the comment //Create the finalGoal

Now, you create an instance of IloSolver to solve the problem expressed in the model. 
This code is provided for you:

You use the member function IloSolver::solve to search for a solution. You use 
finalGoal as a parameter of IloSolver::solve. 

Step 7 Create the combinedGoal

    IloGoal combinedGoal = limitgoal1 && 
                           applygoal2 && 
                           IloInstantiate(env, totalCost);

Step 8 Create the search selector

    IloSearchSelector minimizeSearchSelector = IloMinimizeVar(env,
                                                              totalCost,
                                                              1);

Step 9 Create the finalGoal

    IloGoal finalGoal = IloSelectSearch(env,
                                        combinedGoal,
                                        minimizeSearchSelector);

    IloSolver solver(model);
262 I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L



Add the following code after the comment //Search for a solution

Step 10 Search for a solution

    if (solver.solve(finalGoal))
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Compile and run the program. You should get the following results, though the information 
displayed by IloSolver::printInformation will vary depending on platform, 
machine, configuration, and so on:

Step 11 Compile and run the program

Using default file
30
[[20, 24, 11, 25, 30], [28, 27, 82, 83, 74], [74, 97, 71, 96, 70], [2, 55, 73, 
6
9, 61], [46, 96, 59, 83, 4], [42, 22, 29, 67, 59], [1, 5, 73, 59, 56], [10, 73,
13, 43, 96], [93, 35, 63, 85, 46], [47, 65, 55, 71, 95]]
[1, 4, 2, 1, 3]
------------------------------
Solution:
Store  0 Warehouse:  Rome
Store  1 Warehouse:  Bordeaux
Store  2 Warehouse:  Rome
Store  3 Warehouse:  Bonn
Store  4 Warehouse:  Rome
Store  5 Warehouse:  Bordeaux
Store  6 Warehouse:  Bordeaux
Store  7 Warehouse:  London
Store  8 Warehouse:  Bordeaux
Store  9 Warehouse:  London

Store  0 Cost:  30
Store  1 Cost:  27
Store  2 Cost:  70
Store  3 Cost:  2
Store  4 Cost:  4
Store  5 Cost:  22
Store  6 Cost:  5
Store  7 Cost:  13
Store  8 Cost:  35
Store  9 Cost:  55

Total cost:  383
------------------------------
Number of fails               : 5
Number of choice points       : 10
Number of variables           : 76
Number of constraints         : 76
Reversible stack (bytes)      : 12084
Solver heap (bytes)           : 52284
Solver global heap (bytes)    : 20124
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 11160
Total memory used (bytes)     : 107784
Elapsed time since creation   : 0.02
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As you can see, the solution is the same as that found in Chapter 13, Controlling the Search: 
Locating Warehouses. However, there are fewer fails and fewer choice points. Using 
problem limits and decomposition, there are only 5 fails and 10 choice points, as opposed to 
25 fails and 27 choice points using slice-based search without problem limits and 
decomposition. 

The complete program is listed in “Complete program” on page 272. You can also view it 
online in the file YourSolverHome/examples/src/storecpx.cpp.
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IBM® ILOG® Solver Search Strategies

Depth-First Search (DFS)

DFS is the standard search procedure. Depth-First Search explores the search tree in a “left-to-right” fashion. It
searches by selecting the left leaf at each open node until the end of the search space is reached. If it does not
find a solution, it backtracks and tries again. The function IloDFSEvaluator implements this strategy. See
Chapter 13, Controlling the Search: Locating Warehouses.

Best First Search (BFS) 

BFS is described in N. J. Nilsson’s book, Problem Solving Methods in Artificial Intelligence, published by
McGraw-Hill, 1971. The Solver implementation uses a parameter ε. When selecting an open node, Solver
determines the set of open nodes the cost of which is at most (1+ε) worse than the best open node. If the child
of the current node is in the set, Solver goes to this child. If not, Solver chooses the best open node. The
function IloBFSEvaluator implements this strategy.

Slice-Based Search (SBS)

SBS is described by J. Christopher Beck and Laurent Perron in their paper, “Discrepancy Bounded Depth First
Search,” presented at the Second International Workshop on Integration of AI and OR Technologies for
Combinatorial Optimization Problems (CP-AI-OR'00), Paderborn, Germany, 2000. The discrepancy of a search
node is defined as the number of right moves. Given a parameter step, slice-based search will first explore
nodes with a discrepancy less than step. After this exploration is complete, it will explore nodes with a
discrepancy between step and 2*step, and so on. This search strategy cuts the search tree into slices. The
function IloSBSEvaluator implements this strategy. See Chapter 13, Controlling the Search:
Locating Warehouses.

Depth-Bounded Discrepancy Search (DDS)

DDS was introduced by Toby Walsh in his paper, “Depth-Bounded Discrepancy Search,” published in the
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), volume 2, August, 1997,
pages 1388–1393. DDS makes the assumption that mistakes are made more likely near the top of the search
tree than further down. For this reason, this procedure does not count the number of discrepancies but the
depth of the last one. Solver implements an improved version of Walsh’s schema. Given a parameter step, DDS
will first explore nodes with a depth less than step. After this exploration is complete, it will explore nodes with a
depth between step and 2*step, and so on. Solver’s implementation of DDS takes a parameter width, that allows
width number of discrepancies beyond the depth specified by the parameter step. The function
IloDDSEvaluator implements this strategy. See Chapter 14, Limits and Problem Decomposition:
Locating Warehouses.

Interleaved Depth-First Search (IDFS)

IDFS was introduced by Pedro Meseguer in his paper, “Interleaved Depth-First Search,” published in the
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), volume 2, August, 1997,
pages 1382–1387. IDFS tries to mimic the behavior of an infinite number of threads exploring the search tree.
Solver implements a variation that limits the depth of this behavior. The function IloIDFSEvaluator
implements this strategy.
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Review exercises

For answers, see Suggested answers.

1. What is Depth-Bounded Discrepancy Search?

2. How do you implement a search limit? 

3. Modify the program in this lesson to use the data file YourSolverHome/examples/
data/store_ex3.dat. This data file contains information for 30 stores and 15 
warehouses. The ten additional potential warehouse sites are: Munich, Barcelona, 
Prague, Dublin, Madrid, Lisbon, Berlin, Amsterdam, Brussels, and Milan.

Suggested answers

Exercise 1

What is Depth-Bounded Discrepancy Search?

Suggested Answer

This procedure counts the depth of the last discrepancy in the search tree. Given a parameter 
step, DDS will first explore nodes with a depth less than step. After this exploration is 
complete, it will explore nodes with a depth between step and 2*step, and so on. DDS also 
takes a parameter width, that allows width number of discrepancies beyond the depth 
specified by the parameter step. The function IloDDSEvaluator implements this search 
strategy.

Exercise 2

How do you implement a search limit? 

Suggested Answer

You use the function IloLimitSearch. It takes three parameters: the environment, a goal, 
and a search limit. This function places a search limit on a goal and returns another goal. 

Exercise 3

Modify the program in this lesson to use the data file YourSolverHome/examples/data/
store_ex3.dat. This data file contains information for 30 stores and 15 warehouses. The 
ten additional potential warehouse sites are: Munich, Barcelona, Prague, Dublin, Madrid, 
Lisbon, Berlin, Amsterdam, Brussels, and Milan.
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Suggested Answer

You can view the complete program online in the file YourSolverHome/examples/src/
storecpx_ex3.cpp. You only need to change the following line of code to add the 
additional warehouse sites to the enumeration:

You change the following line of code to use the new data file: 

The results will vary depending on platform, machine, configuration, and so on.

------------------------------
Solution:
Store  0 Warehouse:  Lisbon
Store  1 Warehouse:  Barcelona
Store  2 Warehouse:  Barcelona
Store  3 Warehouse:  Munich
Store  4 Warehouse:  Rome
Store  5 Warehouse:  Munich
Store  6 Warehouse:  Bonn
Store  7 Warehouse:  London
Store  8 Warehouse:  Berlin
Store  9 Warehouse:  Barcelona
Store  10 Warehouse:  Paris
Store  11 Warehouse:  Bordeaux
Store  12 Warehouse:  Bonn
Store  13 Warehouse:  Bordeaux
Store  14 Warehouse:  Lisbon
Store  15 Warehouse:  Munich
Store  16 Warehouse:  Bonn
Store  17 Warehouse:  Munich
Store  18 Warehouse:  Berlin
Store  19 Warehouse:  Barcelona
Store  20 Warehouse:  Bordeaux
Store  21 Warehouse:  Bonn
Store  22 Warehouse:  Paris
Store  23 Warehouse:  Prague
Store  24 Warehouse:  Barcelona
Store  25 Warehouse:  Munich
Store  26 Warehouse:  Munich
Store  27 Warehouse:  Bonn
Store  28 Warehouse:  London
Store  29 Warehouse:  Lisbon

Store  0 Cost:  2
Store  1 Cost:  15
Store  2 Cost:  8
Store  3 Cost:  1
Store  4 Cost:  4
Store  5 Cost:  1

const char* Suppliers[] = {"Bonn", "Bordeaux", "London", "Paris", "Rome",
                           "Munich", "Barcelona", "Prague", "Dublin", "Madrid",
                           "Lisbon", "Berlin", "Amsterdam", "Brussels", 
"Milan"};

      fileName = "../../../examples/data/store_ex3.dat";
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Store  6 Cost:  1
Store  7 Cost:  13
Store  8 Cost:  6
Store  9 Cost:  22
Store  10 Cost:  2
Store  11 Cost:  5
Store  12 Cost:  11
Store  13 Cost:  15
Store  14 Cost:  10
Store  15 Cost:  11
Store  16 Cost:  1
Store  17 Cost:  10
Store  18 Cost:  5
Store  19 Cost:  22
Store  20 Cost:  8
Store  21 Cost:  1
Store  22 Cost:  9
Store  23 Cost:  19
Store  24 Cost:  22
Store  25 Cost:  1
Store  26 Cost:  1
Store  27 Cost:  10
Store  28 Cost:  19
Store  29 Cost:  2

Total cost:  557
------------------------------
------------------------------
Number of fails               : 5
Number of choice points       : 39
Number of variables           : 526
Number of constraints         : 526
Reversible stack (bytes)      : 76404
Solver heap (bytes)           : 361824
Solver global heap (bytes)    : 24144
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 11160
Total memory used (bytes)     : 485664
Elapsed time since creation   : 0.181

As you can see, the solution is not the same as that found in Chapter 13, Controlling the 
Search: Locating Warehouses. The total cost is also higher; 557 for using problem limits and 
decomposition, and 490 for a complete Slice-Based Search. Since the search uses limits, it is 
not complete and may miss an optimal solution. However, Solver was able to find a solution 
more quickly. There are fewer fails and fewer choice points. Using problem limits and 
decomposition, there are only 5 fails and 39 choice points, as opposed to 68,415 fails and 
65,840 choice points using Slice-Based Search without problem limits and decomposition. 
The performance also improved. Using problem limits and decomposition, Solver found the 
solution in 0.181 seconds, compared to 86.835 seconds using Slice-Based Search without 
problem limits and decomposition. (Solution time varies depending on platform, machine, 
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and so on.) This demonstrates the importance of choosing good search strategies, especially 
as problem size and complexity increase. 

Here are the results using Slice-Based Search without problem limits and decomposition 
from Chapter 13, Controlling the Search: Locating Warehouses:

Using default file
Cost to build a warehouse:
30
Relative costs for stores:
[[20, 24, 11, 25, 30, 28, 27, 82, 83, 74,
2, 55, 73, 69, 61], [28, 27, 82, 83, 74, 93, 15, 63, 87, 46,
47, 57, 55, 71, 95], [74, 97, 71, 96, 70, 42, 8, 29, 67, 59,
93, 15, 63, 87, 46], [2, 55, 73, 69, 61, 1, 65, 73, 59, 56,
93, 35, 19, 85, 46], [46, 96, 59, 83, 4, 42, 22, 56, 67, 59,
11, 73, 15, 43, 96], [42, 22, 29, 67, 59, 1, 5, 57, 67, 56,
42, 8, 29, 67, 59], [1, 5, 73, 59, 56, 1, 5, 73, 59, 56,
42, 8, 29, 67, 59], [10, 73, 13, 43, 96, 42, 22, 56, 67, 59,
42, 56, 29, 56, 59], [93, 35, 63, 85, 46, 13, 22, 29, 66, 59,
65, 6, 73, 59, 56], [47, 65, 55, 71, 95, 42, 22, 29, 69, 59,
93, 25, 45, 85, 46],
[17, 19, 67, 2, 15, 93, 35, 19, 85, 46,
47, 57, 55, 71, 95], [26, 5, 78, 43, 19, 10, 15, 13, 9, 96,
68, 35, 62, 85, 46], [11, 73, 15, 43, 96, 42, 56, 29, 56, 59,
47, 57, 55, 71, 95], [93, 15, 63, 87, 46, 93, 55, 63, 92, 46,
47, 65, 55, 92, 95], [47, 65, 37, 71, 95, 47, 65, 45, 71, 95,
10, 73, 58, 43, 96], [42, 22, 29, 67, 49, 11, 45, 13, 43, 96,
42, 56, 29, 56, 59], [1, 5, 73, 59, 56, 47, 65, 45, 71, 95,
68, 35, 62, 85, 46], [10, 75, 13, 43, 62, 10, 15, 13, 9, 96,
93, 35, 19, 85, 46], [93, 25, 45, 85, 46, 65, 6, 73, 59, 56,
12, 5, 92, 59, 56], [47, 65, 55, 92, 95, 42, 22, 29, 69, 59,
47, 57, 55, 71, 95],
[42, 8, 29, 67, 59, 93, 35, 89, 85, 46,
47, 65, 56, 71, 95], [1, 5, 57, 67, 56, 42, 22, 56, 67, 5,
65, 6, 73, 59, 56], [10, 15, 13, 9, 96, 42, 22, 29, 69, 59,
47, 57, 55, 71, 95], [68, 35, 62, 85, 46, 93, 35, 19, 85, 46,
47, 57, 55, 71, 95], [47, 57, 55, 71, 95, 42, 22, 29, 69, 59,
93, 25, 45, 85, 46], [42, 22, 29, 69, 59, 1, 65, 73, 59, 56,
93, 35, 19, 85, 46], [1, 65, 73, 59, 56, 1, 65, 73, 59, 56,
93, 35, 19, 85, 46], [10, 73, 13, 83, 96, 11, 45, 13, 43, 96,
42, 56, 29, 56, 59], [93, 35, 19, 85, 46, 93, 35, 19, 85, 46,
47, 57, 55, 71, 95], [47, 65, 45, 71, 95, 28, 27, 82, 83, 74,
2, 55, 73, 69, 61]]
Warehouse capacities:
[5, 9, 12, 3, 4, 6, 8, 1, 6, 11,
3, 10, 8, 9, 3]

------------------------------
Solution:
Store  0 Warehouse:  London
Store  1 Warehouse:  Barcelona
Store  2 Warehouse:  Barcelona
Store  3 Warehouse:  Munich
Store  4 Warehouse:  Lisbon
Store  5 Warehouse:  Munich
Store  6 Warehouse:  Bordeaux
Store  7 Warehouse:  London
Store  8 Warehouse:  Munich
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Store  9 Warehouse:  Barcelona
Store  10 Warehouse:  Bordeaux
Store  11 Warehouse:  Bordeaux
Store  12 Warehouse:  London
Store  13 Warehouse:  Bordeaux
Store  14 Warehouse:  Lisbon
Store  15 Warehouse:  Munich
Store  16 Warehouse:  Bordeaux
Store  17 Warehouse:  London
Store  18 Warehouse:  Barcelona
Store  19 Warehouse:  Barcelona
Store  20 Warehouse:  Bordeaux
Store  21 Warehouse:  Bordeaux
Store  22 Warehouse:  London
Store  23 Warehouse:  Bordeaux
Store  24 Warehouse:  Barcelona
Store  25 Warehouse:  Munich
Store  26 Warehouse:  Munich
Store  27 Warehouse:  London
Store  28 Warehouse:  London
Store  29 Warehouse:  Lisbon

Store  0 Cost:  11
Store  1 Cost:  15
Store  2 Cost:  8
Store  3 Cost:  1
Store  4 Cost:  11
Store  5 Cost:  1
Store  6 Cost:  5
Store  7 Cost:  13
Store  8 Cost:  13
Store  9 Cost:  22
Store  10 Cost:  19
Store  11 Cost:  5
Store  12 Cost:  15
Store  13 Cost:  15
Store  14 Cost:  10
Store  15 Cost:  11
Store  16 Cost:  5
Store  17 Cost:  13
Store  18 Cost:  6
Store  19 Cost:  22
Store  20 Cost:  8
Store  21 Cost:  5
Store  22 Cost:  13
Store  23 Cost:  35
Store  24 Cost:  22
Store  25 Cost:  1
Store  26 Cost:  1
Store  27 Cost:  13
Store  28 Cost:  19
Store  29 Cost:  2

Total cost:  490

------------------------------
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Number of fails               : 68415
Number of choice points       : 65840
Number of variables           : 526
Number of constraints         : 526
Reversible stack (bytes)      : 104544
Solver heap (bytes)           : 361824
Solver global heap (bytes)    : 4584576
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 13164
Total memory used (bytes)     : 5076240
Elapsed time since creation   : 86.835

Complete program

The complete locating warehouses program follows. You can also view it online in the file 
YourSolverHome/examples/src/storecpx.cpp. 

#include <ilsolver/ilosolverint.h>
ILOSTLBEGIN

class FileError : public IloException {
public:
  FileError() : IloException("Cannot open data file") {}
};

const char* Suppliers[] = {"Bonn", "Bordeaux", "London", "Paris", "Rome"};

int main(int argc, char** argv){
  IloEnv env;
  try {
    IloModel model(env);
    IloInt i, j;

    const char* fileName;
    if ( argc != 2 ) {
      env.warning() << "usage: " << argv[0] << " <filename>" << endl;
      env.warning() << "Using default file" << endl;
      fileName = "../../../examples/data/store.dat";
    } else
      fileName = argv[1];

    ifstream file(fileName);
    if ( !file )
      throw FileError();
    // model data
    IloInt       buildingCost;
    IloIntArray2 costMatrix(env);
    IloIntArray  capacity(env);
    file >> buildingCost >> costMatrix >> capacity;
    IloInt nStores    = costMatrix.getSize();
    IloInt nSuppliers = capacity.getSize();
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    env.out() << "Cost to build a warehouse:  " << endl;
    env.out() << buildingCost << endl;
    env.out() << "Relative costs for stores:  " << endl;
    env.out() << costMatrix        << endl;
    env.out() << "Warehouse capacities:  " << endl;
    env.out() << capacity     << endl;
   // build model
    IloIntVarArray supplier(env, nStores, 0, nSuppliers-1);
    IloIntVarArray cost(env, nStores, 0, 99999);
    IloIntVarArray open(env, nSuppliers, 0,1);
    for (i = 0; i < nStores; i++){
      model.add(cost[i] == costMatrix[i](supplier[i]));
      model.add(open(supplier[i])==1 );
    }
    for (j = 0; j < nSuppliers; j++ ) {
      IloIntVarArray temp(env, nStores, 0, 1);
      for (IloInt k = 0; k < nStores; k++)
        model.add(temp[k] == (supplier[k] == j));
      model.add(IloSum(temp) <= capacity[j]);
    }
    IloIntVar totalCost(env, 0, 999999);
    model.add(totalCost == IloSum(cost) + IloSum(open) * buildingCost);
    IloGoal goal1 = IloGenerate(env, cost, IloChooseMaxRegretMin);
    IloGoal applygoal1 = IloApply(env, goal1, IloDDSEvaluator(env, 3, 1));
    IloGoal limitgoal1 = IloLimitSearch(env, applygoal1, IloFailLimit(env, 5));
    IloGoal goal2 = IloGenerate(env, supplier);
    IloGoal applygoal2 = IloApply(env, goal2, IloSBSEvaluator(env, 1, 1));
    IloGoal combinedGoal = limitgoal1 && applygoal2 && IloInstantiate(env, 
totalCost);
    IloSearchSelector minimizeSearchSelector = IloMinimizeVar(env,
                                                              totalCost,
                                                              1);
    IloGoal finalGoal = IloSelectSearch(env,
                                        combinedGoal,
                                        minimizeSearchSelector);
    // solve model
    IloSolver solver(model);
    if (solver.solve(finalGoal))
      {
      solver.out() << "------------------------------" << endl;
      solver.out() << "Solution:  " << endl;
      for (i = 0; i < nStores; i ++)
        solver.out() << "Store  " << i << " " << "Warehouse:  "
                     << Suppliers[(IloInt)solver.getValue(supplier[i])]
                     << " " << endl;
        solver.out() << endl;
        for (j = 0; j < nStores ; j ++)
          solver.out() << "Store  " << j << " " << "Cost:  "
                       << solver.getValue(cost[j]) << " " << endl;
          solver.out() << endl;
          solver.out() << "Total cost:  " << solver.getValue(totalCost)
                                          << endl;
          solver.out() << "------------------------------" << endl;

      }
    else solver.out() << "No solution" << endl;
    solver.printInformation();
  }
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  catch (IloException& ex) {
    cout << "Error: " << ex << endl;
  }
  env.end();
  return 0;
}

Results

Solution time varies depending on platform, machine, and so on.

Using default file
30
[[20, 24, 11, 25, 30], [28, 27, 82, 83, 74], [74, 97, 71, 96, 70], [2, 55, 73, 
6
9, 61], [46, 96, 59, 83, 4], [42, 22, 29, 67, 59], [1, 5, 73, 59, 56], [10, 73,
13, 43, 96], [93, 35, 63, 85, 46], [47, 65, 55, 71, 95]]
[1, 4, 2, 1, 3]
------------------------------
Solution:
Store  0 Warehouse:  Rome
Store  1 Warehouse:  Bordeaux
Store  2 Warehouse:  Rome
Store  3 Warehouse:  Bonn
Store  4 Warehouse:  Rome
Store  5 Warehouse:  Bordeaux
Store  6 Warehouse:  Bordeaux
Store  7 Warehouse:  London
Store  8 Warehouse:  Bordeaux
Store  9 Warehouse:  London

Store  0 Cost:  30
Store  1 Cost:  27
Store  2 Cost:  70
Store  3 Cost:  2
Store  4 Cost:  4
Store  5 Cost:  22
Store  6 Cost:  5
Store  7 Cost:  13
Store  8 Cost:  35
Store  9 Cost:  55

Total cost:  383
------------------------------
Number of fails               : 5
Number of choice points       : 10
Number of variables           : 76
Number of constraints         : 76
Reversible stack (bytes)      : 12084
Solver heap (bytes)           : 52284
Solver global heap (bytes)    : 20124
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 11160
Total memory used (bytes)     : 107784
Elapsed time since creation   : 0.02
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C H A P T E R
15

Searching for Optimal Solutions:
Replanning Warehouses

In this lesson, you will learn more about how to: 

◆ find feasible solutions

◆ find optimal solutions using objectives

◆ store solutions

◆ use multiphase search

◆ use embedded search

Note: This chapter is not presented using the three-stage method, as in previous chapters in 
this part. This subject matter lends itself more naturally to a conceptual introduction rather 
than procedural-based learning. However, when confronted with an optimization problem, 
you should still use the Describe, Model, and Solve stages.
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Finding feasible solutions

Before discussing optimal solutions in greater depth, let’s review how Solver finds feasible 
solutions. There are two basic ways to do this. The member function IloSolver::solve, 
when used in a model without an objective, will simply find the first feasible solution. For 
example, in Chapter 2, Modeling and Solving a Simple Problem: Map Coloring, you used 
IloSolver::solve in an if statement to find the first feasible solution to the problem:

The member functions IloSolver::startNewSearch, IloSolver::next, and 
IloSolver::endSearch can be used in a while loop to find all feasible solutions to a 
problem. For example, in Chapter 3, Using Arrays and Basic Search: Changing Money, you 
used these three member functions to search for all feasible solutions to the problem:

Finding optimal solutions using objectives

Sometimes, however, you not only want a solution to a problem but a solution that optimizes 
a given criterion. For that purpose, Solver offers predefined ways to get solutions that 
minimize or maximize an objective. The technique used by Solver is widely known as 
branch & bound. 

In Solver, you search for an optimal solution in three steps:

◆ specify an objective to minimize or maximize

◆ add the objective to the model

◆ create an instance of IloSolver to extract the model and ask it to solve the problem

In Chapter 5, Using Objectives: Map Coloring with Minimum Colors, you learned how to 
create an objective, an instance of the class IloObjective, using the function 
IloMaximize. You added it to the model using IloModel::add and used 
IloSolver::solve to find the solution that optimized this objective. 

    if (solver.solve()) 

    solver.startNewSearch();
    IloInt solutionCounter = 0;
    while(solver.next()) {
      solver.out() << "solution  " << ++solutionCounter << ":\t";
      for (IloInt i = 0; i < nCoins; i++)
        solver.out() << solver.getValue(coins[i]) << " ";
      solver.out() << endl;
    }
    solver.endSearch();
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In this section, you will model this same problem, map coloring with minimum colors, using 
the function IloMinimize and a search loop. You will learn more about how Solver uses 
objectives and how the member functions IloSolver::startNewSearch, 
IloSolver::restartSearch and IloSolver::next work when used with an objective 
to search for an optimal solution.

In this version, the objective is the maximum color used (since you number the colors). You 
define it by using IloMax on the array of colors. You want each modification of this 
maximum to be propagated to the other variables, and any modification of a color variable to 
be propagated to the maximum as well. More generally, it is essential to link the cost 
variable to the other variables in the problem by means of constraints, not mere tests.

Constraints differ from tests in an important way: once a constraint has been posted, effects 
of the constraint are propagated to reduce the domains of all variables affected by the 
constraint in ways that a mere test does not have. In this example, since you are using 
constraints rather than tests to link the objective to other variables, the choices made about 
the other variables are propagated to the cost variable with absolute accuracy, and the 
modification of the objective impinges on the other variables as soon as possible. These two 
ideas are critical so that as soon as possible the minimization process eliminates parts of the 
search tree that will not produce better solutions. 

The function IloMinimize takes a constant or expression as its argument. This constant or 
expression becomes the objective to be minimized. This member function changes the 
behavior of IloSolver::next, like this: 

◆ search for a solution in the way defined by the goals that have been added to the model

◆ add the constraint that the following solution must be at least a step better than the 
solution found previously.

In other words, each time next is called, the new solution will yield a better value for the 
objective. The last solution found is the optimal solution. 

In this version, to find a solution using the least number of colors, you use IloMinimize 
and loop to find better and better solutions. As you do so, you print the cost you get for each 
solution. 

This loop actually produces a series of solutions, ending with an optimal solution. The last 
call of next in that loop searches for a solution better than the optimal, and it consequently 
fails. Having failed, it backtracks, and unfortunately the optimal solution is lost.

What shall you do to retain that last optimal solution, that was inadvertently “lost” during 
backtracking? Easy: in the last part of the program, you search again for the best solution 
found so far. To do that, you first call IloSolver::restartSearch in order to restart the 
search, and then you search for exactly one solution. The member function restart keeps 

Note: You could also search for the optimal solution using IloMinimize and 
IloSolver::solve to find only the optimal solution. 
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track of the best objective value found. In that way, you insure that you find the optimal 
solution again.

Here is how you model the objective for this version of the problem. 

The output of the program looks like this:

Storing solutions

In the previous section, you used the member function IloSolver::restartSearch to 
keep track of the best objective value found and to restart the search to find the one optimal 
solution again. Another way to find optimal solutions is to store them. 

As discussed in the previous section, the minimization algorithm computes the best solution 
twice: it is first computed during a loop producing better and better solutions, and it is 
computed once more after that loop. In order to avoid this unnecessary computation, you can 
store intermediate solutions. 

The process to do so is quite simple: 

1. Create an instance of IloSolution. 

2. Add the variables you want to store to the solution. 

3. Store the solution object.

Once a solution object is stored, you can restore the values contained within it by passing the 
function IloRestoreSolution to the solver. 

    IloNumVarArray AllVars(env, 6, Belgium, Denmark, France,
                           Germany, Netherlands, Luxembourg);
    model.add(IloMinimize(env, IloMax(AllVars)));

OPTIMAL Solution
Belgium:     white
Denmark:     blue
France:      blue
Germany:     white
Netherlands: blue
Luxembourg:  red
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For example, the following code uses stored solutions in an optimization procedure:

Multiphase search

The member functions IloSolver::startNewSearch and IloSolver::next, in 
conjunction with the classes IloSolution and IloRestoreSolution, enable you to 
search for solutions of a given problem, to edit that problem, and to search for solutions to 
this new problem. You can even search for solutions of the new problem that are close to 
solutions of the old one.

Let’s assume that you want to search for all solutions of a problem provided you do not 
change the values of the last four variables. In order to do this, you create two solution 
objects, one for the variables you do not want to change, and the other for the variables that 
can be changed. You add the last four variables of the problem to the IloSolution object 
frozen and declare a goal restoreFrozen, which uses the function 
IloRestoreSolution to restore the values of the solution frozen. You add the first four 

  IloSolver solver(model);
  solver.setOptimizationStep(0.1);

  IloSolution solution(env);
  solution.add(next);
  solution.add(length);

  solver.startNewSearch(IloGenerate(env,next) &&
                                      IloDichotomize(env,length) &&
                                      IloStoreSolution(env, solution));

  while (solver.next());
  solver.endSearch();

  solver.printInformation();

  solver.solve(IloRestoreSolution(env,solution));
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variables of the problem to the IloSolution object free and declare a goal storeFree, 
which uses the function IloStoreSolution to store the values of the solution free.

You use the following code to search for our new solutions. The member function 
IloSolver::startNewSearch calls the goals restoreFrozen, goal, and storeFree 
in the search. The solver adds the frozen variables, searches for a solution using goal as its 
objective, and stores the values of the free variables: 

If you want, for example, to obtain a solution that keeps the same values for the last four 
variables and that respects an additional constraint, it is sufficient to restore the variables you 
want to keep, add the additional constraint, and search again for a solution, like this:

    solver.out() << "store 4 last vars" << endl;
    IloSolution frozen(env);
    frozen.add(x[4]);
    frozen.add(x[5]);
    frozen.add(x[6]);
    frozen.add(x[7]);
    frozen.store(solver);
    IloGoal restoreFrozen = IloRestoreSolution(env, frozen);

    IloSolution free(env);
    free.add(x[0]);
    free.add(x[1]);
    free.add(x[2]);
    free.add(x[3]);
    IloGoal storeFree = IloStoreSolution(env, free);

    solver.startNewSearch(restoreFrozen && goal && storeFree);
    while (solver.next()) {
      Print(solver, x);
    }
    solver.endSearch();

    solver.out() << "repeat last solution" << endl;
    IloGoal restoreFree = IloRestoreSolution(env, free);
    solver.solve(restoreFrozen && restoreFree);
    Print(solver, x);

    solver.out() << "change solution" << endl;
    model.add(x[OL] < 3);
    solver.startNewSearch(restoreFrozen && goal);
    while (solver.next()) {
      Print(solver, x);
    }
    solver.endSearch();
    solver.printInformation();
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Multiphase search: Replanning warehouses

In Chapter 13, Controlling the Search: Locating Warehouses, you learned how to model and 
solve a locating warehouses problem. In this chapter, you will model this same problem 
using multiphase search and stored solutions. The problem is modeled the same as in 
Chapter 15, Searching for Optimal Solutions: Replanning Warehouses.

First, you fix the suppliers of the first four stores by creating a solution object for the 
variables you do not want to change: 

Next, you search for a solution to the whole problem using searchGoal and the stored 
solution solution:

This initial solution is displayed:

You add an objective to minimize totalCost and search for an optimal solution using the 
restored solution:

    IloSolution solution(env);
    solution.add(supplier[0]);
    solution.add(supplier[1]);
    solution.add(supplier[2]);
    solution.add(supplier[3]); // we fix the suppliers of the first 4 stores

    if (solver.solve(searchGoal && IloStoreSolution(env, solution)))

      {
        solver.out() << "------------------------------" << endl;
        solver.out() << "Initial Solution:  " << endl;
        for (i = 0; i < nStores; i ++)
          solver.out() << "Store  " << i << " " << "Warehouse:  "
                       << Suppliers[(IloInt)solver.getValue(supplier[i])]
                       << " " << endl;
        solver.out() << endl;
        for (j = 0; j < nStores ; j ++)
          solver.out() << "Store  " << j << " " << "Cost:  "
                       << solver.getValue(cost[j]) << " " << endl;
        solver.out() << endl;
        solver.out() << "Total cost:  " << solver.getValue(totalCost)
                     << endl;
        solver.out() << solution << endl;
        solver.out() << "------------------------------" << endl;

        model.add(IloMinimize(env, totalCost));
        solver.solve(IloRestoreSolution(env, solution) && searchGoal);
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Finally, you display the optimal solution: 

You can view the complete program online in the file YourSolverHome/examples/src/
replan_store.cpp. 

Using embedded search

Sometimes, it may be useful to search for the first solution of a given goal while you are 
searching for a solution to a set of goals.

For example, let’s say that your problem can be decomposed into two subproblems A and B, 
but you are interested only in the first solution for A. In other words, you know by some 
means or other that the solutions of A and B are independent, and once you have a solution 
to A, you need not change it while you continue to search for solutions to B. Let’s assume 
that the problem A is represented by the goal goalA, and problem B by goalB.

Then the following code find a solution to both problems:

However, if problem B has no solutions, backtracking occurs, and Solver searches for 
another solution to problem A. In fact, as you have set things up in this preliminary model, 
all solutions of problem B are generated—useless computation in this case. Indeed, since 
you have already established that they are independent, you know that changing the solution 
for problem A will not help you find the solution of problem B.

        solver.out() << "------------------------------" << endl;
        solver.out() << "Final Solution:  " << endl;
        for (i = 0; i < nStores; i ++)
          solver.out() << "Store  " << i << " " << "Warehouse:  "
                       << Suppliers[(IloInt)solver.getValue(supplier[i])]
                       << " " << endl;
        solver.out() << endl;
        for (j = 0; j < nStores ; j ++)
          solver.out() << "Store  " << j << " " << "Cost:  "
                       << solver.getValue(cost[j]) << " " << endl;
        solver.out() << endl;
        solver.out() << "Total cost:  " << solver.getValue(totalCost)
                     << endl;
        solver.out() << "------------------------------" << endl;

      }
    else {
      solver.out() << "No solution" << endl;
    }
    solver.printInformation();

solver.startNewSearch(goalA && goalB);
solver.next();
solver.endSearch();
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Thus, the following code is better suited to the problem at hand:

You will end up have a solution to both problem A and B stored in solutionA and 
solutionB.

Furthermore, if problem A and problem B are not independent, you may still keep this way 
of solving the problem by committing to the first solution found for the problem A and then 
searching for a solution of problem B.

This is illustrated by the following code: 

solver.startNewSearch(goalA && IloStoreSolution(env, solutionA)); 
solver.next(); 
solver.endSearch();

solver.startNewSearch(goalB && IloStoreSolution(env, solutionB)); 
solver.next(); 
solver.endSearch();

solver.startNewSearch(goalA && IloStoreSolution(env, solutionA)); 
solver.next(); 
solver.endSearch();
 
solver.startNewSearch(IloRestoreSolution(env, solutionA) &&
                      goalB &&
                      IloStoreSolution(env, solutionB)); 
solver.next(); 
solver.endSearch();
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C H A P T E R
16

Using Parallel Solver: Multithreaded
Warehouse Location

In this lesson, you will learn how to:

◆ solve problems using parallel search

◆  understand how workers function

◆ implement a multiphase search with parallelism

This chapter explains how to use Parallel Solver to solve problems on multiprocessors or on 
platforms that support multithreads. Parallel Solver allows multiple workers running in 
different threads with copies of the same problem to explore the same shared search tree to 
find a solution.

Understanding the architecture

Conventional Solver applications run sequentially within a single process. In contrast, an 
application built with Parallel Solver typically runs in multiple threads in order to take 

Note: This chapter is not presented using the three-stage method, as in previous chapters in 
this part. This subject matter lends itself more naturally to a conceptual introduction rather 
than procedural-based learning. 
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advantage of parallel processing during the exploration of the search tree. For that reason, 
the architecture of an application of Parallel Solver differs slightly from the architecture of a 
conventional single-threaded Solver application.

Parallel Solver differs most markedly from conventional Solver with respect to its parallel 
search. In a Parallel Solver application, there are multiple instances of the search engine. The 
instances are known as workers; they run in different threads yet explore the same search 
tree. They communicate with each other across a virtual communication layer.

That virtual communication layer fulfills several major tasks:

◆ Load balancing—Parallel Solver makes sure that no worker is idle while work is 
available. To accomplish this aim, Parallel Solver moves nodes of the search tree from 
one worker to another.

◆ Bound communication—In an optimization problem, Parallel Solver communicates the 
best bound known so far among the workers. In a minimization problem, for example, it 
updates the best upper bound of the objective known so far among the workers. This 
communication can significantly reduce the search tree. (This bound communication 
might also be known as propagation, but it differs from the propagation associated with 
domain reduction in sequential Solver.)

◆ Termination detection—Parallel Solver knows as soon as one worker has found a 
solution; then it stops the work of the other workers. In contrasting situations, Parallel 
Solver detects when all workers are idle, and terminates the search cleanly.

The following figure shows you a time line where a main thread in a Parallel Solver 
application first creates its multiple worker threads. It then sleeps while those workers share 
a search tree where they explore possible solutions. Once a worker finds a solution, all 
workers exit, and the main thread awakes to continue execution.
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Figure 16.1 

Figure 16.1  A single Parallel Solver solve() with n workers

Using Parallel Solver

The example whouse_mt.cpp is a variation of the warehouse allocation example 
introduced in Chapter 13, Controlling the Search: Locating Warehouses. It illustrates how to 
use Parallel Solver.

    worker thread 1

worker thread 2

 worker thread n

Parallel Solver creates worker threads at the beginning of solve()

success failure failure

worker threads exit

Parallel Solver returns from solve()

tim
e

shared exploration of the same search tree
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The complete program follows. You can also view it online in the file YourSolverHome/
examples/src/whouse_mt.cpp.

#if defined(ILCUSEMT) || defined(ILOUSEMT)

# include <ilsolver/ilopsolver.h>
ILOSTLBEGIN

void readCosts(const char*   name,
               IloInt&       buildingCost,
               IloIntArray2& costs,
               IloInt&       nbClients,
               IloInt&       nbWhouses) {
  ifstream in(name);
  in >> buildingCost >> costs;
  nbClients = costs.getSize();
  if ( nbClients ) nbWhouses = costs[0].getSize();
  else             nbWhouses = 0;
}

int
main(int argc, char** argv)
{
  IloInitMT();
  IloEnv env;
  try {
    IloInt i;
    IloModel model(env);

    IloInt       buildingCost, nbClients, nbWhouses;
    IloIntArray2 costs(env);
    const char* fileName;
    if ( argc < 2 ) {
      env.warning() << "usage: " << argv[0] << " <filename>" << endl;
      env.warning() << "Using default file" << endl;
      fileName = "../../../examples/data/whouse.dat";
    } else fileName = argv[1];
    readCosts(fileName, buildingCost, costs, nbClients, nbWhouses);

    IloIntVarArray offer(env, nbClients, 0, nbWhouses-1);
    IloIntVarArray transCost(env, nbClients, 0, 10000);
    IloBoolVarArray open(env, nbWhouses);

    for (i=0; i < nbClients; i++){
      model.add(transCost[i] == costs[i](offer[i]));
      model.add(open(offer[i]) == 1);
    }

    IloIntVar cost(env, 0, 10000, "Cost\t");
    model.add(cost == IloSum(transCost) + IloSum(open)*buildingCost);

    IloGoal goal = IloGenerate(env, offer) && IloInstantiate(env, cost);
    model.add(IloMinimize(env, cost));

    // end of model

    // We create the Parallel Solver
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    IloParallelSolver psolver(model, 3);

    // We search for an optimal solution

    psolver.solve(goal);

    IloSolver solver = psolver.getWorker(psolver.getSuccessfulWorkerId());
    solver.out() << endl << "Optimal Solution" << endl;
    solver.out() << "Cost " << solver.getValue(cost) << endl;
    solver.out() << "Offer ";
    for (i=0; i<nbClients; i++)
      solver.out() << solver.getValue(offer[i]) << " ";
    solver.out() << endl;
    solver.out() << "TransCost ";
    for (i=0; i<nbClients; i++)
      solver.out() << solver.getValue(transCost[i]) << " ";
    solver.out() << endl;
    solver.out() << "Open ";
    for (i=0; i<nbWhouses; i++)
      solver.out() << solver.getValue(open[i]) << " ";
    solver.out() << endl;
    psolver.end();
  }
  catch (IloException& ex) {
    cout << "Error: " << ex << endl;
  }
  env.end();
  IloEndMT();
  return 0;
}

Using multiphase search

Besides the straightforward search for a single solution that you saw in the preceding 
section, it is also possible to implement a multiphase search in Parallel Solver, where each 
phase searches differently. To enable you to implement a multiphase search, Parallel Solver 
offers classes of such multithread objects as mutexes in IloFastMutex, semaphores in 
IloSemaphore, conditions in IloCondition, and barriers in IloBarrier so that your 
application can synchronize work more precisely among its workers. 

The following example shows you how to use those multithread objects to implement 
multiphase search in your parallel application.

The complete program follows. You can also view it online in the file YourSolverHome/
examples/src/whouse_mt2.cpp.

#if defined(ILCUSEMT) || defined(ILOUSEMT)

# include <ilsolver/ilopsolver.h>
ILOSTLBEGIN
I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L 291



void readCosts(const char*   name,
               IloInt&       buildingCost,
               IloIntArray2& costs,
               IloInt&       nbClients,
               IloInt&       nbWhouses) {
  ifstream in(name);
  in >> buildingCost >> costs;
  nbClients = costs.getSize();
  if ( nbClients ) nbWhouses = costs[0].getSize();
  else             nbWhouses = 0;
}

int
main(int argc, char** argv)
{
  IloInitMT();
  IloEnv env;
  try {
    IloInt i;
    IloModel model(env);

    IloInt       buildingCost, nbClients, nbWhouses;
    IloIntArray2 costs(env);
    const char* fileName;
    if ( argc < 2 ) {
      env.warning() << "usage: " << argv[0] << " <filename>" << endl;
      env.warning() << "Using default file" << endl;
      fileName = "../../../examples/data/whouse.dat";
    } else fileName = argv[1];
    readCosts(fileName, buildingCost, costs, nbClients, nbWhouses);

    IloIntVarArray offer(env, nbClients, 0, nbWhouses-1);
    IloIntVarArray transCost(env, nbClients, 0, 10000);
    IloBoolVarArray open(env, nbWhouses);

    for (i=0; i < nbClients; i++){
      model.add(transCost[i] == costs[i](offer[i]));
      model.add(open(offer[i]) == 1);
    }

    IloIntVar cost(env, 0, 10000, "Cost\t");
    model.add(cost == IloSum(transCost) + IloSum(open)*buildingCost);

    IloGoal goal = IloGenerate(env, offer) && IloInstantiate(env, cost);

    // end of model

    // We create the Parallel Solver

    IloParallelSolver psolver(model, 3);

    // We do a first run to tighten the problem
    psolver.solve(goal);
    IloSolver solver = psolver.getWorker(psolver.getSuccessfulWorkerId());
    IloInt maxCost = (IloInt)solver.getValue(cost);
    solver.out() << "Setting max cost to " << maxCost << endl;
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    model.add(cost <= maxCost);

    // We search for an optimal solution
    model.add(IloMinimize(env, cost));
    psolver.solve(goal);

    solver = psolver.getWorker(psolver.getSuccessfulWorkerId());
    solver.out() << endl << "Optimal Solution" << endl;
    solver.out() << "Cost " << solver.getValue(cost) << endl;
    solver.out() << "Offer ";
    for (i=0; i<nbClients; i++)
      solver.out() << solver.getValue(offer[i]) << " ";
    solver.out() << endl;
    solver.out() << "TransCost ";
    for (i=0; i<nbClients; i++)
      solver.out() << solver.getValue(transCost[i]) << " ";
    solver.out() << endl;
    solver.out() << "Open ";
    for (i=0; i<nbWhouses; i++)
      solver.out() << solver.getValue(open[i]) << " ";
    solver.out() << endl;
    psolver.end();
  }
  catch (IloException& ex) {
    cout << "Error: " << ex << endl;
  }
  env.end();
  IloEndMT();
  return 0;
}
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Part IV



Extending the Library

This part consists of the following lessons:

◆ Chapter 17, Extraction Concepts

◆ Chapter 18, Writing a Goal: Car Sequencing

◆ Chapter 19, Writing a Constraint: Allocating Frequencies

◆ Chapter 20, Writing a Search Limit: Car Sequencing

◆ Chapter 21, Using Impacts during Search

◆ Chapter 22, Advanced Modeling with Set Variables: Configuring Tankers



C H A P T E R
17

Extraction Concepts

In this lesson, you will learn how to: 

◆ understand the extraction process

◆ synchronize the model

This lesson details what happens when your Concert Technology model is extracted to an 
instance of IloSolver.

Extractable objects

The term extractable object comes from the fact that an instance of IloSolver extracts 
pertinent information from the modeling object in a form appropriate to that search 
algorithm for use in solving the problem.

All extractable classes are derived from a common base class IloExtractable, 
documented in the IBM ILOG Solver Reference Manual. Concert Technology provides a 
wealth of extractable classes that allow you to define variables, ranges, columns, various 
kinds of constraints, and objective functions. The most prominent extractable classes 
include: IloModel, IloNumVar, IloObjective, IloConstraint and IloRange.
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You can construct an extractable object only within an environment; in other words, you 
must pass an instance of IloEnv as a parameter to the constructor of an extractable object. 
The environment manages services for the extractable object, such as memory management.

For more information about extractable objects, see the IBM ILOG Concert Technology 
User’s Manual.

Extraction process

What occurs during the extraction of a model and what is the correspondence between the 
model object (starting with Ilo) and the Solver object (starting with Ilc)? All the 
extractable objects (that is, instances of IloExtractable or one of its subclasses) that have 
been added to a model (an instance of IloModel) and that have not been removed from it 
and that are relevant to the given search algorithm will be extracted when Concert 
Technology extracts information from a model.

In case you need to access the extractable objects in a model, an instance of the embedded 
class IloModel::Iterator accesses those objects. For example, the following lines create 
the model model in the environment env, add constraints to the model, and iterate over the 
extractable objects added to model.

After you create a search algorithm in your Concert Technology application, your next step 
is to extract a model for that search algorithm. You call the member function extract with the 
model as an argument. Since these two steps—creating the search algorithm and extracting 
the model—are repeated in most Concert Technology applications, there is a shortcut 
combining them:

When a search algorithm extracts a model, it scans all the extractable objects in that model 
and creates corresponding internal objects for optimizing the model. The search algorithm 
also recursively extracts the other extractable objects referenced by that extractable object.

A search algorithm extracts only one model at a time. If you extract another model for an 
instance of IloSolver, that search algorithm will discard the current model and load the 
new one. 

solver.extract(model);

for (IloModel::Iterator it(model); it.ok(); ++it)   {
        if ((*it).getName())
            env.out() << (*it).getName() << endl;
}

IloSolver algo(model);
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Main rule of extraction: 1 to 1 correspondence

The main rule of extraction is that there is a 1 to 1 correspondence between extractables and 
Solver objects. This means that, for each Ilo object, there will be one corresponding Ilc 
object. This rule has two exceptions that will be described in the next section.

Let’s go through the extraction mechanism.

When an instance of IloSolver extracts a model, it iterates over each object added to the 
model. For each of these objects, it starts extracting them. This mechanism is recursive in the 
sense that the extraction of an object may lead to the extraction of another object. 

The following code example illustrates this process. Here’s the code to be extracted:

In the last line, an instance of IloSolver extracts model. First, it takes the range constraint 
a1 < a2 and starts extracting it. In order to extract the range constraint, it extracts the two 
variables a1 and a2. The extraction of these variables creates two IlcIntVar objects: ca1 
and ca2. Then, the extraction of the range constraint continues. The instance of IloSolver 
takes the two IlcIntVar objects and creates the equivalent Ilc constraint: ca1 < ca2. 
This inequality constraint is then added to the instance of IloSolver.

The extraction will create the following Ilc code

The extraction process can be summarized in the following way. During extraction, an 
instance of IloSolver will iterate over the model, and extract each element one after 
another. The extraction of an extractable involves the extraction of each of its 
subextractables. Given an Ilo object, all subextractable Ilo objects are extracted into Ilc 
objects. An Ilc object is then built that is the extraction of the original Ilo object.

Exceptions to the rule: The effect of preprocessing

The following rule is always true. For each Ilo object in the model, there is a corresponding 
Ilc object. However, this is not always a 1 to 1 correspondence due to preprocessing. 
Preprocessing causes the following exceptions to the 1 to 1 correspondence rule:

◆ Exception 1: the corresponding Ilc object is not always the same for the same Ilo 
object

IloEnv env;
IloIntVar a1(env, 0, 3);
IloIntVar a2(env, 0, 3);
IloModel model(env);
model.add(a1 < a2);
IloSolver solver(model);

IlcIntVar ca1(solver, 0, 3);
IlcIntVar ca2(solver, 0, 3);
solver.add(ca1 < ca2);
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◆ Exception 2: two Ilo objects may be extracted into one Ilc object.

Exception 1

The following example demonstrates the first effect of preprocessing: the corresponding Ilc 
object is not always the same for the same Ilo object. The extraction that takes place will 
merge the extracted objects.

Here’s the code to be extracted

You might expect the following code due to the 1-to-1 correspondence rule:

However, due to preprocessing the extraction will create the following Ilc code:

In this case, the 1-to-1 correspondence rule is not followed because in the preprocessing 
phase the expression y + 2 and the variable x are merged into one object: IlcIntVar x  
=  y + 2. Even though IloNumVar x and IloNumVar y are the same type of Ilo object 
they are not extracted into the same type of Ilc objects. IloNumVar y is extracted into the 
Ilc variable IlcIntVar y while IloNumVar x is merged with the expression 
model.add(x == y + 2) and extracted into IlcIntVar x = y + 2. Though the same 
type of extraction behavior is expected for these two objects of the same type, this does not 
occur due to the effects of preprocessing.

Exception 2

The following example demonstrates the second effect of preprocessing: two Ilo objects 
may be extracted into one Ilc object.

Here is the code to be extracted:

You might expect the following code due to the 1-to-1 correspondence rule:

IloNumVar x(env, 0, 10, ILOINT);
IloNumVar y(env, 0, 10, ILOINT);
model.add(x == y + 2);

IlcIntVar x(solver, 0, 10);
IlcIntVar y(solver, 0, 10);
solver.add(x == y + 2);

IlcIntVar y(solver, 0, 10);
IlcIntVar x = y + 2;

IloNumVar x(env, 0, 10, ILOINT);
IloNumVar y(env, 0, 10, ILOINT);
IloNumVar z(env, 0, 10, ILOINT);
model.add(x == y + 2);
model.add(z == y + 2);

 IlcIntVar x(solver, 0, 10);
IlcIntVar y(solver, 0, 10);
IlcIntVar z(solver, 0, 10);
solver.add(x == y + 2);
solver.add(z == y + 2);
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However, due to preprocessing the extraction will create the following Ilc code:

The implementation of expressions and variables in Solver will cause x and z to be extracted 
into the same physical object. The two Ilo objects x and z are extracted into one Ilc object 
due to the effects of preprocessing. (When you build the same expression twice in Solver, it 
merges these expressions into the same physical object.)

The case of goals

IloGoals are not extractables and they are not added to the model. Instead, they are used 
directly by the instance of IloSolver. Goals are not extracted, even though there is a 
pseudo-extraction mechanism; the virtual method IlcGoal 
IloGoalI::extract(IloSolver) is called to create a corresponding IlcGoal.

The consequence of the fact that goals are not extractables is quite simple. A goal does not 
extract its subextractables. They must be extracted as a consequence of the extraction of the 
model.

For instance, the following code is incorrect:

In the last line, the extraction of the IloInstantiate goal will raise an exception because 
z will not be extracted in the model. A simple way to ensure that this problem does not occur 
is to add subextractables directly to the model.

The following code is correct:

IlcIntVar y(solver, 0, 10);
IlcIntVar x = y + 2;
IlcIntVar z = y + 2;

IloEnv env;
IloIntVar x(env, 0, 10);
IloIntVar y(env, 0, 10);
IloIntVar z(env, 0, 10);
IloModel model(env);
model.add(x < y);
IloSolver solver(model);
solver.solver(IloInstantiate(env, z));

IloEnv env;
IloIntVar x(env, 0, 10);
IloIntVar y(env, 0, 10);
IloIntVar z(env, 0, 10);
IloModel model(env);
model.add(x < y);
model.add(z);
IloSolver solver(model);
solver.solver(IloInstantiate(env, z));
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Table of correspondences

The following table shows the correspondences between Ilo and Ilc objects: 

Table 17.1 Table of Correspondences

The Ilc Object The Ilo Object

IlcAny IloAny

IlcAnyArray IloAnyArray

IlcAnySet IloAnySet

IlcAnySetVar IloAnySetVar

IlcAnySetVarArray IloAnySetVarArray

IlcAnyTupleSet IloAnyTupleSet

IlcAnyVar IloAnyVar

IlcAnyVarArray IloAnyVarArray

IlcBox IloBox

IlcBool IloBool

IlcConstraint
For the case of constraints, the 
IloConstraint is extracted as the 
IlcConstraint with the corresponding 
name: IloAllDiff > IlcAllDiff

IloConstraint

IlcFloat IloNum

IlcFloatArray IloNumArray

IlcFloatSet IloNumSet

IlcFloatVar IloNumVar

IlcFloatVarArray IloNumVarArray

IlcInt IloInt

IlcIntArray IloNumArray

IlcIntSet IloNumSet

IlcIntSetVar IloNumSetVar
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Synchronization of the model

This section describes how an instance of IloSolver reacts to changes in a model it has 
extracted. The instance of IloSolver is asynchronous with regards to changes in a model. 
This means that changes to an extracted model will be taken into account only at the next 
solve of IloSolver::startNewSearch at the top level. This synchronization can be 
parametrized by two modes: IloSynchronizeAndRestart and 
IloSynchronizeAndContinue.

There are three kind of changes that can happen to an instance of IloSolver: 

◆ A monotonic change is a change that can be taken into account without restarting the 
model. Adding a constraint to a model is such a change. These changes are compatible 
with the synchronize mode IloSynchronizeAndContinue.

◆ A destructive change is a change that can only result in a full reload of the model by the 
instance of IloSolver. Extending a domain of a variable is such a change.

◆ A non-monotonic change is a change that is not compatible with the  
IloSynchronizeAndContinue mode, but where synchronization will not imply a full 
reload of the model. Removing a constraint from the model is such a change.

Using IloSynchronizeAndRestart

When using the parameter IloSynchronizeAndRestart during synchronization, the 
instance of IloSolver will end in a state equivalent to a deletion of the instance of 
IloSolver and a reload of the current model. In practice, the instance of IloSolver will 
look at all the changes that have happened since the last time it was synchronized with the 
model in the IloSynchronizeAndRestart mode. If the list of changes only contains 
monotonic and non-monotonic changes (no destructive changes), the instance of 
IloSolver will backtrack to a state before the first search and apply the changes. If the list 

IlcIntSetVarArray IloNumSetVarArray

IlcIntVar IloNumVar

IlcIntVarArray IloNumVarArray

IlcIntTupleSet IloNumTupleSet

IlcNeighborIdentifier IloNeighborIdentifier

Table 17.1 Table of Correspondences

The Ilc Object The Ilo Object
I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L 303



of changes contains a destructive change, the instance of IloSolver will clear itself and 
reload the model from scratch.

Using IloSynchronizeAndContinue

Using this parameter is valid if the list of changes that have happened since the last 
synchronization only contain monotonic changes. (The instance of IloSolver will throw 
an exception otherwise.) If all the changes are monotonic since the last synchronization, the 
instance of IloSolver will apply all the changes from the current state and continue from 
there.

Environment and Solver memory allocation

With the distinction between the model and the instance of IloSolver comes two memory 
pools. The first is linked to the environment. Memory allocated in the environment is 
reclaimed when the environment is terminated by the member function IloEnv::end. To 
allocate on this pool, you must pass the env as parameter to the new operator:

The second memory pool can be used during search, to store additional information 
reversibly. To do this, you allocate memory on the Solver heap. The memory allocated with 
this operator is automatically reclaimed when Solver backtracks to a point before the 
allocation of the object or if the member function IloSolver::end is called on the 
instance of IloSolver (this member function is automatically called by IloEnv::end). 
Therefore, to allocate on the Solver heap, you could write:

MyObject*  myobject = new (env) MyObject();

MyObject * myobject = new (solver.getHeap()) MyObject();

Note: You must not use the delete operator for objects allocated on the environment 
memory pool or on the Solver heap. These objects will be deleted when the memory is 
reclaimed. Note, however, that the destructor of these objects will not be called when the 
memory is reclaimed.
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C H A P T E R
18

Writing a Goal: Car Sequencing

In this lesson, you will learn how to: 

◆ understand goals, subgoals, and choice points

◆ write your own goal

◆ model and solve a car sequencing problem using a custom goal

In Part I, The Basics, you learned in general terms how Solver carries out a search using 
goals. This lesson explains in greater detail how goals are used to implement search 
algorithms. You will learn how to write your own goal.

You will also learn how to design a model and solve a problem in car sequencing. The 
problem shows how to combine several types of predefined constraints to create new 
constraints in Solver. It also shows how to read data from a file as input to the problem, as 
you might do in an industrial situation, and how to impose an order among values in an 
algorithm specially designed for a car-sequencing problem. You will write your own goal to 
solve the problem.

Understanding goals

Goals are the building blocks used to implement search algorithms in Solver. Goals 
implement algorithms where the exact sequence of operations to follow is not known in 
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advance. This kind of programming is often called non-deterministic. Both predefined 
search algorithms and user-defined search algorithms can be expressed in Solver through 
goals. The class IloGoal represents goals in a IBM® ILOG® Concert Technology model. 
The class IlcGoal represents goals internally in a Solver search. 

 Goals as they are represented in a Concert Technology model depend on two classes: 
IloGoal and IloGoalI. An instance of the class IloGoal (a handle) contains a data 
member (the handle pointer) that points to an instance of the class IloGoalI (its 
implementation object). 

Goals as they are represented in a Solver search (for example, inside a constraint or inside 
another goal) depend on two classes: IlcGoal and IlcGoalI. The class IlcGoal is the 
handle class. An instance of the class IlcGoal contains a data member (the handle pointer) 
that points to an instance of the class IlcGoalI (the implementation object) allocated on the 
Solver heap. You can use the macro ILCGOALn to define a new class of goals. If you want to 
use this new class of goals in a Concert Technology model, you must first wrap them using 
the macro ILOCPGOALWRAPPER.

A goal can either succeed or fail. A goal fails if a fail member function (such as 
IlcGoalI::fail or IloSolver::fail, for example) is called during its execution. Such 
a call happens when the domain of a constrained variable becomes empty because of a 
constraint. A goal succeeds if it does not fail. 

Using goals

The member functions IloSolver::solve and IloSolver::next control the execution 
of goals. The first time one of these member functions is called, it creates a stack of goals, 
called the goal stack. 

Defining a goal creates two functions: 

◆ The first one creates the goal. The name of this function is the name of the goal, and its 
parameters are those used to define the goal.

◆ The second function is a virtual function used to execute the goal. Its name is execute. 
Its body is the body used in the definition of the goal. When this function is used, the 
goal is executed.

A goal is passed as a parameter to the member functions IloSolver::solve or 
IloSolver::next. These functions push a goal onto the goal stack of the invoking solver; 
when that occurs, the goal is called.

Thus, each time a goal is called, it is added on top of this stack, but it is not executed 
immediately. When the current goal execution is finished, the member function 

Note: Goals must be called by IloSolver::solve, IloSolver::next, or by other 
goals. Otherwise, they are not executed.
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IloSolver::solve or IloSolver::next pops the goal which is on top of the goal stack, 
if any, and executes it. Thus goals are executed first in, last out. If the goal stack is empty, the 
call to solve or next terminates and returns IlcTrue.

Subgoals

A goal can be defined in terms of other goals, called its subgoals. A subgoal is not executed 
immediately. In fact, it is added to the goal stack, and the execute member function of the 
current goal terminates before the subgoal is executed. When the execution of the goal itself 
is complete, the subgoal will be returned. 

A goal can be defined as a choice between subgoals. Only one of the subgoals can 
succeed.This choice point is implemented by the function IlcOr. 

A goal can also be defined as a sequence of subgoals that must all succeed. This sequence is 
implemented by the function IlcAnd. 

Creating choice points using IlcOr

A function that creates a goal takes a constrained variable as its argument (or an array of 
variables) and binds a value to it (or them). Solver automatically propagates the constraints 
posted on this constrained variable. There is a hidden problem in that description: in general, 
Solver does not know which value in the domain is consistent with the constraints. In other 
words, that binding of the constrained variable must be seen as a guess: if it leads to 
inconsistencies, it should be undone, and another value should be tried. Solver implement 
these guesses and “undos” by using choice points. 

Choice points are implemented in Solver by the function IlcOr. A choice point defines a 
goal in terms of a choice between subgoals. Solver executes a choice point between two 
subgoals like this: 

◆ The state of Solver (including the state of all variables and constraints and the state of the 
goal stack) is saved, so that it can be restored if needed. This is called setting the choice 
point.

◆ The first subgoal is pushed onto the top of the goal stack. 

◆ The other subgoals are saved as untried subgoals for the choice point.

◆ Then the first subgoal is popped from the goal stack and executed. If this subgoal fails, 
the state of Solver is restored, and the first untried choice is pushed onto the goal stack. 
This activity is called backtracking, and it continues until a subgoal is found that 
succeeds.

◆ If all subgoals fail, the choice point itself fails.

When the function IloSolver::fail is called, goal execution resumes at the most recent 
choice point with untried subgoals. It is possible to make goal execution resume at an earlier 
choice point if you associate labels with choice points. Then the function 
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IloSolver::fail can be called with a label. In such a case, goal execution resumes at the 
most recent choice point having the same label. 

You can create a choice point with up to five subgoals by means of the function IlcOr. For 
example, in order to define a choice point with eight subgoals g1, . . . , g8, you can do this: 

The member function IloSolver::next searches for one successful execution of a given. 
To search for all of them, put next within a loop.

Creating sequences of subgoals using IlcAnd

A goal can also be defined as a sequence of subgoals that must all succeed. This sequence is 
implemented by the function IlcAnd. This function defines a goal composed of several 
subgoals (up to five subgoals). The subgoals are executed from left to right. 

You can overcome the apparent limitation to five subgoals by calling the function IlcAnd 
several times. For example, in order to define a choice point with eight subgoals g1, . . . , g8, 
it is sufficient to call:

Logical properties of IlcOr and IlcAnd

The functions IlcOr and IlcAnd are associative. For example, if g1, g2, and g3 are goals, 
the execution of 

is equivalent to the execution of

You can use this associativity to define goals with more than five subgoals. IlcOr is also 
associative. Thus the execution of 

is equivalent to the execution of

Again, you can use this associativity for defining choice points with more than five subgoals. 
IlcAnd and IlcOr are distributive over each other. For example, the execution of 

IlcOr(IlcOr(g1, g2, g3, g4, g5),
      IlcOr(g6, g7, g8));

IlcAnd(IlcAnd(g1, g2, g3, g4, g5),
       IlcAnd(g6, g7, g8));

IlcAnd(IlcAnd(g1, g2), g3);

IlcAnd(g1, IlcAnd(g2, g3));

IlcOr(IlcOr(g1, g2), g3);

IlcOr(g1, IlcOr(g2, g3));

IlcAnd(IlcOr(g1, g2), g3);
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is equivalent to the execution of

To create a conjunction (logical AND) of goals at the model level, use IloAndGoal. To 
create a disjunction (logical OR) of goals at the model level, use IloOrGoal.

Writing your own goal

You can use the macro ILCGOALn to define a new class of goals. If you want to use this new 
class of goals in a Concert Technology model, you must first wrap them using the macro 
ILOCPGOALWRAPPER.

Using ILCGOALn to define a new class of goals

You define a goal using the macro ILCGOALn. The definition consists of three parts: 

◆ a name for the goal

◆ a list of typed parameters, n being the number of parameters

◆ a body which defines how to execute the goal

For example, the following goals merely print something, but they are valid goal definitions: 

The definition of a goal defines a function for calling it. In that sense, a goal call is a 
function call. For example, the following are valid calls of the goals just defined.

IlcOr(IlcAnd(g1, g3), IlcAnd(g2, g3));

ILCGOAL0(Print){
    cout << "Print: executing a goal without parameters\n";
    return 0;
}
ILCGOAL1(PrintX, IlcInt, x){
    cout << "PrintX: executing a goal with one parameter\n";
    cout << x << endl;
    return 0;
}
ILCGOAL2(PrintXY, IlcInt, x, IlcFloat, y){
    cout << "PrintXY: executing a goal with two parameters\n";
    cout << x << endl;
    cout << y << endl;
    return 0;
}

Print(solver);
PrintX(solver, 2);
PrintXY(solver, 1, 2.);
I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L 309



The goal calling function can be declared in a header file. Its signature has the same name 
and parameters as the goal, and it returns a pointer to an object of the type IlcGoal. 

For example, the following declarations are valid declarations of these same goals:

You can also define a goal using subgoals. The following goal has three subgoals:

The execution of the goal PrintAll produces the following output:

Using ILOCPGOALWRAPPER to wrap the goals

There are several situations in which you might need to wrap a goal in an instance of 
IloGoal:

◆ You want to use the goal as an argument of IloSolver::solve.

◆ You want to use the goal as an argument of IloSolver::startNewSearch.

In such situations, use the macro ILOCPGOALWRAPPERn to wrap your goal.

For example, you can wrap the PrintAll goal in an instance of IloGoal in this way:

Note: Such pointers must not be stored since goals are automatically de-allocated by 
Solver after they have been executed. They can be passed as arguments as long as the 
goal has not yet been executed.

IlcGoalI Print(IloSolver solver);
IlcGoalI PrintX(IloSolver solver, IlcInt x);
IlcGoalI PrintXY(IloSolver solver, IlcInt x, IlcFloat y);

ILCGOAL0(PrintAll){
   IloSolver solver=getSolver();
   return IlcAnd(Print(solver), PrintX(solver, 2), PrintXY(solver, 1, 2.));
}

Print: executing a goal without parameters
PrintX: executing a goal with one parameter
2
PrintXY: executing a goal with two parameters
1
2

ILOCPGOALWRAPPER0(IloPrintAll, solver){
        return PrintAll(solver);
        }
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To create an instance of this goal you write:

The IloGoal object returned can then be passed as a parameter of the IloSolver::solve 
and IloSolver:startNewSearch functions.

Example of writing your own goal: Implementing IlcInstantiate

As an example of goal programming, you are going to look closely at how the function 
IlcInstantiate is implemented. This function takes a constrained variable as its 
argument and binds it. More precisely, this function selects a value in the domain of the 
constrained variable and assigns it to the constrained variable. Solver automatically 
propagates the constraints posted on this constrained variable. 

With the ideas about choice points and backtracking that you have just learned in mind, now 
you can implement IlcInstantiate by means of goals. To do so, you will use the 
following algorithm: 

◆ If the constrained variable is bound (that is, it has already been assigned a value), do 
nothing and succeed.

◆ Otherwise, set a choice point between two subgoals. If a selector is specified, the first 
subgoal assigns a valued based on the selection criteria. Otherwise, the minimum value 
of the domain of the constrained variable is assigned to it.

◆ If a contradiction is detected, execute the second subgoal. The second subgoal removes 
the tried and failed value from the domain of the constrained variable, and calls 
IlcInstantiate again. Indeed, this call will try another value from the domain of the 
constrained variable and repeat the process.

Assigning a value to (or removing a value from) a constrained variable is straightforward. To 
do so, use the Solver constraints  == and !=.

The Solver code corresponding to IlcInstantiate for constrained integer variables is 
quite simple. You will see a couple versions of it to clarify a few points about goals.

As you remember, if you want to define a goal, you use a macro of the form ILCGOALn, 
where n is the number of arguments of the goal. The arguments of ILCGOALn are the name 
of the goal, followed by the types and names of the goal's arguments. Then the macro is 
followed by the body of a C++ function. This body defines how to execute the goal. The 
return value of that function is the subgoal of the goal defined by the macro itself. When 
there are no such subgoals, the function must return 0.

IloPrintAll(env);

Note: The behavior of IlcInstantiate varies slightly, depending on the class of its 
arguments. See the IBM ILOG Solver Reference Manual for more detailed information.
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Now you can define IlcInstantiate as a choice point between two goals. Before setting 
a choice point, Solver checks whether the constrained integer variable has been bound, and if 
not, Solver selects a value in its domain. The second subgoal recursively calls 
IlcInstantiate.

Here is a first version of IlcInstantiate:

Actually, the ILCGOALn macros define classes of IlcGoalI. As a consequence, you can use 
this to refer to the current goal. With that possibility in mind, here is a second version of 
IlcInstantiate:

(The actual implementation of IlcInstantiate is slightly different since the choice of the 
value can be indicated by a parameter, but these two versions indicate the substance of the 
implementation.)

If you want to have an IloGoal object returned that can then be passed as a parameter of the 
IloSolver::solve and IloSolver:startNewSearch functions, use the macro 
ILOCPGOALWRAPPER.

For example, you can define IloInstantiate this way:

To create an instance of this goal you write:

ILCGOAL1(IlcInstantiate, IlcIntVar, var) {
    if (var.isBound())
        return 0;
    IlcInt value = var.getMin();
    return IlcOr( var == value,
                  IlcAnd( var != value,
                          IlcInstantiate(getSolver(), var)));
}

ILCGOAL1(IlcInstantiate, IlcIntVar, var) {
    if (var.isBound())
        return 0;
    IlcInt value = var.getMin();
    return IlcOr( var == value,
                  IlcAnd( var != value,
                          this));
}

ILOCPGOALWRAPPER1(IloInstantiate, solver, IloNumVar, x){
       return IlcInstantiate(solver, solver.getIntVar(x));
}

IloInstantiate(env, x);
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Arguments of goals: Traps and pitfalls

Goals are not executed immediately when they are called. However, their arguments are 
computed immediately, and they are saved together with the goal on the goal stack. Those 
arguments and computations are used when the goal is executed, generally after the function 
calling the goal has returned.

Consider the following goals: 

If the goal CallPrintI is executed, PrintI is called. This (among other effects) stores the 
address of i. Then the function executing the body of CallPrintI returns. Thus the 
address of i is no longer a valid address. Finally, the goal PrintI may be executed, causing 
an error since the address of i is no longer valid.

Another subtle point is that arguments are computed before goal execution actually takes 
place. That fact can lead to some problems. A simple example requires the use of a 
constrained integer variable.

Consider the following incorrect code: 

Here is the way that goal was intended to be executed: the constrained integer variable 
should be bound by the execution of the goal IlcInstantiate; then the execution of the 
goal PrintX should print its value. However, the argument of PrintX is computed before 
IlcInstantiate is executed. That order of events causes an error since x is not yet bound. 
Indeed, IlcInstantiate is pushed onto the goal stack, but it is not executed immediately.

Note: For that reason, arguments should not contain pointers to automatic objects, where 
automatic objects are objects allocated on the C++ stack, that is, without using the new 
operator.

ILCGOAL1(PrintI, IlcInt*, i){
  cout << *i << endl;
  return 0;
}

ILCGOAL1(CallPrintI, IlcInt*, i){
  IlcInt i = 0;
  return PrintI(&i); // error here: i is an automatic
}

ILCGOAL1(WrongGoal, IlcIntVar, x){
  return IlcAnd(IlcInstantiate(x),
                PrintX(getManager(), x.getValue())); // error: x is unbound
}
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Here is the correct way to pass x as an argument (instead of passing its value):

As indicated in this lesson the macros ILCGOALn define subclasses of the class IlcGoalI. 
Arguments to the macro are data members of the new class. The most significant 
consequence of that fact is that modifications of those arguments in the body of the macro 
are saved. Such modifications often have unfortunate results, and you are strongly advised 
not to make such modifications. 

Writing a goal: Car sequencing

Car sequencing problems arise in the automotive industry. There, a factory assembly line 
makes it possible to build many different types of cars, where the types correspond to a basic 
model with added options. In that context, one type of vehicle can be seen as a particular 
configuration of options. Even without loss of generality, it can be assumed that it is possible 
to put multiple options on the same vehicle while it is on the line. In that way, virtually any 
configuration (taken as an isolated case) could be produced on the assembly line. In contrast, 
for practical reasons (such as the amount of time needed to do so), a given option really 
cannot be installed on every vehicle on the line. This constraint is defined by the “capacity” 
of an option. The capacity of an option is usually represented as a ratio p/q where for any 
sequence of q cars on the line, at most p of them will have that option.

The problem in car sequencing consists of determining in which order cars corresponding to 
each configuration should be assembled, while keeping in mind that a certain number of cars 
per configuration must be built.

The example discussed is the Second Model in the example file YourSolverHome/
examples/src/carseq.cpp. 

Inputting data

The input for the program in this example is data read from a file. To read the data from the 
input file, you write a function, readData. This function assumes that the data are recorded 
in a text file with a format based on the following:

ILCGOAL1(PrintVar, IlcIntVar, x){
  cout << x.getValue() << endl;
  return 0;
}
ILCGOAL1(RightGoal, IlcIntVar, x){
  return IlcAnd(IlcInstantiate(x),
                PrintVar(getManager(), x));   // no error here
}

Note: A simpler version of this problem appears in Chapter 6, Using the Distribute 
Constraint: Car Sequencing. 
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◆ The first line indicates the number of cars to assemble, the number of possible options, 
and the number of required configurations.

