
IBM® ILOG® CPLEX®

Callable Library

version 12.1

C API

Reference Manual

2009

© Copyright International Business Machines Corporation 1987, 2009

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are trademarks or registered
trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product
and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available

on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Java™ and all Java-based marks are trademarks of Sun Microsystems, Inc. in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United
States, other countries, or both.

All other brand, product and company names are trademarks or registered trademarks of their respective
holders.

Table of Contents
About This Manual..1

Concepts...4

Group optim.cplex.callable..8

Group optim.cplex.callable.accessmipresults...17

Group optim.cplex.callable.accessnetworkresults...18

Group optim.cplex.callable.accessqcpresults...19

Group optim.cplex.callable.accessresults...20

Group optim.cplex.callable.advanced..21

Group optim.cplex.callable.advanced.callbacks...24

Group optim.cplex.callable.analyzesolution..26

Group optim.cplex.callable.callbacks...27

Group optim.cplex.callable.createdeletecopy...28

Group optim.cplex.callable.debug..29

Group optim.cplex.callable.manageparameters..30

Group optim.cplex.callable.message...31

Group optim.cplex.callable.modifynetwork...32

Group optim.cplex.callable.modifyproblem...33

Group optim.cplex.callable.network...35

Group optim.cplex.callable.optimizers...37

Group optim.cplex.callable.portability...38

Group optim.cplex.callable.querygeneralproblem..39

Group optim.cplex.callable.querymip...40

Group optim.cplex.callable.querynetwork...41

Group optim.cplex.callable.queryqcp...42

Group optim.cplex.callable.queryqp...43

Group optim.cplex.callable.readfiles..44

Group optim.cplex.callable.readnetworkfiles..45

Group optim.cplex.callable.solutionpool...46

Group optim.cplex.callable.util...48

i

Table of Contents
Group optim.cplex.callable.writefiles...49

Group optim.cplex.callable.writenetworkfiles...50

Group optim.cplex.errorcodes..51

Group optim.cplex.solutionquality...58

Group optim.cplex.solutionstatus..60

Global function CPXaddfuncdest..62

Global function CPXmstwrite..63

Global function CPXgetmiprelgap..64

Global function CPXkillpnorms...65

Global function CPXdualwrite...66

Global function CPXcrushx...67

Global function CPXgetslack...68

Global function CPXsetdblparam..69

Global function CPXgetsosindex..70

Global function CPXgetnumsemiint...71

Global function CPXcheckcopysos..72

Global function CPXgetcallbackincumbent...73

Global function CPXcopyquad..74

Global function CPXNETgetphase1cnt...76

Global function CPXbinvarow...77

Global function CPXNETchgobj..78

Global function CPXNETgetnumnodes..79

Global function CPXqconstrslackfromx...80

Global function CPXgetdblquality...81

Global function CPXsolninfo...82

Global function CPXgetsolvecallbackfunc...84

Global function CPXmdleave...85

Global function CPXreadcopyorder..86

Global function CPXcopyobjname..87

ii

Table of Contents
Global function CPXgetsolnpoolmipstart..88

Global function CPXdualfarkas...89

Global function CPXgetcolinfeas..90

Global function CPXdelcols...91

Global function CPXslackfromx..92

Global function CPXcheckcopyquad..93

Global function CPXbinvacol..94

Global function CPXcheckchgcoeflist..95

Global function CPXgetcallbacknodeub..96

Global function CPXnewcols...97

Global function CPXprechgobj..99

Global function CPXgettime..100

Global function CPXNETgetnumarcs...101

Global function CPXgetnumindconstrs..102

Global function CPXcopyorder...103

Global function CPXNETsolninfo..104

Global function CPXgetsolnpooldivfilter..105

Global function CPXaddcols...106

Global function CPXkilldnorms...108

Global function CPXdelsetsolnpoolsolns..109

Global function CPXNETgetnodename..110

Global function CPXsetheuristiccallbackfunc...111

Global function CPXcutcallbackaddlocal...114

Global function CPXgetnumsos..115

Global function CPXgetcallbackctype..116

Global function CPXsolution...117

Global function CPXsetterminate..119

Global function CPXgetobjname...120

Global function CPXpopulate..121

iii

Table of Contents
Global function CPXgetmipstart...123

Global function CPXNETcopybase...124

Global function CPXrefineconflictext...125

Global function CPXgetbhead...127

Global function CPXboundsa..128

Global function CPXgetsolnpoolx...129

Global function CPXcloneprob..130

Global function CPXgetxqxax...131

Global function CPXdelindconstrs...132

Global function CPXgetnumrows..133

Global function CPXNETgetstat..134

Global function CPXdelmipstarts..135

Global function CPXgetmipitcnt..136

Global function CPXsolwritesolnpoolall..137

Global function CPXgetnumqpnz..138

Global function CPXgetub...139

Global function CPXsiftopt..140

Global function CPXfreeprob..141

Global function CPXgetsiftitcnt...142

Global function CPXcopyctype...143

Global function CPXNETgetarcnodes..144

Global function CPXobjsa..145

Global function CPXgetnummipstarts..146

Global function CPXgetdj..147

Global function CPXNETfreeprob...148

Global function CPXgetparamname...149

Global function CPXcopymipstart..150

Global function CPXcopyprotected..151

Global function CPXNETgetdj...152

iv

Table of Contents
Global function CPXdjfrompi...153

Global function CPXchgrhs...154

Global function CPXdelsolnpoolsolns...155

Global function CPXbranchcallbackbranchconstraints...156

Global function CPXrefinemipstartconflictext...158

Global function CPXgetbestobjval..160

Global function CPXgetqconstrinfeas..161

Global function CPXgetmipstartindex..162

Global function CPXfreelazyconstraints..163

Global function CPXchgobj...164

Global function CPXpivotout...165

Global function CPXgetnumcuts...166

Global function CPXcopypartialbase..167

Global function CPXsetlogfile...169

Global function CPXgetprobtype..170

Global function CPXsetinfocallbackfunc...171

Global function CPXgetincumbentcallbackfunc..173

Global function CPXNETgetitcnt...174

Global function CPXchgrowname...175

Global function CPXgetsolnpoolfiltertype...176

Global function CPXcheckcopyqpsep..177

Global function CPXcheckaddcols...178

Global function CPXgetx..179

Global function CPXflushstdchannels...180

Global function CPXNETcopynet..181

Global function CPXNETchgnodename...183

Global function CPXchgbds..184

Global function CPXreadcopymipstarts...185

Global function CPXgetnumquad...186

v

Table of Contents
Global function CPXaddchannel...187

Global function CPXNETgetarcindex..188

Global function CPXgetnumcols...189

Global function CPXgetpi..190

Global function CPXreadcopyprob...191

Global function CPXgetmipstartname..192

Global function CPXNETgetnodeindex..193

Global function CPXNETreadcopybase..194

Global function CPXgetbranchcallbackfunc..195

Global function CPXaddfpdest..198

Global function CPXgetnodeleftcnt..199

Global function CPXfltwrite...200

Global function CPXgetcallbacknodeobjval..201

Global function CPXgetrowinfeas...202

Global function CPXfopen...203

Global function CPXfreeusercuts...204

Global function CPXNETgetbase..205

Global function CPXdelqconstrs...206

Global function CPXdelsetsolnpoolfilters..207

Global function CPXNETgetslack...208

Global function CPXgetray..209

Global function CPXgetcrossppushcnt..210

Global function CPXrhssa...211

Global function CPXgetintquality..212

Global function CPXaddrows..213

Global function CPXgetcallbackpseudocosts...215

Global function CPXdelnames..216

Global function CPXdperwrite...217

Global function CPXgetobj..218

vi

Table of Contents
Global function CPXcopyqpsep..219

Global function CPXNETchgsupply..220

Global function CPXsetdeletenodecallbackfunc...221

Global function CPXNETwriteprob...223

Global function CPXgetcutcallbackfunc..224

Global function CPXgetnumint..225

Global function CPXwritemipstarts..226

Global function CPXgetnumnz..227

Global function CPXsetnodecallbackfunc...228

Global function CPXgetsolnpoolnumfilters...230

Global function CPXgetcallbacknodeinfo..231

Global function CPXbinvrow...234

Global function CPXcleanup...235

Global function CPXgetnodecnt..236

Global function CPXgetsolnpoolintquality...237

Global function CPXgetsolnpooldblquality..238

Global function CPXgetsolnpoolsolnname..239

Global function CPXgetstatstring...240

Global function CPXgetqpcoef..241

Global function CPXgetcallbacknodelp..242

Global function CPXgetindconstr...243

Global function CPXgetphase1cnt..244

Global function CPXchgrngval..245

Global function CPXNETaddnodes...246

Global function CPXNETgetobj...247

Global function CPXgetcrossdpushcnt..248

Global function CPXgetparamtype...249

Global function CPXNETsolution..250

Global function CPXgetstrparam..251

vii

Table of Contents
Global function CPXstrlen...252

Global function CPXNETgetnodearcs..253

Global function CPXgeterrorstring...255

Global function CPXgetconflictext..256

Global function CPXsettuningcallbackfunc...257

Global function CPXNETgetarcname..259

Global function CPXgetsense...260

Global function CPXgetcols..261

Global function CPXgetparamnum...262

Global function CPXgetbasednorms..263

Global function CPXfreepresolve..265

Global function CPXgetindconstrinfeas...266

Global function CPXgetcrossdexchcnt..267

Global function CPXaddsos..268

Global function CPXaddsolnpooldivfilter...269

Global function CPXbaropt..271

Global function CPXdelsolnpoolfilters...272

Global function CPXmipopt...273

Global function CPXpivotin...274

Global function CPXtuneparam...275

Global function CPXgetlpcallbackfunc...277

Global function CPXgetchannels..279

Global function CPXgetsolnpoolfiltername...280

Global function CPXNETgetobjsen...281

Global function CPXgetcallbacksosinfo...282

Global function CPXgetobjsen..284

Global function CPXpreslvwrite..285

Global function CPXqpindefcertificate...286

Global function CPXgetcrosspexchcnt..287

viii

Table of Contents
Global function CPXNETgetlb...288

Global function CPXcompletelp..289

Global function CPXuncrushpi..290

Global function CPXgetsolnpoolsolnindex..291

Global function CPXdelsetmipstarts..292

Global function CPXgetprestat..293

Global function CPXreadcopymipstart...295

Global function CPXbranchcallbackbranchgeneral..296

Global function CPXNETchgarcnodes...298

Global function CPXgetsiftphase1cnt..299

Global function CPXgetcoef..300

Global function CPXgetgrad..301

Global function CPXdelsetcols...302

Global function CPXgetcallbackorder..303

Global function CPXgetsolnpoolnumsolns..305

Global function CPXdelchannel..306

Global function CPXfputs..307

Global function CPXgetlb..308

Global function CPXgetsolnpoolmeanobjval...309

Global function CPXpivot..310

Global function CPXchgcolname..311

Global function CPXinfostrparam...312

Global function CPXgetitcnt..313

Global function CPXgetbaritcnt..314

Global function CPXgetcutoff..315

Global function CPXNETchgobjsen..316

Global function CPXgetsolnpoolfilterindex...317

Global function CPXdelfpdest...318

Global function CPXgetorder..319

ix

Table of Contents
Global function CPXchgqpcoef...320

Global function CPXreadcopysol..321

Global function CPXNETdelnodes..322

Global function CPXcutcallbackadd...323

Global function CPXgetdnorms..324

Global function CPXbinvcol..325

Global function CPXgetcallbackgloballb..326

Global function CPXgetqconstrindex...327

Global function CPXNETgetprobname...328

Global function CPXdelrows...329

Global function CPXgetnumqconstrs...330

Global function CPXgetijdiv..331

Global function CPXcopynettolp...332

Global function CPXgetindconstrname..333

Global function CPXgetcallbacklp..334

Global function CPXNETbasewrite...336

Global function CPXgetsolnpoolobjval..337

Global function CPXopenCPLEX..338

Global function CPXsetbranchnosolncallbackfunc..339

Global function CPXaddmipstarts..340

Global function CPXsetcutcallbackfunc...342

Global function CPXsetstrparam..344

Global function CPXsetintparam...345

Global function CPXchgctype...346

Global function CPXgetsosinfeas...347

Global function CPXNETcreateprob...348

Global function CPXgetcallbacknodex...349

Global function CPXsetmipcallbackfunc..350

Global function CPXNETreadcopyprob..352

x

Table of Contents
Global function CPXnewrows..353

Global function CPXgetobjoffset..354

Global function CPXflushchannel...355

Global function CPXfeasoptext...356

Global function CPXgetnumbin...358

Global function CPXhybbaropt...359

Global function CPXdisconnectchannel..360

Global function CPXNETprimopt..361

Global function CPXcopybasednorms...362

Global function CPXsetdefaults..363

Global function CPXNETchgname..364

Global function CPXNETaddarcs..365

Global function CPXhybnetopt..366

Global function CPXrefinemipstartconflict..367

Global function CPXgetqconstrname...368

Global function CPXcopystart...369

Global function CPXgetredlp...371

Global function CPXgetmipstarts...372

Global function CPXftran...373

Global function CPXsetsolvecallbackfunc...374

Global function CPXuncrushform...376

Global function CPXinfointparam...377

Global function CPXprimopt..378

Global function CPXgetsubmethod..379

Global function CPXcheckaddrows..380

Global function CPXcopylpwnames...381

Global function CPXchgcoeflist..383

Global function CPXbtran..384

Global function CPXgetcallbackinfo...385

xi

Table of Contents
Global function CPXgetcallbacknodeintfeas...390

Global function CPXNETchgarcname...392

Global function CPXgetsolnpoolrngfilter...393

Global function CPXNETgetub..394

Global function CPXgetax..395

Global function CPXqpuncrushpi...396

Global function CPXgetinfocallbackfunc...397

Global function CPXcopypnorms...399

Global function CPXbranchcallbackbranchbds..400

Global function CPXgetdblparam...401

Global function CPXlpopt..402

Global function CPXNETgetpi...403

Global function CPXgetconflict...404

Global function CPXgetmethod...406

Global function CPXgetbase...407

Global function CPXmsgstr...408

Global function CPXgetdeletenodecallbackfunc...409

Global function CPXgetcallbackglobalub..410

Global function CPXcopybase..411

Global function CPXaddusercuts..412

Global function CPXcopydnorms...414

Global function CPXcheckcopylp...415

Global function CPXwriteprob...416

Global function CPXmstwritesolnpoolall...417

Global function CPXmstwritesolnpool...418

Global function CPXNETextract..419

Global function CPXsetbranchcallbackfunc..420

Global function CPXsolwritesolnpool..424

Global function CPXqpopt...425

xii

Table of Contents
Global function CPXgetmipcallbackfunc...426

Global function CPXtuneparamprobset...428

Global function CPXreadcopyparam..430

Global function CPXgetnumsemicont..431

Global function CPXNETcheckcopynet..432

Global function CPXgetprotected...433

Global function CPXgetrowname..434

Global function CPXNETchgbds...435

Global function CPXchgsense..436

Global function CPXNETgetx..437

Global function CPXpreaddrows...438

Global function CPXsolwrite...439

Global function CPXcheckcopyctype...440

Global function CPXgetstat...441

Global function CPXtightenbds...442

Global function CPXembwrite...443

Global function CPXgetdsbcnt..444

Global function CPXchgprobtypesolnpool..445

Global function CPXgetnodecallbackfunc...446

Global function CPXgetobjval...447

Global function CPXgetpsbcnt..448

Global function CPXgetintparam..449

Global function CPXputenv...450

Global function CPXaddlazyconstraints..451

Global function CPXcheckcopylpwnames...453

Global function CPXgetrngval...454

Global function CPXcloseCPLEX..455

Global function CPXgetnodeint...456

Global function CPXchgmipstart..457

xiii

Table of Contents
Global function CPXdelsetsos..458

Global function CPXordwrite...459

Global function CPXgetrhs..460

Global function CPXgetsolnpoolnummipstarts...461

Global function CPXgetlogfile...462

Global function CPXgetcallbackindicatorinfo..463

Global function CPXgetprobname..465

Global function CPXgetsolnpoolnumreplaced..466

Global function CPXgetcallbacknodestat..467

Global function CPXNETdelset...468

Global function CPXchgobjsen...469

Global function CPXchgprobtype...470

Global function CPXchgmipstarts..472

Global function CPXgetcallbackseqinfo...473

Global function CPXsetincumbentcallbackfunc..474

Global function CPXcreateprob..476

Global function CPXmbasewrite...477

Global function CPXaddsolnpoolrngfilter..478

Global function CPXqpdjfrompi..479

Global function CPXrefineconflict..480

Global function CPXcheckvals..481

Global function CPXgetindconstrslack..482

Global function CPXgetsosname..483

Global function CPXpresolve..484

Global function CPXreadcopysolnpoolfilters..485

Global function CPXcrushpi..486

Global function CPXgetqconstr..487

Global function CPXgetrows...489

Global function CPXstrcpy..490

xiv

Table of Contents
Global function CPXgetindconstrindex..491

Global function CPXaddqconstr...492

Global function CPXgetcallbacknodelb..494

Global function CPXsetnetcallbackfunc...495

Global function CPXgetquad...497

Global function CPXNETgetobjval..498

Global function CPXstrongbranch..499

Global function CPXaddindconstr..500

Global function CPXdualopt..501

Global function CPXNETgetsupply...502

Global function CPXbasicpresolve...503

Global function CPXchgname...504

Global function CPXpperwrite...505

Global function CPXcopysos..506

Global function CPXgetnetcallbackfunc..507

Global function CPXfeasopt..509

Global function CPXgetsubstat...512

Global function CPXsetlpcallbackfunc...513

Global function CPXinfodblparam..515

Global function CPXreadcopybase...516

Global function CPXchgprobname...517

Global function CPXgetctype..518

Global function CPXgetsolnpoolqconstrslack..519

Global function CPXmsg..520

Global function CPXdelfuncdest...521

Global function CPXgetheuristiccallbackfunc...522

Global function CPXcopylp...523

Global function CPXcrushform...525

Global function CPXwriteparam..526

xv

Table of Contents
Global function CPXNETdelarcs...527

Global function CPXgetcolname...528

Global function CPXgetrowindex..529

Global function CPXdelsetrows..530

Global function CPXgetcolindex...531

Global function CPXclpwrite...532

Global function CPXgetpnorms..533

Global function CPXgetsolnpoolslack..534

Global function CPXgettuningcallbackfunc...535

Global function CPXfclose...537

Global function CPXversion..538

Global function CPXuncrushx...539

Global function CPXgetijrow...540

Global function CPXchgcoef...541

Global function CPXgetqconstrslack...542

Global function CPXunscaleprob..543

Global function CPXgetsos...544

Global function CPXgetchgparam..545

Macro CPX_DUAL_OBJ...546

Macro CPX_EXACT_KAPPA..547

Macro CPX_KAPPA..548

Macro CPX_MAX_COMP_SLACK..549

Macro CPX_MAX_DUAL_INFEAS..550

Macro CPX_MAX_DUAL_RESIDUAL..551

Macro CPX_MAX_INDSLACK_INFEAS...552

Macro CPX_MAX_INT_INFEAS..553

Macro CPX_MAX_PI...554

Macro CPX_MAX_PRIMAL_INFEAS..555

Macro CPX_MAX_PRIMAL_RESIDUAL...556

xvi

Table of Contents
Macro CPX_MAX_QCPRIMAL_RESIDUAL...557

Macro CPX_MAX_QCSLACK...558

Macro CPX_MAX_QCSLACK_INFEAS..559

Macro CPX_MAX_RED_COST...560

Macro CPX_MAX_SCALED_DUAL_INFEAS...561

Macro CPX_MAX_SCALED_DUAL_RESIDUAL..562

Macro CPX_MAX_SCALED_PI...563

Macro CPX_MAX_SCALED_PRIMAL_INFEAS...564

Macro CPX_MAX_SCALED_PRIMAL_RESIDUAL..565

Macro CPX_MAX_SCALED_RED_COST..566

Macro CPX_MAX_SCALED_SLACK..567

Macro CPX_MAX_SCALED_X..568

Macro CPX_MAX_SLACK..569

Macro CPX_MAX_X..570

Macro CPX_OBJ_GAP..571

Macro CPX_PRIMAL_OBJ..572

Macro CPX_SOLNPOOL_DIV...573

Macro CPX_SOLNPOOL_FIFO..574

Macro CPX_SOLNPOOL_FILTER_DIVERSITY...575

Macro CPX_SOLNPOOL_FILTER_RANGE...576

Macro CPX_SOLNPOOL_OBJ...577

Macro CPX_STAT_ABORT_DUAL_OBJ_LIM...578

Macro CPX_STAT_ABORT_IT_LIM...579

Macro CPX_STAT_ABORT_OBJ_LIM...580

Macro CPX_STAT_ABORT_PRIM_OBJ_LIM..581

Macro CPX_STAT_ABORT_TIME_LIM..582

Macro CPX_STAT_ABORT_USER...583

Macro CPX_STAT_CONFLICT_ABORT_CONTRADICTION..584

Macro CPX_STAT_CONFLICT_ABORT_IT_LIM...585

xvii

Table of Contents
Macro CPX_STAT_CONFLICT_ABORT_MEM_LIM..586

Macro CPX_STAT_CONFLICT_ABORT_NODE_LIM..587

Macro CPX_STAT_CONFLICT_ABORT_OBJ_LIM...588

Macro CPX_STAT_CONFLICT_ABORT_TIME_LIM..589

Macro CPX_STAT_CONFLICT_ABORT_USER..590

Macro CPX_STAT_CONFLICT_FEASIBLE...591

Macro CPX_STAT_CONFLICT_MINIMAL..592

Macro CPX_STAT_FEASIBLE..593

Macro CPX_STAT_FEASIBLE_RELAXED_INF...594

Macro CPX_STAT_FEASIBLE_RELAXED_QUAD..595

Macro CPX_STAT_FEASIBLE_RELAXED_SUM..596

Macro CPX_STAT_INFEASIBLE..597

Macro CPX_STAT_INForUNBD..598

Macro CPX_STAT_NUM_BEST..599

Macro CPX_STAT_OPTIMAL...600

Macro CPX_STAT_OPTIMAL_FACE_UNBOUNDED..601

Macro CPX_STAT_OPTIMAL_INFEAS..602

Macro CPX_STAT_OPTIMAL_RELAXED_INF..603

Macro CPX_STAT_OPTIMAL_RELAXED_QUAD...604

Macro CPX_STAT_OPTIMAL_RELAXED_SUM..605

Macro CPX_STAT_UNBOUNDED..606

Macro CPX_SUM_COMP_SLACK..607

Macro CPX_SUM_DUAL_INFEAS..608

Macro CPX_SUM_DUAL_RESIDUAL..609

Macro CPX_SUM_INDSLACK_INFEAS...610

Macro CPX_SUM_INT_INFEAS..611

Macro CPX_SUM_PI...612

Macro CPX_SUM_PRIMAL_INFEAS..613

Macro CPX_SUM_PRIMAL_RESIDUAL...614

xviii

Table of Contents
Macro CPX_SUM_QCPRIMAL_RESIDUAL...615

Macro CPX_SUM_QCSLACK...616

Macro CPX_SUM_QCSLACK_INFEAS..617

Macro CPX_SUM_RED_COST...618

Macro CPX_SUM_SCALED_DUAL_INFEAS...619

Macro CPX_SUM_SCALED_DUAL_RESIDUAL..620

Macro CPX_SUM_SCALED_PI...621

Macro CPX_SUM_SCALED_PRIMAL_INFEAS...622

Macro CPX_SUM_SCALED_PRIMAL_RESIDUAL..623

Macro CPX_SUM_SCALED_RED_COST..624

Macro CPX_SUM_SCALED_SLACK..625

Macro CPX_SUM_SCALED_X..626

Macro CPX_SUM_SLACK..627

Macro CPX_SUM_X..628

Macro CPXERR_ABORT_STRONGBRANCH...629

Macro CPXERR_ADJ_SIGN_QUAD...630

Macro CPXERR_ADJ_SIGN_SENSE...631

Macro CPXERR_ADJ_SIGNS...632

Macro CPXERR_ALGNOTLICENSED..633

Macro CPXERR_ARC_INDEX_RANGE...634

Macro CPXERR_ARRAY_BAD_SOS_TYPE..635

Macro CPXERR_ARRAY_NOT_ASCENDING...636

Macro CPXERR_ARRAY_TOO_LONG..637

Macro CPXERR_BAD_ARGUMENT...638

Macro CPXERR_BAD_BOUND_SENSE..639

Macro CPXERR_BAD_BOUND_TYPE...640

Macro CPXERR_BAD_CHAR...641

Macro CPXERR_BAD_CTYPE...642

Macro CPXERR_BAD_DIRECTION..643

xix

Table of Contents
Macro CPXERR_BAD_EXPO_RANGE..644

Macro CPXERR_BAD_EXPONENT..645

Macro CPXERR_BAD_FILETYPE..646

Macro CPXERR_BAD_ID..647

Macro CPXERR_BAD_INDCONSTR..648

Macro CPXERR_BAD_INDICATOR...649

Macro CPXERR_BAD_LAZY_UCUT..650

Macro CPXERR_BAD_LUB..651

Macro CPXERR_BAD_METHOD..652

Macro CPXERR_BAD_NUMBER..653

Macro CPXERR_BAD_OBJ_SENSE..654

Macro CPXERR_BAD_PARAM_NAME..655

Macro CPXERR_BAD_PARAM_NUM..656

Macro CPXERR_BAD_PIVOT...657

Macro CPXERR_BAD_PRIORITY..658

Macro CPXERR_BAD_PROB_TYPE..659

Macro CPXERR_BAD_ROW_ID...660

Macro CPXERR_BAD_SECTION_BOUNDS..661

Macro CPXERR_BAD_SECTION_ENDATA..662

Macro CPXERR_BAD_SECTION_QMATRIX...663

Macro CPXERR_BAD_SENSE...664

Macro CPXERR_BAD_SOS_TYPE..665

Macro CPXERR_BAD_STATUS...666

Macro CPXERR_BADPRODUCT..667

Macro CPXERR_BAS_FILE_SHORT...668

Macro CPXERR_BAS_FILE_SIZE..669

Macro CPXERR_CALLBACK...670

Macro CPXERR_CANT_CLOSE_CHILD..671

Macro CPXERR_CHILD_OF_CHILD..672

xx

Table of Contents
Macro CPXERR_COL_INDEX_RANGE..673

Macro CPXERR_COL_REPEAT_PRINT..674

Macro CPXERR_COL_REPEATS...675

Macro CPXERR_COL_ROW_REPEATS..676

Macro CPXERR_COL_UNKNOWN..677

Macro CPXERR_CONFLICT_UNSTABLE...678

Macro CPXERR_COUNT_OVERLAP...679

Macro CPXERR_COUNT_RANGE...680

Macro CPXERR_DBL_MAX..681

Macro CPXERR_DECOMPRESSION...682

Macro CPXERR_DUP_ENTRY...683

Macro CPXERR_EXTRA_BV_BOUND...684

Macro CPXERR_EXTRA_FR_BOUND...685

Macro CPXERR_EXTRA_FX_BOUND...686

Macro CPXERR_EXTRA_INTEND..687

Macro CPXERR_EXTRA_INTORG...688

Macro CPXERR_EXTRA_SOSEND..689

Macro CPXERR_EXTRA_SOSORG...690

Macro CPXERR_FAIL_OPEN_READ...691

Macro CPXERR_FAIL_OPEN_WRITE...692

Macro CPXERR_FILE_ENTRIES..693

Macro CPXERR_FILE_FORMAT..694

Macro CPXERR_FILTER_VARIABLE_TYPE...695

Macro CPXERR_ILL_DEFINED_PWL..696

Macro CPXERR_ILOG_LICENSE...697

Macro CPXERR_IN_INFOCALLBACK...698

Macro CPXERR_INDEX_NOT_BASIC...699

Macro CPXERR_INDEX_RANGE...700

Macro CPXERR_INDEX_RANGE_HIGH..701

xxi

Table of Contents
Macro CPXERR_INDEX_RANGE_LOW...702

Macro CPXERR_INT_TOO_BIG...703

Macro CPXERR_INT_TOO_BIG_INPUT..704

Macro CPXERR_INVALID_NUMBER...705

Macro CPXERR_LIMITS_TOO_BIG...706

Macro CPXERR_LINE_TOO_LONG...707

Macro CPXERR_LO_BOUND_REPEATS..708

Macro CPXERR_LP_NOT_IN_ENVIRONMENT...709

Macro CPXERR_MIPSEARCH_WITH_CALLBACKS..710

Macro CPXERR_MISS_SOS_TYPE...711

Macro CPXERR_MSG_NO_CHANNEL..712

Macro CPXERR_MSG_NO_FILEPTR...713

Macro CPXERR_MSG_NO_FUNCTION...714

Macro CPXERR_NAME_CREATION..715

Macro CPXERR_NAME_NOT_FOUND..716

Macro CPXERR_NAME_TOO_LONG..717

Macro CPXERR_NAN...718

Macro CPXERR_NEED_OPT_SOLN..719

Macro CPXERR_NEGATIVE_SURPLUS..720

Macro CPXERR_NET_DATA..721

Macro CPXERR_NET_FILE_SHORT..722

Macro CPXERR_NO_BARRIER_SOLN...723

Macro CPXERR_NO_BASIC_SOLN...724

Macro CPXERR_NO_BASIS...725

Macro CPXERR_NO_BOUND_SENSE..726

Macro CPXERR_NO_BOUND_TYPE...727

Macro CPXERR_NO_COLUMNS_SECTION..728

Macro CPXERR_NO_CONFLICT..729

Macro CPXERR_NO_DUAL_SOLN..730

xxii

Table of Contents
Macro CPXERR_NO_ENDATA...731

Macro CPXERR_NO_ENVIRONMENT...732

Macro CPXERR_NO_FILENAME...733

Macro CPXERR_NO_ID..734

Macro CPXERR_NO_ID_FIRST..735

Macro CPXERR_NO_INT_X..736

Macro CPXERR_NO_LU_FACTOR..737

Macro CPXERR_NO_MEMORY..738

Macro CPXERR_NO_MIPSTART...739

Macro CPXERR_NO_NAME_SECTION...740

Macro CPXERR_NO_NAMES...741

Macro CPXERR_NO_NORMS..742

Macro CPXERR_NO_NUMBER..743

Macro CPXERR_NO_NUMBER_BOUND...744

Macro CPXERR_NO_NUMBER_FIRST..745

Macro CPXERR_NO_OBJ_SENSE..746

Macro CPXERR_NO_OBJECTIVE...747

Macro CPXERR_NO_OP_OR_SENSE...748

Macro CPXERR_NO_OPERATOR...749

Macro CPXERR_NO_ORDER...750

Macro CPXERR_NO_PROBLEM..751

Macro CPXERR_NO_QMATRIX_SECTION...752

Macro CPXERR_NO_QP_OPERATOR..753

Macro CPXERR_NO_QUAD_EXP..754

Macro CPXERR_NO_RHS_COEFF..755

Macro CPXERR_NO_RHS_IN_OBJ...756

Macro CPXERR_NO_RNGVAL...757

Macro CPXERR_NO_ROW_NAME..758

Macro CPXERR_NO_ROW_SENSE...759

xxiii

Table of Contents
Macro CPXERR_NO_ROWS_SECTION...760

Macro CPXERR_NO_SENSIT...761

Macro CPXERR_NO_SOLN..762

Macro CPXERR_NO_SOLNPOOL..763

Macro CPXERR_NO_SOS..764

Macro CPXERR_NO_SOS_SEPARATOR..765

Macro CPXERR_NO_TREE..766

Macro CPXERR_NO_VECTOR_SOLN...767

Macro CPXERR_NODE_INDEX_RANGE...768

Macro CPXERR_NODE_ON_DISK...769

Macro CPXERR_NOT_DUAL_UNBOUNDED..770

Macro CPXERR_NOT_FIXED...771

Macro CPXERR_NOT_FOR_MIP..772

Macro CPXERR_NOT_FOR_QCP..773

Macro CPXERR_NOT_FOR_QP...774

Macro CPXERR_NOT_MILPCLASS...775

Macro CPXERR_NOT_MIN_COST_FLOW..776

Macro CPXERR_NOT_MIP...777

Macro CPXERR_NOT_MIQPCLASS..778

Macro CPXERR_NOT_ONE_PROBLEM..779

Macro CPXERR_NOT_QP..780

Macro CPXERR_NOT_SAV_FILE..781

Macro CPXERR_NOT_UNBOUNDED..782

Macro CPXERR_NULL_NAME...783

Macro CPXERR_NULL_POINTER..784

Macro CPXERR_ORDER_BAD_DIRECTION...785

Macro CPXERR_PARAM_INCOMPATIBLE...786

Macro CPXERR_PARAM_TOO_BIG..787

Macro CPXERR_PARAM_TOO_SMALL..788

xxiv

Table of Contents
Macro CPXERR_PRESLV_ABORT..789

Macro CPXERR_PRESLV_BAD_PARAM..790

Macro CPXERR_PRESLV_BASIS_MEM...791

Macro CPXERR_PRESLV_COPYORDER..792

Macro CPXERR_PRESLV_COPYSOS...793

Macro CPXERR_PRESLV_CRUSHFORM...794

Macro CPXERR_PRESLV_DUAL...795

Macro CPXERR_PRESLV_FAIL_BASIS..796

Macro CPXERR_PRESLV_INF...797

Macro CPXERR_PRESLV_INForUNBD...798

Macro CPXERR_PRESLV_NO_BASIS..799

Macro CPXERR_PRESLV_NO_PROB...800

Macro CPXERR_PRESLV_SOLN_MIP..801

Macro CPXERR_PRESLV_SOLN_QP..802

Macro CPXERR_PRESLV_START_LP..803

Macro CPXERR_PRESLV_TIME_LIM..804

Macro CPXERR_PRESLV_UNBD..805

Macro CPXERR_PRESLV_UNCRUSHFORM..806

Macro CPXERR_PRIIND...807

Macro CPXERR_PRM_DATA...808

Macro CPXERR_PRM_HEADER..809

Macro CPXERR_PTHREAD_CREATE...810

Macro CPXERR_PTHREAD_MUTEX_INIT..811

Macro CPXERR_Q_DIVISOR..812

Macro CPXERR_Q_DUP_ENTRY...813

Macro CPXERR_Q_NOT_INDEF..814

Macro CPXERR_Q_NOT_POS_DEF..815

Macro CPXERR_Q_NOT_SYMMETRIC...816

Macro CPXERR_QCP_SENSE...817

xxv

Table of Contents
Macro CPXERR_QCP_SENSE_FILE...818

Macro CPXERR_QUAD_EXP_NOT_2..819

Macro CPXERR_QUAD_IN_ROW..820

Macro CPXERR_RANGE_SECTION_ORDER...821

Macro CPXERR_RESTRICTED_VERSION..822

Macro CPXERR_RHS_IN_OBJ...823

Macro CPXERR_RIM_REPEATS..824

Macro CPXERR_RIM_ROW_REPEATS...825

Macro CPXERR_RIMNZ_REPEATS...826

Macro CPXERR_ROW_INDEX_RANGE..827

Macro CPXERR_ROW_REPEAT_PRINT...828

Macro CPXERR_ROW_REPEATS...829

Macro CPXERR_ROW_UNKNOWN...830

Macro CPXERR_SAV_FILE_DATA..831

Macro CPXERR_SAV_FILE_WRITE..832

Macro CPXERR_SBASE_ILLEGAL...833

Macro CPXERR_SBASE_INCOMPAT..834

Macro CPXERR_SINGULAR..835

Macro CPXERR_STR_PARAM_TOO_LONG...836

Macro CPXERR_SUBPROB_SOLVE...837

Macro CPXERR_THREAD_FAILED...838

Macro CPXERR_TILIM_CONDITION_NO..839

Macro CPXERR_TILIM_STRONGBRANCH...840

Macro CPXERR_TOO_MANY_COEFFS..841

Macro CPXERR_TOO_MANY_COLS...842

Macro CPXERR_TOO_MANY_RIMNZ...843

Macro CPXERR_TOO_MANY_RIMS..844

Macro CPXERR_TOO_MANY_ROWS..845

Macro CPXERR_TOO_MANY_THREADS...846

xxvi

Table of Contents
Macro CPXERR_TREE_MEMORY_LIMIT..847

Macro CPXERR_UNIQUE_WEIGHTS..848

Macro CPXERR_UNSUPPORTED_CONSTRAINT_TYPE...849

Macro CPXERR_UP_BOUND_REPEATS..850

Macro CPXERR_WORK_FILE_OPEN..851

Macro CPXERR_WORK_FILE_READ..852

Macro CPXERR_WORK_FILE_WRITE..853

Macro CPXERR_XMLPARSE...854

Macro CPXMIP_ABORT_FEAS..855

Macro CPXMIP_ABORT_INFEAS..856

Macro CPXMIP_ABORT_RELAXED..857

Macro CPXMIP_FAIL_FEAS...858

Macro CPXMIP_FAIL_FEAS_NO_TREE..859

Macro CPXMIP_FAIL_INFEAS...860

Macro CPXMIP_FAIL_INFEAS_NO_TREE..861

Macro CPXMIP_FEASIBLE...862

Macro CPXMIP_FEASIBLE_RELAXED_INF..863

Macro CPXMIP_FEASIBLE_RELAXED_QUAD...864

Macro CPXMIP_FEASIBLE_RELAXED_SUM...865

Macro CPXMIP_INFEASIBLE...866

Macro CPXMIP_INForUNBD...867

Macro CPXMIP_MEM_LIM_FEAS..868

Macro CPXMIP_MEM_LIM_INFEAS...869

Macro CPXMIP_NODE_LIM_FEAS..870

Macro CPXMIP_NODE_LIM_INFEAS...871

Macro CPXMIP_OPTIMAL..872

Macro CPXMIP_OPTIMAL_INFEAS...873

Macro CPXMIP_OPTIMAL_POPULATED..874

Macro CPXMIP_OPTIMAL_POPULATED_TOL...875

xxvii

Table of Contents
Macro CPXMIP_OPTIMAL_RELAXED_INF...876

Macro CPXMIP_OPTIMAL_RELAXED_QUAD..877

Macro CPXMIP_OPTIMAL_RELAXED_SUM...878

Macro CPXMIP_OPTIMAL_TOL...879

Macro CPXMIP_POPULATESOL_LIM...880

Macro CPXMIP_SOL_LIM...881

Macro CPXMIP_TIME_LIM_FEAS..882

Macro CPXMIP_TIME_LIM_INFEAS..883

Macro CPXMIP_UNBOUNDED...884

xxviii

About This Manual
This reference manual documents the Callable Library, the C application programming interface (API) of IBM(R)
ILOG(R) CPLEX(R). There are separate reference manuals for the C++, Java, C#.NET, and Python APIs of
CPLEX. Following this table that summarizes the groups in this manual, you will find more information:

What Are the CPLEX Component Libraries?•
What You Need to Know•
Notation and Naming Conventions•
Related Documentation•

Group Summary

optim.cplex.callable The API of the CPLEX Callable Library for users of C.

optim.cplex.callable.accessmipresults The routines in the CPLEX Callable Library to access MIP results.

optim.cplex.callable.accessnetworkresults The routines in the CPLEX Callable Library to access network
results.

optim.cplex.callable.accessqcpresults The routines in the CPLEX Callable Library to access QCP or
SOCP results.

optim.cplex.callable.accessresults The routines in the CPLEX Callable Library to access results.

optim.cplex.callable.advanced The API of the advanced C routines of the CPLEX Callable Library.

optim.cplex.callable.advanced.callbacks The API of the advanced C callback routines of the CPLEX Callable
Library.

optim.cplex.callable.analyzesolution The routines in the CPLEX Callable Library to analyze solutions.

optim.cplex.callable.callbacks The CPLEX Callable Library routines for managing callbacks.

optim.cplex.callable.createdeletecopy The routines in the CPLEX Callable Library to create and delete
problems and to copy data.

optim.cplex.callable.debug The CPLEX Callable Library routines for debugging data.

optim.cplex.callable.manageparameters
The routines in the CPLEX Callable Library to manage parameters
(that is, set parameters, get current values of parameters, and get
information about parameters).

optim.cplex.callable.message The CPLEX Callable Library routines for managing messages.

optim.cplex.callable.modifynetwork The routines in the CPLEX Callable Library to modify a network.

optim.cplex.callable.modifyproblem The routines in the CPLEX Callable Library to modify a problem
created by CPXcreateprob.

optim.cplex.callable.network The network routines in the CPLEX Callable Library.

optim.cplex.callable.optimizers The routines in the CPLEX Callable Library to launch an optimizer.

optim.cplex.callable.portability The portability routines in the CPLEX Callable Library.

optim.cplex.callable.querygeneralproblem The routines in the CPLEX Callable Library to query general
problem data.

optim.cplex.callable.querymip The routines in the CPLEX Callable Library to query MIP problem
data.

optim.cplex.callable.querynetwork The routines in the CPLEX Callable Library to query network
problem data.

optim.cplex.callable.queryqcp

The routines in the CPLEX Callable Library to query QCP problem
data (that is, problems with one or more quadratic constraints),
including the special case of second order cone programming
(SOCP) problems.

optim.cplex.callable.queryqp The routines in the CPLEX Callable Library to query QP problem
data (that is, problems with a quadratic objective function).

1

optim.cplex.callable.readfiles The routines in the CPLEX Callable Library to read files.

optim.cplex.callable.readnetworkfiles The routines in the CPLEX Callable Library to read network files.

optim.cplex.callable.solutionpool The routines in the CPLEX Callable Library for the solution pool.

optim.cplex.callable.util The general utilities in the CPLEX Callable Library.

optim.cplex.callable.writefiles The routines in the CPLEX Callable Library to write files.

optim.cplex.callable.writenetworkfiles The routines in the CPLEX Callable Library to write network files.

optim.cplex.errorcodes

The Callable Library macros that define error codes, their symbolic
constants, their short message strings, and their explanations.
There is a key to the symbols in the short message strings after the
table.

optim.cplex.solutionquality
The Callable Library macros that indicate the qualities of a solution,
their symbolic constants, and their meaning. Methods for accessing
solution quality are mentioned after the table.

optim.cplex.solutionstatus

The Callable Library macros that define solution status, their
symbolic constants, their equivalent in Concert Technology
enumerations, and their meaning. There is a note about
unboundedness after the table.

What Are the CPLEX Component Libraries?

The CPLEX Component Libraries are designed to facilitate the development of applications to solve, modify, and
interpret the results of linear, mixed integer, continuous convex quadratic, quadratically constrained, and mixed
integer quadratic or quadratically constrained programming.

The CPLEX Component Libraries consist of:

the CPLEX Callable Library, a C application programming interface (API), and•
Concert Technology, an object-oriented API for C++, Java, and C#.NET users.•

Concert Technology is also part of CP Optimizer, enabling cooperative strategies using CPLEX and CP
Optimizer together for solving difficult optimization problems.

What You Need to Know

This manual assumes that you are familiar with the operating system on which you are using CPLEX.

The CPLEX Callable Library is written in the C programming language. If you use this product, this manual
assumes you can write code in the appropriate language, and that you have a working knowledge of a supported
integrated development environment (IDE) for that language.

Notation and Naming Conventions

Throughout this manual:

The names of routines and parameters defined in the CPLEX Callable Library begin with CPX. This
convention helps prevent name space conflicts with user-written routines and other code libraries.

•

The names of Component Library routines and arguments of routines appear in this typeface
(examples: CPXprimopt, numcols)

•

2

Related Documentation

In addition to this Reference Manual documenting the Callable Library (C API), CPLEX also comes with these
resources:

Getting Started with CPLEX introduces you to ways of specifying models and solving problems with
CPLEX.

•

The CPLEX User's Manual explores programming with CPLEX in greater depth. It provides practical
ideas about how to use CPLEX in your own applications and shows how and why design and
implementation decisions in the examples were made.

•

The CPLEX Release Notes highlight the new features and important changes in this version.•
The CPLEX C++ Reference Manual documents the classes and member functions of the Concert
Technology and CPLEX C++ API.

•

The CPLEX Java Reference Manual supplies detailed definitions of the Concert Technology Java
interfaces and CPLEX Java classes.

•

The CPLEX C#.NET Reference Manual documents the Concert Technology C#.NET interfaces and
CPLEX C#.NET classes.

•

The CPLEX Python Reference Manual supplies detailed definitions of the Python classes, interfaces,
modules, and methods.

•

Source code for examples is delivered in the standard distribution.•
A file named readme.html is delivered in the standard distribution. This file contains the most current
information about platform prerequisites for CPLEX.

•

All of the manuals and Release Notes are available in online versions. The online documentation, in HTML
format, can be accessed through standard HTML browsers.

3

Concepts

Branch and cut

CPLEX uses branch-and-cut search when solving mixed integer programming (MIP) models. The branch-and-cut
procedure manages a search tree consisting of nodes. Every node represents an LP or QP subproblem to be
processed; that is, to be solved, to be checked for integrality, and perhaps to be analyzed further. Nodes are
called active if they have not yet been processed. After a node has been processed, it is no longer active. Cplex
processes active nodes in the tree until either no more active nodes are available or some limit has been
reached.

A branch is the creation of two new nodes from a parent node. Typically, a branch occurs when the bounds on a
single variable are modified, with the new bounds remaining in effect for that new node and for any of its
descendants. For example, if a branch occurs on a binary variable, that is, one with a lower bound of 0 (zero) and
an upper bound of 1 (one), then the result will be two new nodes, one node with a modified upper bound of 0 (the
downward branch, in effect requiring this variable to take only the value 0), and the other node with a modified
lower bound of 1 (the upward branch, placing the variable at 1). The two new nodes will thus have completely
distinct solution domains.

A cut is a constraint added to the model. The purpose of adding any cut is to limit the size of the solution domain
for the continuous LP or QP problems represented at the nodes, while not eliminating legal integer solutions. The
outcome is thus to reduce the number of branches required to solve the MIP.

As an example of a cut, first consider the following constraint involving three binary (0-1) variables:

20x + 25y + 30z <= 40

That sample constraint can be strengthened by adding the following cut to the model:

1x + 1y + 1z <= 1

No feasible integer solutions are ruled out by the cut, but some fractional solutions, for example (0.0, 0.4, 1.0),
can no longer be obtained in any LP or QP subproblems at the nodes, possibly reducing the amount of searching
needed.

The branch-and-cut procedure, then, consists of performing branches and applying cuts at the nodes of the tree.
Here is a more detailed outline of the steps involved.

First, the branch-and-cut tree is initialized to contain the root node as the only active node. The root node of the
tree represents the entire problem, ignoring all of the explicit integrality requirements. Potential cuts are
generated for the root node but, in the interest of keeping the problem size reasonable, not all such cuts are
applied to the model immediately. If possible, an incumbent solution (that is, the best known solution that satisfies
all the integrality requirements) is established at this point for later use in the algorithm. Such a solution may be
established either by CPLEX or by a user who specifies a starting solution by means of the Callable Library
routine CPXcopymipstart or the Concert Technology method IloCplex::setVectors.

When processing a node, CPLEX starts by solving the continuous relaxation of its subproblem, that is, the
subproblem without integrality constraints. If the solution violates any cuts, CPLEX may add some or all of them
to the node problem and may resolve it, if CPLEX has added cuts. This procedure is iterated until no more
violated cuts are detected (or deemed worth adding at this time) by the algorithm. If at any point in the addition of
cuts the node becomes infeasible, the node is pruned (that is, it is removed from the tree).

Otherwise, CPLEX checks whether the solution of the node-problem satisfies the integrality constraints. If so, and
if its objective value is better than that of the current incumbent, the solution of the node-problem is used as the
new incumbent. If not, branching will occur, but first a heuristic method may be tried at this point to see if a new
incumbent can be inferred from the LP-QP solution at this node, and other methods of analysis may be
performed on this node. The branch, when it occurs, is performed on a variable where the value of the present
solution violates its integrality requirement. This practice results in two new nodes being added to the tree for
later processing.

4

Each node, after its relaxation is solved, possesses an optimal objective function value Z. At any given point in
the algorithm, there is a node whose Z value is better (less, in the case of a minimization problem, or greater for
a maximization problem) than all the others. This Best Node value can be compared to the objective function
value of the incumbent solution. The resulting MIP Gap, expressed as a percentage of the incumbent solution,
serves as a measure of progress toward finding and proving optimality. When active nodes no longer exist, then
these two values will have converged toward each other, and the MIP Gap will thus be zero, signifying that
optimality of the incumbent has been proven.

It is possible to tell CPLEX to terminate the branch-and-cut procedure sooner than a completed proof of
optimality. For example, a user can set a time limit or a limit on the number of nodes to be processed. Indeed,
with default settings, CPLEX will terminate the search when the MIP Gap has been brought lower than 0.0001
(0.01%), because it is often the case that much computation is invested in moving the Best Node value after the
eventual optimal incumbent has been located. This termination criterion for the MIP Gap can be changed by the
user, of course.

Callbacks in the Callable Library

Callbacks are also known as an interrupt routines. CPLEX supports various types of callbacks.

Informational callbacks allow your application to gather information about the progress of MIP
optimization without interfering with performance of the search. In addition, an informational callback
also enables your application to terminate optimization. Specifically, informational callbacks check to
determine whether your application has invoked the routine CPXsetterminate to set a signal to
terminate optimization, in which case informational callbacks will terminate optimization for you.

•

Query callbacks, also known as diagnostic callbacks, make it possible for your application to access
information about the progress of optimization, whether continuous or discrete, while optimization is in
process. The information available depends on the algorithm (primal simplex, dual simplex, barrier,
mixed integer, or network) that you are using. For example, a query callback can return the current
objective value, the number of simplex iterations that have been completed, and other details. Query
callbacks can also be called from presolve, probing, fractional cuts, and disjunctive cuts. Query
callbacks may impede performance because the internal data structures that support query callbacks
must be updated frequently. Furthermore, they make assumptions about the path of the search,
assumptions that are correct with respect to conventional branch and cut but that may be false with
respect to dynamic search. For this reason, query or diagnostic callbacks are not compatible with
dynamic search. In other words, CPLEX normally turns off dynamic search in the presence of query or
diagnostic callbacks in an application.

•

Control callbacks make it possible for you to define your own user-written routines and for your
application to call those routines to interrupt and resume optimization. Control callbacks enable you to
direct the search when you are solving a MIP. For example, control callbacks enable you to select the
next node to process or to control the creation of subnodes (among other possibilities). Control
callbacks are an advanced feature of CPLEX, and as such, they require a greater degree of familiarity
with CPLEX algorithms. Because control callbacks can alter the search path in this way, control
callbacks are not compatible with dynamic search. In other words, CPLEX normally turns off dynamic
search in the presence of control callbacks in an application.

•

If you want to take advantage of dynamic search in your application, you should restrict your use of callbacks to
the informational callbacks.

If you see a need for query, diagnostic, or control callbacks in your application, you can override the normal
behavior of CPLEX by nondefault settings of the parameters CPX_PARAM_MIPSEARCH,
CPX_PARAM_PARALLELMODE, and CPX_PARAM_THREADS. For more details about these parameters and their
settings, see the CPLEX Parameters Reference Manual.

Callbacks may be called repeatedly at various points during optimization; for each place a callback is called,
CPLEX provides a separate callback routine for that particular point.

See also the group optim.cplex.callable.callbacks for a list of query and control callbacks.

5

Infeasibility Tools

When you problem is infeasible, CPLEX offers tools to help you diagnose the cause or causes of infeasibility in
your model and possibly repair it: CPXrefineconflict and CPXfeasopt.

Conflict Refiner

Given an infeasible model, the conflict refiner can identify conflicting constraints and bounds within the model to
help you identify the causes of the infeasibility. In this context, a conflict is a subset of the constraints and bounds
of the model which are mutually contradictory. The conflict refiner first examines the full infeasible model to
identify portions of the conflict that it can remove. By this process of refinement, the conflict refiner arrives at a
minimal conflict. A minimal conflict is usually smaller than the full infeasible model and thus makes infeasibility
analysis easier. To invoke the conflict refiner, call the routine CPXrefineconflict.

If a model happens to include multiple independent causes of infeasibility, then it may be necessary for the user
to repair one such cause and then repeat the diagnosis with further conflict analysis.

A conflict does not provide information about the magnitude of change in data values needed to achieve
feasibility. The techniques that CPLEX uses to refine a conflict include or remove constraints or bounds in trial
conflicts; the techniques do not vary the data in constraints nor in bounds. To gain insight about changes in
bounds on variables and constraints, consider the FeasOpt feature.

Also consider FeasOpt for an approach to automatic repair of infeasibility.

Refining a conflict in an infeasible model as defined here is similar to finding an irreducibly inconsistent set (IIS),
an established technique in the published literature, long available within CPLEX. Both tools (conflict refiner and
IIS finder) attempt to identify an infeasible subproblem in an infeasible model. However, the conflict refiner is
more general than the IIS finder. The IIS finder is applicable only in continuous (that is, LP) models, whereas the
conflict refiner can work on any type of problem, even mixed integer programs (MIP) and those containing
quadratic elements (QP or QCP).

Also the conflict refiner differs from the IIS finder in that a user may organize constraints into one or more groups
for a conflict. When a user specifies a group, the conflict refiner will make sure that either the group as a whole
will be present in a conflict (that is, all its members will participate in the conflict, and removal of one will result in
a feasible subproblem) or that the group will not participate in the conflict at all.

See the Callable Library routine CPXrefineconflictext for more about groups.

A user may also assign a numeric preference to constraints or to groups of constraints. In the case of an
infeasible model having more than one possible conflict, preferences guide the conflict refiner toward identifying
constraints in a conflict as the user prefers.

In these respects, the conflict refiner represents an extension and generalization of the IIS finder.

FeasOpt

Alternatively, after a model have been proven infeasible, CPXfeasopt performs an additional optimization that
computes a minimal relaxation of the constraints over variables, of the bounds on variables, and of the righthand
sides of constraints to make the model feasible. The parameter CPX_PARAM_FEASOPTMODE lets you guide
CPXfeasopt in its computation of this relaxation.

CPXfeasopt works in two phases. In its first phase, it attempts to minimize its relaxation of the infeasible model.
That is, it attempts to find a feasible solution that requires minimal change. In its second phase, it finds an optimal
solution among those that require only as much relaxation as it found necessary in the first phase.

Your choice of values for the parameter CPX_PARAM_FEASOPTMODE indicates two aspects to CPLEX:

whether to stop in phase one or continue to phase two:
Min means stop in phase one with a minimal relaxation.♦

•

6

Opt means continue to phase two for an optimum among those minimal relaxations.♦
how to measure the minimality of the relaxation:

Sum means CPLEX should minimize the sum of all relaxations♦
Inf means that CPLEX should minimize the number of constraints and bounds relaxed.♦

•

The possible values of CPX_PARAM_FEASOPTMODE are documented in the routine.

See the group optim.cplex.solutionstatus for documentation of the status of a relaxation returned by a
call of CPXfeasopt.

Unboundedness

The treatment of models that are unbounded involves a few subtleties. Specifically, a declaration of
unboundedness means that CPLEX has determined that the model has an unbounded ray. Given any feasible
solution x with objective z, a multiple of the unbounded ray can be added to x to give a feasible solution with
objective z-1 (or z+1 for maximization models). Thus, if a feasible solution exists, then the optimal objective is
unbounded. Note that CPLEX has not necessarily concluded that a feasible solution exists. Users can call the
routine CPXsolninfo to determine whether CPLEX has also concluded that the model has a feasible solution.

7

Group optim.cplex.callable
The API of the CPLEX Callable Library for users of C.

Macro Summary

CPX_SOLNPOOL_DIV

CPX_SOLNPOOL_FIFO

CPX_SOLNPOOL_FILTER_DIVERSITY

CPX_SOLNPOOL_FILTER_RANGE

CPX_SOLNPOOL_OBJ

Function Summary

CPXaddchannel

CPXaddcols

CPXaddfpdest

CPXaddfuncdest

CPXaddindconstr

CPXaddmipstarts

CPXaddqconstr

CPXaddrows

CPXaddsolnpooldivfilter

CPXaddsolnpoolrngfilter

CPXaddsos

CPXbaropt

CPXboundsa

CPXcheckaddcols

CPXcheckaddrows

CPXcheckchgcoeflist

CPXcheckcopyctype

CPXcheckcopylp

CPXcheckcopylpwnames

CPXcheckcopyqpsep

CPXcheckcopyquad

CPXcheckcopysos

CPXcheckvals

CPXchgbds

CPXchgcoef

CPXchgcoeflist

CPXchgcolname

CPXchgctype

CPXchgmipstart

CPXchgmipstarts

8

CPXchgname

CPXchgobj

CPXchgobjsen

CPXchgprobname

CPXchgprobtype

CPXchgprobtypesolnpool

CPXchgqpcoef

CPXchgrhs

CPXchgrngval

CPXchgrowname

CPXchgsense

CPXcleanup

CPXcloneprob

CPXcloseCPLEX

CPXclpwrite

CPXcompletelp

CPXcopybase

CPXcopyctype

CPXcopylp

CPXcopylpwnames

CPXcopymipstart

CPXcopynettolp

CPXcopyobjname

CPXcopyorder

CPXcopypartialbase

CPXcopyqpsep

CPXcopyquad

CPXcopysos

CPXcopystart

CPXcreateprob

CPXdelchannel

CPXdelcols

CPXdelfpdest

CPXdelfuncdest

CPXdelindconstrs

CPXdelmipstarts

CPXdelnames

CPXdelqconstrs

CPXdelrows

CPXdelsetcols

CPXdelsetmipstarts

9

CPXdelsetrows

CPXdelsetsolnpoolfilters

CPXdelsetsolnpoolsolns

CPXdelsetsos

CPXdelsolnpoolfilters

CPXdelsolnpoolsolns

CPXdisconnectchannel

CPXdperwrite

CPXdualopt

CPXdualwrite

CPXembwrite

CPXfclose

CPXfeasopt

CPXfeasoptext

CPXfltwrite

CPXflushchannel

CPXflushstdchannels

CPXfopen

CPXfputs

CPXfreeprob

CPXgetax

CPXgetbaritcnt

CPXgetbase

CPXgetbestobjval

CPXgetcallbackinfo

CPXgetchannels

CPXgetchgparam

CPXgetcoef

CPXgetcolindex

CPXgetcolinfeas

CPXgetcolname

CPXgetcols

CPXgetconflict

CPXgetconflictext

CPXgetcrossdexchcnt

CPXgetcrossdpushcnt

CPXgetcrosspexchcnt

CPXgetcrossppushcnt

CPXgetctype

CPXgetcutoff

CPXgetdblparam

10

CPXgetdblquality

CPXgetdj

CPXgetdsbcnt

CPXgeterrorstring

CPXgetgrad

CPXgetindconstr

CPXgetindconstrindex

CPXgetindconstrinfeas

CPXgetindconstrname

CPXgetindconstrslack

CPXgetinfocallbackfunc

CPXgetintparam

CPXgetintquality

CPXgetitcnt

CPXgetlb

CPXgetlogfile

CPXgetlpcallbackfunc

CPXgetmethod

CPXgetmipcallbackfunc

CPXgetmipitcnt

CPXgetmiprelgap

CPXgetmipstart

CPXgetmipstartindex

CPXgetmipstartname

CPXgetmipstarts

CPXgetnetcallbackfunc

CPXgetnodecnt

CPXgetnodeint

CPXgetnodeleftcnt

CPXgetnumbin

CPXgetnumcols

CPXgetnumcuts

CPXgetnumindconstrs

CPXgetnumint

CPXgetnummipstarts

CPXgetnumnz

CPXgetnumqconstrs

CPXgetnumqpnz

CPXgetnumquad

CPXgetnumrows

CPXgetnumsemicont

11

CPXgetnumsemiint

CPXgetnumsos

CPXgetobj

CPXgetobjname

CPXgetobjsen

CPXgetobjval

CPXgetorder

CPXgetparamname

CPXgetparamnum

CPXgetparamtype

CPXgetphase1cnt

CPXgetpi

CPXgetprobname

CPXgetprobtype

CPXgetpsbcnt

CPXgetqconstr

CPXgetqconstrindex

CPXgetqconstrinfeas

CPXgetqconstrname

CPXgetqconstrslack

CPXgetqpcoef

CPXgetquad

CPXgetrhs

CPXgetrngval

CPXgetrowindex

CPXgetrowinfeas

CPXgetrowname

CPXgetrows

CPXgetsense

CPXgetsiftitcnt

CPXgetsiftphase1cnt

CPXgetslack

CPXgetsolnpooldblquality

CPXgetsolnpooldivfilter

CPXgetsolnpoolfilterindex

CPXgetsolnpoolfiltername

CPXgetsolnpoolfiltertype

CPXgetsolnpoolintquality

CPXgetsolnpoolmeanobjval

CPXgetsolnpoolmipstart

CPXgetsolnpoolnumfilters

12

CPXgetsolnpoolnummipstarts

CPXgetsolnpoolnumreplaced

CPXgetsolnpoolnumsolns

CPXgetsolnpoolnumsolns

CPXgetsolnpoolobjval

CPXgetsolnpoolqconstrslack

CPXgetsolnpoolrngfilter

CPXgetsolnpoolslack

CPXgetsolnpoolsolnindex

CPXgetsolnpoolsolnname

CPXgetsolnpoolx

CPXgetsos

CPXgetsosindex

CPXgetsosinfeas

CPXgetsosname

CPXgetstat

CPXgetstatstring

CPXgetstrparam

CPXgetsubmethod

CPXgetsubstat

CPXgettime

CPXgettuningcallbackfunc

CPXgetub

CPXgetx

CPXgetxqxax

CPXhybbaropt

CPXhybnetopt

CPXinfodblparam

CPXinfointparam

CPXinfostrparam

CPXlpopt

CPXmbasewrite

CPXmipopt

CPXmsg

CPXmsgstr

CPXmstwrite

CPXmstwritesolnpool

CPXmstwritesolnpoolall

CPXNETaddarcs

CPXNETaddnodes

CPXNETbasewrite

13

CPXNETcheckcopynet

CPXNETchgarcname

CPXNETchgarcnodes

CPXNETchgbds

CPXNETchgname

CPXNETchgnodename

CPXNETchgobj

CPXNETchgobjsen

CPXNETchgsupply

CPXNETcopybase

CPXNETcopynet

CPXNETcreateprob

CPXNETdelarcs

CPXNETdelnodes

CPXNETdelset

CPXNETextract

CPXNETfreeprob

CPXNETgetarcindex

CPXNETgetarcname

CPXNETgetarcnodes

CPXNETgetbase

CPXNETgetdj

CPXNETgetitcnt

CPXNETgetlb

CPXNETgetnodearcs

CPXNETgetnodeindex

CPXNETgetnodename

CPXNETgetnumarcs

CPXNETgetnumnodes

CPXNETgetobj

CPXNETgetobjsen

CPXNETgetobjval

CPXNETgetphase1cnt

CPXNETgetpi

CPXNETgetprobname

CPXNETgetslack

CPXNETgetstat

CPXNETgetsupply

CPXNETgetub

CPXNETgetx

CPXNETprimopt

14

CPXNETreadcopybase

CPXNETreadcopyprob

CPXNETsolninfo

CPXNETsolution

CPXNETwriteprob

CPXnewcols

CPXnewrows

CPXobjsa

CPXopenCPLEX

CPXordwrite

CPXpopulate

CPXpperwrite

CPXpreslvwrite

CPXprimopt

CPXputenv

CPXqpindefcertificate

CPXqpopt

CPXreadcopybase

CPXreadcopymipstart

CPXreadcopymipstarts

CPXreadcopyorder

CPXreadcopyparam

CPXreadcopyprob

CPXreadcopysol

CPXreadcopysolnpoolfilters

CPXrefineconflict

CPXrefineconflictext

CPXrefinemipstartconflict

CPXrefinemipstartconflictext

CPXrhssa

CPXsetdblparam

CPXsetdefaults

CPXsetinfocallbackfunc

CPXsetintparam

CPXsetlogfile

CPXsetlpcallbackfunc

CPXsetmipcallbackfunc

CPXsetnetcallbackfunc

CPXsetstrparam

CPXsetterminate

CPXsettuningcallbackfunc

15

CPXsiftopt

CPXsolninfo

CPXsolution

CPXsolwrite

CPXsolwritesolnpool

CPXsolwritesolnpoolall

CPXstrcpy

CPXstrlen

CPXtuneparam

CPXtuneparamprobset

CPXversion

CPXwritemipstarts

CPXwriteparam

CPXwriteprob

For access to the routines of the Callable Library organized by their purpose, see the Overview of the API or see
the groups of optim.cplex.callable.

16

Group optim.cplex.callable.accessmipresults
The routines in the CPLEX Callable Library to access MIP results.

Function Summary

CPXgetbestobjval

CPXgetcutoff

CPXgetindconstrinfeas

CPXgetindconstrslack

CPXgetmipitcnt

CPXgetmiprelgap

CPXgetmipstart

CPXgetmipstartindex

CPXgetmipstartname

CPXgetmipstarts

CPXgetnodecnt

CPXgetnodeint

CPXgetnodeleftcnt

CPXgetnumcuts

CPXgetnummipstarts

CPXgetsolnpoolmipstart

CPXgetsolnpoolnummipstarts

CPXgetsosinfeas

CPXgetsubmethod

CPXgetsubstat

Solution query routines are used to access information about the results of applying an optimization method to a
problem object. For MIP problem objects, you can access the values of variables and constraint slacks. Methods
and routines are also available to retrieve other information about the optimization process (such as the number
of nodes used).

17

Group optim.cplex.callable.accessnetworkresults
The routines in the CPLEX Callable Library to access network results.

Function Summary

CPXNETgetbase

CPXNETgetdj

CPXNETgetitcnt

CPXNETgetobjval

CPXNETgetphase1cnt

CPXNETgetpi

CPXNETgetslack

CPXNETgetstat

CPXNETgetx

CPXNETsolninfo

CPXNETsolution

Use these routines to access results after you have used the network optimizer on a problem object created as a
network flow structure.

18

Group optim.cplex.callable.accessqcpresults
The routines in the CPLEX Callable Library to access QCP or SOCP results.

Function Summary

CPXgetqconstrinfeas

CPXgetqconstrslack

CPXgetxqxax

Solution query routines are used to access information about the results of applying an optimization method to a
quadratically constrained (QCP) problem object or to the special case of second order cone programming
(SOCP) problems. For QCP problem objects, you can access the constraint slacks and constraint activity levels,
in addition to the information that you can access through routines in the groups
optim.cplex.callable.accessmipresults and optim.cplex.callable.accessresults.

19

Group optim.cplex.callable.accessresults
The routines in the CPLEX Callable Library to access results.

Function Summary

CPXgetax

CPXgetbaritcnt

CPXgetbase

CPXgetcolinfeas

CPXgetcrossdexchcnt

CPXgetcrossdpushcnt

CPXgetcrosspexchcnt

CPXgetcrossppushcnt

CPXgetdj

CPXgetdsbcnt

CPXgetitcnt

CPXgetmethod

CPXgetobjval

CPXgetphase1cnt

CPXgetpi

CPXgetpsbcnt

CPXgetrowinfeas

CPXgetsiftitcnt

CPXgetsiftphase1cnt

CPXgetslack

CPXgetstat

CPXgetstatstring

CPXgetx

CPXsolninfo

CPXsolution

Solution query routines are used to access information about the results of applying an optimization method to a
problem object.

For MIP problem objects, you can access variable and slack values. (Other values specific to MIPs are
accessible through routines in the group optim.cplex.callable.accessmipresults.)

For LP and QP problem objects, you can access the values of variables, constraint slacks, reduced costs, and
dual variables. Additionally, for an LP or QP problem object solved with a simplex method, you can query the
simplex basis. Methods and routines are also available to retrieve other information about the optimization
process (such as the iteration count).

20

Group optim.cplex.callable.advanced
The API of the advanced C routines of the CPLEX Callable Library.

Function Summary

CPXaddlazyconstraints

CPXaddusercuts

CPXbasicpresolve

CPXbinvacol

CPXbinvarow

CPXbinvcol

CPXbinvrow

CPXbranchcallbackbranchbds

CPXbranchcallbackbranchconstraints

CPXbranchcallbackbranchgeneral

CPXbtran

CPXcopybasednorms

CPXcopydnorms

CPXcopypnorms

CPXcopyprotected

CPXcrushform

CPXcrushpi

CPXcrushx

CPXcutcallbackadd

CPXcutcallbackaddlocal

CPXdjfrompi

CPXdualfarkas

CPXfreelazyconstraints

CPXfreepresolve

CPXfreeusercuts

CPXftran

CPXgetbasednorms

CPXgetbhead

CPXgetbranchcallbackfunc

CPXgetcallbackctype

CPXgetcallbackgloballb

CPXgetcallbackglobalub

CPXgetcallbackincumbent

CPXgetcallbackindicatorinfo

CPXgetcallbacklp

CPXgetcallbacknodeinfo

CPXgetcallbacknodeintfeas

21

CPXgetcallbacknodelb

CPXgetcallbacknodelp

CPXgetcallbacknodeobjval

CPXgetcallbacknodestat

CPXgetcallbacknodeub

CPXgetcallbacknodex

CPXgetcallbackorder

CPXgetcallbackpseudocosts

CPXgetcallbackseqinfo

CPXgetcallbacksosinfo

CPXgetcutcallbackfunc

CPXgetdeletenodecallbackfunc

CPXgetdnorms

CPXgetheuristiccallbackfunc

CPXgetijdiv

CPXgetijrow

CPXgetincumbentcallbackfunc

CPXgetnodecallbackfunc

CPXgetobjoffset

CPXgetpnorms

CPXgetprestat

CPXgetprotected

CPXgetray

CPXgetredlp

CPXgetsolvecallbackfunc

CPXkilldnorms

CPXkillpnorms

CPXmdleave

CPXpivot

CPXpivotin

CPXpivotout

CPXpreaddrows

CPXprechgobj

CPXpresolve

CPXqconstrslackfromx

CPXqpdjfrompi

CPXqpuncrushpi

CPXsetbranchcallbackfunc

CPXsetbranchnosolncallbackfunc

CPXsetcutcallbackfunc

CPXsetdeletenodecallbackfunc

22

CPXsetheuristiccallbackfunc

CPXsetincumbentcallbackfunc

CPXsetnodecallbackfunc

CPXsetsolvecallbackfunc

CPXslackfromx

CPXstrongbranch

CPXtightenbds

CPXuncrushform

CPXuncrushpi

CPXuncrushx

CPXunscaleprob

Warning

These advanced routines typically demand a profound understanding of the algorithms used by CPLEX. Thus
they incur a higher risk of incorrect behavior in your application, behavior that can be difficult to debug. Therefore,
the team encourages you to consider carefully whether you can accomplish the same task by means of other
Callable Library routines instead.

23

Group optim.cplex.callable.advanced.callbacks
The API of the advanced C callback routines of the CPLEX Callable Library.

Function Summary

CPXbranchcallbackbranchbds

CPXbranchcallbackbranchconstraints

CPXbranchcallbackbranchgeneral

CPXcutcallbackadd

CPXcutcallbackaddlocal

CPXgetbranchcallbackfunc

CPXgetcallbackctype

CPXgetcallbackgloballb

CPXgetcallbackglobalub

CPXgetcallbackincumbent

CPXgetcallbackindicatorinfo

CPXgetcallbacklp

CPXgetcallbacknodeinfo

CPXgetcallbacknodeintfeas

CPXgetcallbacknodelb

CPXgetcallbacknodelp

CPXgetcallbacknodeobjval

CPXgetcallbacknodestat

CPXgetcallbacknodeub

CPXgetcallbacknodex

CPXgetcallbackorder

CPXgetcallbackpseudocosts

CPXgetcallbackseqinfo

CPXgetcallbacksosinfo

CPXgetcutcallbackfunc

CPXgetdeletenodecallbackfunc

CPXgetheuristiccallbackfunc

CPXgetincumbentcallbackfunc

CPXgetnodecallbackfunc

CPXgetsolvecallbackfunc

CPXsetbranchcallbackfunc

CPXsetbranchnosolncallbackfunc

CPXsetcutcallbackfunc

CPXsetdeletenodecallbackfunc

CPXsetheuristiccallbackfunc

CPXsetincumbentcallbackfunc

CPXsetnodecallbackfunc

24

CPXsetsolvecallbackfunc

Warning

These advanced callback routines typically demand a profound understanding of the algorithms used by CPLEX.
Thus they incur a higher risk of incorrect behavior in your application, behavior that can be difficult to debug.
Therefore, the team encourages you to consider carefully whether you can accomplish the same task by means
of other Callable Library routines instead.

Advanced callback routines are not compatible with dynamic search.

25

Group optim.cplex.callable.analyzesolution
The routines in the CPLEX Callable Library to analyze solutions.

Function Summary

CPXboundsa

CPXclpwrite

CPXfeasopt

CPXfeasoptext

CPXgetconflict

CPXgetconflictext

CPXgetdblquality

CPXgetgrad

CPXgetintquality

CPXgetsolnpooldblquality

CPXgetsolnpoolintquality

CPXobjsa

CPXqpindefcertificate

CPXrefineconflict

CPXrefineconflictext

CPXrefinemipstartconflict

CPXrefinemipstartconflictext

CPXrhssa

Solution analysis routines give further information about a solution. As the solutions are computed with
finite-precision arithmetic, there may be some numeric residuals; the quality routines give information about what
these numeric residuals are. The sensitivity analysis routines give information about how the solution would
change if some aspect of the problem is changed; these routines require a simplex basis, so they may be used
only after a simplex optimization of an LP.

26

Group optim.cplex.callable.callbacks
The CPLEX Callable Library routines for managing callbacks.

Function Summary

CPXgetcallbackinfo

CPXgetinfocallbackfunc

CPXgetlpcallbackfunc

CPXgetmipcallbackfunc

CPXgetnetcallbackfunc

CPXgettuningcallbackfunc

CPXsetinfocallbackfunc

CPXsetlpcallbackfunc

CPXsetmipcallbackfunc

CPXsetnetcallbackfunc

CPXsettuningcallbackfunc

These callback routines, also known as interrupt routines, make it possible for you to define your own functions
and for your application to call those functions to interrupt and resume optimization. You can also use callbacks
to access progress information while the optimization is in process.

27

Group optim.cplex.callable.createdeletecopy
The routines in the CPLEX Callable Library to create and delete problems and to copy data.

Function Summary

CPXcloneprob

CPXcompletelp

CPXcopybase

CPXcopyctype

CPXcopylp

CPXcopylpwnames

CPXcopymipstart

CPXcopynettolp

CPXcopyobjname

CPXcopyorder

CPXcopyqpsep

CPXcopyquad

CPXcopysos

CPXcopystart

CPXcreateprob

CPXdelmipstarts

CPXdelsetmipstarts

CPXfreeprob

CPXNETaddarcs

CPXNETaddnodes

CPXNETcheckcopynet

CPXNETcopybase

CPXNETcopynet

CPXNETcreateprob

CPXNETextract

CPXNETfreeprob

These routines create, populate, or delete a problem object. You can also populate a problem object by means of
the routines for modifying a problem or for reading data from a file.

28

Group optim.cplex.callable.debug
The CPLEX Callable Library routines for debugging data.

Function Summary

CPXcheckaddcols

CPXcheckaddrows

CPXcheckchgcoeflist

CPXcheckcopyctype

CPXcheckcopylp

CPXcheckcopylpwnames

CPXcheckcopyqpsep

CPXcheckcopyquad

CPXcheckcopysos

CPXcheckvals

These routines help you validate data in your problem to verify that you are solving the problem you intend.

29

Group optim.cplex.callable.manageparameters
The routines in the CPLEX Callable Library to manage parameters (that is, set parameters, get current values of
parameters, and get information about parameters).

Function Summary

CPXgetchgparam

CPXgetdblparam

CPXgetintparam

CPXgetparamname

CPXgetparamnum

CPXgetparamtype

CPXgetstrparam

CPXinfodblparam

CPXinfointparam

CPXinfostrparam

CPXreadcopyparam

CPXsetdblparam

CPXsetdefaults

CPXsetintparam

CPXsetstrparam

CPXwriteparam

These routines are used to set parameters that control various aspects of CPLEX behavior and to find out
current, default, and allowed values for parameters. For more information about parameters, see the CPLEX
Parameters Reference Manual.

30

Group optim.cplex.callable.message
The CPLEX Callable Library routines for managing messages.

Function Summary

CPXaddchannel

CPXaddfpdest

CPXaddfuncdest

CPXdelchannel

CPXdelfpdest

CPXdelfuncdest

CPXdisconnectchannel

CPXflushchannel

CPXflushstdchannels

CPXgetchannels

CPXgeterrorstring

CPXgetlogfile

CPXmsg

CPXsetlogfile

These routines make it possible for your application to control which messages from CPLEX appear on screen,
which are sent to files. They also provide support for you to create your own messages.

31

Group optim.cplex.callable.modifynetwork
The routines in the CPLEX Callable Library to modify a network.

Function Summary

CPXNETchgarcname

CPXNETchgarcnodes

CPXNETchgbds

CPXNETchgname

CPXNETchgnodename

CPXNETchgobj

CPXNETchgobjsen

CPXNETchgsupply

CPXNETdelarcs

CPXNETdelnodes

CPXNETdelset

After you have created a network problem object, use these routines to modify it.

32

Group optim.cplex.callable.modifyproblem
The routines in the CPLEX Callable Library to modify a problem created by CPXcreateprob.

Function Summary

CPXaddcols

CPXaddindconstr

CPXaddmipstarts

CPXaddqconstr

CPXaddrows

CPXaddsos

CPXchgbds

CPXchgcoef

CPXchgcoeflist

CPXchgcolname

CPXchgctype

CPXchgmipstart

CPXchgmipstarts

CPXchgname

CPXchgobj

CPXchgobjsen

CPXchgprobname

CPXchgprobtype

CPXchgprobtypesolnpool

CPXchgqpcoef

CPXchgrhs

CPXchgrngval

CPXchgrowname

CPXchgsense

CPXdelcols

CPXdelindconstrs

CPXdelmipstarts

CPXdelnames

CPXdelqconstrs

CPXdelrows

CPXdelsetcols

CPXdelsetmipstarts

CPXdelsetrows

CPXdelsetsos

CPXnewcols

CPXnewrows

33

Problem modification routines change a problem object after it has been created. The modifications that you can
make are these:

adding rows and columns to the constraint matrix,•
deleting rows and columns from the constraint matrix,•
changing the sense of the objective function,•
changing the value of coefficients in the constraint matrix,•
changing an objective or righthand side coefficient,•
changing the bounds on a variable,•
changing the sense of a constraint,•
changing names of rows or columns.•

34

Group optim.cplex.callable.network
The network routines in the CPLEX Callable Library.

Function Summary

CPXNETaddarcs

CPXNETaddnodes

CPXNETbasewrite

CPXNETcheckcopynet

CPXNETchgarcname

CPXNETchgarcnodes

CPXNETchgbds

CPXNETchgname

CPXNETchgnodename

CPXNETchgobj

CPXNETchgobjsen

CPXNETchgsupply

CPXNETcopybase

CPXNETcopynet

CPXNETcreateprob

CPXNETdelarcs

CPXNETdelnodes

CPXNETdelset

CPXNETextract

CPXNETfreeprob

CPXNETgetarcindex

CPXNETgetarcname

CPXNETgetarcnodes

CPXNETgetbase

CPXNETgetdj

CPXNETgetitcnt

CPXNETgetlb

CPXNETgetnodearcs

CPXNETgetnodeindex

CPXNETgetnodename

CPXNETgetnumarcs

CPXNETgetnumnodes

CPXNETgetobj

CPXNETgetobjsen

CPXNETgetobjval

CPXNETgetphase1cnt

CPXNETgetpi

35

CPXNETgetprobname

CPXNETgetslack

CPXNETgetstat

CPXNETgetsupply

CPXNETgetub

CPXNETgetx

CPXNETprimopt

CPXNETreadcopybase

CPXNETreadcopyprob

CPXNETsolninfo

CPXNETsolution

CPXNETwriteprob

If part of your problem is structured as a network, then you may want to consider calling the CPLEX Network
Optimizer. This optimizer may have a positive impact on performance. There are two alternative ways of calling
the network optimizer:

If your problem is an LP where a large part is a network structure, you may call the network optimizer for
the populated LP object.

•

If your entire problem consists of a network flow, you should consider creating a network object instead
of an LP object. Then populate it, and solve it with the network optimizer. This alternative generally
yields the best performance because it does not incur the overhead of LP data structures. This option is
only available for the CPLEX Callable Library.

•

For more about formulating a problem in this way and applying the network optimizer in your application, see this
topic in the CPLEX User's Manual.

36

Group optim.cplex.callable.optimizers
The routines in the CPLEX Callable Library to launch an optimizer.

Function Summary

CPXbaropt

CPXcleanup

CPXdualopt

CPXhybbaropt

CPXhybnetopt

CPXlpopt

CPXmipopt

CPXNETprimopt

CPXprimopt

CPXqpopt

CPXsiftopt

After you have specified the problem by populating a problem object, the problem can be optimized. A default
optimizer is provided for each problem type. In most cases, the default optimizer will solve your problem well, but
you may select a different optimizer that may suit your needs better for a particular model formulation.

Continuous LP and QP problem objects can be optimized with simplex or barrier optimizers. Continuous QCP
problem objects and the special case of second order cone programming (SOCP) problems can be optimized
with the barrier optimizer only.

For MIP problem objects, any appropriate continuous optimizer may be specified to solve the subproblems. You
can also specify a different optimizer for solving the root LP subproblem and for the LP subproblems that occur at
the nodes of the branch and cut tree.

For more information about parameters and their settings, see the CPLEX Parameters Reference Manual.

37

Group optim.cplex.callable.portability
The portability routines in the CPLEX Callable Library.

Function Summary

CPXfclose

CPXfopen

CPXfputs

CPXgettime

CPXmsgstr

CPXputenv

CPXstrcpy

CPXstrlen

CPXversion

Portability routines are needed for Windows platforms. They may also be used on UNIX platforms.

38

Group optim.cplex.callable.querygeneralproblem
The routines in the CPLEX Callable Library to query general problem data.

Function Summary

CPXgetcoef

CPXgetcolindex

CPXgetcolname

CPXgetcols

CPXgetlb

CPXgetnumcols

CPXgetnumnz

CPXgetnumrows

CPXgetobj

CPXgetobjname

CPXgetobjsen

CPXgetprobname

CPXgetprobtype

CPXgetrhs

CPXgetrngval

CPXgetrowindex

CPXgetrowname

CPXgetrows

CPXgetsense

CPXgetub

These routines to access information about a problem object after it has been created can be used at any time,
even after problem modifications.

39

Group optim.cplex.callable.querymip
The routines in the CPLEX Callable Library to query MIP problem data.

Function Summary

CPXgetctype

CPXgetindconstr

CPXgetindconstrindex

CPXgetindconstrname

CPXgetnumbin

CPXgetnumindconstrs

CPXgetnumint

CPXgetnumsemicont

CPXgetnumsemiint

CPXgetnumsos

CPXgetorder

CPXgetsos

CPXgetsosindex

CPXgetsosname

These routines to access information about a MIP problem object after it has been created can be used at any
time, even after problem modifications.

40

Group optim.cplex.callable.querynetwork
The routines in the CPLEX Callable Library to query network problem data.

Function Summary

CPXNETgetarcindex

CPXNETgetarcname

CPXNETgetarcnodes

CPXNETgetlb

CPXNETgetnodearcs

CPXNETgetnodeindex

CPXNETgetnodename

CPXNETgetnumarcs

CPXNETgetnumnodes

CPXNETgetobj

CPXNETgetobjsen

CPXNETgetprobname

CPXNETgetsupply

CPXNETgetub

These routines to access information about a network problem object after it has been created can be used at
any time, even after problem modifications.

