
IBM ILOG CPLEX V12.1

Getting Started with CPLEX

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Legal notices

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Further notices

Additional registered trademarks

Python® is a registered trademark of the Python Software Foundation.

MATLAB® is a registered trademark of The MathWorks, Inc.

Acknowledgement of use: dtoa routine of the gdtoa package

ILOG acknowledges use of the dtoa routine of the gdtoa package, available at

http://www.netlib.org/fp/.

The author of this software is David M. Gay.

All Rights Reserved.

http://www.ibm.com/legal/copytrade.shtml

Copyright (C) 1998, 1999 by Lucent Technologies

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose and without fee is hereby granted, provided that the above copyright notice
appears in all copies and that both that the copyright notice and this permission notice
and warranty disclaimer appear in supporting documentation, and that the name of
Lucent or any of its entities not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.

LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN
NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

(end of license terms of dtoa routine of the gdtoa package)

Table of contents

For support...11
Contacting IBM Support...12

Introducing CPLEX...15
What is CPLEX?..17
Overview...18
CPLEX components...20
Optimizer options..21

Using the parallel optimizers...22

Data entry options...23

What CPLEX is not..24

What you need to know..25

What’s in this manual..26

Notation in this manual...27

Related documentation...28

Setting up CPLEX...29
Overview..30

Installing CPLEX..31

Setting up licensing..34

© Copyright IBM Corp. 1987, 2009 5

C O N T E N T S

Using the Component Libraries...35

Tutorials...37
Solving an LP with CPLEX...39
Overview...40
Problem statement...41
Using the Interactive Optimizer..42
Using Concert Technology in C++..43
Using Concert Technology in Java...44
Using Concert Technology in .NET...45
Using the Callable Library..47
Using the Python API...50

Interactive Optimizer tutorial..53
Starting CPLEX..55
Using help..56
Entering a problem...59

Overview...60
Entering the example..61
Using the LP format..63
Entering data...66

Displaying a problem..67
Verifying a problem with the display command...69
Displaying problem statistics...71
Specifying item ranges..72
Displaying variable or constraint names..73
Ordering variables...75
Displaying constraints...76
Displaying the objective function...77
Displaying bounds...78
Displaying a histogram of nonzero counts..79

Solving a problem...81
Overview...82
Solving the example..83
Solution options...85
Displaying post-solution information...87

Performing sensitivity analysis...89
Writing problem and solution files..91

Overview...92
Selecting a write file format...93
Writing LP files..94
Writing basis files..95
Using path names...96

Reading problem files...97

G E T T I N G S T A R T E D W I T H C P L E X6

Overview...98
Selecting a read file format...99
Reading LP files..100
Using file extensions...101
Reading MPS files...102
Reading basis files..103

Setting CPLEX parameters..104
Adding constraints and bounds..106
Changing a problem...109

Overview...111
What can be changed?...112
Changing constraint or variable names...113
Changing sense..114
Changing bounds..115
Removing bounds...116
Changing coefficients of variables..117
Objective and RHS coefficients...118
Deleting entire constraints or variables...119
Changing small values to zero..121

Executing operating system commands...122
Quitting CPLEX..123
Advanced features of the Interactive Optimizer..124

Concert Technology tutorial for C++ users...125
The design of CPLEX in Concert Technology C++ applications...127
Compiling CPLEX in Concert Technology C++ applications..129

Testing your installation on UNIX..130
Testing your installation on Windows..131
In case of problems...132

The anatomy of an Concert Technology C++ application...133
Constructing the environment: IloEnv...134
Creating a model: IloModel...135
Solving the model: IloCplex...138
Querying results..139
Handling errors..140

Building and solving a small LP model in C++...141
Overview...142
Modeling by rows..144
Modeling by columns..145
Modeling by nonzero elements...146

Writing and reading models and files...147
Selecting an optimizer..149
Reading a problem from a file: example ilolpex2.cpp...151

Overview...152

G E T T I N G S T A R T E D W I T H C P L E X 7

Reading the model from a file...153
Selecting the optimizer..154
Accessing basis information..155
Querying quality measures...156

Modifying and re-optimizing...157
Modifying an optimization problem: example ilolpex3.cpp..159

Overview...160
Setting CPLEX parameters...162
Modifying an optimization problem..163
Starting from a previous basis..164
Complete program..165

Concert Technology tutorial for Java users..167
Overview...168
Compiling CPLEX in Concert Technology Java applications..169

Overview...170
Adapting build procedures to your platform..171
In case problems arise..172

The design of CPLEX in Concert Technology Java applications..173
The anatomy of a Concert Technology Java application..175

Overview...176
Create the model...177
Solve the model..179
Query the results...180

Building and solving a small LP model in Java...181
Overview...182
Modeling by rows..184
Modeling by columns..185
Modeling by nonzeros...186

Concert Technology tutorial for .NET users..187
Presenting the tutorial..188
What you need to know: prerequisites..189
What you will be doing..190
Describe...192
Model..194
Solve...198
Complete program..200

Callable Library tutorial..201
The design of the CPLEX Callable Library...202
Compiling and linking Callable Library applications...203

Overview...204
Building Callable Library applications on UNIX platforms...205
Building Callable Library applications on Win32 platforms..206

How CPLEX works...207

G E T T I N G S T A R T E D W I T H C P L E X8

Overview...208
Opening the CPLEX environment...209
Instantiating the problem object..210
Populating the problem object...211
Changing the problem object..212

Creating a successful Callable Library application...213
Overview...215
Prototype the model..216
Identify the routines to call..217
Test procedures in the application...218
Assemble the data..219
Choose an optimizer...220
Observe good programming practices..221
Debug your program...222
Test your application...223
Use the examples...224

Building and solving a small LP model in C...225
Reading a problem from a file: example lpex2.c...227
Adding rows to a problem: example lpex3.c...229
Performing sensitivity analysis...231

Python tutorial...233
Design of CPLEX in a Python application..235
Starting the CPLEX Python API...236
Accessing the module cplex...237
Building and solving a small LP with Python..238
Reading and writing CPLEX models to files with Python...239
Selecting an optimizer in Python..240
Example: reading a problem from a file lpex2.py..241
Modifying and re-optimizing in the CPLEX Python API..242
Example: modifying a model lpex3.py..243
Using CPLEX parameters in the CPLEX Python API...245

Index..247

G E T T I N G S T A R T E D W I T H C P L E X 9

G E T T I N G S T A R T E D W I T H C P L E X10

For support

Explains prerequisites and procedure for technical support.

In this section

Contacting IBM Support
Contains information on how to obtain technical support from IBM worldwide, should you
encounter any problems in using IBM products.

© Copyright IBM Corp. 1987, 2009 11

Contacting IBM Support

IBM Software Support Handbook
This guide contains important information on the procedures and practices followed in the
service and support of your IBM products. It does not replace the contractual terms and
conditions under which you acquired specific IBM Products or Services. Please review it
carefully. You may want to bookmark the site so you can refer back as required to the latest
information. The "IBM Software Support Handbook" can be found on the web at http://
www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html.

Accessing Software Support
When calling or submitting a problem to IBM Software Support about a particular service
request, please have the following information ready:

♦ IBM Customer Number

♦ The machine type/model/serial number (for Subscription and Support calls)

♦ Company name

♦ Contact name

♦ Preferred means of contact (voice or email)

♦ Telephone number where you can be reached if request is voice

♦ Related product and version information

♦ Related operating system and database information

♦ Detailed description of the issue

♦ Severity of the issue in relationship to the impact of it affecting your business needs

Contact by Web
Open service requests is a tool to help clients find the right place to open any problem,
hardware or software, in any country where IBM does business. This is the starting place
when it is not evident where to go to open a service request.

Service Request (SR) tool offers Passport Advantage clients for distributed platforms online
problem management to open, edit and track open and closed PMRs by customer number.
Timesaving options: create new PMRs with prefilled demographic fields; describe problems
yourself and choose severity; submit PMRs directly to correct support queue; attach
troubleshooting files directly to PMR; receive alerts when IBM updates PMR; view reports
on open and closed PMRs. You can find information about assistance for SR at http://
www.ibm.com/software/support/help-contactus.html

System Service Request (SSR) tool is similar to Electronic Service request in providing
online problem management capability for clients with support offerings in place on System

G E T T I N G S T A R T E D W I T H C P L E X12

http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/support/electronic/uprtransition.wss?category=2&locale=en_us
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/help-contactus.html
http://www.ibm.com/software/support/help-contactus.html
http://www14.software.ibm.com/webapp/set2/ssr/slprob

i, System p, System z, TotalStorage products, Linux, Windows, Dynix/PTX, Retail, OS/2,
Isogon, Candle on OS/390 and Consul z/OS legacy products.

IBMLink SoftwareXcel support contracts offer clients on the System z platform the IBMLink
online problem management tool to open problem records and ask usage questions on
System z software products. You can open, track, update, and close a defect or problem
record; order corrective/preventive/toleration maintenance; search for known problems or
technical support information; track applicable problem reports; receive alerts on high
impact problems and fixes in error; and view planning information for new releases and
preventive maintenance.

Contact by phone
If you have an active service contract maintenance agreement with IBM , or are covered by
Program Services, you may contact customer support teams by telephone. For individual
countries, please visit the Technical Support section of the IBM Directory of worldwide
contacts.

G E T T I N G S T A R T E D W I T H C P L E X 13

http://ibm.com/ibmlink
http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

G E T T I N G S T A R T E D W I T H C P L E X14

Introducing CPLEX

This preface introduces CPLEX® .

In this section

What is CPLEX?
Describes CPLEX® , its components, and options.

Using the parallel optimizers
Introduces the parallel optimizers available in CPLEX.

Data entry options
Introduces the means of data entry that CPLEX supports.

What CPLEX is not
Contrasts CPLEX with other tools.

What you need to know
Suggests prerequisites for effective use of CPLEX.

What’s in this manual
Outlines the information available in this manual.

Notation in this manual
Describes the conventions of notation in this manual.

Related documentation
Describes additional documentation available for CPLEX.

© Copyright IBM Corp. 1987, 2009 15

G E T T I N G S T A R T E D W I T H C P L E X16

What is CPLEX?

Describes CPLEX® , its components, and options.

In this section

Overview
Defines the kind of problems that CPLEX solves.

CPLEX components
Describes the components of CPLEX: Interactive Optimizer, Concert Technology, Callable
Library.

Optimizer options
Introduces the options available in CPLEX.

G E T T I N G S T A R T E D W I T H C P L E X 17

Overview

IBM® ILOG® CPLEX® is a tool for solving linear optimization problems, commonly
referred to as Linear Programming (LP) problems, of the form:

c 1 x 1 + c 2 x 2 +...+ c n x nMaximize (or Minimize)

a 11 x 1 + a 12 x 2 +...+ a 1n x n ~ b 1subject to

a 21 x 1 + a 22 x 2 +...+ a 2n x n ~ b 2

...

a m1 x 1 + a m2 x 2 +...+ a mn x n ~ b m

l 1 x 1 u 1with these bounds

...

l n x n u n

where ~ can be ≤, ≥, or =, and the upper bounds u i and lower bounds l i may be positive
infinity, negative infinity, or any real number.

The elements of data you provide as input for this LP are:

c 1 , c 2 , ... , c nObjective function coefficients

a 11 , a 21 , ... , a n1Constraint coefficients

...

a m1 , a m2 , ... , a mn

b 1 , b 2 , ... , b mRighthand sides

u 1 , u 2 , ... , u n and l 1 , l 2 , ... , l nUpper and lower bounds

The optimal solution that CPLEX® computes and returns is:

x 1 , x 2 , ... , x nVariables

CPLEX® also can solve several extensions to LP:

♦ Network Flow problems, a special case of LP that CPLEX® can solve much faster by
exploiting the problem structure.

G E T T I N G S T A R T E D W I T H C P L E X18

♦ Quadratic Programming (QP) problems, where the LP objective function is expanded to
include quadratic terms.

♦ Quadratically Constrained Programming (QCP) problems that include quadratic terms
among the constraints. In fact, CPLEX® can solve Second Order Cone Programming
(SOCP) problems.

♦ Mixed Integer Programming (MIP) problems, where any or all of the LP, QP, or QCP
variables are further restricted to take integer values in the optimal solution and where
MIP itself is extended to include constructs like Special Ordered Sets (SOS) and
semi-continuous variables.

G E T T I N G S T A R T E D W I T H C P L E X 19

CPLEX components

CPLEX® comes in various forms to meet a wide range of users' needs:

♦ The CPLEX Interactive Optimizer is an executable program that can read a problem
interactively or from files in certain standard formats, solve the problem, and deliver the
solution interactively or into text files. The program consists of the file cplex.exe on
Windows platforms or cplex on UNIX platforms.

♦ Concert Technology is a set of C++, Java, and .NET class libraries offering an API that
includes modeling facilities to allow the programmer to embed CPLEX® optimizers in
C++, Java, or .NET applications. Concert Technology libraries. lists the files that contain
the libraries.

Concert Technology libraries
UNIXMicrosoft Windows

libilocplex.a libconcert.ailocplex.lib concert.libC++

cplex.jarcplex.jarJava

ILOG.CPLEX.dll.NET

ILOG.Concert.dll

The Concert Technology libraries make use of the Callable Library (described next).

♦ TheCPLEX Callable Library is a C library that allows the programmer to embed CPLEX®
optimizers in applications written in C, Visual Basic, FORTRAN, or any other language
that can call C functions. The library is provided in files cplexXXX.lib and cplexXXX.dll
on Windows platforms, and in libcplex.a, libcplex.so, and libcplex.sl on UNIX
platforms.

♦ The Python API for CPLEX® a full-featured Python application programming interface
supporting all aspects of CPLEX® optimization.

♦ The CPLEX connector for The MathWorks MATLAB enables a user to define
optimization problems and solve them within MATLAB using either the MATLAB Toolbox
or a CPLEX® class in the MATLAB language.

In this manual, the phrase CPLEX Component Libraries is used to refer equally to any of
these libraries. While all of the libraries are callable, the term CPLEX Callable Library as
used here refers specifically to the C library.

Compatible platforms
CPLEX® is available on Windows, UNIX, and other platforms. The programming interface
works the same way and provides the same facilities on all platforms.

Installation
If you have not yet installed CPLEX® on your platform, consult Setting up CPLEX. It contains
instructions for installing CPLEX® .

G E T T I N G S T A R T E D W I T H C P L E X20

Optimizer options

This manual explains how to use the LP algorithms that are part of CPLEX® . The QP, QCP,
and MIP problem types are based on the LP concepts discussed here, and the extensions to
build and solve such problems are explained in the CPLEX User’s Manual.

Default settings will result in a call to an optimizer that is appropriate to the class of problem
you are solving. However you may wish to choose a different optimizer for special purposes.
An LP or QP problem can be solved using any of the following CPLEX® optimizers: Dual
Simplex, Primal Simplex, Barrier, and perhaps also the Network Optimizer (if the problem
contains an extractable network substructure). Pure network models are all solved by the
Network Optimizer. QCP models, including the special case of SOCP models, are all solved
by the Barrier optimizer. MIP models are all solved by the Mixed Integer Optimizer, which
in turn may invoke any of the LP or QP optimizers in the course of its computation.Optimizers
summarizes these possible choices.

Optimizers
MIPQCPQPNetworkLP

yesyesDual Optimizer

yesyesPrimal Optimizer

yesyesyesBarrier Optimizer

yesMixed Integer Optimizer

Note 1yesNote 1Network Optimizer

Note 1: The problem must contain an extractable network substructure.

The choice of optimizer or other parameter settings may have a very large effect on the
solution speed of your particular class of problem. The CPLEX User's Manual describes the
optimizers, provides suggestions for maximizing performance, and notes the features and
algorithmic parameters unique to each optimizer.

G E T T I N G S T A R T E D W I T H C P L E X 21

Using the parallel optimizers

Parallel Barrier, Parallel MIP, and Concurrent optimizers are implemented to run on hardware
platforms with parallel processors. These parallel optimizers can be called from the
Interactive Optimizer and the Component Libraries.

When small models, such as those in this document, are being solved, the effect of parallelism
will generally be negligible. On larger models, the effect is ordinarily beneficial to solution
speed.

See Parallel optimizers in the CPLEX User's Manual for information about using CPLEX®
on a parallel computer.

G E T T I N G S T A R T E D W I T H C P L E X22

Data entry options

CPLEX® provides several options for entering your problem data. When using the Interactive
Optimizer, most users will enter problem data from formatted files. CPLEX® supports the
industry-standardMPS (Mathematical Programming System) file format as well as CPLEX®
LP format, a row-oriented format many users may find more natural. Interactive entry (using
CPLEX® LP format) is also a possibility for small problems.

Data entry options are described briefly in this manual. File formats are documented in the
reference manual File Formats Reference Manual.

Concert Technology and Callable Library users may read problem data from the same kinds
of files as in the Interactive Optimizer, or they may want to pass data directly into CPLEX®
to gain efficiency. These options are discussed in a series of examples that begin with Building
and solving a small LP model in C++, Building and solving a small LP model in Java, and
Building and solving a small LP model in C for the CPLEX® Callable Library users.

Users can also readmodels from Python. For more about that approach, see the topic Reading
and writing CPLEXmodels to files with Python in the tutorial for Python users in this manual.

Users can also read models from The MathWorks MATLAB. For more about that approach,
see the user's manual accompanying the CPLEX® connector for MATLAB.

G E T T I N G S T A R T E D W I T H C P L E X 23

What CPLEX is not

CPLEX® is not a modeling language, nor is it an integrated development environment (IDE).
You can completely model and solve your optimization problems with CPLEX® ; however,
the features it provides do not offer the interactive facilities of a modeling system in an
integrated development environment. If you are looking for such a system, consider IBM®
ILOG® OPL and ODM.

OPL is a powerful system for rapid development and deployment of optimization applications.
OPL consists of:

♦ the Optimization Programming Language (OPL) for developing optimization models;

♦ an Integrated Development Environment (IDE) to execute and test optimization models;

♦ a command line tool (oplrun) to execute models from the command line;

♦ Application Programming Interfaces (APIs) to embedmodels into standalone applications;

♦ support for IBM® ILOG® Optimization Decision Manager (ODM).

OPL is integrated with a companion product called IBM® ILOG® Optimization Decision
Manager (ODM). ODM is both a tool for application development and a runtime environment.
The combined product is a complete solution for the development and deployment of
optimization-based planning and scheduling applications. Applications built with ODM allow
users to adjust assumptions, operating constraints, and goals for planning and scheduling
resources. End users of ODM also see the results in familiar business terminology. ODM
applications support extensive what-if analysis and scenario comparison features "out of
the box."

G E T T I N G S T A R T E D W I T H C P L E X24

What you need to know

In order to use CPLEX® effectively, you need to be familiar with your operating system,
whether UNIX or Windows.

This manual assumes you already know how to create and manage files. In addition, if you
are building an application that uses the Component Libraries, this manual assumes that
you know how to compile, link, and execute programs written in a high-level language. The
Callable Library is written in the C programming language, while Concert Technology is
available for users of C++, Java, and the .NET framework. This manual also assumes that
you already know how to program in the appropriate language and that you will consult a
programming guide when you have questions in that area.

G E T T I N G S T A R T E D W I T H C P L E X 25

What’s in this manual

Setting up CPLEX tells how to install CPLEX® .

Solving an LP with CPLEX shows you at a glance how to use the Interactive Optimizer and
each of the application programming interfaces (APIs): C++, Java, .NET, and C. This overview
is followed by more detailed tutorials about each interface.

Interactive Optimizer tutorial explains, step by step, how to use the Interactive Optimizer:
how to start it, how to enter problems and data, how to read and save files, how to modify
objective functions and constraints, and how to display solutions and analytical information.

Concert Technology tutorial for C++ users describes the same activities using the classes
in the C++ implementation of the CPLEX® Concert Technology Library.

Concert Technology tutorial for Java users describes the same activities using the classes
in the Java implementation of the CPLEX® Concert Technology Library.

Concert Technology tutorial for .NET users describes the same activities using .NET facilities.

Callable Library tutorial, describes the same activities using the routines in the CPLEX®
Callable Library.

Python tutorial covers certain installation considerations plus an introduction to using the
CPLEX® Python API to model and solve optimization problems.

All tutorials use examples that are delivered with the standard distribution.

G E T T I N G S T A R T E D W I T H C P L E X26

Notation in this manual

This manual observes the following conventions in notation and names.

♦ Important ideas are emphasized the first time they appear.

♦ Text that is entered at the keyboard or displayed on the screen as well as commands and
their options available through the Interactive Optimizer appear in this typeface , for
example, set preprocessing aggregator n .

♦ Entries that you must fill in appear in this typeface; for example, write filename.

♦ The names of C routines and parameters in the CPLEX® Callable Library begin with CPX
and appear in this typeface , for example, CPXcopyobjnames .

♦ The names of C++ classes in the CPLEX® Concert Technology Library begin with Ilo
and appear in this typeface , for example, IloCplex .

♦ The names of Java classes begin with Ilo and appear in this typeface , for example,
IloCplex .

♦ The name of a class or method in .NET is written as concatenated words with the first
letter of each word in upper case, for example, IntVar or IntVar.VisitChildren .
Generally, accessors begin with the key word Get . Accessors for Boolean members begin
with Is . Modifiers begin with Set .

♦ Combinations of keys from the keyboard are hyphenated. For example, control-c indicates
that you should press the control key and the c key simultaneously. The symbol <return>
indicates end of line or end of data entry. On some keyboards, the key is labeled enter
or Enter.

G E T T I N G S T A R T E D W I T H C P L E X 27

Related documentation

In addition to this introductory manual, the standard distribution of CPLEX® comes with
the CPLEX User’s Manual and the CPLEX ReferenceManuals. All documentation is available
online in hypertext mark-up language (HTML). It is delivered with the standard distribution
of the product and accessible through conventional HTML browsers for customers on most
platforms. For customers onMicrosoft Windows, the documentation is available as Microsoft
Compiled HTML (also known as CHM).

♦ The CPLEX User’s Manual explains the relationship between the Interactive Optimizer
and the Component Libraries. It enlarges on aspects of linear programming with CPLEX®
and shows you how to handle quadratic programming (QP) problems, quadratically
constrained programming (QCP) problems, second order cone programming (SOCP)
problems, and mixed integer programming (MIP) problems. It tells you how to control
CPLEX® parameters, debug your applications, and efficiently manage input and output.
It also explains how to use parallel CPLEX® optimizers.

♦ The CPLEX Callable Library Reference Manual documents the Callable Library routines
and their arguments. This manual also includes additional documentation about error
codes, solution quality, and solution status. It is available online as HTML and Microsoft
compiled HTML help (.CHM).

♦ TheCPLEXC++API ReferenceManual documents the C++API of the Concert Technology
classes, methods, and functions. It is available online as HTML and Microsoft compiled
HTML help (.CHM).

♦ The CPLEX Java API Reference Manual supplies detailed definitions of the Concert
Technology interfaces and CPLEX® Java classes. It is available online as HTML and
Microsoft compiled HTML help (.CHM).

♦ The CPLEX .NET Reference Manual documents the .NET API for CPLEX® . It is available
online as HTML and Microsoft compiled HTML help (CHM).

♦ The CPLEX Python API Reference Manual documents the Python API for CPLEX® . It is
available online as HTML and Microsoft compiled HTML help (CHM).

♦ The reference manual CPLEX Parameters contains a table of parameters that can be
modified by parameter routines. It is the definitive reference manual for the purpose and
allowable settings of CPLEX® parameters.

♦ The reference manual CPLEX File Formats contains a list of file formats that CPLEX®
supports as well as details about using them in your applications.

♦ The reference manual CPLEX Interactive Optimizer contains the commands of the
Interactive Optimizer, along with the command options and links to examples of their
use in the CPLEX User’s Manual.

♦ A suite of documentation, including a user's manual and language reference manual, is
available for the CPLEX connector for MATLAB. This documentation is available either
interactively within a MATLAB session or online as HTML or CHM.

As you work with CPLEX® on a long-term basis, you should read the completeUser’s Manual
to learn how to design models and implement solutions to your own problems. Consult the
reference manuals for authoritative documentation of the Component Libraries, their
application programming interfaces (APIs), and the Interactive Optimizer.

G E T T I N G S T A R T E D W I T H C P L E X28

Setting up CPLEX

Shows how to set up CPLEX® and how to check the installation. It includes information for
users of all platforms.

In this section

Overview
Introduces the steps in installation.

Installing CPLEX
Walks through installation steps on different platforms.

Setting up licensing
Explains licensing considerations for CPLEX® .

Using the Component Libraries
Introduces the Component Libraries of CPLEX.

© Copyright IBM Corp. 1987, 2009 29

Overview

You install CPLEX® in two steps: first, install the files from the distribution medium (a CD
or an FTP site) into a directory on your local file system; then activate your license.

At that point, all of the features of CPLEX® become functional and are available to you.
The topics that follow this one provide tutorials in the use of each of the components that
CPLEX® provides: the Interactive Optimizer tutorial, the Concert Technology tutorials for
C++, Java, and .NET users, the Callable Library tutorial for C and other languages callable
from C, as well as the tutorial for users of Python.

Please read these instructions in their entirety before you begin the installation.
Remember that most product distributions will operate correctly only on the

Important:

specific platform and operating system for which they are designed. If you upgrade
your operating system, you may need to obtain a new CPLEX® distribution. In
that case, contact your IBM® ILOG® CPLEX® representative for advice.

G E T T I N G S T A R T E D W I T H C P L E X30

Installing CPLEX

The steps to install CPLEX® involve identifying the correct distribution file for your particular
platform, and then executing a command that uses that distribution file. The identification
step is explained in the booklet that comes with the CD-ROM, or is provided with the FTP
instructions for download. After the correct distribution file is at hand, the installation
proceeds as follows.

Installing CPLEX on UNIX or GNU/Linux
OnUNIX systems CPLEX® is installed in a subdirectory named cplexXXX , under the current
working directory where you perform the installation.

Use the cd command to move to the top level directory into which you want to install the
cplex subdirectory. Then type either of the following commands:

gzip -dc < path/cplex.tgz | tar xf -

tar zxf path/cplex.tgz

where path is the full path name pointing to the location of the CPLEX® distribution file
(either on the CD-ROM or on a disk where you performed the FTP download). On UNIX
systems, both CPLEX® and Concert Technology are installed when you execute that
command.

Installing CPLEX on Windows
Before you install CPLEX® , you need to identify the correct distribution file for your platform.
There are instructions on how to identify your distribution in the booklet that comes with
the CD-ROM or with the FTP instructions for download. That booklet also tells how to start
the CPLEX® installation on your platform.

Installing CPLEX Python API
Themodules associated with the CPLEX® Python API reside in the directory yourCPLEXhome/
python/PLATFORM, (or in the folder yourCPLEXhome\python\PLATFORM) where yourCPLEXhome
specifies the location you installed CPLEX and PLATFORM stands for your combination of
operating system and compiler. You can simply set the environment variable PYTHONPATH
to yourCPLEXhome/python/PLATFORM and start running Python scripts with CPLEX® .

To customize the location of the CPLEX® -Python modules, use the script setup.py located
in yourCPLEXhome/python/PLATFORM along with the option --home to identify the installation
directory.

For example, if you want to install in the directory yourPythonPackageshome/cplex, use
the following command from the command line:

python setup.py install --home yourPythonPackageshome/cplex

G E T T I N G S T A R T E D W I T H C P L E X 31

This command invokes the Python package distutils. For other options available with that
package, consult the documentation of Python distutils.

Directory structure
After completing the installation, you will have a directory structure like the one in the
illustration Structure of the CPLEX installation directory and Structure of the Concert
Technology Installation Directory.

Be sure to read the readme.html carefully for the most recent information about the version
of CPLEX® you have installed.

Structure of the CPLEX installation directory

G E T T I N G S T A R T E D W I T H C P L E X32

Structure of the Concert Technology Installation Directory

G E T T I N G S T A R T E D W I T H C P L E X 33

Setting up licensing

CPLEX® runs under the control of the IBM® ILOG® License Manager (ILM). Before you
can run CPLEX® , or any application that calls it, you must have established a valid license
that ILM can read. Licensing instructions are provided in the ILOG License Manager User’s
Guide and Reference, available from your customer support web site. The basic steps are:

1. Install ILM. Normally you obtain ILM distribution media from the same place that you
obtain CPLEX® .

2. Run the ihostid program, which is found in the directory where you install ILM.

3. Communicate the output of Step 2 to your local CPLEX® sales administration
department. They will send you a license key in return. One way to communicate the
results of Step 2 to your local sales administration department is through the web
page serving your region.

Europe and Africa: https://support.ilog.fr/license/index.cfm

Americas: https://support.ilog.com/license/index.cfm

Asia: https://support.ilog.com.sg/license/index.cfm

4. Create a file on your system to hold this license key, and set the environment variable
ILOG_LICENSE_FILE so that CPLEX® knows where to find the license key. (The
environment variable need not be used if you install the license key in a
platform-dependent default file location.)

G E T T I N G S T A R T E D W I T H C P L E X34

Using the Component Libraries

After you have completed the installation and licensing steps, you can verify that everything
is working by running one or more of the examples that are provided with the standard
distribution.

Verifying installation on UNIX
On a UNIX system, go to the subdirectory examples/machine / libformat that matches your
particular platform, and in it you will find a file named Makefile . Execute one of the
examples, for instance lpex1.c , by doing

make lpex1

lpex1 -r # this example takes one argument, either -r , -c , or -n

If your interest is in running one of the C++ examples, try

make ilolpex1

ilolpex1 -r # this is the same as lpex1 and takes the same arguments.

If your interest is in running one of the Java examples, try

Any of these examples should return an optimal objective function value of 202.5.

Verifying installation on Windows
On aWindows machine, you can follow a similar process using the facilities of your compiler
interface to compile and then run any of the examples. A project file for each example is
provided, in a format for Microsoft Visual Studio.

To run the examples on Windows, either you must copy the CPLEX® DLL to the directory
or folder containing the examples, or you must make sure that the location of the DLL is
part of your Windows path.