◆ The second line contains the value p that appears in the ration p/q of the capacity for each 
option.

◆ The third line contains the value q of that ratio of the capacity for each option.

◆ The remaining lines define the options required by each configuration. Each line 
corresponds to a particular configuration; each line begins with the identifying 
configuration number, followed by the number of times the option is required by the 
configuration. For each option, there is a 1 (one) if the option is required by the 
configuration or 0 (zero) if not.

You can edit either of the two input files among the examples to get a better idea of how the 
file is formatted.

The function readData reads the information from the input file. That function looks like 
this:

IloArray<IloIntArray> readData(IloEnv env,
                               IloInt example,
                               IloInt& nbCars,
                               IloInt& nbOpt,
                               IloIntArray& nbMax,
                               IloIntArray& seqWidth,
                               IloIntArray& confs,
                               IloIntArray& nbCarsByConf){
  char globalName[200];
  switch(example){
  case 1:{
    strcpy(globalName,"../../../examples/data/carseq1.dat");
  } break;
  case 2:{
    strcpy(globalName,"../../../examples/data/carseq2.dat");
  } break;
  }
  IloInt nbConfs;
  ifstream fin(globalName,ios::in);
  if (!fin) env.out() << "problem with file:" << globalName << endl;
  fin >> nbCars >> nbOpt >> nbConfs;

  IloInt i;
  confs = IloIntArray(env, nbConfs); // required configurations
  for(i=0;i<nbConfs;i++){
    confs[i]=i;
  }
  IloArray<IloIntArray> confsByOption(env, nbConfs);
  for (i=0;i<nbConfs;i++){
    confsByOption[i] = IloIntArray(env, nbOpt);
  }
  IloIntArray nbConfsByOption(env, nbOpt);
  for (i=0;i<nbOpt;i++){
    nbConfsByOption[i]=0;
  }
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  // read the maximum number of cars of each sequence that can take the
  // invoked option
  nbMax=IloIntArray(env, nbOpt);
  for(i=0;i<nbOpt;i++){
    fin >> nbMax[i];
  }

  // read the size of a sequence for each option
  seqWidth=IloIntArray(env, nbOpt);
  for(i=0;i<nbOpt;i++){
    fin >> seqWidth[i];
  }

  // read the options required by each configuration
  nbCarsByConf=IloIntArray(env, nbConfs);
  IloInt dummy;
  IloInt j;
  for(i=0;i<nbConfs;i++){
    fin >> dummy;
    fin >> nbCarsByConf[i];
    for (j=0;j<nbOpt;j++){
      fin >> confsByOption[i][j];
      if (confsByOption[i][j] == 1){
        nbConfsByOption[j]++;
      }
    }
  }

 

To represent the data for any given option, you need to know the configurations that require 
it. The following code does that.

   // compute the configurations required by each option
  IloArray<IloIntArray> optConf(env, nbOpt);
  for(i=0;i<nbOpt;i++){
    optConf[i]=IloIntArray(env, (IloInt)nbConfsByOption[i]);
  }
  IloIntArray ind(env, nbOpt);
  for(i=0;i<nbOpt;i++){
    ind[i]=0;
  }
  for(i=0;i<nbConfs;i++){
    for (j=0;j<nbOpt;j++){
      if (confsByOption[i][j] == 1){
        optConf[j][(IloInt)ind[j]]=i;
        ind[j]++;
      }
    }
  }
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As it is read, the data is displayed on the screen by the following code.

Building the model 

You create a constrained variable for each car that should be assembled on the line and 
organize those variables into an array. You assume that the order in which the cars appear on 
the line is the same as the order of the constrained variables in the array. That is, cars[0] is 
the first car; cars[n-1] is the last.

The values that the constrained variables can assume correspond to the configurations. If a 
constrained variable is bound to the value 3, for example, the corresponding car will have 
options corresponding to configuration 3. Initially, a car can have any configuration.

  // print the configuration required by each option
  env.out() << "number of times each configuration is required:" << endl;
  for(i=0;i<nbConfs;i++){
    env.out() << nbCarsByConf[i] << " ";
  }
  env.out() << endl;
  env.out() << "configuration required by each option:" << endl;
  for(i=0;i<nbOpt;i++){
    env.out() << "option:" << i << " ";
    for (j=0;j<optConf[i].getSize();j++){
      env.out() << optConf[i][j] << " ";
    }
    env.out() << endl;
  }
  env.out() << "number of times each option is required" << endl;
  for(i=0;i<nbOpt;i++){
    IloInt cpt=0;
    for(j=0;j<optConf[i].getSize();j++){
      cpt += nbCarsByConf[(IloInt)optConf[i][j]];
    }
    env.out() << "option:" << i << " " << cpt << " x ";
    env.out() << nbMax[i] << "/" << seqWidth[i] << endl;
  }

  return optConf;
}
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Here is the code for the model

Adding the distribute and sequence constraints

The number of cars required for each configuration can be expressed by means of the Solver 
constraint IloDistribute. This function takes four parameters: an environment, an array 
of constrained variables, an array of constrained values, and an array to count those 
constrained values. The following code actually implements the specific details of our 
example.

For more information about the distribute constraint, see Chapter 6, Using the Distribute 
Constraint: Car Sequencing. 

At first glance, it seems more difficult to implement the constraints representing the 
capacities of options in the problem, though it is easy to express such a constraint in natural 

void secondModel(IloInt mode, IloInt example)
{
  IloEnv env;
  try {
    IloModel model(env);

    IloInt nbOptions;
    IloInt nbCars;
    IloIntArray confs(env); // array of required configurations
    IloIntArray nbCarsByConf(env); // number of cars to assign
                                    // to each configuration
    IloIntArray nbMax(env);
    IloIntArray seqWidth(env);

    IloArray<IloIntArray> optConf = readData(env,
                                             example,
                                             nbCars,
                                             nbOptions,
                                             nbMax,
                                             seqWidth,
                                             confs,
                                             nbCarsByConf);

    cout << "Pass 1 " << endl;
    const IlcInt nbConfs   = confs.getSize();

    IloInt i,j;
    IloIntVarArray cars(env,nbCars,0,nbConfs-1);
    IloIntVarArray cards(env,nbConfs);
    for (i = 0; i < nbConfs; i++){
      cards[i] = IloIntVar(env,nbCarsByConf[i],nbCarsByConf[i]);
    }
    cout << "Pass 2 " << endl;

    model.add(IloDistribute(env, cards, confs, cars));
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language. However, this is possible using the IloSequence constraint. You use this 
constraint to define constraints on sequences of cars. As a sequence constraint, it groups 
several constraints created by IloDistribute in order to reduce the domains of 
constrained variables more efficiently. More specifically, an instance of this class enables 
you to constrain: 

◆ the minimum number of allowable values in the sequence, 

◆ the maximum number of allowable values in the sequence, 

◆ the frequency of allowable values (that is, how often a value occurs in the sequence), 

◆ the number of elements in the sequence. 

So here for each option opt, you define a sequence constraint and add it to the model, like 
this:

Choosing the order of variables and values: Using slack

For the car-sequencing problem, the order in which variables are chosen and values are tried 
proves to be quite important. As you try to decide the order in which to choose variables, 
you will notice that variables at the extremities (the beginning or the end of a sequence) are 
less constrained than variables in the middle of the sequence. For that reason, you begin 
ordering the variables by choosing the one closest to the middle of the sequence.

If you do not order the values carefully, you cannot solve a car-sequencing problem within a 
reasonable amount of time, so you must pay attention to this part of the problem, too. 

First, the most difficult constraints are tied to options. However, in a conventional 
backtracking problem, the basic decision is to assign a value to a variable; that is, to assign a 
configuration to a car. This practice is not tied directly to the difficult constraints. For 
example, suppose that option 1 is required by configurations 1, 2, and 3, and furthermore 
that you assign configuration 1 to a given car. There is no solution with this assignment 
because of the capacity of option 1. Consequently, the algorithm backtracks to try another 

    IloInt opt;
    for (opt = 0; opt < nbOptions; opt++) {
      IloIntVarArray ncard(env,optConf[opt].getSize());
      for(i = 0; i < optConf[opt].getSize(); i++){
        ncard[i] = cards[(IloInt)optConf[opt][i]];
      }
      model.add(IloSequence(env,
                            0,
                            (IloInt)nbMax[opt],
                            (IloInt)seqWidth[opt],
                            cars,
                            optConf[opt],
                            ncard));
    }
    cout << "Pass 3 " << endl;
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value, say, configuration 2 this time. But again, for the same reason—the limited capacity of 
the option—this trial also leads to failure. In other words, you will see thrashing, as values 
are tried and discarded for the same reason.

It is better to try another kind of value ordering: you first try to assign those options for 
which the demand is close to their capacity. To distinguish those options, the slack of an 
option with capacity pj/qj required to be scheduled kj times is defined like this:

n - qj(kj/pj)

In this context, slack is a good measure of how much an option is used. If the slack of an 
option is negative, the capacity constraint on the option cannot be satisfied. If the slack is 
large, however, the capacity constraint on the option is easy to satisfy.

The enumeration algorithm is a combination of these two ways of ordering variables and 
values; both depart from the conventional backtracking algorithm. Instead of choosing a 
variable and then trying a value for it, as you might conventionally do, you progressively 
reduce the domains of the variables. How do you do that? As the first option, you select the 
one with the least slack; then you try to assign it to the appropriate variables. To assign an 
option o to a variable x, you remove the configurations that do not use o from the domain of 
x. In other words, you generally reduce the domain.

More precisely, you select the option oj with the least slack. If this option is required kj 
times, you try to assign this option to k variables. To do so requires a tree search, where the 
variables that are closest to the middle of the sequence are tried first. If you succeed in 
assigning option o k times, you recursively call the algorithm with a new option. If not, you 
backtrack to the previous level of the algorithm.

As the algorithm backtracks, it propagates constraints at each node. However, these nodes 
are defined differently from those in a conventional backtracking algorithm, where branches 
correspond to the assignment of a value to a variable. In this case, a branch corresponds 
instead to the assignment of an option to a variable; that is, a reduction of the domain of the 
variable.

Moreover, a given variable may appear at different levels in the search tree, since its domain 
may be reduced more than once. To get a clearer idea of this, consider for example a 
configuration, say, c1 that requires option o1, along with the option o2 which is assigned to x 
in a given solution. In this example, x appears two times among the branches leading to that 
solution: once when o2 is assigned to x and again when o1 is assigned to it.

In that context, this algorithm tries first to consider the most constrained choices.

These ideas can be implemented straightforwardly by Boolean variables to represent 
whether a configuration assigned to a car does or does not require a given option. More 
formally, you use nbOptions*nbCars Boolean variables. The Boolean variable 
o[i*nbCars+j] is IloTrue if the car at the position i is assigned the configuration that 
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requires the option j; otherwise, the Boolean variable is IloFalse. Here is how you define 
those variables:

In order to instantiate the variable at the middle of the sequence first, you simply reorder the 
array of Boolean variables. Here is the code to do that:

The order in which the options are chosen is given explicitly for this example. Here is the 
code:

That order, of course, respects the definition of slack.

    IloBoolVarArray bvars(env,nbOptions*nbCars);
    for(i=0;i < nbOptions;i++){
      opt=(IloInt)order[i];
      IloBoolVarArray bv(env,nbCars);
      for (j = 0; j < nbCars; j++)
        bv[j] = IloBoolVar(env);
      model.add(IloBoolAbstraction(env, bv, cars, optConf[opt]));
      for(j=0;j<nbCars;j++){
        bvars[i*nbCars + j] = bv[j];
      }
    }
    cout << "Pass 4 " << endl;

    IloBoolVarArray tbvars(env,nbOptions*nbCars);
    for(j=0;j<nbOptions*nbCars;j+=nbCars){
      IlcInt mid=nbCars/2 - 1;
      for(i=0;i<mid+1;i++){
        tbvars[2*i+j]=bvars[mid-i+j];
        tbvars[2*i+1+j]=bvars[mid+i+1+j];
      }
    }

    IloIntArray order(env, nbOptions);
    switch(example){
    case 1:{
      order[OL]=0;
      order[1]=1;
      order[2]=4;
      order[3]=2;
      order[4]=3;
    } break;
    case 2:{
      order[OL]=0;
      order[1]=4;
      order[2]=1;
      order[3]=2;
      order[4]=3;
    }break;
    }
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Writing the goal

You use the macro ILCGOAL1 to define a new class of goals, IlcGenerateAbstractVars. 
This goal has one parameter, an array of integer variables. The body of the macro defines 
how to execute this goal. This goal instantiates each variable using IlcDichotomize. The 
function IlcDichotomize creates and returns a goal that is used to assign a value to a 
constrained variable. IlcDichotomize sets a choice point, then replaces the domain of the 
variable by one of the halves, and calls itself recursively. If failure occurs then, the domain is 
replaced by the other half, and IlcDichotomize is called recursively. The function 
IlcAnd creates a sequences of subgoals, one for each variable in the array. Here is the code 
to write the goal:

You use the macro ILOCPGOALWRAPPER to wrap the goal IlcGenerateAbstractVars so 
it can be used in a Concert Technology model as the goal IloGenerateAbstractVars. 
Here is the code to wrap the goal

In the search, IloSolver::solve takes the goal IloGenerateAbstractVars as a 
parameter. The goal IloGenerateAbstractVars takes the array of variables tbvars and 
the environment as parameters. The filter levels for distribute and sequence constraints are 
both set to IlcExtended, the most thorough filter level. The search for solutions itself is 
carried out by the following code:

ILCGOAL1(IlcGenerateAbstractVars, IlcIntVarArray, vars) {
  IlcInt index = IlcChooseFirstUnboundInt(vars);
  if (index == -1) return 0;
  return IlcAnd(IlcDichotomize(vars[index]), this); // first tries vars[index] 
== 1
}

ILOCPGOALWRAPPER1(IloGenerateAbstractVars, solver, IloIntVarArray, vars) {
  return IlcGenerateAbstractVars(solver, solver.getIntVarArray(vars));
}

    IloSolver solver(model);
    if (mode) {
      solver.setDefaultFilterLevel(IlcSequenceCt,IlcExtended);
      solver.setDefaultFilterLevel(IlcDistributeCt,IlcExtended);
    }
    if (solver.solve(IloGenerateAbstractVars(env,tbvars)))
      solver.out() << "cars = " << solver.getIntVarArray(cars) << endl;
    else
    solver.out() << "No solution" << endl;
    solver.printInformation();
  }
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Complete car sequencing program

The complete program follows. You can also view the entire program online in the file 
YourSolverHome/examples/src/carseq.cpp. 

#include <ilsolver/ilosolverint.h>

ILOSTLBEGIN

//
// First Model
//

IloModel IloCarSequencing( IloEnv env,
                           IloInt maxCar,
                           IloIntArray maxConfs,
                           IloIntArray confs,
                           IloIntVarArray sequence){

  const IloInt abstractValue=-1; // we assume that confs[i] != -1
  const IloInt confs_size=confs.getSize();
  const IloInt sequence_size = sequence.getSize();
  IloIntArray nval(env, confs_size+1);
  IloIntVarArray ncard(env, confs_size+1);

  nval[OL]=abstractValue;
  ncard[OL]=IloIntVar(env, sequence_size - maxCar, sequence_size);

  IloInt i;
  for(i=0;i<confs_size;i++){
    nval[i+1]=confs[i];
    if (maxConfs[i] > maxCar)
      ncard[i+1]=IloIntVar(env, 0, maxCar);
    else
      ncard[i+1]=IloIntVar(env, 0, maxConfs[i]);
  }

  IloIntVarArray nvars(env,sequence_size);
  for (i = 0; i < sequence_size ; i++)
    nvars[i] = IloIntVar(env, nval);

  IloModel carseq_model(env);
  carseq_model.add(IloAbstraction(env, nvars, sequence, confs,abstractValue));
  carseq_model.add(IloDistribute(env, ncard, nval, nvars));
  return carseq_model;
}

void firstModel(){
  IloEnv env;
  try {
    IloModel model(env);

    const IloInt nbOptions = 5;
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    const IloInt nbConfs   = 6;
    const IloInt nbCars    = 10;

    IloIntVarArray cars(env, nbCars,0,nbConfs-1);

    IloIntArray confs(env, 6, 0, 1, 2, 3, 4, 5);
    IloIntArray nbRequired(env, 6, 1, 1, 2, 2, 2, 2);

    IloIntVarArray cards(env, 6);
    for(IloInt conf=0;conf<nbConfs;conf++) {
      cards[conf]=IloIntVar(env, nbRequired[conf],nbRequired[conf]);
    }

    model.add (IloDistribute(env, cards, confs, cars));

    IloArray<IloIntArray> optConf(env, nbOptions);

    optConf[0] = IloIntArray(env, 3, 0, 4, 5);
    optConf[1] = IloIntArray(env, 3, 2, 3, 5);
    optConf[2] = IloIntArray(env, 2, 0, 4);
    optConf[3] = IloIntArray(env, 3, 0, 1, 3);
    optConf[4] = IloIntArray(env, 1, 2);

    IloIntArray maxSeq(env, 5, 1, 2, 1, 2, 1);
    IloIntArray overSeq(env, 5, 2, 3, 3, 5, 5);

    IloArray<IloIntArray> optCard(env, nbOptions);
    optCard[0] = IloIntArray(env, 3, 1, 2, 2);
    optCard[1] = IloIntArray(env, 3, 2, 2, 2);
    optCard[2] = IloIntArray(env, 2, 1, 2);
    optCard[3] = IloIntArray(env, 3, 1, 1, 2);
    optCard[4] = IloIntArray(env, 1, 2);

    for (IloInt opt=0; opt < nbOptions; opt++) {
      for (IloInt i=0; i < nbCars-overSeq[opt]+1; i++) {
        IloIntVarArray sequence(env,(IloInt)overSeq[opt]);
        for (IloInt j=0; j < overSeq[opt]; j++)
          sequence[j] = cars[i+j];
        model.add(IloCarSequencing(env,
                                   (IloInt)maxSeq[opt],
                                   optCard[opt],
                                   optConf[opt],
                                   sequence));
      }
    }

    IloSolver solver(model);

    solver.solve(IloGenerate(env,cars,IlcChooseMinSizeInt));
    solver.out() << "cars = " << solver.getIntVarArray(cars) << endl;

    solver.printInformation();
  }
  catch (IloException& ex) {
    cout << "Error: " << ex << endl;
  }
  env.end();
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}

// Second Model
//

IloArray<IloIntArray> readData(IloEnv env,
                               IloInt example,
                               IloInt& nbCars,
                               IloInt& nbOpt,
                               IloIntArray& nbMax,
                               IloIntArray& seqWidth,
                               IloIntArray& confs,
                               IloIntArray& nbCarsByConf){
  char globalName[200];
  switch(example){
  case 1:{
    strcpy(globalName,"../../../examples/data/carseq1.dat");
  } break;
  case 2:{
    strcpy(globalName,"../../../examples/data/carseq2.dat");
  } break;
  }
  IloInt nbConfs;
  ifstream fin(globalName,ios::in);
  if (!fin) env.out() << "problem with file:" << globalName << endl;
  fin >> nbCars >> nbOpt >> nbConfs;

  IloInt i;
  confs = IloIntArray(env, nbConfs); // required configurations
  for(i=0;i<nbConfs;i++){
    confs[i]=i;
  }
  IloArray<IloIntArray> confsByOption(env, nbConfs);
  for (i=0;i<nbConfs;i++){
    confsByOption[i] = IloIntArray(env, nbOpt);
  }
  IloIntArray nbConfsByOption(env, nbOpt);
  for (i=0;i<nbOpt;i++){
    nbConfsByOption[i]=0;
  }

  // read the maximum number of cars of each sequence that can take the
  // invoked option
  nbMax=IloIntArray(env, nbOpt);
  for(i=0;i<nbOpt;i++){
    fin >> nbMax[i];
  }

  // read the size of a sequence for each option
  seqWidth=IloIntArray(env, nbOpt);
  for(i=0;i<nbOpt;i++){
    fin >> seqWidth[i];
  }

  // read the options required by each configuration
  nbCarsByConf=IloIntArray(env, nbConfs);
  IloInt dummy;
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  IloInt j;
  for(i=0;i<nbConfs;i++){
    fin >> dummy;
    fin >> nbCarsByConf[i];
    for (j=0;j<nbOpt;j++){
      fin >> confsByOption[i][j];
      if (confsByOption[i][j] == 1){
        nbConfsByOption[j]++;
      }
    }
  }
  // compute the configurations required by each option
  IloArray<IloIntArray> optConf(env, nbOpt);
  for(i=0;i<nbOpt;i++){
    optConf[i]=IloIntArray(env, (IloInt)nbConfsByOption[i]);
  }
  IloIntArray ind(env, nbOpt);
  for(i=0;i<nbOpt;i++){
    ind[i]=0;
  }
  for(i=0;i<nbConfs;i++){
    for (j=0;j<nbOpt;j++){
      if (confsByOption[i][j] == 1){
        optConf[j][(IloInt)ind[j]]=i;
        ind[j]++;
      }
    }
  }
  // print the configuration required by each option
  env.out() << "number of times each configuration is required:" << endl;
  for(i=0;i<nbConfs;i++){
    env.out() << nbCarsByConf[i] << " ";
  }
  env.out() << endl;
  env.out() << "configuration required by each option:" << endl;
  for(i=0;i<nbOpt;i++){
    env.out() << "option:" << i << " ";
    for (j=0;j<optConf[i].getSize();j++){
      env.out() << optConf[i][j] << " ";
    }
    env.out() << endl;
  }
  env.out() << "number of times each option is required" << endl;
  for(i=0;i<nbOpt;i++){
    IloInt cpt=0;
    for(j=0;j<optConf[i].getSize();j++){
      cpt += nbCarsByConf[(IloInt)optConf[i][j]];
    }
    env.out() << "option:" << i << " " << cpt << " x ";
    env.out() << nbMax[i] << "/" << seqWidth[i] << endl;
  }

  return optConf;
}

ILCGOAL1(IlcGenerateAbstractVars, IlcIntVarArray, vars) {
  IlcInt index = IlcChooseFirstUnboundInt(vars);
  if (index == -1) return 0;
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  return IlcAnd(IlcDichotomize(vars[index]), this); // first tries vars[index] 
== 1
}

ILOCPGOALWRAPPER1(IloGenerateAbstractVars, solver, IloIntVarArray, vars) {
  return IlcGenerateAbstractVars(solver, solver.getIntVarArray(vars));
}

void secondModel(IloInt mode, IloInt example)
{
  IloEnv env;
  try {
    IloModel model(env);

    IloInt nbOptions;
    IloInt nbCars;
    IloIntArray confs(env); // array of required configurations
    IloIntArray nbCarsByConf(env); // number of cars to assign
                                    // to each configuration
    IloIntArray nbMax(env);
    IloIntArray seqWidth(env);

    IloArray<IloIntArray> optConf = readData(env,
                                             example,
                                             nbCars,
                                             nbOptions,
                                             nbMax,
                                             seqWidth,
                                             confs,
                                             nbCarsByConf);

    cout << "Pass 1 " << endl;
    const IlcInt nbConfs   = confs.getSize();

    IloInt i,j;
    IloIntVarArray cars(env,nbCars,0,nbConfs-1);
    IloIntVarArray cards(env,nbConfs);
    for (i = 0; i < nbConfs; i++){
      cards[i] = IloIntVar(env,nbCarsByConf[i],nbCarsByConf[i]);
    }
    cout << "Pass 2 " << endl;

    model.add(IloDistribute(env, cards, confs, cars));

    IloInt opt;
    for (opt = 0; opt < nbOptions; opt++) {
      IloIntVarArray ncard(env,optConf[opt].getSize());
      for(i = 0; i < optConf[opt].getSize(); i++){
        ncard[i] = cards[(IloInt)optConf[opt][i]];
      }
      model.add(IloSequence(env,
                            0,
                            (IloInt)nbMax[opt],
                            (IloInt)seqWidth[opt],
                            cars,
                            optConf[opt],
                            ncard));
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    }
    cout << "Pass 3 " << endl;
    IloIntArray order(env, nbOptions);
    switch(example){
    case 1:{
      order[OL]=0;
      order[1]=1;
      order[2]=4;
      order[3]=2;
      order[4]=3;
    } break;
    case 2:{
      order[OL]=0;
      order[1]=4;
      order[2]=1;
      order[3]=2;
      order[4]=3;
    }break;
    }

    IloBoolVarArray bvars(env,nbOptions*nbCars);
    for(i=0;i < nbOptions;i++){
      opt=(IloInt)order[i];
      IloBoolVarArray bv(env,nbCars);
      for (j = 0; j < nbCars; j++)
        bv[j] = IloBoolVar(env);
      model.add(IloBoolAbstraction(env, bv, cars, optConf[opt]));
      for(j=0;j<nbCars;j++){
        bvars[i*nbCars + j] = bv[j];
      }
    }
    cout << "Pass 4 " << endl;

    IloBoolVarArray tbvars(env,nbOptions*nbCars);
    for(j=0;j<nbOptions*nbCars;j+=nbCars){
      IlcInt mid=nbCars/2 - 1;
      for(i=0;i<mid+1;i++){
        tbvars[2*i+j]=bvars[mid-i+j];
        tbvars[2*i+1+j]=bvars[mid+i+1+j];
      }
    }

    IloSolver solver(model);
    if (mode) {
      solver.setDefaultFilterLevel(IlcSequenceCt,IlcExtended);
      solver.setDefaultFilterLevel(IlcDistributeCt,IlcExtended);
    }
    if (solver.solve(IloGenerateAbstractVars(env,tbvars)))
      solver.out() << "cars = " << solver.getIntVarArray(cars) << endl;
    else
    solver.out() << "No solution" << endl;
    solver.printInformation();
  }
  catch (IloException& ex) {
    cout << "Error: " << ex << endl;
  }
  env.end();
}
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int main(int argc, char** argv){
  IloInt pb=(argc>1)?atoi(argv[1]):1;
  if (pb != 1 && pb != 2)
    pb=1;

  switch(pb){
  case 1 :{
    firstModel();
  } break;
  case 2 :{
    IlcInt mode = (argc>2)?atoi(argv[2]):1;
    if (mode != 0 && mode != 1)
      mode=1;
    IlcInt example = (argc>3)?atoi(argv[3]):1;
    secondModel(mode,example);
  } break;

  }

  return 0;
}

Output

When you run this program, you get results like this:

carseq 1:
cars = IlcIntVarArrayI[[0] [1] [5] [2] [4] [3] [3] [4] [2] [5]]
Number of fails               : 1
Number of choice points       : 3
Number of variables           : 308
Number of constraints         : 239
Reversible stack (bytes)      : 40224
Solver heap (bytes)           : 168864
Solver global heap (bytes)    : 4044
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 11144
Total memory used (bytes)     : 236408
Elapsed time since creation   : 0.11

carseq 2 1 1:
number of times each configuration is required:
5 3 7 1 10 2 11 5 4 6 12 1 1 5 9 5 12 1
configuration required by each option:
option:0 0 1 2 4 5 6 7 13
option:1 0 1 2 3 4 8 9 10 14
option:2 2 3 7 10 11 12 17
option:3 1 3 6 9 12 16
option:4 0 5 8 11 15
number of times each option is required
option:0 48 x 1/2
option:1 57 x 2/3
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option:2 28 x 1/3
option:3 34 x 2/5
option:4 17 x 1/5
cars = IlcIntVarArrayI[[17] [16] [16] [7] [15] [13] [10] [13] [14] [6] [10] [6]
[15] [4] [14] [6] [10] [4] [16] [0] [14] [6] [10] [1] [15] [2] [14] [6] [10] 
[0]
 [16] [4] [9] [7] [8] [4] [16] [2] [9] [5] [10] [4] [16] [2] [8] [6] [14] [2] 
[1
6] [0] [3] [13] [14] [2] [15] [1] [10] [6] [14] [0] [12] [4] [9] [7] [8] [4] 
[16
] [2] [9] [5] [10] [4] [16] [2] [8] [6] [10] [4] [16] [0] [10] [6] [14] [1] 
[11]
 [4] [9] [7] [9] [13] [10] [6] [14] [6] [10] [13] [15] [7] [16] [16]]
Number of fails               : 0
Number of choice points       : 160
Number of variables           : 4768
Number of constraints         : 2367
Reversible stack (bytes)      : 836184
Solver heap (bytes)           : 1977864
Solver global heap (bytes)    : 4044
And stack (bytes)             : 4044
Or stack (bytes)              : 8064
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 15152
Total memory used (bytes)     : 2849396
Elapsed time since creation   : 4.677

carseq 2 1 2
number of times each configuration is required:
7 11 1 3 15 2 8 5 3 4 5 2 6 2 2 4 3 5 2 4 1 1 1 1 2
configuration required by each option:
option:0 0 1 3 5 10 11 15 16 17 18 19 20 21
option:1 1 2 4 6 9 11 12 14 15 17 18 19 21 22 23
option:2 2 3 5 7 9 11 12 13 15 18 23
option:3 0 2 5 6 8 9 15 17 20 21 22
option:4 2 11 13 14 16 19 20 21 22 23 24
number of times each option is required
option:0 50 x 1/2
option:1 67 x 2/3
option:2 32 x 1/3
option:3 37 x 2/5
option:4 20 x 1/5
No solution
Number of fails               : 41
Number of choice points       : 40
Number of variables           : 626
Number of constraints         : 0
Reversible stack (bytes)      : 872364
Solver heap (bytes)           : 2126604
Solver global heap (bytes)    : 4044
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 21160
Total memory used (bytes)     : 3036304
Elapsed time since creation   : 5.458
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C H A P T E R
19

Writing a Constraint: Allocating
Frequencies

In this lesson, you will learn how to: 

◆ understand constraints, metaconstraints, and demons

◆ write your own constraints and metaconstraints

◆ model and solve a frequency allocation problem using a custom constraint

In Part I, The Basics, you learned in general terms how Solver uses constraint propagation. 
This lesson explains in greater detail how constraints work. You will learn how to write your 
own constraints and metaconstraints.

You will also learn how to design a model and solve a problem in frequency allocation using 
a custom constraint and custom goals. With modern radio communication systems, using 
available frequencies more effectively has become a major challenge. Ordinarily, the 
spectrum of available frequencies for a specific application is limited, and a radio operator 
must pay for the use of each frequency. The radio operator, therefore, has to exploit this 
resource to maximize the possible traffic and minimize the number of needed frequencies. 

When frequencies are allocated, physical constraints also have to be taken into account, such 
physical constraints as interference between broadcasts on adjacent frequencies. These 
physical constraints can be expressed as a minimum “distance” that must be respected 
between two frequencies. 
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Understanding constraints

As indicated in other chapters, Solver offers a wide range of predefined constraints, together 
with powerful logical operators for combining them. These facilities usually suffice for 
expressing even the most specific constraints. 

However, when Solver treats a group of heterogeneous constraints together as a set, it still 
must deal with each of them locally. One way to offset this “localness” about the way 
constraints are treated is to use redundant constraints. See “Introduce redundant constraints” 
on page 590. Another—more radical approach—is to write a new constraint. This alternative 
may at times be somewhat more difficult.

When you write a new constraint linking certain variables, you must implement reductions 
of the domains of these variables by eliminating any values that could not participate in a 
solution. These reductions are carried out by means of elementary modifiers on the domains 
of these variables.

This chapter explains what you must do if you decide to implement a new constraint. This 
section firsts explain the elementary modifiers involved, and then discusses the reduction 
function itself. Reductions happen according to the type of modification that occurs in the 
domain of a variable. A complete example of how to write a new constraint is provided. See 
“Writing your own constraint” on page 337. “Writing your own metaconstraint” on 
page 343 explains how to write metaconstraints, constraints that can be imposed on other 
constraints.

Elementary modifiers for variables

Besides the accessors such as getMin, getMax, or getValue, defined for integer 
expressions, there are also predefined elementary modifiers. You can use these modifiers to 
implement constraints.

Let’s look, for example, at how setValue(IlcInt c), one of these predefined modifiers, 
behaves.

That fragment of code effectively makes the domain of x equal to a singleton (a single 
element) reduced to the value 1. This behavior literally involves a domain reduction, and this 
behavior is consistent throughout Solver: if the value 1 were not in the initial domain, Solver 
would have raised an error.

For example, consider the following contrasting piece of code. It raises an error, fail.

  IlcIntVar x(solver,0,1); 
  x.setValue(1); 

   IlcIntVar x(solver,0,1); 
   x.setValue(2);       // LEADS TO FAILURE 
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The point here is that elementary modifiers can be used to implement constraints, but they 
themselves do not behave like constraints.

It’s also important to note that modifiers are volatile. By “volatile,” it is meant that if a 
modifier does not have an immediate effect, it will have no later effect. This volatility is 
another way in which elementary modifiers differ from constraints. 

That code has no effect because all the values of the domains can participate in a solution. 

Of course, if you use constraints instead, and post them, like this, those hazards can be 
avoided.

It’s true that this piece of code will not modify a domain, but during the generation of the 
values of x and y, only the two solutions where the sum is equal to 1 appear. What’s 
happening here is that Solver is saving the constraint so at each modification of the domain 
of either of the variables, Solver executes the corresponding modifier setValue.

For the class IlcIntExp, here are the modifiers and what they do.

◆ setValue(IlcInt value) tries to make the expression equal to value.

◆ setMin(IlcInt min) tries to make the expression greater than or equal to min.

◆ setMax(IlcInt max) tries to make the expression less than or equal to max.

◆ setRange(IlcInt min, IlcInt max) tries to make the expression stay between 
min and max, inclusive.

◆ removeValue(IlcInt value) tries to make the expression different from value.

◆ removeInterval(IlcInt min, IlcInt max) tries to make the expression strictly 
less than min or strictly greater than max. In other words, it tries to make the expression 
stay outside the interval defined by min and max, inclusive.

Before leaving the topic of modifiers, it must be emphasized again that they only reduce 
domains: they don’t enlarge domains. For that reason, the following code modifies nothing 
in the domain of x and, in particular, it does not make the upper boundary of x equal to 2. 

Exp and var: More about modifiers and expressions

Now that you have an idea about elementary modifiers and their effects on constrained 
integer variables, here’s yet another way of understanding how elementary modifiers work. 
In this case, the point is illustrated by contrasting constrained expressions (where the 

    IlcIntVar x(solver,0,1), y(solver,0,1); 
    (x + y).setValue(1);        // NO EFFECT 

    IlcIntVar x(solver,0,1), y(solver,0,1); 
    solver.add( x + y == 1); 

  IlcIntVar x(solver,0,1); 
  x.setMax(2);          // DOES NOTHING! 
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domains are computed) with constrained variables (where the domains are stored), a 
contrast that mentioned briefly in the IBM ILOG Solver Reference Manual in the 
documentation for constrained integer variables and constrained enumerated variables. 

This contrast between the computed domains of constrained expressions and the stored 
domains of constrained variables also highlights a major difference between modifiers (like 
setValue) and constraints.

Consider this piece of code:

It prints 20 as its result, not 10 as you might expect. This happens because Solver computes 
the domain of the expression when it prints z; it does not store a domain for an expression. 
For that reason, the effect of an elementary modifier like setRange is volatile.

Moreover, if you later bind x to, say, 10, nothing happens to y! To see that happen for 
yourself, consider this slightly different piece of code:

It prints [0 .. 10]. Why? It does so because you used a modifier, setRange, so 10, the 
maximum, is not stored in z.

The correct code (correct in the sense of propagating values) must use a constraint (not a 
modifier), like this:

That piece of code stores the constraint (z <= 10) and thus binds y to 0.

So far, you’ve noticed that z is a constrained integer expression. Another way of 
“correcting” this is to make z a constrained integer variable. As mentioned in the IBM ILOG 
Solver Reference Manual, the domains of constrained expressions are not stored; they are 
computed. In contrast, the domains of constrained variables are stored.

IlcIntVar x (solver, 0, 10); 
IlcIntVar y (solver, 0, 10); 
IlcIntExp z = x+y; 
z.setRange(0, 10); 
cout << z.getMax() << endl; 

IlcIntVar x (solver, 0, 10); 
IlcIntVar y (solver, 0, 10); 
IlcIntExp z = x+y; 
z.setRange(0, 10); 
x.setValue(10); 
cout << y << endl; 

IlcIntVar x (solver, 0, 10); 
IlcIntVar y (solver, 0, 10); 
IlcIntExp z = x+y; 
solver.add(z <= 10); 
x.setValue(10); 
cout << y << endl; 
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Thus if z is a constrained variable, y is bound to 0, as in this piece of code:

However, the best way of writing (that is, the officially recommended way, supported by the 
Solver development team) is to use constrained variables and constraints, like this:

In that case, the constraint is created, though it is not stored because it is a unary constraint 
on a variable. This is the only case where constraints are not stored.

Let’s summarize the conventions that Solver observes about constrained variables, 
constrained expressions, elementary modifiers, and constraints.

◆ In the sense that the domain of an expression is computed from the domains of its 
subexpressions, an expression has no domain itself. For that reason, it costs less memory.

◆ You cannot access the domain-delta (that is, the old min, the old max) of an expression 
because there is no domain for storing that information.

◆ Constraints on expressions are always stored, again because there is no stored domain for 
the expression. 

◆ Assigning an expression to a variable creates a domain for the expression. The 
expression is a variable in fact, and a constraint is automatically and internally posted 
between that new variable and the original subexpressions.

On the basis of those facts, here are a few recommendations to follow in your programming. 
Of course, there may be good and overriding reasons not to follow these practices in certain 
special cases, but in general these recommendations are sound.

◆ Use variables rather than expressions. Exception: when you are defining a new constraint 
yourself, you may need expressions.

◆ Use constraints rather than modifiers. Exception: when you are defining a new constraint 
yourself, you may need modifiers.

◆ Use modifiers in these special situations:

● to define a new constraint; 

● to code the virtual function, propagate; 

IlcIntVar x (solver, 0, 10); 
IlcIntVar y (solver, 0, 10); 
IlcIntVar z = x+y; 
z.setRange(0, 10); 
x.setValue(10); 
cout << y << endl; 

IlcIntVar x (solver, 0, 10); 
IlcIntVar y (solver, 0, 10); 
IlcIntVar z = x+y; 
solver.add(z <= 10); 
x.setValue(10); 
cout << y << endl; 
I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L 335



● to code any demons of a new constraint that you write yourself (if any such demons 
are needed).

◆ Use expressions only in the definition of a new constraint simply because expressions 
avoid the creation of a domain.

◆ Don’t use expressions in the definition of a new constraint if you want to use the domain-
delta.

Invariants: What to propagate?

A constraint that links variables is an object with a task: that of reducing the domains of 
those variables in terms of the semantics of those variables. For example, once you have 
posted the constraint x <= y, that constraint must insure that the values in the domains of x 
and y satisfy the constraint. From a working point of view, that constraint must eliminate 
values from the domains of the variables, values that are definitely inconsistent.

When you are writing a constraint, it is a good idea to start by defining the invariant of that 
constraint before you implement it by means of elementary modifiers. (The term invariant is 
used here in the usual sense of software engineering.) 

Let’s look again at the example of x <= y in this context. Its invariant is easy to determine, 
and can be expressed this way: 

◆ the values in the domain of x must be less than or equal to the maximum of the values in 
the domain of y. 

◆ the values in the domain of y must be greater than or equal to the minimum of the values 
in the domain of x. 

With elementary modifiers, this invariant can be translated this way: 

The next section shows what Solver does with such an invariant.

The constraint propagation algorithm

To see how the propagation algorithm works with constraints, let’s look again at the 
constraint x <= y, and consider the following fragment of code:

When that constraint is posted, the invariant expressed in the previous section becomes 
active and reduces the domain of x by removing the value 3. For the moment, that’s all that 
you can deduce about that constraint. Since that constraint has to be taken into account by 

x.setMax(y.getMax()); 
y.setMin(x.getMin()); 

IlcIntVar x(solver,0,3), y(solver,0,2); 
solver.add( x <= y ); 
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Solver every time one of the variables in it is modified, the constraint itself is physically 
attached to these two variables.

Solver was designed specifically to automate and to optimize the reduction of the domains 
of constrained variables. The Solver algorithm for that purpose is straightforward in 
principle. When a constrained variable is modified, the constraints posted on that variable 
are examined to determine whether any values in the domains of other constrained variables 
are now inconsistent. If this is the case, necessary domain reductions are carried out in turn. 

The examination of the constraints on a variable is triggered by any modification of that 
variable. There are several different kinds of modifications, depending on the class of 
variable under consideration. Those modifications are referred to as propagation events. 

For the class of integer variables, there are, in fact, these propagation events: 

◆ value means that a value has been assigned to the constrained variable, that is, the 
variable has been bound.

◆ range indicates that the minimum of the domain has increased or the maximum of the 
domain has decreased. 

◆ domain indicates that the domain of the constrained variable has been modified. 

When you define a new class of constraint, you must also define the propagation events for 
that class of constraint. You do so by means of the pure virtual member function, post.

Sometimes more than one event can be triggered after a variable modification. Specifically, 
the value event is always accompanied by the range and domain events. Likewise, a range 
event is always accompanied by a domain event.

To take another example, let’s consider a constrained enumerated variable, var, with a 
domain containing only two values, value1 and value2, where value1 < value2. If you 
post a constraint like this solver.add(var != value1), three events are triggered:

◆ the domain event is triggered since value1 is actually removed from the domain of var;

◆ the range event is triggered since the minimal boundary of the domain of var has been 
increased.

◆ the value event is triggered since the variable is bound by the reduction of its domain to 
one value.

Writing your own constraint

Obviously, a constraint is an object in Solver. More precisely, a constraint in Solver is an 
instance of a class with two pure virtual functions, propagate and post, and a third virtual 
function, isViolated. The virtual function propagate implements the invariant of the 
constraint; post defines on which events propagate executes; and isViolated returns 
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IlcTrue if the constraint cannot be satisfied. The virtual function isViolated will be 
called if the constraint is to be used as a metaconstraint. 

As indicated, Solver lets you define new classes of constraints. You do so by defining a 
subclass of IlcConstraintI. (See the section “Implementation classes and handles” on 
page 340 for an explanation of the I at the end of the name.) The data members of this 
subclass include, among others, the constrained variables on which the constraint is posted. 

Consequently, the definition of a new class of constraint looks something like this:

To clarify how to define a new class of constraint, let’s look at the constraint x != y. The 
parameters of this constraint are obviously the expressions x and y themselves.

The role of the constructor is to initialize the data members, like this:

The invariant of x != y is easy to determine, as indicated earlier:

◆ if x is bound to a value, the domain of y does not contain this value; 

◆ likewise, if y is bound to a value, the domain of x does not contain this value. 

class MyConstraint : public IlcConstraintI {
     ... // parameters for the constraint
public :
    MyConstraint(IloSolver solver, ... args ...); // constructor
    ~MyConstraint(){} // destructor; usually empty
    void post();
    void propagate();
}

class IlcDiffConstraint :public IlcConstraintI {
    IlcIntExp _x, _y;
  public:
    IlcDiffConstraint(IloSolver solver, IlcIntExp x, IlcIntExp y);
    ~IlcDiffConstraint(){}; // empty destructor

    virtual void propagate ();
    virtual void post();
    virtual IlcBool isViolated() const;
};

IlcDiffConstraint::IlcDiffConstraint(IloSolver solver,
                                     IlcIntExp x,
                                     IlcIntExp y)
    : IlcConstraintI(solver), _x(x), _y(y) {}
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The virtual member function propagate implements the reduction of the domains. Using 
what you’ve already written, you would get this: 

The second virtual member function to write is post. It connects the constraint to its 
arguments by specifying the events that set it off. For integer expressions, there are three 
kinds of attachment, one kind for each type of event. For the class IlcIntExp, these 
member functions are as follows: (The class IlcConstraint derives from the class 
IlcDemon.) 

◆ whenValue(IlcDemon ct) attaches the demon ct to the value event of the expression 
under consideration. Every time the expression takes a unique value, the execute 
function for ct is called. 

◆ whenRange(IlcDemon ct) attaches the demon ct to the range event of the 
expression under consideration. Every time the domain of the expression gets a new 
boundary, the execute function for ct is called.

◆ whenDomain(IlcDemon ct) attaches the demon ct to the domain event. Every time 
the domain of the expression is modified, the execute function for ct is called. 

For a constraint, the execute member function calls propagate.

In our example of the constraint x != y, you want to propagate the constraint every time x 
or y is bound. Here’s the code for doing that:

If you want to use our constraint as a metaconstraint, you may want to define under what 
conditions IlcDiffConstraint is definitely not satisfied. In our example, x != y is 
violated if, and only if, variables x and y are bound to the same value. Hence, the definition 
of isViolated:

void IlcDiffConstraint::propagate () {
    if (_x.isBound()) _y.removeValue(_x.getValue());
    if (_y.isBound()) _x.removeValue(_y.getValue());
}

void IlcDiffConstraint::post(){
    _x.whenValue(this);
    _y.whenValue(this);
}

IlcBool IlcDiffConstraint::isViolated() const {
    return (_x.isBound() && _y.isBound() &&
            _x.getValue()==_y.getValue());
}
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Implementation classes and handles

Throughout this manual, it has been taken for granted that the major entities of Solver—
variables and constraints themselves, for example—are simply objects in the full sense of 
C++. In fact, Solver entities depend on two classes: a handle class and an implementation 
class, where an object of the handle class points to an object of the corresponding 
implementation class. As documented in the IBM ILOG Solver Reference Manual, handles 
are passed by value, and they are created as automatic objects, where “automatic” has the 
usual C++ meaning. 

For the most part, you will work only with handles, that is, the objects that are really pointers 
to corresponding implementation objects on the Solver heap. Solver takes care of all the 
allocation, memory-management, and de-allocation of these internal implementation 
objects, keeping the details of these implementation classes “out of sight.” However, if for 
some reason, you need to define new classes of Solver objects, you need to do so in a two-
step process: you’ll have to define the underlying implementation class plus the 
corresponding class of handles. This chapter explains how to do that for constraints. 

For a predefined Solver class, IlcConstraintI, implementing an object with its own data 
members and virtual functions, Solver defines the handle class IlcConstraint. 
Essentially, such a handle class contains objects that are really only pointers to instances of 
the corresponding implementation class IlcConstraintI.

This has the practical effect of elevating the idea of a pointer to the level of an object itself. A 
number of advantages derive from this; for one thing, it provides greater certainty about how 
pointers are used. In particular, there is no longer any risk that the compiler will mistakenly 
interpret the expression x+1 as a pointer and apply pointer arithmetic to it. Instead, pointers 
are consistently and systematically treated as objects.

However, the fundamental precepts of Solver that there are “No more pointers” and that 
“Everything is an object” mean that when you extend Solver by defining a new 
implementation class, you must also define a function that returns a handle.

This rule applies particularly to the definition of new classes of constraints. Up to now, 
you’ve seen only the definition of a new implementation class of a new constraint. The 
definition of an implementation class generally looks something like this: 

class MyConstraint : public IlcConstraintI {
     ... // parameters for the constraint
public :
    MyConstraint(IloSolver solver, ... args ...); // constructor
    ~MyConstraint(){} // destructor; usually empty
    void post();
    void propagate();
}
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Handles for constraints are instances of the class IlcConstraint. That class provides a 
constructor of an implementation class, or more precisely, IlcConstraintI*. You must 
define a function that returns a handle, and the minimal service that the handle provides is to 
manage the memory allocation of instances in your implementation class. The form that it 
generally takes looks like this:

The body of that function builds an instance of MyConstraint by calling the constructor 
and allocates a place on the Solver heap by calling the overloaded operator, 
new (solver.getHeap() ... ). When you use this Solver new, you’ll get an efficient 
allocator that automatically manages how space is recovered in case of backtracking.

IlcConstraint MyConstraint( /* parameters for the constraint */){
        // get the solver from a variable
        return new (solver.getHeap()) MyConstraintI(solver, /* ...args... */);
}
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In our example, x != y, you call IlcDiff the function for creating the constraint. Here’s 
the code for it:

That definition, of course, has two parts: the implementation and the handle. To use this new 
constraint, you simply write:

That statement invokes all the mechanisms of Solver that insure what’s taken into account, 
such mechanisms as propagation, backtracking, and so forth. In general, it can be said that a 
call to IlcDiff as you’ve written it builds an instance of IlcDiffConstraint and returns 
a handle for that object (in other words, an encapsulation of the object) to post by means of 
the post member function. The instance of the implementation class is connected to the 
value event of x and of y. Every time these variables are bound, the propagate member 
function executes.

class IlcDiffConstraint :public IlcConstraintI {
    IlcIntExp _x, _y;
  public:
    IlcDiffConstraint(IloSolver solver, IlcIntExp x, IlcIntExp y);
    ~IlcDiffConstraint(){}; // empty destructor

    virtual void propagate ();
    virtual void post();
    virtual IlcBool isViolated() const;
};

IlcDiffConstraint::IlcDiffConstraint(IloSolver solver,
                                     IlcIntExp x,
                                     IlcIntExp y)
    : IlcConstraintI(solver), _x(x), _y(y) {}
 

void IlcDiffConstraint::propagate () {
    if (_x.isBound()) _y.removeValue(_x.getValue());
    if (_y.isBound()) _x.removeValue(_y.getValue());
}

void IlcDiffConstraint::post(){
    _x.whenValue(this);
    _y.whenValue(this);
}

IlcBool IlcDiffConstraint::isViolated() const {
    return (_x.isBound() && _y.isBound() &&
            _x.getValue()==_y.getValue());
}

IlcConstraint IlcDiff(IlcIntExp x, IlcIntExp y){
  IloSolver solver=x.getSolver();
    return new (solver.getHeap()) IlcDiffConstraint(solver, x, y);
}

 

    solver.add(IlcDiff(x, y));
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The definition just outlined is the minimal definition for a new constraint. It is not adequate 
if you want to use the new definition as a metaconstraint.

Using ILOCPCONSTRAINTWRAPPER to wrap constraints

You can use the macro ILOCPCONSTRAINTWRAPPER to wrap an existing instance of 
IlcConstraint when you want to use it within Concert Technology model objects.

This macro defines a constraint class named _thisI with n data members. When n is 
greater than zero, the types and names of the data members must be supplied as arguments to 
the macro. Each data member is defined by its type ti and a name ai. 

In order to use an instance of IlcConstraint in this way, you need to follow these steps: 

1. Use the macro to wrap the instance of IlcConstraint in an instance of 
IloConstraint. 

2. Extract your model and model objects for an instance of IloSolver by calling the 
member function IloSolver::extract. During extraction, IloSolver::extract 
will put back the instance of IloConstraint. 

You must use the following IloCPConstraintI member functions to force extraction of 
an extractable or an array of extractables: 

For more information on wrapping constraints for use with Concert Technology, see the 
documentation for the macro ILOCPCONSTRAINTWRAPPER and the class 
IloCPConstraintI in the IBM ILOG Solver Reference Manual. The section “Using the 
constraint wrapper” on page 357 shows you how to do this for the frequency allocation 
example.

Writing your own metaconstraint

If you want to define a new metaconstraint, that is, a constraint on constraints, you’ll need to 
define additional virtual functions (besides those you just defined for a new constraint: 
propagate and post). Those additional virtual functions are isViolated,  
makeOpposite and metaPostDemon. This section shows you how to define 
makeOpposite and metaPostDemon. 

  ILOCPCONSTRAINTWRAPPER0(_this, solver)
  ILOCPCONSTRAINTWRAPPER1(_this, solver, t1, a1)
  ILOCPCONSTRAINTWRAPPER2(_this, solver, t1, a1, t2, a2)
  ILOCPCONSTRAINTWRAPPER3(_this, solver, t1, a1, t2, a2, t3, a3)
  ILOCPCONSTRAINTWRAPPER4(_this, solver, t1, a1, t2, a2, t3, a3, t4, a4)

 void use(const IloSolver solver, const IloExtractable ext)const;
 void use(const IloSolver solver, const IloExtractableArray extArray)const;
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Let’s assume that you want to express the idea that the variable x is different from some 
other variable, y, or that y is different from z. You can write that very simply by using the 
logical or operator provided by Solver. 

Once one of those two constraints proves false, Solver makes the other one true. To do so, 
Solver obviously needs to know the truth value of these constraints. In fact, Solver needs 
only to know when one of these constraints is violated. To detect it, this disjunctive 
constraint has to be posted on the variables that are involved. This is the task of the 
metaPostDemon member function.

Now, if you write:

metaPostDemon is called with the disjunctive constraint as its argument. Thus, you get the 
effect that once one of the two constraints proves false (that is, isViolated returns 
IlcTrue), Solver invokes the propagate function of the other one, insuring that the 
disjunctive constraint is taken into account.

There’s still one more point to consider. Let’s assume now that you want to affirm that the 
constraint IlcDiff(x, y) is false; in other words, that x == y is true. You can use the 
negation operator to write this:

But if you do so, how will Solver know that you want to impose the negation of a specific 
constraint? You have to tell Solver explicitly what the opposite constraint is, and that is the 
work of the member function makeOpposite. 

In our example, the opposite constraint of x != y is obviously x == y. Remember that 
x == y is a handle. Indeed, it’s an instance of the class IlcConstraint. With Solver, you 
get the object implementation from the getImpl() member function of the handle class. 
For example, (x == y).getImpl() returns the pointer to the implementation of x == y.

Thus, the code is:

    solver.add(IlcDiff(x, y) || IlcDiff(y, z));

void IlcDiffConstraint::metaPostDemon(IlcDemonI* ct){
    _x.whenValue(ct);
    _y.whenValue(ct);
}

    solver.add(IlcDiff(x, y) || IlcDiff(y, z));

    solver.add(!IlcDiff(x, y));

IlcConstraintI* IlcDiffConstraint::makeOpposite() const {
    return (_x == _y).getImpl();
}
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Finally, here’s the code of the metaconstraint IlcDiff. (First, you’ll see the definitions of 
the appropriate class and its member functions; then IlcDiff itself near the end.)

class IlcDiffConstraint :public IlcConstraintI {
    IlcIntExp _x, _y;
  public:
    IlcDiffConstraint(IloSolver solver, IlcIntExp x, IlcIntExp y);
    ~IlcDiffConstraint(){}; // empty destructor

    virtual void propagate ();
    virtual void post();
    virtual IlcBool isViolated() const;
    virtual IlcConstraintI* makeOpposite() const;
    virtual void metaPostDemon(IlcDemonI* expr);
};

IlcDiffConstraint::IlcDiffConstraint(IloSolver solver,
                                     IlcIntExp x,
                                     IlcIntExp y)
    : IlcConstraintI(solver), _x(x), _y(y) {}

void IlcDiffConstraint::propagate () {
    if (_x.isBound()) _y.removeValue(_x.getValue());
    if (_y.isBound()) _x.removeValue(_y.getValue());
}

void IlcDiffConstraint::post(){
    _x.whenValue(this);
    _y.whenValue(this);
}

IlcBool IlcDiffConstraint::isViolated() const {
    return (_x.isBound() && _y.isBound() &&
            _x.getValue()==_y.getValue());
}

IlcConstraint IlcDiff(IlcIntExp x, IlcIntExp y){
  IloSolver solver=x.getSolver();
    return new (solver.getHeap()) IlcDiffConstraint(solver, x, y);
}

void IlcDiffConstraint::metaPostDemon(IlcDemonI* ct){
    _x.whenValue(ct);
    _y.whenValue(ct);
}

IlcConstraintI* IlcDiffConstraint::makeOpposite() const {
    return (_x == _y).getImpl();
}

All the predefined constraints of Solver are defined like this, as metaconstraints.

As you saw in “Writing your own constraint” on page 337, defining an ordinary new 
constraint yourself is not as difficult as defining a metaconstraint. Only because you want to 
exploit IlcDiff as a metaconstraint were you obliged to redefine the virtual functions 
isViolated, metaPostDemon and makeOpposite. 
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Programming tips

This section describes some useful tips, collected from users of Solver.

Exhaustive propagation

Constraint programming is more efficient when it effectively reduces the variable domains 
as early as possible.

In order to reduce the domains of constrained variables as quickly as possible, you have to 
carry out all propagation. You do so by propagating constraints in every direction. While 
predefined constraints respect this rule, you have to exercise care when writing a new 
constraint to insure that your user-defined constraints respect this rule as well. 

Another way of looking at this issue is to see that constraints are not directed, but must be 
seen as equations in the widest sense of the term. The final results of the search for a 
solution must be the same, regardless of the order in which constraints are posted, even user-
defined constraints. 

Let’s consider the constraint x + y = z. The domain of z must be modified when the domain 
of x or of y is modified. At the same time, you must not forget that the domain of x must be 
modified when the domain of y or of z is modified. A similar rule applies for y as well. This 
is what is meant by propagating in all directions.

More generally, when designing a new constraint class, you must not overlook any direction 
of propagation.

Using demons to propagate selectively

Let’s look again at our IlcDiff example. Each time one of its variables is bound, isBound 
is checked against the two variables. You can avoid these redundant tests by using 
intermediate demons, that is, by posting different demons on the different variables. You 
might think of demons as goals without subgoals, that is, goals which return the null pointer. 
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You add two member functions to the class IlcDiffConstraint, each of them responsible 
for the propagation of the constraint on one variable when the other is bound. Here is the 
modification.

Now you need to define intermediate demons on variables that call the new member 
functions. You do that in this way.

Finally, you change the post member function to take this modification into account, like 
this:

This new version of the IlcDiffConstraint is faster that the previous one since the 
isBound tests in propagate are avoided. The price to pay for this efficiency is the memory 
used by the two intermediate goals.

Writing a constraint: Two examples

In this section, you walk through two examples. One defines a new class of constraints, 
using demons to propagate modifications. The other example defines a class of constraint 
exploiting iterators. Both examples begin by designing a model for the semantics of the 

class IlcDiffConstraint :public IlcConstraintI {
    IlcIntExp _x, _y;
  public:
    IlcDiffConstraint(IloSolver solver, IlcIntExp x, IlcIntExp y);
    ~IlcDiffConstraint(){}; // empty destructor

    virtual void propagate ();
    virtual void post();
    virtual IlcBool isViolated() const;
    virtual IlcConstraintI* makeOpposite() const;
    virtual void metaPostDemon(IlcDemonI* expr);
    void xDemon(){
        _y.removeValue(_x.getValue());
    }
    void yDemon(){
        _x.removeValue(_y.getValue());
    }
};

ILCCTDEMONO(IlcDiffCst_xDemon,IlcDiffConstraint,xDemon);
ILCCTDEMON0(IlcDiffCst_yDemon,IlcDiffConstraint,yDemon);

void IlcDiffConstraint::post(){
    _x.whenValue(IlcDiffCst_xDemon(getSolver(),this));
    _y.whenValue(IlcDiffCst_yDemon(getSolver(),this));
}
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constraint involved. That step of defining a model for the semantics is crucial when you find 
it necessary to define a class of constraints yourself.

A new class of constraint using demons

Let’s consider the constraint x <= y + c, where x and y are constrained integer expressions, 
and c is a constant integer. Here’s a rule to serve as a model of the semantics of that 
constraint. 

◆ The constraint is necessarily violated if the minimum of x is greater than the maximum 
of y + c. 

The constraint must be propagated when one of the boundaries of x or y is modified. 

◆ If the minimum of x is val, y must be greater than or equal to val - c.

◆ If the maximum of y is val, x must be less than or equal val + c. 

The negation of the constraint is y <= x - c - 1.

With that semantic model in mind, you can define the corresponding class of constraints like 
this:

class IlcLeConstraint: public IlcConstraintI {
  // x <= y + c
  IlcIntExp _x;
  IlcIntExp _y;
  IlcInt _c;
public:
  IlcLeConstraint(IloSolver solver, IlcIntExp x, IlcIntExp y, IlcInt c=0)
    : IlcConstraintI(solver), _x(x), _y(y), _c(c){}
  void post();
  void propagate();
  IlcBool isViolated() const;
  void metaPostDemon(IlcDemonI*);
  IlcConstraintI* makeOpposite() const;
};
void IlcLeConstraint::post(){
  _x.whenRange(this);
  _y.whenRange(this);
}

void IlcLeConstraint::metaPostDemon(IlcDemonI* demon){
  _x.whenRange(demon);
  _y.whenRange(demon);
}

IlcBool IlcLeConstraint::isViolated() const {
  return _x.getMin() > _y.getMax() + _c;
}

void IlcLeConstraint::propagate(){
  _y.setMin(_x.getMin() - _c);
  _x.setMax(_y.getMax() + _c);
}
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IlcConstraintI* IlcLeConstraint::makeOpposite() const {
  IloSolver solver=getSolver();
  return new (solver.getHeap()) IlcLeConstraint(solver,_y,_x,-_c -1);
}

IlcConstraint IlcLeConstraint(IlcIntExp x, IlcIntExp y, IlcInt c){
  IloSolver solver=x.getSolver();
  return IlcConstraint(new (solver.getHeap()) IlcLeConstraint(solver,x,y,c));
}

The constraint is defined with IlcIntExp, and not with IlcIntVar, in order to avoid the 
creation of new constrained integer variables.

You can use auxiliary demons for this constraint, instead of calling propagate for all 
propagations. Indeed, when the minimum of x is modified, you only need to apply the first of 
the two rules:

◆ If the minimum of x is val, y must be greater than or equal to val - c.

◆ If the maximum of y is val, x must be less than or equal val + c. 

The new definition is thus:

class IlcLeConstraint: public IlcConstraintI {
  // x <= y + c
  IlcIntExp _x;
  IlcIntExp _y;
  IlcInt _c;
public:
  IlcLeConstraint(IloSolver solver, IlcIntExp x, IlcIntExp y, IlcInt c=0)
    : IlcConstraintI(solver), _x(x), _y(y), _c(c){}
  void post();
  void propagate();
  IlcBool isViolated() const;
  void metaPostDemon(IlcDemonI*);
  IlcConstraintI* makeOpposite() const;
  void xDemon(){
    _y.setMin(_x.getMin() - _c);
  }
  void yDemon(){
    _x.setMax(_y.getMax() + _c);
  }
};

ILCCTDEMON0(IlcLeConstraintXDemon,IlcLeConstraint,xDemon);

ILCCTDEMON0(IlcLeConstraintYDemon,IlcLeConstraint,yDemon);

void IlcLeConstraint::post(){
  _x.whenRange(IlcLeConstraintXDemon(getSolver(),this));
  _y.whenRange(IlcLeConstraintYDemon(getSolver(),this));
}

void IlcLeConstraint::metaPostDemon(IlcDemonI* demon){
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  _x.whenRange(demon);
  _y.whenRange(demon);
}

IlcBool IlcLeConstraint::isViolated() const {
  return _x.getMin() > _y.getMax() + _c;
}

void IlcLeConstraint::propagate(){
  xDemon();
  yDemon();
}

IlcConstraintI* IlcLeConstraint::makeOpposite() const {
  IloSolver solver=getSolver();
  return new (solver.getHeap()) IlcLeConstraint(solver,_y,_x,-_c -1);
}

IlcConstraint IlcLeConstraint(IlcIntExp x, IlcIntExp y, IlcInt c){
  IloSolver solver=x.getSolver();
  return IlcConstraint(new (solver.getHeap()) IlcLeConstraint(solver,x,y,c));
}

The differences from the previous definition appear in the member functions xDemon, 
yDemon, and propagate, and in the two demons IlcLeConstraintXDemon and  
IlcLeConstraintYDemon.

A new class of constraint using iterators

Let’s consider the constraint i ∈ E if and only if i + 1 ∉ E on a set E of integers i. In other 
words, this set of integers must not contain two consecutive values. 

The following rules serve as a model of the semantics of this constraint.

◆ The constraint is necessarily violated if i and i+1 belong to the set. 

The constraint must be propagated when new required elements are added to the set.

◆ If i is added to the set, i-1 and i+1 must be removed from the set. 

To keep this example to the point, you won’t define the negation of the constraint. That is, 
you will not define isViolated, makeOpposite or metaPost, as you would have to do if 
you were creating a metaconstraint. With that in mind, here’s the definition of the 
corresponding class of constraint.

class IlcNoConsecConstraint : public IlcConstraintI {
    // set E doesn’t contain two consecutive values.
    IlcIntSetVar _E;
public:
    IlcNoConsecConstraint(IloSolver solver, IlcIntSetVar E)
        :IlcConstraintI(solver), _E(E){}
    virtual void post         ();
    virtual void propagate    ();
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    void propagateDomain();
};

IlcBool IlcNoConsecConstraint::isViolated() {
    for(IlcIntSetIterator iter(_E.getRequiredSet()); iter.ok(); ++it) {
        IlcInt val = *iter;
              if (_E.isRequired(val +1))
                 return IlcTrue;
    }
    return IlcFalse;
}

ILCCTDEMON(NoConsecConstraintDomainDemon,
           IlcNoConsecConstraintI,
           propagateDomain);
}

void IlcNoConsecConstraint::post(){
    _E.whenDomain(NoConsecConstraintDomainDemon(getSolver(), this));
}

void IlcNoConsecConstraint::propagate() {
    for(IlcIntSetIterator iter(_E.getRequiredSet()); iter.ok(); ++iter){
        IlcInt val = *iter;
        _E.removePossible(val-1);
        _E.removePossible(val+1);
    }
}

void IlcNoConsecConstraintI::propagateDomain() {
    for(IlcIntDeltaRequiredIterator iter(_E); iter.ok(); ++iter){
        IlcInt val = *iter;
        _E.removePossible(val-1);
        _E.removePossible(val+1);
    }
}

IlcConstraint noConsecutiveValues(IlcIntSetVar E){
    IloSolver solver = E.getSolver();
    return IlcConstraint(new (solver.getHeap()) IlcNoConsecConstraint(solver, 
E));
}

Advanced issues: Propagating constraints after modifying variables 

Suppose that you have a constraint C involving the variables x, y, z, and t. Suppose that x is 
modified, then C is propagated. Now if the modification of x leads to a modification of y, z, 
and t, these variables are propagated and each of those variables will propagate C again, 
even if these variables have not been modified by constraints other than C.

Imagine that you want to avoid these repeated propagations because you happen to know 
that the propagate member function of C is costly. Also imagine that you want to 
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propagate C once for all the modifications of the variables involved in C but not for the 
modifications of each variable individually. 

There is a mechanism in Solver that meets these aims. It is possible to have constraints that 
are not propagated within demons.

Such a constraint is not propagated after each modification of each variable; rather, it is 
propagated after all its variables have been propagated.

In fact, in Solver there are two mechanisms for propagating the modifications of variables.

◆ First Level: When a variable is modified, all the demons linked to this variable are called. 
This mechanism is repeated while there is a variable for which all the demons have not 
yet been called.

◆ Second Level: The propagate function of some constraint known as a global constraint 
is called. 

If, after the termination of a propagate member function, a variable has been modified, 
you immediately return to the first level. This means that the process at the first level has 
greatest priority.

In the second level, a global constraint (say, ct) is pushed by a call to the push member 
function, like this ct->push();.

This member function says to Solver that ct is a global constraint and must be propagated 
by the second level mechanism. This member function must be called within a demon.

Consider the following example simplified for illustration: you would like to define the 
constraint x + y = s without considering modifications of s.
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The code of that constraint could be something like this:

Now you add a demon for each variable x and y, and that demon is triggered when the 
boundary of x or y is modified (that is, when a range event occurs). Let’s say this demon is 
called MySumDemon, and it takes the global constraint as a parameter. Here is the code for its 
post member function:

Now here is the code of the demon. Instead of calling a particular function of ct that you 
define, you call the push member function, like this:

How does this tactic differ from the conventional propagation mechanism? In this case, the 
demon is called, but the propagate member function of MySum is not called immediately. 
Rather, ct is pushed. When there are no more demons to trigger, the constraints that have 
been pushed are called. Furthermore, in this way, a constraint is propagated only once even 
if you push it several times.

If you want to refine the propagation mechanism, for example, if you want to treat the 
variables that have been modified in a special way, you have to manage that treatment by 

class MySum : public IlcConstraintI {
private:
IlcIntVar _x;
IlcIntVar _y;
IlcIntVar _s;
public:
MySum(IloSolver solver, IlcIntVar x, IlcIntVar y, IlcIntVar s);
void post();
void propagate();
};

MySum::MySum(IloSolver solver, IlcIntVar x, IlcIntVar y, IlcIntVar s):
IlcConstraintI(solver), _x(x), _y(y), _s(s){}

void MySum::propagate(){
        IlcInt m;
        // we compute the min of s
         m=_x.getMin() + _y.getMin();
         _s.setMin(m);
         // we compute the max of s
         m=_x.getMax() + _y.getMax();
         _s.setMax(m);
}

void MySum::post(){
        _x.whenRange(MySumDemon(getSolver(),this));
        _y.whenRange(MySumDemon(getSolver(),this));
}

ILCCTPUSHDEMON(MySumDemon, MySum){
ct->push();
}
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using internal data structures within the constraint. For example, suppose that if x is 
modified, you want to call your own function propagateX() and if y has been modified, 
you want to call your own propagateY(). To do so, you add reversible Boolean data 
members to MySum, like this:

Now you define special demons for x and for y, like this:

Now the propagate member function looks like this:

Thus you have created a global constraint that is propagated only once and propagated only 
after the propagation of variables in that constraint.

Writing a constraint: Frequency allocation

The problem is given here in the form of discrete data; that is, each frequency is represented 
by a number that can be called its channel number. For practical purposes, the network is 
divided into cells. (This problem is an actual cellular phone problem.) In each cell, there is a 
transmitter which uses different channels. The shape of the cells have been determined, as 

IlcRevBool _xIsModified
IlcRevBool _yIsModified

MySum::demonForX(){
  memorizeThatYisModified();
  push();
}

MySum::demonForY(){
  memorizeThatXIsModified();
  push();
}

ILCCTDEMON0(MySymDemonForX, MySum, demonForX);
ILCCTDEMON0(MySumDemonForY, MySum, demonForY);

void MySum::memorizeThatXisModified(){
_xIsModified=IlcTrue;
}

void MySum::propagate(){
        if (_xIsModified){
                propagateX();
              _xIsModified=IlcFalse;
        }
        if (_yIsModified){
                propagateY();
                _yIsModified=IlcFalse;
        }
}

354 I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L



well as the precise location where the transmitters will be installed. For each of these cells, 
traffic requires a number of frequencies. 

The problem of frequency assignment is to avoid interference. As a consequence, the 
distance between the frequencies within a cell must be greater than 16. To avoid inter-cell 
interference, the distance must vary because of the geography. In the example, you are 
assuming that the same frequencies can be used in the first cell and in the fourth cell, but you 
cannot use the same frequencies in the first cell and the third cell. Between two cells, the 
distance between frequencies appears in a matrix. 

Problem representation: Designing the model

You’ve decided to represent each transmitter in every cell by a finite domain variable (of 
type IlcIntVar) which takes its value from the set of available channel numbers. 

Distance constraints are expressed in a deterministic way by using the predefined symbolic 
constraint IloAbs. This deterministic expression is important with respect to the complexity 
of the algorithm, since the constraint IloAbs(X-Y) >= D replaces the disjunction of the 
two constraints X-Y >= D and Y-X >= D. This principle—of using a symbolic constraint 

const int nbCell               = 25;
const int nbAvailFreq          = 256;
const int nbChannel[nbCell] =
  { 8,6,6,1,4,4,8,8,8,8,4,9,8,4,4,10,8,9,8,4,5,4,8,1,1 };
const int dist[nbCell][nbCell] = {
  { 16,1,1,0,0,0,0,0,1,1,1,1,1,2,2,1,1,0,0,0,2,2,1,1,1 },
  { 1,16,2,0,0,0,0,0,2,2,1,1,1,2,2,1,1,0,0,0,0,0,0,0,0 },
  { 1,2,16,0,0,0,0,0,2,2,1,1,1,2,2,1,1,0,0,0,0,0,0,0,0 },
  { 0,0,0,16,2,2,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,1 },
  { 0,0,0,2,16,2,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,1 },
  { 0,0,0,2,2,16,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,1 },
  { 0,0,0,0,0,0,16,2,0,0,1,1,1,0,0,1,1,1,1,2,0,0,0,1,1 },
  { 0,0,0,0,0,0,2,16,0,0,1,1,1,0,0,1,1,1,1,2,0,0,0,1,1 },
  { 1,2,2,0,0,0,0,0,16,2,2,2,2,2,2,1,1,1,1,1,1,1,0,1,1 },
  { 1,2,2,0,0,0,0,0,2,16,2,2,2,2,2,1,1,1,1,1,1,1,0,1,1 },
  { 1,1,1,0,0,0,1,1,2,2,16,2,2,2,2,2,2,1,1,2,1,1,0,1,1 },
  { 1,1,1,0,0,0,1,1,2,2,2,16,2,2,2,2,2,1,1,2,1,1,0,1,1 },
  { 1,1,1,0,0,0,1,1,2,2,2,2,16,2,2,2,2,1,1,2,1,1,0,1,1 },
  { 2,2,2,0,0,0,0,0,2,2,2,2,2,16,2,1,1,1,1,1,1,1,1,1,1 },
  { 2,2,2,0,0,0,0,0,2,2,2,2,2,2,16,1,1,1,1,1,1,1,1,1,1 },
  { 1,1,1,0,0,0,1,1,1,1,2,2,2,1,1,16,2,2,2,1,2,2,1,2,2 },
  { 1,1,1,0,0,0,1,1,1,1,2,2,2,1,1,2,16,2,2,1,2,2,1,2,2 },
  { 0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,16,2,2,1,1,0,2,2 },
  { 0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,16,2,1,1,0,2,2 },
  { 0,0,0,1,1,1,2,2,1,1,2,2,2,1,1,1,1,2,2,16,1,1,0,1,1 },
  { 2,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,1,1,1,16,2,1,2,2 },
  { 2,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,1,1,1,2,16,1,2,2 },
  { 1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,1,1,16,1,1 },
  { 1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,1,2,2,1,16,2 },
  { 1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,1,2,2,1,2,16 }
};
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instead of the disjunction of two or more constraints—is one that can help you reduce the 
complexity of other problems as well. 

