
IBM ILOG CPLEX V12.1

File formats supported by
CPLEX

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Legal terms

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Further notices

Additional registered trademarks

Python® is a registered trademark of the Python Software Foundation.

MATLAB® is a registered trademark of The MathWorks, Inc.

Acknowledgement of use: dtoa routine of the gdtoa package

ILOG acknowledges use of the dtoa routine of the gdtoa package, available at

http://www.netlib.org/fp/.

The author of this software is David M. Gay.

All Rights Reserved.

http://www.ibm.com/legal/copytrade.shtml

Copyright (C) 1998, 1999 by Lucent Technologies

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose and without fee is hereby granted, provided that the above copyright notice
appears in all copies and that both that the copyright notice and this permission notice
and warranty disclaimer appear in supporting documentation, and that the name of
Lucent or any of its entities not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.

LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN
NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

(end of license terms of dtoa routine of the gdtoa package)

Table of contents

For support...7
Contacting IBM Support...8

File Formats Reference Manual..11
Brief descriptions of file formats...13

Reading and entering file formats in the Interactive Optimizer..17

Saving problems in the Interactive Optimizer..18

LP file format: matrix models...19

MPS file format: industry standard..25
Overview of MPS..26
Records in MPS format..27
Example of MPS file format..32

Special records in MPS files: CPLEX extensions...33
Overview of MPS extension...35
Objective sense and name in MPS files...36
Integer variables in MPS files...37
Special ordered sets (SOS) in MPS files..39
Quadratic objective information in MPS files..41
Quadratically constrained programs (QCP) in MPS files..43
Indicator constraints in MPS files...44
User defined cuts in MPS files...46
Lazy constraints in MPS files..47

© Copyright IBM Corp. 1987, 2009 5

C O N T E N T S

NET file format: network flow models...48

PRM file format: parameter settings..53

BAS file format: advanced basis..54

MST file format: MIP starts...56

ORD file format: priorities and branching orders...57

SOL file format: solution files..58

FLT file format: filter files for the solution pool..61
Overview of FLT..62
Reading and writing filter files..63
Syntax of a filter file..64
Diversity filters..65
Range filters...66

CSV file format: comma separated values..67

XML file format: serialized models and solutions..68

Index..69

F I L E F O R M A T S S U P P O R T E D B Y C P L E X6

For support

Explains the prerequisites and procedure for technical support of the product.

In this section

Contacting IBM Support
Contains information on how to obtain technical support from IBM worldwide, should you
encounter any problems in using IBM products.

© Copyright IBM Corp. 1987, 2009 7

Contacting IBM Support

IBM Software Support Handbook
This guide contains important information on the procedures and practices followed in the
service and support of your IBM products. It does not replace the contractual terms and
conditions under which you acquired specific IBM Products or Services. Please review it
carefully. You may want to bookmark the site so you can refer back as required to the latest
information. The "IBM Software Support Handbook" can be found on the web at http://
www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html.

Accessing Software Support
When calling or submitting a problem to IBM Software Support about a particular service
request, please have the following information ready:

♦ IBM Customer Number

♦ The machine type/model/serial number (for Subscription and Support calls)

♦ Company name

♦ Contact name

♦ Preferred means of contact (voice or email)

♦ Telephone number where you can be reached if request is voice

♦ Related product and version information

♦ Related operating system and database information

♦ Detailed description of the issue

♦ Severity of the issue in relationship to the impact of it affecting your business needs

Contact by Web
Open service requests is a tool to help clients find the right place to open any problem,
hardware or software, in any country where IBM does business. This is the starting place
when it is not evident where to go to open a service request.

Service Request (SR) tool offers Passport Advantage clients for distributed platforms online
problem management to open, edit and track open and closed PMRs by customer number.
Timesaving options: create new PMRs with prefilled demographic fields; describe problems
yourself and choose severity; submit PMRs directly to correct support queue; attach
troubleshooting files directly to PMR; receive alerts when IBM updates PMR; view reports
on open and closed PMRs. You can find information about assistance for SR at http://
www.ibm.com/software/support/help-contactus.html

System Service Request (SSR) tool is similar to Electronic Service request in providing
online problem management capability for clients with support offerings in place on System

F I L E F O R M A T S S U P P O R T E D B Y C P L E X8

http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/support/electronic/uprtransition.wss?category=2&locale=en_us
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/help-contactus.html
http://www.ibm.com/software/support/help-contactus.html
http://www14.software.ibm.com/webapp/set2/ssr/slprob

i, System p, System z, TotalStorage products, Linux, Windows, Dynix/PTX, Retail, OS/2,
Isogon, Candle on OS/390 and Consul z/OS legacy products.

IBMLink SoftwareXcel support contracts offer clients on the System z platform the IBMLink
online problem management tool to open problem records and ask usage questions on
System z software products. You can open, track, update, and close a defect or problem
record; order corrective/preventive/toleration maintenance; search for known problems or
technical support information; track applicable problem reports; receive alerts on high
impact problems and fixes in error; and view planning information for new releases and
preventive maintenance.

Contact by phone
If you have an active service contract maintenance agreement with IBM , or are covered by
Program Services, you may contact customer support teams by telephone. For individual
countries, please visit the Technical Support section of the IBM Directory of worldwide
contacts.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 9

http://ibm.com/ibmlink
http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

F I L E F O R M A T S S U P P O R T E D B Y C P L E X10

File Formats Reference Manual

This manual documents the file formats supported by IBM® ILOG® CPLEX® . It begins
with a brief description of the file formats in alphabetic order. This manual continues with
longer explanations of the following topics and formats.

In this section

Brief descriptions of file formats
Defines the file formats CPLEX® recognizes and supports.

Reading and entering file formats in the Interactive Optimizer
Describes the file formats appropriate for the Interactive Optimizer

Saving problems in the Interactive Optimizer
Explains which format to use to save a problem in the Interactive Optimizer.

LP file format: matrix models
Summarizes the rules for the LP file format.

MPS file format: industry standard
Describes the industry standard MPS file format and CPLEX® extensions to it.

Special records in MPS files: CPLEX extensions
CPLEX® extends the MPS standard in several ways.

NET file format: network flow models
Describes NET file format.

PRM file format: parameter settings
Describes PRM file format for nondefault parameter settings.

© Copyright IBM Corp. 1987, 2009 11

BAS file format: advanced basis
Describes BAS file format to support advanced basis.

MST file format: MIP starts
Describes the MST file format for MIP starts.

ORD file format: priorities and branching orders
Describes ORD file format to support priorities and branching orders.

SOL file format: solution files
Describes SOL file format to support solution files.

FLT file format: filter files for the solution pool
Describes FLT file format to support filters of the solution pool.

CSV file format: comma separated values
Describes CSV file format for comma separated values.

XML file format: serialized models and solutions
Describes XML file format to support serialized models and solutions.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X12

Brief descriptions of file formats

BAS
files are text files governed by Mathematical Programming System (MPS) conventions (that
is, they are not binary) for saving a problem basis. They are documented in BAS file format:
advanced basis.

BZ2
is not a file format specific to CPLEX® . Rather, this file extension indicates that a file
(possibly in one of the formats that CPLEX® reads) has been compressed by BZIP2. On
most platforms, CPLEX® can automatically uncompress such a file and then read data from
the file in one of the formats briefly described here

CLP
is the format CPLEX® uses to represent the conflicting constraints and bounds (a subset
of an infeasible model) that were found by the conflict refiner.

CSV
files contain comma-separated values. Concert Technology offers facilities in CPLEX® for
reading and writing such files. See the CPLEX C++ API Reference Manual for details,
especially the classes IloCsvReader, IloCsvLine, and IloCsvReader::Iterator.

DPE
is the format CPLEX® uses to write a problem in a binary SAV file after the objective
function of the problem has been perturbed.

DUA
format, governed by MPS conventions, writes the dual formulation of a problem currently
in memory so that the MPS file can later be read back in and the dual formulation can then
be optimized explicitly. This file format is largely obsolete now since you can use the command
set presolve dual in the Interactive Optimizer to tell CPLEX® to solve the dual formulation
of an LP automatically. (You no longer have to tell CPLEX® to write the dual formulation
to a DUA file and then tell CPLEX® to read the file back in and solve it.)

EMB
is the format CPLEX® uses to save an embedded network it extracts from a problem. EMB
files are written in MPS format.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 13

FLT
is the format CPLEX® uses to save filters for solution pools.

GZ
is not a file format specific to CPLEX® . Rather, this file extension indicates that a file
(possibly in one of the formats that CPLEX® reads) has been compressed by gzip , the
GNU zip program. On most platforms, CPLEX® can automatically uncompress a gzipped
file and then read data from a file in one of the formats briefly described here.

LP (Linear Programming)
is a CPLEX® -specific file formatted for entering problems in an algebraic, row-oriented
form. In other words, LP format allows you to enter problems in terms of their constraints.
When you enter problems interactively in the Interactive Optimizer, you are implicitly using
LP format. CPLEX® also reads files in LP format. The section LP file format: matrix models
describes the conventions and use of this format.

MIN
format for representing minimum-cost network-flow problems was introduced by DIMACS
in 1991. More information about DIMACS network file formats is available via anonymous
ftp from: ftp://dimacs.rutgers.edu/pub/netflow/general-info/specs.tex

MPS
is an industry-standard, ASCII-text file format for mathematical programming problems.
This file format is documented in MPS file format: industry standard. Besides the industry
conventions, CPLEX® also supports extensions to this format for CPLEX® -specific cases,
such as names of more than eight characters, blank space as delimiters between columns,
etc. The extensions are documented in Special records in MPS files: CPLEX extensions.

MST
is an XML format available with the CPLEX® MIP optimizer. It is a text format CPLEX®
uses to enter a starting solution for a MIP. MST file format: MIP starts documents this file
format.

NET
is a CPLEX® -specific ASCII format for network-flow problems. It supports named nodes
and arcs. NET file format: network flow models offers a fuller description of this file format.