41

Group optim.cplex.callable.queryqcp
The routines in the CPLEX Callable Library to query QCP problem data (that is, problems with one or more
quadratic constraints), including the special case of second order cone programming (SOCP) problems.

Function Summary

CPXgetnumqconstrs

CPXgetqconstr

CPXgetqconstrindex

CPXgetqconstrname

These routines to access information about a QCP problem object after it has been created can be used at any
time, even after problem modifications. That is, these routines access information about a problem object with
one or more quadratic constraints.

42

Group optim.cplex.callable.queryqp
The routines in the CPLEX Callable Library to query QP problem data (that is, problems with a quadratic
objective function).

Function Summary

CPXgetnumqpnz

CPXgetnumquad

CPXgetqpcoef

CPXgetquad

These routines to access information about a QP problem object after it has been created can be used at any
time, even after problem modifications. That is, these routines access information about a problem object with a
quadratic objective function.

43

Group optim.cplex.callable.readfiles
The routines in the CPLEX Callable Library to read files.

Function Summary

CPXNETreadcopybase

CPXNETreadcopyprob

CPXreadcopybase

CPXreadcopymipstart

CPXreadcopymipstarts

CPXreadcopyorder

CPXreadcopyprob

CPXreadcopysol

CPXreadcopysolnpoolfilters

Use these routines to read data from system files. CPLEX can read problem files stored in a variety of formats.
For more information about the file formats, see the CPLEX File Formats Reference Manual.

44

Group optim.cplex.callable.readnetworkfiles
The routines in the CPLEX Callable Library to read network files.

Function Summary

CPXNETreadcopybase

CPXNETreadcopyprob

Use these routines to read data from system files into a network problem object.

45

Group optim.cplex.callable.solutionpool
The routines in the CPLEX Callable Library for the solution pool.

Macro Summary

CPX_SOLNPOOL_DIV

CPX_SOLNPOOL_FIFO

CPX_SOLNPOOL_FILTER_DIVERSITY

CPX_SOLNPOOL_FILTER_RANGE

CPX_SOLNPOOL_OBJ

Function Summary

CPXaddsolnpooldivfilter

CPXaddsolnpoolrngfilter

CPXchgprobtypesolnpool

CPXdelsetsolnpoolfilters

CPXdelsetsolnpoolsolns

CPXdelsolnpoolfilters

CPXdelsolnpoolsolns

CPXfltwrite

CPXgetsolnpooldblquality

CPXgetsolnpooldivfilter

CPXgetsolnpoolfilterindex

CPXgetsolnpoolfiltername

CPXgetsolnpoolfiltertype

CPXgetsolnpoolintquality

CPXgetsolnpoolmeanobjval

CPXgetsolnpoolmipstart

CPXgetsolnpoolnumfilters

CPXgetsolnpoolnummipstarts

CPXgetsolnpoolnumreplaced

CPXgetsolnpoolnumsolns

CPXgetsolnpoolnumsolns

CPXgetsolnpoolobjval

CPXgetsolnpoolqconstrslack

CPXgetsolnpoolrngfilter

CPXgetsolnpoolslack

CPXgetsolnpoolsolnindex

CPXgetsolnpoolsolnname

CPXgetsolnpoolx

CPXmstwritesolnpool

CPXmstwritesolnpoolall

46

CPXpopulate

CPXreadcopysolnpoolfilters

CPXsolwritesolnpool

CPXsolwritesolnpoolall

These routines populate, filter, and manage the solution pool to accumulate or generate multiple solutions.

47

Group optim.cplex.callable.util
The general utilities in the CPLEX Callable Library.

Function Summary

CPXcloseCPLEX

CPXopenCPLEX

CPXsetterminate

These utilities initialize and close the CPLEX environment.

48

Group optim.cplex.callable.writefiles
The routines in the CPLEX Callable Library to write files.

Function Summary

CPXdperwrite

CPXdualwrite

CPXembwrite

CPXfltwrite

CPXmbasewrite

CPXmstwrite

CPXmstwritesolnpool

CPXmstwritesolnpoolall

CPXNETbasewrite

CPXNETwriteprob

CPXordwrite

CPXpperwrite

CPXpreslvwrite

CPXsolwrite

CPXsolwritesolnpool

CPXsolwritesolnpoolall

CPXwritemipstarts

CPXwriteprob

These routines write a problem object or, after the problem has been optimized, they write the optimal basis or
solution report to a file.

49

Group optim.cplex.callable.writenetworkfiles
The routines in the CPLEX Callable Library to write network files.

Function Summary

CPXNETbasewrite

CPXNETwriteprob

These routines write a network problem object or, after the network problem has been optimized, they write the
optimal basis or solution report to a file.

50

Group optim.cplex.errorcodes
The Callable Library macros that define error codes, their symbolic constants, their short message strings, and
their explanations. There is a key to the symbols in the short message strings after the table.

Macro Summary

CPXERR_ABORT_STRONGBRANCH 1263 Strong branching aborted

CPXERR_ADJ_SIGN_QUAD 1606 Lines %d,%d: Adjacent sign and quadratic character

CPXERR_ADJ_SIGN_SENSE 1604 Lines %d,%d: Adjacent sign and sense

CPXERR_ADJ_SIGNS 1602 Lines %d,%d: Adjacent signs

CPXERR_ALGNOTLICENSED 32024 Licensing problem: Optimization algorithm not
licensed

CPXERR_ARC_INDEX_RANGE 1231 Arc index %d out of range

CPXERR_ARRAY_BAD_SOS_TYPE 3009 Illegal sostype entry %d

CPXERR_ARRAY_NOT_ASCENDING 1226 Array entry %d not ascending

CPXERR_ARRAY_TOO_LONG 1208 Array length too long

CPXERR_BAD_ARGUMENT 1003 Bad argument to Callable Library routine.

CPXERR_BAD_BOUND_SENSE 1622 Line %d: Invalid bound sense

CPXERR_BAD_BOUND_TYPE 1457 Line %d: Unrecognized bound type '%s'

CPXERR_BAD_CHAR 1537 Illegal character

CPXERR_BAD_CTYPE 3021 Illegal ctype entry %d

CPXERR_BAD_DIRECTION 3012 Line %d: Unrecognized direction '%c%c'

CPXERR_BAD_EXPO_RANGE 1435 Line %d: Exponent '%s' out of range

CPXERR_BAD_EXPONENT 1618 Line %d: Exponent '%s' not %s with number

CPXERR_BAD_FILETYPE 1424 Invalid filetype

CPXERR_BAD_ID 1617 Line %d: '%s' not valid identifier

CPXERR_BAD_INDCONSTR 1439 Line %d: Illegal indicator constraint

CPXERR_BAD_INDICATOR 1551 Line %d: Unrecognized basis marker '%s'

CPXERR_BAD_LAZY_UCUT 1438 Line %d: Illegal lazy constraint or user cut

CPXERR_BAD_LUB 1229 Illegal bound change specified by entry %d

CPXERR_BAD_METHOD 1292 Invalid choice of optimization method

CPXERR_BAD_NUMBER 1434 Line %d: Couldn't convert '%s' to a number

CPXERR_BAD_OBJ_SENSE 1487 Line %d: Unrecognized objective sense '%s'

CPXERR_BAD_PARAM_NAME 1028 Bad parameter name to CPLEX parameter routine

CPXERR_BAD_PARAM_NUM 1013 Bad parameter number to CPLEX parameter routine

CPXERR_BAD_PIVOT 1267 Illegal pivot

CPXERR_BAD_PRIORITY 3006 Negative priority entry %d

CPXERR_BAD_PROB_TYPE 1022 Unknown problem type. Problem not changed

CPXERR_BAD_ROW_ID 1532 Incorrect row identifier

CPXERR_BAD_SECTION_BOUNDS 1473 Line %d: Unrecognized section marker. Expecting
RANGES, BOUNDS, QMATRIX, or ENDATA

CPXERR_BAD_SECTION_ENDATA 1462 Line %d: Unrecognized section marker. Expecting
ENDATA

51

CPXERR_BAD_SECTION_QMATRIX 1475 Line %d: Unrecognized section marker. Expecting
QMATRIX or ENDATA

CPXERR_BAD_SENSE 1215 Illegal sense entry %d

CPXERR_BAD_SOS_TYPE 1442 Line %d: Unrecognized SOS type: %c%c

CPXERR_BAD_STATUS 1253 Invalid status entry %d for basis specification

CPXERR_BADPRODUCT 32023 Licensing problem: License not valid for this product

CPXERR_BAS_FILE_SHORT 1550 Basis missing some basic variables

CPXERR_BAS_FILE_SIZE 1555 %d %s basic variable(s)

CPXERR_CALLBACK 1006 Error during callback

CPXERR_CANT_CLOSE_CHILD 1021 Cannot close a child environment

CPXERR_CHILD_OF_CHILD 1019 Cannot clone a cloned environment

CPXERR_COL_INDEX_RANGE 1201 Column index %d out of range

CPXERR_COL_REPEAT_PRINT 1478 %d Column repeats messages not printed

CPXERR_COL_REPEATS 1446 Column '%s' repeats

CPXERR_COL_ROW_REPEATS 1443 Column '%s' has repeated row '%s'

CPXERR_COL_UNKNOWN 1449 Line %d: '%s' is not a column name

CPXERR_CONFLICT_UNSTABLE 1720 Infeasibility not reproduced.

CPXERR_COUNT_OVERLAP 1228 Count entry %d specifies overlapping entries

CPXERR_COUNT_RANGE 1227 Count entry %d negative or larger than allowed

CPXERR_DBL_MAX 1233 Numeric entry %d is larger than allowed maximum of
%g

CPXERR_DECOMPRESSION 1027 Decompression of unpresolved problem failed

CPXERR_DUP_ENTRY 1222 Duplicate entry or entries

CPXERR_EXTRA_BV_BOUND 1456 Line %d: 'BV' bound type illegal when prior bound
given

CPXERR_EXTRA_FR_BOUND 1455 Line %d: 'FR' bound type illegal when prior bound
given

CPXERR_EXTRA_FX_BOUND 1454 Line %d: 'FX' bound type illegal when prior bound
given

CPXERR_EXTRA_INTEND 1481 Line %d: 'INTEND' found while not reading integers

CPXERR_EXTRA_INTORG 1480 Line %d: 'INTORG' found while reading integers

CPXERR_EXTRA_SOSEND 1483 Line %d: 'SOSEND' found while not reading a SOS

CPXERR_EXTRA_SOSORG 1482 Line %d: 'SOSORG' found while reading a SOS

CPXERR_FAIL_OPEN_READ 1423 Could not open file '%s' for reading

CPXERR_FAIL_OPEN_WRITE 1422 Could not open file '%s' for writing

CPXERR_FILE_ENTRIES 1553 Line %d: Wrong number of entries

CPXERR_FILE_FORMAT 1563 File '%s' has an incompatible format. Try setting
reverse flag

CPXERR_FILTER_VARIABLE_TYPE 3414 Diversity filter has non-binary variable(s)

CPXERR_ILL_DEFINED_PWL 1213

CPXERR_ILOG_LICENSE 32201 ILM Error %d

CPXERR_IN_INFOCALLBACK 1804 Calling routines not allowed in informational callback

CPXERR_INDEX_NOT_BASIC 1251 Index must correspond to a basic variable

52

CPXERR_INDEX_RANGE 1200 Index is outside range of valid values

CPXERR_INDEX_RANGE_HIGH 1206 %s: 'end' value %d is greater than %d

CPXERR_INDEX_RANGE_LOW 1205 %s: 'begin' value %d is less than %d

CPXERR_INT_TOO_BIG 3018 Magnitude of variable %s: %g exceeds integer limit
%d

CPXERR_INT_TOO_BIG_INPUT 1463 Line %d: Magnitude exceeds integer limit %d

CPXERR_INVALID_NUMBER 1650 Number not representable in exponential notation

CPXERR_LIMITS_TOO_BIG 1012 Problem size limits too large

CPXERR_LINE_TOO_LONG 1465 Line %d: Line longer than limit of %d characters

CPXERR_LO_BOUND_REPEATS 1459 Line %d: Repeated lower bound

CPXERR_LP_NOT_IN_ENVIRONMENT 1806 Problem is not member of this environment

CPXERR_MIPSEARCH_WITH_CALLBACKS 1805 MIP dynamic search incompatible with control
callbacks

CPXERR_MISS_SOS_TYPE 3301 Line %d: Missing SOS type

CPXERR_MSG_NO_CHANNEL 1051 No channel pointer supplied to message routine

CPXERR_MSG_NO_FILEPTR 1052 No file pointer found for message routine

CPXERR_MSG_NO_FUNCTION 1053 No function pointer found for message routine

CPXERR_NAME_CREATION 1209 Unable to create default names

CPXERR_NAME_NOT_FOUND 1210 Name not found

CPXERR_NAME_TOO_LONG 1464 Line %d: Identifier/name too long to process

CPXERR_NAN 1225 Numeric entry %d is not a double precision number
(NAN)

CPXERR_NEED_OPT_SOLN 1252 Optimal solution required

CPXERR_NEGATIVE_SURPLUS 1207 Insufficient array length

CPXERR_NET_DATA 1530 Inconsistent network file

CPXERR_NET_FILE_SHORT 1538 Unexpected end of network file

CPXERR_NO_BARRIER_SOLN 1223 No barrier solution exists

CPXERR_NO_BASIC_SOLN 1261 No basic solution exists

CPXERR_NO_BASIS 1262 No basis exists

CPXERR_NO_BOUND_SENSE 1621 Line %d: No bound sense

CPXERR_NO_BOUND_TYPE 1460 Line %d: Bound type missing

CPXERR_NO_COLUMNS_SECTION 1472 Line %d: No COLUMNS section

CPXERR_NO_CONFLICT 1719 No conflict is available.

CPXERR_NO_DUAL_SOLN 1232 No dual solution exists

CPXERR_NO_ENDATA 1552 ENDATA missing

CPXERR_NO_ENVIRONMENT 1002 No environment

CPXERR_NO_FILENAME 1421 File name not specified

CPXERR_NO_ID 1616 Line %d: Expected identifier, found '%c'

CPXERR_NO_ID_FIRST 1609 Line %d: Expected identifier first

CPXERR_NO_INT_X 3023 Integer feasible solution values are unavailable

CPXERR_NO_LU_FACTOR 1258 No LU factorization exists

CPXERR_NO_MEMORY 1001 Out of memory

53

CPXERR_NO_MIPSTART 3020 No MIP start exists

CPXERR_NO_NAME_SECTION 1441 Line %d: No NAME section

CPXERR_NO_NAMES 1219 No names exist

CPXERR_NO_NORMS 1264 No norms available

CPXERR_NO_NUMBER 1615 Line %d: Expected number, found '%c'

CPXERR_NO_NUMBER_BOUND 1623 Line %d: Missing bound number

CPXERR_NO_NUMBER_FIRST 1611 Line %d: Expected number first

CPXERR_NO_OBJ_SENSE 1436 Max or Min missing

CPXERR_NO_OBJECTIVE 1476 Line %d: No objective row found

CPXERR_NO_OP_OR_SENSE 1608 Line %d: Expected '+','-' or sense, found '%c'

CPXERR_NO_OPERATOR 1607 Line %d: Expected '+' or '-', found '%c'

CPXERR_NO_ORDER 3016 No priority order exists

CPXERR_NO_PROBLEM 1009 No problem exists

CPXERR_NO_QMATRIX_SECTION 1461 Line %d: No QMATRIX section

CPXERR_NO_QP_OPERATOR 1614 Line %d: Expected ^ or *

CPXERR_NO_QUAD_EXP 1612 Line %d: Expected quadratic exponent

CPXERR_NO_RHS_COEFF 1610 Line %d: Expected RHS coefficient

CPXERR_NO_RHS_IN_OBJ 1211 rhs has no coefficient in obj

CPXERR_NO_RNGVAL 1216 No range values

CPXERR_NO_ROW_NAME 1486 Line %d: No row name

CPXERR_NO_ROW_SENSE 1453 Line %d: No row sense

CPXERR_NO_ROWS_SECTION 1471 Line %d: No ROWS section

CPXERR_NO_SENSIT 1260 Sensitivity analysis not available for current status

CPXERR_NO_SOLN 1217 No solution exists

CPXERR_NO_SOLNPOOL 3024 No solution pool exists

CPXERR_NO_SOS 3015 No user-defined SOSs exist

CPXERR_NO_SOS_SEPARATOR 1627 Expected ':', found '%c'

CPXERR_NO_TREE 3412 Current problem has no tree

CPXERR_NO_VECTOR_SOLN 1556 Vector solution does not exist

CPXERR_NODE_INDEX_RANGE 1230 Node index %d out of range

CPXERR_NODE_ON_DISK 3504 No callback info on disk/compressed nodes

CPXERR_NOT_DUAL_UNBOUNDED 1265 Dual unbounded solution required

CPXERR_NOT_FIXED 1221 Only fixed variables are pivoted out

CPXERR_NOT_FOR_MIP 1017 Not available for mixed-integer problems

CPXERR_NOT_FOR_QCP 1031 Not available for QCP

CPXERR_NOT_FOR_QP 1018 Not available for quadratic programs

CPXERR_NOT_MILPCLASS 1024 Not a MILP or fixed MILP

CPXERR_NOT_MIN_COST_FLOW 1531 Not a min-cost flow problem

CPXERR_NOT_MIP 3003 Not a mixed-integer problem

CPXERR_NOT_MIQPCLASS 1029 Not a MIQP or fixed MIQP

CPXERR_NOT_ONE_PROBLEM 1023 Not a single problem

54

CPXERR_NOT_QP 5004 Not a quadratic program

CPXERR_NOT_SAV_FILE 1560 File '%s' is not a SAV file

CPXERR_NOT_UNBOUNDED 1254 Unbounded solution required

CPXERR_NULL_NAME 1224 Null pointer %d in name array

CPXERR_NULL_POINTER 1004 Null pointer for required data

CPXERR_ORDER_BAD_DIRECTION 3007 Illegal direction entry %d

CPXERR_PARAM_INCOMPATIBLE 1807 Incompatible parameters

CPXERR_PARAM_TOO_BIG 1015 Parameter value too big

CPXERR_PARAM_TOO_SMALL 1014 Parameter value too small

CPXERR_PRESLV_ABORT 1106 Aborted during presolve

CPXERR_PRESLV_BAD_PARAM 1122 Bad presolve parameter setting

CPXERR_PRESLV_BASIS_MEM 1107 Not enough memory to build basis for original LP

CPXERR_PRESLV_COPYORDER 1109 Can't copy priority order info from original MIP

CPXERR_PRESLV_COPYSOS 1108 Can't copy SOS info from original MIP

CPXERR_PRESLV_CRUSHFORM 1121 Can't crush solution form

CPXERR_PRESLV_DUAL 1119 The feature is not available for solving dual
formulation

CPXERR_PRESLV_FAIL_BASIS 1114 Could not load unpresolved basis for original LP

CPXERR_PRESLV_INF 1117 Presolve determines problem is infeasible

CPXERR_PRESLV_INForUNBD 1101 Presolve determines problem is infeasible or
unbounded

CPXERR_PRESLV_NO_BASIS 1115 Failed to find basis in presolved LP

CPXERR_PRESLV_NO_PROB 1103 No presolved problem created

CPXERR_PRESLV_SOLN_MIP 1110 Not enough memory to recover solution for original
MIP

CPXERR_PRESLV_SOLN_QP 1111 Not enough memory to compute solution to original
QP

CPXERR_PRESLV_START_LP 1112 Not enough memory to build start for original LP

CPXERR_PRESLV_TIME_LIM 1123 Time limit exceeded during presolve

CPXERR_PRESLV_UNBD 1118 Presolve determines problem is unbounded

CPXERR_PRESLV_UNCRUSHFORM 1120 Can't uncrush solution form

CPXERR_PRIIND 1257 Incorrect usage of pricing indicator

CPXERR_PRM_DATA 1660 Line %d: Not enough entries

CPXERR_PRM_HEADER 1661 Line %d: Missing or invalid header

CPXERR_PTHREAD_CREATE 3603 Could not create thread

CPXERR_PTHREAD_MUTEX_INIT 3601 Could not initialize mutex

CPXERR_Q_DIVISOR 1619 Line %d: Missing or incorrect divisor for Q terms

CPXERR_Q_DUP_ENTRY 5011 Duplicate entry for pair '%s' and '%s'

CPXERR_Q_NOT_INDEF 5014 Q is not indefinite

CPXERR_Q_NOT_POS_DEF 5002 Q in '%s' is not positive semi-definite

CPXERR_Q_NOT_SYMMETRIC 5012 Q is not symmetric

CPXERR_QCP_SENSE 6002 Illegal quadratic constraint sense

CPXERR_QCP_SENSE_FILE 1437 Line %d: Illegal quadratic constraint sense

55

CPXERR_QUAD_EXP_NOT_2 1613 Line %d: Quadratic exponent must be 2

CPXERR_QUAD_IN_ROW 1605 Line %d: Illegal quadratic term in a constraint

CPXERR_RANGE_SECTION_ORDER 1474 Line %d: 'RANGES' section out of order

CPXERR_RESTRICTED_VERSION 1016 Promotional version. Problem size limits exceeded

CPXERR_RHS_IN_OBJ 1603 Line %d: RHS sense in objective

CPXERR_RIM_REPEATS 1447 Line %d: %s '%s' repeats

CPXERR_RIM_ROW_REPEATS 1444 %s '%s' has repeated row '%s'

CPXERR_RIMNZ_REPEATS 1479 Line %d: %s %s repeats

CPXERR_ROW_INDEX_RANGE 1203 Row index %d out of range

CPXERR_ROW_REPEAT_PRINT 1477 %d Row repeats messages not printed

CPXERR_ROW_REPEATS 1445 Row '%s' repeats

CPXERR_ROW_UNKNOWN 1448 Line %d: '%s' is not a row name

CPXERR_SAV_FILE_DATA 1561 Not enough data in SAV file

CPXERR_SAV_FILE_WRITE 1562 Unable to write SAV file to disk

CPXERR_SBASE_ILLEGAL 1554 Superbases are not allowed

CPXERR_SBASE_INCOMPAT 1255 Incompatible with superbasis

CPXERR_SINGULAR 1256 Basis singular

CPXERR_STR_PARAM_TOO_LONG 1026 String parameter is too long

CPXERR_SUBPROB_SOLVE 3019 Failure to solve MIP subproblem

CPXERR_THREAD_FAILED 1234 Creation of parallel thread failed.

CPXERR_TILIM_CONDITION_NO 1268 Time limit reached in computing condition number

CPXERR_TILIM_STRONGBRANCH 1266 Time limit reached in strong branching

CPXERR_TOO_MANY_COEFFS 1433 Too many coefficients

CPXERR_TOO_MANY_COLS 1432 Too many columns

CPXERR_TOO_MANY_RIMNZ 1485 Too many rim nonzeros

CPXERR_TOO_MANY_RIMS 1484 Too many rim vectors

CPXERR_TOO_MANY_ROWS 1431 Too many rows

CPXERR_TOO_MANY_THREADS 1020 Thread limit exceeded

CPXERR_TREE_MEMORY_LIMIT 3413 Tree memory limit exceeded

CPXERR_UNIQUE_WEIGHTS 3010 Set does not have unique weights

CPXERR_UNSUPPORTED_CONSTRAINT_TYPE 1212 Unsupported constraint type was used.

CPXERR_UP_BOUND_REPEATS 1458 Line %d: Repeated upper bound

CPXERR_WORK_FILE_OPEN 1801 Could not open temporary file

CPXERR_WORK_FILE_READ 1802 Failure on temporary file read

CPXERR_WORK_FILE_WRITE 1803 Failure on temporary file write

CPXERR_XMLPARSE 1425 XML parsing error at line %d: %s

Each error code, such as 1616, is associated with a symbolic constant, such as CPXERR_NO_ID, and a short
message string, such as Line %d: Expected identifier, found '%c'.

In the short message strings, the following symbols occur:

%d means a number, such as a line number

56

%s means a string, such as a file name, variable name, or other

%c means a character, such as a letter or arithmetic operator

Click the symbolic constant in the table to go to a longer explanation of an error code.

57

Group optim.cplex.solutionquality
The Callable Library macros that indicate the qualities of a solution, their symbolic constants, and their meaning.
Methods for accessing solution quality are mentioned after the table.

Macro Summary

CPX_DUAL_OBJ Concert Technology enum: DualObj.

CPX_EXACT_KAPPA Concert Technology enum: ExactKappa.

CPX_KAPPA Concert Technology enum: Kappa.

CPX_MAX_COMP_SLACK Concert Technology enum: MaxCompSlack.

CPX_MAX_DUAL_INFEAS Concert Technology enum: MaxDualInfeas.

CPX_MAX_DUAL_RESIDUAL Concert Technology enum: MaxDualResidual.

CPX_MAX_INDSLACK_INFEAS Concert Technology enum: not applicable.

CPX_MAX_INT_INFEAS Concert Technology enum: MaxIntInfeas.

CPX_MAX_PI Concert Technology enum: MaxPi.

CPX_MAX_PRIMAL_INFEAS Concert Technology enum: MaxPrimalInfeas.

CPX_MAX_PRIMAL_RESIDUAL Concert Technology enum: MaxPrimalResidual.

CPX_MAX_QCPRIMAL_RESIDUAL Concert Technology enum: MaxPrimalResidual.

CPX_MAX_QCSLACK Concert Technology enum: not applicable.

CPX_MAX_QCSLACK_INFEAS Concert Technology enum: not applicable.

CPX_MAX_RED_COST Concert Technology enum: MaxRedCost.

CPX_MAX_SCALED_DUAL_INFEAS Concert Technology enum: MaxScaledDualInfeas.

CPX_MAX_SCALED_DUAL_RESIDUAL Concert Technology enum: MaxScaledDualResidual.

CPX_MAX_SCALED_PI Concert Technology enum: MaxScaledPi.

CPX_MAX_SCALED_PRIMAL_INFEAS Concert Technology enum: MaxScaledPrimalInfeas.

CPX_MAX_SCALED_PRIMAL_RESIDUAL Concert Technology enum: MaxScaledPrimalResidual.

CPX_MAX_SCALED_RED_COST Concert Technology enum: MaxScaledRedCost.

CPX_MAX_SCALED_SLACK Concert Technology enum: MaxScaledSlack.

CPX_MAX_SCALED_X Concert Technology enum: MaxScaledX.

CPX_MAX_SLACK Concert Technology enum: MaxSlack.

CPX_MAX_X Concert Technology enum: MaxX.

CPX_OBJ_GAP Concert Technology enum: ObjGap.

CPX_PRIMAL_OBJ Concert Technology enum: PrimalObj.

CPX_SUM_COMP_SLACK Concert Technology enum: SumCompSlack.

CPX_SUM_DUAL_INFEAS Concert Technology enum: SumDualInfeas.

CPX_SUM_DUAL_RESIDUAL Concert Technology enum: SumDualResidual.

CPX_SUM_INDSLACK_INFEAS Concert Technology enum: not applicable.

CPX_SUM_INT_INFEAS Concert Technology enum: SumIntInfeas.

CPX_SUM_PI Concert Technology enum: SumPi.

CPX_SUM_PRIMAL_INFEAS Concert Technology enum: SumPrimalInfeas.

CPX_SUM_PRIMAL_RESIDUAL Concert Technology enum: SumPrimalResidual.

CPX_SUM_QCPRIMAL_RESIDUAL Concert Technology enum: SumPrimalResidual.

58

CPX_SUM_QCSLACK Concert Technology enum: SumSlack.

CPX_SUM_QCSLACK_INFEAS Concert Technology enum: not applicable.

CPX_SUM_RED_COST Concert Technology enum: SumRedCost.

CPX_SUM_SCALED_DUAL_INFEAS Concert Technology enum: SumScaledDualInfeas.

CPX_SUM_SCALED_DUAL_RESIDUAL Concert Technology enum: SumScaledDualResidual.

CPX_SUM_SCALED_PI Concert Technology enum: SumScaledPi.

CPX_SUM_SCALED_PRIMAL_INFEAS Concert Technology enum: SumScaledPrimalInfeas.

CPX_SUM_SCALED_PRIMAL_RESIDUAL Concert Technology enum: SumScaledPrimalResidual.

CPX_SUM_SCALED_RED_COST Concert Technology enum: SumScaledRedCost.

CPX_SUM_SCALED_SLACK Concert Technology enum: SumScaledSlack.

CPX_SUM_SCALED_X Concert Technology enum: SumScaledX.

CPX_SUM_SLACK Concert Technology enum: SumSlack.

CPX_SUM_X Concert Technology enum: SumX.

This table lists quality values.

Values that are stored in a numeric variable or double variable are accessed by the Concert Technology method
getQuality of the class IloCplex or by the Callable Library routine CPXgetdblquality.

Values that are stored in an integer variable are accessed by the method getQuality of the class IloCplex or
by the routine CPXgetintquality.

59

Group optim.cplex.solutionstatus
The Callable Library macros that define solution status, their symbolic constants, their equivalent in Concert
Technology enumerations, and their meaning. There is a note about unboundedness after the table.

Macro Summary

CPX_STAT_ABORT_DUAL_OBJ_LIM 22 (Barrier only) enum: AbortDualObjLim

CPX_STAT_ABORT_IT_LIM 10 (Simplex or Barrier) enum: AbortItLim

CPX_STAT_ABORT_OBJ_LIM 12 (Simplex or Barrier) enum: AbortObjLim

CPX_STAT_ABORT_PRIM_OBJ_LIM 21 (Barrier only) enum: AbortPrimObjLim

CPX_STAT_ABORT_TIME_LIM 11 (Simplex or Barrier) enum: AbortTimeLim

CPX_STAT_ABORT_USER 13 (Simplex or Barrier) enum: AbortUser

CPX_STAT_CONFLICT_ABORT_CONTRADICTION 32 (conflict refiner) enum: ConflictAbortContradiction

CPX_STAT_CONFLICT_ABORT_IT_LIM 34 (conflict refiner) enum: ConflictAbortItLim

CPX_STAT_CONFLICT_ABORT_MEM_LIM 37 (conflict refiner) enum: ConflictAbortMemLim

CPX_STAT_CONFLICT_ABORT_NODE_LIM 35 (conflict refiner) enum: ConflictAbortNodeLim

CPX_STAT_CONFLICT_ABORT_OBJ_LIM 36 (conflict refiner) enum: ConflictAbortObjLim

CPX_STAT_CONFLICT_ABORT_TIME_LIM 33 (conflict refiner) enum: ConflictAbortTimeLim

CPX_STAT_CONFLICT_ABORT_USER 38 (conflict refiner) enum: ConflictAbortUser

CPX_STAT_CONFLICT_FEASIBLE 30 (conflict refiner) enum: ConflictFeasible

CPX_STAT_CONFLICT_MINIMAL 31 (conflict refiner) enum: ConflictMinimal

CPX_STAT_FEASIBLE 23 (Simplex or Barrier) enum: Feasible

CPX_STAT_FEASIBLE_RELAXED_INF 16 (Simplex or Barrier) enum: FeasibleRelaxedInf

CPX_STAT_FEASIBLE_RELAXED_QUAD 18 (Simplex or Barrier) enum: FeasibleRelaxedQuad

CPX_STAT_FEASIBLE_RELAXED_SUM 14 (Simplex or Barrier) enum: FeasibleRelaxedSum

CPX_STAT_INFEASIBLE 3 (Simplex or Barrier) enum: Infeasible

CPX_STAT_INForUNBD 4 (Simplex or Barrier) enum: InfOrUnbd

CPX_STAT_NUM_BEST 6 (Simplex or Barrier) enum: NumBest

CPX_STAT_OPTIMAL 1 (Simplex or Barrier) enum: Optimal

CPX_STAT_OPTIMAL_FACE_UNBOUNDED 20 (Barrier only) enum: OptimalFaceUnbounded

CPX_STAT_OPTIMAL_INFEAS 5 (Simplex or Barrier) enum: OptimalInfeas

CPX_STAT_OPTIMAL_RELAXED_INF 17 (Simplex or Barrier) enum: OptimalRelaxedInf

CPX_STAT_OPTIMAL_RELAXED_QUAD 19 (Simplex or Barrier) enum: OptimalRelaxedQuad

CPX_STAT_OPTIMAL_RELAXED_SUM 15 (Simplex or Barrier) enum: OptimalRelaxedSum

CPX_STAT_UNBOUNDED 2 (Simplex or Barrier) enum: Unbounded

CPXMIP_ABORT_FEAS 113 (MIP only) enum: AbortFeas

CPXMIP_ABORT_INFEAS 114 (MIP only) enum: AbortInfeas

CPXMIP_ABORT_RELAXED 126 (MIP only) enum: AbortRelaxed

CPXMIP_FAIL_FEAS 109 (MIP only) enum: FailFeas

CPXMIP_FAIL_FEAS_NO_TREE 116 (MIP only) enum: FailFeasNoTree

CPXMIP_FAIL_INFEAS 110 (MIP only) enum: FailInfeas

CPXMIP_FAIL_INFEAS_NO_TREE 117 (MIP only) enum: FailInfeasNoTree

60

CPXMIP_FEASIBLE 127 (MIP only) enum: Feasible

CPXMIP_FEASIBLE_RELAXED_INF 122 (MIP only) enum: FeasibleRelaxedInf

CPXMIP_FEASIBLE_RELAXED_QUAD 124 (MIP only) enum: FeasibleRelaxedQuad

CPXMIP_FEASIBLE_RELAXED_SUM 120 (MIP only) enum: FeasibleRelaxedSum

CPXMIP_INFEASIBLE 103 (MIP only) enum: Infeasible

CPXMIP_INForUNBD 119 (MIP only) enum: InfOrUnbd

CPXMIP_MEM_LIM_FEAS 111 (MIP only) enum: MemLimFeas

CPXMIP_MEM_LIM_INFEAS 112 (MIP only) enum: MemLimInfeas

CPXMIP_NODE_LIM_FEAS 105 (MIP only) enum: NodeLimFeas

CPXMIP_NODE_LIM_INFEAS 106 (MIP only) enum: NodeLimInfeas

CPXMIP_OPTIMAL 101 (MIP only) enum: Optimal

CPXMIP_OPTIMAL_INFEAS 115 (MIP only) enum: OptimalInfeas

CPXMIP_OPTIMAL_POPULATED 129 (MIP only) enum: OptimalPopulated

CPXMIP_OPTIMAL_POPULATED_TOL 130 (MIP only) enum: OptimalPopulatedTol

CPXMIP_OPTIMAL_RELAXED_INF 123 (MIP only) enum: OptimalRelaxedInf

CPXMIP_OPTIMAL_RELAXED_QUAD 125 (MIP only) enum: OptimalRelaxedQuad

CPXMIP_OPTIMAL_RELAXED_SUM 121 (MIP only) enum: OptimalRelaxedSum

CPXMIP_OPTIMAL_TOL 102 (MIP only) enum: OptimalTol

CPXMIP_POPULATESOL_LIM 128 (MIP only) enum: PopulateSolLim

CPXMIP_SOL_LIM 104 (MIP only) enum: SolLim

CPXMIP_TIME_LIM_FEAS 107 (MIP only) enum: TimeLimFeas

CPXMIP_TIME_LIM_INFEAS 108 (MIP only) enum: TimeLimInfeas

CPXMIP_UNBOUNDED 118 (MIP only) enum: Unbounded

This table lists the statuses for solutions to LP, QP, or MIP problems. These values are returned by the Callable
Library routine CPXgetstat or by the Concert Technology methods getCplexStatus and
getCplexSubStatus of the class IloCplex. If no solution exists, the return value is zero.

About Unboundedness

The treatment of models that are unbounded involves a few subtleties. Specifically, a declaration of
unboundedness means that CPLEX has determined that the model has an unbounded ray. Given any feasible
solution x with objective z, a multiple of the unbounded ray can be added to x to give a feasible solution with
objective z-1 (or z+1 for maximization models). Thus, if a feasible solution exists, then the optimal objective is
unbounded. Note that CPLEX has not necessarily concluded that a feasible solution exists. Users can call the
routine CPXsolninfo to determine whether CPLEX has also concluded that the model has a feasible solution.

61

Global function CPXaddfuncdest
int CPXaddfuncdest(CPXCENVptr env, CPXCHANNELptr channel, void * handle,
void(CPXPUBLIC *msgfunction)(void *, const char *))

Definition file: cplex.h

The routine CPXaddfuncdest adds a function msgfunction to the message destination list for a channel. This
routine allows users to trap messages instead of printing them. That is, when a message is sent to the channel,
each destination that was added to the message destination list by CPXaddfuncdest calls its associated
message.

To illustrate, consider an application in which a developer wishes to trap CPLEX error messages and display
them in a dialog box that prompts the user for an action. Use CPXaddfuncdest to add the address of a function
to the list of message destinations associated with the cpxerror channel. Then write the msgfunction routine. It
must contain the code that controls the dialog box. When CPXmsg is called with cpxerror as its first argument,
it calls the msgfunction routine, which can then display the error message.

Note

The argument handle is a generic pointer that can be used to hold information needed by the msgfunction
routine to avoid making such information global to all routines.

Example

 void msgfunction (void *handle, char *msg_string)
 {
 FILE *fp;
 fp = (FILE *)handle;
 fprintf (fp, "%s", msg_string);
 }
 status = CPXaddfuncdest (env, mychannel, fileptr, msgfunction);

Parameters

env

A pointer to the CPLEX environment as returned by CPXopenCPLEX.

channel

A pointer to the channel to which the function destination is to be added.

handle

A void pointer that can be used to pass arbitrary information into msgfunction.

msgfunction

A pointer to the function to be called when a message is sent to a channel.

See Also: CPXdelfuncdest

Returns:

The routine returns zero if successful and nonzero if an error occurs. Failure occurs when msgfunction is not
in the message-destination list or the channel does not exist.

62

Global function CPXmstwrite
int CPXmstwrite(CPXCENVptr env, CPXCLPptr lp, const char * filename_str)

Definition file: cplex.h

This routine is deprecated. Use CPXwritemipstarts instead.

The routine CPXmstwrite writes the incumbent MIP start to a file in MST format.

The MST format is an XML format and is documented in the stylesheet solution.xsl and schema
solution.xsd in the include directory of the CPLEX distribution. CPLEX File Formats Reference Manual
also documents this format briefly.

See Also: CPXwritemipstarts

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to the CPLEX problem object as returned by CPXcreateprob.
filename_str A character string containing the name of the file to which the incumbent MIP start

information should be written.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

63

Global function CPXgetmiprelgap
int CPXgetmiprelgap(CPXCENVptr env, CPXCLPptr lp, double * gap_p)

Definition file: cplex.h

The routine CPXgetmiprelgap accesses the relative objective gap for a MIP optimization.

For a minimization problem, this value is computed by

 (bestinteger - bestobjective) / (1e-10 + |bestobjective|)

where bestinteger is the value returned by CPXgetobjval and bestobjective is the value returned by
CPXgetbestobjval. For a maximization problem, the value is computed by:

 (bestobjective - bestinteger) / (1e-10 + |bestobjective|)

Example

 status = CPXgetmiprelgap (env, lp, &gap);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
gap_p A pointer to the location where the relative mip gap is returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

64

Global function CPXkillpnorms
void CPXkillpnorms(CPXLPptr lp)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXkillpnorms deletes any primal steepest-edge norms that have been retained relative to an
active basis. If the user believes that the values of these norms may be significantly in error, and the setting of
the parameter CPX_PARAM_PPRIIND is CPX_PPRIIND_STEEP, calling CPXkillpnorms means that fresh
primal steepest-edge norms will be computed on the next call to CPXprimopt.

Parameters:

lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.

65

Global function CPXdualwrite
int CPXdualwrite(CPXCENVptr env, CPXCLPptr lp, const char * filename_str, double *
objshift_p)

Definition file: cplex.h

The routine CPXdualwrite writes a dual formulation of the current CPLEX problem object. MPS format is used.
This function can only be applied to a linear program; it generates an error for other problem types.

Note

Any fixed variables in the primal are removed before the dual problem is written to a file. Each fixed variable
with a nonzero objective coefficient causes the objective value to shift. As a result, if fixed variables are
present, the optimal objective obtained from solving the dual problem created using CPXdualwrite may not
be the same as the optimal objective of the primal problem. The argument objshift_p can be used to
reconcile this difference.

Example

 status = CPXdualwrite (env, lp, "myfile.dua", &objshift);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
filename_str A character string containing the name of the file to which the dual problem should be written.
objshift_p A pointer to a variable of type double to hold the change in the objective function resulting from

the removal of fixed variables in the primal.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

66

Global function CPXcrushx
int CPXcrushx(CPXCENVptr env, CPXCLPptr lp, const double * x, double * prex)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXcrushx crushes a solution for the original problem to a solution for the presolved problem.

Example

 status = CPXcrushx (env, lp, origx, reducex);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
x An array that contains primal solution (x) values for the original problem, as returned by routines such as

CPXgetx or CPXsolution. The array must be of length at least the number of columns in the problem
object.

prex An array to receive the primal values corresponding to the presolved problem. The array must be of length
at least the number of columns in the presolved problem object.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

See admipex6.c in the CPLEX User's Manual.

67

Global function CPXgetslack
int CPXgetslack(CPXCENVptr env, CPXCLPptr lp, double * slack, int begin, int end)

Definition file: cplex.h

The routine CPXgetslack accesses the slack values for a range of linear constraints. The beginning and end of
the range must be specified. Except for ranged rows, the slack values returned consist of the righthand side
minus the row activity level. For ranged rows, the value returned is the row activity level minus the righthand side,
or, equivalently, the value of the internal structural variable that CPLEX creates to represent ranged rows.

Example

 status = CPXgetslack (env, lp, slack, 0, CPXgetnumrows(env,lp)-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
slack An array to receive the values of the slack or surplus variables for each of the constraints. This array must

be of length at least (end - begin + 1). If successful, slack[0] through slack[end-begin]
contain the values of the slacks.

begin An integer specifying the beginning of the range of slack values to be returned.
end An integer specifying the end of the range of slack values to be returned.

Example

 status = CPXgetslack (env, lp, slack, 0, CPXgetnumrows(env,lp)-1);

Returns:

The routine returns zero if successful and nonzero if an error occurs.

68

Global function CPXsetdblparam
int CPXsetdblparam(CPXENVptr env, int whichparam, double newvalue)

Definition file: cplex.h

The routine CPXsetdblparam sets the value of a CPLEX parameter of type double.

The CPLEX Parameters Reference Manual provides a list of parameters with their types, options, and default
values.

Example

 status = CPXsetdblparam (env, CPX_PARAM_TILIM, 1000.0);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
whichparam The symbolic constant (or reference number) of the parameter to change.
newvalue The new value of the parameter.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

69

Global function CPXgetsosindex
int CPXgetsosindex(CPXCENVptr env, CPXCLPptr lp, const char * lname_str, int *
index_p)

Definition file: cplex.h

The routine CPXgetsosindex searches for the index number of the specified special ordered set in a CPLEX
problem object.

Example

 status = CPXgetsosindex (env, lp, "set5", &setindex);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
lname_str A special ordered set name to search for.
index_p A pointer to an integer to hold the index number of the special ordered set with name

lname_str. If the routine is successful, *index_p contains the index number; otherwise,
*index_p is undefined.

Returns:

The routine returns zero on success and nonzero if an error occurs.

70

Global function CPXgetnumsemiint
int CPXgetnumsemiint(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetnumsemiint accesses the number of semi-integer variables in a CPLEX problem object.

Example

 numsc = CPXgetnumsemiint (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

If the problem object or environment does not exist, CPXgetnumsemiint returns the value 0 (zero); otherwise, it
returns the number of semi-integer variables in the problem object.

71

Global function CPXcheckcopysos
int CPXcheckcopysos(CPXCENVptr env, CPXCLPptr lp, int numsos, int numsosnz, const
char * sostype, const int * sosbeg, const int * sosind, const double * soswt, char
** sosname)

Definition file: cplex.h

The routine CPXcheckcopysos validates the arguments of the corresponding CPXcopysos routine. This data
checking routine is found in source format in the file check.c which is provided with the standard CPLEX
distribution. To call this routine, you must compile and link check.c with your program as well as the CPLEX
Callable Library.

The CPXcheckcopysos routine has the same argument list as the CPXcopysos routine. The second argument,
lp, is technically a pointer to a constant LP object of type CPXCLPptr rather than type CPXLPptr, as this
routine will not modify the problem. For most user applications, this distinction is unimportant.

Example

 status = CPXcheckcopysos (env, lp, numsos, numsosnz, sostype,
 sosbeg, sosind, soswt, sosname);

Returns:

The routine returns nonzero if it detects an error in the data; it returns zero if it does not detect any data errors.

72

Global function CPXgetcallbackincumbent
int CPXgetcallbackincumbent(CPXCENVptr env, void * cbdata, int wherefrom, double *
x, int begin, int end)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetcallbackincumbent retrieves the incumbent values during MIP optimization from within a
user-written callback. The values are from the original problem if CPX_PARAM_MIPCBREDLP is set to CPX_OFF or
if the routine is called from an informational callback. Otherwise, they are from the presolved problem.

This routine may be called only when the value of the wherefrom argument is one of the following:

CPX_CALLBACK_MIP,•
CPX_CALLBACK_MIP_BRANCH,•
CPX_CALLBACK_MIP_INCUMBENT,•
CPX_CALLBACK_MIP_NODE,•
CPX_CALLBACK_MIP_HEURISTIC,•
CPX_CALLBACK_MIP_SOLVE, or•
CPX_CALLBACK_MIP_CUT.•

Example

 status = CPXgetcallbackincumbent (env, cbdata, wherefrom,
 bestx, 0, cols-1);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
cbdata The pointer passed to the user-written callback. This argument must be the value of cbdata passed

to the user-written callback.
wherefrom An integer value reporting from where the user-written callback was called. The argument must be

the value of wherefrom passed to the user-written callback.
x An array to receive the values of the incumbent (best available) integer solution. This array must be

of length at least (end - begin + 1). If successful, x[0] through x[end-begin] contain the
incumbent values.

begin An integer specifying the beginning of the range of incumbent values to be returned.
end An integer specifying the end of the range of incumbent values to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

73

Global function CPXcopyquad
int CPXcopyquad(CPXCENVptr env, CPXLPptr lp, const int * qmatbeg, const int *
qmatcnt, const int * qmatind, const double * qmatval)

Definition file: cplex.h

The routine CPXcopyquad is used to copy a quadratic objective matrix Q when Q is not diagonal. The
arguments qmatbeg, qmatcnt, qmatind, and qmatval are used to specify the nonzero coefficients of the
matrix Q. The meaning of these vectors is identical to the meaning of the corresponding vectors matbeg,
matcnt, matind and matval, which are used to specify the structure of A in a call to CPXcopylp.

Q must be symmetric when copied by this function. Therefore, if the quadratic coefficient in algebraic form is
2x1x2, then x2 should be in the list for x1, and x1 should be in the list for x2, and the coefficient would be 1.0 in
each of those entries. See the corresponding example C program to review how the symmetry requirement is
implemented.

Note

CPLEX evaluates the corresponding objective with a factor of 0.5 in front of the quadratic objective term.

When you build or modify your model with this routine, you can verify that the results are as you intended by
calling CPXcheckcopyquad during application development.

How the arrays are accessed

Suppose that CPLEX wants to access the entries in a column j. These are assumed to be given by the array
entries:

 qmatval[qmatbeg[j]],..,qmatval[qmatbeg[j]+qmatcnt[j]-1]

The corresponding column/index entries are:

 qmatind[qmatbeg[j]],..,qmatind[qmatbeg[j]+qmatcnt[j]-1

The entries in qmatind[k] are not required to be in column order. Duplicate entries in qmatind within a single
column are not allowed. Note that any column j that has only a linear objective term has qmatcnt[j] = 0 and
no entries in qmatind and qmatval.

Example

 status = CPXcopyquad (env, lp, qmatbeg, qmatcnt, qmatind,
 qmatval);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
qmatbeg An array that with qmatcnt, qmatind, and qmatval defines the quadratic coefficient matrix.
qmatcnt An array that with qmatbeg, qmatind, and qmatval defines the quadratic coefficient matrix.
qmatind An array that with qmatbeg, qmatcnt, and qmatval defines the quadratic coefficient matrix.
qmatval An array that with qmatbeg, qmatcnt, and qmatind defines the quadratic coefficient matrix. The

arrays qmatbeg and qmatcnt should be of length at least CPXgetnumcols(env,lp). The arrays
qmatind and qmatval should be of length at least
qmatbeg[numcols-1]+qmatcnt[numcols-1]. CPLEX requires only the nonzero coefficients
grouped by column in the array qmatval. The nonzero elements of every column must be stored in
sequential locations in this array with qmatbeg[j] containing the index of the beginning of column j
and qmatcnt[j] containing the number of entries in column j. Note that the components of

74

qmatbeg must be in ascending order. For each k, qmatind[k] indicates the column number of the
corresponding coefficient, qmatval[k]. These arrays are accessed as explained above.

Returns:

The routine returns zero on success and nonzero if an error occurs.

75

Global function CPXNETgetphase1cnt
int CPXNETgetphase1cnt(CPXCENVptr env, CPXCNETptr net)

Definition file: cplex.h

The routine CPXNETgetphase1cnt returns the number of phase 1 network simplex iterations for the most
recent call to CPXNETprimopt.

Example

 phase1cnt = CPXNETgetphase1cnt (env, net);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
Returns:

Returns the total number of phase 1 network simplex iterations for the last call to CPXNETprimopt, for a
CPXNETptr object. If CPXNETprimopt has not been called, zero is returned. If an error occurs, -1 is returned
and an error message is issued.

76

Global function CPXbinvarow
int CPXbinvarow(CPXCENVptr env, CPXCLPptr lp, int i, double * z)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXbinvarow computes the i-th row of BinvA where Binv represents the inverse of the matrix B
and juxtaposition specifies matrix multiplication. In other words, it computes the i-th row of the tableau.

Parameters:

env The pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
i An integer that specifies the index of the row to be computed.
z An array containing the i-th row of BinvA. The array must be of length at least equal to the number of

columns in the problem.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

77

Global function CPXNETchgobj
int CPXNETchgobj(CPXCENVptr env, CPXNETptr net, int cnt, const int * indices, const
double * obj)

Definition file: cplex.h

The routine CPXNETchgobj is used to change the objective values for a set of arcs in the network stored in a
network problem object.

Any solution information stored in the problem object is lost.

Example

 status = CPXNETchgobj (env, net, cnt, indices, newobj);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
cnt Number of arcs for which the objective values are to be changed.
indices An array of indices that indicate the arcs for which the objective values are to be changed. This array

must have a length of at least cnt. The indices must be in the range [0, narcs-1].
obj An array of the new objective values for the arcs. This array must have a length of at least cnt.
Returns:

The routine returns zero on success and nonzero if an error occurs.

78

Global function CPXNETgetnumnodes
int CPXNETgetnumnodes(CPXCENVptr env, CPXCNETptr net)

Definition file: cplex.h

The routine CPXNETgetnumnodes is used to access the number of nodes in a network stored in a network
problem object.

Example

 cur_nnodes = CPXNETgetnumnodes (env, net);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
Returns:

The routine returns the number of network nodes stored in a network problem object. If an error occurs, 0 is
returned and an error message is issued.

79

Global function CPXqconstrslackfromx
int CPXqconstrslackfromx(CPXCENVptr env, CPXCLPptr lp, const double * x, double *
qcslack)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXqconstrslackfromx computes an array of slack values for quadratic constraints from primal
solution values.

Example

 status = CPXqconstrslackfromx (env, lp, x, qcslack);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
x An array that contains primal solution (x) values for the problem, as returned by routines such

as CPXcrushx and CPXuncrushx. The array must be of length at least the number of
columns in the LP problem object.

qcslack An array to receive the quadratic constraint slack values computed from the x values for the
problem object. The array must be of length at least the number of quadratic constraints in the
LP problem object.

Returns:

The routine returns zero on success and nonzero if an error occurs.

80

Global function CPXgetdblquality
int CPXgetdblquality(CPXCENVptr env, CPXCLPptr lp, double * quality_p, int what)

Definition file: cplex.h

The routine CPXgetdblquality accesses double-valued information about the quality of the current solution of
a problem. A solution, though not necessarily a feasible or optimal one, must be available in the CPLEX problem
object. The quality values are returned in the double variable pointed to by the argument quality_p.

The maximum bound infeasibility identifies the largest bound violation. Largest bound violation may help
determine the cause of an infeasible problem. If the largest bound violation exceeds the feasibility tolerance by
only a small amount, it may be possible to obtain a feasible solution to the problem by increasing the feasibility
tolerance. If a problem is optimal, the largest bound violation gives insight into the smallest setting for the
feasibility tolerance that would not cause the problem to terminate infeasibly.

Example

 status = CPXgetdblquality (env, lp, &max_x, CPX_MAX_X);

Parameters:

env A pointer to the CPLEX environment as returned by the CPXopenCPLEX routine.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
quality_p A pointer to a double variable in which the requested quality value is to be stored. If an

error occurs, the quality-value remains unchanged.
what A symbolic constant specifying the quality value to be retrieved. The possible quality

values for a solution are listed in the group optim.cplex.solutionquality in the Callable
Library Reference Manual.

Returns:

The routine returns zero if successful and nonzero if an error occurs. If an error occurs, the quality-value remains
unchanged.

81

Global function CPXsolninfo
int CPXsolninfo(CPXCENVptr env, CPXCLPptr lp, int * solnmethod_p, int * solntype_p,
int * pfeasind_p, int * dfeasind_p)

Definition file: cplex.h

The routine CPXsolninfo accesses solution information produced by the routines:

CPXlpopt,•
CPXprimopt,•
CPXdualopt,•
CPXbaropt,•
CPXhybbaropt,•
CPXhybnetopt,•
CPXqpopt,•
CPXfeasopt, or•
CPXmipopt.•

This information is maintained until the CPLEX problem object is freed by a call to CPXfreeprob or until the
solution is rendered invalid because of a call to one of the problem modification routines.

The arguments to CPXsolninfo are pointers to locations where data are to be written. Such data can include
the optimization method used to produce the current solution, the type of solution available, and what is known
about the primal and dual feasibility of the current solution. If any piece of information represented by an
argument to CPXsolninfo is not required, a NULL pointer can be passed for that argument.

Example

 status = CPXsolninfo (env, lp, &solnmethod, &solntype,
 &pfeasind, &dfeasind);

See also the topic Interpreting Solution Quality in the CPLEX User's Manual for information about how CPLEX
determines primal or dual infeasibility.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
solnmethod_p A pointer to an integer specifying the method used to produce the current solution.

The specific values which solnmethod_p can take and their meanings are the same
as the return values documented for CPXgetmethod.

solntype_p A pointer to an integer variable specifying the type of solution currently available.
Possible return values are CPX_BASIC_SOLN, CPX_NONBASIC_SOLN,
CPX_PRIMAL_SOLN, and CPX_NO_SOLN, meaning the problem either has a simplex
basis, has a primal and dual solution but no basis, has a primal solution but no
corresponding dual solution, or has no solution, respectively.

pfeasind_p A pointer to an integer variable specifying whether the current solution is known to be
primal feasible. A false return value does not necessarily mean that the solution is not
feasible. It simply means that the relevant algorithm was not able to conclude it was
feasible when it terminated.

dfeasind_p A pointer to an integer variable specifying whether the current solution is known to be
dual feasible. A false return value does not necessarily mean that the solution is not
feasible. It simply means that the relevant algorithm was not able to conclude it was
feasible when it terminated.

Returns:

The routine returns zero if successful and it returns nonzero if an error occurs.

82

83

Global function CPXgetsolvecallbackfunc
void CPXgetsolvecallbackfunc(CPXCENVptr env, int(CPXPUBLIC
**solvecallback_p)(CALLBACK_SOLVE_ARGS), void ** cbhandle_p)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetsolvecallbackfunc accesses the user-written callback to be called during MIP
optimization to optimize the subproblem.

Example

 CPXgetsolvecallbackfunc(env, ¤t_callback, ¤t_cbdata);

See also Advanced MIP Control Interface in the CPLEX User's Manual.

For documentation of callback arguments, see the routine CPXsetsolvecallbackfunc.

Parameters

env

A pointer to the CPLEX environment, as returned by CPXopenCPLEX.

solvecallback_p

The address of the pointer to the current user-written solve callback. If no callback has been set, the pointer
evaluates to NULL.

cbhandle_p

The address of a variable to hold the user's private pointer.

See Also: CPXgetcallbacknodelp, CPXsetsolvecallbackfunc

Returns:

This routine does not return a result.

84

Global function CPXmdleave
int CPXmdleave(CPXCENVptr env, CPXLPptr lp, const int * indices, int cnt, double *
downratio, double * upratio)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXmdleave assumes that there is a resident optimal simplex basis, and a resident LU-factorization
associated with this basis. It takes as input a list of basic variables as specified by indices[] and cnt, and
returns values commonly known as Driebeek penalties in the two arrays downratio[] and upratio[].

For a given j = indices[i], downratio[i] has the following meaning. Let xj be the name of the basic variable with
index j and that the value of xj is t, and suppose that xj is fixed to some value t' < t. In a subsequent call to
CPXdualopt, the leaving variable in the first iteration of this call is uniquely determined: It must be xj.

There are then two possibilities. Either an entering variable is determined, or it is concluded (in the first iteration)
that the changed problem is dual unbounded (primal infeasible). In the latter case, downratio[i] is set equal to
a large positive value (this number is system dependent, but is usually 1.0E+75). In the former case, where r is
the change in the objective function after this one iteration, downratio[i] is determined by |r| = |t - t'| *
downratio[i].

The meaning of upratio[i] is analogous to that of downratio[i] except that xj is fixed to a value t' > t.

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned byCPXcreateprob.
indices An array of integers that must be of length at least cnt. The entries in indices[] must all be indices

of current basic variables. Moreover, these indices must all be indices of original problem variables;
that is, they must all take values smaller than the number of columns in the problem as returned by
CPXgetnumcols. Negative indices and indices bigger than or equal to CPXgetnumcols result in an
error.

cnt An integer specifying the number of entries in indices[]. If cnt < 0, an error is returned.
downratio An array of type double that must be of length at least cnt.
upratio An array of type double that must be of length at least cnt.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

85

Global function CPXreadcopyorder
int CPXreadcopyorder(CPXCENVptr env, CPXLPptr lp, const char * filename_str)

Definition file: cplex.h

The routine CPXreadcopyorder reads an ORD file and copies the priority order information into a CPLEX
problem object. The parameter CPX_PARAM_MIPORDIND must be set to CPX_ON (its default value), in order for
the priority order to be used for starting a subsequent optimization.

Example

 status = CPXreadcopyorder (env, lp, "myprob.ord");

See Also: CPXordwrite

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
filename_str The name of the file from which the priority order should be read.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

86

Global function CPXcopyobjname
int CPXcopyobjname(CPXCENVptr env, CPXLPptr lp, const char * objname_str)

Definition file: cplex.h

The routine CPXcopyobjname copies a name for the objective function into a CPLEX problem object. An
argument to CPXcopyobjname defines the objective name.

Example

 status = CPXcopyobjname (env, lp, "Cost");

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
objname_str A pointer to a character string containing the objective name.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

87

Global function CPXgetsolnpoolmipstart
int CPXgetsolnpoolmipstart(CPXCENVptr env, CPXCLPptr lp, int soln, int * cnt_p, int
* indices, double * value, int mipstartspace, int * surplus_p)

Definition file: cplex.h

This routine is deprecated. Use CPXgetmipstarts instead.

The routine CPXgetsolnpoolmipstart accesses MIP start information stored in the solution pool of a CPLEX
problem object. Values are returned for all integer, binary, semi-continuous, and nonzero SOS variables.

Note

If the value of mipstartspace is 0 (zero), then the negative of the value of *surplus_p returned specifies
the length needed for the arrays indices and values.

Example

 status = CPXgetsolnpoolmipstart (env, lp, 5, &listsize, indices, values,
 numcols, &surplus);

See Also: CPXgetmipstarts

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
soln An integer specifying the index of the solution pool member for which to return the MIP start. A

value of -1 specifies that the current MIP start should be used instead of a solution pool member.
cnt_p A pointer to an integer to contain the number of MIP start entries returned; that is, the true length

of the arrays indices and values.
indices An array to contain the indices of the variables in the MIP start. indices[k] is the index of the

variable which is entry k in the MIP start information. Must be of length no less than
mipstartspace.

value An array to contain the MIP start values. The start value corresponding to indices[k] is
returned in values[k]. Must be of length at least mipstartspace.

mipstartspace An integer stating the length of the non-NULL array indices and values; mipstartspace
may be 0 (zero).

surplus_p A pointer to an integer to contain the difference between mipstartspace and the number of
entries in each of the arrays indices, and values. A nonnegative value of *surplus_p
specifies that the length of the arrays was sufficient. A negative value specifies that the length
was insufficient and that the routine could not complete its task. In this case, the routine
CPXgetmipstart returns the value CPXERR_NEGATIVE_SURPLUS, and the negative value of
*surplus_p specifies the amount of insufficient space in the arrays. The error
CPXERR_NO_MIPSTART reports that no start information is available.

Returns:

The routine returns zero if successful and nonzero if an error occurs. The value CPXERR_NEGATIVE_SURPLUS
reports that insufficient space was available in the arrays indices and values to hold the MIP start information.

88

Global function CPXdualfarkas
int CPXdualfarkas(CPXCENVptr env, CPXCLPptr lp, double * y, double * proof_p)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXdualfarkas assumes that there is a resident solution as produced by a call to CPXdualopt
and that the status of this solution as returned by CPXgetstat is CPX_STAT_INFEASIBLE.

The values returned in the array y[] have the following interpretation. For the ith constraint, if that constraint is a
less-than-or-equal-to constraint, y[i] <= 0 holds; if that constraint is a greater-than-or-equal-to constraint, y[i] >= 0
holds. Thus, where b is the righthand-side vector for the given linear program, A is the constraint matrix, and x
denotes the vector of variables, y may be used to derive the following valid inequality:

yTA x >= yTb

Here y is being interpreted as a column vector, and yT denotes the transpose of y.

The real point of computing y is the following. Suppose we define a vector z of dimension equal to the dimension
of x and having the following value for entries

zj = uj where yTAj > 0, and

zj = lj where yTAj < 0,

where Aj denotes the column of A corresponding to xj, uj the given upper bound on xj, and lj is the specified
lower bound. (zj is arbitrary if yTAj = 0.) Then y and z will satisfy

yTb - yTA z > 0.

This last inequality contradicts the validity of yTA x >= yTb, and hence shows that the given linear program is
infeasible. The quantity *proof_p is set equal to yTb - yTA z. Thus, *proof_p in some sense denotes the
degree of infeasibility.

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
y An array of doubles of length at least equal to the number of rows in the problem.
proof_p A pointer to a double. The argument proof_p is allowed to have the value NULL.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

89

Global function CPXgetcolinfeas
int CPXgetcolinfeas(CPXCENVptr env, CPXCLPptr lp, const double * x, double *
infeasout, int begin, int end)

Definition file: cplex.h

The routine CPXgetcolinfeas computes the infeasibility of a given solution for a range of variables. The
beginning and end of the range must be specified. This routine checks whether each variable takes a value
within its bounds, but it does not check for integer feasibility in the case of integer variables. For each variable,
the infeasibility value returned is 0 (zero) if the variable bounds are satisfied. Otherwise, if the infeasibility value is
negative, it specifies the amount by which the lower bound (or semi-continuous lower bound in case of a
semi-continuous or semi-integer variable) of the variable must be changed to make the queried solution valid. If
the infeasibility value is positive, it specifies the amount by which the upper bound of the variable must be
changed.

Example

 status = CPXgetcolinfeas (env, lp, NULL, infeasout, 0, CPXgetnumcols(env,lp)-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
x The solution whose infeasibility is to be computed. May be NULL, in which case the resident solution

is used.
infeasout An array to receive the infeasibility value for each of the variables. This array must be of length at least

(end - begin + 1).
begin An integer specifying the beginning of the range of variables whose infeasibility is to be returned.
end An integer specifying the end of the range of variables whose infeasibility is to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

90

Global function CPXdelcols
int CPXdelcols(CPXCENVptr env, CPXLPptr lp, int begin, int end)

Definition file: cplex.h

The routine CPXdelcols deletes all the columns in a specified range. The range is specified using a lower and
an upper index that represent the first and last column to be deleted, respectively. The indices of the columns
following those deleted are decreased by the number of columns deleted.

Example

 status = CPXdelcols (env, lp, 10, 20);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
begin An integer that specifies the numeric index of the first column to be deleted.
end An integer that specifies the numeric index of the last column to be deleted.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

91

Global function CPXslackfromx
int CPXslackfromx(CPXCENVptr env, CPXCLPptr lp, const double * x, double * slack)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXslackfromx computes an array of slack values from primal solution values.

Example

 status = CPXslackfromx (env, lp, x, slack);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
x An array that contains primal solution (x) values for the problem, as returned by routines such as

CPXcrushx and CPXuncrushx. The array must be of length at least the number of columns in
the LP problem object.

slack An array to receive the slack values computed from the x values for the problem object. The
array must be of length at least the number of rows in the LP problem object.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

92

Global function CPXcheckcopyquad
int CPXcheckcopyquad(CPXCENVptr env, CPXCLPptr lp, const int * qmatbeg, const int *
qmatcnt, const int * qmatind, const double * qmatval)

Definition file: cplex.h

The routine CPXcheckcopyquad validates the arguments of the corresponding routine CPXcopyquad. This data
checking routine is found in source format in the file check.c provided with the standard CPLEX distribution. To
call this routine, you must compile and link check.c with your program as well as the CPLEX Callable Library.

The CPXcheckcopyquad routine has the same argument list as the CPXcopyquad routine. The second
argument, lp, is technically a pointer to a constant LP object of type CPXCLPptr rather than type CPXLPptr, as
this routine will not modify the model. For most user applications, this distinction is unimportant.

Example

 status = CPXcheckcopyquad (env, lp, qmatbeg, qmatcnt,
 qmatind, qmatval);

Returns:

The routine returns nonzero if it detects an error in the data; it returns zero if it does not detect any data errors.

93

Global function CPXbinvacol
int CPXbinvacol(CPXCENVptr env, CPXCLPptr lp, int j, double * x)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXbinvacol computes the representation of the j-th column in terms of the basis. In other words, it
solves Bx = Aj.

Parameters:

env The pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
j An integer that specifies the index of the column to be computed.
x An array containing the solution of Bx = Aj. The array must be of length at least equal to the number of rows

in the problem.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

94

Global function CPXcheckchgcoeflist
int CPXcheckchgcoeflist(CPXCENVptr env, CPXCLPptr lp, int numcoefs, const int *
rowlist, const int * collist, const double * vallist)

Definition file: cplex.h

The routine CPXcheckchgcoeflist validates the arguments of the corresponding CPXchgcoeflist routine.
This data checking routine is found in source format in the file check.c which is provided with the standard
CPLEX distribution. To call this routine, you must compile and link check.c with your program as well as the
CPLEX Callable Library.

The CPXcheckchgcoeflist routine has the same argument list as the CPXchgcoeflist routine. The second
argument, lp, is technically a pointer to a constant LP object of type CPXCLPptr rather than type CPXLPptr, as
this routine will not modify the problem. For most user applications, this distinction is unimportant.

Example

 status = CPXcheckchgcoeflist (env, lp, numcoefs, rowlist,
 collist, vallist);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
numcoefs The number of coefficients to check, or, equivalently, the length of the arrays rowlist, collist,

and vallist.
rowlist An array of length numcoefs that with collist and vallist specifies the coefficients to check.
collist An array of length numcoefs that with rowlist and vallist specifies the coefficients to check.
vallist An array of length numcoefs that with rowlist and collist specifies the coefficients to change.

The entries rowlist[k], collist[k], and vallist[k] specify that the matrix coefficient in row
rowlist[k] and column collist[k] should be checked with respect to the value vallist[k].

Returns:

The routine returns nonzero if it detects an error in the data; it returns zero if it does not detect any data errors.

95

Global function CPXgetcallbacknodeub
int CPXgetcallbacknodeub(CPXCENVptr env, void * cbdata, int wherefrom, double * ub,
int begin, int end)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetcallbacknodeub retrieves the upper bound values for the subproblem at the current node
during MIP optimization from within a user-written callback. The upper bounds are tightened after a new
incumbent is found, so the values returned by CPXgetcallbacknodex may violate these bounds at nodes
where new incumbents have been found. The values are from the original problem if CPX_PARAM_MIPCBREDLP
is set to CPX_OFF; otherwise, they are from the presolved problem.

This routine may be called only when the value of the wherefrom argument is one of the following:

CPX_CALLBACK_MIP,•
CPX_CALLBACK_MIP_BRANCH,•
CPX_CALLBACK_MIP_INCUMBENT,•
CPX_CALLBACK_MIP_NODE,•
CPX_CALLBACK_MIP_HEURISTIC,•
CPX_CALLBACK_MIP_SOLVE, or•
CPX_CALLBACK_MIP_CUT.•

Example

 status = CPXgetcallbacknodeub (env, cbdata, wherefrom,
 ub, 0, cols-1);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
cbdata The pointer passed to the user-written callback. This argument must be the value of cbdata passed

to the user-written callback.
wherefrom An integer value reporting from where the user-written callback was called. The argument must be

the value of wherefrom passed to the user-written callback.
ub An array to receive the values of the upper bound values. This array must be of length at least (end

- begin + 1). If successful, ub[0] through ub[end-begin] contain the upper bound values for
the current subproblem.

begin An integer specifying the beginning of the range of upper bound values to be returned.
end An integer specifying the end of the range of upper bound values to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

96

Global function CPXnewcols
int CPXnewcols(CPXCENVptr env, CPXLPptr lp, int ccnt, const double * obj, const
double * lb, const double * ub, const char * xctype, char ** colname)

Definition file: cplex.h

The routine CPXnewcols adds empty columns to a specified CPLEX problem object. This routine may be called
any time after a call to CPXcreateprob.

For each column, the user can specify the objective coefficient, the lower and upper bounds, the variable type,
and name of the variable. The added columns are indexed to put them at the end of the problem. Thus, if ccnt
columns are added to a problem object already having k columns, the new columns have indices k, k+1, ...
k+ccnt-1. The constraint coefficients in the new columns are zero; the constraint coefficients can be changed
with calls to CPXchgcoef, CPXchgcoeflist, or CPXaddrows.

The routine CPXnewcols is very similar to the routine CPXnewrows. It can be used to add variables to a problem
object without specifying the matrix coefficients.

Types of new variables: values of ctype[j]

CPX_CONTINUOUS 'C' continuous variable j

CPX_BINARY 'B' binary variable j

CPX_INTEGER 'I' general integer variable j

CPX_SEMICONT 'S' semi-continuous variable j

CPX_SEMIINT 'N' semi-integer variable j

Example

 status = CPXnewcols (env, lp, ccnt, obj, lb, ub, NULL, NULL);

See also the example lpex8.c in the CPLEX User's Manual and in the standard distribution.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
ccnt An integer that specifies the number of new variables being added to the problem object.
obj An array of length ccnt containing the objective function coefficients of the new

variables. This array may be NULL, in which case the new objective coefficients are all
set to 0 (zero).

lb An array of length ccnt containing the lower bound on each of the new variables. Any
lower bound that is set to a value less than or equal to that of the constant
-CPX_INFBOUND is treated as negative infinity. CPX_INFBOUND is defined in the header
file cplex.h. This array may be NULL, in which case the new lower bounds are all set to
0 (zero).

ub An array of length ccnt containing the upper bound on each of the new variables. Any
upper bound that is set to a value greater than or equal to that of the constant
CPX_INFBOUND is treated as infinity. CPX_INFBOUND is defined in the header file
cplex.h. This array may be NULL, in which case the new upper bounds are all set to
CPX_INFBOUND.

xctype An array of length ccnt containing the type of each of the new variables. Possible values
appear in the table. This array may be NULL, in which case the new variables are created
as continuous type. If this array is not NULL, then CPLEX interprets the problem as a
MIP; in that case, the routine CPXlpopt will return the error CPXERR_NOT_FOR_MIP.

97

colname An array of length ccnt containing pointers to character strings that specify the names of
the new variables added to the problem object. May be NULL, in which case the new
columns are assigned default names if the columns already resident in the problem object
have names; otherwise, no names are associated with the variables. If column names are
passed to CPXnewcols but existing variables have no names assigned, default names
are created for the existing variables.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

98

Global function CPXprechgobj
int CPXprechgobj(CPXCENVptr env, CPXLPptr lp, int cnt, const int * indices, const
double * values)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXprechgobj changes the objective function coefficients of an LP problem object and its
associated presolved LP problem object. The CPLEX parameter CPX_PARAM_REDUCE must be set to
CPX_PREREDUCE_PRIMALONLY (1) or CPX_PREREDUCE_NOPRIMALORDUAL (0) at the time of the presolve
in order to change objective coefficients and preserve the presolved problem. This routine should be used in
place of CPXchgobj when it is desired to preserve the presolved problem.

The arguments and operation of CPXprechgobj are the same as those of CPXchgobj. The objective coefficient
changes are applied to both the original LP problem object and the associated presolved LP problem object.

Example

 status = CPXprechgobj (env, lp, objcnt, objind, objval);

See also the example adpreex1.c in the standard distribution.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

99

Global function CPXgettime
int CPXgettime(CPXCENVptr env, double * timestamp)

Definition file: cplex.h

This routine returns a time stamp.

To measure time spent between a starting point and ending point of an operation, take the result of this routine at
the starting point; take the result of this routine at the end point; subtract the starting time stamp from the ending
time stamp; the subtraction yields elapsed time in seconds.

Whether the elapsed time measures wall clock time (also known as real time) or CPU time depends on the
setting of the clock type parameter CPX_PARAM_CLOCKTYPE.

The absolute value of the time stamp is not meaningful.

100

Global function CPXNETgetnumarcs
int CPXNETgetnumarcs(CPXCENVptr env, CPXCNETptr net)

Definition file: cplex.h

The routine CPXNETgetnumarcs is used to access the number of arcs in a network stored in a network problem
object.

Example

 cur_narcs = CPXNETgetnumarcs (env, net);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
Returns:

The routine returns the number of network arcs stored in a network problem object. If an error occurs, 0 is
returned and an error message is issued.

101

Global function CPXgetnumindconstrs
int CPXgetnumindconstrs(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetnumindconstrs accesses the number of indicator constraints in a CPLEX problem object.

Example

 cur_numindconstrs = CPXgetnumindconstrs (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

If the problem object or environment does not exist, CPXgetnumindconstrs returns the value 0 (zero);
otherwise, it returns the number of indicator constraints.

102

Global function CPXcopyorder
int CPXcopyorder(CPXCENVptr env, CPXLPptr lp, int cnt, const int * indices, const
int * priority, const int * direction)

Definition file: cplex.h

The routine CPXcopyorder copies a priority order to a CPLEX problem object of type CPXPROB_MILP,
CPXPROB_MIQP, or CPXPROB_MIQCP. A call to CPXcopyorder replaces any other information about priority
order previously stored in that CPLEX problem object. During branching, integer variables with higher priorities
are given preference over integer variables with lower priorities. Priorities must be nonnegative integers. A
preferred branching direction may also be specified for each variable.

The CPLEX parameter CPX_PARAM_MIPORDIND must be set to CPX_ON, its default value, for the priority order
to be used in a subsequent optimization.

Table 1: Settings for direction

CPX_BRANCH_GLOBAL use global branching direction when setting the parameter CPX_PARAM_BRDIR

CPX_BRANCH_DOWN branch down first on variable indices[i]

CPX_BRANCH_UP branch up first on variable indices[i]

Example

 status = CPXcopyorder (env, lp, cnt, indices, priority,
 direction);

See Also: CPXreadcopyorder

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
cnt An integer giving the number of entries in the list.
indices An array of length cnt containing the numeric indices of the columns corresponding to the integer

variables that are assigned priorities.
priority An array of length cnt containing the priorities assigned to the integer variables. The entry

priority[j] is the priority assigned to variable indices[j]. May be NULL.
direction An array of type int containing the branching direction assigned to the integer variables. The entry

direction[j] is the direction assigned to variable indices[j]. May be NULL. Possible settings for
direction[j] appear in Table 1.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

103

Global function CPXNETsolninfo
int CPXNETsolninfo(CPXCENVptr env, CPXCNETptr net, int * pfeasind_p, int *
dfeasind_p)

Definition file: cplex.h

The routine CPXNETsolninfo is used to access solution information computed by the most recent call to
CPXNETprimopt. The solution values are maintained in the object as long as no changes are applied to it with
one of the routines CPXNETchg..., CPXNETcopy..., or CPXNETadd... .

The arguments to CPXNETsolninfo are pointers to locations where data are to be written. The returned values
indicate what is known about the primal and dual feasibility of the current solution. If either piece of information
represented by an argument to CPXNETsolninfo is not required, a NULL pointer can be passed for that
argument.

Example

 status = CPXNETsolninfo (env, lp, &pfeasind, &dfeasind);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
pfeasind_p A pointer to an integer variables indicating whether the current solution is known to be

primal feasible. Note that a false return value does not necessarily mean that the
solution is not feasible. It simply means that the relevant algorithm was not able to
conclude that it was feasible when it terminated.

dfeasind_p A pointer to an integer variables indicating whether the current solution is known to be
dual feasible. Note that a false return value does not necessarily mean that the solution
is not feasible. It simply means that the relevant algorithm was not able to conclude that
it was feasible when it terminated.

Returns:

The routine returns zero on success and nonzero if an error occurs.

104

Global function CPXgetsolnpooldivfilter
int CPXgetsolnpooldivfilter(CPXCENVptr env, CPXCLPptr lp, double * lowercutoff_p,
double * upper_cutoff_p, int * nzcnt_p, int * ind, double * val, double * refval,
int space, int * surplus_p, int which)

Definition file: cplex.h

Accesses a diversity filter of the solution pool.

This routine accesses a diversity filter, specified by the argument which, of the solution pool associated with the
problem specified by the argument lp. Details about that filter are returned in the arguments of this routine.

Example

 status = CPXgetsolnpooldivfilter (env, lp, &limlo, &limup,
 &num, ind, val, refval,
 cols, &surplus, i);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
lowercutoff_p Lower bound on the diversity measure of a diversity filter.
upper_cutoff_p Upper bound on the diversity measure of a diversity filter.
nzcnt_p Number of variables in the diversity measure.
ind An array of indices of variables in the diversity measure. May be NULL if space> is 0.
val An array of weights used in the diversity measure. May be NULL if space> is 0.
refval List of reference values with which to compare the solution. May be NULL if space> is 0.
space Integer specifying the length of the arrays ind,val, and refval (if refval is not NULL.
surplus_p A pointer to an integer to contain the difference between space and the number of entries in

each of the arrays ind and val. A nonnegative value of surplus_p means that the length of
the arrays was sufficient. A negative value reports that the length was insufficient and
consequently the routine could not complete its task. In this case, the routine
CPXgetsolnpooldivfilter returns the value CPXERR_NEGATIVE_SURPLUS, and the
negative value of surplus_p specifies the amount of insufficient space in the arrays.

which An integer specifying the index of the filter to access.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

105

Global function CPXaddcols
int CPXaddcols(CPXCENVptr env, CPXLPptr lp, int ccnt, int nzcnt, const double *
obj, const int * cmatbeg, const int * cmatind, const double * cmatval, const double
* lb, const double * ub, char ** colname)

Definition file: cplex.h

The routine CPXaddcols adds columns to a specified CPLEX problem object. This routine may be called any
time after a problem object is created via CPXcreateprob.

The routine CPXaddcols is very similar to the routine CPXaddrows. The primary difference is that CPXaddcols
cannot add coefficients in rows that do not already exist (that is, in rows with index greater than the number
returned by CPXgetnumrows); whereas CPXaddrows can add coefficients in columns with index greater than
the value returned by CPXgetnumcols, by the use of the ccnt argument. (See the discussion of the ccnt
argument for CPXaddrows.) Thus, CPXaddcols has no variable rcnt and no array rowname.

The routine CPXnewrows can be used to add empty rows before adding new columns via CPXaddcols.

The nonzero elements of every column must be stored in sequential locations in the array cmatval from position
cmatbeg[i] to cmatbeg[i+1] (or from cmatbeg[i] to nzcnt-1 if i=ccnt-1). Each entry, cmatind[i],
specifies the row number of the corresponding coefficient, cmatval[i]. Unlike CPXcopylp, all columns must
be contiguous, and cmatbeg[0] must be 0.

When you build or modify your problem with this routine, you can verify that the results are as you intended by
calling CPXcheckaddcols during application development.

Example

 status = CPXaddcols (env, lp, ccnt, nzcnt, obj, cmatbeg,
 cmatind, cmatval, lb, ub, newcolname);

Parameters:

env A pointer to the CPLEX environment as returned by the CPXopenCPLEX routine.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
ccnt An integer that specifies the number of new columns being added to the constraint matrix.
nzcnt An integer that specifies the number of nonzero constraint coefficients to be added to the

constraint matrix.
obj An array of length ccnt containing the objective function coefficients of the new variables.

May be NULL, in which case, the objective coefficients of the new columns are set to 0.0.
cmatbeg Array that specifies the nonzero elements of the columns being added.
cmatind Array that specifies the nonzero elements of the columns being added.
cmatval Array that specifies the nonzero elements of the columns being added. The format is similar

to the format used to specify the constraint matrix in the routine CPXcopylp. (See
description of matbeg, matcnt, matind, and matval in that routine).

lb An array of length ccnt containing the lower bound on each of the new variables. Any lower
bound that is set to a value less than or equal to that of the constant -CPX_INFBOUND is
treated as negative infinity. CPX_INFBOUND is defined in the header file cplex.h. May be
NULL, in which case the lower bounds of the new columns are set to 0.0.

ub An array of length ccnt containing the upper bound on each of the new variables. Any upper
bound that is set to a value greater than or equal to that of the constant CPX_INFBOUND is
treated as infinity. CPX_INFBOUND is defined in the header file cplex.h. May be NULL, in
which case the upper bounds of the new columns are set to CPX_INFBOUND (positive
infinity).

colname An array of length ccnt containing pointers to character strings that specify the names of the
new variables added to the problem object. May be NULL, in which case the new columns
are assigned default names if the columns already resident in the CPLEX problem object

106

have names; otherwise, no names are associated with the variables. If column names are
passed to CPXaddcols but existing variables have no names assigned, default names are
created for them.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

107

Global function CPXkilldnorms
void CPXkilldnorms(CPXLPptr lp)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXkilldnorms deletes any dual steepest-edge norms that have been retained relative to an active
basis. If the user believes that the values of these norms may be significantly in error, and the setting of the
parameter CPX_PARAM_DPRIIND is CPX_DPRIIND_STEEP or CPX_DPRIIND_FULLSTEEP, calling
CPXkilldnorms means that fresh dual steepest-edge norms will be computed on the next call to CPXdualopt.

Parameters:

lp The pointer to a CPLEX LP problem object, as returned by CPXcreateprob.

108

Global function CPXdelsetsolnpoolsolns
int CPXdelsetsolnpoolsolns(CPXCENVptr env, CPXLPptr lp, int * delstat)

Definition file: cplex.h

The routine CPXdelsetsolnpoolsolns deletes solutions from the solution pool of the problem object specified
by the argument lp. Unlike the routine CPXdelsolnpoolsolns, CPXdelsetsolnpoolsolns does not require
the solutions to be in a contiguous range. After the deletion occurs, the remaining solutions are indexed
consecutively starting at 0 (zero), and in the same order as before the deletion.

Note

The delstat array must have at least CPXgetsolnpoolnumsolns(env,lp) elements.