This problem, for which the data set (namely, the distance matrix) is rather small, translates 
into a quite large number of constraints—more than 8000.

Search strategy: Choosing values

The most important part of this program is related to the strategy for choosing the values to 
give to the different variables. The strategy can be described informally as trying the most 
used frequency first. Consequently, you have to keep track of which frequencies are used. 
You manage this record-keeping in an array of IlcRevInt*. (You used an array of 
IlcRevInt*, instead of an array of IlcRevInt because some C++ compilers are unable to 
initialize an array of objects.) 

A demon is activated each time a variable is bound. In that case, you increment the number 
of times that the corresponding frequency is used.

IlcRevInt** freqUsage;

class IlcFreqConstraintI : public IlcConstraintI {
protected:
  IlcIntVarArray _x;
 public:
  IlcFreqConstraintI(IloSolver s, IlcIntVarArray x)
    : IlcConstraintI(s), _x(x) {}
  ~IlcFreqConstraintI() {}
  virtual void post();
  virtual void propagate() {}
  void varDemon(IlcIntVar var);
};

ILCCTDEMON1(FreqDemon, IlcFreqConstraintI, varDemon, IlcIntVar, var);

void IlcFreqConstraintI::post () {
  IlcInt i;
  for (i = 0; i < _x.getSize(); i++)
    _x[i].whenValue(FreqDemon(getSolver(), this, _x[i]));
}

void IlcFreqConstraintI::varDemon (IlcIntVar var) {
  IlcRevInt& freq = *freqUsage[var.getValue()];
  freq.setValue(getSolver(), freq.getValue() + 1);
}

IlcConstraint IlcFreqConstraint(IloSolver s, IlcIntVarArray x) {
  return new (s.getHeap()) IlcFreqConstraintI(s, x);
}
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Using the constraint wrapper

You use the macro ILOCPCONSTRAINTWRAPPER to wrap an existing instance of 
IlcConstraint when you want to use it within Concert Technology model objects. You 
must use the member function IloCPConstraintI::use to force extraction of an 
extractable or an array of extractables: 

For more information on wrapping constraints for use with Concert Technology, see the 
documentation for the macro ILOCPCONSTRAINTWRAPPER and the class 
IloCPConstraintI in the IBM ILOG Solver Reference Manual. 

Defining the Instantiate goal

Now you can define the goal Instantiate this way:

For more information on writing your own goal and using a goal wrapper, see Chapter 18, 
Writing a Goal: Car Sequencing.

ILOCPCONSTRAINTWRAPPER1(IloFreqConstraint, solver, IloIntVarArray, _vars) {
  use(solver, _vars);
  return IlcFreqConstraint(solver, solver.getIntVarArray(_vars));
}

IlcInt bestFreq(IlcIntVar var) {
  IlcInt max = -1;
  IlcInt maxIndex = 0;
  IlcInt i;
  for(IlcIntExpIterator iter(var);iter.ok();++iter){
    i=*iter;
    if (*freqUsage[i] > max){
      max = *freqUsage[i];
      maxIndex = i;
    }
  }
  return maxIndex;
}

ILCGOAL1(Instantiate, IlcIntVar, var) {
  if (var.isBound()) return 0;
  IlcInt val = bestFreq(var);
  return IlcOr(var == val,
               IlcAnd(var != val,
                      this));
}
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Search strategy: Choice function

Next, it’s necessary to determine the order in which the different variables will be tried. 
After careful thinking and many tries, you learned that variables with the smallest domain 
must be tried first, and that in case of ties, it is best first to try variables which correspond to 
cells where there are few channels.

Each variable is therefore associated with the number of channels needed at the 
corresponding cell. The following fragment of code makes that association between a cell 
and the number of channels it needs. The number of channels is stored in the object 
associated with the variable.

Then the choice criterion is implemented like this:

Search strategy: Algorithm

It is now possible to generate the different solutions. As explained before, the instantiation 
goal first tries the most used frequency, while the generation goal chooses the variable with 
the smallest domain and the least cardinality for a cell. The following code makes those 
choices.

void SetCluster(IlcIntVar var, IlcInt clusterSize) {
  var.setObject((IlcAny) clusterSize);
}

IlcInt GetCluster(IlcIntVar var) {
  return (IlcInt) (var.getObject());
}

static IlcChooseIndex2(IlcChooseClusterFreq,
                       var.getSize(),
                       GetCluster(var),
                       IlcIntVar)

ILCGOAL1(MyGenerate, IlcIntVarArray, vars) {
  IloSolver solver = getSolver();
  IlcInt chosen = IlcChooseClusterFreq(vars);
  if(chosen == -1)
    return 0;
  return IlcAnd(Instantiate(solver, vars[chosen]),this);
}

ILOCPGOALWRAPPER1(MyIloGenerate, solver, IloIntVarArray, vars) {
  return MyGenerate(solver, solver.getIntVarArray(vars));
}
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Main program

The main program is straightforward. It uses a single array to represent all the variables, so 
“housekeeping” is simple. To access these variables, there are only two features: the function 
acc and the partialsum array. Apart from that, the program simply sets the constraints 
deterministically using IloAbs, as mentioned before. 

The function acc accesses a two-dimensional array representing the channels for each cell. 
The first index denotes the cell number. Since the number of channels per cell varies, the 
number of elements in each row in the two-dimensional array varies as well. Consequently, 
the jth element in row i has a partial sum as its index, partialSum[i]+j, where partialSum[i] is 
defined recursively, like this:

◆ At zero, partialSum[0] = 0.

◆ For i >= 1, partialSum[i] = rowSize[i-1] + partialSum[i-1] where rowSize[i] is the 
number of channels.

In the loops in this program, the indexes i, j, ii, and jj indicate that for each pair (i, j) of cells, 
and for each channel ii of i and jj of j, the distance constraint holds between such two 
channels (taken from the distance matrix).

You can see the entire program online in the file freq.cpp. The main program follows:

IlcInt partialsum[nbCell];
inline IlcInt acc(IlcInt i, IlcInt j) {
  return partialsum[i]+j;
}

int main(){
  IloEnv env;
  try {
    IloModel model(env);
    IloSolver solver(env);

    IlcInt i, ii, j, jj;
    IlcInt usedFreq = 0;
    IlcInt nbXmiter = 0;

    for (i = 0; i < nbCell; i++) {
      partialsum[i] = nbXmiter;
      nbXmiter += nbChannel[i];
    }

    IloIntVarArray X(env, nbXmiter, 0, nbAvailFreq - 1);

    for (i = 0; i < nbCell; i++)
      for (j = i; j < nbCell; j++)
        for (ii = 0; ii < nbChannel[i]; ii++)
          for (jj = 0; jj < nbChannel[j]; jj++)
            if (dist[i][j] != 0 && (i != j || ii != jj))
              model.add(IloAbs(X[acc(i,ii)] - X[acc(j,jj)]) >= dist[i][j]);

    model.add(IloFreqConstraint(env, X));
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    solver.extract(model);

    for (i = 0; i < nbCell; i++)
      for (ii = 0; ii < nbChannel[i]; ii++)
        SetCluster(solver.getIntVar(X[acc(i,ii)]), nbChannel[i]);

    freqUsage = new (env) IlcRevInt* [nbAvailFreq];
    for (i = 0; i < nbAvailFreq; i++)
      freqUsage[i] = new (env) IlcRevInt(solver);

    solver.solve(MyIloGenerate(env, X));

    for (i = 0; i < nbCell; i++) {
      for (j = 0; j < nbChannel[i]; j++)
        solver.out() << solver.getValue(X[acc(i,j)]) << "  " ;
      solver.out() << endl;
    }
    solver.out() << "Total # of sites       " << nbXmiter << endl;
    for (i = 0; i < nbAvailFreq; i++)
      if (freqUsage[i]->getValue() != 0)
        usedFreq++;
    solver.out() << "Total # of frequencies " << usedFreq << endl;
  }
  catch (IloException& ex) {
    cout << "Error: " << ex << endl;
  }
  env.end();
  return 0;
}

Complete frequency allocation program

The complete program follows. You can also view the entire program online in the file 
YourSolverHome/examples/src/freq.cpp.

#include <ilsolver/ilosolverint.h>

ILOSTLBEGIN

const int nbCell               = 25;
const int nbAvailFreq          = 256;
const int nbChannel[nbCell] =
  { 8,6,6,1,4,4,8,8,8,8,4,9,8,4,4,10,8,9,8,4,5,4,8,1,1 };
const int dist[nbCell][nbCell] = {
  { 16,1,1,0,0,0,0,0,1,1,1,1,1,2,2,1,1,0,0,0,2,2,1,1,1 },
  { 1,16,2,0,0,0,0,0,2,2,1,1,1,2,2,1,1,0,0,0,0,0,0,0,0 },
  { 1,2,16,0,0,0,0,0,2,2,1,1,1,2,2,1,1,0,0,0,0,0,0,0,0 },
  { 0,0,0,16,2,2,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,1 },
  { 0,0,0,2,16,2,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,1 },
  { 0,0,0,2,2,16,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,1 },
  { 0,0,0,0,0,0,16,2,0,0,1,1,1,0,0,1,1,1,1,2,0,0,0,1,1 },
  { 0,0,0,0,0,0,2,16,0,0,1,1,1,0,0,1,1,1,1,2,0,0,0,1,1 },
  { 1,2,2,0,0,0,0,0,16,2,2,2,2,2,2,1,1,1,1,1,1,1,0,1,1 },
  { 1,2,2,0,0,0,0,0,2,16,2,2,2,2,2,1,1,1,1,1,1,1,0,1,1 },
  { 1,1,1,0,0,0,1,1,2,2,16,2,2,2,2,2,2,1,1,2,1,1,0,1,1 },
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  { 1,1,1,0,0,0,1,1,2,2,2,16,2,2,2,2,2,1,1,2,1,1,0,1,1 },
  { 1,1,1,0,0,0,1,1,2,2,2,2,16,2,2,2,2,1,1,2,1,1,0,1,1 },
  { 2,2,2,0,0,0,0,0,2,2,2,2,2,16,2,1,1,1,1,1,1,1,1,1,1 },
  { 2,2,2,0,0,0,0,0,2,2,2,2,2,2,16,1,1,1,1,1,1,1,1,1,1 },
  { 1,1,1,0,0,0,1,1,1,1,2,2,2,1,1,16,2,2,2,1,2,2,1,2,2 },
  { 1,1,1,0,0,0,1,1,1,1,2,2,2,1,1,2,16,2,2,1,2,2,1,2,2 },
  { 0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,16,2,2,1,1,0,2,2 },
  { 0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,16,2,1,1,0,2,2 },
  { 0,0,0,1,1,1,2,2,1,1,2,2,2,1,1,1,1,2,2,16,1,1,0,1,1 },
  { 2,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,1,1,1,16,2,1,2,2 },
  { 2,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,1,1,1,2,16,1,2,2 },
  { 1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,1,1,16,1,1 },
  { 1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,1,2,2,1,16,2 },
  { 1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,1,2,2,1,2,16 }
};

IlcRevInt** freqUsage;

class IlcFreqConstraintI : public IlcConstraintI {
protected:
  IlcIntVarArray _x;
 public:
  IlcFreqConstraintI(IloSolver s, IlcIntVarArray x)
    : IlcConstraintI(s), _x(x) {}
  ~IlcFreqConstraintI() {}
  virtual void post();
  virtual void propagate() {}
  void varDemon(IlcIntVar var);
};

ILCCTDEMON1(FreqDemon, IlcFreqConstraintI, varDemon, IlcIntVar, var);

void IlcFreqConstraintI::post () {
  IlcInt i;
  for (i = 0; i < _x.getSize(); i++)
    _x[i].whenValue(FreqDemon(getSolver(), this, _x[i]));
}

void IlcFreqConstraintI::varDemon (IlcIntVar var) {
  IlcRevInt& freq = *freqUsage[var.getValue()];
  freq.setValue(getSolver(), freq.getValue() + 1);
}

IlcConstraint IlcFreqConstraint(IloSolver s, IlcIntVarArray x) {
  return new (s.getHeap()) IlcFreqConstraintI(s, x);
}

ILOCPCONSTRAINTWRAPPER1(IloFreqConstraint, solver, IloIntVarArray, _vars) {
  use(solver, _vars);
  return IlcFreqConstraint(solver, solver.getIntVarArray(_vars));
}

IlcInt bestFreq(IlcIntVar var) {
  IlcInt max = -1;
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  IlcInt maxIndex = 0;
  IlcInt i;
  for(IlcIntExpIterator iter(var);iter.ok();++iter){
    i=*iter;
    if (*freqUsage[i] > max){
      max = *freqUsage[i];
      maxIndex = i;
    }
  }
  return maxIndex;
}

ILCGOAL1(Instantiate, IlcIntVar, var) {
  if (var.isBound()) return 0;
  IlcInt val = bestFreq(var);
  return IlcOr(var == val,
               IlcAnd(var != val,
                      this));
}

void SetCluster(IlcIntVar var, IlcInt clusterSize) {
  var.setObject((IlcAny) clusterSize);
}

IlcInt GetCluster(IlcIntVar var) {
  return (IlcInt) (var.getObject());
}

static IlcChooseIndex2(IlcChooseClusterFreq,
                       var.getSize(),
                       GetCluster(var),
                       IlcIntVar)

ILCGOAL1(MyGenerate, IlcIntVarArray, vars) {
  IloSolver solver = getSolver();
  IlcInt chosen = IlcChooseClusterFreq(vars);
  if(chosen == -1)
    return 0;
  return IlcAnd(Instantiate(solver, vars[chosen]),this);
}

ILOCPGOALWRAPPER1(MyIloGenerate, solver, IloIntVarArray, vars) {
  return MyGenerate(solver, solver.getIntVarArray(vars));
}

IlcInt partialsum[nbCell];
inline IlcInt acc(IlcInt i, IlcInt j) {
  return partialsum[i]+j;
}

int main(){
  IloEnv env;
  try {
    IloModel model(env);
    IloSolver solver(env);

    IlcInt i, ii, j, jj;
    IlcInt usedFreq = 0;
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    IlcInt nbXmiter = 0;

    for (i = 0; i < nbCell; i++) {
      partialsum[i] = nbXmiter;
      nbXmiter += nbChannel[i];
    }

    IloIntVarArray X(env, nbXmiter, 0, nbAvailFreq - 1);

    for (i = 0; i < nbCell; i++)
      for (j = i; j < nbCell; j++)
        for (ii = 0; ii < nbChannel[i]; ii++)
          for (jj = 0; jj < nbChannel[j]; jj++)
            if (dist[i][j] != 0 && (i != j || ii != jj))
              model.add(IloAbs(X[acc(i,ii)] - X[acc(j,jj)]) >= dist[i][j]);

    model.add(IloFreqConstraint(env, X));

    solver.extract(model);

    for (i = 0; i < nbCell; i++)
      for (ii = 0; ii < nbChannel[i]; ii++)
        SetCluster(solver.getIntVar(X[acc(i,ii)]), nbChannel[i]);

    freqUsage = new (env) IlcRevInt* [nbAvailFreq];
    for (i = 0; i < nbAvailFreq; i++)
      freqUsage[i] = new (env) IlcRevInt(solver);

    solver.solve(MyIloGenerate(env, X));

    for (i = 0; i < nbCell; i++) {
      for (j = 0; j < nbChannel[i]; j++)
        solver.out() << solver.getValue(X[acc(i,j)]) << "  " ;
      solver.out() << endl;
    }
    solver.out() << "Total # of sites       " << nbXmiter << endl;
    for (i = 0; i < nbAvailFreq; i++)
      if (freqUsage[i]->getValue() != 0)
        usedFreq++;
    solver.out() << "Total # of frequencies " << usedFreq << endl;
  }
  catch (IloException& ex) {
    cout << "Error: " << ex << endl;
  }
  env.end();
  return 0;
}
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Output

The strategy used here allows the program to find good solutions. Indeed, on this data, it 
leads directly to the optimal solution. Here is the output:

25  41  57  73  89  105  121  137
1  21  37  53  71  87
6  23  39  55  75  103
0
2  18  34  50
4  20  36  52
75  10  27  43  59  96  112  128
13  30  46  62  80  99  115  131
13  35  51  67  83  99  115  131
19  64  80  96  112  128  144  160
0  16  32  48
8  26  42  58  74  90  106  122  138
2  24  40  56  72  88  104  120
4  28  44  60
11  30  46  62
20  36  52  68  84  100  116  132  148  164
18  34  50  66  82  98  114  130
9  25  41  57  73  89  105  121  137
7  23  39  55  71  87  103  119
5  21  37  53
10  27  43  59  75
6  22  38  54
0  21  37  53  71  87  103  128
1
3
Total # of sites       148
Total # of frequencies 95
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C H A P T E R
20

Writing a Search Limit: Car Sequencing

In this lesson, you will learn how to: 

◆ understand search limits

◆ write your own limit

◆ solve a car sequencing problem using a custom search limit

You can redefine the behavior of Solver search procedures to adapt to your particular 
problem using search limits.

Understanding search limits

The class IloSearchLimit represents search limits in an IBM® ILOG® Concert 
Technology model. The class IlcSearchLimit represents search limits internally in a 
Solver search.

Instances of the class IlcSearchLimit are handles to instances of the class 
IlcSearchLimitI and let you indicate to Solver that it should stop the search when it 
reaches a limit that you set, regardless of its progress in the search. Typical limits that you 
might set are time limits, for example.

Instances of the class  IloSearchLimit are handles to instances of the class 
IloSearchLimitI, objects linked to a model. They are allocated on the environment, an 
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instance of IloEnv, and not on the Solver reversible heap. When an instance of the class 
IloSearchLimit is used, the IloSolver::extract method is called. This member 
function returns an instance of the class IlcSearchLimit to be used during the search.

Predefined search limits in Concert Technology include IloTimeLimit, IloFailLimit, 
and IloOrLimit. For many problems, you will achieve satisfactory solutions by using 
those predefined objects. However, if you want to change search behavior, you can write 
your own implementation of one or more of the virtual member functions to get the effects 
you want. 

Writing your own search limits

To demonstrate how to write a search limit, you will write a time limit on the search. You 
will use a floating-point value to build the time limit, and this choice gives you the following 
API:

Its constructor simply initializes the _limit member.

You write a member function init to set the initial time to be used later when Solver checks 
the limit.

Now you write a member function check to compare the current time to the initial time plus 
the time limit.

class IlcTimeLimitI : public IlcSearchLimitI {
private:
  IlcFloat _startTime;
  IlcFloat _limit;
public:
  IlcTimeLimitI(IloSolver solver, IlcBool duplicate, IlcFloat l);
  void init();
  IlcBool check() const;
  IlcSearchLimitI* duplicateLimit(IloSolver);
};

IlcTimeLimitI::IlcTimeLimitI (IloSolver solver, IlcBool duplicate, IlcFloat l)
  : IlcSearchLimitI(solver, duplicate), _startTime(0.0), _limit(l) {}

void IlcTimeLimitI::init() {
  _startTime = getSolver()->getTime();
}

IlcBool IlcTimeLimitI::check() const {
  return (getSolver()->getTime() >= _startTime + _limit);
}
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The member function duplicateLimit clones the current object and sets the value of the 
duplicate parameter in the constructor to IlcTrue. It allocates the duplicated object on 
the C++ heap.

The function IlcTimeLimit returns a handle of type IlcSearchLimit built from an 
instance of the class IlcTimeLimitI. This instance is built with the duplicate parameter 
set to IlcFalse, and it must be allocated on the reversible Solver heap.

Writing a search limit: Car sequencing

You will now write a custom search limit for a car sequencing problem. Apart from the 
custom search limit, the problem is that same as that modeled in Chapter 6, Using the 
Distribute Constraint: Car Sequencing. 

Assume that you have 8 cars to paint in three available colors: green, yellow, and blue. Due 
to technical limitations on the assembly line, no more than three cars can be painted green, 
exactly three cars must be painted yellow, and no more than two cars can be painted blue. 
The first car off the assembly line cannot be painted green.

You will add a search limit that stops the search after two solutions have been found that 
contain a sequence where the sixth car is green.

IlcSearchLimitI* IlcTimeLimitI::duplicateLimit(IloSolver solver) {
  return new IlcTimeLimitI(solver, IlcTrue, _limit);
}

IlcSearchLimit IlcTimeLimit(IloSolver solver, IlcFloat l) {
  IlcSearchLimitI* limit = new (solver.getHeap()) IlcTimeLimitI(solver, 
IlcFalse, l);
  return IlcSearchLimit(limit);
}

Note: This is a simplified version of the car sequencing problem that appears in 
Chapter 18, Writing a Goal: Car Sequencing. 

Note: This example implements this unusual limit to demonstrate the fact that the limit 
behavior is completely customizable.
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Writing the custom search limit

You use the class IlcSearchLimitI to write a custom search limit:

The constructor initializes the _limit member:

The member function init stores a reference state for the node evaluator. This will be used 
when Solver checks the limit.

The member function check checks to see if the solution counter has passed the search 
limit:

The member function duplicateLimit clones the current object and sets the value of the 
duplicate parameter in the constructor to IlcTrue. It allocates the duplicated object on the 
C++ heap: 

class IlcMyLimitI : public IlcSearchLimitI {
private:
  IlcInt& _counter;
  IlcInt _limit;
public:
  IlcMyLimitI(IloSolver, IlcBool, IlcInt& counter, IlcInt limit);
  void init(const IlcSearchNode);
  IlcBool check(const IlcSearchNode) const;
  IlcSearchLimitI* duplicateLimit(IloSolver);
};

IlcMyLimitI::IlcMyLimitI (IloSolver s, IlcBool dup, IlcInt& counter,
                              IlcInt limit) :
  IlcSearchLimitI(s, dup), _counter(counter), _limit(limit) {}

void IlcMyLimitI::init(const IlcSearchNode) {}

IlcBool IlcMyLimitI::check(const IlcSearchNode node) const {
  if (_counter >= _limit) {
    node.getSolver().out()
      << "Limit crossed: the counter has attained the limit "
      << _limit << endl;
    return IlcTrue;
  }
  return IlcFalse;
}

IlcSearchLimitI* IlcMyLimitI::duplicateLimit(IloSolver s) {
  return new IlcMyLimitI(s, IlcTrue, _counter, _limit);
}
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The function IlcMyLimit returns a handle of type IlcSearchLimit built from an 
instance of the class IlcMyLimitI. This instance is built with the duplicate parameter 
set to IlcFalse, and it must be allocated on the reversible Solver heap: 

Custom search limits in a Concert Technology model

Instances of the class  IloSearchLimit are objects linked to a model. They are allocated 
on the environment, an instance of IloEnv, and not on the Solver reversible heap. When an 
instance of this class is used, the IloSolver::extract method is called. This method 
returns an instance of the class IlcSearchLimit to be used during the search.

To use a custom search limit in a Concert Technology model, you must use the class 
IloSearchLimitI. 

The constructor initializes the _limit member: 

The member function extract returns the internal search limit extracted for solver from 
the invoking search limit of the model:

The member function makeClone is called internally to duplicate the current search limit:

IlcSearchLimit IlcMyLimit(IloSolver s, IlcInt& c, IlcInt l) {
  IlcSearchLimitI* limit = new (s.getHeap()) IlcMyLimitI(s, IlcFalse , c, l);
  return IlcSearchLimit(limit);
}

class IloMyLimitI : public IloSearchLimitI {
  IloInt& _counter;
  IloInt _limit;
public:
  IloMyLimitI(IloEnvI*, IloInt&, IloInt);
  virtual IlcSearchLimit extract(const IloSolver) const;
  virtual IloSearchLimitI* makeClone(IloEnvI* env) const;
  virtual void display(ILOSTD(ostream&)) const;
};

IloMyLimitI::IloMyLimitI(IloEnvI* e, IloInt& counter, IloInt limit) :
  IloSearchLimitI(e), _counter(counter), _limit(limit) {}

IlcSearchLimit IloMyLimitI::extract(const IloSolver solver) const {
  return IlcMyLimit(solver, _counter, _limit);
}

IloSearchLimitI* IloMyLimitI::makeClone(IloEnvI* env) const {
  return new (env) IloMyLimitI(env, _counter, _limit);
}
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The member function display prints the invoking search limit on an output stream:

The function IloMyLimit returns a handle of type IloSearchLimit built from an 
instance of the class IloMyLimitI. 

Using the search limit in a goal

The custom search limit is used in finalGoal. The solution counter used by the search 
limit only increments if the sixth car in the sequence is green. When the solution counter 
reaches the search limit, the search is stopped.

Complete program

The complete program follows. You can also view the entire program online in the file 
YourSolverHome/examples/src/carseq_limit.cpp. 

#include <ilsolver/ilosolver.h>

ILOSTLBEGIN

class IlcMyLimitI : public IlcSearchLimitI {
private:
  IlcInt& _counter;

void IloMyLimitI::display(ostream& str) const {
  str << "IloMyLimit(" << _counter << ", " << _limit << ") ";
}

IloSearchLimit IloMyLimit(const IloEnv env, IloInt& counter, IloInt limit) {
  return new (env) IloMyLimitI(env.getImpl(), counter, limit);
}

    IloSolver solver(model);
    IloGoal goal = IloGenerate(env, cars, IloChooseMinSizeInt);
    IloInt counter=0;
    IloSearchLimit limit = IloMyLimit(env, counter, 2);
    IloGoal finalGoal = IloLimitSearch(env, goal, limit);
    solver.startNewSearch(finalGoal);
    while (solver.next())
      {
      solver.out() << solver.getStatus() << " Solution" << endl;
      if (solver.getValue(cars[5]) == 0) { // Car 6 is green
        for (i = 0; i < nbCars; i++) {
          solver.out() << "Car " << i+1 <<  " color:     "
                       << Names[(IloInt)solver.getValue(cars[i])]
                       << endl;
        }
        counter++;
      }
    }
      solver.endSearch();
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  IlcInt _limit;
public:
  IlcMyLimitI(IloSolver, IlcBool, IlcInt& counter, IlcInt limit);
  void init(const IlcSearchNode);
  IlcBool check(const IlcSearchNode) const;
  IlcSearchLimitI* duplicateLimit(IloSolver);
};

IlcMyLimitI::IlcMyLimitI (IloSolver s, IlcBool dup, IlcInt& counter,
                              IlcInt limit) :
  IlcSearchLimitI(s, dup), _counter(counter), _limit(limit) {}

void IlcMyLimitI::init(const IlcSearchNode) {}

IlcBool IlcMyLimitI::check(const IlcSearchNode node) const {
  if (_counter >= _limit) {
    node.getSolver().out()
      << "Limit crossed: the counter has attained the limit "
      << _limit << endl;
    return IlcTrue;
  }
  return IlcFalse;
}

IlcSearchLimitI* IlcMyLimitI::duplicateLimit(IloSolver s) {
  return new IlcMyLimitI(s, IlcTrue, _counter, _limit);
}

IlcSearchLimit IlcMyLimit(IloSolver s, IlcInt& c, IlcInt l) {
  IlcSearchLimitI* limit = new (s.getHeap()) IlcMyLimitI(s, IlcFalse , c, l);
  return IlcSearchLimit(limit);
}

class IloMyLimitI : public IloSearchLimitI {
  IloInt& _counter;
  IloInt _limit;
public:
  IloMyLimitI(IloEnvI*, IloInt&, IloInt);
  virtual IlcSearchLimit extract(const IloSolver) const;
  virtual IloSearchLimitI* makeClone(IloEnvI* env) const;
  virtual void display(ILOSTD(ostream&)) const;
};

IloMyLimitI::IloMyLimitI(IloEnvI* e, IloInt& counter, IloInt limit) :
  IloSearchLimitI(e), _counter(counter), _limit(limit) {}

IlcSearchLimit IloMyLimitI::extract(const IloSolver solver) const {
  return IlcMyLimit(solver, _counter, _limit);
}

IloSearchLimitI* IloMyLimitI::makeClone(IloEnvI* env) const {
  return new (env) IloMyLimitI(env, _counter, _limit);
}

void IloMyLimitI::display(ostream& str) const {
  str << "IloMyLimit(" << _counter << ", " << _limit << ") ";
}
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IloSearchLimit IloMyLimit(const IloEnv env, IloInt& counter, IloInt limit) {
  return new (env) IloMyLimitI(env.getImpl(), counter, limit);
}

const char* Names[] = {"green", "yellow", "blue"};

int main() {
  IloEnv env;
  try {
    IloModel model(env);
    const IloInt nbCars    = 8;
    const IloInt nbColors = 3;
    IloInt i;
    IloIntVarArray cars(env, nbCars, 0, nbColors-1);
    IloIntArray colors(env, 3, 0, 1, 2);

    IloIntVarArray cards(env, nbColors);
    cards[0] = IloIntVar(env, 0, 3);
    cards[1] = IloIntVar(env, 3, 3);
    cards[2] = IloIntVar(env, 0, 2);

    model.add(IloDistribute(env, cards, colors, cars));
    model.add(cars[0] != 0);

    IloSolver solver(model);
    IloGoal goal = IloGenerate(env, cars, IloChooseMinSizeInt);
    IloInt counter=0;
    IloSearchLimit limit = IloMyLimit(env, counter, 2);
    IloGoal finalGoal = IloLimitSearch(env, goal, limit);
    solver.startNewSearch(finalGoal);
    while (solver.next())
      {
      solver.out() << solver.getStatus() << " Solution" << endl;
      if (solver.getValue(cars[5]) == 0) { // Car 6 is green
        for (i = 0; i < nbCars; i++) {
          solver.out() << "Car " << i+1 <<  " color:     "
                       << Names[(IloInt)solver.getValue(cars[i])]
                       << endl;
        }
        counter++;
      }
    }
      solver.endSearch();
  }
  catch (IloException& ex) {
    cout << "Error: " << ex << endl;
  }
  env.end();
  return 0;
}
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C H A P T E R
21

Using Impacts during Search

In this lesson, you will learn how to: 

◆ understand impacts

◆ create customizable goals for integer variables

◆ restart the search while using impacts

During search, when making choices on a variable x, like x = a, constraint propagation 
reduces domains. Impacts produce a certain measure of the domain reduction of such an 
instantiation that gives rise to a family of efficient search strategies.

Understanding impacts

The impact of an assignment x = a is an estimation of the proportion of the search space 
that this assignment eliminates by constraint propagation. This proportion is computed by 
considering the size of variable domains before and after the assignment. In a way, the 
impact is an estimation of how constrained the assignment is. 

In general, the impact of a given assignment x = a does not vary much from one node of the 
search tree to another. As a consequence, the value used is the average of the eliminated 
proportion observed on every other assignment of x = a, at a given point in the search. 
Moreover, impacts are available without significant overhead. 
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In practical terms, to use impacts it is necessary to add an instance of 
IlcConstraintAggregator and to specify the variable on which you want to produce 
impacts. For example, if vars is such an array of variables, you need to call the following 
function before model extraction:

The (averaged) impact of the assignment x = a is obtained by calling the function: 

The countFails parameter specifies if failures of the instantiation x = a are counted in 
the average. A failure has an impact equal to 1 because it eliminates the whole search space 
below it.

For a variable it is assumed that, a priori, every value of the variable will be tried to find a 
solution. Consequently, the impact is the sum of the impacts of the values in the current 
domain of the variable. In other words, it is an estimation of the effort needed to explore the 
whole search space starting with this variable.

The impact of a variable is obtained by calling the function:

It is important to note that for impacts to be updated, you must use the goals returned by the 
following functions, which make choices: 

In some situations (for example, when the impacts vary more than expected in the search 
tree) it is worthwhile to compute the impact of an assignment at a node instead of using the 
averaged observations. This value is obtained for values and variables with the functions:

Note that a call to this function does instantiations and propagation to compute the local 
impact. Therefore, it can create a significant overhead. 

Impact-based search strategies

In general, a good search strategy starts by: 

◆ first instantiating variables that are the most constrained—since you have to give a value 
to every variable it is better to start with the most constrained first 

solver.use(IlcImpactInformation(env, vars));

IlcFloat IloSolver::getImpact(const IlcIntVar x, 
                              IlcInt a, 
                              IlcBool countFails = IlcTrue) const;

IlcFloat IloSolver::getImpact(const IlcIntVar x) const;

IlcGoal IlcSetValue(const IlcIntVar var, const IlcInt val);
IlcGoal IlcRemoveValue(const IlcIntVar var, const IlcInt val);

  IlcFloat IloSolver::getLocalImpact(const IlcIntVar x, IlcInt v) const;
  IlcFloat IloSolver::getLocalVarImpact(const IlcIntVar x, 
                                        IlcInt depth = -1) const;
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◆ once a variable is chosen, first try the values that are the least constrained in order to have 
room for making better choices in the future

Using impacts, this means that you start with the variable x having the largest value returned 
by the call solver.getImpact(x); and a value a of the domain of x having the lowest 
value returned by the call solver.getImpact(x, a);.

The default goal described in the next section provides examples of strategies using impacts. 

Initialization of impacts 

Impacts are obtained from observations of instantiation during the search tree. However, 
before starting the search no impacts are available and this can lead to bad choices of 
variables and values at the beginning of the search.

To initialize impacts a goal is available that performs a dichotomous search on each variable. 
The goal is:

It performs a search on each variable on which impacts were required when the function 
solver.use(IlcImpactInformation(env, vars)) was called. 

The parameter depth controls the depth of the dichotomous search. The larger the depth, 
the more accurate the impact values are. When depth equals -1, there is no limit imposed on 
the depth of dichotomy. 

Customizable Goal for Integer Variables

The class IloCustomizableGoal is a goal for integer variables based on filters. It 
implements a family of strategies based on filters. An instance of IloCustomizableGoal 
is created with an array of variables to perform the search on:

Variables and value filters can then be added to this goal to define a search strategy. 

Variable Filters 

A filter takes as input an array of variables. It evaluates them once and selects a subset. The 
most basic filter contains an evaluator (see the concept Selectors in the IBM ILOG Solver 
Reference Manual). It evaluates each variable and selects the variables that have the smallest 
evaluation. 

IloGoal IloInitializeImpactGoal(IloEnv env, IloInt depth = -1);

  IloCustomizableGoal d = IloCustomizableGoal(env, x);
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For example, if we consider the evaluator that returns the domain size:

we can build a basic filter with it and add it to an instance g of IloCustomizableGoal 
with the call:

It will filter variables and keep only the one that has the smallest domain. Ties can be broken 
by adding another filter that will select variables from those remaining after filtering with 
SizeEvaluator. If there are still ties and no filter to break them, then the variable selected 
is the one having the smallest index in the array vars. 

Other ways of selecting variables are available. A filter added with the following member 
function selects at least number variables among the best ones:

The following member function selects a number of variables that is proportional to the size 
of the input. The value proportion must be strictly greater than zero and less than or equal 
to 1: 

The following function selects variables that are at a distance of at most tol from the best 
evaluation: 

The following function does the same but the tolerance is relative: 

To illustrate the effects of different filters assume a filter with an input of 10 variables whose 
evaluations are:

The smallest evaluation is 1.0. A basic filter will select two variables: x2 and x6 because 
they have the same —best—evaluation. A filter with an absolute tolerance of 0.1 will select 

ILOEVALUATOR0(SizeEvaluator, IlcIntVar, x) {
  return x.getSize(); 
}

g.addFilter(SizeEvaluator(env));

void IloCustomizableGoal::addMinNumberFilter(IloEvaluator<IlcIntVar> e,
                                             IlcFloat number);

void IloCustomizableGoal::addMinProportionFilter(IloEvaluator<IlcIntVar> e,
                                                 IlcFloat proportion);

void IloCustomizableGoal::addAbsoluteToleranceFilter(IloEvaluator<IlcIntVar> e,
                                                     IlcFloat tol);

void IloCustomizableGoal::addRelativeToleranceFilter(IloEvaluator<IlcIntVar> e,
                                                     IlcFloat tol);

Table 21.1 Filter with an input of 10 variables

x1 x2 x3 x4 x5 x6 x7 x8 x9

1.1 1.0 1.1 1.7 1.1 1.0 1.2 1.3 1.5
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all variables having an evaluation between 1.0 (the best one) and 1.1. namely x1, x2, x3, x5, 
and x6. A filter with a relative tolerance of 0.2 will select six variables: x1, x2, x3, x4, x5, 
and x6. A filter with a minimum number of three will select x1, x2, x3, x5, and x6. Note 
that in this case we had to keep five variables because there are only two variables with the 
best evaluation and x1, x3, and x5 have the second best evaluation. 

There are a certain number of already defined functions returning evaluators, among them 
the following, which return, respectively, the impact, the local impact, and the domain size 
of a variable:

There is also the following function, which returns a number between 0 and 1. This evaluator 
is used to build a filter that chooses randomly to break remaining ties.:

Value Filters 

Filters over values are defined in the same way variable evaluators are. However, value 
evaluators need to have the selected variable in a context. For example, if we consider the 
evaluator that returns the impact of a variable:

we can build a basic filter with it and add it to an instance g of IloCustomizableGoal 
with the call

As for variable filters, there are a number of already defined functions returning evaluators, 
such as:

which return, respectively, the impact of a value and the domain size of a variable.

IloEvaluator<IlcIntVar> IlcImpactVarEvaluator(IloEnv env); 
IloEvaluator<IlcIntVar> IlcImpactVarEvaluator(IloSolver solver);
IloEvaluator<IlcIntVar> IlcLocalImpactVarEvaluator(IloEnv env, IloInt depth); 
IloEvaluator<IlcIntVar> IlcLocalImpactVarEvaluator(IloSolver solver, 
                                                   IloInt depth); 
IloEvaluator<IlcIntVar> IlcSizeVarEvaluator(IloEnv env); 
IloEvaluator<IlcIntVar> IlcSizeVarEvaluator(IloSolver solver); 

IloEvaluator<IlcIntVar> IlcRandomVarEvaluator(IloEnv env); 
IloEvaluator<IlcIntVar> IlcRandomVarEvaluator(IloSolver solver); 

ILOCTXEVALUATOR0(IlcImpactValueEvaluator, IlcInt, value, IlcIntVar, y) {
  return y.getSolver().getImpact(y, value);
}

g.addFilter(ImpactValueEvaluator(env));

IloEvaluator<IlcInt> IlcImpactValueEvaluator(IloEnv env);
IloEvaluator<IlcInt> IlcImpactValueEvaluator(IloSolver solver);
IloEvaluator<IlcInt> IlcRandomValueEvaluator(IloEnv env);
IloEvaluator<IlcInt> IlcRandomValueEvaluator(IloSolver solver);
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Selection

An instance of IloCustomizableGoal is created with an array of variables to perform the 
search on:

By default the goal contains filters to perform selection in the following way:

1. Select a variable by:

● getting the variable with the largest impact

● breaking ties randomly

2. Select a value for the variable selected at Step 1 by:

● getting the value with the smallest impact

● breaking ties randomly

If we want to change these defaults one can add filters. An addition of a variable filter will 
discard the default filters for variables. An addition of a value filter will discard the default 
filters for the values. 

To define a goal that selects at least five variables with the largest impact and then selects, 
among these promising variables, those having the largest local impact and that, finally 
breaks ties randomly, you can write: 

To select the value that has the smallest impact and to break ties randomly you can write: 

Of course the class IloCustomizableGoal is not devoted to strategies based on impacts 
only but can also be used to select variables according to other criteria like the domain size, 
the variable degree, or any evaluator that a user can define. 

Restarts

As mentioned in the previous section, impacts are learned during search from the 
observation of domain reduction. As the search progresses, more accurate impacts will be 

IloCustomizableGoal d = IloCustomizableGoal(env, x);

  IloEvaluator<IlcIntVar> e1 = -IlcImpactVarEvaluator(env);
  IloEvaluator<IlcIntVar> e2 = -IlcLocalImpactVarEvaluator(env, -1);
  IloEvaluator<IlcIntVar> e3 = IlcRandomVarEvaluator(env);
  d.addMinNumberFilter(e1, 5);
  d.addFilter(e2);
  d.addFilter(e3);

  IloEvaluator<IlcInt> e4 = IlcImpactValueEvaluator(env);
  IloEvaluator<IlcInt> e5 = IlcRandomValueEvaluator(env);
  d.addFilter(e4);
  d.addFilter(e5);
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found and you may need to restart the search to make better choices at the beginning where 
this is crucial. 

Additionally, when using randomness to break ties between equivalently good choices, 
depth-first search will try another good choice only when the whole subtree will be explored. 
It may be worth restarting the search from time to time in order to give different parts of the 
search tree that are equally promising an equal chance to be visited. 

For this purpose, the following function creates a goal that calls g until the number of fails of 
this goal reaches failLimit, then it sets failLimit to failLimit*factor and calls g 
again: 

For example, in the YourSolverHome\examples\src\magicsq_impact.cpp file, the 
default goal can be restarted with the fail limit of 1000 for each run by solving the goal:

IloGoal IloRestartGoal(IloEnv env, 
                       IloGoal g, 
                       IlcInt failLimit, 
                       IlcFloat factor = 1.0);

 case 1: g =    IloInitializeImpactGoal(env, -1) 
                && IloRestartGoal(env, IloCustomizableGoal(env, square), 1000); 
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C H A P T E R
22

Advanced Modeling with Set Variables:
Configuring Tankers

In this lesson, you will learn more about how to: 

◆ model with set variables

◆ use the function IloFunction to define accessors

◆ use the constraints IloEqSum, IloEqMin, IloEqMax, IloEqUnion, and 
IloEqPartition

This chapter uses constraints on set variables to solve a configuration problem of how to fill 
tanks and configure them on trucks to meet customer orders for various products. One of the 
main advantages of set variables is that they facilitate object-oriented modeling of problem 
knowledge. A set variable is capable of representing one-to-many (that is, 1–N) relations 
between objects with a single variable. In that way, it is possible to encapsulate in a class all 
the attributes, relations, and constraints corresponding to a family of objects. You take 
advantage of that capability in the object model you design for this configuration problem.

Describe

Let’s assume you have a collection of customer orders to fulfill where the problem is to 
compute the minimal set of trucks needed to deliver the orders to the customers.
I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L 381



Our imaginary company is able to deliver five types of products. Each order defines the 
quantity to deliver for each type of product.

A truck is composed of a set of tanks. A truck can be configured with at most five different 
tanks. There are five types of tanks that correspond to five different capacities.

You assign an order to one and only one truck. Within an order, you must assign the products 
to the tanks of the truck. You must assign a product in an order to one and only one tank. In 
a single tank, you can mix the products of different orders, but all these products mixed in 
one tank must be of the same type.

There is a limit on the overall capacity of each truck: a truck cannot be loaded over 12000 
units. A tank cannot be loaded over its capacity.

There is a limit on the types of products that you can assign to a truck: a truck cannot contain 
more than three different types of products.

Two of the products are incompatible. That is, they cannot be transported in the same truck. 

Model

As you design an object model for this problem, you consider the classes, the attributes, and 
the relations to declare as well as the constraints to define on them. The knowledge 
contained in the problem description (that is, the attributes, relations, and constraints) can be 
encapsulated in a few classes that you define here. Constraints are defined in class 
constructors so that they are automatically added for each new instance of the class.

You can use these different classes to model the problem:

◆ OrderI represents the orders to fulfill on trucks

◆ ProductI represents the quantity of a given type of product in an order

◆ TruckI represents a truck

◆ TankI represents a tank on a truck

After you define those classes, you will define accessors for their attributes so that the 
attributes can be used directly by constraints on set variables.
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Declaring the variables

To represent the orders the imaginary company receives from customers, you first define the 
class OrderI, identifying each order uniquely and indicating its products, like this:

You group orders (instances of OrderI) into a global array (Orders) to represent all the 
orders to fulfill.

To represent the products demanded within an order, you define the class ProductI, 
indicating which order, which type of product, and which quantity, like this:

The five different types of products are represented by the integers {1, 2, 3, 4, 5}. You say 
that 3 and 4 are the two types that cannot be transported in the same truck.

You also represent the trucks by a class—TruckI—with a unique identifier for each truck, 
an indicator of whether or not that truck is used, a set variable to show which orders are 

class OrderI {
private:
  IloInt       _id;
  IloInt       _quantity;
  IloAnySetVar _products;
public:
  OrderI(IloInt id) : _id(id), _quantity(0) {}

  IloInt       getId()       const { return _id;  }
  IloInt       getQuantity() const { return _quantity; }
  void         setQuantity(IloInt quantity) { _quantity = quantity; }
  IloAnySetVar getProducts() const { return _products; }

  void makeProductVar(IloEnv env, IloAnyArray prods);

  void printName(ostream& out) const;
};

class ProductI {
protected:
  Order    _order;
  IloInt   _type;
  IloInt   _quantity;
public:
  ProductI(Order order, IloInt type, IloInt quantity)
    :_order(order) ,_type(type), _quantity(quantity) {}

  Order    getOrder() const    { return _order; }
  IloInt   getType() const     { return _type; }
  IloInt   getQuantity() const { return _quantity; }

  void printName(ostream& out) const;
};
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filled by that truck, and another set variable to indicate which tanks make up the truck. You 
define that class like this:

To represent the tanks that make up a truck, you first enumerate the capacity of the different 
types of tanks: {1000, 2000, 3000, 4000, 5000}. Then you define the class TankI, 
like this:

Using these classes, you can express many of the constraints in the problem through their 
constructors, but before you add the constraints, you must look more closely at how to 
access attributes of those classes when their objects serve in the model as elements in the 
domain of a set.

class TruckI {
private:
  IloInt              _id;
  IloBoolVar           _used;
  IloAnySetVar        _orders;
  IloArray<Tank>      _tanks;
  IloAnySetVar        _tankVar;
public:
  TruckI(IloModel model, IloInt id);

  IloInt               getId() const        { return _id; }
  IloBoolVar            getUsed() const      { return _used; }
  IloAnySetVar         getOrders() const    { return _orders; }
  IloInt               getNbTanks() const   { return 5; }
  IloArray<Tank>       getTanks() const     { return _tanks; }
  IloAnySetVar         getTankVar() const   { return _tankVar; }

  void display(IloSolver solver) const;
};

class TankI {
protected:
  IloInt       _id;
  IloIntVar    _type;
  IloIntVar    _load;
  IloInt       _capaMax;
  IloAnySetVar _prodOrders;
public:
  TankI(IloModel model, IloInt id, IloInt capaMax);

  IloInt       getId() const            { return _id; }
  IloIntVar    getType() const          { return _type; }
  IloIntVar    getLoad() const          { return _load; }
  IloInt       getCapacityMax() const   { return _capaMax; }
  IloAnySetVar getProductOrders() const { return _prodOrders; }

  void display  (IloSolver solver) const;
  void printName(ostream& out) const {
    out << "Tank#" << _id;
  }
};
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Defining accessors for attributes of set elements

In this model, as you consider a set of tanks on a truck, there are attributes of a tank (for 
example, its capacity, its current load, the type of product it currently contains) that you want 
to access in the constraints. Likewise, as you assign a set of orders to the tanks of a truck, 
you know that there are attributes of the orders that figure in the problem constraints, so you 
need ways of accessing those attributes. In short, you need set variables to represent 
constrained relations between an object (a truck, a tank, an order) and a set of related objects 
(the set of tanks of a truck, the set of orders fulfilled by a truck, and so on). You also need to 
access the attributes of the related objects to be able to constrain the relation; for example, 
the cumulative quantities assigned to a truck must be less than or equal to the capacity of the 
truck. Solver offers you a useful way of accessing such set object attributes.

To define such accessors, use the predefined Solver class IloFunction.

Accessing the quantity of an order: OQuantityI

To access the quantity of an order, define OQuantityI, like this:

Accessing the load in a tank: TankLoadI

To access the load in a tank, define TankLoadI, like this:

class OQuantityI : public IloFunctionI<IloAny,IloInt> {
public:
  OQuantityI(IloEnvI* e) : IloFunctionI<IloAny,IloInt>(e) {}
  IloInt getValue(IloAny elt);
};

IloInt OQuantityI::getValue(IloAny elt) {
  return ((Order)elt)->getQuantity();
}

IloFunction<IloAny,IloInt> OQuantity(IloEnv env) {
  return new (env) OQuantityI(env.getImpl());
}

class TankLoadI : public IloFunctionI<IloAny,IloIntVar> {
public:
  TankLoadI(IloEnvI* e) : IloFunctionI<IloAny,IloIntVar>(e) {}
  IloIntVar getValue(IloAny elt);
};

IloIntVar TankLoadI::getValue(IloAny elt) {
  return ((Tank)elt)->getLoad();
}

IloFunction<IloAny,IloIntVar> TankLoad(IloEnv env) {
  return new (env) TankLoadI(env.getImpl());
}
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Accessing the products in a tank: TankProductI

To access the products in a tank, define TankProductI, like this:

Adding constraints

With the classes you have defined for this model, and with the accessors for attributes of 
objects that are elements in the domains of sets, you can now represent the constraints of the 
problem. In fact, most of the constraints mentioned in the problem description can be added 
to the model by the constructors of the classes you just defined. You will be using the 
predefined Concert Technology constraints IloEqSum, IloEqMin, IloEqMax, and 
IloEqUnion to define the problem constraints on set variables.

Constraints in the Tank constructor

In the assignments of orders to trucks, you must assign products to tanks while respecting 
the constraint that you must not mix products of different types within a tank. To make sure 
a tank contains only products of the same type, regardless of which order the product fulfills, 
you add these constraints in the constructor of Tank:

The capacity of a tank is taken into account in the constructor of the _load variable. The 
following constraint uses IloEqSum to compute the load of a given tank:

Constraints in the Truck constructor

In the model, a truck is used if an order is assigned to it. If a truck is not used, you must not 
assign an order to it. As you continue to define constraints in the class constructors, you use 

class TankProductI : public IloFunctionI<IloAny,IloAnySetVar> {
public:
  TankProductI(IloEnvI* e) : IloFunctionI<IloAny, IloAnySetVar>(e) {}
  IloAnySetVar getValue(IloAny elt);
};

IloAnySetVar TankProductI::getValue(IloAny elt) {
  return ((Tank)elt)->getProductOrders();
}

IloFunction<IloAny,IloAnySetVar> TankProducts(IloEnv env) {
  return new (env) TankProductI(env.getImpl());
}

  model.add( IloEqMin(env,  _prodOrders, _type, PType(env)) );
  model.add( IloEqMax(env,  _prodOrders, _type, PType(env)) );

  model.add( IloEqSum(env,  _prodOrders, _load, PQuantity(env)) );
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the cardinality variable (supplied by the predefined Solver function IloCard) of the set 
variable _orders to indicate whether or not a particular truck is used, like this:

Likewise, in the constructor of TruckI, you express the idea that the two products 3 and 4 
are incompatible and thus cannot be loaded on the same truck by adding a constraint on the 
set of different product types assigned to the tanks of the trucks. You define a constrained set 
variable ttanks; its domain represents the types of the possible products. Then, you use the 
predefined Concert Technology function IloEqUnion to constrain ttanks to correspond to 
the types of the possible products for the possible tanks of the truck at hand. 

You define a set variable tprodVar to represent the products in the tanks of the truck. To do 
so, you use the predefined Solver constraint IloEqUnion again with TankProducts, the 
accessor you defined in “Accessing the products in a tank: TankProductI” on page 386, in 
this way:

Likewise, you define a constrained set variable oprodVar to represent the products in the 
orders fulfilled by a truck, and you use IloEqUnion with OrderProducts to take the 
union of products in orders assigned to the truck, like this:

Then you combine those two set variables in a constraint to make sure that the products 
filling the tanks on a truck are exactly the products demanded in the orders fulfilled by that 
truck.

To be sure that all the products of the orders fulfilled by the truck are assigned to one and 
only one tank of the truck, you define a partition constraint between the previously defined 
set variable oprodVar (that represents the products assigned globally to the truck through 
the orders) and the set variable prodVars[i] of each possible tank of the truck (that 

  _used = IloBoolVar(env);
  model.add( _used == (IloCard(_orders) > 0));

  IloNumSetVar ttanks(env, IloIntArray(env, 5, 1, 2, 3, 4, 5));
  model.add(IloEqUnion(env, _tankVar, ttanks, TankType(env)));
  model.add( ! (IloMember(env, 3, ttanks) && IloMember(env, 4, ttanks)) );

  IloAnySetVar tprodVar(env, prodOrdersArray);
  model.add( IloEqUnion(env, _tankVar, tprodVar, TankProducts(env) ));

  IloAnySetVar oprodVar(env, prodOrdersArray);
  model.add( IloEqUnion(env, _orders, oprodVar,  OrderProducts(env) ));

  model.add( tprodVar == oprodVar );
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represents the products assigned to that particular tank). You use the predefined Solver 
constraint IloEqPartition like this:

Also in the constructor of TruckI, you enforce the stipulation that no more than three 
different types of products can be loaded on the same truck. To do so, you directly constrain 
the cardinality IloCard of the variable ttanks which represents this set of types, like this:

To insure that the 12000-unit limit on the maximum load of a truck is respected, you use the 
predefined constraint IloEqSum to accumulate the quantities specified in orders assigned to 
a given truck. You add a constraint that the cumulative load must be less than or equal to the 
limit, and you also add a constraint (again using IloEqSum) that the load on the truck is the 
same as the sum of the loads in its tanks. All those steps occur in the constructor of TruckI, 
like this:

Solve

With that model, you know that in the worst case, if you have N orders, and you assign one 
order per truck, you surely have a solution using N trucks, though it is not necessarily an 
optimal one. To find an optimal solution, you first look for an assignment of orders to trucks 
that uses at most N trucks. Let’s say it uses only N' trucks, where N' is less than or equal to N. 
If you find such an assignment, you look for a solution using at most N'-1 trucks. If you are 
unable to find such an N', the optimal is N.

The algorithm looks like this:

  model.add( IloEqPartition(env,  oprodVar, prodVars ) );

  model.add( IloCard( ttanks ) <= 3 );

  IloIntVar load(env, 0, 12000);

  model.add( IloEqSum(env,  _orders, load,  OQuantity(env) ));
  model.add( IloEqSum(env,  _tankVar, load, TankLoad(env) ));

For N orders, M represents the number of trucks needed.
M = N
Loop {

Eliminate N - M trucks. Mark them as unused.
Search for an assignment on M' trucks with M' <= M
If (not found)
then

Optimal is at M + 1
else

M = M' - 1
}
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The algorithm to search for an assignment to at most M trucks is decomposed into two 
nested phases:

◆ Assign orders to trucks.

◆ Each time an order is assigned, assign its products to tanks on the chosen truck.

To guide that search, you implement two goals. As the next branch to explore, one goal 
chooses the truck that is hardest to fill—hardest in the sense that it has the smallest domain. 
The other goal chooses the tank that is hardest to fill, also in the sense that it has the smallest 
domain.

Goal to choose truck

As you search for an assignment of orders to trucks, you first try to assign the largest order, 
that is, the order with the greatest quantity. For a given order, you first try the “hardest” 
truck; that is, the one with the smallest domain; in other words, the one for which you have 
the fewest possible choices of orders that fit.

Here is the goal to choose the hardest truck to fill:

Truck ChooseTruck(IloSolver solver,
                   Order order,
                   IloInt nbTrucks, IloArray<Truck> trucks,
                   IlcBool aNewOne) {
  Truck best=0;
  IloInt eval = IlcIntMax;
  for(IloInt i=0; i < nbTrucks; i++) {
    IlcAnySetVar oVar = solver.getAnySetVar(trucks[i]->getOrders());
    IloInt cardMin = IlcCard(oVar).getMin();
    if (aNewOne) {
      if (cardMin > 0)
        continue;
    } else {
      if (cardMin == 0)
        continue;
      if (oVar.isRequired(order))
        return trucks[i];
    }
    if (! oVar.isPossible(order))
      continue;
    IloInt size = oVar.getPossibleSet().getSize();
    if (size < eval) {
      eval = size;
      best = trucks[i];
    }
  }
  return best;
}

ILCGOAL3(AssignOrder, Order, order, IloInt, nbTrucks, IloArray<Truck>, trucks) 
{
  IloSolver solver = getSolver();
  //Choose first an already used truck
  Truck t = ChooseTruck(solver, order, nbTrucks, trucks, IlcFalse);
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  if (t == 0) {
    //Choose a new truck
    t = ChooseTruck(solver, order, nbTrucks, trucks, IlcTrue);
  }
  if (t == 0)
    fail();

  IlcAnySetVar tVar = solver.getAnySetVar(t->getOrders());
  if (tVar.isRequired(order))
    return AssignProducts(solver, order, t);
  else
    return IlcOr(IlcAnd(IlcMember(order, tVar),
                        AssignProducts(solver, order, t)),
                 IlcAnd(IlcNotMember(order, tVar),
                        this));
}

ILOCPGOALWRAPPER3(IloAssignOrder, solver, Order, ord, IloInt, nbTrucks, 
IloArray<Truck>, trucks) {
  return AssignOrder(solver, ord, nbTrucks, trucks);
}

IloGoal IloAssignOrders (IloEnv env, IloAnyArray orders, IloInt nbTrucks, 
IloArray<Truck> trucks) {
  IloGoal goal = IloGoalTrue(env);
  for(IloInt i = 0; i < orders.getSize(); i++)
    goal = goal && IloAssignOrder(env, (Order)orders[i], nbTrucks, trucks);
  return goal;
}

IloGoal IloEliminateTrucks (IloEnv env, IloInt nbTrucks, IloInt nbMax, 
IloArray<Truck> trucks) {
  IloGoal goal = IloGoalTrue(env);
  for(IloInt i = nbTrucks; i > nbMax; i--)
    goal = goal && IloAddConstraint(trucks[i-1]->getUsed() == 0);
  return goal;
}

Goal to choose tank

Once you have assigned an order to a truck, you distribute the products demanded by that 
order among the tanks on that truck. For a given product, you choose the “hardest” tank; that 
is, the one for which you have the fewest possible choices of products; in other words, the 
tank with the smallest domain.

The goal to choose the hardest tank to fill looks like this:

Tank ChooseTank(IloSolver solver, Product p, IlcAnySet tankset) {
  Tank best=0;
  IloInt eval = IlcIntMax;
  for(IlcAnySetIterator it(tankset); it.ok(); ++it) {
    Tank tank = (Tank)(*it);
    IlcAnySetVar pvar = solver.getAnySetVar(tank->getProductOrders());
    if (pvar.isRequired(p))
      return tank;
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    if (! pvar.isPossible(p))
      continue;

    IloInt size = pvar.getPossibleSet().getSize();
    if (size < eval) {
      eval = size;
      best = tank;
    }
  }
  return best;
}

ILCGOAL2(AssignProduct, Product, product, Truck, truck) {
  IloSolver solver = getSolver();
  //Choose an already used tank
  IlcAnySetVar stanks = solver.getAnySetVar(truck->getTankVar());
  Tank tank = ChooseTank(solver, product, stanks.getRequiredSet());
  if (tank == 0)
    //Choose a new tank
    tank = ChooseTank(solver, product, stanks.getPossibleSet());
  if (tank == 0)
    fail();

  IlcAnySetVar stankvar = solver.getAnySetVar(tank->getProductOrders());
  if (stankvar.isRequired(product))
    return 0;
  return IlcOr(IlcMember(product, stankvar),
               IlcAnd(IlcNotMember(product, stankvar),
                      this));
}

ILCGOAL2(AssignProducts, Order, order, Truck, truck) {
  IloSolver solver = getSolver();
  IlcAnySetVar prodVar = solver.getAnySetVar(order->getProducts());
  IlcGoal g = IlcGoalTrue(solver);
  for(IlcAnySetIterator it(prodVar.getRequiredSet()); it.ok(); ++it)
    g = IloAndGoal(solver, g,  AssignProduct(solver, (Product)(*it), truck));
  return g;
}

Complete program

The complete program follows. You can also view it online in the file YourSolverHome/
examples/src/tankers.cpp.

#include <ilsolver/ilosolver.h>

ILOSTLBEGIN

class OrderI;
class ProductI;

typedef OrderI* Order;
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typedef ProductI* Product;

//-----------------------------------------------------
// Data
//-----------------------------------------------------

const IloInt NbProducts = 5;
const IloInt NbOrders   = 11;

//Sorted in decreasing order of total quantity
const IloInt Quantities[NbOrders][NbProducts] = {
  { 2000, 3000, 5000,    0,    0 },
  {    0, 3000, 2000,    0, 4000 },
  { 2000,    0,    0,    0, 4000 },
  {    0, 2500,    0,  500, 1000 },
  { 1000,    0,  500,    0, 2000 },
  {    0,  500,    0, 2000,  500 },
  {    0,    0,    0,    0, 3000 },
  {    0, 1000,    0,    0, 1000 },
  { 1000,  500,    0,    0,    0 },
  { 1500,    0,    0,    0,    0 },
  {    0,  500,  500,    0,    0 }
};

Order   Orders[NbOrders];
Product Products[NbOrders*NbProducts];

//-----------------------------------------------------
class ProductI {
protected:
  Order    _order;
  IloInt   _type;
  IloInt   _quantity;
public:
  ProductI(Order order, IloInt type, IloInt quantity)
    :_order(order) ,_type(type), _quantity(quantity) {}

  Order    getOrder() const    { return _order; }
  IloInt   getType() const     { return _type; }
  IloInt   getQuantity() const { return _quantity; }

  void printName(ostream& out) const;
};

IloFunction<IloAny,IloInt> PType(IloEnv env);
IloFunction<IloAny,IloInt> PQuantity(IloEnv env);

//-----------------------------------------------------
class OrderI {
private:
  IloInt       _id;
  IloInt       _quantity;
  IloAnySetVar _products;
public:
  OrderI(IloInt id) : _id(id), _quantity(0) {}

  IloInt       getId()       const { return _id;  }
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  IloInt       getQuantity() const { return _quantity; }
  void         setQuantity(IloInt quantity) { _quantity = quantity; }
  IloAnySetVar getProducts() const { return _products; }

  void makeProductVar(IloEnv env, IloAnyArray prods);

  void printName(ostream& out) const;
};

IloFunction<IloAny,IloInt> OQuantity(IloEnv env);
IloFunction<IloAny,IloAnySetVar> OrderProducts(IloEnv env);

//-----------------------------------------------------
void OrderI::makeProductVar(IloEnv env, IloAnyArray prods) {
  _products = IloAnySetVar(env, prods);
  for(IloInt i = 0; i < NbOrders; i++) {
    for(IloInt j = 0; j < NbProducts; j++) {
      Product p = Products[i*NbProducts + j];
      if (p->getQuantity() == 0)
        _products.removePossible(p);
      else if (_id == i+1)
        _products.addRequired(p);
      else
        _products.removePossible(p);
    }
  }
}

void OrderI::printName(ostream& out) const {
  out << "Order#" << _id;
}

//-----------------------------------------------------

void ProductI::printName(ostream& out) const {
  _order->printName(out);
  out << ".P" << _type;
}

//-----------------------------------------------------

IloAnyArray MakeOrders(IloEnv env) {
  IloInt i;

  for(i = 0; i < NbOrders; i++) {
    Orders[i] = new (env) OrderI(i+1);
    IloInt quantity = 0;
    for (IloInt j = 0; j < NbProducts; j++) {
      IloInt q = (IloInt)Quantities[i][j];
      quantity += q;
      Products[i*NbProducts + j] = new (env) ProductI(Orders[i], j+1, q);
    }
    Orders[i]->setQuantity(quantity);
  }

  IloAnyArray prodOrdersArray(env, NbOrders*NbProducts);
  for(i = 0; i < NbOrders*NbProducts; i++)
    prodOrdersArray[i] = (IloAny)Products[i];
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  for(i = 0; i < NbOrders; i++)
    Orders[i]->makeProductVar(env,prodOrdersArray);

  IloAnyArray ordersArray(env, NbOrders);
  for(i = 0; i < NbOrders; i++)
    ordersArray[i] = (IloAny)Orders[i];

  return ordersArray;
}

//-----------------------------------------------------
class TankI {
protected:
  IloInt       _id;
  IloIntVar    _type;
  IloIntVar    _load;
  IloInt       _capaMax;
  IloAnySetVar _prodOrders;
public:
  TankI(IloModel model, IloInt id, IloInt capaMax);

  IloInt       getId() const            { return _id; }
  IloIntVar    getType() const          { return _type; }
  IloIntVar    getLoad() const          { return _load; }
  IloInt       getCapacityMax() const   { return _capaMax; }
  IloAnySetVar getProductOrders() const { return _prodOrders; }

  void display  (IloSolver solver) const;
  void printName(ostream& out) const {
    out << "Tank#" << _id;
  }
};
typedef TankI* Tank;

IloFunction<IloAny,IloIntVar>     TankLoad(IloEnv env);
IloFunction<IloAny,IloIntVar>     TankType(IloEnv env);
IloFunction<IloAny,IloAnySetVar>  TankProducts(IloEnv env);

//-----------------------------------------------------
TankI::TankI(IloModel model, IloInt id, IloInt capaMax)
  :_id(id), _capaMax(capaMax) {

  IloEnv env = model.getEnv();

  _type = IloIntVar(env, 1, 5);
  _load = IloIntVar(env, 0, capaMax);

  IloAnyArray prodOrdersArray = IloAnyArray(env, NbOrders*NbProducts);
  for (IloInt i = 0; i < NbOrders*NbProducts; i++)
    prodOrdersArray[i] = (IloAny)Products[i];

  _prodOrders = IloAnySetVar(env, prodOrdersArray);

  //All the products assigned to a tank must belong
  //to the same type of product

  model.add( IloEqMin(env,  _prodOrders, _type, PType(env)) );
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  model.add( IloEqMax(env,  _prodOrders, _type, PType(env)) );
  //The loading of the tank cannot exceed its capacity
  model.add( IloEqSum(env,  _prodOrders, _load, PQuantity(env)) );
}

void TankI::display(IloSolver solver) const {
  if (solver.getAnySetVar(_prodOrders).getCardinality().getMax() == 0)
    return; //Empty
  solver.out() << "       <";
  printName(solver.out());
  solver.out() << ">" << endl
      << "              --> Capacity  = " << _capaMax << endl
      << "              --> Type      = " << solver.getIntVar(_type) << endl
      << "              --> Load      = " << solver.getIntVar(_load) << endl
      << "              --> Orders    = (";
  for(IlcAnySetIterator it(solver.getAnySetVar(_prodOrders).getRequiredSet());
      it.ok(); ++it) {
    ((Product)(*it))->printName(solver.out());
    solver.out() << " ";
  }
  solver.out() << ")" << endl ;
}

//-----------------------------------------------------
class TruckI {
private:
  IloInt              _id;
  IloBoolVar           _used;
  IloAnySetVar        _orders;
  IloArray<Tank>      _tanks;
  IloAnySetVar        _tankVar;
public:
  TruckI(IloModel model, IloInt id);

  IloInt               getId() const        { return _id; }
  IloBoolVar            getUsed() const      { return _used; }
  IloAnySetVar         getOrders() const    { return _orders; }
  IloInt               getNbTanks() const   { return 5; }
  IloArray<Tank>       getTanks() const     { return _tanks; }
  IloAnySetVar         getTankVar() const   { return _tankVar; }

  void display(IloSolver solver) const;
};

typedef TruckI* Truck;

TruckI::TruckI(IloModel model, IloInt id) :_id(id) {
  IloEnv env = model.getEnv();
  IloInt i;

  IloAnyArray ordersArray = IloAnyArray(env, NbOrders);
  for (i = 0; i < NbOrders; i++)
    ordersArray[i] = (IloAny)Orders[i];

  _orders = IloAnySetVar(env, ordersArray);

  _tanks = IloArray<Tank> (env, getNbTanks());
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  IloAnySetVarArray prodVars(env, getNbTanks());
  for(i = 0; i < getNbTanks(); i++) {
    _tanks[i] = new (env) TankI(model, i+1, (i+1)*1000);
    prodVars[i] = _tanks[i]->getProductOrders();
  }

  IloAnyArray tanksArray = IloAnyArray(env, getNbTanks());
  for (i = 0; i < getNbTanks(); i++)
    tanksArray[i] = (IloAny)_tanks[i];

  _tankVar = IloAnySetVar(env, tanksArray);

  //The truck is used if one order is assigned to it
  _used = IloBoolVar(env);
  model.add( _used == (IloCard(_orders) > 0));

  //Maximal loading of the truck
  IloIntVar load(env, 0, 12000);

  model.add( IloEqSum(env,  _orders, load,  OQuantity(env) ));
  model.add( IloEqSum(env,  _tankVar, load, TankLoad(env) ));

  IloAnyArray prodOrdersArray = IloAnyArray(env, NbOrders*NbProducts);
  for (i = 0; i < NbOrders*NbProducts; i++)
    prodOrdersArray[i] = (IloAny)Products[i];

  //Products assigned to the tanks of the truck
  IloAnySetVar tprodVar(env, prodOrdersArray);
  model.add( IloEqUnion(env, _tankVar, tprodVar, TankProducts(env) ));

  //Products of the orders assigned to the truck
  IloAnySetVar oprodVar(env, prodOrdersArray);
  model.add( IloEqUnion(env, _orders, oprodVar,  OrderProducts(env) ));

  //Product assigned to the tanks are the products of the
  //orders assigned to the truck
  model.add( tprodVar == oprodVar );

  //All the products must be assigned to one and only one tank
  model.add( IloEqPartition(env,  oprodVar, prodVars ) );

  //The types of tanks on a truck
  IloNumSetVar ttanks(env, IloIntArray(env, 5, 1, 2, 3, 4, 5));
  model.add(IloEqUnion(env, _tankVar, ttanks, TankType(env)));

  //A truck can be assigned at most 3 different types of products
  model.add( IloCard( ttanks ) <= 3 );
  //Product 3 and 4 are incompatibe
  model.add( ! (IloMember(env, 3, ttanks) && IloMember(env, 4, ttanks)) );
}

//-----------------------------------------------------

void TruckI::display(IloSolver solver) const {
  solver.out();
  if (! solver.getIntVar(_used).isBound())
    return;
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  if (solver.getIntVar(_used).getValue() == 0)
        return;
  solver.out() << "<Truck T#" << _id << ">" << endl
     << "       --> Orders = (";
  for(IlcAnySetIterator it(solver.getAnySetVar(_orders).getRequiredSet());
      it.ok(); ++it) {
    ((Order)(*it))->printName(solver.out());
    solver.out() << " ";
  }
  solver.out() << ")" << endl;
  solver.out() << "       --> Tank      = (";
  for(IlcAnySetIterator itT(solver.getAnySetVar(_tankVar).getRequiredSet());
      itT.ok(); ++itT ) {
    ((Tank)(*itT))->printName(solver.out());
    solver.out() << " ";
  }
  solver.out() << ")" << endl;

  for(IlcAnySetIterator itT2(solver.getAnySetVar(_tankVar).getRequiredSet());
      itT2.ok(); ++itT2 ) {
    ((Tank)(*itT2))->display(solver);
  }
  solver.out() << endl;
}

//-----------------------------------------------------
// Solving goals
//-----------------------------------------------------

// Choose the tank the most hard to fill;
// with the smallest domain.
Tank ChooseTank(IloSolver solver, Product p, IlcAnySet tankset) {
  Tank best=0;
  IloInt eval = IlcIntMax;
  for(IlcAnySetIterator it(tankset); it.ok(); ++it) {
    Tank tank = (Tank)(*it);
    IlcAnySetVar pvar = solver.getAnySetVar(tank->getProductOrders());
    if (pvar.isRequired(p))
      return tank;
    if (! pvar.isPossible(p))
      continue;

    IloInt size = pvar.getPossibleSet().getSize();
    if (size < eval) {
      eval = size;
      best = tank;
    }
  }
  return best;
}

ILCGOAL2(AssignProduct, Product, product, Truck, truck) {
  IloSolver solver = getSolver();
  //Choose an already used tank
  IlcAnySetVar stanks = solver.getAnySetVar(truck->getTankVar());
  Tank tank = ChooseTank(solver, product, stanks.getRequiredSet());
  if (tank == 0)
    //Choose a new tank
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    tank = ChooseTank(solver, product, stanks.getPossibleSet());
  if (tank == 0)
    fail();

  IlcAnySetVar stankvar = solver.getAnySetVar(tank->getProductOrders());
  if (stankvar.isRequired(product))
    return 0;
  return IlcOr(IlcMember(product, stankvar),
               IlcAnd(IlcNotMember(product, stankvar),
                      this));
}

ILCGOAL2(AssignProducts, Order, order, Truck, truck) {
  IloSolver solver = getSolver();
  IlcAnySetVar prodVar = solver.getAnySetVar(order->getProducts());
  IlcGoal g = IlcGoalTrue(solver);
  for(IlcAnySetIterator it(prodVar.getRequiredSet()); it.ok(); ++it)
    g = IloAndGoal(solver, g,  AssignProduct(solver, (Product)(*it), truck));
  return g;
}
// Choose the truck the most hard to fill;
// with the smallest domain.
Truck ChooseTruck(IloSolver solver,
                   Order order,
                   IloInt nbTrucks, IloArray<Truck> trucks,
                   IlcBool aNewOne) {
  Truck best=0;
  IloInt eval = IlcIntMax;
  for(IloInt i=0; i < nbTrucks; i++) {
    IlcAnySetVar oVar = solver.getAnySetVar(trucks[i]->getOrders());
    IloInt cardMin = IlcCard(oVar).getMin();
    if (aNewOne) {
      if (cardMin > 0)
        continue;
    } else {
      if (cardMin == 0)
        continue;
      if (oVar.isRequired(order))
        return trucks[i];
    }
    if (! oVar.isPossible(order))
      continue;
    IloInt size = oVar.getPossibleSet().getSize();
    if (size < eval) {
      eval = size;
      best = trucks[i];
    }
  }
  return best;
}

ILCGOAL3(AssignOrder, Order, order, IloInt, nbTrucks, IloArray<Truck>, trucks) 
{
  IloSolver solver = getSolver();
  //Choose first an already used truck
  Truck t = ChooseTruck(solver, order, nbTrucks, trucks, IlcFalse);
  if (t == 0) {
    //Choose a new truck
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    t = ChooseTruck(solver, order, nbTrucks, trucks, IlcTrue);
  }
  if (t == 0)
    fail();

  IlcAnySetVar tVar = solver.getAnySetVar(t->getOrders());
  if (tVar.isRequired(order))
    return AssignProducts(solver, order, t);
  else
    return IlcOr(IlcAnd(IlcMember(order, tVar),
                        AssignProducts(solver, order, t)),
                 IlcAnd(IlcNotMember(order, tVar),
                        this));
}

ILOCPGOALWRAPPER3(IloAssignOrder, solver, Order, ord, IloInt, nbTrucks, 
IloArray<Truck>, trucks) {
  return AssignOrder(solver, ord, nbTrucks, trucks);
}

IloGoal IloAssignOrders (IloEnv env, IloAnyArray orders, IloInt nbTrucks, 
IloArray<Truck> trucks) {
  IloGoal goal = IloGoalTrue(env);
  for(IloInt i = 0; i < orders.getSize(); i++)
    goal = goal && IloAssignOrder(env, (Order)orders[i], nbTrucks, trucks);
  return goal;
}

IloGoal IloEliminateTrucks (IloEnv env, IloInt nbTrucks, IloInt nbMax, 
IloArray<Truck> trucks) {
  IloGoal goal = IloGoalTrue(env);
  for(IloInt i = nbTrucks; i > nbMax; i--)
    goal = goal && IloAddConstraint(trucks[i-1]->getUsed() == 0);
  return goal;
}

//-----------------------------------------------------
// Main program
//-----------------------------------------------------

int main () {
  IloEnv env;
  try {
    IloModel model(env);

    IloAnyArray  ordersArray = MakeOrders(env);
    IloAnySetVar orders(env, ordersArray);

    model.add(IloCard(orders) == NbOrders);

    //At most 1 Truck per order: Create initially NbOrders trucks

    IloArray<Truck> trucks(env, NbOrders);

    IloBoolVarArray usedVars(env, NbOrders);
    IloAnySetVarArray ovars(env, NbOrders);

    IloInt i;
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    for(i=0; i < NbOrders; i++) {
      trucks[i] = new (env) TruckI(model, i+1);
      usedVars[i] = trucks[i]->getUsed();
      ovars[i] = trucks[i]->getOrders();
    }

    //All orders must be assigned to a truck

    model.add( IloEqPartition(env, orders, ovars) );

    //Cost Variable

    IloIntVar costVar(env, 0, NbOrders);

    model.add( costVar == IloSum(usedVars) );

    //Optimization

    IloSolver solver(model);

    IloInt nbMax = NbOrders+1;
    IloBool ok = IloTrue;
    IloGoal g;

    while (ok) {

      //Strategy: Eliminate unuseful trucks,
      //          Assign the orders to trucks, choosing the
      //          order with the biggest quantity first.

      g = IloEliminateTrucks(env, NbOrders, nbMax-1, trucks) &&
          IloAssignOrders(env, ordersArray, nbMax-1, trucks);

      ok = solver.solve(g);

      if (ok) {
        nbMax = (IloInt)solver.getValue(costVar);
        solver.out() << "--> Solution found at: "
                     << nbMax << " trucks." << endl;
      }
    }
    if (nbMax > NbOrders)
      solver.out() << "--> No Solution !" << endl;
    else {
      model.add(costVar == nbMax);

      g = IloEliminateTrucks(env, NbOrders, nbMax, trucks) &&
          IloAssignOrders(env, ordersArray, nbMax, trucks);

      solver.solve(g);

      solver.out() << endl;

      for(i = 0; i < NbOrders; i++)
        trucks[i]->display(solver);
    }
    solver.printInformation();
  }
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  catch (IloException& ex) {
    cout << "Error: " << ex << endl;
  }
  env.end();
  return 0;

}
//-----------------------------------------------------
// Accessors
//-----------------------------------------------------

class PTypeI : public IloFunctionI<IloAny,IloInt> {
public:
  PTypeI(IloEnvI* e) : IloFunctionI<IloAny,IloInt>(e)  {}
  IloInt getValue(IloAny elt);
};

IloInt PTypeI::getValue(IloAny elt) {
  return ((Product)elt)->getType();
}

IloFunction<IloAny,IloInt> PType(IloEnv env) {
  return new (env) PTypeI(env.getImpl());
}

class PQuantityI : public IloFunctionI<IloAny,IloInt> {
public:
  PQuantityI(IloEnvI* e) : IloFunctionI<IloAny,IloInt>(e) {}
  IloInt getValue(IloAny elt);
};

IloInt PQuantityI::getValue(IloAny elt) {
  return ((Product)elt)->getQuantity();
}

IloFunction<IloAny,IloInt> PQuantity(IloEnv env) {
  return new (env) PQuantityI(env.getImpl());
}

class OQuantityI : public IloFunctionI<IloAny,IloInt> {
public:
  OQuantityI(IloEnvI* e) : IloFunctionI<IloAny,IloInt>(e) {}
  IloInt getValue(IloAny elt);
};

IloInt OQuantityI::getValue(IloAny elt) {
  return ((Order)elt)->getQuantity();
}

IloFunction<IloAny,IloInt> OQuantity(IloEnv env) {
  return new (env) OQuantityI(env.getImpl());
}

class OrderProductI : public IloFunctionI<IloAny,IloAnySetVar> {
public:
  OrderProductI(IloEnvI* e) : IloFunctionI<IloAny, IloAnySetVar>(e)  {}
  IloAnySetVar getValue(IloAny elt);
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};

IloAnySetVar OrderProductI::getValue(IloAny elt) {
  return ((Order)elt)->getProducts();
}

IloFunction<IloAny,IloAnySetVar> OrderProducts(IloEnv env) {
  return new (env) OrderProductI(env.getImpl());
}

class TankLoadI : public IloFunctionI<IloAny,IloIntVar> {
public:
  TankLoadI(IloEnvI* e) : IloFunctionI<IloAny,IloIntVar>(e) {}
  IloIntVar getValue(IloAny elt);
};

IloIntVar TankLoadI::getValue(IloAny elt) {
  return ((Tank)elt)->getLoad();
}

IloFunction<IloAny,IloIntVar> TankLoad(IloEnv env) {
  return new (env) TankLoadI(env.getImpl());
}

class TankTypeI : public IloFunctionI<IloAny,IloIntVar> {
public:
  TankTypeI(IloEnvI* e) : IloFunctionI<IloAny,IloIntVar>(e) {}
  IloIntVar getValue(IloAny elt);
};

IloIntVar TankTypeI::getValue(IloAny elt) {
  return ((Tank)elt)->getType();
}

IloFunction<IloAny,IloIntVar> TankType(IloEnv env) {
  return new (env) TankTypeI(env.getImpl());
}

class TankProductI : public IloFunctionI<IloAny,IloAnySetVar> {
public:
  TankProductI(IloEnvI* e) : IloFunctionI<IloAny, IloAnySetVar>(e) {}
  IloAnySetVar getValue(IloAny elt);
};

IloAnySetVar TankProductI::getValue(IloAny elt) {
  return ((Tank)elt)->getProductOrders();
}

IloFunction<IloAny,IloAnySetVar> TankProducts(IloEnv env) {
  return new (env) TankProductI(env.getImpl());
}
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Output

Here is the output from the program.