In case of errors
If an error occurs during the make or compile step, then check that you are able to access
the compiler and the necessary linker/loader files and system libraries. If an error occurs
on the next step, when executing the program created by make , then the nature of the error
message will guide your actions. If the problem is in licensing, consult the ILOG License
Manager User's Guide and Reference for further guidance. ForWindows users, if the program
has trouble locating cplex XXX .dll or ILOG.CPLEX.dll , make sure the DLL is stored either
in the current directory or in a directory listed in your PATH environment variable.

The UNIX Makefile, or Windows project file, contains useful information regarding
recommended compiler flags and other settings for compilation and linking.

Compiling and linking your own applications
The source files for the examples and the makefiles provide guidance for how your own
application can call CPLEX® . The following topics give more specific information on the

G E T T I N G S T A R T E D W I T H C P L E X 35

necessary header files for compilation, and how to link CPLEX® and Concert Technology
libraries into your application.

♦ Concert Technology tutorial for C++ users contains information and platform-specific
instructions for compiling and linking the Concert Technology Library, for C++ users.

♦ Concert Technology tutorial for Java users contains information and platform-specific
instructions for compiling and linking the Concert Technology Library, for Java users.

♦ Concert Technology tutorial for .NET users offers an example of a C#.NET application.

♦ Callable Library tutorial contains information and platform-specific instructions for
compiling and linking the Callable Library.

♦ Python tutorial contains information about using conventional Python utilities, such as
disutils, and instructions for launching an interactive Python session.

G E T T I N G S T A R T E D W I T H C P L E X36

Tutorials

This part provides tutorials to introduce you to each of the components of IBM® ILOG®
CPLEX® .

In this section

Solving an LP with CPLEX
Solves an LP model to contrast CPLEX® components.

Interactive Optimizer tutorial
Introduces the major features of the CPLEX® Interactive Optimizer.

Concert Technology tutorial for C++ users
This tutorial shows you how to write C++ applications using CPLEX® with Concert
Technology. In this chapter you will learn about:

Concert Technology tutorial for Java users
Introduces CPLEX® through Concert Technology in the Java programming language.

Concert Technology tutorial for .NET users
Introduces CPLEX® through Concert Technology in the .NET framework.

Callable Library tutorial
Shows how to write applications that use the CPLEX® Callable Library (C API).

Python tutorial
Shows how to use CPLEX® interactively in a Python session and how to write an application
using the Python API for CPLEX® .

© Copyright IBM Corp. 1987, 2009 37

G E T T I N G S T A R T E D W I T H C P L E X38

Solving an LP with CPLEX

Solves an LP model to contrast CPLEX® components.

In this section

Overview
Shows ways to solve a linear programming problem.

Problem statement
Displays a linear programming model in a standard formulation to solve in the components
of CPLEX® .

Using the Interactive Optimizer
Shows solution of the model in the Interactive Optimizer.

Using Concert Technology in C++
Shows an application to solve the model in the C++ API.

Using Concert Technology in Java
Shows an application to solve the model in the Java API.

Using Concert Technology in .NET
Refers to a tutorial solving the model in the C#.NET API.

Using the Callable Library
Shows an application to solve the model in the C API.

Using the Python API
Shows an application to solve the model in the Python API.

G E T T I N G S T A R T E D W I T H C P L E X 39

Overview

To help you learn which IBM® ILOG® CPLEX® component best meets your needs, this
chapter briefly demonstrates how to create and solve an LP model. It shows you at a glance
the Interactive Optimizer and the application programming interfaces (APIs) to CPLEX® .
Full details of writing a practical program are in the chapters containing the tutorials.

G E T T I N G S T A R T E D W I T H C P L E X40

Problem statement

The problem to be solved is:

x 1 + 2x 2 + 3x 3Maximize

–x 1 + x 2 + x 3 ≤ 20subject to

x 1 – 3x 2 + x 3 ≤ 30

0 ≤ x1 ≤ 40with these bounds

0 ≤ x2 ≤ infinity

0 ≤ x3 ≤ infinity

G E T T I N G S T A R T E D W I T H C P L E X 41

Using the Interactive Optimizer

The following sample is screen output from a CPLEX® Interactive Optimizer session where
the model of an example is entered and solved. CPLEX> indicates the CPLEX® prompt, and
text following this prompt is user input.

Welcome to CPLEX Interactive Optimizer 12.0.0
with Simplex, Mixed Integer & Barrier Optimizers

Copyright (c) IBM(R) ILOG 1997-2009
CPLEX is a registered trademark of ILOG, an IBM company

Type 'help' for a list of available commands.
Type 'help' followed by a command name for more
information on commands.

CPLEX> enter example
Enter new problem ['end' on a separate line terminates]:
maximize x1 + 2 x2 + 3 x3
subject to -x1 + x2 + x3 <= 20

x1 - 3 x2 + x3 <=30
bounds
0 <= x1 <= 40
0 <= x2
0 <= x3
end
CPLEX> optimize
Tried aggregator 1 time.
No LP presolve or aggregator reductions.
Presolve time = 0.00 sec.

Iteration log . . .
Iteration: 1 Dual infeasibility = 0.000000
Iteration: 2 Dual objective = 202.500000

Dual simplex - Optimal: Objective = 2.0250000000e+002
Solution time = 0.01 sec. Iterations = 2 (1)

CPLEX> display solution variables x1-x3
Variable Name Solution Value
x1 40.000000
x2 17.500000
x3 42.500000
CPLEX> quit

G E T T I N G S T A R T E D W I T H C P L E X42

Using Concert Technology in C++

Here is a C++ application using CPLEX® in Concert Technology to solve the example. An
expanded form of this example is discussed in detail in Concert Technology tutorial for C++
users.

#include <ilcplex/ilocplex.h>
ILOSTLBEGIN

int
main (int argc, char **argv)
{

IloEnv env;
try {

IloModel model(env);
IloNumVarArray vars(env);
vars.add(IloNumVar(env, 0.0, 40.0));
vars.add(IloNumVar(env));
vars.add(IloNumVar(env));
model.add(IloMaximize(env, vars[0] + 2 * vars[1] + 3 * vars[2]));

model.add(- vars[0] + vars[1] + vars[2] <= 20);
model.add(vars[0] - 3 * vars[1] + vars[2] <= 30);

IloCplex cplex(model);
if (!cplex.solve()) {

env.error() << "Failed to optimize LP." << endl;
throw(-1);

}

IloNumArray vals(env);
env.out() << "Solution status = " << cplex.getStatus() << endl;
env.out() << "Solution value = " << cplex.getObjValue() << endl;
cplex.getValues(vals, vars);
env.out() << "Values = " << vals << endl;

}
catch (IloException& e) {

cerr << "Concert exception caught: " << e << endl;
}
catch (...) {

cerr << "Unknown exception caught" << endl;
}

env.end();

return 0;
}

G E T T I N G S T A R T E D W I T H C P L E X 43

Using Concert Technology in Java

Here is a Java application using CPLEX® with Concert Technology to solve the example.
An expanded form of this example is discussed in detail in Concert Technology tutorial for
Java users.

import ilog.concert.*;
import ilog.cplex.*;

public class Example {
public static void main(String[] args) {
try {
IloCplex cplex = new IloCplex();

double[] lb = {0.0, 0.0, 0.0};
double[] ub = {40.0, Double.MAX_VALUE, Double.MAX_VALUE};
IloNumVar[] x = cplex.numVarArray(3, lb, ub);

double[] objvals = {1.0, 2.0, 3.0};
cplex.addMaximize(cplex.scalProd(x, objvals));

cplex.addLe(cplex.sum(cplex.prod(-1.0, x[0]),
cplex.prod(1.0, x[1]),
cplex.prod(1.0, x[2])), 20.0);

cplex.addLe(cplex.sum(cplex.prod(1.0, x[0]),
cplex.prod(-3.0, x[1]),
cplex.prod(1.0, x[2])), 30.0);

if (cplex.solve()) {
cplex.output().println("Solution status = " + cplex.getStatus());
cplex.output().println("Solution value = " + cplex.getObjValue());

double[] val = cplex.getValues(x);
int ncols = cplex.getNcols();
for (int j = 0; j < ncols; ++j)
cplex.output().println("Column: " + j + " Value = " + val[j]);

}
cplex.end();

}
catch (IloException e) {
System.err.println("Concert exception '" + e + "' caught");

}
}

}

G E T T I N G S T A R T E D W I T H C P L E X44

Using Concert Technology in .NET

Here is a C#NET application using Concert Technology with CPLEX® to solve the example.
A tutorial offering an expanded version of this application is available in Concert Technology
tutorial for .NET users.

using ILOG.Concert;
using ILOG.CPLEX;
public class Example {

public static void Main(string[] args) {
try {

Cplex cplex = new Cplex();
double[] lb = {0.0, 0.0, 0.0};
double[] ub = {40.0, System.Double.MaxValue, System.Double.MaxValue}

;
INumVar[] x = cplex.NumVarArray(3, lb, ub);
var[0] = x;
double[] objvals = {1.0, 2.0, 3.0};
cplex.Add(cplex.Maximize(cplex.ScalProd(x, objvals)));
rng[0] = new IRange[2];
rng[0][0] = cplex.AddRange(-System.Double.MaxValue, 20.0);
rng[0][1] = cplex.AddRange(-System.Double.MaxValue, 30.0);
rng[0][0].Expr = cplex.Sum(cplex.Prod(-1.0, x[0]),

cplex.Prod(1.0, x[1]),
cplex.Prod(1.0, x[2]));

rng[0][1].Expr = cplex.Sum(cplex.Prod(1.0, x[0]),
cplex.Prod(-3.0, x[1]),
cplex.Prod(1.0, x[2]));

x[0].Name = "x1";
x[1].Name = "x2";
x[2].Name = "x3";
rng[0][0].Name = "c1";
rng[0][0].Name = "c2";
cplex.ExportModel("example.lp");
if (cplex.Solve()) {

double[] x = cplex.GetValues(var[0]);
double[] dj = cplex.GetReducedCosts(var[0]);
double[] pi = cplex.GetDuals(rng[0]);
double[] slack = cplex.GetSlacks(rng[0]);
cplex.Output().WriteLine("Solution status = " + cplex.GetStatus()

);
cplex.Output().WriteLine("Solution value = " + cplex.ObjValue);
int nvars = x.Length;
for (int j = 0; j < nvars; ++j) {

cplex.Output().WriteLine("Variable " + j +
": Value = " + x[j] +
" Reduced cost = " + dj[j]);

}
int ncons = slack.Length;
for (int i = 0; i < ncons; ++i) {

cplex.Output().WriteLine("Constraint " + i +
": Slack = " + slack[i] +

G E T T I N G S T A R T E D W I T H C P L E X 45

" Pi = " + pi[i]);
}

}
cplex.End();

}
catch (ILOG.Concert.Exception e) {

System.Console.WriteLine("Concert exception ‘" + e + "’ caught");
}

}
}

G E T T I N G S T A R T E D W I T H C P L E X46

Using the Callable Library

Here is a C application using the CPLEX® Callable Library to solve the example. An expanded
form of this example is discussed in detail in Callable Library tutorial.

#include <ilcplex/cplex.h>
#include <stdlib.h>
#include <string.h>

#define NUMROWS 2
#define NUMCOLS 3
#define NUMNZ 6

int
main (int argc, char **argv)
{

int status = 0;
CPXENVptr env = NULL;
CPXLPptr lp = NULL;

double obj[NUMCOLS];
double lb[NUMCOLS];
double ub[NUMCOLS];
double x[NUMCOLS];
int rmatbeg[NUMROWS];
int rmatind[NUMNZ];
double rmatval[NUMNZ];
double rhs[NUMROWS];
char sense[NUMROWS];

int solstat;
double objval;

env = CPXopenCPLEX (&status);
if (env == NULL) {

char errmsg[1024];
fprintf (stderr, "Could not open CPLEX environment.\n");
CPXgeterrorstring (env, status, errmsg);
fprintf (stderr, "%s", errmsg);
goto TERMINATE;

}

lp = CPXcreateprob (env, &status, "lpex1");
if (lp == NULL) {

fprintf (stderr, "Failed to create LP.\n");
goto TERMINATE;

}

CPXchgobjsen (env, lp, CPX_MAX);

obj[0] = 1.0; obj[1] = 2.0; obj[2] = 3.0;

G E T T I N G S T A R T E D W I T H C P L E X 47

lb[0] = 0.0; lb[1] = 0.0; lb[2] = 0.0;
ub[0] = 40.0; ub[1] = CPX_INFBOUND; ub[2] = CPX_INFBOUND;

status = CPXnewcols (env, lp, NUMCOLS, obj, lb, ub, NULL, NULL);
if (status) {

fprintf (stderr, "Failed to populate problem.\n");
goto TERMINATE;

}

rmatbeg[0] = 0;
rmatind[0] = 0; rmatind[1] = 1; rmatind[2] = 2; sense[0] = 'L';
rmatval[0] = -1.0; rmatval[1] = 1.0; rmatval[2] = 1.0; rhs[0] = 20.0;

rmatbeg[1] = 3;
rmatind[3] = 0; rmatind[4] = 1; rmatind[5] = 2; sense[1] = 'L';
rmatval[3] = 1.0; rmatval[4] = -3.0; rmatval[5] = 1.0; rhs[1] = 30.0;

status = CPXaddrows (env, lp, 0, NUMROWS, NUMNZ, rhs, sense, rmatbeg,
rmatind, rmatval, NULL, NULL);

if (status) {
fprintf (stderr, "Failed to populate problem.\n");
goto TERMINATE;

}

status = CPXlpopt (env, lp);
if (status) {

fprintf (stderr, "Failed to optimize LP.\n");
goto TERMINATE;

}

status = CPXsolution (env, lp, &solstat, &objval, x, NULL, NULL, NULL);
if (status) {

fprintf (stderr, "Failed to obtain solution.\n");
goto TERMINATE;

}
printf ("\nSolution status = %d\n", solstat);
printf ("Solution value = %f\n", objval);
printf ("Solution = [%f, %f, %f]\n\n", x[0], x[1], x[2]);

TERMINATE:

if (lp != NULL) {
status = CPXfreeprob (env, &lp);
if (status) {

fprintf (stderr, "CPXfreeprob failed, error code %d.\n", status);
}

}

if (env != NULL) {
status = CPXcloseCPLEX (&env);
if (status) {

char errmsg[1024];

G E T T I N G S T A R T E D W I T H C P L E X48

fprintf (stderr, "Could not close CPLEX environment.\n");
CPXgeterrorstring (env, status, errmsg);
fprintf (stderr, "%s", errmsg);

}
}

return (status);

} /* END main */

G E T T I N G S T A R T E D W I T H C P L E X 49

Using the Python API

Here is a Python application using CPLEX® to solve the example.

execfile("cplexpypath.py")

import cplex
from cplex.exceptions import CplexError
import sys

data common to all populateby functions
my_obj = [1.0, 2.0, 3.0]
my_ub = [40.0, cplex.infinity, cplex.infinity]
my_colnames = ["x1", "x2", "x3"]
my_rhs = [20.0, 30.0]
my_rownames = ["c1", "c2"]
my_sense = "LL"

def populatebyrow(prob):
prob.objective.set_sense(prob.objective.sense.maximize)

since lower bounds are all 0.0 (the default), lb is omitted here
prob.variables.add(obj = my_obj, ub = my_ub, names = my_colnames)

can query variables like the following:

lbs is a list of all the lower bounds
lbs = prob.variables.get_lower_bounds()

ub1 is just the first lower bound
ub1 = prob.variables.get_upper_bounds(0)

names is ["x1", "x3"]
names = prob.variables.get_names([0, 2])

rows = [[[0,"x2","x3"],[-1.0, 1.0,1.0]],
[["x1",1,2],[1.0,-3.0,1.0]]]

prob.linear_constraints.add(lin_expr = rows, senses = my_sense,
rhs = my_rhs, names = my_rownames)

because there are two arguments, they are taken to specify a range
thus, cols is the entire constraint matrix as a list of column vectors
cols = prob.variables.get_cols("x1", "x3")

def populatebycolumn(prob):
prob.objective.set_sense(prob.objective.sense.maximize)

prob.linear_constraints.add(rhs = my_rhs, senses = my_sense,
names = my_rownames)

G E T T I N G S T A R T E D W I T H C P L E X50

c = [[[0,1],[-1.0, 1.0]],
[["c1",1],[1.0,-3.0]],
[[0,"c2"],[1.0, 1.0]]]

prob.variables.add(obj = my_obj, ub = my_ub, names = my_colnames,
columns = c)

def populatebynonzero(prob):
prob.objective.set_sense(prob.objective.sense.maximize)

prob.linear_constraints.add(rhs = my_rhs, senses = my_sense,
names = my_rownames)

prob.variables.add(obj = my_obj, ub = my_ub, names = my_colnames)

rows = [0,0,0,1,1,1]
cols = [0,1,2,0,1,2]
vals = [-1.0,1.0,1.0,1.0,-3.0,1.0]

prob.linear_constraints.set_coefficients(zip(rows, cols, vals))
can also change one coefficient at a time

prob.linear_constraints.set_coefficients(1,1,-3.0)
or pass in a list of triples
prob.linear_constraints.set_coefficients([(0,1,1.0), (1,1,-3.0)])

def lpex1(pop_method):
try:

my_prob = cplex.Cplex()

if pop_method == "r":
handle = populatebyrow(my_prob)

if pop_method == "c":
handle = populatebycolumn(my_prob)

if pop_method == "n":
handle = populatebynonzero(my_prob)

my_prob.solve()
except CplexError, exc:

print exc
return

numrows = my_prob.linear_constraints.get_num()
numcols = my_prob.variables.get_num()

print
solution.get_status() returns an integer code
print "Solution status = " , my_prob.solution.get_status(), ":",
the following line prints the corresponding string
print my_prob.solution.status[my_prob.solution.get_status()]
print "Solution value = ", my_prob.solution.get_objective_value()
slack = my_prob.solution.get_linear_slacks()
pi = my_prob.solution.get_dual_values()
x = my_prob.solution.get_values()

G E T T I N G S T A R T E D W I T H C P L E X 51

dj = my_prob.solution.get_reduced_costs()
for i in range(numrows):

print "Row %d: Slack = %10f Pi = %10f" % (i, slack[i], pi[i])
for j in range(numcols):

print "Column %d: Value = %10f Reduced cost = %10f" % (j, x[j], dj[j]
)

my_prob.write("lpex1.lp")

if __name__ == "__main__":
if len(sys.argv) != 2 or sys.argv[1] not in ["-r", "-c", "-n"]:

print "Usage: lpex1.py -X"
print " where X is one of the following options:"
print " r generate problem by row"
print " c generate problem by column"
print " n generate problem by nonzero"
print " Exiting..."
sys.exit(-1)

lpex1(sys.argv[1][1])
else:

prompt = """Enter the letter indicating how the problem data should be
populated:

r : populate by rows
c : populate by columns
n : populate by nonzeros\n ? > """
r = 'r'
c = 'c'
n = 'n'
lpex1(input(prompt))

G E T T I N G S T A R T E D W I T H C P L E X52

Interactive Optimizer tutorial

Introduces the major features of the CPLEX® Interactive Optimizer.

In this section

Starting CPLEX
Explains how to start the Interactive Optimizer.

Using help
Explains how to invoke help in the Interactive Optimizer.

Entering a problem
Documents ways to enter a problem in the Interactive Optimizer.

Displaying a problem
Documents display of a problem in the Interactive Optimizer.

Solving a problem
Documents solving a problem in the Interactive Optimizer.

Performing sensitivity analysis
Describes options to perform sensitivity analysis in the Interactive Optimizer.

Writing problem and solution files
Documents options to write files from the Interactive Optimizer.

Reading problem files
Documents commands and options to read files into the Interactive Optimizer.

G E T T I N G S T A R T E D W I T H C P L E X 53

Setting CPLEX parameters
Describes options of the set command to control parameters in the Interactive Optimizer.

Adding constraints and bounds
Describes options to add constraints or bounds to a problem in the Interactive Optimizer.

Changing a problem
Documents commands to change a problem in the Interactive Optimizer.

Executing operating system commands
Describes access to operating system commands from the Interactive Optimizer.

Quitting CPLEX
Describes the command to terminate a session of the Interactive Optimizer.

Advanced features of the Interactive Optimizer
Suggests topics for further reading about advanced features.

G E T T I N G S T A R T E D W I T H C P L E X54

Starting CPLEX

♦ To start the CPLEX® Interactive Optimizer, at your operating system prompt type
the command:

cplex

A message similar to the following one appears on the screen:

Welcome to CPLEX Interactive Optimizer 12.0.0
with Simplex, Mixed Integer & Barrier Optimizers

Copyright (c) ILOG 1997-2009
CPLEX is a registered trademark of ILOG

Type help for a list of available commands.
Type help followed by a command name for more
information on commands.

CPLEX>

The last line, CPLEX> , is the prompt, showing that the product is running and is ready to
accept one of the available CPLEX® commands. Use the help command to see a list of
these commands.

G E T T I N G S T A R T E D W I T H C P L E X 55

Using help

CPLEX® accepts commands in several different formats. You can type either the full
command name, or any shortened form that uniquely identifies that name.

♦ For example, enter help after the CPLEX> prompt, as shown:

CPLEX> help

You will see a list of the CPLEX® commands on the screen.

Since all commands start with a unique letter, you could also enter just the single
letter h .

CPLEX> h

CPLEX® does not distinguish between upper- and lower-case letters, so you could
enter h , H , help , or HELP. All of these variations invoke the help command. The same
rules apply to all CPLEX® commands. You need to type only enough letters of the
command to distinguish it from all other commands, and it does not matter whether
you type upper- or lower-case letters. This manual uses lower-case letters.

After you type the help command, a list of available commands with their descriptions
appears on the screen, like this:

add add constraints to the problem
baropt solve using barrier algorithm
change change the problem
conflict refine a conflict for an infeasible problem
display display problem, solution, or parameter settings
enter enter a new problem
feasopt find relaxation to an infeasible problem
help provide information on CPLEX commands
mipopt solve a mixed integer program
netopt solve the problem using network method
optimize solve the problem
populate get additional solutions for a mixed integer program
primopt solve using the primal method
quit leave CPLEX
read read problem or advanced start information from a file
set set parameters
tranopt solve using the dual method
tune try a variety of parameter settings
write write problem or solution information to a file
xecute execute a command from the operating system

Enter enough characters to uniquely identify commands & options. Commands can
beentered partially (CPLEX will prompt you for further information) or as a
whole.

G E T T I N G S T A R T E D W I T H C P L E X56

To find out more about a specific command, type help followed by the name of that command.
For example, to learn more about the primopt command type:

help primopt

Typing the full name is unnecessary. Alternatively, you can try:

h p

The following message appears to tell you more about the use and syntax of the primopt
command:

The PRIMOPT command solves the current problem using
a primal simplex method or crosses over to a basic solution
if a barrier solution exists.

Syntax: PRIMOPT

A problem must exist in memory (from using either the
ENTER or READ command) in order to use the PRIMOPT
command.

Sensitivity information (dual price and reduced-cost
information) as well as other detailed information about
the solution can be viewed using the DISPLAY command,
after a solution is generated.

The syntax for the help command is:

help command name

G E T T I N G S T A R T E D W I T H C P L E X 57

G E T T I N G S T A R T E D W I T H C P L E X58

Entering a problem

Documents ways to enter a problem in the Interactive Optimizer.

In this section

Overview
Introduces data entry for the Interactive Optimizer.

Entering the example
Describes an example and tells how to enter it in the Interactive Optimizer.

Using the LP format
Describes how to enter a problem in LP format in the Interactive Optimizer.

Entering data
Describes special considerations about entering data from the keyboard.

G E T T I N G S T A R T E D W I T H C P L E X 59

Overview

Most users with larger problems enter problems by reading data from formatted files. That
practice is explained in Reading problem files. For now, you will enter a smaller problem
from the keyboard by using the enter command. The process is outlined step-by-step in the
following topics.

G E T T I N G S T A R T E D W I T H C P L E X60

Entering the example

As an example, this manual uses the following problem:

x 1 + 2x 2 + 3x 3Maximize

–x1 + x2 + x3 ≤ 20subject to

x1 – 3x2 + x3 ≤ 30

0 ≤ x1 ≤ 40with these bounds

0 ≤ x2 ≤ infinity

0 ≤ x3 ≤ infinity

This problem has three variables (x1, x2, and x3) and two less-than-or-equal-to constraints.

The enter command is used to enter a new problem from the keyboard. The procedure is
almost as simple as typing the problem on a page. At the CPLEX> prompt type:

enter

A prompt appears on the screen asking you to give a name to the problem that you are about
to enter.

Naming a problem
The problem name may be anything that is allowed as a file name in your operating system.
If you decide that you do not want to enter a new problem, just press the <return> key
without typing anything. The CPLEX> prompt will reappear without causing any action. The
same can be done at any CPLEX> prompt. If you do not want to complete the command,
simply press the <return> key. For now, type in the name example at the prompt.

Enter name for problem: example

The following message appears:

Enter new problem ['end' on a separate line terminates]:

and the cursor is positioned on a blank line below it where you can enter the new problem.

You can also type the problem name directly after the enter command and avoid the
intermediate prompt.

Summary
The syntax for entering a problem is:

G E T T I N G S T A R T E D W I T H C P L E X 61

enter problem name

G E T T I N G S T A R T E D W I T H C P L E X62

Using the LP format

Entering a new problem is basically like typing it on a page, but there are a few rules to
remember. These rules conform to the CPLEX® LP file format and are documented in the
CPLEX File Formats Reference Manual. LP format appears throughout this tutorial.

The problem should be entered in the following order:

1. Objective function

2. Constraints

3. Bounds

Objective function
Before entering the objective function, you must state whether the problem is a minimization
or maximization. For this example, you type:

maximize
x1 + 2x2 + 3x3

You may type minimize or maximize on the same line as the objective function, but you must
separate them by at least one space.

Variable Names
In the example, the variables are named simply x1 , x2 , x3 , but you can give your variables
more meaningful names such as cars or gallons . The only limitations on variable names
in LP format are that the names must be no more than 255 characters long and use only the
alphanumeric characters (a-z, A-Z, 0-9) and certain symbols: ! " # $ % & () , . ; ? @ _ ‘ ’ { }
~. Any line with more than 510 characters is truncated.

A variable name cannot begin with a number or a period, and there is one character
combination that cannot be used: the letter e or E alone or followed by a number or another
e , since this notation is reserved for exponents. Thus, a variable cannot be named e24 nor
e9cats nor eels nor any other name with this pattern. This restriction applies only to
problems entered in LP format.

Constraints
After you have entered the objective function, you can move on to the constraints. However,
before you start entering the constraints, you must indicate that the subsequent lines are
constraints by typing:

subject to

or

G E T T I N G S T A R T E D W I T H C P L E X 63

st

These terms can be placed alone on a line or on the same line as the first constraint if
separated by at least one space. Now you can type in the constraints in the following way:

st
-x1 + x2 + x3 <= 20
x1 - 3x2 + x3 <= 30

Constraint Names
In this simple example, it is easy to keep track of the small number of constraints, but for
many problems, it may be advantageous to name constraints so that they are easier to
identify. You can do so in CPLEX® by typing a constraint name and a colon before the actual
constraint. If you do not give the constraints explicit names, CPLEX® will give them the
default names c1, c2, . . . , cn . In the example, if you want to call the constraints time
and labor , for example, enter the constraints like this:

st
time: -x1 + x2 + x3 <= 20
labor: x1 - 3x2 + x3 <= 30

Constraint names are subject to the same guidelines as variable names. They must have no
more than 255 characters, consist of only allowed characters, and not begin with a number,
a period, or the letter e followed by a positive or negative number or another e .

Objective Function Names
The objective function can be named in the same manner as constraints. The default name
for the objective function is obj. CPLEX® assigns this name if no other is entered.

Bounds
Finally, you must enter the lower and upper bounds on the variables. If no bounds are
specified, CPLEX® will automatically set the lower bound to 0 and the upper bound to +∞.
You must explicitly enter bounds only when the bounds differ from the default values. In
our example, the lower bound on x1 is 0, which is the same as the default. The upper bound
40, however, is not the default, so you must enter it explicitly. You must type bounds on a
separate line before you enter the bound information:

bounds
x1 <= 40

Since the bounds on x2 and x3 are the same as the default bounds, there is no need to enter
them. You have finished entering the problem, so to indicate that the problem is complete,
type:

end

G E T T I N G S T A R T E D W I T H C P L E X64

on the last line.

The CPLEX> prompt returns, indicating that you can again enter a CPLEX® command.

Summary
Entering a problem in CPLEX® is straightforward, provided that you observe a few simple
rules:

♦ The terms maximize or minimizemust precede the objective function; the term subject to
must precede the constraints section; both must be separated from the beginning of each
section by at least one space.

♦ The word bounds must be alone on a line preceding the bounds section.

♦ On the final line of the problem, end must appear.

G E T T I N G S T A R T E D W I T H C P L E X 65

Entering data

You can use the <return> key to split long constraints, and CPLEX® still interprets the
multiple lines as a single constraint. When you split a constraint in this way, do not press
<return> in the middle of a variable name or coefficient. The following is acceptable:

time: -x1 + x2 + <return>
x3 <= 20 <return>
labor: x1 - 3x2 + x3 <= 30 <return>

The entry below, however, is incorrect since the <return> key splits a variable name.

time: -x1 + x2 + x <return>
3 <= 20 <return>
labor: x1 - 3x2 + x3 <= 30 <return>

If you type a line that CPLEX® cannot interpret, a message indicating the problem will
appear, and the entire constraint or objective function will be ignored. You must then re-enter
the constraint or objective function.

The final thing to remember when you are entering a problem is that after you have pressed
<return> , you can no longer directly edit the characters that precede the <return> . As
long as you have not pressed the <return> key, you can use the <backspace> key to go back
and change what you typed on that line. After <return> has been pressed, the change
command must be used to modify the problem. The change command is documented in
Changing a problem.

G E T T I N G S T A R T E D W I T H C P L E X66

Displaying a problem

Documents display of a problem in the Interactive Optimizer.

In this section

Verifying a problem with the display command
Describes the display command and its options in the Interactive Optimizer.

Displaying problem statistics
Describes options for displaying information about large problems in the Interactive
Optimizer.

Specifying item ranges
Describes notation for displaying ranges of items in the Interactive Optimizer.

Displaying variable or constraint names
Describes options to display names of variables or constraints in the Interactive Optimizer.