ORD
is a format available with the CPLEX® MIP optimizer. It is used to enter and to save priority
orders for branching. It may contain branching instructions for individual variables. ORD
file format: priorities and branching orders documents this file format.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X14

PPE
is the format CPLEX® uses to write a problem in a binary SAV file after the righthand side
has been perturbed.

PRE
is the format CPLEX® uses to write a presolved, reduced problem formulation to a binary
SAV file. Since a presolved problem has been reduced, it does not correspond to the original
problem.

PRM
is the format CPLEX® uses to read and write nondefault values of parameters in a file.
PRM file format: parameter settings documents the format and conventions for reading and
writing such files through the Callable Library.

REW
is a format to write a problem in MPS format with disguised row and column names. This
format is simply an MPS file format with all variable (column) and constraint (row) names
converted to generic names. Variables are relabeled x1 through xn , and rows are renamed
c1 through cm . This format may be useful, for example, for problems that you consider
highly proprietary.

RLP
is the LP format using generic names in the Interactive Optimizer.

SAV
is a CPLEX® -specific binary format for reading and writing problems and their associated
basis information. CPLEX® includes the basis in a SAV file only if the problem currently in
memory has been optimized and a basis exists. This format offers the advantage of being
numerically accurate (to the same degree as your platform) in contrast to text file formats
that may lose numerical accuracy. It also has the additional benefit of being efficient with
respect to read and write time. However, since a SAV file is binary, you cannot read nor edit
it with your favorite text editor.

SOL
files are XML formatted files that contain solution information; they may also provide an
advanced start for an optimization.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 15

XML
as a file format is available to C++ users of Concert Technology to serialize models and
solutions (that is, instances of IloModel and IloSolution). XML file format: serialized
models and solutions explains more about this serialization API.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X16

Reading and entering file formats in the Interactive Optimizer

The Interactive Optimizer accepts problems that you read in from files by means of the read
command or that you enter interactively by means of the enter command. When you enter
a problem interactively, CPLEX® uses the LP file format; you may save the problem in any
supported file format that you choose.

The read command of the Interactive Optimizer accepts problem files in LP, MPS, and SAV
formats. It also accepts basis files in BAS format. Problems previously saved in DUA, EMB,
or REW formats are actually in MPS format. Presolved problems saved with the pre option
are in SAV format. Problems in which the objective function has been perturbed and the
problem saved with the dpe option are in SAV format. Problems in which the righthand side
has been perturbed and the problem saved with the ppe option are in SAV format. Normally,
CPLEX® automatically detects which of these file types it is reading; you may also designate
the correct file type if CPLEX® does not detect the type automatically.

When CPLEX® reads LP or MPS files, it automatically allocates enough physical memory
(if available) to read the problem.

CPLEX® reallocates memory automatically as it is reading from LP and MPS files so it
usually not necessary to set values for the parameters ColReadLim, RowReadLim, and
NzReadLim, but you can set these parameters to the problem sizes so no reallocations need
be done. When CPLEX® reads a SAV file, it is not necessary for you to reset these
parameters. SAV files contain sufficient information about the size of the problem for
CPLEX® to allocate adequate space. For more information on the read limit parameters,
see variable (column) read limit, constraint (row) read limit, and nonzero element read limit
in the CPLEX Parameters Reference Manual.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 17

Saving problems in the Interactive Optimizer

In the Interactive Optimizer, you save information about the problem currently in memory
as a file in the LP, MPS, or SAV formats by means of the write command and its options.
For a complete list of file formats that CPLEX® supports, see Brief descriptions of file
formats. Here are the options in the Interactive Optimizer for frequently used formats:

♦ Use the bas option to save a problem basis in MPS format.

♦ Use the clp option to write a conflict subproblem.

♦ Use the flt option to write filters for the solution pool.

♦ Use the mst option to write MIP start files. This option also applies to solutions in the
solution pool. In fact, an additional option specifies whether to write a single solution
specified by its index, or to write all solutions from the solution pool as MIP starts.

♦ Use the pre option to write a SAV file for the reduced, presolved problem formulation.

♦ Use the prm option to write a file of nondefault parameter settings.

♦ Use the sol option to write solution files. This option also applies to solutions in the
solution pool. In fact, an additional option specifies whether to write a single solution
specified by its index, or to write all solutions from the solution pool.

The SAV file format, because it is binary, is the format that preserves the greatest degree
of precision in data. It can be effective in reducing read and write time for repetitively solved
problems. However, because it is a binary format, it cannot be readily viewed or edited in
standard text editors.

As a naming convention, we recommend that you use the file format for reading the file as
the file extension when you write or save the file (for instance, example.bas , example.lp
, example.mps , example.sav). When you follow this convention, CPLEX® automatically
recognizes the file type and eliminates additional prompts for you to specify a file type.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X18

LP file format: matrix models

CPLEX® provides a facility for entering a problem in a natural, algebraic LP formulation
from the keyboard. The problem can be modified and saved from within CPLEX® . This
procedure is one way to create a file in a format that CPLEX® can read. An alternative
technique is to create a similar file using a standard text editor and to read it into CPLEX®
.

The CPLEX® LP format is provided as an input alternative to the MPS file format. An LP
format file may be easier to generate than an MPS file if your problem already exists in an
algebraic format or if you have an application which generates the problem file more readily
in algebraic format (such as a C application). Working with LP files in the CPLEX User’s
Manual in the chapter about managing input and output explains the implications of using
LP format rather than MPS format.

CPLEX® accepts any problem saved in an ASCII file provided that it adheres to the following
syntax rules.

Comments
Anything that follows a backslash (\) is a comment and is ignored until a return is
encountered. Blank lines are also ignored. Blank lines and comment lines may be placed
anywhere and as frequently as you want in the file.

White space and line length
In general, white space between characters is irrelevant as it is skipped when a file is read.
However, white space is not allowed in the keywords used to introduce a new section, such
as MAX , MIN , ST , or BOUNDS . Also the keywords must be separated by white space from the
rest of the file and must be at the beginning of a line. The maximum length for any name is
255. The maximum length of any line of input is 560.

Skipping spaces may cause CPLEX® to misinterpret (and accept) an invalid entry, such as
the following:

x1 x2 = 0

If the user intended to enter that example as a nonlinear constraint, CPLEX® would instead
interpret it as a constraint specifying that one variable named x1x2 must be equal to zero.

To indicate a quadratic constraint in this section, use explicit notation for multiplication and
exponentiation (not space).

Problem sense
The problem statement must begin with the word MINIMIZE or MAXIMIZE , MINIMUM or MAXIMUM
, or the abbreviations MIN or MAX , in any combination of upper- and lower-case characters.
The word introduces the objective function section.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 19

Variables
Variables can be named anything provided that the name does not exceed 255 characters,
all of which must be alphanumeric (a-z, A-Z, 0-9) or one of these symbols: ! " # $ % & () , .
; ? @ _ ‘ ’ { } ~. Longer names are truncated to 255 characters. A variable name can not
begin with a number or a period.

The letter E or e , alone or followed by other valid symbols, or followed by another E or e ,
should be avoided as this notation is reserved for exponential entries. Thus, variables can
not be named e9 , E-24 , E8cats , or other names that could be interpreted as an exponent.
Even variable names such as eels or example can cause a read error, depending on their
placement in an input line.

Objective function
The objective function definition must follow MINIMIZE or MAXIMIZE . It may be entered on
multiple lines as long as no variable, constant, or sense indicator is split by a return. For
example, this objective function 1x1 + 2x2 +3x3 can be entered like this:

1x1 + 2x2
+ 3x3

but not like this:

1x1 + 2x
2 + 3x3 \ a bad idea

because the second style splits the variable name x2 with a return.

The objective function may be named by typing a name and a colon before the objective
function. The objective function name and the colon must appear on the same line. Objective
function names must conform to the same guidelines as variable names. (See the rule about
Variables). If no objective function name is specified, CPLEX® assigns the name obj .

An objective function may be quadratic. For an example and details about formatting a
quadratic objective function, see the rule about Quadratic terms.

Constraints
The constraints section is introduced by the keyword subject to . This expression can also
appear as such that , st , S.T. , or ST. in any mix of upper- and lower-case characters.
One of these expressions must precede the first constraint and be separated from it by at
least one space.

Each constraint definition must begin on a new line. A constraint may be named by typing
a name and a colon before the constraint. The constraint name and the colon must appear
on the same line. Constraint names must adhere to the same guidelines as variable names.
(See the rule about names of Variables.) If no constraint names are specified, CPLEX®
assigns the names c1, c2, c3, etc.

The constraints are entered in the same way as the objective function; however, a constraint
must be followed by an indication of its sense and a righthand side coefficient. The righthand

F I L E F O R M A T S S U P P O R T E D B Y C P L E X20

side coefficient must be typed on the same line as the sense indicator. Acceptable sense
indicators are <, <=, =<, >, >=, =>, and =. These are interpreted as ≤, ≤, ≤, ≥, ≥, ≥, and
=, respectively.

For example, here is a named constraint:

time: x1 + x2 <= 10

Quadratic constraints are allowed in this section. Quadratic terms are specified inside square
brackets [] as detailed in the rule about Quadratic terms. The specification of a quadratic
constraint differs from the specification of a quadratic objective in one important way: in a
quadratic constraint, the terms are not divided by two; that is, they are not multiplied by 1/2,
as they must be in a quadratic objective.

Indicator constraints are also allowed in this section. The rule aboutMIP indicator constraints
explains how to specify indicator constraints.

Bounds
The optional bounds section follows the mandatory constraint section. It is preceded by the
word bounds or bound in any mix of lower- and upper-case characters.

Each bound definition must begin on a new line. The format for a bound is ln ≤xn≤ un except
in the following cases.

Upper and lower bounds may also be entered separately as

ln ≤xn

xn ≤ un

with the default lower bound of 0 (zero) and the default upper bound of +∞ remaining in
effect until the bound is explicitly changed.

Bounds that fix a variable can be entered as simple equalities. For example, x5 = 5.6 is
equivalent to 5.6 <= x5 <= 5.6 .