--> Solution found at: 6 trucks.
--> Solution found at: 5 trucks.
--> Solution found at: 4 trucks.

<Truck T#1>
       --> Orders = (Order#1 Order#9 )
       --> Tank      = (Tank#1 Tank#2 Tank#3 Tank#4 Tank#5 )
       <Tank#1>
              --> Capacity  = 1000
              --> Type      = [2]
              --> Load      = [500]
              --> Orders    = (Order#9.P2 )
       <Tank#2>
              --> Capacity  = 2000
              --> Type      = [1]
              --> Load      = [2000]
              --> Orders    = (Order#1.P1 )
       <Tank#3>
              --> Capacity  = 3000
              --> Type      = [2]
              --> Load      = [3000]
              --> Orders    = (Order#1.P2 )
       <Tank#4>
              --> Capacity  = 4000
              --> Type      = [1]
              --> Load      = [1000]
              --> Orders    = (Order#9.P1 )
       <Tank#5>
              --> Capacity  = 5000
              --> Type      = [3]
              --> Load      = [5000]
              --> Orders    = (Order#1.P3 )

<Truck T#2>
       --> Orders = (Order#2 Order#11 )
       --> Tank      = (Tank#1 Tank#2 Tank#3 Tank#4 Tank#5 )
       <Tank#1>
              --> Capacity  = 1000
              --> Type      = [2]
              --> Load      = [500]
              --> Orders    = (Order#11.P2 )
       <Tank#2>
              --> Capacity  = 2000
              --> Type      = [3]
              --> Load      = [2000]
              --> Orders    = (Order#2.P3 )
       <Tank#3>
              --> Capacity  = 3000
              --> Type      = [2]
              --> Load      = [3000]
              --> Orders    = (Order#2.P2 )
       <Tank#4>
              --> Capacity  = 4000
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              --> Type      = [5]
              --> Load      = [4000]
              --> Orders    = (Order#2.P5 )
       <Tank#5>
              --> Capacity  = 5000
              --> Type      = [3]
              --> Load      = [500]
              --> Orders    = (Order#11.P3 )

<Truck T#3>
       --> Orders = (Order#3 Order#5 Order#10 )
       --> Tank      = (Tank#1 Tank#2 Tank#3 Tank#4 Tank#5 )
       <Tank#1>
              --> Capacity  = 1000
              --> Type      = [3]
              --> Load      = [500]
              --> Orders    = (Order#5.P3 )
       <Tank#2>
              --> Capacity  = 2000
              --> Type      = [1]
              --> Load      = [2000]
              --> Orders    = (Order#3.P1 )
       <Tank#3>
              --> Capacity  = 3000
              --> Type      = [1]
              --> Load      = [2500]
              --> Orders    = (Order#5.P1 Order#10.P1 )
       <Tank#4>
              --> Capacity  = 4000
              --> Type      = [5]
              --> Load      = [4000]
              --> Orders    = (Order#3.P5 )
       <Tank#5>
              --> Capacity  = 5000
              --> Type      = [5]
              --> Load      = [2000]
              --> Orders    = (Order#5.P5 )

<Truck T#4>
       --> Orders = (Order#4 Order#6 Order#7 Order#8 )
       --> Tank      = (Tank#1 Tank#2 Tank#3 Tank#4 Tank#5 )
       <Tank#1>
              --> Capacity  = 1000
              --> Type      = [5]
              --> Load      = [1000]
              --> Orders    = (Order#4.P5 )
       <Tank#2>
              --> Capacity  = 2000
              --> Type      = [2]
              --> Load      = [1000]
              --> Orders    = (Order#8.P2 )
       <Tank#3>
              --> Capacity  = 3000
              --> Type      = [2]
              --> Load      = [3000]
              --> Orders    = (Order#4.P2 Order#6.P2 )
       <Tank#4>
              --> Capacity  = 4000
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              --> Type      = [4]
              --> Load      = [2500]
              --> Orders    = (Order#4.P4 Order#6.P4 )
       <Tank#5>
              --> Capacity  = 5000
              --> Type      = [5]
              --> Load      = [4500]
              --> Orders    = (Order#6.P5 Order#7.P5 Order#8.P5 )

Number of fails               : 382
Number of choice points       : 403
Number of variables           : 466
Number of constraints         : 696
Reversible stack (bytes)      : 381924
Solver heap (bytes)           : 793372
Solver global heap (bytes)    : 4044
And stack (bytes)             : 4044
Or stack (bytes)              : 4044
Search Stack (bytes)          : 4044
Constraint queue (bytes)      : 26164
Total memory used (bytes)     : 1217636
Running time since creation   : 1.34
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Part V



Local Search

This part consists of the following lessons:

◆ Chapter 23, Basic Local Search

◆ Chapter 24, Writing a Neighborhood

◆ Chapter 25, Writing a Metaheuristic

◆ Chapter 26, Combining Complete and Local Search: Locating Warehouses

◆ Chapter 27, Minimizing Talent Wait Cost Using LNS



C H A P T E R
23

Basic Local Search

In this lesson, you will learn how to: 

◆ find a first solution

◆ use solution deltas

◆ use neighborhoods

◆ use metaheuristics

Solver includes classes and functions that perform local search. Local search methods are 
algorithms that take a solution to a problem, and attempt to improve it with a variety of 
usually small, local changes. 

In general, algorithms of this kind are not guaranteed to find optimal solutions. However, 
they can be useful for finding good solutions quickly. This chapter describes Solver’s local 
search features and tells how to get the most out of them.

What is local search?

Local search is a mechanism for searching for improvements to the solution of a problem by 
making small changes to the current solution. This concept is a familiar one in everyday life, 
and is the normal technique used, for instance, to add a new appointment to an already 
cluttered schedule. We don't recreate our entire schedule from scratch: we make small 
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changes so that the new appointment can be accommodated. This is the basic idea behind 
local search. 

A two-stage approach

Solving a complete problem using a local search technique generally consists of two stages. 
In the first, a solution to the problem is found using an initial generation technique. In this 
stage, normal Solver search goals (such as IloGenerate) can be used to provide initial 
solutions.

Assuming that a first solution with a specific cost can be found, the second stage is to apply 
the local search procedure to improve this solution. In its basic form, the local search 
procedure is carried out by making a small change to the current solution to produce a new 
solution. This new solution is tested against the problem constraints for feasibility, and its 
cost is computed. If the new solution is feasible and has reduced cost, it is accepted as the 
current one, otherwise the current solution remains unchanged. 

This process is repeated (using different solution changes on subsequent tries) until some 
stopping condition is met. The stopping condition can be based on time, number of changes 
attempted, or the fact that no changes to the solution can be found that will be accepted 
under the specified conditions.

The basic local search mechanism can be made more complicated, but such complications 
can be left until later. For now, we illustrate the process by using local search to solve a 
simple problem.

Solutions

In the description of local search above, we mentioned the concept of a current solution. 
IBM® ILOG® Concert Technology provides explicit support for representing solutions 
through the class IloSolution. Solver’s local search support makes extensive use of 
IloSolution objects. The IBM ILOG Solver Reference Manual gives full details about the 
functions of IloSolution objects. Here, we will cover the parts most relevant to local 
search.

Using goals for local search

In Solver, a search goal such as IloGenerate solves the problem completely, and can find 
an optimum or a single solution satisfying the constraints, as desired. When we perform a 
local search using Solver, many goals (not just a single goal) are executed one after another. 
Each one of these goals makes a local move, changing the current solution to the new one. 
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A simple local search procedure

The combination of solutions and goals offers a simple way of implementing local search 
procedures. The basic process is to change the solution and then test it against the problem 
constraints. The algorithm is as follows:

1. Start with an initial solution s.

2. Store the cost of s as currCost.

3. Make a change to s.

4. If s violates constraints or has cost >= currCost, revert the change.

5. Go to step 2.

In this way, we only move to legal improving solutions. We reject solutions that do not 
improve the cost or that violate problem constraints. This is known as a greedy improvement 
algorithm, as it only makes changes to the solution that improve the cost.

In what follows, we will apply this technique to a modified version of the map coloring 
presented in Chapter 5, Using Objectives: Map Coloring with Minimum Colors.

Example: Map coloring

Consider the map coloring problem. In that problem, the map of Western Europe must be 
colored with only two colors. The constraints dictate that no two countries sharing a border 
can have the same color. However, in such a case, there is no solution. Therefore, the 
constraint on Luxembourg having a different color from its neighbors is relaxed, and a cost 
on its having the same color as a neighbor is added. In that example, the optimal assignment 
of colors is found using a complete search.

Here, as an introduction to using local search procedures, we replace the complete search for 
the minimum cost color assignment with a local search. 
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First of all, we list the definition of the model of the problem:

At this point, if we were using a complete search technique, we would add the objective to 
the model, create the solver from the model, and use IloSolver::solve(IloGoal) to 
find the optimal solution. However, here we will use a local search technique which 
proceeds in two phases. In the first phase, we generate an initial solution, and in the second, 
we improve it using local search.

Finding a first solution

To find a first solution, we create an instance of IloSolver from the model, create a goal 
which instantiates the color of each country, and then have the solver execute it:

We now store this initial solution in an IloSolution object which we create as follows:

    IloModel model(env);
    
    IloIntVar Belgium(env, 0, 1), Denmark(env, 0, 1), 
              France(env, 0, 1), Germany(env, 0, 1), 
              Netherlands(env, 0, 1), Luxembourg(env, 0, 1);
    IloIntVarArray AllVars(env);
    AllVars.add(Belgium);
    AllVars.add(Denmark);
    AllVars.add(France);
    AllVars.add(Germany);
    AllVars.add(Netherlands);
    AllVars.add(Luxembourg);
    model.add(AllVars);
    model.add(France != Belgium); 
    model.add(France != Germany); 
    model.add(Belgium != Netherlands); 
    model.add(Germany != Netherlands); 
    model.add(Germany != Denmark); 
    IloIntVar quality(env, 0, 20000);
    model.add(quality == 257 * (France != Luxembourg)
                      + 9043 * (Luxembourg != Germany)
                      +  568 * (Luxembourg != Belgium));
    IloObjective obj = IloMaximize(env, quality);

    IloSolver solver(model);
    IloGoal generate = IloGenerate(env, AllVars);
    if (!solver.solve(generate)) {
      throw "Could not find an initial solution";
    }

    IloSolution soln(env, "Colors");
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We specify the variables whose values should be stored in the solution with the add 
member function: 

Since it is useful in a local search process to know the quality of current solution, we add the 
objective:

This ensures that the value of the objective is stored together with the color of each country. 
Notice that we do not add the objective to the model, which would result in a search for the 
optimal solution when we call solver.solve(). We now store our first solution and 
display its quality:

When storing a solution, the algorithm is passed as a parameter. The solution uses this 
algorithm to retrieve the current values of the variables added to the solution.

Improving the solution

After finding an initial solution, we next enter a local improvement phase. For that phase, we 
decide what changes to make to the solution to produce a new (changed) one. 

In this example, there are only two available colors numbered zero (meaning blue) and one 
(meaning white). Thus, we can think of a simple change that can be made: change the color 
of one of the countries (from 0 to 1 or 1 to 0). This means that from any coloring, we can 
move to 6 other colorings (given our 6 countries). There are 6 possible changes that can be 
made. We therefore use an index to indicate which country should change color now:

If we try to change the color of all 6 countries without success, we can stop the search. We 
are at what is termed a local minimum. This means that no change can improve the cost of 
the solution. It is important to recognize that a local minimum is often not the optimum. 

We maintain a counter which marks off how many color changes have failed since the last 
success, and repeat until no move has worked for six tries:

    soln.add(AllVars);

    soln.add(obj);

    soln.store(solver);
    solver.out() << "1st solution: Objective value = "
                 << soln.getObjectiveValue() << endl;

    IloInt curr = 0;

    IloInt failed = 0;
    while (failed < 6) {
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Inside the main loop, we change the value of AllVars[curr] in the solution from 0 to 1 
(blue to white) or 1 to 0 (white to blue).

Now we are in a position to test the new solution for legality and to see if the cost is reduced 
over that of the current solution. If both of these conditions are satisfied, we save the 
resulting solution. This process is called making a local move. We construct a goal to 
perform these actions:

This goal is made up of three parts. First, we assert that the new objective must be at least 
one more than the cost of the current solution. This is because we are maximizing. Then, we 
restore the solution, which means that the values of the constrained variables added to soln 
are placed into the constrained variables of the model. (The variables in AllVars will be 
assigned their values stored in soln.)   Note that the value of the objective is not restored 
when a solution is restored, only the values of variables are. Normally, the value of the 
objective will be completely determined by the variables on which it depends. However, if 
this is not the case, a variable representing the objective can be added to the solution, which 
will result in its value being restored with the solution. In the last line of the move goal, the 
solution is stored again. Although this does not change the values of the variables AllVars 
as stored in the solution, it does store the new value of the objective.

We execute the goal, changing the chosen country back to its previous color if the color 
change was not successful in increasing the objective or if the color change violated any 
problem constraints.

We then move to the next country to start the next loop:

      soln.setValue(AllVars[curr], 1 - soln.getValue(AllVars[curr]));

      IloGoal move = IloAddConstraint(obj >= soln.getObjectiveValue() + 1)
                  && IloRestoreSolution(env, soln)
                  && IloStoreSolution(env, soln);

      if (solver.solve(move)) {
        solver.out() << "Move made:    Objective value = "
                     << soln.getObjectiveValue() << endl;
        failed = 0;
      }
      else {
        soln.setValue(AllVars[curr], 1 - soln.getValue(AllVars[curr]));
        failed++;
      }

      curr = (curr + 1) % 6;
    }
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After the local search loop terminates (when no country’s color could be changed to increase 
the objective), the solution found can be presented via:

In this small example, the solution delivered by local search is the optimal solution. One 
move is made by the local search procedure: changing the color of Luxembourg.

Making it easier: Using solution deltas

Solutions can represent not only a complete assignment of decision variables, but also a 
partial assignment. This allows a solution to represent the change to another solution. When 
a solution is used to represent the change to another solution, it is called a solution delta. 

We can use solution deltas to perform local search for our map coloring problem. Solution 
deltas make it unnecessary to manipulate the solution directly—instead, the change can be 
specified in another solution. Predefined Solver goals allow us to examine the application of 
such a change to a solution.

For instance, consider the following fragment of code which creates four zero-one (0-1) 
variables and a solution. The variables are added to the solution and each variable is given a 
stored value of 0 within the solution.

Suppose we want to make a change to our all-zero solution. We consider as possible changes 
(or moves), the setting of each variable to 1. 

    solver.solve(IloRestoreSolution(env, soln));
    print(solver, "Belgium:     ", Belgium); 
    print(solver, "Denmark:     ", Denmark); 
    print(solver, "France:      ", France); 
    print(solver, "Germany:     ", Germany); 
    print(solver, "Netherlands: ", Netherlands); 
    print(solver, "Luxembourg:  ", Luxembourg); 

  IloEnv env;
  IloIntVarArray vars(env, 4, 0, 1);
  IloModel model(env);
  model.add(vars);
  IloSolution soln(env);
  soln.add(vars);
  IloInt i;
  for (i = 0; i < vars.getSize(); i++)
    soln.setValue(vars[i], 0);
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Solver provides a goal, IloScanDeltas, for investigating a set of changes to a solution. 
However, we first need to define the set of changes. This is done in an array as follows:

The code above creates an array of deltas (one for each original 0-1 variable), and places the 
desired change (to set the value to 1) to each variable within the delta. We are now in a 
position to examine the effect each delta will have on the solution. We write:

This code produces the following output:

The IloScanDeltas goal instantiates variables according to the application of each delta to 
the solution. Note that the solution soln has not been changed by this goal.

IloScanDeltas can be seen as a way of exploring all the moves that can be made from a 
solution. Often this set of moves is termed the neighborhood of the solution. A single 
element of the neighborhood is called a neighbor.

Using solution deltas in the map coloring problem

We can modify our map coloring problem to use solution deltas, as opposed to modifying 
the solution directly. We address only the local search part of the code that appears after the 
creation of the solution object and the generation of the initial solution.

From any current solution, we know that there are 6 possible changes that can be made, one 
corresponding to each country. To represent this, we create an array of solutions to act as 
solution deltas:

  IloSolutionArray deltas(env, vars.getSize());
  for (i = 0; i < vars.getSize(); i++) {
    deltas[i] = IloSolution(env);
    deltas[i].add(vars[i]);
    deltas[i].setValue(vars[i], 1);
  }

  IloGoal scan = IloScanDeltas(env, soln, deltas);
  IloSolver solver(model);
  solver.startNewSearch(scan);
  while (solver.next()) {
    for (i = 0; i < vars.getSize(); i++)
      solver.out() << solver.getValue(vars[i]);
    solver.out() << endl;
  }

1000
0100
0010
0001

    IloSolutionArray deltas(env, 6);
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The deltas are then created:

The variable deltas[i] represents a change of color for country i. Each delta contains a 
variable whose saved value is a different color from that stored in the current solution.

We define the goal to attempt a move in stages. In the first stage, a goal explores the possible 
changes that can be applied to the solution (that is, explores the neighborhood):

IloScanDeltas takes a solution and an array of solution deltas, and applies each delta to 
the solution in turn. For each delta to be examined, each one that can be applied legally 
results in a leaf node of IloScanDeltas. The variable nid is a neighbor identifier.  This 
class is used by IloScanDeltas to communicate information back to the user about the 
solution delta representing the current variable instantiation. Both the index of the delta and 
the delta itself can be accessed from the solver using solver.getAtIndex(nid) and  
solver.getAtDelta(nid).

Next, one neighbor is chosen from those available. A search selector is used which selects 
the first legal neighbor found:

Finally, we construct the goal that moves to the chosen neighbor, as follows:

The first term of the composed goal states that the objective value must be increased from its 
current value. The second term examines all deltas and selects a single change to be made, if 
a legal one exists. At this point, the decision variables AllVars are instantiated with the new 
solution. The third element stores the new solution. Now the local search optimization loop 

    for (IloInt i = 0; i < 6; i++) {
      deltas[i] = IloSolution(env);
      deltas[i].add(AllVars[i]);
      deltas[i].setValue(AllVars[i], 1 - soln.getValue(AllVars[i]));
    }

    IloNeighborIdentifier nid(env);
    IloGoal scan = IloScanDeltas(env, soln, deltas, nid);

    IloGoal selectNeighbor = IloSelectSearch(env, scan, IloFirstSolution(env));

    IloGoal move = IloAddConstraint(obj >= soln.getObjectiveValue() + 1)
                && selectNeighbor
                && IloStoreSolution(env, soln);
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is performed. The loop terminates when no moves can be taken. This happens when 
IloScanDeltas fails because none of the available deltas can legally be applied.

Whenever the constrained variables of the problem are instantiated by IloScanDeltas, 
IloScanDeltas assures that the neighbor identifier nid contains information on the delta 
itself. We get the index of this delta using solver.getAtIndex(nid). We then flip the 
value of the variable stored in deltas[atIndex], which maintains it in the opposite sense 
from what is stored in the current solution. This ensures that future moves can change the 
value of the relevant variable once more.

When the optimization loop is over, the solution found is presented:

Functionally, this search is identical to the previous version which directly manipulates the 
solution. However, the use of IloScanDeltas is preferred to testing each delta in turn via 
IloRestoreSolution as it is much more efficient when large numbers of deltas are being 
tested. 

Using neighborhoods

Using an array of deltas to specify the possible neighbors of a solution is one step from 
directly manipulating the solution and restoring it, but maintaining the set of deltas can be 
laborious. Solver provides methods for describing neighborhoods in a more structured way. 
Using these neighborhoods makes it easier to define the neighbors of a solution. There are 
various predefined neighborhoods in Solver, and you can also define your own.

Just as  IloScanDeltas was used to apply each delta to a solution, a goal IloScanNHood 
is used to apply each neighboring solution to the current one. We can use this goal in a 
further refinement to our map coloring example. 

Instead of creating an array of deltas to represent the neighbors of a solution, we use the 
class IloNHood, a special class for defining neighborhoods. The predefined neighborhood 

    IloIIM iim(solver);
    while (solver.solve(move)) {
      solver.out() << "Move made:    Objective value = "
                   << soln.getObjectiveValue() << endl;
      IloInt atIndex = iim.getAtIndex(nid);
      IloIntVar var = AllVars[atIndex];
      deltas[atIndex].setValue(var, 1 - deltas[atIndex].getValue(var));
    }

    solver.solve(IloRestoreSolution(env, soln));
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IloFlip produces changes to 0-1 variables, which is exactly the type of neighborhood we 
require for our map coloring problem. We use that neighborhood here:

The goal that explores the neighborhood and selects the neighbor to be taken is defined as:

We use IloFirstSolution as we are interested in any legal neighbor. The nid parameter 
passed to IloScanNHood will be used for storing both the neighborhood index (numbered 
from 0 upwards) and the delta corresponding to any instantiated neighbor. Note that while 
for IloScanDeltas the index has a very obvious meaning (the index of the delta in the 
array specified), for IloScanNHood the index only has meaning to the neighborhood itself. 
This notion will become clearer later.

Then, the goal which attempts a change is defined as follows:

The goal is composed for four terms. In the first term the lower bound on the cost is set. In 
the next, the neighborhood is scanned and a neighbor selected. The third term uses the 
predefined Solver goal IloNotify. This goal takes as parameters a neighborhood and a 
neighborhood identifier. It indicates to the neighborhood, through the neighborhood 
identifier, the index of the neighbor that is about to be taken. (Such notification is important 
for neighborhoods which may change their behavior on subsequent scans depending on 
which moves have been taken. Full details on this are given in the section “Writing your own 
neighborhood” later in this chapter.) Finally, the fourth term stores the solution.

Finally, we use the following optimization loop:

    IloNHood nhood = IloFlip(env, AllVars);

    IloNeighborIdentifier nid(env);
    IloGoal scan = IloScanNHood(env, nhood, nid, soln);
    IloGoal selectNeighbor = IloSelectSearch(env, scan, IloFirstSolution(env));

    IloGoal move = IloAddConstraint(obj >= soln.getObjectiveValue() + 1)
                && selectNeighbor
                && IloNotify(env, nhood, nid)
                && IloStoreSolution(env, soln);

Note: The order of the last two terms of the goal is important. A neighborhood must be 
notified before the new solution is saved. This allows the neighborhood to compute the 
difference between the new solution and the old solution, if it has such a need. 

    while (solver.solve(move)) {
      solver.out() << "Move made:    Objective value = "
                   << soln.getObjectiveValue() << endl;
    }
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The remainder of the code is the same as before. The result is code that is functionally 
equivalent to the code using IloScanDeltas, although its complexity is reduced. The 
efficiency of the code is also approximately the same. 

Metaheuristics

In the map coloring example we examined in the previous sections, all our local searches 
were of the greedy variety. That is, they made only moves which improved the objective. 
This greedy technique is efficient, but can encounter difficulties even on small problems. 
The difficulty is that although there may be no improving moves from the current solution, 
this does not mean that better solutions do not exist. Moreover, there is no bound upon how 
much better a solution could be. 

For example, consider the problem:

The costs of different configurations are given below:

If the current solution happens to be at state a[0]=1, a[1]=1 (which we shall term 11 by 
omitting reference to the array a), and we are making moves by flipping single bits, then 
there is no move that will improve the cost. Moves to state 01 and 10 increase the cost by 
one. However, the state 00 has cost which is 2C less than that of state 11. Obviously, we can 
make this disparity arbitrarily large by increasing C. The configurations 01 and 10 act as a 
barrier to local search “guarding” the global minimum.

The well-known problem just described is the local minimum problem: greedy searches 
become trapped in these local minima, and thus the quality of solutions obtained can suffer. 
Because of this problem, metaheuristics are commonly used to escape from these local 
minima. A variety of escape techniques can be used, the simplest of which is to allow moves 

  IloEnv env;
  IloModel mdl(env);
  IloIntVarArray a(env, 2, 0, 1);
  IloInt C = 1;
  IloNumVar cost(env, 0, 2 * C + 1);
  mdl.add(cost == C * (a[0] + a[1]) + (C + 1.0) * (a[0] != a[1]));

Table 23.1 Example Configuration Costs

a[0] a[1] cost

0 0 0

0 1 2C + 1

1 0 2C + 1

1 1 2C
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which degrade the cost of the solution, in the hope that subsequent moves that improve the 
cost can be found.

Care should be taken, however, about the way in which we allow the cost to degrade. To 
simply accept any move without guidance leads to a random walk through the neighborhood 
space, and is unlikely to bring about a good solution. Instead metaheuristics use controlled 
methods of acceptance of degrading solutions, in order to both escape local minima and then 
go on to find better solutions.

Example: Using metaheuristics

Consider the example already described, where the solution 11 is a local minimum (when a 
single value flip is the move used), and 00 is the global minimum. Solver provides support 
for metaheuristics through the IloMetaHeuristic class. We can use a metaheuristic 
provided in Solver to get around the problem that none of the two available moves reduce the 
cost. To do this, we allow cost-degrading moves to be accepted. A metaheuristic that allows 
such moves to be accepted is simulated annealing. 

We use simulated annealing in our small example to attempt to move the search from a start 
state of 11 to a final state of 00.

Simulated annealing

Simulated annealing operates by allowing cost degrading moves based on a probabilistic 
rule. For the purposes of this description, we assume the objective is to be minimized, 
although both minimization and maximization can be performed within Solver. Given that 
the current solution has cost c, and the proposed solution has cost c + d (d can be positive or 
negative), simulated annealing accepts the new solution with probability:

1 if   d <= 0             {Non-degrading move}

exp(-d / T) if d > 0 {Degrading move}

Notice first that non-degrading moves are always accepted. Second, degrading moves are 
accepted with a probability which increases with a decrease in cost difference d, and a 
decrease in a parameter T. Ignoring T for the moment, we see that if a particular move 
degrades the cost by a large amount, it is less likely to be accepted than one which degrades 
the cost by a small amount.

The parameter T is known as the temperature and it controls the way the search operates. 
The effect of T is that for large T, cost degrading moves have a high chance of acceptance. 
For low T, the opposite situation holds, with only moves that slightly degrade the cost having 
any real chance of acceptance. The idea is to begin the search with T high, and gradually 
lower T as search progresses. This results in the search being able to roam freely near the 
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beginning; by contrast, later on, when the temperature is low, the search looks more like 
greedy search, making only non-degrading moves.

It is worth noting that in simulated annealing, the moves to be examined must be drawn from 
the neighborhood in a random fashion. Otherwise, the moves specified first in the 
neighborhood will have a larger chance of acceptance than those that occur further on in the 
neighborhood which is contrary to the ethos of simulated annealing. A method for achieving 
this will be described later.

Controlling the simulated annealing search

Two things control how a simulated annealing search operates. The first is how the 
temperature is reduced as the search progresses. A common method, used in the predefined 
simulated annealing metaheuristic in Solver, is to reduce temperature after each move 
according to the rule:

T := T * factor

where factor is in the range [0..1), with values close to unity being preferred, as this reduces 
the temperature more slowly. As long as the temperature is allowed to reduce enough so that 
by the end of search the roaming behavior has ceased, a slower reduction of the temperature 
tends to result in better solutions. Of course, such a search also takes longer to run.

The second factor which controls the search is the initial temperature. If the initial 
temperature is set too high, search will roam for a very long time before settling. Thus it 
could take a very long time to produce a good solution as degrading moves are accepted too 
readily for too long. If the initial temperature is set too low, local minima may trap the search 
too quickly. Rearranging the probability acceptance equation, we have:

So, if we wish a cost degradation of d to be accepted with probability P(accept), at the 
beginning of search, then the initial value of T should be set to -d / ln(P(accept)). Normally, 
metaheuristics require some tuning for the problem being solved. These parameters for 
simulated annealing are examples of what to tune.

T d– ln P accept( )( )⁄=
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Building the model

Going back now to our small example, we are ready to solve it using simulated annealing. 
The code for the model and a solution, are described as follows:

Our neighborhood is one which flips a single bit of the solution, and so we can use IloFlip 
for this. However, what we eventually want is a random neighbor which is termed legal by 
the simulated annealing rule to be accepted. There is a special neighborhood modifier 
defined in Solver, IloRandomize, which, given a neighborhood, jumbles the order in a 
random fashion. This jumbling takes place for each neighborhood move made. We specify 
our neighborhood:

IloRandom is a Concert Technology class for generating pseudo-random numbers. It is 
passed to the IloRandomize neighborhood which then uses rand to generate the 
randomized neighborhood.

Creating the first solution

Now, we create the first solution (11):

Creating the metaheuristic object

We create an metaheuristic object which performs the simulated annealing filtering rule.

  IloEnv env;
  IloModel mdl(env);
  IloIntVarArray a(env, 2, 0, 1);
  IloInt C = 1;
  IloIntVar cost(env, 0, 2 * C + 1);
  mdl.add(cost == C * (a[0] + a[1]) + (C + 1.0) * (a[0] != a[1]));
  IloSolution soln(env);
  soln.add(a);
  soln.add(IloMinimize(env, cost));

  IloRandom rand(env);
  IloNHood nh = IloRandomize(env, IloFlip(env, a), rand);

  IloSolver solver(mdl);
  IloGoal store = IloStoreSolution(env, soln);
  IloGoal firstSol = IloAddConstraint(a[0] == 1)
                  && IloAddConstraint(a[1] == 1)
                  && store;
  solver.solve(firstSol);

  IloMetaHeuristic simAnn = IloSimulatedAnnealing(env, rand, 1.0, 0.99);
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The parameters passed are, a source of random numbers (so that probabilistic tests can be 
carried out), the initial temperature (1.0 in this case), and the reduction rate (the temperature 
is multiplied by 0.99 after each move). We use the same source of random numbers as used 
by the neighborhood, but we could have used a different source if we had desired (another 
instance of IloRandom). There is no need to pass a cost variable or objective to the 
metaheuristic. The one added to the solution will be used. This is true of all of Solver’s built 
in metaheuristics.

Scanning the neighborhood

We then create a goal to scan the neighborhood. Information on the neighbor being scanned 
is stored in nid.

The simulated annealing metaheuristic, like others supplied with Solver, operates by 
filtering the possible allowable neighbors generated by a goal that explores a neighborhood. 
For instance, the simulated annealing metaheuristic filters all neighbors for which 

, where r is a random number in [0..1) and d is the degradation in cost of the 
proposed neighbor (both minimization and maximization are supported). A function, 
IloApplyMetaHeuristic, takes a neighborhood exploration goal and applies the filtering. 
We write:

Making a single move

Finally, we can construct a goal to make a single move via:

The goal to make a move is made up of three phases: a choice stage, a notification stage, and 
a commitment stage. These are represented by the goals choose, notify, and store. The 
choose goal explores the neighborhood, with the simulated annealing metaheuristic filter 
applied, and then chooses the first legal neighbor. The notify goal notifies the 
neighborhood and the metaheuristic that a move is about to be taken. (Notice that now we 
also notify the metaheuristic as well as the neighborhood.) Finally, the new solution is stored 
by the store goal. It is important that the neighborhood and the metaheuristic are notified 
before the new solution is stored. For the simulated annealing metaheuristic, the temperature 
is reduced by the reduction factor when the metaheuristic is notified that a move is being 
taken.

  IloNeighborIdentifier nid(env);
  IloGoal scan = IloScanNHood(env, nh, nid, soln);

  IloGoal scanSA = IloApplyMetaHeuristic(env, soln, simAnn, scan);

  IloGoal scanSA = IloApplyMetaHeuristic(env, soln, simAnn, scan);
  IloGoal choose = IloSelectSearch(env, scanSA, IloFirstSolution(env));
  IloGoal notify = IloNotify(env, nh, nid) && IloNotify(env, simAnn, nid);
  IloGoal move = choose && notify && store;

r d– T⁄( )exp>
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Searching for a solution

The search can now progress. First, we create a solution to keep the best solution found by 
simulated annealing over the run. As cost degrading moves can be taken, the final solution 
may not be the same as the best one found.

Now we enter an optimization loop, where we perform up to 100 iterations:

The inner while loop can exit under two conditions: the first is that the iteration limit has 
been exhausted. In this case, the outer loop also terminates immediately. The inner loop can 
also terminate when solver.solve(move) returns IloFalse. This is the case when the 
move goal fails, that is, when all moves from the neighborhood are rejected and none can be 
chosen. When this happens for a metaheuristic, Solver provides an API for offering the 
metaheuristic the chance to change its filtering so that moves can be re-taken in the future. 
The complete() method of the metaheuristics performs this action. If IloFalse is 
returned, it means that the metaheuristic wishes to continue working, whereas if it returns 
IloTrue, it indicates that there is no way for it to relax its filtering, and so it would like to 
terminate the search. 

For the simulated annealing metaheuristic, the temperature is divided by the ratio specified 
when the metaheuristic was constructed (0.99 here), slightly increasing the temperature. 
This is done in the hope that an increased temperature can allow search to progress more 
easily. The return value of complete() is IloFalse for the simulated annealing 
metaheuristic, indicating that it never wants to stop search: it is up to the user to impose a 
limit.

After the optimization loop has terminated, we can restore the best solution found:

Other metaheuristics

Other metaheuristics are provided by Solver. A brief overview of these is given in the 
following sections.

  IloSolution best = soln.makeClone(env);

  IloInt iter = 100;
  do {
    while (--iter > 0 && solver.solve(move)) {
      if (soln.getObjectiveValue() < best.getObjectiveValue())
        best.copy(soln);
    }
  } while (iter > 0 && !simAnn.complete());

  solver.solve(IloRestoreSolution(env, best));
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IloImprove

This metaheuristic is not really a metaheuristic in the usual sense. However, it fits well into 
the metaheuristic framework, and so is considered as one. It implements a greedy search 
where all cost degrading moves are rejected.

IloTabuSearch

Tabu search is a popular metaheuristic. The idea of tabu search in its simplest form is to first, 
make the lowest cost move at each stage in the search, and, second, to accept cost degrading 
moves. This means that in a local minimum, tabu search will move out, since it can accept 
cost degrading moves. However, unless prevented, it could immediately fall back to the local 
minimum it left by making the opposite if such an opposite move exists (as is common) and 
such a move is now the best one that can be made (which is also common).

To counteract this cycling effect, tabu search employs various mechanisms, the typical one, 
and that implemented in Solver, being the tabu list. This list holds information on the 
solutions recently visited and forbids the search from moving back to a solution which is the 
same as (or shares some features or attributes with) one it has recently visited. The length of 
the list is usually important to the performance of the metaheuristic. Typically this 
metaheuristic performs better than simulated annealing.

Constructing moves

Sometimes the construction of a goal which makes a single move can be a little laborious. To 
that end, Solver provides a way of creating such standard goals via the function 
IloSingleMove. One of the synopses of IloSingleMove is as follows:

The parameters comprise the elements needed to build up a goal that makes a single move. 
We supply a solution, a neighborhood, a metaheuristic, and a search selector that selects a 
move from the neighborhood. The generated goal automatically generates an 
IloScanNHood goal and automatically notifies the neighborhood and metaheuristic that a 
move is about to be taken. IloSingleMove also stores the current solution before 
succeeding.

IloGoal IloSingleMove(IloEnv env,
                      IloSolution solution,
                      IloNHood nhood,
                      IloMetaHeuristic mh,
                      IloSearchSelector sel);
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In our simulated annealing example, given we had defined the solution soln, we could have 
replaced:

with:

The use of IloSingleMove usually makes the use of IloScanNHood, IloScanDeltas, 
IloNotify, and IloApplyMetaHeuristic unnecessary, unless more complex goals need 
to be built which require the use of these lower level functions. Therefore, you should try to 
write your local search algorithms using IloSingleMove, using the other functions where 
IloSingleMove does not suffice. 

The map coloring example revisited

The map coloring example can also be greatly simplified by the use of IloSingleMove and 
IloImprove. The local search part of the code can now be written as follows:

For reference, the entire example using IloSingleMove is given below:

#include <ilsolver/iimls.h>

ILOSTLBEGIN

typedef enum { COLOR_DIRECT, COLOR_DELTAS,
               COLOR_NHOOD, COLOR_SINGLEMOVE } ColorType;

const char* Names[] = {"blue", "white"}; 

void print(IloSolver solver, const char* name, IloIntVar var) { 
  solver.out() << name << Names[(IloInt)solver.getValue(var)] << endl;
}

int main() {
  IloEnv env;
  try {
    IloModel model(env);

  IloNeighborIdentifier nid(env);
  IloGoal scan = IloScanNHood(env, nh, nid, soln);
  IloGoal scanSA = IloApplyMetaHeuristic(env, soln, simAnn, scan);
  IloGoal choose = IloSelectSearch(env, scanSA, IloFirstSolution(env));
  IloGoal notify = IloNotify(env, nh, nid) && IloNotify(env, simAnn, nid);
  IloGoal move = choose && notify && store;

  IloGoal move = IloSingleMove(env, soln, nh, simAnn, IloFirstSolution(env));

    IloNHood nhood = IloFlip(env, AllVars);
    IloGoal move = IloSingleMove(env, soln, nhood, IloImprove(env));
    while (solver.solve(move)) {
      solver.out() << "Move made:    Objective value = "
                   << soln.getObjectiveValue() << endl;
    }
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    IloIntVar Belgium(env, 0, 1), Denmark(env, 0, 1), 
              France(env, 0, 1), Germany(env, 0, 1), 
              Netherlands(env, 0, 1), Luxembourg(env, 0, 1);
    IloIntVarArray AllVars(env);
    AllVars.add(Belgium);
    AllVars.add(Denmark);
    AllVars.add(France);
    AllVars.add(Germany);
    AllVars.add(Netherlands);
    AllVars.add(Luxembourg);
    model.add(AllVars);
    model.add(France != Belgium); 
    model.add(France != Germany); 
    model.add(Belgium != Netherlands); 
    model.add(Germany != Netherlands); 
    model.add(Germany != Denmark); 
    IloIntVar quality(env, 0, 20000);
    model.add(quality == 257 * (France != Luxembourg)
                      + 9043 * (Luxembourg != Germany)
                      +  568 * (Luxembourg != Belgium));
    IloObjective obj = IloMaximize(env, quality);
    IloSolver solver(model);
    IloGoal generate = IloGenerate(env, AllVars);
    if (!solver.solve(generate)) {
      throw "Could not find an initial solution";
    }
    IloSolution soln(env, "Colors");
    soln.add(AllVars);
    soln.add(obj);
    soln.store(solver);
    solver.out() << "1st solution: Objective value = "
                 << soln.getObjectiveValue() << endl;
    IloNHood nhood = IloFlip(env, AllVars);
    IloGoal move = IloSingleMove(env, soln, nhood, IloImprove(env));
    while (solver.solve(move)) {
      solver.out() << "Move made:    Objective value = "
                   << soln.getObjectiveValue() << endl;
    }
    solver.solve(IloRestoreSolution(env, soln));
    print(solver, "Belgium:     ", Belgium); 
    print(solver, "Denmark:     ", Denmark); 
    print(solver, "France:      ", France); 
    print(solver, "Germany:     ", Germany); 
    print(solver, "Netherlands: ", Netherlands); 
    print(solver, "Luxembourg:  ", Luxembourg); 
  }
  catch(IloException &ex) {
    cout << "Caught : " << ex << endl;
  }
  catch(const char *ex) {
    cout << "Caught : " << ex << endl;
  }
  env.end();
  return 0;
}
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More about neighborhoods

We have been introduced to one basic neighborhood (IloFlip) and one neighborhood 
modifier (IloRandomize). Other basic neighborhood and modifiers exist which are useful 
for solving problems using local search. A few of the more useful ones are summarized in 
the following sections.

Basic neighborhoods

The following code generates a neighborhood which has a number of neighbors equal to the 
size of vars. Each neighbor sets one element of vars to the value value.

The following code generates a neighborhood which has a number of neighbors equal to the 
size of vars times max - min + 1. The neighbors try to assign each variable an integer 
value ranging from min to max.

The following code generates a neighborhood which swaps the values of all pairs of 
variables in vars. Given that n is the size of the array vars, the size of this neighborhood is 
n * (n - 1) / 2.

Neighborhood modifiers

The following code generates a concatenation of neighborhoods. The set of neighbors of the 
new neighborhood is the union of the neighbors of nhoods or nhood1 and nhood2, 
depending on the signature used.

The following code generates a neighborhood which behaves exactly like nhood, except that 
the generated neighborhood adjusts the indices passed to nhood. The adjustment is based on 
the previously accepted move. If the index (as passed to nhood) of the previous move 

IloNHood IloSetToValue(IloEnv env,
                       IloNumVarArray vars,
                       IloInt value,
                       const char *name = 0);

IloNHood IloChangeValue(IloEnv env,
                        IloNumVarArray vars,
                        IloInt min,
                        IloInt max,
                        const char *name = 0);

IloNHood IloSwap(IloEnv env,
                 IloNumVarArray vars,
                 const char *name = 0);

IloNHood IloConcatenate(IloEnv env,
                        IloNHoodArray nhoods,
                        const char *name = 0);
IloNHood operator + (IloNHood nhood1, IloNHood nhood2);
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accepted was k, then the indices passed to nhood will begin at k + offset + 1 modulo the size 
of the neighborhood for the next move.

IloNHood IloContinue(IloEnv env,
                     IloNHood nhood,
                     IloInt offset = 0,
                     const char *name = 0);
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C H A P T E R
24

Writing a Neighborhood

In this lesson, you will learn how to:

◆ write a neighborhood

◆  use the class IloNHoodI

◆ write a neighborhood modifier

Writing a new neighborhood

It is possible to write your own local search neighborhoods using Solver by subclassing the 
IloNHoodI class. This section shows you how to do this. The basic behavior of the 
neighborhood class is to generate possible moves from a current solution for local search 
procedures. Moves are described by the difference between the current solution and the new 
one. This difference is installed in a mini-solution or delta that contains just the variables 
that change and their new values. 

Why would you want to write your own neighborhood? Solver provides certain standard 
neighborhoods which can be used for many common problems. However, challenging 
aspects of a problem may require some specialization, or integration of domain knowledge 
into the search procedure. One way of doing this is to write a neighborhood that generates 
neighbors dedicated to the problem at hand. 
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Here, we describe a small example that uses local search to sort a sequence of numbers, 
using a “Bubble Sort” type neighborhood. It should be noted that this is not an efficient way 
of sorting: the example is used here merely for its illustrative value. 

Model

The model of the sorting problem is as follows. Assume array is the array of numbers to be 
sorted. The sorted array is represented by a permutation of the original array. Given N 
numbers to sort, a permutation array perm of size N is set up with each variable in this array 
having domain 0..N-1. So, for instance, element i in the permuted array corresponds to the 
original array element perm[i]. The goal is to produce a perm array where, for all i in 0..n-2: 
array[perm[i]] <= array[perm[i + 1]], that is, the ordered array is non-decreasing. 

To use local search to find the sorted array, we need an appropriate cost function. A cost 
function which results in a simple search space associates a cost of 0 or 1 with each pair of 
values in the array to be sorted. The cost is 0 if they are in the correct order (lower before 
higher, or both values equal), and 1 if they are not. By reducing this cost to zero, the array 
can be sorted. This cost function also has the other desirable feature that when any pair of 
elements are swapped from an incorrect order to a correct order, the cost is reduced. This 
allows us to use a simple greedy improvement scheme to find the minimum. 

The IloNHoodI class

We shall define a neighborhood specifically tailored to sorting. The idea of this 
neighborhood is to swap elements of the array which are adjacent, as in the classic “Bubble 
Sort” algorithm. We shall also include some other features which demonstrate how more 
complex behavior can be achieved. 

Features of the “Bubble Sort” neighborhood

Our “Bubble Sort” neighborhood has three main features:

◆ It generates swaps of adjacent members of the permutation array. If the permutation 
array is of size n, then the neighborhood will be of size n - 2. Neighbor number i will 
swap elements i and i + 1. This is the minimal requirement for sorting the set of 
numbers. However, we also add some other features which are useful demonstrations of 
techniques which can be used when you write your own neighborhoods.

◆ When a swap is made, we do not start the next move by exploring swaps beginning with 
elements 0 and 1, but continue from where we left off. This is similar to the behavior of 
IloContinue and places priority on looking at unexamined swaps.

◆ When calculating the delta, the “Bubble Sort” neighborhood also calculates the 
difference in “sorting cost.” We use this difference, together with the previous cost, to 
compute the new cost of the neighbor. If the cost variable is added to the delta with a new 
value as computed, this speeds up local search, as deltas can be more readily rejected if 
they do not meet the required cost criteria. Note that such a technique needs to have 
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domain knowledge of the cost function, but can accelerate search. Although we set the 
value of the new cost in the delta, in general all that is needed is an upper or lower bound, 
depending on whether one is minimizing or maximizing.

Virtual functions of IloNHoodI

The virtual functions of IloNHoodI, with the exception of reset, are all called from the 
IloScanNHood goal (or via IloScanNHood by IloSingleMove) and are passed an 
instance of IloSolver. This instance of IloSolver is the one executing IloScanNHood.

To define a neighborhood, the following virtual functions are available:

The IloNHoodI::start method is called to signify to the neighborhood that neighbors 
will be requested of it, the root of these neighbors being the solution soln.

For our “Bubble Sort” neighborhood, we need to store a reference to the solution so that we 
can generate neighbors with it as a reference.

The IloNHoodI::getSize method asks the neighborhood to return the number of 
neighbors of which it is comprised. The neighborhood should be prepared to define 
neighbors with indices from 0 to s-1 where s is the value returned.

Since our “Bubble Sort” neighborhood exchanges only two adjacent cells, its size will be n-
1 where n is the size of the array to be sorted.

The IloNHoodI::define method is called to retrieve a particular neighbor of the 
neighborhood. The index i represents the index of the neighbor being requested, where 
neighbors are indexed from 0 upwards.

For our “Bubble Sort” neighborhood the definition of a neighbor mentions two adjacent 
variables of the permutation array, with values swapped from their values in the previous 
solution. As mentioned previously, we also add cost bounds to increase efficiency.

When a neighborhood move is about to be taken, the IloNHoodI::notify() method is 
called. This function supplies the index i to tell the neighborhood which neighbor is 
accepted.

virtual void start(IloSolver solver, IloSolution soln)

virtual IloInt getSize(IloSolver solver) const = 0

virtual IloSolution define(IloSolver solver, IloInt i) = 0

virtual void notify(IloSolver solver, IloInt i)

Note: A neighborhood may not receive a notify call, even if a move is being taken, as the 
successful move may have been defined by a different neighborhood. This is the case, for 
example, when neighborhoods are added via the + operator.
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For our “Bubble Sort” neighborhood, we can use the IloNHoodI::notify member 
function to identify the previous move made, and use it in the definition of subsequent 
moves such that a different part of the neighborhood is explored. It is also an ideal place to 
capture the cost of the current instantiation so that we can compute cost differences from it 
in subsequent moves.

When a move is about to be taken, but this neighborhood did not generate it, 
IloNHoodI::notifyOther is called on the neighborhood. This call is generated from 
IloNHoodI::notify() method of the IloConcatenate neighborhood (same as operator 
+) for the neighborhoods that did not define the move being taken. delta is the solution 
delta of the move.

Here, as in notify, we can capture the cost of the current instantiation so that we can 
compute cost differences from it in subsequent moves. In the context of the example, where 
the “Bubble Sort” neighborhood is the only one, notifyOther is never called, as no other 
neighborhood could perform the move. However, defining notifyOther here is good 
design practice, so the neighborhood could be used in a different context later.

This method can be called by the user (indirectly through the handle class IloNHood) to 
reset any internal state of the neighborhood to that at its creation.

For the “Bubble Sort” neighborhood, two items of internal state need to be reset: the cost of 
the previous solution, and the index of the last neighbor accepted.

Defining the “Bubble Sort” neighborhood

The following function displays the permuted array and its cost. The values of perm are 
retrieved from the algorithm via solver.getValue.

virtual void notifyOther(IloSolver solver, IloSolution delta)

virtual void reset();

void Display(IloSolver solver,
             IloIntVarArray perm,
             IloIntArray values,
             IloIntVar cost) {
  cout << solver.getIntVarArray(perm) << endl;
  cout << solver.getIntVar(cost) << endl;
  for (IloInt i = 0; i < values.getSize(); i++) {
    cout << values[solver.getValue(perm[i])] << " ";
  }
  cout << endl;
}
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The class BubbleI

Here is the synopsis of the class BubbleI, which is subclassed from IloNHoodI:

The class BubbleI—local variables

The BubbleI class is subclassed from IloNHoodI and implements our “Bubble Sort” 
neighborhood. The local variables have the following functions:

_soln

This is the solution passed in the last call to start().

_perm

This is the permutation array which holds the decision variables of the local search process. 
These are the variables which will be mentioned in the neighbors generated.

_values

This is the original array of values to sort.

_cost

This is the cost variable of the sorting problem. We pass this here so that we can specify cost 
bounds in generated deltas. This is better than taking the objective variable from _soln as 
the local search could be optimizing something different from just the cost of the sorting 
problem. For example, it could be optimizing a problem where cost is only a part.

_costVal

class BubbleI : public IloNHoodI {
private:
  IloSolution    _soln;
  IloIntVarArray _perm;
  IloIntArray    _values;
  IloIntVar      _cost;
  IloInt         _costVal;
  IloInt         _startPoint;
public:
  BubbleI(IloEnv env,
          IloIntVarArray perm,
          IloIntArray values,
          IloIntVar cost,
          const char *name = 0);
  void start(IloSolver solver, IloSolution soln);
  IloSolution define(IloSolver solver, IloInt i);
  IloInt getSize(IloSolver solver) const;
  void notify(IloSolver solver, IloInt i);
  void notifyOther(IloSolver solver, IloSolution delta);
  void reset();
};
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This is the value of the cost variable the last time the solution was saved. A sentinel value of 
IloIntMax means that no move has been made as yet. No cost bounds will be imposed in 
the first iteration of the search. This is not usually a significant performance problem.

_startPoint

This is the index in the _perm array that the neighbor indexed zero corresponds to. 
Definition starts from that point.

The class BubbleI—constructor

The constructor sets up the base class and initializes its data members. Note that _costVal 
is set to IloIntMax and _startPoint to zero. These are the variables which represent the 
state of the neighborhood.

The class BubbleI—member functions

The reset member function resets the variables that represent the state of the 
neighborhood, _costVal and _startPoint, to their original values.

The start member function simply keeps a reference to the current solution.

The define member function returns a delta which swaps the values of two adjacent 
variables from the _perm array. The index is first offset by _startPoint.

BubbleI::BubbleI(IloEnv env,
                 IloIntVarArray perm,
                 IloIntArray values,
                 IloIntVar cost,
                 const char *name)
: IloNHoodI(env, name),
  _soln(),
  _perm(perm),
  _values(values),
  _cost(cost),
  _costVal(IloIntMax),
  _startPoint(0) { }

void BubbleI::reset() {
  _costVal = IloIntMax;
  _startPoint = 0;
}

void BubbleI::start(IloSolver, IloSolution soln) {
  _soln = soln;
}

IloSolution BubbleI::define(IloSolver solver, IloInt i) {
  i = (i + _startPoint) % (_perm.getSize() - 1);
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Now the move is created by adding the variables which will change, together with their new 
values, to a delta. One point should be borne in mind when you return a delta from define. 
IloScanNHood automatically destroys this delta when it has no more use for it—you do not 
have to handle the memory management yourself. This also means that you should not keep 
any references to deltas returned from define, as these are not guaranteed to be valid 
thereafter. It is also legal to return an empty handle from define if you do not wish a 
neighbor to be defined for this index.

After the delta is created, the two adjacent variables are added. Their values are set to those 
in _soln (the old values), but swapped over.

Finally, if _costVal does not hold its sentinel value, we compute the new cost of the move. 
Simply, the cost increases by one if the move puts the values in the wrong order when they 
were in the correct order before, and decreases by one in the other situation.

 

The size of the neighborhood is one less than the number of values to sort, as adjacent pairs 
are examined from pair {0, 1} up to pair {_perm.getSize()-2, _perm.getSize()-1}.

  IloSolution delta(solver.getEnv());
  delta.add(_perm[i]);
  delta.add(_perm[i + 1]);
  IloInt oldLeft = _soln.getValue(_perm[i]);
  IloInt oldRight = _soln.getValue(_perm[i + 1]);
  delta.setValue(_perm[i], oldRight);
  delta.setValue(_perm[i + 1], oldLeft);

  if (_costVal != IloIntMax) {
    IloInt diff = (_values[oldLeft] < _values[oldRight])
                - (_values[oldLeft] > _values[oldRight]);
    delta.add(_cost);
    delta.setValue(_cost, _costVal + diff);
  }

  return delta;
}

Note: It may be tempting to simply return an empty delta if the cost would increase. This is 
a poor decision for two reasons. First, the neighborhood may not necessarily be used in a 
context which requires the cost to be reduced at each step (for example, when used with 
tabu search). Second, the global optimization criterion may not be to minimize _cost, and 
so such a rejection of the neighbor would most likely be wrong.

IloInt BubbleI::getSize(IloSolver) const {
  return _perm.getSize() - 1;
}
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In notify() we store the new starting point of the neighborhood as the one after the 
neighbor being notified. We reduce this value modulo the size of the neighborhood. We also 
store the cost of the current sorting configuration.

We store the cost of the current sorting configuration in notifyOther.

The following function returns the “Bubble Sort” neighborhood. The new neighborhood is 
allocated on the same environment as is passed to it. This is important as the delete operator 
of IloNHoodI (called via IloNHood::end) frees the allocated memory from the env. If 
you allocate your subclass of IloNHoodI on a different heap, you must define a delete 
operator in your subclass.

Main program

To begin the program, we define an environment, a solver, a model, and a random number 
generator. The latter will be used to generate the values to sort.

We now generate twenty values to sort, displaying them after they have been generated.

void BubbleI::notify(IloSolver solver, IloInt i) {
  _startPoint = (i + 1 + _startPoint) % (_perm.getSize() - 1);
  _costVal = (IloInt)solver.getValue(_cost);
}

void BubbleI::notifyOther(IloSolver solver, IloSolution) {
  _costVal = (IloInt)solver.getValue(_cost);
}

IloNHood Bubble(IloEnv env,
                IloIntVarArray perm,
                IloIntArray values,
                IloIntVar cost,
                const char *name = 0) {
  return new (env) BubbleI(env, perm, values, cost, name);
}

int main()
{
  IloEnv env;
  try {
    IloSolver solver(env);
    IloModel m(env);
    IloRandom r(env, 54321);

    IloInt n = 20;
    IloIntArray values(env, n);
    IloInt i;
    for (i = 0; i < n; i++)
      values[i] = r.getInt(1000);
    cout << values << endl;
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The permutation array is created, as well as an array to hold the 0-1 cost of each pair of 
variables in the perm array. An all-different constraint is added to the model to ensure that 
the values of perm really are a permutation (no repeated values). The total cost is formed 
from the sum of the 0-1 cost variables.

The initial solution to the sorting problem is created along with the solution to be used 
during local search. We add all the variables in perm to the solution, and the objective. We 
extract the model and find a first solution using the IloGenerate goal. We then store the 
solution and display it. The all-different constraint is then removed from the model as it is no 
longer needed. The “Bubble Sort” neighborhood only swaps values and so cannot violate 
this constraint.

The neighborhood is created along with the goal which will perform a single move. Then a 
typical local search optimization loop is entered, continuing until no move can be made, or 
until the cost value is reduced to zero.

    IloIntVarArray perm(env, n, 0, n - 1);
    IloConstraint allDiff = IloAllDiff(env, perm);
    m.add(allDiff);
    IloIntVarArray costs(env, n * (n - 1) / 2, 0, 1);
    IloInt k = 0;
    for (i = 0; i < n - 1; i++) {
      for (IloInt j = i + 1; j < n; j++) {
        m.add(costs[k] == (values(perm[i]) > values(perm[j])));
        k++;
      }
    }
    IloIntVar cost(env, 0, n * (n - 1) / 2);
    m.add(cost == IloSum(costs));

    solver.extract(m);
    IloGoal g = IloGenerate(env, perm);
    IloSolution soln(env);
    soln.add(perm);
    soln.add(IloMinimize(env, cost));
    solver.solve(g);
    soln.store(solver);
    cout << "---" << endl;
    Display(solver, perm, values, cost);
    m.remove(allDiff);

    IloNHood nhood = Bubble(env, perm, values, cost);
    IloGoal move = IloSingleMove(env, soln, nhood, IloImprove(env));
    while (soln.getObjectiveValue() != 0 && solver.solve(move))
    ;
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The final solution is restored and displayed.

Writing a new neighborhood modifier

It is possible to write your own neighborhood modifier using Solver by subclassing the 
IloNHoodModifierI class. This abstract implementation class is used to describe a 
neighborhood structure that depends on other “child” neighborhood structures. Solver 
neighborhoods such as IloConcatenate, IloRandomize, and IloContinue belong to 
this category of neighborhood. Such neighborhoods do not generate neighbors in their own 
right, but pass back neighbors produced by their children. The main job of a neighborhood 
modifier is to maintain a mapping between the indices of neighbors for the neighborhood 
modifier and the corresponding child neighborhoods and indices within these child 
neighborhoods. The member function mapIndex performs this maintenance. Additional 
behaviors can be added. One example is to manipulate normally produced deltas in some 
way, for instance by adding additional variables, before they are returned.

The following class forms the concatenation of two neighborhoods.

The constructor builds the base class.

    solver.solve(IloRestoreSolution(env, soln));
    cout << "---" << endl;
    Display(solver, perm, values, cost);
  } catch (IloException e) {
    cout << "Caught: " << e << endl;
  }
  env.end();
  return 0;
}

class IloAddNHoodsI : public IloNHoodModifierI {
public:
  IloAddNHoodsI(IloEnv env, IloNHood nhood0, IloNHood nhood1,
                const char *name = 0);
  void mapIndex(IloSolver solver, IloInt i,
                IloNHood &nhood, IloInt &offset) const;
};

IloAddNHoodsI::IloAddNHoodsI(IloEnv env,
                             IloNHood nhood0,
                             IloNHood nhood1,
                             const char *name)
: IloNHoodModifierI(env, nhood0, nhood1, name) { }
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The correct neighborhood is determined by comparing the index against the size of the first 
neighborhood. If we map to the first neighborhood, the index is unaffected. Otherwise, it 
must be reduced by the size of the first neighborhood.

Example

The following small example shows how to code a neighborhood which has a side effect on 
another neighborhood. We assume that the delta will be adjusted in the call to define. First, 
we define the class which performs a null mapping between neighbors of the modifier and 
neighbors of the child neighborhood.

The constructor builds the base class.

The definition of the delta should be done by a call to the base class. Shortcuts, such as 
getNHood(0).define(solver, i) are not recommended, as they make assumptions 
about both the implementation of IloNHoodModifierI::define and mapIndex.

void IloAddNHoodsI::mapIndex(IloSolver solver, IloInt i,
                             IloNHood &nhood, IloInt &offset) const {
  IloInt size0 = getNHoodSize(0);
  if (i < size0) { nhood = getNHood(0); offset = i; }
  else           { nhood = getNHood(1); offset = i - size0; }
}

class IloAdjustNeighborsI : public IloNHoodModifierI {
public:
  IloAdjustNeighborsI(IloEnv env, IloNHood nhood, const char *name = 0);
  void mapIndex(IloSolver, IloInt i, IloNHood &nhood, IloInt &offset) const {
    nhood = getNHood(0); offset = i;
  }
  IloSolution define(IloSolver solver, IloInt i);
};

IloAdjustNeighborsI::IloAdjustNeighborsI(IloEnv env,
                                         IloNHood nhood,
                                         const char *name)
: IloNHoodModifierI(env, nhood, name) { }

IloSolution IloAdjustNeighborsI::define(IloSolver solver, IloInt i) {
  IloSolution delta = IloNHoodModifierI::define(solver, i);
  //
  // Adjust delta here.
  //
  return delta;
}
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C H A P T E R
25

Writing a Metaheuristic

In this lesson, you will learn how to: 

◆ write a metaheuristic

◆ use the class IloMetaHeuristicI

◆ implement a “limited tabu search” metaheuristic

Writing a new metaheuristic

It is possible to write your own local search metaheuristic using Solver by subclassing the 
IloMetaHeuristicI class. This section shows you how to do this. The basic behavior of 
the metaheuristic class is to filter out proposed moves according to the metaheuristic rule. 
For instance, a greedy metaheuristic filters out all moves which do not improve the cost.

Here, you will find the description of a limited tabu search metaheuristic. Tabu search is a 
technique that typically makes the best move at each step in the search process, even if that 
move degrades the search cost. However, in order to avoid the problem of the search being 
caught in a cycle of making a non-improving move, then the opposite improving one, a tabu 
status is given to the last few moves. Thus, once a move is made some other moves 
(typically those which would result in a previously visited point) are made illegal (tabu). 
This is to avoid the cycling problem mentioned. The illegality of a tabu move persists for a 
number of moves after it is first made tabu, this length of time being termed the tenure.
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In the limited tabu search metaheuristic described here, the tenure is fixed at 1. The tabu 
metaheuristic is meant to be used in a local search where the value of only a single variable 
is changed at each move. Then, at each move, the variable that changed its value during the 
last move is forbidden from changing its value at this iteration. This prevents cycles of 
length 2, where the search moves continually between two neighboring states. To prevent 
longer cycles, longer tabu lists can be used, such as in the class IloTabuSearch provided 
with Solver.

To add a little extra complexity, the metaheuristic described also includes a rule which says 
that the solution must not stray too far (in terms of cost) from the best solution found so far. 
The maximum gap between the current and best solution is specified to the metaheuristic.

Virtual functions of IloMetaHeuristicI 

The virtual functions of IloMetaHeuristicI, with the exception of reset and 
complete, are called from various Solver goals such as IloStart and IloNotify, and are 
passed an instance of IloSolver. This instance of IloSolver is the one executing the 
Solver goal.

Up to six basic virtual member functions should be defined to implement a metaheuristic. A 
description of the member functions follows:

The start method is called to signify to the metaheuristic that soln is the solution from 
which moves will be generated. By returning IloFalse or causing a failure inside this 
method, you signify that the metaheuristic forbids beginning from soln.

From the standpoint of our limited tabu metaheuristic, we want to add constraints to ensure 
that the variable which changed last time keeps its value and that the cost does not vary too 
much from the best cost value found so far.

The isFeasible method is used as a fast pre-filter. The suggested change to the solution is 
delivered in delta. The move delta is a move that has been defined by an instance of 
IloNHood. If the metaheuristic can ascertain that the application of delta to the solution 
passed in start will lead to a solution which is disallowed by the metaheuristic, IloFalse 
should be returned. When this happens the neighborhood move can be discarded without the 
need to instantiate variables of the model. 

From the standpoint of our limited tabu metaheuristic, we can look to see if the delta will 
change the value of our tabu variable. If it will, we can reject this delta by returning 
IloFalse.

IloBool start(IloSolver solver, IloSolution soln);

IloBool isFeasible(IloSolver solver, IloSolution delta) const;

IloBool test(IloSolver solver, IloSolution delta);
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Whereas isFeasible is a pre-filter, the test member function implements a definitive test 
of the current move with respect to the metaheuristic. When test is called, all model 
variables are instantiated, and the metaheuristic can use the solution passed in start 
together with the values in the model variables to compute differences.

Alternatively, delta can be used to give the maximum scope of the difference. Not every 
variable mentioned in delta has necessarily changed value. This can happen when a 
neighborhood defines a value for a variable in the delta which is the same as the current one.

Be aware that if the metaheuristic is used with the IloTest goal, which does not take a 
neighborhood identifier, this method should be robust to delta being an empty handle.

From the standpoint of our limited tabu metaheuristic, we need only return IloTrue here, as 
any tabu or over-costly neighbor will have been rejected by the constraints added in start 
Since the default behavior of test returns IloTrue, a redefinition of this virtual function is 
not necessary here.

The notify method is called when a move is about to be accepted, but before the solution 
passed in start is actually stored. This call makes it possible for the metaheuristic to update 
some internal data structures that will change its behavior at the next move.

Be aware that if the metaheuristic is used with the IloNotify goal which does not take a 
solution reference, this method should be robust to delta being an empty handle.

From the standpoint of our limited tabu metaheuristic, we store the variable whose value has 
changed, so that it can be made tabu at the next move.

When no moves could be taken the last time the neighborhood was explored, the complete 
member function is called. Its job is to decide whether the metaheuristic should indicate that 
it wants to give up search (by returning IloTrue), or keep going (by returning IloFalse).

From the standpoint of our limited tabu metaheuristic, we could try relaxing the tabu 
condition to see if this would allow a move on the next iteration, and return IloFalse. If the 
condition is already relaxed, we could return IloTrue.

Subclasses of IloMetaHeuristicI often have some memory so that their behavior can be 
modified from move to move. The reset member function should reset any such internal 
structure. From the standpoint of our limited tabu metaheuristic, we remove the tabu 
condition.

void notify(IloSolver solver, IloSolution delta);

IloBool complete();

void reset();
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The class LimitedTabuI

Here is the synopsis of the class LimitedTabuI:

The class LimitedTabuI—local variables

The LimitedTabuI class is subclassed from IloMetaHeuricticI and implements our 
“limited tabu search” metaheuristic. The local variables have the following functions:

_previousVar

This variable holds the variable which was changed on the last move and which cannot 
change at this move. If this variable is an empty handle, it indicates that either the 
metaheuristic has just been created or reset, or that no variable in the solution was changed 
the last time notify() was called.

_previousValue

This variable holds the value that previousVar changed to on the previous move. This is 
the value it must have for the current move as it cannot change at this iteration.

_gap

This is the maximum difference in cost between the current solution and the best solution 
found.

_bestCost

This is the cost of the best solution given to the metaheuristic through start().

