
IBM ILOG CPLEX V12.1

Parameters Reference Manual

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Legal notices

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Further notices

Additional registered trademarks

Python® is a registered trademark of the Python Software Foundation.

MATLAB® is a registered trademark of The MathWorks, Inc.

Acknowledgement of use: dtoa routine of the gdtoa package

ILOG acknowledges use of the dtoa routine of the gdtoa package, available at

http://www.netlib.org/fp/.

The author of this software is David M. Gay.

All Rights Reserved.

http://www.ibm.com/legal/copytrade.shtml

Copyright (C) 1998, 1999 by Lucent Technologies

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose and without fee is hereby granted, provided that the above copyright notice
appears in all copies and that both that the copyright notice and this permission notice
and warranty disclaimer appear in supporting documentation, and that the name of
Lucent or any of its entities not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.

LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN
NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

(end of license terms of dtoa routine of the gdtoa package)

Table of contents

For technical support...11
Contacting IBM Support...12

Parameters Reference Manual..15
Accessing parameters..16

Parameter names...18

Correspondence of parameters...19

Saving parameter settings to a file..20

Topical list of parameters...21
Simplex...23
Barrier...24
MIP...25
MIP general..26
MIP strategies..27
MIP cuts...28
MIP tolerances...29
MIP limits..30
Solution polishing...31
Solution pool...32
Network..33
Parallel optimization...34
Sifting...35

© Copyright IBM Corp. 1987, 2009 5

C O N T E N T S

Preprocessing: aggregator, presolver...36
Tolerances..37
Limits..38
Display and output..39

List of CPLEX parameters..41
advanced start switch...52
constraint aggregation limit for cut generation..53
preprocessing aggregator fill..54
preprocessing aggregator application limit...55
barrier algorithm...56
barrier column nonzeros...57
barrier crossover algorithm...58
barrier display information..59
convergence tolerance for LP and QP problems..60
barrier growth limit..61
barrier iteration limit..62
barrier maximum correction limit..63
barrier objective range..64
barrier ordering algorithm...65
convergence tolerance for QC problems..66
barrier starting point algorithm...67
MIP strategy best bound interval..68
bound strengthening switch..69
MIP branching direction..70
backtracking tolerance..71
MIP cliques switch..73
clock type for computation time..74
coefficient reduction setting..75
variable (column) read limit..76
conflict information display...77
MIP covers switch...78
simplex crash ordering...79
lower cutoff...81
number of cutting plane passes...82
row multiplier factor for cuts..83
upper cutoff..84
data consistency checking switch...85
dependency switch...86
MIP disjunctive cuts switch...87
MIP dive strategy..88
dual simplex pricing algorithm..89
type of cut limit...90
absolute MIP gap tolerance..91

P A R A M E T E R S R E F E R E N C E M A N U A L6

relative MIP gap tolerance..92
integrality tolerance..93
epsilon used in linearization...94
Markowitz tolerance..95
optimality tolerance..96
perturbation constant..97
relaxation for FeasOpt..98
feasibility tolerance...99
mode of FeasOpt..100
MIP flow cover cuts switch..102
MIP flow path cut switch...103
feasibility pump switch..104
candidate limit for generating Gomory fractional cuts..106
MIP Gomory fractional cuts switch...107
pass limit for generating Gomory fractional cuts..108
MIP GUB cuts switch..109
MIP heuristic frequency..110
MIP implied bound cuts switch...111
MIP integer solution limit..112
simplex maximum iteration limit..113
local branching heuristic...114
MCF cut switch...115
memory reduction switch..116
MIP callback switch between original model and reduced, presolved model...117
MIP node log display information...118
MIP emphasis switch..120
MIP node log interval..121
MIP priority order switch...122
MIP priority order generation..123
MIP dynamic search switch..124
MIQCP strategy switch...126
MIP MIR (mixed integer rounding) cut switch...127
precision of numerical output in MPS and REW file formats..128
network logging display switch...129
network optimality tolerance...130
network primal feasibility tolerance...131
simplex network extraction level...132
network simplex iteration limit...133
network simplex pricing algorithm..134
MIP subproblem algorithm...135
node storage file switch..136
MIP node limit...137
MIP node selection strategy...138

P A R A M E T E R S R E F E R E N C E M A N U A L 7

numerical precision emphasis..139
nonzero element read limit...140
absolute objective difference cutoff..141
lower objective value limit...142
upper objective value limit..143
parallel mode switch...144
simplex perturbation switch..147
simplex perturbation limit..148
absolute MIP gap before starting to polish a feasible solution...149
relative MIP gap before starting to polish a feasible solution..150
MIP integer solutions to find before starting to polish a feasible solution...151
nodes to process before starting to polish a feasible solution..152
time before starting to polish a feasible solution...153
time spent polishing a solution (deprecated)..154
maximum number of solutions generated for solution pool by populate...155
primal simplex pricing algorithm...157
presolve dual setting...158
presolve switch...159
linear reduction switch..160
limit on the number of presolve passes made..161
node presolve switch..162
simplex pricing candidate list size..163
MIP probing level..164
time spent probing..165
indefinite MIQP switch..166
QP Q-matrix nonzero read limit..167
primal and dual reduction type...168
simplex refactoring frequency...169
relaxed LP presolve switch...170
relative objective difference cutoff..171
frequency to try to repair infeasible MIP start...172
MIP repeat presolve switch..173
RINS heuristic frequency..174
algorithm for continuous problems...175
algorithm for continuous quadratic optimization...177
MIP starting algorithm..178
constraint (row) read limit...180
scale parameter..181
messages to screen switch..182
sifting subproblem algorithm..183
sifting information display...184
upper limit on sifting iterations..185
simplex iteration information display...186

P A R A M E T E R S R E F E R E N C E M A N U A L8

simplex singularity repair limit...187
absolute gap for solution pool...188
maximum number of solutions kept in solution pool...189
relative gap for solution pool...191
solution pool intensity...192
solution pool replacement strategy...194
MIP strong branching candidate list limit..195
MIP strong branching iterations limit..196
limit on nodes explored when a subMIP is being solved..197
symmetry breaking...198
global default thread count...199
optimizer time limit..202
tree memory limit..203
tuning information display...204
tuning measure...205
tuning repeater...206
tuning time limit..207
MIP variable selection strategy...208
directory for working files..210
memory available for working storage..211
write level for MST, SOL files..212
MIP zero-half cuts switch..214

Index..215

P A R A M E T E R S R E F E R E N C E M A N U A L 9

P A R A M E T E R S R E F E R E N C E M A N U A L10

For technical support

Explains prerequisites and procedure for IBM technical support.

In this section

Contacting IBM Support
Contains information on how to obtain technical support from IBM worldwide, should you
encounter any problems in using IBM products.

© Copyright IBM Corp. 1987, 2009 11

Contacting IBM Support

IBM Software Support Handbook
This guide contains important information on the procedures and practices followed in the
service and support of your IBM products. It does not replace the contractual terms and
conditions under which you acquired specific IBM Products or Services. Please review it
carefully. You may want to bookmark the site so you can refer back as required to the latest
information. The "IBM Software Support Handbook" can be found on the web at http://
www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html.

Accessing Software Support
When calling or submitting a problem to IBM Software Support about a particular service
request, please have the following information ready:

♦ IBM Customer Number

♦ The machine type/model/serial number (for Subscription and Support calls)

♦ Company name

♦ Contact name

♦ Preferred means of contact (voice or email)

♦ Telephone number where you can be reached if request is voice

♦ Related product and version information

♦ Related operating system and database information

♦ Detailed description of the issue

♦ Severity of the issue in relationship to the impact of it affecting your business needs

Contact by Web
Open service requests is a tool to help clients find the right place to open any problem,
hardware or software, in any country where IBM does business. This is the starting place
when it is not evident where to go to open a service request.

Service Request (SR) tool offers Passport Advantage clients for distributed platforms online
problem management to open, edit and track open and closed PMRs by customer number.
Timesaving options: create new PMRs with prefilled demographic fields; describe problems
yourself and choose severity; submit PMRs directly to correct support queue; attach
troubleshooting files directly to PMR; receive alerts when IBM updates PMR; view reports
on open and closed PMRs. You can find information about assistance for SR at http://
www.ibm.com/software/support/help-contactus.html

System Service Request (SSR) tool is similar to Electronic Service request in providing
online problem management capability for clients with support offerings in place on System

P A R A M E T E R S R E F E R E N C E M A N U A L12

http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/support/electronic/uprtransition.wss?category=2&locale=en_us
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/help-contactus.html
http://www.ibm.com/software/support/help-contactus.html
http://www14.software.ibm.com/webapp/set2/ssr/slprob

i, System p, System z, TotalStorage products, Linux, Windows, Dynix/PTX, Retail, OS/2,
Isogon, Candle on OS/390 and Consul z/OS legacy products.

IBMLink SoftwareXcel support contracts offer clients on the System z platform the IBMLink
online problem management tool to open problem records and ask usage questions on
System z software products. You can open, track, update, and close a defect or problem
record; order corrective/preventive/toleration maintenance; search for known problems or
technical support information; track applicable problem reports; receive alerts on high
impact problems and fixes in error; and view planning information for new releases and
preventive maintenance.

Contact by phone
If you have an active service contract maintenance agreement with IBM , or are covered by
Program Services, you may contact customer support teams by telephone. For individual
countries, please visit the Technical Support section of the IBM Directory of worldwide
contacts.

P A R A M E T E R S R E F E R E N C E M A N U A L 13

http://ibm.com/ibmlink
http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

P A R A M E T E R S R E F E R E N C E M A N U A L14

Parameters Reference Manual

The behavior of IBM® ILOG® CPLEX® is controlled by a variety of parameters that are
each accessible and settable by the user. This manual lists these parameters and explains
their settings in the CPLEX® Component Libraries and the Interactive Optimizer. It also
explains how to read and write parameter settings of the C API to a file.

In this section

Accessing parameters
Identifies the accessors for parameters in the different APIs and introduces sets of
parameters.

Parameter names
Explains the naming conventions of CPLEX® parameters.

Correspondence of parameters
Associates parameters available in the Callable Library with those available in Concert
Technology.

Saving parameter settings to a file
Describes PRM files.

Topical list of parameters
The following lists offer you access to the documentation of CPLEX® parameters, organized
by topics.

List of CPLEX parameters
Presents the entire list of parameters

© Copyright IBM Corp. 1987, 2009 15

Accessing parameters

The following methods set and access parameters for objects of the class IloCplex in C++
and Java or the class Cplex in the .NET API:

setParam
getParam
getMin
getMax
getDefault
setDefaults

The names of the corresponding accessors in the class Cplex in .NET follow the usual
conventions of names and capitalization of languages in that framework. For example, the
class Cplex and its method Solve are denoted Cplex.Solve.

C applications and applications written in other languages callable from C access and set
parameters with the following routines:

Accesses a parameter of type doubleCPXgetdblparam

Changes a parameter of type doubleCPXsetdblparam

Gets the default value and range of a parameter of type doubleCPXinfodblparam

Accesses a parameter of type integerCPXgetintparam

Changes a parameter of type integerCPXsetintparam

Gets the default value and range of a parameter of type integerCPXinfointparam

Accesses a parameter of type stringCPXgetstrparam

Changes a parameter of type stringCPXsetstrparam

Gets the default value of a parameter of type stringCPXinfostrparam

Resets all parameters to their standard default valuesCPXsetdefaults

Accesses the name of a parameterCPXgetparamname

Access the identifying number assigned to a parameterCPXgetparamnum

Accesses all parameters not currently at their default valueCPXgetchgparams

The object oriented APIs of CPLEX® also allows you to group parameters into a set and
then manage that set of parameters together.

♦ In the C++ API, use the member functions of an instance of the class
IloCplex::ParameterSet.

♦ In the Java API, use the methods of an object of the class IloCplex.ParameterSet.

♦ In the .NET API, use the methods of the class Cplex.ParameterSet.

♦ In the Python API, use the methods of the class Cplex.ParameterSet.

Documentation about CPLEX® parameters specific to the Python API is available as online
help inside a Python session. A brief introduction to CPLEX® parameters is available in the

P A R A M E T E R S R E F E R E N C E M A N U A L16

topic Using CPLEX parameters in the CPLEX Python API in the tutorial about Python in
Getting Stated with CPLEX.

Likewise, documentation about CPLEX® parameters specific to the CPLEX® connector
for The MathWorks MATLAB is available as online help inside a MATLAB session.

P A R A M E T E R S R E F E R E N C E M A N U A L 17

Parameter names

In the parameter table, each parameter has a name (that is, a symbolic constant) to refer
to it within an application.

♦ For the C API, these constants are capitalized and start with CPX_PARAM_; for example,
CPX_PARAM_ITLIM. They are used as the second argument in all parameter routines (except
CPXsetdefaults, which does not require them).

♦ For C++ applications, the parameters are defined in nested enumeration types for Boolean,
integer, floating-point, and string parameters. The enum names use mixed (lower and
upper) case letters and must be prefixed with the class name IloCplex:: for scope. For
example, IloCplex::ItLim is the IloCplex equivalent of CPX_PARAM_ITLIM.

♦ For Java applications, the parameters are defined as final static objects in nested classes
called IloCplex.BooleanParam, IloCplex.IntParam, IloCplex.DoubleParam, and
IloCplex.StringParam for Boolean, integer, floating-point, and string parameters,
respectively. The parameter object names use mixed (lower and upper) case letters and
must be prefixed with the appropriate class for scope. For example, IloCplex.IntParam.
ItLim is the object representing the parameter CPX_PARAM_ITLIM.

♦ For .NET applications, the parameters follow the usual conventions for capitalizing
attributes and defining scope within a namespace.

♦ For Python applications, the names of parameters resemble the names in the CPLEX®
Interactive Optimizer, modified for the syntax of a Python application. For example, the
command in the Interactive Optimizer set mip cuts mcfcut looks like this in a Python
application:cplex.parameters.mip.cuts.set(mcfcut).

An integer that serves as a reference number for each parameter is shown in the reference
page of each parameter. That integer reference number corresponds to the value that each
symbolic constant represents, as found in the cplex.h header file of the Callable Library (C
API), but it is strongly recommended that the symbolic constants be used instead of their
integer equivalents whenever possible, for the sake of portability to future versions of
CPLEX® .

P A R A M E T E R S R E F E R E N C E M A N U A L18

Correspondence of parameters

Some parameters available for the C API are not supported as parameters for the object
oriented APIs or have a slightly different name there. In particular:

♦ epsilon used in linearization (EpLin), the parameter specifying the tolerance to use in
linearization in the object oriented APIs (C++, Java, .NET), is not applicable in the C API,
nor in the Python API.

♦ MIP callback switch between original model and reduced, presolved model
(CPX_PARAM_MIPCBREDLP), the parameter indicating whether to use the reduced or original
model in MIP callbacks, has no equivalent in the object oriented APIs (C++, Java, .NET)
nor in the Python API, nor in the MATLAB connector.

♦ Logging output is controlled by a parameter in the C API (CPX_PARAM_SCRIND), but when
using the object oriented APIs, you control logging by configuring the output channel:

● IloCplex::out in C++

For example, to turn off output to the screen, use cplex.setOut(env.getNullStream
() .

● IloCplex.output in Java

For example, to turn off output to the screen, use cplex.setOut(null).

● Cplex.Out in .NET

For example, to turn off output to the screen, use Cplex.SetOut(Null).

● cplex.set_results_stream in Python

For example, to turn off output to the screen, use cplex.set_results_stream(None).

♦ The parameter IloCplex::RootAlg in the C++ API corresponds to these parameters in
the C API:

● MIP starting algorithm: CPX_PARAM_STARTALG

● algorithm for continuous problems: CPX_PARAM_LPMETHOD

● algorithm for continuous quadratic optimization: CPX_PARAM_QPMETHOD

♦ The parameter IloCplex::NodeAlg in the C++ API corresponds to the parameter MIP
subproblem algorithm CPX_PARAM_SUBALG in the C API.

P A R A M E T E R S R E F E R E N C E M A N U A L 19

Saving parameter settings to a file

It is possible to read and write a file of parameter settings with the C API. The file extension
is .prm . The C routine CPXreadcopyparam reads parameter values from a file with the .prm
extension. The routine CPXwriteparam writes a file of the current nondefault parameter
settings to a file with the .prm extension. Here is the format of such a file:

CPLEX Parameter File Version number
parameter_name parameter_value

The heading with a version number in the first line of a PRM file is significant to CPLEX®
. An easy way to produce a correctly formatted PRM file with a proper heading is to have
CPLEX® write the file for you.

Tip:

CPLEX® reads the entire file before changing any of the parameter settings. After
successfully reading a parameter file, the C API first sets all parameters to their default
value. Then it applies the settings it read in the parameter file. No changes are made if the
parameter file contains errors, such as missing or illegal values. There is no checking for
duplicate entries in the file. In the case of duplicate entries, the last setting in the file is
applied.

When you write a parameter file from the C API, only the non-default values are written to
the file. String values may be double-quoted or not, but are always written with double
quotation marks.

The comment character in a parameter file is #. After that character, CPLEX® ignores the
rest of the line.

The C API issues a warning if the version recorded in the parameter file does not match the
version of the product. A warning is also issued of a nonintegral value is given for an
integer-valued parameter.

Here is an example of a correct CPLEX® parameter file:

CPLEX Parameter File Version 11.0
CPX_PARAM_EPPER 3.45000000000000e-06
CPX_PARAM_OBJULIM 1.23456789012345e+05
CPX_PARAM_PERIND 1
CPX_PARAM_SCRIND 1
CPX_PARAM_WORKDIR "tmp"

P A R A M E T E R S R E F E R E N C E M A N U A L20

Topical list of parameters

The following lists offer you access to the documentation of CPLEX® parameters, organized
by topics.

In this section

Simplex
Lists parameters of interest to users of the simplex optimizers.

Barrier
Lists parameters of interest to users of the barrier optimizer.

MIP
Lists topics of interest to users of the MIP optimizer.

MIP general
Lists parameters of general interest to users of the MIP optimizer.

MIP strategies
Lists parameters controlling MIP strategies.

MIP cuts
Lists parameters controlling cuts.

MIP tolerances
Lists parameters setting MIP tolerances.

MIP limits
Lists parameters setting MIP limits.

P A R A M E T E R S R E F E R E N C E M A N U A L 21

Solution polishing
Lists parameters controlling starting conditions for solution polishing

Solution pool
Lists parameters controlling the solution pool.

Network
Lists parameters of interest to users of the network flow optimizer.

Parallel optimization
Lists parameters controlling parallel optimization.

Sifting
Lists parameters of interest to users of the sifting optimizer.

Preprocessing: aggregator, presolver
Lists parameters related to preprocessing.

Tolerances
Lists parameters setting tolerances.

Limits
Lists parameters setting general limits.

Display and output
Lists parameters controlling screen displays, logs, and files.

P A R A M E T E R S R E F E R E N C E M A N U A L22

Simplex

Selecting the algorithm for continuous problems

advanced start switch

lower objective value limit

upper objective value limit

dual simplex pricing algorithm

primal simplex pricing algorithm

simplex crash ordering

Markowitz tolerance

optimality tolerance

perturbation constant

simplex perturbation switch

simplex perturbation limit

relaxation for FeasOpt

feasibility tolerance

simplex maximum iteration limit

memory reduction switch

numerical precision emphasis

simplex pricing candidate list size

sifting subproblem algorithm

simplex iteration information display

simplex singularity repair limit

P A R A M E T E R S R E F E R E N C E M A N U A L 23

Barrier

advanced start switch

barrier algorithm

barrier starting point algorithm

barrier crossover algorithm

sifting subproblem algorithm

barrier ordering algorithm

barrier display information

barrier growth limit

barrier column nonzeros

barrier iteration limit

barrier maximum correction limit

barrier objective range

convergence tolerance for LP and QP problems

convergence tolerance for QC problems

memory reduction switch

numerical precision emphasis

P A R A M E T E R S R E F E R E N C E M A N U A L24

MIP

The parameters controlling MIP behavior are accessible through the following topics:

♦ MIP general

♦ MIP strategies

♦ MIP cuts

♦ MIP tolerances

♦ MIP limits

P A R A M E T E R S R E F E R E N C E M A N U A L 25

MIP general

advanced start switch

MIP emphasis switch

MIP repeat presolve switch

relaxed LP presolve switch

indefinite MIQP switch

bound strengthening switch

memory reduction switch

numerical precision emphasis

MIP callback switch between original model and reduced, presolved model

MIP node log display information

MIP node log interval

node storage file switch

P A R A M E T E R S R E F E R E N C E M A N U A L26

MIP strategies

MIP starting algorithm

MIP subproblem algorithm

MIP variable selection strategy

MIP strategy best bound interval

MIP branching direction

backtracking tolerance

MIP dive strategy

MIP heuristic frequency

local branching heuristic

MIP priority order switch

MIP priority order generation

MIP node selection strategy

node presolve switch

MIP probing level

RINS heuristic frequency

feasibility pump switch

P A R A M E T E R S R E F E R E N C E M A N U A L 27

MIP cuts

constraint aggregation limit for cut generation

row multiplier factor for cuts

MIP cliques switch

MIP covers switch

MIP disjunctive cuts switch

MIP flow cover cuts switch

MIP flow path cut switch

MIP Gomory fractional cuts switch

MIP GUB cuts switch

MIP implied bound cuts switch

MCF cut switch

MIP MIR (mixed integer rounding) cut switch

MIP zero-half cuts switch

pass limit for generating Gomory fractional cuts

candidate limit for generating Gomory fractional cuts

type of cut limit

number of cutting plane passes

P A R A M E T E R S R E F E R E N C E M A N U A L28

MIP tolerances

backtracking tolerance

lower cutoff

upper cutoff

absolute objective difference cutoff

relative objective difference cutoff

absolute MIP gap tolerance

relative MIP gap tolerance

integrality tolerance

relaxation for FeasOpt

P A R A M E T E R S R E F E R E N C E M A N U A L 29

MIP limits

MIP integer solution limit

pass limit for generating Gomory fractional cuts

candidate limit for generating Gomory fractional cuts

constraint aggregation limit for cut generation

type of cut limit

row multiplier factor for cuts

number of cutting plane passes

MIP node limit

time spent probing

frequency to try to repair infeasible MIP start

MIP strong branching candidate list limit

MIP strong branching iterations limit

limit on nodes explored when a subMIP is being solved

tree memory limit

P A R A M E T E R S R E F E R E N C E M A N U A L30

Solution polishing

absolute MIP gap before starting to polish a feasible solution

relative MIP gap before starting to polish a feasible solution

MIP integer solutions to find before starting to polish a feasible solution

nodes to process before starting to polish a feasible solution

time before starting to polish a feasible solution

P A R A M E T E R S R E F E R E N C E M A N U A L 31

Solution pool

solution pool intensity

solution pool replacement strategy

maximum number of solutions generated for solution pool by populate

maximum number of solutions kept in solution pool

absolute gap for solution pool

relative gap for solution pool

P A R A M E T E R S R E F E R E N C E M A N U A L32

Network

network optimality tolerance

network primal feasibility tolerance

simplex network extraction level

network simplex iteration limit

network simplex pricing algorithm

network logging display switch

P A R A M E T E R S R E F E R E N C E M A N U A L 33

Parallel optimization

parallel mode switch

global default thread count

P A R A M E T E R S R E F E R E N C E M A N U A L34

Sifting

sifting subproblem algorithm

sifting information display

upper limit on sifting iterations

P A R A M E T E R S R E F E R E N C E M A N U A L 35

Preprocessing: aggregator, presolver

symmetry breaking

preprocessing aggregator fill

preprocessing aggregator application limit

bound strengthening switch

coefficient reduction setting

dependency switch

presolve dual setting

presolve switch

linear reduction switch

limit on the number of presolve passes made

node presolve switch

relaxed LP presolve switch

MIP repeat presolve switch

primal and dual reduction type

P A R A M E T E R S R E F E R E N C E M A N U A L36

Tolerances

convergence tolerance for LP and QP problems

convergence tolerance for QC problems

backtracking tolerance

lower cutoff

upper cutoff

absolute MIP gap tolerance

absolute MIP gap before starting to polish a feasible solution

relative MIP gap tolerance

relative MIP gap before starting to polish a feasible solution

integrality tolerance

epsilon used in linearization

Markowitz tolerance

optimality tolerance

network optimality tolerance

feasibility tolerance

relaxation for FeasOpt

absolute objective difference cutoff

relative objective difference cutoff

perturbation constant

absolute gap for solution pool

relative gap for solution pool

P A R A M E T E R S R E F E R E N C E M A N U A L 37

Limits

memory available for working storage

global default thread count

optimizer time limit

variable (column) read limit

constraint (row) read limit

nonzero element read limit

QP Q-matrix nonzero read limit

P A R A M E T E R S R E F E R E N C E M A N U A L38

Display and output

messages to screen switch

tuning information display

barrier display information

simplex iteration information display

sifting information display

MIP node log display information

MIP node log interval

network logging display switch

clock type for computation time

conflict information display

data consistency checking switch

precision of numerical output in MPS and REW file formats

directory for working files

write level for MST, SOL files

P A R A M E T E R S R E F E R E N C E M A N U A L 39

P A R A M E T E R S R E F E R E N C E M A N U A L40

List of CPLEX parameters

Presents the entire list of parameters

In this section

advanced start switch
If set to 1 or 2, this parameter indicates that CPLEX® should use advanced starting
information when optimization is initiated.

constraint aggregation limit for cut generation
Limits the number of constraints that can be aggregated for generating flow cover and mixed
integer rounding (MIR) cuts.

preprocessing aggregator fill
Limits variable substitutions by the aggregator.

preprocessing aggregator application limit
Invokes the aggregator to use substitution where possible to reduce the number of rows
and columns before the problem is solved.

barrier algorithm
The default setting 0 uses the "infeasibility - estimate start" algorithm (setting 1) when
solving subproblems in a MIP problem, and the standard barrier algorithm (setting 3) in
other cases.

barrier column nonzeros
Used in the recognition of dense columns.

barrier crossover algorithm
Decides which, if any, crossover is performed at the end of a barrier optimization.