Ordering variables
Describes internal order among variables in the Interactive Optimizer.

Displaying constraints
Describes options to display constraints in the Interactive Optimizer.

Displaying the objective function
Describes options to display an objective function in the Interactive Optimizer.

Displaying bounds
Describes options to display bounds of a problem in the Interactive Optimizer.

G E T T I N G S T A R T E D W I T H C P L E X 67

Displaying a histogram of nonzero counts
Describes options to display summary of nonzero rows and columns in the Interactive
Optimizer.

G E T T I N G S T A R T E D W I T H C P L E X68

Verifying a problem with the display command

Now that you have entered a problem using CPLEX® , you must verify that the problem
was entered correctly. To do so, use the display command. At the CPLEX> prompt type:

display

A list of the items that can be displayed then appears. Some of the options display parts of
the problem description, while others display parts of the problem solution. Options about
the problem solution are not available until after the problem has been solved. The list looks
like this:

Display Options:

conflict display conflict that demonstrates model infeasibility
problem display problem characteristics
sensitivity display sensitivity analysis
settings display parameter settings
solution display existing solution

Display what:

If you type problem in reply to that prompt, that option will list a set of problem
characteristics, like this:

Display Problem Options:

all display entire problem
binaries display binary variables
bounds display a set of bounds
constraints display a set of constraints or node supply/demand values
generals display general integer variables
histogram display a histogram of row or column counts
indicators display a set of indicator constraints
integers display integer variables
names display names of variables or constraints
qpvariables display quadratic variables
qconstraints display quadratic constraints
semi-continuous display semi-continuous and semi-integer variables
sos display special ordered sets
stats display problem statistics
variable display a column of the constraint matrix

Display which problem characteristic:

Enter the option all to display the entire problem.

G E T T I N G S T A R T E D W I T H C P L E X 69

Maximize
obj: x1 + 2 x2 + 3 x3
Subject To
c1: - x1 + x2 + x3 <= 20
c2: x1 - 3 x2 + x3 <= 30
Bounds
0 <= x1 <= 40
All other variables are >= 0.

The default names obj , c1 , c2 , are provided by CPLEX® .

If that is what you want, you are ready to solve the problem. If there is a mistake, you must
use the change command to modify the problem. The change command is documented in
Changing a problem.

Summary
Display problem characteristics by entering the command:

display problem

G E T T I N G S T A R T E D W I T H C P L E X70

Displaying problem statistics

When the problem is as small as our example, it is easy to display it on the screen; however,
many real problems are far too large to display. For these problems, the stats option of the
display problem command is helpful. When you select stats , information about the
attributes of the problem appears, but not the entire problem itself. These attributes include:

♦ the number and type of constraints

♦ variables

♦ nonzero constraint coefficients

Try this feature by typing:

display problem stats

For our example, the following information appears:

Problem name: example
Variables : 3 [Nneg: 2, Box: 1]
Objective nonzeros : 3
Linear constraints : 2 [Less: 2]
Nonzeros : 6
RHS nonzeros : 2

This information tells us that in the example there are two constraints, three variables, and
six nonzero constraint coefficients. The two constraints are both of the type
less-than-or-equal-to. Two of the three variables have the default nonnegativity bounds
(0 ≤ x ≤ +∞) and one is restricted to a certain range (a box variable). In addition to a
constraint matrix nonzero count, there is a count of nonzero coefficients in the objective
function and on the righthand side. Such statistics can help to identify errors in a problem
without displaying it in its entirety. The command display problem stats shows this
additional information like this:

Variables : Min LB: 0.000000 Max UB: 40.00000
Objective nonzeros : Min : 1.000000 Max : 3.000000
Linear constraints :
Nonzeros : Min : 1.000000 Max : 3.000000
RHS nonzeros : Min : 20.00000 Max : 30.00000

Another way to avoid displaying an entire problem is to display a specific part of it by using
one of the following three options of the display problem command:

♦ names , documented in Displaying variable or constraint names, can be used to display a
specified set of variable or constraint names;

♦ constraints , documented in Displaying constraints, can be used to display a specified
set of constraints;

♦ bounds , documented in Displaying bounds, can be used to display a specified set of
bounds.

G E T T I N G S T A R T E D W I T H C P L E X 71

Specifying item ranges

For some options of the display command, you must specify the item or range of items you
want to see. Whenever input defining a range of items is required, CPLEX® expects two
indices separated by a hyphen (the range character -). The indices can be names or matrix
index numbers. You simply enter the starting name (or index number), a hyphen (–), and
finally the ending name (or index number). CPLEX® automatically sets the default upper
and lower limits defining any range to be the highest and lowest possible values. Therefore,
you have the option of leaving out either the upper or lower name (or index number) on
either side of the hyphen. To see every possible item, you would simply enter –.

Another way to specify a range of items is to use a wildcard. CPLEX® accepts these wildcards
in place of the hyphen to specify a range of items:

♦ question mark (?) for a single character;

♦ asterisk (*) for zero or more characters.

For example, to specify all items, you could enter * (instead of -) if you want.

The sequence of characters c1?matches the name of every constraint in the range from c10
to c19 , for example.

G E T T I N G S T A R T E D W I T H C P L E X72

Displaying variable or constraint names

You can display a variable name by using the display command with the options
problem names variables. If you do not enter the word variables, CPLEX® prompts you
to specify whether you wish to see a constraint or variable name.

Type the following command:

display problem names variables

In response, CPLEX® prompts you to specify a set of variable names to be displayed, like
this:

Display which variable name(s):

Specify these variables by entering the names of the variables or the numbers corresponding
to the columns of those variables. A single number can be used or a range such as 1-2 . All
of the names can be displayed if you type a hyphen (the character -). Try this by entering
a hyphen at the prompt and pressing the <return> key.

Display which variable name(s): -

You could also use a wildcard to display variable names, like this:

Display which variable name(s): *

In the example, there are three variables with default names. CPLEX® displays these three
names:

x1 x2 x3

If you want to see only the second and third names, you could either enter the range as 2-3
or specify everything following the second variable with 2-. Try this technique:

display problem names variables
Display which variable name(s): 2-
x2 x3

If you enter a number without a hyphen, you will see a single variable name:

display problem names variables
Display which variable name(s): 2
x2

G E T T I N G S T A R T E D W I T H C P L E X 73

Summary

♦ You can use a wildcard in the display command to specify a range of items.

♦ You can display variable names by entering the command:

display problem names variables

♦ You can display constraint names by entering the command:

display problem names constraints

G E T T I N G S T A R T E D W I T H C P L E X74

Ordering variables

In the example problem there is a direct correlation between the variable names and their
numbers (x1 is variable 1, x2 is variable 2, etc.); that is not always the case. The internal
ordering of the variables is based on their order of occurrence when the problem is entered.
For example, if x2 had not appeared in the objective function, then the order of the variables
would be x1 , x3 , x2 .

You can see the internal ordering by using the hyphen when you specify the range for the
variables option. The variables are displayed in the order corresponding to their internal
ordering.

All of the options of the display command can be entered directly after the word display
to eliminate intermediate steps. The following command is correct, for example:

display problem names variables 2-3

G E T T I N G S T A R T E D W I T H C P L E X 75

Displaying constraints

To view a single constraint within the matrix, use the command and the constraint number.
For example, type the following:

display problem constraints 2

The second constraint appears:

c2: x1 - 3 x2 + x3 <= 30

You can also use a wildcard to display a range of constraints, like this:

display problem constraints *

G E T T I N G S T A R T E D W I T H C P L E X76

Displaying the objective function

When you want to display only the objective function, you must enter its name (obj by
default) or an index number of 0.

display problem constraints
Display which constraint name(s): 0
Maximize
obj: x1 + 2 x2 + 3 x3

G E T T I N G S T A R T E D W I T H C P L E X 77

Displaying bounds

To see only the bounds for the problem, type the following command (don’t forget the hyphen
or wildcard):

display problem bounds -

or, try a wildcard, like this:

display problem bounds *

The result is:

0 <= x1 <= 40
All other variables are >= 0.

Summary
The general syntax of the display command is:

display option [option2] identifier - [identifier2]

G E T T I N G S T A R T E D W I T H C P L E X78

Displaying a histogram of nonzero counts

For large models, it can sometimes be helpful to see summaries of nonzero counts of the
columns or rows of the constraint matrix. This kind of display is known as a histogram. There
are two commands for displaying histograms: one for columns, one for rows.

display problem histogram c

display problem histogram r

For the small example in this tutorial, the column histogram looks like this:

Column counts (excluding fixed variables):

Nonzero Count: 2
Number of Columns: 3

It tells you that there are three columns each having two nonzeroes, and no other columns.
Similarly, the row histogram of the same small problem looks like this:

Row counts (excluding fixed variables):

Nonzero Count: 3
Number of Rows: 2

It tells you that there are two rows with three nonzeroes in each of them.

Of course, in a more complex model, there would usually be a wider variety of nonzero
counts than those histograms show. Here is an example in which there are sixteen columns
where only one row is nonzero, 756 columns where two rows are nonzero, and so forth.

Column counts (excluding fixed variables):
Nonzero Count: 1 2 3 4 5 6 15 16
Number of Columns: 16 756 1054 547 267 113 2 1

If there has been an error during entry of the problem, perhaps a constraint coefficient
having been omitted by mistake, for example, summaries like these, of a model where the
structure of the constraint matrix is known, may help you find the source of the error.

G E T T I N G S T A R T E D W I T H C P L E X 79

G E T T I N G S T A R T E D W I T H C P L E X80

Solving a problem

Documents solving a problem in the Interactive Optimizer.

In this section

Overview
Introduces solving a model and displaying its solution in the Interactive Optimizer.

Solving the example
Describes activity of the Interactive Optimizer during solution of a problem.

Solution options
Describes additional options after solving in the Interactive Optimizer.

Displaying post-solution information
Describes display options for post-solution information in the Interactive Optimizer.

G E T T I N G S T A R T E D W I T H C P L E X 81

Overview

If you have been following this tutorial step by step, the problem is now correctly entered,
and you can now use CPLEX® to solve it. This tutorial continues with the following topics,
covering solving the problem and displaying solution information.

G E T T I N G S T A R T E D W I T H C P L E X82

Solving the example

The optimize command tells CPLEX® to solve the LP problem. CPLEX® uses the dual
simplex optimizer, unless another method has been specified by setting the LPMETHOD
parameter (explained more fully in the CPLEX User’s Manual).

Entering the optimize command
At the CPLEX> prompt, type the command:

optimize

Preprocessing
First, CPLEX® tries to simplify or reduce the problem using its presolver and aggregator.
If any reductions are made, a message will appear. However, in our small example, no
reductions are possible.

Monitoring the iteration log
Next, an iteration log appears on the screen. CPLEX® reports its progress as it solves the
problem. The solution process involves two stages:

♦ during Phase I, CPLEX® searches for a feasible solution

♦ in Phase II, CPLEX® searches for the optimal feasible solution.

The iteration log periodically displays the current iteration number and either the current
scaled infeasibility during Phase I, or the objective function value during Phase II. After the
optimal solution has been found, the objective function value, solution time, and iteration
count (total, with Phase I in parentheses) are displayed. This information can be useful for
monitoring the rate of progress.

The iteration log display can be modified by the command set simplex display to display
differing amounts of data while the problem is being solved.

Reporting the solution
After it finds the optimal solution, CPLEX® reports:

♦ the objective function value

♦ the problem solution time in seconds

♦ the total iteration count

♦ the Phase I iteration count (in parentheses)

Optimizing our example problem produces a report like the following one (although the
solution times vary with each computer):

G E T T I N G S T A R T E D W I T H C P L E X 83

Tried aggregator 1 time.
No LP presolve or aggregator reductions.
Presolve Time = 0.00 sec.

Iteration Log . . .
Iteration: 1 Dual infeasibility = 0.000000
Iteration: 2 Dual objective = 202.500000

Dual simplex - Optimal: Objective = 2.0250000000e+02
Solution Time = 0.00 sec. Iterations = 2 (1)

CPLEX>

In our example, CPLEX® finds an optimal solution with an objective value of 202.5 in two
iterations. For this simple problem, 1 Phase I iteration was required.

Summary
To solve an LP problem, use the command:

optimize

G E T T I N G S T A R T E D W I T H C P L E X84

Solution options

Here are some of the basic options in solving linear programming problems. Although the
example in this tutorial does not make use of these options, you will find them useful when
handling larger, more realistic problems.

♦ Filing iteration logs;

♦ Re-solving;

♦ Using alternative optimizers;

♦ Interrupting the optimization.

For detailed information about performance options, refer to the CPLEX User’s Manual.

Filing iteration logs
Every time CPLEX® solves a problem, much of the information appearing on the screen is
also directed into a log file. This file is automatically created by CPLEX® with the name
cplex.log . If there is an existing cplex.log file in the directory where CPLEX® is launched,
CPLEX® will append the current session data to the existing file. If you want to keep a
unique log file of a problem session, you can change the default name with the set logfile
command. (See the CPLEX User’s Manual.) The log file is written in standard ASCII format
and can be edited with any text editor.

Re-solving
You may re-solve the problem by reissuing the optimize command. CPLEX® restarts the
solution process from the previous optimal basis, and thus requires zero iterations. If you
do not wish to restart the problem from an advanced basis, use the set advance command
to turn off the advanced start indicator.

Remember that a problem must be present in memory (entered via the enter command or
read from a file) before you issue the optimize command.

Using alternative optimizers
In addition to the optimize command, CPLEX® can use the primal simplex optimizer
(primopt command), the dual simplex optimizer (tranopt command), the barrier optimizer
(baropt command) and the network optimizer (netopt command). Many problems can be
solved faster using these alternative optimizers, which are documented in more detail in
the CPLEX User’s Manual. If you want to solve a mixed integer programming problem, the
optimize command is equivalent to the mipopt command.

Interrupting the optimization
Our short example was solved very quickly. However, larger problems, particularly mixed
integer problems, can take much longer. Occasionally it may be useful to interrupt the
optimization process. CPLEX® allows such interruptions if you use control-c . (The control
and c keys must be pressed simultaneously.) Optimization is interrupted, and CPLEX®

G E T T I N G S T A R T E D W I T H C P L E X 85

issues a message indicating that the process was stopped and displays progress information.
If you issue another optimization command in the same session, CPLEX® will resume
optimization from where it was interrupted.

G E T T I N G S T A R T E D W I T H C P L E X86

Displaying post-solution information

After an optimal solution is found, CPLEX® can provide many different kinds of information
for viewing and analyzing the results. This information is accessed via the display command
and via some write commands.

Information about the following is available with the display solution command:

♦ objective function value;

♦ solution values;

♦ numerical quality of the solution;

♦ slack values;

♦ reduced costs;

♦ dual values (shadow prices);

♦ basic rows and columns.

For information on the write commands, seeWriting problem and solution files. Sensitivity
analysis can also be performed in analyzing results, as explained in Performing sensitivity
analysis.

For example, to view the optimal value of each variable, enter the command:

display solution variables -

In response, the list of variable names with the solution value for each variable is displayed,
like this:

Variable Name Solution Value
x1 40.000000
x2 17.500000
x3 42.500000

To view the slack values of each constraint, enter the command:

display solution slacks -

The resulting message indicates that for this problem the slack variables are all zero.

All slacks in the range 1-2 are 0.

To view the dual values (sometimes called shadow prices) for each constraint, enter the
command:

G E T T I N G S T A R T E D W I T H C P L E X 87

display solution dual -

The list of constraint names with the solution value for each constraint appears, like this:

Constraint Name Dual Price
c1 2.750000
c2 0.250000

Summary
Display solution characteristics by entering a command with the syntax:

display solution identifier

G E T T I N G S T A R T E D W I T H C P L E X88

Performing sensitivity analysis

Sensitivity analysis of the objective function and righthand side provides meaningful insight
about ways in which the optimal solution of a problem changes in response to small changes
in these parts of the problem data.

Sensitivity analysis can be performed on the following:

♦ objective function;

♦ righthand side values;

♦ bounds.

To view the sensitivity analysis of the objective function, enter the command:

display sensitivity obj -

You can also use a wildcard to query solution information, like this:

display sensitivity obj *

For our example, CPLEX® displays the following ranges for sensitivity analysis of the
objective function:

OBJ Sensitivity Ranges

Variable Name Reduced Cost Down Current Up
x1 3.5000 -2.5000 1.0000 +infinity
x2 zero -5.0000 2.0000 3.0000
x3 zero 2.0000 3.0000 +infinity

CPLEX® displays each variable, its reduced cost and the range over which its objective
function coefficient can vary without forcing a change in the optimal basis. The current
value of each objective coefficient is also displayed for reference. Objective function sensitivity
analysis is useful to analyze how sensitive the optimal solution is to the cost or profit
associated with each variable.

Similarly, to view sensitivity analysis of the righthand side, type the command:

display sensitivity rhs -

For our example, CPLEX® displays the following ranges for sensitivity analysis of the
righthand side (RHS):

RHS Sensitivity Ranges

Constraint Name Dual Price Down Current Up

G E T T I N G S T A R T E D W I T H C P L E X 89

c1 2.7500 -36.6667 20.0000 +infinity
c2 0.2500 -140.0000 30.0000 100.0000

CPLEX® displays each constraint, its dual price, and a range over which its righthand side
coefficient can vary without changing the optimal basis. The current value of each RHS
coefficient is also displayed for reference. Righthand side sensitivity information is useful
for analyzing how sensitive the optimal solution and resource values are to the availability
of those resources.

CPLEX® can also display lower bound sensitivity ranges with the command

display sensitivity lb

and upper bound sensitivity with the command

display sensitivity ub

Summary
Display sensitivity analysis characteristics by entering a command with the syntax:

display sensitivity identifier

G E T T I N G S T A R T E D W I T H C P L E X90

Writing problem and solution files

Documents options to write files from the Interactive Optimizer.

In this section

Overview
Introduces the write command of the Interactive Optimizer.

Selecting a write file format
Describes formats available to write a file from the Interactive Optimizer.

Writing LP files
Describes the command for LP file format from the Interactive Optimizer.

Writing basis files
Describes the command to write basis files from the Interactive Optimizer.

Using path names
Describes special considerations with respect to path names from the Interactive Optimizer.

G E T T I N G S T A R T E D W I T H C P L E X 91

Overview

The problem or its solution can be saved by using the write command. This command writes
the problem statement or a solution report to a file.

G E T T I N G S T A R T E D W I T H C P L E X92

Selecting a write file format

When you type the write command in the Interactive Optimizer, CPLEX® displays a menu
of options and prompts you for a file format, like this:

File type options:

bas INSERT format basis file
clp Conflict file
dpe Binary format for dual-perturbed problem
dua MPS format of explicit dual of problem
emb MPS format of (embedded) network
flt Solution pool filters
lp LP format problem file
min DIMACS min-cost network-flow format of (embedded) network
mps MPS format problem file
mst MIP start file
net CPLEX network format of (embedded) network
ord Integer priority order file
ppe Binary format for primal-perturbed problem
pre Binary format for presolved problem
prm Non-default parameter settings
rlp LP format problem with generic names
rew MPS format problem with generic names
sav Binary matrix and basis file
sol Solution file

File type:

♦ The BAS format is used for storing basis information and is introduced in Writing basis
files. See also Reading basis files.

♦ The LP format was discussed in Using the LP format. Using this format is explained in
Writing LP files and Reading LP files.

♦ The MPS format is covered in Reading MPS files.

All these file formats are documented in more detail in the CPLEX File Formats
Reference Manual .

Note:

G E T T I N G S T A R T E D W I T H C P L E X 93

Writing LP files

When you enter the write command. the following message appears:

Name of file to write:

Enter the problem name "example", and CPLEX® will ask you to select a type from a list
of options. For this example, choose LP. CPLEX® displays a confirmation message, like
this:

Problem written to file 'example'.

If you would like to save the file with a different name, you can simply use the write command
with the new file name as an argument. Try this, using the name example2 . This time, you
can avoid intermediate prompts by specifying an LP problem type, like this:

write example2 lp

Another way of avoiding the prompt for a file format is by specifying the file type explicitly
in the file name extension. Try the following as an example:

write example.lp

Using a file extension to indicate the file type is the recommended naming convention. This
makes it easier to keep track of your problem and solution files.

When the file type is specified by the file name extension, CPLEX® ignores subsequent file
type information issued within the write command. For example, CPLEX® responds to the
following command by writing an LP format problem file:

write example.lp mps

G E T T I N G S T A R T E D W I T H C P L E X94

Writing basis files

Another optional file format is BAS. Unlike the LP and MPS formats, this format is not used
to store a description of the problem statement. Rather, it is used to store information about
the solution to a problem, information known as a basis. Even after changes are made to
the problem, using a prior basis to start the optimization from an advanced basis can speed
solution time considerably. A basis can be written only after a problem has been solved. Try
this now with the following command:

write example.bas

In response, CPLEX® displays a confirmation message, like this:

Basis written to file 'example.bas'.

G E T T I N G S T A R T E D W I T H C P L E X 95

Using path names

A full path name may also be included to indicate on which drive and directory any file
should be saved. The following might be a valid write command if the disk drive on your
system contains a root directory named problems :

write /problems/example.lp

Summary
The general syntax for the write command is:

write filename file_format

or

write filename.file_extension

where file_extension indicates the format in which the file is to be saved.

G E T T I N G S T A R T E D W I T H C P L E X96

Reading problem files

Documents commands and options to read files into the Interactive Optimizer.

In this section

Overview
Describes file formats and conventions for using them in the Interactive Optimizer.

Selecting a read file format
Describes files formats that the Interactive Optimizer reads.

Reading LP files
Describes the command to read a formatted LP file into the Interactive Optimizer.

Using file extensions
Describes conventions governing file extensions in the Interactive Optimizer.

Reading MPS files
Describes options to read MPS formatted files in the Interactive Optimizer.

Reading basis files
Describes options to read basis files into the Interactive Optimizer.

G E T T I N G S T A R T E D W I T H C P L E X 97

Overview

When you are using CPLEX® to solve linear optimization problems, you may frequently
enter problems by reading them from files instead of entering them from the keyboard. With
that practice in view, the following topics continue the tutorial from Writing problem and
solution files.

G E T T I N G S T A R T E D W I T H C P L E X98

Selecting a read file format

When you type the read command in the Interactive Optimizer with the name of a file bearing
an extension that it does not recognize, CPLEX® displays the following prompt about file
formats on the screen:

File type options:

bas INSERT format basis file
flt Solution pool filters
lp LP format problem file
min DIMACS min-cost network-flow format file
mps MPS format problem file
mst MIP start file
net CPLEX network-flow format file
ord Integer priority order file
prm Non-default parameter file
sav Binary matrix and basis file
sol Solution file

File type:

All these file formats are documented in more detail in the CPLEX File Formats
Reference Manual.

Note:

G E T T I N G S T A R T E D W I T H C P L E X 99

Reading LP files

At the CPLEX> prompt type:

read

The following message appears requesting a file name:

Name of file to read:

Four files have been saved at this point in this tutorial:

example

example2

example.lp

example.bas

Specify the file named example that you saved while practicing the write command.

You recall that the example problem was saved in LP format, so in response to the file type
prompt, enter:

lp

CPLEX® displays a confirmation message, like this:

Problem 'example' read.
Read Time = 0.03 sec.

The example problem is now in memory, and you canmanipulate it with CPLEX® commands.

The intermediate prompts for the read command can be avoided by entering the entire
command on one line, like this:

Tip:

make LPex1.class
java -Djava.library.path=../../../bin/<platform>: \

-classpath ../../../lib/cplex.jar: LPex1 -r
read example lp

G E T T I N G S T A R T E D W I T H C P L E X100

Using file extensions

If the file name has an extension that corresponds to one of the supported file formats,
CPLEX® automatically reads it without your having to specify the format. Thus, the following
command automatically reads the problem file example.lp in LP format:

read example.lp

G E T T I N G S T A R T E D W I T H C P L E X 101

Reading MPS files

CPLEX® can also read industry-standard MPS formatted files. The problem called afiro.
mps (provided in the CPLEX® distribution) serves as an example. If you include the .mps
extension in the file name, CPLEX® recognizes the file as being in MPS format. If you omit
the extension, CPLEX® attempts to detect whether the file is of a type that it recognizes.

read afiro mps

After the file has been read, the following message appears:

Selected objective sense: MINIMIZE
Selected objective name: obj
Selected RHS name: rhs
Problem ‘afiro’ read.
Read time = 0.01 sec.

CPLEX® reports additional information when it reads MPS formatted files. Since these
files can contain multiple objective function, righthand side, bound, and other information,
CPLEX® displays which of these is being used for the current problem. See Working with
MPS files in the CPLEX User’s Manual to learn more about special considerations for using
MPS formatted files.

G E T T I N G S T A R T E D W I T H C P L E X102

Reading basis files

In addition to other file formats, the read command is also used to read basis files. These
files contain information for CPLEX® that tells the simplex method where to begin the next
optimization. Basis files usually correspond to the result of some previous optimization and
help to speed re-optimization. They are particularly helpful when you are dealing with very
large problems if small changes are made to the problem data.

Writing basis files showed you how to save a basis file for the example after it was optimized.
For this tutorial, first read the example.lp file. Then read this basis file by typing the following
command:

read example.bas

The message of confirmation:

Basis 'example.bas' read.

indicates that the basis file was successfully read. If the advanced basis indicator is on, this
basis will be used as a starting point for the next optimization, and any new basis created
during the session will be used for future optimizations. If the basis changes during a session,
you can save it by using the write command.

Summary
The general syntax for the read command is:

read filename file_format

or

read filename.file_extension

where file_extension corresponds to one of the allowed file formats.

G E T T I N G S T A R T E D W I T H C P L E X 103

Setting CPLEX parameters

CPLEX® users can vary parameters by means of the set command. This command is used
to set CPLEX® parameters to values different from their default values. The procedure for
setting a parameter is similar to that of other commands. Commands can be carried out
incrementally or all in one line from the CPLEX> prompt. Whenever a parameter is set to a
new value, CPLEX® inserts a comment in the log file that indicates the new value.

Setting a parameter
To see the parameters that can be changed, type:

set

The parameters that can be changed are displayed with a prompt, like this:

Available Parameters:

advance set indicator for advanced starting information
barrier set parameters for barrier optimization
clocktype set type of clock used to measure time
conflict set parameters for finding conflicts
defaults set all parameter values to defaults
emphasis set optimization emphasis
feasopt set parameters for feasopt
logfile set file to which results are printed
lpmethod set method for linear optimization
mip set parameters for mixed integer optimization
network set parameters for network optimizations
output set extent and destinations of outputs
parallel set parallel optimization mode
preprocessing set parameters for preprocessing
qpmethod set method for quadratic optimization
read set problem read parameters
sifting set parameters for sifting optimization
simplex set parameters for primal, dual simplex optimizations
threads set default parallel thread count
timelimit set time limit in seconds
tune set parameters for parameter tuning
workdir set directory for working files
workmem set memory available for working storage (megabytes)

Parameter to set:

If you press the <return> key without entering a parameter name, the following message
is displayed:

G E T T I N G S T A R T E D W I T H C P L E X104

No parameters changed.

Resetting defaults
After making parameter changes, it is possible to reset all parameters to default values by
issuing one command:

set defaults

This resets all parameters to their default values, except for the name of the log file.

Summary
The general syntax for the set command is:

set parameter option new_value

Displaying parameter settings
The current values of the parameters can be displayed with the command:

display settings all

A list of parameters with settings that differ from the default values can be displayed with
the command:

display settings changed

For a description of all parameters and their default values, see the reference manual CPLEX
Parameters.

CPLEX® also accepts customized system parameter settings via a parameter specification
file. See the CPLEX File Formats Reference Manual for a description of the parameter
specification file and its use.

G E T T I N G S T A R T E D W I T H C P L E X 105

Adding constraints and bounds

If you wish to add either new constraints or bounds to your problem, use the add command.
This command is similar to the enter command in the way it is used, but it has one important
difference: the enter command is used to start a brand new problem, whereas the add
command only adds new information to the current problem.

Suppose that in the example you need to add a third constraint:

x1 + 2x2 + 3x3 ≥ 50

You may do either interactively or from a file.

Adding interactively
Type the add command, then enter the new constraint on the blank line. After validating
the constraint, the cursor moves to the next line. You are in an environment identical to that
of the enter command after having issued subject to . At this point you may continue to
add constraints or you may type bounds and enter new bounds for the problem. For the
present example, type end to exit the add command. Your session should look like this:

add
Enter new constraints and bounds [‘end’ terminates]:
x1 + 2x2 + 3x3 >= 50
end
Problem addition successful.

When the problem is displayed again, the new constraint appears, like this:

display problem all

Maximize
obj: x1 + 2 x2 + 3 x3
Subject To
c1: - x1 + x2 + x3 <= 20
c2: x1 - 3 x2 + x3 <= 30
c3: x1 + 2 x2 + 3 x3 >= 50
Bounds
0 <= x1 <= 40
All other variables are >= 0.
end

Adding from a file
Alternatively, you may read in new constraints and bounds from a file. If you enter a file
name after the add command, CPLEX® will read a file matching that name. The file contents
must comply with standard CPLEX® LP format. CPLEX® does not prompt for a file name
if none is entered. Without a file name, interactive entry is assumed.

G E T T I N G S T A R T E D W I T H C P L E X106

Summary
The general syntax for the add command is:

add

or

add filename

G E T T I N G S T A R T E D W I T H C P L E X 107

G E T T I N G S T A R T E D W I T H C P L E X108

Changing a problem

Documents commands to change a problem in the Interactive Optimizer.

In this section

Overview
Introduces the change command for modifying a model in the Interactive Optimizer.

What can be changed?
Describes the options of the change command.

Changing constraint or variable names
Describes options to change the name of a constraint or variable in the Interactive Optimizer.

Changing sense
Describes the option to change the sense of a constraint in the Interactive Optimizer.

Changing bounds
Describes the option to change the bounds of a variable in the Interactive Optimizer.

Removing bounds
Describes the way to remove a bound in the Interactive Optimizer.

Changing coefficients of variables
Describes the means to change the coefficient of a variable in a constraint in the Interactive
Optimizer.

Objective and RHS coefficients
Describes the means to change a coefficient in the objective function in the Interactive
Optimizer.

G E T T I N G S T A R T E D W I T H C P L E X 109

Deleting entire constraints or variables
Describes the options of the delete command in the Interactive Optimizer.