The bounds +∞ (positive infinity) and -∞ (negative infinity) must be entered as words:
+infinity , -infinity , +inf , -inf .

A variable with a negative infinity lower bound and positive infinity upper bound may be
entered as free , in any mix of upper- and lower-case characters, with a space separating
the variable name and the word free . For example, x7 free is equivalent to
- infinity <= x7 <= + infinity .

End of file
The file must end with the word end in any combination of upper- and lower-case characters,
alone on a line, when it is created with the enter command. This word is not required for
files that are read in to CPLEX® , but it is strongly recommended. Files that have been
corrupted can frequently be detected by a missing last line.

MIP integer variables
This rule applies to the CPLEX® MIP optimizer.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 21

To specify any of the variables as general integer variables, add a GENERAL section; to specify
any of the variables as binary integer variables, add a BINARY section. The GENERAL and
BINARY sections follow the BOUNDS section, if one is present; otherwise, they follow the
constraints section. Either of the GENERAL or BINARY sections can precede the other. The
GENERAL section is preceded by the word GENERAL , GENERALS , or GEN in any mix of upper-
and lower-case characters which must appear alone on a line. The following line or lines
should list the names of all variables which are to be restricted to general integer values,
separated by at least one space. The BINARY section is preceded by the word BINARY ,
BINARIES , or BIN in any mix of upper- and lower-case characters which must appear alone
on a line. The following line or lines should list the names of all variables which are to be
restricted to binary integer values, separated by at least one space. Binary variables are
automatically given bounds of 0 (zero) and 1 (one), unless alternative bounds are specified
in the BOUNDS section, in which case a warning message is issued.

Here is an example of a problem formulation in LP format where x4 is a general integer:

Maximize
obj: x1 + 2 x2 + 3 x3 + x4
Subject To
c1: - x1 + x2 + x3 + 10 x4 <= 20
c2: x1 - 3 x2 + x3 <= 30
c3: x2 - 3.5 x4 = 0
Bounds
0 <= x1 <= 40
2 <= x4 <= 3
General
x4
End

If branching priorities or branching directions exist, enter this information through ORD
files, as documented in ORD file format: priorities and branching orders.

MIP semi-continuous variables
This rule applies to the CPLEX® MIP optimizer.

To specify any of the variables as semi-continuous variables, that is as variables that may
take the value 0 or values between the specified lower and upper bounds, use a SEMI
-CONTINUOUS section. This section must follow the BOUNDS , GENERALS , and BINARIES sections.
The SEMI-CONTINUOUS section is preceded by the keyword SEMI-CONTINUOUS , SEMI , or SEMIS
. The following line or lines should list the names of all the variables which are to be declared
semi-continuous, separated by at least one space.

Semi-continuous

x1 x2 x3

MIP special ordered sets
This rule applies to the CPLEX® MIP optimizer. To specify special ordered sets, use an
SOS section, which is preceded by the SOS keyword. The SOS section should follow the
Bounds, General, Binaries and Semi-Continuous sections. Special ordered sets of type 1
require that, of the variables in the set, one at most may be nonzero. Special ordered sets
of type 2 require that at most two variables in the set may be nonzero, and if there are two

F I L E F O R M A T S S U P P O R T E D B Y C P L E X22

nonzeros, they must be adjacent. Adjacency is defined by the weights, which must be unique
within a set given to the variables. The sorted weights define the order of the special ordered
set. For MIP branch and cut, the order is used to decide how the variables are branched
upon. See the CPLEX User’s Manual for more information. The set is specified by an optional
set name followed by a colon and then either of the S1 or S2 keywords (specifying the type)
followed by a double colon. The set member names are listed on this line or lines, with their
weights. Variable names and weights are separated by a colon, for example:

SOS

set1: S1:: x1:10 x2:13

MIP indicator constraints
This rule applies to CPLEX® MIP optimizer.

To specify an indicator constraint, enter it among any other constraints in the model, like
this:

[constraintname:] binaryvariable = value -> linear constraint

The constraint name, followed by a colon, is optional. The hyphen followed by the greater-than
symbol (->), separates the indicator variable and its value from the linear constraint that is
controlled. The indicator variable must be declared as a binary variable, and the value it is
compared to must be either 0 (zero) or 1 (one).

Quadratic terms
This rule applies to applications licensed to solve problems with quadratic terms in them,
that is, quadratic programming problems and quadratically constrained programs (QPs and
QCPs). Quadratic coefficients may appear in the objective function. Quadratic coefficients
may also appear in constraints under certain conditions. If there are quadratically constrained
variables in the problem, see also rules about Variables, Constraints, and Solving problems
with quadratic constraints (QCP) in the CPLEX User’s Manual.

The algebraic coefficients of the function x'Qx are specified inside square brackets [] . The
square brackets must be followed by a divide sign followed by the number 2. This convention
denotes that all coefficients inside the square brackets will be divided by 2 in evaluating the
quadratic terms of the objective function. All quadratic coefficients must appear inside
square brackets. Multiple square bracket sections may be specified.

Inside of the square brackets, two variables are multiplied by an asterisk (*). For example,
[4x*y] indicates that the coefficients of both of the off-diagonal terms of Q, corresponding
to the variables x and y in the model are 2, since 4x*y equals 2x*y + 2x*y . Each pair of
off-diagonal terms of Q is specified only once. CPLEX® automatically creates both
off-diagonal entries of Q. Diagonal terms in Q (that is, terms with an exponent of 2) are
indicated by the caret (^) followed by 2. For example, 4x^2 indicates that the coefficient of
the diagonal term of Q corresponding to the variable x in the model is 4.

For example, this problem

Minimize a + b + 1/2(a2 + 4ab +7b2)

subject to a + b ≥ 10 and a, b ≥ 0

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 23

in LP format looks like this:

Minimize
obj: a + b + [a^2 + 4 a * b + 7 b^2]/2
Subject To
c1: a + b >= 10
End

Pools of lazy constraints and user-defined cuts
This rule is of interest only to advanced users.

It is possible to include pools of lazy constraints and user defined cuts in an LP file. A pool
of lazy constraints or of user defined cuts must not contain any quadratic constraints. For
more about these concepts, see User-cut and lazy-constraint pools in the CPLEX User’s
Manual.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X24

MPS file format: industry standard

Describes the industry standard MPS file format and CPLEX® extensions to it.

In this section

Overview of MPS
Introduces MPS file format.

Records in MPS format
Describes indicator records and data records in MPS file format.

Example of MPS file format
Shows formatted sample MPS file.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 25

Overview of MPS

MPS format, long established on mainframe LP systems, has become a widely accepted
standard for defining LP problems. In contrast to the CPLEX® LP format, MPS format is a
column-oriented format: problems are specified by column (variable) rather than by row
(constraint).

F I L E F O R M A T S S U P P O R T E D B Y C P L E X26

Records in MPS format

MPS data files are analogous to a deck of computer input cards: each line of the MPS file
represents a single card record. Records in an MPS data file consist of two types: indicator
records and data records. The records contain fields delimited by blank spaces.

Indicator records
Indicator records separate the individual sections of the MPS file. Each indicator record
contains a single word that begins in the first column. There are seven kinds of indicator
records, each corresponding to sections of the MPS file. They are listed in Indicator records .

Indicator records
PurposeSection name/indicator

record

specifies the problem name; unlike other indicator records, the name
record contains data

NAME

specifies name and sense for each constraintROWS

specifies the name assigned to each variable (column) and the nonzero
constraint coefficients corresponding to that variable

COLUMNS

specifies the names of righthand side vectors and values for each
constraint (row)

RHS

specifies constraints that are restricted to lie in the interval between two
values; interval endpoints are also specified

RANGES

specifies the limits within which each variable (column) must remainBOUNDS

signals the end of the data; always the last entry in an MPS fileENDATA

Each section of the MPS file except the RANGES and BOUNDS sections is mandatory. If no
BOUNDS section is present, all variables have their bounds set from 0 (zero) to +∞ (positive
infinity). Failure to include an RHS section causes CPLEX® to generate a warning message
and set all righthand side values to 0 (zero). Variables and constraints must be declared in
the ROWS and COLUMNS sections before they are referenced in the RHS , RANGES , and BOUNDS
sections.

Data records
Data records contain the information that describes the LP problem. Each data record
comprises six fields, as in Fields of a data record in MPS file format. The fields must be
separated by white space (that is, blank space, tab, etc.), and the first field must begin in
column 2 or beyond. Not all fields are used within each section of the input file.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 27

Fields of a data record in MPS file format
Field 6Field 5Field 4Field 3Field 2Field 1

ValueNameValueNameNameIndicatorContents

Any ASCII character (32 through 126) is legal, but namesmust contain no embedded blanks.
In addition, names over 255 characters are truncated. CPLEX® issues an error message if
truncation causes the names to lose their uniqueness. Numeric fields can be at most 25
characters long.

If the first character in Field 3 or 5 is a dollar sign ($), the remaining characters in the record
are treated as a comment. Another method for inserting comments is to place an asterisk
(*) in column 1. Everything on such a line is treated as a comment.

Values may be defined with decimal or exponential notation and may utilize 25 characters.
In exponential notation, plus (+) and minus (-) signs must precede the exponent value. If an
exponent value is missing where one is expected, it is assigned a value of 0 (zero).

The ROWS section
In the ROWS section, each row of the problem is specified with its name and sense, one row
per record.

Field 1 contains a single letter designating the sense of each row. Acceptable values are:

♦ N indicates a free row.

♦ G indicates a greater-than-or-equal-to row.

♦ L indicates a less-than-or-equal-to row.

♦ E indicates an equality row.

Field 2 contains a character identifier, maximum length of 255 characters, specifying the
name of the row.

Fields 3-6 are not used in the ROWS section.

If more than one free row is specified, the first one is used as the objective function and the
others are discarded.

The ROWS section of our example looks like this:

ROWS
N obj
L c1
L c2

The COLUMNS section
In the COLUMNS section, all the columns of the constraint matrix are specified with their name
and all of the nonzero elements. Multiple records may be required to completely specify a
given column.