Example

 status = CPXdelsetsolnpoolsolns (env, lp, delstat);

See Also: CPXdelsolnpoolsolns

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
delstat An array specifying the solutions to be deleted. The routine CPXdelsetsolnpoolsolns deletes each

solution i for which delstat[i] = 1. The deletion of solutions results in a renumbering of the
remaining solutions. After termination, delstat[i] is either -1 for filters that have been deleted or the
new index number that has been assigned to the remaining solutions.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

109

Global function CPXNETgetnodename
int CPXNETgetnodename(CPXCENVptr env, CPXCNETptr net, char ** nnames, char *
namestore, int namespc, int * surplus_p, int begin, int end)

Definition file: cplex.h

The routine CPXNETgetnodename is used to obtain the names of a range of nodes in a network stored in a
network problem object. The beginning and end of the range, along with the length of the array in which the node
names are to be returned, must be specified.

Example

 status = CPXNETgetnodename (env, net, nnames, namestore, namespc,
 &surplus, 0, nnodes-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
nnames Where to copy pointers to node names stored in the namestore array. The length of this array must

be at least (end-begin+1). The pointer to the name of node i is returned in nnames[i-begin].
namestore Array of characters to which the specified node names are to be copied. It may be NULL if namespc

is 0.
namespc Length of the namestore array.
surplus_p Pointer to an integer in which the difference between namespc and the number of characters

required to store the requested names is returned. A nonnegative value indicates that namespc was
sufficient. A negative value indicates that it was insufficient. In that case,
CPXERR_NEGATIVE_SURPLUS is returned and the negative value of surplus_p indicates the
amount of insufficient space in the array namestore.

begin Index of the first node for which a name is to be obtained.
end Index of the last node for which a name is to be obtained.
Returns:

The routine returns zero on success and nonzero if an error occurs. The value CPXERR_NEGATIVE_SURPLUS
indicates that there was not enough space in the namestore array to hold the names.

110

Global function CPXsetheuristiccallbackfunc
int CPXsetheuristiccallbackfunc(CPXENVptr env, int(CPXPUBLIC
*heuristiccallback)(CALLBACK_HEURISTIC_ARGS), void * cbhandle)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXsetheuristiccallbackfunc sets or modifies the user-written callback to be called by
CPLEX during MIP optimization after the subproblem has been solved to optimality. That callback is not called
when the subproblem is infeasible or cut off. The callback supplies CPLEX with heuristically-derived integer
solutions.

If a linear program must be solved as part of a heuristic callback, make a copy of the node LP and solve the
copy, not the CPLEX node LP.

Example

 status = CPXsetheuristiccallbackfunc(env, myheuristicfunc, mydata);

See also the example admipex2.c in the standard distribution.

Parameters

env

A pointer to the CPLEX environment, as returned by CPXopenCPLEX.

heuristiccallback

A pointer to a user-written heuristic callback. If this callback is set to NULL, no callback is called during
optimization.

cbhandle

A pointer to the user's private data. This pointer is passed to the callback.

Callback description

 int callback (CPXCENVptr env,
 void *cbdata,
 int wherefrom,
 void *cbhandle,
 double *objval_p,
 double *x,
 int *checkfeas_p,
 int *useraction_p);

The call to the heuristic callback occurs after an optimal solution to the subproblem has been obtained. The user
can provide that solution to start a heuristic for finding an integer solution. The integer solution provided to
CPLEX replaces the incumbent if it has a better objective value. The basis that is saved as part of the incumbent
is the optimal basis from the subproblem; it may not be a good basis for starting optimization of the fixed
problem.

111

The integer solution returned to CPLEX is for the original problem if the parameter CPX_PARAM_MIPCBREDLP
was set to CPX_OFF before the call to CPXmipopt that calls the callback. Otherwise, it is for the presolved
problem.

Callback return value

The callback returns zero if successful and nonzero if an error occurs.

Callback arguments

env

A pointer to the CPLEX environment, as returned by CPXopenCPLEX.

cbdata

A pointer passed from the optimization routine to the user-written callback to identify the problem being
optimized. The only purpose of the cbdata pointer is to pass it to the callback information routines.

wherefrom

An integer value reporting at which point in the optimization this function was called. It has the value
CPX_CALLBACK_MIP_HEURISTIC for the heuristic callback.

cbhandle

A pointer to user private data.

objval_p

A pointer to a variable that on entry contains the optimal objective value of the subproblem and on return
contains the objective value of the integer solution found, if any.

x

An array that on entry contains primal solution values for the subproblem and on return contains solution values
for the integer solution found, if any. The values are from the original problem if the parameter
CPX_PARAM_MIPCBREDLP is turned off (that is, set to CPX_OFF); otherwise, the values are from the presolved
problem.

checkfeas_p

A pointer to an integer that specifies whether or not CPLEX should check the returned integer solution for integer
feasibility. The solution is checked if checkfeas_p is nonzero. When the solution is checked and found to be
integer infeasible, it is discarded, and optimization continues.

useraction_p

A pointer to an integer to contain the specifier of the action to be taken on completion of the user callback. The
table summarizes the possible values.

Actions to be Taken after a User-Written Heuristic Callback

Value Symbolic Constant Action

0 CPX_CALLBACK_DEFAULT No solution found

1 CPX_CALLBACK_FAIL Exit optimization

2 CPX_CALLBACK_SET Use user solution as reported in return values

Returns:

112

The routine returns zero if successful and nonzero if an error occurs.

113

Global function CPXcutcallbackaddlocal
int CPXcutcallbackaddlocal(CPXCENVptr env, void * cbdata, int wherefrom, int nzcnt,
double rhs, int sense, const int * cutind, const double * cutval)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXcutcallbackaddlocal adds local cuts during MIP branch and cut. A local cut is one that
applies to the current node and the subtree rooted at this node. Global cuts, that is, cuts that apply throughout
the branch-and-cut tree, are added with the routine CPXcutcallbackadd. This routine may be called only from
within user-written cut callbacks; thus it may be called only when the value of its wherefrom argument is
CPX_CALLBACK_MIP_CUT.

The cut may be for the original problem if the parameter CPX_PARAM_MIPCBREDLP was set to CPX_OFF before
the call to CPXmipopt that calls the callback. Otherwise, the cut is used on the presolved problem.

Example

 status = CPXcutcallbackaddlocal (env,
 cbdata,
 wherefrom,
 mynzcnt,
 myrhs,
 'L',
 mycutind,
 mycutval);

See Also: CPXcutcallbackadd, CPXgetcutcallbackfunc, CPXsetcutcallbackfunc

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
cbdata The pointer passed to the user-written callback. This argument must be the value of cbdata passed

to the user-written callback.
wherefrom An integer value that reports where the user-written callback was called from. This argument must be

the value of wherefrom passed to the user-written callback.
nzcnt An integer value that specifies the number of coefficients in the cut, or equivalently, the length of the

arrays cutind and cutval.
rhs A double value that specifies the value of the righthand side of the cut.
sense An integer value that specifies the sense of the cut.
cutind An array containing the column indices of cut coefficients.
cutval An array containing the values of cut coefficients.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

114

Global function CPXgetnumsos
int CPXgetnumsos(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetnumsos accesses the number of special ordered sets (SOS) in a CPLEX problem object.

Example

 numsos = CPXgetnumsos (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.

Example

 numsos = CPXgetnumsos (env, lp);

Returns:

If the problem object or environment does not exist, or the problem is not a mixed integer problem, the routine
returns the value 0; otherwise, it returns the number of special ordered sets (SOS) in the problem object.

115

Global function CPXgetcallbackctype
int CPXgetcallbackctype(CPXCENVptr env, void * cbdata, int wherefrom, char *
xctype, int begin, int end)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetcallbackctype retrieves the ctypes for the MIP problem from within a user-written callback
during MIP optimization. The values are from the original problem if CPX_PARAM_MIPCBREDLP is set to
CPX_OFF. Otherwise, they are from the presolved problem.

This routine may be called only when the value of the wherefrom argument is one of the following:

CPX_CALLBACK_MIP,•
CPX_CALLBACK_MIP_BRANCH,•
CPX_CALLBACK_MIP_INCUMBENT,•
CPX_CALLBACK_MIP_NODE,•
CPX_CALLBACK_MIP_HEURISTIC,•
CPX_CALLBACK_MIP_SOLVE, or•
CPX_CALLBACK_MIP_CUT.•

Example

 status = CPXgetcallbackctype (env, cbdata, wherefrom,
 prectype, 0, precols-1);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
cbdata The pointer passed to the user-written callback. This argument must be the value of cbdata passed

to the user-written callback.
wherefrom An integer value reporting from where the user-written callback was called. The argument must be

the value of wherefrom passed to the user-written callback.
xctype An array where the ctype values for the MIP problem will be returned. The array must be of length at

least (end - begin + 1). If successful, xctype[0] through xctype[end-begin] contain the
variable types.

begin An integer specifying the beginning of the range of ctype values to be returned.
end An integer specifying the end of the range of ctype values to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

116

Global function CPXsolution
int CPXsolution(CPXCENVptr env, CPXCLPptr lp, int * lpstat_p, double * objval_p,
double * x, double * pi, double * slack, double * dj)

Definition file: cplex.h

The routine CPXsolution accesses the solution values produced by all the optimization routines except the
routine CPXNETprimopt. The solution is maintained until the CPLEX problem object is freed via a call to
CPXfreeprob or the solution is rendered invalid because of a call to one of the problem modification routines.

The arguments to CPXsolution are pointers to locations where data are to be written. Such data can include
the status of the optimization, the value of the objective function, the values of the primal variables, the dual
variables, the slacks and the reduced costs. All of that data exists after a successful call to one of the LP or QP
optimizers. However, dual variables and reduced costs are not available after a successful call of the QCP or
MIP optimizers. If any part of the solution represented by an argument to CPXsolution is not required, that
argument can be passed with the value NULL in a call to CPXsolution. If only one part is required, it may be
more convenient to use the CPLEX routine that accesses that part of the solution individually: CPXgetstat,
CPXgetobjval, CPXgetx, CPXgetpi, CPXgetslack, or CPXgetdj.

For barrier, the solution values for x, pi, slack, and dj correspond to the last iterate of the primal-dual
algorithm, independent of solution status.

If optimization stopped with an infeasible solution, take care to interpret the meaning of the values in the returned
arrays as described in the Parameters section.

Example

 status = CPXsolution (env, lp, &lpstat, &objval, x, pi,
 slack, dj);

See also the example lpex1.c in the CPLEX User's Manual and in the standard distribution.

See Also: CPXsolninfo

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
lpstat_p A pointer to an integer specifying the result of the optimization. The specific values which *lpstat_p

can take and their meanings are the same as the return values documented for CPXgetstat and are
found in the group optim.cplex.statuscodes of this reference manual.

objval_p A pointer to a double precision variable where the objective function value is to be stored.
x An array to receive the values of the variables for the problem. The length of the array must be at least

as great as the number of columns in the problem object. If the solution was computed using the dual
simplex optimizer, and the solution is not feasible, x values are calculated relative to the phase I RHS
used by CPXdualopt.

pi An array to receive the values of the dual variables for each of the constraints. The length of the array
must be at least as great as the number of rows in the problem object. If the solution was computed
using the primal simplex optimizer, and the solution is not feasible, pi values are calculated relative to
the phase I objective (the infeasibility function).

slack An array to receive the values of the slack or surplus variables for each of the constraints. The length
of the array must be at least as great as the number of rows in the problem object. If the solution was
computed by the dual simplex optimizer, and the solution is not feasible, slack values are calculated
relative to the phase I RHS used by CPXdualopt.

dj An array to receive the values of the reduced costs for each of the variables. The length of the array
must be at least as great as the number of columns in the problem object. If the solution was computed
by the primal simplex optimizer, and the solution is not feasible, dj values are calculated relative to the
phase I objective (the infeasibility function).

117

Returns:

This routine returns zero if a solution exists. If no solution exists, or some other failure occurs, CPXsolution
returns nonzero.

118

Global function CPXsetterminate
int CPXsetterminate(CPXENVptr env, volatile int * terminate_p)

Definition file: cplex.h

This routine enables applications to terminate CPLEX gracefully.

Conventionally, your application should first call this routine to set a pointer to the termination signal. Then the
application can set the termination signal to a nonzero value to tell CPLEX to abort. These conventions will
terminate CPLEX even in a different thread. In other words, this routine makes it possible to handle signals such
as control-C from a user interface. These conventions also enable termination within CPLEX callbacks.

Example

 status = CPXsetterminate (env, &terminate);

To unset a termination signal set by this routine, call this routine again later with a NULL pointer as the value of
the argument terminate_p.

Parameters:

env The pointer to the CPLEX environment, as returned by CPXopenCPLEX.
terminate_p A pointer to the termination signal.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

119

Global function CPXgetobjname
int CPXgetobjname(CPXCENVptr env, CPXCLPptr lp, char * buf_str, int bufspace, int *
surplus_p)

Definition file: cplex.h

The routine CPXgetobjname accesses the name of the objective row of a CPLEX problem object.

Note

If the value of bufspace is 0, then the negative of the value of surplus_p returned specifies the total number
of characters needed for the array buf_str.

Example

 status = CPXgetobjname (env, lp, cur_objname, lenname,
 &surplus);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
buf_str A pointer to a buffer of size bufspace. May be NULL if bufspace is 0.
bufspace An integer specifying the length of the array buf_str. May be 0.
surplus_p A pointer to an integer to contain the difference between bufspace and the amount of memory

required to store the objective row name. A nonnegative value of surplus_p specifies that the length
of the array buf_str was sufficient. A negative value specifies that the length of the array was
insufficient and that the routine could not complete its task. In this case, CPXgetobjname returns the
value CPXERR_NEGATIVE_SURPLUS, and the negative value of the variable surplus_p specifies
the amount of insufficient space in the array buf_str.

Returns:

The routine returns zero if successful and nonzero if an error occurs. The value CPXERR_NEGATIVE_SURPLUS
specifies that insufficient space was available in the buf_str array to hold the objective name.

120

Global function CPXpopulate
int CPXpopulate(CPXCENVptr env, CPXLPptr lp)

Definition file: cplex.h

The routine CPXpopulate generates multiple solutions to a mixed integer programming (MIP) problem.

The algorithm that populates the solution pool works in two phases.

In the first phase, it solves the problem to optimality (or some stopping criterion set by the user) while it sets up
a branch and cut tree for the second phase.

In the second phase, it generates multiple solutions by using the information computed and stored in the first
phase and by continuing to explore the tree.

The amount of preparation in the first phase and the intensity of exploration in the second phase are controlled
by the solution pool intensity parameter CPX_PARAM_SOLNPOOLINTENSITY.

Optimality is not a stopping criterion for the populate procedure. Even if the optimality gap is zero, this routine will
still try to find alternative solutions. The stopping criteria for CPXpopulate are these:

Populate limit CPX_PARAM_POPULATELIM. This parameter controls how many solutions are generated
before stopping. Its default value is 20.

•

Time limit CPX_PARAM_TILIM, as in standard MIP optimization.•
Node limit CPX_PARAM_NODELIM, as in standard MIP optimization.•
In the absence of other stopping criteria, CPXpopulate stops when it cannot enumerate any more
solutions. In particular, if the user specifies an objective tolerance with the relative or absolute solution
pool gap parameters, CPXpopulate stops if it cannot enumerate any more solutions within the
specified objective tolerance. However, there may exist additional solutions that are feasible, and if the
user has specified an objective tolerance, those feasible solutions may also satisfy this additional
criterion. (For example, there may be a great many solutions to a given problem with the same integer
values but different values for continuous variables.) Depending on the setting of the solution pool
intensity parameter CPX_PARAM_SOLNPOOLINTENSITY, CPXpopulate may or may not enumerate all
possible solutions. Consequently, CPXpopulate may stop when it has enumerated only a subset of the
solutions satisfying your criteria.

•

Successive calls to CPXpopulate create solutions that are stored in the solution pool. However, each call to
CPXpopulate applies only to the subset of solutions created in the current call; the call does not affect the
solutions already in the pool. In other words, solutions in the pool are persistent.

The user may call this routine independently of any MIP optimization of a problem (such as CPXmipopt). In that
case, CPXpopulate carries out the first and second phase itself.

The user may also call CPXpopulate after CPXmipopt. The activity of CPXmipopt constitutes the first phase of
the populate algorithm; CPXpopulate then re-uses the information computed and stored by CPXmipopt and
thus carries out only the second phase.

CPXpopulate does not try to generate multiple solutions for unbounded MIP problems. As soon as the proof of
unboundedness is obtained, CPXpopulate stops.

Example

 status = CPXpopulate (env, lp);

For more detail about populate, see also the chapter titled Solution Pool: Generating and Keeping Multiple
Solutions in the CPLEX User's Manual.

Parameters:

121

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to the CPLEX problem object as returned by CPXcreateprob.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

122

Global function CPXgetmipstart
int CPXgetmipstart(CPXCENVptr env, CPXCLPptr lp, int * cnt_p, int * indices, double
* value, int mipstartspace, int * surplus_p)

Definition file: cplex.h

This routine is deprecated. Use CPXgetmipstarts instead.

The routine CPXgetmipstart accesses information about the incumbent MIP start stored in a CPLEX problem
object. Values are returned for all integer, binary, semi-continuous, and nonzero SOS variables.

Note

If the value of mipstartspace is 0 (zero), then the negative of the value of surplus_p returned specifies the
length needed for the arrays indices and values.

Example

 status = CPXgetmipstart (env, lp, &listsize, indices, values,
 numcols, &surplus);

See Also: CPXgetmipstarts

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
cnt_p A pointer to an integer to contain the number of MIP start entries returned; that is, the true length

of the arrays indices and values.
indices An array to contain the indices of the variables in the incumbent MIP start. indices[k] is the

index of the variable which is entry k in the MIP start information. Must be of length no less than
mipstartspace.

value An array to contain the incumbent MIP start values. The start value corresponding to
indices[k] is returned in values[k]. Must be of length at least mipstartspace.

mipstartspace An integer stating the length of the non-NULL array indices and values; mipstartspace
may be 0 (zero).

surplus_p A pointer to an integer to contain the difference between mipstartspace and the number of
entries in each of the arrays indices, and values. A nonnegative value of *surplus_p
specifies that the length of the arrays was sufficient. A negative value specifies that the length
was insufficient and that the routine could not complete its task. In this case, the routine
CPXgetmipstart returns the value CPXERR_NEGATIVE_SURPLUS, and the negative value of
*surplus_p specifies the amount of insufficient space in the arrays. The error
CPXERR_NO_MIPSTART reports that no start information is available.

Returns:

The routine returns zero if successful and nonzero if an error occurs. The value CPXERR_NEGATIVE_SURPLUS
reports that insufficient space was available in the arrays indices and values to hold the incumbent MIP start
information.

123

Global function CPXNETcopybase
int CPXNETcopybase(CPXCENVptr env, CPXNETptr net, const int * astat, const int *
nstat)

Definition file: cplex.h

The routine CPXNETcopybase can be used to set the network basis for a network problem object. It is not
necessary to load a basis prior to optimizing a problem, but a very good starting basis may increase the speed of
optimization significantly. A copied basis does not need to be feasible to be used by the network optimizer.

Any solution information stored in the problem object is lost.

Example

 status = CPXNETcopybase (env, net, arc_stat, node_stat);

Table 1: Status of arcs in astat

CPX_BASIC if the arc is to be basic

CPX_AT_LOWER if the arc is to be nonbasic and its flow is on the lower bound

CPX_AT_UPPER if the arc is to be nonbasic and its flow is on the upper bound

CPX_FREE_SUPER if the arc is to be nonbasic but is free. In this case its flow is set to 0

Table 2: Status of artificial arcs in nstat

CPX_BASIC if the arc is to be basic

CPX_AT_LOWER if the arc is to be nonbasic and its flow is set to 0

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
astat Array of status values for network arcs. Each arc needs to be assigned one of the values in Table 1.
nstat Array of status values for artificial arcs from each node to the root node. Each artificial arc needs to be

assigned one of the values in Table 2. At least one of the artificial arcs must be assigned the status
CPX_BASIC for a network basis.

Returns:

The routine returns zero on success and nonzero if an error occurs.

124

Global function CPXrefineconflictext
int CPXrefineconflictext(CPXCENVptr env, CPXLPptr lp, int grpcnt, int concnt, const
double * grppref, const int * grpbeg, const int * grpind, const char * grptype)

Definition file: cplex.h

The routine CPXrefineconflictext extends CPXrefineconflict to problems with indicator constraints,
quadratic constraints, or special ordered sets (SOSs) and to situations where groups of constraints should be
considered as a single constraint. The routine CPXrefineconflictext identifies a minimal conflict for the
infeasibility of the current problem or a subset of constraints of the current problem. Since the conflict is minimal,
removal of any group of constraints that is a member of the conflict will remove that particular source of
infeasibility. However, there may be other conflicts in the problem; consequently, that repair of one conflict does
not guarantee feasibility of the solution of the remaining problem.

Constraints are considered in groups in this routine. If any constraint in a group participates in the conflict, the
entire group is determined to do so. No further detail about the constraints within that group is returned. A group
may consist of a single constraint.

A group may be assigned a preference; that is, a value specifying how much the user wants the group to be part
of a conflict. A group with a higher preference is more likely to be included in the conflict. However, no guarantee
is made when a minimal conflict is returned that other conflicts containing groups with a greater preference do
not exist.

To retrieve information about the conflict computed by CPXrefineconflictext, call the routine
CPXgetconflictext.

Table 1: Possible values for elements of grptype

CPX_CON_LOWER_BOUND 1 variable lower bound

CPX_CON_UPPER_BOUND 2 variable upper bound

CPX_CON_LINEAR 3 linear constraint

CPX_CON_QUADRATIC 4 quadratic constraint

CPX_CON_SOS 5 special ordered set

CPX_CON_INDICATOR 6 indicator constraint

The parameters CPX_PARAM_CUTUP, CPX_PARAM_CUTLO, CPX_PARAM_OBJULIM, CPX_PARAM_OBJLLIM do
not influence this routine. If you want to study infeasibilities introduced by those parameters, consider adding an
objective function constraint to your model to enforce their effect before you invoke this routine.

Example

 status = CPXrefineconflictext (env, lp, ngrp, ngrp, pri, beg, ind, type);

See Also: CPXgetconflictext, CPXrefineconflict, CPXclpwrite

Parameters:

env A pointer to the CPLEX environment as returned by the routine CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
grpcnt The number of constraint groups to be considered.
concnt An integer specifying the total number of elements passed in the arrays grpind and grptype, or,

equivalently, the end of the last group in grpind.
grppref An array of preferences for the groups. The value grppref[i] specifies the preference for the group

designated by the index i. A negative value specifies that the corresponding group should not be

125

considered in the computation of a conflict. In other words, such groups are not considered part of the
problem. Groups with a preference of 0 (zero) are always considered to be part of the conflict. No
further checking is performed on such groups.

grpbeg An array of integers specifying where the constraint indices for each group begin in the array grpind.
Its length must be at least grpcnt.

grpind An array of integers containing the indices for the constraints in each group. For each of the various
types of constraints listed in the table, the constraint indices range from 0 (zero) to the number of
constraints of that type minus one. Group i contains the constraints with the indices
grpind[grpbeg[i]], ..., grpind[grpbeg[i+1]-1] for i less than grpcnt-1, and
grpind[grpbeg[i]], ..., grpind[concnt-1] for i == grpcnt-1. Its length must be at least
concnt. A constraint must not be referenced more than once in this array. For any constraint in the
problem that is not a member of a group and thus does not appear in this array, the constraint is
assigned a default preference of 0 (zero). Thus such constraints are included in the conflict without any
analysis.

grptype An array of characters containing the constraint types for the constraints as they appear in groups. The
types of the constraints in group i are specified in grptype[grpbeg[i]], ...,
grptype[grpbeg[i+1]-1] for i less than grpcnt-1 and grptype[grpbeg[i]], ...,
grptype[concnt-1] for i == grpcnt-1. Its length must be at least concnt, and every constraint
must appear at most once in this array. Possible values appear in Table 1.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

126

Global function CPXgetbhead
int CPXgetbhead(CPXCENVptr env, CPXCLPptr lp, int * head, double * x)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetbhead returns the basis header; it gives the negative value minus one of all row indices of
slacks.

Parameters:

env The pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
head An array. The array contains the indices of the variables in the resident basis, where basic slacks are

specified by the negative of the corresponding row index minus 1 (one); that is, -rowindex - 1. The
array must be of length at least equal to the number of rows in the LP problem object.

x An array. This array contains the values of the basic variables in the order specified by head[]. The array
must be of length at least equal to number of rows in the LP problem object.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

127

Global function CPXboundsa
int CPXboundsa(CPXCENVptr env, CPXCLPptr lp, int begin, int end, double * lblower,
double * lbupper, double * ublower, double * ubupper)

Definition file: cplex.h

The routine CPXboundsa accesses upper and lower sensitivity ranges for lower and upper variable bounds for a
specified range of variable indices. The beginning and end of the range must be specified. Information for
variable j, where begin <= j <= end, is returned in position (j-begin) of the arrays lblower, lbupper,
ublower, and ubupper.

When the routine returns, the element lblower[j-begin] and lbupper[j-begin] will contain the lowest
and highest value the lower bound of variable j can assume without affecting the optimality of the solution.
Likewise, ublower[j-begin] and ubupper[j-begin] will contain the lowest and highest value the upper
bound of variable j can assume without affecting the optimality of the solution.

Note

If you want sensitivity ranges only for lower bound, then both lblower and lbupper should be non NULL,
and ublower and ubupper can be NULL.

Example

 status = CPXboundsa (env, lp, 0, CPXgetnumcols(env,lp)-1,
 lblower, lbupper, ublower, ubupper);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
begin An integer specifying the beginning of the range of ranges to be returned.
end An integer specifying the end of the range of ranges to be returned.
lblower An array where the lower bound lower range values are to be returned. The length of this array must be

at least (end - begin + 1). May be NULL.
lbupper An array where the lower bound upper range values are to be returned. The length of this array must

be at least (end - begin + 1). May be NULL.
ublower An array where the upper bound lower range values are to be returned. The length of this array must

be at least (end - begin + 1). May be NULL.
ubupper An array where the upper bound upper range values are to be returned. The length of this array must

be at least (end - begin + 1). May be NULL.
Returns:

The routine returns zero if successful and nonzero if an error occurs. This routine fails if no basis exists.

128

Global function CPXgetsolnpoolx
int CPXgetsolnpoolx(CPXCENVptr env, CPXCLPptr lp, int soln, double * x, int begin,
int end)

Definition file: cplex.h

The routine CPXgetsolnpoolx accesses the solution values for a range of problem variables for a member of
the solution pool. The beginning and end of the range must be specified.

Example

 status = CPXgetsolnpoolx (env, lp, 5, x, 0, CPXgetnumcols(env, lp)-1);

See also the example populate.c in the standard distribution.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
soln An integer specifying the index of the solution pool member for which to return primal values. A value of -1

specifies that the incumbent should be used instead of a solution pool member.
x An array to receive the values of a member of the solution pool for the problem. This array must be of

length at least (end - begin + 1). If successful, x[0] through x[end-begin] contains the solution
values.

begin An integer specifying the beginning of the range of variable values to be returned.
end An integer specifying the end of the range of variable values to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

129

Global function CPXcloneprob
CPXLPptr CPXcloneprob(CPXCENVptr env, CPXCLPptr lp, int * status_p)

Definition file: cplex.h

The routine CPXcloneprob can be used to create a new CPLEX problem object and copy all the problem data
from an existing problem object to it. Solution and starting information is not copied.

Example

 copy = CPXcloneprob (env, lp, &status);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object of which a copy is to be created.
status_p A pointer to an integer used to return any error code produced by this routine.
Returns:

If successful, CPXcloneprob returns a pointer that can be passed to other CPLEX routines to identify the
problem object that has been created, and the argument *status_p is zero. If not successful, a NULL pointer is
returned, and an error status is returned in the argument *status_p.

130

Global function CPXgetxqxax
int CPXgetxqxax(CPXCENVptr env, CPXCLPptr lp, double * xqxax, int begin, int end)

Definition file: cplex.h

The routine CPXgetxqxax is used to access quadratic constraint activity levels for a range of quadratic
constraints in a quadratically constrained program (QCP). The beginning and end of the range must be specified.

Quadratic constraint activity is the sum of the linear and quadratic terms of the constraint evaluated with the
values of the structural variables in the problem.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
xqxax An array to receive the values of the quadratic constraint activity levels for each of the constraints in the

specified range. The array must be of length at least (end-begin+1). If successful, x[0] through
x[end-begin] contain the quadratic constraint activities.

begin An integer indicating the beginning of the range of quadratic constraint activities to be returned.
end An integer indicating the end of the range of quadratic constraint activities to be returned.
Returns:

The routine returns zero on success and nonzero if an error occurs.

131

Global function CPXdelindconstrs
int CPXdelindconstrs(CPXCENVptr env, CPXLPptr lp, int begin, int end)

Definition file: cplex.h

The routine CPXdelindconstrs deletes a range of indicator constraints. The range is specified by a lower
index that represent the first indicator constraint to be deleted and an upper index that represents the last
indicator constraint to be deleted. The indices of the constraints following those deleted constraints are
automatically decreased by the number of deleted constraints.

Example

 status = CPXdelindconstrs (env, lp, 10, 20);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
begin An integer that specifies the numeric index of the first indicator constraint to be deleted.
end An integer that specifies the numeric index of the last indicator constraint to be deleted.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

132

Global function CPXgetnumrows
int CPXgetnumrows(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetnumrows accesses the number of rows in the constraint matrix, not including the objective
function, quadratic constraints, or the bounds constraints on the variables.

Example

 cur_numrows = CPXgetnumrows (env, lp);

See also the example lpex1.c in the CPLEX User's Manual and in the standard distribution.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

If the CPLEX problem object or environment does not exist, CPXgetnumrows returns the value 0 (zero);
otherwise, it returns the number of rows.

133

Global function CPXNETgetstat
int CPXNETgetstat(CPXCENVptr env, CPXCNETptr net)

Definition file: cplex.h

The routine CPXNETgetstat returns the solution status for a network problem object.

Example

 netstatus = CPXNETgetstat (env, net);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
Returns:

If no solution is available for the network problem object, CPXNETgetstat returns 0 (zero). When a solution
exists, the possible return values are:

CPX_STAT_OPTIMAL Optimal solution found.

CPX_STAT_UNBOUNDED Problem has an unbounded ray.

CPX_STAT_INFEASIBLE Problem is infeasible.

CPX_STAT_INForUNB Problem is infeasible or unbounded.

CPX_STAT_ABORT_IT_LIM Aborted due to iteration limit.

CPX_STAT_ABORT_TIME_LIM Aborted due to time limit.

CPX_STAT_ABORT_USER Aborted on user request.

134

Global function CPXdelmipstarts
int CPXdelmipstarts(CPXCENVptr env, CPXLPptr lp, int begin, int end)

Definition file: cplex.h

The routine CPXdelmipstarts deletes a range MIP starts. The range is specified using a beginning and ending
index that represent the first and last MIP start to delete. The indices of the MIP starts following those deleted are
automatically decreased by the number of deleted MIP starts.

Example

 status = CPXdelmipstarts (env, lp, 10, 20);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
begin An integer that specifies the numeric index of the first MIP start to be deleted.
end An integer that specifies the numeric index of the last MIP start to be deleted.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

135

Global function CPXgetmipitcnt
int CPXgetmipitcnt(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetmipitcnt accesses the cumulative number of simplex iterations used to solve a mixed
integer problem.

Example

 itcnt = CPXgetmipitcnt (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.

Example

 itcnt = CPXgetmipitcnt (env, lp);

Returns:

If a solution exists, CPXgetmipitcnt returns the total iteration count. If no solution, problem, or environment
exists, CPXgetmipitcnt returns the value 0.

136

Global function CPXsolwritesolnpoolall
int CPXsolwritesolnpoolall(CPXCENVptr env, CPXCLPptr lp, const char * filename_str)

Definition file: cplex.h

The routine CPXsolwritesolnpoolall writes all the solutions in the solution pool to a file for the selected
CPLEX problem object. The routine writes files in SOL format, which is an XML format.

The SOL format is documented in the stylesheet solution.xsl and schema solution.xsd in the include
directory of the CPLEX distribution. CPLEX File Formats Reference Manual also documents this format briefly.

Example

 status = CPXsolwritesolnpoolall (env, lp, "myfile.sol");

See Also: CPXsolwrite, CPXsolwritesolnpool

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
filename_str A character string containing the name of the file to which the solutions should be written.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

137

Global function CPXgetnumqpnz
int CPXgetnumqpnz(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetnumqpnz returns the number of nonzeros in the Q matrix of a problem object.

Example

 numqpnz = CPXgetnumqpnz (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

If successful, the routine returns the number of nonzeros in the Q matrix. If an error occurs, zero is returned.

138

Global function CPXgetub
int CPXgetub(CPXCENVptr env, CPXCLPptr lp, double * ub, int begin, int end)

Definition file: cplex.h

The routine CPXgetub accesses a range of upper bounds on the variables of a CPLEX problem object. The
beginning and end of the range must be specified.

Unbounded Variables

If a variable lacks an upper bound, then CPXgetub returns a value greater than or equal to CPX_INFBOUND.

Example

 status = CPXgetub (env, lp, ub, 0, cur_numcols-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
ub An array where the specified upper bounds on the variables are to be returned. This array must be of

length at least (end - begin + 1). The upper bound of variable j is returned in ub[j-begin].
begin An integer specifying the beginning of the range of upper bounds to be returned.
end An integer specifying the end of the range of upper bounds to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

139

Global function CPXsiftopt
int CPXsiftopt(CPXCENVptr env, CPXLPptr lp)

Definition file: cplex.h

This routine looks at a subset of the columns of a problem and uses either the barrier or simplex optimizer to
solve this reduced model. That is, it solves a model consisting of a selected subset of columns. After solving this
reduced model, it performs a pricing step. The pricing step serves two purposes:

to select additional columns to enter the reduced model;•
to select existing columns to discard from the reduced model.•

The routine repeats this procedure iteratively until it finds an optimal solution of the original problem.

This routine is useful for linear programming models (LPs) with a great many variables (columns) and relatively
few constraints (rows). In colloquial terms, these problems are known as long, skinny models. This routine is not
applicable to a model with quadratic terms in the objective function (QP) nor to models with quadratic terms
among the constraints (QCP).

Example

 status = CPXsiftopt (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

140

Global function CPXfreeprob
int CPXfreeprob(CPXCENVptr env, CPXLPptr * lp_p)

Definition file: cplex.h

The routine CPXfreeprob removes the specified CPLEX problem object from the CPLEX environment and frees
the associated memory used internally by CPLEX. The routine is used when the user has no need for further
access to the specified problem data.

Example

 status = CPXfreeprob (env, &lp);

See also the example lpex1.c in the CPLEX User's Manual and in the standard distribution.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp_p A pointer to a CPLEX problem object as returned by CPXcreateprob.

Example

 status = CPXfreeprob (env, &lp);

See also the example lpex1.c in the CPLEX User's Manual and in the standard distribution.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

141

Global function CPXgetsiftitcnt
int CPXgetsiftitcnt(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetsiftitcnt accesses the total number of sifting iterations to solve an LP problem.

Example

 itcnt = CPXgetsiftitcnt (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object as returned by CPXcreateprob.
Returns:

The routine returns the total iteration count if a solution exists. It returns zero if no solution exists or any other
type of error occurs.

142

Global function CPXcopyctype
int CPXcopyctype(CPXCENVptr env, CPXLPptr lp, const char * xctype)

Definition file: cplex.h

The routine CPXcopyctype can be used to copy variable type information into a given problem. Variable types
specify whether a variable is continuous, integer, binary, semi-continuous, or semi-integer. Adding ctype
information automatically changes the problem type from continuous to mixed integer (from CPXPROB_LP to
CPXPROB_MILP, from CPXPROB_QP to CPXPROB_MIQP, and from CPXPROB_QCP to CPXPROB_MIQCP), even if
the provided ctype data specifies that all variables are continuous.

This routine allows the types of all the variables to be set in one function call. When CPXcopyctype is called,
any current solution information is freed.

Note

Defining a variable j to be binary by setting the corresponding ctype[j]='B' does not change the bounds
associated with that variable. A later call to CPXmipopt will change the bounds to 0 (zero) and 1 (one) and
issue a warning.

Table 1: Possible values for elements of xctype

CPX_CONTINUOUS 'C' continuous variable

CPX_BINARY 'B' binary variable

CPX_INTEGER 'I' general integer variable

CPX_SEMICONT 'S' semi-continuous variable

CPX_SEMIINT 'N' semi-integer variable

When you build or modify your problem with this routine, you can verify that the results are as you intended by
calling CPXcheckcopyctype during application development.

Example

 status = CPXcopyctype (env, lp, ctype);

See also the example mipex1.c distributed with the product.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
xctype An array of length CPXgetnumcols(env,lp) containing the type of each column in the constraint

matrix. Possible values appear in Table 1.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

143

Global function CPXNETgetarcnodes
int CPXNETgetarcnodes(CPXCENVptr env, CPXCNETptr net, int * fromnode, int * tonode,
int begin, int end)

Definition file: cplex.h

The routine CPXNETgetarcnodes is used to access the from-nodes and to-nodes for a range of arcs in the
network stored in a network problem object.

Example

 status = CPXNETgetarcnodes (env, net, fromnode, tonode,
 0, cur_narcs-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
fromnode Array in which to write the from-node indices of the requested arcs. If NULL is passed, no from-node

indices are retrieved. Otherwise, the size of the array must be (end-begin+1).
tonode Array in which to write the to-node indices of the requested arcs. If NULL is passed, no to-node

indices are retrieved. Otherwise, the size of the array must be (end-begin+1).
begin Index of the first arc to get nodes for.
end Index of the last arc to get nodes for.
Returns:

The routine returns zero on success and nonzero if an error occurs.

144

Global function CPXobjsa
int CPXobjsa(CPXCENVptr env, CPXCLPptr lp, int begin, int end, double * lower,
double * upper)

Definition file: cplex.h

The routine CPXobjsa accesses upper and lower sensitivity ranges for objective function coefficients for a
specified range of variable indices. The beginning and end of the range of variable indices must be specified.

Note

Information for variable j, where begin <= j <= end, is returned in position (j-begin) of the arrays lower
and upper. The items lower[j-begin] and upper[j-begin] contain the lowest and highest value the
objective function coefficient for variable j can assume without affecting the optimality of the solution.

Example

 status = CPXobjsa (env, lp, 0, CPXgetnumcols(env,lp)-1,
 lower, upper);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
begin An integer specifying the beginning of the range of ranges to be returned.
end An integer specifying the end of the range of ranges to be returned.
lower An array where the objective function lower range values are to be returned. This array must be of length

at least (end - begin + 1).
upper An array where the objective function upper range values are to be returned. This array must be of length

at least (end - begin + 1).
Returns:

The routine returns zero if successful and nonzero if an error occurs. This routine fails if no optimal basis exists.

145

Global function CPXgetnummipstarts
int CPXgetnummipstarts(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetnummipstarts accesses the number of MIP starts in the CPLEX problem object.

Example

 numsolns = CPXgetnummipstarts (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

If the CPLEX problem object or environment does not exist, CPXgetnummipstarts returns the value 0 (zero);
otherwise, it returns the number of solutions.

146

Global function CPXgetdj
int CPXgetdj(CPXCENVptr env, CPXCLPptr lp, double * dj, int begin, int end)

Definition file: cplex.h

The routine CPXgetdj accesses the reduced costs for a range of the variables of a linear or quadratic program.
The beginning and end of the range must be specified.

Example

 status = CPXgetdj (env, lp, dj, 0, CPXgetnumcols(env,lp)-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
dj An array to receive the values of the reduced costs for each of the variables. This array must be of length

at least (end - begin + 1). If successful, dj[0] through dj[end-begin] contain the values of the
reduced costs.

begin An integer specifying the beginning of the range of reduced-cost values to be returned.
end An integer specifying the end of the range of reduced-costs values to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

147

Global function CPXNETfreeprob
int CPXNETfreeprob(CPXENVptr env, CPXNETptr * net_p)

Definition file: cplex.h

The routine CPXNETfreeprob deletes the network problem object pointed to by net_p. This also deletes all
network problem data and solution data stored in the network problem object.

Example

 CPXNETfreeprob (env, &net);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net_p CPLEX network problem object to be deleted.
Returns:

The routine returns zero on success and nonzero if an error occurs.

148

Global function CPXgetparamname
int CPXgetparamname(CPXCENVptr env, int whichparam, char * name_str)

Definition file: cplex.h

The routine CPXgetparamname returns the name of a CPLEX parameter, given the symbolic constant (or
reference number) for it.

The CPLEX Parameters Reference Manual provides a list of parameters with their types, options, and default
values.

Example

 status = CPXgetparamname (env, CPX_PARAM_ADVIND, param_string);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
whichparam An integer specifying the symbolic constant (or reference number) of the desired parameter.
name_str A character array (that is, a pointer to a buffer) of length at least CPX_STR_PARAM_MAX to hold the

name of the selected parameter.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

149

Global function CPXcopymipstart
int CPXcopymipstart(CPXCENVptr env, CPXLPptr lp, int cnt, const int * indices,
const double * values)

Definition file: cplex.h

This routine is deprecated. See CPXaddmipstarts instead to add multiple MIP starts to a CPLEX problem
object.

The routine CPXcopymipstart copies MIP start values to a CPLEX problem object of type CPXPROB_MILP,
CPXPROB_MIQP, or CPXPROB_MIQCP.

MIP start values may be specified for any subset of the integer or continuous variables in the problem. When
optimization begins or resumes, CPLEX attempts to find a feasible MIP solution that is compatible with the set of
values specified in the MIP start. When a partial MIP start is provided, CPLEX tries to extend it to a complete
solution by solving a MIP over the variables whose values are not specified in the MIP start. The parameter
CPX_PARAM_SUBMIPNODELIM controls the amount of effort CPLEX expends in trying to solve this secondary
MIP. If CPLEX is able to find a complete feasible solution, that solution becomes the incumbent. If the specified
MIP start values are infeasible, these values are retained for use in a subsequent repair heuristic. See the
description of the parameter CPX_PARAM_REPAIRTRIES for more information about this repair heuristic.

This routine replaces any existing MIP start information in the problem. Use the routine CPXchgmipstart to
modify or extend an existing MIP start.

Example

 status = CPXcopymipstart (env, lp, cnt, indices, values);

The parameter CPX_PARAM_ADVIND must be set to 1 (one), its default value, or 2 (two) in order for the MIP start
to be used.

See Also: CPXreadcopyorder, CPXreadcopymipstart, CPXchgmipstart, CPXaddmipstarts,
CPXreadcopymipstart, CPXchgmipstarts

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
cnt An integer giving the number of entries in the list.
indices An array of length cnt containing the numeric indices of the columns corresponding to the variables

which are assigned starting values.
values An array of length cnt containing the values to be used for the starting integer solution. The entry

values[j] is the value assigned to the variable indices[j]. An entry values[j] greater than or
equal to CPX_INFBOUND specifies that no value is set for the variable indices[j].

Returns:

The routine returns zero if successful and nonzero if an error occurs.

150

Global function CPXcopyprotected
int CPXcopyprotected(CPXCENVptr env, CPXLPptr lp, int cnt, const int * indices)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXcopyprotected specifies a set of variables that should not be substituted out of the problem. If
presolve can fix a variable to a value, it is removed, even if it is specified in the protected list.

Example

 status = CPXcopyprotected (env, lp, cnt, indices);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
cnt The number of variables to be protected.
indices An array of length cnt containing the column indices of variables to be protected from being substituted

out.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

151

Global function CPXNETgetdj
int CPXNETgetdj(CPXCENVptr env, CPXCNETptr net, double * dj, int begin, int end)

Definition file: cplex.h

The routine CPXNETgetdj is used to access reduced costs for a range of arcs of the network stored in a network
problem object.

For this function to succeed, a solution must exist for the problem object. If the solution is not feasible
(CPXNETsolninfo returns 0 in argument pfeasind_p), the reduced costs are computed with respect to an
objective function that penalizes infeasibilities.

Example

 status = CPXNETgetdj (env, net, dj, 10, 20);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by

CPXNETcreateprob.
dj Array in which to write requested reduced costs. If NULL is passed, no reduced

cost values are returned. Otherwise, dj must point to an array of size at least
(end-begin+1).

begin Index of the first arc for which a reduced cost value is to be obtained.
end Index of the last arc for which a reduced cost value is to be obtained.

Example

 status = CPXNETgetdj (env, net, dj, 10, 20);

Returns:

The routine returns zero on success and nonzero if an error occurs.

152

Global function CPXdjfrompi
int CPXdjfrompi(CPXCENVptr env, CPXCLPptr lp, const double * pi, double * dj)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXdjfrompi computes an array of reduced costs from an array of dual values. This routine is for
linear programs. Use CPXqpdjfrompi for quadratic programs.

Example

 status = CPXdjfrompi (env, lp, pi, dj);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object as returned by CPXcreateprob.
pi An array that contains dual solution (pi) values for the problem, as returned by routines such as

CPXuncrushpi and CPXcrushpi. The array must be of length at least the number of
rows in the problem object.

dj An array to receive the reduced cost values computed from the pi values for the problem object. The array
must be of length at least the number of columns in the problem object.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

153

Global function CPXchgrhs
int CPXchgrhs(CPXCENVptr env, CPXLPptr lp, int cnt, const int * indices, const
double * values)

Definition file: cplex.h

The routine CPXchgrhs changes the righthand side coefficients of a set of linear constraints in the CPLEX
problem object.

Example

 status = CPXchgrhs (env, lp, cnt, indices, values);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
cnt An integer that specifies the total number of righthand side coefficients to be changed, and thus

specifies the length of the arrays indices and values.
indices An array of length cnt containing the numeric indices of the rows corresponding to the linear constraints

for which righthand side coefficients are to be changed.
values An array of length cnt containing the new values of the righthand side coefficients of the linear

constraints present in indices.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

154

Global function CPXdelsolnpoolsolns
int CPXdelsolnpoolsolns(CPXCENVptr env, CPXLPptr lp, int begin, int end)

Definition file: cplex.h

The routine CPXdelsolnpoolsolns deletes a range of solutions from the solution pool. The range is specified
using a lower and upper index that represent the first and last solution to be deleted, respectively. The indices of
the solutions following those deleted are decreased by the number of deleted solutions.

Example

 status = CPXdelsolnpoolsolns (env, lp, 10, 20);

See Also: CPXdelsetsolnpoolsolns

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
begin An integer that specifies the numeric index of the first solution to be deleted.
end An integer that specifies the numeric index of the last solution to be deleted.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

155

Global function CPXbranchcallbackbranchconstraints
int CPXbranchcallbackbranchconstraints(CPXCENVptr env, void * cbdata, int
wherefrom, double nodeest, int rcnt, int nzcnt, const double * rhs, const char *
sense, const int * rmatbeg, const int * rmatind, const double * rmatval, void *
userhandle, int * seqnum_p)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXbranchcallbackbranchconstraints specifies the branches to be taken from the current
node when the branch is specified by adding one or more constraints to the node problem. It may be called only
from within a user-written branch callback function.

Constraints are in terms of the original problem if the parameter CPX_PARAM_MIPCBREDLP is set to CPX_OFF
before the call to CPXmipopt that calls the callback. Otherwise, constraints are in terms of the presolved
problem.

Table 1: Values of sense[i]

L less than or equal to constraint

E equal to constraint

G greater than or equal to constraint

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
cbdata A pointer passed to the user-written callback. This argument must be the value of cbdata passed to

the user-written callback.
wherefrom An integer value that reports where the user-written callback was called from. This argument must

be the value of wherefrom passed to the user-written callback.
nodeest A double that specifies the value of the node estimate for the node to be created with this branch.

The node estimate is used to select nodes from the branch-and-cut tree with certain values of the
node selection parameter CPX_PARAM_NODESEL.

rcnt An integer that specifies the number of constraints for the branch.
nzcnt An integer that specifies the number of nonzero constraint coefficients for the branch. This specifies

the length of the arrays rmatind and rmatval.
rhs An array of length rcnt containing the righthand side term for each constraint for the branch.
sense An array of length rcnt containing the sense of each constraint to be added for the branch. Values

of the sense appear in Table 1.
rmatbeg An array that with rmatind and rmatval defines the constraints for the branch.
rmatind An array that with rmatbeg and rmatval defines the constraints for the branch.
rmatval An array that with rmatbeg and rmatind defines the constraints for the branch. The format is

similar to the format used to describe the constraint matrix in the routine CPXaddrows. Every row
must be stored in sequential locations in this array from position rmatbeg[i] to rmatbeg[i+1]-1
(or from rmatbeg[i] to nzcnt -1 if i=rcnt-1). Each entry, rmatind[i], specifies the column
index of the corresponding coefficient, rmatval[i]. All rows must be contiguous, and
rmatbeg[0] must be 0.

userhandle A pointer to user private data that should be associated with the node created by this branch. May

156

be NULL.
seqnum_p A pointer to an integer that, on return, will contain the sequence number that CPLEX has assigned

to the node created from this branch. The sequence number may be used to select this node in later
calls to the node callback.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

157

Global function CPXrefinemipstartconflictext
int CPXrefinemipstartconflictext(CPXCENVptr env, CPXLPptr lp, int mipstartindex,
int grpcnt, int concnt, const double * grppref, const int * grpbeg, const int *
grpind, const char * grptype)

Definition file: cplex.h

The routine CPXrefinemipstartconflictext refines a conflict of a MIP start that may include quadratic
constraints, indicator constraints, or special ordered sets, as well as linear contraints and bounds. In other words,
this routine extends CPXrefinemipstartconflict to MIP starts with indicator constraints, quadratic
constraints, or special ordered sets (SOSs) and to situations where groups of constraints should be considered
as a single constraint. That is, this routine identifies a minimal conflict for the infeasibility of the MIP start or a
subset of its constraints.

Like the routine CPXrefineconflictext, this routine considers constraints in groups. If any constraint in a
group participates in the conflict, the entire group is determined to do so. No further detail about the constraints
within that group is returned. A group may consist of a single constraint.

A group may be assigned a preference; that is, a value specifying how much the user wants the group to be part
of a conflict. A group with a higher preference is more likely to be included in the conflict. However, no guarantee
is made when a minimal conflict is returned that other conflicts containing groups with a greater preference do
not exist.

To retrieve information about the conflict computed by CPXrefinemipstartconflictext, call the routine
CPXgetconflictext.

To write the conflict to a file, use the routine CPXclpwrite.

This conflict is a submodel of the original model with the property that CPLEX cannot generate a solution from
the chosen MIP start using the given level of effort and that removal of any constraint or bound in the conflict
invalidates that property.

The parameters CPX_PARAM_CUTUP, CPX_PARAM_CUTLO, CPX_PARAM_OBJULIM, CPX_PARAM_OBJLLIM do
not influence this routine. If you want to study infeasibilities introduced by those parameters, consider adding an
objective function constraint to your model to enforce their effect before you invoke this routine.

When the MIP start was added to the current model, an effort level may have been associated with it to specify to
CPLEX how much effort to expend in transforming the MIP start into a feasible solution. This routine respects
effort levels except level 1 (one): check feasibility. It does not check feasibility.

Table 1: Possible values for elements of grptype

CPX_CON_LOWER_BOUND 1 variable lower bound

CPX_CON_UPPER_BOUND 2 variable upper bound

CPX_CON_LINEAR 3 linear constraint

CPX_CON_QUADRATIC 4 quadratic constraint

CPX_CON_SOS 5 special ordered set

CPX_CON_INDICATOR 6 indicator constraint

Parameters:

env A pointer to the CPLEX environment as returned by the routine CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
grpcnt The number of constraint groups to be considered.
concnt

158

An integer specifying the total number of elements passed in the arrays grpind and grptype, or,
equivalently, the end of the last group in grpind.

grppref An array of preferences for the groups. The value grppref[i] specifies the preference for the group
designated by the index i. A negative value specifies that the corresponding group should not be
considered in the computation of a conflict. In other words, such groups are not considered part of the
MIP start. Groups with a preference of 0 (zero) are always considered to be part of the conflict. No
further checking is performed on such groups.

grpbeg An array of integers specifying where the constraint indices for each group begin in the array grpind.
Its length must be at least grpcnt.

grpind An array of integers containing the indices for the constraints in each group. For each of the various
types of constraints listed in the table, the constraint indices range from 0 (zero) to the number of
constraints of that type minus one. Group i contains the constraints with the indices
grpind[grpbeg[i]], ..., grpind[grpbeg[i+1]-1] for i less than grpcnt-1, and
grpind[grpbeg[i]], ..., grpind[concnt-1] for i == grpcnt-1. Its length must be at least
concnt. A constraint must not be referenced more than once in this array. For any constraint in the
problem that is not a member of a group and thus does not appear in this array, the constraint is
assigned a default preference of 0 (zero). Thus such constraints are included in the conflict without any
analysis.

grptype An array of characters containing the constraint types for the constraints as they appear in groups. The
types of the constraints in group i are specified in grptype[grpbeg[i]], ...,
grptype[grpbeg[i+1]-1] for i less than grpcnt-1 and grptype[grpbeg[i]], ...,
grptype[concnt-1] for i == grpcnt-1. Its length must be at least concnt, and every constraint
must appear at most once in this array. Possible values appear in the table.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

159

Global function CPXgetbestobjval
int CPXgetbestobjval(CPXCENVptr env, CPXCLPptr lp, double * objval_p)

Definition file: cplex.h

The routine CPXgetbestobjval accesses the currently best known bound of all the remaining open nodes in a
branch-and-cut tree.

It is computed for a minimization problem as the minimum objective function value of all remaining unexplored
nodes. Similarly, it is computed for a maximization problem as the maximum objective function value of all
remaining unexplored nodes.

For a regular MIP optimization using CPXmipopt, this value is also the best known bound on the optimal solution
value of the MIP problem. In fact, when a problem has been solved to optimality, this value matches the optimal
solution value.

However, for CPXpopulate the value can also exceed the optimal solution value if CPLEX has already solved
the model to optimality but continues to search for additional solutions.

Example

 status = CPXgetbestobjval (env, lp, &objval);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
objval_p A pointer to the location where the best node objective value is returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

160

Global function CPXgetqconstrinfeas
int CPXgetqconstrinfeas(CPXCENVptr env, CPXCLPptr lp, const double * x, double *
infeasout, int begin, int end)

Definition file: cplex.h

The routine CPXgetqconstrinfeas computes the infeasibility of a given solution for a range of quadratic
constraints. The beginning and end of the range must be specified. For each constraint, the infeasibility value
returned is 0 (zero) if the constraint is satisfied. Otherwise, the infeasibility value returned is the amount by which
the righthand side of the constraint must be changed to make the queried solution valid. It is positive for a
less-than-or-equal-to constraint and negative for a greater-than-or-equal-to constraint.

Example

 status = CPXgetqconstrinfeas (env, lp, NULL, infeasout, 0, CPXgetnumqconstrs(env,lp)-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
x The solution whose infeasibility is to be computed. May be NULL in which case the resident solution is

used.
infeasout An array to receive the infeasibility value for each of the quadratic constraints. This array must be of

length at least (end - begin + 1).
begin An integer indicating the beginning of the range of quadratic constraints whose infeasibility is to be

returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

161

Global function CPXgetmipstartindex
int CPXgetmipstartindex(CPXCENVptr env, CPXCLPptr lp, const char * lname_str, int *
index_p)

Definition file: cplex.h

The routine CPXgetmipstartindex searches for the index number of the specified MIP start in a CPLEX
problem object.

Example

 status = CPXgetmipstartindex (env, lp, "mipstart6", &rowindex);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
lname_str A MIP start name to search for.
index_p A pointer to an integer to hold the index number of the MIP start with name lname_str. If the routine

is successful, *index_p contains the index number; otherwise, *index_p is undefined.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

162

Global function CPXfreelazyconstraints
int CPXfreelazyconstraints(CPXCENVptr env, CPXLPptr lp)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXfreelazyconstraints clears the list of lazy constraints that have been previously specified
through calls to CPXaddlazyconstraints.

Example

 status = CPXfreelazyconstraints (env, lp);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

163

Global function CPXchgobj
int CPXchgobj(CPXCENVptr env, CPXLPptr lp, int cnt, const int * indices, const
double * values)

Definition file: cplex.h

The routine CPXchgobj changes the linear objective coefficients of a set of variables in a CPLEX problem
object.

Example

 status = CPXchgobj (env, lp, cnt, indices, values);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
cnt An integer that specifies the total number of objective coefficients to be changed, and thus specifies the

length of the arrays indices and values.
indices An array of length cnt containing the numeric indices of the columns corresponding to the variables for

which objective coefficients are to be changed.
values An array of length cnt containing the new values of the objective coefficients of the variables specified

in indices.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

164

Global function CPXpivotout
int CPXpivotout(CPXCENVptr env, CPXLPptr lp, const int * clist, int clen)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXpivotout pivots a list of fixed variables out of the resident basis. Variables are fixed when the
absolute difference between the lower and upper bounds is at most 1.0e-10.

Parameters:

env The pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
clist An array of length clen, containing the column indices of the variables to be pivoted out of the

basis. If any of these variables is not fixed, CPXpivotout returns an error code.
clen An integer that specifies the number of entries in the array clist[].
Returns:

The routine returns zero if successful and nonzero if an error occurs.

165

Global function CPXgetnumcuts
int CPXgetnumcuts(CPXCENVptr env, CPXCLPptr lp, int cuttype, int * num_p)

Definition file: cplex.h

The routine CPXgetnumcuts accesses the number of cuts of the specified type in use at the end of the previous
optimization.

Example

 status = CPXgetnumcuts (env, lp, CPX_CUT_COVER, &numcovers);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
cuttype An integer specifying the type of cut for which to return the number.
num_p An pointer to an integer to contain the number of cuts.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

166

Global function CPXcopypartialbase
int CPXcopypartialbase(CPXCENVptr env, CPXLPptr lp, int ccnt, const int * cindices,
const int * cstat, int rcnt, const int * rindices, const int * rstat)

Definition file: cplex.h

The routine CPXcopypartialbase copies a partial basis into an LP problem object. Basis status values do not
need to be specified for every variable or slack, surplus, or artificial variable. If the status of a variable is not
specified, it is made nonbasic at its lower bound if the lower bound is finite; otherwise, it is made nonbasic at its
upper bound if the upper bound is finite; otherwise, it is made nonbasic at 0.0 (zero). If the status of a slack,
surplus, or artificial variable is not specified, it is made basic.

Table 1: Values of cstat[i]

CPX_AT_LOWER 0 variable at lower bound

CPX_BASIC 1 variable is basic

CPX_AT_UPPER 2 variable at upper bound

CPX_FREE_SUPER 3 variable free and nonbasic

Table 2: Status of rows other than ranged rows in rstat[i]

CPX_AT_LOWER 0 associated slack variable is nonbasic at value 0.0 (zero)

CPX_BASIC 1 associated slack, surplus, or artificial variable is basic

Table 3: Status of ranged rows in rstat[i]

CPX_AT_LOWER 0 associated slack variable nonbasic at its lower bound

CPX_BASIC 1 associated slack variable basic

CPX_AT_UPPER 2 associated slack variable nonbasic at its upper bound

Example

 status = CPXcopypartialbase (env, lp, ccnt, colind, colstat,
 rcnt, rowind, rowstat);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
ccnt An integer that specifies the number of variable or column status values specified, and is the length of

the cindices and cstat arrays.
cindices An array of length ccnt that contains the indices of the variables for which status values are being

specified.
cstat An array of length ccnt where the ith entry contains the status for variable cindices[i].
rcnt An integer that specifies the number of slack, surplus, or artificial status values specified, and is the

length of the rindices and rstat arrays.
rindices An array of length rcnt that contains the indices of the slack, surplus, or artificial variables for which

status values are being specified.
rstat An array of length rcnt where the i-th entry contains the status for slack, surplus, or artificial

rindices[i]. For rows other than ranged rows, the array element rstat[i] has the meaning
summarized in Table 2. For ranged rows, the array element rstat[i] has the meaning summarized

167

in Table 3.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

168

Global function CPXsetlogfile
int CPXsetlogfile(CPXENVptr env, CPXFILEptr lfile)

Definition file: cplex.h

The routine CPXsetlogfile modifies the log file to which messages from all four CPLEX-defined channels are
written.

Note

A call to CPXsetlogfile is equivalent to directing output from the cpxresults, cpxwarning, cpxerror
and cpxlog message channels to a single file.

Example

 status = CPXsetlogfile (env, logfile);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lfile A CPXFILEptr to the log file. This routine sets lfile to be the file pointer for the current log file. A

NULL pointer may be passed if no log file is desired. NULL is the default value. Before calling this
routine, obtain this pointer with a call to CPXfopen.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

169

Global function CPXgetprobtype
int CPXgetprobtype(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetprobtype accesses the problem type that is currently stored in a CPLEX problem object.

Example

 probtype = CPXgetprobtype (env, lp);

Return values

Value Symbolic Constant Meaning

-1 - Error: no problem or environment.

0 CPXPROB_LP Linear program; no quadratic data or ctype information stored.

1 CPXPROB_MILP Problem with ctype information.

3 CPXPROB_FIXEDMILP Problem with ctype information, integer variables fixed.

5 CPXPROB_QP Problem with quadratic data stored.

7 CPXPROB_MIQP Problem with quadratic data and ctype information.

8 CPXPROB_FIXEDMIQP Problem with quadratic data and ctype information, integer variables fixed.

10 CPXPROB_QCP Problem with quadratic constraints.

11 CPXPROB_MIQCP Problem with quadratic constraints and ctype information.

See Also: CPXchgprobtype

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

The values returned by CPXgetprobtype appear in the table.

170

Global function CPXsetinfocallbackfunc
int CPXsetinfocallbackfunc(CPXENVptr env, int(CPXPUBLIC *callback)(CPXCENVptr, void
*, int, void *), void * cbhandle)

Definition file: cplex.h

The routine CPXsetinfocallbackfunc sets the user-written callback routine that CPLEX calls regularly during
the optimization of a mixed integer program and during certain cut generation routines.

This routine enables the user to create a separate callback function to be called during the solution of mixed
integer programming problems (MIPs). Unlike any other callback routines, this user-written callback function only
retrieves information about MIP search. It does not control the search, though it allows the search to terminate.
The user-written callback function is allowed to call only two other routines: CPXgetcallbackinfo and
CPXgetcallbackincumbent.

The prototype for the callback function is identical to that of CPXsetmipcallbackfunc.

Example

 status = CPXsetinfocallbackfunc (env, mycallback, NULL);

Parameters

env

A pointer to the CPLEX environment, as returned by one of the CPXopenCPLEX routines.

callback

A pointer to a user-written callback function. Setting callback to NULL will prevent any callback function from
being called during optimization. The call to callback will occur after every node during optimization and during
certain cut generation routines. This function must be written by the user. Its prototype is explained in the
Callback description.

cbhandle

A pointer to user private data. This pointer will be passed to the callback function.

Callback description

 int callback (CPXCENVptr env,
 void *cbdata,
 int wherefrom,
 void *cbhandle);

This is the user-written callback routine.

Callback return value

A nonzero return value terminates the optimization. That is, if the user-written callback function returns nonzero,
it signals that CPLEX should terminate optimization.

Callback arguments

env

A pointer to the CPLEX environment that was passed into the associated optimization routine.

cbdata

171

A pointer passed from the optimization routine to the user-written callback function that identifies the problem
being optimized. The only purpose for the cbdata pointer is to pass it to the routine CPXgetcallbackinfo.

wherefrom

An integer value reporting from which optimization algorithm the user-written callback function was called.
Possible values and their meaning appear in the table.

Value Symbolic Constant Meaning

101 CPX_CALLBACK_MIP From mipopt

107 CPX_CALLBACK_MIP_PROBE From probing or clique merging

108 CPX_CALLBACK_MIP_FRACCUT From Gomory fractional cuts

109 CPX_CALLBACK_MIP_DISJCUT From disjunctive cuts

110 CPX_CALLBACK_MIP_FLOWMIR From Mixed Integer Rounding (MIR) cuts

cbhandle

A pointer to user private data as passed to CPXsetinfocallbackfunc.

See Also: CPXgetcallbackinfo, CPXsetmipcallbackfunc

Returns:

The routine returns zero if successful and nonzero if an error occurs.

172

Global function CPXgetincumbentcallbackfunc
void CPXgetincumbentcallbackfunc(CPXCENVptr env, int(CPXPUBLIC
**incumbentcallback_p)(CALLBACK_INCUMBENT_ARGS), void ** cbhandle_p)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetincumbentcallbackfunc accesses the user-written callback to be called by CPLEX
during MIP optimization after an integer solution has been found but before this solution replaces the incumbent.
This callback can be used to discard solutions that do not meet criteria beyond that of the mixed integer
programming formulation.

Example

 CPXgetincumbentcallbackfunc(env, ¤t_incumbentcallback, ¤t_handle);

See also Advanced MIP Control Interface in the CPLEX User's Manual.

For documentation of callback arguments, see the routine CPXsetincumbentcallbackfunc.

Parameters

env

A pointer to the CPLEX environment, as returned by CPXopenCPLEX.

incumbentcallback_p

The address of the pointer to the current user-written incumbent callback. If no callback has been set, the pointer
evaluates to NULL.

cbhandle_p

The address of a variable to hold the user's private pointer.

See Also: CPXsetincumbentcallbackfunc

Returns:

This routine does not return a result.

173

Global function CPXNETgetitcnt
int CPXNETgetitcnt(CPXCENVptr env, CPXCNETptr net)

Definition file: cplex.h

The routine CPXNETgetitcnt accesses the total number of network simplex iterations for the most recent call to
CPXNETprimopt, for a network problem object.

Example

 itcnt = CPXNETgetitcnt (env, net);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
Returns:

Returns the total number of network simplex iterations for the last call to CPXNETprimopt, for a network problem
object. If CPXNETprimopt has not been called, zero is returned. If an error occurs, -1 is returned and an error
message is issued.

174

Global function CPXchgrowname
int CPXchgrowname(CPXCENVptr env, CPXLPptr lp, int cnt, const int * indices, char
** newname)

Definition file: cplex.h

This routine changes the names of linear constraints in a CPLEX problem object. If this routine is performed on a
problem object with no constraint names, default names are created before the change is made.

Example

 status = CPXchgrowname (env, lp, cnt, indices, values);

See Also: CPXdelnames

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
cnt An integer that specifies the total number of linear constraint names to be changed, and

thus specifies the length of the arrays indices and newname.
indices An array of length cnt containing the numeric indices of the linear constraints for which the

names are to be changed.
newname An array of length cnt containing the strings of the new names for the linear constraints

specified in indices.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

175

Global function CPXgetsolnpoolfiltertype
int CPXgetsolnpoolfiltertype(CPXCENVptr env, CPXCLPptr lp, int * ftype_p, int
which)

Definition file: cplex.h

Accesses the type of a filter of the solution pool.

This routine accesses the type of the filter, specified by the argument which, of the solution pool associated with
the LP problem specified by the argument lp.

Example

 status = CPXgetsolnpoolfiltertype (env, lp, &ftype, i);

The argument ftype_p specifies the type of filter: either a diversity filter or a range filter. Table 1 summarizes
the possible values of this argument.

Table 1: Possible types of filters

Symbolic name Integer value Meaning

CPX_SOLNPOOL_FILTER_DIVERSITY 1 diversity
filter

CPX_SOLNPOOL_FILTER_RANGE 2 range
filter

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
ftype_p The filter type: either diversity or range filter.
which The index of the filter.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

176

Global function CPXcheckcopyqpsep
int CPXcheckcopyqpsep(CPXCENVptr env, CPXCLPptr lp, const double * qsepvec)

Definition file: cplex.h

The routine CPXcheckcopyqpsep validates the argument of the corresponding routine CPXcopyqpsep. This
data checking routine is found in source format in the file check.c provided with the standard CPLEX
distribution. To call this routine, you must compile and link check.c with your program as well as the CPLEX
Callable Library.

The routine CPXcheckcopyqpsep has the same argument list as CPXcopyqpsep. The second argument, lp, is
technically a pointer to a constant LP object of type CPXCLPptr rather than type CPXLPptr, as this routine will
not modify the model. For most user applications, this distinction is unimportant.

Example

 status = CPXcheckcopyqpsep (env, lp, qsepvec);

Returns:

The routine returns nonzero if it detects an error in the data; it returns zero if it does not detect any data errors.

177

Global function CPXcheckaddcols
int CPXcheckaddcols(CPXCENVptr env, CPXCLPptr lp, int ccnt, int nzcnt, const double
* obj, const int * cmatbeg, const int * cmatind, const double * cmatval, const
double * lb, const double * ub, char ** colname)

Definition file: cplex.h

The routine CPXcheckaddcols validates the arguments of the corresponding CPXaddcols routine. This data
checking routine is found in source format in the file check.c which is provided with the standard CPLEX
distribution. To call this routine, you must compile and link check.c with your program as well as the CPLEX
Callable Library.

The CPXcheckaddcols routine has the same argument list as the CPXaddcols routine. The second argument,
lp, is technically a pointer to a constant LP object of type CPXCLPptr rather than type CPXLPptr, as this
routine will not modify the problem. For most user applications, this distinction is unimportant.

Example

 status = CPXcheckaddcols (env, lp, ccnt, nzcnt, obj, cmatbeg,
 cmatind, cmatval, lb, ub, newcolname);

Returns:

The routine returns nonzero if it detects an error in the data; it returns zero if it does not detect any data errors.

178

Global function CPXgetx
int CPXgetx(CPXCENVptr env, CPXCLPptr lp, double * x, int begin, int end)

Definition file: cplex.h

The routine CPXgetx accesses the solution values for a range of problem variables. The beginning and end of
the range must be specified.

Example

 status = CPXgetx (env, lp, x, 0, CPXgetnumcols(env, lp)-1);

See also the example lpex2.c in the CPLEX User's Manual and in the standard distribution.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
x An array to receive the values of the primal variables for the problem. This array must be of length at least

(end - begin + 1). If successful, x[0] through x[end-begin] contains the solution values.
begin An integer specifying the beginning of the range of variable values to be returned.
end An integer specifying the end of the range of variable values to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

179

Global function CPXflushstdchannels
int CPXflushstdchannels(CPXCENVptr env)

Definition file: cplex.h

The routine CPXflushstdchannels flushes the output buffers of the four standard channels cpxresults,
cpxwarning, cpxerror, and cpxlog. Use this routine where it is important to see all of the output created by
CPLEX either on the screen or in a disk file without calling CPXflushchannel for each of the four channels.

Example

 status = CPXflushstdchannels (env);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

180

Global function CPXNETcopynet
int CPXNETcopynet(CPXCENVptr env, CPXNETptr net, int objsen, int nnodes, const
double * supply, char ** nnames, int narcs, const int * fromnode, const int *
tonode, const double * low, const double * up, const double * obj, char ** anames)

Definition file: cplex.h

The routine CPXNETcopynet copies a network to a network object, overriding any other network saved in the
object. The network to be copied is specified by providing the:

the objective sense•
number of nodes•
supply values for each node•
names for each node•
number of arcs•
indices of the from-nodes (or, equivalently, the tail nodes) for each arc•
indices of the to-nodes (or, equivalently, the head nodes) for each arc•
lower and upper bounds on flow through each arc•
cost for flow through each arc•
names of each arc.•

The arcs are numbered according to the order given in the fromnode and tonode arrays. Some of the
parameters are optional and replaced by default values if NULL is passed for them.

Example

 status = CPXNETcopynet (env, net, CPX_MAX, nnodes, supply, NULL,
 narcs, fromnode, tonode, NULL, NULL, obj,
 NULL);

Parameters

env

A pointer to the CPLEX environment as returned by CPXopenCPLEX.

net

A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.

objsen

Optimization sense of the network to be copied. It may take values CPX_MAX for a maximization problem or
CPX_MIN for a minimization problem.

nnodes

Number of nodes to be copied to the network object.

supply

Supply values for the nodes. If NULL is passed all supply values default to 0 (zero). Otherwise, the size of the
array must be at least nnodes.

nnames

Pointer to an array of names for the nodes. If NULL is passed, no names are assigned to the nodes. Otherwise,
the size of the array must be at least nnodes and every name in the array must be a string terminating in 0
(zero).

narcs

181

Number of arcs to be copied to the network object.

fromnode

The array of indices in each arc's from-node. The indices must be in the range[0, nnodes-1]. The size of the
array must be at least narcs.

tonode

The array of indices in each arc's to-node. The indices must be in the range [0, nnodes-1]. The size of the
array must be at least narcs.

low

Pointer to an array of lower bounds on the flow through arcs. If NULL is passed, all lower bounds default to 0
(zero). Otherwise, the size of the array must be at least narcs. Values less than or equal to -CPX_INFBOUND
are considered -infinity.

up

Pointer to an array of upper bounds on the flow through arcs. If NULL is passed, all lower bounds default to
CPX_INFBOUND. Otherwise, the size of the array must be at least narcs. Values greater than or equal to
CPX_INFBOUND are considered infinity.

obj

Pointer to an array of objective values for flow through arcs. If NULL is passed, all objective values default to 0
(zero). Otherwise, the size of the array must be at least narcs.

anames

Pointer to an array of names for the arcs. If NULL is passed, no names are assigned to the nodes. Otherwise, the
size of the array must be at least narcs, and every name in the array must be a string terminating in 0 (zero).

Returns:

The routine returns zero on success and nonzero if an error occurs.

182

Global function CPXNETchgnodename
int CPXNETchgnodename(CPXCENVptr env, CPXNETptr net, int cnt, const int * indices,
char ** newname)

Definition file: cplex.h

The routine CPXNETchgnodename changes the names of a set of nodes in the network stored in a network
problem object.

Example

 status = CPXNETchgnodename (env, net, 10, indices, newname);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
cnt An integer that indicates the total number of node names to be changed. Thus cnt specifies the

length of the arrays indices and name.
indices An array of length cnt containing the numeric indices of the nodes for which the names are to be

changed.
newname An array of length cnt containing the new names for the nodes specified in indices.
Returns:

The routine returns zero on success and nonzero if an error occurs.

183

Global function CPXchgbds
int CPXchgbds(CPXCENVptr env, CPXLPptr lp, int cnt, const int * indices, const char
* lu, const double * bd)

Definition file: cplex.h

The routine CPXchgbds changes the lower or upper bounds on a set of variables of a problem. Several bounds
can be changed at once, with each bound specified by the index of the variable with which it is associated. The
value of a variable can be fixed at one value by setting the upper and lower bounds to the same value.

Unbounded Variables

If a variable lacks a lower bound, then CPXgetlb returns a value less than or equal to -CPX_INFBOUND.

If a variable lacks an upper bound, then CPXgetub returns a value greater than or equal to CPX_INFBOUND.

These conventions about unbounded variables should be taken into account when you change bounds with
CPXchgbds.

Example

 status = CPXchgbds (env, lp, cnt, indices, lu, bd);

Values of lu denoting lower or upper bound in indices[j]

lu[j] = 'L' bd[j] is a lower bound

lu[j] = 'U' bd[j] is an upper bound

lu[j] = 'B' bd[j] is the lower and upper bound

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
cnt An integer that specifies the total number of bounds to be changed, and thus specifies the length of the

arrays indices, lu, and bd.
indices An array of length cnt containing the numeric indices of the columns corresponding to the variables for

which bounds are to be changed.
lu An array of length cnt containing characters that tell whether the corresponding entry in the array bd

specifies the lower or upper bound on column indices[j]. Possible values appear in the table.
bd An array of length cnt containing the new values of the lower or upper bounds of the variables present

in indices.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

184

Global function CPXreadcopymipstarts
int CPXreadcopymipstarts(CPXCENVptr env, CPXLPptr lp, const char * filename_str)

Definition file: cplex.h

The routine CPXreadcopymipstarts reads a MST file and copies the information of all the MIP starts contained
in this file into a CPLEX problem object. The parameter CPX_PARAM_ADVIND must be set to 1 (one), its default
value, or 2 (two) in order for the MIP starts to be used.

Example

 status = CPXreadcopymipstart(env, lp, "myprob.mst");

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
filename_str A string containing the name of the MST file.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

185

Global function CPXgetnumquad
int CPXgetnumquad(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetnumquad returns the number of variables that have quadratic objective coefficients in a
CPLEX problem object.

Example

 numquad = CPXgetnumquad (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

If successful, the routine returns the number of variables having quadratic coefficients. If an error occurs, 0 is
returned.

186

Global function CPXaddchannel
CPXCHANNELptr CPXaddchannel(CPXENVptr env)

Definition file: cplex.h

The routine CPXaddchannel instantiates a new channel object.

Example

 mychannel = CPXaddchannel (env);

See also lpex5.c in the CPLEX User's Manual.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
Returns:

If successful, CPXaddchannel returns a pointer to the new channel object; otherwise, it returns NULL.

187

Global function CPXNETgetarcindex
int CPXNETgetarcindex(CPXCENVptr env, CPXCNETptr net, const char * lname_str, int *
index_p)

Definition file: cplex.h

The routine CPXNETgetarcindex returns the index of the specified arc (in the network stored in a network
problem object) in the integer pointed to by index_p.

Example

 status = CPXNETgetarcindex (env, net, "from_a_to_b", &index);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
lname_str Name of the arc to look for.
index_p A pointer to an integer to hold the arc index. If the routine is successful, *index_p contains the index

number; otherwise, *index_p is undefined.
Returns:

The routine returns zero on success and nonzero if an error occurs.

188

Global function CPXgetnumcols
int CPXgetnumcols(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetnumcols accesses the number of columns in the constraint matrix, or equivalently, the
number of variables in the CPLEX problem object.

Example

 cur_numcols = CPXgetnumcols (env, lp);

See also the example lpex1.c in the CPLEX User's Manual and in the standard distribution.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

If the problem object or environment does not exist, CPXgetnumcols returns the value 0 (zero); otherwise, it
returns the number of columns (variables).

189

Global function CPXgetpi
int CPXgetpi(CPXCENVptr env, CPXCLPptr lp, double * pi, int begin, int end)

Definition file: cplex.h

The routine CPXgetpi accesses the dual values for a range of the constraints of a linear or quadratic program.
The beginning and end of the range must be specified.

Example

 status = CPXgetpi (env, lp, pi, 0, CPXgetnumrows(env,lp)-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
pi An array to receive the values of the dual variables for each of the constraints. This array must be of

length at least (end - begin + 1). If successful, pi[0] through pi[end-begin] contain the dual
values.

begin An integer specifying the beginning of the range of dual values to be returned.
end An integer specifying the end of the range of dual values to be returned.

Example

 status = CPXgetpi (env, lp, pi, 0, CPXgetnumrows(env,lp)-1);

Returns:

The routine returns zero if successful and nonzero if an error occurs.

190

Global function CPXreadcopyprob
int CPXreadcopyprob(CPXCENVptr env, CPXLPptr lp, const char * filename_str, const
char * filetype_str)

Definition file: cplex.h

The routine CPXreadcopyprob reads an MPS, LP, or SAV file into an existing CPLEX problem object. Any
existing data associated with the problem object is destroyed. The problem can then be optimized by any one of
the optimization routines. To determine the contents of the data, use CPLEX query routines.

The type of the file may be specified with the filetype argument. When the filetype argument is NULL, the
file name is checked for one of these suffixes: .lp, .mps, or .sav. CPLEX will also look for the following
additional optional suffixes: .Z, .gz, or .bz2.

If the file name matches one of these patterns, filetype is set accordingly. If filetype is NULL and none of
these strings is found at the end of the file name, or if the specified type is not recognized, CPLEX attempts
automatically to detect the type of the file by examining the first few bytes.

If the file name ends in .gz, .bz2, or .z, the file is read as a compressed file on platforms where the
corresponding file-compression application has been installed properly. Thus, a file name ending in .sav is read
as a SAV format file, while a file name ending in .sav.gz is read as a compressed SAV format file.

Microsoft Windows does not support reading compressed files with this API.

Values of filetype_str

SAV Use SAV format

MPS Use MPS format

LP Use LP format

Example

 status = CPXreadcopyprob (env, lp, "myprob.mps", NULL);

See also the example lpex2.c in the CPLEX User's Manual and in the standard distribution.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
filename_str The name of the file from which the problem should be read.
filetype_str A case-insensitive string containing the type of the file (one of the strings in the table). May be

NULL, in which case the file type is inferred from the last characters of the file name.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

191

Global function CPXgetmipstartname
int CPXgetmipstartname(CPXCENVptr env, CPXCLPptr lp, char ** name, char * store,
int storesz, int * surplus_p, int begin, int end)

Definition file: cplex.h

The routine CPXgetmipstartname accesses a range of names of MIP starts in a CPLEX problem object. The
beginning and end of the range, along with the length of the array in which the names of the MIP starts are to be
returned, must be specified.

Note

If the value of storesz is 0 (zero), then the negative of the value of surplus_p returned specifies the total
number of characters needed for the array name.

Example

 status = CPXgetmipstartname (env, lp, name, store,
 storesz, &surplus, 0,
 cur_nummipstarts-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
name An array of pointers to the MIP start names stored in the array name. This array must be of length at

least (end - begin + 1). The pointer to the name of MIP start i is returned in name[i-begin].
store An array of characters where the specified MIP start names are to be returned. May be NULL if

storesz is 0 (zero).
storesz An integer specifying the length of the array store. May be 0 (zero).
surplus_p A pointer to an integer to contain the difference between storesz and the total amount of memory

required to store the requested names. A nonnegative value of surplus_p specifies that storesz
was sufficient. A negative value specifies that it was insufficient and that the routine could not
complete its task. In that case, CPXgetmipstartname returns the value
CPXERR_NEGATIVE_SURPLUS, and the negative value of the variable surplus_p specifies the
amount of insufficient space in the array store.

begin An integer specifying the beginning of the range of MIP start names to be returned.
end An integer specifying the end of the range of MIP start names to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs. The value CPXERR_NEGATIVE_SURPLUS
specifies that insufficient space was available in the store array to hold the names.

192

Global function CPXNETgetnodeindex
int CPXNETgetnodeindex(CPXCENVptr env, CPXCNETptr net, const char * lname_str, int
* index_p)

Definition file: cplex.h

The routine CPXNETgetnodeindex returns the index of the specified node (in the network stored in a network
problem object) in the integer pointed to by index_p.

Example

 status = CPXNETgetnodeindex (env, net, "root", &index);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
lname_str Name of the node to look for.
index_p A pointer to an integer to hold the node index. If the routine is successful, *index_p contains the

index number; otherwise, *index_p is undefined.
Returns:

The routine returns zero on success and nonzero if an error occurs.

193

Global function CPXNETreadcopybase
int CPXNETreadcopybase(CPXCENVptr env, CPXNETptr net, const char * filename_str)

Definition file: cplex.h

The routine CPXNETreadcopybase reads a basis file in BAS format and copies the basis to a network problem
object. If no arc or node names are available for the problem object when reading the basis file, default names
are assumed. Any basis that may have been created or saved in the problem object is replaced.

Example

 status = CPXNETreadcopybase (env, net, "netbasis.bas");

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
filename_str Name of the basis file to read.
Returns:

The routine returns zero on success and nonzero if an error occurs.

194

Global function CPXgetbranchcallbackfunc
void CPXgetbranchcallbackfunc(CPXCENVptr env, int(CPXPUBLIC
**branchcallback_p)(CALLBACK_BRANCH_ARGS), void ** cbhandle_p)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetbranchcallbackfunc accesses the user-written callback routine to be called during MIP
optimization after a branch has been selected but before the branch is carried out. CPLEX uses the callback
routine to change its branch selection.

Example

 CPXgetbranchcallbackfunc(env, ¤t_callback,
 ¤t_handle);

See also Advanced MIP Control Interface in the CPLEX User's Manual.