Changing small values to zero
Describes a means to clean data by zeroing out small values in the Interactive Optimizer.

G E T T I N G S T A R T E D W I T H C P L E X110

Overview

The enter and add commands allow you to build a problem from the keyboard, but they do
not allow you to change what you have built. You make changes with the change command.

The change command can be used for several different tasks, as demonstrated in the following
topics.

G E T T I N G S T A R T E D W I T H C P L E X 111

What can be changed?

Start out by changing the name of the constraint that you added with the add command. In
order to see a list of change options, type:

change

The elements that can be changed are displayed like this:

Change options:

bounds change bounds on a variable
coefficient change a coefficient
delete delete some part of the problem
name change a constraint or variable name
objective change objective function value
problem change problem type
qpterm change a quadratic objective term
rhs change a righthand side or network supply/demand value
sense change objective function or a constraint sense
type change variable type
values change small values in the problem to zero

Change to make:

G E T T I N G S T A R T E D W I T H C P L E X112

Changing constraint or variable names

Enter name at the Change to make: prompt to change the name of a constraint:

Change to make: name

The present name of the constraint is c3 . In the example, you can change the name to new3
to differentiate it from the other constraints using the following entries:

Change a constraint or variable name [‘c’ or ‘v’]: c
Present name of constraint: c3
New name of constraint: new3
The constraint ‘c3’ now has name ‘new3’.

The name of the constraint has been changed.

The problem can be checked with a display command (for example,
display problem constraints new3) to confirm that the change was made.

This same technique can also be used to change the name of a variable.

G E T T I N G S T A R T E D W I T H C P L E X 113

Changing sense

Next, change the sense of the new3 constraint from ≥ to ≤ using the sense option of the
change command. At the CPLEX> prompt, type:

change sense

CPLEX® prompts you to specify a constraint. There are two ways of specifying this
constraint: if you know the name (for example, new3), you can enter the name; if you do not
know the name, you can specify the index of the constraint. In this example, the index is 3
for the new3 constraint. Try the first method and type:

Change sense of which constraint: new3
Sense of constraint 'new3' is '>='.

CPLEX® tells you the current sense of the selected constraint. All that is left now is to enter
the new sense, which can be entered as <= , >= , or = . You can also type simply < (interpreted
as ≤) or > (interpreted as ≥). The letters l , g , and e are also interpreted as ≤, ≥, and =
respectively.

New sense ['<=' or '>=' or '=']: <=
Sense of constraint 'new3' changed to '<='.

The sense of the constraint has been changed.

The sense of the objective function may be changed by specifying the objective function
name (its default is obj) or the number 0 when CPLEX® prompts you for the constraint.
You are then prompted for a new sense. The sense of an objective function can take the
value maximum or minimum or the abbreviation max or min .

G E T T I N G S T A R T E D W I T H C P L E X114

Changing bounds

When the example was entered, bounds were set specifically only for the variable x1 . The
bounds can be changed on this or other variables with the bounds option. Again, start by
selecting the command and option.

change bounds

Select the variable by name or number and then select which bound you would like to change.
For the example, change the upper bound of variable x2 from +∞ to 50.

Change bounds on which variable: x2
Present bounds on variable x2: The indicated variable is >= 0.
Change lower or upper bound, or both [‘l’, ‘u’, or ‘b’]: u
Change upper bound to what [‘+inf’ for no upper bound]: 50
New bounds on variable ‘x2’: 0 <= x2 <= 50

G E T T I N G S T A R T E D W I T H C P L E X 115

Removing bounds

To remove a bound, set it to +∞ or –∞. Interactively, use the identifiers inf and -inf instead
of the symbols. To change the upper bound of x2 back to +∞, use the one line command:

change bounds x2 u inf

You receive the message:

New bounds on variable 'x2': The indicated variable is >= 0.

The bound is now the same as it was when the problem was originally entered.

G E T T I N G S T A R T E D W I T H C P L E X116

Changing coefficients of variables

Up to this point all of the changes that have been made could be referenced by specifying
a single constraint or variable. In changing a coefficient, however, a constraint and a variable
must be specified in order to identify the correct coefficient. As an example, change the
coefficient of x3 in the new3 constraint from 3 to 30.

As usual, you must first specify which change command option to use:

change coefficient

You must now specify both the constraint row and the variable column identifying the
coefficient you wish to change. Enter both the constraint name (or number) and variable
name (or number) on the same line, separated by at least one space. The constraint name
is new3 and the variable is number 3, so in response to the following prompt, type new3 and
3 , like this, to identify the one to change:

Change which coefficient [‘constraint’ ‘variable’]: new3 3
Present coefficient of constraint ‘new3’, variable ‘3’ is 3.000000.

The final step is to enter the new value for the coefficient of x3 .

Change coefficient of constraint ‘new3’, variable ‘3’ to what: 30
Coefficient of constraint ‘new3’, variable ‘3’ changed to 30.000000.

G E T T I N G S T A R T E D W I T H C P L E X 117

Objective and RHS coefficients

To change a coefficient in the objective function, or in the righthand side, use the
corresponding change command option, objective or rhs . For example, to specify the
righthand side of constraint 1 to be 25.0, a user could enter the following (but for this tutorial,
do not enter this now):

change rhs 1 25.0

G E T T I N G S T A R T E D W I T H C P L E X118

Deleting entire constraints or variables

Another option to the change command is delete . This option is used to remove an entire
constraint or a variable from a problem. Return the problem to its original form by removing
the constraint you added earlier. Type:

change delete

CPLEX® displays a list of delete options.

Delete options:

constraints delete range of constraints
qconstraints delete range of quadratic constraints
indconstraints delete range of indicator constraints
soss delete range of special ordered sets
variables delete range of variables
filters delete range of filters
solutions delete range of solutions from the pool
equality delete range of equality constraints
greater-than delete range of greater-than constraints
less-than delete range of less-than constraints

Deletion to make:

At the first prompt, specify that you want to delete a constraint.

Deletion to make: constraints

At the next prompt, enter a constraint name or number, or a range as you did when you
used the display command. Since the constraint to be deleted is named new3 , enter that
name:

Delete which constraint(s): new3
Constraint 3 deleted.

Check to be sure that the correct range or number is specified when you perform this
operation, since constraints are permanently removed from the problem. Indices of any
constraints that appeared after a deleted constraint will be decremented to reflect the
removal of that constraint.

The last message indicates that the operation is complete. The problem can now be checked
to see if it has been changed back to its original form.

display problem all

Maximize
obj: x1 + 2 x2 + 3 x3

G E T T I N G S T A R T E D W I T H C P L E X 119

Subject To
c1: - x1 + x2 + x3 <= 20
c2: x1 - 3 x2 + x3 <= 30
Bounds
0 <= x1 <= 40
All other variables are >= 0.

When you remove a constraint with the delete option, that constraint no longer exists in
memory; however, variables that appear in the deleted constraint are not removed from
memory. If a variable from the deleted constraint appears in the objective function, it may
still influence the solution process. If that is not what you want, these variables can be
explicitly removed using the delete option.

G E T T I N G S T A R T E D W I T H C P L E X120

Changing small values to zero

The change command can also be used to clean up data in situations where you know that
very small values are not really part of your model but instead are the result of imprecision
introduced by finite-precision arithmetic in operations such as round-off.

change values

CPLEX® then prompts you for a tolerance (epsilon value) within which small values should
be changed to 0 (zero).

Summary
The general syntax for the change command is:

change option identifier [identifier2] new value

G E T T I N G S T A R T E D W I T H C P L E X 121

Executing operating system commands

The execute command (xecute) is simple but useful. It executes operating system commands
outside of the CPLEX® environment. By using xecute , you avoid having to save a problem
and quit CPLEX® in order to carry out a system function (such as viewing a directory, for
example).

As an example, if you wanted to check whether all of the files saved in the last session are
really in the current working directory, the following CPLEX® command shows the contents
of the current directory in a UNIX operating system, using the UNIX command ls:

xecute ls -l
total 7448
-r--r--r-- 1 3258 Jul 14 10:34 afiro.mps
-rwxr-xr-x 1 3783416 Apr 22 10:32 cplex
-rw-r--r-- 1 3225 Jul 14 14:21 cplex.log
-rw-r--r-- 1 145 Jul 14 11:32 example
-rw-r--r-- 1 112 Jul 14 11:32 example.bas
-rw-r--r-- 1 148 Jul 14 11:32 example.lp
-rw-r--r-- 1 146 Jul 14 11:32 example2

After the command is executed, the CPLEX> prompt returns, indicating that you are still in
CPLEX® .Most commands that can normally be entered from the prompt for your operating
system can also be entered with the xecute command. The command may be as simple as
listing the contents of a directory or printing the contents of a file, or as complex as starting
a text editor to modify a file. Anything that can be entered on one line after the operating
system prompt can also be executed from within CPLEX® . However, this command differs
from other CPLEX® commands in that it must be entered on a single line. No prompt will
be issued. In addition, the operating system may fail to carry out the command. In that case,
no message is issued by the operating system, and the result is a return to the CPLEX> prompt.

Summary
The general syntax for the xecute command is:

xecute command line

G E T T I N G S T A R T E D W I T H C P L E X122

Quitting CPLEX

When you are finished using CPLEX® and want to leave it, type:

quit

If a problem has been modified, be sure to save the file before issuing a quit command.
CPLEX® will not prompt you to save your problem.

G E T T I N G S T A R T E D W I T H C P L E X 123

Advanced features of the Interactive Optimizer

This introduction to the Interactive Optimizer presents most of the commands and their
options. There are also other, more advanced features of the Interactive Optimizer,
documented in the CPLEXUser's Manual. Here short descriptions of those advanced features
and links to further information about them.

The tuning tool can help you discern nondefault parameter settings that lead to faster
solving time.Example: time limits on tuning in the Interactive Optimizer shows how to use
the tuning tool in the Interactive Optimizer.

The solution pool stores multiple solutions to a mixed integer programming (MIP) model.
With this feature, you can direct the optimizer to generate multiple solutions in addition to
the optimal solution. CPLEX® offers facilities to manage the solution pool and to access
members of the solution pool. Solution pool: generating and keeping multiple solutions
describes those facilities and documents the corresponding commands of the Interactive
Optimizer.

The conflict refiner diagnoses the cause of infeasibility in a model or MIP start, whether
continuous or discrete, whether linear or quadratic. Diagnosing infeasibility by refining
conflicts documents the conflict refiner generally, and Meet the conflict refiner in the
Interactive Optimizer introduces the conflict refiner as a feature of the Interactive Optimizer.

FeasOpt attempts to repair an infeasibility by modifying the model according to preferences
set by the user. FeasOpt accepts an infeasible model and selectively relaxes the bounds and
constraints in a way that minimizes a weighted penalty function that you define.Repairing
infeasibilities with FeasOpt documents this feature and refers throughout to commands
available in the Interactive Optimizer.

The user may supply aMIP start, also known as an advanced start or a warm start, to
serve as the first integer solution when CPLEX® solves a MIP. Such a solution might come
from a MIP problem solved previously or from the user's knowledge of the problem, for
example. MIP starts and the Interactive Optimizer introduces commands of the Interactive
Optimizer to manage MIP starts.

G E T T I N G S T A R T E D W I T H C P L E X124

Concert Technology tutorial for C++ users

This tutorial shows you how to write C++ applications using CPLEX® with Concert
Technology. In this chapter you will learn about:

In this section

The design of CPLEX in Concert Technology C++ applications
Explains objects necessary to an application of CPLEX in C++.

Compiling CPLEX in Concert Technology C++ applications
When compiling a C++ application with a C++ library like CPLEX® in Concert Technology,
you need to tell your compiler where to find the CPLEX® and Concert include files (that
is, the header files), and you also need to tell the linker where to find the CPLEX® and
Concert libraries. The sample projects and makefiles illustrate how to carry out these
crucial steps for the examples in the standard distribution. They use relative path names to
indicate to the compiler where the header files are, and to the linker where the libraries
are.

The anatomy of an Concert Technology C++ application
Concert Technology is a C++ class library, and therefore Concert Technology applications
consist of interacting C++ objects. This section gives a short introduction to the most
important classes that are usually found in a complete Concert Technology CPLEX® C++
application.

Building and solving a small LP model in C++
Shows a sample solving a linear programming model in C++.

Writing and reading models and files
Introduces reading of models from files and writing models to files in a C++ application.

G E T T I N G S T A R T E D W I T H C P L E X 125

Selecting an optimizer
Outlines criteria for selecting an optimizer in a C++ application.

Reading a problem from a file: example ilolpex2.cpp
Introduces the sample ilolpex2.cpp to illustrate reading from a file.

Modifying and re-optimizing
Walks through modification of the model and re-optimizing in the sample.

Modifying an optimization problem: example ilolpex3.cpp
Introduces a sample to illustrate how to modify a model.

G E T T I N G S T A R T E D W I T H C P L E X126

The design of CPLEX in Concert Technology C++ applications

A clear understanding of C++ objects is fundamental to using Concert Technology with
CPLEX® to build and solve optimization models. These objects can be divided into two
categories:

1. Modeling objects are used to define the optimization problem. Generally an application
creates multiple modeling objects to specify one optimization problem. Those objects
are grouped into an IloModel object representing the complete optimization problem.

2. IloCplex objects are used to solve the problems that have been created with the
modeling objects. An IloCplex object reads a model and extracts its data to the
appropriate representation for the CPLEX® optimizer. Then the IloCplex object is
ready to solve the model it extracted and be queried for solution information.

Thus, the modeling and optimization parts of a user-written application program are
represented by a group of interacting C++ objects created and controlled within the
application. A View of CPLEX with Concert Technology shows a picture of an application
using CPLEX® with Concert Technology to solve optimization problems.

A View of CPLEX with Concert Technology

The CPLEX® internals include the computing environment, its communication channels,
and your problem objects.

This chapter gives a brief tutorial illustrating the modeling and solution classes provided
by Concert Technology and CPLEX® . More information about the algorithm class IloCplex
and its nested classes can be found in the CPLEX User’s Manual and CPLEX C++ API
Reference Manual.

G E T T I N G S T A R T E D W I T H C P L E X 127

G E T T I N G S T A R T E D W I T H C P L E X128

Compiling CPLEX in Concert Technology
C++ applications

When compiling a C++ application with a C++ library like CPLEX® in Concert Technology,
you need to tell your compiler where to find the CPLEX® and Concert include files (that
is, the header files), and you also need to tell the linker where to find the CPLEX® and
Concert libraries. The sample projects and makefiles illustrate how to carry out these
crucial steps for the examples in the standard distribution. They use relative path names to
indicate to the compiler where the header files are, and to the linker where the libraries
are.

In this section

Testing your installation on UNIX
Suggests ways to test installation of CPLEX on a UNIX platform.

Testing your installation on Windows
Suggests ways to test installation of CPLEX on a Windows platform.

In case of problems
Recommends trouble-shooting procedures.

G E T T I N G S T A R T E D W I T H C P L E X 129

Testing your installation on UNIX

To run the test, follow these steps.

1. First check the file readme.html in the standard distribution to locate the right
subdirectory containing a makefile appropriate for your platform.

2. Go to that subdirectory.

3. Then use the sample makefile located there to compile and link the examples that
came in the standard distribution.

make all compiles and links examples for all of the APIs.

make all_cpp compiles and links the examples of the C++ API.

4. Execute one of the compiled examples.

make execute_all executes all of the examples.

make execute_cpp executes only the C++ examples.

G E T T I N G S T A R T E D W I T H C P L E X130

Testing your installation on Windows

To run the test on a Windows platform, first consult the file c_cpp.html in the standard
distribution. Then follow the directions you find there.

The examples have been tested repeatedly on all the platforms compatible with CPLEX® ,
so if you successfully compile, link, and execute them, then you can be sure that your
installation is correct.

G E T T I N G S T A R T E D W I T H C P L E X 131

In case of problems

If you encounter difficulty when you try this test, then there is a problem in your installation,
and you need to correct it before you begin real work with CPLEX® .

For example, if you get a message from the compiler such as

ilolpex3.cpp 1: Can’t find include file ilcplex/ilocplex.h

then you need to verify that your compiler knows where you have installed CPLEX® and
its include files (that is, its header files).

If you get a message from the linker, such as

ld: -lcplex: No such file or directory

then you need to verify that your linker knows where the CPLEX® library is located on your
system.

If you get a message such as

ilm: CPLEX: no license found for this product

or

ilm: CPLEX: invalid encrypted key "MNJVUXTDJV82" in "/usr/ilog/ilm/access.
ilm";run ilmcheck

then there is a problem with your license to use CPLEX® . Review the IBM ILOG License
Manager User’s Guide and Reference to see whether you can correct the problem. If not,
contact the customer support hotline and repeat the error message there.

If you successfully compile, link, and execute one of the examples in the standard distribution,
then you can be sure that your installation is correct, and you can begin to use CPLEX®
with Concert Technology seriously.

G E T T I N G S T A R T E D W I T H C P L E X132

The anatomy of an Concert Technology C++
application

Concert Technology is a C++ class library, and therefore Concert Technology applications
consist of interacting C++ objects. This section gives a short introduction to the most
important classes that are usually found in a complete Concert Technology CPLEX® C++
application.

In this section

Constructing the environment: IloEnv
Describes the class IloEnv.

Creating a model: IloModel
Describes modeling objects for an application of CPLEX in C++.

Solving the model: IloCplex
Describes the class IloCplex.

Querying results
Introduces query methods.

Handling errors
Suggests way to handle errors in an application of CPLEX in C++.

G E T T I N G S T A R T E D W I T H C P L E X 133

Constructing the environment: IloEnv

An environment, that is, an instance of IloEnv is typically the first object created in any
Concert Technology application.

You construct an IloEnv object by declaring a variable of type IloEnv . For example, to
create an environment named env , you do this:

IloEnv env;

The environment object created in a Concert Technology application is different from
the environment created in the CPLEX® C library by calling the routine CPXopenCPLEX.

Note:

The environment object is of central importance and needs to be available to the constructor
of all other Concert Technology classes because (among other things) it provides optimized
memory management for objects of Concert Technology classes. This provides a boost in
performance compared to the memory management of the operating system.

As is the case for most Concert Technology classes, IloEnv is a handle class. This means
that the variable env is a pointer to an implementation object, which is created at the same
time as env in the above declaration. One advantage of using handles is that if you assign
handle objects, all that is assigned is a pointer. So the statement

IloEnv env2 = env;

creates a second handle pointing to the implementation object that env already points to.
Hence there may be an arbitrary number of IloEnv handle objects all pointing to the same
implementation object. When terminating the Concert Technology application, the
implementation object must be destroyed as well. This must be done explicitly by the user
by calling

env.end();

for just ONE of the IloEnv handles pointing to the implementation object to be destroyed.
The call to env.end is generally the last Concert Technology operation in an application.

G E T T I N G S T A R T E D W I T H C P L E X134

Creating a model: IloModel

After creating the environment, a Concert application is ready to create one or more
optimization models. Doing so consists of creating a set of modeling objects to define each
optimization model.

Modeling objects, like IloEnv objects, are handles to implementation objects. Though you
will be dealing only with the handle objects, it is the implementation objects that contain
the data that specifies the optimization model. If you need to remove an implementation
object from memory, you need to call the end method for one of its handle objects.

Modeling objects are also known as extractables because it is the individual modeling objects
that are extracted one by one when you extract an optimization model to IloCplex . So,
extractables are characterized by the possibility of being extracted to algorithms such as
IloCplex . In fact, they all are inherited from the class IloExtractable . In other words,
IloExtractable is the base class of all classes of extractables or modeling objects.

The most fundamental extractable class is IloModel . Objects of this class are used to define
a complete optimization model that can later be extracted to an IloCplex object. You create
a model by constructing an object of type IloModel . For example, to construct a modeling
object named model , within an existing environment named env , you would do the following:

IloModel model(env);

At this point, it is important to note that the environment is passed as an argument to the
constructor. There is also a constructor that does not use the environment argument, but
this constructor creates an empty handle, the handle corresponding to a NULL pointer. Empty
handles cannot be used for anything but for assigning other handles to them. Unfortunately,
it is a common mistake to try to use empty handles for other things.

After an IloModel object has been constructed, it is populated with the extractables that
define the optimization model. The most important classes here are:

representing modeling variables;IloNumVar

defining constraints of the form l <= expr <= u, where expr is a linear expression;
and

IloRange

representing an objective function.IloObjective

You create objects of these classes for each variable, constraint, and objective function of
your optimization problem. Then you add the objects to the model by calling

model.add(object);

for each extractable object . There is no need to explicitly add the variable objects to a
model, as they are implicitly added when they are used in the range constraints (instances
of IloRange) or the objective. At most one objective can be used in a model with IloCplex
.

G E T T I N G S T A R T E D W I T H C P L E X 135

Modeling variables are constructed as objects of class IloNumVar , by defining variables of
type IloNumVar . Concert Technology provides several constructors for doing this; the most
flexible form is:

IloNumVar x1(env, 0.0, 40.0, ILOFLOAT);

This definition creates the modeling variable x1 with lower bound 0.0, upper bound 40.0
and type ILOFLOAT , which indicates the variable is continuous. Other possible variable types
include ILOINT for integer variables and ILOBOOL for Boolean variables.

For each variable in the optimization model a corresponding object of class IloNumVarmust
be created. Concert Technology provides a wealth of ways to help you construct all the
IloNumVar objects.

After all the modeling variables have been constructed, they can be used to build expressions,
which in turn are used to define objects of class IloObjective and IloRange . For example,

IloObjective obj = IloMinimize(env, x1 + 2*x2 + 3*x3);

This creates the extractable obj of type IloObjectivewhich represents the objective function
of the example presented in Introducing CPLEX.

Consider in more detail what this line does. The function IloMinimize takes the environment
and an expression as arguments, and constructs a new IloObjective object from it that
defines the objective function to minimize the expression. This new object is returned and
assigned to the new handle obj .

After an objective extractable is created, it must be added to the model. As noted above this
is done with the add method of IloModel . If this is all that the variable obj is needed for,
it can be written more compactly, like this:

model.add(IloMinimize(env, x1 + 2*x2 + 3*x3));

This way there is no need for the program variable obj and the program is shorter. If in
contrast, the objective function is needed later, for example, to change it and re-optimize
the model when doing scenario analysis, the variable obj must be created in order to refer
to the objective function. (From the standpoint of algorithmic efficiency, the two approaches
are comparable.)

Creating constraints and adding them to the model can be done just as easily with the
following statement:

model.add(-x1 + x2 + x3 <= 20);

The part -x1 + x2 + x3 <= 20 creates an object of class IloRange that is immediately
added to the model by passing it to the method IloModel::add . Again, if a reference to the
IloRange object is needed later, an IloRange handle object must be stored for it. Concert
Technology provides flexible array classes for storing data, such as these IloRange objects.
As with variables, Concert Technology provides a variety of constructors that help create
range constraints.

While those examples use expressions with modeling variables directly for modeling, it
should be pointed out that such expressions are themselves represented by yet another

G E T T I N G S T A R T E D W I T H C P L E X136

Concert Technology class, IloExpr . Like most Concert Technology objects, IloExpr objects
are handles. Consequently, the method end must be called when the object is no longer
needed. The only exceptions are implicit expressions, where the user does not create an
IloExpr object, such as when writing (for example) x1 + 2*x2 . For such implicit expressions,
the method end should not be called. The importance of the class IloExpr becomes clear
when expressions can no longer be fully spelled out in the source code but need instead to
be built up in a loop. Operators like += provide an efficient way to do this.

G E T T I N G S T A R T E D W I T H C P L E X 137

Solving the model: IloCplex

After the optimization problem has been created in an IloModel object, it is time to create
the IloCplex object for solving the problem. This is done by creating an instance of the
class IloCplex . For example, to create an object named cplex , do the following:

IloCplex cplex(env);

again using the environment env as an argument. The CPLEX® object can then be used to
extract the model to be solved. One way to extract the model is to call cplex.extract(model)
. However, experienced Concert users recommend a shortcut that performs the construction
of the cplex object and the extraction of the model in one line:

IloCplex cplex(model);

This shortcut works because the modeling object model contains within it the reference to
the environment named env .

After this line, object cplex is ready to solve the optimization problem defined by model .
To solve the model, call:

cplex.solve ();

This method returns an IloBool value, where IloTrue indicates that cplex successfully
found a feasible (yet not necessarily optimal) solution, and IloFalse indicates that no solution
was found. More precise information about the outcome of the last call to the method solve
can be obtained by calling:

cplex.getStatus ();

The returned value tells you what CPLEX® found out about the model: whether it found
the optimal solution or only a feasible solution, whether it proved the model to be unbounded
or infeasible, or whether nothing at all has been proved at this point. Even more detailed
information about the termination of the solve call is available through method
getCplexStatus .

G E T T I N G S T A R T E D W I T H C P L E X138

Querying results

After successfully solving the optimization problem, you probably are interested in accessing
the solution. The following methods can be used to query the solution value for a variable
or a set of variables:

IloNum IloCplex::getValue (IloNumVar var) const;
void IloCplex::getValues (IloNumArray val,

const IloNumVarArray var) const;

For example:

IloNum val1 = cplex.getValue(x1);

stores the solution value for the modeling variable x1 in val1 . Other methods are available
for querying other solution information. For example, the objective function value of the
solution can be accessed using:

IloNum objval = cplex.getObjValue ();

G E T T I N G S T A R T E D W I T H C P L E X 139

Handling errors

Concert Technology provides two lines of defense for dealing with error conditions, suited
for addressing two kinds of errors. The first kind covers simple programming errors. Examples
of this kind are: trying to use empty handle objects or passing arrays of incompatible lengths
to functions.

This kind of error is usually an oversight and should not occur in a correct program. In order
not to pay any runtime cost for correct programs asserting such conditions, the conditions
are checked using assert statements. The checking is disabled for production runs if
compiled with the -DNDEBUG compiler option.

The second kind of error is more complex and cannot generally be avoided by correct
programming. An example is memory exhaustion. The data may simply require too much
memory, even when the program is correct. This kind of error is always checked at runtime.
In cases where such an error occurs, Concert Technology throws a C++ exception.

In fact, Concert Technology provides a hierarchy of exception classes that all derive from
the common base class IloException . Exceptions derived from this class are the only kind
of exceptions that are thrown by Concert Technology. The exceptions thrown by IloCplex
objects all derive from class IloAlgorithm::Exception or IloCplex_Exception .

To handle exceptions gracefully in a Concert Technology application, include all of the code
in a try/catch clause, like this:

IloEnv env;
try {
// ...
} catch (IloException& e) {
cerr << "Concert Exception: " << e << endl;
} catch (...) {
cerr << "Other Exception" << endl;
}
env.end();

The construction of the environment comes before the try/catch clause. In case of
an exception, env.end must still be called. To protect against failure during the
construction of the environment, another try/catch clause may be added.

Note:

If code other than Concert Technology code is used in the part of that sample denoted by .
.. , all other exceptions will be caught with the statement catch(...) . Doing so is good
practice, as it makes sure that no exception is unhandled.

G E T T I N G S T A R T E D W I T H C P L E X140

Building and solving a small LP model in
C++

Shows a sample solving a linear programming model in C++.

In this section

Overview
Introduces three alternative approaches in the sample.

Modeling by rows
Describes the approach of modeling by rows in the sample.

Modeling by columns
Describes the approach of modeling by columns in the sample.

Modeling by nonzero elements
Describes the approach of modeling by nonzero elements in the sample.

G E T T I N G S T A R T E D W I T H C P L E X 141

Overview

A complete example of building and solving a small LP model can now be presented. This
example demonstrates:

♦ Modeling by rows

♦ Modeling by columns

♦ Modeling by nonzero elements

Example ilolpex1.cpp , which is one of the example programs in the standard CPLEX®
distribution, is an extension of the example presented in Introducing CPLEX. It shows three
different ways of creating a Concert Technology LP model, how to solve it using IloCplex
, and how to access the solution. Here is the problem that the example optimizes:

x1 + 2x2 + 3x3Maximize

–x1 + x2 + x 3 ≤ 20subject to

x1 – 3x2 + x 3 ≤ 30

0 ≤ x 1 ≤ 40with these bounds

0 ≤ x 2 ≤ infinity

0 ≤ x 3 ≤ infinity

The first operation is to create the environment object env , and the last operation is to
destroy it by calling env.end . The rest of the code is enclosed in a try/catch clause to
gracefully handle any errors that may occur.

First the example creates the model object and, after checking the correctness of command
line arguments, it creates empty arrays for storing the variables and range constraints of
the optimization model. Then, depending on the command line argument, the example calls
one of the functions populatebyrow, populatebycolumn, or populatebynonzero, to fill the
model object with a representation of the optimization problem. These functions place the
variable and range objects in the arrays var and conwhich are passed to them as arguments.

After the model has been populated, the IloCplex algorithm object cplex is created and
the model is extracted to it. The following call of the method solve invokes the optimizer.
If it fails to generate a solution, an error message is issued to the error stream of the
environment, cplex.error() , and the integer -1 is thrown as an exception.

IloCplex provides the output streams out for general logging, warning for warningmessages,
and error for error messages. They are preconfigured to cout , cerr , and cerr respectively.
Thus by default you will see logging output on the screen when invoking the method solve
. This can be turned off by calling cplex.setOut(env.getNullStream()) , that is, by
redirecting the out stream of the IloCplex object cplex to the null stream of the environment.

If a solution is found, solution information is output through the channel, env.out which is
initialized to cout by default. The output operator << is defined for type
IloAlgorithm::Status as returned by the call to getStatus . It is also defined for

G E T T I N G S T A R T E D W I T H C P L E X142

IloNumArray , the Concert Technology class for an array of numerical values, as returned
by the calls to getValues , getDuals , getSlacks , and getReducedCosts. In general, the
output operator is defined for any Concert Technology array of elements if the output operator
is defined for the elements.

The functions named populateby * are purely about modeling and are completely decoupled
from the algorithm IloCplex. In fact, they don’t use the cplex object, which is created only
after executing one of these functions.

G E T T I N G S T A R T E D W I T H C P L E X 143

Modeling by rows

The function populatebyrow creates the variables and adds them to the array x . Then the
objective function and the constraints are created using expressions over the variables
stored in x . The range constraints are also added to the array of constraints c . The objective
and the constraints are added to the model.