_soln

This is the solution given to the metaheuristic the last time start() was called.

class LimitedTabuI: public IloMetaHeuristicI {
private:
  IloNumVar   _previousVar;
  IloNum      _previousValue;
  IloNum      _gap;
  IloNum      _bestCost;
  IloSolution _soln;
public:
  LimitedTabuI(IloEnv env, IloNum gap, const char *name = 0);
  IloBool complete();
  IloBool isFeasible(IloSolver, IloSolution delta) const;
  void notify(IloSolver solver, IloSolution delta);
  void reset();
  IloBool start(IloSolver solver, IloSolution soln);
};
446 I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L



The class LimitedTabuI—constructor

This constructor creates the limited tabu search class.

The class LimitedTabuI—member functions

The complete member function decides if the metaheuristic should indicate that it would 
like to terminate the search. If no tabu restriction was present, we end. Otherwise, we 
remove the tabu restriction and continue.

The isFeasible member function decides the feasibility of the delta with respect to the 
tabu restriction. If a variable is tabu and the delta assigns this value to a different value from 
the current one, the delta can be rejected.

The notify member function finds the changed variable and its value, and stores them in 
previousVar and previousValue. If delta is not an empty handle, an optimization can 
be performed. The only variables we need to examine are those in the delta. In the absence 

LimitedTabuI::LimitedTabuI(IloEnv env, IloNum gap, const char *name) 
  : IloMetaHeuristicI(env, name), _previousVar(), _gap(gap), _soln() {
  assert(_gap >= 0);
}

IloBool LimitedTabuI::complete() {
  IloBool done = (_previousVar.getImpl() == 0);
  _previousVar = IloNumVar();
  return done;
}

IloBool LimitedTabuI::isFeasible(IloSolver, IloSolution delta) const {
  if (_previousVar.getImpl()) {
    if (delta.contains(_previousVar))
      return delta.getValue(_previousVar) != _previousValue;
  }
  return IloTrue;
}
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of this information, we need to scan all variables in the solution to discover the changed 
variable.

The reset member function resets to creation state.

The start member function ensures that the solution has an objective which is a simple 
variable (so that we can map from the IloNumVar to Solver variables). It stores the best 
cost, if it is better or if there is no cost stored. It also adds constraints to ensure the cost does 
not vary too far from the best cost, and that the value of previousVar does not change. 
(This last is done via a setValue rather than a constraint.)

IloBool LimitedTabuI::start(IloSolver solver, IloSolution solution) {
  if (solution.isObjectiveSet()) {
    IloNumVar obj = solution.getObjectiveVar();
    if (obj.getImpl()) {
      if (solution.getObjective().getSense() == IloObjective::Minimize) {
        if (_soln.getImpl() == 0 || solution.getObjectiveValue() < _bestCost) 
          _bestCost = solution.getObjectiveValue();
        if (obj.getType() == ILOINT)
          solver.add(solver.getIntVar(obj) <= _bestCost + _gap);
        else
          solver.add(solver.getFloatVar(obj) <= _bestCost + _gap);
      }
      else {
        if (_soln.getImpl() == 0 || solution.getObjectiveValue() > _bestCost) 
          _bestCost = solution.getObjectiveValue();
        if (obj.getType() == ILOINT)
          solver.add(solver.getIntVar(obj) >= _bestCost - _gap);
        else
          solver.add(solver.getFloatVar(obj) >= _bestCost - _gap);
      }
      if (_previousVar.getImpl())

void LimitedTabuI::notify(IloSolver solver, IloSolution delta) {
  // Update previousVar and previousValue
  _previousVar = IloNumVar();
  IloSolutionIterator<IloNumVar> it(_soln);
  if (delta.getImpl())
    it = IloSolutionIterator<IloNumVar>(delta);
  while (it.ok()) {
    IloNumVar v = *it;
    if (solver.getValue(v) != _soln.getValue(v)) {
      _previousVar = v;
      _previousValue = solver.getValue(v);
      break;
    }
    ++it;
  }
}

void LimitedTabuI::reset() {
  _soln = IloSolution();
  _previousVar = IloNumVar();
}

448 I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L



        solver.setValue(_previousVar, _previousValue);
    }
    else {
      throw "LimitedTabuI::start - "
            "Solution objective must be a simple variable";
    }
  }
  else {
    throw "LimitedTabuI::start - Solution has no objective";
  }
  _soln = solution;
  return IloTrue;
}

The following function returns the limited tabu metaheuristic. The new metaheuristic is 
allocated on the same environment as is passed to it. This is important as the delete 
operator of IloMetaHeuristicI (called via IloMetaHeuristic::end) frees the 
allocated memory from the env. If you allocate your subclass of IloMetaHeuristicI on a 
different heap, you must define a delete operator in your subclass.

IloMetaHeuristic LimitedTabu(IloEnv env, IloNum gap, const char *name = 0) {
  return new (env) LimitedTabuI(env, gap, name);
}

I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L 449



450 I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L



C H A P T E R
26

Combining Complete and Local Search:
Locating Warehouses

In this lesson, you will learn more about how to: 

◆ combine complete and local search

◆ use custom goals

◆ store solutions

This chapter shows how complete search and local search can be used together to obtain the 
optimal solution to a complex problem.

Describe

In this problem we must make a decision about how many warehouses to build and where to 
build them. We can choose from several potential warehouses, each of which has a specific 
limited quantity of goods available (capacity) and a specific cost, buildCosts, to build. In 
addition, we have a number of clients that must each be served by one of the warehouses we 
build. Each of these clients demands a specific quantity of goods. The total quantity 
demanded by all clients served by a warehouse cannot exceed its capacity.

Each warehouse also has several costs, serveCosts, that represent respectively the cost if 
each client was served from that warehouse. The cost for a warehouse is the sum of the 
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service costs of all clients served from that warehouse and the cost to build the warehouse. 
The total cost of the solution is the sum of all the warehouse costs. The goal of the problem 
is to provide service to all clients within the constraint of warehouse capacity while 
minimizing total cost. 

Model

We represent the capacities of the warehouses, the demands of the clients, the building costs 
and service costs using numerical arrays.

Create the model

We create an environment to handle input/output, memory allocation, and other general 
services for the variables of our problem. We then create a model to hold the variables that 
define the problem:

Read problem data from a file

We define a function readProblem to read the problem data from a file. We define each of 
the problem variables: the number of potential warehouses (nbWhouses), the total number 
of clients (nbClients), the array of capacities of the warehouses (capacities), the array 
of the demands of each of the clients (demands), the array of the costs to build each of the 

int main(int argc, char *argv[]){
  IloEnv env;
  try {
    IloModel m(env);
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warehouses (buildCosts), and the two-dimensional array of the costs for each potential 
warehouse to service each of the clients (serveCosts).

The following code opens the input file; determines whether to perform local search, 
complete (proof) search, or both (the default is to perform both); defines the variable arrays; 

// Function to read the problem from a file

void readProblem(IloEnv env,
                 istream &is,
                 IloInt &nbClients,
                 IloInt &nbWhouses,
                 IloIntArray &capacities,
                 IloIntArray &demands,
                 IloIntArray &buildCosts,
                 IloArray<IloIntArray> &serveCosts) {
  is >> nbWhouses >> nbClients;
  capacities = IloIntArray(env, nbWhouses);
  demands = IloIntArray(env, nbClients);
  buildCosts = IloIntArray(env, nbWhouses);
  serveCosts = IloArray<IloIntArray>(env, nbClients);
  env.out() << nbClients << " clients, " << nbWhouses << " warehouses" << endl;
  IloInt i;
  for (i = 0; i < nbWhouses; i++) {
    is >> capacities[i];
    is >> buildCosts[i];
  }
  env.out() << "Capacities: " << capacities << endl;
  env.out() << "Build costs: " << buildCosts << endl;
  for (i = 0; i < nbClients; i++) {
    serveCosts[i] = IloIntArray(env, nbWhouses);
    is >> demands[i];
    for (IloInt j = 0; j < nbWhouses; j++) is >> serveCosts[i][j];
  }
  env.out() << "Demands: " << demands << endl;
}
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and uses the function readProblem to read the problem data into those arrays. The choice 
of which type of search to perform can also be made on the command line.

Build constraints and variables

We build the problem variables using the classes and expressions we have just defined. The 
numerical array offer is used to store the number of the warehouse to which each client is 
assigned. The numerical array transCost is used to store the cost of serving a client from 
the chosen warehouse. The 0-1 variable array open is used to store the values that indicate 
whether a warehouse is built or not. The numerical array load is used to store the sum of the 
demands of the clients served by each warehouse.

    // Open input file.
    ifstream infile;
    const char *fname;
    if (argc > 1) fname = argv[1];
    else          fname = "../../../examples/data/cap71.txt";
    infile.open(fname);
    if (!infile.good()) {
      env.out() << "Could not open " << fname << endl;
      env.end();
      return 0;
    }
    // Decide on local search, proof, or local search, then proof.
    const char *lp = "lp";
    if (argc > 2) lp = argv[2];
    IloBool local = IloFalse;
    IloBool proof = IloFalse;
    if (strchr(lp, ’l’)) local = IloTrue;
    if (strchr(lp, ’p’)) proof = IloTrue;
  
    // Read in the problem
    IloInt nbWhouses, nbClients;
    IloIntArray capacities(env);
    IloIntArray demands(env);
    IloIntArray buildCosts(env);
    IloArray<IloIntArray> serveCosts;
    readProblem(env, infile, nbClients, nbWhouses,
                capacities, demands, buildCosts, serveCosts);
    infile.close();

    // Build all the constraints.
    IloIntVarArray offer(env, nbClients, 0, nbWhouses - 1);
    IloIntVarArray transCost(env, nbClients, 0, IloIntMax);
    IloIntVarArray open(env, nbWhouses, 0, 1);
    IloIntVarArray load(env, nbWhouses);
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We add constraints to ensure that the load of customers assigned to a warehouse do not 
exceed the warehouse capacity.

We add a constraint that specifies that a warehouse is built (open) if and only if it has 
assigned clients to serve.

We also add a variable, cost, and set it as equal to the sum of the total client service costs 
for each warehouse (transCost) plus the total building costs (buildCosts) for all open 
warehouses.

Finally, we add the element constraint that links the client service costs for a warehouse to 
the customers served by that warehouse.

Define search functions

We first define a function, TabuSearch, to perform a simple tabu search with a short-term 
memory. We define a neighborhood using IloFlip and randomize it using IloRandomize. 
We define a goal, move, that makes a single move and, if the solution is improved, stores it in 
the solution object whole. The function IloSingleMove scans the randomized 

    IlcInt i;
    for (i = 0; i < nbWhouses; i++)
      load[i] = IloIntVar(env, 0, capacities[i]);
    m.add(IloPack(env, load, offer, demands));

    // Only open if customers are served.
    for (i = 0; i < nbWhouses; i++)
      m.add(open[i] == (load[i] != 0));
    m.add(IloScalProd(open, capacities) >= IloSum(demands));

    // Total cost is sum of shipment and build costs
    IloIntVar cost(env, 0, IloIntMax);
    cost.setName("Cost\t");
    m.add(cost == IloSum(transCost) + IloScalProd(open, buildCosts));

    // Element constraints.
    for (i = 0; i < nbClients; i++) {
      IloIntArray costs(env, nbWhouses);
      for (IlcInt j = 0; j < nbWhouses; j++)
        costs[j] = serveCosts[i][j];
      IloIntVar dRes(env, costs);
      m.add(IloTableConstraint(env, dRes, costs, offer[i]));
      m.add(transCost[i] == dRes);
    }
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neighborhood nh using sol as the current solution. The metaheuristic mh uses tabu search to 
filter moves, and the search selector selectMove selects a move that minimizes the cost.

Finally, we define a standard optimization loop that continues the search until all iterations 
have been completed or the tabu search is complete.

We define a goal, IloSetOffer, that chooses a client with the smallest number of available 
open warehouses (an open warehouse is available if it has sufficient remaining capacity to 

// Function to perform simple tabu search with a short term memory

void TabuSearch(IloSolver solver,
                IloIntVarArray open,
                IloSolution sol,
                IloSolution whole,
                IloGoal subGoal,
                IloInt iter = IloIntMax) {
  IloEnv env = solver.getEnv();
  IloRandom rand(env);
  IloNHood nh = IloRandomize(env, IloFlip(env, open), rand);
  IloMetaHeuristic mh = IloTabuSearch(env, 2);
  IloIntVar cost = sol.getObjectiveVar();
  IloSearchSelector selectMove = IloMinimizeVar(env, cost, 1.0);

  // Goal makes a move, and updates the (whole) best solution if better.
  IloGoal move = IloSingleMove(env, sol, nh, mh, selectMove, subGoal) &&
                 IloStoreBestSolution(env, whole);

  // Standard optimization loop.
  do {
    IloInt i = 0;
    while (--iter >= 0 && solver.solve(move)) {
      solver.out() << "Iter = " << ++i << ", "
                   << sol.getObjectiveValue() << " : ";
      for (IloInt j = 0; j < open.getSize(); j++)
        solver.out() << solver.getValue(open[j]);
      solver.out() << " (Best = " << whole.getObjectiveValue() << ")" << endl;
    }
  } while (iter > 0 && !mh.complete());
}
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satisfy the client’s demand), and assign the client to the available open warehouse with the 
lowest cost.

Solve

We use local search to decide whether or not to open a specific warehouse. At each move, 
we use complete search to assign clients to warehouses, thus producing a hybrid search 
method.

Create the solution object

We create two solution objects. The first, sol, holds only the variables open, and is used to 
perform a local search over which warehouses are open (built) and which are closed (not 
built). The second solution whole maintains the assignment of a warehouse to each 
customer and so represents a proper solution to the problem. It is only used to store solutions 
as they are found and not used actively in the local search process. As mentioned previously, 

// Goal to assign customers to specific warehouses

ILCGOAL4(IlcSetOffer, IlcIntVarArray, offer, IlcIntVarArray, open,
                      IloArray<IloIntArray>, costs, IloIntArray, buildCosts) {
  IlcInt i = IlcChooseMinSizeInt(offer);
  if (i >= 0) {
    // Choose closest warehouse first.
    IlcInt best = -1;
    IlcInt lowest = IlcIntMax;
    for (IlcIntExpIterator it(offer[i]); it.ok(); ++it) {
      IloIntArray row = costs[i];
      IlcInt cost = row[*it] + buildCosts[*it] * (open[*it].getMin() == 0);
      if (cost <= lowest) { lowest = cost; best = *it; }
    }
    return IlcAnd(IlcOr(IlcSetValue(offer[i], best),
                        IlcRemoveValue(offer[i], best)),
                  this);
  }
  return 0;
}
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local search decides which warehouses will be open or closed, but the assignment of 
warehouses to customers is performed by a complete search goal, executed after each move.

Use local search

We create a goal to generate an initial solution, using the goal IloSetOffer. After 
execution of this goal we store the initial solution in both our solution instances.

We perform the local search if desired. We build the subgoal to pass to the TabuSearch 
function. This subgoal is an instance of IloSetOffer and will open warehouses to 

    // Set up two solutions.
    // sol: Holds only the 0-1 variables which defining the open warehouses
    // whole: Holds the variables which assign a warehouse to each client
    // NOTE: whole defines a solution, whereas sol only defines which
    //       warehouses will be used.  The clients must be then be assigned
    //       a specific warehouse each for a complete solution.
    //       We perform local search over the openness of warehouses,
    //       and at each move assign the customers to warehouses.
    IloSolution sol(env);
    IloObjective obj = IloMinimize(env, cost);
    sol.add(obj);
    for (i = 0; i < nbWhouses; i++) {
      char name[10];
      sprintf(name, "O-%ld", i);
      open[i].setName(name);
      sol.add(open[i]);
    }
    IloSolution whole(env);
    whole.add(obj);
    whole.add(offer);

    IloGoal g;
    IloInt upperBound = IloIntMax;
    IloSolver solver(env);
  
    // Inital solution
    // Complete search goal to assign clients to warehouses
    IloGoal generateOffer =
            IloSetOffer(env, offer, open, serveCosts, buildCosts);
    g = generateOffer &&
        IloStoreSolution(env, sol) &&
        IloStoreSolution(env, whole);
    solver.extract(m);
    if (solver.solve(g)) {
      DisplaySolution(solver, "Initial Solution", cost, offer);
    }
    else {
      solver.out() << "No initial solution" << endl;
      env.end();
      return 0;
    }
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customers at each move. When local search is complete, we take the value of the best 
solution as an upper bound and store it.

Use complete search for optimization

If the option to use complete search has been selected, we first set the upper bound for the 
search. If local search has been run first, the best objective value obtained in local search is 
used as the upper bound. Thus, local search provides a method for pruning the search tree 
used by the complete search method.

We create a standard optimization goal to solve the problem. If local search has not been 
performed, we extract the model for the solver. We also add code to output information 
about how the solution is found:

    if (local) {
      // Local Search
     
      // The sub-goal to assign clients to open warehouses, at minimum cost
      IloGoal subGoal = IloSelectSearch(env, generateOffer,
                                        IloMinimizeVar(env, cost, 1));
  
      // Run the tabu search
      TabuSearch(solver, open, sol, whole, subGoal, 30);
    }
    // Get the upper bound
    upperBound = (IloInt)whole.getObjectiveValue();

    if (proof) {
      cost.setUb(upperBound - 1);
      g = IloGenerate(env, open) &&
          generateOffer &&
          IloStoreSolution(env, whole);
      g = IloSelectSearch(env, g, IloMinimizeVar(env, cost, 1));
  
      // Optimization loop
      if (!local) solver.extract(m);
      if (solver.solve(g)) {
        solver.out() << "Complete search found solution of cost "
                     << solver.getValue(cost) << endl;
        solver.out() << solver.getIntVarArray(offer) << endl;
        if (local) {
          solver.out() << "Better solution found by complete search" << endl;
          solver.out() << "Local search was "
                       << 100.0 * (upperBound / whole.getObjectiveValue() - 1)
                       << "% above optimal" << endl;
        }
      }
      else {
        if (local) solver.out() << "No better solution found" << endl;
        else       solver.out() << "No solution" << endl;
      }
    }
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After the search is complete, the best solution is restored and displayed.

Displaying information about a solution

We define the function DisplaySolution to display the solution:

Complete program

The complete program follows. You can also view the entire program online in the file 
YourSolverHome/examples/src/lswhouse.cpp.

#include <ilsolver/iimls.h>

ILOSTLBEGIN

// Function to read the problem from a file

void readProblem(IloEnv env,
                 istream &is,
                 IloInt &nbClients,
                 IloInt &nbWhouses,
                 IloIntArray &capacities,
                 IloIntArray &demands,
                 IloIntArray &buildCosts,
                 IloArray<IloIntArray> &serveCosts) {
  is >> nbWhouses >> nbClients;
  capacities = IloIntArray(env, nbWhouses);
  demands = IloIntArray(env, nbClients);
  buildCosts = IloIntArray(env, nbWhouses);
  serveCosts = IloArray<IloIntArray>(env, nbClients);
  env.out() << nbClients << " clients, " << nbWhouses << " warehouses" << endl;
  IloInt i;
  for (i = 0; i < nbWhouses; i++) {
    is >> capacities[i];
    is >> buildCosts[i];
  }
  env.out() << "Capacities: " << capacities << endl;
  env.out() << "Build costs: " << buildCosts << endl;
  for (i = 0; i < nbClients; i++) {

// Function to display the solution

void DisplaySolution(IloSolver solver,
                     const char *phrase,
                     IloIntVar cost,
                     IloIntVarArray offer) {
  solver.out() << endl << phrase << endl
               << "[" << solver.getValue(cost) << "]" << endl
               << solver.getIntVarArray(offer) << endl;
}
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    serveCosts[i] = IloIntArray(env, nbWhouses);
    is >> demands[i];
    for (IloInt j = 0; j < nbWhouses; j++) is >> serveCosts[i][j];
  }
  env.out() << "Demands: " << demands << endl;
}

// Function to display the solution

void DisplaySolution(IloSolver solver,
                     const char *phrase,
                     IloIntVar cost,
                     IloIntVarArray offer) {
  solver.out() << endl << phrase << endl
               << "[" << solver.getValue(cost) << "]" << endl
               << solver.getIntVarArray(offer) << endl;
}

// Function to perform simple tabu search with a short term memory

void TabuSearch(IloSolver solver,
                IloIntVarArray open,
                IloSolution sol,
                IloSolution whole,
                IloGoal subGoal,
                IloInt iter = IloIntMax) {
  IloEnv env = solver.getEnv();
  IloRandom rand(env);
  IloNHood nh = IloRandomize(env, IloFlip(env, open), rand);
  IloMetaHeuristic mh = IloTabuSearch(env, 2);
  IloIntVar cost = sol.getObjectiveVar();
  IloSearchSelector selectMove = IloMinimizeVar(env, cost, 1.0);

  // Goal makes a move, and updates the (whole) best solution if better.
  IloGoal move = IloSingleMove(env, sol, nh, mh, selectMove, subGoal) &&
                 IloStoreBestSolution(env, whole);
  // Standard optimization loop.
  do {
    IloInt i = 0;
    while (--iter >= 0 && solver.solve(move)) {
      solver.out() << "Iter = " << ++i << ", "
                   << sol.getObjectiveValue() << " : ";
      for (IloInt j = 0; j < open.getSize(); j++)
        solver.out() << solver.getValue(open[j]);
      solver.out() << " (Best = " << whole.getObjectiveValue() << ")" << endl;
    }
  } while (iter > 0 && !mh.complete());
}

// Goal to assign customers to specific warehouses

ILCGOAL4(IlcSetOffer, IlcIntVarArray, offer, IlcIntVarArray, open,
                      IloArray<IloIntArray>, costs, IloIntArray, buildCosts) {
  IlcInt i = IlcChooseMinSizeInt(offer);
  if (i >= 0) {
    // Choose closest warehouse first.
    IlcInt best = -1;
    IlcInt lowest = IlcIntMax;
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    for (IlcIntExpIterator it(offer[i]); it.ok(); ++it) {
      IloIntArray row = costs[i];
      IlcInt cost = row[*it] + buildCosts[*it] * (open[*it].getMin() == 0);
      if (cost <= lowest) { lowest = cost; best = *it; }
    }
    return IlcAnd(IlcOr(IlcSetValue(offer[i], best),
                        IlcRemoveValue(offer[i], best)),
                  this);
  }
  return 0;
}

ILOCPGOALWRAPPER4(IloSetOffer, solver, IloIntVarArray, offer, IloIntVarArray, 
open,
                  IloArray<IloIntArray>, costs, IloIntArray, buildCosts) {
  return IlcSetOffer(solver,
                     solver.getIntVarArray(offer),
                     solver.getIntVarArray(open),
                     costs,
                     buildCosts);
}

// Main program

int main(int argc, char *argv[]){
  IloEnv env;
  try {
    IloModel m(env);
    // Open input file.
    ifstream infile;
    const char *fname;
    if (argc > 1) fname = argv[1];
    else          fname = "../../../examples/data/cap71.txt";
    infile.open(fname);
    if (!infile.good()) {
      env.out() << "Could not open " << fname << endl;
      env.end();
      return 0;
    }
    // Decide on local search, proof, or local search, then proof.
    const char *lp = "lp";
    if (argc > 2) lp = argv[2];
    IloBool local = IloFalse;
    IloBool proof = IloFalse;
    if (strchr(lp, ’l’)) local = IloTrue;
    if (strchr(lp, ’p’)) proof = IloTrue;
  
    // Read in the problem
    IloInt nbWhouses, nbClients;
    IloIntArray capacities(env);
    IloIntArray demands(env);
    IloIntArray buildCosts(env);
    IloArray<IloIntArray> serveCosts;
    readProblem(env, infile, nbClients, nbWhouses,
                capacities, demands, buildCosts, serveCosts);
    infile.close();
    // Build all the constraints.
    IloIntVarArray offer(env, nbClients, 0, nbWhouses - 1);
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    IloIntVarArray transCost(env, nbClients, 0, IloIntMax);
    IloIntVarArray open(env, nbWhouses, 0, 1);
    IloIntVarArray load(env, nbWhouses);
    IlcInt i;
    for (i = 0; i < nbWhouses; i++)
      load[i] = IloIntVar(env, 0, capacities[i]);
    m.add(IloPack(env, load, offer, demands));
  
    // Only open if customers are served.
    for (i = 0; i < nbWhouses; i++)
      m.add(open[i] == (load[i] != 0));
    m.add(IloScalProd(open, capacities) >= IloSum(demands));

    // Total cost is sum of shipment and build costs
    IloIntVar cost(env, 0, IloIntMax);
    cost.setName("Cost\t");
    m.add(cost == IloSum(transCost) + IloScalProd(open, buildCosts));
  
    // Element constraints.
    for (i = 0; i < nbClients; i++) {
      IloIntArray costs(env, nbWhouses);
      for (IlcInt j = 0; j < nbWhouses; j++)
        costs[j] = serveCosts[i][j];
      IloIntVar dRes(env, costs);
      m.add(IloTableConstraint(env, dRes, costs, offer[i]));
      m.add(transCost[i] == dRes);
    }
  
    // Set up two solutions.
    // sol: Holds only the 0-1 variables which defining the open warehouses
    // whole: Holds the variables which assign a warehouse to each client
    // NOTE: whole defines a solution, whereas sol only defines which
    //       warehouses will be used.  The clients must be then be assigned
    //       a specific warehouse each for a complete solution.
    //       We perform local search over the openness of warehouses,
    //       and at each move assign the customers to warehouses.
    IloSolution sol(env);
    IloObjective obj = IloMinimize(env, cost);
    sol.add(obj);
    for (i = 0; i < nbWhouses; i++) {
      char name[10];
      sprintf(name, "O-%ld", i);
      open[i].setName(name);
      sol.add(open[i]);
    }
    IloSolution whole(env);
    whole.add(obj);
    whole.add(offer);
    IloGoal g;
    IloInt upperBound = IloIntMax;
    IloSolver solver(env);
  
    // Inital solution
    // Complete search goal to assign clients to warehouses
    IloGoal generateOffer =
            IloSetOffer(env, offer, open, serveCosts, buildCosts);
    g = generateOffer &&
        IloStoreSolution(env, sol) &&
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        IloStoreSolution(env, whole);
    solver.extract(m);
    if (solver.solve(g)) {
      DisplaySolution(solver, "Initial Solution", cost, offer);
    }
    else {
      solver.out() << "No initial solution" << endl;
      env.end();
      return 0;
    }
    if (local) {
      // Local Search
     
      // The sub-goal to assign clients to open warehouses, at minimum cost
      IloGoal subGoal = IloSelectSearch(env, generateOffer,
                                        IloMinimizeVar(env, cost, 1));
  
      // Run the tabu search
      TabuSearch(solver, open, sol, whole, subGoal, 30);
    }
    // Get the upper bound
    upperBound = (IloInt)whole.getObjectiveValue();
    if (proof) {
      cost.setUb(upperBound - 1);
      g = IloGenerate(env, open) &&
          generateOffer &&
          IloStoreSolution(env, whole);
      g = IloSelectSearch(env, g, IloMinimizeVar(env, cost, 1));
  
      // Optimization loop
      if (!local) solver.extract(m);
      if (solver.solve(g)) {
        solver.out() << "Complete search found solution of cost "
                     << solver.getValue(cost) << endl;
        solver.out() << solver.getIntVarArray(offer) << endl;
        if (local) {
          solver.out() << "Better solution found by complete search" << endl;
          solver.out() << "Local search was "
                       << 100.0 * (upperBound / whole.getObjectiveValue() - 1)
                       << "% above optimal" << endl;
        }
      }
      else {
        if (local) solver.out() << "No better solution found" << endl;
        else       solver.out() << "No solution" << endl;
      }
    }
    // Reporting final solution
    cost.setUb(whole.getObjectiveValue());
    g = IloRestoreSolution(env, whole);
    solver.solve(g);
    DisplaySolution(solver, "Final Solution", cost, offer);
  } catch(IloException& ex) {
    cout << "Error: " << ex << endl;
  }
  env.end();
  return 0;
}
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Output

The program initially produces the following output. The member function 
IloSolver::printInformation displays details about how Solver solved the problem.

50 clients, 16 warehouses
Capacities: [58268, 58268, 58268, 58268, 58268, 58268, 58268, 58268, 58268, 
58268, 58268, 58268, 58268, 58268, 58268, 58268]
Build costs: [7500, 7500, 7500, 7500, 7500, 7500, 7500, 7500, 7500, 7500, 0, 
7500, 7500, 7500, 7500, 7500]
Demands: [146, 87, 672, 1337, 31, 559, 2370, 1089, 33, 32, 5495, 904, 1466, 
143, 615, 564, 226, 3016, 253, 195, 38, 807, 551, 304, 814, 337, 4368, 577, 
482, 495, 231, 322, 685, 12912, 325, 366, 3671, 2213, 705, 328, 1681, 1117, 
275, 500, 2241, 733, 222, 49, 1464, 222]

Initial Solution
[965952]
IlcIntVarArrayI[[10] [10] [10] [10] [10] [10] [1] [10] [10] [10] [3] [10] [10] 
[10] [10] [7] [3] [8] [3] [7] [3] [9] [10] [10] [10] [10] [12] [10] [10] [14] 
[10] [10] [10] [2] [10] [3] [2] [10] [7] [10] [10] [3] [7] [9] [12] [7] [7] [7] 
[10] [10]]
Iter = 1, 943477 : 0111010111101010 (Best = 943477)
Iter = 2, 939949 : 0111010111111010 (Best = 939949)
Iter = 3, 937269 : 1111010111111010 (Best = 937269)
Iter = 4, 934199 : 1111010111111000 (Best = 934199)
Iter = 5, 935152 : 1111010111111001 (Best = 934199)
Iter = 6, 935445 : 1111010110111001 (Best = 934199)
Iter = 7, 933569 : 1111011110111001 (Best = 933569)
Iter = 8, 932616 : 1111011110111000 (Best = 932616)
Iter = 9, 933876 : 1111011110101000 (Best = 932616)
Iter = 10, 935883 : 1111011110101100 (Best = 932616)
Iter = 11, 938953 : 1111011110101110 (Best = 932616)
Iter = 12, 937692 : 1111011110111110 (Best = 932616)
Iter = 13, 935686 : 1111011110111010 (Best = 932616)
Iter = 14, 932616 : 1111011110111000 (Best = 932616)
Iter = 15, 933569 : 1111011110111001 (Best = 932616)
Iter = 16, 934829 : 1111011110101001 (Best = 932616)
Iter = 17, 937899 : 1111011110101011 (Best = 932616)
Iter = 18, 936946 : 1111011110101010 (Best = 932616)
Iter = 19, 935686 : 1111011110111010 (Best = 932616)
Iter = 20, 932616 : 1111011110111000 (Best = 932616)
Iter = 21, 933569 : 1111011110111001 (Best = 932616)
Iter = 22, 934829 : 1111011110101001 (Best = 932616)
Iter = 23, 937899 : 1111011110101011 (Best = 932616)
Iter = 24, 936946 : 1111011110101010 (Best = 932616)
Iter = 25, 935686 : 1111011110111010 (Best = 932616)
Iter = 26, 932616 : 1111011110111000 (Best = 932616)
Iter = 27, 933569 : 1111011110111001 (Best = 932616)
Iter = 28, 934829 : 1111011110101001 (Best = 932616)
Iter = 29, 937899 : 1111011110101011 (Best = 932616)
Iter = 30, 936946 : 1111011110101010 (Best = 932616)
No better solution found
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Final Solution
[932616]
IlcIntVarArrayI[[7] [11] [0] [5] [7] [0] [1] [2] [7] [7] [3] [10] [5] [0] [6] 
[7] [3] [8] [3] [6] [3] [6] [10] [0] [11] [10] [12] [10] [10] [0] [0] [10] [0] 
[2] [11] [11] [5] [5] [7] [5] [10] [3] [7] [6] [12] [7] [7] [6] [5] [11]]

Here is how to interpret this program output:

The initial output displays the input problem data: the number of clients, the number of 
warehouses, the array of capacities of the warehouses, the array of building costs of the 
warehouses, and the array of the demands of the customers.

The initial solution uses nine warehouses and has a total cost of 965952.

After 30 iterations, the best solution found by local search is passed to the complete search, 
which is unable to find a better solution than that found by local search. The final solution 
uses eleven warehouses and has a total cost of 932616.

The IlcIntVarArray indicates the warehouse to which each of the 50 customers is 
assigned.
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C H A P T E R
27

Minimizing Talent Wait Cost Using LNS

This lesson introduces the concept of large neighborhood search (LNS). LNS is a search 
technique which is a hybrid of traditional neighborhood search techniques and constraint 
programming. The basic idea is simple: at each step of the local search method, a subset of 
the decision variables is chosen (invariably in a randomized fashion) and referred to as the 
fragment. All decision variables not in the fragment must keep their values as in the current 
solution. All variables in the fragment are free to take their values from their initial domains 
(subject to constraint propagation). A constraint programming goal is then used to complete 
the assignment by instantiating the variables in the fragment. This goal is usually subject to 
some acceptance conditions or constraints, for instance that any new assignment is better 
than the current one in the case of a greedy search. The completion goal is also normally 
limited by a fail limit to avoid the exponential run-times that can be seen using complete 
search. Regardless of whether a better solution was found during completion, the process is 
repeated from the selection of a new fragment. As in traditional local search procedures, a 
number of iterations or a time limit usually terminates the search.

LNS is a successful technique which can be applied to a range of problems. The crucial part 
is the selection of a fragment. One method is to select a fragment completely at random. 
While this can work in some cases, normally there is a better way to select a fragment that 
can be determined by some consideration of the problem. This example introduces you to 
the LNS framework provided in Solver IIM and addresses such key points as fragment 
generation at the end of the chapter.

Make a copy of the example file YourSolverHome/examples/src/tutorial/
lstalent_partial.cpp and open this copy in your development environment. This file is 
I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L 467



a program that is only partially completed. You will fill in the blanks in each step in this 
section. At the end of the section, you will have completed the example and you can compile 
and run the program. 

Problem description

This lesson addresses a problem known as the talent scheduling problem, which involves 
deciding on the best order in which to shoot different film scenes in order to minimize actor 
waiting costs.

In this problem, there are m actors required to shoot n scenes. Each scene s has a filming 
duration d(s) and each actor a has a cost per unit duration (pay rate) of c(a). Not all actors 
are required for all scenes, and a predicate r(a,s) determines if actor a is required in scene s.

The scenes are shot in a certain order, and once an actor arrives on set, he will remain there 
until his last scene has been shot. All actors are paid for their time on set, including any time 
waiting for scenes to be shot which do not involve them. The objective of the search is to 
decide on the best filming order of scenes such that the total actor waiting cost is minimized.

For example, see the following 3 actor, 5 scene problem: 

This problem has five scenes of filming durations 3, 1, 4, 2 and 2, and three actors who are 
paid 5, 7 and 2 units of currency per time unit. The central section of the table indicates 
which actors are required for each scene, a 1 meaning that the actor is required for the 
corresponding scene, and a 0 meaning that he is not.

If the scenes were filmed in the numerical order given, then actor 1 would have to wait 
during scene 2 at a cost of 5 units, actor 2 would have to wait during scene 4 at a cost of 14 
units, and actor 3 would not wait, incurring no additional cost. The total cost of this filming 
schedule would be 5+14=19.

Table 27.1 A 3-actor, 5-scene problem

Scene1 1 2 3 4 5 Cost

Actor 1 1 0 1 0 0 5

Actor 2 0 1 1 0 1 7

Actor 3 0 1 1 1 0 2

Duration 3 1 4 2 2
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Optimal solutions for this problem have a cost of 4. Such a solution is given below: 

Here, only actor 3 waits for 2 time units during the filming of scene 5.

Problem representation: Reading the problem data

In this example, the problem data will be read from a file. The data to be read are the 
numbers of actors and scenes, the pay rate of the actors, and the filming durations of the 
scenes. In addition, the presence (or otherwise) of an actor in any particular scene is read. 
The following initial part of the program has been provided for you:

This code accepts as command line arguments first, the filename from which the problem 
data should be read, and second, a random seed with which to seed Solver’s random number 
generator. Varying the seed will vary the behavior of the resulting search procedure.

Three empty arrays are created which will be filled when the data file is read.  actorPay 
holds the pay per unit time for each actor.  sceneDuration holds the filming duration of 
each scene. Finally, actorInScene holds, for each actor, the set of scenes in which he 
appears.

Table 27.2 An optimal solution of the 3-actor, 5-scene problem

Scene1 1 3 2 5 4 Cost

Actor 1 1 1 0 0 0 5

Actor 2 0 1 1 1 0 7

Actor 3 0 1 1 0 1 2

Duration 3 4 1 2 2

int main(int argc, const char * argv[]) {
  IloEnv env;
  try {
    const char * inputFile = "../../../examples/data/rehearsal.txt";
    IloInt seed = 1;
    if (argc > 1)
      inputFile = argv[1];
    if (argc > 2)
      seed = atoi(argv[2]);

    IloIntArray actorPay(env);
    IloIntArray sceneDuration(env);
    IloArray<IloIntSet> actorInScene(env);
    IloBool ok = ReadData(inputFile, actorPay, sceneDuration, actorInScene);
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Thereafter, the problem data are read by filling the three aforementioned arrays. The 
function ReadData carries out this process, returning a true value if the data were read 
without error and false otherwise.

The ReadData function is provided for you and can be simply understood from the code 
itself.

Problem representation: Model

The next step is to create a Concert Technology model of the problem from the data that 
have been read. The following code is provided for you.

This code creates the main decision variables of the problem scene. Element i of this array 
will specify which scene is to be filmed in slot i. The code also creates the cost variable 
idleCost. Then a call to the function BuildModel is made which creates the model which 
calculates the idle cost of a particular filming order, given actor pay and scene involvement, 
as well as the scene filming durations.

Now you create the model of the talent scheduling problem. Go to the function BuildModel 
in your file. The head of the function is provided for you. It simply creates the Concert 
Technology model object and retrieves the number of actors and scenes to film.

The decision variables of the problem are, for each time slot, which scene to film in that 
particular time slot, and indeed this model is the most intuitive one for most people. 
However, it turns out that the model is easier to specify if a secondary model is used. Instead 
of having one variable per time slot, indicating the scene, the dual model has one variable 
per scene, indicating in which time slot that scene is filmed.

      // Create the decision variables, cost, and the model
      IloInt numScenes = sceneDuration.getSize();
      IloInt numActors = actorPay.getSize();
      IloIntVarArray scene(env, numScenes, 0, numScenes - 1);
      IloIntVar idleCost(env, 0, IloIntMax);
      IloModel model = BuildModel(
        scene, idleCost, actorPay, sceneDuration, actorInScene
      );

// Build the talent scheduling model
IloModel BuildModel(IloIntVarArray scene,
                    IloIntVar idleCost,
                    IloIntArray actorCost,
                    IloIntArray sceneDuration,
                    IloArray<IloIntSet> actorInScene) {
  IloEnv env = scene.getEnv();
  IloInt numScenes = scene.getSize();
  IloInt numActors = actorCost.getSize();
  IloModel model(env);
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Here, you will create this secondary model. The two models are connected together using 
the inverse constraint which ensures that for two arrays of constrained variables x and y of 
equal size, for any index i, y[x[i]] = x[y[i]] = i.

This constraint also has the virtue of ensuring that all variables in x must take on different 
values, as must all those in y; if this were not the case, the inversion would not be possible.

You will now create the secondary model. 

Add the following code after the comment
   // Make the slot-based secondary model

You will now build the cost function which is the sum of the waiting cost of each actor. The 
basic loop is already provided for you:

You will write the code which will calculate the expression actorWait for each actor. 
There are three points to note here:

◆ An actor is on set between his first and last scenes.

◆ An actor will only wait for scenes filmed while he is on set.

Step 1 Create the secondary model

  IloIntVarArray slot(env, numScenes, 0, numScenes - 1);
  model.add(IloInverse(env, scene, slot));

  // Expression representing the global cost
  IloIntExpr cost(env);

  // Loop over all actors, building cost
  for (IloInt a = 0; a < numActors; a++) {
    // Expression for the waiting time for this actor
    IloIntExpr actorWait(env);

    // Calculate the first and last slots where this actor plays

    // If an actor is not in a scene,
    // he waits if he is on set when the scene is filmed

    // Accumulate the cost of waiting time for this actor
    cost += actorCost[a] * actorWait;
  }

  model.add(idleCost == cost);
  return model;

}
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◆ An actor can only wait for scenes he does not appear in.

First of all, you will work out when an actor is on set by creating variables which represent 
the first and last time slots where the actor is needed. To do this, you first create an array of 
variables which contains all the slots where the actor plays.

Insert the following code after the comment 
    // Calculate the first and last slots where this actor plays

This code iterates over all scenes which the current actor plays in, and adds the appropriate 
slot variables for those scenes to an array of variables position. Then, two expressions are 
built: the first slot that the actor plays in is the minimum of these slot variables and the last 
slot that he plays in is their maximum.

firstSlot and lastSlot define when the actor is on set; he will be present for every 
scene filmed between firstSlot and lastSlot inclusively.

You are now ready to build the part of the model which will evaluate the waiting time of the 
current actor a in the loop. 

Insert the following code after the comment  // If an actor is not in a scene,

    // he waits if he is on set when the scene is filmed

Here, you loop over all scenes. For any scene in which the actor does not appear, you add a 
waiting time if and only if the slot in which the scene is filmed is a slot for which the actor is 
on set (in other words, a slot between the arrival and departure of the actor). This is done by 
creating a 0-1 expression from the Boolean condition of being on set. This 0-1 expression is 
then multiplied by the filming duration of the scene in question to arrive at the correct 
waiting time for that scene. Notice that the waiting time for the scene is either 0 or the 
filming duration.

Step 2 Create the slots in which the actor plays

    IloIntVarArray position(env);
    for (IloIntSet::Iterator it(actorInScene[a]); it.ok(); ++it)
      position.add(slot[*it]);
    IloIntExpr firstSlot = IloMin(position);
    IloIntExpr lastSlot = IloMax(position);

Step 3 Create the waiting time for an actor

    for (IloInt s = 0; s < numScenes; s++) {
      if (!actorInScene[a].contains(s)) { // not in scene
        IloIntExpr wait = (firstSlot <= slot[s] && slot[s] <= lastSlot);
        actorWait += sceneDuration[s] * wait;
      }
    }
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The remainder of the code of the BuildModel function which is provided for you works out 
the waiting cost of the actor to be his waiting time multiplied by his pay rate, and 
accumulates this cost. Then the total waiting cost is constrained to be equal to the cost 
variable passed as parameter, and the model is returned.

Problem solving: Finding an initial solution

Now you create an initial solution to the problem which will serve as a starting point for the 
LNS which will follow. Before you do this, you need to create an instance of IloSolver 
which will be used for search.

Insert the following code after the comment 
      // Create the solver, and seed its random number generator

This code creates the solver from the model and afterwards sets this solver’s random number 
seed to that specified on the command line. In this way, different seeds can be specified to 
observe different search trajectories.

You can now create the initial solution. 

Insert the following code after the comment 
       // Create an initial solution to the problem

Here, you use the basic IloGenerate goal on the scene variables to produce the initial 
solution.

To perform any local search using Solver IIM, you need to have an instance of an 
IloSolution object which represents the current solution. You will now create this 
solution object. 

Step 4 Create a solver

      IloSolver solver(model);
      solver.getRandom().reSeed(seed);

Step 5 Generate an initial solution

      IloGoal goal = IloGenerate(env, scene);
      solver.solve(goal);
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Insert the following code after the comment       // Create the solution object

Here you add the decision variables scene to the solution object, as well as the objective 
which is to minimize total idle time. Addition of the objective allows improvement search to 
compare the current solution with the new proposed solution. Finally, you store the current 
values of the decision variables in the solution via solution.store(solver).

Problem solving: Large neighborhood search

As outlined in the introduction, there are two essential components to LNS. The first is the 
choice of “fragment”; the part of the solution which can change its value. The second is the 
completion method, which instantiates the fragment to some new value. Solver IIM uses 
goals for the latter task (instances of IloGoal), and for the former uses neighborhoods 
(instances of IloNHood), although the neighborhoods are quite particular in nature.

Normally, this neighborhood has only one neighbor which might be termed a “meta-
neighbor” as it defines the fragment and thus the search space for the completion goal. There 
is a special subclass of IloNHoodI, IloLargeNHoodI which is used to define large 
neighborhoods; full details can be found in the IBM ILOG Solver Reference Manual. 
However, for now you will not need to understand any details, or even how to subclass 
IloLargeNHoodI. A simple interface is provided via the macro 
ILODEFINELNSFRAGMENT1 (and its variants) which you will use here to define an LNS 
fragment for the talent scheduling problem.

You will now create the instance of IloNHood which defines a fragment.

Step 6 Create the solution object

      IloSolution solution(env);
      solution.add(scene);
      IloObjective objective = IloMinimize(env, idleCost);
      solution.add(objective);
      solution.store(solver);
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Insert the following code after the comment 
 // Define an LNS fragment which is a random segment

This code chooses as a fragment a random segment in the schedule. That is, you will 
authorize changes to variables from indices a to b where a and b are randomly chosen. It is 
essential that the fragment is chosen with some random element. If not, the same fragment 
will be chosen time and time again, and the search will stagnate very quickly with no 
improvements possible. In the macro ILODEFINELNSFRAGMENT, you must call the service 
function addToFragment for every variable that you wish to include in the part of the 
solution that can change its value. The macro takes only two mandatory parameters: the 
name of the neighborhood function to create, and the name of an instance of IloSolver 
which will be received. Depending on the particular instance of the macro chosen, optional 
parameters may then be added in the usual way by pairs of type and variable name. The 
macro also has other services available like retrieving the current solution: see the 
documentation of IloLargeNHoodI in the IBM ILOG Solver Reference Manual.

In this fragment, two indices are chosen randomly using the solver’s random number 
generator. These indices are interchanged to make sure that a is no greater than b. Finally, all 
variables from a to b are added to the fragment.

Now that you have created the fragment-defining neighborhood, you can move on to the 
large neighborhood search itself, which is essentially the same a performing a standard local 
search. You begin by creating the large neighborhood. 

Add the following code after the comment       // Create the LNS neighborhood

This code creates the large neighborhood to be used in the search. This takes care of the first 
part of LNS: the definition of a fragment. The second part is the completion method. For this 
(and as is common in LNS), you will use the initial solution goal to complete the search. 
This goal will, however, be limited in search capacity so as to avoid long search times in 
fragments which may have no improving solutions. Experience has shown that this 

Step 7 Write the fragment-defining neighborhood

ILODEFINELNSFRAGMENT1(SegmentLNSNHood, solver, IloIntVarArray, x) {
  IlcRandom r = solver.getRandom(); 
  IloInt a = r.getInt(x.getSize());
  IloInt b = r.getInt(x.getSize());
  if (a > b) { IloInt tmp = a; a = b; b = tmp; }
  for (IlcInt i = a; i <= b; i++)
    addToFragment(solver, x[i]);
}

Step 8 Create the neighborhood

      IloNHood nhood = SegmentLNSNHood(env, scene);
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limitation is essential to LNS, although the best limit can vary by problem and quality of the 
heuristic used in the completion goal (good heuristics are likely to require less search in the 
completion goal than poorer ones).

Add the following code after the comment      

// Create the LNS completion goal

As LNS can explore a much larger neighborhood than is typical of standard neighborhood 
searches, normally there is less reliance on a metaheuristic to guide the search, and as such 
greedy search is often employed. That is the technique that you will use here.

You will now create the local search move goal by inserting the following code after the 
comment       // Create a greedy local search move goal

Next, you perform the local search loop. This is just as for other greedy local searches, 
except that the stopping condition is altered. As the fragment is generated randomly, a failed 
solve is not an indication that the search should stop, as success depends on the particular 
randomized fragment generated. Thus, the search is stopped only after a certain number of 
tries are made without success. The total number of choice points used is totalled to give an 
indication of total search effort. The following code is provided for you:

Step 9 Create the completion goal

      IloGoal complete = IloLimitSearch(env, goal, IloFailLimit(env, 100));

Step 10 Create the single move goal

      IloGoal move = IloSingleMove(
        env, solution, nhood, IloImprove(env), complete
      );

      // Enter the local search loop
      IloInt choicePoints = 0;
      IloInt noMove = 0;
      IloInt movesTried = 0;
      while (noMove < 100) {
        movesTried++;
        if (solver.solve(move)) {
          noMove = 0;
          cout << movesTried << ": Cost = "
               << solver.getValue(idleCost) << endl;
        }
        else
          noMove++;
        choicePoints += solver.getNumberOfChoicePoints();
      }
      cout << "Total choice points = " << choicePoints << endl;
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Displaying the solution

Having terminated the LNS, it is now time to display the best solution found. To do this, you 
will first restore the best solution so that solver’s variables are instantiated in line with them. 
Then, a simple loop displays the order of the scenes.

Insert the following display code after the comment 
       // Display the order of scene filming

A more complicated display is provided for you which displays the time units at which each 
actor acts. The number of units of waiting time can be more clearly seen for each actor in 
this case. The code is given below:

Complete program

The complete program follows and can be viewed online in 
YourSolverHome\examples\src\lstalent.cpp:

// -------------------------------------------------------------- -*- C++ -*-
// File: examples/src/lstalent.cpp
// ---------------------------------------------------------------------------

Step 11 Display the scene filming order

      solver.solve(IloRestoreSolution(env, solution));
      cout << "Solution of idle cost " << solver.getValue(idleCost) << endl; 
      cout << "Order:";
      for (IloInt s = 0; s < numScenes; s++)
        cout << " " << 1 + solver.getValue(scene[s]);
      cout << endl;

      // Give more detailed information on the schedule
      for (IloInt a = 0; a < numActors; a++) {
        cout << "|";
        for (IloInt s = 0; s < numScenes; s++) {
          IloInt sc = solver.getIntValue(scene[s]);
          for (IloInt d = 0; d < sceneDuration[sc]; d++) {
            if (actorInScene[a].contains(sc))
              cout << "X";
            else
              cout << ".";
          }
          cout << "|";
        }
        cout << "  (Rate = " << actorPay[a] << ")" << endl;
      }
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#include <ilsolver/iim.h>

ILOSTLBEGIN
// Read talent scheduling problem data from a file
IloBool ReadData(const char * filename,
                 IloIntArray actorPay,
                 IloIntArray sceneDuration,
                 IloArray<IloIntSet> actorInScene) {
  IloEnv env = actorPay.getEnv();
  ifstream in(filename);
  if (!in.good())
    return IloFalse;

  IloInt numActors, numScenes, a, s;

  in >> numActors;
  for (a = 0; a < numActors; a++) { 
    IloInt pay;
    in >> pay;
    actorPay.add(pay);
  }

  in >> numScenes;
  for (s = 0; s < numScenes; s++) {
    IloInt duration;
    in >> duration;
    sceneDuration.add(duration);
  }

  for (a = 0; a < numActors; a++) {
    actorInScene.add(IloIntSet(env));
    for (s = 0; s < numScenes; s++) {
      IloBool inScene;
      in >> inScene;
      if (inScene)
        actorInScene[a].add(s);
    }
  }
  if (!in.good())
    return IloFalse;

  in.close();
  return IloTrue;
}

// Build the talent scheduling model
IloModel BuildModel(IloIntVarArray scene,
                    IloIntVar idleCost,
                    IloIntArray actorCost,
                    IloIntArray sceneDuration,
                    IloArray<IloIntSet> actorInScene) {
  IloEnv env = scene.getEnv();
  IloInt numScenes = scene.getSize();
  IloInt numActors = actorCost.getSize();
  IloModel model(env);

  // Make the slot-based secondary model
  IloIntVarArray slot(env, numScenes, 0, numScenes - 1);
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  model.add(IloInverse(env, scene, slot));

  // Expression representing the global cost
  IloIntExpr cost(env);

  // Loop over all actors, building cost
  for (IloInt a = 0; a < numActors; a++) {
    // Expression for the waiting time for this actor
    IloIntExpr actorWait(env);

    // Calculate the first and last slots where this actor plays
    IloIntVarArray position(env);
    for (IloIntSet::Iterator it(actorInScene[a]); it.ok(); ++it)
      position.add(slot[*it]);
    IloIntExpr firstSlot = IloMin(position);
    IloIntExpr lastSlot = IloMax(position);

    // If an actor is not in a scene,
    // he waits if he is on set when the scene is filmed
    for (IloInt s = 0; s < numScenes; s++) {
      if (!actorInScene[a].contains(s)) { // not in scene
        IloIntExpr wait = (firstSlot <= slot[s] && slot[s] <= lastSlot);
        actorWait += sceneDuration[s] * wait;
      }
    }

    // Accumulate the cost of waiting time for this actor
    cost += actorCost[a] * actorWait;
  }
  model.add(idleCost == cost);
  return model;
}

// Define an LNS fragment which is a random segment
ILODEFINELNSFRAGMENT1(SegmentLNSNHood, solver, IloIntVarArray, x) {
  IlcRandom r = solver.getRandom(); 
  IloInt a = r.getInt(x.getSize());
  IloInt b = r.getInt(x.getSize());
  if (a > b) { IloInt tmp = a; a = b; b = tmp; }
  for (IlcInt i = a; i <= b; i++)
    addToFragment(solver, x[i]);
}

int main(int argc, const char * argv[]) {
  IloEnv env;
  try {
    const char * inputFile = "../../../examples/data/rehearsal.txt";
    IloInt seed = 1;
    if (argc > 1)
      inputFile = argv[1];
    if (argc > 2)
      seed = atoi(argv[2]);

    IloIntArray actorPay(env);
    IloIntArray sceneDuration(env);
    IloArray<IloIntSet> actorInScene(env);
    IloBool ok = ReadData(inputFile, actorPay, sceneDuration, actorInScene);
    if (!ok) {
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      env.out() << "Error reading " << inputFile << endl;
    }
    else {
      // Create the decision variables, cost, and the model
      IloInt numScenes = sceneDuration.getSize();
      IloInt numActors = actorPay.getSize();
      IloIntVarArray scene(env, numScenes, 0, numScenes - 1);
      IloIntVar idleCost(env, 0, IloIntMax);
      IloModel model = BuildModel(
        scene, idleCost, actorPay, sceneDuration, actorInScene
      );

      // Create the solver, and seed its random number generator
      IloSolver solver(model);
      solver.getRandom().reSeed(seed);

      // Create an initial solution to the problem
      IloGoal goal = IloGenerate(env, scene);
      solver.solve(goal);

      // Create the solution object
      IloSolution solution(env);
      solution.add(scene);
      IloObjective objective = IloMinimize(env, idleCost);
      solution.add(objective);
      solution.store(solver);

      // Create the LNS neighborhood
      IloNHood nhood = SegmentLNSNHood(env, scene);

      // Create the LNS completion goal
      IloGoal complete = IloLimitSearch(env, goal, IloFailLimit(env, 100));

      // Create a greedy local search move goal
      IloGoal move = IloSingleMove(
        env, solution, nhood, IloImprove(env), complete
      );

      // Enter the local search loop
      IloInt choicePoints = 0;
      IloInt noMove = 0;
      IloInt movesTried = 0;
      while (noMove < 100) {
        movesTried++;
        if (solver.solve(move)) {
          noMove = 0;
          cout << movesTried << ": Cost = "
               << solver.getValue(idleCost) << endl;
        }
        else
          noMove++;
        choicePoints += solver.getNumberOfChoicePoints();
      }
      cout << "Total choice points = " << choicePoints << endl;

      // Display the order of scene filming
      solver.solve(IloRestoreSolution(env, solution));
      cout << "Solution of idle cost " << solver.getValue(idleCost) << endl; 
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      cout << "Order:";
      for (IloInt s = 0; s < numScenes; s++)
        cout << " " << 1 + solver.getValue(scene[s]);
      cout << endl;

      // Give more detailed information on the schedule
      for (IloInt a = 0; a < numActors; a++) {
        cout << "|";
        for (IloInt s = 0; s < numScenes; s++) {
          IloInt sc = solver.getIntValue(scene[s]);
          for (IloInt d = 0; d < sceneDuration[sc]; d++) {
            if (actorInScene[a].contains(sc))
              cout << "X";
            else
              cout << ".";
          }
          cout << "|";
        }
        cout << "  (Rate = " << actorPay[a] << ")" << endl;
      }
      solver.end();
    }
  } catch (IloException & ex) {
    cout << "Caught: " << ex << endl;
  }
  env.end();
  return 0;
}

Output

Execution of the program results in the following output:

2: Cost = 45
3: Cost = 40
5: Cost = 37
6: Cost = 36
8: Cost = 34
10: Cost = 33
22: Cost = 30
24: Cost = 23
29: Cost = 19
30: Cost = 17
Total choice points = 1807
Solution of idle cost 17
Order: 3 8 2 7 1 5 6 4 9
|.|.......|XXXX|XXXXX|XX|...|XX|XXX|XXXXXX|  (Rate = 1)
|.|XXXXXXX|XXXX|.....|XX|XXX|XX|XXX|......|  (Rate = 1)
|.|XXXXXXX|XXXX|XXXXX|XX|...|..|...|......|  (Rate = 1)
|.|.......|....|.....|XX|XXX|XX|...|XXXXXX|  (Rate = 1)
|X|XXXXXXX|....|XXXXX|..|XXX|XX|...|......|  (Rate = 1)
I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L 481



About this problem

An excellent overview of this problem can be found in Barbara Smith’s tutorial paper: 
“Constraint Programming in Practice: Scheduling a Rehearsal”, research report APES-67-
2003. This problem is also present in the Constraint Programming library (http://
www.csplib.org) as problem number 39: the rehearsal problem. Here you may find the 
problem data supplied with Solver as well as references to Smith’s tutorial and other 
information.

The original problem originated from Lancaster University in the 1970s where the objective 
was to minimize the waiting time of players during an evening rehearsal of several musical 
pieces. The application to the talent scheduling problem where each actor (or player) has a 
different rate of pay was described in T. C. E. Cheng, J. Diamond, and B. M. T. Lin: 
“Optimal scheduling in film production to minimize talent hold cost”. Journal of 
Optimization Theory and Applications. 79:197-206, 1993.

Tips on using Large Neighborhood Search

The two most important aspects of successfully applying LNS to a new problem are the 
choices of the completion goal and of the method for generation of the LNS fragment. The 
completion goal has less complications, and so it shall be described first.

The completion goal

◆ Use the first solution goal for completion.

 The simplest way to use a completion goal in LNS is simply to use the initial solution goal 
as a completion goal. The idea here is that if the initial solution goal is to considered as a 
goal which is well adapted to providing good solutions to the problem as whole, then we can 
also suppose that it will produce good solutions to problem fragments.

◆ Limit the completion goal.

One disadvantage of using the initial solution goal “as is” to complete the fragment is that if 
the fragment is large, the completion goal can take a long time to search the entire search 
space of the fragment. This exponential search time is what you would like to avoid in using 
a local search method. So, in practice any completion goal used in an LNS context is limited 
(normally by a fail limit imposed using IloFailLimit). This allows LNS to examine many 
more fragments in the same time frame, avoiding becoming bogged down in very long 
searches of fragments which have no improving solutions.

◆ Use a good heuristic. 
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When you use pure tree search to find solutions to a constraint programming problem, 
normally you try to find a good heuristic for the problem, that is a variable and value 
selection rule which will tend to lead to better solutions. This is also true for the completion 
goal, but will come for free if you use the same goal to complete the fragment as you do to 
find the initial solution.

A good heuristic is also particularly important in fragment completion as the search goal will 
be limited (see above) and so will have much less explorative power that a complete goal. As 
such, it is useful if the search can find good solutions without making many mistakes i.e. a 
good heuristic is desirable. That also means that for better heuristics, you can probably make 
do with a lower fail limit in the completion goal, and conversely for a poor heuristic, the fail 
limit will need to be higher, and search time per iteration will increase.

◆ Use randomization.

If you don’t have an idea of what a good heuristic may be, or it seems too difficult to come 
up with a good goal, one technique which can increase robustness of the completion goal is 
to add some randomization to the completion goal (see for example 
IloRandomPerturbation in the IBM ILOG Solver Reference Manual). This will 
distribute the assignments made more evenly between the available values, meaning that the 
completion goal will not produce fragment completions in the same vein each time, but will 
vary them.

The choice of fragment

◆ Randomization. 

The basic rule is that fragments should be chosen with some random element. Doing so will 
mean an large variety of fragments. This does not mean, however, that fragments should be 
chosen completely at random. Often, from looking at the problem, you can determine which 
types of fragments are likely to be better for finding better solutions. You can then bias your 
randomized process towards certain types of fragment.

◆ Fragment size.

One important question is: “How large should a fragment be?” The advantages of a small 
fragment are that the fragment can be searched more quickly and it is more likely that the 
completion goal will find an improving solution in a smaller fragment if one exists. The 
advantage of a larger fragment is that it is more likely that an improving solution does indeed 
exist in the fragment.

The ideal size will depend on the problem and on the stage of the search. For example, if 
there are many improving solutions, a small fragment can suffice as there will be a good 
probability that even small fragments will contain improving solutions. As search progresses 
and improving solutions become more scarce, then a larger fragment size may be needed. 
However, this must be traded with the fact that for larger fragments, the chance of finding 
any improving solution will decrease with the size of the fragment. So, ideally the fragment 
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should be just large enough to have a reasonable chance of containing an improving 
solution, and no larger.

Some more complex schemes try to learn the best size of fragment by increasing it after a 
certain number of iterations with no improvement, and decreasing it if improving solutions 
are being found easily. However, one very simple technique which removes the burden of 
choice is to choose the size of the fragment randomly (perhaps in some prescribed range) 
each time a fragment is generated. Certainly, this approach is not optimal, and it could be (or 
will be) that a good deal of fragments are generated which are too large or too small. 
However, equally true is that a good deal of fragments will be generated which are in the 
acceptable range of sizes, and so provide good candidates for finding improved solutions. 
This simple technique has the advantage of being simple and robust to changes in problem 
data which may call for larger or smaller fragments than is typical.

◆ Random choice.

One simple way to decide what to place in the fragment is to decide completely at random. 
That is, each variable has the same probability of being added to the fragment as any other 
variable. You can try this method for the lesson that you have just completed (add each 
scene variable with probability 0.5, for example). You should see that although it does not 
perform as well as the method given, it does not perform very badly. Thus, it can be 
admissible, in the absence of any other good ideas, to generate the fragment completely at 
random. However, you will see below how you can do better when the problem admits some 
structure.

◆ Good and bad parts.

Quite often, for a given solution, it is possible to identify “good” and “bad” parts of the 
solution. For example, in a technician dispatching application, a measure of quality of the 
schedule of a technician might be the total time spent working at a customer sites divided by 
the total travelling time between customers. In this case, you would want to favor the 
inclusion of the poorest parts of the solution in the fragment. This does not mean that the 
“best” parts of the solution should never be added to the fragment; indeed their inclusion 
may be necessary (with poorer parts) in order to produce a better solution mixing the 
elements of both parts. The idea is merely that the poorer parts of the solution should be 
easier to optimize and thus a bias to include them in the fragment with higher probability 
should lead to an improved solution more quickly.

◆ Related parts of solutions. 

The previous point gave a criterion that can be used for preferring to include certain 
variables in the fragment (those involved in “bad” parts of the current solution). However, 
often a judgment about what variables are desirable to add to the fragment depends upon the 
variables which have already been added. The basic idea is that the set of variables added to 
the fragment should have some interdependence. Thus, when a variable in the fragment 
changes its value from that in the current solution, if we are to respect problem constraints 
and/or improve the objective, then some other part of the fragment will need to change value 
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too. If this property holds, the fragment is said to be compact. If the aforementioned inter-
dependence were not present, then a smaller fragment could have been chosen, leaving out 
the parts which have little or no relationship to all the others as even if they were in the 
fragment, they are unlikely to need to change value.

As an example, suppose you have a selection of objects of different sizes, and you need to 
decide which subset of those objects should go in the container with the objective of 
minimizing the amount of free space left in the container. This problem can be modeled by a 
0-1 variable for each object indicating whether that object is in the container or not. For most 
of the search, solutions found will have very little free space (except perhaps at the 
beginning, when it is easy to produce a better solution). Now, clearly it is absurd to relax 
only variables which have value 1 (objects in the container) or of value 0 (objects not in the 
container). In the former case, the only option would be to reduce the number of objects in 
the container by setting variables formerly at 1 to 0. This must make the solution worse. In 
the latter case, the only option is to add objects to the container (without removing others) by 
setting variables formerly at 0 to 1. However, this is unlikely to be possible as we suppose 
that for most of the search the free space in the container is limited. After consideration, you 
can see that you must have both variables of value 0 and of value 1 in the fragment so that 
some objects can be removed from the container and others added in their place. This leads 
to a simple rule which says that when the fragment already contains a surplus of variables at 
one value, the probability of adding a new variable with the same value should be 
diminished.

In the sequel, some different possibilities for the structure of the fragment depending on the 
problem type are described.

◆  Sequence-based problems.

Sequence-based problems, like the one presented in this chapter, or the car sequencing 
problem described in Chapter 6, Using the Distribute Constraint: Car Sequencing, often 
have strong interactions (in terms of constraints or contributions to the objective function) 
between neighbors in the sequence. Therefore, often in this case a good fragment is one 
which involves a contiguous segment of the sequence (as was used in this lesson), as this 
allows the greatest flexibility for changing contiguous cells in the sequence.

◆ Geographic problems.

In geographical problems (where you have a notion of some distance between objects), often 
one has to minimize some total distance traveled between objects in the solution as one 
makes single or multiple “tours”. In this case, poorer parts of the solution can be seen as 
objects which are visited consecutively but are far apart. As far as related objects go, a 
typical method of producing a compact fragment is to add objects to the fragment which are 
close together. This rationale comes from the observation that if one swaps the positions of 
two distance objects in some route (or two distinct routes), this will increase the total 
distance considerably in any reasonable solution.

◆ Row/column problems. 
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Problems such as time tabling can have a row- and column-based structure. These problems 
invariably have constraints on the rows as well as on the columns. Suppose that for such a 
problem each cell in the matrix corresponds to a variable. Such problems benefit from 
fragments which include variables from the same column or the same row, and so effective 
fragment generation methods often include such bias. This can be done by weighting 
probabilities so that rows and columns already mentioned in the fragment are favored. 
Another method is to choose a smaller (random) number of rows and columns and then 
select variables only from these. This ensures a spread of the fragment over only a few rows 
and columns.

◆ Scheduling problems. 

Scheduling problems are best treated via the LNS support in IBM® ILOG® Scheduler. 
However, to give a flavor of the type of fragment which is useful, one can observe that 
scheduling is both time and resource constrained. This would indicate that activities forming 
a compact fragment would start at approximately the same time, or require the same 
resource or resources. Thus, an effective technique can be to add all variables corresponding 
to activities lying in a certain time window or on a certain resource. The logic is very similar 
to that of row/column problems where a resource can be likened to a row and a time window 
to a column.

◆ Packing and resource allocation problems.

In packing and resource allocation problems, there is a limited resource and tasks or objects 
need to be allocated to resources to minimize resource number or cost. This is simply a more 
general form of the “container” example presented earlier. Poorer parts of the solution can 
usually be identified as resources which are bad value for money, for example which are 
costly and/or under-utilized. This provides one criterion for including variables in the 
fragment. Another criterion based on how parts of the solution are related may also be 
employed in order to create a more compact fragment. For example, if the goal is to reduce 
the number of resources used, then from time to time all tasks allocated to a particular 
resource must be added to the fragment in order to give a chance of liberating the resource in 
question. This technique can also be useful for combining the tasks allocated on three 
resources onto only two, for example.

Making the most of neighborhood search

LNS is implemented as a neighborhood search technique in Solver IIM. In this way, you can 
make the most of the facilities provided by neighborhood search to improve the way in 
which you use LNS. For example, LNS is a more computationally intensive technique than 
more traditional neighborhood searches, but does have the advantage that it is less likely to 
become stuck in local optima. One way to increase the efficiency of your search is to run a 
typical neighborhood search (using, depending on your problem, IloFlip, IloSwap, and 
so on) before switching to LNS. This can pay dividends on larger problem instances.
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Another way in which neighborhood search can be used is via the application of 
metaheuristics. In this lesson, only greedy search was shown, but tabu search and simulated 
annealing apply equally well to LNS. You should, however, recognize that such searches 
will require longer running times.

Finally, some problems have a dual aspect, for instance multiple or hierarchical objectives, 
or strongly competing different constraint types. In this case, you might envisage two or 
more different types of large neighborhood search fragment that you can generate, each one 
dedicated to working on a different aspect of the problem. You could create one single 
fragment definition neighborhood which performs one of the fragment types at random, but 
a more modular approach is to use neighborhood addition as below. In this way, all types of 
fragment generation methods can be used which keeping their codes separate.

// Fragment generators
ILODEFINELNSFRAGMENT1(GenFrag1, solver, IloIntVarArray, x) {
  // ... code of generator 1 ...
}

ILODEFINELNSFRAGMENT1(GenFrag2, solver, IloIntVarArray, x) {
  // ... code of generator 2 ...
}

ILODEFINELNSFRAGMENT1(GenFrag3, solver, IloIntVarArray, x) {
  // ... code of generator 3 ...
}

int main() {
  // ...

  // Decision Variables.
  IloIntVarArray x(env, size);
  // ...

  // ...
  IloNHood nhood = GenFrag1(env, x) + GenFrag2(env, x) + GenFrag3(env, x);
  // ...
}
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Part VI



Evolutionary Algorithms

This part consists of the following lessons:

◆ Chapter 28, Introduction and Basic Concepts

◆ Chapter 29, Modeling and Solving a Basic EA Problem

◆ Chapter 30, Using More Advanced EA Features

◆ Chapter 31, Bin Packing Using EA

◆ Chapter 32, Car Sequencing Using EA



C H A P T E R
28

Introduction and Basic Concepts

This part of the IBM ILOG Solver User’s Manual describes the IBM® ILOG® Solver EA 
(Evolutionary Algorithm) Framework, part of IBM ILOG Solver IIM (Iterative 
Improvement Methods). This part will give you an introduction to the ideas behind 
Evolutionary Algorithms and will present the EA object support available via examples. The 
examples are presented as working lessons that move from a code skeleton to a finished 
program that you compile and execute. 

This documentation does not provide an introduction to evolutionary or genetic algorithms 
in general, and it is assumed that the reader is familiar with the basic genetic algorithm 
concepts. An understanding of simple genetic algorithm operations such as mutation and 
combination (crossover) is assumed, although detailed knowledge of the construction of 
genetic algorithms is not assumed.

In this lesson, certain sections are labeled “Advanced Topic.” These are topics which can be 
skipped on first reading.

Overview of concepts

Evolutionary Algorithms (EA) are optimization algorithms whose design has been 
influenced by the observation of the adaptation of living organisms. This covers rather a 
broad range of algorithms including those which are influenced by Darwinian evolution, the 
food-finding abilities of ants and the behavior of immune systems. Such algorithms typically 
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deal with a “population” of solutions and use adaptation, competition and communication to 
produce better solutions.

The class of algorithms known as Genetic Algorithms (GAs) more specifically simulates the 
processes of natural selection, genetic mutation and genetic combination. A GA starts with a 
population of “individuals” (which is a set of solutions to the problem), then continually 
selects, mutates, breeds, and replaces members of the population. How the GA carries out 
these processes depends on the type of GA and the qualities of the individuals. A GA must 
maintain a balance of diversity and quality in the population. Concentration on diversity at 
the expense of quality will result in diverse, but generally poor solutions, as exploitation of 
good solution features is too weak. The inverse can result in the population converging too 
quickly, usually well before the solutions can be sufficiently optimized. (Convergence is the 
term used to mean that all individuals in the population represent more or less the same 
solution; from this point there is little hope of further evolution.)

At the present time, the IBM® ILOG® Solver EA framework is primarily geared towards 
facilitating the implementation of GAs. The genetic operators provided in the framework 
work with the constraint programming provided by Solver. That is, genetic operators make 
use of the constraint model and constraint propagation to avoid generation of illegal 
solutions. A mutation or a combination operator is a constraint programming search for a 
new solution that encodes a maximal amount of genetic material from the parent(s) while 
respecting the problem constraints.

If you are familiar with genetic algorithms, you may notice that some of the concepts and 
class names used do not directly follow the parlance of the genetic algorithm community. 
Normally, the class names used are more abstract in keeping with the notion of generality of 
the library. For instance, “solution pools” are general objects which serve as holders for the 
population, offspring, and any solutions selected for replacement. Also, the concept of a 
“pool processor” encompasses objects that perform selection, mutation, combination, and 
replacement. These naming conventions are largely superficial and will become clearer in 
the forthcoming sections.

Genetic algorithms and constraint programming

The use of Solver as a basis for the implementation of genetic algorithms offers advantages 
over what may be considered a more virgin approach. Constraint programming enhances the 
creation of genetic algorithms in a variety of ways, including, but not limited to:

◆ Guarantee of feasibility

In traditional GA systems, genetic operators such as mutation or combination are often 
quite blind to the constraints of the problem. This can lead to many generated solutions 
being illegal with respect to the problem constraints. This is normally circumvented in 
one of two ways. First, by using an indirect representation. (This will be fully discussed 
in the next section.) Second, problem constraints are relaxed and their violation 
penalized.
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In contrast to the second method, the use of constraint programming means that 
constraints have a central role to play and need not be avoided or softened; the constraint 
programming engine ensures that constraints will not be violated by new solutions that 
are produced.

◆ Initial population generation

Generating an initial population of solutions is an essential part of genetic algorithms. 
Without constraint programming, often one has to begin with an entirely random 
population, perhaps softening important constraints in the process.

Using constraint programming, the generation of initial solutions can be performed by 
the execution of straight-forward constraint programming goals, just as in the standard 
Solver examples. Goals can be executed repeatedly, each time being differently 
randomized to result in a population which respects problem constraints. Quality can be 
traded for diversity by adjusting the amount of randomization applied to the goal. This 
topic will be more fully described later.