P A R A M E T E R S R E F E R E N C E M A N U A L 41

barrier display information
Sets the level of barrier progress information to be displayed.

convergence tolerance for LP and QP problems
Sets the tolerance on complementarity for convergence.

barrier growth limit
Used to detect unbounded optimal faces.

barrier iteration limit
Sets the number of barrier iterations before termination.

barrier maximum correction limit
Sets the maximum number of centering corrections done on each iteration.

barrier objective range
Sets the maximum absolute value of the objective function.

barrier ordering algorithm
Sets the algorithm to be used to permute the rows of the constraint matrix in order to reduce
fill in the Cholesky factor.

convergence tolerance for QC problems
Sets the tolerance on complementarity for convergence in quadratically constrained problems
(QCPs).

barrier starting point algorithm
Sets the algorithm to be used to compute the initial starting point for the barrier optimizer.

MIP strategy best bound interval
Sets the best bound interval for MIP strategy.

bound strengthening switch
Decides whether to apply bound strengthening in mixed integer programs (MIPs).

MIP branching direction
Decides which branch, the up or the down branch, should be taken first at each node.

backtracking tolerance
Controls how often backtracking is done during the branching process.

MIP cliques switch
Decides whether or not clique cuts should be generated for the problem.

clock type for computation time
Decides how computation times aremeasured for both reporting performance and terminating
optimization when a time limit has been set.

P A R A M E T E R S R E F E R E N C E M A N U A L42

coefficient reduction setting
Decides how coefficient reduction is used.

variable (column) read limit
Specifies a limit for the number of columns (variables) to read for an allocation of memory.

conflict information display
Decides how much information CPLEX® reports when the conflict refiner is working.

MIP covers switch
Decides whether or not cover cuts should be generated for the problem.

simplex crash ordering
Decides how CPLEX® orders variables relative to the objective function when selecting an
initial basis.

lower cutoff
Sets lower cutoff tolerance.

number of cutting plane passes
Sets the upper limit on the number of cutting plane passes CPLEX® performs when solving
the root node of a MIP model.

row multiplier factor for cuts
Limits the number of cuts that can be added.

upper cutoff
Sets the upper cutoff tolerance.

data consistency checking switch
Decides whether data should be checked for consistency.

dependency switch
Decides whether to activate the dependency checker.

MIP disjunctive cuts switch
Decides whether or not disjunctive cuts should be generated for the problem.

MIP dive strategy
Controls the MIP dive strategy.

dual simplex pricing algorithm
Decides the type of pricing applied in the dual simplex algorithm.

type of cut limit
Sets a limit for each type of cut.

P A R A M E T E R S R E F E R E N C E M A N U A L 43

absolute MIP gap tolerance
Sets an absolute tolerance on the gap between the best integer objective and the objective
of the best node remaining.

relative MIP gap tolerance
Sets a relative tolerance on the gap between the best integer objective and the objective of
the best node remaining.

integrality tolerance
Specifies the amount by which an integer variable can be different from an integer and still
be considered feasible.

epsilon used in linearization
Sets the epsilon (degree of tolerance) used in linearization in the object-oriented APIs.

Markowitz tolerance
Influences pivot selection during basis factoring.

optimality tolerance
Influences the reduced-cost tolerance for optimality.

perturbation constant
Sets the amount by which CPLEX® perturbs the upper and lower bounds or objective
coefficients on the variables when a problem is perturbed in the simplex algorithm.

relaxation for FeasOpt
Controls the amount of relaxation for the routine CPXfeasopt in the C API or for the method
feasOpt in the object-oriented APIs.

feasibility tolerance
Specifies the feasibility tolerance, that is, the degree to which the basic variables of a model
may violate their bounds.

mode of FeasOpt
Decides how FeasOpt measures the relaxation when finding a minimal relaxation in an
infeasible model.

MIP flow cover cuts switch
Decides whether or not to generate flow cover cuts for the problem.

MIP flow path cut switch
Decides whether or not flow path cuts should be generated for the problem.

feasibility pump switch
Turns on or off the feasibility pump heuristic for mixed integer programming (MIP) models.

candidate limit for generating Gomory fractional cuts
Limits the number of candidate variables for generating Gomory fractional cuts.

P A R A M E T E R S R E F E R E N C E M A N U A L44

MIP Gomory fractional cuts switch
Decides whether or not Gomory fractional cuts should be generated for the problem.

pass limit for generating Gomory fractional cuts
Limits the number of passes for generating Gomory fractional cuts.

MIP GUB cuts switch
Decides whether or not to generate GUB cuts for the problem.

MIP heuristic frequency
Decides how often to apply the periodic heuristic.

MIP implied bound cuts switch
Decides whether or not to generate implied bound cuts for the problem.

MIP integer solution limit
Sets the number of MIP solutions to be found before stopping.

simplex maximum iteration limit
Sets the maximum number of simplex iterations to be performed before the algorithm
terminates without reaching optimality.

local branching heuristic
Controls whether CPLEX® applies a local branching heuristic to try to improve new
incumbents found during a MIP search.

MCF cut switch
Switches on or off generation of multi-commodity flow cuts in a MIP.

memory reduction switch
Directs CPLEX® that it should conserve memory where possible.

MIP callback switch between original model and reduced, presolved model
Controls whether your callback accesses node information of the original model (off) or node
information of the reduced, presolved model (on, default).

MIP node log display information
Decides what CPLEX® reports to the screen during mixed integer optimization (MIP).

MIP emphasis switch
Controls trade-offs between speed, feasibility, optimality, and moving bounds in MIP.

MIP node log interval
Controls the frequency of node logging when the MIP display parameter
(CPX_PARAM_MIPDISPLAY, MIPDisplay) is set higher than 1 (one).

MIP priority order switch
Decides whether to use the priority order, if one exists, for the next mixed integer
optimization.

P A R A M E T E R S R E F E R E N C E M A N U A L 45

MIP priority order generation
Selects the type of generic priority order to generate when no priority order is present.

MIP dynamic search switch
Sets the search strategy for a mixed integer program (MIP).

MIQCP strategy switch
Sets the strategy that CPLEX® uses to solve a quadratically constrained mixed integer
program (MIQCP).

MIP MIR (mixed integer rounding) cut switch
Decides whether or not to generate MIR cuts (mixed integer rounding cuts) for the problem.

precision of numerical output in MPS and REW file formats
Decides the precision of numerical output in the MPS and REW file formats.

network logging display switch
Decides what CPLEX® reports to the screen during network optimization.

network optimality tolerance
Specifies the optimality tolerance for network optimization.

network primal feasibility tolerance
Specifies feasibility tolerance for network primal optimization. The feasibility tolerance
specifies the degree to which the flow value of a model may violate its bounds.

simplex network extraction level
Establishes the level of network extraction for network simplex optimization.

network simplex iteration limit
Sets the maximum number of iterations to be performed before the algorithm terminates
without reaching optimality.

network simplex pricing algorithm
Specifies the pricing algorithm for network simplex optimization.

MIP subproblem algorithm
Decides which continuous optimizer will be used to solve the subproblems in a MIP, after
the initial relaxation.

node storage file switch
Used when working memory (CPX_PARAM_WORKMEM, WorkMem) has been exceeded by the size
of the tree.

MIP node limit
Sets the maximum number of nodes solved before the algorithm terminates without reaching
optimality.

P A R A M E T E R S R E F E R E N C E M A N U A L46

MIP node selection strategy
Used to set the rule for selecting the next node to process when backtracking.

numerical precision emphasis
Emphasizes precision in numerically unstable or difficult problems.

nonzero element read limit
Specifies a limit for the number of nonzero elements to read for an allocation of memory.

absolute objective difference cutoff
Used to update the cutoff each time a mixed integer solution is found.

lower objective value limit
Sets a lower limit on the value of the objective function in the simplex algorithms.

upper objective value limit
Sets an upper limit on the value of the objective function in the simplex algorithms.

parallel mode switch
Sets the parallel optimization mode. Possible modes are automatic, deterministic, and
opportunistic.

simplex perturbation switch
Decides whether to perturb problems.

simplex perturbation limit
Sets the number of degenerate iterations before perturbation is performed.

absolute MIP gap before starting to polish a feasible solution
Sets an absolute MIP gap after which CPLEX® starts to polish a feasible solution

relative MIP gap before starting to polish a feasible solution
Sets a relative MIP gap after which CPLEX® starts to polish a feasible solution

MIP integer solutions to find before starting to polish a feasible solution
Sets the number of integer solutions to find after which CPLEX® starts to polish a feasible
solution

nodes to process before starting to polish a feasible solution
Sets the number of nodes to process after which CPLEX® starts to polish a feasible solution

time before starting to polish a feasible solution
Sets the amount of time in seconds to spend during a normal mixed integer optimization
after which CPLEX® starts to polish a feasible solution

time spent polishing a solution (deprecated)
Deprecated parameter

P A R A M E T E R S R E F E R E N C E M A N U A L 47

maximum number of solutions generated for solution pool by populate
Sets the maximum number of mixed integer programming (MIP) solutions generated for the
solution pool during each call to the populate procedure.

primal simplex pricing algorithm
Sets the primal simplex pricing algorithm.

presolve dual setting
Decides whether CPLEX® presolve should pass the primal or dual linear programming
problem to the linear programming optimization algorithm.

presolve switch
Decides whether CPLEX® applies presolve during preprocessing.

linear reduction switch
Decides whether linear or full reductions occur during preprocessing.

limit on the number of presolve passes made
Limits the number of presolve passes that CPLEX® makes during preprocessing. When
this parameter is set to a nonzero value, invokes CPLEX® presolve to simplify and reduce
problems.

node presolve switch
Decides whether node presolve should be performed at the nodes of a mixed integer
programming (MIP) solution.

simplex pricing candidate list size
Sets the maximum number of variables kept in the list of pricing candidates for the simplex
algorithms.

MIP probing level
Sets the amount of probing on variables to be performed before MIP branching.

time spent probing
Limits the amount of time in seconds spent probing.

indefinite MIQP switch
Decides whether CPLEX® will attempt to reformulate aMIQP orMIQCPmodel that contains
only binary variables.

QP Q-matrix nonzero read limit
Specifies a limit for the number of nonzero elements to read for an allocation of memory in
a model with a quadratic matrix.

primal and dual reduction type
Decides whether primal reductions, dual reductions, both, or neither are performed during
preprocessing.

P A R A M E T E R S R E F E R E N C E M A N U A L48

simplex refactoring frequency
Sets the number of iterations between refactoring of the basis matrix.

relaxed LP presolve switch
Decides whether LP presolve is applied to the root relaxation in a mixed integer program
(MIP).

relative objective difference cutoff
Used to update the cutoff each time a mixed integer solution is found.

frequency to try to repair infeasible MIP start
Limits the attempts to repair an infeasible MIP start.

MIP repeat presolve switch
Decides whether to re-apply presolve, with or without cuts, to a MIP model after processing
at the root is otherwise complete.

RINS heuristic frequency
Decides how often to apply the relaxation induced neighborhood search (RINS) heuristic.

algorithm for continuous problems
Controls which algorithm is used to solve continuous models or to solve the root relaxation
of a MIP.

algorithm for continuous quadratic optimization
Sets which algorithm to use when the C routine CPXqpopt (or the command optimize in the
Interactive Optimizer) is invoked.

MIP starting algorithm
Sets which continuous optimizer will be used to solve the initial relaxation of a MIP.

constraint (row) read limit
Specifies a limit for the number of rows (constraints) to read for an allocation of memory.

scale parameter
Decides how to scale the problem matrix.

messages to screen switch
Decides whether or not results are displayed on screen in an application of the C API.

sifting subproblem algorithm
Sets the algorithm to be used for solving sifting subproblems.

sifting information display
Sets the amount of information to display about the progress of sifting.

upper limit on sifting iterations
Sets the maximum number of sifting iterations that may be performed if convergence to
optimality has not been reached.

P A R A M E T E R S R E F E R E N C E M A N U A L 49

simplex iteration information display
Sets how often CPLEX® reports about iterations during simplex optimization.

simplex singularity repair limit
Restricts the number of times CPLEX® attempts to repair the basis when singularities are
encountered during the simplex algorithm.

absolute gap for solution pool
Sets an absolute tolerance on the objective value for the solutions in the solution pool.

maximum number of solutions kept in solution pool
Limits the number of solutions kept in the solution pool

relative gap for solution pool
Sets a relative tolerance on the objective value for the solutions in the solution pool.

solution pool intensity
Controls the trade-off between the number of solutions generated for the solution pool and
the amount of time or memory consumed.

solution pool replacement strategy
Designates the strategy for replacing a solution in the solution pool when the solution pool
has reached its capacity.

MIP strong branching candidate list limit
Controls the length of the candidate list when CPLEX® uses variable selection as the setting
for strong branching.

MIP strong branching iterations limit
Controls the number of simplex iterations performed on each variable in the candidate list
when CPLEX® uses variable selection as the setting for strong branching.

limit on nodes explored when a subMIP is being solved
Restricts the number of nodes explored when CPLEX® is solving a subMIP.

symmetry breaking
Decides whether symmetry breaking reductions will be automatically executed, during the
preprocessing phase, in a MIP model.

global default thread count
Sets the default number of parallel threads that will be invoked by any CPLEX® parallel
optimizer.

optimizer time limit
Sets the maximum time, in seconds, for a call to an optimizer. This time limit applies also
to the conflict refiner.

P A R A M E T E R S R E F E R E N C E M A N U A L50

tree memory limit
Sets an absolute upper limit on the size (in megabytes, uncompressed) of the branch-and-cut
tree.

tuning information display
Specifies the level of information reported by the tuning tool as it works.

tuning measure
Controls the measure for evaluating progress when a suite of models is being tuned.

tuning repeater
Specifies the number of times tuning is to be repeated on reordered versions of a given
problem.

tuning time limit
Sets a time limit per model and per test set (that is, suite of models) applicable in tuning.

MIP variable selection strategy
Sets the rule for selecting the branching variable at the node which has been selected for
branching.

directory for working files
Specifies the name of an existing directory into which CPLEX® may store temporary working
files.

memory available for working storage
Specifies an upper limit on the amount of central memory, in megabytes, that CPLEX® is
permitted to use for working memory.

write level for MST, SOL files
Sets a level of detail for CPLEX® to write a file in MST or SOL format.

MIP zero-half cuts switch
Decides whether or not to generate zero-half cuts for the problem.

P A R A M E T E R S R E F E R E N C E M A N U A L 51

advanced start switch

Purpose
Advanced start switch

Syntax
C Name CPX_PARAM_ADVIND (int)

C++ Name AdvInd (int)

Java Name AdvInd (int)

.NET Name AdvInd (int)

OPL Name advind

InteractiveOptimizer advance

Identifier 1001

Description
If set to 1 or 2, this parameter indicates that CPLEX® should use advanced starting
information when optimization is initiated.

For MIP models, setting 1 (one) will cause CPLEX® to continue with a partially explored
MIP tree if one is available. If tree exploration has not yet begun, setting 1 (one) specifies
that CPLEX® should use a loaded MIP start, if available. Setting 2 retains the current
incumbent (if there is one), re-applies presolve, and starts a new search from a new root.

Setting 2 is useful for continuous models. Consequently, it can be particularly useful for
solving fixed MIP models, where a start vector but no corresponding basis is available.

For continuous models solved with simplex, setting 1 (one) will use the currently loaded
basis. If a basis is available only for the original, unpresolved model, or if CPLEX® has a
start vector rather than a simplex basis, then the simplex algorithm will proceed on the
unpresolved model. With setting 2, CPLEX® will first perform presolve on the model and
on the basis or start vector, and then proceed with optimization on the presolved problem.

For continuous models solved with the barrier algorithm, settings 1 or 2 will continue simplex
optimization from the last available barrier iterate.

Values
MeaningValue

Do not use advanced start information0

Use an advanced basis supplied by the user; default1

Crush an advanced basis or starting vector supplied by the user2

P A R A M E T E R S R E F E R E N C E M A N U A L52

constraint aggregation limit for cut generation

Purpose
Constraint aggregation limit for cut generation

Syntax
C Name CPX_PARAM_AGGCUTLIM (int)

C++ Name AggCutLim (int)

Java Name AggCutLim (int)

.NET Name AggCutLim (int)

OPL Name aggcutlim

Interactive Optimizer mip limits aggforcut

Identifier 2054

Description
Limits the number of constraints that can be aggregated for generating flow cover and mixed
integer rounding (MIR) cuts.

Values
Any nonnegative integer; default: 3

P A R A M E T E R S R E F E R E N C E M A N U A L 53

preprocessing aggregator fill

Purpose
Preprocessing aggregator fill

Syntax
C Name CPX_PARAM_AGGFILL (int)

C++ Name AggFill (int)

Java Name AggFill (int)

.NET Name AggFill (int)

OPL Name aggfill

Interactive Optimizer preprocessing fill

Identifier 1002

Description
Limits variable substitutions by the aggregator. If the net result of a single substitution is
more nonzeros than this value, the substitution is not made.

Values

Any nonnegative integer; default: 10

P A R A M E T E R S R E F E R E N C E M A N U A L54

preprocessing aggregator application limit

Purpose
Preprocessing aggregator application limit

Syntax
C Name CPX_PARAM_AGGIND (int)

C++ Name AggInd (int)

Java Name AggInd (int)

.NET Name AggInd (int)

OPL Name aggind

Interactive Optimizer preprocessing aggregator

Identifier 1003

Description
Invokes the aggregator to use substitution where possible to reduce the number of rows
and columns before the problem is solved. If set to a positive value, the aggregator is applied
the specified number of times or until no more reductions are possible.

Values
MeaningValue

Automatic (1 for LP, infinite for MIP) default-1

Do not use any aggregator0

Number of times to apply aggregatorAny positive integer

P A R A M E T E R S R E F E R E N C E M A N U A L 55

barrier algorithm

Purpose
Barrier algorithm

Syntax
C Name CPX_PARAM_BARALG (int)

C++ Name BarAlg (int)

Java Name BarAlg (int)

.NET Name BarAlg (int)

OPL Name baralg

Interactive Optimizer barrier algorithm

Identifier 3007

Description
The default setting 0 uses the "infeasibility - estimate start" algorithm (setting 1) when
solving subproblems in a MIP problem, and the standard barrier algorithm (setting 3) in
other cases. The standard barrier algorithm is almost always fastest. However, on problems
that are primal or dual infeasible (common for MIP subproblems), the standard algorithm
may not work as well as the alternatives. The two alternative algorithms (settings 1 and 2)
may eliminate numerical difficulties related to infeasibility, but are generally slower.

Values

MeaningValue

Default setting0

Infeasibility-estimate start1

Infeasibility-constant start2

Standard barrier3

P A R A M E T E R S R E F E R E N C E M A N U A L56

barrier column nonzeros

Purpose
Barrier column nonzeros

Syntax
C Name CPX_PARAM_BARCOLNZ (int)

C++ Name BarColNz (int)

Java Name BarColNz (int)

.NET Name BarColNz (int)

OPL Name barcolnz

Interactive Optimizer barrier colnonzeros

Identifier 3009

Description
Used in the recognition of dense columns. If columns in the presolved and aggregated
problem exist with more entries than this value, such columns are considered dense and
are treated specially by the CPLEX® Barrier Optimizer to reduce their effect.

MeaningValue

Dynamically calculated; default0

Number of nonzero entries that make a column denseAny positive integer

P A R A M E T E R S R E F E R E N C E M A N U A L 57

barrier crossover algorithm

Purpose
Barrier crossover algorithm

Syntax
C Name CPX_PARAM_BARCROSSALG (int)

C++ Name BarCrossAlg (int)

Java Name BarCrossAlg (int)

.NET Name BarCrossAlg (int)

OPL Name barcrossalg

Interactive Optimizer barrier crossover

Identifier 3018

Description
Decides which, if any, crossover is performed at the end of a barrier optimization. This
parameter also applies when CPLEX® uses the Barrier Optimizer to solve an LP or QP
problem, or when it is used to solve the continuous relaxation of an MILP or MIQP at a node
in a MIP.

MeaningValue

No crossover-1

Automatic: let CPLEX choose; default0

Primal crossover1

Dual crossover2

P A R A M E T E R S R E F E R E N C E M A N U A L58

barrier display information

Purpose
Barrier display information

Syntax
C Name CPX_PARAM_BARDISPLAY (int)

C++ Name BarDisplay (int)

Java Name BarDisplay (int)

.NET Name BarDisplay (int)

OPL Name bardisplay

Interactive Optimizer barrier display

Identifier 3010

Description
Sets the level of barrier progress information to be displayed.

MeaningValue

No progress information0

Normal setup and iteration information; default1

Diagnostic information2

P A R A M E T E R S R E F E R E N C E M A N U A L 59

convergence tolerance for LP and QP problems

Purpose
Convergence tolerance for LP and QP problems

Syntax
C Name CPX_PARAM_BAREPCOMP (double)

C++ Name BarEpComp (double)

Java Name BarEpComp (double)

.NET Name BarEpComp (double)

OPL Name barepcomp

Interactive Optimizer barrier convergetol

Identifier 3002

Description
Sets the tolerance on complementarity for convergence. The barrier algorithm terminates
with an optimal solution if the relative complementarity is smaller than this value.

Changing this tolerance to a smaller value may result in greater numerical precision of the
solution, but also increases the chance of failure to converge in the algorithm and
consequently may result in no solution at all. Therefore, caution is advised in deviating from
the default setting.

Values
Any positive number greater than or equal to 1e-12; default: 1e-8.

See also
For problems with quadratic constraints (QCP), see convergence tolerance for QC problems

P A R A M E T E R S R E F E R E N C E M A N U A L60

barrier growth limit

Purpose
Barrier growth limit

Syntax
C Name CPX_PARAM_BARGROWTH (double)

C++ Name BarGrowth (double)

Java Name BarGrowth (double)

.NET Name BarGrowth (double)

OPL Name bargrowth

Interactive Optimizer barrier limits growth

Identifier 3003

Description
Used to detect unbounded optimal faces. At higher values, the barrier algorithm is less likely
to conclude that the problem has an unbounded optimal face, but more likely to have
numerical difficulties if the problem has an unbounded face.

Values
1.0 or greater; default: 1e12.

P A R A M E T E R S R E F E R E N C E M A N U A L 61

barrier iteration limit

Purpose
Barrier iteration limit

Syntax
C Name CPX_PARAM_BARITLIM (int)

C++ Name BarItLim (int)

Java Name BarItLim (int)

.NET Name BarItLim (int)

OPL Name baritlim

Interactive Optimizer barrier limits iterations

Identifier 3012

Description
Sets the number of barrier iterations before termination. When this parameter is set to 0
(zero), no barrier iterations occur, but problem setup occurs and information about the setup
is displayed (such as Cholesky factor statistics).

Values
MeaningValue

No barrier iterations0

default2100000000

Number of barrier iterations before terminationAny positive integer

P A R A M E T E R S R E F E R E N C E M A N U A L62

barrier maximum correction limit

Purpose
Barrier maximum correction limit

Syntax
C Name CPX_PARAM_BARMAXCOR (int)

C++ Name BarMaxCor (int)

Java Name BarMaxCor (int)

.NET Name BarMaxCor (int)

OPL Name barmaxcor

Interactive Optimizer barrier limits corrections

Identifier 3013

Description
Sets the maximum number of centering corrections done on each iteration. An explicit value
greater than 0 (zero) may improve the numerical performance of the algorithm at the expense
of computation time.

Values
MeaningValue

Automatic; let CPLEX choose; default-1

None0

Maximum number of centering corrections per iterationAny positive integer

P A R A M E T E R S R E F E R E N C E M A N U A L 63

barrier objective range

Purpose
Barrier objective range

Syntax
C Name CPX_PARAM_BAROBJRNG (double)

C++ Name BarObjRng (double)

Java Name BarObjRng (double)

.NET Name BarObjRng (double)

OPL Name barobjrng

Interactive Optimizer barrier limits objrange

Identifier 3004

Description
Sets the maximum absolute value of the objective function. The barrier algorithm looks at
this limit to detect unbounded problems.

Values
Any nonnegative number; default: 1e20

P A R A M E T E R S R E F E R E N C E M A N U A L64

barrier ordering algorithm

Purpose
Barrier ordering algorithm

Syntax
C Name CPX_PARAM_BARORDER (int)

C++ Name BarOrder (int)

Java Name BarOrder (int)

.NET Name BarOrder (int)

OPL Name barorder

Interactive Optimizer barrier ordering

Identifier 3014

Description
Sets the algorithm to be used to permute the rows of the constraint matrix in order to reduce
fill in the Cholesky factor.

Values
MeaningValue

Automatic: let CPLEX choose; default0

Approximate minimum degree (AMD)1

Approximate minimum fill (AMF)2

Nested dissection (ND)3

P A R A M E T E R S R E F E R E N C E M A N U A L 65

convergence tolerance for QC problems

Purpose
Convergence tolerance for quadratically constrained problems

Syntax
C Name CPX_PARAM_BARQCPEPCOMP (double)

C++ Name BarQCPEpComp (double)

Java Name BarQCPEpComp (double)

.NET Name BarQCPEpComp (double)

OPL Name barqcpepcomp

Interactive Optimizer barrier qcpconvergetol

Identifier 3020

Description
Sets the tolerance on complementarity for convergence in quadratically constrained problems
(QCPs). The barrier algorithm terminates with an optimal solution if the relative
complementarity is smaller than this value.

Changing this tolerance to a smaller value may result in greater numerical precision of the
solution, but also increases the chance of a convergence failure in the algorithm and
consequently may result in no solution at all. Therefore, caution is advised in deviating from
the default setting.

Values
Any positive number greater than or equal to 1e-12; default: 1e-7.

For LPs and for QPs (that is, when all the constraints are linear) see convergence tolerance
for LP and QP problems CPX_PARAM_BAREPCOMP, BarEpComp.

P A R A M E T E R S R E F E R E N C E M A N U A L66

barrier starting point algorithm

Purpose
Barrier starting point algorithm

Syntax
C Name CPX_PARAM_BARSTARTALG (int)

C++ Name BarStartAlg (int)

Java Name BarStartAlg (int)

.NET Name BarStartAlg (int)

OPL Name barstartalg

Interactive Optimizer barrier startalg

Identifier 3017

Description
Sets the algorithm to be used to compute the initial starting point for the barrier optimizer.