G E T T I N G S T A R T E D W I T H C P L E X144

Modeling by columns

Function populatebycolumn can be viewed as the transpose of populatebyrow . While for
simple examples like this one population by rows may seem the most straightforward and
natural approach, there are some models where modeling by column is a more natural or
more efficient approach.

When modeling by columns, range objects are created with their lower and upper bound
only. No expression is given since the variables are not yet created. Similarly, the objective
function is created with only its intended optimization sense, and without any expression.
Next the variables are created and installed in the already existing ranges and objective.

The description of how the newly created variables are to be installed in the ranges and
objective is by means of column expressions, which are represented by the class
IloNumColumn . Column expressions consist of objects of class IloAddNumVar linked together
with operator + . These IloAddNumVar objects are created using operator() of the classes
IloObjective and IloRange . They define how to install a new variable to the invoking
objective or range objects. For example, obj(1.0) creates an IloAddNumVar capable of
adding a new modeling variable with a linear coefficient of 1.0 to the expression in obj .
Column expressions can be built in loops using operator += .

Column expressions (objects of class IloNumColumn) are handle objects, like most other
Concert Technology objects. Themethod endmust therefore be called to delete the associated
implementation object when it is no longer needed. However, for implicit column expressions,
where no IloNumColumn object is explicitly created, such as the ones used in this example,
the method end should not be called.

The column expression is passed as an argument to the constructor of class IloNumVar . For
example the constructor IloNumVar(obj(1.0) + c[0](-1.0) + c[1](1.0), 0.0, 40.0)
creates a new modeling variable with lower bound 0.0, upper bound 40.0 and, by default,
type ILOFLOAT , and adds it to the objective obj with a linear coefficient of 1.0, to the range
c[0] with a linear coefficient of -1.0 and to c[1] with a linear coefficient of 1.0. Column
expressions can be used directly to construct numerical variables with default bounds [0,
IloInfinity] and type ILOFLOAT , as in the following statement:

x.add(obj(2.0) + c[0](1.0) + c[1](-3.0));

where IloNumVar does not need to be explicitly written. Here, the C++ compiler recognizes
that an IloNumVar object needs to be passed to the addmethod and therefore automatically
calls the constructor IloNumVar(IloNumColumn) in order to create the variable from the
column expression.

G E T T I N G S T A R T E D W I T H C P L E X 145

Modeling by nonzero elements

The last of the three functions that can be used to build the model is populatebynonzero .
It creates objects for the objective and the ranges without expressions, and variables without
columns. The methods IloObjective::setLinearCoef , setLinearCoefs , and
IloRange::setLinearCoef , setLinearCoefs are used to set individual nonzero values in
the expression of the objective and the range constraints. As usual, the objective and ranges
must be added to the model.

You can view the complete program online in the standard distribution of the product at
yourCPLEXinstallation /examples/src/ilolpex1.cpp .

G E T T I N G S T A R T E D W I T H C P L E X146

Writing and reading models and files

In example ilolpex1.cpp , one line is still unexplained:

cplex.exportModel ("lpex1.lp");

This statement causes cplex to write the model it has currently extracted to the file called
lpex1.lp . In this case, the file will be written in LP format. (That format is documented in
the reference manual CPLEX File Formats.) Other formats supported for writing problems
to a file are MPS and SAV (also documented in the reference manual CPLEX File Formats).
IloCplex decides which file format to write based on the extension of the file name.

IloCplex also supports reading of files through one of its importModel methods. A call to
importModel causes CPLEX® to read a problem from the file file.lp and add all the data
in it to model as new objects. (Again, MPS and SAV format files are also supported.) In
particular, CPLEX® creates an instance of

for the objective function found in file.lp ,IloObjective

for each variable found in file.lp , exceptIloNumVar

for each semi-continuous or semi-integer variable found in file.lp,IloSemiContVar

for each row found in file.lp ,IloRange

for each SOS of type 1 found in file.lp , andIloSOS1

for each SOS of type 2 found in file.lp .IloSOS2

If you also need access to the modeling objects created by importModel , two additional
signatures are provided:

void IloCplex::importModel (IloModel& m,
const char* filename,
IloObjective& obj,
IloNumVarArray vars,
IloRangeArray rngs) const;

and

void IloCplex::importModel (IloModel& m,
const char* filename,
IloObjective& obj,
IloNumVarArray vars,
IloRangeArray rngs,

G E T T I N G S T A R T E D W I T H C P L E X 147

IloSOS1Array sos1,
IloSOS2Array sos2) const;

They provide additional arguments so that the newly created modeling objects will be
returned to the caller. Example program ilolpex2.cpp gives an example of how to use
method importModel .

G E T T I N G S T A R T E D W I T H C P L E X148

Selecting an optimizer

IloCplex treats all problems it solves as Mixed Integer Programming (MIP) problems. The
algorithm used by IloCplex for solving MIP is known as dynamic search or branch and cut
(referred to in some contexts as branch and bound) and is documented in more detail in the
CPLEX User’s Manual. For this tutorial, it is sufficient to know that this algorithm consists
of solving a sequence of LPs, QPs, or QCPs that are generated in the course of the algorithm.
The first LP, QP, or QCP to be solved is known as the root, while all the others are referred
to as nodes and are derived from the root or from other nodes. If the model extracted to the
cplex object is a pure LP, QP, or QCP (no integer variables), then it will be fully solved at
the root.

As mentioned in Optimizer options, various optimizer options are provided for solving LPs,
QPs, and QCPs. While the default optimizer works well for a wide variety of models, IloCplex
allows you to control which option to use for solving the root and for solving the nodes,
respectively, by the following methods:

void IloCplex::setParam(IloCplex::RootAlg, alg)
void IloCplex::setParam(IloCplex::NodeAlg, alg)

where IloCplex_Algorithm is an enumeration type. It defines the following symbols with
their meaning:

allow CPLEX to choose the algorithmIloCplex::AutoAlg

use the dual simplex algorithmIloCplex::Dual

use the primal simplex algorithmIloCplex::Primal

use the barrier algorithmIloCplex::Barrier

use the network simplex algorithm for the embedded networkIloCplex::Network

use the sifting algorithmIloCplex::Sifting

allow CPLEX to use multiple algorithms on multiple computer processorsIloCplex::Concurrent

For QP models, only the AutoAlg, Dual, Primal, Barrier, and Network algorithms are
applicable.

The optimizer option used for solving pure LPs and QPs is controlled by setting the root
algorithm argument. This is demonstrated next, in example ilolpex2.cpp .

G E T T I N G S T A R T E D W I T H C P L E X 149

G E T T I N G S T A R T E D W I T H C P L E X150

Reading a problem from a file: example
ilolpex2.cpp

Introduces the sample ilolpex2.cpp to illustrate reading from a file.

In this section

Overview
Outlines the sample.

Reading the model from a file
Walks through reading a model from a file in the sample.

Selecting the optimizer
Walks through selecting the optimizer in the sample.

Accessing basis information
Walks through access to basis information in the sample.

Querying quality measures
Walks through queries for measurement of the quality of a solution in the sample.

G E T T I N G S T A R T E D W I T H C P L E X 151

Overview

This example shows how to read an optimization problem from a file, and solve it with a
specified optimizer option. It prints solution information, including a Simplex basis, if
available. Finally it prints the maximum infeasibility of any variable of the solution.

The file to read and the optimizer choice are passed to the program via command line
arguments. For example, this command:

ilolpex2 example.mps d

reads the file example.mps and solves the problem with the dual simplex optimizer.

Example ilolpex2 demonstrates:

♦ Reading the model from a file

♦ Selecting the optimizer

♦ Accessing basis information

♦ Querying quality measures

The general structure of this example is the same as for example ilolpex1.cpp . It starts
by creating the environment and terminates with destroying it by calling the end method.
The code in between is enclosed in try/catch statements for error handling.

You can view the complete program online in the standard distribution of the product at
yourCPLEXinstallation /examples/src/ilolpex2.cpp .

G E T T I N G S T A R T E D W I T H C P L E X152

Reading the model from a file

Themodel is created by reading it from the file specified as the first command line argument
argv[1] . This is done using the method importModel of an IloCplex object. Here the
IloCplex object is used as a model reader rather than an optimizer. Calling importModel
does not extract the model to the invoking cplex object. This must be done later by a call
to cplex.extract(model) . The objects obj , var , and rng are passed to importModel so
that later on when results are queried the variables will be accessible.

G E T T I N G S T A R T E D W I T H C P L E X 153

Selecting the optimizer

The selection of the optimizer option is done in the switch statement controlled by the second
command line argument, a parameter. A call to setParam(IloCplex::RootAlg, alg) selects
the desired IloCplex::Algorithm option.

G E T T I N G S T A R T E D W I T H C P L E X154

Accessing basis information

After solving the model by calling the method solve , the results are accessed in the same
way as in ilolpex1.cpp , with the exception of basis information for the variables. It is
important to understand that not all optimizer options compute basis information, and thus
it cannot be queried in all cases. In particular, basis information is not available when the
model is solved using the barrier optimizer (IloCplex::Barrier) without crossover
(parameter IloCplex::BarCrossAlg set to IloCplex::NoAlg).

G E T T I N G S T A R T E D W I T H C P L E X 155

Querying quality measures

Finally, the program prints the maximum primal infeasibility or bound violation of the
solution. To cope with the finite precision of the numerical computations done on the
computer, IloCplex allows some tolerances by which (for instance) optimality conditions
may be violated. A long list of other quality measures is available.

G E T T I N G S T A R T E D W I T H C P L E X156

Modifying and re-optimizing

In many situations, the solution to a model is only the first step. One of the important features
of Concert Technology is the ability to modify and then re-solve the model even after it has
been extracted and solved one or more times.

A look back to examples ilolpex1.cpp and ilolpex2.cpp reveals that models have been
modified all along. Each time an extractable is added to a model, it changes the model.
However, those examples made all such changes before the model was extracted to CPLEX®
.

Concert Technology maintains a link between the model and all IloCplex objects that may
have extracted it. This link is known as notification. Each time a modification of the model
or one of its extractables occurs, the change is notified to the IloCplex objects that extracted
the model. They then track the modification in their internal representations.

Moreover, IloCplex tries to maintain as much information from a previous solution as is
possible and reasonable, when the model is modified, in order to have a better start when
solving the modified model. In particular, when solving LPs or QPs with a simplex method,
IloCplex attempts to maintain a basis which will be used the next time the method solve
is invoked, with the aim of making subsequent solves go faster.

G E T T I N G S T A R T E D W I T H C P L E X 157

G E T T I N G S T A R T E D W I T H C P L E X158

Modifying an optimization problem: example
ilolpex3.cpp

Introduces a sample to illustrate how to modify a model.

In this section

Overview
Outlines the sample.

Setting CPLEX parameters
Walks through setting parameters in the sample.

Modifying an optimization problem
Walks through modification of the model in the sample.

Starting from a previous basis
Walks through starting from a basis in the sample.

Complete program
Points to online version of the sample.

G E T T I N G S T A R T E D W I T H C P L E X 159

Overview

This example demonstrates:

♦ Setting CPLEX parameters

♦ Modifying an optimization problem

♦ Starting from a previous basis

Here is the problem example ilolpex3 solves:

c^TxMinimize

Hx = dsubject to

Ax = b

l x u

(-3)d =(-1 0 1 0 1 0 0 0)H =where

(1)(1 -1 0 1 0 0 0 0)

(4)(0 1 -1 0 0 1 -1 0)

(3)(0 0 0 -1 0 -1 0 1)

(-5)(0 0 0 0 -1 0 1 -1)

(4)b =(2 1 -2 -1 2 -1 -2 -3)A =

(-2)(1 -3 2 3 -1 2 1 1)

(-9 1 4 2 -8 2 8 12)c =

(0 0 0 0 0 0 0 0)l =

(50 50 50 50 50 50 50 50)u =

The constraints Hx=d represent the flow conservation of a pure network flow. The example
solves this problem in two steps:

1. The CPLEX® Network Optimizer is used to solve

G E T T I N G S T A R T E D W I T H C P L E X160

c^TxMinimize

Hx = dsubject to

l x u

2. The constraints Ax=b are added to the problem, and the dual simplex optimizer is used
to solve the full problem, starting from the optimal basis of the network problem. The
dual simplex method is highly effective in such a case because this basis remains dual
feasible after the slacks (artificial variables) of the added constraints are initialized as
basic.

Notice that the 0 (zero) values in the data are omitted in the example program. CPLEX®
makes extensive use of sparse matrix methods and, although CPLEX® correctly handles
any explicit zero coefficients given to it, most programs solving models of more than modest
size benefit (in terms of both storage space and speed) if the natural sparsity of the model
is exploited from the very start.

Before the model is solved, the network optimizer is selected by setting the RootAlg
parameter to the value IloCplex::Network, as shown in example ilolpex2.cpp . The
simplex display parameter SimDisplay is set so that the simplex algorithm issues logging
information as it executes.

G E T T I N G S T A R T E D W I T H C P L E X 161

Setting CPLEX parameters

IloCplex provides a variety of parameters that allow you to control the solution process.
They can be categorized as Boolean, integer, numeric, and string parameters and are
represented by the enumeration types IloCplex_BoolParam, IloCplex_IntParam,
IloCplex_NumParam, and IloCplex_StringParam, respectively.

G E T T I N G S T A R T E D W I T H C P L E X162

Modifying an optimization problem

After the simple model is solved and the resulting objective value is passed to the output
channel cplex.out , the remaining constraints are created and added to the model. At this
time the model has already been extracted to cplex . As a consequence, whenever the model
is modified by adding a constraint, this addition is immediately reflected in the cplex object
via notification.

G E T T I N G S T A R T E D W I T H C P L E X 163

Starting from a previous basis

Before solving the modified problem, example ilolpex3.cpp sets the optimizer option to
Dual, as this is the algorithm that can generally take best advantage of the optimal basis
from the previous solve after the addition of constraints.

G E T T I N G S T A R T E D W I T H C P L E X164

Complete program

You can view the complete program online in the standard distribution of the product at
yourCPLEXinstallation /examples/src/ilolpex3.cpp .

G E T T I N G S T A R T E D W I T H C P L E X 165

G E T T I N G S T A R T E D W I T H C P L E X166

Concert Technology tutorial for Java users

Introduces CPLEX® through Concert Technology in the Java programming language.

In this section

Overview
Highlights procedures in a typical application with CPLEX® in Java.

Compiling CPLEX in Concert Technology Java applications
Explains how to compile CPLEX® in a Java application.

The design of CPLEX in Concert Technology Java applications
Describes CPLEX® as a component in a Java application.

The anatomy of a Concert Technology Java application
Outlines steps in a Java application of CPLEX® .

Building and solving a small LP model in Java
Uses an example to show how to solve a model in a Java application of CPLEX® .

G E T T I N G S T A R T E D W I T H C P L E X 167

Overview

Concert Technology allows your application to call IBM® ILOG® CPLEX® directly, through
the Java Native Interface (JNI). This Java interface supplies a rich means for you to use Java
objects to build your optimization model.

The class IloCplex implements the Concert Technology interface for creating variables and
constraints. It also provides functionality for solvingMathematical Programing (MP) problems
and accessing solution information.

G E T T I N G S T A R T E D W I T H C P L E X168

Compiling CPLEX in Concert Technology
Java applications

Explains how to compile CPLEX® in a Java application.

In this section

Overview
Introduces general considerations about CPLEX® in Java applications.

Adapting build procedures to your platform
Introduces makefiles and other aids to support Java application development with CPLEX®
.

In case problems arise
Suggests trouble-shooting procedures specific to Java applications.

G E T T I N G S T A R T E D W I T H C P L E X 169

Overview

When compiling a Java application that uses Concert Technology, you need to inform the
Java compiler where to find the file cplex.jar containing the CPLEX® Concert Technology
class library. To do this, you add the cplex.jar file to your classpath. This is most easily
done by passing the command-line option to the Java compiler javac, like this:

–classpath path_to_cplex.jar

If you need to include other Java class libraries, you should add the corresponding jar files
to the classpath as well. Ordinarily, you should also include the current directory (.) to be
part of the Java classpath.

At execution time, the same classpath setting is needed. Additionally, since CPLEX® is
implemented via JNI, you need to instruct the Java Virtual Machine (JVM) where to find the
shared library (or dynamic link library) containing the native code to be called from Java.
You indicate this location with the command line option:

-Djava.library.path=path_to_shared_library

to the java command. Note that, unlike the cplex.jar file, the shared library is
system-dependent; thus the exact pathname of the location for the library to be used may
differ depending on the platform you are using.

G E T T I N G S T A R T E D W I T H C P L E X170

Adapting build procedures to your platform

Pre-configured compilation and runtime commands are provided in the standard distribution,
through the UNIX makefiles and Windows javamake file for Nmake . However, these scripts
presume a certain relative location for the files already mentioned; for application
development, most users will have their source files in some other location.

Here are suggestions for establishing build procedures for your application.

1. First check the readme.html file in the standard distribution, under the Supported
Platforms heading to locate the machine and libformat entry for your UNIX platform,
or the compiler and library-format combination for Windows.

2. Go to the subdirectory in the examples directory where CPLEX® is installed on your
machine. On UNIX, this will be machine/libformat, and on Windows it will be
compiler\libformat. This subdirectory will contain a makefile or javamake appropriate
for your platform.

3. Then use this file to compile the examples that came in the standard distribution by
calling make execute_java (UNIX) or nmake -f javamake execute (Windows).

4. Carefully note the locations of the needed files, both during compilation and at run
time, and convert the relative path names to absolute path names for use in your own
working environment.

G E T T I N G S T A R T E D W I T H C P L E X 171

In case problems arise

If a problem occurs in the compilation phase, make sure your java compiler is correctly set
up and that your classpath includes the cplex.jar file.

If compilation is successful and the problem occurs when executing your application, there
are three likely causes:

1. If you get a message like java.lang.NoClassDefFoundError your classpath is not
correctly set up. Make sure you use -classpath <path_to_cplex.jar> in your java
command.

2. If you get a message like java.lang.UnsatisfiedLinkError, you need to set up the
path correctly so that the JVM can locate the CPLEX® shared library. Make sure you
use the following option in your java command:

-Djava.library.path=<path_to_shared_library>

3. If you get a message like ilm : CPLEX: no license found for this product or ilm:
CPLEX: invalid encrypted key "MNJVUXTDJV82" in "/usr/ilog/ilm/access.ilm"
run ilmcheck, then there is a problem with your license to use CPLEX® . Review the
IBM ILOG LicenseManager User’s Guide and Reference to see whether you can correct
the problem. If you have verified your system and license setup but continue to
experience problems, contact customer support and report the error messages.

G E T T I N G S T A R T E D W I T H C P L E X172

The design of CPLEX in Concert Technology Java applications

A View of CPLEX in Concert Technology

A View of CPLEX in Concert Technology illustrates the design of Concert Technology and
how a user-application uses it. Concert Technology defines a set of interfaces for modeling
objects. Such interfaces do not actually consume memory. (For this reason, the box in the
figure has a dotted outline.) When a user creates a Concert Technology modeling object
using CPLEX® , an object is created in CPLEX® to implement the interface defined by
Concert Technology. However, a user application never accesses such objects directly but
only communicates with them through the interfaces defined by Concert Technology.

For more detail about these ideas, see the CPLEX User’s Manual, especially the topic Concert
Technology for Java users.

G E T T I N G S T A R T E D W I T H C P L E X 173

G E T T I N G S T A R T E D W I T H C P L E X174

The anatomy of a Concert Technology Java
application

Outlines steps in a Java application of CPLEX® .

In this section

Overview
Explains object-oriented considerations for Java applications using CPLEX® .

Create the model
Explains how to create a model in a Java application of CPLEX® .

Solve the model
Explains how to create the object-oriented optimizer in a Java application of CPLEX® .

Query the results
Describes how to query results from a Java application of CPLEX® .

G E T T I N G S T A R T E D W I T H C P L E X 175

Overview

To use the CPLEX® Java interfaces, you need to import the appropriate packages into your
application. This is done with the lines:

As for every Java application, a CPLEX® application is implemented as a method of a class.
In this discussion, the method will be the static main method. The first task is to create an
IloCplex object. It is used to create all the modeling objects needed to represent the model.
For example, an integer variable with bounds 0 and 10 is created by calling cplex.intVar
(0, 10) , where cplex is the IloCplex object.

Since Java error handling in CPLEX® uses exceptions, you should include the Concert
Technology part of an application in a try /catch statement. All the exceptions thrown by
any Concert Technology method are derived from IloException. Thus IloException should
be caught in the catch statement.

In summary, here is the structure of a Java application that calls CPLEX® :

-classpath <path_to_cplex.jar>

-Djava.library.path=<path_to_shared_library>
import ilog.concert.*;
import ilog.cplex.*;
import ilog.concert.*;
import ilog.cplex.*;
static public class Application {
static public main(String[] args) {

try {
IloCplex cplex = new IloCplex();
// create model and solve it

} catch (IloException e) {
System.err.println("Concert exception caught: " + e);

}
}

}

G E T T I N G S T A R T E D W I T H C P L E X176

Create the model

The IloCplex object provides the functionality to create an optimization model that can be
solved with IloCplex. The class IloCplex implements the Concert Technology interface
IloModeler and its extensions IloMPModeler and IloCplexModeler. These interfaces define
the constructors for modeling objects of the following types, which can be used with IloCplex
:

modeling variablesIloNumVar

ranged constraints of the type lb <= expr <= ubIloRange

optimization objectiveIloObjective

expression using variablesIloNumExpr

Modeling variables are represented by objects implementing the IloNumVar interface defined
by Concert Technology. Here is how to create three continuous variables, all with bounds
0 and 100 :

IloNumVar[] x = cplex.numVarArray(3, 0.0, 100.0);

There is a wealth of other methods for creating arrays or individual modeling variables. The
documentation for IloModeler, IloCplexModeler, and IloMPModeler gives you the complete
list.

Modeling variables build expressions, of type IloNumExpr, for use in constraints or the
objective function of an optimization model. For example, the expression:

x[0] + 2*x[1] + 3*x[2]

can be created like this:

IloNumExpr expr = cplex.sum(x[0],
cplex.prod(2.0, x[1]),
cplex.prod(3.0, x[2]));

Another way of creating an object representing the same expression is to use an expression
of IloLinearNumExpr. Here is how:

IloLinearNumExpr expr = cplex.linearNumExpr();
expr.addTerm(1.0, x[0]);
expr.addTerm(2.0, x[1]);
expr.addTerm(3.0, x[2]);

The advantage of using IloLinearNumExpr over the first way is that you can more easily
build up your linear expression in a loop, which is what is typically needed in more complex
applications. The interface IloLinearNumExpr is an extension of IloNumExpr and thus can
be used anywhere an expression can be used.

G E T T I N G S T A R T E D W I T H C P L E X 177

As mentioned before, expressions can be used to create constraints or an objective function
for a model. Here is how to create a minimization objective for that expression:

In addition to your creating an objective, you must also instruct IloCplex to use that objective
in the model it solves. To do so, add the objective to IloCplex like this:

cplex.add(obj);

Every modeling object that is to be used in a model must be added to the IloCplex object.
The variables need not be explicitly added as they are treated implicitly when used in the
expression of the objective. More generally, every modeling object that is referenced by
another modeling object which itself has been added to IloCplex, is implicitly added to
IloCplex as well.

There is a shortcut notation for creating and adding the objective to addMinimize():

Since the objective is not otherwise accessed, it does not need to be stored in the variable
obj .

Adding constraints to the model is just as easy. For example, the constraint

-x[0] + x[1] + x[2] <= 20.0

can be added by calling:

cplex.addLe(cplex.sum(cplex.negative(x[0]), x[1], x[2]), 20);

Again, many methods are provided for adding other constraint types, including equality
constraints, greater than or equal to constraints, and ranged constraints. Internally, they
are all represented as IloRange objects with appropriate choices of bounds, which is why
all these methods return IloRange objects. Also, note that the expressions above could have
been created in many different ways, including the use of IloLinearNumExpr.

G E T T I N G S T A R T E D W I T H C P L E X178

Solve the model

So far you have seen some methods of IloCplex for creating models. All such methods are
defined in the interfaces IloModeler and its extension IloMPModeler and IloCplexModeler.
However, IloCplex not only implements these interfaces but also provides additional methods
for solving a model and querying its results.

After you have created a model as explained in Create the model, the object IloCplex is
ready to solve the problem, which consists of the model and all the modeling objects that
have been added to it. Invoking the optimizer then is as simple as calling the method solve
() .

That method returns a Boolean value indicating whether the optimization succeeded in
finding a solution. If no solution was found, false is returned. If true is returned, then
CPLEX® found a feasible solution, though it is not necessarily an optimal solution. More
precise information about the outcome of the last call to the method solve can be obtained
from the method getStatus() .

The returned value tells you what CPLEX® found out about the model: whether it found
the optimal solution or only a feasible solution, whether it proved the model to be unbounded
or infeasible, or whether nothing at all has been proved at this point. Even more detailed
information about the termination of the optimizer call is available through the method
getCplexStatus() .

G E T T I N G S T A R T E D W I T H C P L E X 179

Query the results

If the solve() method succeeded in finding a solution, you will then want to access that
solution. The objective value of that solution can be queried using a statement like this:

Similarly, solution values for all the variables in the array x can be queried by calling:

More solution information can be queried from IloCplex , including slacks and, depending
on the algorithm that was applied for solving the model, duals, reduced cost information,
and basis information.

G E T T I N G S T A R T E D W I T H C P L E X180

Building and solving a small LP model in
Java

Uses an example to show how to solve a model in a Java application of CPLEX® .

In this section

Overview
Introduces the example to illustrate solving a model in a Java application of CPLEX® .

Modeling by rows
Demonstrates modeling by rows in the example of a Java application of CPLEX® .

Modeling by columns
Demonstrates modeling by columns in the example of a Java application of CPLEX.

Modeling by nonzeros
Demonstrates modeling by nonzeros in the example of a Java application of CPLEX® .

G E T T I N G S T A R T E D W I T H C P L E X 181

Overview

The example LPex1.java , part of the standard distribution of CPLEX® , is a program that
builds a specific small LP model and then solves it. This example follows the general structure
found in many CPLEX® Concert Technology applications, and demonstrates three main
ways to construct a model:

♦ Modeling by rows;

♦ Modeling by columns;

♦ Modeling by nonzeros.

Example LPex1.java is an extension of the example presented in Entering the example:

x1 + 2x2 + 3x3Maximize

–x1 + x2 . + x3 ≤ 20subject to

x1 – 3x2 + x3 ≤ 30

0 ≤ x1 ≤ 40with these bounds

0 ≤ x2 ≤ infinity

0 ≤ x3 ≤ infinity

After an initial check that a valid option string was provided as a calling argument, the
program begins by enclosing all executable statements that follow in a try/catch pair of
statements. In case of an error CPLEX® Concert Technology will throw an exception of
type IloException, which the catch statement then processes. In this simple example, an
exception triggers the printing of a line stating Concert exception ‘e’ caught , where e
is the specific exception.

First, create the model object cplex by executing the following statement:

IloCplex cplex = new IloCplex();

At this point, the cplex object represents an empty model, that is, a model with no variables,
constraints, or other content. The model is then populated in one of several ways depending
on the command line argument. The possible choices are implemented in the methods

♦ populateByRow

♦ populateByColumn

♦ populateByNonzero

All these methods pass the same three arguments. The first argument is the cplex object
to be populated. The second and third arguments correspond to the variables (var) and
range constraints (rng) respectively; the methods will write to var[0] and rng[0] an array
of all the variables and constraints in the model, for later access.

G E T T I N G S T A R T E D W I T H C P L E X182

After the model has been created in the cplex object, it is ready to be solved by a call to
cplex.solve. The solution log will be output to the screen; this is because IloCplex prints
all logging information to the OutputStream cplex. output(), which by default is initialized
to System.out. You can change this by calling the method cplex. setOut(java.io.
OutputStream). In particular, you can turn off logging by setting the output stream to null,
that is, by calling cplex.setOut(null). Similarly, IloCplex issues warning messages to
cplex. warning(), and cplex. setWarning(java.io.OutputStream) can be used to change
(or turn off) the OutputStream that will be used.

If the solve method finds a feasible solution for the active model, it returns true. The next
section of code accesses the solution. The method cplex. getValues(ilog.concert.
IloLPMatrix)(var[0]) returns an array of primal solution values for all the variables. This
array is stored as double[]x . The values in x are ordered such that x[j] is the primal
solution value for variable var[0][j] . Similarly, the reduced costs, duals, and slack values
are queried and stored in arrays dj, pi, and slack, respectively. Finally, the solution status
of the active model and the objective value of the solution are queried with the methods
IloCplex. getStatus() and IloCplex. getObjValue(), respectively. The program then
concludes by printing the values that have been obtained in the previous steps, and terminates
after calling cplex. end() to free the memory used by the model object; the catch method
of IloException provides screen output in case of any error conditions along the way.

The remainder of the example source code is devoted to the details of populating the model
object and the following three sections provide details on how the methods work.

You can view the complete program online in the standard distribution of the product at
yourCPLEXinstallation /examples/src/LPex1.java.

G E T T I N G S T A R T E D W I T H C P L E X 183

Modeling by rows

Themethod populateByRow creates themodel by adding the finished constraints and objective
function to the active model, one by one. It does so by first creating the variables with the
method cplex. numVarArray(ilog.concert.IloColumnArray cols, double[] lb, double
[] ub). Then the minimization objective function is created and added to the active model
with themethod IloCplex. addMinimize(). The expression that defines the objective function
is created by a method, IloCplex. scalProd(double[] vals, ilog.concert.IloNumVar[]
vars), that forms a scalar product using an array of objective coefficients times the array
of variables. Finally, each of the two constraints of the model are created and added to the
active model with the method IloCplex. addLe(double v, ilog.concert.IloNumExpr e).
For building the constraint expression, themethods IloCplex. sum(double v, ilog.concert.
IloNumExpr e1) and IloCplex. prod(double v, ilog.concert.IloNumExpr e1) are used,
as a contrast to the approach used in constructing the objective function.