Parameters

env

A pointer to the CPLEX environment, as returned by CPXopenCPLEX.

branchcallback_p

The address of the pointer to the current user-written branch callback. If no callback has been set, the returned
pointer evaluates to NULL.

cbhandle_p

The address of a variable to hold the user's private pointer.

Callback description

 int callback (CPXCENVptr env,
 void *cbdata,
 int wherefrom,
 void *cbhandle,
 int type,
 int sos,
 int nodecnt,
 int bdcnt,
 double *nodeest,
 int *nodebeg,
 int *indices,
 char *lu,
 int *bd,
 int *useraction_p);

The call to the branch callback occurs after a branch has been selected but before the branch is carried out. This
function is written by the user. On entry to the callback, the CPLEX-selected branch is defined in the arguments.
The arguments to the callback specify a list of changes to make to the bounds of variables when child nodes are
created. One, two, or zero child nodes can be created, so one, two, or zero lists of changes are specified in the
arguments. The first branch specified is considered first. The callback is called with zero lists of bound changes

195

when the solution at the node is integer feasible.

Custom branching strategies can be implemented by calling the CPLEX function
CPXbranchcallbackbranchbds and setting the useraction variable to CPX_CALLBACK_SET. Then CPLEX
will carry out these branches instead of the CPLEX-selected branches.

Branch variables are in terms of the original problem if the parameter CPX_PARAM_MIPCBREDLP is set to
CPX_OFF before the call to CPXmipopt that calls the callback. Otherwise, branch variables are in terms of the
presolved problem.

Callback return value

The callback returns zero if successful and nonzero if an error occurs.

Callback arguments

env

A pointer to the CPLEX environment, as returned by CPXopenCPLEX.

cbdata

A pointer passed from the optimization routine to the user-written callback that identifies the problem being
optimized. The only purpose of this pointer is to pass it to the callback information routines.

wherefrom

An integer value reporting where in the optimization this function was called. It will have the value
CPX_CALLBACK_MIP_BRANCH.

cbhandle

A pointer to user-private data.

int type

An integer that specifies the type of branch. This table summarizes possible values.

Branch Types Returned from a User-Written Branch Callback

Symbolic Constant Value Branch

CPX_TYPE_VAR 0 variable branch

CPX_TYPE_SOS1 1 SOS1 branch

CPX_TYPE_SOS2 2 SOS2 branch

CPX_TYPE_USER X user-defined

sos

An integer that specifies the special ordered set (SOS) used for this branch. A value of -1 specifies that this
branch is not an SOS-type branch.

nodecnt

An integer that specifies the number of nodes CPLEX will create from this branch. Possible values are:

0 (zero), or•
1, or•
2.•

196

If the argument is 0, the node will be fathomed unless user-specified branches are made; that is, no child nodes
are created and the node itself is discarded.

bdcnt

An integer that specifies the number of bound changes defined in the arrays indices, lu, and bd that define
the CPLEX-selected branch.

nodeest

An array with nodecnt entries that contains estimates of the integer objective-function value that will be attained
from the created node.

nodebeg

An array with nodecnt entries. The i-th entry is the index into the arrays indices, lu, and bd of the first bound
changed for the ith node.

indices

Together with lu and bd, this array defines the bound changes for each of the created nodes. The entry
indices[i] is the index for the variable.

lu

Together with indices and bd, this array defines the bound changes for each of the created nodes. The entry
lu[i] is one of the three possible values specifying which bound to change:

L for lower bound, or•
U for upper bound, or•
B for both bounds.•

bd

Together with indices and lu, this array defines the bound changes for each of the created nodes. The entry
bd[i] specifies the new value of the bound.

useraction_p

A pointer to an integer specifying the action for CPLEX to take at the completion of the user callback. The table
summarizes the possible actions.

Actions to be Taken After a User-Written Branch Callback

Value Symbolic Constant Action

0 CPX_CALLBACK_DEFAULT Use CPLEX-selected branch

1 CPX_CALLBACK_FAIL Exit optimization

2 CPX_CALLBACK_SET
Use user-selected branch, as defined by calls to
CPXbranchcallbackbranchbds

3 CPX_CALLBACK_NO_SPACE Allocate more space and call callback again

See Also: CPXsetbranchcallbackfunc

Returns:

This routine does not return a result.

197

Global function CPXaddfpdest
int CPXaddfpdest(CPXCENVptr env, CPXCHANNELptr channel, CPXFILEptr fileptr)

Definition file: cplex.h

The routine CPXaddfpdest adds a file to the list of message destinations for a channel. The destination list for
all CPLEX-defined channels is initially empty.

Example

 CPXaddfpdest (env, mychannel, fileptr);

See lpex5.c in the CPLEX User's Manual.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
channel A pointer to the channel for which destinations are to be added.
fileptr A pointer to the file to be added to the destination list. Before calling this routine, obtain this

pointer with a call to CPXfopen.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

198

Global function CPXgetnodeleftcnt
int CPXgetnodeleftcnt(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetnodeleftcnt accesses the number of unexplored nodes left in the branch-and-cut tree.

Example

 nodes_left = CPXgetnodeleftcnt (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

If no solution, problem, or environment exists, CPXgetnodeleftcnt returns 0 (zero); otherwise,
CPXgetnodeleftcnt returns the number of unexplored nodes left in the branch-and-cut tree.

199

Global function CPXfltwrite
int CPXfltwrite(CPXCENVptr env, CPXCLPptr lp, const char * filename_str)

Definition file: cplex.h

The routine CPXfltwrite writes filters from the selected problem object to a file in FLT format. This format is
documented in the CPLEX File Formats Reference Manual.

See Also: CPXreadcopysolnpoolfilters

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to the CPLEX problem object as returned by CPXcreateprob.
filename_str A character string containing the name of the file to which the filters should be written.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

200

Global function CPXgetcallbacknodeobjval
int CPXgetcallbacknodeobjval(CPXCENVptr env, void * cbdata, int wherefrom, double *
objval_p)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetcallbacknodeobjval retrieves the objective value for the subproblem at the current node
during MIP optimization from within a user-written callback.

This routine may be called only when the value of the wherefrom argument is one of the following:

CPX_CALLBACK_MIP,•
CPX_CALLBACK_MIP_BRANCH,•
CPX_CALLBACK_MIP_INCUMBENT,•
CPX_CALLBACK_MIP_NODE,•
CPX_CALLBACK_MIP_HEURISTIC, or•
CPX_CALLBACK_MIP_CUT.•

Example

 status = CPXgetcallbacknodeobjval (env, cbdata, wherefrom,
 &objval);

See also admipex1.c and admipex3.c in the standard distribution.

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
cbdata The pointer passed to the user-written callback. This argument must be the value of

cbdata passed to the user-written callback.
wherefrom An integer value reporting from where the user-written callback was called. The argument

must be the value of wherefrom passed to the user-written callback.
objval_p A pointer to a variable of type double where the objective value of the node subproblem is

to be stored.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

201

Global function CPXgetrowinfeas
int CPXgetrowinfeas(CPXCENVptr env, CPXCLPptr lp, const double * x, double *
infeasout, int begin, int end)

Definition file: cplex.h

The routine CPXgetrowinfeas computes the infeasibility of a given solution for a range of linear constraints.

The beginning and end of the range must be specified.

For each constraint, the infeasibility value returned is 0 (zero) if the constraint is satisfied. Otherwise, except for
ranged rows, the infeasibility value returned is the amount that makes the queried solution valid when added to
the righthand side of the constraint. It is positive for a less-than-or-equal-to constraint, negative for a
greater-than-or-equal-to constraint.

For an equality constraint, it is positive when the row activity exceeds the right hand side, and negative when the
row activity is less than the right hand side.

For ranged rows, if the infeasibility value is negative, it specifies the amount by which the lower bound of the
range must be changed; if it is positive, it specifies the amount by which the upper bound of the range must be
changed.

Example

 status = CPXgetrowinfeas (env, lp, NULL, infeasout, 0, CPXgetnumrows(env,lp)-1);

return The routine returns zero if successful and nonzero if an error occurs.
Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
x The solution whose infeasibility is to be computed. May be NULL, in which case the resident solution

is used.
infeasout An array to receive the infeasibility value for each of the constraints. This array must be of length at

least (end - begin + 1).
begin An integer specifying the beginning of the range of linear constraints whose infeasibility is to be

returned.
end An integer specifying the end of the range of linear constraints whose infeasibility is to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

202

Global function CPXfopen
CPXFILEptr CPXfopen(const char * filename_str, const char * type_str)

Definition file: cplex.h

The routine CPXfopen opens files to be used in conjunction with the routines CPXaddfpdest,CPXdelfpdest
and CPXsetlogfile. It has the same arguments as the standard C library function fopen.

Example

 fp = CPXfopen ("mylog.log", "w");

See also lpex5.c in the CPLEX User's Manual.

Parameters:

filename_str A pointer to a character string that contains the name of the file to be opened.
type_str A pointer to a character string, containing characters according to the syntax of the standard C

function fopen.
Returns:

The routine returns a pointer to an object representing an open file, or NULL if the file could not be opened. A
CPXFILEptr is analogous to FILE *type in C language.

203

Global function CPXfreeusercuts
int CPXfreeusercuts(CPXCENVptr env, CPXLPptr lp)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXfreeusercuts clears the list of user cuts that have been previously specified through calls to
CPXaddusercuts.

Example

 status = CPXfreeusercuts (env, lp);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

204

Global function CPXNETgetbase
int CPXNETgetbase(CPXCENVptr env, CPXCNETptr net, int * astat, int * nstat)

Definition file: cplex.h

The routine CPXNETgetbase is used to access the network basis for a network problem object. Either of the
arguments astat or nstat may be NULL.

For this function to succeed, a solution must exist for the problem object.

Table 1: Status codes of network arcs

CPX_BASIC If the arc is basic.

CPX_AT_LOWER If the arc is nonbasic and its flow is on the lower bound.

CPX_AT_UPPER If the arc is nonbasic and its flow is on the upper bound.

CPX_FREE_SUPER If the arc is nonbasic but is free.In this case its flow is 0.

Table 2: Status of artificial arcs

CPX_BASIC If the arc is basic.

CPX_AT_LOWER If the arc is nonbasic and its flow is on the lower bound.

Example

 status = CPXNETgetbase (env, net, astat, nstat);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
astat An array in which the statuses for network arcs are to be written. After termination, astat[i] contains the

status assigned to arc i of the network stored in net. The status may be one of the values in Table 1. If
NULL is passed, no arc statuses are copied. Otherwise, astat must be an array of a size that is at least
CPXNETgetnumarcs.

nstat An array in which the statuses for artificial arcs from each node to the root node are to be written. After
termination, nstat[i] contains the status assigned to the artificial arc from node i to the root node of the
network stored in net. The status may be one of values in Table 2. If NULL is passed, no node statuses
are copied. Otherwise, nstat must be an array of a size that is at least CPXNETgetnumnodes.

Returns:

The routine returns zero on success and nonzero if an error occurs.

205

Global function CPXdelqconstrs
int CPXdelqconstrs(CPXCENVptr env, CPXLPptr lp, int begin, int end)

Definition file: cplex.h

The routine CPXdelqconstrs deletes a range of quadratic constraints. The range is specified by a lower and
upper index that represent the first and last quadratic constraints to be deleted, respectively. The indices of the
constraints following those deleted are decreased by the number of deleted constraints.

Example

 status = CPXdelqconstrs (env, lp, 10, 20);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
begin An integer that indicates the numeric index of the first quadratic constraint to be deleted.
end An integer that indicates the numeric index of the last quadratic constraint to be deleted.
Returns:

The routine returns zero on success and nonzero if an error occurs.

206

Global function CPXdelsetsolnpoolfilters
int CPXdelsetsolnpoolfilters(CPXCENVptr env, CPXLPptr lp, int * delstat)

Definition file: cplex.h

The routine CPXdelsetsolnpoolfilters deletes filters from the problem object specified by the argument
lp. Unlike the routine CPXdelsolnpoolfilters, CPXdelsetsolnpoolfilters does not require the filters
to be in a contiguous range. After the deletion occurs, the remaining filters are indexed consecutively starting at
0, and in the same order as before the deletion.

Note

The delstat array must have at least CPXgetsolnpoolnumfilters(env,lp) elements.

Example

 status = CPXdelsetsolnpoolfilters (env, lp, delstat);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
delstat An array specifying the filters to be deleted. The routine CPXdelsetfilters deletes each

filter i for which delstat[i] = 1. The deletion of filters results in a renumbering of the
remaining filters. After termination, delstat[i] is either -1 for filters that have been deleted
or the new index number that has been assigned to the remaining filters.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

207

Global function CPXNETgetslack
int CPXNETgetslack(CPXCENVptr env, CPXCNETptr net, double * slack, int begin, int
end)

Definition file: cplex.h

The routine CPXNETgetslack is used to access slack values or, equivalently, violations of supplies/demands for
a range of nodes in the network stored in a network problem object.

For this function to succeed, a solution must exist for the problem object.

Example

 status = CPXNETgetslack (env, net, slack, 10, 20);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
slack Array in which to write solution slack variables for requested nodes. If NULL is passed, no

data is returned. Otherwise, slack must point to an array of size at least (end-begin+1).
begin Index of the first node for which a slack value is to be obtained.
end Index of the last node for which a slack value is to be obtained.
Returns:

The routine returns zero on success and nonzero if an error occurs.

208

Global function CPXgetray
int CPXgetray(CPXCENVptr env, CPXCLPptr lp, double * z)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetray finds an unbounded direction (also known as a ray) for a linear program where the
CPLEX simplex optimizer concludes that the LP is unbounded (solution status CPX_STAT_UNBOUNDED). An error
is returned, CPXERR_NOT_UNBOUNDED, if this case does not hold.

As an illustration, consider a linear program of the form:

 Minimize c'x
 Subject to Ax = b
 x >= 0

where ' specifies the transpose.

If the CPLEX simplex algorithm completes optimization with a solution status of CPX_STAT_UNBOUNDED, the
vector z returned by CPXgetray would satisfy the following:

 c'z < 0
 Az = 0
 z >= 0

if computations could be carried out in exact arithmetic.

Example

 status = CPXgetray (env, lp, z);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to the CPLEX LP problem object, as returned by CPXcreateprob.
z The array where the unbounded direction is returned. This array must be at least as large as the number of

columns in the problem object.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

209

Global function CPXgetcrossppushcnt
int CPXgetcrossppushcnt(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetcrossppushcnt accesses the number of primal push iterations in the crossover method. A
push occurs when a nonbasic variable switches bounds and does not enter the basis.

Example

 itcnt = CPXgetcrossppushcnt (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

The routine returns the primal push iteration count if a solution exists. If no solution exists, it returns zero.

210

Global function CPXrhssa
int CPXrhssa(CPXCENVptr env, CPXCLPptr lp, int begin, int end, double * lower,
double * upper)

Definition file: cplex.h

The routine CPXrhssa accesses upper and lower sensitivity ranges for righthand side values of a range of
constraints. The beginning and end of the range of constraints must be specified.

Note

Information for constraint j, where begin <= j <= end, is returned in position (j-begin) of the arrays lower
and upper. The items lower[j-begin] and upper[j-begin] contain the lowest and highest value the
righthand side value of constraint j can assume without affecting the optimality of the solution.

Example

 status = CPXrhssa (env, lp, 0, CPXgetnumrows(env,lp)-1,
 lower, upper);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
begin An integer specifying the beginning of the range of ranges to be returned.
end An integer specifying the end of the range of ranges to be returned.
lower An array where the righthand side lower range values are to be returned. This array must be of length at

least (end - begin + 1).
upper An array where the righthand side upper range values are to be returned. This array must be of length at

least (end - begin + 1).
Returns:

The routine returns zero if successful and nonzero if an error occurs. This routine fails if no optimal basis exists.

211

Global function CPXgetintquality
int CPXgetintquality(CPXCENVptr env, CPXCLPptr lp, int * quality_p, int what)

Definition file: cplex.h

The routine CPXgetintquality accesses integer-valued information about the quality of the current solution of
a problem. A solution, though not necessarily a feasible or optimal one, must be available in the CPLEX problem
object. The quality values are returned in the int variable pointed to by the argument quality_p.

Example

 status = CPXgetintquality (env, lp, &max_x_ind, CPX_MAX_X);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
quality_p A pointer to an integer variable in which the requested quality value is to be stored.
what A symbolic constant specifying the quality value to be retrieved. The possible quality

values for a solution are listed in the group optim.cplex.solutionquality in the Callable
Library Reference Manual.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

212

Global function CPXaddrows
int CPXaddrows(CPXCENVptr env, CPXLPptr lp, int ccnt, int rcnt, int nzcnt, const
double * rhs, const char * sense, const int * rmatbeg, const int * rmatind, const
double * rmatval, char ** colname, char ** rowname)

Definition file: cplex.h

The routine CPXaddrows adds constraints to a specified CPLEX problem object. This routine may be called any
time after a call to CPXcreateprob.

When you add a ranged row, CPXaddrows sets the corresponding range value to 0 (zero). Use the routine
CPXchgrngval to change the range value.

Values of sense

sense[i] = 'L' <= constraint

sense[i] = 'E' = constraint

sense[i] = 'G' >= constraint

sense[i] = 'R' ranged constraint

When you build or modify your problem with this routine, you can verify that the results are as you intended by
calling CPXcheckaddrows during application development.

Note

The use of CPXaddrows as a way to add new columns is discouraged in favor of a direct call to CPXnewcols
before calling CPXaddrows.

Example

 status = CPXaddrows (env, lp, ccnt, rcnt, nzcnt, rhs,
 sense, rmatbeg, rmatind, rmatval,
 newcolname, newrowname);

See also the example lpex3.c in the CPLEX User's Manual and in the standard distribution.

For more about the conventions for representing a matrix as compact arrays, see the discussion of matbeg,
matind, and matval in the routine CPXcopylp.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
ccnt An integer that specifies the number of new columns in the constraints being added to the constraint

matrix. When new columns are added, they are given an objective coefficient of zero, a lower bound
of zero, and an upper bound of CPX_INFBOUND.

rcnt An integer that specifies the number of new rows to be added to the constraint matrix.
nzcnt An integer that specifies the number of nonzero constraint coefficients to be added to the constraint

matrix. This specifies the length of the arrays rmatind and rmatval.
rhs An array of length rcnt containing the righthand side term for each constraint to be added to the

CPLEX problem object. May be NULL, in which case the new righthand side values are set to 0.0.
sense An array of length rcnt containing the sense of each constraint to be added to the CPLEX problem

object. May be NULL, in which case the new constraints are created as equality constraints. Possible
values of this argument appear in the table.

rmatbeg An array used with rmatind and rmatval to define the rows to be added.

213

rmatind An array used with rmatbeg and rmatval to define the rows to be added.
rmatval An array used with rmatbeg and rmatind to define the rows to be added. The format is similar to the

format used to describe the constraint matrix in the routine CPXcopylp (see description of matbeg,
matcnt, matind, and matval in that routine), but the nonzero coefficients are grouped by row
instead of column in the array rmatval. The nonzero elements of every row must be stored in
sequential locations in this array from position rmatbeg[i] to rmatbeg[i+1]-1 (or from
rmatbeg[i] to nzcnt -1 if i=rcnt-1). Each entry, rmatind[i], specifies the column index of
the corresponding coefficient, rmatval[i]. Unlike CPXcopylp, all rows must be contiguous, and
rmatbeg[0] must be 0 (zero).

colname An array of length ccnt containing pointers to character strings that represent the names of the new
columns added to the CPLEX problem object, or equivalently, the new variable names. May be NULL,
in which case the new columns are assigned default names if the columns already resident in the
CPLEX problem object have names; otherwise, no names are associated with the variables. If column
names are passed to CPXaddrows but existing variables have no names assigned, default names are
created for them.

rowname An array containing pointers to character strings that represent the names of the new rows, or
equivalently, the constraint names. May be NULL, in which case the new rows are assigned default
names if the rows already resident in the CPLEX problem object have names; otherwise, no names
are associated with the constraints. If row names are passed to CPXaddrows but existing constraints
have no names assigned, default names are created for them.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

214

Global function CPXgetcallbackpseudocosts
int CPXgetcallbackpseudocosts(CPXCENVptr env, void * cbdata, int wherefrom, double
* uppc, double * downpc, int begin, int end)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetcallbackpseudocosts retrieves the pseudo-cost values during MIP optimization from
within a user-written callback. The values are from the original problem if CPX_PARAM_MIPCBREDLP is set to
CPX_OFF. Otherwise, they are from the presolved problem.

Note

When pseudo-costs are retrieved for the original problem variables, pseudo-costs are zero for variables that
have been removed from the problem, since they are never used for branching.

This routine may be called only when the value of the wherefrom argument is one of the following:

CPX_CALLBACK_MIP,•
CPX_CALLBACK_MIP_BRANCH,•
CPX_CALLBACK_MIP_INCUMBENT,•
CPX_CALLBACK_MIP_NODE,•
CPX_CALLBACK_MIP_HEURISTIC,•
CPX_CALLBACK_MIP_SOLVE, or•
CPX_CALLBACK_MIP_CUT.•

Example

 status = CPXgetcallbackpseudocosts (env, cbdata, wherefrom,
 upcost, downcost,
 j, k);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
cbdata The pointer passed to the user-written callback. This argument must be the value of cbdata passed

to the user-written callback.
wherefrom An integer value reporting from where the user-written callback was called. The argument must be

the value of wherefrom passed to the user-written callback.
uppc An array to receive the values of up pseudo-costs. This array must be of length at least (end -

begin + 1). If successful, uppc[0] through uppc[end-begin] will contain the up pseudo-costs.
May be NULL.

downpc An array to receive the values of the down pseudo-costs. This array must be of length at least (end
- begin + 1). If successful, downpc[0] through downpc[end-begin] will contain the down
pseudo-costs. May be NULL.

begin An integer specifying the beginning of the range of pseudo-costs to be returned.
end An integer specifying the end of the range of pseudo-costs to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

215

Global function CPXdelnames
int CPXdelnames(CPXCENVptr env, CPXLPptr lp)

Definition file: cplex.h

The routine CPXdelnames removes all names that have been previously assigned to rows and columns. The
memory that was used by those names is released.

Names can be assigned to rows and columns in a variety of ways, and this routine allows them to be removed.
For example, if the problem is read from a file in LP or MPS format, names are also read from the file. Names
can be assigned by the user by calling one of the routines CPXchgrowname, CPXchgcolname, or CPXchgname.

Example

 CPXdelnames (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

216

Global function CPXdperwrite
int CPXdperwrite(CPXCENVptr env, CPXLPptr lp, const char * filename_str, double
epsilon)

Definition file: cplex.h

When solving degenerate linear programs with the dual simplex method, CPLEX may initiate a perturbation of
the objective function of the problem in order to improve performance. The routine CPXdperwrite writes a
similarly perturbed problem to a binary SAV format file.

Example

 status = CPXdperwrite (env, lp, "myprob.dpe", epsilon);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
filename_str A character string containing the name of the file to which the perturbed LP problem should be

written.
epsilon The perturbation constant.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

217

Global function CPXgetobj
int CPXgetobj(CPXCENVptr env, CPXCLPptr lp, double * obj, int begin, int end)

Definition file: cplex.h

The routine CPXgetobj accesses a range of objective function coefficients of a CPLEX problem object. The
beginning and end of the range must be specified.

Example

 status = CPXgetobj (env, lp, obj, 0, cur_numcols-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
obj An array where the specified objective coefficients are to be returned. This array must be of

length at least (end - begin + 1). The objective function coefficient of variable j is returned
in obj[j - begin].

begin An integer specifying the beginning of the range of objective function coefficients to be returned.
end An integer specifying the end of the range of objective function coefficients to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

218

Global function CPXcopyqpsep
int CPXcopyqpsep(CPXCENVptr env, CPXLPptr lp, const double * qsepvec)

Definition file: cplex.h

The routine CPXcopyqpsep is used to copy the quadratic objective matrix Q for a separable QP problem. A
separable QP problem is one where the coefficients of Q have no nonzero off-diagonal elements.

Note

CPLEX evaluates the corresponding objective with a factor of 0.5 in front of the quadratic objective term.

When you build or modify your model with this routine, you can verify that the results are as you intended by
calling CPXcheckcopyqpsep during application development.

Example

 status = CPXcopyqpsep (env, lp, qsepvec);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
qsepvec An array of length CPXgetnumcols(env,lp).qsepvec[0], qsepvec[1],...,

qsepvec[numcols-1] should contain the quadratic coefficients of the separable
quadratic objective.

Returns:

The routine returns zero on success and nonzero if an error occurs.

219

Global function CPXNETchgsupply
int CPXNETchgsupply(CPXCENVptr env, CPXNETptr net, int cnt, const int * indices,
const double * supply)

Definition file: cplex.h

The routine CPXNETchgsupply is used to change supply values for a set of nodes in the network stored in a
network problem object.

Any solution information stored in the problem object is lost.

Example

 status = CPXNETchgsupply (env, net, cnt, indices, supply);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
cnt An integer indicating the number of nodes for which the supply values are to be changed.
indices An array of indices that indicate the nodes for which the supply values are to be changed. This array

must have a length of at least cnt. The indices must be in the range [0, nnodes-1].
supply An array that contains the new supply values. This array must have a length of at least cnt.
Returns:

The routine returns zero on success and nonzero if an error occurs.

220

Global function CPXsetdeletenodecallbackfunc
int CPXsetdeletenodecallbackfunc(CPXENVptr env, void(CPXPUBLIC
*deletecallback)(CALLBACK_DELETENODE_ARGS), void * cbhandle)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXsetdeletenodecallbackfunc sets and modifies the user-written callback to be called during
MIP optimization when a node is to be deleted. Nodes are deleted in these circumstances:

when a branch is carried out from that node, or•
when the node relaxation is infeasible, or•
when the node relaxation objective value is worse than the cutoff.•

Example

 status = CPXsetdeletenodecallbackfunc (env,
 mybranchfunc,
 mydata);

See also the example admipex1.c in the standard distribution.

Parameters

env

A pointer to the CPLEX environment, as returned by CPXopenCPLEX.

deletecallback

A pointer to a user-written branch callback. If the callback is set to NULL, no callback is called during
optimization.

cbhandle

A pointer to user private data. This pointer is passed to the callback.

Callback description

 int callback (CPXCENVptr env,
 void *cbdata,
 int wherefrom,
 void *cbhandle,
 int seqnum,
 void *handle);

The call to the delete node callback routine occurs during MIP optimization when a node is to be deleted.

The main purpose of the callback is to provide an opportunity to free any user data associated with the node,
thus preventing memory leaks.

Callback return value

221

The callback returns zero if successful and nonzero if an error occurs.

Callback arguments

env

A pointer to the CPLEX environment, as returned by one of the CPXopenCPLEX routines.

cbdata

A pointer passed from the optimization routine to the user-written callback that identifies the problem being
optimized. The only purpose of this pointer is to pass it to the callback information routines.

wherefrom

An integer value reporting where in the optimization this function was called. It will have the value
CPX_CALLBACK_MIP_DELETENODE.

cbhandle

A pointer to user private data.

seqnum

The sequence number of the node that is being deleted.

handle

A pointer to the user private data that was assigned to the node when it was created with one of the callback
branching routines:

CPXbranchcallbackbranchbds, or•
CPXbranchcallbackbranchconstraints, or•
CPXbranchcallbackbranchgeneral.•

Returns:

The routine returns zero if successful and nonzero if an error occurs.

222

Global function CPXNETwriteprob
int CPXNETwriteprob(CPXCENVptr env, CPXCNETptr net, const char * filename_str,
const char * format_str)

Definition file: cplex.h

The routine CPXNETwriteprob writes the network stored in a network problem object to a file. This can be done
in CPLEX (.net) or DIMACS (.min) network file format or as the LP representation of the network in any of the
LP formats (.lp, .mps, or .sav).

If the file name ends with .gz, a compressed file is written.

File extensions for network files

net for CPLEX network format

min for DIMACS network format

lp for LP format of LP formulation

mps for MPS format of LP formulation

sav for SAV format of LP formulation

Example

 status = CPXNETwriteprob (env, net, "network.net", NULL);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
filename_str Name of the network file to write, where the file extension specifies the file format unless

overridden by the format argument. If the file name ends with .gz a compressed file is written in
accordance with the selected file type.

format_str File format to generate. Possible values appear in the table. If NULL is passed, the format is
inferred from the file name.

Returns:

The routine returns zero on success and nonzero if an error occurs.

223

Global function CPXgetcutcallbackfunc
void CPXgetcutcallbackfunc(CPXCENVptr env, int(CPXPUBLIC
**cutcallback_p)(CALLBACK_CUT_ARGS), void ** cbhandle_p)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetcutcallbackfunc accesses the user-written callback for adding cuts. The user-written
callback is called by CPLEX during MIP branch and cut for every node that has an LP optimal solution with
objective value below the cutoff and that is integer infeasible. CPLEX also calls the callback when comparing an
integer feasible solution, including one provided by a MIP start before any nodes exist, against lazy constraints.
The callback routine adds globally valid cuts to the LP subproblem.

Example

 CPXgetcutcallbackfunc(env, ¤t_cutfunc, ¤t_data);

See also Advanced MIP Control Interface in the CPLEX User's Manual.

For documentation of callback arguments, see the routine CPXsetcutcallbackfunc.

Parameters

env

A pointer to the CPLEX environment, as returned by CPXopenCPLEX.

cutcallback_p

The address of the pointer to the current user-written cut callback. If no callback has been set, the pointer
evaluates to NULL.

cbhandle_p

The address of a variable to hold the user's private pointer.

See Also: CPXcutcallbackadd, CPXsetcutcallbackfunc

Returns:

This routine does not return a result.

224

Global function CPXgetnumint
int CPXgetnumint(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetnumint accesses the number of general integer variables in a CPLEX problem object.

Example

 numint = CPXgetnumint (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.

Example

 numint = CPXgetnumint (env, lp);

Returns:

If the problem object or environment does not exist, CPXgetnumint returns zero. Otherwise, it returns the number
of general integer variables in the problem object.

225

Global function CPXwritemipstarts
int CPXwritemipstarts(CPXCENVptr env, CPXCLPptr lp, const char * filename_str, int
begin, int end)

Definition file: cplex.h

The routine CPXwritemipstarts writes a range of MIP starts of a CPLEX problem object to a file in MST
format.

The MST format is an XML format and is documented in the stylesheet solution.xsl and schema
solution.xsd in the include directory of the CPLEX distribution. CPLEX File Formats Reference Manual
also documents this format briefly.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to the CPLEX problem object as returned by CPXcreateprob.
filename_str A character string containing the name of the file to which the MIP start information

should be written.
begin An integer specifying the beginning of the range of MIP starts to be written.
end An integer specifying the end of the range of MIP starts to be written.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

226

Global function CPXgetnumnz
int CPXgetnumnz(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetnumnz accesses the number of nonzero elements in the constraint matrix of a CPLEX
problem object, not including the objective function, quadratic constraints, or the bounds constraints on the
variables.

Example

 cur_numnz = CPXgetnumnz (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

If the problem object or environment does not exist, CPXgetnumnz returns the value 0 (zero); otherwise, it
returns the number of nonzero elements.

227

Global function CPXsetnodecallbackfunc
int CPXsetnodecallbackfunc(CPXENVptr env, int(CPXPUBLIC
*nodecallback)(CALLBACK_NODE_ARGS), void * cbhandle)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXsetnodecallbackfunc sets and modifies the user-written callback to be called during MIP
optimization after CPLEX has selected a node to explore, but before this exploration is carried out. The callback
routine can change the node selected by CPLEX to a node selected by the user.

Example

 status = CPXgetnodecallbackfunc(env, mynodefunc, mydata);

See also the example admipex1.c in the standard distribution.

Parameters

env

A pointer to the CPLEX environment, as returned by CPXopenCPLEX.

nodecallback

A pointer to the current user-written node callback. If no callback has been set, the pointer evaluates to NULL.

cbhandle

A pointer to user private data. This pointer is passed to the user-written node callback.

Callback description

 int callback (CPXCENVptr env,
 void *cbdata,
 int wherefrom,
 void *cbhandle,
 int *nodeindex_p,
 int *useraction_p);

CPLEX calls the node callback after selecting the next node to explore. The user can choose another node by
setting the argument values of the callback.

Callback return value

The callback returns zero if successful and nonzero if an error occurs.

Callback arguments

env

A pointer to the CPLEX environment, as returned by CPXopenCPLEX.

cbdata

228

A pointer passed from the optimization routine to the user-written callback that identifies the problem being
optimized. The only purpose of this pointer is to pass it to the callback information routines.

wherefrom

An integer value reporting where in the optimization this function was called. It has the value
CPX_CALLBACK_MIP_NODE.

cbhandle

A pointer to user private data.

nodeindex_p

A pointer to an integer that specifies the node number of the user-selected node. The node selected by CPLEX is
node number 0 (zero). Other nodes are numbered relative to their position in the tree, and this number changes
with each tree operation. The unchanging identifier for a node is its sequence number. To access the sequence
number of a node, use the routine CPXgetcallbacknodeinfo. An error results if a user attempts to select a
node that has been moved to a node file. (See the CPLEX User's Manual for more information about node files.)

useraction_p

A pointer to an integer specifying the action to be taken on completion of the user callback. The table
summarizes the possible actions.

Actions to be Taken after a User-Written Node Callback

Value Symbolic Constant Action

0 CPX_CALLBACK_DEFAULT Use CPLEX-selected node

1 CPX_CALLBACK_FAIL Exit optimization

2 CPX_CALLBACK_SET Use user-selected node as defined in returned values

Returns:

The routine returns zero if successful and nonzero if an error occurs.

229

Global function CPXgetsolnpoolnumfilters
int CPXgetsolnpoolnumfilters(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetsolnpoolnumfilters accesses the number of filters in the solution pool.

Example

 numfilters = CPXgetsolnpoolnumfilters (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

If the CPLEX problem object or environment does not exist, CPXgetsolnpoolnumfilters returns the value 0
(zero); otherwise, it returns the number of filters.

230

Global function CPXgetcallbacknodeinfo
int CPXgetcallbacknodeinfo(CPXCENVptr env, void * cbdata, int wherefrom, int
nodeindex, int whichinfo, void * result_p)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetcallbacknodeinfo is called from within user-written callbacks during a MIP optimization
and accesses information about nodes. The node information is from the original problem if the parameter
CPX_PARAM_MIPCBREDLP is turned off (set to CPX_OFF). Otherwise, the information is from the presolved
problem.

The primary purpose of this routine is to examine nodes in order to select one from which to proceed. In this
case, the wherefrom argument is CPX_CALLBACK_MIP_NODE, and a node with any nodeindex value can be
queried. A secondary purpose of this routine is to obtain information about the current node. When the
wherefrom argument is any one of the following values, only the current node can be queried.

CPX_CALLBACK_MIP_CUT•
CPX_CALLBACK_MIP_INCUMBENT•
CPX_CALLBACK_MIP_HEURISTIC•
CPX_CALLBACK_MIP_SOLVE•
CPX_CALLBACK_MIP_BRANCH•

To query the current node, specify a nodeindex value of 0. Other values of the wherefrom argument are
invalid for this routine. An invalid nodeindex value or wherefrom argument value will result in an error return
value.

Note

The values returned for CPX_CALLBACK_INFO_NODE_SIINF and CPX_CALLBACK_INFO_NODE_NIINF for
the current node are the values that applied to the node when it was stored and thus before the branch was
solved. As a result, these values should not be used to assess the feasibility of the node. Instead, use the
routine CPXgetcallbacknodeintfeas to check the feasiblity of a node.

This routine cannot retrieve information about nodes that have been moved to node files. For more information
about node files, see the CPLEX User's Manual. If the argument nodeindex refers to a node in a node file,
CPXgetcallbacknodeinfo returns the value CPXERR_NODE_ON_DISK. Nodes still in memory have the
lowest index numbers so a user can loop through the nodes until CPXgetcallbacknodeinfo returns an
error, and then exit the loop.

Example

 status = CPXgetcallbacknodeinfo(env,
 cbdata,
 wherefrom,
 0,
 CPX_CALLBACK_INFO_NODE_NIINF,
 &numiinf);

Table 1: Information Requested for a User-Written Node Callback

Symbolic Constant C Type Meaning

231

CPX_CALLBACK_INFO_NODE_SIINF double sum of integer infeasibilities

CPX_CALLBACK_INFO_NODE_NIINF int number of integer infeasibilities

CPX_CALLBACK_INFO_NODE_ESTIMATE double estimated integer objective

CPX_CALLBACK_INFO_NODE_DEPTH int depth of node in branch-and-cut tree

CPX_CALLBACK_INFO_NODE_OBJVAL double objective value of LP subproblem

CPX_CALLBACK_INFO_NODE_TYPE char type of branch at this node; see Table 2

CPX_CALLBACK_INFO_NODE_VAR int
for nodes of type CPX_TYPE_VAR, the branching
variable for this node; for other types, -1 is returned

CPX_CALLBACK_INFO_NODE_SOS int
for nodes of type CPX_TYPE_SOS1 or
CPX_TYPE_SOS2 the number of the SOS used in
branching; -1 otherwise

CPX_CALLBACK_INFO_NODE_SEQNUM int sequence number of the node

CPX_CALLBACK_INFO_NODE_USERHANDLE void
userhandle associated with the node upon its
creation

CPX_CALLBACK_INFO_NODE_NODENUM int node index of the node (only available for
CPXgetcallbackseqinfo)

Table 2: Branch Types Returned when whichinfo = CPX_CALLBACK_INFO_NODE_TYPE

Symbolic Constant Value Branch Type

CPX_TYPE_VAR '0' variable branch

CPX_TYPE_SOS1 '1' SOS1 branch

CPX_TYPE_SOS2 '2' SOS2 branch

CPX_TYPE_USER 'X' user-defined

CPX_TYPE_ANY 'A' multiple bound changes and/or constraints were used for branching

See also Advanced MIP Control Interface in the CPLEX User's Manual.

See Also: CPXgetcallbackinfo, CPXgetcallbackseqinfo

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
cbdata The pointer passed to the user-written callback. This argument must be the value of cbdata passed

to the user-written callback.
wherefrom An integer value reporting where the user-written callback was called from. This argument must be

the value of wherefrom passed to the user-written callback.
nodeindex The index of the node for which information is requested. Nodes are indexed from 0 (zero) to

(nodecount - 1) where nodecount is obtained from the callback information function
CPXgetcallbackinfo, with a whichinfo value of CPX_CALLBACK_INFO_NODES_LEFT.

whichinfo An integer specifying which information is requested. Table 1 summarizes the possible values. Table
2 summarizes possible values returned when the type of information requested is branch type (that
is, whichinfo = CPX_CALLBACK_INFO_NODE_TYPE).

result_p A generic pointer to a variable of type double or int, representing the value returned by
whichinfo. (The column C Type in Table 1 shows the type of various values returned by
whichinfo.)

Returns:

232

The routine returns zero if successful and nonzero if an error occurs. The return value CPXERR_NODE_ON_DISK
reports an attempt to access a node currently located in a node file on disk.

233

Global function CPXbinvrow
int CPXbinvrow(CPXCENVptr env, CPXCLPptr lp, int i, double * y)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXbinvrow computes the i-th row of the basis inverse.

Parameters:

env The pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to the CPLEX LP problem object, as returned by CPXcreateprob.
i An integer that specifies the index of the row to be computed.
y An array containing the i-th row of Binv (the inverse of the matrix B). The array must be of length at least

equal to the number of rows in the problem.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

234

Global function CPXcleanup
int CPXcleanup(CPXCENVptr env, CPXLPptr lp, double eps)

Definition file: cplex.h

The routine CPXcleanup changes to zero any problem coefficients that are smaller in magnitude than the
tolerance specified in the argument eps.

This routine may be called at any time after a problem object has been created by a call to CPXcreateprob.
This practice is also known as zero-ing out the negligible coefficients. Such coefficients may arise as round-off
errors if the matrix coefficients are computed with floating-point arithmetic.

Example

 status = CPXcleanup (env, lp, eps);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
eps A tolerance to determine whether coefficients in the problem are sufficiently small in magnitude to

eliminate.
Returns:

The routine returns zero unless an error occurred during the optimization.

235

Global function CPXgetnodecnt
int CPXgetnodecnt(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetnodecnt accesses the number of nodes used to solve a mixed integer problem.

Example

 nodecount = CPXgetnodecnt (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.

Example

 nodecount = CPXgetnodecnt (env, lp);

Returns:

If a solution exists, CPXgetnodecnt returns the node count. If no solution, problem, or environment exists,
CPXgetnodecnt returns the value 0.

236

Global function CPXgetsolnpoolintquality
int CPXgetsolnpoolintquality(CPXCENVptr env, CPXCLPptr lp, int soln, int *
quality_p, int what)

Definition file: cplex.h

The routine CPXgetsolnpoolintquality accesses integer-valued information about the quality of a solution
in the solution pool. The quality values are returned in the int variable pointed to by the argument quality_p.

Example

 status = CPXgetsolnpooldblquality (env, lp, soln, &max_x, CPX_MAX_X);

Parameters:

env A pointer to the CPLEX environment as returned by the CPXopenCPLEX routine.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
soln An integer specifying the index of the solution pool member for which the quality

measure is to be computed. A value of -1 specifies that the incumbent should be used
instead of a member of the solution pool.

quality_p A pointer to an int variable in which the requested quality value is to be stored. If an
error occurs, the quality-value remains unchanged.

what A symbolic constant specifying the quality value to be retrieved. The possible quality
values which can be evaluated for a solution pool member are listed in the group
optim.cplex.solutionquality in the Callable Library Reference Manual.

Returns:

The routine returns zero if successful and nonzero if an error occurs. If an error occurs, the quality-value remains
unchanged.

237

Global function CPXgetsolnpooldblquality
int CPXgetsolnpooldblquality(CPXCENVptr env, CPXCLPptr lp, int soln, double *
quality_p, int what)

Definition file: cplex.h

The routine CPXgetsolnpooldblquality accesses double-valued information about the quality of a solution
in the solution pool. The quality values are returned in the double variable pointed to by the argument
quality_p.

Example

 status = CPXgetsolnpooldblquality (env, lp, soln, CPX_MAX_X, &max_x);

Parameters:

env A pointer to the CPLEX environment as returned by the CPXopenCPLEX routine.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
soln An integer giving the index of the solution pool member for which the quality measure is

to be computed. A value of -1 specifies that the incumbent should be used instead of a
member of the solution pool.

quality_p A pointer to a double variable in which the requested quality value is to be stored. If an
error occurs, the quality-value remains unchanged.

what A symbolic constant specifying the quality value to be retrieved. The possible quality
values for a solution are listed in the group optim.cplex.solutionquality in the Callable
Library Reference Manual.

Returns:

The routine returns zero if successful and nonzero if an error occurs. If an error occurs, the quality-value remains
unchanged.

238

Global function CPXgetsolnpoolsolnname
int CPXgetsolnpoolsolnname(CPXCENVptr env, CPXCLPptr lp, char * store, int storesz,
int * surplus_p, int which)

Definition file: cplex.h

The routine CPXgetsolnpoolsolnname accesses the name of a solution, specified by the argument soln, of
the solution pool associated with the problem object specified by the argument lp.

If the value of storesz is 0 (zero), then the negative of the value of surplus_p returned specifies the total
number of characters needed for the array store.

A nonnegative value of surplus_p specifies that the length of the array store was sufficient. A negative value
specifies that the length of the array was insufficient and that the routine could not complete its task. In this case,
CPXgetsolnpoolsolnname returns the value CPXERR_NEGATIVE_SURPLUS, and the negative value of the
variable surplus_p specifies the amount of insufficient space in the array store.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
store A pointer to a buffer of size storesz. It may be NULL if storesz is 0 (zero).
storesz An integer specifying the length of the array store. It may be 0 (zero).
surplus_p A pointer to an integer to contain the difference between storesz and the amount of memory

required to store the name of the solution.
which An integer specifying the index of the solution for which the name is returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs. The value CPXERR_NEGATIVE_SURPLUS
specifies that insufficient space was available in the array store to hold the name of the solution.

239

Global function CPXgetstatstring
CPXCHARptr CPXgetstatstring(CPXCENVptr env, int statind, char * buffer_str)

Definition file: cplex.h

The routine CPXgetstatstring places in a buffer, a string corresponding to the value of statind as returned
by the routine CPXgetstat. The buffer to hold the string can be up to 510 characters maximum; the buffer must
be at least 56 characters.

Example

 statind = CPXgetstat (env, lp);
 p = CPXgetstatstring (env, statind, buffer);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
statind An integer specifying the status value to return.
buffer_str A pointer to a buffer to hold the string corresponding to the value of statind.
Returns:

The routine returns a pointer to a buffer if the statind value corresponds to a valid string. Otherwise, it returns
NULL.

240

Global function CPXgetqpcoef
int CPXgetqpcoef(CPXCENVptr env, CPXCLPptr lp, int rownum, int colnum, double *
coef_p)

Definition file: cplex.h

The routine CPXgetqpcoef accesses the quadratic coefficient in the matrix Q of a CPLEX problem object for the
variable pair indexed by (rownum, colnum). The result is stored in *coef_p.

Example

 status = CPXgetqpcoef (env, lp, 10, 20, &coef);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
rownum The first variable number (row number in Q).
colnum The second variable number (column number in Q).
coef_p A pointer to a double where the coefficient should be stored.
Returns:

The routine returns zero on success and nonzero if an error occurs.

241

Global function CPXgetcallbacknodelp
int CPXgetcallbacknodelp(CPXCENVptr env, void * cbdata, int wherefrom, CPXLPptr *
nodelp_p)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetcallbacknodelp returns a pointer to the current continuous relaxation at the current
branch and cut node from within a user-written callback. Generally, this pointer may be used only in CPLEX
Callable Library query routines, such as CPXsolution or CPXgetrows.

Note that the setting of the parameter CPX_PARAM_MIPCBREDLP does not affect this lp pointer. Since CPLEX
does not explicitly maintain an unpresolved node LP, the lp pointer will correspond to the presolved node LP
unless CPLEX presolve has been turned off or CPLEX has made no presolve reductions at all.

Example

 status = CPXgetcallbacknodelp (env, cbdata, wherefrom, &nodelp);

See also the example admipex1.c and admipex6.c in the standard distribution.

CPXgetcallbacknodelp may be called only when its wherefrom argument has one of the following values:

CPX_CALLBACK_MIP,•
CPX_CALLBACK_MIP_BRANCH,•
CPX_CALLBACK_MIP_CUT,•
CPX_CALLBACK_MIP_HEURISTIC,•
CPX_CALLBACK_MIP_INCUMBENT, or•
CPX_CALLBACK_MIP_SOLVE.•

When the wherefrom argument has the value CPX_CALLBACK_MIP_SOLVE, the subproblem pointer may also
be used in CPLEX optimization routines.

Note

Any modification to the subproblem may result in corruption of the problem and of the CPLEX environment.

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
cbdata The cbdata pointer passed to the user-written callback. This argument must be the value

of cbdata passed to the user-written callback.
wherefrom An integer value reporting where the user-written callback was called from. This argument

must be the value of the wherefrom passed to the user-written callback.
nodelp_p The lp pointer specifying the current subproblem. If no subproblem is defined, the pointer

is set to NULL.
Returns:

The routine returns zero if successful and nonzero if an error occurs. A nonzero return value may mean that the
requested value is not available.

242

Global function CPXgetindconstr
int CPXgetindconstr(CPXCENVptr env, CPXCLPptr lp, int * indvar_p, int *
complemented_p, int * nzcnt_p, double * rhs_p, char * sense_p, int * linind, double
* linval, int space, int * surplus_p, int which)

Definition file: cplex.h

The routine CPXgetindconstr accesses a specified indicator constraint on the variables of a CPLEX problem
object. The length of the arrays in which the nonzero coefficients of the constraint are to be returned must be
specified.

Note

If the value of space is 0 (zero), then the negative of the value of *surplus_p returned specifies the length
needed for the arrays linind and linval.

Example

 status = CPXgetindconstr (env, lp, &indvar, &complemented,
 &linnzcnt, &rhs, &sense, linind, linval,
 space, &surplus, 0);

Parameters:

env A pointer to the CPLEX environment as returned by the CPXopenCPLEX routine.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
indvar_p A pointer to an integer to contain the index of the binary indicator variable. May be NULL.
complemented_p A pointer to a Boolean value that specifies whether the indicator variable is complemented.

May be NULL.
nzcnt_p A pointer to an integer to contain the number of nonzero values in the linear portion of the

indicator constraint; that is, the true length of the arrays linind and linval.
rhs_p A pointer to a double containing the righthand side value of the linear portion of the indicator

constraint.
sense_p A pointer to a character specifying the sense of the linear portion of the constraint. Possible

values are L for a <= constraint, E for an = constraint, or G for a >= constraint.
linind An array to contain the variable indices of the entries of linval. May be NULL if space is 0

(zero).
linval An array to contain the coefficients of the linear portion of the specified indicator constraint.

May be NULL if space is 0.
space An integer specifying the length of the arrays linind and linval. May be 0 (zero).
surplus_p A pointer to an integer to contain the difference between space and the number of entries in

each of the arrays linind and linval. A nonnegative value of surplus_p reports that the
length of the arrays was sufficient. A negative value reports that the length was insufficient
and that the routine could not complete its task. In this case, the routine CPXgetindconstr
returns the value CPXERR_NEGATIVE_SURPLUS, and the negative value of surplus_p
specifies the amount of insufficient space in the arrays. May be NULL if space is 0 (zero).

which An integer specifying which indicator constraint to return.
Returns:

The routine returns zero if successful and nonzero if an error occurs. The value CPXERR_NEGATIVE_SURPLUS
reports that insufficient space was available in either of the arrays linind and linval to hold the nonzero
coefficients.

243

Global function CPXgetphase1cnt
int CPXgetphase1cnt(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetphase1cnt accesses the number of Phase I iterations to solve a problem using the primal
or dual simplex method.

Example

 itcnt = CPXgetphase1cnt (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

If a solution exists, CPXgetphase1cnt returns the Phase I iteration count. If no solution exists, CPXgetphase1cnt
returns the value 0.

244

Global function CPXchgrngval
int CPXchgrngval(CPXCENVptr env, CPXLPptr lp, int cnt, const int * indices, const
double * values)

Definition file: cplex.h

The routine CPXchgrngval changes the range coefficients of a set of linear constraints in the CPLEX problem
object.

Example

 status = CPXchgrngval (env, lp, cnt, indices, values);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
cnt An integer that specifies the total number of range coefficients to be changed, and thus specifies the

length of the arrays indices and values.
indices An array of length cnt containing the numeric indices of the rows corresponding to the linear constraints

for which range coefficients are to be changed.
values An array of length cnt containing the new values of the range coefficients of the linear constraints

present in indices.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

245

Global function CPXNETaddnodes
int CPXNETaddnodes(CPXCENVptr env, CPXNETptr net, int nnodes, const double *
supply, char ** name)

Definition file: cplex.h

The routine CPXNETaddnodes adds new nodes to the network stored in a network problem object.

Example

 status = CPXNETaddnodes (env, net, nnodes, supply, NULL);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
nnodes Number of nodes to add.
supply Supply values for the added nodes. If NULL is passed, all supplies defaults to 0 (zero). Otherwise, the

size of the array must be at least nnodes.
name Pointer to an array of names for added nodes. If NULL is passed and the existing nodes have names,

default names are assigned to the added nodes. If NULL is passed but the existing nodes have no
names, the new nodes are assigned no names. Otherwise, the size of the array must be at least
nnodes and every name in the array must be a string terminating in 0. If the existing nodes have no
names and nnames is not NULL, default names are assigned to the existing nodes.

Returns:

The routine returns zero on success and nonzero if an error occurs.

246

Global function CPXNETgetobj
int CPXNETgetobj(CPXCENVptr env, CPXCNETptr net, double * obj, int begin, int end)

Definition file: cplex.h

The routine CPXNETgetobj is used to access the objective function values for a range of arcs in the network
stored in a network problem object.

Example

 status = CPXNETgetobj (env, net, obj, 0, cur_narcs-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
obj Array in which to write the objective values for the requested range of arcs. If NULL is passed,

no objective values are retrieved. Otherwise, obj must point to an array of size at least
(end-begin+1).

begin Index of the first arc for which the objective value is to be obtained.
end Index of the last arc for which the objective value is to be obtained.
Returns:

The routine returns zero on success and nonzero if an error occurs.

247

Global function CPXgetcrossdpushcnt
int CPXgetcrossdpushcnt(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetcrossdpushcnt accesses the number of dual push iterations in the crossover method. A
push occurs when a nonbasic variable switches bounds and does not enter the basis.

Example

 itcnt = CPXgetcrossdpushcnt (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

The routine returns the dual push iteration count if a solution exists. If no solution exists, it returns zero.

248

Global function CPXgetparamtype
int CPXgetparamtype(CPXCENVptr env, int whichparam, int * paramtype)

Definition file: cplex.h

The routine CPXgetparamtype returns the type of a CPLEX parameter, given the symbolic constant or
reference number for it.

The CPLEX Parameters Reference Manual provides a list of parameters with their types, options, and default
values.

Example

 status = CPXgetparamtype (env, CPX_PARAM_ADVIND, ¶mtype);

Possible values returned in paramtype

CPX_PARAMTYPE_NONE 0 (zero)

CPX_PARAMTYPE_INT 1 (one)

CPX_PARAMTYPE_DOUBLE 2

CPX_PARAMTYPE_STRING 3

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
whichparam An integer specifying the symbolic constant or reference number of the parameter for which the

type is to be obtained.
paramtype A pointer to an integer to receive the type.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

249

Global function CPXNETsolution
int CPXNETsolution(CPXCENVptr env, CPXCNETptr net, int * netstat_p, double *
objval_p, double * x, double * pi, double * slack, double * dj)

Definition file: cplex.h

The routine CPXNETsolution accesses solution values for a network problem object computed by the most
recent call to CPXNETprimopt for that object. The solution values are maintained in the object as long as no
changes are applied to it with one of the CPXNETchg..., CPXNETcopy... or CPXNETadd... functions.
Whether or not a solution exists can be determined by CPXNETsolninfo.

The arguments to CPXNETsolution are pointers to locations where data is to be written. Such data includes the
solution status, the value of the objective function, primal, dual and slack values and the reduced costs.

Although all the above data exists after a successful call to CPXNETprimopt, it is possible that the user only
needs a subset of the available data. Thus, if any part of the solution represented by an argument to
CPXNETsolution is not required, a NULL pointer can be passed for that argument.

Example

 status = CPXNETsolution (env, net, &netstatus, &objval, x, pi,
 slack, dj);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
netstat_p Pointer to which the solution status is to be written. The specific values that

*netstat_p can take and their meanings are the same as the return values
documented for CPXNETgetstat.

objval_p Pointer to which the objective value is to be written. If NULL is passed, no objective
value is returned. If the solution status is one of the CPX_STAT_ABORT codes, the value
returned depends on the setting of parameter CPX_PARAM_NETDISPLAY. If this
parameter is set to 2, objective function values that are penalized for infeasible flows are
used to compute the objective value of the solution. Otherwise, the true objective
function values are used.

x Array to which the solution (flow) vector is to be written. If NULL is passed, no solution
vector is returned. Otherwise, x must point to an array of size at least that returned by
CPXNETgetnumarcs.

pi Array to which the dual values are to be written. If NULL is passed, no dual values are
returned. Otherwise, pi must point to an array of size at least that returned by
CPXNETgetnumnodes.

slack Array to which the slack values (violations of supplies/demands) are to be written. If
NULL is passed, no slack values are returned. Otherwise, slack must point to an array
of size at least that returned by CPXNETgetnumnodes.

dj Array to which the reduced cost values are to be written. If NULL is passed, no reduced
cost values are returned. Otherwise, dj must point to an array of size at least that
returned by CPXNETgetnumarcs.

Returns:

If a solution exists, it returns zero; if not, it returns nonzero to indicate an error.

250

Global function CPXgetstrparam
int CPXgetstrparam(CPXCENVptr env, int whichparam, char * value_str)

Definition file: cplex.h

The routine CPXgetstrparam obtains the current value of a CPLEX string parameter.

Example

 status = CPXgetstrparam (env, CPX_PARAM_WORKDIR, dirname);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
whichparam The symbolic constant (or reference number) of the parameter for which the value is to be

obtained.
value_str A pointer to a buffer of length at least CPX_STR_PARAM_MAX to hold the current value of the

CPLEX parameter.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

251

Global function CPXstrlen
int CPXstrlen(const char * s_str)

Definition file: cplex.h

The routine CPXstrlen determines the length of a string. It is exactly the same as the standard C library routine
strlen. This routine is provided so that strings passed to the message function routines (see
CPXaddfuncdest) can be analyzed by languages that do not allow dereferencing of pointers (for example, older
versions of Visual Basic).

Example

 len = CPXstrlen (p);

Parameters:

s_str A pointer to a character string.
Returns:

The routine returns the length of the string.

252

Global function CPXNETgetnodearcs
int CPXNETgetnodearcs(CPXCENVptr env, CPXCNETptr net, int * arccnt_p, int * arcbeg,
int * arc, int arcspace, int * surplus_p, int begin, int end)

Definition file: cplex.h

The routine CPXNETgetnodearcs is used to access the arc indices incident to a range of nodes in the network
stored in a network problem object.

Example

 status = CPXNETgetnodearcs (env, net, &arccnt, arcbeg, arc,
 arcspace, &surplus, begin, end);

Parameters

env

A pointer to the CPLEX environment as returned by CPXopenCPLEX.

net

A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.

arccnt_p

A pointer to an integer to contain the total number of arc indices returned in the array arc.

arcbeg

An array that contain indices indicating where each of the requested arc lists start in array arc. Specifically, the
list of arcs incident to node i (< end) consists of the entries in arc in the range from arcbeg[i-begin] to
arcbeg[(i+1)-begin]-1. The list of arcs incident to node end consists of the entries in arc in the range from
arcbeg[end-begin] to *arccnt_p-1. This array must have a length of at least end-begin+1.

arc

An array that contain the arc indices for the arcs incident to the nodes in the specified range. May be NULL if
arcspace is zero.

arcspace

An integer indicating the length of the array arc. May be zero.

surplus_p

A pointer to an integer to contain the difference between arcspace and the number of arcs incident to the nodes
in the specified range. A nonnegative value indicates that arcspace was sufficient. A negative value indicates
that it was insufficient and that the routine could not complete its task. In that case,
CPXERR_NEGATIVE_SURPLUS is returned and the negative value of surplus_p indicates the amount of
insufficient space in the array arc.

begin

Index of the first node for which arcs are to be obtained.

end

Index of the last node for which arcs are to be obtained.

Returns:

253

The routine returns zero on success and nonzero if an error occurs.

254

Global function CPXgeterrorstring
CPXCCHARptr CPXgeterrorstring(CPXCENVptr env, int errcode, char * buffer_str)

Definition file: cplex.h

The routine CPXgeterrorstring returns an error message string corresponding to an error code. Error codes
are returned by CPLEX routines when an error occurs.

Note

This routine allows the CPLEX environment argument to be NULL so that errors caused by the routine
CPXopenCPLEX can be translated.

Example

 char *errstr;
 errstr = CPXgeterrorstring (env, errcode, buffer);
 if (errstr != NULL) {
 printf ("%sn", buffer);
 }
 else {
 printf ("CPLEX Error %5d: Unknown error code.n",
 errcode);
 }

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
errcode The error code to be translated.
buffer_str A character string buffer. This buffer must be at least 4096 characters to hold the error string.
Returns:

This routine returns a pointer to the argument buffer_str if the string does exist. In that case, buffer_str
contains the error message string. It returns NULL if the error code does not have a corresponding string.

255

Global function CPXgetconflictext
int CPXgetconflictext(CPXCENVptr env, CPXCLPptr lp, int * grpstat, int beg, int
end)

Definition file: cplex.h

For an infeasible problem, if the infeasibility has been analysed by CPXrefineconflictext, this routine
accesses information about the conflict computed by it. The conflict status codes of the groups numbered beg
(for begin) through end in the most recent call to CPXrefineconflictext are returned.

Group Status

The conflict status for group beg+i will be returned in grpstat[i]. Possible values for the status of a group as
returned in grpstat are the following:

CPX_CONFLICT_EXCLUDED if the group was proven to be not relevant to the conflict;•
CPX_CONFLICT_POSSIBLE_MEMBER if the group may be relevant to the conflict but has not (yet) been
proven so;

•

CPX_CONFLICT_MEMBER if the group has been proven to be relevant for the conflict.•

Example

 status = CPXgetconflictext (env, lp, grpstat, 0, ngrp-1);

See Also: CPXrefineconflictext, CPXclpwrite

Parameters:

env A pointer to the CPLEX environment as returned by the routine CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
grpstat Pointer to an array where the values denoting the conflict status of the groups are returned. This array

must have a length of at least end-beg+1.
beg The index of the first group defined at the most recent call to CPXrefineconflictext for which the

conflict status will be returned.
end The index of the last group defined at the most recent call to CPXrefineconflictext for which the

conflict status will be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

256

Global function CPXsettuningcallbackfunc
int CPXsettuningcallbackfunc(CPXENVptr env, int(CPXPUBLIC *callback)(CPXCENVptr,
void *, int, void *), void * cbhandle)

Definition file: cplex.h

The routine CPXsettuningcallbackfunc modifies the user-written callback routine to be called before each
trial run during the tuning process.

Callback description

 int callback (CPXCENVptr env,
 void *cbdata,
 int wherefrom,
 void *cbhandle);

This is the user-written callback routine.

Callback return value

A nonzero terminates the tuning.

Callback arguments

env

A pointer to the CPLEX environment that was passed into the associated tuning routine.

cbdata

A pointer passed from the tuning routine to the user-written callback function that contains information about the
tuning process. The only purpose for the cbdata pointer is to pass it to the routine CPXgetcallbackinfo.

wherefrom

An integer value specifying from which procedure the user-written callback function was called. This value will
always be CPX_CALLBACK_TUNING for this callback.

cbhandle

Pointer to user private data, as passed to CPXsettuningcallbackfunc.

Parameters

env

A pointer to the CPLEX environment as returned by CPXopenCPLEX.

myfunc

A pointer to a user-written callback function. Setting callback to NULL prevents any callback function from
being called during tuning. The call to callback occurs before each trial run of the tuning. This function is
written by the user; its prototype is documented here.

cbhandle

A pointer to user private data. This pointer is passed to the callback function.

Example

 status = CPXsettuningcallbackfunc (env, myfunc, NULL);

257

See Also: CPXgetcallbackinfo

Returns:

The routine returns zero if successful and nonzero if an error occurs.

258

Global function CPXNETgetarcname
int CPXNETgetarcname(CPXCENVptr env, CPXCNETptr net, char ** nnames, char *
namestore, int namespc, int * surplus_p, int begin, int end)

Definition file: cplex.h

The routine CPXNETgetarcname is used to access the names of a range of arcs in a network stored in a
network problem object. The beginning and end of the range, along with the length of the array in which the arc
names are to be returned, must be specified.

Example

 status = CPXNETgetarcname (env, net, nnames, namestore, namespc,
 &surplus, 0, narcs-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
nnames Where to copy pointers to arc names stored in the namestore array. The length of this array must

be at least (end-begin+1). The pointer to the name of arc i is returned in nnames[i-begin].
namestore Array of characters to which the specified arc names are to be copied. It may be NULL if namespc is

0.
namespc Length of the namestore array.
surplus_p Pointer to an integer to which the difference between namespc and the number of characters

required to store the requested names is returned. A nonnegative value indicates that namespc was
sufficient. A negative value indicates that it was insufficient. In that case,
CPXERR_NEGATIVE_SURPLUS is returned and the negative value of surplus_p indicates the
amount of insufficient space in the array namestore.

begin Index of the first arc for which a name is to be obtained.
end Index of the last arc for which a name is to be obtained.
Returns:

The routine returns zero on success and nonzero if an error occurs. The value CPXERR_NEGATIVE_SURPLUS
indicates that insufficient space was available in the namestore array to hold the names.

259

Global function CPXgetsense
int CPXgetsense(CPXCENVptr env, CPXCLPptr lp, char * sense, int begin, int end)

Definition file: cplex.h

The routine CPXgetsense accesses the sense for a range of constraints in a CPLEX problem object. The
beginning and end of the range must be specified.

Example

 status = CPXgetsense (env, lp, sense, 0, cur_numrows-1);

Values of sense

sense[i] = 'L' <= constraint

sense[i] = 'E' = constraint

sense[i] = 'G' >= constraint

sense[i] = 'R' ranged constraint

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
sense An array where the specified constraint senses are to be returned. This array must be of length at least

(end - begin + 1). The sense of constraint i is returned in sense[i - begin]. Possible values
appear in the table.

begin An integer specifying the beginning of the range of constraint senses to be returned.
end An integer specifying the end of the range of constraint senses to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

260

Global function CPXgetcols
int CPXgetcols(CPXCENVptr env, CPXCLPptr lp, int * nzcnt_p, int * cmatbeg, int *
cmatind, double * cmatval, int cmatspace, int * surplus_p, int begin, int end)

Definition file: cplex.h

The routine CPXgetcols accesses a range of columns of the constraint matrix of a CPLEX problem object. The
beginning and end of the range, along with the length of the arrays in which the nonzero entries of these columns
are to be returned, must be specified.

Note

If the value of cmatspace is zero, the negative of the value of surplus_p returned specifies the length
needed for the arrays cmatind and cmatval.

Example

 status = CPXgetcols (env, lp, &nzcnt, cmatbeg, cmatind,
 cmatval, cmatspace, &surplus, 0,
 cur_numcols-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
nzcnt_p A pointer to an integer to contain the number of nonzeros returned; that is, the true length of the

arrays cmatind and cmatval.
cmatbeg An array to contain indices specifying where each of the requested columns begins in the arrays

cmatval and cmatind. Specifically, column j consists of the entries in cmatval and cmatind in
the range from cmatbeg[j - begin] to cmatbeg[(j + 1) - begin]-1. (Column end
consists of the entries from cmatbeg[end - begin] to nzcnt_p-1.) This array must be of length
at least (end - begin + 1).

cmatind An array to contain the row indices associated with the elements of cmatval. May be NULL if
cmatspace is zero.

cmatval An array to contain the nonzero coefficients of the specified columns. May be NULL if cmatspace is
zero.

cmatspace An integer specifying the length of the arrays cmatind and cmatval. May be zero.
surplus_p A pointer to an integer to contain the difference between cmatspace and the number of entries in

each of the arrays cmatind and cmatval. A nonnegative value of surplus_p specifies that the
length of the arrays was sufficient. A negative value specifies that the length was insufficient and that
the routine could not complete its task. In this case, CPXgetcols returns the value
CPXERR_NEGATIVE_SURPLUS, and the negative value of surplus_p specifies the amount of
insufficient space in the arrays.

begin An integer specifying the beginning of the range of columns to be returned.
end An integer specifying the end of the range of columns to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs. The value CPXERR_NEGATIVE_SURPLUS
specifies that insufficient space was available in the arrays cmatind and cmatval to hold the nonzero
coefficients.

261

Global function CPXgetparamnum
int CPXgetparamnum(CPXCENVptr env, const char * name_str, int * whichparam_p)

Definition file: cplex.h

The routine CPXgetparamnum returns the reference number of a CPLEX parameter, given a character string
containing the name for it.

The CPLEX Parameters Reference Manual provides a list of parameters with their types, options, and default
values.

Example

 status = CPXgetparamnum (env, "CPX_PARAM_ADVIND", param_number);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
name_str A character array containing the name of the target parameter.
whichparam_p A pointer to an integer to receive the reference number.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

262

Global function CPXgetbasednorms
int CPXgetbasednorms(CPXCENVptr env, CPXCLPptr lp, int * cstat, int * rstat, double
* dnorm)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetbasednorms works in conjunction with the routine CPXcopybasednorms.
CPXgetbasednorms retrieves the resident basis and dual norms from a specified problem object.

Each of the arrays cstat, rstat, and dnorm must be non NULL. That is, each of these arrays must be
allocated. The allocated size of cstat is assumed by this routine to be at least the number returned by
CPXgetnumcols. The allocated size of rstat and dnorm are assumed to be at least the number returned by
CPXgetnumrows. (Other details of cstat, rstat, and dnorm are not documented.)

Success, Failure

If this routine succeeds, cstat and rstat contain information about the resident basis, and dnorm contains the
dual steepest-edge norms. If there is no basis, or if there is no set of dual steepest-edge norms, this routine
returns an error code. The returned data are intended solely for use by CPXcopybasednorms.

Example

For example, if a given LP has just been successfully solved by the Callable Library optimizer CPXdualopt with
the dual pricing option CPX_PARAM_DPRIIND set to CPX_DPRIIND_STEEP, CPX_DPRIIND_FULLSTEEP, or
CPX_DPRIIND_STEEPQSTART, then a call to CPXgetbasednorms should succeed. (That optimizer and those
pricing options are documented in the Callable Library Reference Manual, and their use is illustrated in the
CPLEX User's Manual.)

Motivation

When the Callable Library optimizer CPXdualopt is called to solve a problem with the dual pricing option
CPX_PARAM_DPRIIND set to CPX_DPRIIND_STEEP or CPX_DPRIIND_FULLSTEEP, there must be values of
appropriate dual norms available before the optimizer can begin. If these norms are not already resident, they
must be computed, and that computation may be expensive. The functions CPXgetbasednorms and
CPXcopybasednorms can, in some cases, avoid that expense. Suppose, for example, that in some application
an LP is solved by CPXdualopt with one of those pricing settings. After the solution of the LP, some
intermediate optimizations are carried out on the same LP, and those subsequent optimizations are in turn
followed by some changes to the LP, and a re-solve. In such a case, copying the basis and norms that were
resident before the intermediate solves, back into CPLEX data structures can greatly increase the speed of the
re-solve.

See Also: CPXcopybasednorms

Parameters:

env The pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to the CPLEX LP problem object, as returned by CPXcreateprob.
cstat An array containing the basis status of the columns in the constraint matrix. The length of the allocated

array is at least the value returned by CPXgetnumcols.
rstat An array containing the basis status of the rows in the constraint matrix. The length of the allocated array

is at least the value returned by CPXgetnumrows.

263

dnorm An array containing the dual steepest-edge norms. The length of the allocated array is at least the value
returned by CPXgetnumrows.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

264

Global function CPXfreepresolve
int CPXfreepresolve(CPXCENVptr env, CPXLPptr lp)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXfreepresolve frees the presolved problem from the LP problem object. Under the default
setting of CPX_PARAM_REDUCE, the presolved problem is freed when an optimal solution is found. It is not freed
when CPX_PARAM_REDUCE is set to CPX_PREREDUCE_PRIMALONLY (1) or CPX_PREREDUCE_DUALONLY (2), so
the routine CPXfreepresolve can be used to free it manually.

Example

 status = CPXfreepresolve (env, lp);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

265

Global function CPXgetindconstrinfeas
int CPXgetindconstrinfeas(CPXCENVptr env, CPXCLPptr lp, const double * x, double *
infeasout, int begin, int end)

Definition file: cplex.h

The routine CPXgetindconstrinfeas computes the infeasibility of a given solution for a range of indicator
constraints. The beginning and end of the range must be specified. For each constraint, the infeasibility value
returned is 0 (zero) if the constraint is satisfied. In particular, the infeasibility value returned is 0 (zero) if the
indicator constraint is not active in the queried solution. Otherwise, the infeasibility value returned is the amount
by which the righthand side of the linear portion of the constraint must be changed to make the queried solution
valid. It is positive for a less-than-or-equal-to constraint, negative for a greater-than-or-equal-to constraint, and
can be of any sign for an equality constraint.

Example

 status = CPXgetindconstrinfeas (env, lp, NULL, infeasout, 0, CPXgetnumindconstrs(env,lp)-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
x The solution whose infeasibility is to be computed. May be NULL in which case the resident solution is

used.
infeasout An array to receive the infeasibility value for each of the indicator constraints. This array must be of

length at least (end - begin + 1).
begin An integer specifying the beginning of the range of indicator constraints whose infeasibility is to be

returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

266

Global function CPXgetcrossdexchcnt
int CPXgetcrossdexchcnt(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetcrossdexchcnt accesses the number of dual exchange iterations in the crossover method.
An exchange occurs when a nonbasic variable is forced to enter the basis as it is pushed toward a bound.

Example

 itcnt = CPXgetcrossdexchcnt (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

The routine returns the dual exchange iteration count if a solution exists. If no solution exists, it returns zero.

267

Global function CPXaddsos
int CPXaddsos(CPXCENVptr env, CPXLPptr lp, int numsos, int numsosnz, const char *
sostype, const int * sosbeg, const int * sosind, const double * soswt, char **
sosname)

Definition file: cplex.h

The routine CPXaddsos adds information about a special ordered set (SOS) to a problem object of type
CPXPROB_MILP, CPXPROB_MIQP, or CPXPROB_MIQCP. The problem may already contain SOS information.

Table 1: Values of elements of sostype

CPX_TYPE_SOS1 '1' Type 1

CPX_TYPE_SOS2 '2' Type 2

The arrays sosbeg, sosind, and soswts follow the same conventions as similar arrays in other routines of the
Callable Library. For j < numsos-1, the indices of the set j must be stored in sosind[sosbeg[j]], ...,
sosind[sosbeg[j+1]-1] and the weights in soswt[sosbeg[j],..., soswt[sosbeg[j+1]-1]. For the
last set, j = numsos-1, the indices must be stored in sosind[sosbeg[numsos-1]],...,
sosind[numsosnz-1] and the corresponding weights in soswt[sosbeg[numsos-1]],...,
soswt[numsosnz-1]. Hence, the length of sosbeg must be at least numsos, while the lengths of sosind and
soswt must must be at least numsosnz.

Example

 status = CPXaddsos (env, lp, numsos, numsosnz, sostype,
 sosbeg, sosind, soswt, NULL);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
numsos The number of sets to be added to existing SOS sets, if any.
numsosnz The total number of members in all of the sets to be added to existing SOS sets, if any.
sostype An array containing SOS type information for the sets to be added. According to Table 1,

sostype[i] specifies the SOS type of set i. The length of this array must be at least
numsos.

sosbeg An array that with sosind and soswt defines the weights for the sets to be added.
sosind An array that with sosbeg and soswt defines the weights of the sets to be added.
soswt An array that with sosbeg and sosind defines the indices and weights for the sets to be

added. The indices of each set must be stored in sequential locations in sosind. The
weights of each set must be stored in sequential locations in soswt. The array sosbeg[j]
containing the index of the beginning of set j. The weights must be unique within each set.

sosname An array containing pointers to character strings that represent the names of the new
SOSs. May be NULL, in which case the new SOSs are assigned default names if the SOSs
already resident in the CPLEX problem object have names; otherwise, no names are
associated with the sets. If SOS names are passed to CPXaddsos but existing SOSs have
no names assigned, default names are created for them.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

268

Global function CPXaddsolnpooldivfilter
int CPXaddsolnpooldivfilter(CPXCENVptr env, CPXLPptr lp, double lower_bound, double
upper_bound, int nzcnt, const int * ind, const double * weight, const double *
refval, const char * lname_str)

Definition file: cplex.h

The routine CPXaddsolnpooldivfilter adds a new diversity filter to the solution pool.

A diversity filter drives the search for multiple solutions toward new solutions that satisfy a measure of diversity
specified in the filter.

This diversity measure applies only to binary variables.

Potential new solutions are compared to a reference set. You must specify which variables are to be compared.
You do so with the argument ind designating the indices of variables to include in the diversity measure.

A reference set is the set of values specified by the argument refval.

You may optionally specify weights (that is, coefficients to form a linear expression in terms of the variables) in
the diversity measure; if you do not specify weights, all differences between the reference set and potential new
solutions will be weighted by the value 1.0 (one). CPLEX computes the diversity measure by summing the
pair-wise weighted absolute differences from the reference values, like this:

 differences(x) = sum {weight[i] times |x[ind[i]] - refval[i]|}.

A diversity filter makes sure that the solutions satisfy the constraint:

 lower bound <= differences(x) <= upper bound

You may specify both a lower and upper bound on diversity.

In order to say, Give me solutions that are close to this one, within this specified set of variables, specify a
lower_bound of 0.0 (zero) and a finite upper_bound. CPLEX then looks for solutions that differ from the
reference values by at most the value of upper_bound, within the specified set of variables.

In order to say, Give me solutions that are different from this one, specify a finite lower_bound and an infinite
(that is, very large) upper_bound on the diversity. CPLEX then looks for solutions that differ from the reference
values by at least the value of lower_bound, within the specified set of variables.

Example

 status = CPXaddsolnpooldivfilter (env, lp, loval, hival,
 cnt, ind, val, refval, fnamestr);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
lower_bound Lower bound on the diversity measure for new solutions allowed in the pool.
upper_bound Upper bound on the diversity measure for new solutions allowed in the pool.
nzcnt Number of variables used to define the diversity measure.
ind An array of indices of variables in the diversity measure.
weight An array of weights to be used in the diversity measure. The indices and corresponding weights

must be stored in sequential locations in the arrays ind and weight from positions 0 (zero) to
num-1. Each entry, ind[i], specifies the variable index of the corresponding weight,
weight[i]. May be NULL, in which case CPLEX uses weights of 1.0 (one).

269

refval An array of reference values for the variables with indices in the array ind to compare with a
solution when CPLEX computes the diversity measure.

lname_str The name of the filter. May be NULL.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

270

Global function CPXbaropt
int CPXbaropt(CPXCENVptr env, CPXLPptr lp)

Definition file: cplex.h

The routine CPXbaropt may be used to find a solution to a linear program (LP), quadratic program (QP), or
quadratically constrained program (QCP) by means of the barrier algorithm at any time after the problem is
created by a call to CPXcreateprob. The optimization results are recorded in the CPLEX problem object.

Example

 status = CPXbaropt (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

The routine returns zero unless an error occurred during the optimization. Examples of errors include exhausting
available memory (CPXERR_NO_MEMORY) or encountering invalid data in the CPLEX problem object
(CPXERR_NO_PROBLEM). Exceeding a user-specified CPLEX limit or proving the model infeasible or unbounded
are not considered errors. Note that a zero return value does not necessarily mean that a solution exists. Use
query routines CPXsolninfo, CPXgetstat, and CPXsolution to obtain further information about the status of
the optimization.

271

Global function CPXdelsolnpoolfilters
int CPXdelsolnpoolfilters(CPXCENVptr env, CPXLPptr lp, int begin, int end)

Definition file: cplex.h

The routine CPXdelsolnpoolfilters deletes filters from the the problem object specified by the argument lp.
The range of filters to delete is specified by the argument begin, the lower index that represents the first filter to
be deleted, and the argument end, representing the last filter to be deleted. The indices of the filters following
those deleted are decreased by the number of deleted filters.

Example

 status = CPXdelsolnpoolfilters (env, lp, 10, 20);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
begin An integer that specifies the numeric index of the first filter to be deleted.
end An integer that specifies the numeric index of the last filter to be deleted.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

272

Global function CPXmipopt
int CPXmipopt(CPXCENVptr env, CPXLPptr lp)

Definition file: cplex.h

At any time after a mixed integer program has been created by a call to CPXcreateprob, the routine
CPXmipopt may be used to find a solution to that problem.

An LP solution does not exist at the end of CPXmipopt. To obtain post-solution information for the LP
subproblem associated with the integer solution, use the routine CPXchgprobtype.

Example

 status = CPXmipopt (env, lp);

See also the example mipex1.c in the standard distribution.

Examples of errors include exhausting available memory (CPXERR_NO_MEMORY) or encountering invalid data in
the CPLEX problem object (CPXERR_NO_PROBLEM).

Another possible error is the inability to solve a subproblem satisfactorily, as reported by
CPXERR_SUBPROB_SOLVE. The solution status of the subproblem optimization can be obtained with the routine
CPXgetsubstat.

Exceeding a user-specified CPLEX limit is not considered an error. Proving the problem infeasible or unbounded
is not considered an error.

Note that a zero return value does not necessarily mean that a solution exists. Use the query routines
CPXsolninfo, CPXgetstat, CPXsolution and the special mixed integer solution routines to obtain further
information about the status of the optimization.

See Also: CPXgetstat, CPXsolninfo, CPXsolution, CPXgetobjval

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.

Examples of errors include exhausting available memory (CPXERR_NO_MEMORY) or encountering invalid
data in the CPLEX problem object (CPXERR_NO_PROBLEM).

Another possible error is the inability to solve a subproblem satisfactorily, as reported by
CPXERR_SUBPROB_SOLVE. The solution status of the subproblem optimization can be obtained with the
routine CPXgetsubstat.

Exceeding a user-specified CPLEX limit is not considered an error. Proving the problem infeasible or
unbounded is not considered an error.

Note that a zero return value does not necessarily mean that a solution exists. Use the query routines
CPXsolninfo, CPXgetstat, CPXsolution and the special mixed integer solution routines to obtain
further information about the status of the optimization.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

273

Global function CPXpivotin
int CPXpivotin(CPXCENVptr env, CPXLPptr lp, const int * rlist, int rlen)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXpivotin forcibly pivots slacks that appear on a list of inequality rows into the basis. If equality
rows appear among those specified on the list, they are ignored.

Motivation

In the implementation of cutting-plane algorithms for integer programming, it is occasionally desirable to delete
some of the added constraints (that is, cutting planes) when they no longer appear to be useful. If the slack on
some such constraint (that is, row) is not in the resident basis, the deletion of that row may destroy the quality of
the basis. Pivoting the slack in before the deletion avoids that difficulty.

Dual Steepest-Edge Norms

If one of the dual steepest-edge algorithms is in use when this routine is called, the corresponding norms are
automatically updated as part of the pivot. (Primal steepest-edge norms are not automatically updated in this way
because, in general, the deletion of rows invalidates those norms.)

Parameters:

env The pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
rlist An array of length rlen, containing distinct row indices of slack variables that are not basic in the current

solution. If rlist[] contains negative entries or entries exceeding the number of rows, CPXpivotin
returns an error code. Entries of nonslack rows are ignored.

rlen An integer that specifies the number of entries in the array rlist[]. If rlen is negative or greater than the
number of rows, CPXpivotin returns an error code.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

274

Global function CPXtuneparam
int CPXtuneparam(CPXENVptr env, CPXLPptr lp, int intcnt, const int * intnum, const
int * intval, int dblcnt, const int * dblnum, const double * dblval, int strcnt,
const int * strnum, char ** strval, int * tunestat_p)

Definition file: cplex.h

The routine CPXtuneparam tunes the parameters of the environment for improved optimizer performance on the
specified problem object. Tuning is carried out by making a number of trial runs with a variety parameter settings.
Parameters and associated values which should not be changed by the tuning process (known as the fixed
parameters), can be specified as arguments.

This routine does not apply to network models, nor to quadratically constrained programming problems (QCP).

After CPXtuneparam has finished, the environment will contain the combined fixed and tuned parameter settings
which the user can query or write to a file. The problem object will not have a solution.

The parameter CPX_PARAM_TUNINGREPEAT specifies how many problem variations for CPLEX to try while
tuning. Using a number of variations can give more robust results when tuning is applied to a single problem. The
tuning evaluation measure is meaningful only when CPX_PARAM_TUNINGREPEAT is larger than one.

All callbacks, except the tuning informational callback, will be ignored. Tuning will monitor the value set by
CPXsetterminate and terminate when this value is set.

A few of the parameter settings in the environment control the tuning process. They are specified in the table;
other parameter settings in the environment are ignored.