MeaningValue

Dual is 0 (zero); default1

Estimate dual2

Average of primal estimate, dual 0 (zero)3

Average of primal estimate, estimate dual4

P A R A M E T E R S R E F E R E N C E M A N U A L 67

MIP strategy best bound interval

Purpose
MIP strategy best bound interval

Syntax
C Name CPX_PARAM_BBINTERVAL (int)

C++ Name BBInterval (int)

Java Name BBInterval (int)

.NET Name BBInterval (int)

OPL Name bbinterval

Interactive Optimizer mip strategy bbinterval

Identifier 2039

Description
Sets the best bound interval for MIP strategy.

When you set this parameter to best estimate node selection, the best bound interval is the
interval at which the best bound node, instead of the best estimate node, is selected from
the tree. A best bound interval of 0 (zero) means “never select the best bound node.” A best
bound interval of 1 (one) means “always select the best bound node,” and is thus equivalent
to nodeselect 1 (one).

Higher values of this parameter mean that the best bound node will be selected less
frequently; experience has shown it to be beneficial to select the best bound node
occasionally, and therefore the default value of this parameter is 7.

Values
MeaningValue

Never select best bound node; always select best estimate0

Always select best bound node1

Select best bound node occasionally; default7

Select best bound node less frequently than best estimate nodeAny positive integer

See also
MIP node selection strategy

P A R A M E T E R S R E F E R E N C E M A N U A L68

bound strengthening switch

Purpose
Bound strengthening switch

Syntax
C Name CPX_PARAM_BNDSTRENIND (int)

C++ Name BndStrenInd (int)

Java Name BndStrenInd (int)

.NET Name BndStrenInd (int)

OPL Name bndstrenind

Interactive Optimizer preprocessing boundstrength

Identifier 2029

Description
Decides whether to apply bound strengthening in mixed integer programs (MIPs). Bound
strengthening tightens the bounds on variables, perhaps to the point where the variable
can be fixed and thus removed from consideration during branch and cut.

MeaningValue

Automatic: let CPLEX choose; default-1

Do not apply bound strengthening0

Apply bound strengthening1

P A R A M E T E R S R E F E R E N C E M A N U A L 69

MIP branching direction

Purpose
MIP branching direction

Syntax
C Name CPX_PARAM_BRDIR (int)

C++ Name BrDir (int)

Java Name BrDir (int)

.NET Name BrDir (int)

OPL Name brdir

Interactive Optimizer mip strategy branch

Identifier 2001

Description
Decides which branch, the up or the down branch, should be taken first at each node.

MeaningSymbolValue

Down branch selected firstCPX_BRDIR_DOWN-1

Automatic: let CPLEX choose; defaultCPX_BRDIR_AUTO0

Up branch selected firstCPX_BRDIR_UP1

P A R A M E T E R S R E F E R E N C E M A N U A L70

backtracking tolerance

Purpose
Backtracking tolerance

Syntax
C Name CPX_PARAM_BTTOL (double)

C++ Name BtTol (double)

Java Name BtTol (double)

.NET Name BtTol (double)

OPL Name bttol

Interactive Optimizer mip strategy backtrack

Identifier 2002

Description
Controls how often backtracking is done during the branching process. The decision when
to backtrack depends on three values that change during the course of the optimization:

♦ the objective function value of the best integer feasible solution (incumbent)

♦ the best remaining objective function value of any unexplored node (best node)

♦ the objective function value of the most recently solved node (current objective).

If a cutoff tolerance (upper cutoff or lower cutoff) has been set by the user, then that value
is used as the incumbent until an integer feasible solution is found.

The target gap is defined to be the absolute value of the difference between the incumbent
and the best node, multiplied by this backtracking parameter. CPLEX® does not backtrack
until the absolute value of the difference between the objective of the current node and the
best node is at least as large as the target gap.

Low values of this backtracking parameter thus tend to increase the amount of backtracking,
which makes the search process more of a pure best-bound search. Higher parameter values
tend to decrease backtracking, making the search more of a pure depth-first search.

The backtracking value has effect only after an integer feasible solution is found or when a
cutoff has been specified. Note that this backtracking value merely permits backtracking
but does not force it; CPLEX® may choose to continue searching a limb of the tree if that
limb seems a promising candidate for finding an integer feasible solution.

Values
Any number from 0.0 to 1.0; default: 0.9999

P A R A M E T E R S R E F E R E N C E M A N U A L 71

See also
upper cutoff, lower cutoff

P A R A M E T E R S R E F E R E N C E M A N U A L72

MIP cliques switch

Purpose
MIP cliques switch

Syntax
C Name CPX_PARAM_CLIQUES (int)

C++ Name Cliques (int)

Java Name Cliques (int)

.NET Name Cliques (int)

OPL Name cliques

Interactive Optimizer mip cuts cliques

Identifier 2003

Description
Decides whether or not clique cuts should be generated for the problem. Setting the value
to 0 (zero), the default, indicates that the attempt to generate cliques should continue only
if it seems to be helping.

MeaningValue

Do not generate clique cuts-1

Automatic: let CPLEX choose; default0

Generate clique cuts moderately1

Generate clique cuts aggressively2

Generate clique cuts very aggressively3

P A R A M E T E R S R E F E R E N C E M A N U A L 73

clock type for computation time

Purpose
Clock type for computation time

Syntax
C Name CPX_PARAM_CLOCKTYPE (int)

C++ Name ClockType (int)

Java Name ClockType (int)

.NET Name ClockType (int)

OPL Name clocktype

Interactive Optimizer clocktype

Identifier 1006

Description
Decides how computation times aremeasured for both reporting performance and terminating
optimization when a time limit has been set. Small variations in measured time on identical
runs may be expected on any computer system with any setting of this parameter.

The default setting 0 (zero) allows CPLEX® to choose wall clock time when other parameters
invoke parallel optimization and to choose CPU time when other parameters enforce
sequential (not parallel) optimization.

MeaningValue

Automatic: let CPLEX choose; default0

CPU time1

Wall clock time (total physical time elapsed)2

P A R A M E T E R S R E F E R E N C E M A N U A L74

coefficient reduction setting

Purpose
Coefficient reduction setting

Syntax
C Name CPX_PARAM_COEREDIND (int)

C++ Name CoeRedInd (int)

Java Name CoeRedInd (int)

.NET Name CoeRedInd (int)

OPL Name coeredind

Interactive Optimizer preprocessing coeffreduce

Identifier 2004

Description
Decides how coefficient reduction is used. Coefficient reduction improves the objective value
of the initial (and subsequent) LP relaxations solved during branch and cut by reducing the
number of non-integral vertices.

MeaningValue

Do not use coefficient reduction0

Reduce only to integral coefficients1

Reduce all potential coefficients; default2

P A R A M E T E R S R E F E R E N C E M A N U A L 75

variable (column) read limit

Purpose
Variable (column) read limit

Syntax
C Name CPX_PARAM_COLREADLIM (int)

C++ Name ColReadLim (int)

Java Name ColReadLim (int)

.NET Name ColReadLim (int)

Interactive Optimizer read variables

Identifier 1023

Description
Specifies a limit for the number of columns (variables) to read for an allocation of memory.

This parameter does not restrict the size of a problem. Rather, it indirectly specifies the
default amount of memory that will be pre-allocated before a problem is read from a file. If
the limit is exceeded, more memory is automatically allocated.

Values
Any integer from 0 to 268 435 450; default: 60 000.

P A R A M E T E R S R E F E R E N C E M A N U A L76

conflict information display

Purpose
Conflict information display

Syntax
C Name CPX_PARAM_CONFLICTDISPLAY (int)

C++ Name ConflictDisplay (int)

Java Name ConflictDisplay (int)

.NET Name ConflictDisplay (int)

OPL Name conflictdisplay

Interactive Optimizer conflict display i

Identifier 1074

Description
Decides how much information CPLEX® reports when the conflict refiner is working.

Values
MeaningValue

No display0

Summary display; default1

Detailed display2

P A R A M E T E R S R E F E R E N C E M A N U A L 77

MIP covers switch

Purpose
MIP covers switch

Syntax
C Name CPX_PARAM_COVERS (int)

C++ Name Covers (int)

Java Name Covers (int)

.NET Name Covers (int)

OPL Name covers

Interactive Optimizer mip cuts covers

Identifier 2005

Description
Decides whether or not cover cuts should be generated for the problem. Setting the value
to 0 (zero), the default, indicates that the attempt to generate covers should continue only
if it seems to be helping.

Values
MeaningValue

Do not generate cover cuts-1

Automatic: let CPLEX choose; default0

Generate cover cuts moderately1

Generate cover cuts aggressively2

Generate cover cuts very aggressively3

P A R A M E T E R S R E F E R E N C E M A N U A L78

simplex crash ordering

Purpose
Simplex crash ordering

Syntax
C Name CPX_PARAM_CRAIND (int)

C++ Name CraInd (int)

Java Name CraInd (int)

.NET Name CraInd (int)

OPL Name craind

Interactive Optimizer simplex crash

Identifier 1007

Description
Decides how CPLEX® orders variables relative to the objective function when selecting an
initial basis.

P A R A M E T E R S R E F E R E N C E M A N U A L 79

Values
MeaningValue

LP Primal

Alternate ways of using objective coefficients-1

Ignore objective coefficients during crash0

Alternate ways of using objective coefficients; default1

LP Dual

Aggressive starting basis-1

Aggressive starting basis0

Default starting basis; default1

QP Primal

Slack basis-1

Ignore Q terms and use LP solver for crash0

Ignore objective and use LP solver for crash; default1

QP Dual

Slack basis-1

Use Q terms for crash0

Use Q terms for crash; default1

P A R A M E T E R S R E F E R E N C E M A N U A L80

lower cutoff

Purpose
Lower cutoff

Syntax
C Name CPX_PARAM_CUTLO (double)

C++ Name CutLo (double)

Java Name CutLo (double)

.NET Name CutLo (double)

OPL Name cutlo

Interactive Optimizer mip tolerances lowercutoff

Identifier 2006

Description
Sets the lower cutoff tolerance. When the problem is a maximization problem, CPLEX®
cuts off or discards solutions that are less than the specified cutoff value. If the model has
no solution with an objective value greater than or equal to the cutoff value, then CPLEX®
declares the model infeasible. In other words, setting the lower cutoff value c for a
maximization problem is similar to adding this constraint to the objective function of the
model: obj >= c.

This parameter is not effective with the conflict refiner nor with FeasOpt. That is, neither
of those tools can analyze an infeasibility introduced by this parameter. If you want to

Tip:

analyze such a condition, add an explicit objective constraint to your model instead
before you invoke either of those tools.

Values
Any number; default: -1e+75.

P A R A M E T E R S R E F E R E N C E M A N U A L 81

number of cutting plane passes

Purpose
Number of cutting plane passes

Syntax
C Name CPX_PARAM_CUTPASS (int)

C++ Name CutPass (int)

Java Name CutPass (int)

.NET Name CutPass (int)

OPL Name cutpass

Interactive Optimizer mip limits cutpasses

Identifier 2056

Description
Sets the upper limit on the number of cutting plane passes CPLEX® performs when solving
the root node of a MIP model.

Values
MeaningValue

None-1

Automatic: let CPLEX choose; default0

Number of passes to performAny positive integer

P A R A M E T E R S R E F E R E N C E M A N U A L82

row multiplier factor for cuts

Purpose
Row multiplier factor for cuts

Syntax
C Name CPX_PARAM_CUTSFACTOR (double)

C++ Name CutsFactor (double)

Java Name CutsFactor (double)

.NET Name CutsFactor (double)

OPL Name cutsfactor

Interactive Optimizer mip limits cutsfactor

Identifier 2033

Description
Limits the number of cuts that can be added. The number of rows in the problem with cuts
added is limited to CutsFactor times the original number of rows. If the problem is presolved,
the original number of rows is that from the presolved problem.

A CutsFactor of 1.0 or less means that no cuts will be generated.

Because cuts can be added and removed during the course of optimization, CutsFactormay
not correspond directly to the number of cuts seen in the node log or in the summary table
at the end of optimization.

Values
Any nonnegative number; default: 4.0

P A R A M E T E R S R E F E R E N C E M A N U A L 83

upper cutoff

Purpose
Upper cutoff

Syntax
C Name CPX_PARAM_CUTUP (double)

C++ Name CutUp (double)

Java Name CutUp (double)

.NET Name CutUp (double)

OPL Name cutup

Interactive Optimizer mip tolerances uppercutoff

Identifier 2007

Description
Sets the upper cutoff tolerance. When the problem is a minimization problem, CPLEX®
cuts off or discards any solutions that are greater than the specified upper cutoff value. If
the model has no solution with an objective value less than or equal to the cutoff value,
CPLEX® declares the model infeasible. In other words, setting an upper cutoff value c for
a minimization problem is similar to adding this constraint to the objective function of the
model: obj <= c.

This parameter is not effective with the conflict refiner nor with FeasOpt. That is, neither
of those tools can analyze an infeasibility introduced by this parameter. If you want to

Tip:

analyze such a condition, add an explicit objective constraint to your model instead
before you invoke either of those tools.

Values
Any number; default: 1e+75.

P A R A M E T E R S R E F E R E N C E M A N U A L84

data consistency checking switch

Purpose
Data consistency checking switch

Syntax
C Name CPX_PARAM_DATACHECK (int)

C++ Name DataCheck (bool)

Java Name DataCheck (bool)

.NET Name DataCheck (bool)

OPL Name datacheck

Interactive Optimizer read datacheck

Identifier 1056

Description
Decides whether data should be checked for consistency. When this parameter is on, the
routines CPXcopy____, CPXread____ and CPXchg____ of the C API perform extensive checking
of data in their array arguments, such as checking that indices are within range, that there
are no duplicate entries, and that values are valid for the type of data or are valid numbers.
This checking is useful for debugging applications. When this checking identifies trouble,
you can gather more specific detail by calling one of the routines in check.c .

Values
MeaningSymbolboolint

Data checking off; do not check; defaultCPX_OFFfalse0

Data checking onCPX_ONtrue1

P A R A M E T E R S R E F E R E N C E M A N U A L 85

dependency switch

Purpose
Dependency switch

Syntax
C Name CPX_PARAM_DEPIND (int)

C++ Name DepInd (int)

Java Name DepInd (int)

.NET Name DepInd (int)

OPL Name depind

Interactive Optimizer preprocessing dependency

Identifier 1008

Description
Decides whether to activate the dependency checker. If on, the dependency checker searches
for dependent rows during preprocessing. If off, dependent rows are not identified.

Values
MeaningValue

Automatic: let CPLEX choose; default-1

Off: do not use dependency checker0

Turn on only at the beginning of preprocessing1

Turn on only at the end of preprocessing2

Turn on at the beginning and at the end of preprocessing3

P A R A M E T E R S R E F E R E N C E M A N U A L86

MIP disjunctive cuts switch

Purpose
MIP disjunctive cuts switch

Syntax
C Name CPX_PARAM_DISJCUTS (int)

C++ Name DisjCuts (int)

Java Name DisjCuts (int)

.NET Name DisjCuts (int)

OPL Name disjcuts

Interactive Optimizer mip cuts disjunctive

Identifier 2053

Description
Decides whether or not disjunctive cuts should be generated for the problem. Setting the
value to 0 (zero), the default, indicates that the attempt to generate disjunctive cuts should
continue only if it seems to be helping.

Values
MeaningValue

Do not generate disjunctive cuts-1

Automatic: let CPLEX choose; default0

Generate disjunctive cuts moderately1

Generate disjunctive cuts aggressively2

Generate disjunctive cuts very aggressively3

P A R A M E T E R S R E F E R E N C E M A N U A L 87

MIP dive strategy

Purpose
MIP dive strategy

Syntax
C Name CPX_PARAM_DIVETYPE (int)

C++ Name DiveType (int)

Java Name DiveType (int)

.NET Name DiveType (int)

OPL Name divetype

Interactive Optimizer mip strategy dive

Identifier 2060

Description
Controls the MIP dive strategy. The MIP traversal strategy occasionally performs probing
dives, where it looks ahead at both children nodes before deciding which node to choose.
The default (automatic) setting lets CPLEX® choose when to perform a probing dive, 1
(one) directs CPLEX® never to perform probing dives, 2 always to probe, 3 to spend more
time exploring potential solutions that are similar to the current incumbent. Setting 2, always
to probe, is helpful for finding integer solutions.

Values
MeaningValue

Automatic: let CPLEX choose; default0

Traditional dive1

Probing dive2

Guided dive3

P A R A M E T E R S R E F E R E N C E M A N U A L88

dual simplex pricing algorithm

Purpose
Dual simplex pricing algorithm

Syntax
C Name CPX_PARAM_DPRIIND (int)

C++ Name DPriInd (int)

Java Name DPriInd (int)

.NET Name DPriInd (int)

OPL Name dpriind

Interactive Optimizer simplex dgradient

Identifier 1009

Description
Decides the type of pricing applied in the dual simplex algorithm. The default pricing (0)
usually provides the fastest solution time, but many problems benefit from alternate settings.

Values
MeaningSymbolValue

Automatic: let CPLEX choose; defaultCPX_DPRIIND_AUTO0

Standard dual pricingCPX_DPRIIND_FULL1

Steepest-edge pricingCPX_DPRIIND_STEEP2

Steepest-edge pricing in slack spaceCPX_DPRIIND_FULL_STEEP3

Steepest-edge pricing, unit initial normsCPX_DPRIIND_STEEPQSTART4

devex pricingCPX_DPRIIND_DEVEX5

See also
candidate limit for generating Gomory fractional cuts, MIP Gomory fractional cuts switch,
pass limit for generating Gomory fractional cuts

P A R A M E T E R S R E F E R E N C E M A N U A L 89

type of cut limit

Purpose
Type of cut limit

Syntax
C Name CPX_PARAM_EACHCUTLIM (int)

C++ Name EachCutLim (int)

Java Name EachCutLim (int)

.NET Name EachCutLim (int)

OPL Name eachcutlim

Interactive Optimizer mip limit eachcutlimit

Identifier 2102

Description
Sets a limit for each type of cut.

This parameter allows you to set a uniform limit on the number of cuts of each type that
CPLEX® generates. By default, the limit is the largest integer supported by a given platform;
that is, there is no effective limit by default.

Tighter limits on the number of cuts of each type may benefit certain models. For example,
a limit on each type of cut will prevent any one type of cut from being created in such large
number that the limit on the total number of all types of cuts is reached before other types
of cuts have an opportunity to be created.

A setting of 0 (zero) means no cuts.

This parameter does not influence the number of Gomory cuts. For means to control the
number of Gomory cuts, see also the fractional cut parameters:

♦ candidate limit for generating Gomory fractional cuts: CPX_PARAM_FRACCAND, FracCand;

♦ MIP Gomory fractional cuts switch: CPX_PARAM_FRACCUTS, FracCuts;

♦ pass limit for generating Gomory fractional cuts: CPX_PARAM_FRACPASS, FracPass.

Values
MeaningValue

No cuts0

Limit each type of cutAny positive number

default2100000000

P A R A M E T E R S R E F E R E N C E M A N U A L90

absolute MIP gap tolerance

Purpose
Absolute MIP gap tolerance

Syntax
C Name CPX_PARAM_EPAGAP (double)

C++ Name EpAGap (double)

Java Name EpAGap (double)

.NET Name EpAGap (double)

OPL Name epagap

InteractiveOptimizer mip tolerances absmipgap

Identifier 2008

Description
Sets an absolute tolerance on the gap between the best integer objective and the objective
of the best node remaining. When this difference falls below the value of this parameter,
the mixed integer optimization is stopped.

Values
Any nonnegative number; default: 1e-06.

P A R A M E T E R S R E F E R E N C E M A N U A L 91

relative MIP gap tolerance

Purpose
Relative MIP gap tolerance

Syntax
C Name CPX_PARAM_EPGAP (double)

C++ Name EpGap (double)

Java Name EpGap (double)

.NET Name EpGap (double)

OPL Name epgap

Interactive Optimizer mip tolerances mipgap

Identifier 2009

Description
When the value

|bestnode-bestinteger|/(1e-10+|bestinteger|)

falls below the value of this parameter, the mixed integer optimization is stopped.

For example, to instruct CPLEX® to stop as soon as it has found a feasible integer solution
proved to be within five percent of optimal, set the relative mipgap tolerance to 0.05.

Values
Any number from 0.0 to 1.0; default: 1e-04.

P A R A M E T E R S R E F E R E N C E M A N U A L92

integrality tolerance

Purpose
Integrality tolerance

Syntax
C Name CPX_PARAM_EPINT (double)

C++ Name EpInt (double)

Java Name EpInt (double)

.NET Name EpInt (double)

OPL Name epint

Interactive Optimizer mip tolerances integrality

Identifier 2010

Description
Specifies the amount by which an integer variable can be different from an integer and still
be considered feasible.

A value of zero is permitted, and the optimizer will attempt to meet this tolerance.

However, in some models, computer roundoff may still result in small, nonzero deviations
from integrality. If any of these deviations exceed the value of this parameter, or exceed
1e-10 in the case where this parameter has been set to a value less than that, a solution
status of CPX_STAT_OPTIMAL_INFEASwill be returned instead of the usual CPX_STAT_OPTIMAL
.

Values
Any number from 0.0 to 0.5; default: 1e-05.

P A R A M E T E R S R E F E R E N C E M A N U A L 93

epsilon used in linearization

Purpose
Epsilon used in linearization

Syntax
C Name CPX_PARAM_EPLIN but not applicable in the C API

C++ Name EpLin (double)

Java Name EpLin (double)

.NET Name EpLin (double)

Interactive Optimizer not available in the Interactive Optimizer

Identifier 2068

Description
Sets the epsilon (degree of tolerance) used in linearization in the object-oriented APIs.

Not applicable in the C API.

Not available in the Interactive Optimizer.

This parameter controls how strict inequalities are managed during linearization. In other
words, it provides an epsilon for deciding when two values are not equal during linearization.
For example, when x is a numeric variable (that is, an instance of IloNumVar),

x < a

becomes

x <= a-eplin .

Similarly, x!=a

becomes

{(x < a) || (x > a)}

which is linearized automatically for you in the object-oriented APIs as

{(x <= a-eplin) || (x >= a+eplin)} .

Exercise caution in changing this parameter from its default value: the smaller the epsilon,
the more numerically unstable the model will tend to become. If you are not getting an
expected solution for an object-oriented model that uses linearization, it might be that this
solution is cut off because of the relatively high EpLin value. In such a case, carefully try
reducing it.

Values
Any positive value greater than zero; default: 1e-3.

P A R A M E T E R S R E F E R E N C E M A N U A L94

Markowitz tolerance

Purpose
Markowitz tolerance

Syntax
C Name CPX_PARAM_EPMRK (double)

C++ Name EpMrk (double)

Java Name EpMrk (double)

.NET Name EpMrk (double)

OPL Name epmrk

Interactive Optimizer simplex tolerances markowitz

Identifier 1013

Description
Influences pivot selection during basis factoring. Increasing the Markowitz threshold may
improve the numerical properties of the solution.

Values
Any number from 0.0001 to 0.99999; default: 0.01.

P A R A M E T E R S R E F E R E N C E M A N U A L 95

optimality tolerance

Purpose
Optimality tolerance

Syntax
C Name CPX_PARAM_EPOPT (double)

C++ Name EpOpt (double)

Java Name EpOpt (double)

.NET Name EpOpt (double)

OPL Name epopt

Interactive Optimizer simplex tolerances optimality

Identifier 1014

Description
Influences the reduced-cost tolerance for optimality. This parameter governs how closely
CPLEX® must approach the theoretically optimal solution.

Values
Any number from 1e-9 to 1e-1; default: 1e-06.

P A R A M E T E R S R E F E R E N C E M A N U A L96

perturbation constant

Purpose
Perturbation constant

Syntax
C Name CPX_PARAM_EPPER (double)

C++ Name EpPer (double)

Java Name EpPer (double)

.NET Name EpPer (double)

OPL Name epper

Interactive Optimizer simplex perturbation

Identifier 1015

Description
Sets the amount by which CPLEX® perturbs the upper and lower bounds or objective
coefficients on the variables when a problem is perturbed in the simplex algorithm. This
parameter can be set to a smaller value if the default value creates too large a change in
the problem.

Values
Any positive number greater than or equal to 1e-8; default: 1e-6.

P A R A M E T E R S R E F E R E N C E M A N U A L 97

relaxation for FeasOpt

Purpose
Relaxation for feasOpt

Syntax
C Name CPX_PARAM_EPRELAX (double)

C++ Name EpRelax (double)

Java Name EpRelax (double)

.NET Name EpRelax (double)

OPL Name eprelax

Interactive Optimizer feasopt tolerance

Identifier 2073

Description
Controls the amount of relaxation for the routine CPXfeasopt in the C API or for the method
feasOpt in the object-oriented APIs.

In the case of a MIP, it serves the purpose of the absolute gap for the feasOpt model in
Phase I (the phase to minimize relaxation).

Using this parameter, you can implement other stopping criteria as well. To do so, first call
feasOpt with the stopping criteria that you prefer; then set this parameter to the resulting
objective of the Phase I model; unset the other stopping criteria, and call feasOpt again.
Since the solution from the first call already matches this parameter, Phase I will terminate
immediately in this second call to feasOpt , and Phase II will start.

In the case of an LP, this parameter controls the lower objective limit for Phase I of feasOpt
and is thus relevant only when the primal optimizer is in use.

Values
Any nonnegative value; default: 1e-6.

See also
lower objective value limit

P A R A M E T E R S R E F E R E N C E M A N U A L98

feasibility tolerance

Purpose
Feasibility tolerance

Syntax
C Name CPX_PARAM_EPRHS (double)

C++ Name EpRHS (double)

Java Name EpRHS (double)

.NET Name EpRHS (double)

OPL Name eprhs

Interactive Optimizer simplex tolerances feasibility

Identifier 1016

Description
Specifies the feasibility tolerance, that is, the degree to which values of the basic variables
calculated by the simplexmethodmay violate their bounds. Feasibility influences the selection
of an optimal basis and can be reset to a higher value when a problem is having difficulty
maintaining feasibility during optimization. You may also wish to lower this tolerance after
finding an optimal solution if there is any doubt that the solution is truly optimal. If the
feasibility tolerance is set too low, CPLEX® may falsely conclude that a problem is infeasible.
If you encounter reports of infeasibility during Phase II of the optimization, a small adjustment
in the feasibility tolerance may improve performance.

Values
Any number from 1e-9 to 1e-1; default: 1e-06.