Field 1: Blank

F I L E F O R M A T S S U P P O R T E D B Y C P L E X28

Field 2: Column identifier

Field 3: Row identifier

Field 4: Value of matrix coefficient specified by Fields 2 and 3

Field 5: Row identifier (optional)

Field 6: Value of matrix coefficient specified by Fields 2 and 5 (optional)

After a matrix element is specified for a column, all other nonzero elements in that same
column should be specified.

The COLUMNS section of our example looks like this:

COLUMNS
x1 obj -1 c1 -1
x1 c2 1
x2 obj -2 c1 1
x2 c2 -3
x3 obj -3 c1 1
x3 c2 1

The RHS section
In the RHS section, the nonzero righthand-side values of the constraints are specified.

Field 1: Blank

Field 2: RHS identifier

Field 3: Row identifier

Field 4: Value of RHS coefficient specified by Field 2 and 3

Field 5: Row identifier (optional)

Field 6: Value of RHS coefficient specified by Field 2 and 5 (optional)

Several RHS vectors can exist. The name of each RHS vector appears in Field 2. However,
only the first RHS vector is selected when a problem is read. Additional RHS vectors are
discarded.

The RHS section of our example looks like this:

RHS
rhs c1 20 c2 30

The RANGES section
In the RANGES section, RHS range values to be applied to constraints may be specified.

Field 1: Blank

Field 2: Righthand side range vector identifier

Field 3: Row identifier

Field 4: Value of the range applied to row specified by Field 3

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 29

Field 5: Row identifier (optional)

Field 6: Value of the range applied to row specified by Field 5 (optional)

The effect of specifying a righthand side range depends on the sense of the specified row
and whether the range has a positive or negative coefficient. How range values are
interpreted in data records of MPS files specifies how range values are interpreted. For a
given row, rhs is the righthand side value and range is the corresponding range value.

How range values are interpreted in data records of MPS files
Resulting rhs lower limitResulting rhs upper limitRange value signRow type

rhsrhs + |range|+ or -G

rhs - |range|rhs+ or -L

rhsrhs + range+E

rhs + rangerhs-E

The name of each range vector appears in Field 2. More than one range vector can be
specified within anMPS file. However, only the first range vector is selected when a problem
is read. Additional range vectors are discarded.

In our example, there are no ranged rows, but suppose we want to add the following
constraint to our problem:

x1 - 3x2 + x3 >= 15

Instead of explicitly adding another row to the problem, we can represent this additional
constraint by modifying row 2 of the example to make it a ranged row in this way:

15 <= x1 - 3x2 + x3 <= 30

The RANGES section of the MPS file to support this modification looks like this:

RANGES
rhs c2 15

The name of each range vector appears in Field 2. However, only the first range vector is
selected when a problem is read. Additional range vectors are discarded.

The BOUNDS section
In the BOUNDS section, bound values for variables may be specified.

Field 1: Type of bound. Acceptable values are:

♦ LO Lower bound

♦ UP Upper bound

F I L E F O R M A T S S U P P O R T E D B Y C P L E X30

♦ FX Fixed value (upper and lower bound the same)

♦ FR Free variable (lower bound -∞ and upper bound +∞)

♦ MI Minus infinity (lower bound = -∞)

♦ PL Plus infinity (upper bound = +∞)

Field 2: Bound identifier

Field 3: Column identifier to be bounded

Field 4: Value of the specified bound

Fields 5 and 6 are not used in the BOUNDS section.

In our example, the BOUNDS section looks like this:

BOUNDS
UP BOUND x1 40

If no bounds are specified, CPLEX® assumes a lower bound of 0 (zero) and an upper bound
of +∞. If only a single bound is specified, the unspecified bound remains at 0 or +∞,
whichever applies, with one exception. If an upper bound of less than 0 is specified and no
other bound is specified, the lower bound is automatically set to -∞. CPLEX® deviates
slightly from a convention used by some MPS readers when it encounters an upper bound
of 0 (zero). Rather than automatically set this variable’s lower bound to -∞, CPLEX® accepts
both a lower and upper bound of 0, effectively fixing that variable at 0. CPLEX® resets the
lower bound to -∞ only if the upper bound is less than 0. A warning message is issued when
this exception is encountered.

More than one bound vector may exist. The name of each bound vector appears in Field 2.
However, only the first bound vector is selected when a problem is read. Additional bound
vectors are discarded.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 31

Example of MPS file format

NAME example2.mps
ROWS
N obj
L c1
L c2
COLUMNS

x1 obj -1 c1 -1
x1 c2 1
x2 obj -2 c1 1
x2 c2 -3
x3 obj -3 c1 1
x3 c2 1

RHS
rhs c1 20 c2 30

BOUNDS
UP BOUND x1 40
ENDATA

F I L E F O R M A T S S U P P O R T E D B Y C P L E X32

Special records in MPS files: CPLEX
extensions

CPLEX® extends the MPS standard in several ways.

In this section

Overview of MPS extension
Introduces extensions to the MPS file format to support special features of CPLEX® .

Objective sense and name in MPS files
Describes the CPLEX® extension of MPS files to support name and sense of an objective
function.

Integer variables in MPS files
Describes CPLEX® extensions of MPS file format to support integer variables.

Special ordered sets (SOS) in MPS files
Describes CPLEX® extensions of MPS file format to support special ordered sets.

Quadratic objective information in MPS files
Describes CPLEX® extensions of MPS file format to support an objective function containing
quadratic terms.

Quadratically constrained programs (QCP) in MPS files
Describes CPLEX® extensions of MPS file format to support quadratically constrained
programs.

Indicator constraints in MPS files
Describes CPLEX® extensions of MPS file format to support indicator constraints.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 33

User defined cuts in MPS files
Describes CPLEX® extensions of MPS file format to support user defined cuts.

Lazy constraints in MPS files
Describes CPLEX® extensions of MPS file format to support lazy constraints.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X34

Overview of MPS extension

Historically, MPS format (including CPLEX® MPS format for CPLEX® version 2.1 and
earlier releases) included restrictions, such as requiring input fields to occupy fixed columnar
positions and limiting all names to a length of 8 characters or fewer. In CPLEX® version 3.0
and subsequent releases, these restrictions were relaxed. The current CPLEX® MPS format
is actually an extended version of the historical MPS format. To allow for these extensions,
certain practices which were accepted in MPS files for older CPLEX® releases and other
systems are no longer permitted. For example, since CPLEX® no longer requires fixed
columnar positions, blank spaces are interpreted as delimiters. Older MPS files containing
names with embedded spaces therefore become unreadable. To maintain compatibility with
earlier versions as well as MPS files from other systems, CPLEX® provides an MPS file
conversion utility which translates older files into the newer CPLEX® MPS format. The
section Converting file formats in the CPLEX User’s Manual explains how to use the file
conversion utility.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 35

Objective sense and name in MPS files

CPLEX® extends theMPS standard by allowing two additional sections: OBJSEN and OBJNAME
. They may be specified after the NAME section. OBJSEN sets the objective function sense, and
OBJNAME selects an objective function from among the free rows within the file. If neither of
these sections appears in theMPS file, CPLEX® assumes that the problem is a minimization
and that the objective function is the first free row encountered in the ROWS section. If these
options are used, they must appear in order and as the first and second sections after the
NAME section. The values for OBJSENSE can be MAX or MIN .

Here is an example of these optional sections:

NAME example.mps
OBJSENSE
MAX

OBJNAME
rowname

F I L E F O R M A T S S U P P O R T E D B Y C P L E X36

Integer variables in MPS files

If you use the CPLEX® mixed integer optimizer, then you may restrict any or all variables
to integer values. CPLEX® accepts two commonly used ways of extending the MPS file
format to include integer variables: in the COLUMNS section or in the BOUNDS section.

In the first way, integer variables are identified within the COLUMNS section of the MPS file
by marker lines. A marker line is placed at the beginning and end of a range of integer
variables. Multiple sets of marker lines are allowed. Integer marker lines have a field format
consisting of Fields 2 through 4.

Field 2: Marker name

Field 3: 'MARKER' (including the single quotation marks)

Field 4: Keyword 'INTORG' and 'INTEND' to mark beginning and end respectively (including
the single quotation marks)

Fields 5 and 6 are ignored.

The marker name must differ from the preceding and succeeding column names.

If no bounds are specified for the variables within markers, bounds of 0 (zero) and 1 (one)
are assumed.

In the following example, column x4 is an integer variable and looks like this in the COLUMNS
section of an MPS file, according to this first way of treating integer variables:

NAME
ROWS
N obj
L c1
L c2
E c3
COLUMNS

x1 obj -1 c1 -1
x1 c2 1
x2 obj -2 c1 1
x2 c2 -3 c3 1
x3 obj -3 c1 1
x3 c2 1
MARK0000 ‘MARKER’ ‘INTORG’
x4 obj -1 c1 10
x4 c3 -3.5
MARK0001 ‘MARKER’ ‘INTEND’

RHS
rhs c1 20 c2 30

BOUNDS
UP BOUND x1 40
LO BOUND x4 2
UP BOUND x4 3
ENDATA

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 37

In the second way of treating integer variables, integer variables are declared in the BOUNDS
section with special bound types in Field 1. The acceptable special bound types appear in
Special bound types for handling integer variables in MPS files.

Special bound types for handling integer variables in MPS files
Special ConsiderationsPurposeType

Field 4 must be 1.0 or blankBinary variableBV

Field 4 is the lower bound value and must be an integerInteger lower boundLI

Field 4 is the upper bound and must be specifiedSemi-continuous variableSC

Field 4 is the upper bound value and must be an integerInteger upper boundUI

To specify general integers with no upper bounds, use LI with the value 0.0.