G E T T I N G S T A R T E D W I T H C P L E X184

Modeling by columns

While for many examples population by rows may seem most straightforward and natural,
there are some models where population by columns is a more natural or more efficient
approach to implement. For example, problems with network structure typically lend
themselves well to modeling by column. Readers familiar with matrix algebra may view the
method populateByColumn as producing the transpose of what is produced by the method
populateByRow . In contrast to modeling by rows, modeling by columns means that the
coefficients of the constraint matrix are given in a column-wise way. As each column
represents the constraint coefficients for a given variable in the linear program, this modeling
approach is most natural where it is easy to access the matrix coefficients by iterating
through all the variables, such as in network flow problems.

Range objects are created for modeling by column with only their lower and upper bound.
No expressions are given; building them at this point would be impossible since the variables
have not been created yet. Similarly, the objective function is created only with its intended
optimization sense, and without any expression.

Next the variables are created and installed in the existing ranges and objective. These
newly created variables are introduced into the ranges and the objective by means of column
objects, which are implemented in the class IloColumn. Objects of this class are created
with the methods IloCplex. column(ilog.concert.IloLPMatrix lp), and can be linked
together with the method IloColumn. and(ilog.concert.IloColumn column) to form
aggregate IloColumn objects.

An instance of IloColumn created with the method IloCplex. column(ilog.concert.
IloLPMatrix lp) contains information about how to use this column to introduce a new
variable into an existing modeling object. For example, if obj is an instance of a class that
implements the interface IloObjective, then cplex.column(obj, 2.0) creates an instance
of IloColumn containing the information to install a new variable in the expression of the
IloObjective object obj with a linear coefficient of 2.0. Similarly, for rng, a constraint that
is an instance of a class that implements the interface IloRange, the invocation of the method
cplex.column(rng, -1.0) creates an IloColumn object containing the information to install
a new variable into the expression of rng , as a linear term with coefficient -1.0.

When you use the approach of modeling by column, new columns are created and installed
as variables in all existing modeling objects where they are needed. To do this with Concert
Technology, you create an IloColumn object for every modeling object in which you want
to install a new variable, and link them together with the method IloColumn. and(ilog.
concert.IloColumn column) . For example, the first variable in populateByColumn is created
like this:

The three methods model.column create IloColumn objects for installing a new variable in
the objective obj and in the constraints r0 and r1, with linear coefficients 1.0 , -1.0, and
1.0, respectively. They are all linked to an aggregate column object by the method and. This
aggregate column object is passed as the first argument to the method numVar, along with
the bounds 0.0 and 40.0 as the other two arguments. The method numVar now creates a
new variable and immediately installs it in the modeling objects obj, r0, and r1 as defined
by the aggregate column object. After it has been installed, the new variable is returned
and stored in var[0][0].

G E T T I N G S T A R T E D W I T H C P L E X 185

Modeling by nonzeros

The last of the three functions for building the model is populateByNonzero . This function
creates the variables with only their bounds, and the empty constraints, that is, ranged
constraints with only lower and upper bound but with no expression. Only after that are the
expressions constructed over these existing variables, in a manner similar to the ones already
described; they are installed in the existing constraints with the method IloRange. setExpr
(ilog.concert.IloNumExpr expr) .

G E T T I N G S T A R T E D W I T H C P L E X186

Concert Technology tutorial for .NET users

Introduces CPLEX® through Concert Technology in the .NET framework.

In this section

Presenting the tutorial
Introduces a tutorial for users of CPLEX® in the .NET framework.

What you need to know: prerequisites
Outlines prerequisites for the tutorial.

What you will be doing
Outlines activities of the tutorial.

Describe
Outlines questions to ask in order to describe an optimization problem adequately for
application development.

Model
Outlines steps toward building a model for the problem.

Solve
Outlines steps for adding the parts of the application that solve the problem.

Complete program
Points to an online version of the problem.

G E T T I N G S T A R T E D W I T H C P L E X 187

Presenting the tutorial

This tutorial introduces CPLEX® through Concert Technology in the .NET framework. It
gives you an overview of a typical application and highlights procedures for:

♦ Creating a model

♦ Populating the model with data, either by rows, by columns, or by nonzeros

♦ Solving that model

♦ Displaying results after solving

This chapter concentrates on an example using C#.NET. There are also examples of VB.NET
(Visual Basic in the .NET framework) delivered with CPLEX® in yourCPLEXhome\examples\
src\vb . Because of their .NET framework, those VB.NET examples differ from the traditional
Visual Basic examples that may already be familiar to some CPLEX® users.

In the standard distribution of the product, the file dotnet.html offers useful details about
installing the product as well as compiling and executing examples.

This tutorial is based on a procedure-based learning strategy.The tutorial is built around
a sample problem, available in a file that can be opened in an integrated development

Note:

environment, such as Microsoft Visual Studio. As you follow the steps in the tutorial,
you can examine the code and apply concepts explained in the tutorial. Then you
compile and execute the code to analyze the results. Ideally, as you work through the
tutorial, you are sitting in front of your computer with CPLEX® and Concert Technology
for .NET users already installed and available in Microsoft Visual Studio.

G E T T I N G S T A R T E D W I T H C P L E X188

What you need to know: prerequisites

This tutorial requires a working knowledge of C#.NET.

If you are experienced inmathematical programming or operations research, you are probably
already familiar with many concepts used in this tutorial. However, little or no experience
in mathematical programming or operations research is required to follow this tutorial.

You should have CPLEX® and Concert Technology for .NET users installed in your
development environment before starting this tutorial. In your integrated development
environment, you should be able to compile, link, and execute a sample application provided
with CPLEX® and Concert Technology for .NET users before starting the tutorial.

To check your installation before starting the tutorial, open

yourCPLEXhome \examples\platform\format\examples.net.sln

in your integrated development environment, where yourCPLEXhome specifies the place
you installed CPLEX® on your platform, and format specifies one of these possibilities:
stat_mda, stat_mta, or stat_sta. Your integrated development environment, Microsoft
Visual Studio, will then check for the DLLs of CPLEX® and Concert Technology for .NET
users and warn you if they are not available to it.

Another way to check your installation is to load the project for one of the samples delivered
with your product. For example, you might load the following project into Microsoft Visual
Studio to check a C# example of the diet problem:

yourCPLEXhome\examples\platform\format\Diet.csproj

G E T T I N G S T A R T E D W I T H C P L E X 189

What you will be doing

CPLEX® can work together with Concert Technology for .NET users, a .NET library that
allows you to model optimization problems independently of the algorithms used to solve
the problem. It provides an extensible modeling layer adapted to a variety of algorithms
ready to use off the shelf. This modeling layer enables you to change your model, without
completely rewriting your application.

To find a solution to a problem by means of CPLEX® with Concert Technology for .NET
users, you use a three-stage method: describe, model, and solve.

The first stage is to describe the problem in natural language.

The second stage is to use the classes and interfaces of Concert Technology for .NET users
to model the problem. The model is composed of data, decision variables, and constraints.
Decision variables are the unknown information in a problem. Each decision variable has a
domain of possible values. The constraints are limits or restrictions on combinations of
values for these decision variables. The model may also contain an objective, an expression
that can be maximized or minimized.

The third stage is to use the classes of Concert Technology for .NET users to solve the
problem. Solving the problem consists of finding a value for each decision variable while
simultaneously satisfying the constraints and maximizing or minimizing an objective, if one
is included in the model.

In these tutorials, you will describe, model, and solve a simple problem that also appears
elsewhere in C, C++, and Java chapters of this manual:

♦ Building and solving a small LP model in C

♦ Building and solving a small LP model in C++

♦ Building and solving a small LP model in Java

Describe
The first step is for you to describe the problem in natural language and answer basic
questions about the problem.

♦ What is the known information in this problem? That is, what data is available?

♦ What is the unknown information in this problem? That is, what are the decision variables?

♦ What are the limitations in the problem? That is, what are the constraints on the decision
variables?

♦ What is the purpose of solving this problem? That is, what is the objective function?

Though the Describe step of the process may seem trivial in a simple problem like
this one, you will find that taking the time to fully describe a more complex problem is

Note:

vital for creating a successful application.You will be able to code your application

G E T T I N G S T A R T E D W I T H C P L E X190

more quickly and effectively if you take the time to describe the model, isolating the
decision variables, constraints, and objective.

Model
The second stage is for you to use the classes of Concert Technology for .NET users to build
a model of the problem. The model is composed of decision variables and constraints on
those variables. The model of this problem also contains an objective.

Solve
The third stage is for you to use an instance of the class Cplex to search for a solution and
to solve the problem. Solving the problem consists of finding a value for each variable while
simultaneously satisfying the constraints and minimizing the objective.

G E T T I N G S T A R T E D W I T H C P L E X 191

Describe

The aim in this tutorial is to see three different ways to build a model: by rows, by columns,
or by nonzeros. After building the model of the problem in one of those ways, the application
optimizes the problem and displays the solution.

Step One: Describe the problem
Write a natural language description of the problem and answer these questions:

♦ What is known about the problem?

♦ What are the unknown pieces of information (the decision variables) in this problem?

♦ What are the limitations (the constraints) on the decision variables?

♦ What is the purpose (the objective) of solving this problem?

Building a small LP problem in C#
Here is a conventional formulation of the problem that the example optimizes:

x1 + 2x2 + 3x3Maximize

–x1 + x2 + x3 ≤ 20subject to

x1 – 3x2 + x3 ≤ 30

0 ≤ x1 ≤ 40with these bounds

0 ≤ x2 ≤ infinity

0 ≤ x3 ≤ infinity

♦ What are the decision variables in this problem?

x1, x2, x3

♦ What are the constraints?

–x1 + x2 + x3 ≤ 20

x1 – 3x2 + x3 ≤ 30

0 ≤ x1 ≤ 40

G E T T I N G S T A R T E D W I T H C P L E X192

0 ≤ x2 ≤ infinity

0 ≤ x3 ≤ infinity

♦ What is the objective?

x1 + 2x2 + 3x3Maximize

G E T T I N G S T A R T E D W I T H C P L E X 193

Model

After you have written a description of the problem, you can use classes of Concert
Technology for .NET users with CPLEX® to build a model.

Step 2: Open the file
Open the file yourCPLEXhome \examples\src\tutorials\LPex1lesson.cs in your integrated
development environment, such as Microsoft Visual Studio.

Step 3: Create the model object
Go to the comment Step 3 in that file, and add this statement to create the Cplexmodel for
your application.

Cplex cplex = new Cplex();

That statement creates an empty instance of the class Cplex . In the next steps, you will add
methods that make it possible for your application populate the model with data, either by
rows, by columns, or by nonzeros.

Step 4: Populate the model by rows
Now go to the comment Step 4 in that file, and add these lines to create a method to populate
the empty model with data by rows.

internal static void PopulateByRow(IMPModeler model,
INumVar[][] var,
IRange[][] rng) {

double[] lb = {0.0, 0.0, 0.0};
double[] ub = {40.0,

System.Double.MaxValue,
System.Double.MaxValue};

INumVar[] x = model.NumVarArray(3, lb, ub);
var[0] = x;

double[] objvals = {1.0, 2.0, 3.0};
model.AddMaximize(model.ScalProd(x, objvals));

rng[0] = new IRange[2];
rng[0][0] = model.AddLe(model.Sum(model.Prod(-1.0, x[0]),

model.Prod(1.0, x[1]),
model.Prod(1.0, x[2])), 20.0);

rng[0][1] = model.AddLe(model.Sum(model.Prod(1.0, x[0]),
model.Prod(-3.0, x[1]),
model.Prod(1.0, x[2])), 30.0);

G E T T I N G S T A R T E D W I T H C P L E X194

}

Those lines populate the model with data specific to this particular example. However, you
can see from its use of the interface IMPModeler how to add ranged constraints to a model.
IMPModeler is the Concert Technology interface typically used to build math programming
(MP) matrix models. You will see its use again in Step 5 and Step 6.

Step 5: Populate the model by columns
Go to the comment Step 5 in the file, and add these lines to create a method to populate
the empty model with data by columns.

internal static void PopulateByColumn(IMPModeler model,
INumVar[][] var,
IRange[][] rng) {

IObjective obj = model.AddMaximize();

rng[0] = new IRange[2];
rng[0][0] = model.AddRange(-System.Double.MaxValue, 20.0);
rng[0][1] = model.AddRange(-System.Double.MaxValue, 30.0);

IRange r0 = rng[0][0];
IRange r1 = rng[0][1];

var[0] = new INumVar[3];
var[0][0] = model.NumVar(model.Column(obj, 1.0).And(

model.Column(r0, -1.0).And(
model.Column(r1, 1.0))),
0.0, 40.0);

var[0][1] = model.NumVar(model.Column(obj, 2.0).And(
model.Column(r0, 1.0).And(
model.Column(r1, -3.0))),
0.0, System.Double.MaxValue);

var[0][2] = model.NumVar(model.Column(obj, 3.0).And(
model.Column(r0, 1.0).And(
model.Column(r1, 1.0))),
0.0, System.Double.MaxValue);

}

Again, those lines populate the model with data specific to this problem. From them you can
see how to use the interface IMPModeler to add columns to an empty model.

While for many examples population by rows may seem most straightforward and natural,
there are some models where population by columns is a more natural or more efficient
approach to implement. For example, problems with network structure typically lend
themselves well to modeling by column. Readers familiar with matrix algebra may view the
method populateByColumn as the transpose of populateByRow .

In this approach, range objects are created for modeling by column with only their lower
and upper bound. No expressions over variables are given because building them at this
point would be impossible since the variables have not been created yet. Similarly, the

G E T T I N G S T A R T E D W I T H C P L E X 195

objective function is created only with its intended optimization sense, and without any
expression.

Next the variables are created and installed in the existing ranges and objective. These
newly created variables are introduced into the ranges and the objective by means of column
objects, which are implemented in the class IColumn. Objects of this class are created with
the methods Cplex.Column, and can be linked together with the method IColumn.And to
form aggregate IColumn objects.

An IColumn object created with the method ICplex.Column contains information about how
to use this column to introduce a new variable into an existing modeling object. For example
if obj is an IObjective object, cplex.Column(obj, 2.0) creates an IColumn object containing
the information to install a new variable in the expression of the IObjective object objwith
a linear coefficient of 2.0 . Similarly, for an IRange constraint rng , the method call cplex.
Column(rng, -1.0) creates an IColumn object containing the information to install a new
variable into the expression of rng , as a linear term with coefficient -1.0 .

In short, when you use a modeling-by-column approach, new columns are created and
installed as variables in all existing modeling objects where they are needed. To do this with
Concert Technology, you create an IColumn object for every modeling object in which you
want to install a new variable, and link them together with the method IColumn.And .

Step 6: Populate the model by nonzeros
Go to the comment Step 6 in the file, and add these lines to create a method to populate
the empty model with data by nonzeros.

internal static void PopulateByNonzero(IMPModeler model,
INumVar[][] var,
IRange[][] rng) {

double[] lb = {0.0, 0.0, 0.0};
double[] ub = {40.0, System.Double.MaxValue, System.Double.MaxValue}

;
INumVar[] x = model.NumVarArray(3, lb, ub);
var[0] = x;

double[] objvals = {1.0, 2.0, 3.0};
model.Add(model.Maximize(model.ScalProd(x, objvals)));

rng[0] = new IRange[2];
rng[0][0] = model.AddRange(-System.Double.MaxValue, 20.0);
rng[0][1] = model.AddRange(-System.Double.MaxValue, 30.0);

rng[0][0].Expr = model.Sum(model.Prod(-1.0, x[0]),
model.Prod(1.0, x[1]),
model.Prod(1.0, x[2]));

rng[0][1].Expr = model.Sum(model.Prod(1.0, x[0]),
model.Prod(-3.0, x[1]),
model.Prod(1.0, x[2]));

}

In those lines, you can see how to populate an empty model with data indicating the nonzeros
of the constraint matrix. Those lines first create objects for the objective and the ranges

G E T T I N G S T A R T E D W I T H C P L E X196

without expressions. They also create variables without columns; that is, variables with only
their bounds. Then those lines create expressions over the objective, ranges, and variables
and add the expressions to the model.

Step 7: Add an interface
Go to the comment Step 7 in the file, and add these lines to create a method that tells a
user how to invoke this application.

internal static void Usage() {
System.Console.WriteLine(“usage: LPex1 <option>”);
System.Console.WriteLine(“options: -r build model row by row”);
System.Console.WriteLine(“options: -c build model column by column”);
System.Console.WriteLine(“options: -n build model nonzero by nonzero”);

}

Step 8: Add a command evaluator
Go to the comment Step 8 in the file, and add these lines to create a switch statement that
evaluates the command that a user of your application might enter.

switch (args[0].ToCharArray()[1]) {
case ‘r’: PopulateByRow(cplex, var, rng);

break;
case ‘c’: PopulateByColumn(cplex, var, rng);

break;
case ‘n’: PopulateByNonzero(cplex, var, rng);

break;
default: Usage();

return;
}

G E T T I N G S T A R T E D W I T H C P L E X 197

Solve

After you have declared the decision variables and added the constraints and objective
function to the model, your application is ready to search for a solution.

Step 9: Search for a solution
Go to Step 9 in the file, and add this line to make your application search for a solution.

if (cplex.Solve()) {

Step 10: Display the solution
Go to the comment Step 10 in the file, and add these lines to enable your application to
display any solution found in Step 9.

double[] x = cplex.GetValues(var[0]);
double[] dj = cplex.GetReducedCosts(var[0]);
double[] pi = cplex.GetDuals(rng[0]);
double[] slack = cplex.GetSlacks(rng[0]);

cplex.Output().WriteLine(“Solution status = “
+ cplex.GetStatus());

cplex.Output().WriteLine(“Solution value = “
+ cplex.ObjValue);

int nvars = x.Length;
for (int j = 0; j < nvars; ++j) {

cplex.Output().WriteLine(“Variable :”
+ j
+” Value = “
+ x[j]
+” Reduced cost = “
+ dj[j]);

}

int ncons = slack.Length;
for (int i = 0; i < ncons; ++i) {

cplex.Output().WriteLine(“Constraint:”
+ i
+” Slack = “
+ slack[i]
+” Pi = “
+ pi[i]);

}
}

G E T T I N G S T A R T E D W I T H C P L E X198

Step 11: Save the model to a file
If you want to save your model to a file in LP format, go to the comment Step 11 in your
application file, and add this line.

cplex.ExportModel(“lpex1.lp”);

If you have followed the steps in this tutorial interactively, you now have a complete
application that you can compile and execute.

G E T T I N G S T A R T E D W I T H C P L E X 199

Complete program

You can view the complete program online in the standard distribution of the product at
yourCPLEXinstallation \examples\src\LPex1.cs .

G E T T I N G S T A R T E D W I T H C P L E X200

Callable Library tutorial

Shows how to write applications that use the CPLEX® Callable Library (C API).

In this section

The design of the CPLEX Callable Library
Describes the architecture of the Callable Library (C API).

Compiling and linking Callable Library applications
Documents compilation and linking an application of the C API.

How CPLEX works
Describes activities of CPLEX® when it is invoked from the Callable Library (C API).

Creating a successful Callable Library application
Suggests guidelines for successful applications of the C API.

Building and solving a small LP model in C
Demonstrates an application in the C API.

Reading a problem from a file: example lpex2.c
Demonstrates an application that reads the model from a formatted file.

Adding rows to a problem: example lpex3.c
Demonstrates an application to add rows to a model.

Performing sensitivity analysis
Demonstrates sensitivity analysis in an application of the C API.

G E T T I N G S T A R T E D W I T H C P L E X 201

The design of the CPLEX Callable Library

A View of the CPLEX Callable Library shows a picture of the IBM® ILOG® CPLEX® world.
The CPLEX® Callable Library together with the CPLEX® internals make up the CPLEX®
core. The core becomes associated with your application through Callable Library routines.
The CPLEX® environment and all problem-defining data are established inside the CPLEX®
core.

A View of the CPLEX Callable Library

The CPLEX® Callable Library includes several categories of routines:

♦ optimization and result routines for defining a problem, optimizing it, and getting the
results;

♦ utility routines for addressing application programming matters;

♦ problem modification routines to change a problem after it has been created within the
CPLEX® internals;

♦ problem query routines to access information about a problem after it has been created;

♦ file reading and writing routines to move information from the file system into your
application or out of your application to the file system;

♦ parameter setting and query routines to access andmodify the values of control parameters
maintained by CPLEX® .

G E T T I N G S T A R T E D W I T H C P L E X202

Compiling and linking Callable Library
applications

Documents compilation and linking an application of the C API.

In this section

Overview
Explains compilation and linking for Callable Library applications.

Building Callable Library applications on UNIX platforms
Describes special considerations for compiling and linking on UNIX platforms.

Building Callable Library applications on Win32 platforms
Describes special considerations about compiling and linking on various Windows platforms.

G E T T I N G S T A R T E D W I T H C P L E X 203

Overview

Each Callable Library is distributed as a single library file libcplex.a or cplexXXX.lib .
Use of the library file is similar to that with .o or .obj files. Simply substitute the library
file in the link procedure. This procedure simplifies linking and makes sure that the smallest
possible executable is generated.

The following compilation and linking instructions assume that the example source programs
and CPLEX® Callable Library files are in the directories associated with a default installation
of the software. If this is not true, additional compile and link flags would be required to
point to the locations of the include file cplex.h , and Callable Library files respectively.

The instructions below were current at the time of publication. As compilers, linkers
and operating systems are released, different instructions may apply. Be sure to check

Note:

the Release Notes that come with your CPLEX® distribution for any changes. Also
check the CPLEX® web page (http://www.ilog.com/products/cplex).

G E T T I N G S T A R T E D W I T H C P L E X204

Building Callable Library applications on UNIX platforms

To compile and execute an example (lpex1) do the following:

IloNumVar[] x = cplex.numVarArray(3, 0.0, 100.0);
x[0] + 2*x[1] + 3*x[2]

IloNumExpr expr = cplex.sum(x[0],
cplex.prod(2.0, x[1]),
cplex.prod(3.0, x[2]));

IloLinearNumExpr expr = cplex.linearNumExpr();
expr.addTerm(1.0, x[0]);
expr.addTerm(2.0, x[1]);
expr.addTerm(3.0, x[2]);
IloObjective obj = cplex.minimize(expr);
cplex.add(obj);
cplex.addMinimize(expr);
cplex.addLe(cplex.sum(cplex.negative(x[0]), x[1], x[2]), 20);
double objval = cplex.getObjValue();
double[] xval = cplex.getValues (x);
var[0][0]

= model.numVar(model.column(obj, 1.0).and(
model.column(r0, -1.0).and(
model.column(r1, 1.0))),
0.0, 40.0);

% cd examples/platform/format
% make lpex1 # to compile and execute the first CPLEX example

In that command, platform indicates the name of the subdirectory corresponding to your
type of machine, and format indicates your particular library format, such as static,
multi-threaded, and so forth.

A list of all the examples that can be built this way is to be found in the makefile by looking
for C_EX (C examples), or you can view the files listed in examples/src .

The makefile contains recommended compiler flags and other settings for your particular
computer, which you can find by searching in it for "Compiler options" and use in your
applications that call CPLEX® .

G E T T I N G S T A R T E D W I T H C P L E X 205

Building Callable Library applications on Win32 platforms

Building a CPLEX® application using Microsoft Visual C++ Integrated Development
Environment, or the Microsoft Visual C++ command line compiler are explained here.

Microsoft Visual C++ IDE
To make a CPLEX® Callable Library application using Visual C++, first create or open a
project in the Visual C++ Integrated Development Environment (IDE). Project files are
provided for each of the examples found in the directory or folder examples\platform\format
where platform and format refer to your type of machine and compiler. For details about
the build process, refer to the information file msvc.html, which is found in the top of the
installed CPLEX® directory structure.

The distributed application must be able to locate CPLEXXXX.dll at run time.Note:

Microsoft Visual C++ Command Line Compiler
If the Visual C++ command line compiler is used outside of the IDE, the command should
resemble the following example. The example command assumes that the file cplex XXX .
lib is in the current directory with the source file lpex1.c , and that the line in the source
file "#include <ilcplex/cplex.h> " correctly points to the location of the include file or
else has been modified to do so (or that the directories containing these files have been
added to the environment variables LIB and INCLUDE respectively).

cl lpex1.c cplexXXX.lib

This command will create the executable file lpex1.exe .

Using Dynamic Loading
Some projects require more precise control over the loading and unloading of DLLs. For
information on loading and unloading DLLs without using static linking, please refer to the
compiler documentation or to a book such as Advanced Windows by Jeffrey Richter from
Microsoft Press. If this is not a requirement, the static link implementations already
mentioned are easier to use.

G E T T I N G S T A R T E D W I T H C P L E X206

How CPLEX works

Describes activities of CPLEX® when it is invoked from the Callable Library (C API).

In this section

Overview
Introduces basic steps in a Callable Library application.

Opening the CPLEX environment
Describes initialization of the environment.

Instantiating the problem object
Describes creation of a problem object.

Populating the problem object
Describes populating the problem object with data.

Changing the problem object
Describes special considerations about modification of the problem object.

G E T T I N G S T A R T E D W I T H C P L E X 207

Overview

When your application uses routines of the CPLEX® Callable Library, it must first open the
CPLEX® environment, then create and populate a problem object before it solves a problem.
Before it exits, the application must also free the problem object and release the CPLEX®
environment. The following sections explain those steps.

G E T T I N G S T A R T E D W I T H C P L E X208

Opening the CPLEX environment

CPLEX® requires a number of internal data structures in order to execute properly. These
data structures must be initialized before any call to the CPLEX® Callable Library. The
first call to the CPLEX® Callable Library is always to the function CPXopenCPLEX. This
routine checks for a valid CPLEX® license and returns a pointer to the CPLEX®
environment. This pointer is then passed to every CPLEX® Callable Library routine, except
those, such as CPXmsg, which do not require an environment.

The application developer must make an independent decision as to whether the variable
containing the environment pointer is a global or local variable. Multiple environments are
allowed, but extensive opening and closing of environments may create significant overhead
on the licensor and degrade performance; typical applications make use of only one
environment for the entire execution, since a single environment may hold as many problem
objects as the user wishes. After all calls to the Callable Library are complete, the
environment is released by the routine CPXcloseCPLEX. This routine specifies to CPLEX®
that all calls to the Callable Library are complete, any memory allocated by CPLEX® is
returned to the operating system, and the use of the CPLEX® license is ended for this run.

G E T T I N G S T A R T E D W I T H C P L E X 209

Instantiating the problem object

A problem object is instantiated (created and initialized) by CPLEX® when you call the
routine CPXcreateprob. It is destroyed when you call CPXfreeprob. CPLEX® allows you to
create more than one problem object, although typical applications will use only one. Each
problem object is referenced by a pointer returned by CPXcreateprob and represents one
specific problem instance.Most Callable Library functions (except parameter setting functions
and message handling functions) require a pointer to a problem object.

An attempt to use a problem object in any environment other than the environment (or
a child of that environment) where the problem object was created will raise an error.

Note:

G E T T I N G S T A R T E D W I T H C P L E X210

Populating the problem object

The problem object instantiated by CPXcreateprob represents an empty problem that contains
no data; it has zero constraints, zero variables, and an empty constraint matrix. This empty
problem object must be populated with data. This step can be carried out in several ways.

♦ The problem object can be populated by assembling arrays of data and then calling
CPXcopylp to copy the data into the problem object. (For example, see Building and
solving a small LP model in C.)

♦ Alternatively, you can populate the problem object by sequences of calls to the routines
CPXnewcols, CPXnewrows, CPXaddcols, CPXaddrows, and CPXchgcoeflist; these routines
may be called in any order that is convenient. (For example, see Adding rows to a problem:
example lpex3.c.)

♦ If the data already exist in a file using MPS format or LP format, you can use
CPXreadcopyprob to read the file and copy the data into the problem object. (For example,
see Reading a problem from a file: example lpex2.c.)

G E T T I N G S T A R T E D W I T H C P L E X 211

Changing the problem object

A major consideration in the design of CPLEX® is the need to re-optimize modified linear
programs efficiently. In order to accomplish that, CPLEX® must be aware of changes that
have been made to a linear program since it was last optimized. Problem modification
routines are available in the Callable Library.

Do not change the problem by changing the original problem data arrays and then making
a call to CPXcopylp. Instead, change the problem using the problem modification routines,
allowing CPLEX® to make use of as much solution information as possible from the solution
of the problem before the modifications took place.

For example, suppose that a problem has been solved, and that the user has changed the
upper bound on a variable through an appropriate call to the CPLEX® Callable Library. A
re-optimization would then begin from the previous optimal basis, and if that old basis were
still optimal, then that information would be returned without even the need to refactor the
old basis.

G E T T I N G S T A R T E D W I T H C P L E X212

Creating a successful Callable Library
application

Suggests guidelines for successful applications of the C API.

In this section

Overview
Outlines useful steps in developing a Callable Library application.

Prototype the model
Recommends creating a small model for prototyping.

Identify the routines to call
Recommends identifying Callable Library routines to use.

Test procedures in the application
Recommends testing in the Interactive Optimizer.

Assemble the data
Recommends ways to populate the model with data.

Choose an optimizer
Recommends identifying the optimizer to use, according to problem type.

Observe good programming practices
Recommends programming practices described in the User’s Manual.

G E T T I N G S T A R T E D W I T H C P L E X 213

Debug your program
Recommends a debugger and tips described in the User’s Manual.

Test your application
Recommends testing performance and correctness.

Use the examples
Recommends examples to follow.

G E T T I N G S T A R T E D W I T H C P L E X214

Overview

Callable Library applications are created to solve a wide variety of problems. Each application
shares certain common characteristics, regardless of its apparent uniqueness. The following
steps can help you minimize development time and get maximum performance from your
programs:

G E T T I N G S T A R T E D W I T H C P L E X 215

Prototype the model

Create a small model of the problem to be solved. An algebraic modeling language is
sometimes helpful during this step.

G E T T I N G S T A R T E D W I T H C P L E X216

Identify the routines to call

By separating the application into smaller parts, you can easily identify the tools needed to
complete the application. Part of this process consists of identifying the Callable Library
routines that will be called.

In some applications, the Callable Library is a small part of a larger program. In that case,
the only CPLEX® routines needed may be for:

♦ problem creation;

♦ optimizing;

♦ obtaining results.

In other cases the Callable Library is used extensively in the application. If so, Callable
Library routines may also be needed to:

♦ modify the problem;

♦ set parameters;

♦ manage input and output messages and files;

♦ query problem data.