P A R A M E T E R S R E F E R E N C E M A N U A L 99

mode of FeasOpt

Purpose
Mode of FeasOpt

Syntax
C Name CPX_PARAM_FEASOPTMODE (int)

C++ Name FeasOptMode (int)

Java Name FeasOptMode (int)

.NET Name FeasOptMode (int)

OPL Name feasoptmode

Interactive Optimizer feasopt mode

Identifier 1084

Description
Decides how FeasOpt measures the relaxation when finding a minimal relaxation in an
infeasible model. FeasOpt works in two phases. In its first phase, it attempts to minimize
its relaxation of the infeasible model. That is, it attempts to find a feasible solution that
requires minimal change. In its second phase, it finds an optimal solution among those that
require only as much relaxation as it found necessary in the first phase. Values of this
parameter indicate two aspects to CPLEX® :

♦ whether to stop in phase one or continue to phase two and

♦ how to measure the relaxation, according to one of the following criteria:

● as a sum of required relaxations;

● as the number of constraints and bounds required to be relaxed;

● as a sum of the squares of required relaxations.

P A R A M E T E R S R E F E R E N C E M A N U A L100

Values
MeaningSymbol (C API)SymbolValue

Minimize the sum of all required relaxations in first
phase only; default

CPX_FEASOPT_MIN_SUMMinSum0

Minimize the sum of all required relaxations in first
phase and execute second phase to find optimum
among minimal relaxations

CPX_FEASOPT_OPT_SUMOptSum1

Minimize the number of constraints and bounds
requiring relaxation in first phase only

CPX_FEASOPT_MIN_INFMinInf2

Minimize the number of constraints and bounds
requiring relaxation in first phase and execute second
phase to find optimum among minimal relaxations

CPX_FEASOPT_OPT_INFOptInf3

Minimize the sum of squares of required relaxations in
first phase only

CPX_FEASOPT_MIN_QUADMinQuad4

Minimize the sum of squares of required relaxations in
first phase and execute second phase to find optimum
among minimal relaxations

CPX_FEASOPT_OPT_QUADOptQuad5

P A R A M E T E R S R E F E R E N C E M A N U A L 101

MIP flow cover cuts switch

Purpose
MIP flow cover cuts switch

Syntax
C Name CPX_PARAM_FLOWCOVERS (int)

C++ Name FlowCovers (int)

Java Name FlowCovers (int)

.NET Name FlowCovers (int)

OPL Name flowcovers

Interactive Optimizer mip cuts flowcovers

Identifier 2040

Description
Decides whether or not to generate flow cover cuts for the problem. Setting the value to
0 (zero), the default, indicates that the attempt to generate flow cover cuts should continue
only if it seems to be helping.

Values
MeaningValue

Do not generate flow cover cuts-1

Automatic: let CPLEX choose; default0

Generate flow cover cuts moderately1

Generate flow cover cuts aggressively2

P A R A M E T E R S R E F E R E N C E M A N U A L102

MIP flow path cut switch

Purpose
MIP flow path cut switch

Syntax
C Name CPX_PARAM_FLOWPATHS (int)

C++ Name FlowPaths (int)

Java Name FlowPaths (int)

.NET Name FlowPaths (int)

OPL Name flowpaths

Interactive Optimizer mip cuts pathcut

Identifier 2051

Description
Decides whether or not flow path cuts should be generated for the problem. Setting the
value to 0 (zero), the default, indicates that the attempt to generate flow path cuts should
continue only if it seems to be helping.

Values
MeaningValue

Do not generate flow path cuts-1

Automatic: let CPLEX choose; default0

Generate flow path cuts moderately1

Generate flow path cuts aggressively2

P A R A M E T E R S R E F E R E N C E M A N U A L 103

feasibility pump switch

Purpose
Feasibility pump switch

Syntax
C Name CPX_PARAM_FPHEUR (int)

C++ Name FPHeur (int)

Java Name FPHeur (int)

.NET Name FPHeur (int)

OPL Name fpheur

Interactive Optimizer mip strategy fpheur

Identifier 2098

Description
Turns on or off the feasibility pump heuristic for mixed integer programming (MIP) models.

At the default setting 0 (zero), CPLEX® automatically chooses whether or not to apply the
feasibility pump heuristic on the basis of characteristics of the model. The feasibility pump
does not apply to models of the type mixed integer quadratically constrained programs
(MIQCP).

To turn off the feasibility pump heuristic, set the parameter to -1 (minus one).

To turn on the feasibility pump heuristic, set the parameter to 1 (one) or 2.

If the parameter is set to 1 (one), the feasibility pump tries to find a feasible solution without
taking the objective function into account.

If the parameter is set to 2, the heuristic usually finds solutions of better objective value,
but is more likely to fail to find a feasible solution.

For more detail about the feasibility pump heuristic, see research by Fischetti, Glover, and
Lodi (2003, 2005), by Bertacco, Fischetti, and Lodi (2005), and by Achterberg and Berthold
(2005, 2007).

P A R A M E T E R S R E F E R E N C E M A N U A L104

Values
MeaningValue

Do not apply the feasibility pump heuristic-1

Automatic: let CPLEX choose; default0

Apply the feasibility pump heuristic with an emphasis on finding a feasible solution1

Apply the feasibility pump heuristic with an emphasis on finding a feasible solution with a good
objective value

2

P A R A M E T E R S R E F E R E N C E M A N U A L 105

candidate limit for generating Gomory fractional cuts

Purpose
Candidate limit for generating Gomory fractional cuts

Syntax
C Name CPX_PARAM_FRACCAND (int)

C++ Name FracCand (int)

Java Name FracCand (int)

.NET Name FracCand (int)

OPL Name fraccand

Interactive Optimizer mip limits gomorycand

Identifier 2048

Description
Limits the number of candidate variables for generating Gomory fractional cuts.

Values
Any positive integer; default: 200.

P A R A M E T E R S R E F E R E N C E M A N U A L106

MIP Gomory fractional cuts switch

Purpose
MIP Gomory fractional cuts switch

Syntax
C Name CPX_PARAM_FRACCUTS (int)

C++ Name FracCuts (int)

Java Name FracCuts (int)

.NET Name FracCuts (int)

OPL Name fraccuts

Interactive Optimizer mip cuts gomory

Identifier 2049

Description
Decides whether or not Gomory fractional cuts should be generated for the problem. Setting
the value to 0 (zero), the default, indicates that the attempt to generate Gomory fractional
cuts should continue only if it seems to be helping.

Values
MeaningValue

Do not generate Gomory fractional cuts-1

Automatic: let CPLEX choose; default0

Generate Gomory fractional cuts moderately1

Generate Gomory fractional cuts aggressively2

P A R A M E T E R S R E F E R E N C E M A N U A L 107

pass limit for generating Gomory fractional cuts

Purpose
Pass limit for generating Gomory fractional cuts

Syntax
C Name CPX_PARAM_FRACPASS (int)

C++ Name FracPass (int)

Java Name FracPass (int)

.NET Name FracPass (int)

OPL Name fracpass

Interactive Optimizer mip limits gomorypass

Identifier 2050

Description
Limits the number of passes for generating Gomory fractional cuts. At the default setting
of 0 (zero), CPLEX® decides the number of passes to make. The parameter is ignored if
the Gomory fractional cut parameter (MIP Gomory fractional cuts switch:
CPX_PARAM_FRACCUTS, FracCuts) is set to a nonzero value.

Values
MeaningValue

Automatic: let CPLEX choose; default0

Number of passes to generate Gomory fractional cutsAny positive integer

P A R A M E T E R S R E F E R E N C E M A N U A L108

MIP GUB cuts switch

Purpose
MIP GUB cuts switch

Syntax
C Name CPX_PARAM_GUBCOVERS (int)

C++ Name GUBCovers (int)

Java Name GUBCovers (int)

.NET Name GUBCovers (int)

OPL Name gubcovers

Interactive Optimizer mip cuts gubcovers

Identifier 2044

Description
Decides whether or not to generate GUB cuts for the problem. Setting the value to 0 (zero),
the default, indicates that the attempt to generate GUB cuts should continue only if it seems
to be helping.

Values
MeaningValue

Do not generate GUB cuts-1

Automatic: let CPLEX choose; default0

Generate GUB cuts moderately1

Generate GUB cuts aggressively2

P A R A M E T E R S R E F E R E N C E M A N U A L 109

MIP heuristic frequency

Purpose
MIP heuristic frequency

Syntax
C Name CPX_PARAM_HEURFREQ (int)

C++ Name HeurFreq (int)

Java Name HeurFreq (int)

.NET Name HeurFreq (int)

OPL Name heurfreq

Interactive Optimizer mip strategy heuristicfreq

Identifier 2031

Description
Decides how often to apply the periodic heuristic. Setting the value to -1 turns off the periodic
heuristic. Setting the value to 0 (zero), the default, applies the periodic heuristic at an
interval chosen automatically. Setting the value to a positive number applies the heuristic
at the requested node interval. For example, setting this parameter to 20 dictates that the
heuristic be called at node 0, 20, 40, 60, etc.

Values
MeaningValue

None-1

Automatic: let CPLEX choose; default0

Apply the periodic heuristic at this frequencyAny positive integer

P A R A M E T E R S R E F E R E N C E M A N U A L110

MIP implied bound cuts switch

Purpose
MIP implied bound cuts switch

Syntax
C Name CPX_PARAM_IMPLBD (int)

C++ Name ImplBd (int)

Java Name ImplBd (int)

.NET Name ImplBd (int)

OPL Name implbd

Interactive Optimizer mip cuts implied

Identifier 2041

Description
Decides whether or not to generate implied bound cuts for the problem. Setting the value
to 0 (zero), the default, indicates that the attempt to generate implied bound cuts should
continue only if it seems to be helping.

Values
MeaningValue

Do not generate implied bound cuts-1

Automatic: let CPLEX choose; default0

Generate implied bound cuts moderately1

Generate implied bound cuts aggressively

P A R A M E T E R S R E F E R E N C E M A N U A L 111

MIP integer solution limit

Purpose
MIP integer solution limit

Syntax
C Name CPX_PARAM_INTSOLLIM (int)

C++ Name IntSolLim (int)

Java Name IntSolLim (int)

.NET Name IntSolLim (int)

OPL Name intsollim

Interactive Optimizer mip limits solutions

Identifier 2015

Description
Sets the number of MIP solutions to be found before stopping.

This integer solution limit does not apply to the populate procedure, which generates
solutions to store in the solution pool. For a limit on the number of solutions generated by
populate, see the populate limit parameter: maximum number of solutions generated for
solution pool by populate.

Values
Any positive integer strictly greater than zero; zero is not allowed; default: 2100000000.

See also
maximum number of solutions generated for solution pool by populate

P A R A M E T E R S R E F E R E N C E M A N U A L112

simplex maximum iteration limit

Purpose
Simplex maximum iteration limit

Syntax
C Name CPX_PARAM_ITLIM (int)

C++ Name ItLim (int)

Java Name ItLim (int)

.NET Name ItLim (int)

OPL Name itlim

Interactive Optimizer simplex limits iterations

Identifier 1020

Description
Sets the maximum number of simplex iterations to be performed before the algorithm
terminates without reaching optimality. When set to 0 (zero), no simplex method iteration
occurs. However, CPLEX® factors the initial basis from which solution routines provide
information about the associated initial solution.

Values
Any nonnegative integer; default: 2100000000.

P A R A M E T E R S R E F E R E N C E M A N U A L 113

local branching heuristic

Purpose
Local branching heuristic

Syntax
C Name CPX_PARAM_LBHEUR (int)

C++ Name LBHeur (bool)

Java Name LBHeur (bool)

.NET Name LBHeur (bool)

OPL Name lbheur

Interactive Optimizer mip strategy lbheur

Identifier 2063

Description
Controls whether CPLEX® applies a local branching heuristic to try to improve new
incumbents found during a MIP search. By default, this parameter is off. If you turn it on,
CPLEX® will invoke a local branching heuristic only when it finds a new incumbent. If
CPLEX® finds multiple incumbents at a single node, the local branching heuristic will be
applied only to the last one found.

Values
MeaningSymbolboolValue

Local branching heuristic is off; defaultCPX_OFFfalse0

Apply local branching heuristic to new incumbentCPX_ONtrue1

P A R A M E T E R S R E F E R E N C E M A N U A L114

MCF cut switch

Purpose
Switches on or off generation of multi-commodity flow cuts in a MIP.

Syntax
C Name CPX_PARAM_MCFCUTS (int)

C++ Name MCFCuts (int)

Java Name MCFCuts (int)

.NET Name MCFCuts (int)

OPL Name

Interactive Optimizer mip cuts mcfcut

Identifier 2134

Description
Specifies whether CPLEX® should generatemulti-commodity flow cuts in a problem
where CPLEX® detects the characteristics of a multi-commodity flow network with arc
capacities. By default, CPLEX® decides whether or not to generate such cuts.

To turn off generation of such cuts, set this parameter to -1 (minus one).

CPLEX® is able to recognize the structure of a network as represented in many real-world
models. When it recognizes such a network structure, CPLEX® is able to generate cutting
planes that usually help solve such problems. In this case, the cuts that CPLEX® generates
state that the capacities installed on arcs pointing into a component of the network must
be at least as large as the total flow demand of the component that cannot be satisfied by
flow sources within the component.

Values
MeaningValue

Turn off MCF cuts-1

Automatic: let CPLEX decide whether to generate MCF cuts; default0

Generate a moderate number of MCF cuts1

Generate MCF cuts aggressively2

P A R A M E T E R S R E F E R E N C E M A N U A L 115

memory reduction switch

Purpose
Reduces use of memory

Syntax
C Name CPX_PARAM_MEMORYEMPHASIS (int)

C++ Name MemoryEmphasis (bool)

Java Name MemoryEmphasis (bool)

.NET Name MemoryEmphasis (bool)

OPL Name memoryemphasis

Interactive Optimizer emphasis memory

Identifier 1082

Description
Directs CPLEX® that it should conserve memory where possible. When you set this
parameter to its nondefault value, CPLEX® will choose tactics, such as data compression
or disk storage, for some of the data computed by the simplex, barrier, and MIP optimizers.
Of course, conserving memory may impact performance in somemodels. Also, while solution
information will be available after optimization, certain computations that require a basis
that has been factored (for example, for the computation of the condition number Kappa)
may be unavailable.

Values
MeaningSymbolboolValue

Off; do not conserve memory; defaultCPX_OFFfalse0

On; conserve memory where possibleCPX_ONtrue1

P A R A M E T E R S R E F E R E N C E M A N U A L116

MIP callback switch between original model and reduced, presolved
model

Purpose
MIP callback switch between original model and reduced, presolved model

Syntax
C Name CPX_PARAM_MIPCBREDLP (int)

C++ Name MIP callback reduced LP parameter not available in
this API

Java Name not available

.NET Name not available

Interactive Optimizer not available

Identifier 2055

Description
Controls whether your callback accesses node information of the original model (off) or node
information of the reduced, presolved model (on, default). Advanced routines to control MIP
callbacks (such as CPXgetcallbacklp , CPXsetheuristiccallbackfunc ,
CPXsetbranchcallbackfunc , CPXgetbranchcallbackfunc , CPXsetcutcallbackfunc ,
CPXsetincumbentcallbackfunc , CPXgetcallbacksosinfo , CPXcutcallbackadd ,
CPXcutcallbackaddlocal , and others) consider the setting of this parameter and access
the original model or the reduced, presolved model accordingly.

The routine CPXgetcallbacknodelp is an exception: it always accesses the current node LP
associated with the presolved model, regardless of the setting of this parameter.

For certain routines, such as CPXcutcallbackadd , when you set the parameter
CPX_PARAM_MIPCBREDLP to zero, you should also set CPX_PARAM_PRELINEAR to zero as well.

In the C++, Java, .NET, Python, and MATLAB APIs of CPLEX® , only the original model is
available to callbacks. In other words, this parameter is effective only for certain advanced
routines of the C API.

Values
MeaningSymbolValue

Off: use original modelCPX_OFF0

On: use reduced, presolved model; defaultCPX_ON1

P A R A M E T E R S R E F E R E N C E M A N U A L 117

MIP node log display information

Purpose
MIP node log display information

Syntax
C Name CPX_PARAM_MIPDISPLAY (int)

C++ Name MIPDisplay (int)

Java Name MIPDisplay (int)

.NET Name MIPDisplay (int)

OPL Name mipdisplay

Interactive Optimizer mip display

Identifier 2012

Description
Decides what CPLEX® reports to the screen during mixed integer optimization (MIP).

The amount of information displayed increases with increasing values of this parameter.

♦ A setting of 0 (zero) causes no node log to be displayed until the optimal solution is
found.

♦ A setting of 1 (one) displays an entry for each integer feasible solution found.

Each entry contains:

● the value of the objective function;

● the node count;

● the number of unexplored nodes in the tree;

● the current optimality gap.

♦ A setting of 2 also generates an entry for every n-th node (where n is the setting of the
MIP node log interval parameter).

♦ A setting of 3 additionally generates an entry for every n-th node giving the number of
cuts added to the problem for the previous MIPInterval number of nodes, plus an entry
for each successfully processedMIP start.

♦ A setting of 4 additionally generates entries for the LP root relaxation according to the
setting of the parameter to control the simplex iteration information display (SimDisplay,
CPX_PARAM_SIMDISPLAY).

P A R A M E T E R S R E F E R E N C E M A N U A L118

♦ A setting of 5 additionally generates entries for the LP subproblems, also according to
the setting of the parameter to control the simplex iteration information display
(SimDisplay, CPX_PARAM_SIMDISPLAY).

Values
MeaningValue

No display until optimal solution has been found0

Display integer feasible solutions1

Display integer feasible solutions plus an entry for every n-th node; default2

Display integer feasible solutions, every n-th node entry, number of cuts added,
and information about the processing of each successful MIP start

3

Display integer feasible solutions, every n-th node entry, number of cuts added,
information about the processing of each successful MIP start, and information
about the LP subproblem at root

4

Display integer feasible solutions, every n-th node entry, number of cuts added,
information about the processing of each successful MIP start, and information
about the LP subproblem at root and at nodes

5

See also
MIP node log interval, simplex iteration information display, network logging display switch,
and messages to screen switch

P A R A M E T E R S R E F E R E N C E M A N U A L 119

MIP emphasis switch

Purpose
MIP emphasis switch

Syntax
C Name CPX_PARAM_MIPEMPHASIS (int)

C++ Name MIPEmphasis (int)

Java Name MIPEmphasis (int)

.NET Name MIPEmphasis (int)

OPL Name mipemphasis

Interactive Optimizer emphasis mip

Identifier 2058

Description
Controls trade-offs between speed, feasibility, optimality, and moving bounds in MIP.

With the default setting of BALANCED, CPLEX® works toward a rapid proof of an optimal
solution, but balances that with effort toward finding high quality feasible solutions early
in the optimization.

When this parameter is set to FEASIBILITY, CPLEX® frequently will generate more feasible
solutions as it optimizes the problem, at some sacrifice in the speed to the proof of optimality.

When set to OPTIMALITY, less effort may be applied to finding feasible solutions early.

With the setting BESTBOUND, even greater emphasis is placed on proving optimality through
moving the best bound value, so that the detection of feasible solutions along the way
becomes almost incidental.

When the parameter is set to HIDDENFEAS, the MIP optimizer works hard to find high
quality feasible solutions that are otherwise very difficult to find, so consider this setting
when the FEASIBILITY setting has difficulty finding solutions of acceptable quality.

Values
MeaningSymbolValue

Balance optimality and feasibility; defaultCPX_MIPEMPHASIS_BALANCED0

Emphasize feasibility over optimalityCPX_MIPEMPHASIS_FEASIBILITY1

Emphasize optimality over feasibilityCPX_MIPEMPHASIS_OPTIMALITY2

Emphasize moving best boundCPX_MIPEMPHASIS_BESTBOUND3

Emphasize finding hidden feasible solutionsCPX_MIPEMPHASIS_HIDDENFEAS4

P A R A M E T E R S R E F E R E N C E M A N U A L120

MIP node log interval

Purpose
MIP node log interval

Syntax
C Name CPX_PARAM_MIPINTERVAL (int)

C++ Name MIPInterval (int)

Java Name MIPInterval (int)

.NET Name MIPInterval (int)

OPL Name mipinterval

Interactive Optimizer mip interval

Identifier 2013

Description
Controls the frequency of node logging when the MIP display parameter (MIP node log
display information) is set higher than 1 (one).

Values
Any positive integer; default: 100.

See also
MIP node log display information

P A R A M E T E R S R E F E R E N C E M A N U A L 121

MIP priority order switch

Purpose
MIP priority order switch

Syntax
C Name CPX_PARAM_MIPORDIND (int)

C++ Name MIPOrdInd (bool)

Java Name MIPOrdInd (bool)

.NET Name MIPOrdInd (bool)

OPL Name mipordind

Interactive Optimizer mip strategy order

Identifier 2020

Description
Decides whether to use the priority order, if one exists, for the next mixed integer
optimization.

Values
MeaningSymbolboolValue

Off: do not use priority orderCPX_OFFfalse

On: use priority order, if it exists; defaultCPX_ONtrue

P A R A M E T E R S R E F E R E N C E M A N U A L122

MIP priority order generation

Purpose
MIP priority order generation

Syntax
C Name CPX_PARAM_MIPORDTYPE (int)

C++ Name MIPOrdType (int)

Java Name MIPOrdType (int)

.NET Name MIPOrdType (int)

OPL Name mipordtype

Interactive Optimizer mip ordertype

Identifier 2032

Description
Selects the type of generic priority order to generate when no priority order is present.

Values
MeaningSymbolValue

Do not generate a priority orderdefault0

Use decreasing costCPX_MIPORDER_COST1

Use increasing bound rangeCPX_MIPORDER_BOUNDS2

Use increasing cost per coefficient countCPX_MIPORDER_SCALEDCOST3

P A R A M E T E R S R E F E R E N C E M A N U A L 123

MIP dynamic search switch

Purpose
MIP dynamic search switch

Syntax
C Name CPX_PARAM_MIPSEARCH (int)

C++ Name MIPSearch (int)

Java Name MIPSearch (int)

.NET Name MIPSearch (int)

OPL Name mipsearch

Interactive Optimizer mip strategy search

Identifier 2109

Description
Sets the search strategy for a mixed integer program (MIP). By default, CPLEX® chooses
whether to apply dynamic search or conventional branch and cut based on characteristics
of the model and the presence (or absence) of callbacks.

Only informational callbacks are compatible with dynamic search. For more detail about
informational callbacks and how to create and install them in your application, see
Informational callbacks in the CPLEX User’s Manual.

To benefit from dynamic search, a MIP must not include query callbacks. In other words,
query callbacks are not compatible with dynamic search. For a more detailed definition of
query or diagnostic callbacks, see Query or diagnostic callbacks in the CPLEXUser’s Manual.

To benefit from dynamic search, a MIP must not include control callbacks (that is, callbacks
that alter the search path through the solution space). In other words, control callbacks are
not compatible with dynamic search. These control callbacks are identified as advanced in
the reference manuals of the APIs. If control callbacks are present in your application,
CPLEX® will disable dynamic search, issue a warning, and apply only static branch and
cut. If you want to control the search yourself, for example, through advanced control
callbacks, then you should set this parameter to 1 (one) to disable dynamic search and to
apply conventional branch and cut.

P A R A M E T E R S R E F E R E N C E M A N U A L124

Values
MeaningSymbolic NameValue

Automatic: let CPLEX choose; defaultCPX_MIPSEARCH_AUTO0

Apply traditional branch and cut strategy; disable dynamic
search

CPX_MIPSEARCH_TRADITIONAL1

Apply dynamic searchCPX_MIPSEARCH_DYNAMIC2

P A R A M E T E R S R E F E R E N C E M A N U A L 125

MIQCP strategy switch

Purpose
MIQCP strategy switch

Syntax
C Name CPX_PARAM_MIQCPSTRAT (int)

C++ Name MIQCPStrat (int)

Java Name MIQCPStrat (int)

.NET Name MIQCPStrat (int)

OPL Name miqcpstrat

Interactive Optimizer mip strategy miqcpstrat

Identifier 2110

Description
Sets the strategy that CPLEX® uses to solve a quadratically constrained mixed integer
program (MIQCP).

This parameter controls how MIQCPs (that is, mixed integer programs with one or more
constraints including quadratic terms) are solved. For more detail about the types of
quadratically constrained models that CPLEX® solves, see Identifying a quadratically
constrained program (QCP) in the CPLEX User’s Manual.

At the default setting of 0 (zero), CPLEX® automatically chooses a strategy.

When you set this parameter to the value 1 (one), you tell CPLEX® to solve a QCP relaxation
of the model at each node.

When you set this parameter to the value 2, you tell CPLEX® to attempt to solve an LP
relaxation of the model at each node.

For some models, the setting 2 may be more effective than 1 (one). You may need to
experiment with this parameter to determine the best setting for your model.

Values
MeaningValue

Automatic: let CPLEX choose; default0

Solve a QCP node relaxation at each node1

Solve an LP node relaxation at each node2

P A R A M E T E R S R E F E R E N C E M A N U A L126

MIP MIR (mixed integer rounding) cut switch

Purpose
MIP MIR (mixed integer rounding) cut switch

Syntax
C Name CPX_PARAM_MIRCUTS (int)

C++ Name MIRCuts (int)

Java Name MIRCuts (int)

.NET Name MIRCuts (int)

OPL Name mircuts

Interactive Optimizer mip cuts mircut

Identifier 2052

Description
Decides whether or not to generate MIR cuts (mixed integer rounding cuts) for the problem.
The value 0 (zero), the default, specifies that the attempt to generate MIR cuts should
continue only if it seems to be helping.

MeaningValue

Do not generate MIR cuts-1

Automatic: let CPLEX choose; default0

Generate MIR cuts moderately1

Generate MIR cuts aggressively2

P A R A M E T E R S R E F E R E N C E M A N U A L 127

precision of numerical output in MPS and REW file formats

Purpose
Precision of numerical output in MPS and REW file formats

Syntax
C Name CPX_PARAM_MPSLONGNUM (int)

C++ Name MPSLongNum (bool)

Java Name MPSLongNum (bool)

.NET Name MPSLongNum (bool)

Interactive Optimizer output mpslong

Identifier 1081

Description
Decides the precision of numerical output in the MPS and REW file formats. When this
parameter is set to its default value 1 (one), numbers are written toMPS files in full-precision;
that is, up to 15 significant digits may be written. The setting 0 (zero) writes files that
correspond to the standard MPS format, where at most 12 characters can be used to
represent a value. This limit may result in loss of precision.