For example, column x4 is an integer variable declared in the BOUNDS section of an MPS file,
according to this second way of treating integer variables:

NAME
ROWS
N obj
L c1
L c2
E c3
COLUMNS

x1 obj -1 c1 -1
x1 c2 1
x2 obj -2 c1 1
x2 c2 -3 c3 1
x3 obj -3 c1 1
x3 c2 1
x4 obj -1 c1 10
x4 c3 -3.5

RHS
rhs c1 20 c2 30

BOUNDS
UP BOUND x1 40
LI BOUND x4 2
UI BOUND x4 3
ENDATA

F I L E F O R M A T S S U P P O R T E D B Y C P L E X38

Special ordered sets (SOS) in MPS files

If you use the CPLEX® mixed integer optimizer (that is, the MIP optimizer), then you may
define special ordered sets (SOS) in MPS format.

The convention for SOS uses set declaration lines and member declaration lines, both of
which begin in column 2 or beyond. In a set declaration line, columns 2 and 3 specify S1 or
S2. Optionally, the name of a set is specified in column 4. In a member declaration line,
column 5 or beyond specifies a variable name. Note that in an MPS file, the SOS section
must follow the BOUNDS section.

If weighting information is provided, it follows the member name in a member declaration
line.

In the following example, an SOS section is placed after the BOUNDS section:

NAME
ROWS
N obj
L c1
L c2
E c3
COLUMNS

x1 obj -1 c1 -1
x1 c2 1
x2 obj -2 c1 1
x2 c2 -3 c3 1
x3 obj -3 c1 1
x3 c2 1
x4 obj -1 c1 10
x4 c3 -3.5

RHS
rhs c1 20 c2 30

BOUNDS
UP BOUND x1 40
LI BOUND x4 2
UI BOUND x4 3
SOS
S1 set1

x1 10000
x2 20000
x4 40000

ENDATA

'MARKER' lines for SOS in MPS files
'MARKER' lines are used to delimit SOS in the COLUMNS section of an MPS file, much like
using integer markers. (The single quotation mark before and after the term is necessary.)
The names of the sets are specified in the second field, starting in column 4 or beyond.
Names of sets must be unique. The 'MARKER' lines must come in pairs of an 'SOSORG' and
'SOSEND ' surrounding the columns that are in the SOS. Optionally, in Field 1 of a 'MARKER' .
. . 'SOSORG' line, either S1 or S2 may be specified to indicate the type of the SOS. An

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 39

SOS 'MARKER' line without an S1 or S2 indicator is assumed to denote an S1 set. Members
of an SOS may or may not be integer or binary variables.

There is no requirement that there be a constraint that all members of an SOS sum to 1.0
(nor is any such constraint implicit). However, providing such a constraint in your formulation
may be desirable as it may strengthen the LP relaxation of the mixed integer problem, as
for example in the case of an S1 set consisting of binary variables.

In the following example, the excerpt from the COLUMNS section of an MPS file defines an
SOS Type 1 set consisting of x5 and x6. which may be continuous or integer variables.

S1 NAME1 ‘MARKER’ ‘SOSORG’
x5 obj -9 c1 5
x5 c2 3
x6 obj -6 c1 8
x6 c3 -4.5
NAME1 ‘MARKER’ ‘SOSEND’

The SOS 'MARKER' lines can appear between integer 'MARKER' lines (if all members of the
SOS are integer), or integer 'MARKER' lines can appear between SOS 'MARKER' lines (if
some members of the SOS are non-integer).

The MARKER format cannot accommodate overlapping SOSs. That is, a variable cannot be
a member of two special ordered sets. Overlapping SOSs can, however, be specified by the
CPLEX® SOS format, documented in Special ordered sets (SOS) in MPS files.

REFROW section for SOS in MPS files
A REFROW section may be included immediately before the ROWS section. It consists of exactly
one record line with the name of the reference row starting in Field 2. The specified row
must also be defined in the ROWS section. The nonzeros of the reference row are used as
weights within an SOS. All weights within one SOS must be unique values. A REFROW section
is optional; if no reference row is specified, the weighting values 1, . . . , n is given to the n
members of an SOS in the order in which they are read. In other words, without specific
reference row information, it is assumed that the user has ordered the SOS variables in
ascending order with respect to some relevant criterion (for example, in importance, capacity,
objective weighting, or cost).

F I L E F O R M A T S S U P P O R T E D B Y C P L E X40

Quadratic objective information in MPS files

If you use the CPLEX® barrier optimizer for quadratic programming problems (QPs), then
you can specify quadratic objective coefficients in MPS format in a QMATRIX section.

Following the BOUNDS section, a QMATRIX section may be specified. Each line of this section
defines one nonzero coefficient of the matrix Q. Each line should contain two variable names
(which must have been specified in the COLUMNS section) in Fields 2 and 3, followed by a
nonzero coefficient value in Field 4. For each off-diagonal coefficient, two lines must appear:
one for the lower triangular element, and one for the upper triangular element. CPLEX®
evaluates the quadratic part of the objective function as 0.5 x'Qx, when the coefficients of
Q are specified in an MPS file.

For example, consider the following problem:

Minimize

7b2)+4ab+(a21/2+b+a

subject to

10 b+a

0 ba,

In MPS format, you may enter the problem in the following way:

NAME problem
ROWS
N obj
G c1
COLUMNS

a obj 1 c1 1
b obj 1 c1 1

RHS
rhs c1 10

QMATRIX
a a 1
a b 2
b a 2
b b 7

ENDATA

You can also enter the quadratic objective coefficients by using a QUADOBJ section. In this
format, only the upper diagonal elements of the Qmatrix are entered. For the same example,
the input with a QUADOBJ section looks like this:

NAME problem
ROWS

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 41

N obj
G c1
COLUMNS

a obj 1 c1 1
b obj 1 c1 1

RHS
rhs c1 10

QUADOBJ
a a 1
a b 2
b b 7

ENDATA

If you have a model with quadratic objective information in MPS format in a QUADOBJ section
of the following form, you do not have to convert your file in order for CPLEX® to make
use of it.

varname1 varname2 value

CPLEX® can read that file and interpret the QUADOBJ section correctly. However, the MPS
file writers of CPLEX® do not produce a QUADOBJ section themselves. Instead, they produce
a QMATRIX section, as explained here.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X42

Quadratically constrained programs (QCP) in MPS files

As explained in the CPLEX User’s Manual in Solving problems with quadratic constraints
(QCP), CPLEX® can solve problems with quadratic terms among the constraints if the Q
matrix for the quadratic term is positive semi-definite and the quadratic function defines a
convex region. CPLEX® has extended the MPS format to accommodate QCP models.

The quadratic constraints of such a model are listed in the ROWS section, and their linear
coefficients appear in the COLUMNS section, just the same as coefficients from the linear
constraints.

The quadratic terms go in QCMATRIX sections, one QCMATRIX per quadratic constraint.
QCMATRIX sections appear after the optional SOS section. They may appear either after or
before the QMATRIX (objective) section.

The name of the constraint appears on the same line after QCMATRIX .

The quadratic terms of the quadratic expression must be given as a symmetric matrix. That
is, if there is an entry for Qij, then there must be an identical entry for Qji when i is not equal
to j. This requirement is the same as for the QMATRIX section, where any quadratic terms in
the objective function are declared. The formats of the Q parts are the same.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 43

Indicator constraints in MPS files

Indicator constraints provide a way for you to express relations among variables by identifying
a binary (0-1) variable to control whether or not a given constraint is active. CPLEX® has
extended the MPS format to express indicator constraints. The constraints to be controlled
by the binary variable are listed in the ROWS section; their linear coefficients appear in the
COLUMNS section (that is, the same as coefficients from linear constraints). Only rows of
types E, L, and Gmay be part of indicator constraints. In other words, a row of type N cannot
appear as a constraint controlled by a binary variable in this sense (that is, an indicator
constraint).

The binary variables that control the linear constraints are specified in the BOUNDS section
or with MARKER lines (that is, like any other binary variable). The relationship between the
binary variables and the constraints they control is specified in the INDICATORS section.
The INDICATORS section follows any quadratic constraint section and any quadratic objective
section. Each line of the INDICATORS section has a type field starting in column 2 or beyond;
the type must be "IF" followed by the name of the row of the indicator constraint, the name
of the binary variable, and finally the value 0 (zero) or 1 (one) to indicate when the constraint
should be active.

Rows that appear in the INDICATORS section cannot be ranged rows. In other words, a row
that appears in the RANGES section cannot appear also in the INDICATORS section.

Here is an example of an INDICATORS section:

NAME ind1.mps
ROWS
N obj
L row2
L row4
E row1
E row3
COLUMNS

x obj -1
x row2 1
x row4 1
x row1 1
y row4 1
z row4 1
z row3 1

RHS
rhs row2 10
rhs row4 15

BOUNDS
UI bnd y 1
INDICATORS
IF row1 y 1
IF row3 y 0
ENDATA

That declaration represents the following model:

F I L E F O R M A T S S U P P O R T E D B Y C P L E X44

Minimize
obj: - x
Subject To
row2: x <= 10
row4: x + y + z <= 15
row1: y = 1 -> x = 0
row3: y = 0 -> z = 0
Bounds
0 <= y <= 1
Binaries
y
End

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 45

User defined cuts in MPS files

The advanced feature user defined cuts can be declared in a special section following the
ROWS section. The title of this section is USERCUTS . The order of sections must be ROWS
USERCUTS . The format of the USERCUTS section is the same as the format of the ROWS section
with this exception: the type must be one of E, L, or G; the row must not be ranged. For
more information about user defined cuts, see User-cut and lazy-constraint pools in the
CPLEX User’s Manual.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X46

Lazy constraints in MPS files

The advanced feature lazy constraints can be declared in a special section following the
ROWS and USERCUTS sections. The title of this section is LAZYCONS . The order of sections must
be ROWS USERCUTS LAZYCONS . The format of the LAZYCONS section is the same as the format
of the ROWS section with this exception: the type must be one of E, L, or G; the row must not
be ranged. For more information about lazy constraints and an example of an MPS file
extended to include them, see User-cut and lazy-constraint pools in theCPLEXUser’s Manual.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 47

NET file format: network flow models

The NET file format is an ASCII file format specific to CPLEX® for network-flow problems.
It is the recommended file format for representing pure network problems within CPLEX®
. This format is supported by Concert Technology, by the Callable Library, and by the
Interactive Optimizer. In particular, it works with CPXNETptr objects (not CPXLPptr objects).