◆ Flexibility

Constraint programming carries with it inherent flexibility in the type of operations that 
can be carried out. One example is that by simple addition of a constraint, it can be 
stipulated that any new solution generated must be better in quality than the worst   
member of the population. Such a constraint will be actively used in the genetic operator 
to restrict the set of solutions examined to those satisfying the aforementioned property. 
Another example of the flexibility fostered by constraint programming is the ability to 
mix what may be termed “pure” constraint programming (tree search) with genetic 
operators. For example, one might fill 3/4 of a new solution with information from 
parents, allowing the missing 1/4 to be supplied using a more standard tree search. Such 
techniques typically work well in practice.

Representation

The type of representation chosen for the solution to a problem can have a great effect both 
on the genetic operators used and the overall efficiency of the resulting genetic algorithm. 
Representations fall into two broad categories: direct and indirect. A direct representation is 
the one that you are most used to dealing with in Solver; it might be referred to as the 
“natural” representation, and has the benefit that it is easy to evaluate. An indirect 
representation is one which sits alongside the direct representation and is not complete in 
itself. In order to evaluate an instantiation in the indirect representation, a decoder or 
mapping function is invoked which transforms the solution in the indirect representation into 
one in the direct representation. In the EA framework, the way of doing this is with a 
constraint programming goal which uses the values of variables in the indirect representation 
to influence its instantiation of the direct representation. Note that in general there is no one-
to-one correspondence between solutions in the two representations. Many solutions in the 
indirect representation may decode to the same solution in the direct representation. Equally, 
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some directly represented solutions may be impossible to obtain as there may be no solution 
in the indirect representation which maps to them.

An example of an indirect representation of scheduling is a unique priority for each activity. 
The description of a possible decoding goal could then be stated as follows. The decoder 
schedules activities one by one until all activities are scheduled. At each step, among the 
activities which can be scheduled, the decoder chooses the one with highest priority. This 
activity is then placed as early as possible in the schedule. Importantly, using constraint 
programming, this last decision can be backtracked in the case of a failure, and alternative 
assignments tried. This, combined with constraint propagation, makes decoders written 
using constraint programming more robust. This will be elaborated on below.

Figures below show the use of a direct and indirect representation in the EA framework.

Figure 28.1

Figure 28.1  Direct Representation

Figure 28.2

Figure 28.2  Indirect Representation
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494 I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L



Given its additional complexity, what are the advantages of the indirect representation? First, 
the indirect representation is normally free of constraints, or has constraints which are easy 
to satisfy. For example, there may be only “range” constraints on a set of priorities for 
activities. Thus, matters can be arranged such that any genetic operators applied to a solution 
in the indirect representation result in a new valid solution. This moves the burden of 
maintaining feasibility of the direct representation to the decoder. The decoder is then 
responsible for interpreting the indirect representation, and instantiating the direct 
representation such that the constraints therein (that is, the original problem constraints) are 
respected.

At this point an additional question might be posed. Does the indirect representation have 
any merit when constraint programming is being used? After all, one of the benefits is that 
constraints in the direct representation are handled directly. This is true, but depending on 
the problem being addressed, the performance of genetic operators on the direct 
representation can vary. The problem of finding a solution for a mutation or combination 
operator on the direct representation is combinatorial in nature. The problem of decoding the 
indirect representation under constraints is also combinatorial in nature, but importantly is 
normally easier in practice. Moreover, constraint programming delivers the advantage over 
traditional methods that additional constraints can be added to the problem without changing 
the decoder. Constraint propagation and the ability to backtrack bad decisions greatly 
increase the robustness of decoding.

So, when should you use a direct representation, and when should you use an indirect one? 
This is not always the easiest question to answer, but some general advice can be given. 
There are two main reasons for using an indirect representation. The first one is that the 
problem is strongly coupled. What do we mean by this? One way to think about it is by 
asking yourself the following question. If I have a solution to my problem (in the direct/
natural representation), and I change a small part of this solution, how much of the rest of the 
solution would I need to change to stay compatible with the initial change? If the answer is 
“a lot,” the problem is strongly coupled. Often the best way to imagine the initial change is 
as one which needs to be made because a machine breaks down, a time slot becomes 
unavailable, a road is closed, a delivery is delayed, and so on. You may then ask, “How much 
of my solution will this change affect?” For example, imagine a scheduling problem where 
the objective is to minimize the total length of the schedule. Good solutions to such 
problems tend to be tightly packed and have little “slack.” In these types of problems, if 
some input (say some raw material) arrives late, then this can have huge implications on the 
schedule; there is seldom a “small fix” which will maintain feasibility. Such problems can be 
so tightly coupled that small mutations on a direct representation have little hope of working. 
Even when using constraint programming, the closest legal schedule may be far from what is 
proposed by the genetic operator, and thus may take an unacceptably long time to find. 
Contrast this with a schedule where the objective is to minimize labor costs. Such a problem 
tends to be much more loosely coupled. In this case, if some goods arrive late, then we can 
normally change the schedule slightly to account for this, for instance by authorizing 
overtime for a period until the schedule is back on track. The cost will be higher than in the 
original schedule, but importantly, the schedule only had to be slightly modified. Here, small 
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mutations of the schedule have a much higher probability of resulting in a legal schedule, 
even if at increased cost.

The second reason why an indirect representation can be preferred to a direct one is probably 
even more important than the first. Indirect representations are often much more 
standardized than direct ones. Direct representations are necessarily specific to the problem 
class, whereas indirect ones tend to center around themes. A common theme is to give a 
priority to each assignable object in the problem. A decoder then decides what to do with 
these objects in priority order. The use of standardized indirect representations allow simple 
(and often built-in) genetic operators to be used. This still means that a decoder needs to be 
written for the problem class at hand, but this is usually relatively simple. With direct 
representations on the other hand, genetic operators usually need to be written for the 
problem class being addressed; normally a much more sophisticated task.

It should be mentioned that with good design of genetic operators made for the problem 
class at hand, direct representations can be effective even for problems which are quite 
strongly coupled. Performance in such cases is often significantly better than that of indirect 
representations as no decoding phase is present. However, the design of hand-crafted 
operators can be a difficult and painstaking endeavor, and as such, we recommend using an 
indirect representation as a first step either in the case where no built-in operators match the 
direct representation of the problem, or where the problem is strongly coupled.

Features of the library

This section outlines the features of the IBM® ILOG® Solver EA Framework.

Solutions and solution pools

When Solver is used in the standard manner, via tree search, little consideration is given to 
multiple solutions unless these are the progression of improving solutions found during a 
tree search process. Since these solutions do not need to co-exist (you are normally only 
interested in the best solution found), then the use of a solution object is not normally 
necessary; the state of Solver's constrained variables provide a solution without the need for 
additional information. 

By contrast, solution objects have a central and fundamental role when engaging in genetic 
or evolutionary search processes as a number of solutions have to co-exist. Thus, in the EA 
Framework, extensive use is made of the IloSolution class (see the IBM ILOG Solver 
Reference Manual) which can represent a solution in its entirety. Objects of type 
IloSolution form the basis of communication between the basic elements of the 
framework.

In order to make it easier for you to manipulate populations, or groups of solutions, the class 
IloSolutionPool is provided. This class is nothing more than a bag of solutions, although 
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some additional facilities make it easier for you to get the best and worst members, sort the 
pool and iterate over it. Objects of type IloSolutionPool are the principal form of 
communication between the various types of genetic operators available. Typically, a genetic 
operator will receive a solution pool, which in traditional genetic algorithm terminology 
might be termed the parents, and will generate another pool of solutions that would 
traditionally be termed the offspring. Despite the fact that the IloSolutionPool class 
plays all roles (as well as that of the role of the population), it is quite normal to use the 
terms “population,” “parents,” and “offspring” depending on the exact role of the pool.

The following code shows a simple manipulation of a solution pool:

Generation of the initial population

Any genetic algorithm begins by the generation of a suitable initial population. Our goal in 
this initial process is to create a set of solutions which have sufficient diversity. If you have a 
representation which is unconstrained (for instance, an indirect representation), then it is 
simple to create a completely random population. However, if this is not the case, the 
generation of the initial population becomes more subtle.

In Solver, the standard way of producing a solution is through the execution of a goal which 
instantiates the decision variables. In the EA Framework, the same technique can be applied 
repeatedly to generate an initial population. However, for the EA Framework, we need to be 
aware that Solver goals are completely deterministic; executing the same goal twice will 
produce exactly the same result. To avoid generating an initial population of identical 
solutions, we need to modify the behavior of the solution goal for each new population 
member.

The EA Framework provides a way of perturbing the normal behavior of a goal by altering 
its standard choices with a certain probability. This new goal can then be executed 
repeatedly to generate different solutions. A great advantage of this approach is that the 
probability can be controlled. By controlling the perturbation probability, the make-up of the 
population can be altered. When this probability is low, the solutions will resemble that 
generated by the unperturbed goal, but will be of reasonable quality if we assume that the 
standard goal is good. When high, solutions generated will be much more random in 
appearance, bearing little resemblance to the one generated by the standard goal. The 
resulting population is also likely to be lower in quality due to the large random element. 
Between the two extremes, a balance can be struck between diversity and quality.

IloSolutionPool pool(env);
IloSolution s1(env, "SOLUTION 1"), s2(env, "SOLUTION 2");
pool.add(s1);
pool.add(s2);
for (IloSolutionPool::Iterator it(pool); it.ok(); ++it)
  env.out() << *it << endl;
pool.remove(s1);
env.out() << pool << endl;
pool.end();
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Below, you will find two codes: one to generate a random solution pool and another to 
generate a solution pool from a randomly perturbed goal. Note that these code samples make 
use of a “prototype” solution. This prototype defines the structure for all solutions to be 
created; it has the correct decision variables and objective within it. The solutions to be 
included in the population are created by cloning the prototype. The notion of a solution 
prototype will also be used later.

Random solution:

Solution from goal:

The goal modifier IloRandomPerturbation randomly modifies the branching decisions 
taken by stdGoal, such that (in this case) at each branch point, there is a 5% chance that the 
right branch will be taken before the left one, resulting in a slightly diversified population.

Evaluating, Comparing, and Selecting Solutions

During the operation of EAs, evaluation, comparison and selection of solutions are 
fundamental operations. In Solver IIM’s EA framework, these operations are carried out by 

IloIntVarArray vars = ...;
IloObjective obj = ...;
IloSolution prototype(env);
prototype.add(vars);
prototype.add(obj);

IloSolutionPool population(env);
IloRandom r = env.getRandom();
for (IloInt i = 0; i < popSize; i++) {
  IloSolution newMember = prototype.makeClone(env);
  for (IloInt j = 0; j < vars.getSize(); j++)
    newMember.setValue(vars[j], r.getInt(2));
  solver.solve(IloRestoreSolution(env, newMember)); // calculate objective
  newMember.store(solver);
  population.add(newMember);
}

IloIntVarArray vars = ...;
IloObjective obj = ...;
IloSolution prototype(env);
prototype.add(vars);
prototype.add(obj);
IloGoal generate = IloRandomPerturbation(env, stdGoal, 0.05);

IloSolutionPool population(env);
for (IloInt i = 0; i < popSize; i++) {
  while (!solver.solve(generate)) { }
  IloSolution newMember = prototype.makeClone(env);
  newMember.store(solver);
  population.add(newMember);
}
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specializations of the template classes IloEvaluator, IloComparator and 
IloSelector. Selection of solutions is essential for the implementation of EAs as normally 
better quality solutions are favored for breeding as parents, and likewise poorer solutions 
tend to be selected as candidates for replacement. The operations of solution comparison and 
evaluation are often sub-ordinate to those of selection. Evaluators can give the quality of 
solutions in various different ways, whereas comparators can make pair-wise comparisons of 
solutions based on one or more different evaluations.

The most obvious evaluation of a solution, is simply the value of the objective function, but 
other equally simple evaluations are possible, such as the value of a particular variable. The 
functions IloSolutionEvaluator return different types of 
IloEvaluator<IloSolution> which evaluate either the objective value of a solution, or 
the value of one of its variables. More complex evaluators can then be built using the 
available arithmetic operators on evaluators. You can also write a particular custom 
evaluation from scratch using the macro ILOEVALUATOR. Below is a code which creates an 
evaluator which evaluates the profit of a particular solution:

Evaluations can be used to compare two solution objects, but a more general way exists 
which does not depend on the two solutions being compared having a unique evaluation. 
This second method uses a comparator object, and more specifically, an instance of 
IloComparator<IloSolution>. Comparators are the basic objects used to sort solution 
pools, as well as perform certain EA selection operations such as tournament selection, 
which will be covered later in this chapter. The following code sample shows how to sort a 
population in decreasing order of profit. The member function 
makeGreaterThanComparator is used to convert an evaluator into a comparator which 
prefers higher evaluations.

IloIntVar profit(env), income(env), cost(env);

// Omitted: Build full model...

model.add(income == CalculateIncome(decisionVars));
model.add(cost == CalculateCost(decisionVars));
model.add(profit == income - cost);

IloEvaluator<IloSolution> eval = IloSolutionEvaluator(env, profit);

IloSolution solution(env);
solution.add(decisionVars);
solution.add(profit);
solution.add(income);
solution.add(cost);
IloSolver solver(model);
solver.solve(IloGenerate(env, decisionVars));
solution.store(solver);
IloInt profitValue = eval(solution);

population.sort(eval.makeGreaterThanComparator());
IloSolution bestSolution = population.getSolution(0);
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The population could have been sorted in increasing order of profit by making use of 
makeLessThanComparator. Alternatively, solution pools can store the manner in which 
they are to be sorted, and so the following is a (nearly) equivalent code. The difference is that 
afterwards, the population can be sorted in decreasing profit order via a simple call to 
IloSolutionPool::sort(). 

More complicated comparisons can be created by composing simpler comparisons. For 
example, assume that, for equivalent profit, you prefer a solution which has a lower cost. 
This can be achieved by using a lexicographic comparison, when compares two objects on 
ordered criteria. If a particular criterion cannot distinguish if one solution is better than 
another, than this job falls to the next criterion on the list. The following code shows you 
how to create a comparator which prefers solutions of higher profit, but when profits are 
equal, those of lower cost.

Both solution evaluations and comparisons can be used as a basis for solution selection, 
which is an important part of evolutionary algorithms. The two most common places where 
you will select solutions are first, to choose parent solutions, and second to choose solutions 
that the new offspring will replace in the population. Some common selection methods 
supplied with the Solver IIM EA framework are random selection, tournament selection and 
roulette wheel selection. The first method, as the name suggests, selects solutions in an 
unbiased random fashion. The second uses a comparator in order to select solutions which 
tend to be better (or worse) than average. The third uses an evaluator to weight the 
probability of selection using the evaluation. To selector a random solution from a solution 
pool, you would create a random selector as below.

You could then use this selector to select a solution as follows:

Although the usage described above is completely valid, normally you will delegate the call 
of the selector to other objects called solution pool processors, which will be discussed soon. 
At the same time, you will also become familiar with more complex selectors, such as the 
tournament selector.

population.setSortComparator(eval.makeGreaterThanComparator());
population.sort();
IloSolution bestSolution = population.getSolution(0);

IloEvaluator<IloSolution> evalProfit = IloSolutionEvaluator(env, profit);
IloEvaluator<IloSolution> evalCost = IloSolutionEvaluator(env, cost);
IloComparator<IloSolution> cmpProfit = evalProfit.makeGreaterThanComparator();
IloComparator<IloSolution> cmpCost = evalCost.makeLessThanComparator();
IloComparator<IloSolution> cmp = IloComposeLexical(cmpProfit, cmpCost);

IloRandomSelector<IloSolution, IloSolutionPool> selector(env);

IloSolution selectedSolution;
IloBool ok = selector.select(selectedSolution, population);
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Advanced Topic: Solution Pool (or Multiple) Evaluators

From time to time, it can be useful to evaluate all solutions in a solution pool at once. For 
instance, one might consider as evaluation of a solution its rank within the population. That 
its, the best solution would have rank 1, the next best rank 2, etc. In order to perform such an 
evaluation, you need to have access to the entire solution pool: each solution cannot be 
evaluated in isolation. To do this, in Solver IIM, there is the notion of a multiple evaluator 
which can be used to evaluate entire solution pools at once. You will find more information 
on evaluating solution pools in Chapter 30, Using More Advanced EA Features.

Evolution of the population

With the population initialization complete, a GA can start to work on its principal job: 
evolving the population. Evolution of the population normally has a very precise goal: 
production of the best solution possible in the time given. To attain this goal, the genetic 
algorithm uses three main operations. These are, the selection of a parent or parents to 
undergo some genetic operation, the production of offspring by mutating and/or combining 
the parent(s) and merging the offspring and current population into a new one. Each “round” 
of these operations is termed a generation. Generations are repeated as long as is deemed 
necessary (usually up to a certain time limit) with the goal of improving the average quality 
of the solutions in the population. (Improving average quality normally leads to an 
improvement of the highest quality solution in the population—the ultimate goal). Hereafter, 
each of the three basic phases of a single generation is described from the standpoint of the 
EA framework. However, before this, we introduce a concept which is common to all of 
these phases; that of solution pool processors.

Solution pool processors

Solution pool processors are objects which perform quite a general role, and form the 
umbrella under which the various selection, replacement, and genetic operators reside. 
Solution pool processors are objects which take a solution pool as input and produce another 
solution pool as output. This quite general mechanism can be used to select solutions from 
the input pool to place on the output pool, or produce entirely new solutions on the output 
pool.

Processors can be chained so that the output of one processor becomes the input of another 
using the >> operator. Thus, pipelines of processors can be built up which embody quite 
complex algorithms. Below is a code which creates a processor which proc takes a solution 
pool,  population, selects the three best solutions according to the value of the variable 
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profit, then one solution randomly amongst those. The resulting solution is then placed in 
the pool selected.

Note that in the context of the  >> operator, solution pools (in this case population and 
selected) can be used as processors. If the pool has no processors supplying it with 
solutions (population), it produces the specified pool on its output. If the pool appears 
elsewhere, then it passes on the solutions it receives (if there is another processor to the 
right) as well as placing them in the pool.

If a processor performs a genetic operation to produce a new solution, Solver's search and 
propagation is used to do this. One example of a processor which performs selection, then 
mutation, might be described as follows:

Note the use of the class IloEAOperatorFactory used to produce processors which 
perform genetic operations. This class will be fully introduced later.

Processors are executed by an instance of IloSolver using the IloExecuteProcessor 
goal. When executed, a process similar to extraction transforms the processors into Solver-
based Ilc objects which perform the actual calculations. The operation of the processors is 
demand-based. To execute a pool processor, you ask the processor to produce a number of 
solutions, which is not specified will default to the natural number for the processor (usually 
one). When processors are in a chain, this request goes directly to the right-most processor 
of the chain. This processor in turn will calculate the number of solutions it needs as input to 
fulfill the request. The processor then asks the processor to its left in the chain for the 
number of solutions it needs before carrying out its work and producing the solutions 
required. If any processor fails to provide the number of solutions desired, it is repeatedly 

IloSolutionPool selected(env);
IloEvaluator<IloSolution> evalProfit = IloSolutionEvaluator(env, profit);
IloComparator<IloSolution> cmpProfit = evalProfit.makeGreaterThanComparator();

IloBestSelector<IloSolution,IloSolutionPool> selBest(cmpProfit);
IloPoolProc selBestProc = IloSelectSolutions(env, selBest);

IloRandomSelector<IloSolution,IloSolutionPool> selRnd(env);
IloPoolProc selRndProc = IloSelectSolutions(env, selRnd);

IloPoolProc proc = population >> selBestProc(3) >> selRndProc >> selected;

IloPoolProc select = IloSelectSolutions(
  env, IloRandomSelector<IloSolution,IloSolutionPool>(env)
);
IloEAOperatorFactory factory(env, vars);
IloPoolProc mutate = factory.mutate(probability);
IloPoolProc produce = population >> select >> mutate;
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invoked until the number of solutions desired is attained. The number of solutions to supply 
can be specified using the parenthesis operator:

Here, the processor produce is asked to produce 30 solutions; the result is placed in the 
offspring solution pool.

Choice of parents

The choice of parent or parents which will participate in a genetic operation in the EA 
framework is made by a solution processor. Normally, a processor playing the role of a 
selector takes the population as input, and generates a requested number of solutions. (The 
number to be requested will depend on the exact type of genetic operator which requests the 
solutions.) Although a pool processor performs the selection of solutions, it is really only a 
shell which encapsulates an  IloSelector<IloSolution,IloSolutionPool> object 
which does the main work. The function IloSelectSolutions produces a pool processor 
from such a selector. The IloSelectSolutions function also takes a boolean parameter 
which dictates if solutions should be selected without duplicates. That is, is it valid for the 
same solution to appear more than once in the selection?

An example of a selector which is commonly used is the tournament selector, characterized 
by its tournament size k. This selector selects one solution from the population as follows. 
First, k different solutions are selected randomly, and without bias, from the input pool. 
Then, the highest quality solution from these k solution is chosen as the final selected 
solution. This process is repeated to produce the desired number of selections. When k=1, 
solutions are selected randomly. As the value of k is increased, the chances are increased that 
better solutions are selected. However, a balance should be struck, as a value of k that is too 
high will result in poorer quality solutions rarely being selected and in the context of a 
genetic algorithm could lead to limited diversity of generated solutions. Below is an example 
of the use of the tournament selector with tournament size 3.

How the tournament selector compares solutions is determined by a solution comparator. A 
solution comparator is a simple object which determines if one solution is better than 
another according to some criterion. IloBestSolutionComparator uses the 

IloPoolProc select = IloSelectSolutions(
  env, IloRandomSelector<IloSolution,IloSolutionPool>(env)
);
IloEAOperatorFactory factory(env, vars);
IloPoolProc mutate = factory.mutate(probability);
IloPoolProc produce = population >> select >> mutate;
IloSolutionPool offspring(env);
solver.solve(IloExecuteProcessor(env, produce(30) >> offspring));

IloTournamentSelector<IloSolution,IloSolutionPool> tsel(
  env, 3, IloBestSolutionComparator(env)
);
IloPoolProc select = population >> IloSelectSolutions(env, tsel);
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IloSolution::isBetterThan member function to compare solutions. You could equally 
have the following:

This would tend to select poorer solutions with greater probability. You may inquire as to the 
usefulness of such a selector as it surely selects poor quality solutions. We will return to this 
in a following section on solution replacement.

Genetic operations

After selection of parents, a GA then typically applies genetic operators to those parents to 
produce new solutions: the offspring. The EA framework comes with various built-in 
mutation and combination operators, operating on arrays of constrained integer variables. 
All genetic operators provided with the EA framework are randomized and you should 
follow this tenet if you write your own operators. During the execution of a genetic 
algorithm, the same operator may be applied to the same solution or solutions more than 
once. If operators where not randomized, search would quickly stagnate, unable to provide 
new different solutions.

All genetic operators are represented by the class IloPoolOperator, which can be seen as 
a special type of pool processor; in fact an automatic cast exists between a pool operator and 
pool processor. An operator depends on an instance of IloSolver to produce its solutions 
and works as follows:

1. The operator asks for the solutions it needs to perform the operation. Typically, it asks 
the processor immediately “upstream” of a >> operator.

2. The operator instantiates the constrained variables in the solver according to the 
definition of the operator, and the values of the input solutions. For example, imagine 
that the operator was to mutate 0-1 variables uniformly. To take advantage of constraint 
programming, the operator could launch a goal search where, at each node, a choice 
point (IlcOr) is created which instantiates the variable in question to either 0 or 1. With 
high probability, the left branch would concur with the value in the input solution, and 
with low probability (the mutation probability), the branches would be reversed.

3. The operator looks for a prototype solution. This can be given explicitly by the user to 
the operator, but if not, one of the input solutions is used as a prototype.

4. The prototype is cloned, is stored using solution.store(solver) and transferred to 
the output of the operator.

Steps 1, 3, and 4 are automated and are common to all operators. They comprise the demand 
for input, the creation of a new solution, the transfer of solution values from the solver to the 
solution, and the transfer of the new solution to the output of the processor. Only Step 2 need 

IloComparator<IloSolution> compare = IloWorstSolutionComparator(env);
IloTournamentSelector<IloSolution,IloSolutionPool> tsel(env, 3, compare);
IloPoolProc select = IloSelectSolutions(env, tsel);
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vary from operator to operator, and it is this step that you will be responsible for if you want 
to write your own genetic operator. (Some information for Step 1 is also required—the 
number of solutions that the operator needs as input to properly function.)

The principle of Step 2 of the above process is to place the decision variables of the problem 
in some desired state congruent with the definition of the operator. A goal can also be seen 
as performing this job. As such, it is possible to produce an operator from a standard goal, so 
long as a solution prototype is given explicitly. This approach can be used for creating initial 
populations as follows:

The IloSource operator requests no inputs, runs goal generate, clones prototype, 
stores the resulting solution, and places it in the output pool. Setting the output size to 50 
ensures that this process is repeated until IloSource has gathered 50 solutions in its output 
pool.

The genetic operators provided in the EA framework are generated by a factory class 
IloEAOperatorFactory. This class allows built-in operators to be generated as well as 
configured by solution prototypes and search limits. For example, the following code creates 
a factory which will generate operators with a search limit of 100 fails in which to generate a 
solution and a prototype of prototype:

Note that if the operator could not produce a solution in the number of fails given as a limit, 
it will be repeatedly called until it produces such a solution. Each time this happens, new 
input solutions are requested before the operator is re-applied.

IloIntVarArray vars = ...;
IloObjective obj = ...;
IloSolution prototype(env);
prototype.add(vars);
prototype.add(obj);
IloGoal generate = IloRandomPerturbation(env, stdGoal, 0.05);

IloSolutionPool population(env);
IloPoolProc genProc = IloSource(env, generate, prototype)(50) >> population;
solver.solve(IloExecuteProcessor(env, genProc));

IloSolutionPool population(env);
IloEAOperatorFactory fact(env, vars);

// Prototype
fact.setPrototype(prototype);

// All operators generated by the factor will have this limit applied.
fact.setSearchLimit(IloFailLimit(env, 100));

// Generate an initial random population of 30 solutions
solver.solve(IloExecuteProcessor(env, fact.randomize()(30) >> population));

// Mutation operator, with 1% probability.
IloPoolProc mut = fact.mutate(0.01);
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The IIM EA framework also supports dynamic pool processor selection. That is, a pool 
processor can be defined to be a dynamic selection among a set of such processors.

This is an elegant way of specifying composite processors. Imagine a processor which when 
invoked, behaves as one of n subordinate processors, the choice being made at random. This 
behavior can be specified quite simply in the EA framework as follows:

Notice the function IloSelectProcessor which uses a selection of a pool processor from 
an array of pool processors to pick the ‘‘sub-processor’’ to execute each time processor 
composite is executed.

The result is that the offspring pool will be filled by solutions which have been generated 
by a non-deterministic interleaving of the executions of op1 and op2. One additional point 
to note in the above is that op1 and op2 need not be consistent in the numbers of solutions 
that they require as input. The tournament selector tourSelect is only asked for the correct 
number of solutions to supply after composite has decided on the exact subprocessor to 
execute. Thus, every time composite is invoked, it may demand a different number of 
solutions from the tournament selector.

Solution Replacement

The final step of a genetic algorithm generation is to combine the intermediate offspring 
with the current population to form a new population. For convenience, a “steady-state” 
model is often used, where the size of the population does not change from generation to 
generation. This is not imposed by the EA framework, but does simplify discussion and 
genetic algorithm design. In such a steady-state system, we refer to the above combination 

IloPoolProc op1 = ...;
IloPoolProc op2 = ...;
IloTournamentSelector<IloSolution,IloSolutionPool> tsel(
  env, 3, IloBestSolutionComparator(env)
);
IloPoolProc tourSelect = IloSelectSolutions(env, tsel);
IloPoolProc rndSelect = IloSelectSolutions(
  env, IloRandomSelector<IloSolution,IloSolutionPool>(env)
);

// Build an array of processors.
IloPoolProcArray ops(env);
ops.add(op1);
ops.add(op2);

// A composite operator which executes a randomly selected operator.
IloPoolProc composite = IloSelectProcessor(
  env, ops, IloRandomSelector<IloPoolProc,IloPoolProcArray>(env)
);

// Generate 30 offspring.
IloSolutionPool offspring(env);
IloPoolProc breed = population >> tourSelect >> composite(30) >> offspring;
solver.solve(IloExecuteProcessor(env, breed));
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process as “solution replacement.” That is, we replace some of the members of the 
population with offspring.

Replacement processors, like selectors, but unlike operators, are basically raw pool 
processors. Normally, they receive the offspring as input, and the current population as a 
parameter. They then modify the population as desired, typically keeping its size fixed, and 
generate as output the solutions which are to be discarded. The pool processor 
IloReplaceSolutions can be used to show how this procedure functions:

Above, a tournament selector deadSelector is created which tends to select poorer 
solutions (via use of the comparator IloWorstSolutionComparator). This selector is 
passed to the pool processor IloReplaceSolutions which works as follows. First, the 
population passed as parameter is fed as input to deadSelector. Next, the selector is asked 
to select as many solutions from the population as there are solutions in the input pool (i.e. 
the number of offspring). Finally, the selected solutions are removed from the population 
and placed on the output pool, after which the solutions in the input pool (the offspring) are 
added to the population.

In the EA framework, destruction of solutions which have been permanently removed from 
the population is explicit. The processor IloDestroyAll calls the end method on all 
solutions in its input pool. This destruction phase completes the combination operation.

Advanced Topic: Monitoring and listeners

The EA framework provides a system for monitoring the operation of any genetic algorithm 
created via a “listener” framework. Listeners can be added to pools of solutions or genetic 
operators and can be invoked when elements add or leave the pool, or when new solutions 
are produced. This makes it easy, for example, to monitor the selection of parents or the 
selection of solutions to replace. Statistics on successful and unsuccessful operators can also 
be gathered for simple reporting, or for influencing the future operation of the GA. 
Monitoring is fully introduced in the examples delivered with the framework.

IloComparator<IloSolution> compareWorst = IloWorstSolutionComparator(env);
IloSolutionPoolSelector deadSelector = 
IloTournamentSelector<IloSolution,IloSolutionPool>(env, 3, compareWorst);
IloPoolProc replace = IloReplaceSolutions(env, population, deadSelector);
IloPoolProc combine = offspring >> replace >> IloDestroyAll(env);
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C H A P T E R
29

Modeling and Solving a Basic EA Problem

In this lesson, you will use the Solver IIM Evolutionary Algorithm (EA) Framework to solve 
the “one max” problem, a basic binary digit (bit) optimization problem. In this problem, you 
try to find the solution that maximizes the number of times the digit 1 appears within a given 
set of 0-1 variables. 

To understand how this problem works, consider an initial population of 4 solutions, each a 
string of 6 bits:

001101

010111

101000

110010

You use evolutionary algorithm techniques to create new generations until one of these 
generations contains the desired solution:

111111

In the example that follows, your initial population is 50 randomly generated solutions, each 
of which is 50 bits long. You use tournament selection, mutation, and replacement of parents 
by offspring to search for the solution that maximizes the objective function. The objective 
function is the number of times the digit 1 appears. The optimal solution is one where the 
digit 1 appears 50 times.
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While this is not a difficult optimization problem, this example allows you to become 
familiar with the evolutionary algorithm concepts without too many modeling concerns. The 
solving process is split into two steps:

1. Create an initial population using random generation.

2. Write a basic generation loop:

● Create the reproduction goal, which uses tournament selection to choose which 
parents will reproduce and then uses the mutation operator reproduce. 

● Create the replacement goal. In this example, the parent population will be entirely 
replaced by the offspring population.

● For each generation, solve the problem using the generation goal (which combines the 
reproduction and replacement goals) and display the generation statistics. Break the 
loop when the solution that equals the optimum value (the problem size) is found or a 
certain number of generations is reached. 

The first step in this procedure is discussed in the section “Creating an initial solution pool” 
on page 510. The second step is discussed in the section “Writing a simple generation loop” 
on page 514.

Creating an initial solution pool

In this section, you will learn how to:

◆ build a solution prototype

◆ create the objective function

◆ create an operator factory to generate predefined genetic operators

◆ create a solution pool

◆ perform a goal which fills the solution pool with random solutions

Make a copy of the example file YourSolverHome/examples/src/tutorial/
ea1max_init_partial.cpp and open this copy in your development environment. This 
file is a program that is only partially completed. You will fill in the blanks in each step in 
this section. At the end of the section, you will have completed the example and you can 
compile and run the program. 

The main routine starts by parsing command line parameters for the problem size and the 
population size. You declare an IloEnv object used for allocation followed by a “try/catch” 
block to trap possible exceptions which may occur within the function body execution.
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Add the following code after the comment 
//Parse command line parameters 

Next, you build a Concert model of the “one max” problem. You declare an instance of 
IloModel. Then, you declare an IloBoolVarArray of bits. You constrain the count 
integer variable to be the sum of the binary digits in the bits array. The count variable has 
a lower bound of 0 for an array composed entirely of 0’s and an upper bound of 50 for an 
array composed entirely of 1’s. 

Add the following code after the comment //Create the model

As all generated solutions must contain the variable array you just modeled, you define a 
solution prototype. This prototype is a template for all solutions that will be placed in the 
initial population. Internally, unique solutions will be generated by cloning this prototype 
and storing the solver's state. You also define the objective function, which is to maximize 
the count variable. This addition is useful when solutions are to be compared or sorted.

Step 1 Parse command line parameters 

    IloInt problemSize = 50;     // Bits per solution
    IloInt populationSize = 50;  // Number of solutions in population
    if (argc > 1)
      problemSize = atoi(argv[1]);
    if (argc > 2)
      populationSize = atoi(argv[2]);
    env.out() << "Problem size: " << problemSize << endl;
    env.out() << "Population size: " << populationSize << endl;

Step 2 Create the model

    IloModel model(env);
    IloBoolVarArray bits(env, problemSize);     // The bits to count 
    for (IloInt v = 0; v < problemSize; v++) {
      char name[10];
      sprintf(name, "%02ld", v + 1);
      bits[v].setName(name);                         // Name the variable
    }
    IloIntVar count(env, 0, problemSize, "count");   // The bit count
    model.add(count == IloSum(bits));                // Count the bits
I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L 511



Add the following code after the comment //Create the solution prototype

You will make use of a factory of operators which operate over an array of decision variables 
specified to the factory. This factory process simplifies the definition of standard operators 
as the factory has access to certain common parameters, for example, the solution prototype.

Here, you use an operator which randomizes the values of the variables specified in the 
constructor of the factory, in order to generate a random population. This operator will be 
called until the number of solutions is equal to the desired population size. Solver verifies 
the legality of each solution by generating the solutions in a goal search which is 
backtracked each time a solution is produced. The fail limit specified is applied to the 
generation of each solution, meaning that the effort to generate each solution is limited. If a 
solution is not generated within this limit, this small subsearch is abandoned, and the 
generation loop reiterated.

Add the following code after the comment //Initialize the population

You can then display the solution pool's content.

Add the following code after the comment //Display the population

Step 3 Create the solution prototype

    IloSolution prototype(env);
    prototype.add(bits);
    IloObjective obj = IloMaximize(env, count, "Obj");
    prototype.setObjective(obj);

Step 4 Initialize the population

    IloSolver solver(model);
    IloSolutionPool population(env);
    IloEAOperatorFactory factory(env, bits);
    factory.setPrototype(prototype);
    factory.setSearchLimit(IloFailLimit(env, problemSize));
    solver.solve(IloExecuteProcessor(
      env, factory.randomize("rand")(populationSize) >> population
    ));

Step 5 Display the population

    env.out() << "INITIAL POPULATION " << population << endl;
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Finally, the routine's “try/catch” block as well as its body are closed. This code is provided 
for you:

You have now completed the model of the “one max” problem and created the initial 
solution pool. In the next section, you will learn how to write a simple generation loop.

Compile and run the program. You should get the following results:

The complete program is available in the YourSolverHome/examples/src/
ea1max_init.cpp file. 

  } catch(IloException ex) {
    env.out() << "Caught: " << ex << endl;
  }
  env.end();
  return 0;
}

Step 6 Compile and run the program

Problem size: 50
Population size: 50
INITIAL POPULATION IloSolutionPoolI (no name)
    [0] IloSolution[ 01[0] 02[1] 03[1] 04[1] 05[0] 06[0] 07[1] 08[1] 09[1] 
10[0] 11[1] 12[1] 13[0] 14[1] 15[0] 16[0] 17[1] 18[1] 19[1] 20[1] 21[0] 22[1] 
23[1] 24[1] 25[0] 26[0] 27[1] 28[0] 29[1] 30[1] 31[1] 32[1] 33[1] 34[1] 35[1] 
36[0] 37[0] 38[1] 39[0] 40[1] 41[1] 42[1] 43[1] 44[1] 45[1] 46[0] 47[1] 48[1] 
49[0] 50[1] Obj{Max} [34] ] (Obj = 34)
    [1] IloSolution[ 01[0] 02[1] 03[1] 04[1] 05[0] 06[0] 07[0] 08[1] 09[1] 
10[1] 11[1] 12[1] 13[0] 14[1] 15[1] 16[1] 17[0] 18[0] 19[1] 20[1] 21[1] 22[0] 
23[0] 24[1] 25[0] 26[1] 27[1] 28[0] 29[0] 30[0] 31[1] 32[1] 33[1] 34[0] 35[0] 
36[1] 37[0] 38[0] 39[0] 40[1] 41[1] 42[0] 43[1] 44[0] 45[1] 46[0] 47[0] 48[0] 
49[0] 50[1] Obj{Max} [26] ] (Obj = 26)
    [2] IloSolution[ 01[1] 02[1] 03[1] 04[0] 05[0] 06[1] 07[1] 08[1] 09[0] 
10[0] 11[1] 12[0] 13[1] 14[0] 15[1] 16[0] 17[0] 18[1] 19[0] 20[0] 21[0] 22[0] 
23[0] 24[1] 25[0] 26[1] 27[1] 28[0] 29[0] 30[0] 31[1] 32[1] 33[1] 34[1] 35[0] 
36[1] 37[0] 38[1] 39[0] 40[0] 41[0] 42[0] 43[1] 44[0] 45[1] 46[0] 47[0] 48[0] 
49[1] 50[0] Obj{Max} [22] ] (Obj = 22)
    [3] IloSolution[ 01[0] 02[0] 03[1] 04[0] 05[1] 06[1] 07[1] 08[0] 09[0] 
10[0] 11[1] 12[0] 13[0] 14[1] 15[0] 16[1] 17[1] 18[0] 19[0] 20[1] 21[0] 22[0] 
23[1] 24[1] 25[0] 26[0] 27[1] 28[0] 29[0] 30[1] 31[0] 32[1] 33[1] 34[0] 35[0] 
36[1] 37[0] 38[1] 39[1] 40[1] 41[0] 42[1] 43[1] 44[0] 45[1] 46[1] 47[1] 48[1] 
49[1] 50[1] Obj{Max} [27] ] (Obj = 27)
    [4] IloSolution[ 01[1] 02[0] 03[1] 04[0] 05[0] 06[0] 07[1] 08[1] 09[0] 
10[0] 11[0] 12[1] 13[1] 14[0] 15[0] 16[1] 17[0] 18[1] 19[0] 20[1] 21[0] 22[1] 
23[0] 24[1] 25[0] 26[1] 27[0] 28[1] 29[1] 30[1] 31[1] 32[0] 33[0] 34[1] 35[1] 
36[1] 37[1] 38[0] 39[0] 40[0] 41[0] 42[0] 43[1] 44[0] 45[1] 46[0] 47[1] 48[0] 
49[1] 50[0] Obj{Max} [24] ] (Obj = 24)

                              ( abridged )
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Review Exercises

1. Iterate over the created solution pool and print each solution's objective value.

2. Retrieve the best, worst, and average solution objective value from the solution pool.

Suggested Answers

Exercise 1

For this exercise, you should use a solution pool iterator and the getObjectiveValue API 
of IloSolution.

Exercise 2

The average is calculated by iterating and accumulating a sum which will eventually be 
divided by the population size to produce an average. The best and worse could also be 
maintained in the iterator loop by examination of the objectives of each solution. An 
alternative is to use the getBestSolution/getWorstSolution API of 
IloSolutionPool, as shown here:

Writing a simple generation loop 

In this section you will learn how to: 

◆ use a predefined selector

◆ specify a genetic operator

◆ replace the existing population by offspring

◆ access the best and worst solutions for each generation

Make a copy of the example file YourSolverHome/examples/src/tutorial/
ea1max_gen_partial.cpp and open the copy in your development environment. As in 

  for (IloSolutionPool::Iterator pi(population); pi.ok(); ++pi)
    env.out() << (*pi).getObjectiveValue() << " ";
  env.out() << endl;

  IloNum sum = 0.0;
  for (IloSolutionPool::Iterator pi(population); pi.ok(); ++pi)
    sum += (*pi).getObjectiveValue(); 
  IloNum best = population.getBestSolution().getObjectiveValue();
  IloNum worst = population.getWorstSolution().getObjectiveValue();
  env.out() << "Best  = " << best << endl
            << "Worst = " << worst << endl
            << "Mean  = " << sum / population.getSize() << endl;
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the first section of this lesson, you will fill in the blanks in each step. At the end of the 
section, you will have completed the example and you can compile and run the program. 

As in the previous example you parse command line arguments. In this example, there is 
another command line argument: the maximum number of generations. This code is 
provided for you:

To keep track of population evolution you write a function to display some statistical 
information:

◆ the best solution objective value

◆ the worst solution objective value

◆ the average solution objective value

This function is used after the population initialization and after the creation of each new 
generation.

Add the following code after the comment //Display the generation statistics  

    IloInt problemSize = 50;     // Bits per solution
    IloInt populationSize = 50;  // Number of solutions in population
    IloInt maxGeneration = 60;   // Generation count limit
    if (argc > 1)
      problemSize = atoi(argv[1]);
    if (argc > 2)
      populationSize = atoi(argv[2]);
    if (argc > 3)
      maxGeneration = atoi(argv[3]);
    env.out() << "Problem size: " << problemSize << endl;
    env.out() << "Population size: " << populationSize << endl;
    env.out() << "Max generation: " << maxGeneration << endl;

Step 1 Display the generation statistics 

void DisplayGenerationStatistics(ostream& stream,
                                 IloInt generation,
                                 IloSolutionPool population) {
  IloNum sum = 0.0;
  for (IloSolutionPool::Iterator it(population); it.ok(); ++it) 
    sum += (*it).getObjectiveValue();
  stream << "GENERATION " << generation 
         << " WORST " 
         << population.getWorstSolution().getObjectiveValue()
         << " BEST " 
         << population.getBestSolution().getObjectiveValue()
         << " AVERAGE " << (sum / population.getSize())
         << endl;
}
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Solutions processed by the operators will be chosen using tournament selection. The selector 
IloTournamentSelector will be used. A tournament selector operates by randomly 
selecting n (the tournament size) solutions from its input pool, and placing the best of these 
resulting solutions in the output pool. In this way, better solutions are favored for selection 
over poorer ones. Here a tournament size of 2 is used: two random solutions are chosen from 
the population, and the better is placed in the parent pool. You also specify via a Boolean 
parameter that when more than one solution is selected by the selector, the same solution 
cannot be selected more than once.

Add the following code after the comment 
//Use tournament selection to choose parents

In this example, the solution will be processed using a single mutation operator. The 
mutation operator simply changes the value of each element of the solution to another of its 
values with a constant probability. Here, you choose this probability to be 1.0/
problemSize to ensure that, on average, one site is mutated each time. This is simply 
parameterization and not a necessary condition. The operator is supplied by a factory which 
returns an object of type IloPoolOperator. An operator takes an input pool of solutions 
and instantiates Solver's constrained variables according to its function. An object of type 
IloPoolOperator does not produce a solution object, and so cannot be used directly with 
pool processors. The operator is converted to a pool processor (type IloPoolProc) 
automatically. This conversion creates a pool processor which invokes the operator, and 
creates an output solution from the state of the Solver.

Add the following code after the comment //Use mutation as a single operator

In this example, you will replace the entire population by the offspring at each generation. 
Thus, at each generation, populationSize offspring must be created. The reproduction 
goal accumulates solutions in the offspring pool until the pool’s size reaches 
populationSize. 

Step 2 Use tournament selection to choose parents

    IloTournamentSelector<IloSolution, IloSolutionPool> tsel(
      env, 2, IloBestSolutionComparator(env)
    );
    IloPoolProc selector = IloSelectSolutions(env, tsel, IloTrue);

Step 3 Use mutation as a single operator

    IloPoolProc applyOp = factory.mutate(1.0 / problemSize, "mutate");
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Add the following code after the comment //Create the reproduction goal

Then you create a replacement goal which:

◆ destroys existing solutions

◆ replaces the entire population with the newly generated offspring

Add the following code after the comment 
//Replace the entire population with offspring  

A single generation is created by chaining reproduction and replacement goals.

Add the following code after the comment 
//Each generation reproduces and replaces solutions

You define the optimum value which will be used to stop the generation loop. Note that, for 
this example, since the optimal is known, such a determination is possible. In most real 
world cases, the optimal will not be known and the more usual terminating condition is on 
the number of iterations or a time limit.

Add the following code after the comment //Set up the optimum value

Step 4 Create the reproduction goal

    IloSolutionPool offspring(env, "offspring");
    IloGoal reproduceGoal = IloExecuteProcessor(
      env, population >> selector >> applyOp(populationSize) >> offspring
    );

Step 5 Replace the entire population with offspring

    IloGoal replacementGoal =
      IloExecuteProcessor(env, population >> IloDestroyAll(env)) &&
      IloExecuteProcessor(env, offspring >> population);

Step 6 Each generation reproduces and replaces solutions

    IloGoal generationGoal = reproduceGoal && replacementGoal;

Step 7 Set up the optimum value

    IloInt optimumValue = problemSize;
    env.out() << "Optimum value: " << optimumValue << endl;
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Finally, you create the loop to search for the best solution.

Add the following code after the comment //The main generational loop

You have now learned how to write a simple generation loop. 

Compile and run the program. You should get the following results:

The complete program is available in the YourSolverHome/examples/src/
ea1max_gen.cpp file. 

Review Exercises

1. Increase the tournament size of the parent selector and note if the population converges 
faster.

Step 8 The main generational loop

    for (generation++; generation < maxGeneration; generation++) {
      solver.solve(generationGoal);
      DisplayGenerationStatistics(env.out(), generation, population);
      if (population.getBestSolution().getObjectiveValue() == optimumValue) {
        env.out() << "OPTIMUM FOUND " << endl;
        break;
      }
    }

Step 9 Compile and run the program

Problem size: 50
Population size: 50
Max generation: 60
GENERATION 0 WORST 17 BEST 34 AVERAGE 25.06
Optimum value: 50
GENERATION 1 WORST 20 BEST 35 AVERAGE 27.4
GENERATION 2 WORST 24 BEST 35 AVERAGE 29.08
GENERATION 3 WORST 26 BEST 37 AVERAGE 31.02
GENERATION 4 WORST 29 BEST 38 AVERAGE 32.18
GENERATION 5 WORST 28 BEST 38 AVERAGE 32.68
GENERATION 6 WORST 29 BEST 39 AVERAGE 33.58
GENERATION 7 WORST 31 BEST 39 AVERAGE 34.86
GENERATION 8 WORST 31 BEST 38 AVERAGE 35.04
GENERATION 9 WORST 32 BEST 39 AVERAGE 35.38
GENERATION 10 WORST 32 BEST 39 AVERAGE 35.66
GENERATION 11 WORST 33 BEST 39 AVERAGE 36.2
GENERATION 12 WORST 33 BEST 39 AVERAGE 36.02
GENERATION 13 WORST 34 BEST 39 AVERAGE 36.2
GENERATION 14 WORST 33 BEST 38 AVERAGE 35.84
GENERATION 15 WORST 32 BEST 39 AVERAGE 36.18

                (abridged)
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2. Try other operators, such as uniform crossover. Use the member function 
uniformXover of the operator factory.

Suggested Answers

Exercise 1

Change the parameter “2” in IloTournamentSelector to “5” for example:

You should see that the optimal is found within the default generation limit this time, 
whereas it was not before.

Exercise 2

Change the generation of the solution operator to:

The 0.5 indicates that features of the child should probably be equally drawn from both 
parents of the crossover. With this operator, the optimum is found more quickly than when 
using mutation.

  IloPoolProc selector = IloTournamentSelector(
    env, 5, IloBestSolutionComparator(env), IloTrue 
  );

  IloPoolProc applyOp = factory.uniformXover(0.5, "uXover");
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C H A P T E R
30

Using More Advanced EA Features

This lesson uses the “one max” problem to demonstrate some of the more advanced features 
available in the Solver Evolutionary Algorithm (EA) Framework. In the “one max” problem, 
you try to find the solution that maximizes the number of times the digit 1 appears in a set or 
string of bits. 

This lesson contains three sections:

◆ Using custom selectors and multiple operators on page 521

◆ Using listeners and comparators on page 525

◆ Using pool evaluators and partial replacement on page 533

All three sections are based on the model and basic generation loop explained in Chapter 29, 
Modeling and Solving a Basic EA Problem. 

Using custom selectors and multiple operators

In this section, you will learn how to:

◆ define a customized selector for parents

◆ use a processor pool to manage multiple genetic operators

◆ instantiate a selector
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Make a copy of the example file YourSolverHome/examples/src/tutorial/
ea1max_cust_partial.cpp and open this copy in your development environment. This 
file is a program that is only partially completed. You will fill in the blanks in each step in 
this section. At the end of the section, you will have completed the example and you can 
compile and run the program. 

You define the runtime custom selector that will be invoked at solve time. This is a 
tournament selector whose constructor takes one argument—the tournament size. Recall that 
a tournament selector takes the best of n solutions drawn randomly from the population, 
where n is the tournament size. In the custom operator, you add each selected solution to the 
selector’s output solution pool. The use of IloSolution::isBetterThan facilitates the 
construction of this selector.

Add the following code after the comment //The custom selector 

In the main code, instead of a predefined selector, you will instantiate your own selector, 
specifying the tournament size.

Add the following code after the comment 
//Create the user-defined tournament selector

This creates a pool processor which uses CustomSelector to select solutions. Here a 
selector of tournament size 3 is created. The boolean parameter to IloSelectSolutions 
indicates whether the same solution can be selected more than once or when selector is 
asked for more than one solution. In this case, IloTrue is specified, meaning that all 

Step 1 The custom selector

ILOCTXSELECTOR1(CustomSelector, IloSolution, IloSolutionPool, in,
                IloSolver, solver, IlcInt, tournamentSize) {
  IloInt size = in.getSize(); 
  if (size != 0) {
    IlcRandom rnd = solver.getRandom();
    IloSolution candidate = in.getSolution(rnd.getInt(size));
    for (IlcInt tournament = 1; tournament < tournamentSize; tournament++) {
      IloSolution competition = in.getSolution(rnd.getInt(size));
      if (competition.isBetterThan(candidate))
        candidate = competition;
    }
    select(candidate);
  }
}

Step 2 Create the user-defined tournament selector

    IloPoolProc selector =
      IloSelectSolutions(env, CustomSelector(env, 3), IloTrue);
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solutions generated must be unique, and duplicates are forbidden. This ensures that later, a 
crossover cannot be performed between two instances of the same parent.

Now you will learn how to use more than one genetic operator to evolve the population. 
These alternative operators will be stored in a processor pool, which is similar to a solution 
pool. 

Add the following code after the comment 
//Create a processor array to store operators

You will keep the mutation operator in your operator set, and so you add the mutation 
operator to the processor pool.

Add the following code after the comment 
//Add the mutation operator to the pool

You also add the uniform crossover operator to the processor array in the same manner as for 
mutation.

Add the following code after the comment 
//Add the crossover operator to the pool

Now you produce a new composite operator which selects a random operator from the array 
and invokes it. You do this by:

◆  creating a random selector on the processor array

◆ using IloSelectProcessor to invoke the selector and execute the processor selected.

Step 3 Create a processor pool to store operators

    IloPoolProcArray ops(env);

Step 4 Add the mutation operator to the pool

    ops.add(factory.mutate(1.0 / problemSize, "mutate"));

Step 5 Add the crossover operator to the pool

    ops.add(factory.uniformXover(0.5, "uXover"));
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Add the following code after the comment 
//Creates a goal selector which will choose the goal to apply

You have now learned how to write a custom selector and use multiple operators in a 
processor pool. In the next section, you will learn how to use listeners.

Compile and run the program. You should get the following results:

The complete program is available in the YourSolverHome/examples/src/
ea1max_cust.cpp file. 

Review Exercises

1. Adjust the selector to produce the worst of n solutions (n being the tournament size) and 
examine the behavior.

Step 6 Creates a goal selector which will choose the goal to apply

    IloPoolProc applyOp = IloSelectProcessor(
      env, ops, IloRandomSelector<IloPoolProc,IloPoolProcArray>(env)
    );

Step 7 Compile and run the program

Problem size: 50
Population size: 50
Max generation: 60
GENERATION 0 WORST 17 BEST 34 AVERAGE 25.06
Optimum value: 50
GENERATION 1 WORST 20 BEST 33 AVERAGE 27.7
GENERATION 2 WORST 24 BEST 34 AVERAGE 30.54
GENERATION 3 WORST 29 BEST 36 AVERAGE 32.34
GENERATION 4 WORST 29 BEST 38 AVERAGE 33.52
GENERATION 5 WORST 30 BEST 41 AVERAGE 34.76
GENERATION 6 WORST 32 BEST 41 AVERAGE 35.8
GENERATION 7 WORST 33 BEST 42 AVERAGE 37.02
GENERATION 8 WORST 34 BEST 42 AVERAGE 38.6
GENERATION 9 WORST 35 BEST 44 AVERAGE 39.28
GENERATION 10 WORST 37 BEST 46 AVERAGE 40.92
GENERATION 11 WORST 40 BEST 46 AVERAGE 42.36
GENERATION 12 WORST 40 BEST 47 AVERAGE 43.36
GENERATION 13 WORST 42 BEST 48 AVERAGE 44.44
GENERATION 14 WORST 42 BEST 49 AVERAGE 45.64
GENERATION 15 WORST 43 BEST 49 AVERAGE 46.38
GENERATION 16 WORST 43 BEST 50 AVERAGE 47.06
OPTIMUM FOUND 
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Suggested Answers

Exercise 1

Simply change the line:

to:

You should see that, as may be expected, the pressure of selecting poorer individuals results 
in a population that contains solutions with a very low number of 1’s.

Using listeners and comparators

In this section, you will learn how to:

◆ to store operator invocation and improvement counts

◆ compare operators using lexicographic composition of comparators

◆ show operator statistics

You can monitor operator improvements by attaching listeners to operators. Such monitoring 
can be done in two ways:

◆ you can determine when an operator is invoked

◆ you can detect improvement by monitoring when an operator produces a solution

Make a copy of the example file YourSolverHome/examples/src/tutorial/
ea1max_listen_partial.cpp and open this copy in your development environment. 
After filling in the blanks in each step in this section, you will have completed the example 
and you can compile and run the program.

In this example, you will show operator statistics; you define a small structure to hold these 
statistics for a particular operator. 

if (competition.isBetterThan(candidate))

if (competition.isWorseThan(candidate))
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Add the following code after the comment 
//Stores invocation and improvement statistics for operators

The following procedure checks if the operator statistics record already exists and creates it 
if required. Each operator's statistics object are stored and retrieved using setObject and 
getObject respectively.

Add the following code after the comment 
//Retrieve operator statistics (and create if necessary)

Objects of type IloPoolOperator define the basic genetic operators that will be used to 
modify the population, and it is upon these objects that monitoring will be done, and 
statistics gathered. However, to execute an operator it must be cast to a pool processor 
(IloPoolProc), albeit automatically most of the time. It is thus convenient to be able to 
have access to an operator which was used to create a processor. You perform this using a 
wrapping function and setObject. We also introduce a function which retrieves operator 
statistics give a processor.

Step 1 Stores invocation and improvement statistics for operators

struct OperatorStatistics {
  IloInt invocations;
  IloInt improvements;
  IloInt successes;
  OperatorStatistics() : invocations(0), improvements(0), successes(0) { }
};

Step 2 Retrieve operator statistics (and create if necessary)

OperatorStatistics * GetOperatorStatistics(IloPoolOperator op) {
  OperatorStatistics * stat = (OperatorStatistics *)op.getObject();
  if (stat == 0) {
    stat = new (op.getEnv()) OperatorStatistics();
    op.setObject(stat);
  }
  return stat;
}
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Add the following code after the comment 
// Setup the processor to operator mapping 

You are now in a position to define a listener object which will be called when a new 
solution is produced by an operator. In the listener, you update operator statistics: 

◆ success—the operator produced a solution

◆ improvement—the operator produced a solution better than previous best solution

Listener objects can be defined via macros. You should pass dynamic information by 
reference or pointer so that you have the up-to-date information available when the listener 
is invoked; here the current generation.

Add the following code after the comment 
//Defines a listener which records solution improvements

The previous listener was to be called whenever a new solution was produced. You now 
create a listener which keeps track of when a particular genetic operator is invoked.

Step 3 Set up processor to operator mapping

IloPoolProc BuildGAProcessor(IloPoolOperator op) {
  IloPoolProc proc(op);
  proc.setObject(op.getImpl());
  return proc;
}

OperatorStatistics * GetOperatorStatistics(IloPoolProc proc) {
  return GetOperatorStatistics((IloPoolOperatorI*)proc.getObject());
}

Step 4 Defines a listener which records solution improvements

ILOIIMLISTENER2(ImprovementListener, IloPoolOperator::SuccessEvent, event, 
                IloSolution&, best, 
                IloInt&, generation) {
  IloSolution newSolution = event.getSolution();
  IloPoolOperator op = event.getOperator();
  OperatorStatistics * stat = GetOperatorStatistics(op);
  stat->successes++;
  if (newSolution.isBetterThan(best)) {
    best.end();
    best = newSolution.makeClone(getEnv());
    cout << " IMPROVEMENT " << best.getObjectiveValue()
         << " BY " << op.getDisplayName()
         << " GENERATION " << generation 
         << endl;
    stat->improvements++;
  }
}
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Add the following code after the comment 
//Defines a listener which records operator invocations 

It can be useful to rank or score genetic operators according to their past performance so that 
they can be more intelligently invoked in the future. For example, this can mean choosing 
more often operators which seem to work well. In this example, to sort genetic operators 
depending on their performance, you use two criteria:

◆ the improvement count

◆ the invocation count

To do so, you define a first an IloComparator which will compare operator improvement 
counts, followed by one to compare invocations. The final idea is to combine the two 
comparisons such that operators with higher improvement counts and lower invocation 
counts are preferred. You use the ILOCOMPARATOR macro to perform custom comparison. 
Two parameters, left and right, are always present and are the operators to be compared. 
This macro should return a true value if and only if left is strictly better than right. Here 
you see that an operator with more improvements is better than one with less.

Add the following code after the comment 
//Define the operator improvement comparator

You also define a second IloComparator devoted to comparing the numbers of operator 
invocations. Here, an operator which has been invoked less is deemed better than one which 
has been invoked more.

Add the following code after the comment 

Step 5 Defines a listener which records operator invocations

ILOIIMLISTENER0(OperatorListener, IloPoolOperator::InvocationEvent, event) {
  IloPoolOperator op = event.getOperator();
  OperatorStatistics * stat = GetOperatorStatistics(op);
  stat->invocations++;
}

Step 6 Define the operator improvement comparator

ILOCOMPARATOR0(OperatorImprovementComparator, IloPoolProc, left, right) {
  OperatorStatistics * s1 = GetOperatorStatistics(left);
  OperatorStatistics * s2 = GetOperatorStatistics(right);
  return s1->improvements > s2->improvements;
}

Step 7 Define the operator invocation comparator
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//Define the operator invocation comparator 

In the main routine you use the predefined tournament selector instead of the customized 
one.

Add the following code after the comment 
//Use tournament selection to choose parents

You attach the listeners before starting the generation loop. It is possible to attach listeners 
directly to the operator objects themselves. However, often a more convenient method is to 
add the listeners to the operator factory. These listeners will then be added to all operators 
produced by the factory after this point.

Add the following code after the comment 
// Add the operator invocation listener 

To record generated solutions, you add the improvement listener to the factory.

Add the following code after the comment // Add the improvement listener 

This last listener will display a message each time the best solution found is improved upon.

ILOCOMPARATOR0(OperatorInvocationComparator, IloPoolProc, left, right) {
  OperatorStatistics * s1 = GetOperatorStatistics(left);
  OperatorStatistics * s2 = GetOperatorStatistics(right);
  return s1->invocations < s2->invocations;
}

Step 8 Use tournament selection to choose parents

    IloTournamentSelector<IloSolution, IloSolutionPool> tsel(
      env, 2, IloBestSolutionComparator(env)
    );
    IloPoolProc selector = IloSelectSolutions(env, tsel, IloTrue);

Step 9 Add the operator invocation listener

    factory.addListener(OperatorListener(env));

Step 10 Add the improvement listener

    factory.addListener(ImprovementListener(env, best, generation));
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Creation of the operators to use is done as before, with the exception that you make use of 
the BuildGAProcessor function to maintain a link from the processor at the operator on 
which it is based. This code is provided for you:

Once the generational loop exits, you display the goal statistics. The idea is to compare the 
performance of the operators according to two criteria. First, you compare the number of 
improvements which each operator provided. If the number of improvements is different for 
each operator, we know definitively which operator is considered better. If the number of 
improvements is the same, however, the number of invocations of each operator is examined. 
The operator which was invoked less is preferred. This type of hierarchical comparison is 
termed a lexicographical comparison and you will use it below.

Add the following code after the comment 
//Create composite operator comparator

Using this comparator, you sort the operator pool.

Add the following code after the comment //Sort the operator pool

Finally, you loop over the sorted processors in best-first manner.

    ops.add(BuildGAProcessor(factory.mutate(1.0 / problemSize, "mutate")));
    ops.add(BuildGAProcessor(factory.uniformXover(0.5, "uXover")));

Step 11 Create composite operator comparator

    IloComparator<IloPoolProc> opComparator = IloComposeLexical(
       OperatorImprovementComparator(env),
       OperatorInvocationComparator(env)
    );

Step 12 Sort the operator pool

    IloBool done;
    do {
      done = IloTrue;
      for (IloInt i = 1; i < ops.getSize(); i++) {
        if (opComparator.isBetterThan(ops[i], ops[i-1])) {
          IloPoolProc tmp = ops[i-1]; ops[i-1] = ops[i]; ops[i] = tmp;
          done = IloFalse;
        }
      }
    } while (!done);

Step 13 Loop over the processor pool and display statistics
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Add the following code after the comment 
//Loop over the processor pool and display statistics

You have now learned how to use listeners and comparators. In the next section, you will 
learn how to use pool evaluators.

    for (IloInt i = 0; i < ops.getSize(); i++) {
      IloPoolProc op = ops[i];
      OperatorStatistics* stat = GetOperatorStatistics(op);
      env.out() << " " << op.getDisplayName()
                << " INVOKE " << stat->invocations
                << " SUCCESS " << stat->successes
                << " IMPROVE " << stat->improvements
                << endl;
    }
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Compile and run the program. You should get the following results:

The complete program is available in the YourSolverHome/examples/src/
ea1max_listen.cpp file. 

Step 14 Compile and run the program

Problem size: 50
Population size: 50
Max generation: 60
GENERATION 0 WORST 17 BEST 34 AVERAGE 25.06
Optimum value: 50
 IMPROVEMENT 39 BY IloArrayUniformXover GENERATION 1
GENERATION 1 WORST 20 BEST 39 AVERAGE 27.18
GENERATION 2 WORST 23 BEST 35 AVERAGE 28.2
GENERATION 3 WORST 24 BEST 35 AVERAGE 29.42
GENERATION 4 WORST 25 BEST 38 AVERAGE 30.6
GENERATION 5 WORST 28 BEST 37 AVERAGE 32.06
GENERATION 6 WORST 28 BEST 39 AVERAGE 33.38
 IMPROVEMENT 40 BY IloArrayUniformXover GENERATION 7
GENERATION 7 WORST 26 BEST 40 AVERAGE 33.76
GENERATION 8 WORST 29 BEST 40 AVERAGE 34.86
 IMPROVEMENT 41 BY IloArrayUniformXover GENERATION 9
GENERATION 9 WORST 28 BEST 41 AVERAGE 35.44
GENERATION 10 WORST 31 BEST 40 AVERAGE 35.74
GENERATION 11 WORST 31 BEST 41 AVERAGE 36.76
 IMPROVEMENT 42 BY IloArrayUniformXover GENERATION 12
 IMPROVEMENT 43 BY IloArrayUniformXover GENERATION 12
GENERATION 12 WORST 30 BEST 43 AVERAGE 37.64
GENERATION 13 WORST 33 BEST 43 AVERAGE 38.64
GENERATION 14 WORST 36 BEST 43 AVERAGE 39.54
 IMPROVEMENT 45 BY IloArrayUniformXover GENERATION 15
GENERATION 15 WORST 36 BEST 45 AVERAGE 40.54
 IMPROVEMENT 47 BY IloArrayUniformXover GENERATION 16
GENERATION 16 WORST 37 BEST 47 AVERAGE 41.74
GENERATION 17 WORST 38 BEST 47 AVERAGE 42.42
GENERATION 18 WORST 40 BEST 47 AVERAGE 43.54
 IMPROVEMENT 48 BY IloArrayUniformXover GENERATION 19
GENERATION 19 WORST 41 BEST 48 AVERAGE 44.1
GENERATION 20 WORST 41 BEST 48 AVERAGE 44.72
GENERATION 21 WORST 40 BEST 48 AVERAGE 45.16
 IMPROVEMENT 49 BY IloArrayUniformXover GENERATION 22
GENERATION 22 WORST 42 BEST 49 AVERAGE 45.88
GENERATION 23 WORST 43 BEST 49 AVERAGE 46.32
GENERATION 24 WORST 43 BEST 48 AVERAGE 46.06
GENERATION 25 WORST 43 BEST 49 AVERAGE 46.56
GENERATION 26 WORST 42 BEST 49 AVERAGE 46.76
GENERATION 27 WORST 44 BEST 49 AVERAGE 46.96
 IMPROVEMENT 50 BY IloArrayUniformXover GENERATION 28
GENERATION 28 WORST 44 BEST 50 AVERAGE 47.44
OPTIMUM FOUND 
 IloArrayUniformXover INVOKE 705 SUCCESS 705 IMPROVE 10
 IloArrayMutate INVOKE 695 SUCCESS 695 IMPROVE 0
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Review Exercises

1. Add an element to the lexicographical comparator so that preferred operators are ones 
with maximal improvement/invocation ratio, then maximum improvements, then 
minimum invocations. You will need to create a new comparator for the ratio and adjust 
the definition of the lexicographical comparator.

Suggested Answers

Exercise 1

A comparator is created as follows, taking care to avoid division by zero:

The comparator is then used in the main body as shown below:

Using pool evaluators and partial replacement

In this section, you will learn how to:

◆ use a fitness-based parent selector

◆ alter parent values using a custom solution evaluator

◆ use a replacement goal to replace a fraction of the population with offspring

Make a copy of the example file YourSolverHome/examples/src/tutorial/
ea1max_values_partial.cpp and open this copy in your development environment. 
After filling in the blanks in each step in this section, you will have completed the example. 

ILOCOMPARATOR0(OperatorImprovementRatioComparator, IloPoolProc, left, right) {
  OperatorStatistics * s1 = GetOperatorStatistics(left);
  OperatorStatistics * s2 = GetOperatorStatistics(right);

  // Avoid illegal computation of zero divided by zero
  if (s1->invocations == 0 || s2->invocations == 0)
    return IloFalse;

  return (IloNum)s1->improvements / s1->invocations >
         (IloNum)s2->improvements / s2->invocations;
}

    IloComparator<IloPoolProc> opComparator = IloComposeLexical(
       OperatorImprovementRatioComparator(env),
       OperatorImprovementComparator(env),
       OperatorInvocationComparator(env)
    );
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In this example, you will replace only half of the population at each generation. You will 
also decide to select parents depending on solution objective values. To do this, you will use 
pool evaluators to do customized value computation.

You will follow the idea in this example that the probability of selecting a parent will be 
proportional to the square of the number of 1’s (the objective value) of the parent. We 
introduce an evaluator which performs this function: given another evaluator as argument, it 
raises its evaluation to a specified power.

The following macro definition allows you to raise the values obtained from pools to a given 
power, and then normalizes these values so that they sum to unity. (Such a normalization can 
be useful for various purposes, not least displaying.) This evaluator will be used later to 
modify the evaluations of solutions. The evaluator calls the update method on the 
subordinate evaluator passed. Note that the macro receives two parameters, a subordinate 
evaluator, and a power.  ILOMULTIPLEEVALUATOR must call the function setEvaluation 
for each solution of the input pool.

Add the following code after the comment 
//Raise the result of an evaluator to a given power, and normalize

In the main body, when performing parent selection, we first declare an 
IloSolutionPoolEvaluator based on a simple IloSolutionEvaluator which 
collects objective values from solution pools.

Add the following code after the comment 
//Evaluate objective values of solutions

This line constructs a multiple evaluator which evaluates each solution in an entire pool 
using the objective (which is evaluated using IloSolutionEvaluator). Then you use the 
PowerEvaluator constructor to square and normalize the objective value.

Step 1 Raise the result of an evaluator to a given power

ILOMULTIPLEEVALUATOR2(PowerEvaluator, IloSolution, IloSolutionPool, pool,
                      IloSolutionPoolEvaluator, eval,
                      IloNum, power) {
  eval.update(pool);
  IloNum sum = 0.0;
  for (IloSolutionPool::Iterator it1(pool); it1.ok(); ++it1)
    sum += pow(eval(*it1), power);
  for (IloSolutionPool::Iterator it2(pool); it2.ok(); ++it2)
    setEvaluation(*it2, pow(eval(*it2), power) / sum);
}

Step 2 Evaluate objective values of solutions

    IloSolutionPoolEvaluator parentEvaluator(env, IloSolutionEvaluator(env));
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Add the following code after the comment 
//Increases discrepancies between solutions

You will now create a parent selector using parentEvaluator, and for this you will use a 
roulette wheel selector. In a roulette wheel selector, the probability for a given solution at 
index i to be selected is proportional to its evaluation. This selector is known as a roulette 
wheel selector as each parent evaluation can be viewed as a distance along the circumference 
of a roulette wheel which is spun to choose a parent.

Add the following code after the comment 
//Selects parents depending on their probabilities

The boolean parameter set to IloTrue indicates that when selecting more than one parent, 
the same solution cannot be selected more than once. You will see later that the content of 
this array will be computed using the parentEvaluator object as a preliminary step of the 
generation goal. Now, you will expand the repertoire of operators. Add one-point and two-
point crossover operators, which exchange segments of parent solutions.

Add the following code after the comment //Add 1 and 2 point crossover

You also add operators which may not directly produce improvements but help maintain the 
population diversity by moving solution values around. 

Step 3 Increases discrepancies between solutions

    parentEvaluator = PowerEvaluator(env, parentEvaluator, 2.0);

Step 4 Selects parents depending on their probabilities

    IloRouletteWheelSelector<IloSolution,IloSolutionPool>
      rwsel(env, parentEvaluator);
    IloPoolProc selector = IloSelectSolutions(env, rwsel, IloTrue);

Step 5 Add 1 and 2 point crossover

    ops.add(BuildGAProcessor(factory.onePointXover("1ptXover")));
    ops.add(BuildGAProcessor(factory.twoPointXover("2ptXover")));
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Add the following code after the comment //Add transposition operators

In this example, you will replace only half of the current population with the offspring. You 
will thus generate only half the number of offspring as the size of the population, ensuring 
that the population will be kept constant in number.

Add the following code after the comment //Create the reproduction goal

Here, the genetic operator is instructed to produce populationSize / 2 solutions which 
are then placed in the offspring pool.

Since you use partial replacement instead of full replacement in this example, you need to 
define a way to choose which solutions get replaced or become “dead.” This can be done 
using a tournament selector (here, with tournament size 3) and using an 
IloWorstSolutionComparator which tends to choose bad solutions rather than good 
ones. The last argument of this selector's factory is a flag (in this case IloTrue) indicating 
that selected pool elements should appear only once in the selector's output pool (named 
dead). The selector is not allowed to select the same solution twice.

Add the following code after the comment 
//Create the selector of individuals to remove

Now, you can create the replacement goal.

Step 6 Add transposition operators

    ops.add(BuildGAProcessor(factory.swap("swap")));
    ops.add(BuildGAProcessor(factory.translocate("transloc")));

Step 7 Create the reproduction goal

    IloSolutionPool offspring(env, "offspring");
    IloGoal reproduceGoal = IloExecuteProcessor(
      env, population >> selector >> applyOp(populationSize / 2) >> offspring
    );

Step 8 Create the selector of individuals to remove

    IloTournamentSelector<IloSolution,IloSolutionPool> deadSelector(
      env, 3, IloWorstSolutionComparator(env)
    );
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Add the following code after the comment //Create the replacement goal 

The IloReplaceSolutions processor takes its input (the offspring pool), and examines its 
size n. It then removes n solutions from population, using the deadSelector to select 
which ones and places them on the output. All solutions on the input are then added to the 
population. Finally, IloDestroyAll reclaims the memory used by the solutions in its input 
(that is, those selected for destruction by IloReplaceSolutions).

Finally, you have to add the code that will compute solution values used for selecting parents 
each generation. This is done by using the IloUpdate goal which will perform the 
computation specified by PowerEvaluator on values stored in solutions for the count 
solver variable.