G E T T I N G S T A R T E D W I T H C P L E X 217

Test procedures in the application

It is often possible to test the procedures of an application in the CPLEX® Interactive
Optimizer with a small prototype of the model. Doing so will help identify the Callable Library
routines required. The test may also uncover any flaws in procedure logic before you invest
significant development effort.

Trying the CPLEX® Interactive Optimizer is an easy way to decide the best optimization
procedure and parameter settings.

G E T T I N G S T A R T E D W I T H C P L E X218

Assemble the data

Youmust decide which approach to populating the problem object is best for your application.
Reading an MPS or LP file may reduce the coding effort but can increase the run-time and
disk-space requirements of the program. Building the problem in memory and then calling
CPXcopylp avoids time consuming disk-file reading. Using the routines CPXnewcols,
CPXnewrows, CPXaddcols, CPXaddrows, and CPXchgcoeflist can lead to modular code that
may be more easily maintained than if you assemble all model data in one step.

Another consideration is that if the Callable Library application reads anMPS or LP formatted
file, usually another application is required to generate that file. Particularly in the case of
MPS files, the data structures used to generate the file could almost certainly be used to
build the problem-defining arrays for CPXcopylp directly. The result would be less coding
and a faster, more efficient application. These observations suggest that formatted files may
be useful when prototyping your application, while assembling the arrays in memory may
be a useful enhancement for a production application.

G E T T I N G S T A R T E D W I T H C P L E X 219

Choose an optimizer

After a problem object has been instantiated and populated, it can be solved using one of
the optimizers provided by the CPLEX® Callable Library. The choice of optimizer depends
on the problem type.

♦ LP and QP problems can be solved by:

● the primal simplex optimizer;

● the dual simplex optimizer; and

● the barrier optimizer.

♦ LP and QP problems with a substantial network can also be solved by a special network
optimizer.

♦ LP problems can also be solved by:

● the sifting optimizer; and

● the concurrent optimizer.

♦ If the problem includes integer variables, mixed integer programming (MIP) must be
used.

There are also many different possible parameter settings for each optimizer. The default
values will usually be the best for linear programs. Integer programming problems are more
sensitive to specific settings, so additional experimentation will often be useful.

Choosing the best way to solve the problem can dramatically improve performance. For
more information, refer to the sections about tuning LP performance and trouble-shooting
MIP performance in the CPLEX User’s Manual.

G E T T I N G S T A R T E D W I T H C P L E X220

Observe good programming practices

Using good programming practices will save development time andmake the program easier
to understand and modify. A list of good programming practices is provided in the CPLEX
User’s Manual, in Developing CPLEX applications.

G E T T I N G S T A R T E D W I T H C P L E X 221

Debug your program

Your program may not run properly the first time you build it. Learn to use a symbolic
debugger and other widely available tools that support the creation of error-free code. Use
the list of debugging tips provided in the CPLEX User’s Manual to find and correct problems
in your Callable Library application.

G E T T I N G S T A R T E D W I T H C P L E X222

Test your application

After an application works correctly, it still may have errors or features that inhibit execution
speed. To get the most out of your application, be sure to test its performance as well as its
correctness. Again, the Interactive Optimizer can help. Since the Interactive Optimizer uses
the same routines as the Callable Library, it should take the same amount of time to solve
a problem as a Callable Library application.

Use the CPXwriteprob routine with the SAV format to create a binary representation of the
problem object, then read it in and solve it with the Interactive Optimizer. If the application
sets optimization parameters, use the same settings with the Interactive Optimizer. If your
application takes significantly longer than the Interactive Optimizer, performance within
your application can probably be improved. In such a case, possible performance inhibitors
include fragmentation of memory, unnecessary compiler and linker options, and coding
approaches that slow the program without causing it to give incorrect results.

G E T T I N G S T A R T E D W I T H C P L E X 223

Use the examples

The CPLEX® Callable Library is distributed with a variety of examples that illustrate the
flexibility of the Callable Library. The C source of all examples is provided in the standard
distribution. For explanations about the examples of quadratic programming problems (QPs),
mixed integer programming problems (MIPs) and network flows, see the CPLEX User’s
Manual. Explanations of the following examples of LPs appear in this manual:

illustrates various ways of generating a problem object.lpex1.c

demonstrates how to read a problem from a file, optimize it via a choice of several means,
and obtain the solution.

lpex2.c

demonstrates how to add rows to a problem object and reoptimize.lpex3.c

It is a good idea to compile, link, and run all of the examples provided in the standard
distribution.

G E T T I N G S T A R T E D W I T H C P L E X224

Building and solving a small LP model in C

The example lpex1.c shows you how to use problemmodification routines from the CPLEX®
Callable Library in three different ways to build a model. The application in the example
takes a single command line argument that indicates whether to build the constraint matrix
by rows, columns, or nonzeros. After building the problem, the application optimizes it and
displays the solution. Here is the problem that the example optimizes:

x1 + 2x2 + 3x3Maximize

–x1 + x2 + x3 ≤ 20subject to

x1 – 3x2 + x 3 ≤ 30

0 ≤ x1 ≤ 40with these bounds

0 ≤ x2 ≤ infinity

0 ≤ x3 ≤ infinity

Before any CPLEX® Callable Library routine can be called, your application must call the
routine CPXopenCPLEX to get a pointer (called env) to the CPLEX® environment. Your
application will then pass this pointer to every Callable Library routine. If this routine fails,
it returns an error code. This error code can be translated to a string by the routine
CPXgeterrorstring.

After the CPLEX® environment is initialized, the CPLEX® screen switch parameter
(CPX_PARAM_SCRIND) is turned on by the routine CPXsetintparam. This causes all default
CPLEX® output to appear on the screen. If this parameter is not set, then CPLEX® will
generate no viewable output on the screen or in a file.

At this point, the routine CPXcreateprob is called to create an empty problem object. Based
on the problem-building method selected by the command-line argument, the application
then calls a routine to build the matrix by rows, by columns, or by nonzeros. The routine
populatebyrow first calls CPXnewcols to specify the column-based problem data, such as
the objective, bounds, and variables names. The routine CPXaddrows is then called to supply
the constraints. The routine populatebycolumn first calls CPXnewrows to specify the row-based
problem data, such as the righthand side values and sense of constraints. The routine
CPXaddcols is then called to supply the columns of the matrix and the associated column
bounds, names, and objective coefficients. The routine populatebynonzero calls both
CPXnewrows and CPXnewcols to supply all the problem data except the actual constraint
matrix. At this point, the rows and columns are well defined, but the constraint matrix
remains empty. The routine CPXchgcoeflist is then called to fill in the nonzero entries in
the matrix.

After the problem has been specified, the application optimizes it by calling the routine
CPXlpopt. Its default behavior is to use the CPLEX® Dual Simplex Optimizer. If this routine
returns a nonzero result, then an error occurred. If no error occurred, the application
allocates arrays for solution values of the primal variables, dual variables, slack variables,
and reduced costs; then it obtains the solution information by calling the routine CPXsolution.
This routine returns the status of the problem (whether optimal, infeasible, or unbounded,

G E T T I N G S T A R T E D W I T H C P L E X 225

and whether a time limit or iteration limit was reached), the objective value and the solution
vectors. The application then displays this information on the screen.

As a debugging aid, the application writes the problem to a CPLEX® LP file (named lpex1.
lp) by calling the routine CPXwriteprob. This file can be examined to detect whether any
errors occurred in the routines creating the problem. CPXwriteprob can be called at any
time after CPXcreateprob has created the lp pointer.

The label TERMINATE : is used as a place for the program to exit if any type of failure occurs,
or if everything succeeds. In either case, the problem object represented by lp is released
by the call to CPXfreeprob, and any memory allocated for solution arrays is freed. The
application then calls CPXcloseCPLEX; it tells CPLEX® that all calls to the Callable Library
are complete. If an error occurs when this routine is called, then a call to CPXgeterrorstring
is needed to retrieve the error message, since CPXcloseCPLEX causes no screen output.

You can view the complete program online in the standard distribution of the product at
yourCPLEXinstallation/examples/src/lpex1.c .

G E T T I N G S T A R T E D W I T H C P L E X226

Reading a problem from a file: example lpex2.c

The previous example, lpex1.c , shows a way to copy problem data into a problem object
as part of an application that calls routines from the CPLEX® Callable Library. Frequently,
however, a file already exists containing a linear programming problem in the industry
standard MPS format, the CPLEX® LP format, or the CPLEX® binary SAV format. In
example lpex2.c , CPLEX® file-reading and optimization routines read such a file to solve
the problem.

Example lpex2.c uses command line arguments to specify the name of the input file and
the optimizer to call.

Usage: lpex2 filename optimizer

Where: filename is a file with extension MPS, SAV, or LP (lower case is allowed), and
optimizer is one of the following letters:

defaulto

primal simplexp

dual simplexd

network with dual simplex cleanupn

barrier with crossoverh

barrier without crossoverb

siftings

concurrentc

For example, this command:

lpex2 example.mps d

reads the file example.mps and solves the problem with the dual simplex optimizer.

To illustrate the ease of reading a problem, the example uses the routine CPXreadcopyprob.
This routine detects the type of the file, reads the file, and copies the data into the CPLEX®
problem object that is created with a call to CPXcreateprob. The user need not be concerned
with the memory management of the data. Memory management is handled transparently
by CPXreadcopyprob .

After calling CPXopenCPLEX and turning on the screen switch by setting the CPX_PARAM_SCRIND
parameter to CPX_ON, the example creates an empty problem object with a call to
CPXcreateprob. This call returns a pointer, lp , to the new problem object. Then the data
is read in by the routine CPXreadcopyprob. After the data is copied, the appropriate
optimization routine is called, based on the command line argument.

G E T T I N G S T A R T E D W I T H C P L E X 227

After optimization, a call to CPXgetstat retrieves the status of the solution . The cases of
infeasibility or unboundedness in the model are handled in a simple fashion here; a more
complex application program might treat these cases in more detail. With these two cases
out of the way, the program then calls CPXsolninfo to examine the nature of the solution.
Certain that a solution exists, the application then calls CPXgetobjval to obtain the objective
function value for this solution and report it.

Next, preparations are made to print the solution value and basis status of each individual
variable, by allocating arrays of appropriate size; these sizes are detected by calls to the
routines CPXgetnumcols and CPXgetnumrows . Note that a basis is not guaranteed to exist,
depending on which optimizer was selected at run time, so some of these steps, including
the call to CPXgetbase , are dependent on the solution type returned by CPXsolninfo .

The primal solution values of the variables are obtained by a call to CPXgetx , and then these
values (along with the basis statuses if available) are printed, in a loop, for each variable.
After that, a call to CPXgetdblquality provides a measure of the numerical roundoff error
present in the solution, by obtaining the maximum amount by which any variable's lower or
upper bound is violated.

After the TERMINATE: label, the data for the solution (x , cstat , and rstat) are freed. Then
the problem object is freed by CPXfreeprob. After the problem is freed, the CPLEX®
environment is freed by CPXcloseCPLEX.

You can view the complete program online in the standard distribution of the product at
yourCPLEXinstallation/examples/src/lpex2.c.

G E T T I N G S T A R T E D W I T H C P L E X228

Adding rows to a problem: example lpex3.c

This example illustrates how to develop your own solution algorithms with routines from
the Callable Library. It also shows you how to add rows to a problem object. Here is the
problem that lpex3 solves:

c^TxMinimize

Hx = dsubject to

Ax = b

l x u

(-3)d =(-1 0 1 0 1 0 0 0)H =where

(1)(1 -1 0 1 0 0 0 0)

(4)(0 1 -1 0 0 1 -1 0)

(3)(0 0 0 -1 0 -1 0 1)

(-5)(0 0 0 0 -1 0 1 -1)

(4)b =(2 1 -2 -1 2 -1 -2 -3)A =

(-2)(1 -3 2 3 -1 2 1 1)

(-9 1 4 2 -8 2 8 12)c =

(0 0 0 0 0 0 0 0)l =

(50 50 50 50 50 50 50 50)u =

The constraints Hx=d represent the flow conservation constraints of a pure network flow
problem. The example solves this problem in two steps:

1. The CPLEX® Network Optimizer is used to solve

c^TxMinimize

Hx = dsubject to

G E T T I N G S T A R T E D W I T H C P L E X 229

l x u

2. The constraints Ax=b are added to the problem, and the dual simplex optimizer is used
to solve the new problem, starting at the optimal basis of the simpler network problem.

The data for this problem consists of the network portion (using variable names beginning
with the letter H) and the complicating constraints (using variable names beginning with
the letter A).

The example first calls CPXopenCPLEX to create the environment and then turns on the
CPLEX® screen switch (CPX_PARAM_SCRIND). Next it sets the simplex display level
(CPX_PARAM_SIMDISPLAY) to 2 to indicate iteration-by-iteration output, so that the progress
of each iteration of the optimizer can be observed. Setting this parameter to 2 is not generally
recommended; the example does so only for illustrative purposes.

The example creates a problem object by a call to CPXcreateprob. Then the network data
is copied via a call to CPXcopylp. After the network data is copied, the parameter
CPX_PARAM_LPMETHOD is set to CPX_ALG_NET and the routine CPXlpopt is called to solve the
network part of the optimization problem using the network optimizer. The objective value
of this problem is retrieved by CPXgetobjval.

Then the extra rows are added by CPXaddrows. For convenience, the total number of nonzeros
in the rows being added is stored in an extra element of the array rmatbeg , and this element
is passed for the parameter nzcnt . The name arguments to CPXaddrows are NULL , since no
variable or constraint names were defined for this problem.

After the CPXaddrows call, the parameter CPX_PARAM_LPMETHOD is set to CPX_ALG_DUAL and
the routine CPXlpopt is called to re-optimize the problem using the dual simplex optimizer.
After re-optimization, CPXsolution accesses the solution status, the objective value, and
the primal solution. NULL is passed for the other solution values, since the information they
provide is not needed in this example.

At the end, the problem is written as a SAV file by CPXwriteprob. This file can then be read
into the Interactive Optimizer to analyze whether the problem was correctly generated.
Using a SAV file is recommended over MPS and LP files, as SAV files preserve the full
numeric precision of the problem.

After the TERMINATE: label, CPXfreeprob releases the problem object, and CPXcloseCPLEX
releases the CPLEX® environment.

You can view the complete program online in the standard distribution of the product at
yourCPLEXinstallation/examples/src/lpex3.c.

G E T T I N G S T A R T E D W I T H C P L E X230

Performing sensitivity analysis

In Performing sensitivity analysis, there is a discussion of how to perform sensitivity analysis
in the Interactive Optimizer. As with most interactive features of CPLEX® , there is a direct
approach to this task from the Callable Library. This section modifies the example lpex1.c
in Building and solving a small LP model in C to show how to perform sensitivity analysis
with routines from the Callable Library.

To begin, make a copy of lpex1.c , and edit this new source file. Among the declarations
(for example, immediately after the declaration for dj) insert these additional declarations:

double *lowerc = NULL, *upperc = NULL;
double *lowerr = NULL, *upperr = NULL;

At some point after the call to CPXlpopt, (for example, just before the call to CPXwriteprob),
perform sensitivity analysis on the objective function and on the righthand side coefficients
by inserting this fragment of code:

upperc = (double *) malloc (cur_numcols * sizeof(double));
lowerc = (double *) malloc (cur_numcols * sizeof(double));
status = CPXobjsa (env, lp, 0, cur_numcols-1, lowerc, upperc);
if (status) {

fprintf (stderr, "Failed to obtain objective sensitivity.\n");
goto TERMINATE;

}
printf ("\nObjective coefficient sensitivity:\n");
for (j = 0; j < cur_numcols; j++) {
printf ("Column %d: Lower = %10g Upper = %10g\n",

j, lowerc[j], upperc[j]);
}

upperr = (double *) malloc (cur_numrows * sizeof(double));
lowerr = (double *) malloc (cur_numrows * sizeof(double));
status = CPXrhssa (env, lp, 0, cur_numrows-1, lowerr, upperr);
if (status) {
fprintf (stderr, "Failed to obtain RHS sensitivity.\n");
goto TERMINATE;

}
printf ("\nRight-hand side coefficient sensitivity:\n");
for (i = 0; i < cur_numrows; i++) {
printf ("Row %d: Lower = %10g Upper = %10g\n",

i, lowerr[i], upperr[i]);
}

This sample is familiarly known as “throw away” code. For production purposes, you probably
want to observe good programming practices such as freeing these allocated arrays at the
TERMINATE label in the application.

A bound value of 1e+20 (CPX_INFBOUND) is treated as infinity within CPLEX® , so this is the
value printed by our sample code in cases where the upper or lower sensitivity range on a
row or column is infinite; a more sophisticated program might print a string, such as -inf
or +inf, when negative or positive CPX_INFBOUND is encountered as a value.

G E T T I N G S T A R T E D W I T H C P L E X 231

Similar code could be added to perform sensitivity analysis with respect to bounds via
CPXboundsa.

G E T T I N G S T A R T E D W I T H C P L E X232

Python tutorial

Shows how to use CPLEX® interactively in a Python session and how to write an application
using the Python API for CPLEX® .

In this section

Design of CPLEX in a Python application
Explains objects necessary to an application of CPLEX in the Python programming language.

Starting the CPLEX Python API
Explains how to use the Python environment variable PYTHONPATH to get started with the
CPLEX® Python API on your system.

Accessing the module cplex
Explains how to invoke CPLEX® in a Python session.

Building and solving a small LP with Python
Shows a sample solving a linear programming model using the CPLEX® Python API.

Reading and writing CPLEX models to files with Python
Introduces reading models from files and writing models to files in an application using the
CPLEX® Python API.

Selecting an optimizer in Python
Outlines criteria for selecting an optimizer using the CPLEX® Python API.

Example: reading a problem from a file lpex2.py
Introduces the sample lpex2.py to illustrate reading a problem from a file.

G E T T I N G S T A R T E D W I T H C P L E X 233

Modifying and re-optimizing in the CPLEX Python API
Introduces the idea of modifying a model and re-optimizing to see the effect.

Example: modifying a model lpex3.py
Shows how to modify the model in the sample lpex3.py.

Using CPLEX parameters in the CPLEX Python API
Introduces CPLEX® parameters as managed in the CPLEX® Python API.

G E T T I N G S T A R T E D W I T H C P L E X234

Design of CPLEX in a Python application

The Python API of IBM® ILOG® CPLEX® consists of files in the directory where you
installed the product (referred to here as yourCPLEXHome).

The primary class in themodule cplex is the class Cplex. It encapsulates the mathematical
formulation of an optimization problem together with information that you, the user, specify
about how CPLEX® should solve the problem. The class Cplex provides methods for
modifying a problem, solving the problem, and querying both the problem itself and its
solution. The methods of the class Cplex are grouped into categories of related functionality.
For example, methods for adding, modifying, and querying data related to variables are
contained in the member variables of the class Cplex.

G E T T I N G S T A R T E D W I T H C P L E X 235

Starting the CPLEX Python API

In this tutorial, the directory where you put the CPLEX® Python API (for example, by
downloading it or by installing it from a distribution medium, such as a compact disk) is
known as yourCPLEXhome. In a path name such as yourCPLEXhome/python/PLATFORM/, the
term PLATFORM represents the name of one of the various platforms on which the CPLEX®
Python API is available. In this context, a platform is a combination of operating system
(such as a Microsoft Windows designation or a GNU/Linux distribution) and chip-type (such
as 32- or 64-bit architecture) for which CPLEX® is distributed as a product. In that directory,
you find these elements:

♦ a subdirectory named cplex

♦ a file named setup.py

The easiest way to start using the CPLEX® Python API is to set the Python path environment
variable, PYTHONPATH to the value of yourCPLEXhome/python/PLATFORM/. Setting this
environment variable will enable Python to find the CPLEX® modules it needs to run Python
commands and scripts that use the CPLEX® Python API. For more detail about installation,
see Installing CPLEX Python API.

G E T T I N G S T A R T E D W I T H C P L E X236

Accessing the module cplex

After you have installed CPLEX® Python API on your system, you access CPLEX® from
the Python programming language through the cplex module. To do so, you may use any
of the following commands either from a script written in the Python programming language
or from within the Python interpreter:

import cplex

or

from cplex import *

or

import cplex as NAME

where NAME is any Python name of your choice.

G E T T I N G S T A R T E D W I T H C P L E X 237

Building and solving a small LP with Python

After you have installed the CPLEX® Python API on your system and opened a Python
interactive session, you can actually build and solve a small LP model as a demonstration.
The demonstration shows how to:

♦ model by rows;

♦ model by columns;

♦ model by nonzero elements.

The code sample, lpex1.py , is one of the examples in the standard distribution of the
product. It is an extension of the example presented in Getting Started with CPLEX as
Problem statement. The demonstration shows three different ways to define an LP problem
through the CPLEX® Python API, how to solve it, and how to access the solution. Here is
the model that the sample optimizes:

Maximize
x1 + 2x2 + 3x3
subject to
–x1 + x2 + x3 <= 20
x1 – 3x2 + x3 <= 30
with these bounds
0 <= x1 <= 40
0 <= x2 <= infinity
0 <= x3 <= infinity

First, the example checks the correctness of command-line arguments. If the command-line
arguments are valid, the example creates and solves the problem within a try/except clause
to handle any errors that may occur. Then, depending on the command line argument, the
example calls one of the functions populatebyrow, populatebycolumn, or populatebynonzero,
to fill the Cplex object with a representation of the optimization problem. These functions
generate lists containing the data that define the LP problem. After the Cplex object has
been populated by one of these three functions, its solve method invokes the optimizer in
this sample.

If the optimizer fails to generate a solution, CPLEX® raises an exception.

If a solution is found, CPLEX® prints solution information to sys.stdout when a user's
application invokes print statements.

G E T T I N G S T A R T E D W I T H C P L E X238

Reading and writing CPLEX models to files with Python

In general, the methods of the class Cplex query, add, or modify data comprising an
optimization problem.

Moreover, the class Cplex provides output streams for general log messages, results,
warning messages, and error messages. A user sets those output streams by means of the
methods set_log_stream, set_results_stream, set_warning_stream, and
set_error_stream. These methods take either a file object or a filename as an argument;
they also accept the argument None to disable their output.

These methods can also take, as an optional second argument, a parsing function that
takes a string as input and returns a string as output. If the user specifies a parsing function,
CPLEX® uses that function to process the output to that stream.

By default, the log and results streams are set to sys.stdout and the error and warning
streams are set to sys.stderr.

The sample lpex1.py contains one more line that deserves explanation in the context of
reading and writing files:

my_prob.write("lpex1.lp")

That statement causes my_prob to write the data it has stored to the file named lpex1.lp.
In this sample, the file is written in LP format. File Formats Reference Manual documents
that file format with respect to CPLEX® in the topic LP file format: matrix models.

Other formats supported for writing problems to a file areMPS and SAV (also documented
by the File Formats Reference Manual in the topic MPS file format: industry standard and
in SAV.

The CPLEX® Python API decides which file format to write based on the extension of the
file name; you can also use an optional format string as an additional argument to specify
a file format.

The class Cplex also supports reading of files through its read method and through its
constructor. For example, if cpx is an instance of the class Cplex, then a call like this:

cpx.read("file.lp")

or like this:

cpx = cplex.Cplex("file.lp")

causes the CPLEX® Python API to read a problem from the formatted file named file.lp.

The method read() replaces all data currently stored in the object cpx.Note:

MPS and SAV format files are also supported in a similar way.

G E T T I N G S T A R T E D W I T H C P L E X 239

Selecting an optimizer in Python

The CPLEX® Python API provides a single method, solve, to optimize problems. That
method uses the features of the model to deduce the appropriate algorithm for solving the
problem. While the default optimizer works well for a wide variety of models, the CPLEX®
Python API allows you to control which algorithm to invoke for certain types of problems by
your changing the values of certain parameters.

For example, if cpx is an instance of the class Cplex encapsulating a MIP (mixed integer
programming) problem, you can specify which linear programming algorithm is used for
solving the root problem and the node subproblems, like this:

cpx.parameters.mip.strategy.startalgorithm.set(start)
cpx.parameters.mip.strategy.subalgorithm.set(sub)

where start is one of the attributes of cplex.parameters.mip.strategy.startalgorithm.
values for the root node and sub is one of the attributes of cplex.parameters.mip.strategy.
subalgorithm.values for the subproblem nodes.

G E T T I N G S T A R T E D W I T H C P L E X240

Example: reading a problem from a file lpex2.py

The sample lpex2.py shows how to read an optimization problem from a file, and solve the
problem with a specified optimizer option. If solution information or a simplex basis are
available, the sample application prints them. Finally the sample prints the maximum
infeasibility of any variable of the solution.

The user passes the name of the file to read and the choice of optimizers as arguments on
the command line. For example, this command:

$ python lpex2.py example.mps d

reads the file example.mps and solves the problem with the dual simplex optimizer.

Alternatively, you may execute the statement:

import lpex2

within the Python interpreter and specify the problem file and optimization method
interactively.

In summary, this example shows how to:

♦ read a model from a formatted file;

♦ select the optimizer;

♦ access basis information;

♦ query quality measures of the solution.

The general structure of this sample is similar to the sample lpex1.py. It starts by creating
an instance of Cplex. A try/except statement encloses the code that follows to handle errors
gracefully. You can see the complete application online in the standard distribution of the
product at yourCPLEXHome/examples/src/lpex2.py.

G E T T I N G S T A R T E D W I T H C P L E X 241

Modifying and re-optimizing in the CPLEX Python API

In many situations, the solution to a model is only the first step. One of the important features
of the CPLEX® Python API is the ability to modify and then re-optimize the model even
after it has been created and solved one or more times.

After CPLEX® solves a problem, you can add, remove, or modify constraints to produce a
different but related model. When you modify a problem, CPLEX® tries to maintain as much
information from the previous solution as reasonable and possible, in order to have a better
start when it solves the modified problem. In particular, when solving LPs or QPs with a
simplex method, CPLEX® attempts to maintain a basis which will be used the next time
the method solve is invoked, with the aim of making subsequent solves go faster.

G E T T I N G S T A R T E D W I T H C P L E X242

Example: modifying a model lpex3.py

The sample lpex3.py demonstrates how to:

♦ set CPLEX® parameters;

♦ modify an optimization model;

♦ start optimization from an existing basis.

The problem that lpex3.py solves looks like this:

Minimize
c^Tx
subject to
Hx = d
Ax = b
l <= x <= u
where
H = (-1 0 1 0 1 0 0 0)
d =
(-3)
(1 -1 0 1 0 0 0 0)
(1)
(0 1 -1 0 0 1 -1 0)
(4)
(0 0 0 -1 0 -1 0 1)
(3)
(0 0 0 0 -1 0 1 -1)
(-5)
A = (2 1 -2 -1 2 -1 -2 -3)
b =
(4)
(1 -3 2 3 -1 2 1 1)
(-2)
c = (-9 1 4 2 -8 2 8 12)
l = (0 0 0 0 0 0 0 0)
u =(50 50 50 50 50 50 50 50)

The constraints Hx=d represent the flow conservation of a pure network flow problem. The
sample solves this problem in two steps:

♦ First, the CPLEX® Network Optimizer solves:

Minimize
c^Tx
subject to
Hx = d
l <= x <= u

♦ Second, the sample adds the constraints Ax=b to the model, and invokes the dual simplex
optimizer to solve the full problem, starting from the optimal basis of the network problem.

G E T T I N G S T A R T E D W I T H C P L E X 243

The dual simplex optimizer is highly effective in such a case because this basis remains dual
feasible after the slacks (artificial variables) of the added constraints are initialized as basic.

The 0 (zero) values in the data are omitted in the sample. CPLEX® makes extensive use of
sparsematrix methods and, although CPLEX® correctly handles any explicit zero coefficients
given to it, most programs solving models of more than modest size benefit (in terms of both
storage space and speed) if the natural sparsity of the model is exploited from the very start.

Before solving the model, the sample selects the network optimizer by setting the parameter
lpmethod to the value parameters.lpmethod.values.network.

The sample also sets the simplex display parameter so that the simplex optimizer logs
information as it executes.

For an introduction to CPLEX® parameters in the CPLEX® Python API, see also the topic
Using CPLEX parameters in the CPLEX Python API.

G E T T I N G S T A R T E D W I T H C P L E X244

Using CPLEX parameters in the CPLEX Python API

For CPLEX® users familiar with the Interactive Optimizer, setting and querying parameters
in the CPLEX® Python API is similar to parameter handling in the Interactive Optimizer.
The class Cplex offers a data member named parameters containing names of parameters
(such as lpmethod and threads) and names of groups of related parameters (such as barrier
and output). These groups can in turn contain individual parameters and groups of
parameters themselves. The hierarchy is the same as that found in the Interactive Optimizer,
with the exception of parameters such as output dialog; their functionality is handled by
other parts of the CPLEX® Python API.

If you are already familiar with the names of parameters in the Interactive Optimizer,
then you quickly recognize names of parameters in the Python API. For example, the

Tip:

command “set mip limits nodes 1” in the Interactive Optimizer corresponds to
“c.parameters.mip.limits.nodes.set(1)” in a Python session.

For users whose first contact with CPLEX® is through the CPLEX® Python API, the
following topics introduce setting parameters, querying their current value, and using groups
of parameters.

Setting and querying parameters in the CPLEX Python API
As objects themselves, parameters offer the followingmethods:

♦ get() returns the current value of the parameter.

♦ set(value) sets the invoking parameter to value. If value is of the wrong type for the
invoking parameter, or if value is less than the minimum value or greater than the
maximum value for the parameter, CPLEX® raises an exception.

♦ reset() sets the parameter to its default value.

♦ default() returns the default value of the parameter.

♦ type() returns the type of the parameter.

♦ help() returns a brief description of the parameter.

Numerical parameters offer these additional methods:

♦ min() returns the minimum value allowed for the parameter.

♦ max() returns the maximum value allowed for the parameter.

Parameters of type float with no restrictions on their value return 0.0 (zero) when you
invoke the method min() or max().