Comments
This is a free-format file; that is, line breaks or column positions are irrelevant to the
interpretation of the file. The only exceptions to this convention are comments: anything
from a backslash (\) character to the end of a line is a comment and does not contribute to
the network specified by the file. Comments are allowed anywhere in the file.

Keywords
The NET format recognizes the following keywords in a file:

♦ MAXIMIZE

♦ MINIMIZE

♦ NETWORK

♦ ENDNETWORK

♦ SUPPLY

♦ DEMAND

♦ ARCS

♦ BOUNDS

♦ OBJECTIVE

♦ INFINITY

♦ FREE

Keywords are independent of character case. Keywords must be separated by white space
from other symbols in the file.

White space
White space consists of one or more of the following:

♦ the space character

♦ the tab character (\t),

♦ the new line character (\n)

F I L E F O R M A T S S U P P O R T E D B Y C P L E X48

♦ a comment (that is, all characters following a backslash to the end of a line)

Abbreviations of keywords
Also, the NET format recognizes the abbreviations summarized in Abbreviations of Keywords
in NET File Format.

Abbreviations of Keywords in NET File Format
AbbreviationKeyword

INFINFINITY

MINMINIMIZE

MAXMAXIMIZE

Start of a NET file
A NET file must start with one of the following keywords:

♦ MAXIMIZE NETWORK

♦ MINIMIZE NETWORK

Both may be followed optionally by the name of a problem. If no name is specified, the
filename will be used instead. This part of a NET file is referred to as the start of a NET
file.

Names in a NET file
Names must follow the same conventions as they do for CPLEX® LP format files. They must
consist of a sequence of alphanumeric characters (a-z, A-Z, or 0-9) or one of the symbols: !
" # $ % & () / , . ; @ _ ’ ‘ { } | ~. However, the first character may not be a digit or period (.).
No names corresponding to the keywords are allowed. There is no restriction on the number
of characters in a name within a NET file.

End of a NET file
The network specification of a NET file must end with the keyword ENDNETWORK . Anything
following the keyword ENDNETWORK will be ignored. This keyword is referred to as the end
of a NET file.

Sections of a NET file
Between its start and end, a NET file is divided into sections. Each section is introduced by
its keyword and continues until the next section begins or the NET file ends. The keywords
introducing sections are SUPPLY , DEMAND , ARCS , BOUNDS , and OBJECTIVE . Each section
keyword may appear more than once in a NET file. They need not be in any order.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 49

The SUPPLY section
In this section, supply values for nodes are specified. Each supply value is specified with
the following sequence:

node-name : value

where node-name specifies the name of the node for which to set a supply value, and value
is the value that will be assigned to node node-name as its supply value. If a node with this
name does not already exist, a new node will be created with this name. If the node has
been previously assigned a supply value, the new value overrides the previous value, and a
warning will be issued.

The DEMAND section
This section corresponds to the SUPPLY section except that it specifies demand values instead
of supply values. That is, instead of specifying a supply value s in the SUPPLY section, you
can specify the negative of s in the DEMAND section and vice versa. The format for doing so
is exactly the same: node-name : value . There is no requirement to use both a SUPPLY
and a DEMAND section in a given model. You can fully specify any model using either of the
section types alone by correctly using positive and negative values. The availability of either
or both section types simply offers flexibility in model formulation.

The ARCS section
In this section, the arcs from-node (or tail) and to-node (or head) are specified. For each
arc, the format is:

arc-name : from-node -> to-node

where arc-name specifies the name for the arc from from-node to to-node . If arc-name
already exists, a warning message is issued, and the specified nodes override the previous
ones. The nodes are referred to by node names. If a node does not yet exist, a new node
with this name will be created with supply value 0 (zero). Otherwise, the existing node of
the specified name will be used.

The OBJECTIVE section
This section is used to assign objective values to arcs in the format:

arc-name : value

where arc-name must be the name of an arc that has previously been specified in an ARCS
section. This arc will be assigned the objective value indicated by value . If an arc is assigned
an objective value more than once, a warning message will be issued, and the most recently
assigned objective value for that arc in the file will be used. If no objective value is specified
for an arc, 0 (zero) will be used by default.

The BOUNDS section
In this section, bounds on the flow through an arc are specified in a variety of ways, similar
to specifying bounds on variables in LP format. The general format is:

value1 <= arc-name <= value2

That general statement assigns a lower bound of value1 and an upper bound of value2 to
the arc named arc-name . This arc must have previously been defined in an ARCS section.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X50

Only one bound at a time may be specified for an arc. That is, the following are valid inputs:
value <= arc-name to set the lower bound of the specified arc to value or arc
-name <= value to set the upper bound of the specified arc to value . If the upper and lower
bound for an arc are identical, you can write arc-name = value instead.

Bound values may be INFINITY or -INFINITY . An arc with lower bound -INFINITY and
upper bound INFINITY may be entered as FREE , like this: arc-name free

If a bound is not specified for an arc, 0 (zero) will be used as the default lower bound and
infinity as the default upper bound.

Example of NET file format

\ Except for this comment, this is the example network file
\ created by netex1.c
\
MINIMIZE NETWORK netex1
SUPPLY

n1 : 20
n4 : -15
n5 : 5
n8 : -10

ARCS
a1 : n1 -> n2
a2 : n2 -> n3
a3 : n3 -> n4
a4 : n4 -> n7
a5 : n7 -> n6
a6 : n6 -> n8
a7 : n5 -> n8
a8 : n5 -> n2
a9 : n3 -> n2
a10 : n4 -> n5
a11 : n4 -> n6
a12 : n6 -> n4
a13 : n6 -> n5
a14 : n2 -> n6

OBJECTIVE
a1 : 3
a2 : 3
a3 : 4
a4 : 3
a5 : 5
a6 : 6
a7 : 7
a8 : 4
a9 : 2
a10 : 6
a11 : 5
a12 : 4
a13 : 3
a14 : 6

BOUNDS

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 51

18 <= a1 <= 24
0 <= a2 <= 25

a3 = 12
0 <= a4 <= 10
0 <= a5 <= 9

a6 free
0 <= a7 <= 20
0 <= a8 <= 10
0 <= a9 <= 5
0 <= a10 <= 15
0 <= a11 <= 10
0 <= a12 <= 11
0 <= a13 <= 6
ENDNETWORK

F I L E F O R M A T S S U P P O R T E D B Y C P L E X52

PRM file format: parameter settings

It is possible to read and write a file of parameter settings with the Callable Library. This
kind of file is known as a PRM file. The file extension for a PRM file is .prm . The Callable
Library routine CPXreadcopyparam reads parameter values from a file with the .prm extension.
The routine CPXwriteparam writes a file of the current nondefault parameter settings to a
file with the .prm extension. Here is the format of such a file:

CPLEX Parameter File Version number
parameter_name parameter_value

CPLEX® reads the entire file before changing any of the parameter settings. After
successfully reading a parameter file, the Callable Library first sets all parameters to their
default value. Then it applies the settings it read from the parameter file. No changes are
made if the parameter file contains errors, such as missing or illegal values. There is no
checking for duplicate entries in the file. In the case of duplicate entries, the last setting in
the file is applied.

When you write a parameter file from the Callable Library, only the nondefault values are
written to the file. String values may be double-quoted or not, but are always written with
double quotation marks.

The first line of a PRM file is significant to CPLEX® . An easy way to produce a correctly
formatted PRM file is to have CPLEX® write it for you.

Tip:

The comment character in a parameter file is #. CPLEX® ignores the rest of the line.

The Callable Library issues a warning if the version recorded in the parameter file does not
match the version of the product. A warning is also issued of a non-integral value is given
for an integer-valued parameter.

Here is an example of such a file:

CPLEX Parameter File Version 11.0.0
CPX_PARAM_EPPER 3.45000000000000e-06
CPX_PARAM_OBJULIM 1.23456789012345e+05
CPX_PARAM_PERIND 1
CPX_PARAM_SCRIND 1
CPX_PARAM_WORKDIR "tmp"

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 53

BAS file format: advanced basis

An MPS basis file, known as a BAS file, contains the information needed by CPLEX® to
define an advanced basis. Like an MPS file, the BAS file begins with a NAME indicator record
and ends with an ENDATA record.

A BAS file is a text-based format that relies on each variable and each constraint having
a name. If names do not exist, they will be created automatically, as needed, during a

Tip:

write operation. If you anticipate reading and writing BAS files, it is a good idea to assign
a name to each variable (column) and to each constraint (row) yourself when you create
the model.

A basis defines a list of basic structural variables and row variables. A structural variable
is one of the variables (columns) defined in the MPS problem file. A row variable is actually
the slack, surplus, or artificial variable associated with a row.

For linear programs, the total number of basic variables—both structural and row—is equal
to the number of rows in the constraint matrix. Additionally, the number of basic structural
variables is equal to the number of nonbasic row variables. By convention, an MPS basis
file is built on the assumption that all row variables are basic and that all structural variables
are nonbasic with values at their lower bound. The data records in a BAS file list structural
and row variables that violate this assumption. This convention minimizes the size of the
BAS file.

For quadratic programs, the total number of basic variables can exceed the number of rows
and so not all basic variables can be paired with a nonbasic row variable.

Status indicators for variables in a BAS file
StatusValue

Variable 1 is basic; variable 2 is nonbasic at its upper boundXU

Variable 1 is basic; variable 2 is nonbasic at its lower boundXL

Variable 1 is nonbasic and is at its upper boundUL

Variable 1 is nonbasic and is at its lower boundLL

Variable 1 is basic.BS

Field 1: Indicator specifying status of the named variables in Fields 2 and 3. Acceptable
values appear in Status indicators for variables in a BAS file.