Add the following code after the comment 
//Compute parent probabilites before each generation

You have now learned how to use pool evaluators.

Compile and run the program. You should get the following results:

Problem size: 50
Population size: 50
Max generation: 60
GENERATION 0 WORST 17 BEST 34 AVERAGE 25.06
Optimum value: 50
GENERATION 1 WORST 20 BEST 34 AVERAGE 26.36
 IMPROVEMENT 35 BY IloArrayOnePointXover GENERATION 2
GENERATION 2 WORST 21 BEST 35 AVERAGE 28.26
GENERATION 3 WORST 21 BEST 35 AVERAGE 28.98
GENERATION 4 WORST 23 BEST 35 AVERAGE 30.14
GENERATION 5 WORST 24 BEST 35 AVERAGE 30.9
 IMPROVEMENT 38 BY IloArrayOnePointXover GENERATION 6
GENERATION 6 WORST 23 BEST 38 AVERAGE 31.1
GENERATION 7 WORST 27 BEST 38 AVERAGE 32.44

Step 9 Create the replacement goal

    IloGoal replacementGoal = IloExecuteProcessor(env,
      offspring >>
      IloReplaceSolutions(env, population, deadSelector) >>
      IloDestroyAll(env)
    );

Step 10 Compute parent probabilities before each generation

    generationGoal = IloUpdate(env, parentEvaluator, population)
                  && generationGoal;

Step 11 Compile and run the program
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 IMPROVEMENT 40 BY IloArrayOnePointXover GENERATION 8
GENERATION 8 WORST 31 BEST 40 AVERAGE 33.68
GENERATION 9 WORST 31 BEST 40 AVERAGE 34.46
GENERATION 10 WORST 31 BEST 40 AVERAGE 35.02
 IMPROVEMENT 41 BY IloArrayTwoPointXover GENERATION 11
GENERATION 11 WORST 31 BEST 41 AVERAGE 35.64
 IMPROVEMENT 42 BY IloArrayUniformXover GENERATION 12
GENERATION 12 WORST 30 BEST 42 AVERAGE 36.2
GENERATION 13 WORST 33 BEST 42 AVERAGE 37.4
GENERATION 14 WORST 31 BEST 42 AVERAGE 37.48
GENERATION 15 WORST 32 BEST 42 AVERAGE 37.7
 IMPROVEMENT 44 BY IloArrayUniformXover GENERATION 16
GENERATION 16 WORST 34 BEST 44 AVERAGE 39
GENERATION 17 WORST 36 BEST 44 AVERAGE 39.28
GENERATION 18 WORST 36 BEST 44 AVERAGE 39.88
GENERATION 19 WORST 36 BEST 44 AVERAGE 40.46
GENERATION 20 WORST 36 BEST 44 AVERAGE 41.38
GENERATION 21 WORST 36 BEST 44 AVERAGE 42.06
 IMPROVEMENT 45 BY IloArrayTwoPointXover GENERATION 22
GENERATION 22 WORST 39 BEST 45 AVERAGE 42.4
 IMPROVEMENT 47 BY IloArrayUniformXover GENERATION 23
GENERATION 23 WORST 39 BEST 47 AVERAGE 42.9
GENERATION 24 WORST 39 BEST 47 AVERAGE 43.4
GENERATION 25 WORST 39 BEST 47 AVERAGE 43.62
GENERATION 26 WORST 40 BEST 47 AVERAGE 43.94
GENERATION 27 WORST 40 BEST 47 AVERAGE 43.86
 IMPROVEMENT 48 BY IloArrayTwoPointXover GENERATION 28
GENERATION 28 WORST 39 BEST 48 AVERAGE 44.08
GENERATION 29 WORST 39 BEST 48 AVERAGE 44.66
GENERATION 30 WORST 39 BEST 48 AVERAGE 45.24
GENERATION 31 WORST 38 BEST 48 AVERAGE 45.34
GENERATION 32 WORST 41 BEST 48 AVERAGE 45.82
GENERATION 33 WORST 43 BEST 48 AVERAGE 46.26
 IMPROVEMENT 49 BY IloArrayTwoPointXover GENERATION 34
GENERATION 34 WORST 42 BEST 49 AVERAGE 46.48
GENERATION 35 WORST 44 BEST 49 AVERAGE 46.72
GENERATION 36 WORST 44 BEST 49 AVERAGE 46.86
GENERATION 37 WORST 45 BEST 49 AVERAGE 47.14
GENERATION 38 WORST 45 BEST 49 AVERAGE 47.36
 IMPROVEMENT 50 BY IloArrayOnePointXover GENERATION 39
GENERATION 39 WORST 45 BEST 50 AVERAGE 47.52
OPTIMUM FOUND 
 IloArrayOnePointXover INVOKE 150 SUCCESS 150 IMPROVE 4
 IloArrayTwoPointXover INVOKE 181 SUCCESS 181 IMPROVE 4
 IloArrayUniformXover INVOKE 154 SUCCESS 154 IMPROVE 3
 IloArraySwap INVOKE 153 SUCCESS 153 IMPROVE 0
 IloArrayTranslocate INVOKE 156 SUCCESS 156 IMPROVE 0
 IloArrayMutate INVOKE 181 SUCCESS 181 IMPROVE 0

The complete program is available in the YourSolverHome/examples/src/
ea1max_values.cpp file. 
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Review Exercises

1. Vary the value of the power used from 2.0. For example, try values of 10.0 and 0.1. 
Increasing the value will tend to place more emphasis on selecting fitter individuals 
rather than less fit ones; it will increase the selection pressure. Decreasing the value will 
tend to decrease selection pressure. Observe how quickly the optimal solution is found.

Suggested Answers

Exercise 1

You should observe that increasing the selection pressure causes the optimal solution to be 
found more quickly. However, this can have a downside when more complex problems are 
considered. Suboptimal solutions can dominate any potentially promising (but currently 
inferior) solutions which emerge, resulting in a stagnation of the population. Genetic 
algorithms try to find a balance between diversification and intensification of the population 
by their choice of selection pressure.

Also note that even when the selection pressure is very low (use of a low power), solutions 
are still found quickly as you continue to perform partial replacement. This means that even 
if all solutions have a roughly equal chance of participating in a genetic operation, poorer 
solutions are more likely to be replaced by offspring. This effect has a tendency to increase 
solution quality.
I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L 539



540 I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L



C H A P T E R
31

Bin Packing Using EA

This lesson describes how you can use evolutionary algorithms to solve a classic 
optimization problem: that of bin packing. The solution method uses a direct encoding, 
meaning that the genetic operators used operate directly on the natural problem 
representation. (Contrast this with the indirect encoding used in the next lesson, Chapter 32, 
Car Sequencing Using EA.) The direct encoding normally only works well when tailored 
genetic operators are used and this lesson will show you how you can write such a genetic 
operator which tries to take the best features from parents, while discarding the worst ones.

Make a copy of the example file YourSolverHome/examples/src/tutorial/
eabinpack_partial.cpp and open this copy in your development environment. This file 
is a program that is only partially completed. You will fill in the blanks in each step in this 
section. At the end of the section, you will have completed the example and you can compile 
and run the program. 

Problem description

The bin packing problem asks the question: given a set of items, each with an associated 
weight wi, and a set of bins, each of capacity C, how many bins are needed in order to pack 
all the items where no bin can exceed its capacity and all items are indivisible (cannot be 
split and packed into more than one bin)? This problem is at the root of other seemingly 
different problems, like assigning television advertisements to breaks between shows, or 
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assigning lots of work to engineers. For a more detailed explanation of this problem, see 
Chapter 8, Combining Constraints: Bin Packing. 

Problem representation: Model

The model of the bin packing problem is relatively straightforward to specify and makes use 
of the IloPack constraint. The two pieces of information needed to build the model are 
first, the bin capacity C, and second, the weights of the items to be packed into the bins. As 
model construction is so easy for this example, the construction of the model is embedded in 
the genetic algorithm solving function SolveWithGA. The code to construct the model is 
provided for you and is replicated here:

The inputs are the bin capacity cap and the vector of weights weight. The model is based 
upon a table of integer variables where which are the decision variables. The value of 
where[i] contains the bin where item i is placed in any solution to the problem. Another 
array load is constructed, one element of this array per available bin; load[j] holds the 
total weight contained in bin j. Finally, a variable is created representing the number of bins 
used; this will later be used as an optimization criterion. The model assumes that all of the 
used bins will be those with the smallest indices, and so the number of bins used is one 
greater than the greatest bin index found in the where array. The packing constraint 
IloPack takes the loads, item locations, and item weights as parameters and enforces the 
bin capacity constraints according to the assignments of items to them.

You will notice that a maximum number of bins numBins available for use is calculated 
based on a simple lower bound. The lower bound is simply the total weight divided by the 
capacity, rounded up. numBins is calculated from the lower bound via a formula for the 
worst case performance of the decreasing first fit method, a well-known packing method that 
is used here. This means that, so long as decreasing first fit is used, the number of resulting 
bins will never be more than (lb * 11 / 9 + 5). However, normally the solutions found 
are much closer to the simple lower bound, and typically any reasonable factor above lb is 
suitable as the number of bins available.

  // The bin packing model
  IloEnv env = weight.getEnv();
  IloModel mdl(env); 
  IloInt n = weight.getSize();
  IloInt totalWeight = IloSum(weight);
  IloInt lb = (totalWeight + cap - 1) / cap;
  IloInt numBins = lb * 11 / 9 + 5;
  IloIntVarArray where(env, n, 0, numBins);
  IloIntVarArray load(env, numBins, 0, cap);
  IloIntVar used(env, lb, numBins);
  mdl.add(used == 1 + IloMax(where));
  mdl.add(IloPack(env, load, where, weight));
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Problem solving: Search goal

The previous section mentioned the use of the decreasing best fit method of bin packing. In 
this section, you will implement this method in an Solver goal. First of all, you will use the 
algorithm below:

1. Assume that the items are sorted by non-increasing weight and that no bins are present.

2. Take the first (i.e. heaviest) unpacked item. If all items are already packed then stop.

3. Pack this item into the first bin that will accommodate it without violating its capacity. If 
no such bin exists, create a new empty bin of capacity C, and place the item there.

4. Go to 2.

As you can see, this algorithm is extremely simple. Items are considered, heaviest first, and 
packed in the first possible bin. New bins are added when they are needed.

To take advantage of constraint programming, the Solver version of this method (a goal) will 
be slightly more complicated. The difference will be that decisions can be backtracked. So, 
for example, if item i were packed into bin b, then on backtracking, the same item is 
forbidden from being packed in bin b. This means that the goal is much more robust as it can 
recover from errors and has the potential to perform a complete search over the packing 
problem.

A backtracking goal is required in this example, as here, advantage is taken of constraint 
programming to constrain the genetic algorithm to produce ‘‘good’’ solutions. This means 
constraining the number of available bins when generating a new solution. In this case an 
error, as described above, is the production of a packing that uses more bins than desired. In 
such a case, a backtrack occurs to change a previous decision in the search of a solution 
respecting the desired number of bins.
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You will now write the packing goal. Add the following code after the comment 
// A simple goal to pack bins

It is assumed here that the items are sorted in non-increasing order of weight. This example 
does this by ordering the weights in this way in the input file.

The goal follows the algorithm straightforwardly, except in the creation of choice points to 
allow backtracking. The test of the load of the bin against zero is used to ensure that only 
one empty bin—the first one—is considered for packing. That is, the goal does not 
backtrack on the choice to put an item in an empty bin as all choices of placing the item into 
a non-empty bin by this point have been exhausted, and all empty bins are equivalent.

Problem solving: Initial population

After creating the model of the problem, the next step in creating an evolutionary or genetic 
algorithm is normally the building of a solution prototype defining the decision variables of 
the problem and the objective function. This solution prototype will then be used by the 
genetic algorithm as a template for the creation of new solutions. 

To create the solution prototype add the following code after the comment 
  // Solution prototype 

Step 1 Write the packing goal

ILCGOAL3(Pack, IlcIntVarArray, load,
               IlcIntVarArray, where,
               IlcIntArray, weight) {
  IlcGoal g;
  IlcInt i = IlcChooseFirstUnboundInt(where); 
  if (i >= 0) {
    IlcInt b = where[i].getMin();
    IlcConstraint ct = where[i] == b; 
    IlcGoal pack = load[b].getMin() == 0 ? ct: IlcOr(ct, !ct);
    g = IlcAnd(pack, this);
  }
  return g;
}

Step 2 Create the solution prototype

  IloSolution prototype(env);
  prototype.add(where);
  prototype.add(load);
  prototype.add(used);
  prototype.add(IloMinimize(env, used));
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This code creates the prototype and adds the variables that are used during the execution of 
the genetic algorithm. The objective (minimize the number of bins used) is also added to 
allow solutions to be compared for quality.

You can now create the initial population. This population needs to be reasonably diverse 
and one simple way of doing this is to randomize it. Given the existing decreasing first fit 
packing goal, the IloRandomPerturbation goal modifier creates a randomized version 
which swaps the left and right branches of choice points with a certain probability. 

Add the following code after the comment   // Create initial population 

A population is created, together with the decreasing first fit packing goal, which is then 
perturbed, each decision being inverted with probability 50/(50+n) where n is the number of 
items to pack. A probability based on the reciprocal of the number of items to pack ensures 
that the number of inversions is bounded. The extra constant on the denominator ensures that 
the probability is not too high for small n (that is, small problems). There is nothing 
particularly magic about this formula; many other formulas will work just as well.

The population is built using the IloSource operator which takes a goal and a solution 
prototype, invoking the goal to produce the solution. When cast to a pool processor 
(implicitly here), the prototype tells the resulting processor what type of solution to produce. 
Finally, popSize solutions are requested of IloSource through the parentheses operator, 
the resultant solutions being placed in population. The create processor is then cast to a 
goal via IloExecuteProcessor and executed by the solver, which is in turn created using 
the model.

Problem solving: Genetic operators

The initial population being successfully created, evolution of the solutions in that 
population can then begin. This evolution is brought about by the application of genetic 
operators such as mutation and crossover to members of the population. Additionally, here 
the power and flexibility of constraint programming will be used to inhibit the creation of 
poor quality solutions. The latter is done by adding constraints to the cost variable before the 
application of a genetic operator. The idea here is to say that with probability p, the new 
solution produced is constrained to be better than the worst of the parents. With probability 

Step 3 Create the initial population

  IloSolutionPool population(env);
  IloGoal packGoal = Pack(env, load, where, weight);
  packGoal = IloRandomPerturbation(env, packGoal, 50.0 / (50 + n));
  IloPoolProc src = IloSource(env, packGoal, prototype);
  IloPoolProc create = src(popSize) >> population;
  IloSolver solver(mdl);
  solver.solve(IloExecuteProcessor(env, create));
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1-p, the new solution is no worse than the worst parent. (For a mutation operator where there 
is only one parent, read ‘‘parent’’ for ‘‘worst parent.’’) This means that children can never be 
worse than their worst parent in this example. This leads to an intensified search which could 
in general be damaging as it limits exploration. However, in the case of bin packing, the cost 
function is not very fine-grained and there are large numbers of different solutions at the 
same cost. Hence, in this case, such a constraint is not particularly limiting in terms of 
exploration.

You will write an operator that performs this cost-constraining function. 

Add the following code after the comment: // Improve on worst in input pool 

This operator is defined by the ILCIIMOP2 macro and takes six parameters. The first 
parameter is the name of the operator to be created. The second is the minimum number of 
solutions that the operator requires as input; one solution in this case. Next come the two 
optional parameters with their types, as for the definition of a goal using the ILCGOAL 
macro. In this case, these are the cost variable (the number of bins used), and a probability of 
improvement. Contained in the input pool are the parents of the operator. The above code 
simply sets an upper bound on the number of bins used which is limit-1 with probability p, 
and limit with probability 1-p.

You will now move on to the creation of the genetic operators themselves. This lesson 
creates two genetic operators: a mutation operator and a crossover operator, based on a 
generic combination operator which can work with arbitrarily many parents. You will write 
this operator later, but first you will begin with the code which uses it.

The genetic operators used will correspond to a particular form. They will first limit the cost 
variable using ImproveOn as described above and then enter the operator proper. As you 
will see later, the operator may not build a complete solution, and so a third part—a 
completion operator—is required which extends this partial solution to a complete one. This 
completion operator is none other than the packing goal Pack. The code to build a genetic 
operator from its three basic components (constrain, mutation or crossover, completion) will 
be created using the && operator over pool operators. Finally, the complete genetic operators 
that are built will be limited in their execution to avoid very long times being spent on 
potentially fruitless search.

Step 4 Create the operator that constrains cost

ILOIIMOP2(ImproveOn, 1, IloIntVar, used, IlcFloat, p) {
  IloInt limit = (IloInt)getInputPool().getWorstSolution().getValue(used);
  IloSolver solver(getSolver());
  solver.setMax(used, limit - (solver.getRandom().getFloat() < p));
  return 0;
}
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Add the following code after the comment:   // Genetic operators 

There are a few points to note in the above code. The goal of the code is to produce a pool 
processor breed capable of taking an input and producing offspring. How this is done 
depends upon the size of the population; if it has only one member it is via mutation, 
otherwise it is via a combination of mutation and crossover (combination). The genetic 
operator PackingOperator, which you will define later, is used to construct both the 
mutation and crossover operators. The second parameter of this operator is the number of 
parents to operate over, and it is this parameter that differentiates the mutation and crossover 
operators. Note that both the mutation and crossover operators are subjected to a 
modification via the && operator on processors and via IloLimitOperator. These 
modifications result in operators limited in number of fails and which constrain the cost first 
(with probability 0.75) and complete the solution after the execution of the main operator. 
Finally, when both mutation and crossover operators are used, a roulette wheel selector is 
used to select between them for each new child generated. A roulette wheel selector uses a 
table of probabilities (or equally non-negative weights, which are normalized internally to 
give probabilities) to select one item from the given pool. After selection, 
IloApplyProcessor executes the processor found in the pool of processors given as 
parameter.

Problem solving: Genetic packing operator

In the previous section, PackingOperator was introduced as the genetic operator used for 
both mutation and crossover. Here, you will see how you can implement such a genetic 

Step 5 Create the pool processor

  IloPoolOperator improve = ImproveOn(env, used, 0.75);
  IloSearchLimit limit(IloFailLimit(env, 1000));
  IloPoolOperator mutop = PackingOperator(env, 1, load, where, weight, used);
  IloPoolProc mut = IloLimitOperator(env, improve && mutop && packGoal, limit);
  IloPoolProc breed = mut;
  if (popSize > 1) {
    IloPoolProcArray ops(env);
    ops.add(mut);
    IloPoolOperator xoop = PackingOperator(env, 2, load, where, weight, used);
    IloPoolProc xo = IloLimitOperator(env, improve && xoop && packGoal, limit);
    ops.add(xo);
    IloExplicitEvaluator<IloPoolProc> operatorProbs(env);
    operatorProbs.setEvaluation(mut, mutationProb);
    operatorProbs.setEvaluation(xo, 1.0 - mutationProb);
    IloRouletteWheelSelector<IloPoolProc, IloPoolProcArray> opSel(
      env, operatorProbs
    );
    breed = IloSelectProcessor(env, ops, opSel);
  } 
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operator and also learn how to make such an operator work well by favoring good features in 
the parents.

The first idea of the genetic operator is to take not single objects, but the contents of entire 
bins from the parents for inclusion in the child. The advantage of this is that groups of 
objects that go well together can be maintained in the child. The second idea is that only 
‘‘good’’ bins are chosen to go into the child; a good bin being one that is filled to the average 
required load—an idea that will be fully introduced in what follows. The third idea is to pack 
a randomized number of bins in the operator itself, leaving a randomized number of bins to 
be packed by the decreasing first fit packing goal; this increases the robustness and 
exploration capability of the search.

As before, an algorithm will be presented first:

1. Let B be the number of bins available for use to produce the child, W be the total object 
weight to be packed, and r=W/B be the mean required load of each bin.

2. Choose a number of bins f to fill in the child chosen from 0 to b.

3. Begin with the current bin c equal to 0, and a number of tries t equal to 0.

4. If c =f or t = limit, then stop.

5. Choose a random parent p and a random bin b within p.

6. If no items in b have already been placed in the child, and the load of b is at least r, then 
place all items in b in bin c of the child, increase c, and reset the number of tries t to zero. 
Otherwise, increase the number of tries t.

7. Go to 4.

The algorithm picks bins from the parents randomly, packing those which meet the criteria, 
until the desired number of bins have been packed, or a certain number of tries have been 
exhausted. Two criteria are used. The first has to do with the feasibility of packing: no bin 
can be included which contains an item already packed in the child, as no item can be 
packed in more than one bin. The second has to do with the quality of the bins chosen from 
the parents; these bins must meet the average load requirement to produce a solution in the 
number of bins required. That is, only bins which are ‘‘good enough’’ are selected.
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You are now ready to write the code of the genetic operator. Steps 1-4 of the above algorithm 
are already coded. You will find the code below: 

The above code is relatively simple and closely follows algorithmic steps 1-4. However, it is 
important to point out the parameters of the ILCIIMOP5 macro. Recall that the first two 
parameters are the name of the operator and the minimum number of parents required. For 
the ImproveOn operator, this second parameter is the constant 1. However, this parameter 
can be any general expression, and here the size is equal to numParents, the first optional 
parameter of the operator. In this way, you can create operators which use a variable number 
of parents, specified when the operator is constructed.

The above code chooses to set the limit on the number of tries equal to the product of the 
number of parents and the number of available bins.

You will now add the remaining code which chooses a parent and bin, and inserts its 
contents into the child. 

// A genetic operator over bins
ILOIIMOP5(PackingOperator, numParents,
          IloInt, numParents,
          IloIntVarArray, load,
          IloIntVarArray, where,
          IloIntArray, weight,
          IloIntVar, used) {
  IloSolver solver = getSolver();
  IloInt numItems = weight.getSize();
  IloInt numBins = solver.getMax(used);
  IloSolutionPool parents = getInputPool();
  IloInt numParents = parents.getSize();
  IloInt reqdMeanLoad = (IloSum(weight) + numBins - 1) / numBins;
  IlcRandom rnd = solver.getRandom();
  IloInt targetBin = rnd.getInt(numBins);
  IloInt currentBin = 0;
  IloInt tries = 0;

  while (currentBin < targetBin && tries < numParents * numBins) {
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Insert the following code after the comment:     // Pack a single bin  

Again, this code closely follows the algorithm. First, a random parent and bin from that 
parent are selected. Then, given that the load of the chosen bin is sufficient, the code looks to 
see if all items from the selected bin can be placed in the current bin in the child. This is 
done by examination of the domains of the variables of the child. (Recall that the purpose of 
a genetic operator is to take solutions—instances of IloSolution—as input, and to 
produce as output an instantiation of Solver variables which is the child solution.) This 
examination is equivalent to testing if the objects from the chosen bin have already been 
scheduled in the child because if they have been scheduled, they will have a where variable 
bound to a value strictly less than currentBin. Assuming all objects can go in 
currentBin, they are placed there via solver.setValue(), the current bin is moved on, 
and the number of tries is reset.

Problem solving: Putting it together

Nearly everything is in place to create a genetic algorithm; there is an initial population, and 
a processor to produce offspring based on a combination of improvement, mutation or 
crossover, and solution completion via decreasing first fit. All that remains is to decide on a 
parent selection strategy, a replacement strategy whereby new offspring will replace current 
population members, and to create a goal that will perform one complete generation of the 
genetic algorithm.

Step 6 Pack a single bin

    IloSolution p = parents.getSolution(rnd.getInt(numParents));
    IloInt srcBin = rnd.getInt(p.getValue(used));
    if (p.getValue(load[srcBin]) >= reqdMeanLoad) {
      IloBool fit = IloTrue;
      for (IlcInt i = 0; fit && i < numItems; i++) {
        if (p.getValue(where[i]) == srcBin)
          fit = solver.getIntVar(where[i]).isInDomain(currentBin);
      }
      if (fit) {
        for (IlcInt i = 0; i < numItems; i++) {
          if (p.getValue(where[i]) == srcBin)
            solver.setValue(where[i], currentBin);
        }
        tries = 0;
        currentBin++;
      }
    }
    tries++;
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Here, a random parent selection strategy is chosen, together with a full replacement strategy. 
The latter produces as many offspring as there are population members, and completely 
replaces the population by the offspring. 

All this is done fairly concisely by the following code which you add after the comment 
  // Single generation goal 

A pool to contain the offspring is created, as is a random selector for selection of parents. 
Then a processor is constructed which performs selection and breeding and places the result 
in the offspring pool. The breeding operator is instructed to produce popSize solutions via 
the function call operator. The goal to run a generation of the genetic algorithm is then 
constructed by chaining IloExecuteProcessor functions. First, gen is executed which 
produces the offspring, the current population is destroyed, and finally the offspring are 
placed in the population pool.

The code of the genetic algorithm loop and display of the resulting solution is provided for 
you.

Complete program

The complete program follows and can be viewed on-line in 
YourSolverHome\examples\src\eabinpack.cpp.

// -------------------------------------------------------------- -*- C++ -*-
// File: examples/src/eabinpack.cpp
// --------------------------------------------------------------------------

#include <ilsolver/iim.h>

ILOSTLBEGIN

// Read in a bin packing problem
IloBool ReadProblem(const char * fname, IloInt& cap, IloIntArray& weight) {
  ifstream is(fname);
  if (!is.good()) 
    return IloFalse;
  IloInt n;

Step 7 Create the single generation goal

  IloSolutionPool offspring(env);
  IloPoolProc rndSel = IloSelectSolutions(env,
                         IloRandomSelector<IloSolution, IloSolutionPool>(env)
                       );
  IloPoolProc gen = population >> rndSel >> breed(popSize) >> offspring;
  IloGoal genGoal = IloExecuteProcessor(env, gen)
                 && IloExecuteProcessor(env, population >> IloDestroyAll(env))
                 && IloExecuteProcessor(env, offspring >> population);
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  is >> n >> cap;
  for (IloInt i = 0; i < n; i++) {
    IloInt w;
    is >> w;
    weight.add(w);
  }
  is.close();
  return IloTrue;
}

// A simple goal to pack bins
ILCGOAL3(Pack, IlcIntVarArray, load,
               IlcIntVarArray, where,
               IlcIntArray, weight) {
  IlcGoal g;
  IlcInt i = IlcChooseFirstUnboundInt(where); 
  if (i >= 0) {
    IlcInt b = where[i].getMin();
    IlcConstraint ct = where[i] == b; 
    IlcGoal pack = load[b].getMin() == 0 ? ct: IlcOr(ct, !ct);
    g = IlcAnd(pack, this);
  }
  return g;
}

// The packing goal wrapper
ILOCPGOALWRAPPER3(Pack, solver,
                  IloIntVarArray, load,
                  IloIntVarArray, where,
                  IloIntArray, weight) {
  return Pack(solver,
              solver.getIntVarArray(load),
              solver.getIntVarArray(where),
              solver.getIntArray(weight));
}

// A genetic operator over bins
ILOIIMOP5(PackingOperator, numParents,
          IloInt, numParents,
          IloIntVarArray, load,
          IloIntVarArray, where,
          IloIntArray, weight,
          IloIntVar, used) {
  IloSolver solver = getSolver();
  IloInt numItems = weight.getSize();
  IloInt numBins = solver.getMax(used);
  IloSolutionPool parents = getInputPool();
  IloInt numParents = parents.getSize();
  IloInt reqdMeanLoad = (IloSum(weight) + numBins - 1) / numBins;
  IlcRandom rnd = solver.getRandom();
  IloInt targetBin = rnd.getInt(numBins);
  IloInt currentBin = 0;
  IloInt tries = 0;

  while (currentBin < targetBin && tries < numParents * numBins) {
    // Pack a single bin
    IloSolution p = parents.getSolution(rnd.getInt(numParents));
    IloInt srcBin = rnd.getInt(p.getValue(used));
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    if (p.getValue(load[srcBin]) >= reqdMeanLoad) {
      IloBool fit = IloTrue;
      for (IlcInt i = 0; fit && i < numItems; i++) {
        if (p.getValue(where[i]) == srcBin)
          fit = solver.getIntVar(where[i]).isInDomain(currentBin);
      }
      if (fit) {
        for (IlcInt i = 0; i < numItems; i++) {
          if (p.getValue(where[i]) == srcBin)
            solver.setValue(where[i], currentBin);
        }
        tries = 0;
        currentBin++;
      }
    }
    tries++;
  }
  return 0;
}

// Improve on worst in input pool
ILOIIMOP2(ImproveOn, 1, IloIntVar, used, IlcFloat, p) {
  IloInt limit = (IloInt)getInputPool().getWorstSolution().getValue(used);
  IloSolver solver(getSolver());
  solver.setMax(used, limit - (solver.getRandom().getFloat() < p));
  return 0;
}

// Main GA Solving body
void SolveWithGA(IloInt cap,
                 IloIntArray weight,
                 IloInt popSize,
                 IloInt maxGen,
                 IloNum mutationProb) {

  // The bin packing model
  IloEnv env = weight.getEnv();
  IloModel mdl(env); 
  IloInt n = weight.getSize();
  IloInt totalWeight = IloSum(weight);
  IloInt lb = (totalWeight + cap - 1) / cap;
  IloInt numBins = lb * 11 / 9 + 5;
  IloIntVarArray where(env, n, 0, numBins);
  IloIntVarArray load(env, numBins, 0, cap);
  IloIntVar used(env, lb, numBins);
  mdl.add(used == 1 + IloMax(where));
  mdl.add(IloPack(env, load, where, weight));

  // Solution prototype
  IloSolution prototype(env);
  prototype.add(where);
  prototype.add(load);
  prototype.add(used);
  prototype.add(IloMinimize(env, used));

  // Create initial population
  IloSolutionPool population(env);
  IloGoal packGoal = Pack(env, load, where, weight);
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  packGoal = IloRandomPerturbation(env, packGoal, 50.0 / (50 + n));
  IloPoolProc src = IloSource(env, packGoal, prototype);
  IloPoolProc create = src(popSize) >> population;
  IloSolver solver(mdl);
  solver.solve(IloExecuteProcessor(env, create));

  // Genetic operators
  IloPoolOperator improve = ImproveOn(env, used, 0.75);
  IloSearchLimit limit(IloFailLimit(env, 1000));
  IloPoolOperator mutop = PackingOperator(env, 1, load, where, weight, used);
  IloPoolProc mut = IloLimitOperator(env, improve && mutop && packGoal, limit);
  IloPoolProc breed = mut;
  if (popSize > 1) {
    IloPoolProcArray ops(env);
    ops.add(mut);
    IloPoolOperator xoop = PackingOperator(env, 2, load, where, weight, used);
    IloPoolProc xo = IloLimitOperator(env, improve && xoop && packGoal, limit);
    ops.add(xo);
    IloExplicitEvaluator<IloPoolProc> operatorProbs(env);
    operatorProbs.setEvaluation(mut, mutationProb);
    operatorProbs.setEvaluation(xo, 1.0 - mutationProb);
    IloRouletteWheelSelector<IloPoolProc, IloPoolProcArray> opSel(
      env, operatorProbs
    );
    breed = IloSelectProcessor(env, ops, opSel);
  } 

  // Single generation goal
  IloSolutionPool offspring(env);
  IloPoolProc rndSel = IloSelectSolutions(env,
                         IloRandomSelector<IloSolution, IloSolutionPool>(env)
                       );
  IloPoolProc gen = population >> rndSel >> breed(popSize) >> offspring;
  IloGoal genGoal = IloExecuteProcessor(env, gen)
                 && IloExecuteProcessor(env, population >> IloDestroyAll(env))
                 && IloExecuteProcessor(env, offspring >> population);

  // Genetic algorithm loop
  IloInt best = population.getBestSolution().getValue(used);
  IloInt i;
  for (i = 0; i <= maxGen && best > lb; i++) {
    env.out() << "Generation " << i << ": ";
    env.out() << best << " - "
              << population.getWorstSolution().getValue(used) << endl;
    solver.solve(genGoal);
    best = population.getBestSolution().getValue(used);
  }

  // Display best
  solver.solve(IloRestoreSolution(env, population.getBestSolution()));
  IloInt binsUsed = (IloInt)solver.getValue(used);
  env.out() << "Best solution uses " << binsUsed << " bins" << endl;
  if (binsUsed == lb)
    env.out() << "Solution is optimal" << endl;
  else
    env.out() << "Solution is within "
              << binsUsed - lb << " of optimal" << endl;
  for (i = 0; i < binsUsed; i++) {
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    env.out() << "Bin " << i + 1 << " of weight "
              << solver.getValue(load[i]) << ": ";
    for (IloInt j = 0; j < n; j++) {
      if (solver.getValue(where[j]) == i)
        env.out() << weight[j] << " ";
    }
    env.out() << endl;
  }
}

// Main body
int main(int argc, char * argv[]) {
  IloEnv env;
  try { 
    const char * fname = "../../../examples/data/binpack1.dat"; 
    IloInt maxGen = 100;
    IloInt popSize = 30;
    IloNum mutationProb = 0.75;
    if (argc > 1)
      fname = argv[1];
    if (argc > 2)
      maxGen = atoi(argv[2]);
    if (argc > 3)
      popSize = atoi(argv[3]);
    if (argc > 4)
      mutationProb = atof(argv[4]);
    IloInt cap;
    IloIntArray weight(env);
    if (ReadProblem(fname, cap, weight))
      SolveWithGA(cap, weight, popSize, maxGen, mutationProb);
    else
      env.out() << "Could not open " << fname << endl;
  } catch (IloException & ex) {
    env.out() << "Caught: " << ex << endl;
  }
  env.end();
  return 0;
}

Output

Execution of the program results in the following output:

Generation 0: 52 - 54
Best solution uses 51 bins
Solution is optimal
Bin 1 of weight 150: 83 67 
Bin 2 of weight 150: 96 54 
Bin 3 of weight 150: 61 54 35 
Bin 4 of weight 150: 41 40 39 30 
Bin 5 of weight 150: 77 73 
Bin 6 of weight 148: 92 56 
Bin 7 of weight 150: 83 67 
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Bin 8 of weight 150: 81 69 
Bin 9 of weight 150: 82 68 
Bin 10 of weight 148: 100 48 
Bin 11 of weight 150: 93 57 
Bin 12 of weight 149: 82 67 
Bin 13 of weight 150: 94 56 
Bin 14 of weight 150: 76 74 
Bin 15 of weight 150: 82 68 
Bin 16 of weight 149: 100 49 
Bin 17 of weight 150: 85 65 
Bin 18 of weight 150: 78 72 
Bin 19 of weight 150: 97 53 
Bin 20 of weight 148: 90 58 
Bin 21 of weight 150: 83 67 
Bin 22 of weight 150: 90 60 
Bin 23 of weight 150: 79 71 
Bin 24 of weight 150: 88 62 
Bin 25 of weight 150: 86 64 
Bin 26 of weight 150: 77 73 
Bin 27 of weight 150: 81 69 
Bin 28 of weight 150: 100 50 
Bin 29 of weight 148: 82 66 
Bin 30 of weight 150: 77 73 
Bin 31 of weight 150: 84 66 
Bin 32 of weight 149: 79 70 
Bin 33 of weight 150: 53 53 44 
Bin 34 of weight 150: 81 69 
Bin 35 of weight 150: 76 74 
Bin 36 of weight 150: 96 54 
Bin 37 of weight 146: 92 54 
Bin 38 of weight 150: 98 52 
Bin 39 of weight 144: 90 54 
Bin 40 of weight 146: 80 66 
Bin 41 of weight 142: 78 64 
Bin 42 of weight 127: 66 61 
Bin 43 of weight 146: 73 73 
Bin 44 of weight 150: 63 47 40 
Bin 45 of weight 147: 61 48 38 
Bin 46 of weight 149: 47 42 30 30 
Bin 47 of weight 150: 43 42 34 31 
Bin 48 of weight 150: 42 37 37 34 
Bin 49 of weight 146: 43 35 34 34 
Bin 50 of weight 138: 37 34 34 33 
Bin 51 of weight 126: 32 32 31 31 
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C H A P T E R
32

Car Sequencing Using EA

This lesson describes a method for solving the car sequencing problem using an 
evolutionary algorithm operating on an indirect representation. An indirect representation is 
one which does not directly encode an assignment to decision variables, but which encodes 
enough information for a decoder to produce such an assignment from the given 
information. The main advantage of using an indirect representation is that problem 
constraints can largely be ignored by the genetic operators, with the decoding phase (which 
instantiates the decision variables) taking care of maintaining feasibility through constraint 
propagation. This means that the genetic operators used can be fairly standard ones, and so 
custom operators are not needed for this example.

Make a copy of the example file YourSolverHome/examples/src/tutorial/
eacarseq_partial.cpp and open this copy in your development environment. This file is 
a program that is only partially completed. You will fill in the blanks in each step in this 
section. At the end of the section, you will have completed the example and you can compile 
and run the program. 

Problem description: Optimization model

A full description of the car sequencing problem is given in “Writing a goal: Car 
sequencing” on page 314 and is not repeated here. However, recall that the car sequencing 
problem is a decision problem: that is, a single solution is sought, and all solutions have 
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equal validity. A solution to the car sequencing problem schedules n vehicles in n slots while 
respecting the capacity constraints on each option.

For an evolutionary algorithm to work properly, it needs to have a notion of the quality of a 
solution. As such, evolutionary algorithms are not suited to pure decision problems unless 
the ‘‘distance’’ from a proposed solution to a real solution can be measured and used as a 
cost. That is, the decision problem needs to be transformed into an optimization problem 
before being solved via evolutionary algorithms. For the car sequencing problem, there are 
two fundamental ways of doing this: authorize an overuse of resources or an overuse of time. 
In the former, the capacity constraints on options are softened, allowing them to be violated. 
Any such violation can be given a cost. The sum of all such violation costs can then be used 
as a measure of distance from a solution to the original problem. If an assignment with this 
cost at zero is found, a solution to the car sequencing problem has been found. This example 
explores the other alternative for transformation into an optimization problem: allow more 
than n slots to build n cars. The number of additional slots used is used as a measure of the 
cost: again, if it is reduced to zero, a solution to the original car sequencing problem has 
been found.

In order to allow the number of slots to be increased, a certain number of ‘‘empty’’ 
configurations are added to the problem. These configurations require no options and so may 
be used in the schedule to buffer, or create free space, between real configurations. As you 
shall see in the description of the decoder, empty configurations are never inserted by 
choice—they are only inserted when no real configuration can be placed that would respect 
the capacity constraints on all options. One might view these configurations as a stall of the 
production pipeline. The number of empty configurations appearing before the last car is 
built can then be used as a cost. If this cost is reduced to zero, the schedule cannot be further 
compressed and a solution to the original problem has been found. As a convention, 
configurations are numbered from 1, the empty configuration having index 0.

Problem representation: Cost variable

The example contains a lot of code related to the reading of car sequencing problem 
instances and the construction of the model. As the focus of this lesson is on the use of 
genetic algorithms, and not on modeling, it is therefore suggested that you take some time to 
examine the  CarSeqProblem structure which holds information about the car sequencing 
problem, and the BuildModel function which builds the car sequencing model. When you 
feel you are familiar with these, you can move on with the rest of the lesson. 
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The example code includes a function called SolveWithGA which will be used as the main 
entry point for the lesson. Its signature is below:

The function takes the following parameters:

◆ solver: an instance of IloSolver, to use as an engine;

◆ model: the IBM® ILOG® Concert Technology model of the car sequencing problem;

◆ problem: an instance of CarSeqProblem containing problem data;

◆ sequence: the direct representation. An array of constrained variables holding the 
sequence of car configurations to be built;

◆ cost: the cost variable to be minimized. If cost is reduced to 0, a solution to the original 
car sequencing problem has been found.

The code to create all of the above objects is in the partially completed example with the 
exception of the cost variable. You will therefore write the code which will create it now, but 
first let us describe the idea. Assume that the original car sequencing problem required the 
scheduling of n cars in n slots. As explained, this problem is modified to allow up to n + s 
slots, where s is the amount of slack, that is the number of empty configurations available. 
The cost is the number of empty configurations that appear before the last car in the 
schedule. However, such a calculation can be difficult to model; a simpler, equivalent 
alternative is to look at the last s slots of the sequence. Let k be the number of empty 
configurations occurring after the last car in this part; the cost is then s - k.

The problem is now to model the cost via such a calculation of k. 

void SolveWithGA(IloSolver solver,
                 IloModel model,
                 CarSeqProblem problem,
                 IloIntVarArray sequence,
                 IloIntVar cost) {
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Add the following code after the comment 

// Build the cost variable
   

This code can seem complex, but can be broken down quite easily.  carAfter[i] is true if 
and only if a car appears at or after position i in the slack area (last s elements of the 
sequence). Using carAfter, constraints then state that for each position i, the cost is 
strictly greater than i if and only if there is a car at i or after. Thus, if all elements of 
carAfter up to and including i are false, and are then true afterwards, then carAfter[i] 
being true ensures that cost > i, while carAfter[i+1] being true ensures that cost <= i+1, 
thus assigning the cost to the value i+1.

Problem representation: Car priorities

The first job to perform in the principal function SolveWithGA is to create the indirect 
representation of the car sequencing problem. Here, a system based on priorities has been 
chosen. A priority is assigned to each car to be built. Later a decoder will build the sequence 
of cars based on these priorities. The indirect representation thus defines an order in which 
cars should be built just as the direct representation does by assigning a car configuration to 
each slot. In this sense, the two representations are similar. It is important to notice the 
differences though. The indirect representation based on priorities gives a desired order, not 
a required order. The decoder will take these priorities, and try to respect the order defined 
by them as much as possible, but in reality, constraint propagation will mean that the order 
cannot be respected completely. Thus the indirect representation can be seen as a guide as to 
producing a solution.

You now create the indirect representation and add it to the model. 

Step 1 Build the cost variable

IloIntVar BuildCostVar(IloModel model, IloIntVarArray seq, IloInt slack) {
  IloEnv env(model.getEnv());
  IloIntVar cost(env, 0, slack);
  IloConstraintArray carAfter(env, slack);
  for (IloInt i = slack - 1; i >= 0; i--) {
    IlcInt j = seq.getSize() - slack + i;
    carAfter[i] = seq[j] != 0;
    if (i < slack - 1)
      carAfter[i] = carAfter[i] || carAfter[i + 1];
    model.add(carAfter[i] == cost > i);
  }
  return cost;
}
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Add the following code after the comment 
  // Indirect representation 

Here, priorities go from 0 to 1000, but any upper bound would be reasonable so long as it is 
not too low; a low maximum priority would result in too many cars with equal priority in any 
solution, which could lead to arbitrary tie-breaking rules being applied frequently in the 
decoder. Such reliance on tie-breaking rules is undesirable as it moves the search emphasis 
from the genetic search to these tie-breaking rules.

Problem solving: Representations and decoding

Next, the solution prototype is created, which will be used as a basis for all solutions created 
for use in the genetic algorithm. This solution contains the variables of both the indirect and 
direct representations. 

Add the following code after the comment   // Create the solution prototype 

Here, both the indirect representation (prio) and the direct representation (sequence) are 
present in the prototype.   The objective is also added to the solution which allows different 
solutions to be compared for quality.

Now, you will create the decoding goal which transforms an assignment in the indirect 
representation to one in direct representation. 

Add the following code after the comment   // Create the decoding goal 

Step 2 Create the indirect representation

  IloEnv env(solver.getEnv());
  IloIntVarArray prio(problem._env, problem._numberOfCars, 0, 1000);
  model.add(prio);

Step 3 Create the solution prototype

  IloSolution prototype(env);
  prototype.add(prio);
  prototype.add(sequence);
  prototype.add(IloMinimize(env, cost));

Step 4 Create the decoding goal

  IloGoal decode = Decode(env, problem, prio, sequence);
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Aside from the environment, the decoding goal takes three parameters: a description of the 
problem data (problem), the variables of the indirect representation (prio), and those of 
the direct representation (sequence). You will now move on to implementing this decoding 
goal which is at the heart of the solving method.

The decoding algorithm must instantiate all variables in sequence by using the values of 
the variables of prio. Each variable of sequence corresponds not to a car, but to a 
configuration, whereas each car has a priority in the indirect representation. The decoding 
algorithm is described below.

1. Start the current slot at the leftmost position 0.

2. If the current slot is beyond the end of the sequence then stop; a solution has been found.

3. If the current slot is assigned then:

● let c equal the configuration assigned to the slot

● if c is not the empty configuration then let k be the highest priority unscheduled car 
with configuration c; mark k as scheduled

● move the current slot to the right and go to step 2.

4. Let C be the set of possible configurations for the current slot. Choose the highest 
priority unscheduled car k with a configuration c ∈ C

5. Create a choice point: 

● set the current slot to configuration c

● remove configuration c from the current slot

6. Go to step 2.

Roughly speaking, at each step in the decoding process, the above algorithm places the 
highest priority unscheduled car compatible with the problem constraints (option capacities 
and number of each configuration to be built). Note that empty configurations are never 
considered as candidate vehicles by the above algorithm; they will be inserted automatically 
when all real configurations are impossible for a particular slot.

The priority theme is quite a general form of indirect representation which can be adapted 
for numerous other problems.

The decoding algorithm is written as an IlcGoal with a helper class which manages the 
priorities. This helper class stores a list of ordered priorities for each configuration as 
opposed to a priority for each car, which makes finding the best configuration faster, without 
changing the operation of the algorithm. 
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Add the following code of the helper class after the comment 
// Class to produce configs in priority order 

This class has two fields: _priorities is a two-dimensional array of integers 
(IlcIntArray2) specifying the priorities. The two indices which access the priorities are 
the configuration and the index of the car with that configuration. Each column of this 
priority table is sorted in decreasing order. To give an example, imagine that you have 7 cars 
to build and two configurations. Assume the first four cars are of configuration one and the 
remainder have configuration two. Further assume that in a particular solution, the priorities 
of these cars (as instantiated in prio, passed to the constructor) are {342, 14, 875, 442, 129, 
509, 812}. The constructor of  ConfigurationPriorities will construct _priorities 
as follows:

_priorities[1] =  {875, 442, 342, 14}

_priorities[2] =  {812, 509, 129}

Note that index 0 of _priorities is not used as configuration 0 is the empty configuration; 
cars of this configuration have no priorities assigned, but are inserted only where necessary. 
The member function getHighestPriority delivers the priority of the highest priority 
unscheduled car of the given configuration.

The second field, _index, holds an array of indices in the _priorities array. There is one 
index for each configuration, and all indices are initialized to zero. For any configuration, all 
priorities below the index correspond to cars already scheduled, while the remainder 
correspond to cars waiting to be scheduled. As cars will be scheduled in a backtracking 
search, the indices are reversible.

The two inline member functions of the ConfigurationPriorities class are now easily 
explained.  getHighestPriority(conf) delivers the priority of the highest priority 
unscheduled car of configuration conf. This will be used later in deciding between 

Step 5 Create the helper class

class ConfigurationPriorities {
private:
  IlcIntArray2   _priorities;
  IlcRevIntArray _index;

  static void Sort(IlcIntArray a);
public:
  ConfigurationPriorities(CarSeqProblem problem, IlcIntVarArray prio);
  IlcInt getHighestPriority(IlcInt conf) const {
    return _priorities[conf][_index[conf]->getValue()];
  }
  void markScheduled(IlcInt conf) {
    IloSolver solver(_priorities.getSolver());
    _index[conf]->setValue(solver, _index[conf]->getValue() + 1);
  }
};
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configurations to place in a slot. The member function markScheduled(conf) is called to 
say that the highest priority unscheduled car of configuration conf has been scheduled, and 
so the index marker for that configuration should be moved on.

The codes of the constructor and sorting member function are already provided for you.

Now that the helper class has been defined, you will move on to writing the decoding 
method. This method is implemented as a goal and closely follows the algorithm already 
given. 

Add the following code after the comment // Decode priorities to a sequence 

Here, you have implemented steps 2 and 3 of the decoding algorithm previously given. The 
decoding goal is passed the helper class, the sequence (direct representation) to decode to, 
and the current index in the sequence. Any scheduled slots are marked off by the helper class 
so long as they do not contain the empty configuration. At the end of the for loop, the index 
i points either to an unbound slot or past the end of the sequence. In the latter case, all slots 
have been decided, and a solution has been found.

In the next stage of decoding, given a slot to be decided, you will choose for it the highest 
priority available configuration. 

Step 6 Add the decoder goal

ILCGOAL3(DecodeSlave, ConfigurationPriorities *, priorities,
                      IlcIntVarArray, seq,
                      IlcInt, idx) {
  IlcInt i;
  for (i = idx; i < seq.getSize() && seq[i].isBound(); i++)
    if (seq[i].getValue() != 0)
      priorities->markScheduled(seq[i].getValue());

  // No unbound slots, found a solution
  if (i == seq.getSize())
    return 0;
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Add the following code after the comment  // Decide on a configuration 

This code is relatively simple, and its function is to exit with bestConf holding the 
configuration of the highest priority car which can be scheduled in the current slot. Empty 
configurations are not considered as candidates.

The chosen configuration is placed (with the configuration being removed on backtracking), 
and the goal recalled. 

Add the following code after the comment // Instantiate remainder of sequence 

The decoding goal needs only a small driving goal (which calls DecodeSlave with an 
initial zero index) and a wrapper to create an IloGoal from an IlcGoal. These codes are 
provided for you and are both named Decode.

Problem solving: Creating the initial population

After creating the decoding goal, you will move on to create the initial population of 
solutions to start the genetic algorithm. Before doing this, you will first put in place an 
operator factory which will be used to generate and parameterize genetic operators, 
including an operator which creates a random member to be used in population construction. 

Step 7 Decide on a configuration for the current slot

  IloInt bestPrio = -1;
  IloInt bestConf = 0;
  for (IlcIntExpIterator it(seq[i]); it.ok(); ++it) {
    IlcInt conf = *it;
    if (conf != 0) {
      IlcInt p = priorities->getHighestPriority(conf);
      if (p > bestPrio) {
        bestPrio = p;
        bestConf = conf;
      }
    }
  }

Step 8 Recurse to instantiate the remainder of the sequence

  IlcGoal loop = DecodeSlave(getSolver(), priorities, seq, i);
  return IlcAnd(IlcOr(seq[i] == bestConf, seq[i] != bestConf), loop);
}
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Add the following code after the comment   // Set up an operator factory 

The operator factory is specified as operating over the prio array (that is, the indirect 
representation). After any genetic operation on the priorities, it is stated that the decoding 
goal must be invoked. In addition, this entire process (genetic operator + decoding) is limited 
to 100 fails in order to avoid excessive exploration times when a solution is difficult to 
produce. Finally, it is indicated to the factory that for production of new solutions by genetic 
operators, prototype should be used as a template. This prototype will be cloned internally 
and the clone used to contain the new solution.

You are now in a position to create the initial population. 

Add the following code after the comment   // Create initial population 

Here, a pool processor is retrieved from the factory which is used to create a population 
member. This processor randomizes the values of the variables specified to the factory at 
construction time (in this case, the prio array). As you specified that the decoding goal 
should be invoked after each genetic operator produced by factory, then the create 
processor will also decode these randomized priorities to a car sequence. The desired 
population size is specified to the population creation operator via the () operator, which 
will ensure that at least popSize solutions are created. As these solutions are created 
randomly each time, then popSize different solutions should result, which are placed into 
the population solution pool pop using the >> operator. The operation of pool processors is 
such that if a solution failed to be produced at any invocation of the processor (due to the 
exhaustion of a search limit, for example), the processor is called again and again until the 
desired number of solutions is produced.

Step 9 Set up an operator factory

  IloEAOperatorFactory factory(env, prio);
  factory.setAfterOperate(decode);
  factory.setSearchLimit(IloFailLimit(env, 100));
  factory.setPrototype(prototype);

Step 10 Make the initial population

  const IloInt popSize = 30;
  IloSolutionPool pop(env);
  IloPoolProc create = factory.randomize();
  solver.solve(IloExecuteProcessor(env, create(popSize) >> pop));

  // Sort the population wrt. quality and display.
  pop.sort();
  env.out() << "Initial population: "; 
  DisplayCosts(pop);
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The resulting pool processor is invoked by the IloExecuteProcessor function which 
converts the processor to an instance of IloGoal.

The population is sorted in decreasing order of quality, which is possible as the objective 
was added to the solution prototype earlier; thus each solution knows how it should be 
compared with another.

Problem solving: A genetic algorithm cycle

Once the initial population has been generated you can now move on to the construction of 
the genetic algorithm main loop; each cycle around the loop being termed a generation. 
Here, in each generation, only one new individual will be generated, and hence in this 
genetic algorithm, a system of replacement will be used; this will be described later.

First, an intensification method will be introduced. Here, constraint programming is used to 
improve the quality of the new solutions produced by the genetic algorithm. This is done by 
adding constraints on the cost which state that any produced solution must be better than the 
parent or parents that produced it. To avoid stagnation and stalling where it is very difficult 
to improve on a parent, the improvement rule is only applied probabilistically. Imagine two 
probabilities p and q. You will stipulate that the newly generated solution must be (strictly) 
better than the best parent with probability p, otherwise it must be strictly better than the 
worst parent with probability q. This enforcement is carried out via an operator. 

Add the following code after the comment // Improve on worst in input pool

The operator is relatively straightforward, deciding on limit based on the best and worst 
solutions in the input pool (which will be the pool of parents when later used). A wrapper to 
produce an IloPoolProcessor from this operator is provided for you.

The operator factory is now primed such that ImproveOn is called before the invocation of 
any genetic operator generated by the factory. 

Step 11 Add the improvement goal

ILOIIMOP2(ImproveOn, AnySize, IlcFloat, p, IlcFloat, q) {
  IloSolutionPool pool = getInputPool();
  IloIntVar var = pool.getSolution(0).getObjectiveVar();
  IlcInt limit = IlcIntMax;
  if (getSolver().getRandom().getFloat() < p)
    limit = (IloInt)pool.getBestSolution().getObjectiveValue() - 1;
  else if (getSolver().getRandom().getFloat() < q)
    limit = (IloInt)pool.getWorstSolution().getObjectiveValue() - 1;
  return getSolver().getIntVar(var) <= limit;
}
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Add the following code after the comment 
  // Enforce probabilistic improvement 

The operator dictates that with 50% chance a constraint is added which will insist that the 
offspring is better than the best parent, and with 45% chance that it is better than the worst 
parent. A 5% chance remains that the offspring can be equal in quality or worse than the 
worst parent.

You will now create the genetic operators to be used over the indirect representation. 

Add the following code after the comment  // Create genetic operators 

Here, a pool of processors is created. To this pool is added a mutation operator, which will 
mutate around two priorities each time it is applied, a uniform crossover operator, and a one-
point crossover operator. A breeding operator is then created which applies a random 
selection of one of the above operators.

The breeding operator will produce a single offspring. After its application, a decision needs 
to be made on how this new solution is combined into the population: a replacement 
mechanism is needed. First, you will write the code for the use of the replacement, and then 
the details of its implementation will be examined. 

Step 12 Create the parents solution pool

  factory.setBeforeOperate(ImproveOn(env, 0.5, 0.9));

Step 13 Create the selection of operators that will be used

  IloPoolProcArray ops(env);
  ops.add(factory.mutate(2.0 / problem._numberOfCars, "mutation"));
  ops.add(factory.uniformXover("uxover"));
  ops.add(factory.onePointXover("1ptxo"));

  // Make a processor that will perform a breeding cycle
  IloRandomSelector<IloSolution, IloSolutionPool> randomSelector(env);
  IloPoolProc rndSel = IloSelectSolutions(env, randomSelector, IloTrue);
  IloPoolProc breed = IloSelectProcessor(
    env,
    ops,
    IloRandomSelector<IloPoolProc,IloPoolProcArray>(env)
  );
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Add the following code after the comment  // Child replaces worst parent 

First, a pool to represent the parents selected for a genetic operator is created. Then, a 
selector is created which will both select a solution for destruction (producing it as output), 
and produce a side-effect on the population, removing the solution to be replaced and adding 
the solution that replaces it. The selector is passed the pool of parents because (as you will 
see) it operates by replacing one of the parent solutions in the population. The solution 
produced as output by replace will then be destroyed by processor destroy.

Before describing the replacement selector, you will see how all of the processors interact to 
produce one generation of the genetic algorithm. 

Add the following code after the comment 
  // Create single-generation processor 

The flow is relatively self-explanatory: solutions are selected randomly from the population, 
and placed in the parents pool; these parents are then bred using an operator chosen at 
random from the three available; the new solution then replaces a member of the population 
and the replaced solution is destroyed.

A more subtle point is revealed if we ask ourselves: how do we know how many parents to 
select from the population? The mutation operator requires only one parent, but the 
crossover operators need two. This problem is resolved by the manner in which pool 
processor connection (via >>) operates. Roughly speaking, control flow is right to left while 
data flow is left to right. This means that replaceAndDestroy is invoked first, which then 
asks breed for solutions.  breed then chooses one of the three available operators, from 
which it can work out the number of parents needed. It then asks rndSel (indirectly, by 
passing via the parents pool) for the correct number of parents, which are in turn fetched 
from pop. At this point the selected solutions can flow back down the chain to the breed 
pool which creates the offspring which will then be passed to replaceAndDestroy to be 
merged with the population.

Step 14 Replace the worst parent with the child and destroy this parent

  IloSolutionPool parents(env);
  IloPoolProc replace =
    IloSelectSolutions(env, ReplaceWorstParent(env, pop, parents));
  IloPoolProc destroy = IloDestroyAll(env);
  IloPoolProc replaceAndDestroy = replace >> destroy;

Step 15 Create a pool processor

  IloPoolProc cycle = pop >> rndSel >> parents >> breed(1) >> 
replaceAndDestroy;
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Problem solving: Solution replacement

The final remaining point to address is how the replacement of solutions operates in the 
genetic algorithm. Each generation produces a single offspring, and so a single member of 
the population will be replaced by this offspring. Here, a particular technique is used to 
maintain diversity of the population. This technique replaces one of the offspring’s parents 
by the offspring. As children are often similar to parents (in computer genetics, as well as is 
in real genetics), this tends to keep a good diversity of solutions in the population. In order to 
favor better solutions, where there is more than one parent, the worst parent is chosen for 
selection.

There is one exception to the above rule. A rule often used in genetic algorithms is the so-
called elitist rule where the best member of the population is never replaced if there is no 
equally good solution in the population. This rule is implemented here, and comes into effect 
when using the mutation operator (only one parent), and the child is of poorer quality than 
the parent. If, in this case the parent was the best of the population, it is not replaced, but the 
child is discarded instead.

Insert the following code after the comment // The replacement selector 

The parameters to the ILOSELECTOR2 macro are the name of the resulting selector function, 
the type of object to select, the input pool to the selector from the pool processor to the left, 
and then the two parameters passed at construction time (population and parent pools).

First, the potential solution to replace, which is the worst of the parents, is taken from the 
parent pool; the child is also retrieved from the input pool. After sorting the population, the 
elitist rule is applied. The worst parent is replaced if the population only has one element, or 
if the second best member of the population is at least as good as the worst parent. This last 
test avoids replacing the parent if the parent is the best of the population, and better in 

Step 16 Add the replacement selector

ILOSELECTOR2(ReplaceWorstParent, IloSolution,
             IloSolutionPool, in,
             IloSolutionPool, pop,
             IloSolutionPool, parents) {
  IloSolution candidate = parents.getWorstSolution();
  IloSolution child = in.getSolution(0);
  pop.sort();
  if (pop.getSize() <= 1 || !candidate.isBetterThan(pop.getSolution(1))) {
    pop.remove(candidate);
    pop.add(child);
  }
  else
    candidate = child;
  select(candidate);
}
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quality than the second best of the population. If the worst parent is to be replaced, it is 
removed from the population and the child added in its place. Otherwise, the candidate for 
destruction is the child. Finally, the consider method of the selector selects the candidate 
for destruction, which will be passed to the destroy processor in the code body.

Complete Program

The complete program follows and can be viewed on-line in 
YourSolverHome\examples\src\eacarseq.cpp.

// -------------------------------------------------------------- -*- C++ -*-
// File: examples/src/eacarseq.cpp
// --------------------------------------------------------------------------

#include <ilsolver/iim.h>

ILOSTLBEGIN

// A structure to hold instance data
struct CarSeqProblem {
  IloEnv _env;
  IloInt _numberOfCars;
  IloInt _numberOfOptions;
  IloInt _numberOfConfigurations;
  IloInt _slack;

  IloIntArray _optionCapacity;
  IloIntArray _optionSequenceLength;

  IloIntArray            _numberOfCarsPerConfiguration;
  IloArray<IloBoolArray> _configurationNeedsOption;

  void read(istream& stream, IloInt slack);
  CarSeqProblem(IloEnv env) : _env(env) { }
};

// Read in a problem from a file
void CarSeqProblem::read(istream & stream, IloInt slack) {
  _slack = slack;

  // Dimension problem
  stream >> _numberOfCars >> _numberOfOptions >> _numberOfConfigurations;

  // setup data structures
  _optionCapacity = IloIntArray(_env, _numberOfOptions);
  _optionSequenceLength = IloIntArray(_env, _numberOfOptions);
  _numberOfCarsPerConfiguration =
    IloIntArray(_env, _numberOfConfigurations + 1);
  _configurationNeedsOption =
    IloArray<IloBoolArray>(_env, _numberOfConfigurations + 1);
  IloInt i;
  for (i = 0; i < _numberOfConfigurations + 1; i++)
    _configurationNeedsOption[i] = IloBoolArray(_env, _numberOfOptions);
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  // read problem body
  for (i = 0; i < _numberOfOptions; i++)
    stream >> _optionCapacity[i];
  for (i = 0; i < _numberOfOptions; i++)
    stream >> _optionSequenceLength[i];
  for (i = 0; i < _numberOfConfigurations; i++) {
    IloInt id, ncars;
    stream >> id >> ncars; 
    id++; // ids to begin at 1 (0 is empty configuration)
    _numberOfCarsPerConfiguration[id] = ncars;
    for (IloInt j = 0; j < _numberOfOptions; j++)
      stream >> _configurationNeedsOption[id][j];
  }

  // Setup empty configuration.
  _numberOfCarsPerConfiguration[0] = _slack;
  assert(IloSum(_numberOfCarsPerConfiguration) == _numberOfCars + _slack);
  for (i = 0; i < _numberOfOptions; i++)
    _configurationNeedsOption[0][i] = IloFalse;
}

// Build the Concert model
IloModel BuildModel(CarSeqProblem problem, IloIntVarArray seq) {
  IloEnv env = problem._env;
  IloModel model(env);

  // Global distribute.  Ensures that the correct number of cars
  // with each configration is built.
  IloIntVarArray cards(env, 1 + problem._numberOfConfigurations);
  IloInt i;
  for (i = 0; i < problem._numberOfConfigurations + 1; i++) {
    IloInt nb = problem._numberOfCarsPerConfiguration[i];
    cards[i] = IloIntVar(env, nb, nb);
  }
  model.add(IloDistribute(env, cards, seq));

  // Sequence constraints.  Ensure that no sub-sequence contains
  // more of a given options that allowed
  for (IloInt opt = 0; opt < problem._numberOfOptions; opt++) {
    // Build an array of integers which represent configurations
    // which require option opt.
    IloIntArray pertinentConfigs(env);
    for (i = 0; i <= problem._numberOfConfigurations; i++) {
      if (problem._configurationNeedsOption[i][opt])
        pertinentConfigs.add(i);
    }

    // use us a boolean array for which use[i] = true iff
    // seq[i] has a configuration which requires opt
    IloBoolVarArray use(env, seq.getSize());
    model.add(IloBoolAbstraction(env, use, seq, pertinentConfigs));

    // Limit each subsequence to the correct number of occurrences
    // Loop over all subsequences of the correct sequence length
    // for option opt.  Add a sum to limit the maximum number of
    // occurrences in each sub-sequence.
    IloInt sl = problem._optionSequenceLength[opt];
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    IloInt max = seq.getSize() - sl;
    IloInt x;
    for (x = 0; x <= max; x++) {
      IloBoolVarArray subUse(env, sl);
      for (i = 0; i < sl; i++)
        subUse[i] = use[x + i];
      model.add(IloSum(subUse) <= problem._optionCapacity[opt]);
    } 
  }
  return model;
}

// Build the cost variable
IloIntVar BuildCostVar(IloModel model, IloIntVarArray seq, IloInt slack) {
  IloEnv env(model.getEnv());
  IloIntVar cost(env, 0, slack);
  IloConstraintArray carAfter(env, slack);
  for (IloInt i = slack - 1; i >= 0; i--) {
    IlcInt j = seq.getSize() - slack + i;
    carAfter[i] = seq[j] != 0;
    if (i < slack - 1)
      carAfter[i] = carAfter[i] || carAfter[i + 1];
    model.add(carAfter[i] == cost > i);
  }
  return cost;
}

// Useful type definitions
typedef IlcRevInt * IlcRevIntPtr;
ILCARRAY(IlcRevIntPtr)
typedef IlcRevIntPtrArray IlcRevIntArray;

ILCARRAY(IlcIntArray)
typedef IlcIntArrayArray IlcIntArray2;

// Class to produce configs in priority order
class ConfigurationPriorities {
private:
  IlcIntArray2   _priorities;
  IlcRevIntArray _index;

  static void Sort(IlcIntArray a);
public:
  ConfigurationPriorities(CarSeqProblem problem, IlcIntVarArray prio);
  IlcInt getHighestPriority(IlcInt conf) const {
    return _priorities[conf][_index[conf]->getValue()];
  }
  void markScheduled(IlcInt conf) {
    IloSolver solver(_priorities.getSolver());
    _index[conf]->setValue(solver, _index[conf]->getValue() + 1);
  }
};

// Build configuration priorities
ConfigurationPriorities
::ConfigurationPriorities(CarSeqProblem problem, IlcIntVarArray prio) {
  IloSolver solver(prio.getSolver());
  IlcInt numConf = problem._numberOfConfigurations;
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  // Create array of sets
  _priorities = IlcIntArray2(solver, 1 + numConf);
  _index = IlcRevIntArray(solver, 1 + numConf);
                                                                              
  IlcInt k = 0;
  for (IlcInt conf = 1; conf <= numConf; conf++) {
    IlcInt numCars = problem._numberOfCarsPerConfiguration[conf];
    _priorities[conf] = IlcIntArray(solver, numCars);
    for (IlcInt j = 0; j < numCars; j++)
      _priorities[conf][j] = prio[k++].getValue();
    Sort(_priorities[conf]);
    _index[conf] = new (solver.getHeap()) IlcRevInt(solver, 0);
  }
}

// Sort integers in decreasing order
void ConfigurationPriorities::Sort(IlcIntArray a) {
  for (IlcInt i = 0; i < a.getSize() - 1; i++) {
    IlcInt big = i;
    for (IlcInt j = i + 1; j < a.getSize(); j++)
      if (a[j] > a[big]) big = j;
    IlcInt tmp = a[i]; a[i] = a[big]; a[big] = tmp;
  }
}

// Decode priorities to a sequence
ILCGOAL3(DecodeSlave, ConfigurationPriorities *, priorities,
                      IlcIntVarArray, seq,
                      IlcInt, idx) {
  IlcInt i;
  for (i = idx; i < seq.getSize() && seq[i].isBound(); i++)
    if (seq[i].getValue() != 0)
      priorities->markScheduled(seq[i].getValue());

  // No unbound slots, found a solution
  if (i == seq.getSize())
    return 0;

  // Decide on a configuration
  IloInt bestPrio = -1;
  IloInt bestConf = 0;
  for (IlcIntExpIterator it(seq[i]); it.ok(); ++it) {
    IlcInt conf = *it;
    if (conf != 0) {
      IlcInt p = priorities->getHighestPriority(conf);
      if (p > bestPrio) {
        bestPrio = p;
        bestConf = conf;
      }
    }
  }

  // Instantiate remainder of sequence
  IlcGoal loop = DecodeSlave(getSolver(), priorities, seq, i);
  return IlcAnd(IlcOr(seq[i] == bestConf, seq[i] != bestConf), loop);
}
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// Build the priority structure
ILCGOAL3(Decode,
         CarSeqProblem, problem,
         IlcIntVarArray, prio,
         IlcIntVarArray, seq) {
  IloSolver solver(getSolver());
  ConfigurationPriorities * cp = new (solver.getHeap())
    ConfigurationPriorities(problem, prio);
  return DecodeSlave(solver, cp, seq, 0);
}

// An ILO wrapper for the decoding goal
ILOCPGOALWRAPPER3(Decode, solver,
                  CarSeqProblem, problem,
                  IloIntVarArray, prio,
                  IloIntVarArray, seq) {
  IlcIntVarArray solverPrio = solver.getIntVarArray(prio);
  IlcIntVarArray solverSeq = solver.getIntVarArray(seq);
  return Decode(solver, problem, solverPrio, solverSeq);
}

// Force improvement of offspring
ILOIIMOP2(ImproveOn, AnySize, IlcFloat, p, IlcFloat, q) {
  IloSolutionPool pool = getInputPool();
  IloIntVar var = pool.getSolution(0).getObjectiveVar();
  IlcInt limit = IlcIntMax;
  if (getSolver().getRandom().getFloat() < p)
    limit = (IloInt)pool.getBestSolution().getObjectiveValue() - 1;
  else if (getSolver().getRandom().getFloat() < q)
    limit = (IloInt)pool.getWorstSolution().getObjectiveValue() - 1;
  return getSolver().getIntVar(var) <= limit;
}

// The replacement selector
ILOSELECTOR2(ReplaceWorstParent, IloSolution,
             IloSolutionPool, in,
             IloSolutionPool, pop,
             IloSolutionPool, parents) {
  IloSolution candidate = parents.getWorstSolution();
  IloSolution child = in.getSolution(0);
  pop.sort();
  if (pop.getSize() <= 1 || !candidate.isBetterThan(pop.getSolution(1))) {
    pop.remove(candidate);
    pop.add(child);
  }
  else
    candidate = child;
  select(candidate);
}

// Display the costs of solutions
void DisplayCosts(IloSolutionPool pool) {
  IloEnv env(pool.getEnv());
  IloNum sum = 0;
  for (IloSolutionPool::Iterator it(pool); it.ok(); ++it) {
    IloNum cost = (*it).getObjectiveValue();
    sum += cost;
    env.out() << cost << " ";
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  }
  env.out() << "(Mean = " << sum / pool.getSize() << ")" << endl;
}

// Main GA solving function
void SolveWithGA(IloSolver solver,
                 IloModel model,
                 CarSeqProblem problem,
                 IloIntVarArray sequence,
                 IloIntVar cost) {

  // Indirect representation
  IloEnv env(solver.getEnv());
  IloIntVarArray prio(problem._env, problem._numberOfCars, 0, 1000);
  model.add(prio);

  // Create the solution prototype
  IloSolution prototype(env);
  prototype.add(prio);
  prototype.add(sequence);
  prototype.add(IloMinimize(env, cost));

  // Create the decoding goal
  IloGoal decode = Decode(env, problem, prio, sequence);

  // Set up an operator factory
  IloEAOperatorFactory factory(env, prio);
  factory.setAfterOperate(decode);
  factory.setSearchLimit(IloFailLimit(env, 100));
  factory.setPrototype(prototype);

  // Start timing
  IloTimer timer(env);
  timer.start();

  // Create initial population
  const IloInt popSize = 30;
  IloSolutionPool pop(env);
  IloPoolProc create = factory.randomize();
  solver.solve(IloExecuteProcessor(env, create(popSize) >> pop));

  // Sort the population wrt. quality and display.
  pop.sort();
  env.out() << "Initial population: "; 
  DisplayCosts(pop);

  // Enforce probabilistic improvement
  factory.setBeforeOperate(ImproveOn(env, 0.5, 0.9));

  // Create genetic operators
  IloPoolProcArray ops(env);
  ops.add(factory.mutate(2.0 / problem._numberOfCars, "mutation"));
  ops.add(factory.uniformXover("uxover"));
  ops.add(factory.onePointXover("1ptxo"));

  // Make a processor that will perform a breeding cycle
  IloRandomSelector<IloSolution, IloSolutionPool> randomSelector(env);
  IloPoolProc rndSel = IloSelectSolutions(env, randomSelector, IloTrue);
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  IloPoolProc breed = IloSelectProcessor(
    env,
    ops,
    IloRandomSelector<IloPoolProc,IloPoolProcArray>(env)
  );

  // Child replaces worst parent
  IloSolutionPool parents(env);
  IloPoolProc replace =
    IloSelectSolutions(env, ReplaceWorstParent(env, pop, parents));
  IloPoolProc destroy = IloDestroyAll(env);
  IloPoolProc replaceAndDestroy = replace >> destroy;

  // Create single-generation processor
  IloPoolProc cycle = pop >> rndSel >> parents >> breed(1) >> 
replaceAndDestroy;

  // The main genetic algorithm loop
  const IloInt maxGen = 10000;
  IloInt gen; 
  IloSolution best = pop.getBestSolution();
  for (gen = 1; best.getObjectiveValue() != 0 && gen <= maxGen; gen++) {
    solver.solve(IloExecuteProcessor(env, cycle));
    best = pop.getBestSolution();
    pop.sort();
    if ((gen % 10) == 0) {
      env.out() << "Generation " << gen << ": ";
      DisplayCosts(pop);
    }
  }

  // Display best solution and statistics
  solver.solve(IloRestoreSolution(env, best));
  env.out() << "Time taken = " << timer.getTime() << endl;
  env.out() << "Terminated at generation " << gen << endl;
  env.out() << "Solution of cost " << solver.getValue(cost) << " is: " << endl;
  for (IloInt i = 0; i < sequence.getSize(); i++)
    env.out() << solver.getValue(sequence[i]) << " ";
  env.out() << endl;
}

// Solve car sequencing problems using a GA
int main(int argc, const char * argv[]) {
  IloEnv env;
  try {
    // Default input file
    const char * fname = "../../../examples/data/carseq1.dat";

    // Number of empty configurations to add by default
    IloInt slack = 20;

    // Read command line arguments
    if (argc > 1)
      fname = argv[1];
    if (argc > 2)
      slack = atoi(argv[2]);
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    // Open input file and read problem data
    ifstream stream(fname);
    if (!stream.good()) {
      env.out() << "Cannot open " << fname << endl;
      return 0;
    }
    CarSeqProblem problem(env);
    problem.read(stream, slack);

    // Create the decision variables and the model.
    IloIntVarArray seq(env, problem._numberOfCars + problem._slack,
                       0, problem._numberOfConfigurations);
    IloModel model = BuildModel(problem, seq);
    IloIntVar costVar = BuildCostVar(model, seq, problem._slack);

    // Create the solver and solve.
    IloSolver solver(model);
    SolveWithGA(solver, model, problem, seq, costVar);
  } catch (IloException & ex) {
    env.out() << "Caught: " << ex << endl;
  }
  env.end();
  return 0;
}

Output

Execution of the program results in the following output:

Initial population: 3 4 4 5 5 6 6 6 6 7 7 7 7 7 8 8 8 8 8 8 8 8 9 10 10 11 11 
13 13 14 (Mean = 7.83333)
Generation 10: 3 3 4 4 4 5 5 5 6 6 6 6 6 6 7 7 7 7 8 8 8 8 8 9 10 10 10 10 13 
14 (Mean = 7.1)
Generation 20: 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 7 7 7 8 8 8 9 10 10 14 
(Mean = 5.96667)
Generation 30: 2 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 8 8 8 10 10 12 
(Mean = 5.46667)
Generation 40: 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 6 7 
(Mean = 4.43333)
Generation 50: 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 7 
(Mean = 4.03333)
Generation 60: 1 1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 6 6 7 
(Mean = 3.7)
Time taken = 3.76
Terminated at generation 63
Solution of cost 0 is: 
14 16 11 5 17 3 17 1 11 7 15 13 6 15 5 17 3 9 7 11 7 15 6 4 5 17 5 12 5 10 14 
17 8 16 7 11 5 17 3 9 14 11 2 17 3 15 16 7 11 7 15 8 10 1 17 8 15 5 17 3 9 7 11 
5 17 8 10 5 18 2 16 3 10 14 11 1 17 3 10 14 11 7 9 8 10 5 17 1 11 7 15 7 15 11 
16 2 15 7 11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Part VII



Developing Solver Applications

This part consists of the following lessons:

◆ Chapter 33, Designing Models

◆ Chapter 34, Debugging and Tracing

◆ Chapter 35, Developing Applications



C H A P T E R
33

Designing Models

This chapter offers a few design principles, gleaned from experienced users of Solver. These 
principles are meant to help you avoid the errors often made by new users of Solver when 
they design a model for a problem. Of course, not every problem benefits from a mechanical 
application of every principle we mention here, but in general these principles should help 
you develop robust and efficient Solver programs. 