MeaningSymbolboolValue

Off: use limited MPS precisionCPX_OFFfalse0

On: use full-precision; defaultCPX_ONtrue1

See also
MPS file format: industry standard

P A R A M E T E R S R E F E R E N C E M A N U A L128

network logging display switch

Purpose
Network logging display switch

Syntax
C Name CPX_PARAM_NETDISPLAY (int)

C++ Name NetDisplay (int)

Java Name NetDisplay (int)

.NET Name NetDisplay (int)

OPL Name netdisplay

Interactive Optimizer network display

Identifier 5005

Description
Decides what CPLEX® reports to the screen during network optimization. Settings 1 and
2 differ only during Phase I. Setting 2 shows monotonic values, whereas 1 usually does not.

MeaningSymbolValue

No displayCPXNET_NO_DISPLAY_OBJECTIVE0

Display true objective valuesCPXNET_TRUE_OBJECTIVE1

Display penalized objective values; defaultCPXNET_PENALIZE_OBJECTIVE2

P A R A M E T E R S R E F E R E N C E M A N U A L 129

network optimality tolerance

Purpose
Optimality tolerance for network optimization

Syntax
C Name CPX_PARAM_NETEPOPT (double)

C++ Name NetEpOpt (double)

Java Name NetEpOpt (double)

.NET Name NetEpOpt (double)

OPL Name netepopt

Interactive Optimizer network tolerances optimality

Identifier 5002

Description
Specifies the optimality tolerance for network optimization; that is, the amount a reduced
cost may violate the criterion for an optimal solution.

Values
Any number from 1e-11 to 1e-1; default: 1e-6.

P A R A M E T E R S R E F E R E N C E M A N U A L130

network primal feasibility tolerance

Purpose
Feasibility tolerance for network primal optimization

Syntax
C Name CPX_PARAM_NETEPRHS (double)

C++ Name NetEpRHS (double)

Java Name NetEpRHS (double)

.NET Name NetEpRHS (double)

OPL Name neteprhs

Interactive Optimizer network tolerances feasibility

Identifier 5003

Description
Specifies feasibility tolerance for network primal optimization. The feasibility tolerance
specifies the degree to which the flow value of a model may violate its bounds. This tolerance
influences the selection of an optimal basis and can be reset to a higher value when a problem
is having difficulty maintaining feasibility during optimization. You may also wish to lower
this tolerance after finding an optimal solution if there is any doubt that the solution is truly
optimal. If the feasibility tolerance is set too low, CPLEX® may falsely conclude that a
problem is infeasible. If you encounter reports of infeasibility during Phase II of the
optimization, a small adjustment in the feasibility tolerance may improve performance.

Values
Any number from 1e-11 to 1e-1; default: 1e-6.

P A R A M E T E R S R E F E R E N C E M A N U A L 131

simplex network extraction level

Purpose
Simplex network extraction level

Syntax
C Name CPX_PARAM_NETFIND (int)

C++ Name NetFind (int)

Java Name NetFind (int)

.NET Name NetFind (int)

OPL Name netfind

Interactive Optimizer network netfind

Identifier 1022

Description
Establishes the level of network extraction for network simplex optimization. The default
value is suitable for recognizing commonly used modeling approaches when representing
a network problem within an LP formulation.

Values
MeaningSymbolValue

Extract pure network onlyCPX_NETFIND_PURE1

Try reflection scaling; defaultCPX_NETFIND_REFLECT2

Try general scalingCPX_NETFIND_SCALE3

P A R A M E T E R S R E F E R E N C E M A N U A L132

network simplex iteration limit

Purpose
Network simplex iteration limit

Syntax
C Name CPX_PARAM_NETITLIM (int)

C++ Name NetItLim (int)

Java Name NetItLim (int)

.NET Name NetItLim (int)

OPL Name netitlim

Interactive Optimizer network iterations

Identifier 5001

Description
Sets the maximum number of iterations to be performed before the algorithm terminates
without reaching optimality.

Values
Any nonnegative integer; default: 2100000000.

P A R A M E T E R S R E F E R E N C E M A N U A L 133

network simplex pricing algorithm

Purpose
Network simplex pricing algorithm

Syntax
C Name CPX_PARAM_NETPPRIIND (int)

C++ Name NetPPriInd (int)

Java Name NetPPriInd (int)

.NET Name NetPPriInd (int)

OPL Name netppriind

Interactive Optimizer network pricing

Identifier 5004

Description
Specifies the pricing algorithm for network simplex optimization. The default (0) shows best
performance for most problems, and currently is equivalent to 3.

Values
MeaningSymbolValue

Automatic: let CPLEX choose; defaultCPXNET_PRICE_AUTO0

Partial pricingCPXNET_PRICE_PARTIAL1

Multiple partial pricingCPXNET_PRICE_MULT_PART2

Multiple partial pricing with sortingCPXNET_PRICE_SORT_MULT_PART3

P A R A M E T E R S R E F E R E N C E M A N U A L134

MIP subproblem algorithm

Purpose
MIP subproblem algorithm

Syntax
C Name CPX_PARAM_SUBALG (int)

C++ Name NodeAlg (int)

Java Name NodeAlg (int)

.NET Name NodeAlg (int)

OPL Name nodealg

Interactive Optimizer mip strategy subalgorithm

Identifier 2026

Description
Decides which continuous optimizer will be used to solve the subproblems in a MIP, after
the initial relaxation.

The default Automatic setting (0 zero) of this parameter currently selects the dual simplex
optimizer for subproblem solution for MILP and MIQP. The Automatic setting may be
expanded in the future so that CPLEX® chooses the algorithm based on additional
characteristics of the model.

For MILP (integer constraints and otherwise continuous variable), all settings are permitted.

For MIQP (integer constraints and positive semi-definite quadratic terms in objective),
setting 3 (Network) is not permitted, and setting 5 (Sifting) reverts to 0 (Automatic).

For MIQCP (integer constraints and positive semi-definite quadratic terms among the
constraints), only the Barrier optimizer is implemented, and therefore no settings other than
0 (Automatic) and 4 (Barrier) are permitted.

Values
MeaningSymbolValue

Automatic: let CPLEX choose; defaultCPX_ALG_AUTOMATIC0

Primal simplexCPX_ALG_PRIMAL1

Dual simplexCPX_ALG_DUAL2

Network simplexCPX_ALG_NET3

BarrierCPX_ALG_BARRIER4

SiftingCPX_ALG_SIFTING5

P A R A M E T E R S R E F E R E N C E M A N U A L 135

node storage file switch

Purpose
Node storage file switch

Syntax
C Name CPX_PARAM_NODEFILEIND (int)

C++ Name NodeFileInd (int)

Java Name NodeFileInd (int)

.NET Name NodeFileInd (int)

OPL Name nodefileind

Interactive Optimizer mip strategy file

Identifier 2016

Description
Used when working memory (CPX_PARAM_WORKMEM, WorkMem) has been exceeded by the size
of the tree. If the node file parameter is set to zero when the tree memory limit is reached,
optimization is terminated. Otherwise, a group of nodes is removed from the in-memory set
as needed. By default, CPLEX® transfers nodes to node files when the in-memory set is
larger than 128MBytes, and it keeps the resulting node files in compressed form in memory.
At settings 2 and 3, the node files are transferred to disk, in uncompressed and compressed
form respectively, into a directory named by the working directory parameter
(CPX_PARAM_WORKDIR, WorkDir), and CPLEX® actively manages which nodes remain in
memory for processing.

MeaningValue

No node file0

Node file in memory and compressed; default1

Node file on disk2

Node file on disk and compressed3

See also

directory for working files
memory available for working storage

P A R A M E T E R S R E F E R E N C E M A N U A L136

MIP node limit

Purpose
MIP node limit

Syntax
C Name CPX_PARAM_NODELIM (int)

C++ Name NodeLim (int)

Java Name NodeLim (int)

.NET Name NodeLim (int)

OPL Name nodelim

Interactive Optimizer mip limits nodes

Identifier 2017

Description
Sets the maximum number of nodes solved before the algorithm terminates without reaching
optimality. When this parameter is set to 0 (zero), CPLEX® completes processing at the
root; that is, it creates cuts and applies heuristics at the root. When this parameter is set to
1 (one), it allows branching from the root; that is, nodes are created but not solved.

Values
Any nonnegative integer; default: 2100000000.

P A R A M E T E R S R E F E R E N C E M A N U A L 137

MIP node selection strategy

Purpose
MIP node selection strategy

Syntax
C Name CPX_PARAM_NODESEL (int)

C++ Name NodeSel (int)

Java Name NodeSel (int)

.NET Name NodeSel (int)

OPL Name nodesel

Interactive Optimizer mip strategy nodeselect

Identifier 2018

Description
Used to set the rule for selecting the next node to process when backtracking. The depth-first
search strategy chooses the most recently created node. The best-bound strategy chooses
the node with the best objective function for the associated LP relaxation. The best-estimate
strategy selects the node with the best estimate of the integer objective value that would
be obtained from a node once all integer infeasibilities are removed. An alternative
best-estimate search is also available.

Values
MeaningSymbolValue

Depth-first searchCPX_NODESEL_DFS0

Best-bound search; defaultCPX_NODESEL_BESTBOUND1

Best-estimate searchCPX_NODESEL_BESTEST2

Alternative best-estimate searchCPX_NODESEL_BESTEST_ALT3

P A R A M E T E R S R E F E R E N C E M A N U A L138

numerical precision emphasis

Purpose
Numerical precision emphasis

Syntax
C Name CPX_PARAM_NUMERICALEMPHASIS (int)

C++ Name NumericalEmphasis (bool)

Java Name NumericalEmphasis (bool)

.NET Name NumericalEmphasis (bool)

OPL Name numericalemphasis

Interactive Optimizer emphasis numerical

Identifier 1083

Description
Emphasizes precision in numerically unstable or difficult problems. This parameter lets you
indicate to CPLEX® that it should emphasize precision in numerically difficult or unstable
problems, with consequent performance trade-offs in time and memory.

Values
MeaningSymbolboolValue

Do not emphasize numerical precision; defaultCPX_OFFfalse0

Exercise extreme caution in computationCPX_ONtrue1

P A R A M E T E R S R E F E R E N C E M A N U A L 139

nonzero element read limit

Purpose
Nonzero element read limit

Syntax
C Name CPX_PARAM_NZREADLIM (int)

C++ Name NzReadLim (int)

Java Name NzReadLim (int)

.NET Name NzReadLim (int)

Interactive Optimizer read nonzeros

Identifier 1024

Description
Specifies a limit for the number of nonzero elements to read for an allocation of memory.
This parameter does not restrict the size of a problem. Rather, it indirectly specifies the
default amount of memory that will be pre-allocated before a problem is read from a file. If
the limit is exceeded, more memory is automatically allocated.

Values
Any integer from 0 to 268 435 450; default: 250 000.

P A R A M E T E R S R E F E R E N C E M A N U A L140

absolute objective difference cutoff

Purpose
Absolute objective difference cutoff

Syntax
C Name CPX_PARAM_OBJDIF (double)

C++ Name ObjDif (double)

Java Name ObjDif (double)

.NET Name ObjDif (double)

OPL Name objdif

Interactive Optimizer mip tolerances objdifference

Identifier 2019

Description
Used to update the cutoff each time a mixed integer solution is found. This absolute value
is subtracted from (added to) the newly found integer objective value when minimizing
(maximizing). This forces the mixed integer optimization to ignore integer solutions that are
not at least this amount better than the best one found so far.

The objective difference parameter can be adjusted to improve problem solving efficiency
by limiting the number of nodes; however, setting this parameter at a value other than zero
(the default) can cause some integer solutions, including the true integer optimum, to be
missed.

Negative values for this parameter can result in some integer solutions that are worse than
or the same as those previously generated, but does not necessarily result in the generation
of all possible integer solutions.

Values
Any number; default: 0.0.

See also

relative objective difference cutoff

P A R A M E T E R S R E F E R E N C E M A N U A L 141

lower objective value limit

Purpose
Lower objective value limit

Syntax
C Name CPX_PARAM_OBJLLIM (double)

C++ Name ObjLLim (double)

Java Name ObjLLim (double)

.NET Name ObjLLim (double)

OPL Name objllim

Interactive Optimizer simplex limits lowerobj

Identifier 1025

Description
Sets a lower limit on the value of the objective function in the simplex algorithms. Setting
a lower objective function limit causes CPLEX® to halt the optimization process when the
minimum objective function value limit has been reached. This limit applies only during
Phase II of the simplex algorithm in minimization problems.

This parameter is not effective with the conflict refiner nor with FeasOpt. That is, neither
of those tools can analyze an infeasibility introduced by this parameter. If you want to

Tip:

analyze such a condition, add an explicit objective constraint, such as obj >= c, to
your model instead before you invoke either of those tools.

Values
Any number; default: -1e+75.

P A R A M E T E R S R E F E R E N C E M A N U A L142

upper objective value limit

Purpose
Upper objective value limit

Syntax
C Name CPX_PARAM_OBJULIM (double)

C++ Name ObjULim (double)

Java Name ObjULim (double)

.NET Name ObjULim (double)

OPL Name objulim

Interactive Optimizer simplex limits upperobj

Identifier 1026

Description
Sets an upper limit on the value of the objective function in the simplex algorithms. Setting
an upper objective function limit causes CPLEX® to halt the optimization process when the
maximum objective function value limit has been reached. This limit applies only during
Phase II of the simplex algorithm in maximization problems.

This parameter is not effective with the conflict refiner nor with FeasOpt. That is, neither
of those tools can analyze an infeasibility introduced by this parameter. If you want to

Tip:

analyze such a condition, add an explicit objective constraint, such as obj <= c. to
your model instead before you invoke either of those tools.

Values
Any number; default: 1e+75.

P A R A M E T E R S R E F E R E N C E M A N U A L 143

parallel mode switch

Purpose
Parallel mode switch

Syntax
C Name CPX_PARAM_PARALLELMODE (int)

C++ Name ParallelMode (int)

Java Name ParallelMode (int)

.NET Name ParallelMode (int)

OPL Name parallelmode

Interactive Optimizer parallel

Identifier 1109

Description
Sets the parallel optimization mode. Possible modes are automatic, deterministic, and
opportunistic.

In this context, deterministic means that multiple runs with the same model at the same
parameter settings on the same platform will reproduce the same solution path and results.
In contrast, opportunisitc implies that even slight differences in timing among threads or
in the order in which tasks are executed in different threads may produce a different solution
path and consequently different timings or different solution vectors during optimization
executed in parallel threads. In multithreaded applications, the opportunistic setting entails
less synchronization between threads and consequently may provide better performance.

By default, CPLEX® applies as much parallelism as possible while still achieving
deterministic results. That is, when you run the same model twice on the same platform
with the same parameter settings, you will see the same solution and optimization run. This
condition is referred to as the deterministic mode.

More opportunities to exploit parallelism are available if you do not require determinism.
In other words, CPLEX® can find more possibilities for parallelism if you do not require an
invariant, repeatable solution path and precisely the same solution vector. To use all available
parallelism, you need to select the opportunistic parallel mode. In this mode, CPLEX® will
utilize all opportunities for parallelism in order to achieve best performance.

However, in opportunistic mode, the actual optimization may differ from run to run, including
the solution time itself and the path traveled in the search.

Deterministic and sequential optimization
Parallel MIP optimization can be opportunistic or deterministic.

Parallel barrier optimization is only deterministic.

P A R A M E T E R S R E F E R E N C E M A N U A L144

Concurrent optimization is only opportunistic.

Interaction with the threads parameter
Settings of this parallel mode parameter interact with settings of the global default thread
count parameter (Threads, CPX_PARAM_THREADS) as summarized in the tables:

♦ Interaction of Callbacks with Threads and Parallel Mode Parameters: No Callbacks or
only Informational Callbacks in Application

♦ Interaction of Callbacks with Threads and Parallel Mode Parameters: Only Query Callbacks
in Application

♦ Interaction of Callbacks with Threads and Parallel Mode Parameters: Control Callbacks
in Application

The default (automatic) setting of the parallel mode parameter allows CPLEX® to choose
between deterministic and opportunistic mode depending on the threads parameter. If the
threads parameter is set to its automatic setting (the default), CPLEX® chooses deterministic
mode.

If the threads parameter is set to one, CPLEX® runs sequentially in deterministic mode in
a single thread.

Otherwise, if the threads parameter is set to a value greater than one, CPLEX® chooses
opportunistic mode.

Callbacks and MIP optimization
If callbacks other than informational callbacks are used for solving a MIP, the order in which
the callbacks are called cannot be guaranteed to remain deterministic, not even in
deterministic mode. Thus, to make sure of deterministic runs when the parallel mode
parameter is at its default setting, CPLEX® will revert to sequential solving of the MIP in
the presence of query callbacks, diagnostic callbacks, or control callbacks.

Consequently, if your application invokes query, diagnostic, or control callbacks, and you
still prefer deterministic search, you can choose value 1 (one), overriding the automatic
setting and turning on deterministic search. It is then your responsibility to make sure that
your callbacks do not perform operations that could lead to opportunistic behavior and are
implemented in a thread-safe way. To meet these conditions, your application must not
store and must not update any information in the callbacks.

Determinism vs opportunism
This parameter also allows you to turn off this default setting by choosing value -1 (minus
one). Cases where you might wish to turn off deterministic search include situations where
you want to take advantage of possibly faster performance of opportunistic parallel MIP
optimization in multiple threads after you have confirmed that deterministic parallel MIP
optimization produced the results you expected.

P A R A M E T E R S R E F E R E N C E M A N U A L 145

Values
MeaningSymbolic Constant

Concert
Technology

Symbolic Constant

Callable Library

Value

Enable opportunistic parallel
search mode

OpportunisticCPX_PARALLEL_OPPORTUNISTIC-1

Automatic: let CPLEX decide
whether to invoke deterministic or
opportunistic search, depending
on the threads parameter; default

AutoParallelCPX_PARALLEL_AUTO0

Enable deterministic parallel
search mode

DeterministicCPX_PARALLEL_DETERMINISTIC1

See also: global default thread count: CPX_PARAM_THREADS, Threads

P A R A M E T E R S R E F E R E N C E M A N U A L146

simplex perturbation switch

Purpose
Simplex perturbation switch

Syntax
C Name CPX_PARAM_PERIND (int)

C++ Name PerInd (bool)

Java Name PerInd (bool)

.NET Name PerInd (bool)

OPL Name perind

Interactive Optimizer simplex perturbation

Identifier 1027

Description
Decides whether to perturb problems.

Setting this parameter to 1 (one) causes all problems to be automatically perturbed as
optimization begins. A setting of 0 (zero) allows CPLEX® to decide dynamically, during
solution, whether progress is slow enough to merit a perturbation. The situations in which
a setting of 1 (one) helps are rare and restricted to problems that exhibit extreme degeneracy.

Values
MeaningSymbolboolValue

Automatic: let CPLEX choose; defaultCPX_OFFfalse0

Turn on perturbation from beginningCPX_ONtrue1

P A R A M E T E R S R E F E R E N C E M A N U A L 147

simplex perturbation limit

Purpose
Simplex perturbation limit

Syntax
C Name CPX_PARAM_PERLIM (int)

C++ Name PerLim (int)

Java Name PerLim (int)

.NET Name PerLim (int)

OPL Name perlim

Interactive Optimizer simplex limits perturbation

Identifier 1028

Description
Sets the number of degenerate iterations before perturbation is performed.

Values
MeaningValue

Automatic: let CPLEX choose; default0

Number of degenerate iterations before perturbationAny positive integer

P A R A M E T E R S R E F E R E N C E M A N U A L148

absolute MIP gap before starting to polish a feasible solution

Purpose
Absolute MIP gap before starting to polish a feasible solution

Syntax
C Name CPX_PARAM_POLISHAFTEREPAGAP (double)

C++ Name PolishAfterEpAGap (double)

Java Name PolishAfterEpAGap (double)

.NET Name PolishAfterEpAGap (double)

OPL Name

Interactive Optimizer mip polishafter absmipgap

Identifier 2126

Description
Sets an absolute MIP gap (that is, the difference between the best integer objective and the
objective of the best node remaining) after which CPLEX® stops branch-and-cut and begins
polishing a feasible solution. The default value (0.0) is such that CPLEX® does not invoke
solution polishing by default.

Starting conditions
CPLEX® must have a feasible solution in order to start polishing. It must also have certain
internal structures in place to support solution polishing. Consequently, when the criterion
specified by this parameter is met, CPLEX® begins solution polishing only after these
starting conditions are also met. That is, there may be a delay between the moment when
the criterion specified by this parameter is met and when solution polishing starts.

Values
Any nonnegative value; default: 0.0.

See also
absolute MIP gap tolerance

P A R A M E T E R S R E F E R E N C E M A N U A L 149

relative MIP gap before starting to polish a feasible solution

Purpose
Relative MIP gap before starting to polish a solution

Syntax
C Name CPX_PARAM_POLISHAFTEREPGAP (double)

C++ Name PolishAfterEpGap (double)

Java Name PolishAfterEpGap (double)

.NET Name PolishAfterEpGap (double)

OPL Name

Interactive Optimizer mip polishafter mipgap

Identifier 2127

Description
Sets a relative MIP gap after which CPLEX® will stop branch-and-cut and begin polishing
a feasible solution. The default value (0.0) is such that CPLEX® does not invoke solution
polishing by default. The relative MIP gap is calculated like this:

|bestnode-bestinteger|/(1e-10+|bestinteger|)

Starting conditions
CPLEX® must have a feasible solution in order to start polishing. It must also have certain
internal structures in place to support solution polishing. Consequently, when the criterion
specified by this parameter is met, CPLEX® begins solution polishing only after these
starting conditions are also met. That is, there may be a delay between the moment when
the criterion specified by this parameter is met and when solution polishing starts.

Values
Any number from 0.0 to 1.0, inclusive; default: 0.0.

See also
relative MIP gap tolerance

P A R A M E T E R S R E F E R E N C E M A N U A L150

MIP integer solutions to find before starting to polish a feasible
solution

Purpose
MIP integer solutions to find before starting to polish a feasible solution

Syntax
C Name CPX_PARAM_POLISHAFTERINTSOL (int)

C++ Name PolishAfterIntSol (int)

Java Name PolishAfterIntSol (int)

.NET Name PolishAfterIntSol (int)

OPL Name polishafterintsol

Interactive Optimizer mip polishafter solutions

Identifier 2129

Description
Sets the number of integer solutions to find before CPLEX® stops branch-and-cut and
begins to polish a feasible solution. The default value is such that CPLEX® does not invoke
solution polishing by default.

Starting conditions
CPLEX® must have a feasible solution in order to start polishing. It must also have certain
internal structures in place to support solution polishing. Consequently, when the criterion
specified by this parameter is met, CPLEX® begins solution polishing only after these
starting conditions are also met. That is, there may be a delay between the moment when
the criterion specified by this parameter is met and when solution polishing starts.

Values
Any positive integer strictly greater than zero; zero is not allowed; default: 2 100 000 000

See also
MIP integer solution limit

P A R A M E T E R S R E F E R E N C E M A N U A L 151

nodes to process before starting to polish a feasible solution

Purpose
Nodes to process before starting to polish a feasible solution

Syntax
C Name CPX_PARAM_POLISHAFTERNODE (int)

C++ Name PolishAfterNode (int)

Java Name PolishAfterNode (int)

.NET Name PolishAfterNode (int)

OPL Name polishafternode

Interactive Optimizer mip polishafter nodes

Identifier 2128

Description
Sets the number of nodes processed in branch-and-cut before CPLEX® starts solution
polishing, if a feasible solution is available.

When this parameter is set to 0 (zero), CPLEX® completes processing at the root; that is,
it creates cuts and applies heuristics at the root.

When this parameter is set to 1 (one), it allows branching from the root; that is, nodes are
created but not solved.

When no feasible solution is available yet, CPLEX® explores more nodes than the number
specified by this parameter.

Starting conditions
CPLEX® must have a feasible solution in order to start polishing. It must also have certain
internal structures in place to support solution polishing. Consequently, when the criterion
specified by this parameter is met, CPLEX® begins solution polishing only after these
starting conditions are also met. That is, there may be a delay between the moment when
the criterion specified by this parameter is met and when solution polishing starts.

Values
Any nonnegative integer; default: 2 100 000 000

See also
MIP node limit

P A R A M E T E R S R E F E R E N C E M A N U A L152

time before starting to polish a feasible solution

Purpose
Time before starting to polish a feasible solution

Syntax
C Name CPX_PARAM_POLISHAFTERTIME (double)

C++ Name PolishAfterTime (double)

Java Name PolishAfterTime (double)

.NET Name PolishAfterTime (double)

OPL Name

Interactive Optimizer mip polishafter time

Identifier 2130

Description
Tells CPLEX® howmuch time in seconds to spend during mixed integer optimization before
CPLEX® starts polishing a feasible solution. The default value (1.0E+75 seconds) is such
that CPLEX® does not start solution polishing by default.

Whether CPLEX® measures CPU time or wall clock time (also known as real time) depends
on the parameter clock type for computation time.

Starting conditions
CPLEX® must have a feasible solution in order to start polishing. It must also have certain
internal structures in place to support solution polishing. Consequently, when the criterion
specified by this parameter is met, CPLEX® begins solution polishing only after these
starting conditions are also met. That is, there may be a delay between the moment when
the criterion specified by this parameter is met and when solution polishing starts.

Values
Any nonnegative value in seconds; default:1.0E+75 seconds.

See also
clock type for computation time

P A R A M E T E R S R E F E R E N C E M A N U A L 153

time spent polishing a solution (deprecated)

Purpose
Time spent polishing a solution (deprecated)

Syntax
C Name CPX_PARAM_POLISHTIME (double)

C++ Name PolishTime (double)

Java Name PolishTime (double)

.NET Name PolishTime (double)

OPL Name polishtime

Interactive Optimizer mip limit polishtime

Identifier 2066

Description
This deprecated parameter told CPLEX® howmuch time in seconds to spend after a normal
mixed integer optimization in polishing a solution. The default was zero, no polishing time.