Parameter Use

CPX_PARAM_TILIM Limits the total time spent tuning

CPX_PARAM_TUNINGTILIM Limits the time of each trial run

CPX_PARAM_TUNINGMEASURE Controls the tuning evaluation measure

CPX_PARAM_TUNINGREPEAT Sets the number of repeated problem variations

CPX_PARAM_TUNINGDISPLAY Controls the level of the tuning display

CPX_PARAM_SCRIND Controls screen output

The value tunestat is 0 (zero) when tuning has completed and nonzero when it has not yet completed. The two
nonzero statuses are CPX_TUNE_ABORT, which will be set when the terminate value passed to
CPXsetterminate is set, and CPX_TUNE_TILIM, which will be set when the time limit specified by
CPX_PARAM_TILIM is reached. Tuning will set any parameters which have been tuned so far even when tuning
has not completed for the problem as a whole.

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
intcnt An integer that specifies the number of integer parameters to be fixed during tuning. This specifies

the length of the arrays intnum and intval.
intnum An array containing the parameter numbers (unique identifiers) of the integer parameters which

remain fixed. May be NULL if intcnt is 0 (zero).
intval An array containing the values for the parameters listed in intnum. May be NULL if intcnt is 0

(zero).
dblcnt An integer that specifies the number of double parameters to be fixed during tuning. This specifies

the length of the arrays dblnum and dblval.

275

dblnum An array containing the parameter numbers (unique identifiers) of the double parameters which
remain fixed. May be NULL if dblcnt is 0 (zero).

dblval An array containing the values for the parameters listed in dblnum. May be NULL if dblcnt is 0
(zero).

strcnt An integer that specifies the number of string parameters to be fixed during tuning. This specifies the
length of the arrays strnum and strval.

strnum An array containing the parameter numbers (unique identifiers) of the integer parameters which
remain fixed. May be NULL if strcnt is 0 (zero).

strval An array containing the values for the parameters listed in strnum. May be NULL if strcnt is 0
(zero).

tunestat_p A pointer to an integer to receive the tuning status.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

276

Global function CPXgetlpcallbackfunc
int CPXgetlpcallbackfunc(CPXCENVptr env, int(CPXPUBLIC **callback_p)(CPXCENVptr,
void *, int, void *), void ** cbhandle_p)

Definition file: cplex.h

The routine CPXgetlpcallbackfunc accesses the user-written callback routine to be called after each
iteration during the optimization of a continuous problem (LP, QP, or QCP), and also periodically during the
CPLEX presolve algorithm.

Callback description

 int callback (CPXCENVptr env,
 void *cbdata,
 int wherefrom,
 void *cbhandle);

This is the user-written callback routine.

Callback return value

A nonzero terminates the optimization.

Callback arguments

env

A pointer to the CPLEX environment that was passed into the associated optimization routine.

cbdata

A pointer passed from the optimization routine to the user-written callback function that identifies the LP problem
being optimized. The only purpose for the cbdata pointer is to pass it to the routine CPXgetcallbackinfo.

wherefrom

An integer value specifying which optimization algorithm the user-written callback function was called from.
Possible values and their meaning appear in the table.

Value Symbolic Constant Meaning

1 CPX_CALLBACK_PRIMAL From primal simplex

2 CPX_CALLBACK_DUAL From dual simplex

4 CPX_CALLBACK_PRIMAL_CROSSOVER From primal crossover

5 CPX_CALLBACK_DUAL_CROSSOVER From dual crossover

6 CPX_CALLBACK_BARRIER From barrier

7 CPX_CALLBACK_PRESOLVE From presolve

8 CPX_CALLBACK_QPBARRIER From QP barrier

9 CPX_CALLBACK_QPSIMPLEX From QP simplex

cbhandle

Pointer to user private data, as passed to CPXsetlpcallbackfunc.

Parameters

277

env

A pointer to the CPLEX environment as returned by CPXopenCPLEX.

callback_p

The address of the pointer to the current user-written callback function. If no callback function has been set, the
pointer evaluates to NULL.

cbhandle_p

The address of a variable to hold the user's private pointer.

Example

 status = CPXgetlpcallbackfunc (env, mycallback, NULL);

See Also: CPXgetcallbackinfo

Returns:

The routine returns zero if successful and nonzero if an error occurs.

278

Global function CPXgetchannels
int CPXgetchannels(CPXCENVptr env, CPXCHANNELptr * cpxresults_p, CPXCHANNELptr *
cpxwarning_p, CPXCHANNELptr * cpxerror_p, CPXCHANNELptr * cpxlog_p)

Definition file: cplex.h

The routine CPXgetchannels obtains pointers to the four default channels created when CPXopenCPLEX is
called. To manipulate the messages for any of these channels, this routine must be called.

Example

 status = CPXgetchannels (env, &cpxresults, &cpxwarning,
 &cpxerror, &cpxlog);

See also lpex5.c in the CPLEX User's Manual.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
cpxresults_p A pointer to a variable of type CPXCHANNELptr to hold the address of the channel corresponding

to cpxresults. May be NULL.
cpxwarning_p A pointer to a variable of type CPXCHANNELptr to hold the address of the channel corresponding

to cpxwarning. May be NULL.
cpxerror_p A pointer to a variable of type CPXCHANNELptr to hold the address of the channel corresponding

to cpxerror. May be NULL.
cpxlog_p A pointer to a variable of type CPXCHANNELptr to hold the address of the channel corresponding

to cpxlog. May be NULL.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

279

Global function CPXgetsolnpoolfiltername
int CPXgetsolnpoolfiltername(CPXCENVptr env, CPXCLPptr lp, char * buf_str, int
bufspace, int * surplus_p, int which)

Definition file: cplex.h

Accesses the name of a filter of the solution pool.

This routine accesses the name of a filter, specified by the argument which, of the problem object specified by
the argument lp.

Note

If the value of bufspace is 0 (zero), then the negative of the value of surplus_p returned specifies the total
number of characters needed for the array buf_str.

Example

 status = CPXgetsolnpoolfiltername (env, lp,
 fnamestr,
 fnamespace,
 &surplus,
 i);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
buf_str A pointer to a buffer of size bufspace. It may be NULL if bufspace is 0 (zero).
bufspace An integer specifying the length of the array buf_str. It may be 0 (zero).
surplus_p A pointer to an integer to contain the difference between bufspace and the amount of memory

required to store the name of the filter. A nonnegative value of surplus_p specifies that the length of
the array buf_str was sufficient. A negative value specifies that the length of the array was
insufficient and that the routine could not complete its task. In this case,
CPXgetsolnpoolfiltername returns the value CPXERR_NEGATIVE_SURPLUS, and the negative
value of the variable surplus_p specifies the amount of insufficient space in the array buf_str.

which An integer specifying the index of the filter for which the name is returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs. The value CPXERR_NEGATIVE_SURPLUS
specifies that insufficient space was available in the array buf_str to hold the name of the filter.

280

Global function CPXNETgetobjsen
int CPXNETgetobjsen(CPXCENVptr env, CPXCNETptr net)

Definition file: cplex.h

The routine CPXNETgetobjsen returns the sense of the objective function (i.e., maximization or minimization) of
a network problem object.

Example

 objsen = CPXNETgetobjsen (env, net);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
Returns:

The value CPX_MAX (-1) is returned for a maximization problem; the value CPX_MIN (1) is returned for a
minimization problem. In case of an error, the value zero is returned.

281

Global function CPXgetcallbacksosinfo
int CPXgetcallbacksosinfo(CPXCENVptr env, void * cbdata, int wherefrom, int
sosindex, int member, int whichinfo, void * result_p)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetcallbacksosinfo accesses information about special ordered sets (SOSs) during MIP
optimization from within user-written callbacks. This routine may be called only when the value of its wherefrom
argument is one of these values:

CPX_CALLBACK_MIP_HEURISTIC,•
CPX_CALLBACK_MIP_BRANCH,•
CPX_CALLBACK_MIP_INCUMBENT, or•
CPX_CALLBACK_MIP_CUT.•

The information returned is for the original problem if the parameter CPX_PARAM_MIPCBREDLP is set to
CPX_OFF before the call to CPXmipopt that calls the callback. Otherwise, it is for the presolved problem.

Example

 status = CPXgetcallbacksosinfo(env, curlp, wherefrom, 6, 4,
 CPX_CALLBACK_INFO_SOS_IS_FEASIBLE,
 &isfeasible);

See also the example admipex3.c in the standard distribution.

Table 1: Information Requested for a User-Written SOS Callback

Symbolic Constant C Type Meaning

CPX_CALLBACK_INFO_SOS_NUM int number of SOSs

CPX_CALLBACK_INFO_SOS_TYPE char one of the values in Table 4

CPX_CALLBACK_INFO_SOS_SIZE int size of SOS

CPX_CALLBACK_INFO_SOS_IS_FEASIBLE int 1 if SOS is feasible 0 if SOS is not

CPX_CALLBACK_INFO_SOS_MEMBER_INDEX int variable index of member-th member of SOS

CPX_CALLBACK_INFO_SOS_MEMBER_REFVAL double reference value (weight) of this member

Table 2: SOS Types Returned when whichinfo = CPX_CALLBACK_INFO_SOS_TYPE

Symbolic Constant SOS Type

CPX_SOS1 type 1

CPX_SOS2 type 2

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.

282

cbdata The pointer passed to the user-written callback. This argument must be the value of cbdata passed
to the user-written callback.

wherefrom An integer value reporting where the user-written callback was called from. This argument must be
the value of wherefrom passed to the user-written callback.

sosindex The index of the special ordered set (SOS) for which information is requested. SOSs are indexed
from zero to (numsets - 1) where numsets is the result of calling this routine with a whichinfo
value of CPX_CALLBACK_INFO_SOS_NUM.

member The index of the member of the SOS for which information is requested.
whichinfo An integer specifying which information is requested. Table 1 summarizes the possible values. Table

2 summarizes possible values returned when the type of information requested is the SOS type (that
is, whichinfo = CPX_CALLBACK_INFO_SOS_TYPE).

result_p A generic pointer to a variable of type double, int, or char. The variable represents the value
returned by whichinfo. (The column C Type in the table shows the type of various values returned
by whichinfo.)

Returns:

The routine returns zero if successful and nonzero if an error occurs. If the return value is nonzero, the requested
value may not be available.

283

Global function CPXgetobjsen
int CPXgetobjsen(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetobjsen accesses whether the objective function sense of a CPLEX problem object is
maximization or minimization.

Example

 cur_objsen = CPXgetobjsen (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

A value of CPX_MIN=1 is returned for minimization and CPX_MAX=-1 is returned for maximization. If the
problem object or environment does not exist, a 0 is returned.

284

Global function CPXpreslvwrite
int CPXpreslvwrite(CPXCENVptr env, CPXLPptr lp, const char * filename_str, double *
objoff_p)

Definition file: cplex.h

The routine CPXpreslvwrite writes a presolved version of the problem to a file. The file is saved in binary
format, and can be read using the routine CPXreadcopyprob.

Note

Reductions done by the CPLEX presolve algorithms can cause the objective value to shift. As a result, the
optimal objective obtained from solving the presolved problem created using CPXpreslvwrite may not be
the same as the optimal objective of the original problem. The argument objoff_p can be used to reconcile
this difference.

Example

 status = CPXpreslvwrite (env, lp, "myfile.pre", &objoff);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
filename_str A character string containing the name of the file to which the presolved problem should be written.
objoff_p A pointer to a double precision variable that is used to hold the objective value difference between

the original problem and the presolved problem. That is: orginal objective value =
(*objoff_p) + presolved objective value

Returns:

The routine returns zero if successful and nonzero if an error occurs.

285

Global function CPXqpindefcertificate
int CPXqpindefcertificate(CPXCENVptr env, CPXCLPptr lp, double * x)

Definition file: cplex.h

The routine CPXqpindefcertificate computes a vector x that satisfies the inequality x'Qx < 0. Such a
vector demonstrates that the matrix Q violates the assumption of positive semi-definiteness, and can be an aid in
debugging a user's program if indefiniteness is an unexpected outcome.

Example

 status = CPXqpindefcertificate (env, lp, x);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
x An array to receive the values of the vector that is to be returned. The length of this array must be the same

as the number of quadratic variables in the problem, which can be obtained by calling CPXgetnumquad for
example.

Returns:

The routine returns zero on success and nonzero if an error occurs.

286

Global function CPXgetcrosspexchcnt
int CPXgetcrosspexchcnt(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetcrosspexchcnt accesses the number of primal exchange iterations in the crossover
method. An exchange occurs when a nonbasic variable is forced to enter the basis as it is pushed toward a
bound.

Example

 itcnt = CPXgetcrosspexchcnt (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

The routine returns the primal exchange iteration count if a solution exists. If no solution exists, it returns zero.

287

Global function CPXNETgetlb
int CPXNETgetlb(CPXCENVptr env, CPXCNETptr net, double * low, int begin, int end)

Definition file: cplex.h

The routine CPXNETgetlb is used to access the lower capacity bounds for a range of arcs of the network stored
in a network problem object.

Example

 status = CPXNETgetlb (env, net, low, 0, cur_narcs-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
low Array in which to write the lower bound on the flow for the requested arcs. If NULL is passed,

no lower bounds are retrieved. Otherwise, the size of the array must be (end-begin+1).
begin Index of the first arc for which lower bounds are to be obtained.
end Index of the last arc for which lower bounds are to be obtained.
Returns:

The routine returns zero on success and nonzero if an error occurs.

288

Global function CPXcompletelp
int CPXcompletelp(CPXCENVptr env, CPXLPptr lp)

Definition file: cplex.h

The routine CPXcompletelp is provided to allow users to handle those rare cases where modification steps
need to be closely managed; for example, when careful timings are desired for the individual steps in a user's
solution process, or more control of memory allocations for problem modifications is needed.

Example

 status = CPXcompletelp (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

289

Global function CPXuncrushpi
int CPXuncrushpi(CPXCENVptr env, CPXCLPptr lp, double * pi, const double * prepi)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXuncrushpi uncrushes a dual solution for the presolved problem to a dual solution for the
original problem. This routine is for linear programs. Use CPXqpuncrushpi for quadratic programs.

Example

 status = CPXuncrushpi (env, lp, pi, prepi);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
pi An array to receive dual solution (pi) values for the original problem as computed from the dual values of

the presolved problem object. The array must be of length at least the number of rows in the LP problem
object.

prepi An array that contains dual solution (pi) values for the presolved problem, as returned by routines such as
CPXgetpi and CPXsolution when applied to the presolved problem object. The array must be of length
at least the number of rows in the presolved problem object.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

290

Global function CPXgetsolnpoolsolnindex
int CPXgetsolnpoolsolnindex(CPXCENVptr env, CPXCLPptr lp, const char * lname_str,
int * index_p)

Definition file: cplex.h

The routine CPXgetsolnpoolsolnindex searches for the index number of the specified solution in the solution
pool of a CPLEX problem object.

Example

 status = CPXgetsolnpoolsolnindex (env, lp, "p4", &setindex);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
lname_str A solution name to search for.
index_p A pointer to an integer to hold the index number of the solution with name lname_str. If the routine

is successful, *index_p contains the index number; otherwise, *index_p is undefined.
Returns:

The routine returns zero on success and nonzero if an error occurs.

291

Global function CPXdelsetmipstarts
int CPXdelsetmipstarts(CPXCENVptr env, CPXLPptr lp, int * delstat)

Definition file: cplex.h

The routine CPXdelsetmipstarts deletes a set of MIP starts. Unlike the routine CPXdelmipstarts,
CPXdelsetmipstarts does not require the MIP starts to be in a contiguous range. After the deletion occurs,
the remaining MIP starts are indexed consecutively starting at 0, and in the same order as before the deletion.

Note

The delstat array must have at least CPXgetnummipstarts(env, lp) elements.

Example

 status = CPXdelsetmipstarts (env, lp, delstat);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
delstat An array specifying the MIP starts to be deleted. The routine CPXdelsetmipstarts

deletes each MIP start i for which delstat[i] = 1. The deletion of MIP starts results in a
renumbering of the remaining MIP starts. After termination, delstat[i] is either -1 for MIP
starts that have been deleted or the new index number that has been assigned to the
remaining MIP starts.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

292

Global function CPXgetprestat
int CPXgetprestat(CPXCENVptr env, CPXCLPptr lp, int * prestat_p, int * pcstat, int
* prstat, int * ocstat, int * orstat)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetprestat accesses presolve status information for the columns and rows of the presolved
problem in the original problem and of the original problem in the presolved problem.

Table 1: Value of prestat_p

0 lp is not presolved or there were no reductions

1 lp has a presolved problem

2 lp was reduced to an empty problem

For variable i in the original problem, values for pcstat[i] appear in Table 2.

Table 2: Values for pcstat[i]

>= 0 variable i corresponds to variable pcstat[i] in the presolved problem

CPX_PRECOL_LOW -1 variable i is fixed to its lower bound

CPX_PRECOL_UP -2 variable i is fixed to its upper bound

CPX_PRECOL_FIX -3 variable i is fixed to some other value

CPX_PRECOL_AGG -4 variable i is aggregated out

CPX_PRECOL_OTHER -5 variable i is deleted or merged for some other reason

For row i in the original problem, values for prstat[i] appear in Table 3.

Table 3: Values for prstat[i]

>= 0 row i corresponds to row prstat[i] in the original problem

CPX_PREROW_RED -1 if row i is redundant

CPX_PREROW_AGG -2 if row i is used for aggregation

CPX_PREROW_OTHER -3 if row i is deleted for some other reason

For variable i in the presolved problem, values for ocstat[i] appear in Table 4.

Table 4: Values for ocstat[i]

>= 0 variable i in the presolved problem corresponds to variable ocstat[i] in the original
problem.

-1 variable i corresponds to a linear combination of some variables in the original problem.

293

For row i in the original problem, values for orstat[i] appear in Table 5.

Table 5: Values for orstat

>= 0 if row i in the presolved problem corresponds to row orstat[i] in the original
problem

-1 if row i is created by, for example, merging two rows in the original problem.

Example

 status = CPXgetprestat (env, lp, &presolvestat,
 precstat, prerstat,
 origcstat, origrstat);

See also admipex6.c in the CPLEX User's Manual.

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to the original CPLEX LP problem object, as returned by CPXcreateprob.
prestat_p A pointer to an integer that will receive the status of the presolved problem associated with LP

problem object lp. May be NULL.
pcstat The array where the presolve status values of the columns are to be returned. The array must be of

length at least the number of columns in the original problem object. May be NULL.
prstat The array where the presolve status values of the rows are to be returned. The array must be of

length at least the number of rows in the original problem object. May be NULL.
ocstat The array where the presolve status values of the columns of the presolved problem are to be

returned. The array must be of length at least the number of columns in the presolved problem object.
May be NULL.

orstat The array where the presolve status values of the rows of the presolved problem are to be returned.
The array must be of length at least the number of rows in the presolved problem object. May be
NULL.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

294

Global function CPXreadcopymipstart
int CPXreadcopymipstart(CPXCENVptr env, CPXLPptr lp, const char * filename_str)

Definition file: cplex.h

This routine is deprecated. Use CPXreadcopymipstarts instead.

The routine CPXreadcopymipstart reads a MST file and copies the information of the first MIP start contained
in this file into a CPLEX problem object. The parameter CPX_PARAM_ADVIND must be set to 1 (one), its default
value, or 2 (two) in order for the MIP start to be used.

Example

 status = CPXreadcopymipstart(env, lp, "myprob.mst");

See Also: CPXmstwrite, CPXreadcopymipstarts

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
filename_str A string containing the name of the MST file.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

295

Global function CPXbranchcallbackbranchgeneral
int CPXbranchcallbackbranchgeneral(CPXCENVptr env, void * cbdata, int wherefrom,
double nodeest, int varcnt, const int * varind, const char * varlu, const int *
varbd, int rcnt, int nzcnt, const double * rhs, const char * sense, const int *
rmatbeg, const int * rmatind, const double * rmatval, void * userhandle, int *
seqnum_p)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXbranchcallbackbranchgeneral specifies the branches to be taken from the current node
when the branch includes variable bound changes and additional constraints. It may be called only from within a
user-written branch callback function.

Branch variables are in terms of the original problem if the parameter CPX_PARAM_MIPCBREDLP is set to
CPX_OFF before the call to CPXmipopt that calls the callback. Otherwise, branch variables are in terms of the
presolved problem.

Table 1: Values of varlu[i]

L change the lower bound

U change the upper bound

B change both upper and lower bounds

Table 2: Values of sense[i]

L less than or equal to constraint

E equal to constraint

G greater than or equal to constraint

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
cbdata A pointer passed to the user-written callback. This argument must be the value of cbdata passed to

the user-written callback.
wherefrom An integer value that reports where the user-written callback was called from. This argument must

be the value of wherefrom passed to the user-written callback.
nodeest A double that specifies the value of the node estimate for the node to be created with this branch.

The node estimate is used to select nodes from the branch-and-cut tree with certain values of the
node selection parameter CPX_PARAM_NODESEL.

varcnt An integer that specifies the number of bound changes that are specified in the arrays varind,
varlu, and varbd.

varind Together with varlu and varbd, this array defines the bound changes for the branch. The entry
varind[i] is the index for the variable.

varlu Together with varind and varbd, this array defines the bound changes for the branch. The entry
varlu[i] is one of three possible values specifying which bound to change. Those values appear
in Table 1.

296

varbd Together with varind and varlu, this array defines the bound changes for the branch. The entry
varbd[i] specifies the new value of the bound.

rcnt An integer that specifies the number of constraints for the branch.
nzcnt An integer that specifies the number of nonzero constraint coefficients for the branch. This specifies

the length of the arrays rmatind and rmatval.
rhs An array of length rcnt containing the righthand side term for each constraint for the branch.
sense An array of length rcnt containing the sense of each constraint to be added for the branch.

Possible values appear in Table 2.
rmatbeg An array that with rmatbeg and rmatind defines the constraints for the branch.
rmatind An array that with rmatbeg and rmatind defines the constraints for the branch.
rmatval An array that with rmatbeg and rmatind defines the constraints for the branch. The format is

similar to the format used to describe the constraint matrix in the routine CPXaddrows. Every row
must be stored in sequential locations in this array from position rmatbeg[i] to rmatbeg[i+1]-1
(or from rmatbeg[i] to nzcnt -1 if i=rcnt-1). Each entry, rmatind[i], specifies the column
index of the corresponding coefficient, rmatval[i]. All rows must be contiguous, and
rmatbeg[0] must be 0.

userhandle A pointer to user private data that should be associated with the node created by this branch. May
be NULL.

seqnum_p A pointer to an integer that, on return, will contain the sequence number that CPLEX has assigned
to the node created from this branch. The sequence number may be used to select this node in later
calls to the node callback.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

297

Global function CPXNETchgarcnodes
int CPXNETchgarcnodes(CPXCENVptr env, CPXNETptr net, int cnt, const int * indices,
const int * fromnode, const int * tonode)

Definition file: cplex.h

The routine CPXNETchgarcnodes changes the nodes associated with a set of arcs in the network stored in a
network problem object.

Any solution information stored in the problem object is lost.

Example

 status = CPXNETchgarcs (env, net, cnt, indices, newfrom, newto);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
cnt Number of arcs to change.
indices An array of arc indices that indicate the arcs to be changed. This array must have a length

of at least cnt. All indices must be in the range [0, narcs-1].
fromnode An array of from-node indices. The from-node for each arc listed in indices is changed

to the corresponding value from this array. All node indices must be in the range [0,
nnodes-1]. The size of the array must be at least cnt.

tonode An array of to-node indices. The to-node for each arc listed in indices is changed to the
corresponding value from this array. All node indices must be in the range [0,
nnodes-1]. The size of the array must be at least cnt.

Returns:

The routine returns zero on success and nonzero if an error occurs.

298

Global function CPXgetsiftphase1cnt
int CPXgetsiftphase1cnt(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetsiftphase1cnt accesses the number of Phase I sifting iterations to solve an LP problem.

Example

 itcnt = CPXgetsiftphase1cnt (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object as returned by CPXcreateprob.
Returns:

The routine returns the Phase I iteration count if a solution exists. It returns zero if no solution exists or any other
type of error occurs.

299

Global function CPXgetcoef
int CPXgetcoef(CPXCENVptr env, CPXCLPptr lp, int i, int j, double * coef_p)

Definition file: cplex.h

The routine CPXgetcoef accesses a single constraint matrix coefficient of a CPLEX problem object. The row
and column indices must be specified.

Example

 status = CPXgetcoef (env, lp, 10, 20, &coef);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
i An integer specifying the numeric index of the row.
j An integer specifying the numeric index of the column.
coef_p A pointer to a double to contain the specified matrix coefficient.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

300

Global function CPXgetgrad
int CPXgetgrad(CPXCENVptr env, CPXCLPptr lp, int j, int * head, double * y)

Definition file: cplex.h

The routine CPXgetgrad can be used, after an LP has been solved and a basis is available, to access
information useful for different types of post-solution analysis. CPXgetgrad provides two arrays that can be used
to project the impact of making changes to optimal variable values or objective function coefficients.

For a unit change in the value of the jth variable, the value of the ith basic variable, sometimes referred to as
the variable basic in the ith row, changes by the amount y[i]. Also, for a unit change of the objective function
coefficient of the ith basic variable, the reduced-cost of the jth variable changes by the amount y[i]. The
vector y is equal to the product of the inverse of the basis matrix and the column j of the constraint matrix. Thus,
y can be thought of as the representation of the jth column in terms of the basis.

Example

 status = CPXgetgrad (env, lp, 13, head, y);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
j An integer specifying the index of the column of interest. A negative value for j specifies a column

representing the slack or artificial variable for row -j-1
head An array to contain a listing of the indices of the basic variables in the order in which they appear in the

basis. This listing is sometimes called the basis header. The ith entry in this list is also sometimes viewed
as the variable in the ith row of the basis. If the ith basic variable is a structural variable, head[i] simply
contains the column index of that variable. If it is a slack variable, head[i] contains one less than the
negative of the row index of that slack variable. This array should be of length at least
CPXgetnumrows(env,lp). May be NULL.

y An array to contain the coefficients of the jth column relative to the current basis. See the discussion
above on how to interpret the entries in y. This array should be of length at least
CPXgetnumrows(env,lp). May be NULL.

Returns:

The routine returns zero if successful and nonzero if an error occurs. This routine fails if no basis exists.

301

Global function CPXdelsetcols
int CPXdelsetcols(CPXCENVptr env, CPXLPptr lp, int * delstat)

Definition file: cplex.h

The routine CPXdelsetcols deletes a set of columns from a CPLEX problem object. Unlike the routine
CPXdelcols, CPXdelsetcols does not require the columns to be in a contiguous range. After the deletion
occurs, the remaining columns are indexed consecutively starting at 0, and in the same order as before the
deletion.

Note

The delstat array must have at least CPXgetnumcols(env,lp) elements.

Example

 status = CPXdelsetcols (env, lp, delstat);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
delstat An array specifying the columns to be deleted. The routine CPXdelsetcols deletes each column j for

which delstat[j] = 1. The deletion of columns results in a renumbering of the remaining columns.
After termination, delstat[j] is either -1 for columns that have been deleted or the new index number
that has been assigned to the remaining columns.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

302

Global function CPXgetcallbackorder
int CPXgetcallbackorder(CPXCENVptr env, void * cbdata, int wherefrom, int *
priority, int * direction, int begin, int end)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetcallbackorder retrieves MIP priority order information during MIP optimization from within
a user-written callback. The values are from the original problem if CPX_PARAM_MIPCBREDLP is set to CPX_OFF.
Otherwise, they are from the presolved problem.

This routine may be called only when the value of the wherefrom argument is one of the following values:

CPX_CALLBACK_MIP,•
CPX_CALLBACK_MIP_BRANCH,•
CPX_CALLBACK_MIP_INCUMBENT,•
CPX_CALLBACK_MIP_NODE,•
CPX_CALLBACK_MIP_HEURISTIC,•
CPX_CALLBACK_MIP_SOLVE, or•
CPX_CALLBACK_MIP_CUT.•

Example

 status = CPXgetcallbackorder (env, cbdata, wherefrom,
 priority, NULL, 0, cols-1);

Branching direction

CPX_BRANCH_GLOBAL 0 use global branching direction setting CPX_PARAM_BRDIR

CPX_BRANCH_DOWN -1 branch down first on variable j+begin

CPX_BRANCH_UP 1 branch up first on variable j+begin

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
cbdata The pointer passed to the user-written callback. This argument must be the value of

cbdata passed to the user-written callback.
wherefrom An integer value reporting from where the user-written callback was called. The

argument must be the value of wherefrom passed to the user-written callback.
priority An array where the priority values are to be returned. This array must be of length at

least (end - begin + 1). If successful, priority[0] through
priority[end-begin] contain the priority order values. May be NULL.

direction An array where the preferred branch directions are to be returned. This array must be of
length at least (end - begin + 1). The value of direction[j] will be a value from the
table of branching directions. May be NULL.

begin An integer specifying the beginning of the range of priority order information to be
returned.

end An integer specifying the end of the range of priority order information to be returned.
Returns:

303

The routine returns zero if successful and nonzero if an error occurs.

304

Global function CPXgetsolnpoolnumsolns
int CPXgetsolnpoolnumsolns(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

Returns the number of solutions in the pool.

The routine CPXgetsolnpoolnumsolns accesses the number of solutions in the solution pool in the problem
object.

Example

 numsolns = CPXgetsolnpoolnumsolns (env, lp);

See also the example populate.c in the in the standard distribution.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

If the CPLEX problem object or environment does not exist, CPXgetsolnpoolnumsolns returns the value 0
(zero); otherwise, it returns the number of solutions.

305

Global function CPXdelchannel
void CPXdelchannel(CPXENVptr env, CPXCHANNELptr * channel_p)

Definition file: cplex.h

The routine CPXdelchannel flushes all message destinations for a channel, clears the message destination list,
and frees the memory allocated to the channel. On completion, the pointer to the channel is set to NULL.

Example

 CPXdelchannel (env, &mychannel);

See also lpex5.c in the CPLEX User's Manual.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
channel_p A pointer to the pointer to the channel containing the message destinations to be flushed, cleared,

and destroyed.
Returns:

This routine does not have a return value.

306

Global function CPXfputs
int CPXfputs(const char * s_str, CPXFILEptr stream)

Definition file: cplex.h

The routine CPXfputs can be used to write output to a file opened with CPXfopen. The purpose of this routine
is to allow user-defined output in a file to be interspersed with the output created by using the routines
CPXaddfpdest or CPXsetlogfile. The syntax of CPXfputs is the same as the standard C library function
fputs.

Example

 CPXfputs ("Solved first problem.n", fp);

Parameters:

s_str A pointer to a string to be output to the file.
stream A pointer to a file opened by the routine CPXfopen.
Returns:

This routine returns a nonnegative value if successful. Otherwise, it returns the system constant EOF (end of
file).

307

Global function CPXgetlb
int CPXgetlb(CPXCENVptr env, CPXCLPptr lp, double * lb, int begin, int end)

Definition file: cplex.h

The routine CPXgetlb accesses a range of lower bounds on the variables of a CPLEX problem object. The
beginning and end of the range must be specified.

Unbounded Variables

If a variable lacks a lower bound, then CPXgetlb returns a value less than or equal to -CPX_INFBOUND.

Example

 status = CPXgetlb (env, lp, lb, 0, cur_numcols-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
lb An array where the specified lower bounds on the variables are to be returned. This array must be of

length at least (end - begin + 1). The lower bound of variable j is returned in lb[j - begin].
begin An integer specifying the beginning of the range of lower bounds to be returned.
end An integer specifying the end of the range of lower bounds to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

308

Global function CPXgetsolnpoolmeanobjval
int CPXgetsolnpoolmeanobjval(CPXCENVptr env, CPXCLPptr lp, double * meanobjval_p)

Definition file: cplex.h

The routine CPXgetsolnpoolmeanobjval accesses the the mean objective value for solutions in the pool.

Example

 status = CPXgetsolnpoolmeanobjval (env, lp, &meanobjval);

See also the example populate.c in the CPLEX User's Manual and in the standard distribution.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

The routine returns zero if successful and nonzero if the solution pool does not exist.

309

Global function CPXpivot
int CPXpivot(CPXCENVptr env, CPXLPptr lp, int jenter, int jleave, int leavestat)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXpivot performs a basis change where variable jenter replaces variable jleave in the basis.

Use the constant CPX_NO_VARIABLE for jenter or for jleave if you want CPLEX to determine one of the two
variables involved in the basis change.

It is invalid to pass a basic variable for jenter. Also, no nonbasic variable may be specified for jleave, except
for jenter == jleave when the variable has both finite upper and lower bounds. In that case, the variable is
moved from the current to the other bound. No shifting or perturbation is performed.

Example

 status = CPXpivot (env, lp, jenter, jleave, CPX_AT_LOWER);

Parameters:

env A pointer to the CPLEX environment, as returned by the CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
jenter An index specifying the variable to enter the basis. The slack or artificial variable for row i is denoted

by jenter = -i-1. The argument jenter must either identify a nonbasic variable or take the value
CPX_NO_VARIABLE. When jenter is set to CPX_NO_VARIABLE, CPLEX will use the leaving variable
jleave to perform a dual simplex method ratio test that determines the entering variable.

jleave An index specifying the variable to leave the basis. The slack or artificial variable for row i is denoted
by jleave = -i-1. The argument jleave typically identifies a basic variable. However, if jenter
denotes a variable with finite upper and lower bounds, jleave may be set to jenter to specify that
the variable moves from its current bound to the other. The argument jleave may also be set to
CPX_NO_VARIABLE. In that case, CPLEX will use the incoming variable jenter to perform a primal
simplex method ratio test that determines the leaving variable.

leavestat An integer specifying the nonbasic status to be assigned to the leaving variable after the basis change.
This is important for the case where jleave specifies a variable with finite upper and lower bounds,
as it may become nonbasic at its lower or upper bound.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

310

Global function CPXchgcolname
int CPXchgcolname(CPXCENVptr env, CPXLPptr lp, int cnt, const int * indices, char
** newname)

Definition file: cplex.h

The routine CPXchgcolname changes the names of variables in a CPLEX problem object. If this routine is
performed on a problem object with no variable names, default names are created before the change is made.

See Also: CPXdelnames

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
cnt An integer that specifies the total number of variable names to be changed. Thus cnt

specifies the length of the arrays indices and newname.
indices An array of length cnt containing the numeric indices of the variables for which the names

are to be changed.
newname An array of length cnt containing the strings of the new variable names for the columns

specified in indices.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

311

Global function CPXinfostrparam
int CPXinfostrparam(CPXCENVptr env, int whichparam, char * defvalue_str)

Definition file: cplex.h

The routine CPXinfostrparam obtains the default value of a CPLEX string parameter

Example

 status = CPXinfostrparam (env, CPX_PARAM_WORKDIR, defdirname);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
whichparam The symbolic constant (or reference number) of the parameter for which the default

value is to be obtained.
defvalue_str A pointer to a buffer of length at least CPX_STR_PARAM_MAX to hold the default value

of the CPLEX parameter.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

312

Global function CPXgetitcnt
int CPXgetitcnt(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetitcnt accesses the total number of simplex iterations to solve an LP problem, or the
number of crossover iterations in the case that the barrier optimizer is used.

Example

 itcnt = CPXgetitcnt (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

If a solution exists, CPXgetitcnt returns the total iteration count. If no solution exists, CPXgetitcnt returns the
value 0.

See lpex6.c in the CPLEX User's Manual.

313

Global function CPXgetbaritcnt
int CPXgetbaritcnt(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetbaritcnt accesses the total number of Barrier iterations to solve an LP problem.

Example

 itcnt = CPXgetbaritcnt (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

The routine returns the total iteration count if a solution exists. It returns zero if no solution exists or any other
type of error occurs.

314

Global function CPXgetcutoff
int CPXgetcutoff(CPXCENVptr env, CPXCLPptr lp, double * cutoff_p)

Definition file: cplex.h

The routine CPXgetcutoff accesses the MIP cutoff value being used during mixed integer optimization. The
cutoff is updated with the objective function value, each time an integer solution is found during branch and
cut.

Example

 status = CPXgetcutoff (env, lp, &cutoff);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
cutoff_p A pointer to a location where the value of the cutoff is returned.

Example

 status = CPXgetcutoff (env, lp, &cutoff);

Returns:

The routine returns zero if successful and nonzero if an error occurs.

315

Global function CPXNETchgobjsen
int CPXNETchgobjsen(CPXCENVptr env, CPXNETptr net, int maxormin)

Definition file: cplex.h

The routine CPXNETchgobjsen is used to change the sense of the network problem to a minimization or
maximization problem.

Any solution information stored in the problem object is lost.

Changed optimization sense in a network problem

CPX_MAX For a maximization problem.

CPX_MIN For a minimization problem.

Example

 status = CPXNETchgobjsen (env, net, CPX_MAX);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
maxormin New optimization sense for the network problem. The possible values are in the table.
Returns:

The routine returns zero on success and nonzero if an error occurs.

316

Global function CPXgetsolnpoolfilterindex
int CPXgetsolnpoolfilterindex(CPXCENVptr env, CPXCLPptr lp, const char * lname_str,
int * index_p)

Definition file: cplex.h

The routine CPXgetsolnpoolfilterindex searches for the index number of the specified filter of a CPLEX
problem object.

Example

 status = CPXgetsolnpoolfilterindex (env, lp, "p4", &setindex);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
lname_str A filter name to search for.
index_p A pointer to an integer to hold the index number of the filter with name lname_str. If the routine is

successful, *index_p contains the index number; otherwise, *index_p is undefined.
Returns:

The routine returns zero on success and nonzero if an error occurs.

317

Global function CPXdelfpdest
int CPXdelfpdest(CPXCENVptr env, CPXCHANNELptr channel, CPXFILEptr fileptr)

Definition file: cplex.h

The routine CPXdelfpdest removes a file from the list of message destinations for a channel. Failure occurs
when the channel does not exist or the file pointer is not in the message destination list.

Example

 CPXdelfpdest (env, mychannel, fileptr);

See lpex5.c in the CPLEX User's Manual.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
channel The pointer to the channel for which destinations are to be deleted.
fileptr A CPXFILEptr for the file to be removed from the destination list.
Returns:

The routines return zero if successful and nonzero if an error occurs.

318

Global function CPXgetorder
int CPXgetorder(CPXCENVptr env, CPXCLPptr lp, int * cnt_p, int * indices, int *
priority, int * direction, int ordspace, int * surplus_p)

Definition file: cplex.h

The routine CPXgetorder accesses all the MIP priority order information stored in a CPLEX problem object. A
priority order is generated if there is no order and parameter CPX_PARAM_MIPORDTYPE is nonzero.

Note

If the value of ordspace is 0, then the negative of the value of *surplus_p returned specifies the length
needed for the arrays indices, priority, and direction.

Example

 status = CPXgetorder (env, lp, &listsize, indices, priority,
 direction, numcols, &surplus);

Possible settings for direction

CPX_BRANCH_GLOBAL (0) use global branching direction setting CPX_PARAM_BRDIR

CPX_BRANCH_DOWN (1) branch down first on variable indices[k]

CPX_BRANCH_UP (2) branch up first on variable indices[k]

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
cnt_p A pointer to an integer to contain the number of order entries returned; i.e., the true length of the

arrays indices, priority, and direction.
indices An array where the indices of the variables in the order are to be returned. indices[k] is the index

of the variable which is entry k in the order information.
priority An array where the priority values are to be returned. The priority corresponding to the indices[k]

is returned in priority[k]. May be NULL. If priority is not NULL, it must be of length at least
ordspace.

direction An array where the preferred branching directions are to be returned. The direction corresponding to
indices[k] is returned in direction[k]. May be NULL. If direction is not NULL, it must be of
length at least ordspace. Possible settings for direction[k] appear in the table.

ordspace An integer specifying the length of the non-NULL arrays indices, priority, and direction. May
be 0.

surplus_p A pointer to an integer to contain the difference between ordspace and the number of entries in
each of the arrays indices, priority, and direction. A nonnegative value of *surplus_p
reports that the length of the arrays was sufficient. A negative value reports that the length was
insufficient and that the routine could not complete its task. In this case, the routine CPXgetorder
returns the value CPXERR_NEGATIVE_SURPLUS, and the negative value of *surplus_p specifies
the amount of insufficient space in the arrays.

Returns:

The routine returns zero if successful and nonzero if an error occurs. The value CPXERR_NEGATIVE_SURPLUS
reports that insufficient space was available in the indices, priority, and direction arrays to hold the priority order
information.

319

Global function CPXchgqpcoef
int CPXchgqpcoef(CPXCENVptr env, CPXLPptr lp, int i, int j, double newvalue)

Definition file: cplex.h

The routine CPXchgqpcoef changes the coefficient in the quadratic objective of a quadratic problem (QP)
corresponding to the variable pair (i,j) to the value newvalue. If i is not equal to j, both Q(i,j) and
Q(j,i) are changed to newvalue.

Example

 status = CPXchgqpcoef (env, lp, 10, 12, 82.5);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
i An integer that indicates the first variable number (row number in Q).
j An integer that indicates the second variable number (column number in Q).
newvalue The new coefficient value.
Returns:

The routine returns zero on success and nonzero if an error occurs.

320

Global function CPXreadcopysol
int CPXreadcopysol(CPXCENVptr env, CPXLPptr lp, const char * filename_str)

Definition file: cplex.h

The routine CPXreadcopysol reads a solution from a SOL format file, and copies that basis or solution into a
CPLEX problem object. The solution is used to initiate a crossover from a barrier solution, to restart the simplex
method with an advanced basis, or to specify variable values for a MIP start. The file may contain basis status
values, primal values, dual values, or a combination of those values.

The parameter CPX_PARAM_ADVIND must be set to 1 (one), its default value, or 2 (two) in order for the start to
be used for starting a subsequent optimization.

The SOL format is an XML format and is documented in the stylesheet solution.xsl and schema
solution.xsd in the include directory of the CPLEX distribution. CPLEX File Formats Reference Manual
also documents this format briefly.

Example

 status = CPXreadcopysol (env, lp, "myprob.sol");

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
filename_str The name of the file from which the solution information should be read.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

321

Global function CPXNETdelnodes
int CPXNETdelnodes(CPXCENVptr env, CPXNETptr net, int begin, int end)

Definition file: cplex.h

The routine CPXNETdelnodes is used to remove a range of nodes from the network stored in a network problem
object. The remaining nodes are renumbered starting at zero; their order is preserved. All arcs incident to the
nodes that are deleted are also deleted from the network.

Any solution information stored in the problem object is lost.

Example

 status = CPXNETdelnodes (env, net, 10, 20);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
begin Index of the first node to be deleted.
end Index of the last node to be deleted.
Returns:

The routine returns zero on success and nonzero if an error occurs.

322

Global function CPXcutcallbackadd
int CPXcutcallbackadd(CPXCENVptr env, void * cbdata, int wherefrom, int nzcnt,
double rhs, int sense, const int * cutind, const double * cutval, int purgeable)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXcutcallbackadd adds cuts and lazy constraints to the current node LP subproblem during MIP
branch and cut. This routine may be called only from within user-written cut callbacks; thus it may be called only
when the value of its wherefrom argument is CPX_CALLBACK_MIP_CUT.

The cut may be for the original problem if the parameter CPX_PARAM_MIPCBREDLP was set to CPX_OFF before
the call to CPXmipopt that calls the callback. In this case, the parameter CPX_PARAM_PRELINEAR should also
be set to CPX_OFF (zero). Otherwise, the cut is used on the presolved problem.

Example

 status = CPXcutcallbackadd (env,
 cbdata,
 wherefrom,
 mynzcnt,
 myrhs,
 'L',
 mycutind,
 mycutval,
 0);

See also the example admipex5.c in the standard distribution.

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
cbdata The pointer passed to the user-written callback. This argument must be the value of cbdata passed

to the user-written callback.
wherefrom An integer value that reports where the user-written callback was called from. This argument must be

the value of wherefrom passed to the user-written callback.
nzcnt An integer value that specifies the number of coefficients in the cut, or equivalently, the length of the

arrays cutind and cutval.
rhs A double value that specifies the value of the righthand side of the cut.
sense An integer value that specifies the sense of the cut.
cutind An array containing the column indices of cut coefficients.
cutval An array containing the values of cut coefficients.
purgeable A Boolean value specifying whether CPLEX is allowed to purge the cut if CPLEX deems the cut

ineffective.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

323

Global function CPXgetdnorms
int CPXgetdnorms(CPXCENVptr env, CPXCLPptr lp, double * norm, int * head, int *
len_p)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetdnorms accesses the norms from the dual steepest edge. As in CPXcopydnorms, the
argument head is an array of column or row indices corresponding to the array of norms. Column indices are
indexed with nonnegative values. Row indices are indexed with negative values offset by 1 (one). For example, if
head[0] = -5, norm[0] is associated with row 4.

See Also: CPXcopydnorms

Parameters:

env The pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to the CPLEX LP problem object, as returned by CPXcreateprob.
norm An array containing the dual steepest-edge norms in the ordered specified by head[]. The array must be

of length at least equal to the number of rows in the LP problem object.
head An array containing column or row indices. The allocated length of the array must be at least equal to the

number of rows in the LP problem object.
len_p A pointer to an integer that specifies the number of entries in both norm[] and head[]. The value

assigned to the pointer *len_p is needed by the routine CPXcopydnorms.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

324

Global function CPXbinvcol
int CPXbinvcol(CPXCENVptr env, CPXCLPptr lp, int j, double * x)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXbinvcol computes the j-th column of the basis inverse.

Parameters:

env The pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
j An integer that specifies the index of the column of the basis inverse to be computed.
x An array containing the j-th column of Binv (the inverse of the matrix B). The array must be of length at

least equal to the number of rows in the problem.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

325

Global function CPXgetcallbackgloballb
int CPXgetcallbackgloballb(CPXCENVptr env, void * cbdata, int wherefrom, double *
lb, int begin, int end)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetcallbackgloballb retrieves the best known global lower bound values during MIP
optimization from within a user-written callback. The global lower bounds are tightened after a new incumbent is
found, so the values returned by CPXgetcallbacknodex may violate these bounds at nodes where new
incumbents have been found. The values are from the original problem if CPX_PARAM_MIPCBREDLP is set to
CPX_OFF; otherwise, they are from the presolved problem.

This routine may be called only when the value of the wherefrom argument is one of the following:

CPX_CALLBACK_MIP,•
CPX_CALLBACK_MIP_BRANCH,•
CPX_CALLBACK_MIP_INCUMBENT,•
CPX_CALLBACK_MIP_NODE,•
CPX_CALLBACK_MIP_HEURISTIC,•
CPX_CALLBACK_MIP_SOLVE, or•
CPX_CALLBACK_MIP_CUT.•

Example

 status = CPXgetcallbackgloballb (env, cbdata, wherefrom,
 glb, 0, cols-1);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
cbdata The pointer passed to the user-written callback. This argument must be the value of

cbdata passed to the user-written callback.
wherefrom An integer value reporting from where the user-written callback was called. The argument

must be the value of wherefrom passed to the user-written callback.
lb An array to receive the values of the global lower bound values. This array must be of

length at least (end - begin + 1). If successful, lb[0] through lb[end-begin]
contain the global lower bound values.

begin An integer specifying the beginning of the range of lower bound values to be returned.
end An integer specifying the end of the range of lower bound values to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

326

Global function CPXgetqconstrindex
int CPXgetqconstrindex(CPXCENVptr env, CPXCLPptr lp, const char * lname_str, int *
index_p)

Definition file: cplex.h

The routine CPXgetqconstrindex searches for the index number of the specified quadratic constraint in a
CPLEX problem object.

Example

 status = CPXgetqconstrindex (env, lp, "resource89", &qconstrindex);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
lname_str A quadratic constraint name to search for.
index_p A pointer to an integer to hold the index number of the quadratic constraint with name lname_str. If

the routine is successful, *index_p contains the index number; otherwise, *index_p is undefined.
Returns:

The routine returns zero on success and nonzero if an error occurs.

327

Global function CPXNETgetprobname
int CPXNETgetprobname(CPXCENVptr env, CPXCNETptr net, char * buf_str, int bufspace,
int * surplus_p)

Definition file: cplex.h

The routine CPXNETgetprobname is used to access the name of the problem stored in a network problem
object.

Example

 status = CPXNETgetprobname (env, net, name, namesize, &surplus);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
buf_str Buffer into which the problem name is copied.
bufspace Size of the array buf_str in bytes.
surplus_p Pointer to an integer in which the difference between bufspace and the number of characters

required to store the problem name is returned. A nonnegative value indicates that bufspace was
sufficient. A negative value indicates that it was insufficient. In that case,
CPXERR_NEGATIVE_SURPLUS is returned and the negative value of surplus_p indicates the
amount of insufficient space in the array buf.

Returns:

The routine returns zero on success and nonzero if an error occurs. The value CPXERR_NEGATIVE_SURPLUS
indicates that there was not enough space in the buf array to hold the name.

328

Global function CPXdelrows
int CPXdelrows(CPXCENVptr env, CPXLPptr lp, int begin, int end)

Definition file: cplex.h

The routine CPXdelrows deletes a range of rows. The range is specified using a lower and upper index that
represent the first and last row to be deleted, respectively. The indices of the rows following those deleted are
decreased by the number of deleted rows.

Example

 status = CPXdelrows (env, lp, 10, 20);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
begin An integer that specifies the numeric index of the first row to be deleted.
end An integer that specifies the numeric index of the last row to be deleted.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

329

Global function CPXgetnumqconstrs
int CPXgetnumqconstrs(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetnumqconstrs is used to access the number of quadratic constraints in a CPLEX problem
object.

Example

 cur_numqconstrs = CPXgetnumqconstrs (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

If the problem object or environment does not exist, CPXgetnumqconstrs returns the value 0 (zero); otherwise,
it returns the number of quadratic constraints.

330

Global function CPXgetijdiv
int CPXgetijdiv(CPXCENVptr env, CPXCLPptr lp, int * idiv_p, int * jdiv_p)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetijdiv returns the index of the diverging row (that is, constraint) or column (that is, variable)
when one of the CPLEX simplex optimizers terminates due to a diverging vector. This function can be called after
an unbounded solution status for a primal simplex call or after an infeasible solution status for a dual simplex call.

If one of the CPLEX simplex optimizers has concluded that the LP problem object is unbounded, and if the
diverging variable is a slack or ranged variable, CPXgetijdiv returns the index of the corresponding row in
*idiv_p. Otherwise, *idiv_p is set to -1.

If one of the CPLEX simplex optimizers has concluded that the LP problem object is unbounded, and if the
diverging variable is a normal, structural variable, CPXgetijdiv sets *jdiv_p to the index of that variable.
Otherwise, *jdiv_p is set to -1.

Parameters:

env The pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to the CPLEX LP problem object, as returned by CPXcreateprob.
idiv_p A pointer to an integer indexing the row of a diverging variable.

If one of the CPLEX simplex optimizers has concluded that the LP problem object is unbounded, and if
the diverging variable is a slack or ranged variable, CPXgetijdiv returns the index of the corresponding
row in *idiv_p. Otherwise, *idiv_p is set to -1.

jdiv_p A pointer to an integer indexing the column of a diverging variable.

If one of the CPLEX simplex optimizers has concluded that the LP problem object is unbounded, and if
the diverging variable is a normal, structural variable, CPXgetijdiv sets *jdiv_p to the index of that
variable. Otherwise, *jdiv_p is set to -1.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

331

Global function CPXcopynettolp
int CPXcopynettolp(CPXCENVptr env, CPXLPptr lp, CPXCNETptr net)

Definition file: cplex.h

The routine CPXcopynettolp copies a network problem stored in a network problem object to a CPLEX
problem object (as an LP). Any problem data previously stored in the CPLEX problem object is overridden.

Example

 status = CPXcopynettolp (env, lp, net);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
net A pointer to a CPLEX network problem object containing the network problem to be copied.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

332

Global function CPXgetindconstrname
int CPXgetindconstrname(CPXCENVptr env, CPXCLPptr lp, char * buf_str, int bufspace,
int * surplus_p, int which)

Definition file: cplex.h

The routine CPXgetindconstrname accesses the name of a specified indicator constraint of a CPLEX problem
object.

Note

If the value of bufspace is 0, then the negative of the value of *surplus_p returned specifies the total
number of characters needed for the array buf_str.

Example

 status = CPXgetindconstrname (env, lp, indname, lenindname,
 &surplus, 5);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
buf_str A pointer to a buffer of size bufspace. May be NULL if bufspace is 0.
bufspace An integer specifying the length of the array buf_str. May be 0.
surplus_p A pointer to an integer to contain the difference between bufspace and the amount of memory

required to store the indicator constraint name. A nonnegative value of *surplus_p reports that the
length of the array buf_str was sufficient. A negative value reports that the length of the array was
insufficient and that the routine could not complete its task. In this case, CPXgetindconstrname
returns the value CPXERR_NEGATIVE_SURPLUS, and the negative value of the variable *surplus_p
specifies the amount of insufficient space in the array buf_str.

which An integer specifying the index of the indicator constraint for which the name is to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs. The value CPXERR_NEGATIVE_SURPLUS
reports that insufficient space was available in the buf_str array to hold the indicator constraint name.

333

Global function CPXgetcallbacklp
int CPXgetcallbacklp(CPXCENVptr env, void * cbdata, int wherefrom, CPXCLPptr *
lp_p)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetcallbacklp retrieves the pointer to the MIP problem that is in use when the user-written
callback function is called. It is the original MIP if CPX_PARAM_MIPCBREDLP is set to CPX_OFF; otherwise, it is
the presolved MIP. To obtain information about the node LP associated with this MIP, use the following routines:

CPXgetcallbacknodeintfeas•
CPXgetcallbacknodelb•
CPXgetcallbacknodeub•
CPXgetcallbacknodex•
CPXgetcallbackgloballb•
CPXgetcallbackglobalub•

Each of those routines will return node information associated with the original MIP if CPX_PARAM_MIPCBREDLP
is turned off (that is, set to CPX_OFF); otherwise, they return information associated with the presolved MIP.

In contrast, the function CPXgetcallbacknodelp returns a pointer to the node subproblem, which is an LP.
Note that the setting of CPX_PARAM_MIPCBREDLP does not affect this lp pointer. Since CPLEX does not
explicitly maintain an unpresolved node LP, the lp pointer will correspond to the presolved node LP unless
CPLEX presolve has been turned off or CPLEX has made no presolve reductions at all. Generally, this pointer
may be used only in CPLEX Callable Library query routines, such as CPXsolution or CPXgetrows.

The routine CPXgetcallbacklp may be called only when the value of the wherefrom argument is one of the
following:

CPX_CALLBACK_MIP,•
CPX_CALLBACK_MIP_BRANCH,•
CPX_CALLBACK_MIP_INCUMBENT,•
CPX_CALLBACK_MIP_NODE,•
CPX_CALLBACK_MIP_HEURISTIC,•
CPX_CALLBACK_MIP_SOLVE, or•
CPX_CALLBACK_MIP_CUT.•

Example

 status = CPXgetcallbacklp (env, cbdata, wherefrom, &origlp);

See also admipex1.c, admipex2.c, and admipex3.c in the standard distribution.

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
cbdata The pointer passed to the user-written callback. This argument must be the value of

cbdata passed to the user-written callback.
wherefrom An integer value reporting from where the user-written callback was called. The argument

must be the value of wherefrom passed to the user-written callback.
lp_p A pointer to a variable of type CPXLPptr to receive the pointer to the LP problem object,

which is a MIP.

334

Returns:

The routine returns zero if successful and nonzero if an error occurs.

335

Global function CPXNETbasewrite
int CPXNETbasewrite(CPXCENVptr env, CPXCNETptr net, const char * filename_str)

Definition file: cplex.h

The routine CPXNETbasewrite writes the current basis stored in a network problem object to a file in BAS
format. If no arc or node names are available for the problem object, default names are used.

Example

 status = CPXNETbasewrite (env, net, "netbasis.bas");

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
filename_str Name of the basis file to write.
Returns:

The routine returns zero on success and nonzero if an error occurs.

336

Global function CPXgetsolnpoolobjval
int CPXgetsolnpoolobjval(CPXCENVptr env, CPXCLPptr lp, int soln, double * objval_p)

Definition file: cplex.h

The routine CPXgetsolnpoolobjval accesses the objective value for a solution in the solution pool.

Example

 status = CPXgetsolnpoolobjval (env, lp, 0, &objval);

See also the example populate.c in the CPLEX User's Manual and in the standard distribution.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
soln An integer specifying the index of the solution pool member for which to return the objective value. A

value of -1 specifies that the incumbent should be used instead of a solution pool member.
objval_p A pointer to a variable of type double where the objective value is stored.
Returns:

The routine returns zero if successful and nonzero if the specified solution does not exist.

337

Global function CPXopenCPLEX
CPXENVptr CPXopenCPLEX(int * status_p)

Definition file: cplex.h

The routine CPXopenCPLEX initializes a CPLEX environment when accessing a license for CPLEX and works
only if the computer is licensed for Callable Library use. The routine CPXopenCPLEX must be the first CPLEX
routine called. The routine returns a pointer to a CPLEX environment. This pointer is used as an argument to
every other nonadvanced CPLEX routine (except CPXmsg).

Example

 env = CPXopenCPLEX (&status);

See lpex1.c in the CPLEX User's Manual.

Parameters:

status_p A pointer to an integer, where an error code is placed by this routine.
Returns:

A pointer to the CPLEX environment. If an error occurs (including licensing problems), the value NULL is
returned. The reason for the error is returned in the variable *status_p. If the routine is successful, then
*status_p is 0 (zero).

338

Global function CPXsetbranchnosolncallbackfunc
int CPXsetbranchnosolncallbackfunc(CPXENVptr env, int(CPXPUBLIC
*branchnosolncallback)(CALLBACK_BRANCH_ARGS), void * cbhandle)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXsetbranchnosolncallbackfunc sets the callback function that will be called instead of the
branch callback when there is a failure due to such situations as an iteration limit being reached, unboundedness
being detected, numeric difficulties being encountered, while the node LP is being solved. In consequence of the
failure, whether the node is feasible or infeasible cannot be known and thus CPLEX routines such as
CPXsolution may fail. In this situation, CPLEX will attempt to fix some variables and continue.

These conditions are rare (except when the user has set a very low iteration limit), so it is acceptable to let
CPLEX follow its default action in these cases.

339

Global function CPXaddmipstarts
int CPXaddmipstarts(CPXCENVptr env, CPXLPptr lp, int mcnt, int nzcnt, const int *
beg, const int * varindices, const double * values, const int * effortlevel, char
** mipstartname)

Definition file: cplex.h

The routine CPXaddmipstarts adds multiple MIP starts to a CPLEX problem object of type CPXPROB_MILP,
CPXPROB_MIQP, or CPXPROB_MIQCP. It does not replace the existing MIP starts.

MIP start values may be specified for any subset of the integer or continuous variables in the problem. When
optimization begins or resumes, CPLEX processes each MIP start to attempt to find a feasible MIP solution that
is compatible with the set of values specified in the MIP start. The processing of each MIP start depends on the
corresponding effort level:

Level 0 (zero) CPX_MIPSTART_AUTO: Automatic, CPLEX decides.•
Level 1 (one) CPX_MIPSTART_CHECKFEAS: CPLEX checks the feasibility of the MIP start.•
Level 2 CPX_MIPSTART_SOLVEFIXED: CPLEX solves the fixed problem specified by the MIP start.•
Level 3 CPX_MIPSTART_SOLVEMIP: CPLEX solves a subMIP.•
Level 4 CPX_MIPSTART_REPAIR: CPLEX attempts to repair the MIP start if it is infeasible, according
to the parameter that sets the frequency to try to repair infeasible MIP start,
CPX_PARAM_REPAIRTRIES.

•

By default, CPLEX expends effort at level CPX_MIPSTART_REPAIR (4) for the first MIP start and at level
CPX_MIPSTART_CHECKFEAS (1, one) for all other MIP starts. The user may change that level of effort. A user
may specify a different level of effort for each MIP start, for example, differing levels of effort for a MIP start
derived from the incumbent, for a MIP start derived from a solution in the solution pool, for a MIP start supplied
by the user.

When a partial MIP start is provided and the effort level is at level CPX_MIPSTART_SOLVEMIP or higher,
CPLEX tries to extend it to a complete solution by solving a MIP over the variables whose values are not
specified in the MIP start. The parameter CPX_PARAM_SUBMIPNODELIM controls the amount of effort CPLEX
expends in trying to solve this secondary MIP. If CPLEX is able to find a complete feasible solution, that solution
becomes the incumbent. If the specified MIP start values are infeasible and the effort level is
CPX_MIPSTART_REPAIR, these values are retained for use in a subsequent repair heuristic. See the
description of the parameter CPX_PARAM_REPAIRTRIES for more information about this repair heuristic.

Use the routine CPXchgmipstarts to modify or extend existing MIP starts.

Example

 status = CPXaddmipstarts (env, lp, mcnt, nzcnt, beg, varindices,
 values, effortlevel, mipstartname);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
mcnt An integer giving the number of MIP starts to be added. This specifies the length of

the arrays beg, effortlevel and mipstartname.
nzcnt An integer giving the number of variable values to be added. This specifies the

length of the arrays varindices and values.
beg An array of length mcnt used with varindices and values. beg[0] must be 0

(zero). The elements specific to each MIP start i must be stored in sequential
locations in arrays varindices and values from position beg[i] to beg[i+1]-1
(or from beg[i] to nzcnt -1 if i=mcnt-1).

varindices An array of length nzcnt containing the numeric indices of the columns
corresponding to the variables which are assigned starting values.

values

340

An array of length nzcnt containing the values to use for the MIP starts. The entry
values[j] is the value assigned to the variable indices[j]. An entry
values[j] greater than or equal to CPX_INFBOUND specifies that no value is set
for the variable indices[j].

effortlevel An array of length mcnt. The value effortlevel[i] specifies specifies the level of
effort CPLEX should exert to solve the i-th MIP start. Can be NULL, in which case,
CPLEX assigns an effort level of CPX_MIPSTART_AUTO to each MIP start.

mipstartname An array of length mcnt which specifies the names of the MIP starts. Can be NULL.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

341

Global function CPXsetcutcallbackfunc
int CPXsetcutcallbackfunc(CPXENVptr env, int(CPXPUBLIC
*cutcallback)(CALLBACK_CUT_ARGS), void * cbhandle)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXsetcutcallbackfunc sets and modifies the user-written callback for adding cuts. The
user-written callback is called by CPLEX during MIP branch and cut for every node that has an LP optimal
solution with objective value below the cutoff and is integer infeasible. CPLEX also calls the callback when
comparing an integer feasible solution, including one provided by a MIP start before any nodes exist, against lazy
constraints.

The callback routine adds globally valid cuts to the LP subproblem. The cut may be for the original problem if the
parameter CPX_PARAM_MIPCBREDLP was set to CPX_OFF before the call to CPXmipopt that calls the callback.
Otherwise, the cut is for the presolved problem.

Within the user-written cut callback, the routine CPXgetcallbacknodelp and other query routines from the
Callable Library access information about the subproblem. The routines CPXgetcallbacknodeintfeas and
CPXgetcallbacksosinfo examine the status of integer entities.

The routine CPXcutcallbackadd adds cuts and lazy constraints to the current node LP subproblem during MIP
branch and cut. Cuts added to the problem are first put into a cut pool, so they are not present in the subproblem
LP until after the user-written cut callback is finished.

Any cuts that are duplicates of cuts already in the subproblem are not added to the subproblem. Cuts that are
added remain part of all subsequent subproblems; there is no cut deletion. However, CPLEX will purge global
cuts that would not ordinarily be removed by backtracking if those global cuts have been designated purgeable
by the routine CPXaddusercuts and if CPLEX deems it useful to do so. See the routine CPXaddusercuts for
more detail about this distinction between local and global cuts with respect to purging.

If cuts have been added, the subproblem is re-solved and evaluated, and, if the LP solution is still integer
infeasible and not cut off, the cut callback is called again.

If the problem has names, user-added cuts have names of the form unumber where number is a sequence
number among all cuts generated.

The parameter CPX_PARAM_REDUCE must be set to CPX_PREREDUCE_PRIMALONLY (1) or
CPX_PREREDUCE_NOPRIMALORDUAL (0) if the constraints to be added in the callback are lazy constraints, that
is, not implied by the constraints in the constraint matrix. The parameter CPX_PARAM_PRELINEAR must be set to
0 if the constraints to be added are in terms of the original problem and the constraints are valid cutting planes.

Example

 status = CPXsetcutcallbackfunc(env, mycutfunc, mydata);

See also the example admipex5.c in the standard distribution.

Parameters

env

A pointer to the CPLEX environment, as returned by CPXopenCPLEX.

342

cutcallback

The pointer to the current user-written cut callback. If no callback has been set, the pointer evaluates to NULL.

cbhandle

A pointer to user private data. This pointer is passed to the user-written cut callback.

Callback description

 int callback (CPXCENVptr env,
 void *cbdata,
 int wherefrom,
 void *cbhandle,
 int *useraction_p);

CPLEX calls the cut callback when the LP subproblem for a node has an optimal solution with objective value
below the cutoff and is integer infeasible.

Callback return value

The callback returns zero if successful and nonzero if an error occurs.

Callback arguments

env

A pointer to the CPLEX environment, as returned by CPXopenCPLEX.

cbdata

A pointer passed from the optimization routine to the user-written callback that identifies the problem being
optimized. The only purpose of this pointer is to pass it to the callback information routines.

wherefrom

An integer value reporting where in the optimization this function was called. It has the value
CPX_CALLBACK_MIP_CUT.

cbhandle

A pointer to user private data.

useraction_p

A pointer to an integer specifying the action for CPLEX to take at the completion of the user callback. The table
summarizes possible actions.

Actions to be Taken After a User-Written Cut Callback

Value Symbolic Constant Action

0 CPX_CALLBACK_DEFAULT Use cuts as added

1 CPX_CALLBACK_FAIL Exit optimization

2 CPX_CALLBACK_SET Use cuts as added

Returns:

The routine returns zero if successful and nonzero if an error occurs.

343

Global function CPXsetstrparam
int CPXsetstrparam(CPXENVptr env, int whichparam, const char * newvalue_str)

Definition file: cplex.h

The routine CPXsetstrparam sets the value of a CPLEX string parameter.

Example

 status = CPXsetstrparam (env, CPX_PARAM_WORKDIR, "mydir");

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
whichparam The symbolic constant (or reference number) of the parameter to change.
newvalue_str The new value of the parameter. The maximum length of newvalue_str, including the NULL

terminator (the character '0' or char(0)), is CPX_STR_PARAM_MAX, defined in cplex.h.
Setting newvalue_str to a string longer than this results in an error.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

344

Global function CPXsetintparam
int CPXsetintparam(CPXENVptr env, int whichparam, int newvalue)

Definition file: cplex.h

The routine CPXsetintparam sets the value of a CPLEX parameter of type int.

The CPLEX Parameters Reference Manual provides a list of parameters with their types, options, and default
values.

Example

 status = CPXsetintparam (env, CPX_PARAM_SCRIND, CPX_ON);

See also lpex1.c in the CPLEX User's Manual.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
whichparam The symbolic constant or reference number of the parameter to change.
newvalue The new value of the parameter.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

345

Global function CPXchgctype
int CPXchgctype(CPXCENVptr env, CPXLPptr lp, int cnt, const int * indices, const
char * xctype)

Definition file: cplex.h

The routine CPXchgctype changes the types of a set of variables of a CPLEX problem object. Several types
can be changed at once, with each type specified by the index of the variable with which it is associated.

Note

If a variable is to be changed to binary, a call to CPXchgbds should also be made to change the bounds to 0
and 1.

Table 1: Values of elements of ctype

CPX_CONTINUOUS C make column indices[j] continuous

CPX_BINARY B make column indices[j] binary

CPX_INTEGER I make column indices[j] general integer

CPX_SEMICONT S make column indices[j] semi-continuous

CPX_SEMIINT N make column indices[j] semi-integer

Example

 status = CPXchgctype (env, lp, cnt, indices, ctype);

Parameters:

env A pointer to the CPLEX environment as returned by the CPXopenCPLEX routine.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
cnt An integer that states the total number of types to be changed, and thus specifies the length of the

arrays indices and ctype.
indices An array containing the numeric indices of the columns corresponding to the variables the types of which

are to be changed.
xctype An array containing characters that represent the new types for the columns specified in indices.

Possible values for ctype[j] appear in Table 1.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

346

Global function CPXgetsosinfeas
int CPXgetsosinfeas(CPXCENVptr env, CPXCLPptr lp, const double * x, double *
infeasout, int begin, int end)

Definition file: cplex.h

The routine CPXgetsosinfeas computes the infeasibility of a given solution for a range of special ordered sets
(SOSs). The beginning and end of the range must be specified. This routine checks whether the SOS type 1 or
SOS type 2 condition is satisfied but it does not check for integer feasibility in the case of integer variables. For
each SOS, the infeasibility value returned is 0 (zero) if the SOS condition is satisfied and nonzero otherwise.

Example

 status = CPXgetsosinfeas (env, lp, NULL, infeasout, 0, CPXgetnumsos(env,lp)-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
x The solution whose infeasibility is to be computed. May be NULL, in which case the resident solution

is used.
infeasout An array to receive the infeasibility value for each of the special ordered sets. This array must be of

length at least (end - begin + 1).
begin An integer specifying the beginning of the range of special ordered sets whose infeasibility is to be

returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

347

Global function CPXNETcreateprob
CPXNETptr CPXNETcreateprob(CPXENVptr env, int * status_p, const char * name_str)

Definition file: cplex.h

The routine CPXNETcreateprob constructs a new network problem object. The new object contains a
minimization problem for a network with 0 (zero) nodes and 0 (zero) arcs. Other network problem data can be
copied to a network with one of the routines CPXNETaddnodes, CPXNETaddarcs, CPXNETcopynet,
CPXNETextract, or CPXNETreadcopyprob.

Example

 CPXNETptr net = CPXNETcreateprob (env, &status, "mynet");

See Also: CPXNETaddnodes, CPXNETaddarcs, CPXNETcopynet, CPXNETextract, CPXNETreadcopyprob

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
status_p A pointer to an integer used to return any error code produced by this routine.
name_str Name of the network to be created.
Returns:

If the operation is successful, CPXNETcreateprob returns the newly constructed network problem object; if not,
it returns either NULL or a nonzero value to indicate an error. In case of an error, the value pointed to by
status_p contains an integer indicating the cause of the error.

348

Global function CPXgetcallbacknodex
int CPXgetcallbacknodex(CPXCENVptr env, void * cbdata, int wherefrom, double * x,
int begin, int end)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetcallbacknodex retrieves the primal variable (x) values for the subproblem at the current
node during MIP optimization from within a user-written callback. The values are from the original problem if the
parameter CPX_PARAM_MIPCBREDLP is set to CPX_OFF; otherwise, they are from the presolved problem.

This routine may be called only when the value of the wherefrom argument is one of the following:

CPX_CALLBACK_MIP,•
CPX_CALLBACK_MIP_BRANCH,•
CPX_CALLBACK_MIP_INCUMBENT,•
CPX_CALLBACK_MIP_NODE,•
CPX_CALLBACK_MIP_HEURISTIC, or•
CPX_CALLBACK_MIP_CUT.•

Example

 status = CPXgetcallbacknodex (env, cbdata, wherefrom,
 nodex, 0, cols-1);

See also admipex1.c, admipex3.c, and admipex5.c in the standard distribution.

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
cbdata The pointer passed to the user-written callback. This argument must be the value of

cbdata passed to the user-written callback.
wherefrom An integer value reporting from where the user-written callback was called. The argument

must be the value of wherefrom passed to the user-written callback.
x An array to receive the values of the primal variables for the node subproblem. This array

must be of length at least (end - begin + 1). If successful, x[0] through
x[end-begin] contain the primal values.

begin An integer specifying the beginning of the range of primal variable values for the node
subproblem to be returned.

end An integer specifying the end of the range of primal variable values for the node
subproblem to be returned.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

349

Global function CPXsetmipcallbackfunc
int CPXsetmipcallbackfunc(CPXENVptr env, int(CPXPUBLIC *callback)(CPXCENVptr, void
*, int, void *), void * cbhandle)

Definition file: cplex.h

The routine CPXsetmipcallbackfunc sets the user-written callback routine to be called prior to solving each
subproblem in the branch-and-cut tree, including the root node, during the optimization of a mixed integer
program and during some cut generation routines.

This routine works in the same way as the routine CPXsetlpcallbackfunc. It enables the user to create a
separate callback function to be called during the solution of mixed integer programming problems (MIPs).

The prototype for the callback function is identical to that of CPXsetlpcallbackfunc.

Example

 status = CPXsetmipcallbackfunc (env, mycallback, NULL);

Parameters

env

A pointer to the CPLEX environment, as returned by one of the CPXopenCPLEX routines.

callback

A pointer to a user-written callback function. Setting callback to NULL will prevent any callback function from
being called during optimization. The call to callback will occur after every node during optimization and during
certain cut generation routines. This function must be written by the user. Its prototype is explained in the
Callback description.

cbhandle

A pointer to user private data. This pointer will be passed to the callback function.

Callback description

 int callback (CPXCENVptr env,
 void *cbdata,
 int wherefrom,
 void *cbhandle);

This is the user-written callback routine.

Callback return value

A nonzero terminates the optimization.

Callback arguments

env

A pointer to the CPLEX environment that was passed into the associated optimization routine.

cbdata

A pointer passed from the optimization routine to the user-written callback function that identifies the problem
being optimized. The only purpose for the cbdata pointer is to pass it to the routine CPXgetcallbackinfo.

350

wherefrom

An integer value reporting from which optimization algorithm the user-written callback function was called.
Possible values and their meaning appear in the table.

Value Symbolic Constant Meaning

101 CPX_CALLBACK_MIP From mipopt

107 CPX_CALLBACK_MIP_PROBE From probing or clique merging

108 CPX_CALLBACK_MIP_FRACCUT From Gomory fractional cuts

109 CPX_CALLBACK_MIP_DISJCUT From disjunctive cuts

110 CPX_CALLBACK_MIP_FLOWMIR From Mixed Integer Rounding cuts

cbhandle

A pointer to user private data as passed to CPXsetmipcallbackfunc.

See Also: CPXgetcallbackinfo, CPXsetlpcallbackfunc, CPXsetnetcallbackfunc

Returns:

The routine returns zero if successful and nonzero if an error occurs.

351

Global function CPXNETreadcopyprob
int CPXNETreadcopyprob(CPXCENVptr env, CPXNETptr net, const char * filename_str)

Definition file: cplex.h

The routine CPXNETreadcopyprob reads a network, in the CPLEX .net or DIMACS .min format, from a file
and copies it to a network problem object. Any existing network or solution data in the problem object is replaced.

Example

 status = CPXNETreadcopyprob (env, net, "network.net");

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
filename_str Name of the network file to read.
Returns:

The routine returns zero on success and nonzero if an error occurs.

352

Global function CPXnewrows
int CPXnewrows(CPXCENVptr env, CPXLPptr lp, int rcnt, const double * rhs, const
char * sense, const double * rngval, char ** rowname)

Definition file: cplex.h

The routine CPXnewrows adds empty constraints to a specified CPLEX problem object. This routine may be
called any time after a call to CPXcreateprob.

For each row, the user can specify the sense, righthand side value, range value and name of the constraint. The
added rows are indexed to put them at the end of the problem. Thus, if rcnt rows are added to a problem object
already having k rows, the new rows have indices k, k+1, ... k+rcnt-1. The constraint coefficients in the new
rows are zero; the constraint coefficients can be changed with calls to CPXchgcoef, CPXchgcoeflist or
CPXaddcols.

Table 1: Settings for elements of the array sense

sense[i] = 'L' <= constraint

sense[i] = 'E' = constraint

sense[i] = 'G' >= constraint

sense[i] = 'R' ranged constraint

Example

 status = CPXnewrows (env, lp, rcnt, rhs, sense, NULL, newrowname);

See also the example lpex1.c in the CPLEX User's Manual and in the standard distribution.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
rcnt An integer that specifies the number of new rows to be added to the problem object.
rhs An array of length rcnt containing the righthand side term for each constraint to be added to the

problem object. May be NULL, in which case the righthand side terms are set to 0.0 for the new
constraints.

sense An array of length rcnt containing the sense of each constraint to be added to the problem object.
This array may be NULL, in which case the sense of each constraint is set to 'E' The values of the
elements of this array appear in Table 1.

rngval An array of length rcnt containing the range values for the new constraints. If a new constraint has
sense[i]='R', the value of constraint i can be between rhs[i] and rhsi[i]+rngval[i]. May
be NULL, in which case the range values are all set to zero.

rowname An array of length rcnt containing pointers to character strings that represent the names of the new
rows, or equivalently, the constraint names. May be NULL, in which case the new rows are assigned
default names if the rows already resident in the problem object have names; otherwise, no names are
associated with the constraints. If row names are passed to CPXnewrows but existing constraints
have no names assigned, default names are created for the existing constraints.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

353

Global function CPXgetobjoffset
int CPXgetobjoffset(CPXCENVptr env, CPXCLPptr lp, double * objoffset_p)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetobjoffset returns the objective offset between the original problem and the presolved
problem.

Parameters:

env The pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a reduced CPLEX LP problem object, as returned by CPXgetredlp.
objoffset_p A pointer to a variable of type double to hold the objective offset value.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

354

Global function CPXflushchannel
void CPXflushchannel(CPXCENVptr env, CPXCHANNELptr channel)

Definition file: cplex.h

The routine CPXflushchannel flushes (outputs and clears the buffers of) all message destinations for a
channel. Use this routine in cases when it is important to have output written to disk immediately after it is
generated. For most applications this routine need not be used.

Example

 CPXflushchannel (env, mychannel);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
channel A pointer to the channel containing the message destinations to be flushed.
Returns:

This routine does not return a value.

355

Global function CPXfeasoptext
int CPXfeasoptext(CPXCENVptr env, CPXLPptr lp, int grpcnt, int concnt, const double
* grppref, const int * grpbeg, const int * grpind, const char * grptype)

Definition file: cplex.h

The routine CPXfeasoptext extends CPXfeasopt in several ways. Unlike CPXfeasopt, CPXfeasoptext
enables the user to relax quadratic constraints and indicator constraints. In addition, it allows the user to treat a
group of constraints as a single constraint for the purposes of determining the penalty for relaxation.

Thus, according to the various INF relaxation penalty metrics (see CPXfeasopt for a list of the available
metrics), all constraints in a group can be relaxed for a penalty of one unit. Similarly, according to the various
QUAD metrics, the penalty of relaxing a group grows as the square of the sum of the individual member
relaxations, rather than as the sum of the squares of the individual relaxations.

If you use INF mode, the resulting feasopt problems will be MIPs even if your problem is continuous. Similarly, if
you use QUAD mode, the feasopt problems will become quadratic even if your original problem is linear. This
difference can result in greater than expected solve times.

The routine also computes a relaxed solution vector that can be queried with CPXsolution,
CPXgetcolinfeas for columns, CPXgetrowinfeas for rows, CPXgetqconstrinfeas for quadratic
constraints, CPXgetindconstrinfeas for indicator constraints, or CPXgetsosinfeas for special ordered
sets.

The arguments to this routine define the set of groups, Each group contains a list of member constraints, and
each member has a type (lower bound, upper bound, linear constraint, quadratic constraint, or indicator
constraint). The group members and member types are entered by means of a data structure similar to the
sparse matrix data structure used throughout CPLEX. (See CPXcopylp for one example.) The argument
grpbeg gives the starting location of each group in grpind and grptype. The list of members for group i can
be found in grpind[grpbeg[i]] through grpind[grpbeg[i+1]-1], for i less than grpcnt-1 and
grpind[grpbeg[i]] through grpind[concnt-1] for i = grpcnt-1. The corresponding constraint types
for these members can be found in grptype[grpbeg[i]] through grptype[grpbeg[i+1]-1], for i less
than concnt-1 and grptype[grpbeg[grpcnt-1]] through grptype[concnt-1] for i = grpcnt-1. A
constraint can appear in at most one group. A constraint that appears in no group will not be relaxed.

Table 1: Possible values for elements of grptype

CPX_CON_LOWER_BOUND = 1 variable lower bound

CPX_CON_UPPER_BOUND = 2 variable upper bound

CPX_CON_LINEAR = 3 linear constraint

CPX_CON_QUADRATIC = 4 quadratic constraint

CPX_CON_INDICATOR = 6 indicator constraint

The parameters CPX_PARAM_CUTUP, CPX_PARAM_CUTLO, CPX_PARAM_OBJULIM, CPX_PARAM_OBJLLIM do
not influence this routine. If you want to study infeasibilities introduced by those parameters, consider adding an
objective function constraint to your model to enforce their effect before you invoke this routine.

Parameters:

env A pointer to the CPLEX environment as returned by the routine CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
grpcnt The number of constraint groups to be considered.
concnt An integer specifying the total number of indices passed in the array grpind, or, equivalently, the end

of the last group in grpind.
grppref An array of preferences for the groups. The value grppref[i] specifies the preference for the group

356

designated by the index i. A negative or zero value specifies that the corresponding group should not
be relaxed.

grpbeg An array of integers specifying where the constraint indices for each group begin in the array grpind.
Its length must be at least grpcnt.

grpind An array of integers containing the constraint indices for the constraints as they appear in groups.
Group i contains the constraints with the indices grpind[grpbeg[i]], ...,
grpind[grpbeg[i+1]-1] for i less than grpcnt-1 and grpind[grpbeg[i]], ...,
grpind[concnt-1] for i == grpcnt-1. Its length must be at least concnt, and a constraint must
not be referenced more than once in this array. If a constraint does not appear in this array, the
constraint will not be relaxed.

grptype An array of characters containing the constraint types for the constraints as they appear in groups. The
types of the constraints in group i are specified in grptype[grpbeg[i]], ...,
grptype[grpbeg[i+1]-1] for i less than grpcnt-1 and grptype[grpbeg[i]], ...,
grptype[concnt-1] for i == grpcnt-1. Its length must be at least concnt, and every constraint
must appear at most once in this array. Possible values appear in Table 1.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

357

Global function CPXgetnumbin
int CPXgetnumbin(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetnumbin accesses the number of binary variables in a CPLEX problem object.

Example

 numbin = CPXgetnumbin (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.

Example

 numbin = CPXgetnumbin (env, lp);

Returns:

If the problem object or environment does not exist, CPXgetnumbin returns zero. Otherwise, it returns the
number of binary variables in the problem object.

358

Global function CPXhybbaropt
int CPXhybbaropt(CPXCENVptr env, CPXLPptr lp, int method)

Definition file: cplex.h

The routine CPXhybbaropt may be used, at any time after a linear program has been created via a call to
CPXcreateprob, to find a solution to that problem. When this function is called, the specified problem is solved
using CPLEX Barrier followed by an automatic crossover to a basic solution if barrier determines that the problem
is both primal and dual feasible. Otherwise, crossover is not performed. In this case, a call to CPXprimopt or
CPXdualopt can force a crossover to occur. The results of the optimization are recorded in the problem object.

Methods of CPXhybbaropt

method = 0 use CPX_PARAM_BARCROSSALG to choose a crossover method

method = CPX_ALG_PRIMAL primal crossover

method = CPX_ALG_DUAL dual crossover

method = CPX_ALG_NONE no crossover

Example

 status = CPXhybbaropt (env, lp, CPX_ALG_PRIMAL);

See also the example lpex2.c in the standard distribution.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
method Crossover method to be implemented, according to the table.
Returns:

The routine returns zero unless an error occurred during the optimization. Examples of errors include exhausting
available memory (CPXERR_NO_MEMORY) or encountering invalid data in the CPLEX problem object
(CPXERR_NO_PROBLEM). Exceeding a user-specified CPLEX limit, or proving the model infeasible or
unbounded, are not considered errors. Note that a zero return value does not necessarily mean that a solution
exists. Use query routines CPXsolninfo, CPXgetstat, and CPXsolution to obtain further information about the
status of the optimization.