Decrease the number of variables

The unknowns of a given problem are typically represented in its model by constrained 
variables. There are practical ways of cutting down on the number of variables and thus 
reducing the size of the model and its search space.

Problems best solved with constraint-based programming are generally subject to intrinsic 
combinatorial growth. Even if reducing the domains of variables by propagating constraints 
makes it possible to reduce the search space, the initial size of this search space still remains 
a weighty factor in the execution time. 

Principle 

Consequently, good practice in designing a model should attempt to minimize the size of the 
search space in the first place. This size increases exponentially with the number of 
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variables. Thus, limiting the number of such variables (even at the expense of enlarging their 
domains) can reduce the combinatorial complexity.

Use dual representation

Object programming and straightforward object manipulation in Solver often make it 
possible to design a direct and very intuitive model of a problem. Nevertheless, we must not 
get stuck in this apparent simplicity if that model gives rise to a disproportionate amount of 
propagation or outright inefficiency.

Principle

Dual representation consists of looking at a problem “from the other side,” so to speak. This 
technique assumes that the designer knows enough about the problem to step back and 
consider its essence and thus extract conceptual symmetries inherent in it.

Example

Allocating resources offers a good example of this phenomenon. Let's assume that C 
consumers must choose among R resources; to make it simple, let's limit ourselves to the 
case where:

◆ all the resources are available to every consumer; 

◆ each consumer uses at most one resource;

◆ each resource may be used by at most one consumer.

The apparent complexity of the problem depends on the kind of model. In practice, there are 
two possible models:

◆ The consumers choose resources.

◆ The resources choose consumers.

In the first case, if we associate a constrained variable representing the chosen resource with 
each consumer, we get C variables with a domain of size R+1, where R is the number of 
possible resources. The apparent complexity of the problem in this model is thus (R+1)C.

The second case is, of course, analogous to the first: we associate a constrained variable with 
each resource such that the variable represents the chosen consumer, so we get R variables 
with a domain of size C+1, where C is the number of possible consumers. The apparent 
complexity of the problem in this model is thus (C+1)R.

When the difference in apparent complexity is great, we must consider the magnitude of C 
and R very carefully.
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Remove symmetries

The apparent complexity of a problem can often be reduced to a much smaller practical 
complexity by detecting intrinsic symmetries. Parts of the search tree can then be safely 
ignored.

Group by type

When two or more variables have identical characteristics, it is pointless to differentiate 
them artificially. 

Principle

Rather, it is preferable to design a model that takes into account not simply the elementary 
entities but instead the types into which the elementary entities can be meaningfully 
grouped. Each such type, of course, quantitatively handles the elementary entities that 
belong to it.

Example

For example, let's say that we want to plug electronic cards into racks. We'll assume that 
there are five types of cards. Each rack may contain only a finite number of cards according 
to some constraints. We want to use Solver to minimize the number of racks used. This 
problem may be formulated in two different ways: 

◆ first model—for each card, the problem is to find the rack where it is to be plugged;

◆ second model—for each rack, the problem is to find the number of cards of a given type 
plugged into it. 

In the first model, we define one variable per card. Once we have a solution, any permutation 
of two cards of the same type defines a “new” solution. The search space is consequently 
large and contains many such symmetrical solutions that don't really interest us.

In the second model, we manipulate the number of cards of a given type, rather than the 
cards themselves. This model suppresses the symmetries introduced by the previous one and 
thus reduces the search space.

Introduce order among variables

There is really no point in examining all the possible solutions for variables and their values 
when two or more constrained variables satisfy the following conditions: 

◆ the initial domains of these constrained variables are identical;

◆ these variables are subject to the same constraints; 

◆ the variables can be permuted without changing the statement of the problem.
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In fact, the permutations give rise to sets of solutions that are identical as far as the physical 
reality of the problem is concerned. We can exploit this idea to minimize the size of the 
search space.

Principle

If we reduce these domains by introducing a supplementary constraint, such as order, or by 
imposing a special feature on each of these variables, we can markedly reduce the size of the 
search space. 

Example

Let's assume, for example, that we have the following system of equations:

x1 + x2 + x3 = 9

x1 × x2 × x3 = 12

For the ordered triple (x1, x2, x3), there are six solutions: 

(1, 2, 6) (1, 6, 2) (2, 1, 6) (2, 6, 1) (6, 1, 2) (6, 2, 1) 

If we permute the variables, the problem is not changed. For instance, if we swap x1 and x2, 
the problem becomes:

x2 + x1 + x3 = 9

x2 × x1 × x3 = 12

That problem is obviously the same as the first one. In this case, it is a good idea to introduce 
a supplementary constraint to enforce order among the variables. We can do that in this way: 

x1 ≤ x2 ≤ x3

Our additional constraint on the order among the variables greatly reduces the combinatorial 
possibilities without removing any real solutions. 

In fact, only one solution can be returned under these conditions:

(x1, x2, x3) = (1, 2, 6)

We also note that the presence of large inequalities in the constraint takes care of the 
possibility of getting the same value for two or more variables. In our example, that is the 
effect that we want, but more generally, we have to guard against adding a supplementary 
constraint that inadvertently suppresses solutions that we would like to see. 

Use constrained set variables

Among the elements of a set, there is no necessary order, and a set differs from a list in this 
respect. Solver offers constrained set variables and predefined constraints such as cardinality 
to represent certain problems as sets. 
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Principle

Representing a problem as a set is useful for avoiding symmetries. Moreover, constrained set 
variables may help us reduce the apparent complexity of a model.

Example

Let's consider, for example, a crew-allocation problem in an airline company. Let's assume 
that a given flight requires six crew members.

We can represent this assumption by associating six constrained variables with the flight. 
Each of these variables represents a member of the crew. However, this representation is 
symmetrical: since there is no particular difference represented among the six crew members 
in this model, any permutation of the values of the six variables does not change the crew, 
but such a permutation would give rise to more (apparently different) solutions that really do 
not interest us.

A better model—one that suppresses those phony “different” solutions—uses a single 
constrained set variable, with a cardinality equal to 6. This model avoids the symmetries of 
the previous one since it accurately represents a crew as a set of members. 

Back propagate costs

The cost variable must be related to the other constrained variables of the problem through 
constraints. 

Principle

In Solver, the minimization algorithm introduces a supplementary constraint on the upper 
bound of the cost function at every iteration. 

For this reason, the constraints between the cost variable and other variables have to carry 
propagation as far as possible in both directions. By propagating in both directions, we mean 
that changes in the cost variable must be propagated to the other variables, and any changes 
in the other variables must be propagated to the cost variable as well.
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Example

Let's assume that we want to maximize a sum of five variables that are integers between 0 
and 3, inclusive, and let's count the number of tries necessary to do so.

Here's the output of this code:

ILCGOAL2(computeSum, IlcIntVar, var, IlcIntVarVarArray, vars){
  IloSolver solver = getSolver();
  IlcInt sum = 0;
  for(IlcInt i = 0; i < vars.getSize(); i++)
    sum += vars[i].getValue();
  var.setValue(sum);
  return 0;
}

ILOCPGOALWRAPPER2(computeSum, solver, IloNumVar, var, IloNumVarArray, vars){
  IlcIntVarArray svars = solver.getIntVarArray(vars);
  IlcIntVar svar = solver.getIntVar(var);
  return IlcComputeSum(solver, var, vars);
}

int main(){
  IloEnv env;
  IloModel m(env);
  IloIntVarArray vars(env, 5, 0, 3);
  IloIntVar sum(env, 0, 100);
  m.add(vars);
  m.add(sum);
  m.add(IloMaximize(env, sum));
  IloSolver s(m);
  s.solve(IloGenerate(env, vars) && computeSum(env, sum, vars)); // not good
  cout << "Sum = " << s.getIntVar(sum) << endl;
  cout << "#tries = " << s.getNumberOfChoicePoints() << endl;
  env.end();
  return 0;
}

Sum = 15
#tries = 5145
586 I B M  I L O G  S O L V E R  U S E R ’ S  M A N U A L



In the code that we just discussed, the program evaluates the cost function only after 
choosing values. In the next version, a constraint is set to reduce the domains before the 
search for a solution.

This version finds the maximal solution with far fewer tries than the previous one, and thus, 
of course, represents considerable improvement in performance. Here's its output:

Use appropriate search strategies

Back propagating costs (as explained in the previous section) is efficient to the degree that 
the first solutions found have a low cost. Good search strategies (that is, good strategies for 
selecting variables and values to try) promote this goal.

Principle

Solver makes it possible to try many different search strategies fairly easily and without 
having to change the representation of domain constraints. We urge you to take advantage of 
this facility to try out different ways of solving a given problem to find the one most 
advantageous to your situation.

There is no single rule of thumb for discovering what is a good strategy. You should try 
strategies that:

◆ are deduced from common sense;

◆ use know-how from the problem domain;

◆ borrow methods from operations research.

int main(){
  IloEnv env;
  IloModel m(env);
  IloIntVarArray vars(env, 5, 0, 3);
  IloIntVar sum(env, 0, 100);
  m.add(sum == IloSum(vars));  // good
  m.add(IloMaximize(env, sum));
  IloSolver s(m);
  s.solve(IloGenerate(env, vars));
  cout << "Sum = " << s.getIntVar(sum) << endl;
  cout << "#tries = " << s.getNumberOfChoicePoints() << endl;
  env.end();
  return 0;
}

Sum = 15
#tries = 45
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However, there are two main kinds of strategies: the one used for constraint satisfaction 
problems, and the one used for optimization problems.

It is our experience that when we consider satisfaction problems, a strategy that is often 
successful for selecting variables is to choose the most constrained one. In effect, those 
variables are where propagation is the most significant, and as a consequence, where entire 
portions of the search tree can be pruned as quickly as possible. A predefined Solver 
strategy—IlcChooseMinSizeInt—can be most profitably applied in this respect.

When we consider optimization problems, strategies based on generation, such as 
IloGenerate, often first generate those variables and their values that are statistically the 
most likely to lead to a low-cost solution.

Example

Let's continue the preceding example. The code presented in the preceding section would 
search in these ways:

◆ It would select variables in the order defined by their index in the array vars.

◆ It would select values by starting with the lowest ones, since this selection strategy is the 
default.

In contrast, we could first try the highest values, since we are interested in the highest 
possible sum. For that purpose, we define our own selector to choose the variables with the 
largest maximum values in their domains. In our definition, we use the implementation class 
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IlcIntSelectI. (The IBM ILOG Solver Reference Manual documents IlcIntSelectI.) 
Here's the code to do this: 

This improved version searches in this way:

◆ It first selects the variables with the largest maximum. 

◆ It selects values by starting with the highest ones.

Here's the output, demonstrating the improvement in the number of tries:

class selectMaxI : public IlcIntSelectI {
public:
  selectMaxI():IlcIntSelectI(){}
  virtual IlcInt select(IlcIntVar var){
    return var.getMax();
  }
};

IlcIntSelect selectMax(IloSolver s){
   return new (s.getHeap()) selectMaxI();
}

class IloSelectMaxI : public IloIntValueSelectorI {
public:
  IloSelectMaxI(IloEnvI* env) : IloIntValueSelectorI(env) {}
  IlcIntSelect extract(const IloSolver solver) {
    return selectMax(solver);
  }
  IloIntValueSelectorI* makeClone(IloEnvI* env) {
    return new (env) IloSelectMaxI(env);
  }
};

int main(){
  IloEnv env;
  IloModel m(env);
  IloIntVarArray vars(env, 5, 0, 3);
  IloIntVar sum(env, 0, 100);
  m.add(sum == IloSum(vars));
  m.add(IloMaximize(env, sum));
  IloSolver s(m);
  s.solve(IloGenerate(env, vars, IloChooseMaxMaxInt, IloSelectMax(env)));
  cout << "Sum = " << s.getIntVar(sum) << endl;
  cout << "#tries = " << s.getNumberOfChoicePoints() << endl;
  env.end();
  return 0;
}

Sum = 15
#tries = 5
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Introduce redundant constraints

Since constraint propagation decreases the search space by reducing the domains of 
variables, it is obviously important to express all necessary constraints. In some cases, it is 
even a good idea to introduce redundant constraints to reduce the size of the search space by 
supplementary propagation. Processing supplementary constraints inevitably slows down 
execution. However, this slowing down may be negligible in certain problems when it is 
compared with the efficiency gained from reducing the size of the search space. 

Principle

A redundant constraint makes explicit a property that satisfies a solution implicitly. In fact, 
in some disciplines, redundant constraints are known as implicit constraints for that reason. 
Such a constraint should not change the nature of the solution, but its propagation should 
delimit the general shape of the solution more quickly.

Of course, there is no need to express grossly obvious redundancy since the highly 
optimized algorithms that Solver uses to insure arc consistency already work well enough. 
For example, if we are given this system of equations: 

x = y + z

z = a + b

we gain no efficiency whatsoever by adding this constraint:

x = y + a + b

However, in any case where an implicit property makes good sense, or derives from 
experience, or satisfies formal computations, its explicit implementation as a redundant 
constraint can be beneficial.

Example

The problem of the magic sequence is described Chapter 4, Searching with Predefined 
Goals: Magic Square. Let's describe it again briefly. Let's assume that we have n+1 
unknowns, namely, x0, x1, . . . , xn. These xi must respect the following constraints: 

◆ 0 appears x0 times in the solution. 

◆ 1 appears x1 times.

◆ In general, i appears xi times. 

◆ n appears xn times. 

The constraint of this problem can easily be written, using the symbolic counting constraint 
IloDistribute. However, the search for a solution can be greatly accelerated by 
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introducing the following redundant constraint that expresses the fact that n+1 numbers are 
counted. 

1.x1 + 2.x2 + . . . + n.xn = n+1.

Use objects

Since Solver supports object-oriented programming, it provides inheritance mechanisms that 
produce clear, re-usable, and extendable code. You can exploit object orientation in your 
Solver applications to organize the data in your problem into a coherent model and thus 
improve the solution.

Principle

If you exploit objects and classes, they can greatly assist you in organizing the information 
needed to solve your problem. They can even be a great help in the implementation itself. In 
small scale examples (like the ones in this manual), object orientation may seem like 
overkill, but its generality rapidly becomes advantageous in real-world problems.

Besides the conventional benefits of inheritance, using objects and enumerated variables in 
Solver offers at least the following additional advantages:

◆ You can group all data about the same entity in the same object. This grouping means 
that you avoid splitting entity data over vectors and then having to index those vectors to 
retrieve those data.

◆ You can define and post class constraints on any class of objects.

Use reversible and constrained data members

Let's assume that an object has a data member with a value that is modified while the search 
for a solution is going on. The value assigned to this data member depends on the choices 
and the hypotheses made before this assignment.

If those choices fail to find a solution further on, Solver backtracks, and the computed value 
for this data member is no longer valid. For that reason, this data member must be a 
reversible data member. That is, the modifier of this data member must save the initial value 
of the data member before any modification, so Solver is able to restore the value of the data 
member to its value before modification if any failure occurs later. For example, Solver 
provides you with the predefined class IlcRevInt, the class of reversible integers, for just 
such a purpose. 

Let's also assume that an object has a data member whose value must be found by Solver. 
The right way to implement this situation is to associate a constrained variable with this data 
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member. The value of the data member is defined to be the value of the associated 
constrained variable. This value is undefined as long as the variable is not bound. 

In short, Solver allows you to take full advantage of its constraint-programming facilities at 
the same time that it fully supports objects, classes, and inheritance of object-oriented 
programming. Constraints can figure as data members; data members can be fully reversible.

Exploit generic and class constraints

Often, in a problem, a set of objects must satisfy similar constraints. In these cases, it is 
worth trying to use generic constraints, that is, constraints that are shared by several 
constrained variables. Since generic constraints are shared, they may save a lot of memory. 
For instance, the constraint IloAllDiff is a generic constraint: only one constraint is 
allocated, whatever the number of variables in the array it constrains. 

In fact, there are two ways in Solver to implement such a constraint: as a generic constraint 
or as a class constraint.

◆ generic constraint: the constraint has a data member containing the array of constrained 
variables sharing the constraint;

◆ class constraint: the constructor for the class posts the constraint on each instance of the 
given class. 

Use a known solution for testing

The previous sections have explained how to design good models for various problems. 
However, if errors slip in when you implement the constraints of the problem, it can be very 
difficult to understand why the application finds wrong “solutions,” even though the model 
is very good.

There is a simple way to fix such cases: use an instance of the problem with a known 
solution to test against the constraints. For testing a solution, you just have to assign the 
values corresponding to a solution before posting the constraints. Then no failure should 
happen within this function. If a failure occurs with the known solution, you know there is a 
problem among the constraints. 

To find the source of the problem, use a trace event to locate the faulty constraint. See 
Chapter 34, Debugging and Tracing for more information.

For example, let's test a known solution of the map-coloring problem.

#include <ilsolver/ilosolver.h>

ILOSTLBEGIN

const char* Names[] = {"blue", "white", "red", "green"};
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int main(){
  IloEnv env;
  try {
    IloModel model(env);
    IloIntVar Belgium(env, 0, 3), Denmark(env, 0, 3),
      France(env, 0, 3), Germany(env, 0, 3),
      Netherlands(env, 0, 3), Luxembourg(env, 0, 3);

    // Test a solution
    model.add(Belgium == 0);
    model.add(Denmark == 1);
    model.add(France == 1);
    model.add(Germany ==  0);
    model.add(Netherlands == 1);
    model.add(Luxembourg == 2);

    // Constraints
    model.add(Belgium != France);
    model.add(Denmark != Germany );
    model.add(France != Germany);
    model.add(Belgium != Netherlands);
    model.add(Germany != Netherlands);
    model.add(France != Luxembourg);
    model.add(Luxembourg != Germany);
    model.add(Luxembourg != Belgium);

    IloSolver solver(model);
    // Search for a solution
    if (solver.solve()) {
      solver.out() << solver.getStatus() << " Solution" << endl;
      solver.out() << "Belgium:     "
                   << Names[(IloInt)solver.getValue(Belgium)]     << endl;
      solver.out() << "Denmark:     "
                   << Names[(IloInt)solver.getValue(Denmark)]     << endl;
      solver.out() << "France:      "
                   << Names[(IloInt)solver.getValue(France)]      << endl;
      solver.out() << "Germany:     "
                   << Names[(IloInt)solver.getValue(Germany)]     << endl;
      solver.out() << "Netherlands: "
                   << Names[(IloInt)solver.getValue(Netherlands)] << endl;
      solver.out() << "Luxembourg:  "
                   << Names[(IloInt)solver.getValue(Luxembourg)]  << endl;
    }
  }
  catch (IloException& ex) {
    cerr << "Error: " << ex << endl;
  }
  env.end();
  return 0;
}
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C H A P T E R
34

Debugging and Tracing

Since Solver is a C++ library, you can use any C++ development environment to develop 
and debug applications that exploit Solver. In addition, there are certain supplementary 
features offered by Solver for tracing constraint propagation, and this chapter shows you 
how to use those facilities. Among other topics, this chapter describes how to:

◆ trace the modifications of some or all constrained variables;

◆ distinguish between direct modifications made by a program and derived modifications 
made by propagation of constraints;

◆ report the cause of each constraint propagation; 

◆ generate trace messages in the standard output or in a file. 

Using a C++ development environment

You can use your favorite C++ development environment to trace and to set breakpoints for 
any function of Solver.

Tracing demons

Whatever C++ debugger you are using, you are able to trace the execution of a Solver 
program, since Solver is a standard C++ library. If you specifically want to trace the 
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propagation of constraints, you have several choices. The simplest consists of tracing the 
constraint demons used for propagation.

Let's consider the following constraint:

class IlcLeConstraint: public IlcConstraintI {
  // x <= y + c
  IlcIntExp _x;
  IlcIntExp _y;
  IlcInt _c;
public:
  IlcLeConstraint(IloSolver solver, IlcIntExp x, IlcIntExp y, IlcInt c=0)
    : IlcConstraintI(solver), _x(x), _y(y), _c(c) {}
    void post();
    void propagate();
    IlcBool isViolated() const;
    void metaPostDemon(IlcDemonI*);
    IlcConstraintI* makeOpposite() const;
    void xDemon(){
      _y.setMin(_x.getMin() - _c);
    }
    void yDemon(){
      _x.setMax(_y.getMax() + _c);
    }
};

ILCCTDEMON0(IlcLeConstraintXDemon,IlcLeConstraint,xDemon);

ILCCTDEMON0(IlcLeConstraintYDemon,IlcLeConstraint,yDemon);

void IlcLeConstraint::post(){
  _x.whenRange(IlcLeConstraintXDemon(getSolver(),this));
  _y.whenRange(IlcLeConstraintYDemon(getSolver(),this));
}

void IlcLeConstraint::metaPostDemon(IlcDemonI* demon){
  _x.whenRange(demon);
  _y.whenRange(demon);
}

IlcBool IlcLeConstraint::isViolated() const {
  return _x.getMin() > _y.getMax() + _c;
}

void IlcLeConstraint::propagate(){
  xDemon();
  yDemon();
}

IlcConstraintI* IlcLeConstraint::makeOpposite() const {
  IloSolver solver=getSolver();
  return new (solver.getHeap()) IlcLeConstraint(solver,_y,_x,-_c -1);
}

IlcConstraint IlcLe(IlcIntExp x, IlcIntExp y, IlcInt c){
  IloSolver solver=x.getSolver();
  return IlcConstraint(new (solver.getHeap()) IlcLeConstraint(solver,x,y,c));
}
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The idea is to set watch points on the member functions you want to trace. Let's assume that 
you are interested in the demon triggered by modifications of the variable _x in that 
constraint. It is sufficient to set a watch point on the member function 
IlcLeConstraint::xDemon.

If you are using dbx on a UNIX work station, for example, you would trace those demons in 
this way:

Consult the documentation of your favorite development environment for details about 
setting watch points.

This approach is possible only if you have access to the source code. That is, it can be used 
only on the constraints you define. 

The rest of this chapter explains how to trace the internals of Solver (for which you don't 
have the source code).

Stopping on constraint propagation

The IBM ILOG Solver Reference Manual documents the classes IlcTrace. Also in “Trace 
events” on page 598, we go into greater detail about trace events. Right now, in the context 
of tracing from a debugger, we want to indicate that instances of both those classes can be 
useful.

When you are running a Solver program from a debugger, and using instances of the class 
IlcTrace to trace the modifications of constrained variables, you can execute the constraint 
propagation step by step. All trace member functions of IlcTrace call the function 
ilc_trace_stop_here. A breakpoint can be set for the function 
ilc_trace_stop_here to stop the program after each call to a trace member function of 
the class IlcTrace. You do that in this way if you are using dbx or gdb:    

On some platforms, such as Windows NT® , for example, you must prefix an underscore to 
the name of the function, like this: _ilc_trace_stop_here.

Stopping on failures

When you are running a Solver program from a debugger, such as dbx or gdb, you can stop 
the execution on failures. A breakpoint can be set for the function ilc_fail_stop_here 

(dbx) trace IlcLeConstraint::xDemon 

(dbx) stop in ilc_trace_stop_here 
(gdb) break ilc_trace_stop_here 
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to stop the program after each call to IlcConstraintI::fail or IlcGoalI::fail.   
You do that like this:     

On some platforms, such as Windows NT® , for example, you must prefix an underscore to 
the name of the function, like this: _ilc_fail_stop_here.

Trace

Solver provides a trace facility, which is based on trace events. You can limit your trace to 
only those modifications that affect a constrained variable. You can also access a constrained 
variable before it is modified and after it is modified. You can also access at any time the 
demon or constraint that precipitated the modification of a constrained variable. 

The trace facility is provided by the class IlcTrace, and its implementation class 
IlcTraceI. An instance of IlcTraceI enables you to trace such events as failure of a 
variable, a demon, or a constraint in a solution search. With an instance of this class, you can 
access the modifications of an active demon or an active constraint at any time by calling the 
member functions: IlcTraceI::getActiveDemon, IloSolver::getActiveDemon, 
and IloSolver::getActiveGoal.

The handle class IlcPrintTrace and its implementation class IlcPrintTraceI derive 
from the trace classes. They facilitate printing and displaying trace information.

All printing functions of Solver use an output stream, IloSolver::out. By default, this 
output stream is equal to cout (except on one platform where it is redirected to a log file).

Trace events

Solver uses #define to define the events that you can trace with an instance of IlcTraceI:

When you create an instance of IlcTraceI, use one of those values to the constructor to 
indicate which event or events to trace. After you have created a trace (an instance of 
IlcTraceI) if you want to alter the events that it traces, use the member functions 
setTraceDemon, setTraceConstraint, and so forth, to alter the trace.

(dbx) stop in ilc_fail_stop_here 
(gdb) break ilc_fail_stop_here

#define IlcTraceDemons ((IlcUInt) 1)
#define IlcTraceConstraint ((IlcUInt) 2)
#define IlcTraceProcess ((IlcUInt) 4)
#define IlcTraceVars ((IlcUInt) 8)
#define IlcTraceFail ((IlcUInt) 16)
#define IlcTraceNoEvent ((IlcUInt) 32)
#define IlcTraceAllEvent ((IlcUInt) 31)
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Use the member function IlcPrintTrace::trace to hook a variable; that is, create a link 
between a print trace and a variable. If you hook a constrained variable, you can trace each 
modification of the domain of that variable. 

Tracing choice points and failures

Trace functions can be activated or inhibited with respect to a solver. The member function 
IloSolver::setTraceMode takes a Boolean value as its argument. If this argument is 
IlcTrue, it activates the trace functions of Solver with respect to the invoking solver. If the 
argument is IlcFalse, it inhibits the trace functions.

We'll use the sendmory example here to illustrate how tracing works. If we modify the 
sendmory example by setting the trace mode to IlcTrue, the program becomes:

ILOCPTRACEWRAPPER0(PrintConstraintTrace, solver) {
  solver.setTraceMode(IlcTrue);
  IlcPrintTrace trace(solver, IlcTraceConstraint);
  solver.setTrace(trace);
}

int main(){
  IloEnv env;
  try {
    IloModel mdl(env);
    IloIntVar S(env, 0, 9, "S"),
              E(env, 0, 9, "E"),
              N(env, 0, 9, "N"),
              D(env, 0, 9, "D"),
              M(env, 0, 9, "M"),
              O(env, 0, 9, "O"),
              R(env, 0, 9, "R"),
              Y(env, 0, 9, "Y");
    IloIntVarArray vars (env, 8, S, E, N, D, M, O, R, Y);
    mdl.add(S != 0);
    mdl.add(M != 0);
    IloConstraint alldiff=IloAllDiff(env,vars);
    mdl.add(alldiff);
    mdl.add(  1000*S + 100*E + 10*N + D
     + 1000*M + 100*O + 10*R + E
     == 10000*M + 1000*O + 100*N + 10*E + Y);
   IloSolver solver(mdl);
   IlcIntVarArray svars=solver.getIntVarArray(vars);
   for (IlcInt i=0;i<vars.getSize();i++){
     svars[i].setName(vars[i].getName());
   }
   solver.addTrace(PrintConstraintTrace(env));
   solver.solve(IloGenerate(env, vars));
   }
  catch (IloException ex) {
    cerr << "Error: " << ex << endl;
  }
  env.end();
  return 0;
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}

Its output becomes:

There you see the constraint posting and the steps of the constraint propagation algorithm.

Tracing variable processing

As Solver propagates constraints, it maintains them in a queue. Tracing the propagation 
queue shows the order in which variables are processed by the Solver propagation algorithm. 
In the following example, we create a trace to trace the constraint propagation queue using 
the ILOCPTRACEWRAPPER0 macro, like this:

Then we turn on the trace mode, like this:

>> begin-constraint-propagate ((S[0..9] != 0))
>> end-constraint-propagate ((S[1..9] != 0))
>> begin-constraint-propagate ((M[0..9] != 0))
>> end-constraint-propagate ((M[1..9] != 0))
>> begin-constraint-post (IlcAllDiff(009DE938) {S[1..9], E[0..9], N[0..9], 
D[0..
9], M[1..9], O[0..9], R[0..9], Y[0..9], })
>> end-constraint-post (IlcAllDiff(009DE938) {S[1..9], E[0..9], N[0..9], 
D[0..9]
, M[1..9], O[0..9], R[0..9], Y[0..9], })
>> begin-constraint-propagate (IlcAllDiff(009DE938) {S[1..9], E[0..9], N[0..9],
D[0..9], M[1..9], O[0..9], R[0..9], Y[0..9], })
>> end-constraint-propagate (IlcAllDiff(009DE938) {S[1..9], E[0..9], N[0..9], 
D[
0..9], M[1..9], O[0..9], R[0..9], Y[0..9], })
>> begin-constraint-post (((IlcArraySumI(009DEC30)[1000..9918] - 
IlcArraySumI(00
9DEBD8)[9000..89910]) == Y[0..9]))
>> end-constraint-post (((IlcArraySumI(009DEC30)[1000..9918] - 
IlcArraySumI(009D
EBD8)[9000..89910]) == Y[0..9]))
>> begin-constraint-propagate (((IlcArraySumI(009DEC30)[1000..9918] - 
IlcArraySu
mI(009DEBD8)[9000..89910]) == Y[0..9]))
>> end-constraint-propagate (((IlcArraySumI(009DEC30)[9000..9918] - 
IlcArraySumI
(009DEBD8)[9000..10710]) == Y[0..9]))
*/

ILOCPTRACEWRAPPER0(PrintAllVars, solver) {

  solver.setTraceMode(IlcTrue);
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Next, use IlcTraceVars as a flag to the constructor IlcPrintTrace. It causes a message 
to be printed each time a demon or constraint is executed by the propagation algorithm: 

Then we set that hook as the global trace hook by using the member function 
IloSolver::setTrace, like this:

Here are those steps in the context of a complete program.

That program output is:

  IlcPrintTrace trace(solver, IlcTraceVars);

  solver.setTrace(trace);

ILOCPTRACEWRAPPER0(PrintAllVars, solver) {
  solver.setTraceMode(IlcTrue);
  IlcPrintTrace trace(solver, IlcTraceVars);
  solver.setTrace(trace);
}

int TraceAll2(){
  IloEnv env;
  try {
    IloModel mdl(env);
    IloNumVar S(env, 0, 9, ILOINT, "S"),
      E(env, 0, 9, ILOINT, "E"),
      N(env, 0, 9, ILOINT, "N"),
      D(env, 0, 9, ILOINT, "D"),
      M(env, 0, 9, ILOINT, "M"),
      O(env, 0, 9, ILOINT, "O"),
      R(env, 0, 9, ILOINT, "R"),
      Y(env, 0, 9, ILOINT, "Y");
    IloNumVarArray vars (env, 8, S, E, N, D, M, O, R, Y);

    mdl.add(S != 0);
    mdl.add(M != 0);

    IloConstraint alldiff=IloAllDiff(env,vars);
    mdl.add(alldiff);
    mdl.add(  1000*S + 100*E + 10*N + D
      + 1000*M + 100*O + 10*R + E
      == 10000*M + 1000*O + 100*N + 10*E + Y);

    IloSolver solver(mdl);
    solver.addTrace(PrintAllVars(env));
    solver.solve(IloGenerate(env, vars));
  }
  catch (IloException ex) {
    cerr << "Error: " << ex << endl;
  }
  env.end();
  return 0;
}
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>> begin-set-min: S[0..9] 1
>> end-set-min: S[1..9] 1
>> begin-set-min: M[0..9] 1
>> end-set-min: M[1..9] 1
>> begin-set-min: S[1..9] 9
>> end-set-min: S[9] 9
>> begin-set-max: M[1..9] 1
>> end-set-max: M[1] 1
>> begin-set-max: O[0..9] 1
>> end-set-max: O[0..1] 1
>> begin-set-max: E[0..9] 8
>> end-set-max: E[0..8] 8
>> begin-set-max: N[0..9] 8
>> end-set-max: N[0..8] 8
>> begin-set-max: D[0..9] 8
>> end-set-max: D[0..8] 8
>> begin-set-max: R[0..9] 8
>> end-set-max: R[0..8] 8
>> begin-set-max: Y[0..9] 8
>> end-set-max: Y[0..8] 8
>> begin-set-max: O[0..1] 0
>> end-set-max: O[0] 0
>> begin-remove-value: E[0..8] 1
>> end-remove-value: E[0 2..8] 1
>> begin-remove-value: N[0..8] 1
>> end-remove-value: N[0 2..8] 1
>> begin-remove-value: D[0..8] 1
>> end-remove-value: D[0 2..8] 1
>> begin-remove-value: R[0..8] 1
>> end-remove-value: R[0 2..8] 1
>> begin-remove-value: Y[0..8] 1
>> end-remove-value: Y[0 2..8] 1
>> begin-set-min: N[0 2..8] 2
>> end-set-min: N[2..8] 2
>> begin-set-min: D[0 2..8] 2
>> end-set-min: D[2..8] 2
>> begin-set-min: E[0 2..8] 2
>> end-set-min: E[2..8] 2
>> begin-set-min: R[0 2..8] 2
>> end-set-min: R[2..8] 2
>> begin-set-min: Y[0 2..8] 2
>> end-set-min: Y[2..8] 2
>> begin-set-min: N[2..8] 3
>> end-set-min: N[3..8] 3
>> begin-set-max: E[2..8] 7
>> end-set-max: E[2..7] 7
>> begin-set-min: E[2..7] 3
>> end-set-min: E[3..7] 3
>> begin-set-min: N[3..8] 4
>> end-set-min: N[4..8] 4
>> begin-set-min: E[3..7] 4
>> end-set-min: E[4..7] 4
>> begin-set-min: N[4..8] 5
>> end-set-min: N[5..8] 5
IlcOr   : 1
>> begin-set-value: E[4..7] 4
>> end-set-value: E[4] 4
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>> begin-remove-value: D[2..8] 4
>> end-remove-value: D[2..3 5..8] 4
>> begin-remove-value: R[2..8] 4
>> end-remove-value: R[2..3 5..8] 4
>> begin-remove-value: Y[2..8] 4
>> end-remove-value: Y[2..3 5..8] 4
>> begin-set-min: D[2..3 5..8] 8
>> end-set-min: D[8] 8
>> begin-set-min: R[2..3 5..8] 8
>> end-set-min: R[8] 8
>> begin-set-max: N[5..8] 5
>> end-set-max: N[5] 5
>> begin-set-max: Y[2..3 5..8] 2
>> end-set-max: Y[2] 2
>> begin-set-min: E[4..7] 5
>> end-set-min: E[5..7] 5
>> begin-set-min: N[5..8] 6
>> end-set-min: N[6..8] 6
IlcOr   : 2
>> begin-set-value: E[5..7] 5
>> end-set-value: E[5] 5
>> begin-remove-value: D[2..8] 5
>> end-remove-value: D[2..4 6..8] 5
>> begin-remove-value: R[2..8] 5
>> end-remove-value: R[2..4 6..8] 5
>> begin-remove-value: Y[2..8] 5
>> end-remove-value: Y[2..4 6..8] 5
>> begin-set-min: D[2..4 6..8] 7
>> end-set-min: D[7..8] 7
>> begin-set-min: R[2..4 6..8] 8
>> end-set-min: R[8] 8
>> begin-set-max: N[6..8] 6
>> end-set-max: N[6] 6
>> begin-set-max: Y[2..4 6..8] 3
>> end-set-max: Y[2..3] 3
>> begin-set-max: D[7..8] 7
>> end-set-max: D[7] 7
>> begin-set-max: Y[2..3] 2
>> end-set-max: Y[2] 2

The choice points and the failures are now visible.
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In the following example, we associate the trace only with a single variable, E. 

The output becomes:

>> begin-set-max: E[0..9] 8
>> end-set-max: E[0..8] 8
>> begin-remove-value: E[0..8] 1
>> end-remove-value: E[0 2..8] 1
>> begin-set-min: E[0 2..8] 2
>> end-set-min: E[2..8] 2
>> begin-set-max: E[2..8] 7
>> end-set-max: E[2..7] 7

ILOCPTRACEWRAPPER1(TraceVarArray, solver, IloIntVarArray, vars) {
  IlcIntVarArray svars=solver.getIntVarArray(vars);
  solver.setTraceMode(IlcTrue);
  IlcPrintTrace trace(solver, IlcTraceVars);
  trace.trace(svars[1]);
}

int TraceAll3(){
  IloEnv env;
  try {
    IloModel mdl(env);
    IloIntVar S(env, 0, 9, "S"),
      E(env, 0, 9, "E"),
      N(env, 0, 9, "N"),
      D(env, 0, 9, "D"),
      M(env, 0, 9, "M"),
      O(env, 0, 9, "O"),
      R(env, 0, 9, "R"),
      Y(env, 0, 9, "Y");
    IloIntVarArray vars (env, 8, S, E, N, D, M, O, R, Y);

    mdl.add(S != 0);
    mdl.add(M != 0);

    IloConstraint alldiff=IloAllDiff(env,vars);
    mdl.add(alldiff);
    mdl.add(  1000*S + 100*E + 10*N + D
      + 1000*M + 100*O + 10*R + E
      == 10000*M + 1000*O + 100*N + 10*E + Y);

    IloSolver solver(mdl);
    solver.addTrace(TraceVarArray(env, vars));
    solver.solve(IloGenerate(env, vars));
  }
  catch (IloException ex) {
    cerr << "Error: " << ex << endl;
  }
  env.end();
  return 0;
}
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>> begin-set-min: E[2..7] 3
>> end-set-min: E[3..7] 3
>> begin-set-min: E[3..7] 4
>> end-set-min: E[4..7] 4
IlcOr   : 1
>> begin-set-value: E[4..7] 4
>> end-set-value: E[4] 4
IlcFail : 1
>> begin-set-min: E[4..7] 5
>> end-set-min: E[5..7] 5
IlcOr   : 2
>> begin-set-value: E[5..7] 5
>> end-set-value: E[5] 5

The following program traces all modifications of all variables. To get that effect, we turn on 
the trace mode and use the flag IlcTraceAll when we construct the trace.

ILOCPTRACEWRAPPER0(PrintAllTrace, solver) {
  solver.setTraceMode(IlcTrue);
  IlcPrintTrace trace(solver, IlcTraceAll);
  solver.setTrace(trace);
}

int TraceAll4(){
  IloEnv env;
  try {
    IloModel mdl(env);
    IloIntVar S(env, 0, 9, "S"),
      E(env, 0, 9, "E"),
      N(env, 0, 9, "N"),
      D(env, 0, 9, "D"),
      M(env, 0, 9, "M"),
      O(env, 0, 9, "O"),
      R(env, 0, 9, "R"),
      Y(env, 0, 9, "Y");
    IloIntVarArray vars (env, 8, S, E, N, D, M, O, R, Y);

    mdl.add(S != 0);
    mdl.add(M != 0);

    IloConstraint alldiff=IloAllDiff(env,vars);
    mdl.add(alldiff);
    mdl.add(  1000*S + 100*E + 10*N + D
      + 1000*M + 100*O + 10*R + E
      == 10000*M + 1000*O + 100*N + 10*E + Y);

    IloSolver solver(mdl);
    solver.addTrace(PrintAllTrace(env));
    solver.solve(IloGenerate(env, vars));
  }
  catch (IloException ex) {
    cerr << "Error: " << ex << endl;
  }
  env.end();
  return 0;
}
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The output is too lengthy to show entirely, but it starts like this:

>> begin-constraint-propagate ((S[0..9] != 0))
>> begin-set-min: S[0..9] 1
>> end-set-min: S[1..9] 1
>> end-constraint-propagate ((S[1..9] != 0))
>> begin-constraint-propagate ((M[0..9] != 0))
>> begin-set-min: M[0..9] 1
>> end-set-min: M[1..9] 1
>> end-constraint-propagate ((M[1..9] != 0))
>> begin-constraint-post (IlcAllDiff(00ACED48) {S[1..9], E[0..9], N[0..9],
D[0..
9], M[1..9], O[0..9], R[0..9], Y[0..9], })
>> end-constraint-post (IlcAllDiff(00ACED48) {S[1..9], E[0..9], N[0..9],
D[0..9]
, M[1..9], O[0..9], R[0..9], Y[0..9], })
>> begin-constraint-propagate (IlcAllDiff(00ACED48) {S[1..9], E[0..9],
N[0..9],
D[0..9], M[1..9], O[0..9], R[0..9], Y[0..9], })
>> end-constraint-propagate (IlcAllDiff(00ACED48) {S[1..9], E[0..9],
N[0..9], D[
0..9], M[1..9], O[0..9], R[0..9], Y[0..9], })
>> begin-constraint-post ((IlcArraySumI(00ACF070)[1000..9099] ==
(IlcArraySumI(0
0ACEF38)[9000..89919] - 91 * E[0..9])))
>> end-constraint-post ((IlcArraySumI(00ACF070)[1000..9099] ==
(IlcArraySumI(00A
CEF38)[9000..89919] - 91 * E[0..9])))
>> begin-constraint-propagate ((IlcArraySumI(00ACF070)[1000..9099] ==
(IlcArrayS
umI(00ACEF38)[9000..89919] - 91 * E[0..9])))
>> begin-set-min: S[1..9] 9
>> end-set-min: S[9] 9
>> begin-set-max: M[1..9] 1
>> end-set-max: M[1] 1
>> begin-set-max: O[0..9] 1
>> end-set-max: O[0..1] 1
>> end-constraint-propagate ((IlcArraySumI(00ACF070)[9000..9099] ==
(IlcArraySum
I(00ACEF38)[9000..10719] - 91 * E[0..9])))
>> begin-var-process: S[9]
>> begin-demon-process (IlcAllDiffDemon)
>> begin-set-max: E[0..9] 8
>> end-set-max: E[0..8] 8
>> begin-set-max: N[0..9] 8
>> end-set-max: N[0..8] 8
>> begin-set-max: D[0..9] 8
>> end-set-max: D[0..8] 8
>> begin-set-max: R[0..9] 8
>> end-set-max: R[0..8] 8
>> begin-set-max: Y[0..9] 8
>> end-set-max: Y[0..8] 8
>> end-demon-process (IlcAllDiffDemon)
>> begin-demon-process ((IlcArraySumI(00ACF070)[9000..9088] ==
(IlcArraySumI(00
ACEF38)[9000..10628] - 91 * E[0..8])))
>> begin-set-max: O[0..1] 0
>> end-set-max: O[0] 0
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>> end-demon-process ((IlcArraySumI(00ACF070)[9000..9088] ==
...

The examples in this chapter show you some possibilities of the tracing mode in Solver. You 
should choose the level of detail most useful for your application: the more detail, the longer 
the output, and the longer its analysis, of course.

Creating your own trace

You can also create your own trace by subclassing the virtual functions of IlcTraceI. Here 
is an example:

class MyTraceI : public IlcTraceI {
public:
  MyTraceI(IloSolver solver, IlcUInt flags, const char* name=0) :
      IlcTraceI(solver.getManager().getImpl(),flags,name){}
      ~MyTraceI(){}

      // virtual functions
      void beginSetMinIntVar(const IlcIntExp var, IlcInt min){
        var.getSolver().out() << "mySetMinIntVar";
        print(var,min);
      }
      void beginSetValueIntVar(const IlcIntExp var, IlcInt val){
        var.getSolver().out() << "mySetValue";
        print(var,val);
      }

      void print(const IlcIntExp var, IlcInt val){
        var.getSolver().out()<< var << " val:" << val << endl;
        IlcGoalI* goal=var.getSolver().getActiveGoal().getImpl();
        IlcDemonI* demon=getActiveDemon().getImpl();
        if (goal == 0) var.getSolver().out() << "no active goal" << endl;
        else var.getSolver().out() << "goal:" << *goal << endl;
        if (demon == 0) var.getSolver().out() << "no active demon" << endl;
        else {
          if (demon->isAConstraint()){
            var.getSolver().out() << "the active demon is the constraint:" << 
*demon << endl;
          } else {
            var.getSolver().out() << "propagation of demon" << endl;
            if (demon->getConstraintI() == 0){
              var.getSolver().out() << "the demon has no constraint associated 
with" << endl;
            } else {
              var.getSolver().out() << "the associated constraint with the 
demon is:";
              var.getSolver().out() << *(demon->getConstraintI()) << endl;
            }
          }
        }
      }
};
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class MyTrace : public IlcTrace {
public:
  MyTrace(IloSolver solver, IlcUInt flags=4, const char* name=0)
    : IlcTrace() {
      _impl = new (solver.getHeap()) MyTraceI(solver, flags, name);
    }

    MyTrace(MyTraceI* impl) {
      _impl = impl;
    }
    ~MyTrace(){}
    MyTraceI* getImpl() const {
      return (MyTraceI*)_impl;
    }
    const MyTrace& trace(IlcIntVar var) const{
      getImpl()->trace(var);
      return *this;
    }
    void operator=(const MyTrace& tr){
      _impl = tr._impl;
    }
};

This trace must be wrapped using the macro ILOCPTRACEWRAPPER. (See “Tracing variable 
processing” on page 600 for an example of how to do this.) It can then be called in an 
application, as follows:

This produces the following output:

mySetMinIntVarE[0 2..8] val:2
no active goal
propagation of demon
the associated constraint with the demon is:IlcAllDiff(00ACED48) {S[9], M[1], 
N[2..8], D[2..8], E[0 2..8], O[0], R[0 2..8], Y[0 2..8], }
mySetMinIntVarE[2..7] val:3
no active goal
the active demon is the constraint:(IlcArraySumI(00ACF070)[9022..9088] == 
(IlcArraySumI(00ACEF38)[9272..9728] - 91 * E[2..7]))
mySetMinIntVarE[3..7] val:4
no active goal
the active demon is the constraint:(IlcArraySumI(00ACF070)[9022..9088] ==
(IlcArraySumI(00ACEF38)[9362..9728] - 91 * E[3..7]))
IlcOr   : 1
mySetValueE[4..7] val:4
goal:IlcIntVarSetValue
no active demon
IlcFail : 1
mySetMinIntVarE[4..7] val:5
goal:IlcIntVarRemoveValue
no active demon
IlcOr   : 2
mySetValueE[5..7] val:5

  MyTrace trace(solver,IlcTraceAllEvent);
  trace.trace(svars[1]);
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goal:IlcIntVarSetValue
no active demon
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C H A P T E R
35

Developing Applications

When you are developing an application, of course, you are concerned with a great many 
more parts than simply the solution to the problem. No doubt you also have to handle such 
aspects as the user interface, connections to databases, networking with other systems, and 
so forth. In short, developing an application with Solver is just one activity among many 
others relevant to a highly technical project.

Perhaps your first difficulty is to define the objectives of a given application. In as much as 
these objectives may evolve during development, they may prove harder to achieve than 
predicted.

For those reasons, we recommend an incremental method of development. With respect to 
Solver an incremental development cycle entails these phases: 

1. Describe the problem. 

2. Specify the objectives of the application. 

3. Design a model and prototype the application.

4. Implement and optimize the application.

Obviously, these phases are not entirely independent of one another. Developers find 
themselves returning from one phase to another as they work. In fact, the prototyping phase 
frequently calls the entire cycle into question as the end-user reacts to the initial model, 
discovers that some constraint has not yet been formulated, and brings the cycle back to 
phase one; often the end-user is wishing at the same time to be able to modify a solution 
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interactively and thus hoping to return to the specification phase as well. Even phase 4, when 
the application is exercised with real data, can call the entire design into question if 
performance proves poor. In short, a developer can expect several loops among these phases 
throughout a typical development cycle.

This chapter acknowledges the kinds of difficulties a developer encounters while creating an 
application that exploits Solver, and it offers a few hints for avoiding or overcoming these 
difficulties.

Describing the problem

When we consider the aspects of an application that involve constraints, there are a number 
of important points to keep in mind.

◆ We need a complete and exhaustive statement of all the constraints, as a minimal part of 
the problem description.

◆ We need a way to identify the “soft” constraints (that is, those constraints that we would 
like to satisfy but that we may relax or drop altogether if the problem proves intractable).

◆ We must clearly separate the constraints themselves from any strategies we might adopt 
to solve the problem. This principle of separating the constraints from the strategies is 
part of the general rule of constraint programming that emphasizes making the problem 
representation independent of the solution search.

Define all constraints

For example, in the design of a telecommunication network, the problem description might 
demand that every pair of nodes in the network must have at least two paths between those 
nodes for robustness and reliability.

To meet that demand, we’ll design a model, taking into account that constraint on every pair 
of nodes. Let’s say we implement a first-cut of our model, and Solver finds a solution for 
us—a solution that is quite logical: it consists of a huge loop, passing through every node. 
When we show this solution to our clients, we learn, alas, that solution is not acceptable in 
practice, so we go back to the phase of describing our problem again, and we add constraints 
on the length of paths between pairs of nodes. In consequence of this change in the problem 
description, we need to change the model and the implementation.

A better problem description in the first place—one that included all the constraints, 
especially those on the lengths of paths between pairs of nodes—might have spared us this 
repetition. Certainly a sound initial problem description is the surest safeguard against the 
infamous encroachments of an incremental specification.
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Identify soft constraints

As we indicated in our list, we must identify the “soft” constraints in the problem. The soft 
constraints are those that we would like to satisfy, but that we might relax or drop if the 
problem proves intractable. These are the constraints that might lead to the elimination of 
potential solutions if we insist on imposing them. At the same time, these soft constraints are 
typically the constraints that, if we fail to take them into account, we’ll come up with a 
“solution” that we cannot exploit in reality because the soft constraints embody some 
fundamental and practical aspect of the problem.

When we separate the soft from the hard constraints, we are creating the means to 
accomplish two tasks:

◆ to qualify acceptable solutions; 

◆ to measure the quality of proposed solutions.

This work—separating hard and soft constraints so we can compare the adequacy of various 
solutions—is often very difficult, especially when the constraints represent social rules, 
accumulated and elaborated over time, such social rules as customary working hours, 
conventional combinations of tasks, habitual job assignments, and so forth. If we ignore 
such constraints, we are likely to find unacceptable solutions; yet if we enforce such 
constraints, we may fail to find a solution at all. In any case, the nature of such constraints 
have an obvious impact on the model and implementation since they influence the cost 
function.

Separate constraints from strategies

At times, the expertise needed to resolve a problem may be mixed up in the problem 
specification. As we describe the problem, design a model, formulate the problem 
representation, and implement it, we need to recognize the kind of problem-expertise that we 
could exploit to reach a good solution, but we also need to distinguish that expertise from the 
real constraints of the problem. Basically, we do not want to complicate a problem 
unnecessarily with superfluous constraints; rather, we want to make the most of any 
expertise that could be useful in reaching better solutions.

Specifying objectives

Applications built with Solver span a wide spectrum of tools that aid decision-making. One 
way of characterizing them is that they range between two extremes: 

◆ “black box” applications that simply go out and automatically find solutions;

◆ interactive applications that simulate a situation so that user can easily ask “what if?” and 
see the consequences.
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Black-box and user acceptance

How does the choice of a black-box style influence the model and implementation of a 
program using Solver? It’s true that simply solving the problem, like a black box, is often the 
expressed goal of a new project. However, experience has repeatedly shown that user-
acceptance is low for black-box applications, in large part because such an opaque model 
does not inspire user-confidence. Users cannot see what is going on and consequently doubt 
the solution from a black-box application.

Response time

Response time is also a sensitive issue with respect to user-acceptance of an application, and 
certainly response time is an issue that greatly complicates implementation. In a black-box 
application, response time is a conspicuous issue because the end-user simply waits for the 
solution (or non-solution) of the problem.

One way of addressing this difficulty is to limit the amount of time spent searching for a 
solution, and in the case of failure, to provide an explanation for the failure. While it may be 
more or less easy to implement an application that satisfies limits on the amount of time 
needed to find a solution, it is seldom easy to implement a module that explains why the 
application failed to find a solution.

Interactive applications and user-modifiable constraints

At the opposite extreme from a black box are those completely interactive applications that 
let the end-user play the role of an intelligent genie who guides the solution search and who 
intervenes to modify the solution, or even the constraints to get a better solution. How does 
this kind of application influence the model and implementation for a program using Solver?

In designing the model for such an application, you, the developer, definitely have to 
distinguish those constraints that are susceptible to user-modification. And certainly the way 
that the application manages this user-interaction has a direct impact on the implementation 
and solution procedures.

Designing the model and prototyping

While the phase of designing a model is usually presented as quite distinct from the 
prototyping phase, the two are so integrally related that we really should discuss them 
together.

Like any other phase, these two have the dual purpose of validating the preceding steps and 
serving as the take-off point for the next phase. In fact, they represent the moment at which 
the specifications of the application really become visible. For that reason, the end-user is all 
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the more crucial at this juncture in the development, especially if this application is new or 
one that is insufficiently specified.

Extract the miniproblem

Before you actually embark on the total model, it’s a good idea to experiment with small-
scale models. In that way, you’ll acquire useful knowledge about the problem, and you’ll get 
this information early enough in the development cycle to be useful later. Here are a few 
general points (though by no means all) about this experimental period.

In the model-prototype, the first decision to make is how to extract a miniproblem from the 
overall problem. The miniproblem provides the basis for a first-cut model of the whole 
problem. In practice, it’s important to get a first-cut model as early as possible. That model 
serves two purposes: as a validation field for the specifications and as an experimental 
domain for the feasibility of the project. In this context, it’s thus critical to choose a 
representative miniproblem. If the miniproblem that you extract is too simple, it won’t show 
you how the application will perform. If it’s too complicated, it will demand too much 
work—very possibly wasted effort if the model reveals a flaw in the preceding phases. In 
other words, the choice of a miniproblem has serious consequences. Your general experience 
and your knowledge of similar applications will greatly facilitate your choice. One fallback 
choice—sometimes the essential choice—is to use a small-scale instance of the entire 
problem.

Once the problem is well defined, it’s up to you to design a sound model for it. Fortunately, 
with Solver, you can use the same language for the entire set of tasks: designing the model, 
prototyping the application, and implementing the project. In this way, the model itself will 
immediately yield the first prototype.

Decompose the model

First of all, if the model can be logically decomposed, you should do so. You can decompose 
the model in the same way that you partition the variables into subsets with few constraints 
linking the variables of different subsets. It is really important to find such a decomposition 
and to carry it out because the decomposition will save an exponential factor in the solution 
time.

Determine precision

After decomposition, the next issue to address is the degree of precision. Clearly, the degree 
of precision (that is, the granularity of the definition and solution) needs to be adapted to the 
objectives of the application. To put the issue crudely, there is no point in counting seconds if 
your problem works in terms of years. In short, choose an appropriate unit, both for the 
problem representation and for the solution.
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Respect semantics

Also adapt the language of your application to the language of the problem itself. Doing so 
will make communication with your end-user much easier. It will also insure that your 
constraints are relevant to the problem, and in the long run, it will make maintenance easier 
as well. Even more important, the natural structure of the problem domain can lead directly 
to good models for the application. By good models, in this context we mean compact, 
flexible, and understandable. Always stay close to the semantics of the problem. Yes, 
always.

An object-oriented approach distinguishes structural constraints (inherent in a class) from 
specific constraints (intrinsic to an instance). This distinction offers a powerful tool for 
organizing the constraints expressed by an end-user.

We recommend that you create the first model as closely as possible to the way the end-user 
initially formulated the problem.

Avoid symmetry

We strongly recommend that your model should not introduce symmetries that do not 
already exist in reality. Moreover, one of the purposes of successive prototypes is to 
eliminate symmetries in order to reduce the search space and to represent equivalent 
solutions uniquely. In constraint programming generally, symmetries in the model introduce 
greater computation time in the search for solutions and consequently seriously hamper 
performance.

This step—eliminating these kinds of symmetries—is obligatory before you can estimate 
execution time. If you know already on the basis of the model that the execution time is 
exponential with respect to the number of data (usually the number of principal variables), 
various trials with data sets of different sizes will give you an estimate of the constant factor 
in the exponential complexity.

Unfortunately, the case sometimes occurs where you cannot eliminate symmetries in the 
model itself; you have to eliminate them during the search for solutions. In other words, 
those symmetries cannot be taken into account beforehand but only afterwards.

Prototype rapidly and cleanly

In order to take full advantage of rapid prototyping during development, you need, of course, 
to master performance and master the specifications.

There’s an easy way to arrive at the stage of rapid prototyping when you are using Solver: 
simply add a process to your model to generate solutions. You’ll then have a working 
prototype that you can use in various practical ways:

◆ to have your end-user validate the constraints;
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◆ to validate data with constraints.

Validate the model

This kind of work—validation—in the development cycle is greatly simplified if a solution 
is already available to you. With a known solution in hand, you can check the way that your 
constraints have been written so that you will be alerted to any errors in interpretation or any 
bug in translation between the specifications and the implementation. You can also check the 
global coherence of your initial constraints, their coherence as a set. That is, when you have 
a known solution already, you can use it as a reference point in testing and verification. 

Once you have validated it, your first model itself will play the role of a reference. It will 
enable you to test new solutions that you get from the implementations you develop.

Since your first model will play this role in verification, you really should not use any 
idiosyncratic tricks or “dirty” coding practices at this point. Such practices will prove 
troublesome later when you try to modify this first prototype. Moreover, such tricks 
diminish confidence in the robustness of any solutions that you get. How do you avoid the 
sort of programming tricks that we counsel against here? One way is to work in a plain, 
declarative style. Don’t create new, unconventional constraints; instead, use the predefined 
constraints you’ll find ready in Solver.

Choose types of variables

Your choice of types for variables will also be important in your model. The right kind of 
variables can be coded directly from properties of the model. Think, for example, in terms of 
constrained set variables. According to the types of variables that you choose, you’ll be able 
to express constraints more or less easily.

Use symbolic constraints as much as possible; by symbolic constraints, we mean such 
constraints as whether a variable is an element of a set, or what the cardinality of a set may 
be. 

Symbolic constraints often enable you to reduce the number of variables in the program. 
Such a reduction in variables will be useful since the apparent search space is exponential in 
terms of the number of variables, but it is only polynomial with respect to the size of their 
domains.

Experiment with models

In spite of these common sense rules, there are many ways to design the model and create 
the prototype for any given problem. You’ll need to try more than one model to find the best 
fit for your problem, but don’t think of these trials as wasted effort. The time that you spend 
in designing the model, even time spent “playing around” with it, is time well spent since 
that time will be saved in later phases of implementation.
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Among the fruitful experiments that you may want to conduct in this context is to reverse the 
roles of variables and values. 

Implementing and optimizing

Since Solver encourages you to use the same language for the model, the prototype, and the 
implementation, there is not a clear line of demarcation between designing the model and 
implementing the program. The most that we can say about this subject is that prototyping is 
inherently a repetitive activity. Implementation and optimization of the implementation 
begin as soon as you start to improve the model that you’ve created. 

While there may be many aspects of implementation and optimization to carry out for your 
overall application (for example, improving the user-interface, database connections, 
network transactions, etc.) we’ll focus here only on implementation and optimization strictly 
related to Solver. We’ll start by reviewing the obvious: there is no point in optimizing too 
soon in the development cycle. The gymnastics that you may go through to improve 
performance marginally in the early phases of development may very well have little or no 
effect on performance in the finished product while they may very well cause you real 
difficulty in later phases of development as you try to make necessary modifications.

Furthermore, (and this point should be equally obvious) there is no point in optimizing just 
any aspect of your application in wild hope of changing characteristics specific to Solver.

There are, however, practical ways to optimize with Solver.

Use multiple data sets

First, we remind you that the solution of a combinatoric problem is quite sensitive to 
variations in data, so you need to optimize a Solver program with respect to multiple sets of 
data to have any reliable effect at all. In fact, the robustness of your program will depend 
heavily on tests run over several sets of data. Such tests should induce redundant constraints 
that will vary greatly according to the particular instance of the problem under consideration. 

This point about using multiple sets of data to test your program is so important that we’ll 
insist that if you don’t have access to real data, you should consider generating realistic data 
through random variation.

At this point in the development cycle, you should also settle once and for all the format of 
data. If, for example, it is straightforward and quick to sort an array by posing a few 
constraints, obviously it will be even quicker to use a conventional sorting technique. This 
guideline can be generalized: most ordinary preprocessing (unrelated to constraint 
programming) can be handled more efficiently in C++ than in Solver.
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Optimize propagation and search

The areas to optimize in your program are the constraint propagation and the solution 
search. Improvements in those two areas are, of course, interdependent, and the greatest 
gains in efficiency come about when you work simultaneously on both aspects.

Look at changes

To help you see what you’re doing, it’s a good idea to write an interface that shows the 
modifications of variables and the points where backtracking occurs. Such an interface lets 
you rapidly distinguish which variables to take into account early in the solution search. It 
also shows you the areas where propagation is weakest, areas that you should re-enforce 
with redundant constraints.

Use active constraints

Possibly you will have to write new constraints to express conditions specific to your 
application, or at least to express them more efficiently, more directly. In such a case, you 
should use an active constraint, that is, one that propagates everything to all the variables 
that it contains. 

Set granularity

If you write your own constraint (rather than exploiting predefined constraints from Solver), 
you also need to think about the granularity of propagation in your application. In other 
words, you must define the hooks between constraints and events that modify variables. If 
you hook onto only the value event, you may miss out on certain propagations; in contrast, if 
you hook onto every modification with the domain event, you’ll invoke the constraint so 
frequently that you’ll benefit little if at all from domain reductions, thus penalizing the 
global resolution time. 

Whether you are using predefined Solver constraints or writing your own, you can also 
choose the granularity of the solution search. In the algorithms that Solver uses, you can 
decide how to split up the search space at the level of the chosen variable. The standard 
choice IloInstantiate works on the minimal bound of the chosen variable; 
IloDichotomize works on the median (average) value of the chosen variable.

Your choice about this issue should be guided by experimentation; in other words, you 
should try more than one strategy and measure the results. The reason that experimentation 
is so important for this issue is that the best choice depends on information propagated as a 
function of events.

For example, when most of the constraints are arithmetic and are consequently propagated 
on the event range, binary generation using IloDichotomize is usually the most efficient.
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In contrast, if most of the constraints propagate only on value events, it’s a better idea to 
generate the values of the variables.

Use expertise

Professional knowledge about the problem itself proves most useful in writing a search 
algorithm when the standard procedures prove insufficient. In real-world problems (unlike 
purely theoretical problems) the hardest parts are actually often confined to one sole part of 
the model. In consequence, you have to start searching for a partial solution in that region in 
order to minimize the exponential factor.

For example, when you’re building a schedule, you have to assign the most difficult or the 
most critical items first. The easier parts fall into place around them.

This kind of solution clearly shows that the procedure for solving a problem depends very 
much on the instance of the problem under consideration, not merely on its formal 
statement.

Preprocess variables

The primitive algorithm IloGenerate chooses variables separately in the order that they 
are given. This convention can be extremely useful when you’ve already preprocessed the 
variables in some appropriate way to put them into the “right” order.

Of course, this tactic is inadequate if the order itself depends on the states of other variables. 
Such a dynamic order (one depending on other variable states) can be expressed 
straightforwardly in Solver by means of the evaluation functions, IlcChooseXXX.

Obviously, the criteria for evaluation must be pertinent; for example, the domain size of 
binary variables (whose values are either 0 or 1, and thus the size of whose domain is at most 
two) would not work well here.

Exploit different strategies

At some point in the development cycle, you’ll need to think about the criteria for choosing 
variables and values. These choices are so specific to the problem under consideration, 
sometimes even specific to the end-user, that there are no “canned” rules ready to use “off-
the-shelf.” You really must exploit professional expertise from the problem domain.

Solver treats optimization problems by enforcing the idea that the current solution must cost 
less than the preceding solution at each iteration.

The essential factor is in the propagation of the cost variable; at every moment, its 
boundaries must be the best evaluation possible of the cost of the solution partially 
examined.
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We cannot say often enough that “optimality at all costs” is frequently unrealistic or even 
impossible. To get a good solution in a reasonable amount of time depends above all on the 
generation strategy. The behavior that you want, of course, is to get significantly better 
solutions very fast. With such an aim, it may be quite relevant to impose a rule such as, “the 
current solution must be 10% better than the next.” Or, similarly, for example, it may be a 
good idea to eliminate once and for all the solutions close to the one already obtained by 
removing the values near the value belonging to the most recent solution.

Optimize locally

To exploit the possibilities of local optimization, you can take advantage of the Solver 
library.

In fact, you can, at some point, leave aside the backtracking mechanism and concentrate on 
local optimizations. Starting from a solution with a certain cost, Solver will improve that 
solution up to the point of getting a satisfactory solution.

This technique has the additional advantage of working remarkably well on very large 
instances of problems.

As a technique, it is extremely simple in principle. Solver uses generation and propagation to 
get an initial solution; this solution is then improved by local modifications. The problem 
constraints, of course, are used to guarantee that the iterations for improvements stay within 
the authentic solution space.

A few last words

In this chapter, we hoped to bring together the main principles actually put into practice on a 
daily basis by real developers using Solver.

This chapter is necessarily incomplete. We haven’t even touched on problems of over-
constraint, nor replanning. A good example of replanning, where a given plan is changed to 
take account of modifications in the available resources, appears online in the standard 
distribution in the subdirectory of Solver examples in the file replan.cpp.

We hope that the overall impression you’ve gotten from this chapter of “recipes” is that 
developing applications with Solver is intimately linked to the activity of prototyping.
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adding objects 46
improving 584
representation of problem 29
synchronization 303

modeling
as an equation 56, 70

modifier
domain reduction 332
elementary 332
for the class IlcIntExp 333
implementing invariants 336
volatility of 333

monitoring 507
move

search 35
multiphase search 291
multiple operator 521
mutation 545

N

naming
accessors 24
arguments 23
Boolean accessors 24
classes 23
conventions 23

data members 24
instances 23
member functions 23
modifiers 24

neighborhood 416
creating new by subclassing IloNHoodI 431
defining 418
large 467, 474
random 423

neighborhood modifier
creating new by subclassing IloNHoodModifierI 

440
next member function

IloSolver class 61, 279, 281, 306, 308
node 207, 238

child 239
closed 238
open 238
parent 239
unexplored 238

node evaluator 234, 238
notation

domain 31
interval 31
range 31
set 31
square brackets 31

O

objective 30, 88
maximize 92
minimize 92

objects 90
extractable 297

offspring 514
one max problem 509
open node 238
operator

combine constraints 190
genetic packing 547
multiple 521

operator factory 565
operators 47

combine constraints 47
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expressions 73
genetic 504
logical 145

optimizing
guidelines for 618, 621
locally 621
propagation 619
solution search 278, 619

order
constraints and 346
dynamic 620
example 183
imposing on variables 584
imposing to improve model 584
permuting variables and 584
sets and 584
variables and choice function 358
variables and IloGenerate 620

out member function
IloAlgorithm class 49

output
Building Warehouses 465
example: Configuring Tankers 403
example: Frequency Allocation 364
example: Plugging Cards 187
example: Set Variables 403
example:Polynomial Roots 195

P

parent 503
parent node 239
partial replacement 533
partitioning

example 388
personal computer (pc)

linking Solver library on 23
pool

solution 492, 496, 510
pool evaluator

evaluator
pool 533

pool processor 492, 501, 547
population 492, 497
post pure virtual member function 337

IlcConstraintI class 342
predefined constraint 74, 106, 123, 144
predefined goal 49
print solution 49
printInformation member function

IloSolver class 76
problem decomposition 256
problem description

example: Configuring Tankers 381
example: Set Variables 381
guidelines 612

problem representation
example: Allocating Frequencies 355
example: Configuring Tankers 382
example: Set Variables 382
guidelines 614

problem solution
example: Allocating Frequencies 356
example: Car Sequencing 322
example: Rack Configuration 183

processor
pool 492, 501, 547

programming
constraint 29
mathematical 29

propagate pure virtual member function 337, 339
IlcConstraintI class 342

propagation
algorithm 337
back 585
by means of demons 346
constraint 30, 215

during search 32, 35
initial 32, 33

constraints, stepping 597
events 337
exhaustive 346
see bound communication
tracing 596

pruning 75, 239

Q

qualifying acceptable solutions 613
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R

range
event 337
notation 31

range constraints 147
reduce symmetry

introduce order among variables 151
reducing

domains and IloGenerateBounds 201
domains by elementary modifiers 332
domains of floating-point expressions 201

redundant constraint 183, 590
definition 590
eliminating symmetry 183
example: Plugging Cards 183
improving performance 591

regret
least 236

relaxing constraints 88
restart 378
restarting solution search 279, 280
reversible data member 591
right move 241
root 238

search tree 34
roulette wheel selector 547

S

search
algorithms 29
limit 256
local 409
multiphase 291
using impacts 373

search criterion
parameters: IloChooseMaxMaxInt 75
parameters: IloChooseMaxMinInt 75
parameters: IloChooseMaxSizeInt 75
parameters: IloChooseMinMaxInt 75
parameters: IloChooseMinMinInt 75
parameters: IloChooseMinSizeInt 75

search limits 365
search move 35

search procedures 266
search selector 234, 243
search space 33

reducing size of 581
search strategies 30, 35, 234, 240
search strategy 374

example 356
search tree 34, 238

binarization 238
branch 34
root 34

selector 378, 498, 514
defining 588
roulette wheel 547
search 234, 243
tournament 529

set
cardinality 584
constrained variables 122
notation 31
order in 584

set variable 584
example 381

setDefaultFilterLevel member function
IloSolver class 217

setting
choice points 307

slack 320
Slice-Based Search (SBS) 240
solution 496

current 410
improving with local search 410
print 49
storing intermediate 280
testing 592

solution delta 415
testing 417

solution pool 492, 496, 510
solution prototype 510, 544, 561
solution replacement 506, 570
solution search

controlling a choice 74
optimal solutions 278
restarting 279, 280

solve
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incremental 148
solve member function

IloSolver class 48, 306, 412
solve process 32

summary 38
solver heap

allocating memory on 304
stack

goal 61
start member function

IloTimer class 217
startNewSearch member function

IloSolver class 60, 281
strategies

search 30, 35, 240
strongly coupled problem 495
structural constraint

in model 616
support

customer 24
symbolic constraint

guidelines 617
symmetry

dual representation and 582
guidelines 616
reducing 56, 151, 180
removing 183, 583

synchronization 291
synchronization of the model 303

T

talent scheduling problem 468
termination detection 288
test not a constraint 279
three-stage method 30

describe 30
model 31
solve 32

tournament selector 529
trace hook

definition 599
using 599

tracing
choice points 599

propagation 596
tree traversal 239
type

grouping by 56
types in Solver 24

U

union of sets 387
UNIX

linking Solver library on 23

V

value event 337
value filter 377
values 30
variable

permuting order of 584
set 381, 584

variable filter
filter

variable 375
variables

constrained 31
constrained integer 46

array 57
constrained set 122
decision 30, 31, 47

W

worker 287
workers 288
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