Field 2: Variable 1 identifier

Field 3: Variable 2 identifier (ignored if Field 1 is UL , LL or BS)

Variable 1 specifies a structural variable identifier which has entered the basis. By convention,
this structural variable must displace one of the row variables. Variable 2 is a row variable

F I L E F O R M A T S S U P P O R T E D B Y C P L E X54

that has left the basis. No relationship between structural variables entering the basis and
row variables leaving the basis is implied within the BAS file.

In the Example of MPS file format, variables x2 and x3 are basic and the two constraints
(row variables) are nonbasic. Also, x1 was forced to its upper limit of 40. The optimal basis
for that example appears in the following sample. CPLEX® adds the number of iterations
to the NAME record. The iteration count is useful if the basis file was automatically generated
during a previously aborted run. The XL indicator in the first two data records indicates that
x3 and x2 are basic and that the row variables for c1 and c2 are nonbasic at their lower
bound. The third record shows that structural variable x1 is nonbasic and at its upper bound.

NAME example2.bas Iterations 3 Rows 2 Cols 3
XL x3 c1
XL x2 c2
UL x1
ENDATA

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 55

MST file format: MIP starts

If you use the CPLEX® MIP optimizer, the MST file format is available to specify MIP start
values for particular variables, most commonly the integer variables. MST files are of the
same format as SOL files. While SOL files have values for all variables, MST files written by
CPLEX® at the default write level of detail have values only for the integer variables and
members of special ordered sets (SOS); at higher write levels of detail, MST files may also
contain both discrete and continuous variables. For more information about the write level
for MST, SOL files, see the CPLEX Parameters Reference Manual (WriteLevel,
CPX_PARAM_WRITELEVEL).

MST file format also supports MIP starts from members of the solution pool. See details
about the Concert Technology methods cplex.writeMIPStarts and the Callable Library
routine CPXmstwritemipstarts, documented in their respective reference manuals.

CPLEX® uses the start values in an MST file only if the advanced indicator parameter is
on (that is, set to 1 (one) its default).

♦ In Concert Technology, use the method IloCplex::setParam(AdvInd 1).

♦ In the Callable Library, use the routine CPXsetintparam(env, CPX_PARAM_ADVIND, 1).

♦ In the Interactive Optimizer, use the command set advance 1.

Here is an example of an MST file:

<?xml version = "1.0" standalone="yes"?>
<?xml-stylesheet href="https://www.ilog.com/products/cplex/xmlv1.0/solution.
xsl" type="text/xsl"?>
<CPLEXSolution version="1.0">
<header
problemName="../../../examples/data/mexample.mps"
objectiveValue="-122.5"
solutionTypeValue="3"
solutionTypeString="primal"
solutionStatusValue="101"
solutionStatusString="integer optimal solution"
MIPNodes="0"
MIPIterations="3"/>

<quality
epInt="1e-05"
epRHS="1e-06"
maxIntInfeas="0"
maxPrimalInfeas="0"
maxX="40"
maxSlack="2"/>

<variables>
<variable name="x4" index="3" value="3"/>
</variables>
</CPLEXSolution>

F I L E F O R M A T S S U P P O R T E D B Y C P L E X56

ORD file format: priorities and branching orders

If you use the CPLEX® MIP optimizer, the ORD file format is available to indicate priority
orders and branching directions for specific variables. Variables that are not given an explicit
priority or that do not appear in an ORD file are assigned 0 (zero) priority. An ORD file
begins with a NAME indicator record and ends with an ENDATA record.

Integer variables are specified, one per line, with an optional branching direction (UP or DN
) beginning in column 2 and 3. Names begin in column 5 or beyond. The variable name and
its priority must be separated by one or more blank spaces.

Here is an example of an ORD file:

NAME
x3 10

DN x5 5
UP x7
ENDATA

ORD files created using CPLEX® versions 2.1 or earlier used a fixed format in which the
various data fields were limited to eight characters in length and restricted to specific
columnar positions in each line. The extensions provided in the new CPLEX® ORD file
reader allow for more descriptive names and greater overall input flexibility. Most
fixed-format ORD files conform to the new format. Any files that do not conform can be
converted to the new format using the convert utility that comes with the standard CPLEX®
distribution. Converting file formats explains how to use that utility.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 57

SOL file format: solution files

CPLEX® enables you to read and write solution files, formatted in XML, for all problem
types, for all application programming interfaces (APIs). These solution files, known as SOL
files, carry the file extension .sol. The XML solution file format makes it possible for you to
display and view these solution files in most browsers as well as to pass the solution to
XML-aware applications. CPLEX® also provides a stylesheet and schema in
yourCplexinstallation /include/ilcplex to facilitate your use of this format in your
applications.

♦ solution.xsl stylesheet

♦ solution.xsd schema

Browsers may have specific conventions regarding accessing remote style sheets and
XML files with extensions other than .xml. For example, your browser may not read

Note:

the header of an SOL file with the extension .sol or may not consult the stylesheet
designated there; consequently, your browser may display such a file as raw XML
code, rather than the formatted display you expect. In such a situation, try copying
your SOL file to a file with the extension .xml that your browser recognizes and
processes correctly.

CPLEX® can also read SOL files as an advanced start. SOL files contain basis statuses, if
they are available, and solution values. The basis statuses can be used for advanced starts
with simplex optimizers; the solution values can be used for a crossover from a barrier
solution or as a MIP start from a mixed integer solution. A mixed integer solution may be
from a conventional MIP optimization or from a member of the solution pool.

SOL files contain XML formatted information, as do MST files. Unlike MST files, at the
default write level of detail, SOL files contain solution values for all variables rather than
only the variables that define the integer feasible solution. SOL files are thus larger, take
longer to input, and (in unusual cases of numerically difficult models) are less likely to
provide a feasible starting point. Consequently, CPLEX® generally recommends using MST
files to restart the optimization instead of SOL files. However, if you already use SOL files
for other purposes, you can also use them to provide a feasible starting point.

SOL files also carry an optional name attribute, useful when the problem has names. SOL
files also include an index, corresponding to the constraint index or variable index of the
problem.

The SOL header gives information about the status of the solution. For example, the
optimization status appears as a string and the numeric value of the CPLEX® symbolic
constant.

The SOL quality gives information about the quality of the solution. For example, the
maximum primal infeasibility, the values of the tolerance parameters in effect during the
optimization, and other quality information appears in this part.

There are, of course, methods and routines for reading and writing SOL files.

♦ In Concert Technology, use these methods:

F I L E F O R M A T S S U P P O R T E D B Y C P L E X58

● In the C++ API, see the methods IloCplex::readSolution and
IloCplex::writeSolution.

● In the Java API, see the methods IloCplex.readSolution and IloCplex.
writeSolution.

● In the .NET API, see the methods Cplex.ReadSolution and Cplex.WriteSolution.

♦ In the Callable Library, use the routine CPXreadcopysol to read a SOL file and the routine
CPXsolwrite to write SOL files.

Here is an example of a SOL file.

<?xml version = "1.0" standalone="yes"?>
<?xml-stylesheet href="https://www.ilog.com/products/cplex/xmlv1.0/solution.
xsl" type="text/xsl"?>
<CPLEXSolution version="1.1">
<header
problemName="../../../examples/data/mexample.mps"
solutionName="incumbent"
solutionIndex="-1"
objectiveValue="-122.5"
solutionTypeValue="3"
solutionTypeString="primal"
solutionStatusValue="101"
solutionStatusString="integer optimal solution"
MIPNodes="0"
MIPIterations="3"/>

<quality
epInt="1e-05"
epRHS="1e-06"
maxIntInfeas="0"
maxPrimalInfeas="0"
maxX="40"
maxSlack="2"/>

<linearConstraints>
<constraint name="c1" index="0" slack="0"/>
<constraint name="c2" index="1" slack="2"/>
<constraint name="c3" index="2" slack="0"/>
</linearConstraints>
<variables>
<variable name="x1" index="0" value="40"/>
<variable name="x2" index="1" value="10.5"/>
<variable name="x3" index="2" value="19.5"/>
<variable name="x4" index="3" value="3"/>
</variables>
</CPLEXSolution>

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 59

F I L E F O R M A T S S U P P O R T E D B Y C P L E X60

FLT file format: filter files for the solution
pool

Describes FLT file format to support filters of the solution pool.

In this section

Overview of FLT
Introduces FLT file format for specifying filters of the solution pool.

Reading and writing filter files
Cites methods and routines for reading and writing filter files.

Syntax of a filter file
Describes the syntax of a filter file.

Diversity filters
Describes diversity filters for the solution pool.

Range filters
Describes range filters for the solution pool.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 61

Overview of FLT

FLT denotes a file format for specifying filters (either diversity filters or range filters)
associated with the solution pool of an application of CPLEX® . This section documents that
format.

For more general information about the solution pool, see Solution pool: generating and
keeping multiple solutions of the CPLEX User’s Manual. For an introduction to these filters
and their purpose, along with examples of their use, see also Diversity filters and Range
filters of the CPLEX User’s Manual.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X62

Reading and writing filter files

An existing filter file (such as one you create in your favorite text editor, or one you have
saved from a previous session) can be added to your application and associated with the
solution pool by one of these means:

♦ Concert Technology

● readFilters in the C++ API

● readFilters(String) in the Java API

● Cplex.ReadFilters in the .NET API

♦ CPXreadcopysolnpoolfilters routine of the Callable Library;

♦ read filename flt command of the Interactive Optimizer.

The diversity and range filters already associated with a solution pool can be saved in a
formatted file, as explained in Filter files in the CPLEX User’s Manual.

♦ In Concert Technology,

● in the C++ API, use the method writeFilters.

● in the Java API, use the method writeFilters(String).

● in the .NET API, use the method CPLEX.WriteFilters.

♦ In the Callable Library, use the routine CPXfltwrite.

♦ write filename flt command of the Interactive Optimizer, where filename is the name
of a file that the user supplies, and flt specifies the format of the file.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 63

Syntax of a filter file

A filter file may contain one or more diversity filters, one or more range filters, or a
combination of both types of filter.