359

Global function CPXdisconnectchannel
void CPXdisconnectchannel(CPXCENVptr env, CPXCHANNELptr channel)

Definition file: cplex.h

The routine CPXdisconnectchannel flushes all message destinations associated with a channel and clears
the corresponding message destination list.

Example

 CPXdisconnectchannel (env, mychannel);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
channel A pointer to the channel containing the message destinations to be flushed and

cleared.
Returns:

This routine does not have a return value.

360

Global function CPXNETprimopt
int CPXNETprimopt(CPXCENVptr env, CPXNETptr net)

Definition file: cplex.h

The routine CPXNETprimopt can be called after a network problem has been copied to a network problem
object, to find a solution to that problem using the primal network simplex method. When this function is called,
the CPLEX primal network algorithm attempts to optimize the problem. The results of the optimization are
recorded in the problem object and can be retrieved by calling the appropriate solution functions for that object.

Example

 status = CPXNETprimopt (env, net);

See also the examples netex1.c and netex2.c in the standard distribution of the product.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
Returns:

The routine returns zero unless an error occurred during the optimization. Examples of errors include exhausting
available memory (CPXERR_NO_MEMORY) or encountering invalid data in the CPLEX problem object
(CPXERR_NO_PROBLEM). Exceeding a user-specified CPLEX limit, or proving the model infeasible or
unbounded, are not considered errors. Note that a zero return value does not necessarily mean that a solution
exists. Use query routines CPXNETsolninfo, CPXNETgetstat, and CPXNETsolution to obtain further
information about the status of the optimization.

361

Global function CPXcopybasednorms
int CPXcopybasednorms(CPXCENVptr env, CPXLPptr lp, const int * cstat, const int *
rstat, const double * dnorm)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXcopybasednorms works in conjunction with the routine CPXgetbasednorms.
CPXcopybasednorms copies the values in the arrays cstat, rstat, and dnorm, as returned by
CPXgetbasednorms, into a specified problem object.

Each of the arrays cstat, rstat, and dnorm must be non NULL. Only data returned by CPXgetbasednorms
should be copied by CPXcopybasednorms. (Other details of cstat, rstat, and dnorm are not documented.)

Note

The routine CPXcopybasednorms should be called only if the return values of CPXgetnumrows and
CPXgetnumcols have not changed since the companion call to CPXgetbasednorms. If either of these values
has increased since that companion call, a memory violation may occur. If one of those values has decreased,
the call will be safe, but its meaning will be undefined.

See Also: CPXgetbasednorms

Parameters:

env The pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to the CPLEX LP problem object, as returned by CPXcreateprob.
cstat An array containing the basis status of the columns in the constraint matrix returned by a call to

CPXgetbasednorms. The length of the allocated array must be at least the value returned by
CPXgetnumcols.

rstat An array containing the basis status of the rows in the constraint matrix returned by a call to
CPXgetbasednorms. The length of the allocated array must be at least the value returned by
CPXgetnumrows.

dnorm An array containing the dual steepest-edge norms returned by a call to CPXgetbasednorms. The length
of the allocated array must be at least the value returned by CPXgetnumrows.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

362

Global function CPXsetdefaults
int CPXsetdefaults(CPXENVptr env)

Definition file: cplex.h

The routine CPXsetdefaults resets all CPLEX parameters and settings to default values (with the exception of
the log file).

Note

This routine also resets the CPLEX callback functions to NULL.

The CPLEX Parameters Reference Manual provides a list of parameters with their types, options, and default
values.

Example

 status = CPXsetdefaults (env);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

363

Global function CPXNETchgname
int CPXNETchgname(CPXCENVptr env, CPXNETptr net, int key, int vindex, const char *
name_str)

Definition file: cplex.h

The routine CPXNETchgname changes the name of a node or an arc in the network stored in a network problem
object.

Values of key in CPXNETchgname

key == 'a' Indicates the arc name is to be changed.

key == 'n' Indicates the node name is to be changed.

Example

 status = CPXNETchgname (env, net, 'a', 10, "arc10");

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
key A character to indicate whether an arc name should be changed, or a node name should be changed.
vindex The index of the arc or node whose name is to be changed.
name_str The new name for the arc or node.
Returns:

The routine returns zero on success and nonzero if an error occurs.

364

Global function CPXNETaddarcs
int CPXNETaddarcs(CPXCENVptr env, CPXNETptr net, int narcs, const int * fromnode,
const int * tonode, const double * low, const double * up, const double * obj, char
** anames)

Definition file: cplex.h

The routine CPXNETaddarcs adds new arcs to the network stored in a network problem object.

Example

 status = CPXNETaddarcs (env, net, narcs, fromnode, tonode, NULL,
 NULL, obj, NULL);

See Also: CPXNETgetnumnodes

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
narcs Number of arcs to be added.
fromnode Array of indices of the from-node for the arcs to be added. All the indices must be greater

than or equal to 0. If a node index is greater than or equal to the number of nodes
currently in the network (see CPXNETgetnumnodes) new nodes are created implicitly with
default supply values 0. The size of the fromnode array must be at least narcs.

tonode Array of indices of the to-node for the arcs to be added. All the indices must be greater
than or equal to 0. If a node index is greater than or equal to the number of nodes
currently in the network (see CPXNETgetnumnodes) new nodes are created implicitly with
default supply values 0. The size of the tonode array must be at least narcs.

low Pointer to an array of lower bounds on the flow through added arcs. If NULL is passed, all
lower bounds default to 0 (zero). Otherwise, the size of the array must be at least narcs.
Values less than or equal to -CPX_INFBOUND are considered as negative infinity.

up Pointer to an array of upper bounds on the flow of added arcs. If NULL is passed, all
upper bounds default to CPX_INFBOUND. Otherwise, the size of the array must be at least
narcs. Values greater than or equal to CPX_INFBOUND are considered as infinity.

obj Pointer to an array of objective values for the added arcs. If NULL is passed, all objective
values default to 0. Otherwise, the size of the array must be at least narcs.

anames Pointer to an array of names for added arcs. If NULL is passed and the existing arcs have
names, default names are assigned to the added arcs. If NULL is passed and the existing
arcs have no names, the new arcs are assigned no names. Otherwise, the size of the
array must be at least narcs and every name in the array must be a string terminating in
0. If the existing arcs have no names and anames is not NULL, default names are
assigned to the existing arcs.

Returns:

The routine returns zero on success and nonzero if an error occurs.

365

Global function CPXhybnetopt
int CPXhybnetopt(CPXCENVptr env, CPXLPptr lp, int method)

Definition file: cplex.h

The routine CPXhybnetopt, given a linear program that has been created via a call to CPXcreateprob,
extracts an embedded network, uses the CPLEX Network Optimizer to attempt to obtain an optimal basis to the
network, and optimizes the entire linear program using one of the CPLEX simplex methods. CPLEX takes the
network basis as input for the optimization of the whole linear program.

method = CPX_ALG_PRIMAL primal Simplex

method = CPX_ALG_DUAL dual Simplex

Example

 status = CPXhybnetopt (env, lp, CPX_ALG_DUAL);

See also the example lpex3.c in the CPLEX User's Manual and in the standard distribution.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
method The type of simplex method to follow the network optimization.
Returns:

The routine returns zero unless an error occurred during the optimization. Examples of errors include exhausting
available memory (CPXERR_NO_MEMORY) or encountering invalid data in the CPLEX problem object
(CPXERR_NO_PROBLEM).

Exceeding a user-specified CPLEX limit is not considered an error. Proving the problem infeasible or unbounded
is not considered an error.

A zero return value does not necessarily mean that a solution exists. Use query routines CPXsolninfo,
CPXgetstat, and CPXsolution to obtain further information about the status of the optimization.

366

Global function CPXrefinemipstartconflict
int CPXrefinemipstartconflict(CPXCENVptr env, CPXLPptr lp, int mipstartindex, int *
confnumrows_p, int * confnumcols_p)

Definition file: cplex.h

The routine CPXrefinemipstartconflict refines a conflict in order to determine why a given MIP start is not
feasible. In other words, this routine identifies a minimal conflict for the infeasibility of the linear constraints and
bounds in a MIP start.

In order to analyze the infeasibility of a MIP start containing quadratic constraints, indicator constraints, or special
ordered sets, as well as linear contraints and bounds, use the routine CPXrefinemipstartconflictext.

The given MIP start need not be complete; that is, it is not necessary to specify all the variables.

When this routine returns, the value in confnumrows_p specifies the number of constraints participating in the
conflict, and the value in confnumcols_p specifies the number of variables participating in the conflict.

Use the routine CPXgetconflict to determine which constraints and variables participate in the conflict. Use
the routine CPXclpwrite to write the conflict to a file.

This conflict is a submodel of the original model with the property that CPLEX cannot generate a solution from
the chosen MIP start using the given level of effort and that removal of any constraint or bound in the conflict
invalidates that property.

The parameters CPX_PARAM_CUTUP, CPX_PARAM_CUTLO, CPX_PARAM_OBJULIM, CPX_PARAM_OBJLLIM do
not influence this routine. If you want to study infeasibilities introduced by those parameters, consider adding an
objective function constraint to your model to enforce their effect before you invoke this routine.

When the MIP start was added to the current model, an effort level may have been associated with it to specify to
CPLEX how much effort to expend in transforming the MIP start into a feasible solution. This routine respects
effort levels except level 1 (one): check feasibility. It does not check feasibility.

Parameters:

env A pointer to the CPLEX environment as returned by the routine CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
mipstartindex The index of the MIP start among all the MIP starts associated with the problem.
confnumrows_p A pointer to an integer where the number of linear constraints in the conflict is returned.
confnumcols_p A pointer to an integer where the number of variable bounds in the conflict is returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

367

Global function CPXgetqconstrname
int CPXgetqconstrname(CPXCENVptr env, CPXCLPptr lp, char * buf_str, int bufspace,
int * surplus_p, int which)

Definition file: cplex.h

The routine CPXgetqconstrname is used to access the name of a specified quadratic constraint of a CPLEX
problem object.

Note

If the value of bufspace is 0, then the negative of the value of *surplus_p returned indicates the total
number of characters needed for the array buf_str.

Example

 status = CPXgetqconstrname (env, lp, qname, lenqname,
 &surplus, 5);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
buf_str A pointer to a buffer of size bufspace. May be NULL if bufspace is 0.
bufspace An integer indicating the length of the array buf_str. May be 0.
surplus_p A pointer to an integer to contain the difference between bufspace and the amount of memory

required to store the quadratic constraint name. A nonnegative value of *surplus_p indicates that
the length of the array buf_str was sufficient. A negative value indicates that the length of the array
was insufficient and that the routine could not complete its task. In this case, CPXgetqconstrname
returns the value CPXERR_NEGATIVE_SURPLUS, and the negative value of the variable *surplus_p
indicates the amount of insufficient space in the array buf_str.

which An integer indicating the index of the quadratic constraint for which the name is to be returned.
Returns:

The routine returns zero on success and nonzero if an error occurs. The value CPXERR_NEGATIVE_SURPLUS
indicates that insufficient space was available in the buf_str array to hold the quadratic constraint name.

368

Global function CPXcopystart
int CPXcopystart(CPXCENVptr env, CPXLPptr lp, const int * cstat, const int * rstat,
const double * cprim, const double * rprim, const double * cdual, const double *
rdual)

Definition file: cplex.h

The routine CPXcopystart provides starting information for use in a subsequent call to a simplex optimization
routine (CPXlpopt with CPX_PARAM_LPMETHOD or CPX_PARAM_QPMETHOD set to CPX_ALG_PRIMAL or
CPX_ALG_DUAL, CPXdualopt, CPXprimopt, or CPXhybnetopt). Starting information is not applicable to the
barrier optimizer or the mixed integer optimizer.

When a basis (arguments cstat and rstat) is installed for a linear problem and CPXlpopt is used with
CPX_PARAM_LPMETHOD set to CPX_ALG_AUTOMATIC, CPLEX will use the primal simplex algorithm if the basis
is primal feasible and the dual simplex method otherwise.

Any of three different kinds of starting points can be provided: a starting basis (cstat, rstat), starting primal
values (cprim, rprim), and starting dual values (cdual, rdual). Only a starting basis is applicable to a
CPXhybnetopt call, but for Dual Simplex and Primal Simplex any combination of these three types of
information can be of use in providing a starting point. If no starting-point is provided, this routine returns an error;
otherwise, any resident starting information in the CPLEX problem object is freed and the new information is
copied into it.

If you provide a starting basis, then both cstat and rstat must be specified. It is permissible to provide cprim
with or without rprim, or rdual with or without cdual; arrays not being provided must be passed as NULL
pointers.

Note

The starting information is ignored by the optimizers if the parameter CPX_PARAM_ADVIND is set to zero.

Table 1: Values for cstat[j]

CPX_AT_LOWER 0 variable at lower bound

CPX_BASIC 1 variable is basic

CPX_AT_UPPER 2 variable at upper bound

CPX_FREE_SUPER 3 variable free and nonbasic

Table 2: Values of rstat elements other than ranged rows

CPX_AT_LOWER 0 associated slack variable nonbasic at value 0.0

CPX_BASIC 1 associated slack artificial variable basic

Table 3: Values of rstat elements that are ranged rows

CPX_AT_LOWER 0 associated slack variable nonbasic at its lower bound

CPX_BASIC 1 associated slack variable basic

CPX_AT_UPPER 2 associated slack variable nonbasic at upper bound

Example

 status = CPXcopystart (env,
 lp,
 cstat,

369

 rstat,
 cprim,
 rprim,
 cdual,
 rdual);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
cstat An array containing the basis status of the columns in the constraint matrix. The length of the array is

equal to the number of columns in the CPLEX problem object. If this array is NULL, rstat must be NULL.
Table 1 shows the possible values.

rstat An array containing the basis status of the slack, surplus, or artificial variable associated with each row in
the constraint matrix. The length of the array is equal to the number of rows in the LP problem. For rows
other than ranged rows, the array element rstat[i] can be set according to Table 2. For ranged rows,
the array element rstat[i] can be set according to Table 3. If this array is NULL, cstat must be NULL.

cprim An array containing the initial primal values of the column variables. The length of the array must be no
less than the number of columns in the CPLEX problem object. If this array is NULL, rprim must be
NULL.

rprim An array containing the initial primal values of the slack (row) variables. The length of the array must be
no less than the number of rows in the CPLEX problem object. This array may be NULL.

cdual An array containing the initial values of the reduced costs for the column variables. The length of the array
must be no less than the number of columns in the CPLEX problem object. This array may be NULL.

rdual An array containing the initial values of the dual variables for the rows.The length of the array must be no
less than the number of rows in the CPLEX problem object. If this array is NULL, cdual must be NULL.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

370

Global function CPXgetredlp
int CPXgetredlp(CPXCENVptr env, CPXCLPptr lp, CPXCLPptr * redlp_p)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetredlp returns a pointer for the presolved problem. It returns NULL if the problem is not
presolved or if all the columns and rows are removed by presolve. Generally, the returned pointer may be used
only in CPLEX Callable Library query routines, such as CPXsolution or CPXgetrows.

The presolved problem must not be modified. Any modifications must be done on the original problem. If
CPX_PARAM_REDUCE is set appropriately, the modifications are automatically carried out on the presolved
problem at the same time. Optimization and query routines can be used on the presolved problem.

Example

 status = CPXgetredlp (env, lp, &reducelp);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
redlp_p A pointer to receive the problem object pointer that results when presolve has been applied to the LP

problem object.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

371

Global function CPXgetmipstarts
int CPXgetmipstarts(CPXCENVptr env, CPXCLPptr lp, int * nzcnt_p, int * beg, int *
varindices, double * values, int * effortlevel, int startspace, int * surplus_p,
int begin, int end)

Definition file: cplex.h

The routine CPXgetmipstarts accesses a range of MIP starts of a CPLEX problem object. The beginning and
end of the range, along with the length of the arrays in which the entries of these MIP starts are to be returned,
must be specified.

Note

If the value of startspace is 0 (zero) then the negative of the value of surplus_p returned specifies the
length needed for the arrays varindices and values.

Example

 status = CPXgetmipstarts (env, lp, &nzcnt, beg, varindices,
 values, effortlevel, startspace,
 &surplus, 0, cur_numstarts-1);

Parameters:

env A pointer to the CPLEX environment as returned by the CPXopenCPLEX routine.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
nzcnt_p A pointer to an integer to contain the number of entries returned; that is, the true length of the arrays

varindices and values.
beg An array of length (end - beg + 1) specifying where each of the requested MIP starts begins in

the arrays varindices and values. The elements specific to each MIP start i are stored in
sequential locations in arrays varindices and values from position beg[i] to beg[i+1]-1 (or
from beg[i] to nzcnt -1 if i=end).

varindices An array of length nzcnt containing the numeric indices of the columns corresponding to the
variables which are assigned starting values.

values An array of length nzcnt containing the values of the MIP starts. The entry values[j] is the value
assigned to the variable indices[j].

effortlevel An array of length end-begin+1 containing the effort level for each MIP start requested.
startspace An integer specifying the length of the arrays varindices and values. May be 0.
surplus_p A pointer to an integer to contain the difference between startspace and the number of entries in

each of the arrays varindices and values. A nonnegative value of surplus_p specifies that the
length of the arrays was sufficient. A negative value specifies that the length was insufficient and that
the routine could not complete its task. In this case, the routine CPXgetmipstarts returns the value
CPXERR_NEGATIVE_SURPLUS, and the negative value of surplus_p specifies the amount of
insufficient space in the arrays.

begin An integer specifying the beginning of the range of MIP starts to be returned.
end An integer specifying the end of the range of MIP starts to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs. The value CPXERR_NEGATIVE_SURPLUS
specifies that insufficient space was available in the arrays varindices and values to hold the MIP start
entries.

372

Global function CPXftran
int CPXftran(CPXCENVptr env, CPXCLPptr lp, double * x)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXftran solves By = x and puts the answer in the vector x, where B is the basis matrix.

Parameters:

env The pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
x An array that holds the righthand side vector on input and the solution vector on output. The array must be

of length at least equal to the number of rows in the LP problem object.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

373

Global function CPXsetsolvecallbackfunc
int CPXsetsolvecallbackfunc(CPXENVptr env, int(CPXPUBLIC
*solvecallback)(CALLBACK_SOLVE_ARGS), void * cbhandle)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXsetsolvecallbackfunc sets and modifies the user-written callback to be called during MIP
optimization to optimize subproblems (for example, node and heuristic subproblems).

Example

 status = CPXsetsolvecallbackfunc(env, mysolvefunc, mydata);

See also the example admipex1.c in the standard distribution.

Parameters

env

A pointer to the CPLEX environment, as returned by CPXopenCPLEX.

solvecallback

A pointer to a user-written solve callback. If the callback is set to NULL, no callback is called during optimization.

cbhandle

A pointer to user private data. This pointer is passed to the callback.

Callback description

 int callback (CPXCENVptr env,
 void *cbdata,
 int wherefrom,
 void *cbhandle,
 int *useraction_p);

CPLEX calls the solve callback before CPLEX solves the subproblem currently associated with the current node.
The user can choose to solve the subproblem in the solve callback instead by setting the user action argument of
the callback. The optimization that the user provides to solve the subproblem must provide a CPLEX solution.
That is, the Callable Library routine CPXgetstat must return a nonzero value. The user may access the lp
pointer of the subproblem with the Callable Library routine CPXgetcallbacknodelp.

Callback return value

The callback returns zero if successful and nonzero if an error occurs.

Callback arguments

env

A pointer to the CPLEX environment, as returned by CPXopenCPLEX.

374

cbdata

A pointer passed from the optimization routine to the user-written callback that identifies the problem being
optimized. The only purpose of this pointer is to pass it to the callback information routines.

wherefrom

An integer value reporting where in the optimization this function was called. It will have the value
CPX_CALLBACK_MIP_SOLVE.

cbhandle

A pointer to user private data.

useraction_p

A pointer to an integer specifying the action to be taken on completion of the user callback. Table 11 summarizes
the possible actions.

Actions to be Taken after a User-Written Solve Callback

Value Symbolic Constant Action

0 CPX_CALLBACK_DEFAULT Use CPLEX subproblem optimizer

1 CPX_CALLBACK_FAIL Exit optimization

2 CPX_CALLBACK_SET The subproblem has been solved in the callback

Returns:

The routine returns zero if successful and nonzero if an error occurs.

375

Global function CPXuncrushform
int CPXuncrushform(CPXCENVptr env, CPXCLPptr lp, int plen, const int * pind, const
double * pval, int * len_p, double * offset_p, int * ind, double * val)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXuncrushform uncrushes a linear formula of the presolved problem to a linear formula of the
original problem.

Let cols = CPXgetnumcols (env, lp). If ind[i] < cols then the i-th variable in the formula is the
variable with index ind[i] in the original problem. If ind[i] >= cols, then the i-th variable in the formula is
the slack for the (ind[i] - cols)-th ranged row. The arrays ind and val must be of length at least the
number of columns plus the number of ranged rows in the original LP problem object.

Example

 status = CPXuncrushform (env, lp, plen, pind, pval,
 &len, &offset, ind, val);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
plen The number of entries in the arrays pind and pval.
pind An array containing the column indices of coefficients in the array pval.
pval The linear formula in terms of the presolved problem. Each entry, pind[i], specifies the

column index of the corresponding coefficient, pval[i].
len_p A pointer to an integer to receive the number of nonzero coefficients, that is, the true length of

the arrays ind and val.
offset_p A pointer to a double to contain the value of the linear formula corresponding to variables that

have been removed in the presolved problem.
ind An array containing indices of coefficients in the array val.
val The linear formula in terms of the original problem.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

376

Global function CPXinfointparam
int CPXinfointparam(CPXCENVptr env, int whichparam, int * defvalue_p, int *
minvalue_p, int * maxvalue_p)

Definition file: cplex.h

The routine CPXinfointparam obtains the default, minimum, and maximum values of a CPLEX parameter of
type int.

The CPLEX Parameters Reference Manual provides a list of parameters with their types, options, and default
values.

Example

 status = CPXinfointparam (env, CPX_PARAM_PREIND, &default_preind,
 &min_preind, &max_preind);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
whichparam The symbolic constant (or reference number) of the parameter for which the value is to be

obtained.
defvalue_p A pointer to an integer variable to hold the default value of the CPLEX parameter. May be NULL.
minvalue_p A pointer to an integer variable to hold the minimum value of the CPLEX parameter. May be NULL.
maxvalue_p A pointer to an integer variable to hold the maximum value of the CPLEX parameter. May be NULL.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

377

Global function CPXprimopt
int CPXprimopt(CPXCENVptr env, CPXLPptr lp)

Definition file: cplex.h

The routine CPXprimopt may be used after a linear program has been created via a call to CPXcreateprob, to
find a solution to that problem using the primal simplex method. When this function is called, the CPLEX primal
simplex algorithm attempts to optimize the specified problem. The results of the optimization are recorded in the
CPLEX problem object.

Example

 status = CPXprimopt (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

The routine returns zero unless an error occurred during the optimization. Examples of errors include exhausting
available memory (CPXERR_NO_MEMORY) or encountering invalid data in the CPLEX problem object
(CPXERR_NO_PROBLEM).

Exceeding a user-specified CPLEX limit is not considered an error. Proving the problem infeasible or unbounded
is not considered an error.

A zero return value does not necessarily mean that a solution exists. Use the query routines CPXsolninfo,
CPXgetstat, and CPXsolution to obtain further information about the status of the optimization.

378

Global function CPXgetsubmethod
int CPXgetsubmethod(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetsubmethod accesses the solution method of the last subproblem optimization, in the case of
an error termination during mixed integer optimization.

Example

 submethod = CPXgetsubmethod (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.

Example

 submethod = CPXgetsubmethod (env, lp);

Returns:

The possible return values are summarized here.

Value Symbolic Constant Algorithm

0 CPX_ALG_NONE None

1 CPX_ALG_PRIMAL Primal simplex

2 CPX_ALG_DUAL Dual simplex

4 CPX_ALG_BARRIER Barrier optimizer (no crossover)

379

Global function CPXcheckaddrows
int CPXcheckaddrows(CPXCENVptr env, CPXCLPptr lp, int ccnt, int rcnt, int nzcnt,
const double * rhs, const char * sense, const int * rmatbeg, const int * rmatind,
const double * rmatval, char ** colname, char ** rowname)

Definition file: cplex.h

The routine CPXcheckaddrows validates the arguments of the corresponding CPXaddrows routine. This data
checking routine is found in source format in the file check.c which is provided with the standard CPLEX
distribution. To call this routine, you must compile and link check.c with your program as well as the CPLEX
Callable Library.

The CPXcheckaddrows routine has the same argument list as the CPXaddrows routine. The second argument,
lp, is technically a pointer to a constant LP object of type CPXCLPptr rather than type CPXLPptr, as this
routine will not modify the problem. For most user applications, this distinction is unimportant.

Example

 status = CPXcheckaddrows (env, lp, ccnt, rcnt, nzcnt, rhs,
 sense, rmatbeg, rmatind, rmatval,
 newcolname, newrowname);

Returns:

The routine returns nonzero if it detects an error in the data; it returns zero if it does not detect any data errors.

380

Global function CPXcopylpwnames
int CPXcopylpwnames(CPXCENVptr env, CPXLPptr lp, int numcols, int numrows, int
objsense, const double * objective, const double * rhs, const char * sense, const
int * matbeg, const int * matcnt, const int * matind, const double * matval, const
double * lb, const double * ub, const double * rngval, char ** colname, char **
rowname)

Definition file: cplex.h

The routine CPXcopylpwnames copies LP data into a CPLEX problem object in the same way as the routine
CPXcopylp, but using some additional arguments to specify the names of constraints and variables in the
CPLEX problem object. The arguments to CPXcopylpwnames define an objective function, constraint matrix,
variable bounds, righthand side constraint senses, and range values. Unlike the routine CPXcopylp,
CPXcopylpwnames also copies names. This routine is used in the same way as CPXcopylp.

Table 1: Settings for objsense

objsense = 1 (CPX_MIN) minimize

objsense = -1 (CPX_MAX) maximize

Table 2: Settings for sense

sense[i] = 'L' <= constraint

sense[i] = 'E' = constraint

sense[i] = 'G' >= constraint

sense[i] = 'R' ranged constraint

With respect to the arguments matbeg (beginning of the matrix), matcnt (count of the matrix), matind (indices
of the matrix), and matval (values of the matrix), CPLEX needs to know only the nonzero coefficients. These
are grouped by column in the array matval. The nonzero elements of every column must be stored in sequential
locations in this array with matbeg[j] containing the index of the beginning of column j and matcnt[j]
containing the number of entries in column j. The components of matbeg must be in ascending order. For each
k, matind[k] specifies the row number of the corresponding coefficient, matval[k].

These arrays are accessed as follows. Suppose that CPLEX wants to access the entries in some column j.
These are assumed to be given by the array entries:

 matval[matbeg[j]],.., matval[matbeg[j]+matcnt[j]-1]

The corresponding row indices are:

 matind[matbeg[j]],.., matind[matbeg[j]+matcnt[j]-1]

Entries in matind are not required to be in row order. Duplicate entries in matind and matval within a single
column are not allowed. The length of the arrays matbeg and matind should be at least numcols. The length of
arrays matind and matval should be at least matbeg[numcols-1]+matcnt[numcols-1].

When you build or modify your problem with this routine, you can verify that the results are as you intended by
calling CPXcheckcopylpwnames during application development.

Example

 status = CPXcopylpwnames (env,
 lp,
 numcols,

381

 numrows,
 objsen,
 obj,
 rhs,
 sense,
 matbeg,
 matcnt,
 matind,
 matval,
 lb,
 ub,
 rngval,
 colname,
 rowname);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
numcols An integer that specifies the number of columns in the constraint matrix, or equivalently, the number of

variables in the problem object.
numrows An integer that specifies the number of rows in the constraint matrix, not including the objective

function or bounds on the variables.
objsense An integer that specifies whether the problem is a minimization or maximization problem. Table 1

shows its possible settings.
objective An array of length at least numcols containing the objective function coefficients.
rhs An array of length at least numrows containing the righthand side value for each constraint in the

constraint matrix.
sense An array of length at least numrows containing the sense of each constraint in the constraint matrix.

Table 2 shows the possible settings.
matbeg An array that defines the constraint matrix.
matcnt An array that defines the constraint matrix.
matind An array that defines the constraint matrix.
matval An array that defines the constraint matrix.
lb An array of length at least numcols containing the lower bound on each of the variables. Any lower

bound that is set to a value less than or equal to that of the constant -CPX_INFBOUND is treated as
negative infinity. CPX_INFBOUND is defined in the header file cplex.h.

ub An array of length at least numcols containing the upper bound on each of the variables. Any upper
bound that is set to a value greater than or equal to that of the constant CPX_INFBOUND is treated as
infinity. CPX_INFBOUND is defined in the header file cplex.h.

rngval An array of length at least numrows containing the range value of each ranged constraint. Ranged
rows are those designated by R in the sense array. If the row is not ranged, the rngval array entry is
ignored. If rngval[i] > 0, then row i activity is in [rhs[i],rhs[i]+rngval[i]], and if
rngval[i] <= 0, then row i activity is in [rhs[i]+rngval[i],rhs[i]]. This argument may be
NULL.

colname An array of length at least numcols containing pointers to character strings. Each string is terminated
with the NULL character. These strings represent the names of the matrix columns or, equivalently,
the variable names. May be NULL if no names are associated with the variables. If colname is not
NULL, every variable must be given a name. The addresses in colname do not have to be in
ascending order.

rowname An array of length at least numrows containing pointers to character strings. Each string is terminated
with the NULL character. These strings represent the names of the matrix rows or, equivalently, the
constraint names. May be NULL if no names are associated with the constraints. If rowname is not
NULL, every constraint must be given a name. The addresses in rowname do not have to be in
ascending order.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

382

Global function CPXchgcoeflist
int CPXchgcoeflist(CPXCENVptr env, CPXLPptr lp, int numcoefs, const int * rowlist,
const int * collist, const double * vallist)

Definition file: cplex.h

The routine CPXchgcoeflist changes a list of matrix coefficients of a CPLEX problem object. The list is
prepared as a set of triples (i, j, value), where i is the row index, j is the column index, and value is the
new value. The list may be in any order.

Note

The corresponding rows and columns must already exist in the CPLEX problem object.

This routine cannot be used to change objective, righthand side, range, or bound coefficients.

Duplicate entries, that is, two triplets with identical i and j, are not allowed.

When you build or modify your problem with this routine, you can verify that the results are as you intended by
calling CPXcheckchgcoeflist during application development.

Example

 status = CPXchgcoeflist (env, lp, numcoefs, rowlist, collist, vallist);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
numcoefs The number of coefficients to change, or, equivalently, the length of the arrays rowlist, collist,

and vallist.
rowlist An array of length numcoefs that with collist and vallist specifies the coefficients to change.
collist An array of length numcoefs that with rowlist and vallist specifies the coefficients to change.
vallist An array of length numcoefs that with rowlist and collist specifies the coefficients to change.

The entries rowlist[k], collist[k], and vallist[k] specify that the matrix coefficient in row
rowlist[k] and column collist[k] should be changed to the value vallist[k].

Returns:

The routine returns zero if successful and nonzero if an error occurs.

383

Global function CPXbtran
int CPXbtran(CPXCENVptr env, CPXCLPptr lp, double * y)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXbtran solves xTB = yT and puts the answer in y. B is the basis matrix.

Parameters:

env The pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to the CPLEX LP problem object, as returned by CPXcreateprob.
y An array that holds the righthand side vector on input and the solution vector on output. The array must be

of length at least equal to the number of rows in the LP problem object.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

384

Global function CPXgetcallbackinfo
int CPXgetcallbackinfo(CPXCENVptr env, void * cbdata, int wherefrom, int whichinfo,
void * result_p)

Definition file: cplex.h

The routine CPXgetcallbackinfo accesses information about the current optimization process from within a
user-written callback function.

Note

This routine is the only routine that can access optimization status information from within a nonadvanced
user-written callback function. It is also the only Callable Library routine that may be called from within a
nonadvanced user-written callback function, and in fact, may only be called from the callback function.

Parameters

env

A pointer to the CPLEX environment as returned by CPXopenCPLEX.

cbdata

The cbdata pointer passed to the user-written callback function. The argument cbdata MUST be the value of
cbdata passed to the user-written callback function.

wherefrom

An integer value specifying the optimization algorithm from which the user-written callback function was called.
The argument wherefrom MUST be the value of wherefrom passed to the user-written callback function. See
CPXgetlpcallbackfunc, CPXgetmipcallbackfunc, and CPXgetnetcallbackfunc for possible values of
wherefrom and their meaning.

whichinfo

An integer value specifying the specific information that should be returned by CPXgetcallbackinfo to the
result argument. Values for whichinfo, the type of the information returned into *result_p, plus a description
appear in the table.

result_p

A generic pointer to a variable of type double or int, dependent on the value of whichinfo, as documented in
the following tables.

For LP algorithms:

whichinfo type of
*result_p description

CPX_CALLBACK_INFO_ENDTIME double time stamp

CPX_CALLBACK_INFO_PRIMAL_OBJ double primal objective value

CPX_CALLBACK_INFO_DUAL_OBJ double dual objective value

CPX_CALLBACK_INFO_PRIMAL_INFMEAS double measure of primal infeasibility

CPX_CALLBACK_INFO_DUAL_INFMEAS double measure of dual infeasibility

CPX_CALLBACK_INFO_PRIMAL_FEAS int 1 if primal feasible, 0 if not

385

CPX_CALLBACK_INFO_DUAL_FEAS int 1 if dual feasible, 0 if not

CPX_CALLBACK_INFO_ITCOUNT int iteration count

CPX_CALLBACK_INFO_CROSSOVER_PPUSH int primal push crossover itn. count

CPX_CALLBACK_INFO_CROSSOVER_PEXCH int primal exchange crossover itn. count

CPX_CALLBACK_INFO_CROSSOVER_DPUSH int dual push crossover itn. count

CPX_CALLBACK_INFO_CROSSOVER_DEXCH int dual exchange crossover itn. count

CPX_CALLBACK_INFO_CROSSOVER_SBCNT int number of super-basic variables left in the
basis

CPX_CALLBACK_INFO_USER_PROBLEM CPXCLPptr
returns pointer to original user problem;
available for primal, dual, barrier, mip

Crossover from a barrier to a simplex solution reduces the super-basic count. In fact, in a barrier crossover, if the
count reaches 0 (zero), the crossover has finished. Thus, the super-basic count serves as a measure of progress
for the crossover algorithm.

For Network algorithms:

whichinfo type of *result_p description

CPX_CALLBACK_INFO_ENDTIME double time stamp

CPX_CALLBACK_INFO_PRIMAL_OBJ double primal objective value

CPX_CALLBACK_INFO_PRIMAL_INFMEAS double measure of primal infeasibility

CPX_CALLBACK_INFO_ITCOUNT int iteration count

CPX_CALLBACK_INFO_PRIMAL_FEAS int 1 if primal feasible, 0 if not

For Presolve algorithms:

whichinfo type of *result_p description

CPX_CALLBACK_INFO_ENDTIME double time stamp

CPX_CALLBACK_INFO_PRESOLVE_ROWSGONE int number of rows eliminated

CPX_CALLBACK_INFO_PRESOLVE_COLSGONE int
number of columns
eliminated

CPX_CALLBACK_INFO_PRESOLVE_AGGSUBST int
number of aggregator
substitutions

CPX_CALLBACK_INFO_PRESOLVE_COEFFS int
number of modified
coefficients

For MIP algorithms and informational callbacks:

whichinfo type of *result_p description

CPX_CALLBACK_INFO_ENDTIME double time stamp

CPX_CALLBACK_INFO_BEST_INTEGER double obj. value of best integer solution

CPX_CALLBACK_INFO_BEST_REMAINING double obj. value of best remaining node

CPX_CALLBACK_INFO_NODE_COUNT int total number of nodes solved

386

CPX_CALLBACK_INFO_NODES_LEFT int number of remaining nodes

CPX_CALLBACK_INFO_MIP_ITERATIONS int total number of MIP iterations

CPX_CALLBACK_INFO_MIP_FEAS int
returns 1 if feasible solution exists;
otherwise, 0

CPX_CALLBACK_INFO_CUTOFF double updated cutoff value

CPX_CALLBACK_INFO_PROBE_PHASE int current phase of probing (0-3)

CPX_CALLBACK_INFO_PROBE_PROGRESS double
fraction of probing phase completed
(0.0-1.0)

CPX_CALLBACK_INFO_FRACCUT_PROGRESS double
fraction of Gomory cut generation for
the pass completed (0.0 - 1.0)

CPX_CALLBACK_INFO_DISJCUT_PROGRESS double
fraction of disjunctive cut generation for
the pass completed (0.0 - 1.0)

CPX_CALLBACK_INFO_FLOWMIR_PROGRESS double
fraction of flow cover and MIR cut
generation for the pass completed (0.0
- 1.0)

CPX_CALLBACK_INFO_MIP_REL_GAP double relative MIP gap between the current
best primal and dual bounds

You can query the relative MIP gap between the current best primal and dual bounds outside a callback with the
routine CPXgetmiprelgap.

For MIP algorithms and advanced callbacks:

whichinfo type of
*result_p description

CPX_CALLBACK_INFO_ENDTIME double time stamp

CPX_CALLBACK_INFO_BEST_INTEGER double obj. value of best integer solution

CPX_CALLBACK_INFO_BEST_REMAINING double obj. value of best remaining node

CPX_CALLBACK_INFO_NODE_COUNT int total number of nodes solved

CPX_CALLBACK_INFO_NODES_LEFT int number of remaining nodes

CPX_CALLBACK_INFO_MIP_ITERATIONS int total number of MIP iterations

CPX_CALLBACK_INFO_MIP_FEAS int
returns 1 if feasible solution exists;
otherwise, 0

CPX_CALLBACK_INFO_CUTOFF double updated cutoff value

CPX_CALLBACK_INFO_CLIQUE_COUNT int number of clique cuts added

CPX_CALLBACK_INFO_COVER_COUNT int number of cover cuts added

CPX_CALLBACK_INFO_DISJCUT_COUNT int number of disjunctive cuts added

CPX_CALLBACK_INFO_FLOWCOVER_COUNT int number of flow cover cuts added

CPX_CALLBACK_INFO_FLOWPATH_COUNT int number of flow path cuts added

CPX_CALLBACK_INFO_FRACCUT_COUNT int number of Gomory fractional cuts added

CPX_CALLBACK_INFO_GUBCOVER_COUNT int number of GUB cover cuts added

CPX_CALLBACK_INFO_IMPLBD_COUNT int number of implied bound cuts added

387

CPX_CALLBACK_INFO_MCFCUT_COUNT int number of multi-commodity flow cuts added

CPX_CALLBACK_INFO_MIRCUT_COUNT int
number of mixed integer rounding cuts
added

CPX_CALLBACK_INFO_ZEROHALFCUT_COUNT int number of zero-half cuts added

CPX_CALLBACK_INFO_USER_PROBLEM CPXCLPptr
returns pointer to original user problem;
available for primal, dual, barrier, MIP

CPX_CALLBACK_INFO_PROBE_PHASE int current phase of probing (0-3)

CPX_CALLBACK_INFO_PROBE_PROGRESS double fraction of probing phase completed (0.0-1.0)

CPX_CALLBACK_INFO_FRACCUT_PROGRESS double
fraction of Gomory cut generation for the
pass completed (0.0 - 1.0)

CPX_CALLBACK_INFO_DISJCUT_PROGRESS double
fraction of disjunctive cut generation for the
pass completed (0.0 - 1.0)

CPX_CALLBACK_INFO_FLOWMIR_PROGRESS double
fraction of flow cover and MIR cut generation
for the pass completed (0.0 - 1.0)

CPX_CALLBACK_INFO_MY_THREAD_NUM int
identifier of the parallel thread making this
call

CPX_CALLBACK_INFO_USER_THREADS int
total number of parallel threads currently
running

For Tuning:

whichinfo type of *result_p description

CPX_CALLBACK_INFO_ENDTIME double time stamp

CPX_CALLBACK_INFO_TUNING_PROGRESS double elapsed percentage of total tuning time

Example

See lpex4.c in the CPLEX User's Manual.

Suppose you want to know the objective value on each iteration for a graphical user display. In addition, if primal
simplex is not feasible after 1000 iterations, you want to stop the optimization. The function mycallback is a
callback function to do this.

 int mycallback (CPXCENVptr env, void *cbdata, int wherefrom,
 void *cbhandle)
 {
 int itcount;
 double objval;
 int ispfeas;
 int status = 0;

 if (wherefrom == CPX_CALLBACK_PRIMAL) {
 status = CPXgetcallbackinfo (env, cbdata, wherefrom,
 CPX_CALLBACK_INFO_PRIMAL_FEAS,
 &ispfeas);
 if (status) {
 fprintf (stderr,"error %d in CPXgetcallbackinfon", status);
 status = 1;
 goto TERMINATE;
 }
 if (ispfeas) {
 status = CPXgetcallbackinfo (env, cbdata, wherefrom,
 CPX_CALLBACK_INFO_PRIMAL_OBJ,
 &objval))
 if (status) {
 fprintf (stderr,"error %d in CPXgetcallbackinfon",

388

 status);
 status = 1;
 goto TERMINATE;
 }

 }
 else {
 status = CPXgetcallbackinfo (env, cbdata, wherefrom,
 CPX_CALLBACK_INFO_ITCOUNT,
 &itcount);
 if (status) {
 fprintf (stderr,"error %d in CPXgetcallbackinfon", status);
 status = 1;
 goto TERMINATE;
 }
 if (itcount > 1000) status = 1;
 }
 }

 TERMINATE:
 return (status);
 }

Returns:

The routine returns zero if successful and nonzero if an error occurs. If nonzero, the requested value may not be
available for the specific optimization algorithm. For example, the dual objective is not available from primal
simplex.

389

Global function CPXgetcallbacknodeintfeas
int CPXgetcallbacknodeintfeas(CPXCENVptr env, void * cbdata, int wherefrom, int *
feas, int begin, int end)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetcallbacknodeintfeas retrieves information for each variable about whether or not the
variable is integer feasible in the node subproblem. It can be used in a user-written callback during MIP
optimization. The information is from the original problem if CPX_PARAM_MIPCBREDLP is set to CPX_OFF.
Otherwise, they are from the presolved problem.

Example

 status = CPXgetcallbacknodeintfeas(env, cbdata, wherefrom,
 feas, 0, cols-1);

See admipex1.c and admipex2.c in the standard distribution.

This routine may be called only when the value of the wherefrom argument is one of the following:

CPX_CALLBACK_MIP,•
CPX_CALLBACK_MIP_BRANCH,•
CPX_CALLBACK_MIP_INCUMBENT,•
CPX_CALLBACK_MIP_NODE,•
CPX_CALLBACK_MIP_HEURISTIC, or•
CPX_CALLBACK_MIP_CUT.•

Integer feasibility status information for a node of the subproblem

CPX_INTEGER_FEASIBLE 0 variable j+begin is integer-valued

CPX_INTEGER_INFEASIBLE 1 variable j+begin is not integer-valued

CPX_IMPLIED_INTEGER_FEASIBLE 2
variable j+begin may have a fractional value in the current solution,
but it will take on an integer value when all integer variables still in
the problem have integer values. It should not be branched upon.

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
cbdata The pointer passed to the user-written callback. This argument must be the value of cbdata passed

to the user-written callback.
wherefrom An integer value reporting from where the user-written callback was called. The argument must be

the value of wherefrom passed to the user-written callback.
feas An array to receive integer feasibility information for the node subproblem. This array must be of

length at least (end - begin + 1). If successful, feas[0] through feas[end-begin] will
contain the integer feasibility information. Possible return values appear in the table.

begin An integer specifying the beginning of the range of integer feasibility information to be returned.
end An integer specifying the end of the range of integer feasibility information to be returned.
Returns:

390

The routine returns zero if successful and nonzero if an error occurs.

391

Global function CPXNETchgarcname
int CPXNETchgarcname(CPXCENVptr env, CPXNETptr net, int cnt, const int * indices,
char ** newname)

Definition file: cplex.h

This routine CPXNETchgarcname changes the names of a set of arcs in the network stored in a network problem
object.

Example

 status = CPXNETchgarcname (env, net, 10, indices, newname);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
cnt An integer that indicates the total number of arc names to be changed. Thus cnt specifies the length

of the arrays indices and newname.
indices An array of length cnt containing the numeric indices of the arcs for which the names are to be

changed.
newname An array of length cnt containing the new names for the arcs specified in indices.
Returns:

The routine returns zero on success and nonzero if an error occurs.

392

Global function CPXgetsolnpoolrngfilter
int CPXgetsolnpoolrngfilter(CPXCENVptr env, CPXCLPptr lp, double * lb_p, double *
ub_p, int * nzcnt_p, int * ind, double * val, int space, int * surplus_p, int
which)

Definition file: cplex.h

Accesses a range filter of the solution pool.

This routine accesses a range filter, specified by the argument which, of the solution pool associated with the LP
problem specified by the argument lp. Details about that filter are returned in the arguments of this routine.

Example

 status = CPXgetsolnpoolrngfilter (env, lp,
 &limlo, &limup,
 &num, ind, val,
 cols, &surplus, i);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
lb_p Lower bound on the linear expression of a range filter.
ub_p Upper bound on the linear expression of a range filter.
nzcnt_p Number of variables in the linear expression of a range filter.
ind An array of indices of variables in the linear expression of a range filter. May be NULL if space> is 0.
val An array of coefficients in the linear expression of a range filter. May be NULL if space> is 0.
space Integer specifying the length of the arrays ind and val.
surplus_p A pointer to an integer to contain the difference between space and the number of entries in each of

the arrays ind and val. A nonnegative value of surplus_p means that the length of the arrays was
sufficient. A negative value reports that the length was insufficient and consequently the routine could
not complete its task. In this case, the routine CPXgetsolnpoolrngfilter returns the value
CPXERR_NEGATIVE_SURPLUS, and the negative value of surplus_p specifies the amount of
insufficient space in the arrays.

which The filter.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

393

Global function CPXNETgetub
int CPXNETgetub(CPXCENVptr env, CPXCNETptr net, double * up, int begin, int end)

Definition file: cplex.h

The routine CPXNETgetub is used to access the upper capacity bounds for a range of arcs in the network stored
in a network problem object.

Example

 status = CPXNETgetub (env, net, up, 0, cur_narcs-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
up Array in which to write the upper bound on the flow for the requested arcs. If NULL is passed,

no upper bounds are retrieved. Otherwise, the array must be of size (end-begin+1).
begin Index of the first arc for which upper bounds are to be obtained.
end Index of the last arc for which upper bounds are to be obtained.
Returns:

The routine returns zero on success and nonzero if an error occurs.

394

Global function CPXgetax
int CPXgetax(CPXCENVptr env, CPXCLPptr lp, double * x, int begin, int end)

Definition file: cplex.h

The routine CPXgetax accesses row activity levels for a range of linear constraints. The beginning and end of
the range must be specified. A row activity is the inner product of a row in the constraint matrix and the structural
variables in the problem.

Example

 status = CPXgetax (env, lp, x, 0, CPXgetnumrows(env,lp)-1);

The array must be of length at least (end-begin+1). If successful, x[0] through x[end-begin] contain the
row activities.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
x An array to receive the values of the row activity levels for each of the constraints in the specified range.

The array must be of length at least (end-begin+1). If successful, x[0] through x[end-begin] contain
the row activities.

begin An integer specifying the beginning of the range of row activities to be returned.
end An integer specifying the end of the range of row activities to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

395

Global function CPXqpuncrushpi
int CPXqpuncrushpi(CPXCENVptr env, CPXCLPptr lp, double * pi, const double * prepi,
const double * x)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXqpuncrushpi uncrushes a dual solution for the presolved problem to a dual solution for the
original problem if the original problem is a QP.

Example

 status = CPXqpuncrushpi (env, lp, pi, prepi, x);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
pi An array to receive dual solution (pi) values for the original problem as computed from the dual values of

the presolved problem object. The length of the array must at least equal the number of rows in the LP
problem object.

prepi An array that contains dual solution (pi) values for the presolved problem, as returned by such routines as
CPXgetpi and CPXsolution when applied to the presolved problem object. The length of the array must
at least equal the number of rows in the presolved problem object.

x An array that contains primal solution (x) values for a problem, as returned by such routines as
CPXuncrushx and CPXcrushx. The length of the array must at least equal the number of columns in the
LP problem object.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

396

Global function CPXgetinfocallbackfunc
int CPXgetinfocallbackfunc(CPXCENVptr env, int(CPXPUBLIC **callback_p)(CPXCENVptr,
void *, int, void *), void ** cbhandle_p)

Definition file: cplex.h

The routine CPXgetinfocallbackfunc accesses the user-written callback routine to be called regularly during
the optimization of a mixed integer program (MIP).

This routine enables the user to access a separate callback function to be called during the solution of mixed
integer programming problems (MIPs). Unlike any other callback routines, this user-written callback routine is
used only to retrieve information about MIP search. It does not control the search, though it allows the search to
terminate. The user-written callback function that this routine invokes is allowed to call only two other routines:
CPXgetcallbackinfo and CPXgetcallbackincumbent.

The prototype for the user-written callback function is identical to that of CPXsetmipcallbackfunc.

Parameters

env

A pointer to the CPLEX environment as returned by CPXopenCPLEX.

callback_p

The address of the pointer to the current user-written callback function. If no callback function has been set, the
pointer evaluates to NULL.

cbhandle_p

The address of a variable to hold the user's private pointer.

Example

 status = CPXgetinfocallbackfunc (env, mycallback, NULL);

Callback description

 int callback (CPXCENVptr env,
 void *cbdata,
 int wherefrom,
 void *cbhandle);

This is the user-written callback routine.

Callback return value

A nonzero return value terminates the optimization. That is, if your user-written callback function returns a
nonzero value, it signals CPLEX that the optimization should terminate.

Callback arguments

env

A pointer to the CPLEX environment that was passed into the associated optimization routine.

cbdata

A pointer passed from the optimization routine to the user-written callback function that identifies the problem
being optimized. The only purpose for the cbdata pointer is to pass it to the routine CPXgetcallbackinfo.

397

wherefrom

An integer value reporting from which optimization algorithm the user-written callback function was called.
Possible values and their meaning appear in this table.

Indicators of algorithm that called user-written callback

Value Symbolic Constant Meaning

101 CPX_CALLBACK_MIP From mipopt

107 CPX_CALLBACK_MIP_PROBE
From probing or clique
merging

108 CPX_CALLBACK_MIP_FRACCUT
From Gomory fractional
cuts

109 CPX_CALLBACK_MIP_DISJCUT From disjunctive cuts

110 CPX_CALLBACK_MIP_FLOWMIR
From Mixed Integer
Rounding cuts

cbhandle

Pointer to user private data, as passed to CPXsetinfocallbackfunc.

See Also: CPXgetcallbackinfo

Returns:

The routine returns zero if successful and nonzero if an error occurs.

398

Global function CPXcopypnorms
int CPXcopypnorms(CPXCENVptr env, CPXLPptr lp, const double * cnorm, const double *
rnorm, int len)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXcopypnorms copies the primal steepest-edge norms to the specified LP problem object.

See Also: CPXcopydnorms, CPXgetpnorms

Parameters:

env The pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
cnorm An array containing values to be used in a subsequent call to CPXprimopt, with a setting of

CPX_PARAM_PPRIIND equal to 2, as the initial values for the primal steepest-edge norms of the first len
columns in the LP problem object. The array must be of length at least equal to the value of the argument
len.

rnorm An array containing values to be used in a subsequent call to CPXprimopt with a setting of
CPX_PARAM_PPRIIND equal to 2, as the initial values for the primal steepest-edge norms of the slacks
and ranged variables that are nonbasic. The array must be of length at least equal to the number of rows
in the LP problem object.

len An integer that specifies the number of entries in the array cnorm[].
Returns:

The routine returns zero if successful and nonzero if an error occurs.

399

Global function CPXbranchcallbackbranchbds
int CPXbranchcallbackbranchbds(CPXCENVptr env, void * cbdata, int wherefrom, double
nodeest, int cnt, const int * indices, const char * lu, const int * bd, void *
userhandle, int * seqnum_p)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXbranchcallbackbranchbds specifies the branches to be taken from the current node. It may
be called only from within a user-written branch callback function.

Branch variables are in terms of the original problem if the parameter CPX_PARAM_MIPCBREDLP is set to
CPX_OFF before the call to CPXmipopt that calls the callback. Otherwise, branch variables are in terms of the
presolved problem.

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
cbdata A pointer passed to the user-written callback. This argument must be the value of

cbdata passed to the user-written callback.
wherefrom An integer value that reports where the user-written callback was called from. This

argument must be the value of wherefrom passed to the user-written callback.
nodeest A double that specifies the value of the node estimate for the node to be created with

this branch. The node estimate is used to select nodes from the branch-and-cut tree
with certain values of the node selection parameter CPX_PARAM_NODESEL.

cnt An integer. The integer specifies the number of bound changes that are specified in the
arrays indices, lu, and bd.

indices An array. Together with lu and bd, this array defines the bound changes for the
branch. The entry indices[i] is the index for the variable.

lu An array. Together with indices and bd, this array defines the bound changes for
each of the created nodes. The entry lu[i] is one of the three possible values
specifying which bound to change: L for lower bound, U for upper bound, or B for both
bounds.

bd An array. Together with indices and lu, this array defines the bound changes for
each of the created nodes. The entry bd[i] specifies the new value of the bound.

userhandle A pointer to user private data that should be associated with the node created by this
branch. May be NULL.

seqnum_p A pointer to an integer. On return, that integer will contain the sequence number that
CPLEX has assigned to the node created from this branch. The sequence number may
be used to select this node in later calls to the node callback.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

400

Global function CPXgetdblparam
int CPXgetdblparam(CPXCENVptr env, int whichparam, double * value_p)

Definition file: cplex.h

The routine CPXgetdblparam obtains the current value of a CPLEX parameter of type double.

The CPLEX Parameters Reference Manual provides a list of parameters with their types, options, and default
values.

Example

 status = CPXgetdblparam (env, CPX_PARAM_TILIM, &curtilim);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
whichparam The symbolic constant (or reference number) of the parameter for which the value is to be

obtained.
value_p A pointer to a variable of type double to hold the current value of the CPLEX parameter.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

401

Global function CPXlpopt
int CPXlpopt(CPXCENVptr env, CPXLPptr lp)

Definition file: cplex.h

The routine CPXlpopt may be used, at any time after a linear program has been created via a call to
CPXcreateprob, to find a solution to that problem using one of the CPLEX linear optimizers. The parameter
CPX_PARAM_LPMETHOD controls the choice of optimizer (dual simplex, primal simplex, barrier, network simplex,
sifting, or concurrent optimization). Currently, with the default parameter setting of Automatic, CPLEX invokes the
dual simplex method when no advanced basis or starting vector is loaded or when the advanced indicator is
zero. The behavior of the Automatic setting may change in the future.

Example

 status = CPXlpopt (env, lp);

See also the example lpex1.c in Getting Started and in the standard distribution.

See Also: CPXgetstat, CPXsolninfo, CPXsolution

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to the CPLEX problem object as returned by CPXcreateprob.
Returns:

The routine returns zero unless an error occurred during the optimization.

Examples of errors include exhausting available memory (CPXERR_NO_MEMORY) or encountering invalid data in
the CPLEX problem object (CPXERR_NO_PROBLEM).

Exceeding a user-specified CPLEX limit is not considered an error. Proving the problem infeasible or unbounded
is not considered an error.

A zero return value does not necessarily mean that a solution exists. Use the query routines CPXsolninfo,
CPXgetstat, and CPXsolution to obtain further information about the status of the optimization.

402

Global function CPXNETgetpi
int CPXNETgetpi(CPXCENVptr env, CPXCNETptr net, double * pi, int begin, int end)

Definition file: cplex.h

The routine CPXNETgetpi is used to access dual values for a range of nodes in the network stored in a network
problem object.

For this function to succeed, a solution must exist for the problem object.

Example

 status = CPXNETgetpi (env, net, pi, 10, 20);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
pi Array in which to write solution dual values for requested nodes. If NULL is passed, no data is

returned. Otherwise, pi must point to an array of size at least (end-begin+1).
begin Index of the first node for which the dual value is to be obtained.
end Index of the last node for which the dual value is to be obtained.
Returns:

The routine returns zero on success and nonzero if an error occurs.

403

Global function CPXgetconflict
int CPXgetconflict(CPXCENVptr env, CPXCLPptr lp, int * confstat_p, int * rowind,
int * rowbdstat, int * confnumrows_p, int * colind, int * colbdstat, int *
confnumcols_p)

Definition file: cplex.h

This routine returns the linear constraints and variables belonging to a conflict previously computed by the routine
CPXrefineconflict. The conflict is a subset of constraints and variables from the original, infeasible problem
that is still infeasible. It is generally minimal, in the sense that removal of any of the constraints or variable
bounds in the conflict will make the conflict set become feasible. However, the computed conflict will not be
minimal if the previous call to CPXrefineconflict was not allowed to run to completion.

Conflict Status

The status of the currently available conflict is returned in confstat_p. If CPXrefineconflict was called
previously, the status will be one of the following values:

CPX_STAT_CONFLICT_MINIMAL,•
CPX_STAT_CONFLICT_FEASIBLE, or•
CPX_STAT_CONFLICT_ABORT_reason.•

When the status of a conflict is CPX_STAT_CONFLICT_FEASIBLE, the routine CPXrefineconflict
determined that the problem was feasible, and thus no conflict is available. Otherwise, a conflict is returned. The
returned conflict is minimal if the status is CPX_STAT_CONFLICT_MINIMAL.

The conflict status can also be queried with the routine CPXgetstat.

Row and Column Status

In the array rowbdstat, integer values are returned specifying the status of the corresponding row in the
conflict. For row rowind[i], rowbdstat[i] can assume the value CPX_CONFLICT_MEMBER for constraints
that participate in a minimal conflict. When the computed conflict is not minimal, rowbdstat[i] can assume the
value CPX_CONFLICT_POSSIBLE_MEMBER, to report that row i has not been proven to be part of the conflict. If a
row has been proven not to belong to the conflict, its index will not be listed in rowind.

Similarly, the array colbdstat contains integers specifying the status of the variable bounds in the conflict. The
value specified in colbdstat[i] is the conflict status for variable colind[i]. If colind[i] has been proven
to be part of the conflict, colbdstat[i] will take one of the following values:

CPX_CONFLICT_MEMBER,•
CPX_CONFLICT_LB, or•
CPX_CONFLICT_UB.•

When variable colind[i] has neither been proven to belong nor been proven not to belong to the conflict, the
status colbdstat[i] will be one of the following values:

CPX_CONFLICT_POSSIBLE_MEMBER,•
CPX_CONFLICT_POSSIBLE_LB, or•
CPX_CONFLICT_POSSIBLE_UB.•

In both cases, the _LB status specifies that only the lower bound is part of the conflict. Similarly, the _UB status
specifies that the upper bound is part of the conflict. Finally, if both bounds are required in the conflict, a
_MEMBER status is assigned to that variable.

The status values marked POSSIBLE specify that the corresponding constraints and variables in the conflict are
possibly not required to produce a minimal conflict, but the conflict refinement algorithm was not able to remove
them before it terminated (for example, because it reached a time limit set by the user).

Example

404

 status = CPXgetconflictext (env, lp, grpstat, 0, ngrp-1);

See Also: CPXrefineconflict, CPXclpwrite

Parameters:

env A pointer to the CPLEX environment as returned by the routine CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
confstat_p A pointer to an integer used to return the status of the conflict.
rowind An array to receive the list of the indices of the constraints that participate in the conflict. The

length of the array must not be less than the number of rows in the conflict. If that number is not
known, use the total number of rows in the problem object instead.

rowbdstat An array to receive the conflict status of the rows. Entry rowbdstat[i] gives the status of row
rowind[i]. The length of the array must not be less than the number of rows in the conflict. If
that number is not known, use the number of rows in the problem object instead.

confnumrows_p A pointer to an integer where the number of rows in the conflict is returned.
colind An array to receive the list of the indices of the variables that participate in the conflict. The

length of the array must not be less than the number of columns in the conflict. If that number is
not known, use the number of columns in the problem object instead.

colbdstat An array to receive the conflict status of the columns. Entry colbdstat[i] gives the status of
column colind[i]. The length of the array must not be less than the number of columns in
the conflict. If that number is not known, use the number of columns in the problem object
instead.

confnumcols_p A pointer to an integer where the number of columns in the conflict is returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

405

Global function CPXgetmethod
int CPXgetmethod(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetmethod returns an integer specifying the solution algorithm used to solve the resident LP,
QP, or QCP problem.

The possible return values are summarized in the table.

Value Symbolic Constant Algorithm

0 CPX_ALG_NONE None

1 CPX_ALG_PRIMAL Primal simplex

2 CPX_ALG_DUAL Dual simplex

4 CPX_ALG_BARRIER Barrier optimizer (no crossover)

4 CPX_ALG_FEASOPT Feasopt

4 CPX_ALG_MIP Mixed integer optimizer

Example

 method = CPXgetmethod (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

The routine returns one of the possible values summarized in the trable.

406

Global function CPXgetbase
int CPXgetbase(CPXCENVptr env, CPXCLPptr lp, int * cstat, int * rstat)

Definition file: cplex.h

The routine CPXgetbase accesses the basis resident in a CPLEX problem object. Either of the arguments
cstat or rstat may be NULL if only one set of status values is needed.

Table 1: Values of elements of cstat

CPX_AT_LOWER 0 variable at lower bound

CPX_BASIC 1 variable is basic

CPX_AT_UPPER 2 variable at upper bound

CPX_FREE_SUPER 3 variable free and nonbasic

Table 2: Values of elements of rstat in rows other than ranged rows

CPX_AT_LOWER 0 associated slack, surplus, or artificial variable is nonbasic at value 0.0 (zero)

CPX_BASIC 1 associated slack, surplus, or artificial variable is basic

Table 3: Values of elements of rstat for ranged rows

CPX_AT_LOWER 0 associated slack, surplus, or artificial variable is nonbasic at its lower bound

CPX_BASIC 1 associated slack, surplus, or artificial variable is basic

CPX_AT_UPPER 2 associated slack, surplus, or artificial variable is nonbasic at upper bound

Example

 status = CPXgetbase (env, lp, cstat, rstat);

See also the example lpex2.c in the examples distributed with the product.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
cstat An array to receive the basis status of the columns in the CPLEX problem object. The length of the array

must be no less than the number of columns in the matrix. The array element cstat[i] has the meaning
specified in Table 1.

rstat An array to receive the basis status of the artificial, slack, or surplus variable associated with each row in
the constraint matrix. The length of the array must be no less than the number of rows in the CPLEX
problem object. For rows other than ranged rows, the array element rstat[i] has the meaning specified
in Table 2. For ranged rows, the array element rstat[i] has the meaning specified in Table 3.

Returns:

The routine returns zero if a basis exists. It returns nonzero if no solution exists or any other type of error occurs.

407

Global function CPXmsgstr
int CPXmsgstr(CPXCHANNELptr channel, const char * msg_str)

Definition file: cplex.h

The routine CPXmsgstr sends a character string to a CPLEX message channel. It is provided as an alternative
to CPXmsg, which due to its variable-length argument list, cannot be used in some environments, such as Visual
Basic.

Example

 CPXmsgstr (p, q);

Parameters:

channel The pointer to the channel receiving the message.
msg_str A pointer to a string that should be sent to the message channel.
Returns:

The routine returns the number of characters in the string msg.

408

Global function CPXgetdeletenodecallbackfunc
void CPXgetdeletenodecallbackfunc(CPXCENVptr env, void(CPXPUBLIC
**deletecallback_p)(CALLBACK_DELETENODE_ARGS), void ** cbhandle_p)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetdeletenodecallbackfunc accesses the user-written callback to be called during MIP
optimization when a node is to be deleted. Nodes are deleted when a branch is carried out from that node, when
the node relaxation is infeasible, or when the node relaxation objective value is worse than the cutoff. This
callback can be used to delete user data associated with a node.

Example

 CPXgetdeletenodecallbackfunc(env,
 ¤t_callback,
 ¤t_cbdata);

See also Advanced MIP Control Interface in the CPLEX User's Manual.

For documentation of callback arguments, see the routine CPXsetdeletenodecallbackfunc.

Parameters

env

A pointer to the CPLEX environment, as returned by CPXopenCPLEX.

deletenodecallback_p

The address of the pointer to the current user-written delete-node callback. If no callback has been set, the
pointer evaluates to NULL.

cbhandle_p

The address of a variable to hold the user's private pointer.

See Also: CPXsetdeletenodecallbackfunc, CPXbranchcallbackbranchbds, CPXbranchcallbackbranchconstraints,
CPXbranchcallbackbranchgeneral

Returns:

This routine does not return a result.

409

Global function CPXgetcallbackglobalub
int CPXgetcallbackglobalub(CPXCENVptr env, void * cbdata, int wherefrom, double *
ub, int begin, int end)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetcallbackglobalub retrieves the best known global upper bound values during MIP
optimization from within a user-written callback. The global upper bounds are tightened after a new incumbent is
found, so the values returned by CPXgetcallbacknodex may violate these bounds at nodes where new
incumbents have been found. The values are from the original problem if CPX_PARAM_MIPCBREDLP is set to
CPX_OFF; otherwise, they are from the presolved problem.

This routine may be called only when the value of the wherefrom argument is one of the following:

CPX_CALLBACK_MIP,•
CPX_CALLBACK_MIP_BRANCH,•
CPX_CALLBACK_MIP_INCUMBENT,•
CPX_CALLBACK_MIP_NODE,•
CPX_CALLBACK_MIP_HEURISTIC,•
CPX_CALLBACK_MIP_SOLVE, or•
CPX_CALLBACK_MIP_CUT.•

Example

 status = CPXgetcallbackglobalub (env, cbdata, wherefrom,
 gub, 0, cols-1);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
cbdata The pointer passed to the user-written callback. This argument must be the value of

cbdata passed to the user-written callback.
wherefrom An integer value reporting from where the user-written callback was called. The argument

must be the value of wherefrom passed to the user-written callback.
ub An array to receive the values of the global upper bound values. This array must be of

length at least (end - begin + 1). If successful, ub[0] through ub[end-begin]
contain the global upper bound values.

begin An integer specifying the beginning of the range of upper bound values to be returned.
end An integer specifying the end of the range of upper bound values to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

410

Global function CPXcopybase
int CPXcopybase(CPXCENVptr env, CPXLPptr lp, const int * cstat, const int * rstat)

Definition file: cplex.h

The routine CPXcopybase copies a basis into a CPLEX problem object. It is not necessary to copy a basis prior
to optimizing an LP problem, but a good initial basis can increase the speed of optimization significantly. A basis
does not need to be primal or dual feasible to be used by the optimizer.

Note

The basis is ignored by the optimizer if CPX_PARAM_ADVIND is set to zero.

Table 1: Values of basis status for columns in cstat[j]

CPX_AT_LOWER 0 variable at lower bound

CPX_BASIC 1 variable is basic

CPX_AT_UPPER 2 variable at upper bound

CPX_FREE_SUPER 3 variable free and nonbasic

Table 2: Values of basis status for rows other than ranged rows in rstat[j]

CPX_AT_LOWER 0 associated slack, surplus, or artificial variable is nonbasic at value 0.0 (zero)

CPX_BASIC 1 associated slack, surplus, or artificial variable is basic

Table 3: Values of basis status for ranged rows in rstat[j]

CPX_AT_LOWER 0 associated slack, surplus, or artificial variable is nonbasic at its lower bound

CPX_BASIC 1 associated slack, surplus, or artificial variable is basic

CPX_AT_UPPER 2 associated slack, surplus, or artificial variable is nonbasic at its upper bound

Example

 status = CPXcopybase (env, lp, cstat, rstat);

See Also: CPXreadcopybase

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
cstat An array containing the basis status of the columns in the constraint matrix. The length of the array is

equal to the number of columns in the problem object. Possible values of the basis status of columns
appear in Table 1.

rstat An array containing the basis status of the slack, or surplus, or artificial variable associated with each row
in the constraint matrix. The length of the array is equal to the number of rows in the CPLEX problem
object. For rows other than ranged rows, the array element rstat[i] has the meaning in Table 2. For
ranged rows, the array element rstat[i] has the meaning in Table 3.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

411

Global function CPXaddusercuts
int CPXaddusercuts(CPXCENVptr env, CPXLPptr lp, int rcnt, int nzcnt, const double *
rhs, const char * sense, const int * rmatbeg, const int * rmatind, const double *
rmatval, char ** rowname)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXaddusercuts adds constraints to the list of constraints that should be added to the LP
subproblem of a MIP optimization if they are violated. CPLEX handles addition of the constraints and makes sure
that all integer solutions satisfy all the constraints. The constraints are added to those specified in prior calls to
CPXaddusercuts.

The constraints must be cuts that are implied by the constraint matrix. The CPLEX parameter
CPX_PARAM_PRELINEAR should be set to CPX_OFF (0).

Use CPXfreeusercuts to clear the list of cuts.

The arguments of CPXaddusercuts are the same as those of CPXaddrows, with the exception that new
columns may not be specified, so there are no ccnt and colname arguments. Furthermore, unlike
CPXaddrows, CPXaddusercuts does not accept a NULL pointer for the array of righthand side values or
senses.

Example

 status = CPXaddusercuts (env, lp, cutcnt, cutnzcnt, cutrhs,
 cutsense, cutbeg, cutind, cutval, NULL);

See also admipex4.c in the standard distribution.

Values of sense

sense[i] = 'L' <= constraint

sense[i] = 'E' = constraint

sense[i] = 'G' >= constraint

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
rcnt An integer that specifies the number of new rows to be added to the constraint matrix.
nzcnt An integer that specifies the number of nonzero constraint coefficients to be added to the constraint

matrix. This specifies the length of the arrays rmatind and rmatval.
rhs An array of length rcnt containing the righthand side term for each constraint to be added to the

CPLEX problem object.
sense An array of length rcnt containing the sense of each constraint to be added to the CPLEX problem

object. Possible values of this argument appear in the table.
rmatbeg An array used with rmatind and rmatval to define the rows to be added.
rmatind An array used with rmatbeg and rmatval to define the rows to be added.

412

rmatval An array used with rmatbeg and rmatind to define the rows to be added. The format is similar to the
format used to describe the constraint matrix in the routine CPXcopylp (see description of matbeg,
matcnt, matind, and matval in that routine), but the nonzero coefficients are grouped by row
instead of column in the array rmatval. The nonzero elements of every row must be stored in
sequential locations in this array from position rmatbeg[i] to rmatbeg[i+1]-1 (or from
rmatbeg[i] to nzcnt -1 if i=rcnt-1). Each entry, rmatind[i], specifies the column index of
the corresponding coefficient, rmatval[i]. Unlike CPXcopylp, all rows must be contiguous, and
rmatbeg[0] must be 0.

rowname An array containing pointers to character strings that represent the names of the user cuts. May be
NULL, in which case the new user cuts are assigned default names if the user cuts already resident in
the CPLEX problem object have names; otherwise, no names are associated with the user cuts. If row
names are passed to CPXaddusercuts but existing user cuts have no names assigned, default
names are created for them.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

413

Global function CPXcopydnorms
int CPXcopydnorms(CPXCENVptr env, CPXLPptr lp, const double * norm, const int *
head, int len)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXcopydnorms copies the dual steepest-edge norms to the specified LP problem object. The
argument head is an array of column or row indices corresponding to the array of norms. Column indices are
indexed with nonnegative values. Row indices are indexed with negative values offset by 1 (one). For example, if
head[0] = -5, then norm[0] is associated with row 4.

See Also: CPXcopypnorms, CPXgetdnorms

Parameters:

env The pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to the CPLEX LP problem object, as returned by CPXcreateprob.
norm An array containing values to be used in a subsequent call to CPXdualopt, with a setting of

CPX_PARAM_DPRIIND equal to 2, as the initial values for the dual steepest-edge norms of the
corresponding basic variables specified in head[]. The array must be of length at least equal
to the value of the argument len. If any indices in head[] are not basic, the corresponding
values in norm[] are ignored.

head An array containing the indices of the basic variables for which norms have been specified in
norm[]. The array must be of length at least equal to the value of the argument len.

len An integer that specifies the number of entries in norm[] and head[].
Returns:

The routine returns zero if successful and nonzero if an error occurs.

414

Global function CPXcheckcopylp
int CPXcheckcopylp(CPXCENVptr env, CPXCLPptr lp, int numcols, int numrows, int
objsen, const double * obj, const double * rhs, const char * sense, const int *
matbeg, const int * matcnt, const int * matind, const double * matval, const double
* lb, const double * ub, const double * rngval)

Definition file: cplex.h

The routine CPXcheckcopylp validates the arguments of the corresponding CPXcopylp routine. This data
checking routine is found in source format in the file check.c which is provided with the standard CPLEX
distribution. To call this routine, you must compile and link check.c with your program as well as the CPLEX
Callable Library.

The CPXcheckcopylp routine has the same argument list as the CPXcopylp routine. The second argument,
lp, is technically a pointer to a constant LP object of type CPXCLPptr rather than type CPXLPptr, as this
routine will not modify the problem. For most user applications, this distinction is unimportant.

Example

 status = CPXcheckcopylp (env, lp, numcols, numrows, objsen, obj,
 rhs, sense, matbeg, matcnt, matind,
 matval, lb, ub, rngval);

Returns:

The routine returns nonzero if it detects an error in the data; it returns zero if it does not detect any data errors.

415

Global function CPXwriteprob
int CPXwriteprob(CPXCENVptr env, CPXCLPptr lp, const char * filename_str, const
char * filetype_str)

Definition file: cplex.h

The routine CPXwriteprob writes a CPLEX problem object to a file in one of the formats in the table. These
formats are documented in the CPLEX File Formats Reference Manual and examples of their use appear in the
CPLEX User's Manual.

File formats

SAV Binary matrix and basis file

MPS MPS format

LP CPLEX LP format with names modified to conform to LP format

REW MPS format, with all names changed to generic names

RMP MPS format, with all names changed to generic names

RLP LP format, with all names changed to generic names

When this routine is invoked, the current problem is written to a file. If the file name ends with one of the following
extensions, a compressed file is written.

.bz2 for files compressed with BZip2.•

.gz for files compressed with GNU Zip.•

Microsoft Windows does not support writing compressed files with this API.

Example

 status = CPXwriteprob (env, lp, "myprob.sav", NULL);

See also the example lpex1.c in the CPLEX User's Manual and in the standard distribution.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
filename_str A character string containing the name of the file to which the problem is to be written, unless

otherwise specified with the filetype argument. If the file name ends with .gz or .bz2, a
compressed file is written in accordance with the selected file type.

filetype_str A character string containing the type of the file, which can be one of the values in the table. May
be NULL, in which case the type is inferred from the file name. The string is not case sensitive.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

416

Global function CPXmstwritesolnpoolall
int CPXmstwritesolnpoolall(CPXCENVptr env, CPXCLPptr lp, const char * filename_str)

Definition file: cplex.h

The routine CPXmstwritesolnpoolall writes MIP starts for all of the members of the solution pool to a file in
MST format.

The MST format is an XML format and is documented in the stylesheet solution.xsl and schema
solution.xsd in the include directory of the CPLEX distribution. CPLEX File Formats Reference Manual
also documents this format briefly.

This routine is deprecated. Use CPXwritemipstarts instead.

See Also: CPXmstwrite, CPXwritemipstarts

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to the CPLEX problem object as returned by CPXcreateprob.
filename_str A character string containing the name of the file to which the MIP start information

should be written.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

417

Global function CPXmstwritesolnpool
int CPXmstwritesolnpool(CPXCENVptr env, CPXCLPptr lp, int soln, const char *
filename_str)

Definition file: cplex.h

The routine CPXmstwritesolnpool writes a MIP start, using either the current MIP start or a MIP start from the
solution pool, to a file in MST format.

The MST format is an XML format and is documented in the stylesheet solution.xsl and schema
solution.xsd in the include directory of the CPLEX distribution. CPLEX File Formats Reference Manual
also documents this format briefly.

This routine is deprecated. Use CPXwritemipstarts instead.

See Also: CPXmstwrite, CPXwritemipstarts

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to the CPLEX problem object as returned by CPXcreateprob.
soln An integer specifying the index of the solution pool MIP start which should be written. A value of -1

specifies that the current MIP start should be used instead of a solution pool member.
filename_str A character string containing the name of the file to which the MIP start information should be

written.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

418

Global function CPXNETextract
int CPXNETextract(CPXCENVptr env, CPXNETptr net, CPXCLPptr lp, int * colmap, int *
rowmap)

Definition file: cplex.h

The routine CPXNETextract finds an embedded network in the LP stored in a CPLEX problem object and
copies it as a network to the network problem object, net. The extraction algorithm is controlled by the parameter
CPX_PARAM_NETFIND.

If the CPLEX problem object has a basis, an attempt is made to copy the basis to the network object. However,
this may fail if the status values corresponding to the rows and columns of the subnetworks do not form a basis.
Even if the entire LP is a network, it may not be possible to load the basis to the network object if none of the
slack or artificial variables are basic.

Example

 status = CPXNETextract (env, net, lp, colmap, rowmap);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
colmap If not NULL, after completion colmap[i] contains the index of the LP column that has been mapped

to arc i. If colmap[i] < 0, arc i corresponds to the slack variable for row -colmap[i]-1. The size
of colmap must be at least CPXgetnumcols(env, lp) + CPXgetnumrows(env, lp).

rowmap If not NULL, after completion rowmap[i] contains the index of the LP row that has been mapped to
node i. If rowmap[i] < 0, node i is a dummy node that has no corresponding row in the LP. The size
of rowmap must be least CPXgetnumrows(env, lp) + 1.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

419

Global function CPXsetbranchcallbackfunc
int CPXsetbranchcallbackfunc(CPXENVptr env, int(CPXPUBLIC
*branchcallback)(CALLBACK_BRANCH_ARGS), void * cbhandle)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXsetbranchcallbackfunc sets and modifies the user-written callback routine to be called after
a branch has been selected but before the branch is carried out during MIP optimization. In the callback routine,
the CPLEX-selected branch can be changed to a user-selected branch.

Example

 status = CPXsetbranchcallbackfunc (env, mybranchfunc, mydata);

See also the example admipex1.c in the standard distribution.

Parameters

env

A pointer to the CPLEX environment, as returned by CPXopenCPLEX.

branchcallback

A pointer to a user-written branch callback. If the callback is set to NULL, no callback can be called during
optimization.

cbhandle

A pointer to user private data. This pointer is passed to the callback.

Callback description

 int callback (CPXCENVptr env,
 void *cbdata,
 int wherefrom,
 void *cbhandle,
 int type,
 int sos,
 int nodecnt,
 int bdcnt,
 double *nodeest,
 int *nodebeg,
 int *indices,
 char *lu,
 int *bd,
 int *useraction_p);

The call to the branch callback occurs after a branch has been selected but before the branch is carried out. This
function is written by the user. On entry to the callback, the CPLEX-selected branch is defined in the arguments.
The arguments to the callback specify a list of changes to make to the bounds of variables when child nodes are
created. One, two, or zero child nodes can be created, so one, two, or zero lists of changes are specified in the
arguments. The first branch specified is considered first. The callback is called with zero lists of bound changes

420

when the solution at the node is integer feasible. CPLEX occasionally elects to branch by changing a number of
bounds on variables or by adding constraints to the node subproblem; the branch type is then CPX_TYPE_ANY.
The details of the constraints added for a CPX_TYPE_ANY branch are not available to the user.

You can implement custom branching strategies by calling the CPLEX routine
CPXbranchcallbackbranchbds, CPXbranchcallbackbranchconstraints, or
CPXbranchcallbackbranchgeneral and setting the useraction argument to CPX_CALLBACK_SET. Then
CPLEX will carry out these branches instead of the CPLEX-selected branches.

Branch variables are expressed in terms of the original problem if the parameter CPX_PARAM_MIPCBREDLP is
set to CPX_OFF before the call to CPXmipopt that calls the callback. Otherwise, branch variables are in terms of
the presolved problem.

If you set the parameter CPX_PARAM_MIPCBREDLP to CPX_OFF, you must also disable dual and nonlinear
presolve reductions. To do so, set the parameter CPX_PARAM_REDUCE to 1 (one), and set the parameter
CPX_PARAM_PRELINEAR to 0 (zero).

Callback return value

The callback returns zero if successful and nonzero if an error occurs.

Callback arguments

env

A pointer to the CPLEX environment, as returned by CPXopenCPLEX.

cbdata

A pointer passed from the optimization routine to the user-written callback that identifies the problem being
optimized. The only purpose of this pointer is to pass it to the callback information routines.

wherefrom

An integer value reporting where in the optimization this function was called. It will have the value
CPX_CALLBACK_MIP_BRANCH.

cbhandle

A pointer to user-private data.

int type

An integer that specifies the type of branch. This table summarizes possible values.

Branch Types

Symbolic Constant Value Branch

CPX_TYPE_VAR '0' variable branch

CPX_TYPE_SOS1 '1' SOS1 branch

CPX_TYPE_SOS2 '2' SOS2 branch

CPX_TYPE_ANY 'A' multiple bound changes and/or constraints will be used for branching

sos

An integer that specifies the special ordered set (SOS) used for this branch. A value of -1 specifies that this
branch is not an SOS-type branch.

421

nodecnt

An integer that specifies the number of nodes CPLEX will create from this branch. Possible values are:

0 (zero), or•
1, or•
2.•

If the argument is 0, the node will be fathomed unless user-specified branches are made; that is, no child nodes
are created and the node itself is discarded.

bdcnt

An integer that specifies the number of bound changes defined in the arrays indices, lu, and bd that define
the CPLEX-selected branch.

nodeest

An array with nodecnt entries that contains estimates of the integer objective-function value that will be attained
from the created node.

nodebeg

An array with nodecnt entries. The i-th entry is the index into the arrays indices, lu, and bd of the first bound
changed for the ith node.

indices

Together with lu and bd, this array defines the bound changes for each of the created nodes. The entry
indices[i] is the index for the variable.

lu

Together with indices and bd, this array defines the bound changes for each of the created nodes. The entry
lu[i] is one of the three possible values specifying which bound to change:

'L' for lower bound, or•
'U' for upper bound, or•
'B' for both bounds.•

bd

Together with indices and lu, this array defines the bound changes for each of the created nodes. The entry
bd[i] specifies the new value of the bound.

useraction_p

A pointer to an integer specifying the action for CPLEX to take at the completion of the user callback. The table
summarizes the possible actions.

Actions to be Taken After a User-Written Branch Callback

Value Symbolic Constant Action

0 CPX_CALLBACK_DEFAULT Use CPLEX-selected branch

1 CPX_CALLBACK_FAIL Exit optimization

2 CPX_CALLBACK_SET
Use user-selected branch, as defined by calls to
CPXbranchcallbackbranchbds

Returns:

422

The routine returns zero if successful and nonzero if an error occurs.

423

Global function CPXsolwritesolnpool
int CPXsolwritesolnpool(CPXCENVptr env, CPXCLPptr lp, int soln, const char *
filename_str)

Definition file: cplex.h

The routine CPXsolwrite writes a solution file, using either the incumbent solution or a solution from the
solution pool, for the selected CPLEX problem object. The routine writes files in SOL format, which is an XML
format.

The SOL format is documented in the stylesheet solution.xsl and schema solution.xsd in the include
directory of the CPLEX distribution. CPLEX File Formats Reference Manual also documents this format briefly.