Instead of this deprecated parameter, use one of the following parameters to control the
effort that CPLEX® spends in branch-and-cut before it begins polishing a feasible solution:

♦ absolute MIP gap before starting to polish a feasible solution

♦ relative MIP gap before starting to polish a feasible solution

♦ MIP integer solutions to find before starting to polish a feasible solution

♦ nodes to process before starting to polish a feasible solution

♦ time before starting to polish a feasible solution

♦ optimizer time limit

Values
Any nonnegative value in seconds; default: 0.0 (zero) seconds.

P A R A M E T E R S R E F E R E N C E M A N U A L154

maximum number of solutions generated for solution pool by populate

Purpose
Maximum number of solutions generated for the solution pool by populate

Syntax
C Name CPX_PARAM_POPULATELIM (int)

C++ Name PopulateLim (int)

Java Name PopulateLim (int)

.NET Name PopulateLim (int)

OPL Name populatelim

Interactive Optimizer mip limits populate

Identifier 2108

Description
Sets the maximum number of mixed integer programming (MIP) solutions generated for the
solution pool during each call to the populate procedure. Populate stops when it has generated
PopulateLim solutions. A solution is counted if it is valid for all filters, consistent with the
relative and absolute pool gap parameters, and has not been rejected by the incumbent
callback (if any exists), whether or not it improves the objective of the model.

In parallel, populate may not respect this parameter exactly due to disparities between
threads. That is, it may happen that populate stops when it has generated a number of
solutions slightly more than or slightly less than this limit because of differences in
synchronization between threads.

This parameter does not apply to MIP optimization generally; it applies only to the populate
procedure.

If you are looking for a parameter to control the number of solutions stored in the solution
pool, consider instead the solution pool capacity parameter (maximum number of solutions
kept in solution pool: SolnPoolCapacity, CPX_PARAM_SOLNPOOLCAPACITY).

Populate will stop before it reaches the limit set by this parameter if it reaches another limit,
such as a time limit set by the user. Additional stopping criteria can be specified by these
parameters:

♦ relative gap for solution pool: SolnPoolGap, CPX_PARAM_SOLNPOOLGAP

♦ absolute gap for solution pool: SolnPoolAGap, CPX_PARAM_SOLNPOOLAGAP

♦ MIP node limit: NodeLim, CPX_PARAM_NODELIM

♦ optimizer time limit: TiLim, CPX_PARAM_TILIM

P A R A M E T E R S R E F E R E N C E M A N U A L 155

Values
Any nonnegative integer; default: 20.

P A R A M E T E R S R E F E R E N C E M A N U A L156

primal simplex pricing algorithm

Purpose
Primal simplex pricing algorithm

Syntax
C Name CPX_PARAM_PPRIIND (int)

C++ Name PPriInd (int)

Java Name PPriInd (int)

.NET Name PPriInd (int)

OPL Name ppriind

Interactive Optimizer simplex pgradient

Identifier 1029

Description
Sets the primal simplex pricing algorithm. The default pricing (0) usually provides the fastest
solution time, but many problems benefit from alternative settings.

Values
MeaningSymbolValue

Reduced-cost pricingCPX_PPRIIND_PARTIAL-1

Hybrid reduced-cost & devex pricing; defaultCPX_PPRIIND_AUTO0

Devex pricingCPX_PPRIIND_DEVEX1

Steepest-edge pricingCPX_PPRIIND_STEEP2

Steepest-edge pricing with slack initial normsCPX_PPRIIND_STEEPQSTART3

Full pricingCPX_PPRIIND_FULL4

P A R A M E T E R S R E F E R E N C E M A N U A L 157

presolve dual setting

Purpose
Presolve dual setting

Syntax
C Name CPX_PARAM_PREDUAL (int)

C++ Name PreDual (int)

Java Name PreDual (int)

.NET Name PreDual (int)

OPL Name predual

Interactive Optimizer preprocessing dual

Identifier 1044

Description
Decides whether CPLEX® presolve should pass the primal or dual linear programming
problem to the linear programming optimization algorithm. By default, CPLEX® chooses
automatically.

If this parameter is set to 1 (one), the CPLEX® presolve algorithm is applied to the primal
problem, but the resulting dual linear program is passed to the optimizer. This is a useful
technique for problems with more constraints than variables.

Values
MeaningValue

Turn off this feature-1

Automatic: let CPLEX choose; default0

Turn on this feature1

P A R A M E T E R S R E F E R E N C E M A N U A L158

presolve switch

Purpose
Presolve switch

Syntax
C Name CPX_PARAM_PREIND (int)

C++ Name PreInd (bool)

Java Name PreInd (bool)

.NET Name PreInd (bool)

OPL Name preind

Interactive Optimizer preprocessing presolve

Identifier 1030

Description
Decides whether CPLEX® applies presolve during preprocessing. When set to 1 (one), the
default, this parameter invokes the CPLEX® presolve to simplify and reduce problems.

Values
MeaningSymbolboolValue

Do not apply presolveCPX_OFFfalse0

Apply presolve; defaultCPX_ONtrue1

P A R A M E T E R S R E F E R E N C E M A N U A L 159

linear reduction switch

Purpose
Linear reduction switch

Syntax
C Name CPX_PARAM_PRELINEAR (int)

C++ Name PreLinear (int)

Java Name PreLinear (int)

.NET Name PreLinear (int)

OPL Name prelinear

Interactive Optimizer preprocessing linear

Identifier 1058

Description
Decides whether linear or full reductions occur during preprocessing. If only linear reductions
are performed, each variable in the original model can be expressed as a linear form of
variables in the presolved model. This condition guarantees, for example, that users can
add their own custom cuts to the presolved model.

Values
MeaningValue

Perform only linear reductions0

Perform full reductions; default1

P A R A M E T E R S R E F E R E N C E M A N U A L160

limit on the number of presolve passes made

Purpose
Limit on the number of presolve passes made

Syntax
C Name CPX_PARAM_PREPASS (int)

C++ Name PrePass (int)

Java Name PrePass (int)

.NET Name PrePass (int)

OPL Name prepass

Interactive Optimizer preprocessing numpass

Identifier 1052

Description
Limits the number of presolve passes that CPLEX® makes during preprocessing. When
this parameter is set to a nonzero value, invokes CPLEX® presolve to simplify and reduce
problems.

When this parameter is set to a positive value, presolve is applied the specified number of
times, or until no more reductions are possible.

At the default value of -1, presolve should continue only if it seems to be helping.

When this parameter is set to zero, CPLEX® does not apply presolve, but other reductions
may occur, depending on settings of other parameters and specifics of your model.

Values
MeaningValue

Automatic: let CPLEX choose; presolve continues as long as helpful; default-1

Do not use presolve; other reductions may still occur0

Apply presolve specified number of timesAny positive integer

P A R A M E T E R S R E F E R E N C E M A N U A L 161

node presolve switch

Purpose
Node presolve switch

Syntax
C Name CPX_PARAM_PRESLVND (int)

C++ Name PreslvNd (int)

Java Name PreslvNd (int)

.NET Name PreslvNd (int)

OPL Name preslvnd

Interactive Optimizer mip strategy presolvenode

Identifier 2037

Description
Decides whether node presolve should be performed at the nodes of a mixed integer
programming (MIP) solution. Node presolve can significantly reduce solution time for some
models. The default setting is generally effective at deciding whether to apply node presolve,
although runtimes can be reduced for some models by the user turning node presolve off.

MeaningValue

No node presolve-1

Automatic: let CPLEX choose; default0

Force presolve at nodes1

Perform probing on integer-infeasible variables2

P A R A M E T E R S R E F E R E N C E M A N U A L162

simplex pricing candidate list size

Purpose
Simplex pricing candidate list size

Syntax
C Name CPX_PARAM_PRICELIM (int)

C++ Name PriceLim (int)

Java Name PriceLim (int)

.NET Name PriceLim (int)

OPL Name pricelim

Interactive Optimizer simplex pricing

Identifier 1010

Description
Sets the maximum number of variables kept in the list of pricing candidates for the simplex
algorithms.

Values
MeaningValue

Automatic: let CPLEX choose; default0

Number of pricing candidatesAny positive integer

P A R A M E T E R S R E F E R E N C E M A N U A L 163

MIP probing level

Purpose
MIP probing level

Syntax
C Name CPX_PARAM_PROBE (int)

C++ Name Probe (int)

Java Name Probe (int)

.NET Name Probe (int)

OPL Name probe

Interactive Optimizer mip strategy probe

Identifier 2042

Description
Sets the amount of probing on variables to be performed before MIP branching. Higher
settings perform more probing. Probing can be very powerful but very time-consuming at
the start. Setting the parameter to values above the default of 0 (automatic) can result in
dramatic reductions or dramatic increases in solution time, depending on the model.

Values
MeaningValue

No probing-1

Automatic: let CPLEX choose; default0

Moderate probing level1

Aggressive probing level2

Very aggressive probing level3

P A R A M E T E R S R E F E R E N C E M A N U A L164

time spent probing

Purpose
Time spent probing

Syntax
C Name CPX_PARAM_PROBETIME (double)

C++ Name ProbeTime (double)

Java Name ProbeTime (double)

.NET Name ProbeTime (double)

OPL Name probetime

Interactive Optimizer mip limit probetime

Identifier 2065

Description
Limits the amount of time in seconds spent probing.

Values
Any nonnegative number; default: 1e+75.

P A R A M E T E R S R E F E R E N C E M A N U A L 165

indefinite MIQP switch

Purpose
Indefinite MIQP switch

Syntax
C Name CPX_PARAM_QPMAKEPSDIND (int)

C++ Name QPmakePSDInd (bool)

Java Name QPmakePSDInd (bool)

.NET Name QPmakePSDInd (bool)

OPL Name qpmakepsdind

Interactive Optimizer preprocessing qpmakepsd

Identifier 4010

Description
Decides whether CPLEX® will attempt to reformulate aMIQP orMIQCPmodel that contains
only binary variables. When this feature is active, adjustments will be made to the elements
of a quadratic matrix that is not nominally positive semi-definite (PSD, as required by CPLEX®
for all QP and most QCP formulations), to make it PSD, and CPLEX® will also attempt to
tighten an already PSD matrix for better numerical behavior. The default setting of 1 (one)
means yes, CPLEX® should attempt to reformulate, but you can turn it off if necessary;
most models should benefit from the default setting.

Values
MeaningSymbolboolValue

Turn off attempts to make binary model PSDCPX_OFFfalse0

On: CPLEX attempts to make binary model PSD; defaultCPX_ONtrue1

P A R A M E T E R S R E F E R E N C E M A N U A L166

QP Q-matrix nonzero read limit

Purpose
QP Q matrix nonzero read limit

Syntax
C Name CPX_PARAM_QPNZREADLIM (int)

C++ Name QPNzReadLim (int)

Java Name QPNzReadLim (int)

.NET Name QPNzReadLim (int)

Interactive Optimizer read qpnonzeros

Identifier 4001

Description
Specifies a limit for the number of nonzero elements to read for an allocation of memory in
a model with a quadratic matrix.

This parameter does not restrict the size of a problem. Rather, it indirectly specifies the
default amount of memory that will be pre-allocated before a problem is read from a file. If
the limit is exceeded, more memory is automatically allocated.

Values
Any integer from 0 to 268 435 450; default: 5 000.

P A R A M E T E R S R E F E R E N C E M A N U A L 167

primal and dual reduction type

Purpose
Primal and dual reduction type

Syntax
C Name CPX_PARAM_REDUCE (int)

C++ Name Reduce (int)

Java Name Reduce (int)

.NET Name Reduce (int)

OPL Name reduce

Interactive Optimizer preprocessing reduce

Identifier 1057

Description
Decides whether primal reductions, dual reductions, both, or neither are performed during
preprocessing.

Values
MeaningSymbolValue

No primal or dual reductionsCPX_PREREDUCE_NOPRIMALORDUAL0

Only primal reductionsCPX_PREREDUCE_PRIMALONLY1

Only dual reductionsCPX_PREREDUCE_DUALONLY2

Both primal and dual reductions; defaultCPX_PREREDUCE_PRIMALANDDUAL3

P A R A M E T E R S R E F E R E N C E M A N U A L168

simplex refactoring frequency

Purpose
Simplex refactoring frequency

Syntax
C Name CPX_PARAM_REINV (int)

C++ Name ReInv (int)

Java Name ReInv (int)

.NET Name ReInv (int)

OPL Name reinv

Interactive Optimizer simplex refactor

Identifier 1031

Description
Sets the number of iterations between refactoring of the basis matrix.

Values
MeaningValue

Automatic: let CPLEX choose; default0

Number of iterations between refactoring of the basis matrixInteger from 1 to 10 000

P A R A M E T E R S R E F E R E N C E M A N U A L 169

relaxed LP presolve switch

Purpose
Relaxed LP presolve switch

Syntax
C Name CPX_PARAM_RELAXPREIND (int)

C++ Name RelaxPreInd (int)

Java Name RelaxPreInd (int)

.NET Name RelaxPreInd (int)

OPL Name relaxpreind

Interactive Optimizer preprocessing relax

Identifier 2034

Description
Decides whether LP presolve is applied to the root relaxation in a mixed integer program
(MIP). Sometimes additional reductions can be made beyond any MIP presolve reductions
that were already done. By default, CPLEX® applies presolve to the initial relaxation in
order to hasten time to the initial solution.

MeaningSymbolValue

Automatic: let CPLEX choose; default-1

Off: do not use presolve on initial relaxationCPX_OFF0

On: use presolve on initial relaxationCPX_ON1

P A R A M E T E R S R E F E R E N C E M A N U A L170

relative objective difference cutoff

Purpose
Relative objective difference cutoff

Syntax
C Name CPX_PARAM_RELOBJDIF (double)

C++ Name RelObjDif (double)

Java Name RelObjDif (double)

.NET Name RelObjDif (double)

OPL Name relobjdif

Interactive Optimizer mip tolerances relobjdifference

Identifier 2022

Description
Used to update the cutoff each time a mixed integer solution is found. The value is multiplied
by the absolute value of the integer objective and subtracted from (added to) the newly
found integer objective when minimizing (maximizing). This computation forces the mixed
integer optimization to ignore integer solutions that are not at least this amount better than
the one found so far.

The relative objective difference parameter can be adjusted to improve problem solving
efficiency by limiting the number of nodes; however, setting this parameter at a value other
than zero (the default) can cause some integer solutions, including the true integer optimum,
to be missed.

If both the relative objective difference and the absolute objective difference cutoff
(CPX_PARAM_OBJDIF, ObjDif) are nonzero, the value of the absolute objective difference is
used.

Values
Any number from 0.0 to 1.0; default: 0.0.

See also
absolute objective difference cutoff

P A R A M E T E R S R E F E R E N C E M A N U A L 171

frequency to try to repair infeasible MIP start

Purpose
Frequency to try to repair infeasible MIP start

Syntax
C Name CPX_PARAM_REPAIRTRIES (int)

C++ Name RepairTries (int)

Java Name RepairTries (int)

.NET Name RepairTries (int)

OPL Name repairtries

Interactive Optimizer mip limits repairtries

Identifier 2067

Description
Limits the attempts to repair an infeasible MIP start. This parameter lets you tell CPLEX®
whether and howmany times it should try to repair an infeasible MIP start that you supplied.
The parameter has no effect if the MIP start you supplied is feasible. It has no effect if no
MIP start was supplied.

Values
MeaningValue

None: do not try to repair-1

Automatic: let CPLEX choose; default0

Frequency to attempt repairsAny positive integer

P A R A M E T E R S R E F E R E N C E M A N U A L172

MIP repeat presolve switch

Purpose
Reapply presolve after processing the root node

Syntax
C Name CPX_PARAM_REPEATPRESOLVE (int)

C++ Name RepeatPresolve (int)

Java Name RepeatPresolve (int)

.NET Name RepeatPresolve (int)

OPL Name repeatpresolve

Interactive Optimizer preprocessing repeatpresolve

Identifier 2064

Description
Decides whether to re-apply presolve, with or without cuts, to a MIP model after processing
at the root is otherwise complete.

Values
SymbolValue

Automatic: let CPLEX choose; default-1

Turn off represolve0

Represolve without cuts1

Represolve with cuts2

Represovle with cuts and allow new root cuts3

P A R A M E T E R S R E F E R E N C E M A N U A L 173

RINS heuristic frequency

Purpose
RINS heuristic frequency

Syntax
C Name CPX_PARAM_RINSHEUR (int)

C++ Name RINSHeur (int)

Java Name RINSHeur (int)

.NET Name RINSHeur (int)

OPL Name rinsheur

Interactive Optimizer mip strategy rinsheur

Identifier 2061

Description
Decides how often to apply the relaxation induced neighborhood search (RINS) heuristic.
This heuristic attempts to improve upon the best solution found so far. It will not be applied
until CPLEX® has found at least one incumbent solution.

Setting the value to -1 turns off the RINS heuristic. Setting the value to 0 (zero), the default,
applies the RINS heuristic at an interval chosen automatically by CPLEX® . Setting the
value to a positive number applies the RINS heuristic at the requested node interval. For
example, setting RINSHeur to 20 dictates that the RINS heuristic be called at node 0, 20,
40, 60, etc.

RINS is a powerful heuristic for finding high quality feasible solutions, but it may be
expensive.

Values
MeaningValue

None: do not apply RINS heuristic-1

Automatic: let CPLEX choose; default0

Frequency to apply RINS heuristicAny positive integer

P A R A M E T E R S R E F E R E N C E M A N U A L174

algorithm for continuous problems

Purpose
Solution algorithm for continuous problems

Syntax
C Name CPX_PARAM_LPMETHOD (int)

C++ Name RootAlg (int)

Java Name RootAlg (int)

.NET Name RootAlg (int)

OPL Name rootalg

Interactive Optimizer lpmethod

Identifier 1062

Description
Controls which algorithm is used to solve continuous models or to solve the root relaxation
of a MIP. In the object-oriented APIs, you make this selection through the RootAlg parameter.
In the C API and the Interactive Optimizer, there are separate parameters to control LP,
QP, and MIP optimizers, depending on the problem type.

In all cases, the default setting is 0 (zero). The default setting means that CPLEX® will
select the algorithm in a way that should give best overall performance.

For specific problem classes, the following details document the automatic settings. Note
that future versions of CPLEX® could adopt different strategies. Therefore, if you select
any nondefault settings, you should review them periodically.

Currently, the behavior of the automatic setting is that CPLEX® almost always invokes the
dual simplex algorithm when it is solving an LP model from scratch. When it is continuing
from an advanced basis, it will check whether the basis is primal or dual feasible, and choose
the primal or dual simplex algorithm accordingly.

If multiple threads have been requested, the concurrent optimization algorithm is selected
by the automatic setting.

The automatic setting may be expanded in the future so that CPLEX® chooses the algorithm
based on additional problem characteristics.

P A R A M E T E R S R E F E R E N C E M A N U A L 175

Values
MeaningSymbolValue

Automatic: let CPLEX choose; defaultCPX_ALG_AUTOMATIC0

Primal simplexCPX_ALG_PRIMAL1

Dual simplexCPX_ALG_DUAL2

Network simplexCPX_ALG_NET3

BarrierCPX_ALG_BARRIER4

SiftingCPX_ALG_SIFTING5

Concurrent (Dual, Barrier, and Primal)CPX_ALG_CONCURRENT6

P A R A M E T E R S R E F E R E N C E M A N U A L176

algorithm for continuous quadratic optimization

Purpose
Algorithm for continuous quadratic optimization

Syntax
C Name CPX_PARAM_QPMETHOD (int)

C++ Name RootAlg (int)

Java Name RootAlg (int)

.NET Name RootAlg (int)

OPL Name rootalg

Interactive Optimizer qpmethod

Identifier 1063

Description
Sets which algorithm to use when the C routine CPXqpopt (or the command optimize in the
Interactive Optimizer) is invoked.

Currently, the behavior of the Automatic setting is that CPLEX® invokes the Barrier
Optimizer for continuous QP models. The Automatic setting may be expanded in the future
so that CPLEX® chooses the algorithm based on additional problem characteristics.

Values
MeaningSymbolValue

Automatic: let CPLEX choose; defaultCPX_ALG_AUTOMATIC0

Use the primal simplex optimizer.CPX_ALG_PRIMAL1

Use the dual simplex optimizer.CPX_ALG_DUAL2

Use the network optimizer.CPX_ALG_NET3

Use the barrier optimizer.CPX_ALG_BARRIER4

P A R A M E T E R S R E F E R E N C E M A N U A L 177

MIP starting algorithm

Purpose
MIP starting algorithm

Syntax
C Name CPX_PARAM_STARTALG (int)

C++ Name RootAlg (int)

Java Name RootAlg (int)

.NET Name RootAlg (int)

OPL Name rootalg

Interactive Optimizer mip strategy startalgorithm

Identifier 2025

Description
Sets which continuous optimizer will be used to solve the initial relaxation of a MIP.

The default Automatic setting (0 zero) of this parameter currently selects the dual simplex
optimizer for root relaxations for MILP and MIQP. The Automatic setting may be expanded
in the future so that CPLEX® chooses the algorithm based on additional characteristics of
the model.

For MILP (integer constraints and otherwise continuous variables), all settings are permitted.

For MIQP (integer constraints and positive semi-definite quadratic terms in the objective),
settings 5 (Sifting) and 6 (Concurrent) are not implemented; if you happen to choose them,
setting 5 (Sifting) reverts to 0 (ero) and setting 6 (Concurrent) reverts to 4.

For MIQCP (integer constraints and positive semi-definite quadratic terms among the
constraints), only the Barrier Optimizer is implemented, and therefore no settings other
than 0 (zero) and 4 are permitted.

P A R A M E T E R S R E F E R E N C E M A N U A L178

Values
MeaningSymbolValue

Automatic: let CPLEX choose; defaultCPX_ALG_AUTOMATIC0

Primal SimplexCPX_ALG_PRIMAL1

Dual SimplexCPX_ALG_DUAL2

Network SimplexCPX_ALG_NET3

BarrierCPX_ALG_BARRIER4

SiftingCPX_ALG_SIFTING5

Concurrent (Dual, Barrier, and Primal)CPX_ALG_CONCURRENT6

P A R A M E T E R S R E F E R E N C E M A N U A L 179

constraint (row) read limit

Purpose
Constraint (row) read limit

Syntax
C Name CPX_PARAM_ROWREADLIM (int)

C++ Name RowReadLim (int)

Java Name RowReadLim (int)

.NET Name RowReadLim (int)

Interactive Optimizer read constraints

Identifier 1021

Description
Specifies a limit for the number of rows (constraints) to read for an allocation of memory.

This parameter does not restrict the size of a problem. Rather, it indirectly specifies the
default amount of memory that will be pre-allocated before a problem is read from a file. If
the limit is exceeded, more memory is automatically allocated.

Values
Any integer from 0 to 268 435 450; default: 30 000.

P A R A M E T E R S R E F E R E N C E M A N U A L180

scale parameter

Purpose
Scale parameter

Syntax
C Name CPX_PARAM_SCAIND (int)

C++ Name ScaInd (int)

Java Name ScaInd (int)

.NET Name ScaInd (int)

OPL Name scaind

Interactive Optimizer read scale

Identifier 1034

Description
Decides how to scale the problem matrix.

Values
MeaningValue

No scaling-1

Equilibration scaling; default0

More aggressive scaling1

P A R A M E T E R S R E F E R E N C E M A N U A L 181

messages to screen switch

Purpose
Messages to screen switch

Syntax
C Name CPX_PARAM_SCRIND (int)

C++ Name screen indicator not available in this API

Java Name screen indicator not available in this API

.NET Name screen indicator not available in this API

Interactive Optimizer screen indicator not available in this interface

Identifier 1035

Description
Decides whether or not results are displayed on screen in an application of the C API.

To turn off output to the screen, in a C++ application, where cplex is an instance of the
class IloCplex and env is an instance of the class IloEnv , the environment, use cplex.
setOut(env.getNullStream()) .

In a Java application, use cplex.setOut(null) .

In a .NET application, use Cplex.SetOut(Null).

Values
MeaningSymbolValue

Turn off display of messages to screen; defaultCPX_OFF0

Display messages on screenCPX_ON1

P A R A M E T E R S R E F E R E N C E M A N U A L182

sifting subproblem algorithm

Purpose
Sifting subproblem algorithm

Syntax
C Name CPX_PARAM_SIFTALG (int)

C++ Name SiftAlg (int)

Java Name SiftAlg (int)

.NET Name SiftAlg (int)

OPL Name siftalg

Interactive Optimizer sifting algorithm

Identifier 1077

Description
Sets the algorithm to be used for solving sifting subproblems. The default automatic setting
will typically use a mix of barrier and primal simplex.

Values
MeaningSymbolValue

Automatic: let CPLEX choose; defaultCPX_ALG_AUTOMATIC0

Primal SimplexCPX_ALG_PRIMAL1

Dual SimplexCPX_ALG_DUAL2

Network SimplexCPX_ALG_NET3

BarrierCPX_ALG_BARRIER4

P A R A M E T E R S R E F E R E N C E M A N U A L 183

sifting information display

Purpose
Sifting information display

Syntax
C Name CPX_PARAM_SIFTDISPLAY (int)

C++ Name SiftDisplay (int)

Java Name SiftDisplay (int)

.NET Name SiftDisplay (int)

OPL Name siftdisplay

Interactive Optimizer sifting display

Identifier 1076

Description
Sets the amount of information to display about the progress of sifting.

Values
MeaningValue

No display of sifting information0

Display major iterations; default1

Display LP subproblem information within each sifting iteration2

P A R A M E T E R S R E F E R E N C E M A N U A L184

upper limit on sifting iterations

Purpose
Upper limit on sifting iterations

Syntax
C Name CPX_PARAM_SIFTITLIM (int)

C++ Name SiftItLim (int)

Java Name SiftItLim (int)

.NET Name SiftItLim (int)

OPL Name siftitlim

Interactive Optimizer sifting iterations

Identifier 1078

Description
Sets the maximum number of sifting iterations that may be performed if convergence to
optimality has not been reached.

Values
Any nonnegative integer; default: 2100000000.