The filters in a file are associated with a particular model. The name of the model follows
the keyword NAME.

In a formatted filter file, the strings -inf and inf may be used to denote "no limit" in each
of these contexts:

♦ the lower bound of a diversity or range filter,

♦ the upper bound of a diversity or range filter.

Here is a sample filter file. This filter is suitable for use with the model in Example: simple
facility location problem in the CPLEX User’s Manual. An explanation of this file appears in
Diversity filters and Range filters.

NAME location
DIVFILTER f1 2 inf
x1 1.0 1
x2 1.0 1
x3 1.0 0
x4 1.0 0
RNGFILTER f2 -inf 0
transport 1.0
fixed -1.0
ENDATA

F I L E F O R M A T S S U P P O R T E D B Y C P L E X64

Diversity filters

A diversity filter allows you to control which solutions are generated and stored in the
solution pool, according to their divergence from a reference solution. Only binary variables
can be used to define a diversity filter.

The format of a diversity filter file lets you specify the names of the binary variables of
interest, the weights to be assigned to those variables, and the reference values of those
variables with which to compare all solutions. It also allows you to specify a lower bound
and an upper bound on the divergence from the reference value(s).

The filter enforces the following constraint for a variable x:

lower bound <= diff(x) <= upper bound

This information is used to compute the diversity measure. The diversity measure is computed
by summing the weighted absolute differences from the reference values, like this:

diff(x) = sum {weights[i] * |x[varind[i]] - refval[i]|};

The keyword DIVFILTER designates the beginning of a diversity filter in the file.

The name of the filter follows the keyword DIVFILTER on the same line. For example, in the
sample in Syntax of a filter file, the name of the filter is f1 and follows the keyword
DIVFILTER.

The lower and upper bounds on the diversity function follow the name of the filter on the
same line as the keyword DIVFILTER. In this example, the lower bound on diversity is 2, and
the upper bound is infinity (that is, there is no limit).

Each successive line shows the name of a variable followed by the weight and the reference
value for that variable.

In the example, equal weight (1.0) is given to the diversity of the four specified variables.
The reference values are:

♦ 1 (one) for x1 and x2

♦ 0 (zero) for x3 and x4

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 65

Range filters

A range filter adds a constraint over a linear expression, like this:

lower bound <= linear expression <= upper bound

where the linear expression is a sum of weights multiplied by the value of a variable. That
is,

sum{weights[i]*x[varind[i]]}

Range filters can be defined by any type of variables (binary, integer, continuous,
semi-integer, semi-continuous).

In the sample filter file, the range filter corresponds to this constraint that the transportation
cost must be no more than the fixed cost:

1.0 * transport - 1.0 * fixed <= 0

In a formatted FLT file, a range filter is specified by the keyword RNGFILTER.

The name of the filter (in this example, f2) follows the keyword RNGFILTER on the same
line.

The lower and upper bounds on the linear expression follow the name of the filter on the
same line as the keyword RNGFILTER. In this example, the lower bound on the expression is
negative infinity (that is, no lower limit) and the upper bound is 0 (zero).

Each successive line shows the name of the variable and its coefficient in the linear
expression.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X66

CSV file format: comma separated values

CPLEX® supports the file format known as CSV through XML facilities in Concert
Technology. CSV is a file format consisting of lines of comma-separated values in ordinary
ASCII text. Concert Technology provides classes adapted to reading data into your application
from a CSV file. The constructors and methods of these classes are documented more fully
in the CPLEX C++ API Reference Manual as the group optim.concert.extensions.

IloCsvReader
An object of this class is capable of reading data from a CSV file and passing the data to
your application. There are methods in this class for recognizing the first line of the file as
a header, for indicating whether or not to cache the data, for counting columns, for counting
lines, for accessing lines by number or by name, for designating special characters, for
indicating separators, and so forth.

IloCsvLine
An object of this class represents a line of a CSV file. The constructors and methods of this
class enable you to designate special characters, such as a decimal point, separator, line
ending, and so forth.

IloCsvReader::Iterator
An object of this embedded class is an iterator capable of accessing data in a CSV file line
by line. This iterator is useful, for example, in programming loops of your application, such
as while-statements.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X 67

XML file format: serialized models and solutions

Concert Technology for C++ users offers a suite of classes for serializing CPLEX® models
(that is, instances of IloModel) and solutions (that is, instances of IloSolution) through
XML. The CPLEX C++ API Reference Manual documents the XML serialization API in the
group optim.concert.xml. That group includes these classes:

♦ IloXmlContext allows you to serialize an instance of IloModel or IloSolution. This class
offers methods for reading and writing a model, a solution, or both a model and a solution
together. There are examples of how to use this class in the reference manual.

♦ IloXmlInfo offers methods that enable you to validate the XML serialization of elements,
such as numeric arrays, integer arrays, variables, and other extractables from your model
or solution.

♦ IloXmlReader creates a reader in an environment (that is, in an instance of IloEnv). This
class offers methods to check runtime type information (RTTI), to recognize hierarchic
relations between objects, and to access attributes of objects in your model or solution.

♦ IloXmlWriter creates a writer in an environment (that is, in an instance of IloEnv). This
class offers methods to access elements and to convert their types as needed in order to
serialize elements of your model or solution.

There is a fundamental difference between writing an XML file of a model and writing
an LP/MPS/SAV file of the same extracted model. If the model contains piecewise

Note:

linear elements (PWL), or other nonlinear features, the XML file will represent the
model as such. In contrast, the LP/MPS/SAV file will represent only the transformed
model. That transformed model obscures these nonlinear features because of the
automatic transformation that took place.

F I L E F O R M A T S S U P P O R T E D B Y C P L E X68

B
BAS file format 13, 54
basis

file formats for saving 13, 15
branching

file format for entering direction 21
file format for entering priority 21

BZ2 file format 13

C
comma separated value (CSV) file format 13
constraint

lazy (LP) 24
lazy (MPS) 47

CSV file format 13
cut

user defined (LP) 24
user defined (MPS) 46

D
diversity measure 65
DPE file format 13
DUA file format 13

E
EMB file format 13
enter Interactive Optimizer command

file formats and 17

F
file format

RLP 15
file formats

BAS 13
BZ2 13
CSV 13
DPE 13
DUA 13
EMB 13

GZ 14
LP 14
MIN 14
MPS 14
MST 14, 56
NET 14
ORD 14, 57
PPE 15
PRE 15
PRM 15
REW 15, 58
SAV 15
XML 16

I
indicator constraint 23
integer variable 37

in MPS file format 37
Interactive Optimizer

entering problems 17
entering problems in 17
saving problems 18
saving problems in 18

L
lazy constraint

LP 24
MPS 47

LP file format 14, 19, 24
indicator constraints in 23
syntax rules 19

M
memory

allocating when reading files 17
MIN file format 14
MIP start values

file format for entering 56
MPS file format 14, 25, 47

© Copyright IBM Corp. 1987, 2009 69

I N D E X

Index

advanced basis in 54
BAS file format 13, 54
BOUNDS section 30
COLUMNS section 28
CPLEX extensions 35
data records 27
DUA format 13
example 32
indicator records 27
integer variables in 37
objective function name 36
objective function sense 36
proprietary information in 15
QUADOBJ section in 41
quadratic coefficients in 41
quadratically constrained program (QCP) and
43
RANGES section 29
REFROW section 40
REW format 15
RHS section 29
ROWS section 28
saving basis 13
saving dual formulation 13
saving embedded network 13
sense of rows 28
SOS in 39

MST file format 14, 56
MST format

advanced indicator parameter and 56

N
NET file format 14, 48
network optimizer

file format for saving extracted network 13

O
objective function

in MPS file format 36
quadratic coefficient in 23

ORD file format 14, 57

P
parameter

file format for 15
perturbed problem

file format 13, 15
pool

lazy constraints 24
user-defined cuts 24

PPE file format 15
PRE file format 15
preprocessing

saving reduced problem 15
priority order

saving in ORD format 14
PRM file format 15

problem
allocating memory when reading from file 17
entering in Interactive Optimizer 17
format for saving presolved 15
saving in Interactive Optimizer 18

Q
QUADOBJ section in MPS files 41
quadratic coefficients

in MPS file format 41
quadratically constrained program (QCP)

MPS file format and 43

R
read Interactive Optimizer command

file formats and 17
REW file format 15, 58
RLP file format 15
row variable 54

S
SAV file format 15
semi-continuous variable

file format for entering 22
solution file

creating 58
solution pool 14
SOS

format for entering in MPS 22
in MPS file format 39

structural variable 54

U
user defined cut (LP) 24
user defined cut (MPS) 46

V
variable

integer 37
row 54
semi-continuous 22
structural 54

W
write Interactive Optimizer command

file formats and 18

X
XML file format 16

F I L E F O R M A T S S U P P O R T E D B Y C P L E X70

	Table of contents
	For support
	Contacting IBM Support

	File Formats Reference Manual
	Brief descriptions of file formats
	Reading and entering file formats in the Interactive Optimizer
	Saving problems in the Interactive Optimizer
	LP file format: matrix models
	MPS file format: industry standard
	Overview of MPS
	Records in MPS format
	Example of MPS file format

	Special records in MPS files: CPLEX extensions
	Overview of MPS extension
	Objective sense and name in MPS files
	Integer variables in MPS files
	Special ordered sets (SOS) in MPS files
	Quadratic objective information in MPS files
	Quadratically constrained programs (QCP) in MPS files
	Indicator constraints in MPS files
	User defined cuts in MPS files
	Lazy constraints in MPS files

	NET file format: network flow models
	PRM file format: parameter settings
	BAS file format: advanced basis
	MST file format: MIP starts
	ORD file format: priorities and branching orders
	SOL file format: solution files
	FLT file format: filter files for the solution pool
	Overview of FLT
	Reading and writing filter files
	Syntax of a filter file
	Diversity filters
	Range filters

	CSV file format: comma separated values
	XML file format: serialized models and solutions

	Index