Example

 status = CPXsolwritesolnpool (env, lp, 1, "myfile.sol");

See Also: CPXsolwrite, CPXsolwritesolnpoolall

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
soln An integer specifying the index of the solution pool member which should be written. A value of -1

specifies that the incumbent solution should be used instead of a solution pool member.
filename_str A character string containing the name of the file to which the solution should be written.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

424

Global function CPXqpopt
int CPXqpopt(CPXCENVptr env, CPXLPptr lp)

Definition file: cplex.h

The routineCPXqpopt may be used, at any time after a continuous quadratic program has been created, to find a
solution to that problem using one of the CPLEX quadratic optimizers. The parameter CPX_PARAM_QPMETHOD
controls the choice of optimizer (Dual Simplex, Primal Simplex, or Barrier). With the default setting of this
parameter (that is, Automatic) CPLEX invokes the barrier method because it is fastest on a wide range of
problems.

Example

 status = CPXqpopt (env, lp);

See Also: CPXgetmethod

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to the CPLEX problem object as returned by CPXcreateprob.
Returns:

The routine returns zero unless an error occurred during the optimization. Examples of errors include exhausting
available memory (CPXERR_NO_MEMORY) or encountering invalid data in the CPLEX problem object
(CPXERR_NO_PROBLEM). Exceeding a user-specified CPLEX limit, or proving the model infeasible or unbounded
are not considered errors. Note that a zero return value does not necessarily mean that a solution exists. Use the
query routines CPXsolninfo, CPXgetstat, and CPXsolution to obtain further information about the status of
the optimization.

425

Global function CPXgetmipcallbackfunc
int CPXgetmipcallbackfunc(CPXCENVptr env, int(CPXPUBLIC **callback_p)(CPXCENVptr,
void *, int, void *), void ** cbhandle_p)

Definition file: cplex.h

The routine CPXgetmipcallbackfunc accesses the user-written callback routine to be called prior to solving
each subproblem in the branch-and-cut tree during the optimization of a mixed integer program.

This routine works in the same way as the routine CPXgetlpcallbackfunc. It enables the user to create a
separate callback function to be called during the solution of mixed integer programming problems. The prototype
for the callback function is identical to that of CPXgetlpcallbackfunc.

Parameters

env

A pointer to the CPLEX environment as returned by CPXopenCPLEX.

callback_p

The address of the pointer to the current user-written callback function. If no callback function has been set, the
pointer evaluates to NULL.

cbhandle_p

The address of a variable to hold the user's private pointer.

Example

 status = CPXgetmipcallbackfunc (env, mycallback, NULL);

Callback description

 int callback (CPXCENVptr env,
 void *cbdata,
 int wherefrom,
 void *cbhandle);

This is the user-written callback routine.

Callback return value

A nonzero terminates the optimization.

Callback arguments

env

A pointer to the CPLEX environment that was passed into the associated optimization routine.

cbdata

A pointer passed from the optimization routine to the user-written callback function that identifies the LP problem
being optimized. The only purpose for the cbdata pointer is to pass it to the routine CPXgetcallbackinfo.

wherefrom

An integer value reporting from which optimization algorithm the user-written callback function was called.
Possible values and their meaning appear in this table.

426

Indicators of algorithm that called user-written callback

Value Symbolic Constant Meaning

101 CPX_CALLBACK_MIP From mipopt

107 CPX_CALLBACK_MIP_PROBE
From probing or clique
merging

108 CPX_CALLBACK_MIP_FRACCUT
From Gomory fractional
cuts

109 CPX_CALLBACK_MIP_DISJCUT From disjunctive cuts

110 CPX_CALLBACK_MIP_FLOWMIR
From Mixed Integer
Rounding cuts

cbhandle

Pointer to user private data, as passed to CPXsetmipcallbackfunc.

See Also: CPXgetcallbackinfo

Returns:

The routine returns zero if successful and nonzero if an error occurs.

427

Global function CPXtuneparamprobset
int CPXtuneparamprobset(CPXENVptr env, int filecnt, char ** filename, char **
filetype, int intcnt, const int * intind, const int * intval, int dblcnt, const int
* dblind, const double * dblval, int strcnt, const int * strind, char ** strval,
int * tunestat_p)

Definition file: cplex.h

The routine CPXtuneparamprobset tunes the parameters of the CPLEX environment for improved optimizer
performance for a set of problems. Tuning is carried out by making a number of trial runs with a variety
parameter settings. Parameters and associated values which should not be changed by the tuning process
(known as the fixed parameters) can be specified as arguments.

This routine does not apply to network models, nor to quadratically constrained programming problems (QCP).

After CPXtuneparamprobset has finished, the environment will contain the combined fixed and tuned
parameter settings, which the user can query or write to a file.

All callbacks, except the tuning callback, will be ignored. Tuning will monitor the value set by CPXsetterminate
and terminate when this value is set.

A few of the parameter settings in the environment control the tuning process. They are specified in the table
below; other parameter settings in the environment are ignored.

Parameter Use

CPX_PARAM_TILIM Limits the total time spent tuning

CPX_PARAM_TUNINGTILIM Limits the time of each trial run

CPX_PARAM_TUNINGMEASURE Controls the tuning evaluation measure

CPX_PARAM_TUNINGDISPLAY Controls the level of the tuning display

CPX_PARAM_SCRIND Controls screen output

The value tunestat is 0 (zero) when tuning has completed and nonzero when it has not. The two nonzero
statuses are CPX_TUNE_ABORT, which will be set when the terminate value passed to CPXsetterminate is
set, and CPX_TUNE_TILIM, which will be set when the time limit specified by CPX_PARAM_TILIM is reached.
Tuning will set any parameters which have been chosen even when tuning is not completed.

 status = CPXtuneparamprobset (env, filecnt, filenames, filetypes,
 icnt, inum, ival, dcnt, dnum, dval,
 0, NULL, NULL, &tunestat);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
filecnt An integer that specifies the number of problem files.
filename An array of length filecnt containing problem file names.
filetype An array of length filecnt containing problem file types, as documented in

CPXreadcopyprob. May be NULL; then CPLEX discerns file types from the file
extensions of the file names.

intcnt An integer that specifies the number of integer parameters to be fixed during tuning. This
argument specifies the length of the arrays intnum and intval.

intval An array containing the values for the parameters listed in intnum. May be NULL if
intcnt is 0 (zero).

dblcnt An integer that specifies the number of double parameters to be fixed during tuning. This
specifies the length of the arrays dblnum and dblval.

428

dblval An array containing the values for the parameters listed in dblnum. May be NULL if
dblcnt is 0 (zero).

strcnt An integer that specifies the number of string parameters to be fixed during tuning. This
specifies the length of the arrays strnum and strval.

strval An array containing the values for the parameters listed in strnum. May be NULL if
strcnt is 0 (zero).

tunestat_p A pointer to an integer to receive the tuning status.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

429

Global function CPXreadcopyparam
int CPXreadcopyparam(CPXENVptr env, const char * filename_str)

Definition file: cplex.h

The routine CPXreadcopyparam reads parameter names and settings from the file specified by filename_str
and copies them into CPLEX.

This routine reads and copies files in the PRM format, as created by CPXwriteparam. The PRM format is
documented in the CPLEX File Formats Reference Manual.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
filename_str Name of the file to read and copy into CPLEX.

430

Global function CPXgetnumsemicont
int CPXgetnumsemicont(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetnumsemicont accesses the number of semi-continuous variables in a CPLEX problem
object.

Example

 numsc = CPXgetnumsemicont (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

If the problem object or environment does not exist, CPXgetnumsemicont returns the value 0 (zero); otherwise,
it returns the number of semi-continuous variables in the problem object.

431

Global function CPXNETcheckcopynet
int CPXNETcheckcopynet(CPXCENVptr env, CPXNETptr net, int objsen, int nnodes, const
double * supply, char ** nnames, int narcs, const int * fromnode, const int *
tonode, const double * low, const double * up, const double * obj, char ** aname)

Definition file: cplex.h

The routine CPXNETcheckcopynet performs a consistency check on the arguments passed to the routine
CPXNETcopynet.

The CPXNETcheckcopynet routine has the same argument list as the CPXNETcopynet routine.

Example

 status = CPXNETcheckcopynet (env, net, CPX_MAX, nnodes, supply,
 nnames, narcs, fromnode, tonode,
 lb, ub, obj, anames);

Returns:

The routine returns zero on success and nonzero if an error occurs.

432

Global function CPXgetprotected
int CPXgetprotected(CPXCENVptr env, CPXCLPptr lp, int * cnt_p, int * indices, int
pspace, int * surplus_p)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetprotected accesses the set of variables that cannot be aggregated out.

Note

If the value of pspace is 0, the negative of the value of surplus_p returned specifies the length needed for
array indices.

Example

 status = CPXgetprotected (env, lp, &protectcnt,
 protectind, 10, &surplus);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
cnt_p A pointer to an integer to contain the number of protected variables returned, that is, the true length of

the array indices.
indices The array to contain the indices of the protected variables.
pspace An integer specifying the length of the array indices.
surplus_p A pointer to an integer to contain the difference between pspace and the number of entries in

indices. A nonnegative value of surplus_p specifies that the length of the arrays was sufficient. A
negative value specifies that the length was insufficient and that the routine could not complete its
task. In that case, the routine CPXgetprotected returns the value CPXERR_NEGATIVE_SURPLUS,
and the value of surplus_p specifies the amount of insufficient space in the arrays.

Returns:

The routine returns zero if successful and nonzero if an error occurs. The value CPXERR_NEGATIVE_SURPLUS
specifies that insufficient space was available in the array indices to hold the protected variable indices.

433

Global function CPXgetrowname
int CPXgetrowname(CPXCENVptr env, CPXCLPptr lp, char ** name, char * namestore, int
storespace, int * surplus_p, int begin, int end)

Definition file: cplex.h

The routine CPXgetrowname accesses a range of row names or, equivalently, the constraint names of a CPLEX
problem object. The beginning and end of the range, along with the length of the array in which the row names
are to be returned, must be specified.

Note

If the value of storespace is 0, then the negative of the value of surplus_p returned specifies the total
number of characters needed for the array namestore.

Example

 status = CPXgetrowname (env, lp, cur_rowname, cur_rownamestore,
 cur_storespace, &surplus, 0,
 cur_numrows-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
name An array of pointers to the row names stored in the array namestore. This array must be of length

at least (end - begin + 1). The pointer to the name of row i is returned in name[i-begin].
namestore An array of characters where the specified row names are to be returned. May be NULL if

storespace is 0.
storespace An integer specifying the length of the array namestore. May be 0.
surplus_p A pointer to an integer to contain the difference between storespace and the total amount of

memory required to store the requested names. A nonnegative value of surplus_p specifies that
storespace was sufficient. A negative value specifies that it was insufficient and that the routine
could not complete its task. In that case, CPXgetrowname returns the value
CPXERR_NEGATIVE_SURPLUS, and the negative value of the variable surplus_p specifies the
amount of insufficient space in the array namestore.

begin An integer specifying the beginning of the range of row names to be returned.
end An integer specifying the end of the range of row names to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs. The value CPXERR_NEGATIVE_SURPLUS
specifies that insufficient space was available in the namestore array to hold the names.

434

Global function CPXNETchgbds
int CPXNETchgbds(CPXCENVptr env, CPXNETptr net, int cnt, const int * indices, const
char * lu, const double * bd)

Definition file: cplex.h

The routine CPXNETchgbds is used to change the upper, lower, or both bounds on the flow for a set of arcs in
the network stored in a network problem object. The flow value of an arc can be fixed to a value by setting both
bounds to that value.

Any solution information stored in the problem object is lost.

Example

 status = CPXNETchgbds (env, net, cnt, index, lu, bd);

Indicators to change lower, upper bounds of flows through arcs

lu[i] == 'L' The lower bound of arc index[i] is changed to bd[i]

lu[i] == 'U' The upper bound of arc index[i] is changed to bd[i]

lu[i] == 'B' Both bounds of arc index[i] are changed to bd[i]

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
cnt Number of bounds to change.
indices An array of arc indices that indicate the bounds to be changed. This array must have a length of at least

cnt. All indices must be in the range [0, narcs-1].
lu An array indicating which bounds to change. This array must have a length of at least cnt. The

indicators appear in the table.
bd An array of bound values. This array must have a length of at least cnt. Values greater than or equal to

CPX_INFBOUND and less than or equal to -CPX_INFBOUND are considered infinity or -infinity,
respectively.

Returns:

The routine returns zero on success and nonzero if an error occurs.

435

Global function CPXchgsense
int CPXchgsense(CPXCENVptr env, CPXLPptr lp, int cnt, const int * indices, const
char * sense)

Definition file: cplex.h

The routine CPXchgsense changes the sense of a set of linear constraints of a CPLEX problem object. When
changing the sense of a row to ranged, CPXchgsense sets the corresponding range value to 0 (zero). The
routine CPXchgrngval can then be used to change the range value.

Example

 status = CPXchgsense (env, lp, cnt, indices, sense);

Values of sense

sense[i] = 'L' The new sense is <=

sense[i] = 'E' The new sense is =

sense[i] = 'G' The new sense is >=

sense[i] = 'R' The constraint is ranged

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
cnt An integer that specifies the total number of linear constraints to be changed, and thus represents the

length of the arrays indices and sense.
indices An array of length cnt containing the numeric indices of the rows corresponding to the linear constraints

which are to have their senses changed.
sense An array of length cnt containing characters that tell the new sense of the linear constraints specified in

indices. Possible values appear in the table.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

436

Global function CPXNETgetx
int CPXNETgetx(CPXCENVptr env, CPXCNETptr net, double * x, int begin, int end)

Definition file: cplex.h

The routine CPXNETgetx is used to access solution values or, equivalently, flow values for a range of arcs
stored in a network problem object.

For this routine to succeed, a solution must exist for the network problem object.

Example

 status = CPXNETgetx (env, net, x, 10, 20);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
x Array in which to write solution (or flow) values for requested arcs. If NULL is passed, no

solution vector is returned. Otherwise, x must point to an array of size at least
(end-begin+1).

begin Index of the first arc for which a solution (or flow) value is to be obtained.
end Index of the last arc for which a solution (or flow) value is to be obtained.
Returns:

The routine returns zero on success and nonzero if an error occurs.

437

Global function CPXpreaddrows
int CPXpreaddrows(CPXCENVptr env, CPXLPptr lp, int rcnt, int nzcnt, const double *
rhs, const char * sense, const int * rmatbeg, const int * rmatind, const double *
rmatval, char ** rowname)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXpreaddrows adds rows to an LP problem object and its associated presolved LP problem
object. The CPLEX parameter CPX_PARAM_REDUCE must be set to CPX_PREREDUCE_PRIMALONLY (1) or
CPX_PREREDUCE_NOPRIMALORDUAL (0) at the time of the presolve in order to add rows and preserve the
presolved problem. This routine should be used in place of CPXaddrows) when you want to preserve the
presolved problem.

The arguments of CPXpreaddrows are the same as those of CPXaddrows, with the exception that new columns
may not be added, so there are no ccnt and colname arguments. The new rows are added to both the original
LP problem object and the associated presolved LP problem object.

Examples:

 status = CPXpreaddrows (env, lp, rcnt, nzcnt, rhs, sense, rmatbeg, rmatind,
 rmatval, newrowname);

See also the example adpreex1.c in the standard distribution.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

438

Global function CPXsolwrite
int CPXsolwrite(CPXCENVptr env, CPXCLPptr lp, const char * filename_str)

Definition file: cplex.h

The routine CPXsolwrite writes a solution file for the selected CPLEX problem object. The routine writes files in
SOL format, which is an XML format.

The SOL format is documented in the stylesheet solution.xsl and schema solution.xsd in the include
directory of the CPLEX distribution. CPLEX File Formats Reference Manual also documents this format briefly.

Example

 status = CPXsolwrite (env, lp, "myfile.sol");

See Also: CPXsolwritesolnpool, CPXsolwritesolnpoolall

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
filename_str A character string containing the name of the file to which the solution should be written.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

439

Global function CPXcheckcopyctype
int CPXcheckcopyctype(CPXCENVptr env, CPXCLPptr lp, const char * xctype)

Definition file: cplex.h

The routine CPXcheckcopyctype validates the arguments of the corresponding CPXcopyctype routine. This
data checking routine is found in source format in the file check.c which is provided with the standard CPLEX
distribution. To call this routine, you must compile and link check.c with your program as well as the CPLEX
Callable Library.

The CPXcheckcopyctype routine has the same argument list as the CPXcopyctype routine. The second
argument, lp, is technically a pointer to a constant LP object of type CPXCLPptr rather than type CPXLPptr, as
this routine will not modify the problem. For most user applications, this distinction is unimportant.

Example

 status = CPXcheckcopyctype (env, lp, ctype);

Returns:

The routine returns nonzero if it detects an error in the data; it returns zero if it does not detect any data errors.

440

Global function CPXgetstat
int CPXgetstat(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetstat accesses the solution status of the problem after an LP, QP, QCP, or MIP optimization,
after CPXfeasopt and its extensions, after CPXrefineconflict and its extensions.

Example

 lpstat = CPXgetstat (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

The routine returns the solution status of the most recent optimization performed on the CPLEX problem object.
Nonzero return values are shown in the group optim.cplex.solutionstatus. A return value of 0 (zero) specifies
either an error condition or that a change to the most recently optimized problem may have invalidated the
solution status. For status code CPX_STAT_NUM_BEST, the algorithm could not converge to the requested
tolerances due to numeric difficulties.

The best solution found can be retrieved by the routine CPXsolution. Similarly, when an abort status is
returned, the last solution computed before the algorithm aborted can be retrieved by CPXsolution.

Use the query routines CPXsolninfo and CPXsolution to obtain further information about the current solution
of an LP, QP, or QCP.

441

Global function CPXtightenbds
int CPXtightenbds(CPXCENVptr env, CPXLPptr lp, int cnt, const int * indices, const
char * lu, const double * bd)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXtightenbds changes the upper or lower bounds on a set of variables in a problem. Several
bounds can be changed at once. Each bound is specified by the index of the variable associated with it. The
value of a variable can be fixed at one value by setting both the upper and lower bounds to the same value.

In contrast to the Callable Library routine CPXchgbds, also used to change bounds, CPXtightenbdspreserves
more of the internal CPLEX data structures so it is more efficient for re-optimization, particularly when changes
are made to bounds on basic variables.

Bound Indicators in the argument lu of CPXtightenbds

Value of lu[j] Meaning for bd[j]

U bd[j]is an upper bound

L bd[j]is a lower bound

B bd[j]is the lower and upper bound

Example

 status = CPXtightenbds (env, lp, cnt, indices, lu, bd);

Parameters:

env The pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
cnt An integer specifying the total number of bounds to change. That is, cnt specifies the length of the

arrays indices, lu, and bd.
indices An array containing the numeric indices of the columns corresponding to the variables for which bounds

will be changed. The allocated length of the array is cnt. Column j of the constraint matrix has the
internal index j - 1.

lu An array. This array contains characters specifying whether the corresponding entry in the array bd
specifies the lower or upper bound on column indices[j]. The allocated length of the array is cnt.
The table summarizes the values that entries in this array may assume.

bd An array. This array contains the new values of the upper or lower bounds of the variables present in the
array indices. The allocated length of the array is cnt.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

442

Global function CPXembwrite
int CPXembwrite(CPXCENVptr env, CPXLPptr lp, const char * filename_str)

Definition file: cplex.h

The routine CPXembwrite writes out the network embedded in the selected problem object. MPS format is used.
The specific network extracted depends on the current setting of the parameter CPX_PARAM_NETFIND.

Example

 status = CPXembwrite (env, lp, "myfile.emb");

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
filename_str A character string containing the name of the file to which the embedded network should be

written.

Example

 status = CPXembwrite (env, lp, "myfile.emb");

Returns:

The routine returns zero if successful and nonzero if an error occurs.

443

Global function CPXgetdsbcnt
int CPXgetdsbcnt(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetdsbcnt accesses the number of dual super-basic variables in the current solution.

Example

 dsbcnt = CPXgetdsbcnt (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.

Example

 dsbcnt = CPXgetdsbcnt (env, lp);

Returns:

If a solution exists, CPXgetdsbcnt returns the number of dual super-basic variables. If no solution exists,
CPXgetdsbcnt returns the value 0 (zero).

444

Global function CPXchgprobtypesolnpool
int CPXchgprobtypesolnpool(CPXCENVptr env, CPXLPptr lp, int type, int soln)

Definition file: cplex.h

The routine CPXchgprobtypesolnpool changes the current problem, if it is a mixed integer problem, to a
related fixed problem using a solution from the solution pool. The problem types that can be used appear in the
table.

Table 1: Problem Types

Value Symbolic Constant Meaning

3 CPXPROB_FIXEDMILP Problem with ctype information, integer variables fixed.

8 CPXPROB_FIXEDMIQP Problem with quadratic data and ctype information, integer variables fixed.

A mixed integer problem (CPXPROB_MILP, CPXPROB_MIQP) can be changed to a fixed problem
(CPXPROB_FIXEDMILP, CPXPROB_FIXEDMIQP) where bounds on integer variables are fixed to the values
attained in the integer solution.

Example

 status = CPXchgprobtypesolnpool (env, lp, 1, CPXPROB_FIXEDMILP);

See Also: CPXchgprobtype

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object as returned by CPXcreateprob.
type An integer specifying the target problem type.
soln An integer specifying the index of the solution pool member whose values are to be used. A value of -1

specifies that the incumbent solution should be used instead of a solution pool member.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

445

Global function CPXgetnodecallbackfunc
void CPXgetnodecallbackfunc(CPXCENVptr env, int(CPXPUBLIC
**nodecallback_p)(CALLBACK_NODE_ARGS), void ** cbhandle_p)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetnodecallbackfunc accesses the user-written callback to be called during MIP
optimization after CPLEX has selected a node to explore, but before this exploration is carried out. The callback
routine can change the node selected by CPLEX to a node selected by the user.

For documentation of callback arguments, see the routine CPXsetnodecallbackfunc.

Example

 CPXgetnodecallbackfunc(env, ¤t_callback, ¤t_handle);

See also the example admipex1.c in the standard distribution.

Parameters

env

A pointer to the CPLEX environment, as returned by CPXopenCPLEX.

nodecallback_p

The address of the pointer to the current user-written node callback. If no callback has been set, the pointer will
evaluate to NULL.

cbhandle_p

The address of a variable to hold the user's private pointer.

Returns:

This routine does not return a result.

446

Global function CPXgetobjval
int CPXgetobjval(CPXCENVptr env, CPXCLPptr lp, double * objval_p)

Definition file: cplex.h

The routine CPXgetobjval accesses the solution objective value.

Example

 status = CPXgetobjval (env, lp, &objval);

See also the example lpex2.c in the CPLEX User's Manual and in the standard distribution.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
objval_p A pointer to a variable of type double where the objective value is stored.
Returns:

The routine returns zero if successful and nonzero if no solution exists.

447

Global function CPXgetpsbcnt
int CPXgetpsbcnt(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetpsbcnt accesses the number of primal super-basic variables in the current solution.

Example

 psbcnt = CPXgetpsbcnt (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.

Example

 psbcnt = CPXgetpsbcnt (env, lp);

Returns:

If a solution exists, CPXgetpsbcnt returns the number of primal super-basic variables. If no solution exists,
CPXgetpsbcnt returns the value 0 (zero).

448

Global function CPXgetintparam
int CPXgetintparam(CPXCENVptr env, int whichparam, int * value_p)

Definition file: cplex.h

The routine CPXgetintparam obtains the current value of a CPLEX parameter of type int.

The CPLEX Parameters Reference Manual provides a list of parameters with their types, options, and default
values.

Example

 status = CPXgetintparam (env, CPX_PARAM_PREIND, &curpreind);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
whichparam The symbolic constant (or reference number) of the parameter for which the value is to be

obtained.
value_p A pointer to an integer variable to hold the current value of the CPLEX parameter.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

449

Global function CPXputenv
int CPXputenv(const char * envsetting_str)

Definition file: cplex.h

The routine CPXputenv sets an environment variable to be used by CPLEX. Use it instead of the standard C
Library putenv function to make sure your application ports properly to Windows. Be sure to allocate the
memory dynamically for the string passed to CPXputenv.

As with the C putenv routine, the address of the character string goes directly into the environment. Therefore,
the memory identified by the pointer must remain active throughout the remaining parts of the application where
CPLEX runs. Since global or static variables are not thread safe, the team recommends dynamic memory
allocation of the envsetting string.

Example

 char *envstr = NULL;
 envstr = (char *) malloc (256);
 if (envstr != NULL) {
 strcpy (envstr,
 "ILOG_LICENSE_FILE=c:myapplicenseaccess.ilm");
 CPXputenv (envstr);
 }

Parameters:

envsetting_str A string containing an environment variable assignment. This argument typically sets the
ILOG_LICENSE_FILE environment variable that customizes the location of the license key.

Returns:

The routine returns 0 (zero) when it executes successfully and -1 when it fails.

450

Global function CPXaddlazyconstraints
int CPXaddlazyconstraints(CPXCENVptr env, CPXLPptr lp, int rcnt, int nzcnt, const
double * rhs, const char * sense, const int * rmatbeg, const int * rmatind, const
double * rmatval, char ** rowname)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXaddlazyconstraints adds constraints to the list of constraints that should be added to the LP
subproblem of a MIP optimization if they are violated. CPLEX handles addition of the constraints and makes sure
that all integer solutions satisfy all the constraints. The constraints are added to those specified in prior calls to
CPXaddlazyconstraints.

Lazy constraints are constraints not specified in the constraint matrix of the MIP problem, but that must be not be
violated in a solution. Using lazy constraints makes sense when there are a large number of constraints that must
be satisfied at a solution, but are unlikely to be violated if they are left out.

The CPLEX parameter CPX_PARAM_REDUCE should be set to CPX_PREREDUCE_NOPRIMALORDUAL (0) or to
CPX_PREREDUCE_PRIMALONLY (1) in order to turn off dual reductions.

Use CPXfreelazyconstraints to clear the list of lazy constraints.

The arguments of CPXaddlazyconstraints are the same as those of CPXaddrows, with the exception that
new columns may not be specified, so there are no ccnt and colname arguments. Furthermore, unlike
CPXaddrows, CPXaddlazyconstraints does not accept a NULL pointer for the array of righthand side values
or senses.

Example

 status = CPXaddlazyconstraints (env, lp, cnt, nzcnt, rhs, sense,
 beg, ind, val, NULL);

Values of sense

sense[i] = 'L' <= constraint

sense[i] = 'E' = constraint

sense[i] = 'G' >= constraint

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
rcnt An integer that specifies the number of new lazy constraints to be added.
nzcnt An integer that specifies the number of nonzero constraint coefficients to be added to the constraint

matrix. This specifies the length of the arrays rmatind and rmatval.
rhs An array of length rcnt containing the righthand side (RHS) term for each lazy constraint to be added

to the CPLEX problem object.
sense An array of length rcnt containing the sense of each lazy constraint to be added to the CPLEX

problem object. Possible values of this argument appear in the table.

451

rmatbeg An array used with rmatind and rmatval to define the lazy constraints to be added.
rmatind An array used with rmatbeg and rmatval to define the lazy constraints to be added.
rmatval An array used with rmatbeg and rmatind to define the lazy constraints to be added. The format is

similar to the format used to describe the constraint matrix in the routine CPXcopylp (see description
of matbeg, matcnt, matind, and matval in that routine), but the nonzero coefficients are grouped
by row instead of column in the array rmatval. The nonzero elements of every lazy constraint must
be stored in sequential locations in this array from position rmatbeg[i] to rmatbeg[i+1]-1 (or
from rmatbeg[i] to nzcnt -1 if i=rcnt-1). Each entry, rmatind[i], specifies the column index
of the corresponding coefficient, rmatval[i]. Unlike CPXcopylp, all rows must be contiguous, and
rmatbeg[0] must be 0 (zero).

rowname An array containing pointers to character strings that represent the names of the lazy constraints. May
be NULL, in which case the new lazy constraints are assigned default names if the lazy constraints
already resident in the CPLEX problem object have names; otherwise, no names are associated with
the lazy constraints. If row names are passed to CPXaddlazyconstraints but existing lazy
constraints have no names assigned, default names are created for them.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

452

Global function CPXcheckcopylpwnames
int CPXcheckcopylpwnames(CPXCENVptr env, CPXCLPptr lp, int numcols, int numrows,
int objsen, const double * obj, const double * rhs, const char * sense, const int *
matbeg, const int * matcnt, const int * matind, const double * matval, const double
* lb, const double * ub, const double * rngval, char ** colname, char ** rowname)

Definition file: cplex.h

The routine CPXcheckcopylpwnames validates the arguments of the corresponding CPXcopylpwnames
routine. This data checking routine is found in source format in the file check.c which is provided with the
standard CPLEX distribution. To call this routine, you must compile and link check.c with your application as
well as the CPLEX Callable Library.

The routine CPXcheckcopylpwnames has the same argument list as the routine CPXcopylpwnames. The
second argument, lp, is technically a pointer to a constant LP object of type CPXCLPptr rather than type
CPXLPptr, as this routine will not modify the problem. For most user applications, this distinction is unimportant.

Example

 status = CPXcheckcopylpwnames (env,
 lp,
 numcols,
 numrows,
 objsen,
 obj,
 rhs,
 sense,
 matbeg,
 matcnt,
 matind,
 matval,
 lb,
 ub,
 rngval,
 colname,
 rowname);

Returns:

The routine returns nonzero if it detects an error in the data; it returns zero if it does not detect any data errors.

453

Global function CPXgetrngval
int CPXgetrngval(CPXCENVptr env, CPXCLPptr lp, double * rngval, int begin, int end)

Definition file: cplex.h

The routine CPXgetrngval accesses the RHS range coefficients for a set of constraints in a CPLEX problem
object. The beginning and end of the set must be specified. CPXgetrngval checks if ranged constraints are
present in the problem object.

Example

 status = CPXgetrngval (env, lp, rngval, 0, cur_numrows-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
rngval An array where RHS range coefficients are returned. This array must be of length at least (end - begin

+ 1). A value of 0 for any entry means that the corresponding row is not ranged.
begin An integer specifying the beginning of the set of rows for which RHS range coefficients are returned.
end An integer specifying the end of the set of rows for which RHS range coefficients are returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

454

Global function CPXcloseCPLEX
int CPXcloseCPLEX(CPXENVptr * env_p)

Definition file: cplex.h

This routine frees all of the data structures associated with CPLEX and releases the license. It should be the last
CPLEX routine called in any Callable Library application.

Example

 status = CPXcloseCPLEX (&env);

See also lpex1.c in the CPLEX User's Manual.

Parameters:

env_p A pointer to a variable holding the pointer to the CPLEX environment as returned by CPXopenCPLEX.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

455

Global function CPXgetnodeint
int CPXgetnodeint(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetnodeint accesses the node number of the best known integer solution.

Example

 nodeint = CPXgetnodeint (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.

Example

 nodeint = CPXgetnodeint (env, lp);

Returns:

If no solution, problem, or environment exists, CPXgetnodeint returns a value of -1; otherwise, CPXgetnodeint
returns the node number.

456

Global function CPXchgmipstart
int CPXchgmipstart(CPXCENVptr env, CPXLPptr lp, int cnt, const int * indices, const
double * values)

Definition file: cplex.h

This routine is deprecated. See CPXchgmipstarts instead to change values of several MIP starts.

The routine CPXchgmipstart modifies or extends the incumbent MIP start. If the existing incumbent MIP start
has no value for the variable x[j], for example, and the call to CPXchgmipstart specifies a start value, then
the specified value is added to the incumbent MIP start. If the existing incumbent MIP start already has a value
for x[j], then the new value replaces the old. If the problem has no MIP start, CPXchgmipstart creates one.
Start values may be specified for both integer and continuous variables.

See the routine CPXcopymipstart for more information about how CPLEX uses MIP start information.

Example

 status = CPXchgmipstart (env, lp, cnt, indices, values);

See Also: CPXcopymipstart, CPXchgmipstarts

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
cnt An integer giving the number of entries in the list.
indices An array of length cnt containing the numeric indices of the columns corresponding to the variables

which are assigned starting values.
values An array of length cnt containing the values to use for the starting integer solution. The entry

values[j] is the value assigned to the variable indices[j]. An entry values[j] greater than or
equal to CPX_INFBOUND specifies that no value is set for the variable indices[j].

Returns:

The routine returns zero if successful and nonzero if an error occurs.

457

Global function CPXdelsetsos
int CPXdelsetsos(CPXCENVptr env, CPXLPptr lp, int * delset)

Definition file: cplex.h

The routine CPXdelsetsos deletes a group of special ordered sets (SOSs) from a CPLEX problem object.

Note

The delstat array must have at least CPXgetnumsos(env,lp) elements.

Example

 status = CPXdelsetsos (env, lp, delstat);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
delset An array specifying the SOSs to be deleted. The routine CPXdelsetsos deletes each

SOS j for which delstat[j] = 1. The deletion of SOSs results in a renumbering of the
remaining SOSs. After termination, delstat[j] is either -1 for SOSs that have been
deleted or the new index number that has been assigned to the remaining SOSs.

Note

The delstat array must have at least CPXgetnumsos(env,lp) elements.

Example

 status = CPXdelsetsos (env, lp, delstat);

Returns:

The routine returns zero if successful and nonzero if an error occurs.

458

Global function CPXordwrite
int CPXordwrite(CPXCENVptr env, CPXCLPptr lp, const char * filename_str)

Definition file: cplex.h

The routine CPXordwrite writes a priority order to an ORD file. If a priority order has been associated with the
CPLEX problem object, or the parameter CPX_PARAM_MIPORDTYPE is nonzero, or a MIP feasible solution
exists, this routine writes the priority order into a file.

Example

 status = CPXordwrite (env, lp, "myfile.ord");

See also the example mipex3.c in the standard distribution.

See Also: CPXreadcopyorder

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
filename_str A character string containing the name of the file to which the ORD information should be

written.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

459

Global function CPXgetrhs
int CPXgetrhs(CPXCENVptr env, CPXCLPptr lp, double * rhs, int begin, int end)

Definition file: cplex.h

The routine CPXgetrhs accesses the righthand side coefficients for a range of constraints in a CPLEX problem
object. The beginning and end of the range must be specified.

Example

 status = CPXgetrhs (env, lp, rhs, 0, cur_numrows-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
rhs An array where the specified righthand side coefficients are to be returned. This array must be

of length at least (end - begin + 1). The righthand side of constraint i is returned in rhs[i
- begin].

begin An integer specifying the beginning of the range of righthand side terms to be returned.
end An integer specifying the end of the range of righthand side terms to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

460

Global function CPXgetsolnpoolnummipstarts
int CPXgetsolnpoolnummipstarts(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

This routine is deprecated. Use CPXgetnummipstarts instead.

The routine CPXgetsolnpoolnummipstarts accesses the number of MIP starts stored in the solution pool of
a CPLEX problem object.

Example

 status = CPXgetsolnpoolnummipstarts (env, lp);

See Also: CPXgetnummipstarts

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

If the CPLEX problem object or environment does not exist, CPXgetsolnpoolnummipstarts returns the value
0 (zero); otherwise, it returns the number of MIP starts.

461

Global function CPXgetlogfile
int CPXgetlogfile(CPXCENVptr env, CPXFILEptr * logfile_p)

Definition file: cplex.h

The routine CPXgetlogfile accesses the log file to which messages from all four CPLEX-defined channels are
written.

Example

 status = CPXgetlogfile (env, &logfile);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
logfile_p The address of a CPXFILEptr variable. This routine sets logfile_p to be the file pointer for the

current log file.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

462

Global function CPXgetcallbackindicatorinfo
int CPXgetcallbackindicatorinfo(CPXCENVptr env, void * cbdata, int wherefrom, int
iindex, int whichinfo, void * result_p)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetcallbackindicatorinfo accesses information about the indicator constraints of the
presolved problem during MIP callbacks. When indicator constraints are present, CPLEX creates a presolved
problem with indicator constraints in canonical form, regardless of the presolve settings.

 Canonical Form
 (implying variable = { 0 | 1 }) IMPLIES (implied variable) R rhs

In that canonical form, rhs stands for righthand side and R stands for one of these relations:

less than or equal to•
greater than or equal to•
equal to•

In the original problem, you may have indicator constraints in which the implied constraint has two or more
variables. In contrast, in the canonical form, the implied constraint can have only one variable; moreover, its
coefficient in the constraint must be 1 (one). For example, CPLEX transforms the indicator constraint

 x = 0 -> 3y + z <= 0

into canonical form by introducing an implied variable w, like this:

 w = 3y + z
 x = 0 -> w <= 0

The argument which_info can assume one of the following values in a call to
CPXgetcallbackindicatorinfo:

CPX_CALLBACK_INFO_IC_NUM returns the number of indicator constraints.•
CPX_CALLBACK_INFO_IC_IMPLYING_VAR returns the index of the implying variable of the iindex-th
indicator constraint. If the MIP callback parameter for the reduced LP (CPX_PARAM_MIPCBREDLP) is off
(that is, set to CPX_OFF), the index is in terms of the original problem, and if the index = -1, then the
variable has been created by presolve. Otherwise, the index is in terms of the presolved problem.

•

CPX_CALLBACK_INFO_IC_IMPLIED_VAR returns the index of the implied variable of the iindex-th
indicator constraint. If CPX_PARAM_MIPCBREDLP is set to CPX_OFF, the index is in terms of the original
problem, and if the index = -1, then the variable has been created by presolve. Otherwise, the index is in
terms of the presolved problem.

•

CPX_CALLBACK_INFO_IC_SENSE returns the sense of the iindex-th indicator constraint.•
CPX_CALLBACK_INFO_IC_COMPL returns 0 (zero) if the iindex-th indicator constraint is not
complemented, and 1 (one) otherwise.

•

CPX_CALLBACK_INFO_IC_RHS returns the righthand side of the iindex-th indicator constraint.•
CPX_CALLBACK_INFO_IC_IS_FEASIBLE returns 1 (one) if the implying variable is not 0 (zero) or 1
(one), or if the iindex-th indicator constraint is satisfied at the current node; otherwise, it returns 0
(zero).

•

Parameters:

463

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
cbdata The pointer passed to the user-written callback. This argument must be the value of cbdata passed

to the user-written callback.
wherefrom An integer value that reports where the user-written callback was called from. This argument must be

the value of wherefrom passed to the user-written callback.
iindex An integer, the index of the indicator constraint.
result_p A generic pointer to a variable of type double or int, representing the value returned by

whichinfo.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

464

Global function CPXgetprobname
int CPXgetprobname(CPXCENVptr env, CPXCLPptr lp, char * buf_str, int bufspace, int
* surplus_p)

Definition file: cplex.h

The routine CPXgetprobname accesses the name of the problem set via the call to CPXcreateprob.

Note

If the value of bufspace is 0, then the negative of the value of surplus_p returned specifies the total number
of characters needed for the array buf_str.

Example

 status = CPXgetprobname (env, lp, cur_probname, lenname,
 &surplus);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
buf_str A pointer to a buffer of size bufspace. May be NULL if bufspace is 0.
bufspace An integer specifying the length of the array buf_str. May be 0.
surplus_p A pointer to an integer to contain the difference between bufspace and the amount of memory

required to store the problem name. A nonnegative value of surplus_p specifies that the length of
the array buf_str was sufficient. A negative value specifies that the length of the array was
insufficient and that the routine could not complete its task. In this case, CPXgetprobname returns
the value CPXERR_NEGATIVE_SURPLUS, and the negative value of the variable surplus_p
specifies the amount of insufficient space in the array buf_str.

Returns:

The routine returns zero if successful and nonzero if an error occurs. The value CPXERR_NEGATIVE_SURPLUS
specifies that insufficient space was available in the buf_str array to hold the problem name.

465

Global function CPXgetsolnpoolnumreplaced
int CPXgetsolnpoolnumreplaced(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetsolnpoolnumreplaced accesses the number of solutions replaced in the solution pool.

Example

 numrep = CPXgetsolnpoolnumreplaced (env, lp);

See also the example populate.c in the in the standard distribution.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

If the CPLEX problem object or environment does not exist, CPXgetsolnpoolnumreplaced returns the value
0 (zero); otherwise, it returns the number of solutions which were replaced.

466

Global function CPXgetcallbacknodestat
int CPXgetcallbacknodestat(CPXCENVptr env, void * cbdata, int wherefrom, int *
nodestat_p)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetcallbacknodestat retrieves the optimization status of the subproblem at the current node
from within a user-written callback during MIP optimization.

The optimization status will be either optimal or unbounded. An unbounded status can occur when some of the
constraints are being treated as lazy constraints. When the node status is unbounded, then the function
CPXgetcallbacknodex returns a ray that can be used to decide which lazy constraints need to be added to
the subproblem.

This routine may be called only when the value of the wherefrom argument is CPX_CALLBACK_MIP_CUT.

Example

 status = CPXgetcallbacknodestat (env, cbdata, wherefrom,
 &nodestatus);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
cbdata The pointer passed to the user-written callback. This argument must be the value of

cbdata passed to the user-written callback.
wherefrom An integer value reporting from where the user-written callback was called. The

argument must be the value of wherefrom passed to the user-written callback.
nodestat_p A pointer to an integer where the node subproblem optimization status is to be

returned. The values of *nodestat_p may be CPX_STAT_OPTIMAL or
CPX_STAT_UNBOUNDED.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

467

Global function CPXNETdelset
int CPXNETdelset(CPXCENVptr env, CPXNETptr net, int * whichnodes, int * whicharcs)

Definition file: cplex.h

The routine CPXNETdelset is used to delete a set of nodes and arcs from the network stored in a network
problem object. The remaining nodes and arcs are renumbered starting at zero; their order is preserved.

Any solution information stored in the problem object is lost.

Example

 status = CPXNETdelset (env, net, whichnodes, whicharcs);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
whichnodes Array of size at least CPXNETgetnumnodes that indicates the nodes to be deleted. If

whichnodes[i] == 1, the node is deleted. For every node deleted, all arcs incident to it are
deleted as well. After termination, whichnode[j] indicates either the position to which node with
index j before deletion has been moved or, -1 if the node has been deleted. If NULL is passed, no
nodes are deleted.

whicharcs Array indicating the arc to be deleted. Every arc i in the network with whicharcs[i] == 1 is
deleted. After termination, whicharc[j] indicates either the position to which arc with index j
before deletion has been moved or, -1 if the arc has been deleted. This array also contains the
deletions due to removed nodes. If NULL is passed, the only arcs deleted are those that are
incident to nodes that have been deleted.

Returns:

The routine returns zero on success and nonzero if an error occurs.

468

Global function CPXchgobjsen
void CPXchgobjsen(CPXCENVptr env, CPXLPptr lp, int maxormin)

Definition file: cplex.h

The routine CPXchgobjsen changes the sense of the optimization for a problem, to maximization or
minimization.

Note

For problems with a quadratic objective function, changing the objective sense may make the problem
unsolvable. Further changes to the quadratic coefficients may then be required to restore the convexity
(concavity) of a minimization (maximization) problem.

Values of maxormin

CPX_MIN (1) new sense is minimize

CPX_MAX (-1) new sense is maximize

Example

 CPXchgobjsen (env, lp, CPX_MAX);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
maxormin An integer that specifies the new sense of the problem.
Returns:

This routine does not return a result.

469

Global function CPXchgprobtype
int CPXchgprobtype(CPXCENVptr env, CPXLPptr lp, int type)

Definition file: cplex.h

The routine CPXchgprobtype changes the current problem to a related problem. The problem types that can be
used appear in the table.

Table 1: Problem Types

Value Symbolic Constant Meaning

0 CPXPROB_LP Linear program, no ctype or quadratic data stored.

1 CPXPROB_MILP Problem with ctype information.

3 CPXPROB_FIXEDMILP Problem with ctype information, integer variables fixed.

5 CPXPROB_QP Problem with quadratic data stored.

7 CPXPROB_MIQP Problem with quadratic data and ctype information.

8 CPXPROB_FIXEDMIQP Problem with quadratic data and ctype information, integer variables fixed.

10 CPXPROB_QCP Problem with quadratic constraints.

11 CPXPROB_MIQCP Problem with quadratic constraints and ctype information.

A mixed integer problem (CPXPROB_MILP, CPXPROB_MIQP, or CPXPROB_MIQCP) can be changed to a fixed
problem (CPXPROB_FIXEDMILP, CPXPROB_FIXEDMIQP), or CPXPROB_FIXEDMIQCP, where bounds on integer
variables are fixed to the values attained in the integer solution. A mixed integer problem (or its related fixed type)
can also be changed to a continuous problem (CPXPROB_LPCPXPROB_QP, or CPXPROB_QCP), which causes any
existing ctype values to be permanently discarded from the problem object.

The original mixed integer problem can be recovered from the fixed problem. If the current problem type is
CPXPROB_FIXEDMILP, CPXPROB_FIXEDMIQP, or CPXPROB_FIXEDMIQCP, any calls to problem modification
routines fail. To modify the problem object, the problem type should be changed to CPXPROB_MILP,
CPXPROB_MIQP, or CPXPROB_MIQCP.

Changing a problem from a continuous type to a mixed integer type causes a ctype array to be created such
that all variables are considered continuous. A problem of type CPXPROB_MILP, CPXPROB_MIQP, or
CPXPROB_MIQCP can be solved only by the routine CPXmipopt, even if all of its variables are continuous.

A quadratic problem (CPXPROB_QP, CPXPROB_MIQP, CPXPROB_QCP, or CPXPROB_MIQCP) can be changed to a
linear program (CPXPROB_LP), causing any existing quadratic information to be permanently discarded from the
problem object. Changing a problem from a linear program (CPXPROB_LP or CPXPROB_MILP) to a quadratic
program (CPXPROB_QP or CPXPROB_MIQP) causes an empty quadratic matrix to be created such that the
problem is quadratic with the matrix Q = 0.

Example

 status = CPXchgprobtype (env, lp, CPXPROB_MILP);

See Also: CPXchgprobtypesolnpool

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object as returned by CPXcreateprob.
type An integer specifying the desired problem type. See the previous discussion for possible values.

470

Returns:

The routine returns zero if successful and nonzero if an error occurs.

471

Global function CPXchgmipstarts
int CPXchgmipstarts(CPXCENVptr env, CPXLPptr lp, int mcnt, const int *
mipstartindices, int nzcnt, const int * beg, const int * varindices, const double *
values, const int * effortlevel)

Definition file: cplex.h

The routine CPXchgmipstarts modifies or extends multiple MIP starts. If an existing MIP start has no value for
the variable x[j], for example, and the call to CPXchgmipstarts specifies a start value, then the specified
value is added to the MIP start. If the existing MIP start already has a value for x[j], then the new value
replaces the old. If the MIP starts to be changed do not exist, CPXchgmipstarts will not create them and will
return an error, CPXERR_INDEX_RANGE, instead. Start values may be specified for both integer and continuous
variables.

See the routine CPXaddmipstarts for more information about how CPLEX uses MIP start information.

Example

 status = CPXchgmipstarts (env, lp, mcnt, mipstartindices, nzcnt, beg, varindices, values, effortlevel);

See Also: CPXaddmipstarts

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
mcnt An integer giving the number of MIP starts to be changed. This specifies the length of the array

mipstartindices.
mipstartindices An array of length mcnt containing the numeric indices of the MIP starts to be changed.
nzcnt An integer giving the number of entries to be changed. This specifies the length of the arrays

varindices and values.
beg An array of length mcnt specifying which part of arrays varindices and values concern

which MIP start to be changed. beg[0] must be 0 (zero). The elements specific to each MIP
start i must be stored in sequential locations in arrays varindices and values from position
beg[i] to beg[i+1]-1 (or from beg[i] to nzcnt -1 if i=mcnt-1).

varindices An array of length nzcnt containing the numeric indices of the columns corresponding to the
variables which are assigned starting values.

values An array of length nzcnt containing the values to use for the MIP starts. The entry values[j]
is the value assigned to the variable indices[j]. An entry values[j] greater than or equal
to CPX_INFBOUND specifies that no value is set for the variable indices[j].

Returns:

The routine returns zero if successful and nonzero if an error occurs.

472

Global function CPXgetcallbackseqinfo
int CPXgetcallbackseqinfo(CPXCENVptr env, void * cbdata, int wherefrom, int seqid,
int whichinfo, void * result_p)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetcallbackseqinfo accesses information about nodes during the MIP optimization from
within user-written callbacks. This routine may be called only when the value of its wherefrom argument is
CPX_CALLBACK_MIP_NODE. The information accessed from this routine can also be accessed with the routine
CPXgetcallbacknodeinfo. Nodes are not stored by sequence number but by node number, so using the
routine CPXgetcallbackseqinfo can be much more time-consuming than using the routine
CPXgetcallbacknodeinfo. A typical use of this routine is to obtain the node number of a node for which the
sequence number is known and then use that node number to select the node with the node callback.

Note

This routine cannot retrieve information about nodes that have been moved to node files. (For more information
about node files, see the CPLEX User's Manual.) If the argument seqnum refers to a node in a node file,
CPXgetcallbacknodeinfo returns the value CPXERR_NODE_ON_DISK.

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
cbdata The pointer passed to the user-written callback. This argument must be the value of cbdata passed

to the user-written callback.
wherefrom An integer value reporting where the user-written callback was called from. This argument must be

the value of wherefrom passed to the user-written callback.
seqid The sequence number of the node for which information is requested.
whichinfo An integer specifying which information is requested. For a summary of possible values, refer to the

table titled Information Requested for a User-Written Node Callback in the description of
CPXgetcallbacknodeinfo.

result_p A generic pointer to a variable of type double or int. The variable represents the value returned by
whichinfo. The column C Type in the table titled Information Requested for a User-Written Node
Callback shows the type of various values returned by whichinfo.

Returns:

The routine returns zero if successful and nonzero if an error occurs. The return value CPXERR_NODE_ON_DISK
reports an attempt to access a node currently located in a node file on disk.

473

Global function CPXsetincumbentcallbackfunc
int CPXsetincumbentcallbackfunc(CPXENVptr env, int(CPXPUBLIC
*incumbentcallback)(CALLBACK_INCUMBENT_ARGS), void * cbhandle)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXsetincumbentcallbackfunc sets and modifies the user-written callback routine to be called
when an integer solution has been found but before this solution replaces the incumbent. This callback can be
used to discard solutions that do not meet criteria beyond that of the mixed integer programming formulation.

Variables are in terms of the original problem if the parameter CPX_PARAM_MIPCBREDLP is set to CPX_OFF
before the call to CPXmipopt that calls the callback. Otherwise, variables are in terms of the presolved problem.

Example

 status = CPXsetincumbentcallbackfunc (env, myincumbentcheck,
 mydata);

See also Advanced MIP Control Interface in the CPLEX User's Manual.

Parameters

env

A pointer to the CPLEX environment, as returned by CPXopenCPLEX.

incumbentcallback

A pointer to a user-written incumbent callback. If the callback is set to NULL, no callback can be called during
optimization.

cbhandle

A pointer to user private data. This pointer is passed to the callback.

Callback description

 int callback (CPXCENVptr env,
 void *cbdata,
 int wherefrom,
 void *cbhandle,
 double objval,
 double *x,
 int *isfeas_p,
 int *useraction_p);

The incumbent callback is called when CPLEX has found an integer solution, but before this solution replaces the
incumbent integer solution.

Variables are in terms of the original problem if the parameter CPX_PARAM_MIPCBREDLP is set to CPX_OFF
before the call to CPXmipopt that calls the callback. Otherwise, variables are in terms of the presolved problem.

Callback return value

474

The callback returns zero if successful and nonzero if an error occurs.

Callback arguments

env

A pointer to the CPLEX environment, as returned by CPXopenCPLEX.

cbdata

A pointer passed from the optimization routine to the user-written callback that identifies the problem being
optimized. The only purpose of this pointer is to pass it to the callback information routines.

wherefrom

An integer value reporting where in the optimization this function was called. It will have the value
CPX_CALLBACK_MIP_BRANCH.

cbhandle

A pointer to user private data.

objval

A variable that contains the objective value of the integer solution.

x

An array that contains primal solution values for the integer solution.

isfeas_p

A pointer to an integer variable that determines whether or not CPLEX should use the integer solution specified
in x to replace the current incumbent. A nonzero value states that the incumbent should be replaced by x; a zero
value states that it should not.

useraction_p

A pointer to an integer to contain the specifier of the action to be taken on completion of the user callback. The
table summarizes the possible values.

Actions to be Taken after a User-Written Incumbent Callback

Value Symbolic Constant Action

0 CPX_CALLBACK_DEFAULT Proceed with optimization

1 CPX_CALLBACK_FAIL Exit optimization

2 CPX_CALLBACK_SET Proceed with optimization

See Also: CPXgetincumbentcallbackfunc

Returns:

The routine returns zero if successful and nonzero if an error occurs.

475

Global function CPXcreateprob
CPXLPptr CPXcreateprob(CPXCENVptr env, int * status_p, const char * probname_str)

Definition file: cplex.h

The routine CPXcreateprob creates a CPLEX problem object in the CPLEX environment. The arguments to
CPXcreateprob define an LP problem name. The problem that is created is an LP minimization problem with
zero constraints, zero variables, and an empty constraint matrix. The CPLEX problem object exists until the
routine CPXfreeprob is called.

To define the constraints, variables, and nonzero entries of the constraint matrix, any of the CPLEX LP problem
modification routines may be used. In addition, any of the routines beginning with the prefix CPXcopy may be
used to copy data into the CPLEX problem object. New constraints or new variables can be created with the
routines CPXnewrows or CPXnewcols, respectively.

Example

 lp = CPXcreateprob (env, &status, "myprob");

See also all the Callable Library examples (except those pertaining to networks) in the CPLEX User's Manual.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
status_p A pointer to an integer used to return any error code produced by this routine.
probname_str A character string that specifies the name of the problem being created.
Returns:

If successful, CPXcreateprob returns a pointer that can be passed to other CPLEX routines to identify the
problem object that is created. If not successful, a NULL pointer is returned, and an error status is returned in the
variable *status_p. If the routine is successful, *status_p is 0 (zero).

476

Global function CPXmbasewrite
int CPXmbasewrite(CPXCENVptr env, CPXCLPptr lp, const char * filename_str)

Definition file: cplex.h

The routine CPXmbasewrite writes the most current basis associated with a CPLEX problem object to a file.
The file is saved in BAS format which corresponds to the industry standard MPS insert format for bases.

When CPXmbasewrite is invoked, the current basis is written to a file. This routine does not remove the basis
from the problem object.

Example

 status = CPXmbasewrite (env, lp, "myprob.bas");

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to the CPLEX problem object as returned by CPXcreateprob.
filename_str A character string containing the name of the file to which the basis should be written.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

477

Global function CPXaddsolnpoolrngfilter
int CPXaddsolnpoolrngfilter(CPXCENVptr env, CPXLPptr lp, double lb, double ub, int
nzcnt, const int * ind, const double * val, const char * lname_str)

Definition file: cplex.h

Adds a new range filter to the solution pool.

A range filter drives the search for multiple solutions toward new solutions that satisfy criteria specified as a
ranged linear expression in the filter. A range filter sets a lower and an upper bound on a linear expression
consisting of nzcnt variables designated by their indices in the argument ind and coefficient values designated
in the argument val.

 lower bound <= sum{val[i] times x[ind[i]]} <= upper bound

A range filter applies to variables of any type (that is, binary, general integer, continuous).

Example

 status = CPXaddsolnpoolrngfilter (env, lp, loval, hival,
 cnt, ind, val, NULL);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
lb The lower bound on the linear expression.
ub The upper bound on the linear expression.
nzcnt The number of variables in the linear expression.
ind An array of variable indices that with val defines the linear expression.
val An array of values that with ind defines the linear expression. The nonzero coefficients of the linear

terms must be stored in sequential locations in the arrays ind and val from positions 0 to num-1.
Each entry, ind[i], specifies the variable index of the corresponding coefficient, val[i].

lname_str The name of the filter. May be NULL.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

478

Global function CPXqpdjfrompi
int CPXqpdjfrompi(CPXCENVptr env, CPXCLPptr lp, const double * pi, const double *
x, double * dj)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXqpdjfrompi computes an array of reduced costs from an array of dual values and an array of
primal values for a QP.

Example

 status = CPXqpdjfrompi (env, lp, origpi, reducepi);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
pi An array that contains dual solution (pi) values for a problem, as returned by such routines as

CPXqpuncrushpi and CPXcrushpi. The length of the array must at least equal the number of rows in the
LP problem object.

x An array that contains primal solution (x) values for a problem, as returned by such routines as
CPXuncrushx and CPXcrushx. The length of the array must at least equal the number of columns in the
LP problem object.

dj An array to receive the reduced cost values computed from the pi values for the problem object. The length
of the array must at least equal the number of columns in the problem object.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

479

Global function CPXrefineconflict
int CPXrefineconflict(CPXCENVptr env, CPXLPptr lp, int * confnumrows_p, int *
confnumcols_p)

Definition file: cplex.h

The routine CPXrefineconflict identifies a minimal conflict for the infeasibility of the linear constraints and
the variable bounds in the current problem. Since the conflict returned by this routine is minimal, removal of any
member constraint or variable bound will remove that particular source of infeasibility. There may be other
conflicts in the problem, so that repair of a conflict does not guarantee feasibility of the remaining problem.

To find a conflict by considering the quadratic constraints, indicator constraints, or special ordered sets, as well
as the linear constraints and variable bounds, use CPXrefineconflictext.

When this routine returns, the value in confnumrows_p specifies the number of constraints participating in the
conflict, and the value in confnumcols_p specifies the number of variables participating in the conflict. Use the
routine CPXgetconflict to determine which constraints and variables participate in the conflict.

The parameters CPX_PARAM_CUTUP, CPX_PARAM_CUTLO, CPX_PARAM_OBJULIM, CPX_PARAM_OBJLLIM do
not influence this routine. If you want to study infeasibilities introduced by those parameters, consider adding an
objective function constraint to your model to enforce their effect before you invoke this routine.

Example

 status = CPXrefineconflict (env, lp, NULL, NULL);

See Also: CPXgetconflict, CPXrefineconflictext, CPXclpwrite

Parameters:

env A pointer to the CPLEX environment as returned by the routine CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
confnumrows_p A pointer to an integer where the number of linear constraints in the conflict is returned.
confnumcols_p A pointer to an integer where the number of variable bounds in the conflict is returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

480

Global function CPXcheckvals
int CPXcheckvals(CPXCENVptr env, CPXCLPptr lp, int cnt, const int * rowind, const
int * colind, const double * values)

Definition file: cplex.h

The routine CPXcheckvals checks an array of indices and a corresponding array of values for input errors. The
routine is useful for validating the arguments of problem modification routines such as CPXchgcoeflist,
CPXchgbds, CPXchgobj, and CPXchgrhs. This data checking routine is found in source format in the file
check.c which is provided with the standard CPLEX distribution. To call this routine, you must compile and link
check.c with your program as well as the CPLEX Callable Library.

Example

Consider the following call to CPXchgobj:

 status = CPXchgobj (env, lp, cnt, indices, values);

The arguments to this routine can be checked with a call to CPXcheckvals like this:

 status = CPXcheckvals (env, lp, cnt, NULL, indices, values);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
cnt The length of the indices and values arrays to be examined.
rowind An array containing row indices. May be NULL.
colind An array containing column indices. May be NULL.
values An array of values. May be NULL.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

481

Global function CPXgetindconstrslack
int CPXgetindconstrslack(CPXCENVptr env, CPXCLPptr lp, double * indslack, int
begin, int end)

Definition file: cplex.h

The routine CPXgetindconstrslack accesses the slack values for a range of indicator constraints. The
beginning and end of the range must be specified. Note that an indicator constraint is considered inactive, and
thus returns an infinite slack value, when the corresponding indicator binary takes a value less than the integrality
tolerance (or greater than 1 minus the integrality tolerance if the indicator binary is complemented).

Example

 status = CPXgetindconstrslack (env, lp, indslack, 0, CPXgetnumindconstrs(env,lp)-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
indslack An array to receive the slack values for each of the constraints. This array must be of

length at least (end - begin + 1). If successful, indslack[0] through
indslack[end-begin] contain the values of the slacks.

begin An integer specifying the beginning of the range of slack values to be returned.
end An integer specifying the end of the range of slack values to be returned.
Returns:

The routine returns 0 (zero) if successful and nonzero if an error occurs.

482

Global function CPXgetsosname
int CPXgetsosname(CPXCENVptr env, CPXCLPptr lp, char ** name, char * namestore, int
storespace, int * surplus_p, int begin, int end)

Definition file: cplex.h

The routine CPXgetsosname accesses a range of special ordered set (SOS) names of a CPLEX problem object.
The beginning and end of the range, along with the length of the array in which the SOS names are to be
returned, must be specified.

Note

If the value of storespace is 0 (zero), then the negative of the value of *surplus_p returned specifies the
total number of characters needed for the array namestore.

Example

 status = CPXgetsosname (env, lp, cur_sosname, cur_sosnamestore,
 cur_storespace, &surplus, 0,
 cur_numsos-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
name An array of pointers to the SOS names stored in the array namestore. This array

must be of length at least (end - begin+ 1). The pointer to the name of SOS i is
returned in name[i-begin].

namestore An array of characters where the requested SOS names are to be returned. May be
NULL if storespace is 0 (zero).

storespace An integer specifying the length of the array namestore. May be 0 (zero).
surplus_p A pointer to an integer to contain the difference between storespace and the total

amount of memory required to store the requested names. A nonnegative value of
*surplus_p specifies that storespace was sufficient. A negative value reports
that it was insufficient and that the routine could not complete its task. In that case,
CPXgetsosname returns the value CPXERR_NEGATIVE_SURPLUS, and the negative
value of the variable *surplus_p specifies the amount of insufficient space in the
array namestore.

begin An integer specifying the beginning of the range of sos names to be returned.
end An integer specifying the end of the range of sos names to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs. The value CPXERR_NEGATIVE_SURPLUS
reports that insufficient space was available in the namestore array to hold the names.

483

Global function CPXpresolve
int CPXpresolve(CPXCENVptr env, CPXLPptr lp, int method)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXpresolve performs LP or MIP presolve depending whether a problem object is an LP or a MIP.
If the problem is already presolved, the existing presolved problem is freed, and a new presolved problem is
created.

Example

 status = CPXpresolve (env, lp, CPX_ALG_DUAL);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
method An integer specifying the optimization algorithm to be used to solve the problem after the presolve is

completed. Some presolve reductions are specific to an optimization algorithm, so specifying the
algorithm makes sure that the problem is presolved for that algorithm, and that presolve does not have
to be repeated when that optimization routine is called. Possible values are CPX_ALG_NONE,
CPX_ALG_PRIMAL, CPX_ALG_DUAL, and CPX_ALG_BARRIER for LP; CPX_ALG_NONE should be used
for MIP.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

484

Global function CPXreadcopysolnpoolfilters
int CPXreadcopysolnpoolfilters(CPXCENVptr env, CPXLPptr lp, const char *
filename_str)

Definition file: cplex.h

The routine CPXreadcopysolnpoolfilters reads solution pool filters from an FLT format file and copies the
filters into a CPLEX problem object. This operation replaces all existing filters previously associated with the
CPLEX problem object. This format is documented in the CPLEX File Formats Reference Manual.

Example

 status = CPXreadcopysolnpoolfilters (env, lp, "myfilters.flt");

See Also: CPXfltwrite

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
filename_str The name of the file from which the filters should be read.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

485

Global function CPXcrushpi
int CPXcrushpi(CPXCENVptr env, CPXCLPptr lp, const double * pi, double * prepi)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXcrushpi crushes a dual solution for the original problem to a dual solution for the presolved
problem.

Example

 status = CPXcrushpi (env, lp, origpi, reducepi);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
pi An array that contains dual solution (pi) values for the original problem, as returned by routines such as

CPXgetpi or CPXsolution. The array must be of length at least the number of rows in the LP problem
object.

prepi An array to receive dual values corresponding to the presolved problem. The array must be of length at
least the number of rows in the presolved problem object.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

486

Global function CPXgetqconstr
int CPXgetqconstr(CPXCENVptr env, CPXCLPptr lp, int * linnzcnt_p, int *
quadnzcnt_p, double * rhs_p, char * sense_p, int * linind, double * linval, int
linspace, int * linsurplus_p, int * quadrow, int * quadcol, double * quadval, int
quadspace, int * quadsurplus_p, int which)

Definition file: cplex.h

The routine CPXgetqconstr is used to access a specified quadratic constraint on the variables of a CPLEX
problem object. The length of the arrays in which the nonzero linear and quadratic coefficients of the constraint
are to be returned must be specified.

Note

If the value of linspace is 0 (zero), then the negative of the value of *linsurplus_p returned indicates the
length needed for the arrays linind and linval.

Note

If the value of quadspace is 0 (zero), then the negative of the value of *quadsurplus_p returned indicates
the length needed for the arrays quadrow, quadcol and quadval.

Example

 status = CPXgetqconstr (env, lp, &linnzcnt, &quadnzcnt,
 &rhs, &sense, linind, linval,
 linspace, &linsurplus, quadrow, quadcol, quadval,
 quadspace, &quadsurplus, 0);

Parameters:

env A pointer to the CPLEX environment as returned by the CPXopenCPLEX routine.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
linnzcnt_p A pointer to an integer to contain the number of linear coefficients returned; that is, the true

length of the arrays linind and linval.
quadnzcnt_p A pointer to an integer to contain the number of quadratic coefficients returned; that is, the true

length of the arrays quadrow, quadcol and quadval.
rhs_p A pointer to a double containing the righthand-side value of the quadratic constraint.
sense_p A pointer to a character indicating the sense of the constraint. Possible values are L for a <=

constraint or G for a >= constraint.
linind An array to contain the variable indices of the entries of linval. May be NULL if linspace is

0.
linval An array to contain the linear coefficients of the specified constraint. May be NULL if linspace

is 0.
linspace An integer indicating the length of the arrays linind and linval. May be 0.
linsurplus_p A pointer to an integer to contain the difference between linspace and the number of entries in

each of the arrays linind and linval. A nonnegative value of *linsurplus_p indicates that
the length of the arrays was sufficient. A negative value indicates that the length was insufficient
and that the routine could not complete its task. In this case, the routine CPXgetqconstr
returns the value CPXERR_NEGATIVE_SURPLUS, and the negative value of *linsurplus_p
indicates the amount of insufficient space in the arrays. May be NULL if linspace is 0.

quadrow An array to contain the variable indices of the entries of quadval. If the quadratic coefficients
were stored in a matrix, quadrow would give the row indexes of the quadratic terms. May be
NULL if quadspace is 0.

quadcol An array to contain the variable indices of the entries of quadval. If the quadratic coefficients
were stored in a matrix, quadcol would give the column indexes of the quadratic terms. May be

487

NULL if quadspace is 0.
quadval An array to contain the quadratic coefficients of the specified constraint. May be NULL if

quadspace is 0.
quadspace An integer indicating the length of the arrays quadrow, quadcol and quadval. May be 0.
quadsurplus_p A pointer to an integer to contain the difference between quadspace and the number of entries

in each of the arrays quadrow, quadcol and quadval. A nonnegative value of
*quadsurplus_p indicates that the length of the arrays was sufficient. A negative value
indicates that the length was insufficient and that the routine could not complete its task. In this
case, the routine CPXgetqconstr returns the value CPXERR_NEGATIVE_SURPLUS, and the
negative value of *quadsurplus_p indicates the amount of insufficient space in the arrays.
May be NULL if quadspace is 0.

which An integer indicating which quadratic constraint to return.
Returns:

The routine returns zero on success and nonzero if an error occurs. The value CPXERR_NEGATIVE_SURPLUS
indicates that insufficient space was available in either the arrays linind and linval or quadrow, quadcol,
and quadval to hold the nonzero coefficients.

488

Global function CPXgetrows
int CPXgetrows(CPXCENVptr env, CPXCLPptr lp, int * nzcnt_p, int * rmatbeg, int *
rmatind, double * rmatval, int rmatspace, int * surplus_p, int begin, int end)

Definition file: cplex.h

The routine CPXgetrows accesses a range of rows of the constraint matrix, not including the objective function
nor the bound constraints on the variables of a CPLEX problem object. The beginning and end of the range,
along with the length of the arrays in which the nonzero entries of these rows are to be returned, must be
specified.

Note

If the value of rmatspace is 0 then the negative of the value of surplus_p returned specifies the length
needed for the arrays rmatval and rmatind.

Example

 status = CPXgetrows (env, lp, &nzcnt, rmatbeg, rmatind, rmatval,
 rmatspace, &surplus, 0, cur_numrows-1);

Parameters:

env A pointer to the CPLEX environment as returned by the CPXopenCPLEX routine.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
nzcnt_p A pointer to an integer to contain the number of nonzeros returned; that is, the true

length of the arrays rmatind and rmatval.
rmatbeg An array to contain indices specifying where each of the requested rows begins in the

arrays rmatval and rmatind. Specifically, row i consists of the entries in rmatval
and rmatind in the range from rmatbeg[i - begin] to rmatbeg[(i + 1)-
begin]-1. (Row end consists of the entries from rmatbeg[end - begin] to
*nzcnt_p-1.) This array must be of length at least (end - begin + 1).

rmatind An array to contain the column indices of the entries of rmatval. May be NULL if
rmatspace is 0.

rmatval An array to contain the nonzero entries of the specified rows. May be NULL if
rmatspace is 0.

rmatspace An integer specifying the length of the arrays rmatind and rmatval. May be 0.
surplus_p A pointer to an integer to contain the difference between rmatspace and the number

of entries in each of the arrays rmatind and rmatval. A nonnegative value of
surplus_p specifies that the length of the arrays was sufficient. A negative value
specifies that the length was insufficient and that the routine could not complete its
task. In this case, the routine CPXgetrows returns the value
CPXERR_NEGATIVE_SURPLUS, and the negative value of surplus_p specifies the
amount of insufficient space in the arrays.

begin An integer specifying the beginning of the range of rows to be returned.
end An integer specifying the end of the range of rows to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs. The value CPXERR_NEGATIVE_SURPLUS
specifies that insufficient space was available in the arrays rmatind and rmatval to hold the nonzero
coefficients.

489

Global function CPXstrcpy
CPXCHARptr CPXstrcpy(char * dest_str, const char * src_str)

Definition file: cplex.h

The routine CPXstrcpy copies strings. It is exactly the same as the standard C library routine strcpy. This
routine is provided so that strings passed to the message function routines (see CPXaddfuncdest) can be
copied by languages that do not allow dereferencing of pointers (for example, older versions of Visual Basic).

Example

 CPXstrcpy (p, q);

Parameters:

dest_str A pointer to the string to hold the copy of the string pointed to by src_str.
src_str A pointer to a string to be copied to dest_str.
Returns:

The routine returns a pointer to the string being copied to.

490

Global function CPXgetindconstrindex
int CPXgetindconstrindex(CPXCENVptr env, CPXCLPptr lp, const char * lname_str, int
* index_p)

Definition file: cplex.h

The routine CPXgetindconstrindex searches for the index number of the specified indicator constraint in a
CPLEX problem object.

Example

 status = CPXgetindconstrindex (env, lp, "resource89", &indconstrindex);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
lname_str Name of an indicator constraint to search for.
index_p A pointer to an integer to hold the index number of the indicator constraint with the name

lname_str. If the routine is successful, *index_p contains the index number; otherwise, *index_p
is undefined.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

491

Global function CPXaddqconstr
int CPXaddqconstr(CPXCENVptr env, CPXLPptr lp, int linnzcnt, int quadnzcnt, double
rhs, int sense, const int * linind, const double * linval, const int * quadrow,
const int * quadcol, const double * quadval, const char * lname_str)

Definition file: cplex.h

The routine CPXaddqconstr adds a quadratic constraint to a specified CPLEX problem object. This routine may
be called any time after a call to CPXcreateprob.

Codes for sense of constraints in QCPs

sense[i] = 'L' <= constraint

sense[i] = 'G' >= constraint

Example

 status = CPXaddqconstr (env, lp, linnzcnt, quadnzcnt, rhsval,
 sense, linind, linval,
 quadrow, quadcol, quadval, NULL);

See also the example qcpex1.c in the CPLEX User's Manual and in the standard distribution.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
linnzcnt An integer that indicates the number of nonzero constraint coefficients in the linear part of the

constraint. This specifies the length of the arrays linind and linval.
quadnzcnt An integer that indicates the number of nonzero constraint coefficients in the quadratic part of the

constraint. This specifies the length of the arrays quadrow, quadcol and quadval.
rhs The righthand side term for the constraint to be added.
sense The sense of the constraint to be added. Note that quadratic constraints may only be

less-than-or-equal-to or greater-than-or-equal-to constraints. See the discussion of QCP in the
CPLEX User's Manual.

linind An array that with linval defines the linear part of the quadratic constraint to be added.
linval An array that with linind defines the linear part of the constraint to be added. The nonzero

coefficients of the linear terms must be stored in sequential locations in the arrays linind and
linval from positions 0 to linnzcnt-1. Each entry, linind[i], indicates the variable index of
the corresponding coefficient, linval[i]. May be NULL; then the constraint will have no linear
terms.

quadrow An array that with quadcol and quadval defines the quadratic part of the quadratic constraint to be
added.

quadcol An array that with quadrow and quadval defines the quadratic part of the quadratic constraint to be
added.

quadval An array that with quadrow and quadcol define the quadratic part of the constraint to be added.
The nonzero coefficients of the quadratic terms must be stored in sequential locations in the arrays
quadrow, quadcol and quadval from positions 0 to quadnzcnt-1. Each pair, quadrow[i],
quadcol[i], indicates the variable indices of the quadratic term, and quadval[i] the
corresponding coefficient.

lname_str The name of the constraint to be added. May be NULL, in which case the new constraint is assigned
a default name if the quadratic constraints already resident in the CPLEX problem object have
names; otherwise, no name is associated with the constraint.

Returns:

The routine returns zero on success and nonzero if an error occurs.

492

493

Global function CPXgetcallbacknodelb
int CPXgetcallbacknodelb(CPXCENVptr env, void * cbdata, int wherefrom, double * lb,
int begin, int end)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetcallbacknodelb retrieves the lower bound values for the subproblem at the current node
during MIP optimization from within a user-written callback. The lower bounds are tightened after a new
incumbent is found, so the values returned by CPXgetcallbacknodex may violate these bounds at nodes
where new incumbents have been found. The values are from the original problem if CPX_PARAM_MIPCBREDLP
is set to CPX_OFF; otherwise, they are from the presolved problem.

This routine may be called only when the value of the wherefrom argument is one of the following:

CPX_CALLBACK_MIP,•
CPX_CALLBACK_MIP_BRANCH,•
CPX_CALLBACK_MIP_INCUMBENT,•
CPX_CALLBACK_MIP_NODE,•
CPX_CALLBACK_MIP_HEURISTIC,•
CPX_CALLBACK_MIP_SOLVE, or•
CPX_CALLBACK_MIP_CUT.•

Example

 status = CPXgetcallbacknodelb (env, cbdata, wherefrom,
 lb, 0, cols-1);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
cbdata The pointer passed to the user-written callback. This argument must be the value of

cbdata passed to the user-written callback.
wherefrom An integer value reporting from where the user-written callback was called. The argument

must be the value of wherefrom passed to the user-written callback.
lb An array to receive the values of the lower bound values. This array must be of length at

least (end - begin + 1). If successful, lb[0] through lb[end-begin] contain the
lower bound values for the current subproblem.

begin An integer specifying the beginning of the range of lower bounds to be returned.
end An integer specifying the end of the range of lower bounds to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

494

Global function CPXsetnetcallbackfunc
int CPXsetnetcallbackfunc(CPXENVptr env, int(CPXPUBLIC *callback)(CPXCENVptr, void
*, int, void *), void * cbhandle)

Definition file: cplex.h

The routine CPXsetnetcallbackfunc sets the user-written callback routine to be called each time a log
message is issued during the optimization of a network program. If the display log is turned off, the callback
routine will still be called.

This routine works in the same way as the routine CPXsetlpcallbackfunc. It enables the user to create a
separate callback function to be called during the solution of a network problem. The prototype for the callback
function is identical to that of CPXsetlpcallbackfunc.

Callback description

 int callback (CPXCENVptr env,
 void *cbdata,
 int wherefrom,
 void *cbhandle);

This is the user-written callback routine.

Callback return value

A nonzero terminates the optimization.

Callback arguments

env

A pointer to the CPLEX environment that was passed into the associated optimization routine.

cbdata

A pointer passed from the optimization routine to the user-written callback function that identifies the problem
being optimized. The only purpose for the cbdata pointer is to pass it to the routine CPXgetcallbackinfo.

wherefrom

An integer value specifying from which optimization algorithm the user-written callback function was called.
Possible values and their meaning appear in the table.

Value Symbolic Constant Meaning

3 CPX_CALLBACK_NETWORK From network simplex

cbhandle

Pointer to user private data, as passed to CPXsetnetcallbackfunc.

Parameters

env

A pointer to the CPLEX environment as returned by CPXopenCPLEX.

callback

495

A pointer to a user-written callback function. Setting callback to NULL prevents any callback function from
being called during optimization. The call to callback occurs after every log message is issued during
optimization and periodically during the CPLEX presolve algorithms. This function is written by the user.

cbhandle

A pointer to user private data. This pointer is passed to the callback function.

Example

 status = CPXsetnetcallbackfunc (env, myfunc, NULL);

See Also: CPXgetcallbackinfo, CPXsetlpcallbackfunc, CPXsetmipcallbackfunc

Returns:

If the operation is successful, the routine returns zero; if not, it returns nonzero to report an error.

496

Global function CPXgetquad
int CPXgetquad(CPXCENVptr env, CPXCLPptr lp, int * nzcnt_p, int * qmatbeg, int *
qmatind, double * qmatval, int qmatspace, int * surplus_p, int begin, int end)

Definition file: cplex.h

The routine CPXgetquad is used to access a range of columns of the matrix Q of a model with a quadratic
objective function. The beginning and end of the range, along with the length of the arrays in which the nonzero
entries of these columns are to be returned, must be specified.

Specifically, column j consists of the entries in qmatval and qmatind in the range from qmatbeg[j -
begin] to qmatbeg[(j + 1) - begin]-1. (Column end consists of the entries from qmatbeg[end -
begin] to nzcnt_p-1.) This array must be of length at least (end - begin + 1).

Note

If the value of qmatspace is zero, the negative of the value of surplus_p returned indicates the length
needed for the arrays qmatind and qmatval.

Example

 status = CPXgetquad (env, lp, &nzcnt, qmatbeg, qmatind,
 qmatval, qmatspace, &surplus, 0,
 cur_numquad-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
nzcnt_p A pointer to an integer to contain the number of nonzeros returned; that is, the true length of the

arrays qmatind and qmatval.
qmatbeg An array to contain indices indicating where each of the requested columns of Q begins in the arrays

qmatval and qmatind.
qmatind An array to contain the row indices associated with the elements of qmatval. May be NULL if

qmatspace is zero.
qmatval An array to contain the nonzero coefficients of the specified columns. May be NULL if qmatspace is

zero.
qmatspace An integer indicating the length of the arrays qmatind and qmatval. May be zero.
surplus_p A pointer to an integer to contain the difference between qmatspace and the number of entries in

each of the arrays qmatind and qmatval. A nonnegative value of *surplus_p indicates that the
length of the arrays was sufficient. A negative value indicates that the length was insufficient and
that the routine could not complete its task. In this case, CPXgetquad returns the value
CPXERR_NEGATIVE_SURPLUS, and the negative value of *surplus_p indicates the amount of
insufficient space in the arrays.

begin An integer indicating the beginning of the range of columns to be returned.
end An integer indicating the end of the range of columns to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs. The value CPXERR_NEGATIVE_SURPLUS
indicates that insufficient space was available in the arrays qmatind and qmatval to hold the nonzero
coefficients.

497

Global function CPXNETgetobjval
int CPXNETgetobjval(CPXCENVptr env, CPXCNETptr net, double * objval_p)

Definition file: cplex.h

The routine CPXNETgetobjval returns the objective value of the solution stored in a network problem object.

If the current solution is not feasible, the value returned depends on the setting of the parameter
CPX_PARAM_NETDISPLAY. If this parameter is set to CPXNET_PENALIZED_OBJECTIVE (2), an objective
function value is reported that includes penalty contributions for arcs on which the flow at termination violated the
flow bounds on that arc.

Example

 status = CPXNETgetobjval (env, net, &objval);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
objval_p Pointer to where the objective value is written. If NULL is passed, no objective value is returned.
Returns:

The routine returns zero on success and nonzero if an error occurs.

498

Global function CPXstrongbranch
int CPXstrongbranch(CPXCENVptr env, CPXLPptr lp, const int * indices, int cnt,
double * downobj, double * upobj, int itlim)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXstrongbranch computes information for selecting a branching variable in an
integer-programming branch-and-cut search.

To describe this routine, let's assume that an LP has been solved and that the optimal solution is resident. Let
indices[] be the list of variable indices for this problem and cnt be the length of that list. Then indices[]
gives rise to 2*cnt different LPs in which each of the listed variables in turn is fixed to the greatest integer value
less than or equal to its value in the current optimal solution, and then each variable is fixed to the least integer
value greater than or equal to its value in the current optimal solution. CPXstrongbranch performs at most
itlim dual steepest-edge iterations on each of these 2*cnt LPs, starting from the current optimal solution of
the base LP. The objective values that these iterations yield are placed in the arrays downobj[] for the
downward fix and upobj[] for the upward fix. If either of the fixings results in a problem which is dual
unbounded (primal infeasible), the corresponding objective value is set to a large positive value for a
minimization problem and a large negative value for a maximization problem. This value is system dependent,
but it is usually of magnitude 1.0e+75. Setting CPX_PARAM_DPRIIND to 2 may give more informative values for
the arguments downobj[] and upobj[] for a given number of iterations itlim.

A user might use other routines of the Callable Library directly to build a function that computes the same values
as CPXstrongbranch. However, CPXstrongbranch should be faster because it takes advantage of direct
access to internal CPLEX data structures.

Parameters:

env The pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
indices An array of integers. The length of the array must be at least cnt. As in other Callable Library routines,

row variables in indices[] are specified by the negative of row index shifted down by one; that is,
-rowindex -1.

cnt An integer specifying the number of entries in indices[].
downobj An array containing objective values that are the result of the downward fix of branching variables in

dual steepest-edge iterations carried out by CPXstrongbranch. The length of the array must be at
least cnt.

upobj An array containing objective values that are the result of the upward fix of branching variables in dual
steepest-edge iterations carried out by CPXstrongbranch. The length of the array must be at least
cnt.

itlim An integer specifying the limit on the number of dual steepest-edge iterations carried out by
CPXstrongbranch on each LP.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

499

Global function CPXaddindconstr
int CPXaddindconstr(CPXCENVptr env, CPXLPptr lp, int indvar, int complemented, int
nzcnt, double rhs, int sense, const int * linind, const double * linval, const char
* indname_str)

Definition file: cplex.h

The routine CPXaddindconstr adds an indicator constraint to the specified problem object. This routine may be
called any time after a call to CPXcreateprob.

An indicator constraint is a linear constraint that is enforced only:

when an associated binary variable takes a value of 1, or•
when an associated binary variable takes the value of 0 (zero) if the binary variable is complemented.•

The linear constraint may be a less-than-or-equal-to constraint, a greater-than-or-equal-to constraint, or an
equality constraint.