P A R A M E T E R S R E F E R E N C E M A N U A L 185

simplex iteration information display

Purpose
Simplex iteration information display

Syntax
C Name CPX_PARAM_SIMDISPLAY (int)

C++ Name SimDisplay (int)

Java Name SimDisplay (int)

.NET Name SimDisplay (int)

OPL Name simdisplay

Interactive Optimizer simplex display

Identifier 1019

Description
Sets how often CPLEX® reports about iterations during simplex optimization.

Values
MeaningValue

No iteration messages until solution0

Iteration information after each refactoring; default1

Iteration information for each iteration2

P A R A M E T E R S R E F E R E N C E M A N U A L186

simplex singularity repair limit

Purpose
Simplex singularity repair limit

Syntax
C Name CPX_PARAM_SINGLIM (int)

C++ Name SingLim (int)

Java Name SingLim (int)

.NET Name SingLim (int)

OPL Name singlim

Interactive Optimizer simplex limits singularity

Identifier 1037

Description
Restricts the number of times CPLEX® attempts to repair the basis when singularities are
encountered during the simplex algorithm. When this limit is exceeded, CPLEX® replaces
the current basis with the best factorable basis that has been found.

Values
Any nonnegative integer; default: 10.

P A R A M E T E R S R E F E R E N C E M A N U A L 187

absolute gap for solution pool

Purpose
Absolute gap for solution pool

Syntax
C Name CPX_PARAM_SOLNPOOLAGAP (double)

C++ Name SolnPoolAGap (double)

Java Name SolnPoolAGap (double)

.NET Name SolnPoolAGap (double)

OPL Name solnpoolagap

Interactive Optimizer mip pool absgap

Identifier 2106

Description
Sets an absolute tolerance on the objective value for the solutions in the solution pool.
Solutions that are worse (either greater in the case of a minimization, or less in the case of
a maximization) than the objective of the incumbent solution according to this measure are
not kept in the solution pool.

Values of the solution pool absolute gap (SolnPoolAGap or CPX_PARAM_SOLNPOOLAGAP) and
the solution pool relative gap (relative gap for solution pool: SolnPoolGap or
CPX_PARAM_SOLNPOOLGAP) may differ: For example, you may specify that solutions must be
within 15 units by means of the solution pool absolute gap and also within 1% of the
incumbent by means of the solution pool relative gap. A solution is accepted in the pool only
if it is valid for both the relative and the absolute gaps.

The solution pool absolute gap parameter can also be used as a stopping criterion for the
populate procedure: if populate cannot enumerate any more solutions that satisfy this
objective quality, then it will stop. In the presence of both an absolute and a relative solution
pool gap parameter, populate will stop when the smaller of the two is reached.

Values
Any nonnegative real number; default: 1.0e+75.

P A R A M E T E R S R E F E R E N C E M A N U A L188

maximum number of solutions kept in solution pool

Purpose
Maximum number of solutions kept in the solution pool

Syntax
C Name CPX_PARAM_SOLNPOOLCAPACITY (int)

C++ Name SolnPoolCapacity (int)

Java Name SolnPoolCapacity (int)

.NET Name SolnPoolCapacity (int)

OPL Name solnpoolcapacity

Interactive Optimizer mip pool capacity

Identifier 2103

Description
Sets the maximum number of solutions kept in the solution pool. At most, SolnPoolCapacity
solutions will be stored in the pool. Superfluous solutions are managed according to the
strategy set by the solution pool replacement strategy parameter (SolnPoolReplace,
CPX_PARAM_SOLNPOOLREPLACE).

The optimization (whether by MIP optimization or the populate procedure) will not stop if
more than SolnPoolCapacity solutions are generated. Instead, stopping criteria can be
specified by these parameters:

♦ maximum number of solutions generated for solution pool by populate (PopulateLim,
CPX_PARAM_POPULATELIM)

♦ relative gap for solution pool (SolnPoolGap, CPX_PARAM_SOLNPOOLGAP)

♦ absolute gap for solution pool (SolnPoolAGap, CPX_PARAM_SOLNPOOLAGAP)

♦ MIP node limit (NodeLim, CPX_PARAM_NODELIM)

♦ optimizer time limit (TiLim, CPX_PARAM_TILIM)

The default value for SolnPoolCapacity is 2100000000, but it may be set to any nonnegative
integer value. If set to zero, it will turn off all features related to the solution pool.

If you are looking for a parameter to control the number of solutions generated by the
populate procedure, consider the parameter maximum number of solutions generated for
solution pool by populate.

P A R A M E T E R S R E F E R E N C E M A N U A L 189

Values
Any nonnegative integer; 0 (zero) turns off all features of the solution pool; default:
2100000000.

P A R A M E T E R S R E F E R E N C E M A N U A L190

relative gap for solution pool

Purpose
Relative gap for the solution pool

Syntax
C Name CPX_PARAM_SOLNPOOLGAP (double)

C++ Name SolnPoolGap (double)

Java Name SolnPoolGap (double)

.NET Name SolnPoolGap (double)

OPL Name solnpoolgap

Interactive Optimizer mip pool relgap

Identifier 2105

Description
Sets a relative tolerance on the objective value for the solutions in the solution pool. Solutions
that are worse (either greater in the case of a minimization, or less in the case of a
maximization) than the incumbent solution by this measure are not kept in the solution pool.
For example, if you set this parameter to 0.01, then solutions worse than the incumbent by
1% or more will be discarded.

Values of the absolute gap for solution pool (SolnPoolAGap or CPX_PARAM_SOLNPOOLAGAP)
and the relative gap for solution pool (SolnPoolGap or CPX_PARAM_SOLNPOOLGAP) may differ:
For example, you may specify that solutions must be within 15 units by means of the solution
pool absolute gap and within 1% of the incumbent by means of the solution pool relative
gap. A solution is accepted in the pool only if it is valid for both the relative and the absolute
gaps.

The solution pool relative gap parameter can also be used as a stopping criterion for the
populate procedure: if populate cannot enumerate any more solutions that satisfy this
objective quality, then it will stop. In the presence of both an absolute and a relative solution
pool gap parameter, populate will stop when the smaller of the two is reached.

Values
Any nonnegative real number; default: 1.0e+75.

P A R A M E T E R S R E F E R E N C E M A N U A L 191

solution pool intensity

Purpose
Solution pool intensity

Syntax
C Name CPX_PARAM_SOLNPOOLINTENSITY (int)

C++ Name SolnPoolIntensity (int)

Java Name SolnPoolIntensity (int)

.NET Name SolnPoolIntensity (int)

OPL Name solnpoolintensity

Interactive Optimizer mip pool intensity

Identifier 2107

Description
Controls the trade-off between the number of solutions generated for the solution pool and
the amount of time or memory consumed. This parameter applies both to MIP optimization
and to the populate procedure.

Values from 1 (one) to 4 invoke increasing effort to find larger numbers of solutions. Higher
values are more expensive in terms of time and memory but are likely to yield more solutions.

Effect
For MIP optimization, increasing the value of the parameter corresponds to increasing the
amount of effort spent setting up the branch and cut tree to prepare for a subsequent call
to the populate procedure.

For populate, increasing the value of this parameter corresponds, in addition, to increasing
the amount of effort spent exploring the tree to generate more solutions. If MIP optimization
is called before populate, populate will reuse the information computed and stored during
MIP optimization only if this parameter has not been increased between calls. Similarly, if
populate is called several times successively, populate will re-use the information computed
and stored during previous calls to populate only if the solution pool intensity has not
increased between calls. Therefore, it is most efficient not to change the value of this
parameter between calls to MIP optimization and populate, nor between successive calls of
populate. Increase the value of this parameter only if too few solutions are generated.

Settings
Its default value, 0 (zero), lets CPLEX® choose which intensity to apply. If MIP optimization
is called first after the model is read, CPLEX® sets the intensity to 1 (one) for this call to
MIP optimization and to subsequent calls of populate. In contrast, if populate is called directly
after the model is read, CPLEX® sets the intensity to 2 for this call and subsequent calls
of populate.

P A R A M E T E R S R E F E R E N C E M A N U A L192

For value 1 (one), the performance of MIP optimization is not affected. There is no slowdown
and no additional consumption of memory due to this setting. However, populate will quickly
generate only a small number of solutions. Generating more than a few solutions with this
setting will be slow. When you are looking for a larger number of solutions, use a higher
value of this parameter.

For value 2, some information is stored in the branch and cut tree so that it is easier to
generate a larger number of solutions. This storage has an impact on memory used but does
not lead to a slowdown in the performance of MIP optimization. With this value, calling
populate is likely to yield a number of solutions large enough for most purposes. This value
is a good choice for most models.

For value 3, the algorithm is more aggressive in computing and storing information in order
to generate a large number of solutions. Compared to values 1 (one) and 2, this value will
generate a larger number of solutions, but it will slowMIP optimization and increase memory
consumption. Use this value only if setting this parameter to 2 does not generate enough
solutions.

For value 4, the algorithm generates all solutions to your model. Even for small models, the
number of possible solutions is likely to be huge; thus enumerating all of them will take time
and consume a large quantity of memory. In this case, remember to set themaximum number
of solutions generated for solution pool by populate (PopulateLim, CPX_PARAM_POPULATELIM)
to a value appropriate for your model; otherwise, the populate procedure will stop
prematurely because of this stopping criterion instead of enumerating all solutions. In
addition, a few limitations apply to this exhaustive enumeration, as explained in Enumerating
all solutions in the CPLEX User’s Manual.

Values
MeaningValue

Automatic: let CPLEX choose; default0

Mild: generate few solutions quickly1

Moderate: generate a larger number of solutions2

Aggressive: generate many solutions and expect performance penalty3

Very aggressive: enumerate all practical solutions4

P A R A M E T E R S R E F E R E N C E M A N U A L 193

solution pool replacement strategy

Purpose
Solution pool replacement strategy

Syntax
C Name CPX_PARAM_SOLNPOOLREPLACE (int)

C++ Name SolnPoolReplace (int)

Java Name SolnPoolReplace (int)

.NET Name SolnPoolReplace (int)

OPL Name solnpoolreplace

Interactive Optimizer mip pool replace

Identifier 2104

Description
Designates the strategy for replacing a solution in the solution pool when the solution pool
has reached its capacity.

The value 0 (CPX_SOLNPOOL_FIFO) replaces solutions according to a first-in, first-out policy.
The value 1 (CPX_SOLNPOOL_OBJ) keeps the solutions with the best objective values. The
value 2 (CPX_SOLNPOOL_DIV) replaces solutions in order to build a set of diverse solutions.

If the solutions you obtain are too similar to each other, try setting SolnPoolReplace to 2.

The replacement strategy applies only to the subset of solutions created in the current call
of MIP optimization or populate. Solutions already in the pool are not affected by the
replacement strategy. They will not be replaced, even if they satisfy the criterion of the
replacement strategy.

Values
MeaningSymbolValue

Replace the first solution (oldest) by the most recent solution; first in,
first out; default

CPX_SOLNPOOL_FIFO0

Replace the solution which has the worst objectiveCPX_SOLNPOOL_OBJ1

Replace solutions in order to build a set of diverse solutionsCPX_SOLNPOOL_DIV2

P A R A M E T E R S R E F E R E N C E M A N U A L194

MIP strong branching candidate list limit

Purpose
MIP strong branching candidate list limit

Syntax
C Name CPX_PARAM_STRONGCANDLIM (int)

C++ Name StrongCandLim (int)

Java Name StrongCandLim (int)

.NET Name StrongCandLim (int)

OPL Name strongcandlim

Interactive Optimizer mip limits strongcand

Identifier 2045

Description
Controls the length of the candidate list when CPLEX® uses strong branching as the way
to select variables. For more detail about that parameter, seeMIP variable selection strategy:

♦ VarSel in the C++, Java, or .NET API;

♦ CPX_PARAM_VARSEL in the C API;

♦ set mip strategy variableselect 3 in the Interactive Optimizer.

Values
Any positive number; default: 10.

P A R A M E T E R S R E F E R E N C E M A N U A L 195

MIP strong branching iterations limit

Purpose
MIP strong branching iterations limit

Syntax
C Name CPX_PARAM_STRONGITLIM (int)

C++ Name StrongItLim (int)

Java Name StrongItLim (int)

.NET Name StrongItLim (int)

OPL Name strongitlim

Interactive Optimizer mip limits strongit

Identifier 2046

Description
Controls the number of simplex iterations performed on each variable in the candidate list
when CPLEX® uses strong branching as the way to select variables. For more detail about
that parameter, see MIP variable selection strategy:

♦ VarSel in the C++, Java, or .NET API;

♦ CPX_PARAM_VARSEL in the C API;

♦ set mip strategy variableselect 3 in the Interactive Optimizer.

The default setting 0 (zero) chooses the iteration limit automatically.

Values
MeaningValue

Automatic: let CPLEX choose; default0

Limit of the simplex iterations performed on each candidate variableAny positive integer

P A R A M E T E R S R E F E R E N C E M A N U A L196

limit on nodes explored when a subMIP is being solved

Purpose
Limit on nodes explored when a subMIP is being solved

Syntax
C Name CPX_PARAM_SUBMIPNODELIM (int)

C++ Name SubMIPNodeLim (int)

Java Name SubMIPNodeLim (int)

.NET Name SubMIPNodeLim (int)

OPL Name submipnodelim

Interactive Optimizer mip limits submipnodelim

Identifier 2062

Description
Restricts the number of nodes explored when CPLEX® is solving a subMIP. CPLEX® solves
subMIPs when it builds a solution from a partial MIP start, when repairing an infeasible
MIP start, when executing the relaxation induced neighborhood search (RINS) heuristic,
when branching locally, or when polishing a solution.

Values
Any positive integer; default: 500.

P A R A M E T E R S R E F E R E N C E M A N U A L 197

symmetry breaking

Purpose
Symmetry breaking

Syntax
C Name CPX_PARAM_SYMMETRY (int)

C++ Name Symmetry (int)

Java Name Symmetry (int)

.NET Name Symmetry (int)

OPL Name symmetry

Interactive Optimizer preprocessing symmetry

Identifier 2059

Description
Decides whether symmetry breaking reductions will be automatically executed, during the
preprocessing phase, in a MIP model. The default level, -1, allows CPLEX® to choose the
degree of symmetry breaking to apply. The value 0 (zero) turns off symmetry breaking.
Levels 1 through 5 apply increasingly aggressive symmetry breaking.

Values
MeaningValue

Automatic: let CPLEX choose; default-1

Turn off symmetry breaking0

Exert a moderate level of symmetry breaking1

Exert an aggressive level of symmetry breaking2

Exert a very aggressive level of symmetry breaking3

Exert a highly aggressive level of symmetry breaking4

Exert an extremely aggressive level of symmetry breaking5

P A R A M E T E R S R E F E R E N C E M A N U A L198

global default thread count

Purpose
Global default thread count

Syntax
C Name CPX_PARAM_THREADS (int)

C++ Name Threads (int)

Java Name Threads (int)

.NET Name Threads (int)

OPL Name threads

Interactive Optimizer threads

Identifier 1067

Description
Sets the default number of parallel threads that will be invoked by any CPLEX® parallel
optimizer. Settings of this thread parameter interact with settings of the parallel mode
switch (CPX_PARAM_PARALLELMODE, ParallelMode) as summarized in:

♦ Table 1: Interaction of Callbacks with Threads and Parallel Mode Parameters: No
Callbacks or only Informational Callbacks in Application

♦ Table 2: Interaction of Callbacks with Threads and Parallel Mode Parameters: Only Query
Callbacks in Application

♦ Table 3: Interaction of Callbacks with Threads and Parallel Mode Parameters: Control
Callbacks in Application

For single threads, the parallel algorithms behave deterministically, regardless of thread
and parallel mode parameter settings; that is, the algorithm proceeds sequentially in a single
thread.

In this context, sequential means that the algorithm proceeds step by step, consecutively,
in a predictable and repeatable order within a single thread. Deterministic means that
repeated solving of the samemodel with the same parameter settings on the same computing
platform will follow exactly the same solution path, yielding the same level of performance
and the same values in the solution. Sequential execution is deterministic. In multithreaded
computing, a deterministic setting requires synchronization between threads.Opportunistic
entails less synchronization between threads and thus may offer better performance at the
sacrifice of repeatable, invariant solution paths and values in repeated runs on multiple
threads or multiple processors.

In the following tables, maximum number of threads means theminimum of these two
values:

P A R A M E T E R S R E F E R E N C E M A N U A L 199

♦ the maximum number of threads licensed;

♦ number of CPUs, cores available.

P A R A M E T E R S R E F E R E N C E M A N U A L200

Interaction of Callbacks with Threads and Parallel Mode Parameters: No Callbacks
or only Informational Callbacks in Application

Parallel Mode
Deterministic (1)

Parallel Mode
Opportuniistic (-1)

Parallel Mode Auto

Uses maximum number of
threads; deterministic

Uses maximum number of
threads; opportunistic

Uses maximum number of
threads; deterministic

Threads 0
Auto

Uses one thread; sequentialUses one thread; sequentialUses one thread;
sequential

Threads 1

Uses N threads; deterministicUses N threads; opportunisticUses N threads;
opportunistic

Threads N > 1

Interaction of Callbacks with Threads and Parallel Mode Parameters: Only Query
Callbacks in Application

Parallel Mode
Deterministic (1)

Parallel Mode
Opportunistic (-1)

Parallel Mode Auto

Uses maximum number of
threads; deterministic

Uses maximum number of
threads; opportunistic

Uses one thread;
deterministic

Threads 0
Auto

Uses one thread; sequentialUses one thread; sequentialUses one thread;
sequential

Threads 1

Uses N threads; deterministicUses N threads; opportunisticUses N threads;
opportunistic

Threads N > 1

Interaction of Callbacks with Threads and Parallel Mode Parameters: Control
Callbacks in Application

Parallel Mode
Deterministic (1)

Parallel Mode
Opportunistic (-1)

Parallel Mode Auto

Uses one thread; sequentialUses one thread; sequentialUses one thread;
sequential

Threads 0
Auto

Uses one thread; sequentialUses one thread; sequentialUses one thread;
sequential

Threads 1

Uses N threads;
deterministic

Uses N threads;
opportunistic

Uses N threads;
opportunistic

Threads N > 1

Values
MeaningValue

Automatic: let CPLEX decide; default0

Sequential; single threaded1

Uses N threads; N is limited by license and available processorsN

See also
parallel mode switch

P A R A M E T E R S R E F E R E N C E M A N U A L 201

optimizer time limit

Purpose
Optimizer time limit

Syntax
C Name CPX_PARAM_TILIM (double)

C++ Name TiLim (double)

Java Name TiLim (double)

.NET Name TiLim (double)

OPL Name tilim

Interactive Optimizer timelimit

Identifier 1039

Description
Sets the maximum time, in seconds, for a call to an optimizer. This time limit applies also
to the conflict refiner.

The time is measured in terms of either CPU time or elapsed time, according to the setting
of the clock type for computation time parameter (CPX_PARAM_CLOCKTYPE, ClockType).

The time limit for an optimizer applies to the sum of all its steps, such as
preprocessing,crossover, and internal calls to other optimizers.

In a sequence of calls to optimizers, the limit is not cumulative but applies to each call
individually. For example, if you set a time limit of 10 seconds, and you call mipopt twice
then there could be a total of (at most) 20 seconds of running time if each call consumes its
maximum allotment.

Values
Any nonnegative number; default: 1e+75.

See also
clock type for computation time

P A R A M E T E R S R E F E R E N C E M A N U A L202

tree memory limit

Purpose
Tree memory limit

Syntax
C Name CPX_PARAM_TRELIM (double)

C++ Name TreLim (double)

Java Name TreLim (double)

.NET Name TreLim (double)

OPL Name trelim

Interactive Optimizer mip limits treememory

Identifier 2027

Description
Sets an absolute upper limit on the size (in megabytes, uncompressed) of the branch-and-cut
tree. If this limit is exceeded, CPLEX® terminates optimization.

Values
Any nonnegative number; default: 1e+75.

P A R A M E T E R S R E F E R E N C E M A N U A L 203

tuning information display

Purpose
Tuning information display

Syntax
C Name CPX_PARAM_TUNINGDISPLAY (int)

C++ Name TuningDisplay (int)

Java Name TuningDisplay (int)

.NET Name TuningDisplay (int)

OPL Name tuningdisplay

Interactive Optimizer tune display

Identifier 1113

Description
Specifies the level of information reported by the tuning tool as it works.

Use level 0 (zero) to turn off reporting from the tuning tool.

Use level 1 (one), the default, to display a minimal amount of information.

Use level 2 to display the minimal amount plus the parameter settings that the tuning tool
is trying.

Use level 3 to display an exhaustive report of minimal information, plus settings that are
being tried, plus logs.

Values
MeaningValue

Turn off display0

Display standard, minimal reporting; default1

Display standard report plus parameter settings being tried2

Display exhaustive report and log3

P A R A M E T E R S R E F E R E N C E M A N U A L204

tuning measure

Purpose
Tuning measure

Syntax
C Name CPX_PARAM_TUNINGMEASURE

C++ Name TuningMeasure

Java Name TuningMeasure

.NET Name TuningMeasure

OPL Name tuningmeasure

Interactive Optimizer tune measure

Identifier 1110

Description
Controls the measure for evaluating progress when a suite of models is being tuned.

Possible values are:

♦ CPX_TUNE_AVERAGE uses the mean average of time to compare different parameter sets
over a suite of models.

♦ CPX_TUNE_MINMAX uses a minmax approach to compare the time of different parameter
sets over a suite of models.

Values
MeaningValue

mean time; defaultCPX_TUNE_AVERAGE

minmax timeCPX_TUNE_MINMAX

P A R A M E T E R S R E F E R E N C E M A N U A L 205

tuning repeater

Purpose
Tuning repeater

Syntax
C Name CPX_PARAM_TUNINGREPEAT (int)

C++ Name TuningRepeat (int)

Java Name TuningRepeat (int)

.NET Name TuningRepeat (int)

OPL Name tuningrepeat

Interactive Optimizer tune repeat

Identifier 1112

Description
Specifies the number of times tuning is to be repeated on reordered versions of a given
problem. The problem is reordered automatically by CPLEX® permuting its rows and
columns. This repetition is helpful when only one problem is being tuned, as repeated
reordering and re-tuning may lead to more robust tuning results.

This parameter applies to only one problem in a tuning session. That is, in the Interactive
Optimizer, this parameter is effective only when you are tuning a single problem; in the
Callable Library (C API), this parameter is effective only when you are tuning a single problem
with the routine CPXtuneparam .

Values
Any nonnegative integer; default: 1 (one)

P A R A M E T E R S R E F E R E N C E M A N U A L206

tuning time limit

Purpose
Tuning time limit

Syntax
C Name CPX_PARAM_TUNINGTILIM (double)

C++ Name TuningTiLim (double)

Java Name TuningTiLim (double)

.NET Name TuningTiLim (double)

OPL Name tuningtilim

Interactive Optimizer tune timelimit

Identifier 1113

Description
Sets a time limit per model and per test set (that is, suite of models) applicable in tuning.

For an overall time limit on tuning, use the global time limit parameter (optimizer time limit
TiLim, CPX_PARAM_TILIM).

For an example of how to use these time limit parameters together, see Example: time limits
on tuning in the Interactive Optimizer in the CPLEX User’s Manual.

Values
Any nonnegative number; default: 10 000.

See also
optimizer time limit

P A R A M E T E R S R E F E R E N C E M A N U A L 207

MIP variable selection strategy

Purpose
MIP variable selection strategy

Syntax
C Name CPX_PARAM_VARSEL (int)

C++ Name VarSel (int)

Java Name VarSel (int)

.NET Name VarSel (int)

OPL Name varsel

Interactive Optimizer mip strategy variableselect

Identifier 2028

Description
Sets the rule for selecting the branching variable at the node which has been selected for
branching.

The minimum infeasibility rule chooses the variable with the value closest to an integer but
still fractional. The minimum infeasibility rule (-1) may lead more quickly to a first integer
feasible solution, but is usually slower overall to reach the optimal integer solution.

Themaximum infeasibility rule chooses the variable with the value furtherest from an integer.
The maximum infeasibility rule (1 one) forces larger changes earlier in the tree.

Pseudo cost (2) variable selection is derived from pseudo-shadow prices.

Strong branching (3) causes variable selection based on partially solving a number of
subproblems with tentative branches to see which branch is the most promising. This strategy
can be effective on large, difficult MIP problems.

Pseudo reduced costs (4) are a computationally less-intensive form of pseudo costs.

The default value (0 zero) allows CPLEX® to select the best rule based on the problem and
its progress.

P A R A M E T E R S R E F E R E N C E M A N U A L208

Values
MeaningSymbolValue

Branch on variable with minimum infeasibilityCPX_VARSEL_MININFEAS-1

Automatic: let CPLEX choose variable to
branch on; default

CPX_VARSEL_DEFAULT0

Branch on variable with maximum infeasibilityCPX_VARSEL_MAXINFEAS1

Branch based on pseudo costsCPX_VARSEL_PSEUDO2

Strong branchingCPX_VARSEL_STRONG3

Branch based on pseudo reduced costsCPX_VARSEL_PSEUDOREDUCED4

P A R A M E T E R S R E F E R E N C E M A N U A L 209

directory for working files

Purpose
Directory for working files

Syntax
C Name CPX_PARAM_WORKDIR (string)

C++ Name WorkDir (string)

Java Name WorkDir (string)

.NET Name WorkDir (string)

OPL Name workdir

Interactive Optimizer workdir

Identifier 1064

Description
Specifies the name of an existing directory into which CPLEX® may store temporary working
files, such as for MIP node files or for out-of-core barrier files. The default is the current
working directory.

Values
Any existing directory; default: ‘.’

P A R A M E T E R S R E F E R E N C E M A N U A L210

memory available for working storage

Purpose
Memory available for working storage

Syntax
C Name CPX_PARAM_WORKMEM (double)

C++ Name WorkMem (double)

Java Name WorkMem (double)

.NET Name WorkMem (double)

OPL Name workmem

Interactive Optimizer workmem

Identifier 1065

Description
Specifies an upper limit on the amount of central memory, in megabytes, that CPLEX® is
permitted to use for working memory before swapping to disk files, compressing memory,
or taking other actions.