Certain integer parameters, such as lpmethod, have values with a special meaning. Such
parameters also have a data attribute named values, which has as its attributes the values
that the parameter can take. For example, if cpx is an instance of the class Cplex
encapsulating an LP problem, then:

G E T T I N G S T A R T E D W I T H C P L E X 245

>>> cpx.parameters.lpmethod.set(cpx.parameters.lpmethod.values.primal)
>>> cpx.solve()

results in CPLEX® solving the problem by the primal simplex optimizer.

Parameter groups
For your convenience, CPLEX® parameters are organized into groups of parameters that
you can manage simultaneously. A parameter group is an instance of the class
ParameterGroup.

The class ParameterGroup offers these methods:

♦ reset sets all parameters within the group to their default value.

♦ get_changed returns a list of pairs (parameter, current_value) for the members of the
group not currently at their default value.

The parameter group that encompasses all parameters is an instance of the class
RootParameterGroup, a subclass of the class ParameterGroup. It offers these methods:

♦ read(filename) reads a set of parameters from the named file.

♦ write(filename) writes a set of parameters to the named file.

♦ tune_problem(fixed_parameters_and_values=[]) tunes the parameters to improve
performance on an instance of the class Cplex. The argument
fixed_parameters_and_values is a sequence of pairs (parameter, value) as returned by
the method ParameterGroup.get_changed.

♦ tune_problem_set(filenames, filetypes=[], fixed_parameters_and_values=[])
tunes the parameters to improve performance on a set of problems. Again, the argument
fixed_parameters_and_values is a sequence of pairs (parameter, value) as returned by
the method ParameterGroup.get_changed.

G E T T I N G S T A R T E D W I T H C P L E X246

A
accessing

basic rows and columns of solution in
Interactive Optimizer 87
basis information (C++ API) 155
dual values in Interactive Optimizer 87
dual values in Interactive Optimizer
(example) 87
module of Python API 237
objective function value in Interactive
Optimizer 87
quality of solution in Interactive Optimizer
87
reduced cost (Java API) 180
reduced costs in Interactive Optimizer 87
slack values in Interactive Optimizer 87
solution values (C++ API) 139
solution values in Interactive Optimizer 87

add Interactive Optimizer command 106
file name and 106
syntax 107

add(obj) method (Java API) 177
adding

bounds in Interactive Optimizer 106
constraint to model (C++ API) 160
constraints in Interactive Optimizer 106
from a file in Interactive Optimizer 106
interactively in Interactive Optimizer 106
objective (shortcut) (Java API) 177
objective function to model (C++ API) 135
rows to a problem (C API) 229

addLe method (Java API) 184
addMinimize method (Java API) 177, 184
advanced basis

advanced start indicator in Interactive
Optimizer 85

algorithm

creating object (C++ API) 138
role in application (C++ API) 142

and method (Java API) 185
application

and Callable Library 20
and Concert Technology 20
compiling and linking (C++ API) 129
compiling and linking Callable Library (C
API) 203
compiling and linking Component Libraries
35
development steps (C API) 213
error handling (C API) 222
error handling (C++ API) 140

B
baropt Interactive Optimizer command 85
barrier optimizer

availability in Interactive Optimizer 85
BAS file format

reading from Interactive Optimizer 103
writing from Interactive Optimizer 95

basis
accessing information (C++ API) 155
basis information (Java API) 180
starting from previous (C++ API) 164

basis file
reading in Interactive Optimizer 103
writing in Interactive Optimizer 95

Boolean parameter (C++ API) 162
Boolean variable

representing in model (C++ API) 135
bound

adding in Interactive Optimizer 106
changing in Interactive Optimizer 115
default values in Interactive Optimizer 64
displaying in Interactive Optimizer 78

© Copyright IBM Corp. 1987, 2009 247

I N D E X

Index

entering in LP format in Interactive
Optimizer 64
removing in Interactive Optimizer 116
sensitivity analysis in Interactive Optimizer
89

box variable in Interactive Optimizer 71

C
Callable Library

description 20
example model 47

Callable Library (C API) 201
application development steps 213
compiling and linking applications 203
conceptual design 202
CPLEX operation 207
distribution file 204
error handling 222
opening CPLEX 209

change Interactive Optimizer command 111
bounds 115
change options 112
coefficient 117
delete 119

delete options 119
objective 118
rhs 118
sense 114
syntax 121

changing
bounds in Interactive Optimizer 115
coefficients in Interactive Optimizer 117
constraint names in Interactive Optimizer
113
objective in Interactive Optimizer 118
parameters (C++ API) 162
parameters in Interactive Optimizer 104
problem in Interactive Optimizer 109
righthand side (rhs) in Interactive Optimizer
118
sense in Interactive Optimizer 114
variable names in Interactive Optimizer 113

choosing
optimizer (C API) 220
optimizer (C++ API) 149
optimizer in Interactive Optimizer 85

class library (Java API) 170
classpath (Java API) 172

command line option 170
clean up data 121
coefficient

changing in Interactive Optimizer 117
column

expressions (C++ API) 145
command

executing from operating system in
Interactive Optimizer 122
input formats in Interactive Optimizer 56
Interactive Optimizer list 56

compiler
-DNDEBUG option (C++ API) 140
error messages (C++ API) 132
Microsoft Visual C++ Command Line (C API)
206
using with CPLEX (C++ API) 129

compiling
applications 35
applications (C API) 203
applications (C++ API) 129

Component Libraries
defined 20
running examples 35
verifying installation 35

Concert Technology
C++ classes 133
C++ objects 127
compiling and linking applications (C++ API)
129
CPLEX design in (C++ API) 127
error handling (C++ API) 140
running examples (C++ API) 129

Concert Technology (C++ API) 125, 165
Concert Technology Library

description 20
example model 43

constraint
adding (C++ API) 160
adding in Interactive Optimizer 106
changing names in Interactive Optimizer 113
changing sense in Interactive Optimizer 114
creating (C++ API) 144
default names in Interactive Optimizer 64
deleting in Interactive Optimizer 119
displaying in Interactive Optimizer 76
displaying names in Interactive Optimizer 73
displaying nonzero coefficients in Interactive
Optimizer 71
displaying number in Interactive Optimizer
71
displaying type in Interactive Optimizer 71
entering in LP format in Interactive
Optimizer 63
name limitations in Interactive Optimizer 64
naming in Interactive Optimizer 64
range (C++ API) 144

constraints
adding to a model (Java API) 177

continuous variable
representing (C++ API) 135

CPLEX

G E T T I N G S T A R T E D W I T H C P L E X248

compatible platforms 20
Component Libraries 20
description 17
directory structure 32
installing 31
licensing 34
problem types 17
quitting in Interactive Optimizer 123
setting up 29
starting in Interactive Optimizer 55
technologies 20

cplex command in Interactive Optimizer 55
cplex.jar (location) 170
cplex.log file in Interactive Optimizer 85
CPXaddcols routine

example in C API 225
modular data in C API 219
populating problem (C API) 211

CPXaddrows routine
LP example in C API 225
modular data in C API 219
network example in C API 229
populating model in C API 211

CPXchgcoeflist routine
example in C API 225
modular data in C API 219
populating model in C API 211

CPXcloseCPLEX routine
LP example in C API 225
MPS example in C API 227
network example in C API 229
purpose in C API 209

CPXcopylp routine
building model in memory for C API 219
efficient arrays in C API 219
example in C API 229
not for changing model in C API 212
populating model in C API 211

CPXcreateprob routine
LP example in C API 227
network example in C API 229
purpose in C API 210
use in C API 210

CPXfreeprob routine
file format example in C API 227
LP example in C API 225
network example in C API 229
purpose in C API 210

CPXgeterrorstring routine
closing LP example in C API 225
opening LP example in C API 225

CPXgetobjval routine 229
CPXlpopt routine

LP example in C API 225
network example in C API 229

CPXmsg routine 209
CPXnewcols routine

LP example in C API 225
modular data in C API 219
populating model in C API 211

CPXnewrows routine 225
example in C API 225
modular data in C API 219
populating model in C API 211

CPXopenCPLEX routine
file format example in C API 227
LP example in C API 225
network example in C API 229
purpose in C API 209

CPXreadcopyprob routine
example in C API 227
formatted data files in C API 211

CPXsetintparam routine 225
CPXsolution routine

LP example in C API 225
network example in C API 229

CPXwriteprob routine
LP example in C API 225
network example in C API 229
testing in CAPI 223

creating
algorithm object (C++ API) 138, 142
automatic log file in Interactive Optimizer 85
binary problem representation (C API) 223
constraint (C++ API) 144
environment (C API) 229
environment object (C++ API) 134, 142
model (IloModel) (C++ API) 135
model (Java API) 177
model objects (C++ API) 142
objective function (C++ API) 144
optimization model (C++ API) 135
problem files in Interactive Optimizer 91
problem object (C API) 210, 229

D
data

entering in Interactive Optimizer 66
entry options 23

deleting
constraints in Interactive Optimizer 119
problem options in Interactive Optimizer 119
variables in Interactive Optimizer 119

directory installation structure 32
display Interactive Optimizer command 69, 113

options 69
problem 69

bounds 78
constraints 76, 77
names 73, 74, 75
options 69

G E T T I N G S T A R T E D W I T H C P L E X 249

stats 71
syntax 70

sensitivity 89
syntax 90

settings 105
solution 87

syntax 88
specifying item ranges 72
syntax 78

displaying
basic rows and columns in Interactive
Optimizer 87
bounds in Interactive Optimizer 78
constraint names in Interactive Optimizer 73
constraints in Interactive Optimizer 76
nonzero constraint coefficients in Interactive
Optimizer 71
number of constraints in Interactive
Optimizer 71
objective function in Interactive Optimizer
77
optimal solution in Interactive Optimizer 83
parameter settings in Interactive Optimizer
105
post-solution information in Interactive
Optimizer 87
problem in Interactive Optimizer 67
problem options in Interactive Optimizer 69
problem part in Interactive Optimizer 71
problem statistics in Interactive Optimizer
71
sensitivity analysis (C API) 231
sensitivity analysis in Interactive Optimizer
89
slack values in Interactive Optimizer 87
solution values in Interactive Optimizer 87
type of constraint in Interactive Optimizer
71
variable names in Interactive Optimizer 73
variables in Interactive Optimizer 71

dual simplex optimizer
as default in Interactive Optimizer 83
availability in Interactive Optimizer 85
finding a solution (C API) 225

dual values
accessing (Java API) 180
accessing in Interactive Optimizer 87

E
enter Interactive Optimizer command 61

bounds 64
maximize 63
minimize 63
subject to 63, 106
syntax 61

entering

bounds in Interactive Optimizer 64
constraint names in Interactive Optimizer 64
constraints in Interactive Optimizer 63
example problem in Interactive Optimizer 61
item ranges in Interactive Optimizer 72
keyboard data in Interactive Optimizer 66
objective function in Interactive Optimizer
63, 64
objective function names in Interactive
Optimizer 64
problem in Interactive Optimizer 59, 63
problem name in Interactive Optimizer 61
variable bounds in Interactive Optimizer 64
variable names in Interactive Optimizer 63

environment object
creating (C++ API) 134, 142
destroying (C++ API) 134
memory management and (C++ API) 134

equality constraints
adding to a model (Java API) 177

error
invalid encrypted key (Java API) 172
no license found (Java API) 172
NoClassDefFoundError (Java API) 172
UnsatisfiedLinkError (Java API) 172

error handling
compiler (C++ API) 132
license manager (C++ API) 132
linker (C++ API) 132
programming errors (C++ API) 140
runtime errors (C++ API) 140
testing installation 35
testing installation (C++ API) 132

example
adding rows to a problem (C API) 229
entering a problem in Interactive Optimizer
61
entering and optimizing a problem (C API)
225
entering and optimizing a problem in C# 192
ilolpex2.cpp (C++ API) 151
ilolpex3.cpp (C++ API) 159
lpex1.c (C API) 225
lpex1.cs 192
lpex2.c (C API) 227
lpex2.py 241
lpex3.c (C API) 229
lpex3.py 243
modifying an optimization problem (C++
API) 159
reading a problem file (C API) 227
reading a problem from a file (C++ API) 151
running (C++ API) 129
running Callable Library (C API) 205
running Component Libraries 35

G E T T I N G S T A R T E D W I T H C P L E X250

running from standard distribution (C API)
205
solving a problem in Interactive Optimizer
83

exception handling (C++ API) 140
executing operating system commands in
Interactive Optimizer 122
exportModel method

IloCplex class (C++ API) 147
expression

column 145

F
false return value of IloCplex.solve (Java API) 179
feasible solution (Java API) 179
file format

read options in Interactive Optimizer 99
write options in Interactive Optimizer 93

file name
extension 147
extension in Interactive Optimizer 94, 101

G
getCplexStatus method

IloCplex class (C++ API) 138
getCplexStatus method (Java API) 179
getDuals method

IloCplex class (C++ API) 142
getObjValue method

IloCplex class (C++ API) 139
getReducedCosts method

IloCplex class (C++ API) 142
getSlacks method

IloCplex class (C++ API) 142
getStatus method

IloCplex class (C++ API) 138, 142
getStatus method (Java API) 179
getValue method

IloCplex class (C++ API) 139
getValues method

IloCplex class (C++ API) 142
greater than equal to constraints

adding to a model (Java API) 177

H
handle class

definition (C++ API) 134
empty handle (C++ API) 135

handling
errors (C API) 222
errors (C++ API) 140
exceptions (C++ API) 140

help Interactive Optimizer command 56
histogram in Interactive Optimizer 79

I
IBM(R) ILOG License Manager (ILM) 34

IloAddNumVar class (C++ API) 145
IloColumn.and method (Java API) 185
IloCplex class (C++ API) 127

exportModel method 147
getCplexStatus method 138
getDuals method 142
getObjValue method 139
getReducedCosts method 142
getSlacks method 142
getStatus method 138, 142
getValue method 139
getValues method 142
importModel method 147, 153
setParam method 149
setRootAlgorithm method 154
solve method 138, 142, 155, 157
solving with 138

IloCplex class (Java API) 168
add modeling object 177
addLe method 184
addMinimize method 184
numVarArray method 184
prod method 184
scalProd method 184
sum method 184

IloEnv class (C++ API) 134
end method 134

IloException class (C++ API) 140
IloExpr class (C++ API) 135
IloExtractable class (C++ API) 135
ILOG_LICENSE_FILE environment variable 34
IloLinearNumExpr class (Java API) 177
IloMinimize function (C++ API) 135
IloModel class (C++ API)

add method 135
extractable 135
role 127

IloModel class (Java API)
column method 185
numVar method 185

IloNumArray class (C++ API) 142
IloNumColumn class (C++ API) 145
IloNumExpr class (Java API) 177
IloNumVar class (C++ API) 145

columns and 145
IloObjective class (C++ API) 145

setLinearCoef method 146
IloRange class (C++ API)

casting operator for 145
example 135
setLinearCoef method 146

IloRange class (Java API)
setExpr method 186

importModel method
IloCplex class (C++ API) 147, 153

G E T T I N G S T A R T E D W I T H C P L E X 251

infeasible (Java API) 179
installing

Python API 236
installing CPLEX 29

testing installation 35
integer parameter (C++ API) 162
integer variable

optimizer used (C API) 220
representing in model (C++ API) 135

Interactive Optimizer 53, 123
command formats 56
commands 56
description 20
example model 42
quitting 123
starting 55

invalid encrypted key (Java API) 172
iteration log in Interactive Optimizer 83, 85

J
Java Native Interface (JNI) 168
Java Virtual Machine (JVM) 170
javamake for Windows 171

L
libformat (Java API) 171
licensing

CPLEX 34
linear optimization 18
linker

error messages (C++ API) 132
using with CPLEX (C++ API) 129

linking
applications 35
applications (C++ API) 129
Callable Library (C API) applications 203

log file
adding to in Interactive Optimizer 104
cplex.log in Interactive Optimizer 85
creating in Interactive Optimizer 85
iteration log in Interactive Optimizer 83, 85

LP
creating a model 40
node (C++ API) 149
problem format 18
root (C++ API) 149
solving a model 39
solving pure (C++ API) 149

LP file
format in Interactive Optimizer 63
reading in Interactive Optimizer 100
writing in Interactive Optimizer 94

lpex1.c
example (C API) 225

LPex1.java example 182
lpex2.py example 241

lpex3.py example 243
LPMETHOD parameter in Interactive Optimizer 83

M
makefile (Java API) 171
maximization in LP problem in Interactive
Optimizer 63
memory management

by environment object (C++ API) 134
minimization in LP problem in Interactive Optimizer
63
MIP

description 18
optimizer in Interactive Optimizer 85
solving (C++ API) 149

mipopt Interactive Optimizer command 85
model

adding constraints (C++ API) 160
creating (C++ API) 135
creating IloModel (C++ API) 135
creating objects in (C++ API) 142
extracting (C++ API) 142
modifying (C++ API) 157
reading from file (C++ API) 147, 153
solving (C++ API) 155
writing to file (C++ API) 147

modeling
by columns (C++ API) 145
by columns (Java API) 185
by nonzeros (C++ API) 146
by nonzeros (Java API) 186
by rows (Java API) 184
objects (C++ API) 127
variables (Java API) 177

modeling by rows (C++ API) 144
modifying

problem object (C API) 212
monitoring iteration log in Interactive Optimizer
83
MPS file format in Interactive Optimizer 102

N
netopt Interactive Optimizer command 85
network

description 18
network flow (C++ API) 160
network optimizer

availability in Interactive Optimizer 85
solving with (C++ API) 160

Nmake (Java API) 171
no license found (Java API) 172
NoClassDefFoundError (Java API) 172
node LP

solving (C++ API) 149
nonzeros

modeling (C++ API) 146

G E T T I N G S T A R T E D W I T H C P L E X252

modeling (Java API) 186
notation in this manual 27
notification (C++ API) 157
numeric parameter (C++ API) 162
numVarArray method (Java API) 184

O
objective function

accessing value in Interactive Optimizer 87
adding to model (C++ API) 135
changing coefficient in Interactive Optimizer
118
changing sense in Interactive Optimizer 114
creating (C++ API) 144
default name in Interactive Optimizer 64
displaying in Interactive Optimizer 77
entering in Interactive Optimizer 64
entering in LP format in Interactive
Optimizer 63
name in Interactive Optimizer 64
sensitivity analysis in Interactive Optimizer
89

operator() (C++ API) 145
operator+ (C++ API) 145
optimal solution (Java API) 179
optimization model

creating (C++ API) 135
defining extractable objects (C++ API) 135
extracting (C++ API) 135

optimization problem
interrupting in Interactive Optimizer 85
reading from file (C++ API) 152
representing (C++ API) 142
solving with IloCplex (C++ API) 138

optimize Interactive Optimizer command 83
re-solving 85
syntax 84

optimizer
choosing (Python API) 240
choosing by problem type (C API) 220
choosing by switch in application (C++ API)
154
choosing in Interactive Optimizer 85
options 21
syntax for choosing (C++ API) 149

ordering variables in Interactive Optimizer 75
output method (Java API) 182
OutputStream (Java API) 182

P
parallel

choosing optimizers for 22
parameter

Boolean (C++ API) 162
changing (C++ API) 162
changing in Interactive Optimizer 104

displaying settings in Interactive Optimizer
105
in Python API 245
integer (C++ API) 162
list of settable in Interactive Optimizer 104
numeric (C++ API) 162
resetting to defaults in Interactive Optimizer
105
string (C++ API) 162

parameter group (Python API) 246
parameter specification file in Interactive Optimizer
105
path names in Interactive Optimizer 96
populateByColumn method (Java API) 182
populateByNonzero method (Java API) 186
populateByNonzero method(Java API) 182
populateByRow (Java API) 182
primal simplex optimizer

availability in Interactive Optimizer 85
primopt Interactive Optimizer command 85
problem

change options in Interactive Optimizer 112
changing in Interactive Optimizer 109
creating binary representation (C API) 223
data entry options 23
displaying a part in Interactive Optimizer 71
displaying in Interactive Optimizer 67
displaying options in Interactive Optimizer
69
displaying statistics in Interactive Optimizer
71
entering from the keyboard in Interactive
Optimizer 59
entering in LP format in Interactive
Optimizer 63
naming in Interactive Optimizer 61
reading files (C API) 227
solving (C API) 225
solving in Interactive Optimizer 81
verifying entry in Interactive Optimizer 69,
113

problem file
reading in Interactive Optimizer 97
writing in Interactive Optimizer 91

problem formulation
ilolpex1.cpp (C++ API) 142
Interactive Optimizer and 61
lpex1.c (C API) 225
lpex1.cs 192
LPex1.java (Java API) 182
standard notation for 18

problem object
creating (C API) 210
modifying (C API) 212

problem types solved by CPLEX 17

G E T T I N G S T A R T E D W I T H C P L E X 253

Python
tutorial 233

Python API 235
accessing cplex module 237
installing on GNU/Linux 31
installing on UNIX 31
installing on Windows 31
modifying model 242
paramters in 245
re-optimizing problem 242
reading files in 239
selecting optimizer 240
writing files from 239

Q
QCP

description 18
optimizer for 21

QP
applicable algorithms (C++ API) 149
description 18
solving pure (C++ API) 149

querying
parameters (Python API) 245

quit Interactive Optimizer command 123
quitting

CPLEX in Interactive Optimizer 123
Interactive Optimizer 123

R
range constraint

adding to a model (Java API) 177
range constraint (C++ API) 144
re-solving in Interactive Optimizer 85
read Interactive Optimizer command 99, 100, 102

basis files and 103
file type options 99
syntax 103

reading
file format in Interactive Optimizer 99
LP files in Interactive Optimizer 100
model from file (C++ API) 147, 153
MPS files in Interactive Optimizer 102
problem files (C API) 227
problem files in Interactive Optimizer 97

reduced cost
accessing (Java API) 180
accessing in Interactive Optimizer 87

removing bounds in Interactive Optimizer 116
representing optimization problem (C++ API) 142
righthand side (RHS)

changing coefficient in Interactive Optimizer
118
sensitivity analysis in Interactive Optimizer
89

root LP

solving (C++ API) 149

S
SAV file format (C API) 229
saving

problem files in Interactive Optimizer 92
solution files in Interactive Optimizer 92

scalProd method (Java API) 184
sense

changing in Interactive Optimizer 114
sensitivity analysis

performing (C API) 231
performing in Interactive Optimizer 89

set Interactive Optimizer command 104
advance 85
available parameters 104
defaults 105
logfile 85
simplex 83
syntax 105

setOut method (Java API) 182
setRootAlgorithm method

IloCplex class (C++ API) 154
setting

parameters (C++ API) 162
parameters (Python API) 245
parameters in Interactive Optimizer 104
parameters to default in Interactive
Optimizer 105

setWarning method (Java API) 182
shadow price

accessing in Interactive Optimizer 87
slack

accessing (Java API) 180
accessing in Interactive Optimizer 87
accessing values in Interactive Optimizer 87

SOCP
description 18
optimizer for 21

solution
accessing basic rows and columns in
Interactive Optimizer 87
accessing values (C++ API) 139
accessing values in Interactive Optimizer 87
displaying basic rows and columns in
Interactive Optimizer 87
displaying in Interactive Optimizer 87
outputting (C++ API) 142
process in Interactive Optimizer 83
querying results (C++ API) 139
reporting optimal in Interactive Optimizer 83
restarting in Interactive Optimizer 85
sensitivity analysis (C API) 231
sensitivity analysis in Interactive Optimizer
89

solution file

G E T T I N G S T A R T E D W I T H C P L E X254

writing in Interactive Optimizer 91
solve method

IloCplex class (C++ API) 138, 142, 155, 157
solve method (Java API) 179, 182
solving

model (C++ API) 138, 155
node LP (C++ API) 149
problem (C API) 225
problem in Interactive Optimizer 81
root LP (C++ API) 149
with network optimizer (C++ API) 160

sparse matrix (C++ API) 160
starting

CPLEX in Interactive Optimizer 55
from previous basis (C++ API) 164
Interactive Optimizer 55
new problem in Interactive Optimizer 61

string parameter (C++ API) 162
structure of a CPLEX application (Java API) 176
Supported Platforms (Java API) 171
System.out method (Java API) 182

T
tranopt Interactive Optimizer command 85

U
unbounded (Java API) 179
UNIX

building Callable Library (C API) applications
205
executing commands in Interactive Optimizer
122
installation directory 31
installing CPLEX 31
testing CPLEX (C++ API) 130
verifying installation 35

UnsatisfiedLinkError (Java API) 172

V
variable

Boolean (C++ API) 135
box in Interactive Optimizer 71
changing bounds in Interactive Optimizer
115
changing names in Interactive Optimizer 113
continuous (C++ API) 135
deleting in Interactive Optimizer 119
displaying in Interactive Optimizer 71
displaying names in Interactive Optimizer 73
entering bounds in Interactive Optimizer 64
entering names in Interactive Optimizer 63
integer (C++ API) 135
modeling (Java API) 177
name limitations in Interactive Optimizer 63
ordering in Interactive Optimizer 75
removing bounds in Interactive Optimizer
116

W
warning method (Java API) 182
wildcard

displaying ranges of items in Interactive
Optimizer 72
solution information in Interactive Optimizer
89

wildcard in Interactive Optimizer 72
Windows

building Callable Library (C API) applications
206
dynamic loading (C API) 206
installing CPLEX 31
Microsoft Visual C++ compiler (C API) 206
Microsoft Visual C++ IDE (C API) 206
testing CPLEX (C++ API) 131
verifying installation 35

write Interactive Optimizer command 92, 93, 94
file type options 93
syntax 96

writing
basis files in Interactive Optimizer 95
file format for Interactive Optimizer 93
LP files in Interactive Optimizer 94
model to file (C++ API) 147
problem files in Interactive Optimizer 91
solution files in Interactive Optimizer 91

X
xecute Interactive Optimizer command 122

syntax 122

G E T T I N G S T A R T E D W I T H C P L E X 255

	Table of contents
	For support
	Contacting IBM Support

	Introducing CPLEX
	What is CPLEX?
	Overview
	CPLEX components
	Optimizer options

	Using the parallel optimizers
	Data entry options
	What CPLEX is not
	What you need to know
	What’s in this manual
	Notation in this manual
	Related documentation

	Setting up CPLEX
	Overview
	Installing CPLEX
	Setting up licensing
	Using the Component Libraries

	Tutorials
	Solving an LP with CPLEX
	Overview
	Problem statement
	Using the Interactive Optimizer
	Using Concert Technology in C++
	Using Concert Technology in Java
	Using Concert Technology in .NET
	Using the Callable Library
	Using the Python API

	Interactive Optimizer tutorial
	Starting CPLEX
	Using help
	Entering a problem
	Overview
	Entering the example
	Using the LP format
	Entering data

	Displaying a problem
	Verifying a problem with the display command
	Displaying problem statistics
	Specifying item ranges
	Displaying variable or constraint names
	Ordering variables
	Displaying constraints
	Displaying the objective function
	Displaying bounds
	Displaying a histogram of nonzero counts

	Solving a problem
	Overview
	Solving the example
	Solution options
	Displaying post-solution information

	Performing sensitivity analysis
	Writing problem and solution files
	Overview
	Selecting a write file format
	Writing LP files
	Writing basis files
	Using path names

	Reading problem files
	Overview
	Selecting a read file format
	Reading LP files
	Using file extensions
	Reading MPS files
	Reading basis files

	Setting CPLEX parameters
	Adding constraints and bounds
	Changing a problem
	Overview
	What can be changed?
	Changing constraint or variable names
	Changing sense
	Changing bounds
	Removing bounds
	Changing coefficients of variables
	Objective and RHS coefficients
	Deleting entire constraints or variables
	Changing small values to zero

	Executing operating system commands
	Quitting CPLEX
	Advanced features of the Interactive Optimizer

	Concert Technology tutorial for C++ users
	The design of CPLEX in Concert Technology C++ applications
	Compiling CPLEX in Concert Technology C++ applications
	Testing your installation on UNIX
	Testing your installation on Windows
	In case of problems

	The anatomy of an Concert Technology C++ application
	Constructing the environment: IloEnv
	Creating a model: IloModel
	Solving the model: IloCplex
	Querying results
	Handling errors

	Building and solving a small LP model in C++
	Overview
	Modeling by rows
	Modeling by columns
	Modeling by nonzero elements

	Writing and reading models and files
	Selecting an optimizer
	Reading a problem from a file: example ilolpex2.cpp
	Overview
	Reading the model from a file
	Selecting the optimizer
	Accessing basis information
	Querying quality measures

	Modifying and re-optimizing
	Modifying an optimization problem: example ilolpex3.cpp
	Overview
	Setting CPLEX parameters
	Modifying an optimization problem
	Starting from a previous basis
	Complete program

	Concert Technology tutorial for Java users
	Overview
	Compiling CPLEX in Concert Technology Java applications
	Overview
	Adapting build procedures to your platform
	In case problems arise

	The design of CPLEX in Concert Technology Java applications
	The anatomy of a Concert Technology Java application
	Overview
	Create the model
	Solve the model
	Query the results

	Building and solving a small LP model in Java
	Overview
	Modeling by rows
	Modeling by columns
	Modeling by nonzeros

	Concert Technology tutorial for .NET users
	Presenting the tutorial
	What you need to know: prerequisites
	What you will be doing
	Describe
	Model
	Solve
	Complete program

	Callable Library tutorial
	The design of the CPLEX Callable Library
	Compiling and linking Callable Library applications
	Overview
	Building Callable Library applications on UNIX platforms
	Building Callable Library applications on Win32 platforms

	How CPLEX works
	Overview
	Opening the CPLEX environment
	Instantiating the problem object
	Populating the problem object
	Changing the problem object

	Creating a successful Callable Library application
	Overview
	Prototype the model
	Identify the routines to call
	Test procedures in the application
	Assemble the data
	Choose an optimizer
	Observe good programming practices
	Debug your program
	Test your application
	Use the examples

	Building and solving a small LP model in C
	Reading a problem from a file: example lpex2.c
	Adding rows to a problem: example lpex3.c
	Performing sensitivity analysis

	Python tutorial
	Design of CPLEX in a Python application
	Starting the CPLEX Python API
	Accessing the module cplex
	Building and solving a small LP with Python
	Reading and writing CPLEX models to files with Python
	Selecting an optimizer in Python
	Example: reading a problem from a file lpex2.py
	Modifying and re-optimizing in the CPLEX Python API
	Example: modifying a model lpex3.py
	Using CPLEX parameters in the CPLEX Python API

	Index