Values
Any nonnegative number, in megabytes; default: 128.0

See also
directory for working files

P A R A M E T E R S R E F E R E N C E M A N U A L 211

write level for MST, SOL files

Purpose
Write level for MST, SOL files

Syntax
C Name CPX_PARAM_WRITELEVEL (int)

C++ Name WriteLevel (int)

Java Name WriteLevel (int)

.NET Name WriteLevel (int)

OPL Name

Interactive Optimizer output writelevel

Identifier

Description
Sets the level of detail for CPLEX® to write a solution to a file in SOL format or a MIP start
to a file in MST format. CPLEX® writes information about a MIP start to a formatted file
of type MST with the file extension .mst. CPLEX® writes information about a solution to
a formatted file of type SOL with the file extension .sol. CPLEX® records the write level
at which it created a file in that file, so that the file can be read back accurately later.

The default setting of this parameter is 0 (zero) AUTO; that is, let CPLEX® decide the level
of detail. CPLEX® behaves differently, depending on whether the format is SOL or MST
and on whether it is writing a solution or MIP start. For SOL files, AUTO resembles level 1
(one): CPLEX® writes all variables and their respective values to the file. For MST files,
AUTO resembles level 2: CPLEX® writes discrete variables and their respective values to
the file.

When the value of this parameter is 1 (one), CPLEX® writes all variables, both discrete
and continuous, with their values.

When the value of this parameter is 2, CPLEX® writes values for discrete variables only.

When the value of this parameter is 3, CPLEX® writes values of nonzero variables only.

When the value of this parameter is 4, CPLEX® writes values of nonzero discrete variables
only.

Treatment of nonzeros
With respect to levels 3 and 4, where nonzero values are significant, CPLEX® considers
a value nonzero if the absolute value is strictly less than 1e-16. In the case of SOL files,
CPLEX® applies this test to primal and dual variable values, that is, both x and pi variable
values. In the case of MST files, CPLEX® applies this test only to x values.

P A R A M E T E R S R E F E R E N C E M A N U A L212

Restrictions due to reduced file size
Levels 3 and 4 reduce the size of files, of course. However, this reduced file entails restrictions
and may create surprising results when the file is re-used. Levels 3 and 4 are not equivalent
to levels 1 and 2. Indeed, if a MIP start does not contain a value for a variable expected at
level 3 or 4, then this variable will be fixed to 0 (zero) when that MIP start file is processed.
Specifically, at level 3, if the MIP start does not specify a value for a variable of any type,
or at level 4, if the MIP start does not specify a value for a discrete variable, such a variable
will be fixed to 0 (zero). Consequently, the sameMIP start written at level 1 or 2 may produce
satisfactory solutions, but the reduced MIP start file, written at level 3 or 4, perhaps does
not lead to solutions. This surprising situation arises typically in the case of model changes
with the addition of new variables.

Values
MeaningSymbolValue

Automatic: let CPLEX decideAUTO0

CPLEX writes all variables and their
values

CPX_WRITELEVEL_ALLVARS1

CPLEX writes only discrete variables
and their values

CPX_WRITELEVEL_DISCRETEVARS2

CPLEX writes only nonzero variables
and their values

CPX_WRITELEVEL_NONZEROVARS3

CPLEX writes only nonzero discrete
variables and their values

CPX_WRITELEVEL_NONZERODISCRETEVARS4

P A R A M E T E R S R E F E R E N C E M A N U A L 213

MIP zero-half cuts switch

Purpose
MIP zero-half cuts switch

Syntax
C Name CPX_PARAM_ZEROHALFCUTS (int)

C++ Name ZeroHalfCuts (int)

Java Name ZeroHalfCuts (int)

.NET Name ZeroHalfCuts (int)

OPL Name zerohalfcuts

Interactive Optimizer mip cuts zerohalfcut

Identifier 2111

Description
Decides whether or not to generate zero-half cuts for the problem. The value 0 (zero), the
default, specifies that the attempt to generate zero-half cuts should continue only if it seems
to be helping.

If you find that too much time is spent generating zero-half cuts for your model, consider
setting this parameter to -1 (minus one) to turn off zero-half cuts.

If the dual bound of your model does not make sufficient progress, consider setting this
parameter to 2 to generate zero-half cuts more aggressively.

Values
MeaningValue

Do not generate zero-half cuts-1

Automatic: let CPLEX choose; default0

Generate zero-half cuts moderately1

Generate zero-half cuts aggressively2

P A R A M E T E R S R E F E R E N C E M A N U A L214

A
absolute gap

solution pool 188
absolute objective difference 141
accessing

parameters 16
sets of parameters 16

advanced start 52
barrier and 52
basis and 52
node exploration limit 197
presolve and 52
repair tries 172
root algorithm and 175

AdvInd 52
AggCutLim 53
AggFill 54
aggregation limit 53

B
backtracking

criteria for 71
node selection and 138
tolerance 71

BarAlg 56
BarColNz 57
BarCrossAlg 58
BarDisplay 59
BarEpComp 60
BarGrowth 61
BarItLim 62
BarMaxCor 63
BarObjRng 64
BarOrder 65
BarQCPEpComp 66
barrier

advanced start and 52
detecting unbounded optimal faces 61

maximum absolute objective function 64
barrier limit

absolute value of objective function 64
centering corrections 63
detecting unbounded optimal faces 61
growth 61
iterations 62

BarStartAlg 67
basic variable

feasitility tolerance and 99
basis

advanced start and 52
crash ordering and 79
Markowitz threshold and 95
network feasibility tolerance and 131
optimal and feasibility tolerance 99
root algorithm and 175
simplex iterations and 113
simplex refactoring frequency and 169
singularity repairs and 187

BBInterval 68
best bound interval 68
best node

absolutee mip gap and 91
backtracking and 71
relative MIP gap and 92
target gap and 71

BndStrenInd 69
bound strengthening 69
bound violation

feasibility (simplex) 99
FeasOpt 100
network flow 131

branch direction 70
branching, local 114
BrDir 70
BtTol 71

© Copyright IBM Corp. 1987, 2009 215

I N D E X

Index

C
callback reduced LP parameter 117
callback, control 124
candidate list limit (MIP) 195
centering correction 63
clique cut 73
Cliques 73
ClockType 74
CoeRedInd 75
ColReadLim 76
complementarity convergence

barrier (LP, QP) 60
barrier (QCP) 66
LP 60
QCP 66
QP 60

ConflictDisplay 77
control callback 124
cover cut 78
cover cut, flow 102
Covers 78
CPX_PARAM_ADVIND 52
CPX_PARAM_AGGCUTLIM 53
CPX_PARAM_AGGFILL 54
CPX_PARAM_AGGIND 55
CPX_PARAM_BARALG 56
CPX_PARAM_BARCOLNZ 57
CPX_PARAM_BARCROSSALG 58
CPX_PARAM_BARDISPLAY 59
CPX_PARAM_BAREPCOMP 60
CPX_PARAM_BARGROWTH 61
CPX_PARAM_BARITLIM 62
CPX_PARAM_BARMAXCOR 63
CPX_PARAM_BAROBJRNG 64
CPX_PARAM_BARORDER 65
CPX_PARAM_BARQCPEPCOMP 66
CPX_PARAM_BARSTARTALG 67
CPX_PARAM_BBINTERVAL 68
CPX_PARAM_BNDSTRENIND 69
CPX_PARAM_BRDIR 70
CPX_PARAM_BTTOL 71
CPX_PARAM_CLIQUES 73
CPX_PARAM_CLOCKTYPE 74
CPX_PARAM_COEREDIND 75
CPX_PARAM_COLREADLIM 76
CPX_PARAM_CONFLICTDISPLAY 77
CPX_PARAM_COVERS 78
CPX_PARAM_CRAIND 79
CPX_PARAM_CUTLO 81
CPX_PARAM_CUTPASS 82
CPX_PARAM_CUTSFACTOR 83
CPX_PARAM_CUTUP 84
CPX_PARAM_DATACHECK 85
CPX_PARAM_DEPIND 86
CPX_PARAM_DISJCUTS 87

CPX_PARAM_DIVETYPE 88
CPX_PARAM_DPRIIND 89
CPX_PARAM_EACHCUTLIM 90
CPX_PARAM_EPAGAP 91
CPX_PARAM_EPGAP 92
CPX_PARAM_EPINT 93
CPX_PARAM_EPMRK 95
CPX_PARAM_EPOPT 96
CPX_PARAM_EPPER 97
CPX_PARAM_EPRELAX 98
CPX_PARAM_EPRHS 99
CPX_PARAM_FEASOPTMODE 100
CPX_PARAM_FLOWCOVERS 102
CPX_PARAM_FLOWPATHS 103
CPX_PARAM_FPHEUR 104
CPX_PARAM_FRACCAND 106
CPX_PARAM_FRACCUTS 107
CPX_PARAM_FRACPASS 108
CPX_PARAM_GUBCOVERS 109
CPX_PARAM_HEURFREQ 110
CPX_PARAM_IMPLBD 111
CPX_PARAM_INTSOLLIM 112
CPX_PARAM_ITLIM 113
CPX_PARAM_LBHEUR 114
CPX_PARAM_LPMETHOD 175
CPX_PARAM_MCFCUTS 115
CPX_PARAM_MEMORYEMPHASIS 116
CPX_PARAM_MIPCBREDLP 117
CPX_PARAM_MIPDISPLAY 118
CPX_PARAM_MIPEMPHASIS 120
CPX_PARAM_MIPINTERVAL 121
CPX_PARAM_MIPORDIND 122
CPX_PARAM_MIPORDTYPE 123
CPX_PARAM_MIPSEARCH 124
CPX_PARAM_MIQCPSTRAT 126
CPX_PARAM_MIRCUTS 127
CPX_PARAM_MPSLONGNUM 128
CPX_PARAM_NETDISPLAY 129
CPX_PARAM_NETEPOPT 130
CPX_PARAM_NETEPRHS 131
CPX_PARAM_NETFIND 132
CPX_PARAM_NETITLIM 133
CPX_PARAM_NETPPRIIND 134
CPX_PARAM_NODEFILEIND 136
CPX_PARAM_NODELIM 137
CPX_PARAM_NODESEL 138
CPX_PARAM_NUMERICALEMPHASIS 139
CPX_PARAM_NZREADLIM 140
CPX_PARAM_OBJDIF 141
CPX_PARAM_OBJLLIM 142
CPX_PARAM_OBJULIM 143
CPX_PARAM_PARALLELMODE 144
CPX_PARAM_PERIND 147
CPX_PARAM_PERLIM 148
CPX_PARAM_POLISHAFTEREPAGAP 149

P A R A M E T E R S R E F E R E N C E M A N U A L216

CPX_PARAM_POLISHAFTEREPGAP 150
CPX_PARAM_POLISHAFTERINTSOL 151
CPX_PARAM_POLISHAFTERNODE 152
CPX_PARAM_POLISHAFTERTIME 153
CPX_PARAM_POLISHTIME (deprecated) 154
CPX_PARAM_POPULATELIM 155
CPX_PARAM_PPRIIND 157
CPX_PARAM_PREDUAL 158
CPX_PARAM_PREIND 159
CPX_PARAM_PRELINEAR 160
CPX_PARAM_PREPASS 161
CPX_PARAM_PRESLVND 162
CPX_PARAM_PRICELIM 163
CPX_PARAM_PROBE 164
CPX_PARAM_PROBETIME 165
CPX_PARAM_QPMAKEPSDIND 166
CPX_PARAM_QPMETHOD 177
CPX_PARAM_QPNZREADLIM 167
CPX_PARAM_REDUCE 168
CPX_PARAM_REINV 169
CPX_PARAM_RELAXPREIND 170
CPX_PARAM_RELOBJDIF 171
CPX_PARAM_REPAIRTRIES 172
CPX_PARAM_REPEATPRESOLVE 173
CPX_PARAM_RINSHEUR 174
CPX_PARAM_ROWREADLIM 180
CPX_PARAM_SCAIND 181
CPX_PARAM_SCRIND 182
CPX_PARAM_SIFTALG 183
CPX_PARAM_SIFTDISPLAY 184
CPX_PARAM_SIFTITLIM 185
CPX_PARAM_SIMDISPLAY 186
CPX_PARAM_SINGLIM 187
CPX_PARAM_SOLNPOOLAGAP 188
CPX_PARAM_SOLNPOOLCAPACITY 189
CPX_PARAM_SOLNPOOLGAP 191
CPX_PARAM_SOLNPOOLINTENSITY 192
CPX_PARAM_SOLNPOOLREPLACE 194
CPX_PARAM_STARTALG 178
CPX_PARAM_STRONGCANDLIM 195
CPX_PARAM_STRONGITLIM 196
CPX_PARAM_SUBALG 135
CPX_PARAM_SUBMIPNODELIM 197
CPX_PARAM_SYMMETRY 198
CPX_PARAM_THREADS 199
CPX_PARAM_TILIM 202
CPX_PARAM_TRELIM 203
CPX_PARAM_TUNINGDISPLAY 204
CPX_PARAM_TUNINGMEASURE 205
CPX_PARAM_TUNINGREPEAT 206
CPX_PARAM_TUNINGTILIM 207
CPX_PARAM_VARSEL 208
CPX_PARAM_WORKDIR 210
CPX_PARAM_WORKMEM 211
CPX_PARAM_WRITELEVEL 212

CPX_PARAM_ZEROHALFCUTS 214
CraInd 79
cut

cliques (MIP) 73
constraint aggregation limit and 53
covers (MIP) 78
disjunctive (MIP) 87
flow cover 102
flow path (MIP) 103
fractional pass limit 108
Gomory fractional candidate limit 106
Gomory fractional generation 107
GUB (MIP) 109
implied bound 111
limit by type 90
limiting number of 83
MIP display and 118
mixed integer rounding (MIR) 127
node limit and 137
pass limit 82
reapplying presolve and 173
user-defined and preprocessing 160
zero-half 214

CutLo 81
cutoff tolerance 71
CutPass 82
CutsFactor 83
CutUp 84

D
DataCheck 85
DepInd 86
deterministic

definition 144
DisjCuts 87
disjunctive cut 87
DiveType 88
DPriInd 89

E
EachCutLim 90
EpAGap 91
EpGap 92
EpInt 93
EpLin 94
EpMrk 95
EpOpt 96
EpPer 97
EpRelax 98
EpRHS 99

F
FeasOpt

lower objective limit 98
mode 100

FeasOptMode 100
flow cover cut 102

P A R A M E T E R S R E F E R E N C E M A N U A L 217

aggregation limit 53
flow path cut 103
FlowCovers 102
FlowPaths 103
FPHeur 104
FracCand 106
FracCuts 107
FracPass 108
fractional cut

candidate limit 106
generation 107
pass limit 108

G
Gomory fractional cut

candidate limit 106
generation 107
pass limit 108

GUB cut 109
GUBCovers 109

H
HeurFreq 110
heuristic

frequency 110
local branching 114
relaxation induced neighborhood search
(RINS) 174

I
ImplBd 111
implied bound cut 111
incumbent

backtracking and 71
cutoff tolerance and 71
diving and 88
local branching heuristic and 114
relaxation induced neighborhood search
(RINS) and 174
solution pool absolute gap and 188
solution pool relative gap and 191
target gap and 71

integer solution
diving and 88

integer solution limit 112
IntSolLim 112
iteration

barrier centering corrections and 63
iteration limit

barrier 62
network 133
perturbation and (simplex) 148
refactoring of basis (simplex) and 169
sifting 185
simplex 113
strong branching and (MIP) 196

ItLim 113

L
LBHeur 114
local branching heuristic 114

M
Markowitz tolerance 95
maximum infeasibility rule

variable selection and 208
MCFCuts 115
MemoryEmphasis 116
minimum infeasibility rule

variable selection and 208
MIP

bound strengthening 69
MIP callback reduced LP parameter 117
MIP limit

aggregation for cuts 53
cut by type 90
cuts 83
cutting plane passes 82
Gomory fractional cut candidates 106
nodes explored in subproblem 197
passes for Gomory fractional cuts 108
polishing time (deprecated) 154
probing time 165
repair tries 172
size of tree 203
solutions 112
termination criterion 137

MIP start
writing to file 212

MIP strategy
backtracking 71
best bound interval 68
branch direction 70
branching variable 208
diving 88
heuristic frequency 110
local branching 114
node algorithm 135
node file management 136
node selection 138
presolve at nodes 162
priority order 122
probing 164
quadratically constrained programs (MIQCP)
126
RINS 174
root algorithm 178
strong branching and candidate limit 195
strong branching and iteration limit 196

MIP tree
advanced start and 52

MIPDisplay 118
MIPEmphasis 120

P A R A M E T E R S R E F E R E N C E M A N U A L218

MIPInterval 121
MIPOrdInd 122
MIPOrdType 123
MIPSearch 124
MIQCPStrat 126
MIR cut 127

aggregation limit 53
MIRCuts 127
mixed integer programming (MIP)

threads 199
mixed integer rounding cut 127
MPSLongNum 128
multi-commodity flow cut 115

N
NetDisplay 129
NetEpOpt 130
NetEpRHS 131
NetFind 132
NetItLim 133
NetPPriInd 134
network with arc capacity 115
node

best estimate 68
presolve and 162

node file
compression of 136

node relaxation in MIQCP strategy 126
node selection

backtracking and 138
best bound interval and 68

NodeAlg 135
NodeFileInd 136
NodeLim 137
NodeSel 138
NumericalEmphasis 139
NzReadLim 140

O
ObjDif 141
objective

current and backtracking 71
objective difference

absolute 141
relative 171

ObjLLim 142
ObjULim 143
opportunistic

definition 144

P
parallelism

optimization mode 144
threads and 199

ParallelMode 144
parameter set 16
path cut 103

PerInd 147
periodic heuristic 110
PerLim 148
perturbation constant (simplex) 97
pivot selection 95
PolishAfterEpAGap 149
PolishAfterEpGap 150
PolishAfterIntSol 151
PolishAfterNode 152
PolishAfterTime 153
PolishTime (deprecated) 154
PopulateLim 155
PPriInd 157
PreDual 158
PreInd 159
PreLinear 160
PrePass 161
PreslvNd 162
presolve

advanced start and 52
nodes and 162

PriceLim 163
pricing

candidate list limit 163
network 134
types available for dual simplex 89
types available in primal simplex 157

priority order
indicator 122
type to generate 123

Probe 164
ProbeTime 165
probing

MIP branching and 164
time limit 165

pseudo cost
variable selection and 208

pseudo reduced cost
variable selection and 208

pseudo-shadow price
variable selection and 208

Q
QPmakePSDInd 166
QPNzReadLim 167
quadratically constrained mixed integer program
(MIQCP) 126

R
Reduce 168
ReInv 169
relative gap

solution pool 191
relative objective difference 171
relaxation induced neighborhood search (RINS)
174

P A R A M E T E R S R E F E R E N C E M A N U A L 219

RelaxPreInd 170
RelObjDif 171
RepairTries 172
RepeatPresolve 173
RINSHeur 174
RootAlg 175, 177, 178
RowReadLim 180

S
ScaInd 181
screen indicator 182
screen indicator not available in this API 182
set of parameters 16
SiftAlg 183
SiftDisplay 184
sifting

iteration limit 185
node algorithm as 135
root algorithm as 175

SiftItLim 185
SimDisplay 186
simplex

iterations and candidate list 196
perturbation constant 97

simplex limit
degenerate iterations 148
iterations 113
lower objective function 142
repairs of singularities 187
upper objective function 143

SingLim 187
singularity 187
SolnPoolAGap 188
SolnPoolCapacity 189
SolnPoolGap 191
SolnPoolIntensity 192
SolnPoolReplace 194
solution

writing to file 212
solution polishing

absolute gap as starting condition for 149
integer solutions as starting condition for 151
nodes processed as starting condition for 152
relative gap as starting condition for 150
time as starting condition for 153

solution pool
absolute gap 188
capacity 189
intensity 192
populate limit 155
replacement strategy 194
rrelative gap 191

start, advanced 52
strong branching

candidate list and 195
iteration limit and 196

variable selection and 208
StrongCandLim 195
StrongItLim 196
SubMIPNodeLim 197
Symmetry 198

T
target gap 71
termination criterion

barrier complementarity convergence (LP,
QP) 60
barrier complementarity convergence (QCP)
66
barrier iterations 62
FeasOpt Phase I 98
MIP node limit 137
network iteration limit 133
simplex iteration limit 113
tree size (MIP) 203
tree size and memory 136

Threads 199
TiLim 202
time

as starting condition for solution polishing
153

tolerance
absolute MIP gap 91
absolute MIP objective difference 141
backtracking (MIP) 71
barrier complementarity convergence (LP,
QP) 60
basic variables and bound violation 99
complementarity convergence QCP 66
cutoff 71
cutoff and backtracking 71
feasibility (network primal) 131
FeasOpt relaxation 98
linearization 94
lower cutoff 81
Markowitz 95
MIP integrality 93
optimality (network) 130
optimality (simplex) 96
relative MIP gap 92
relative MIP objective difference 171
solution pool, absolute 188
solution pool, relative 191
upper cutoff 84

tree
memory limit (MIP) 203
MIP advanced start 52

TreLim 203
tuning

measure 205
repetition of 206
reporting level 204

P A R A M E T E R S R E F E R E N C E M A N U A L220

time limit 207
TuningDisplay 204
TuningMeasure 205
TuningRepeat 206
TuningTiLim 207

U
unbounded optimal face 61

V
variable selection

candidate list and 195
MIP strategy 208
simplex iterations and 196

variable, basic
feasibility tolerance and 99

VarSel 208

W
WorkDir 210
working directory

node files and 136
temporary files and 210

working memory
limit on 211
node files and 136

WorkMem 211
WriteLevel 212

Z
zero-half cuts 214
ZeroHalfCuts 214

P A R A M E T E R S R E F E R E N C E M A N U A L 221

	Table of contents
	For technical support
	Contacting IBM Support

	Parameters Reference Manual
	Accessing parameters
	Parameter names
	Correspondence of parameters
	Saving parameter settings to a file
	Topical list of parameters
	Simplex
	Barrier
	MIP
	MIP general
	MIP strategies
	MIP cuts
	MIP tolerances
	MIP limits
	Solution polishing
	Solution pool
	Network
	Parallel optimization
	Sifting
	Preprocessing: aggregator, presolver
	Tolerances
	Limits
	Display and output

	List of CPLEX parameters
	advanced start switch
	constraint aggregation limit for cut generation
	preprocessing aggregator fill
	preprocessing aggregator application limit
	barrier algorithm
	barrier column nonzeros
	barrier crossover algorithm
	barrier display information
	convergence tolerance for LP and QP problems
	barrier growth limit
	barrier iteration limit
	barrier maximum correction limit
	barrier objective range
	barrier ordering algorithm
	convergence tolerance for QC problems
	barrier starting point algorithm
	MIP strategy best bound interval
	bound strengthening switch
	MIP branching direction
	backtracking tolerance
	MIP cliques switch
	clock type for computation time
	coefficient reduction setting
	variable (column) read limit
	conflict information display
	MIP covers switch
	simplex crash ordering
	lower cutoff
	number of cutting plane passes
	row multiplier factor for cuts
	upper cutoff
	data consistency checking switch
	dependency switch
	MIP disjunctive cuts switch
	MIP dive strategy
	dual simplex pricing algorithm
	type of cut limit
	absolute MIP gap tolerance
	relative MIP gap tolerance
	integrality tolerance
	epsilon used in linearization
	Markowitz tolerance
	optimality tolerance
	perturbation constant
	relaxation for FeasOpt
	feasibility tolerance
	mode of FeasOpt
	MIP flow cover cuts switch
	MIP flow path cut switch
	feasibility pump switch
	candidate limit for generating Gomory fractional cuts
	MIP Gomory fractional cuts switch
	pass limit for generating Gomory fractional cuts
	MIP GUB cuts switch
	MIP heuristic frequency
	MIP implied bound cuts switch
	MIP integer solution limit
	simplex maximum iteration limit
	local branching heuristic
	MCF cut switch
	memory reduction switch
	MIP callback switch between original model and reduced, presolved model
	MIP node log display information
	MIP emphasis switch
	MIP node log interval
	MIP priority order switch
	MIP priority order generation
	MIP dynamic search switch
	MIQCP strategy switch
	MIP MIR (mixed integer rounding) cut switch
	precision of numerical output in MPS and REW file formats
	network logging display switch
	network optimality tolerance
	network primal feasibility tolerance
	simplex network extraction level
	network simplex iteration limit
	network simplex pricing algorithm
	MIP subproblem algorithm
	node storage file switch
	MIP node limit
	MIP node selection strategy
	numerical precision emphasis
	nonzero element read limit
	absolute objective difference cutoff
	lower objective value limit
	upper objective value limit
	parallel mode switch
	simplex perturbation switch
	simplex perturbation limit
	absolute MIP gap before starting to polish a feasible solution
	relative MIP gap before starting to polish a feasible solution
	MIP integer solutions to find before starting to polish a feasible solution
	nodes to process before starting to polish a feasible solution
	time before starting to polish a feasible solution
	time spent polishing a solution (deprecated)
	maximum number of solutions generated for solution pool by populate
	primal simplex pricing algorithm
	presolve dual setting
	presolve switch
	linear reduction switch
	limit on the number of presolve passes made
	node presolve switch
	simplex pricing candidate list size
	MIP probing level
	time spent probing
	indefinite MIQP switch
	QP Q-matrix nonzero read limit
	primal and dual reduction type
	simplex refactoring frequency
	relaxed LP presolve switch
	relative objective difference cutoff
	frequency to try to repair infeasible MIP start
	MIP repeat presolve switch
	RINS heuristic frequency
	algorithm for continuous problems
	algorithm for continuous quadratic optimization
	MIP starting algorithm
	constraint (row) read limit
	scale parameter
	messages to screen switch
	sifting subproblem algorithm
	sifting information display
	upper limit on sifting iterations
	simplex iteration information display
	simplex singularity repair limit
	absolute gap for solution pool
	maximum number of solutions kept in solution pool
	relative gap for solution pool
	solution pool intensity
	solution pool replacement strategy
	MIP strong branching candidate list limit
	MIP strong branching iterations limit
	limit on nodes explored when a subMIP is being solved
	symmetry breaking
	global default thread count
	optimizer time limit
	tree memory limit
	tuning information display
	tuning measure
	tuning repeater
	tuning time limit
	MIP variable selection strategy
	directory for working files
	memory available for working storage
	write level for MST, SOL files
	MIP zero-half cuts switch

	Index