Codes for the sense of a linear constraint

sense = 'L' <= constraint

sense = 'G' >= constraint

sense = 'E' == constraint

Example

 status = CPXaddindconstr (env, lp, indicator, complemented, nzcnt,
 rhs, sense, ind, val, newindname);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
indvar The binary variable that acts as the indicator for this constraint.
complemented A Boolean value that specifies whether the indicator variable is complemented. The linear

constraint must be satisfied when the indicator takes a value of 1 (one) if the indicator is not
complemented, and similarly, the linear constraint must be satisfied when the indicator takes a
value of 0 (zero) if the indicator is complemented.

nzcnt An integer that specifies the number of nonzero coefficients in the linear portion of the indicator
constraint. This argument gives the length of the arrays linind and linval.

rhs The righthand side value for the linear portion of the indicator constraint.
sense The sense of the linear portion of the indicator constraint. Specify 'L' for <= or 'G' for >= or 'E' for

==.
linind An array that with linval defines the linear portion of the indicator constraint.
linval An array that with linind defines the linear portion of the indicator constraint. The nonzero

coefficients of the linear terms must be stored in sequential locations in the arrays linind and
linval from positions 0 to nzcnt-1. Each entry, linind[i], indicates the variable index of
the corresponding coefficient, linval[i].

indname_str The name of the constraint to be added. May be NULL, in which case the new constraint is
assigned a default name if the indicator constraints already resident in the CPLEX problem
object have names; otherwise, no name is associated with the constraint.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

500

Global function CPXdualopt
int CPXdualopt(CPXCENVptr env, CPXLPptr lp)

Definition file: cplex.h

The routine CPXdualopt may be used at any time after a linear program has been created via a call to
CPXcreateprob to find a solution to that problem using the dual simplex algorithm. When this function is called,
the CPLEX dual simplex optimization routines attempt to optimize the specified problem. The results of the
optimization are recorded in the CPLEX problem object.

Example

 status = CPXdualopt (env, lp);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
Returns:

The routine returns zero unless an error occurred during the optimization. Examples of errors include exhausting
available memory (CPXERR_NO_MEMORY) or encountering invalid data in the CPLEX problem object
(CPXERR_NO_PROBLEM).

Exceeding a user-specified CPLEX limit is not considered an error. Proving the problem infeasible or unbounded
is not considered an error.

A zero return value does not necessarily mean that a solution exists. Use query routines CPXsolninfo,
CPXgetstat, and CPXsolution to obtain further information about the status of the optimization.

501

Global function CPXNETgetsupply
int CPXNETgetsupply(CPXCENVptr env, CPXCNETptr net, double * supply, int begin, int
end)

Definition file: cplex.h

The routine CPXNETgetsupply is used to obtain supply values for a range of nodes in the network stored in a
CPLEX network problem object.

Example

 status = CPXNETgetsupply (env, net, supply,
 0, CPXNETgetnumnodes (env, net) - 1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
supply Place where requested supply values are copied. If NULL is passed, no supply values are copied.

Otherwise, the array must be of length at least (end-begin+1).
begin Index of the first node for which a supply value is to be obtained.
end Index of the last node for which a supply value is to be obtained.
Returns:

The routine returns zero on success and nonzero if an error occurs.

502

Global function CPXbasicpresolve
int CPXbasicpresolve(CPXCENVptr env, CPXLPptr lp, double * redlb, double * redub,
int * rstat)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXbasicpresolve performs bound strengthening and detects redundant rows.
CPXbasicpresolve does not create a presolved problem.

This routine cannot be used for quadratic programs.

Values for rstat[i]:

0 if row i is not redundant

-1 if row i is redundant

In the case of a semicontinous variable or a semi-integer variable, this routine produces the lower bound, not the
semicontinous bound, not the semi-integer lower bound. If the strengthened bound is a value less than or equal
to zero, the semicontinuity or semi-integrality persists. In contrast, if the strengthened bound is a value strictly
greater than zero, then this routine has concluded that zero can be eliminated from the domain of the variable. It
is thus possible to change the type of a semicontinuous variable to continous, or to change the type of a
semi-integer variable to integer, without affecting the feasible region of the model.

Example

 status = CPXbasicpresolve (env, lp, reducelb, reduceub, rowstat);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
redlb An array to receive the strengthened lower bounds. The array must be of length at least the number of

columns in the LP problem object. May be NULL.
redub An array to receive the strengthened upper bounds. The array must be of length at least the number of

columns in the LP problem object. May be NULL.
rstat An array to receive the status of the row. The array must be of length at least the number of rows in the

LP problem object. May be NULL.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

503

Global function CPXchgname
int CPXchgname(CPXCENVptr env, CPXLPptr lp, int key, int ij, const char *
newname_str)

Definition file: cplex.h

The routine CPXchgname changes the name of a constraint or the name of a variable in a CPLEX problem
object. If this routine is performed on a problem object with no row or column names, default names are created
before the change is made.

Example

 status = CPXchgname (env, lp, 'c', 10, "name10");

Values of key

key = 'r' change row name

key = 'c' change column name

See Also: CPXdelnames

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
key A character to specify whether a row name or a column name should be changed. Possible

values appear in the table.
ij An integer that specifies the numeric index of the column or row whose name is to be changed.
newname_str A pointer to a character string containing the new name.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

504

Global function CPXpperwrite
int CPXpperwrite(CPXCENVptr env, CPXLPptr lp, const char * filename_str, double
epsilon)

Definition file: cplex.h

When solving degenerate linear programs with the primal simplex method, CPLEX may initiate a perturbation of
the bounds of the problem in order to improve performance. The routine CPXpperwrite writes a similarly
perturbed problem to a binary SAV format file.

Example

 status = CPXpperwrite (env, lp, "myprob.ppe", epsilon);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
filename_str A character string containing the name of the file to which the perturbed problem should

be written.
epsilon The perturbation constant.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

505

Global function CPXcopysos
int CPXcopysos(CPXCENVptr env, CPXLPptr lp, int numsos, int numsosnz, const char *
sostype, const int * sosbeg, const int * sosind, const double * soswt, char **
sosname)

Definition file: cplex.h

The routine CPXcopysos copies special ordered set (SOS) information to a problem object of type
CPXPROB_MILP, CPXPROB_MIQP, or CPXPROB_MIQCP.

When you build or modify your problem with this routine, you can verify that the results are as you intended by
calling CPXcheckcopysos during application development.

Table 1: Settings for sostype

CPX_TYPE_SOS1 '1' Type 1

CPX_TYPE_SOS2 '2' Type 2

Example

 status = CPXcopysos (env,
 lp,
 numsos,
 numsosnz,
 sostype,
 sosbeg,
 sosind,
 soswt,
 NULL);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
numsos The number of SOS sets. If numsos is equal to zero, CPXcopysos removes all the SOSs from the

LP object.
numsosnz The total number of members in all sets. CPXcopysos with numsosnz equal to zero removes all the

SOSs from the LP object.
sostype An array containing SOS type information for the sets. sostype[i] specifies the SOS type of set i,

according tot the settings in Table 1. The length of this array must be at least numsos.
sosbeg An array stating beginning indices as explained in soswt.
sosind An array stating indices as explained in soswt.
soswt Arrays declaring the indices and weights for the sets. For every set, the indices and weights must be

stored in sequential locations in sosind and soswt, respectively, with sosbeg[j] containing the
index of the beginning of set j. The weights must be unique in their array. For j < numsos-1 the
indices of set j must be stored in sosind[sosbeg[j]],..., sosind[sosbeg[j+1]-1] and
the weights in soswt[sosbeg[j],..., soswt[sosbeg[j+1]-1]. For the last set, j =
numsos-1, the indices must be stored in sosind[sosbeg[numsos-1]],...,
sosind[numsosnz-1] and the corresponding weights in soswt[sosbeg[numsos-1]] ...,
soswt[numsosnz-1]. Hence, sosbeg must be of length at least numsos, while sosind and
soswt must be of length at least numsosnz.

sosname An array containing pointers to character strings that represent the names of the SOSs. May be
NULL.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

506

Global function CPXgetnetcallbackfunc
int CPXgetnetcallbackfunc(CPXCENVptr env, int(CPXPUBLIC **callback_p)(CPXCENVptr,
void *, int, void *), void ** cbhandle_p)

Definition file: cplex.h

The CPXgetnetcallbackfunc accesses the user-written callback routine to be called each time a log
message is issued during the optimization of a network problem. If the display log is turned off, the callback
routine is still called.

This routine works in the same way as the routine CPXgetlpcallbackfunc. It enables the user to create a
separate callback function to be called during the solution of a network problem. The prototype for the callback
function is identical to that of CPXgetlpcallbackfunc.

Callback description

 int callback (CPXCENVptr env,
 void *cbdata,
 int wherefrom,
 void *cbhandle);

This is the user-written callback routine.

Callback return value

A nonzero terminates the optimization.

Callback arguments

env

A pointer to the CPLEX environment that was passed into the associated optimization routine.

cbdata

A pointer passed from the optimization routine to the user-written callback function that identifies the problem
being optimized. The only purpose for the cbdata pointer is to pass it to the routine CPXgetcallbackinfo.

wherefrom

An integer value specifying which optimization algorithm the user-written callback function was called from.
Possible values and their meaning appear in the table.

Value Symbolic Constant Meaning

3 CPX_CALLBACK_NETWORK From network simplex

cbhandle

Pointer to user private data, as passed to CPXsetlpcallbackfunc.

Parameters

env

A pointer to the CPLEX environment as returned by CPXopenCPLEX.

callback

507

The address of the pointer to the current user-written callback function. If no callback function has been set, the
pointer evaluates to NULL.

cbhandle_p

The address of a variable to hold the private pointer of the user.

Example

 status = CPXgetnetcallbackfunc (env, mycallback, NULL);

See Also: CPXgetcallbackinfo

Returns:

A nonzero terminates the optimization.

508

Global function CPXfeasopt
int CPXfeasopt(CPXCENVptr env, CPXLPptr lp, const double * rhs, const double * rng,
const double * lb, const double * ub)

Definition file: cplex.h

The routine CPXfeasopt computes a minimum-cost relaxation of the righthand side values of constraints or
bounds on variables in order to make an infeasible problem feasible. The routine also computes a relaxed
solution vector that can be queried with CPXsolution, CPXgetcolinfeas for columns, CPXgetrowinfeas
for rows, CPXgetsosinfeas for special ordered sets.

If CPXfeasopt finds a feasible solution, it returns the solution and the corresponding objective in terms of the
original model.

This routine supports several options for the metric used to determine what constitutes a minimum-cost
relaxation. These options are controlled by the parameter CPX_PARAM_FEASOPTMODE which can take the
following values:

CPX_FEASOPT_MIN_SUM 0•
CPX_FEASOPT_OPT_SUM 1•
CPX_FEASOPT_MIN_INF 2•
CPX_FEASOPT_OPT_INF 3•
CPX_FEASOPT_MIN_QUAD 4•
CPX_FEASOPT_OPT_QUAD 5•

It can minimize the weighted sum of the penalties for relaxations (denoted by SUM).•
It can minimize the weighted number of relaxed bounds and constraints (denoted by INF).•
It can minimize the weighted sum of the squared penalties of the relaxations (denoted by QUAD).•

This routine can also optionally perform a secondary optimizaton (denoted by OPT in the name of the option),
where it optimizes the original objective function over all possible relaxations for which the relaxation metric does
not exceed the amount computed in the first phase. These options are controlled by the parameter
CPX_PARAM_FEASOPTMODE. Thus, for example, the value CPX_FEASOPT_MIN_SUM denotes that CPXfeasopt
should find a relaxation that minimizes the weighted sum of relaxations. Similarly, the value
CPX_FEASOPT_OPT_INF specifies that CPXfeasopt should find a solution that optimizes the original objective
function, choosing from among all possible relaxations that minimize the number of relaxed constraints and
bounds.

If you use INF mode, the resulting feasopt problems will be MIPs even if your problem is continuous. Similarly, if
you use QUAD mode, the feasopt problems will become quadratic even if your original problem is linear. This
change in problem type can result in higher than expected solve times.

The user can specify preferences associated with relaxing a bound or righthand side value through input values
of the rhs, rng, lb, and ub arguments. The input value denotes the user's willingness to relax a constraint or
bound. More precisely, the reciprocal of the specified preference is used to weight the relaxation of that
constraint or bound. For example, consider a preference of p on a constraint that is relaxed by 2 units. The
penalty of this relaxation will be 1/p when minimizing the weighted number of infeasibilities; the penalty will be 2/p
when minimizing the weighted sum of infeasibilities; and the penalty will be 4/p when minimizing the weighted
sum of the squares of the infeasibilities. The user may specify a preference less than or equal to 0 (zero), which
denotes that the corresponding constraint or bound must not be relaxed.

To determine whether CPXfeasopt found relaxed values to make the problem feasible, call the routine
CPXsolninfo for continuous problems or CPXgetstat for any problem type. CPXsolninfo will return a value
of CPX_NO_SOLN for the argument solntype_p if CPXfeasopt could not find a feasible relaxation. Otherwise,
it will return one of the following, depending on the value of CPX_PARAM_FEASOPTMODE:

CPX_STAT_FEASIBLE_RELAXED_SUM•
CPX_STAT_OPTIMAL_RELAXED_SUM•
CPX_STAT_FEASIBLE_RELAXED_INF•
CPX_STAT_OPTIMAL_RELAXED_INF•

509

CPX_STAT_FEASIBLE_RELAXED_QUAD•
CPX_STAT_OPTIMAL_RELAXED_QUAD•

For a MIP problem, the routine CPXgetstat will return a value of CPXMIP_INFEASIBLE or
CPX_STAT_INFEASIBLE if it could not find a feasible relaxation. Otherwise, it will return one of the following,
depending on the value of CPX_PARAM_FEASOPTMODE:

CPXMIP_FEASIBLE_RELAXED_SUM•
CPXMIP_OPTIMAL_RELAXED_SUM•
CPXMIP_FEASIBLE_RELAXED_INF•
CPXMIP_OPTIMAL_RELAXED_INF•
CPXMIP_FEASIBLE_RELAXED_QUAD•
CPXMIP_OPTIMAL_RELAXED_QUAD•

The routine CPXfeasopt accepts all problem types. However, it does not allow you to relax quadratic constraints
nor indicator constraints; use the routine CPXfeasoptext for that purpose.

The parameters CPX_PARAM_CUTUP, CPX_PARAM_CUTLO, CPX_PARAM_OBJULIM, CPX_PARAM_OBJLLIM do
not influence this routine. If you want to study infeasibilities introduced by those parameters, consider adding an
objective function constraint to your model to enforce their effect before you invoke this routine.

Example

 status = CPXfeasopt (env, lp, rhs, rng, lb, ub);

Parameters

env

A pointer to the CPLEX environment as returned by CPXopenCPLEX.

lp

A pointer to a CPLEX problem object as returned by CPXcreateprob.

rhs

An array of doubles of length at least equal to the number of rows in the problem. NULL may be specified if no
rhs values are allowed to be relaxed. When not NULL, the array specifies the preference values that determine
the cost of relaxing each constraint.

rng

An array of doubles of length at least equal to the number of rows in the problem. NULL may be specified if no
range values are allowed to be relaxed or none are present in the active problem. When not NULL, the array
specifies the preference values that determine the cost of relaxing each range.

lb

An array of doubles of length at least equal to the number of columns in the problem. NULL may be passed if no
lower bound of any variable is allowed to be relaxed. When not NULL, the array specifies the preference values
that determine the cost of relaxing each lower bound.

ub

An array of doubles of length at least equal to the number of columns in the problem. NULL may be passed if no
upper bound of any variable is allowed to be relaxed. When not NULL, the array specifies the preference values
that determine the cost of relaxing each upper bound.

Returns:

510

The routine returns zero if successful and nonzero if an error occurs.

511

Global function CPXgetsubstat
int CPXgetsubstat(CPXCENVptr env, CPXCLPptr lp)

Definition file: cplex.h

The routine CPXgetsubstat accesses the solution status of the last subproblem optimization, in the case of an
error termination during mixed integer optimization.

Example

 substatus = CPXgetsubstat (env, lp);

See Also: CPXgetsubmethod

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.

Example

 substatus = CPXgetsubstat (env, lp);

Returns:

The routine returns zero if no solution exists. A nonzero return value reports that there was an error termination
where a subproblem could not be solved to completion. The values returned are documented in the group
optim.cplex.callable.solutionstatus in the reference manual of the API.

512

Global function CPXsetlpcallbackfunc
int CPXsetlpcallbackfunc(CPXENVptr env, int(CPXPUBLIC *callback)(CPXCENVptr, void
*, int, void *), void * cbhandle)

Definition file: cplex.h

The routine CPXsetlpcallbackfunc modifies the user-written callback routine to be called after each iteration
during the optimization of a linear program, and also periodically during the CPLEX presolve algorithm.

Callback description

 int callback (CPXCENVptr env,
 void *cbdata,
 int wherefrom,
 void *cbhandle);

This is the user-written callback routine.

Callback return value

A nonzero terminates the optimization.

Callback arguments

env

A pointer to the CPLEX environment that was passed into the associated optimization routine.

cbdata

A pointer passed from the optimization routine to the user-written callback function that identifies the problem
being optimized. The only purpose for the cbdata pointer is to pass it to the routine CPXgetcallbackinfo.

wherefrom

An integer value specifying from which optimization algorithm the user-written callback function was called.
Possible values and their meaning appear in the table below.

Value Symbolic Constant Meaning

1 CPX_CALLBACK_PRIMAL From primal simplex

2 CPX_CALLBACK_DUAL From dual simplex

4 CPX_CALLBACK_PRIMAL_CROSSOVER From primal crossover

5 CPX_CALLBACK_DUAL_CROSSOVER From dual crossover

6 CPX_CALLBACK_BARRIER From barrier

7 CPX_CALLBACK_PRESOLVE From presolve

8 CPX_CALLBACK_QPBARRIER From QP barrier

9 CPX_CALLBACK_QPSIMPLEX From QP simplex

cbhandle

Pointer to user private data, as passed to CPXsetlpcallbackfunc.

Parameters

513

env

A pointer to the CPLEX environment as returned by CPXopenCPLEX.

myfunc

A pointer to a user-written callback function. Setting callback to NULL prevents any callback function from
being called during optimization. The call to callback occurs after every iteration during optimization and
periodically during the CPLEX presolve algorithms. This function is written by the user, and is prototyped as
documented here.

cbhandle

A pointer to user private data. This pointer is passed to the callback function.

Example

 status = CPXsetlpcallbackfunc (env, myfunc, NULL);

See Also: CPXgetcallbackinfo, CPXsetmipcallbackfunc, CPXsetnetcallbackfunc

Returns:

The routine returns zero if successful and nonzero if an error occurs.

514

Global function CPXinfodblparam
int CPXinfodblparam(CPXCENVptr env, int whichparam, double * defvalue_p, double *
minvalue_p, double * maxvalue_p)

Definition file: cplex.h

The routine CPXinfodblparam obtains the default, minimum, and maximum values of a CPLEX parameter of
type double.

Note

Values of zero obtained for both the minimum and maximum values of a parameter of type double mean that
the parameter has no limit.

The CPLEX Parameters Reference Manual provides a list of parameters with their types, options, and default
values.

Example

 status = CPXinfodblparam (env, CPX_PARAM_TILIM, &default_tilim,
 &min_tilim, &max_tilim);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
whichparam The symbolic constant (or reference number) of the parameter value to be obtained.
defvalue_p A pointer to a variable of type double to hold the default value of the CPLEX parameter. May be

NULL.
minvalue_p A pointer to a variable of type double to hold the minimum value of the CPLEX parameter. May be

NULL.
maxvalue_p A pointer to a variable of type double to hold the maximum value of the CPLEX parameter. May

be NULL.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

515

Global function CPXreadcopybase
int CPXreadcopybase(CPXCENVptr env, CPXLPptr lp, const char * filename_str)

Definition file: cplex.h

The routine CPXreadcopybase reads a basis from a BAS file, and copies that basis into a CPLEX problem
object. The parameter CPX_PARAM_ADVIND must be set to 1 (one), its default value, or 2 (two) in order for the
basis to be used for starting a subsequent optimization.

Example

 status = CPXreadcopybase (env, lp, "myprob.bas");

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
filename_str The name of the file from which the basis should be read.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

516

Global function CPXchgprobname
int CPXchgprobname(CPXCENVptr env, CPXLPptr lp, const char * probname_str)

Definition file: cplex.h

The routine CPXchgprobname changes the name of the current problem.

Example

 status = CPXchgprobname (env, lp, probname);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
probname_str The new name of the problem.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

517

Global function CPXgetctype
int CPXgetctype(CPXCENVptr env, CPXCLPptr lp, char * xctype, int begin, int end)

Definition file: cplex.h

The routine CPXgetctype accesses the types for a range of variables in a problem object. The beginning and
end of the range must be specified.

Example

 status = CPXgetctype (env, lp, ctype, 0, cur_numcols-1);

See Also: CPXcopyctype

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
xctype An array where the specified types are to be returned. This array must be of length (end -

begin + 1). The type of variable j is returned in ctype[j-begin]. See the routine
CPXcopyctype for a list of possible values for the variables in ctype.

begin An integer specifying the beginning of the range of types to be returned
end An integer specifying the end of the range of types to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

518

Global function CPXgetsolnpoolqconstrslack
int CPXgetsolnpoolqconstrslack(CPXCENVptr env, CPXCLPptr lp, int soln, double *
qcslack, int begin, int end)

Definition file: cplex.h

The routine CPXgetsolnpoolqconstrslack accesses the slack values for a range of the quadratic
constraints for a member of the solution pool of a quadratically constrained program (QCP). The beginning and
end of the range must be specified. The slack values returned consist of the righthand side minus the constraint
activity level.

Example

 status = CPXgetsolnpoolqconstrslack (env, lp, 3, qcslack, 0, CPXgetnumqconstrs(env,lp)-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
soln An integer specifying the index of the solution pool member for which to return slack values. A value of

-1 specifies that the incumbent should be used instead of a solution pool member.
qcslack An array to receive the values of the slack or surplus variables for each of the constraints. This array

must be of length at least (end - begin+1). If successful, qcslack[0] through
qcslack[end-begin] contain the values of the slacks.

begin An integer specifying the beginning of the range of slack values to be returned.
end An integer specifying the end of the range of slack values to be returned.
Returns:

The routine returns zero on success and nonzero if an error occurs.

519

Global function CPXmsg
int CPXPUBVARARGS CPXmsg(CPXCHANNELptr channel, const char * format, ...)

Definition file: cplex.h

The routine CPXmsg writes a message to a specified channel. Like the C function printf, it takes a variable
number of arguments comprising the message to be written. The list of variables specified after the format string
should be at least as long as the number of format codes in the format. The format string and variables are
processed by the C library function vsprintf or a substitute on systems that do not have the vsprintf
function.

The formatted string is limited to 1024 characters, and is usually output with the C function fputs to each output
destination in the output destination list for a channel, except when a function has been specified by the routine
CPXaddfuncdest as a destination.

The CPLEX Callable Library uses CPXmsg for all message output. The CPXmsg routine may also be used in
applications to send messages to either CPLEX-defined or user-defined channels.

Note

CPXmsg is the only nonadvanced CPLEX routine not requiring the CPLEX environment as an argument.

Example

 CPXmsg (mychannel, "The objective value was %f.n", objval);

See lpex5.c in the CPLEX User's Manual.

Parameters:

channel The pointer to the channel receiving the message.
format The format string controlling the message output. This string is used in a way identical to the

format string in a printf statement.
Returns:

At completion, CPXmsg returns the number of characters in the formatted result string.

520

Global function CPXdelfuncdest
int CPXdelfuncdest(CPXCENVptr env, CPXCHANNELptr channel, void * handle,
void(CPXPUBLIC *msgfunction)(void *, const char *))

Definition file: cplex.h

The routine CPXdelfuncdest removes the function msgfunction from the list of message destinations
associated with a channel. Use CPXdelfuncdest to remove functions that were added to the list using
CPXaddfuncdest.

To illustrate, consider an application in which a developer wishes to trap CPLEX error messages and display
them in a dialog box that prompts the user for an action. Use CPXaddfuncdest to add the address of a function
to the list of message destinations associated with the cpxerror channel. Then write the msgfunction routine.
It must contain the code that controls the dialog box. When CPXmsg is called with cpxerror as its first
argument, it calls the msgfunction routine, which then displays the error message.

Note

The handle argument is a generic pointer that can be used to hold information needed by the msgfunction
routine to avoid making such information global to all routines.

Example

 void msgfunction (void *handle, char *msg_string)
 {
 FILE *fp;
 fp = (FILE *)handle;
 fprintf (fp, "%s", msg_string);
 }
 status = CPXdelfuncdest (env, mychannel, fileptr, msgfunction);

Parameters

env

A pointer to the CPLEX environment as returned by CPXopenCPLEX.

channel

The pointer to the channel to which the function destination is to be added.

handle

A void pointer that can be used in the msgfunction routine to direct the message to a file, the screen, or a
memory location.

msgfunction

The pointer to the function to be called when a message is sent to a channel. For details about this callback
function, see CPXaddfuncdest.

See Also: CPXaddfuncdest

Returns:

The routines return zero if successful and nonzero if an error occurs. Failure occurs when msgfunction is not
in the message-destination list or the channel does not exist.

521

Global function CPXgetheuristiccallbackfunc
void CPXgetheuristiccallbackfunc(CPXCENVptr env, int(CPXPUBLIC
**heuristiccallback_p)(CALLBACK_HEURISTIC_ARGS), void ** cbhandle_p)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetheuristiccallbackfunc accesses the user-written callback to be called by CPLEX
during MIP optimization after the subproblem has been solved to optimality. That callback is not called when the
subproblem is infeasible or cut off. The callback supplies CPLEX with heuristically-derived integer solutions.

Example

 CPXgetheuristiccallbackfunc(env, ¤t_callback, ¤t_handle);

See also Advanced MIP Control Interface in the CPLEX User's Manual.

For documentation of callback arguments, see the routine CPXsetheuristiccallbackfunc.

Parameters

env

A pointer to the CPLEX environment, as returned by CPXopenCPLEX.

heuristiccallback_p

The address of the pointer to the current user-written heuristic callback. If no callback has been set, the pointer
evaluates to NULL.

cbhandle_p

The address of a variable to hold the user's private pointer.

See Also: CPXsetheuristiccallbackfunc

Returns:

This routine does not return a result.

522

Global function CPXcopylp
int CPXcopylp(CPXCENVptr env, CPXLPptr lp, int numcols, int numrows, int objsense,
const double * objective, const double * rhs, const char * sense, const int *
matbeg, const int * matcnt, const int * matind, const double * matval, const double
* lb, const double * ub, const double * rngval)

Definition file: cplex.h

The routine CPXcopylp copies data that define an LP problem to a CPLEX problem object. The arguments to
CPXcopylp define an objective function, the constraint matrix, the righthand side, and the bounds on the
variables. Calling CPXcopylp destroys any existing data associated with the problem object.

The routine CPXcopylp does not copy names. The more comprehensive routine CPXcopylpwnames can be
used in place of CPXcopylp to copy linear programs with associated names.

The arguments passed to CPXcopylp define a linear program. Since these arguments are copied into local
arrays maintained by CPLEX, the LP problem data passed via CPXcopylp may be modified or freed after the
call to CPXcopylp without affecting the state of the CPLEX problem object.

Table 1: Values of objsense

objsense = 1 (CPX_MIN) minimize

objsense = -1 (CPX_MAX) maximize

Table 2: Values of sense

sense[i] = 'L' <= constraint

sense[i] = 'E' = constraint

sense[i] = 'G' >= constraint

sense[i] = 'R' ranged constraint

The arrays matbeg, matcnt, matind, and matval are accessed as follows. Suppose that CPLEX wants to
access the entries in some column j. These are assumed to be given by the array entries:

 matval[matbeg[j]],.., matval[matbeg[j]+matcnt[j]-1]

The corresponding row indices are:

 matind[matbeg[j]],.., matind[matbeg[j]+matcnt[j]-1]

Entries in matind are not required to be in row order. Duplicate entries in matind within a single column are not
allowed. The length of the arrays matbeg and matind should be at least numcols. The length of arrays
matind and matval should be at least matbeg[numcols-1]+matcnt[numcols-1].

When you build or modify your problem with this routine, you can verify that the results are as you intended by
calling CPXcheckcopylp during application development.

Example

 status = CPXcopylp (env, lp, numcols, numrows, objsen, obj, rhs,
 sense, matbeg, matcnt, matind, matval, lb,
 ub, rngval);

See also the example lpex1.c in the CPLEX User's Manual and in the standard distribution.

523

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
numcols An integer that specifies the number of columns in the constraint matrix, or equivalently, the number of

variables in the problem object.
numrows An integer that specifies the number of rows in the constraint matrix, not including the objective

function or bounds on the variables.
objsense An integer that specifies whether the problem is a minimization or maximization problem.
objective An array of length at least numcols containing the objective function coefficients.
rhs An array of length at least numrows containing the righthand side value for each constraint in the

constraint matrix.
sense An array of length at least numrows containing the sense of each constraint in the constraint matrix.
matbeg An array that with matval, matcnt, and matind defines the constraint matrix.
matcnt An array that with matbeg, matval, and matind defines the constraint matrix.
matind An array that with matbeg, matcnt, and matval defines the constraint matrix.
matval An array that with matbeg, matcnt, and matind defines the constraint matrix. CPLEX needs to know

only the nonzero coefficients. These are grouped by column in the array matval. The nonzero
elements of every column must be stored in sequential locations in this array with matbeg[j]
containing the index of the beginning of column j and matcnt[j] containing the number of entries in
column j. The components of matbeg must be in ascending order. For each k, matind[k] specifies
the row number of the corresponding coefficient, matval[k].

lb An array of length at least numcols containing the lower bound on each of the variables. Any lower
bound that is set to a value less than or equal to that of the constant -CPX_INFBOUND is treated as
negative infinity. CPX_INFBOUND is defined in the header file cplex.h.

ub An array of length at least numcols containing the upper bound on each of the variables. Any upper
bound that is set to a value greater than or equal to that of the constant CPX_INFBOUND is treated as
infinity. CPX_INFBOUND is defined in the header file cplex.h.

rngval An array of length at least numrows containing the range value of each ranged constraint. Ranged
rows are those designated by 'R' in the sense array. If the row is not ranged, the rngval array entry
is ignored. If rngval[i] > 0, then row i activity is in [rhs[i],rhs[i]+rngval[i]], and if
rngval[i] <= 0,then row i activity is in [rhs[i]+rngval[i],rhs[i]]. This argument may be
NULL.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

524

Global function CPXcrushform
int CPXcrushform(CPXCENVptr env, CPXCLPptr lp, int len, const int * ind, const
double * val, int * plen_p, double * poffset_p, int * pind, double * pval)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXcrushform crushes a linear formula of the original problem to a linear formula of the presolved
problem.

Example

 status = CPXcrushform (env, lp, len, ind, val,
 &plen, &poffset, pind, pval);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
len The number of entries in the arrays ind and val.
ind An array to hold the column indices of coefficients in the array val.
val The linear formula in terms of the original problem. Each entry, ind[i], specifies the

column index of the corresponding coefficient, val[i].
plen_p A pointer to an integer to receive the number of nonzero coefficients, that is, the true length

of the arrays pind and pval.
poffset_p A pointer to a double to contain the value of the linear formula corresponding to variables

that have been removed in the presolved problem.
pind An array to hold the column indices of coefficients in the presolved problem in the array

pval.
pval The linear formula in terms of the presolved problem. Each entry, pind[i], specifies the

column index in the presolved problem of the corresponding coefficient, pval[i]. The
arrays pind and pval must be of length at least the number of columns in the presolved LP
problem object.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

525

Global function CPXwriteparam
int CPXwriteparam(CPXCENVptr env, const char * filename_str)

Definition file: cplex.h

The routine CPXwriteparam writes the name and current setting of CPLEX parameters that are not at their
default setting in the environment specified by env.

This routine writes a file in a format suitable for reading by CPXreadcopyparam, so you can save current,
nondefault parameter settings for re-use in a later session. The file is written in the PRM format which is
documented in the CPLEX File Formats Reference Manual.

 status = CPXwriteparam (env, "myparams.prm");

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
filename_str A character string containing the name of the file to which the current set of modified parameter

settings is to be written.

526

Global function CPXNETdelarcs
int CPXNETdelarcs(CPXCENVptr env, CPXNETptr net, int begin, int end)

Definition file: cplex.h

The routine CPXNETdelarcs is used to remove a range of arcs from the network stored in a network problem
object. The remaining arcs are renumbered starting at zero; their order is preserved. If removing arcs
disconnects some nodes from the rest of the network, the disconnected nodes remain part of the network.

Any solution information stored in the problem object is lost.

Example

 status = CPXNETdelarcs (env, net, 10, 20);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
net A pointer to a CPLEX network problem object as returned by CPXNETcreateprob.
begin Index of the first arc to be deleted.
end Index of the last arc to be deleted.
Returns:

The routine returns zero on success and nonzero if an error occurs.

527

Global function CPXgetcolname
int CPXgetcolname(CPXCENVptr env, CPXCLPptr lp, char ** name, char * namestore, int
storespace, int * surplus_p, int begin, int end)

Definition file: cplex.h

The routine CPXgetcolname accesses a range of column names or, equivalently, the variable names of a
CPLEX problem object. The beginning and end of the range, along with the length of the array in which the
column names are to be returned, must be specified.

Note

If the value of storespace is 0, the negative of the value of surplus_p returned specifies the total number of
characters needed for the array namestore.

Example

 status = CPXgetcolname (env, lp, cur_colname, cur_colnamestore,
 cur_storespace, &surplus, 0,
 cur_numcols-1);

See also the example lpex7.c in the CPLEX User's Manual and in the standard distribution.

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
name An array of pointers to the column names stored in the array namestore. This array must be of

length at least (end - begin + 1). The pointer to the name of column j is returned in
name[j-begin].

namestore An array of characters where the specified column names are to be returned. May be NULL if
storespace is 0.

storespace An integer specifying the length of the array namestore. May be 0.
surplus_p A pointer to an integer to contain the difference between storespace and the total amount of

memory required to store the requested names. A nonnegative value of surplus_p specifies that
storespace was sufficient. A negative value specifies that it was insufficient and that the routine
could not complete its task. In that case, CPXgetcolname returns the value
CPXERR_NEGATIVE_SURPLUS, and the negative value of the variable surplus_p specifies the
amount of insufficient space in the array namestore.

begin An integer specifying the beginning of the range of column names to be returned.
end An integer specifying the end of the range of column names to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs. The value CPXERR_NEGATIVE_SURPLUS
specifies that insufficient space was available in the namestore array to hold the names.

528

Global function CPXgetrowindex
int CPXgetrowindex(CPXCENVptr env, CPXCLPptr lp, const char * lname_str, int *
index_p)

Definition file: cplex.h

The routine CPXgetrowindex searches for the index number of the specified row in a CPLEX problem object.

Example

 status = CPXgetrowindex (env, lp, "resource89", &rowindex);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
lname_str A row name to search for.
index_p A pointer to an integer to hold the index number of the row with name lname_str. If the routine is

successful, *index_p contains the index number; otherwise, *index_p is undefined.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

529

Global function CPXdelsetrows
int CPXdelsetrows(CPXCENVptr env, CPXLPptr lp, int * delstat)

Definition file: cplex.h

The routine CPXdelsetrows deletes a set of rows. Unlike the routine CPXdelrows, CPXdelsetrows does not
require the rows to be in a contiguous range. After the deletion occurs, the remaining rows are indexed
consecutively starting at 0, and in the same order as before the deletion.

Note

The delstat array must have at least CPXgetnumrows(env,lp) elements.

Example

 status = CPXdelsetrows (env, lp, delstat);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
delstat An array specifying the rows to be deleted. The routine CPXdelsetrows deletes each row i for which

delstat[i] = 1. The deletion of rows results in a renumbering of the remaining rows. After
termination, delstat[i] is either -1 for rows that have been deleted or the new index number that has
been assigned to the remaining rows.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

530

Global function CPXgetcolindex
int CPXgetcolindex(CPXCENVptr env, CPXCLPptr lp, const char * lname_str, int *
index_p)

Definition file: cplex.h

The routine CPXgetcolindex searches for the index number of the specified column in a CPLEX problem
object.

Example

 status = CPXgetcolindex (env, lp, "power43", &colindex);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
lname_str A column name to search for.
index_p A pointer to an integer to hold the index number of the column with name lname_str. If

the routine is successful, *index_p contains the index number; otherwise, *index_p is
undefined.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

531

Global function CPXclpwrite
int CPXclpwrite(CPXCENVptr env, CPXCLPptr lp, const char * filename_str)

Definition file: cplex.h

After CPXrefineconflict or CPXrefineconflictext has been invoked on an infeasible problem to identify
a minimal set of constraints that are in conflict, this routine will write an LP format file containing the identified
conflict. The names will be modified to conform to LP format.

Example

 status = CPXclpwrite (env, lp, "myfilename.clp");

Parameters:

env A pointer to the CPLEX environment as returned by the routine CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
filename_str Pointer to a character string naming the file.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

532

Global function CPXgetpnorms
int CPXgetpnorms(CPXCENVptr env, CPXCLPptr lp, double * cnorm, double * rnorm, int
* len_p)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetpnorms returns the norms from the primal steepest-edge.

There is no comparable argument in this routine for rnorm[]. If the rows of the problem have changed since the
norms were computed, they are generally no longer valid. However, if columns have been deleted, or if columns
have been added, the norms for all remaining columns present before the deletions or additions remain valid.

See Also: CPXcopypnorms

Parameters:

env The pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
cnorm An array containing the primal steepest-edge norms for the normal, column variables. The array must be

of length at least equal to the number of columns in the LP problem object.
rnorm An array containing the primal steepest-edge norms for ranged variables and slacks. The array must be

of length at least equal to the number of rows in the LP problem object.
len_p A pointer to the number of entries in the array cnorm[]. When this routine is called, *len_p is equal to

the number of columns in the LP problem object when optimization occurred. The routine
CPXcopypnorms needs the value *len_p.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

533

Global function CPXgetsolnpoolslack
int CPXgetsolnpoolslack(CPXCENVptr env, CPXCLPptr lp, int soln, double * slack, int
begin, int end)

Definition file: cplex.h

The routine CPXgetsolnpoolslack accesses the slack values for a range of linear constraints for a member of
the solution pool. The beginning and end of the range must be specified. Except for ranged rows, the slack
values returned consist of the righthand side minus the row activity level. For ranged rows, the value returned is
the row activity level minus the righthand side, or, equivalently, the value of the internal structural variable that
CPLEX creates to represent ranged rows.

Example

 status = CPXgetsolnpoolslack (env, lp, 3, slack, 0, CPXgetnumrows(env,lp)-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
soln An integer specifying the index of the solution pool member for which to return slack values. A

value of -1 specifies that the incumbent should be used instead of a solution pool member.
slack An array to receive the values of the slack or surplus variables for each of the constraints. This

array must be of length at least (end - begin + 1). If successful, slack[0] through
slack[end-begin] contain the values of the slacks.

begin An integer specifying the beginning of the range of slack values to be returned.
end An integer specifying the end of the range of slack values to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

534

Global function CPXgettuningcallbackfunc
int CPXgettuningcallbackfunc(CPXCENVptr env, int(CPXPUBLIC
**callback_p)(CPXCENVptr, void *, int, void *), void ** cbhandle_p)

Definition file: cplex.h

The routine CPXgettuningcallbackfunc accesses the user-written callback routine to be called before each
trial run during the tuning process.

Callback description

 int callback (CPXCENVptr env,
 void *cbdata,
 int wherefrom,
 void *cbhandle);

This is the user-written callback routine.

Callback return value

A nonzero terminates the tuning.

Callback arguments

A pointer to the CPLEX environment that was passed into the associated tuning routine.

cbdata

A pointer passed from the tuning routine to the user-written callback function that contains information about the
tuning process. The only purpose for the cbdata pointer is to pass it to the routine CPXgetcallbackinfo.

wherefrom

An integer value specifying from which procedure the user-written callback function was called. This value will
always be CPX_CALLBACK_TUNING for this callback.

cbhandle

Pointer to user private data, as passed to CPXsettuningcallbackfunc.

Parameters

env

A pointer to the CPLEX environment as returned by CPXopenCPLEX.

callback_p

The address of the pointer to the current user-written callback function. If no callback function has been set, the
pointer evaluates to NULL.

cbhandle_p

The address of a variable to hold the user's private pointer.

Example

 status = CPXgettuningcallbackfunc (env, mycallback, NULL);

See Also: CPXgetcallbackinfo

535

Returns:

The routine returns zero if successful and nonzero if an error occurs.

536

Global function CPXfclose
int CPXfclose(CPXFILEptr stream)

Definition file: cplex.h

The routine CPXfclose closes files that are used in conjunction with the routines CPXaddfpdest,
CPXdelfpdest, and CPXsetlogfile. It is used in the same way as the standard C library function fclose.
Files that are opened with the routine CPXfopen must be closed with the routine CPXfclose.

When to use this routine

Call this routine only after the message destinations that use the file pointer have been closed or deleted. Those
destinations (such as log files) might be specified by routines such as CPXaddfpdest, CPXdelfpdest, and
CPXsetlogfile.

Example

 CPXfclose (fp);

See lpex5.c in the CPLEX User's Manual.

Parameters:

stream A pointer to a file opened by the routine CPXfopen.
Returns:

The routine returns zero if successful and nonzero if an error occurs. The syntax is identical to the standard C
library routine fclose.

537

Global function CPXversion
CPXCCHARptr CPXversion(CPXCENVptr env)

Definition file: cplex.h

The routine CPXversion returns a pointer to a string specifying the version of the CPLEX library linked with the
application. The caller should not change the string returned by this function.

Example

 printf ("CPLEX version is %s n", CPXversion (env));

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
Returns:

The routine returns NULL if the environment does not exist and the pointer to a string otherwise.

538

Global function CPXuncrushx
int CPXuncrushx(CPXCENVptr env, CPXCLPptr lp, double * x, const double * prex)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXuncrushx uncrushes a solution for the presolved problem to the solution for the original
problem.

Example

 status = CPXuncrushx (env, lp, x, prex);

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
x An array to receive the primal solution (x) values for the original problem as computed from primal values

of the presolved problem object. The array must be of length at least the number of columns in the LP
problem object.

prex An array that contains primal solution (x) values for the presolved problem, as returned by routines such as
CPXgetx and CPXsolution when applied to the presolved problem object. The array must be of length at
least the number of columns in the presolved problem object.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

539

Global function CPXgetijrow
int CPXgetijrow(CPXCENVptr env, CPXCLPptr lp, int i, int j, int * row_p)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXgetijrow returns the index of a specific basic variable as its position in the basis header. If the
specified row indexes a constraint that is not basic, or if the specified column indexes a variable that is not basic,
CPXgetijrow returns an error code and sets the value of its argument *row_p to -1. An error is also returned if
both row and column indices are specified in the same call.

Parameters:

env The pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp The pointer to the CPLEX LP problem object, as returned by CPXcreateprob.
i An integer specifying the index of a basic row; CPXgetijrow must find the position of this basic row in

the basis header. A negative value in this argument specifies to CPXgetijrow not to seek a basic row.
j An integer specifying the index of a basic column; CPXgetijrow must find the position of this basic

column in the basis header. A negative value in this argument specifies to CPXgetijrow not to seek a
basic column.

row_p A pointer to an integer specifying the position in the basis header of the row i or column j. If
CPXgetijrow encounters an error, and if row_p is not NULL, *row_p is set to -1.

Returns:

The routine returns zero if successful and nonzero if an error occurs.

540

Global function CPXchgcoef
int CPXchgcoef(CPXCENVptr env, CPXLPptr lp, int i, int j, double newvalue)

Definition file: cplex.h

The routine CPXchgcoef changes a single coefficient in the constraint matrix, linear objective coefficients,
righthand side, or ranges of a CPLEX problem object. The coefficient is specified by its coordinates in the
constraint matrix. When you change matrix coefficients from zero to nonzero values, be sure that the
corresponding row and column indices exist in the problem, so that -1 <= i < CPXgetnumrows(env,lp)
and -2 <= j < CPXgetnumcols(env,lp).

Example

 status = CPXchgcoef (env, lp, 10, 15, 23.2);

See Also: CPXchgobj, CPXchgrhs, CPXchgrngval

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
i An integer that specifies the numeric index of the row in which the coefficient is located. The linear

objective row is referenced with i = -1.
j An integer that specifies the numeric index of the column in which the coefficient is located. The RHS

column is referenced with j = -1. The range value column is referenced with j = -2. If j = -2 is
specified and row i is not a ranged row, an error status is returned.

newvalue The new value for the coefficient being changed.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

541

Global function CPXgetqconstrslack
int CPXgetqconstrslack(CPXCENVptr env, CPXCLPptr lp, double * qcslack, int begin,
int end)

Definition file: cplex.h

The routine CPXgetqconstrslack is used to access the slack values for a range of the quadratic constraints of
a quadratically constrained program. The beginning and end of the range must be specified. The slack values
returned consist of the righthand side minus the constraint activity level.

Example

 status = CPXgetqconstrslack (env, lp, qcslack, 0, CPXgetnumqconstrs(env,lp)-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
qcslack An array to receive the values of the slack or surplus variables for each of the constraints. This array

must be of length at least (end - begin+1). If successful, qcslack[0] through
qcslack[end-begin] contain the values of the slacks.

begin An integer indicating the beginning of the range of slack values to be returned.
end An integer indicating the end of the range of slack values to be returned.
Returns:

The routine returns zero on success and nonzero if an error occurs.

542

Global function CPXunscaleprob
int CPXunscaleprob(CPXCENVptr env, CPXLPptr lp)

Definition file: cplex.h

Note

This is an advanced routine. Advanced routines typically demand a thorough understanding of the algorithms
used by CPLEX. Thus they incur a higher risk of incorrect behavior in your application, behavior that can be
difficult to debug. Therefore, the team encourages you to consider carefully whether you can accomplish the
same task by means of other Callable Library routines instead.

The routine CPXunscaleprob removes any scaling that CPLEX has applied to the resident problem and its
associated data. A side effect is that if there is a resident solution, any associated factorization is discarded and
the solution itself is deactivated, meaning that it can no longer be accessed with a call to CPXsolution, nor by
any other query routine. However, any starting point information for the current solution (such as an associated
basis) is retained.

Parameters:

env The pointer to the CPLEX environment, as returned by CPXopenCPLEX.
lp A pointer to a CPLEX LP problem object, as returned by CPXcreateprob.
Returns:

The routine returns zero if successful and nonzero if an error occurs.

543

Global function CPXgetsos
int CPXgetsos(CPXCENVptr env, CPXCLPptr lp, int * numsosnz_p, char * sostype, int *
sosbeg, int * sosind, double * soswt, int sosspace, int * surplus_p, int begin, int
end)

Definition file: cplex.h

The routine CPXgetsos accesses the definitions of a range of special ordered sets (SOS) stored in a CPLEX
problem object. The beginning and end of the range, along with the length of the array in which the definitions are
to be returned, must be provided.

Note

If the value of sosspaceis 0 (zero), then the negative of the value of surplus_p returned specifies the length
needed for the arrays sosind and soswt.

Example

 status = CPXgetsos (env, lp, &numsosnz, sostype, sosbeg, sosind,
 soswt, sosspace, &surplus, 0, numsos-1);

Parameters:

env A pointer to the CPLEX environment as returned by CPXopenCPLEX.
lp A pointer to a CPLEX problem object as returned by CPXcreateprob.
numsosnz_p A pointer to an integer to contain the number of set members returned; that is, the true length of

the arrays sosind and soswt.
sostype An array to contain the types of the requested SOSs. The type of set k is returned in

sostype[k-begin]. This array must be of length at least (end - begin+ 1). The entry contains
either CPX_TYPE_SOS1 ('1') for type 1 or CPX_TYPE_SOS2 ('2'), for type 2.

sosbeg An array to contain indices specifying where each of the requested SOSs begins in the arrays
sosind and soswt. Specifically, set k consists of the entries in sosind and soswt in the range
from sosbeg[k-begin] to sosbeg[(k+1) - begin] - 1. (Set end consists of the entries
from sosbeg[end - begin] to numsosnz_p - 1.) This array must be of length at least (end -
begin+ 1).

sosind An array to contain the variable indices of the SOS members. May be NULL if sosspace is 0
(zero).

soswt An array to contain the reference values (weights) for SOS members. May be NULL if sosspace
is 0 (zero). Weight soswt[k] corresponds to sosind[k].

sosspace An integer specifying the length of the arrays sosind and soswt. May be 0 (zero).
surplus_p A pointer to an integer to contain the difference between sosspace and the number of entries in

each of the arrays sosind and soswt. A nonnegative value of surplus_p reports that the length
of the arrays was sufficient. A negative value reports that the length was insufficient and that the
routine could not complete its task. In this case, the routine CPXgetsos returns the value
CPXERR_NEGATIVE_SURPLUS, and the negative value of surplus_p specifies the amount of
insufficient space in the arrays.

begin An integer specifying the beginning of the range of SOSs to be returned.
end An integer specifying the end of the range of SOSs to be returned.
Returns:

The routine returns zero if successful and nonzero if an error occurs. The value CPXERR_NEGATIVE_SURPLUS
reports that insufficient space was available in the arrays sosind and soswt to hold the SOS definition.

544

Global function CPXgetchgparam
int CPXgetchgparam(CPXCENVptr env, int * cnt_p, int * paramnum, int pspace, int *
surplus_p)

Definition file: cplex.h

The routine CPXgetchgparam returns an arrary of parameter numbers (unique identifiers) for parameters which
are not set at their default values.

Parameters:

env A pointer to the CPLEX environment, as returned by CPXopenCPLEX.
cnt_p A pointer to an integer to contain the number of parameter numbers (unique identifiers) returned,

that is, the true length of the array paramnum.
paramnum The array to contain the numbers of the parameters with nondefault values.
pspace An integer specifying the length of the array paramnum.
surplus_p A pointer to an integer to contain the difference between pspace and the number of entries in

paramnum. A nonnegative value of surplus_p specifies that the length of the arrays was sufficient.
A negative value specifies that the length was insufficient and that the routine could not complete its
task. In that case, the routine CPXgetchgparam returns the value CPXERR_NEGATIVE_SURPLUS,
and the value of surplus_p specifies the amount of insufficiency (that is, how much more space is
needed in the arrays).

Returns:

The routine returns zero if successful and nonzero if an error occurs. The value CPXERR_NEGATIVE_SURPLUS
specifies that insufficient space was available in the array paramnum to hold the parameter numbers (unique
identifiers) with nondefault values.

545

Macro CPX_DUAL_OBJ
Definition file: cplex.h

CPX_DUAL_OBJ

Concert Technology enum: DualObj.
Numeric meaning (double): To access the objective value relative to the dual barrier solution. This feature is
available only for a barrier solution.

Integer meaning: not applicable

546

Macro CPX_EXACT_KAPPA
Definition file: cplex.h

CPX_EXACT_KAPPA

Concert Technology enum: ExactKappa.
Numeric meaning (double): To access the exact condition number of the scaled basis matrix. This feature is
available only for a simplex solution

Integer meaning: not applicable

547

Macro CPX_KAPPA
Definition file: cplex.h

CPX_KAPPA

Concert Technology enum: Kappa.
Numeric meaning (double): To access the estimated condition number of the scaled basis matrix. This feature
is available only for a simplex solution

Integer meaning: not applicable

548

Macro CPX_MAX_COMP_SLACK
Definition file: cplex.h

CPX_MAX_COMP_SLACK

Concert Technology enum: MaxCompSlack.
Numeric meaning (double): To access the maximum violation of the complementary slackness conditions for
the unscaled problem. This feature is available only for a barrier solution

Integer meaning: To access the lowest index of a row or column with the largest violation of the complementary
slackness conditions. An index (such as *quality_p) strictly less than zero denotes row (-i-1) or the slack
variable for that row, in the case of columns. This feature is available only for a barrier solution.

549

Macro CPX_MAX_DUAL_INFEAS
Definition file: cplex.h

CPX_MAX_DUAL_INFEAS

Concert Technology enum: MaxDualInfeas.
Numeric meaning (double): To access the maximum of dual infeasibility or, equivalently, the maximum
reduced-cost infeasibility for the unscaled problem

Integer meaning: To access the lowest index where the maximum dual infeasibility occurs for the unscaled
problem

550

Macro CPX_MAX_DUAL_RESIDUAL
Definition file: cplex.h

CPX_MAX_DUAL_RESIDUAL

Concert Technology enum: MaxDualResidual.
Numeric meaning (double): To access maximum dual residual value. For a simplex solution, this is the
maximum of the vector |c-B'pi|, and for a barrier solution, it is the maximum of the vector |A'pi+rc-c| for
the unscaled problem

Integer meaning: To access the lowest index where the maximum dual residual occurs for the unscaled problem

551

Macro CPX_MAX_INDSLACK_INFEAS
Definition file: cplex.h

CPX_MAX_INDSLACK_INFEAS

Concert Technology enum: not applicable.
Numeric meaning (double): To access the maximum infeasibility of the indicator constraints, or equivalently,
the maximum bound violation of the indicator constraint slacks.

Integer meaning: To acces the lowest index of the indicator constraints where the maximum indicator slack
infeasibility occurs.

Can use a supplied primal solution.

Concert Technology does not distinguish indicator constraints from linear constraints in this respect.

552

Macro CPX_MAX_INT_INFEAS
Definition file: cplex.h

CPX_MAX_INT_INFEAS

Concert Technology enum: MaxIntInfeas.
Numeric meaning (double): To access the maximum of integer infeasibility for the unscaled problem

Integer meaning: To access the lowest index where the maximum integer infeasibility occurs for the unscaled
problem

Can use a supplied primal solution.

553

Macro CPX_MAX_PI
Definition file: cplex.h

CPX_MAX_PI

Concert Technology enum: MaxPi.
Numeric meaning (double): To access the maximum absolute value in the dual solution vector for the unscaled
problem

Integer meaning: To access the lowest index where the maximum pi value occurs for the unscaled problem

554

Macro CPX_MAX_PRIMAL_INFEAS
Definition file: cplex.h

CPX_MAX_PRIMAL_INFEAS

Concert Technology enum: MaxPrimalInfeas.
Numeric meaning (double): To access the maximum primal infeasibility or, equivalently, the maximum bound
violation including slacks for the unscaled problem

Integer meaning: To access the lowest index of a column or row where the maximum primal infeasibility occurs
for the unscaled problem. An index (such as *quality_p) strictly less than zero specifies that the maximum
occurs at the slack variable for row (-i-1).

Can use a supplied primal solution.

555

Macro CPX_MAX_PRIMAL_RESIDUAL
Definition file: cplex.h

CPX_MAX_PRIMAL_RESIDUAL

Concert Technology enum: MaxPrimalResidual.
Numeric meaning (double): To access the maximum of the vector |Ax-b| for the unscaled problem

Integer meaning: To access the lowest index where the maximum primal residual occurs for the unscaled
problem

Can use a supplied primal solution.

556

Macro CPX_MAX_QCPRIMAL_RESIDUAL
Definition file: cplex.h

CPX_MAX_QCPRIMAL_RESIDUAL

Concert Technology enum: MaxPrimalResidual.
Numeric meaning (double): To access the maximum residual |x'Qx + dx - f| over all the quadratic
constraints in the unscaled problem.

Integer meaning: To access the lowest index over all the quadratic constraints where the maximum residual
occurs in the unscaled problem.

Concert Technology does not distinguish quadratic constraints from linear constraints in this respect.

557

Macro CPX_MAX_QCSLACK
Definition file: cplex.h

CPX_MAX_QCSLACK

Concert Technology enum: not applicable.
Numeric meaning (double): To access the maximum absolute quadratic constraint slack value.

Integer meaning: To access the lowest index of the quadratic constraints where the maximum quadratic
constraint slack values occcurs.

Can use a supplied primal solution.

Concert Technology does not distinguish quadratic constraints from linear constraints in this respect.

558

Macro CPX_MAX_QCSLACK_INFEAS
Definition file: cplex.h

CPX_MAX_QCSLACK_INFEAS

Concert Technology enum: not applicable.
Numeric meaning (double): To access the maximum infeasibility of the quadratic constraints, or equivalently,
the maximum bound violation of the quadratic constraint slacks.

Integer meaning: To acces the lowest index of the quadratic constraints where the maximum quadratic slack
infeasibility occurs.

Can use a supplied primal solution.

Concert Technology does not distinguish quadratic constraints from linear constraints in this respect.

559

Macro CPX_MAX_RED_COST
Definition file: cplex.h

CPX_MAX_RED_COST

Concert Technology enum: MaxRedCost.
Numeric meaning (double): To access the maximum absolute reduced cost value for the unscaled problem

Integer meaning: To access the lowest index where the maximum reduced cost value occurs for the unscaled
problem

560

Macro CPX_MAX_SCALED_DUAL_INFEAS
Definition file: cplex.h

CPX_MAX_SCALED_DUAL_INFEAS

Concert Technology enum: MaxScaledDualInfeas.
Numeric meaning (double): To access the maximum of dual infeasibility or, equivalently, the maximum
reduced-cost infeasibility for the scaled problem

Integer meaning: To access the lowest index where the maximum dual infeasibility occurs for the scaled
problem

561

Macro CPX_MAX_SCALED_DUAL_RESIDUAL
Definition file: cplex.h

CPX_MAX_SCALED_DUAL_RESIDUAL

Concert Technology enum: MaxScaledDualResidual.
Numeric meaning (double): To access maximum dual residual value for the scaled problem

Integer meaning: To access the lowest index where the maximum dual residual occurs for the scaled problem

562

Macro CPX_MAX_SCALED_PI
Definition file: cplex.h

CPX_MAX_SCALED_PI

Concert Technology enum: MaxScaledPi.
Numeric meaning (double): To access the maximum absolute value in the dual solution vector for the scaled
problem

Integer meaning: To access the lowest index where the maximum pi value occurs for the scaled problem

563

Macro CPX_MAX_SCALED_PRIMAL_INFEAS
Definition file: cplex.h

CPX_MAX_SCALED_PRIMAL_INFEAS

Concert Technology enum: MaxScaledPrimalInfeas.
Numeric meaning (double): To access the maximum primal infeasibility or, equivalently, the maximum bound
violation including slacks for the scaled problem

Integer meaning: To access the lowest index of a column or row where the maximum primal infeasibility occurs
for the scaled problem

Can use a supplied primal solution.

564

Macro CPX_MAX_SCALED_PRIMAL_RESIDUAL
Definition file: cplex.h

CPX_MAX_SCALED_PRIMAL_RESIDUAL

Concert Technology enum: MaxScaledPrimalResidual.
Numeric meaning (double): To access the maximum of the vector |Ax-b| for the scaled problem

Integer meaning: To access the lowest index where the maximum primal residual occurs for the scaled problem

Can use a supplied primal solution.

565

Macro CPX_MAX_SCALED_RED_COST
Definition file: cplex.h

CPX_MAX_SCALED_RED_COST

Concert Technology enum: MaxScaledRedCost.
Numeric meaning (double): To access the maximum absolute reduced cost value for the scaled problem

Integer meaning: To access the lowest index where the maximum reduced cost value occurs for the scaled
problem

566

Macro CPX_MAX_SCALED_SLACK
Definition file: cplex.h

CPX_MAX_SCALED_SLACK

Concert Technology enum: MaxScaledSlack.
Numeric meaning (double): To access the maximum absolute slack value for the scaled problem

Integer meaning: To access the lowest index where the maximum slack value occurs for the scaled problem

Can use a supplied primal solution.

567

Macro CPX_MAX_SCALED_X
Definition file: cplex.h

CPX_MAX_SCALED_X

Concert Technology enum: MaxScaledX.
Numeric meaning (double): To access the maximum absolute value in the primal solution vector for the scaled
problem

Integer meaning: To access the lowest index where the maximum x value occurs for the scaled problem

Can use a supplied primal solution.

568

Macro CPX_MAX_SLACK
Definition file: cplex.h

CPX_MAX_SLACK

Concert Technology enum: MaxSlack.
Numeric meaning (double): To access the maximum absolute slack value for the unscaled problem

Integer meaning: To access the lowest index where the maximum slack value occurs for the unscaled problem

Can use a supplied primal solution.

569

Macro CPX_MAX_X
Definition file: cplex.h

CPX_MAX_X

Concert Technology enum: MaxX.
Numeric meaning (double): To access the maximum absolute value in the primal solution vector for the
unscaled problem

Integer meaning: To access the lowest index where the maximum x value occurs for the unscaled problem

Can use a supplied primal solution.

570

Macro CPX_OBJ_GAP
Definition file: cplex.h

CPX_OBJ_GAP

Concert Technology enum: ObjGap.
Numeric meaning (double): To access the objective value gap between the primal and dual objective value
solution. This feature is available only for a barrier solution.

Integer meaning: not applicable

571

Macro CPX_PRIMAL_OBJ
Definition file: cplex.h

CPX_PRIMAL_OBJ

Concert Technology enum: PrimalObj.
Numeric meaning (double): To access the objective value relative to the primal barrier solution. This feature is
available only for a barrier solution.

Integer meaning: not applicable

572

Macro CPX_SOLNPOOL_DIV
Definition file: cplex.h

CPX_SOLNPOOL_DIV

Solution replacement strategy when pool is full: keep most diverse solutions.

573

Macro CPX_SOLNPOOL_FIFO
Definition file: cplex.h

CPX_SOLNPOOL_FIFO

Solution replacement strategy when pool is full: first in first out.

574

Macro CPX_SOLNPOOL_FILTER_DIVERSITY
Definition file: cplex.h

CPX_SOLNPOOL_FILTER_DIVERSITY

Filter type: filter on diversity. If solution is incompatible with specified diversity measure, it will be discarded from
the pool.

575

Macro CPX_SOLNPOOL_FILTER_RANGE
Definition file: cplex.h

CPX_SOLNPOOL_FILTER_RANGE

Filter type: filter on linear expression values. If linear expression of solution does not fall within specified bounds,
it will be discarded from the pool.

576

Macro CPX_SOLNPOOL_OBJ
Definition file: cplex.h

CPX_SOLNPOOL_OBJ

Solution replacement strategy when pool is full: keep solutions with best objective value.

577

Macro CPX_STAT_ABORT_DUAL_OBJ_LIM
Definition file: cplex.h

CPX_STAT_ABORT_DUAL_OBJ_LIM

22 (Barrier only) enum: AbortDualObjLim
Stopped due to a limit on the dual objective

578

Macro CPX_STAT_ABORT_IT_LIM
Definition file: cplex.h

CPX_STAT_ABORT_IT_LIM

10 (Simplex or Barrier) enum: AbortItLim
Stopped due to limit on number of iterations.

579

Macro CPX_STAT_ABORT_OBJ_LIM
Definition file: cplex.h

CPX_STAT_ABORT_OBJ_LIM

12 (Simplex or Barrier) enum: AbortObjLim
Stopped due to an objective limit.

580

Macro CPX_STAT_ABORT_PRIM_OBJ_LIM
Definition file: cplex.h

CPX_STAT_ABORT_PRIM_OBJ_LIM

21 (Barrier only) enum: AbortPrimObjLim
Stopped due to a limit on the primal objective

581

Macro CPX_STAT_ABORT_TIME_LIM
Definition file: cplex.h

CPX_STAT_ABORT_TIME_LIM

11 (Simplex or Barrier) enum: AbortTimeLim
Stopped due to a time limit.

582

Macro CPX_STAT_ABORT_USER
Definition file: cplex.h

CPX_STAT_ABORT_USER

13 (Simplex or Barrier) enum: AbortUser
Stopped due to a request from the user.

583

Macro CPX_STAT_CONFLICT_ABORT_CONTRADICTION
Definition file: cplex.h

CPX_STAT_CONFLICT_ABORT_CONTRADICTION

32 (conflict refiner) enum: ConflictAbortContradiction
The conflict refiner concluded contradictory feasibility for the same set of constraints due to numeric problems. A
conflict is available, but it is not minimal.

584

Macro CPX_STAT_CONFLICT_ABORT_IT_LIM
Definition file: cplex.h

CPX_STAT_CONFLICT_ABORT_IT_LIM

34 (conflict refiner) enum: ConflictAbortItLim
The conflict refiner terminated because of an iteration limit. A conflict is available, but it is not minimal.

585

Macro CPX_STAT_CONFLICT_ABORT_MEM_LIM
Definition file: cplex.h

CPX_STAT_CONFLICT_ABORT_MEM_LIM

37 (conflict refiner) enum: ConflictAbortMemLim
The conflict refiner terminated because of a memory limit. A conflict is available, but it is not minimal.

586

Macro CPX_STAT_CONFLICT_ABORT_NODE_LIM
Definition file: cplex.h

CPX_STAT_CONFLICT_ABORT_NODE_LIM

35 (conflict refiner) enum: ConflictAbortNodeLim
The conflict refiner terminated because of a node limit. A conflict is available, but it is not minimal.

587

Macro CPX_STAT_CONFLICT_ABORT_OBJ_LIM
Definition file: cplex.h

CPX_STAT_CONFLICT_ABORT_OBJ_LIM

36 (conflict refiner) enum: ConflictAbortObjLim
The conflict refiner terminated because of an objective limit. A conflict is available, but it is not minimal.

588

Macro CPX_STAT_CONFLICT_ABORT_TIME_LIM
Definition file: cplex.h

CPX_STAT_CONFLICT_ABORT_TIME_LIM

33 (conflict refiner) enum: ConflictAbortTimeLim
The conflict refiner terminated because of a time limit. A conflict is available, but it is not minimal.

589

Macro CPX_STAT_CONFLICT_ABORT_USER
Definition file: cplex.h

CPX_STAT_CONFLICT_ABORT_USER

38 (conflict refiner) enum: ConflictAbortUser
The conflict refiner terminated because a user terminated the application. A conflict is available, but it is not
minimal.

590

Macro CPX_STAT_CONFLICT_FEASIBLE
Definition file: cplex.h

CPX_STAT_CONFLICT_FEASIBLE

30 (conflict refiner) enum: ConflictFeasible
The problem appears to be feasible; no conflict is available.

591

Macro CPX_STAT_CONFLICT_MINIMAL
Definition file: cplex.h

CPX_STAT_CONFLICT_MINIMAL

31 (conflict refiner) enum: ConflictMinimal
The conflict refiner found a minimal conflict.

592

Macro CPX_STAT_FEASIBLE
Definition file: cplex.h

CPX_STAT_FEASIBLE

23 (Simplex or Barrier) enum: Feasible
This status occurs only after a call to the Callable Library routine CPXfeasopt (or the Concert Technology
method feasOpt) on a continuous problem. The problem under consideration was found to be feasible after
phase 1 of FeasOpt. A feasible solution is available.

593

Macro CPX_STAT_FEASIBLE_RELAXED_INF
Definition file: cplex.h

CPX_STAT_FEASIBLE_RELAXED_INF

16 (Simplex or Barrier) enum: FeasibleRelaxedInf
This status occurs only after a call to the Callable Library routine CPXfeasopt (or the Concert Technology
method feasOpt) with the parameter CPX_PARAM_FEASOPTMODE (or FeasOptMode) set to
CPX_FEASOPT_MIN_INF (or MinInf) on a continuous problem. A relaxation was successfully found and a
feasible solution for the problem (if relaxed according to that relaxation) was installed. The relaxation is minimal.

594

Macro CPX_STAT_FEASIBLE_RELAXED_QUAD
Definition file: cplex.h

CPX_STAT_FEASIBLE_RELAXED_QUAD

18 (Simplex or Barrier) enum: FeasibleRelaxedQuad
This status occurs only after a call to the Callable Library routine CPXfeasopt (or the Concert Technology
method feasOpt) with the parameter CPX_PARAM_FEASOPTMODE (or FeasOptMode) set to
CPX_FEASOPT_MIN_QUAD (or MinQuad) on a continuous problem. A relaxation was successfully found and a
feasible solution for the problem (if relaxed according to that relaxation) was installed. The relaxation is minimal.

595

Macro CPX_STAT_FEASIBLE_RELAXED_SUM
Definition file: cplex.h

CPX_STAT_FEASIBLE_RELAXED_SUM

14 (Simplex or Barrier) enum: FeasibleRelaxedSum
This status occurs only after a call to the Callable Library routine CPXfeasopt (or the Concert Technology
method feasOpt) with the parameter CPX_PARAM_FEASOPTMODE (or FeasOptMode) set to
CPX_FEASOPT_MIN_SUM (or MinSum) on a continuous problem. A relaxation was successfully found and a
feasible solution for the problem. (if relaxed according to that relaxation) was installed. The relaxation is minimal.

596

Macro CPX_STAT_INFEASIBLE
Definition file: cplex.h

CPX_STAT_INFEASIBLE

3 (Simplex or Barrier) enum: Infeasible
Problem has been proven infeasible; see the topic Interpreting Solution Quality in the CPLEX User's Manual for
more details.

597

Macro CPX_STAT_INForUNBD
Definition file: cplex.h

CPX_STAT_INForUNBD

4 (Simplex or Barrier) enum: InfOrUnbd
Problem has been proven either infeasible or unbounded; see the topic Effect of Preprocessing on Feasibility in
the CPLEX User's Manual for more detail.

598

Macro CPX_STAT_NUM_BEST
Definition file: cplex.h

CPX_STAT_NUM_BEST

6 (Simplex or Barrier) enum: NumBest
Solution is available, but not proved optimal, due to numeric difficulties during optimization.

599

Macro CPX_STAT_OPTIMAL
Definition file: cplex.h

CPX_STAT_OPTIMAL

1 (Simplex or Barrier) enum: Optimal
Optimal solution is available.

600

Macro CPX_STAT_OPTIMAL_FACE_UNBOUNDED
Definition file: cplex.h

CPX_STAT_OPTIMAL_FACE_UNBOUNDED

20 (Barrier only) enum: OptimalFaceUnbounded
Model has an unbounded optimal face

601

Macro CPX_STAT_OPTIMAL_INFEAS
Definition file: cplex.h

CPX_STAT_OPTIMAL_INFEAS

5 (Simplex or Barrier) enum: OptimalInfeas
Optimal solution is available, but with infeasibilities after unscaling.

602

Macro CPX_STAT_OPTIMAL_RELAXED_INF
Definition file: cplex.h

CPX_STAT_OPTIMAL_RELAXED_INF

17 (Simplex or Barrier) enum: OptimalRelaxedInf
This status occurs only after a call to the Callable Library routine CPXfeasopt (or the Concert Technology
method feasOpt) with the parameter CPX_PARAM_FEASOPTMODE (or FeasOptMode) set to
CPX_FEASOPT_OPT_INF (or OptInf) on a continuous problem. A relaxation was successfully found and a
feasible solution for the problem (if relaxed according to that relaxation) was installed. The relaxation is optimal.

603

Macro CPX_STAT_OPTIMAL_RELAXED_QUAD
Definition file: cplex.h

CPX_STAT_OPTIMAL_RELAXED_QUAD

19 (Simplex or Barrier) enum: OptimalRelaxedQuad
This status occurs only after a call to the Callable Library routine CPXfeasopt (or the Concert Technology
method feasOpt) with the parameter CPX_PARAM_FEASOPTMODE (or FeasOptMode) set to
CPX_FEASOPT_OPT_QUAD (or OptQuad) on a continuous problem. A relaxation was successfully found and a
feasible solution for the problem (if relaxed according to that relaxation) was installed. The relaxation is optimal.

604

Macro CPX_STAT_OPTIMAL_RELAXED_SUM
Definition file: cplex.h

CPX_STAT_OPTIMAL_RELAXED_SUM

15 (Simplex or Barrier) enum: OptimalRelaxedSum
This status occurs only after a call to the Callable Library routine CPXfeasopt (or the Concert Technology
method feasOpt) with the parameter CPX_PARAM_FEASOPTMODE (or FeasOptMode) set to
CPX_FEASOPT_OPT_SUM (or OptSum) on a continuous problem. A relaxation was successfully found and a
feasible solution for the problem (if relaxed according to that relaxation) was installed. The relaxation is optimal.

605

Macro CPX_STAT_UNBOUNDED
Definition file: cplex.h

CPX_STAT_UNBOUNDED

2 (Simplex or Barrier) enum: Unbounded
Problem has an unbounded ray; see the concept Unboundedness for more information about infeasibility and
unboundedness as a solution status.

606

Macro CPX_SUM_COMP_SLACK
Definition file: cplex.h

CPX_SUM_COMP_SLACK

Concert Technology enum: SumCompSlack.
Numeric meaning (double): To access the sum of the violations of the complementary slackness conditions for
the unscaled problem. This feature is available only for a barrier solution.

Integer meaning: not applicable

607

Macro CPX_SUM_DUAL_INFEAS
Definition file: cplex.h

CPX_SUM_DUAL_INFEAS

Concert Technology enum: SumDualInfeas.
Numeric meaning (double): To access the sum of dual infeasibilities or, equivalently, the sum of reduced-cost
bound violations for the unscaled problem

Integer meaning: not applicable

608

Macro CPX_SUM_DUAL_RESIDUAL
Definition file: cplex.h

CPX_SUM_DUAL_RESIDUAL

Concert Technology enum: SumDualResidual.
Numeric meaning (double): To access the sum of the absolute values of the dual residual vector for the
unscaled problem

Integer meaning: not applicable

609

Macro CPX_SUM_INDSLACK_INFEAS
Definition file: cplex.h

CPX_SUM_INDSLACK_INFEAS

Concert Technology enum: not applicable.
Numeric meaning (double): To access the sum of the infeasibilities of the indicator constraints.

Integer meaning: not applicable

Can use a supplied primal solution.

Concert Technology does not distinguish indicator constraints from linear constraints in this respect.

610

Macro CPX_SUM_INT_INFEAS
Definition file: cplex.h

CPX_SUM_INT_INFEAS

Concert Technology enum: SumIntInfeas.
Numeric meaning (double): To access the sum of integer infeasibilities for the unscaled problem

Integer meaning: not applicable

Can use a supplied primal solution.

611

Macro CPX_SUM_PI
Definition file: cplex.h

CPX_SUM_PI

Concert Technology enum: SumPi.
Numeric meaning (double): To access the sum of the absolute values in the dual solution vector for the
unscaled problem

Integer meaning: not applicable

612

Macro CPX_SUM_PRIMAL_INFEAS
Definition file: cplex.h

CPX_SUM_PRIMAL_INFEAS

Concert Technology enum: SumPrimalInfeas.
Numeric meaning (double): To access the sum of primal infeasibilities or, equivalently, the sum of bound
violations for the unscaled problem.

Integer meaning: not applicable

Can use a supplied primal solution.

613

Macro CPX_SUM_PRIMAL_RESIDUAL
Definition file: cplex.h

CPX_SUM_PRIMAL_RESIDUAL

Concert Technology enum: SumPrimalResidual.
Numeric meaning (double): To access the sum of the elements of vector |Ax-b| for the unscaled problem

Integer meaning: not applicable

Can use a supplied primal solution.

614

Macro CPX_SUM_QCPRIMAL_RESIDUAL
Definition file: cplex.h

CPX_SUM_QCPRIMAL_RESIDUAL

Concert Technology enum: SumPrimalResidual.
Numeric meaning (double): To access the sum of the residuals |x'Qx + dx - f| for the unscaled quadratic
constraints.

Integer meaning: not applicable

Concert Technology does not distinguish quadratic constraints from linear constraints in this respect.

615

Macro CPX_SUM_QCSLACK
Definition file: cplex.h

CPX_SUM_QCSLACK

Concert Technology enum: SumSlack.
Numeric meaning (double): To access the sum of the absolute quadratic constraint slack values.

Integer meaning: not applicable

Can use a supplied primal solution.

Concert Technology does not distinguish quadratic constraints from linear constraints in this respect.

616

Macro CPX_SUM_QCSLACK_INFEAS
Definition file: cplex.h

CPX_SUM_QCSLACK_INFEAS

Concert Technology enum: not applicable.
Numeric meaning (double): To access the sum of the infeasibilities of the quadratic constraints.

Integer meaning: not applicable

Can use a supplied primal solution.

Concert Technology does not distinguish quadratic constraints from linear constraints in this respect.

617

Macro CPX_SUM_RED_COST
Definition file: cplex.h

CPX_SUM_RED_COST

Concert Technology enum: SumRedCost.
Numeric meaning (double): To access the sum of the absolute reduced cost values for the unscaled problem

Integer meaning: not applicable

618

Macro CPX_SUM_SCALED_DUAL_INFEAS
Definition file: cplex.h

CPX_SUM_SCALED_DUAL_INFEAS

Concert Technology enum: SumScaledDualInfeas.
Numeric meaning (double): To access the sum of dual infeasibilities or, equivalently, the sum of reduced-cost
bound violations for the scaled problem

Integer meaning: not applicable

619

Macro CPX_SUM_SCALED_DUAL_RESIDUAL
Definition file: cplex.h

CPX_SUM_SCALED_DUAL_RESIDUAL

Concert Technology enum: SumScaledDualResidual.
Numeric meaning (double): To access the sum of the absolute values of the dual residual vector for the scaled
problem

Integer meaning: not applicable

620

Macro CPX_SUM_SCALED_PI
Definition file: cplex.h

CPX_SUM_SCALED_PI

Concert Technology enum: SumScaledPi.
Numeric meaning (double): To access the sum of the absolute values in the dual solution vector for the scaled
problem

Integer meaning: not applicable

621

Macro CPX_SUM_SCALED_PRIMAL_INFEAS
Definition file: cplex.h

CPX_SUM_SCALED_PRIMAL_INFEAS

Concert Technology enum: SumScaledPrimalInfeas.
Numeric meaning (double): To access the sum of primal infeasibilities or, equivalently, the sum of bound
violations for the scaled problem

Integer meaning: not applicable

Can use a supplied primal solution.

622

Macro CPX_SUM_SCALED_PRIMAL_RESIDUAL
Definition file: cplex.h

CPX_SUM_SCALED_PRIMAL_RESIDUAL

Concert Technology enum: SumScaledPrimalResidual.
Numeric meaning (double): To access the sum of the elements of vector |Ax-b| for the unscaled problem

Integer meaning: not applicable

Can use a supplied primal solution.

623

Macro CPX_SUM_SCALED_RED_COST
Definition file: cplex.h

CPX_SUM_SCALED_RED_COST

Concert Technology enum: SumScaledRedCost.
Numeric meaning (double): To access the sum of the absolute reduced cost values for the unscaled problem

Integer meaning: not applicable

624

Macro CPX_SUM_SCALED_SLACK
Definition file: cplex.h

CPX_SUM_SCALED_SLACK

Concert Technology enum: SumScaledSlack.
Numeric meaning (double): To access the sum of the absolute slack values for the scaled problem

Integer meaning: not applicable

Can use a supplied primal solution.

625

Macro CPX_SUM_SCALED_X
Definition file: cplex.h

CPX_SUM_SCALED_X

Concert Technology enum: SumScaledX.
Numeric meaning (double): To access the sum of the absolute values in the primal solution vector for the
scaled problem

Integer meaning: not applicable

Can use a supplied primal solution.

626

Macro CPX_SUM_SLACK
Definition file: cplex.h

CPX_SUM_SLACK

Concert Technology enum: SumSlack.
Numeric meaning (double): To access the sum of the absolute slack values for the unscaled problem

Integer meaning: not applicable

Can use a supplied primal solution.

627

Macro CPX_SUM_X
Definition file: cplex.h

CPX_SUM_X

Concert Technology enum: SumX.
Numeric meaning (double): To access the sum of the absolute values in the primal solution vector for the
unscaled problem

Integer meaning: not applicable

Can use a supplied primal solution.

628

Macro CPXERR_ABORT_STRONGBRANCH
Definition file: cplex.h

CPXERR_ABORT_STRONGBRANCH

1263 Strong branching aborted
Strong branching, for variable selection, could not proceed because a subproblem optimization was aborted.

629

Macro CPXERR_ADJ_SIGN_QUAD
Definition file: cplex.h

CPXERR_ADJ_SIGN_QUAD

1606 Lines %d,%d: Adjacent sign and quadratic character
The previous line ended with a + or - so the subsequent line must start with a variable name rather than an one
of the reserved quadratic characters []*^.

630

Macro CPXERR_ADJ_SIGN_SENSE
Definition file: cplex.h

CPXERR_ADJ_SIGN_SENSE

1604 Lines %d,%d: Adjacent sign and sense
A sense specifier erroneously follows an arithmetic operator.

631

Macro CPXERR_ADJ_SIGNS
Definition file: cplex.h

CPXERR_ADJ_SIGNS

1602 Lines %d,%d: Adjacent signs
The previous line ended with a + (plus) or - (minus) so the next line must start with a variable name rather than
an operator.

632

Macro CPXERR_ALGNOTLICENSED
Definition file: cplex.h

CPXERR_ALGNOTLICENSED

32024 Licensing problem: Optimization algorithm not licensed
The license is not configured for this optimization algorithm. For example, this error occurs when anyone tries to
invoke the CPLEX Barrier Optimizer with a license key that does not permit this algorithm. Check the options field
of the license key to see the CPLEX features that are enabled.

633

Macro CPXERR_ARC_INDEX_RANGE
Definition file: cplex.h

CPXERR_ARC_INDEX_RANGE

1231 Arc index %d out of range
The specified arc index is negative or greater than or equal to the number of arcs in the network.

634

Macro CPXERR_ARRAY_BAD_SOS_TYPE
Definition file: cplex.h

CPXERR_ARRAY_BAD_SOS_TYPE

3009 Illegal sostype entry %d
Only sostype values of 1 or 2 are legal.

635

Macro CPXERR_ARRAY_NOT_ASCENDING
Definition file: cplex.h

CPXERR_ARRAY_NOT_ASCENDING

1226 Array entry %d not ascending
Entries in matbeg or sosbeg arrays must be ascending.

636

Macro CPXERR_ARRAY_TOO_LONG
Definition file: cplex.h

CPXERR_ARRAY_TOO_LONG

1208 Array length too long
The number of norm values passed to CPXcopypnorms exceeds the number of columns, or the number of norm
values passed to CPXcopydnorms exceeds the number of rows.

637

Macro CPXERR_BAD_ARGUMENT
Definition file: cplex.h

CPXERR_BAD_ARGUMENT

1003 Bad argument to Callable Library routine.
An invalid argument was passed.

638

Macro CPXERR_BAD_BOUND_SENSE
Definition file: cplex.h

CPXERR_BAD_BOUND_SENSE

1622 Line %d: Invalid bound sense
An invalid bounds sense marker appears in the LP file. Acceptable bound senses are <, >, =, or free.

639

Macro CPXERR_BAD_BOUND_TYPE
Definition file: cplex.h

CPXERR_BAD_BOUND_TYPE

1457 Line %d: Unrecognized bound type '%s'
An unrecognized bounds sense specifier appears in the MPS file. Acceptable bound senses are BV, LI, UI, UP,
LO, FX, FR, MI, PL, and SC.

640

Macro CPXERR_BAD_CHAR
Definition file: cplex.h

CPXERR_BAD_CHAR

1537 Illegal character
That character is not allowed. See specifications of the NET or MIN format.

641

Macro CPXERR_BAD_CTYPE
Definition file: cplex.h

CPXERR_BAD_CTYPE

3021 Illegal ctype entry %d
An illegal ctype character has been passed to CPXchgctype. Use one of these: C, B, I, S, or N.

642

Macro CPXERR_BAD_DIRECTION
Definition file: cplex.h

CPXERR_BAD_DIRECTION

3012 Line %d: Unrecognized direction '%c%c'
Only UP and DN are accepted as branching directions beginning in column 2 of an ORD file.

643

Macro CPXERR_BAD_EXPO_RANGE
Definition file: cplex.h

CPXERR_BAD_EXPO_RANGE

1435 Line %d: Exponent '%s' out of range
An exponent on the specified line is greater than the largest permitted for your computer system.

644

Macro CPXERR_BAD_EXPONENT
Definition file: cplex.h

CPXERR_BAD_EXPONENT

1618 Line %d: Exponent '%s' not %s with number
The characters following an exponent on the specified line are not numbers.

645

Macro CPXERR_BAD_FILETYPE
Definition file: cplex.h

CPXERR_BAD_FILETYPE

1424 Invalid filetype
An invalid file type has been passed to a routine requiring a file type.

646

Macro CPXERR_BAD_ID
Definition file: cplex.h

CPXERR_BAD_ID

1617 Line %d: '%s' not valid identifier
An illegal variable or row name exists on the specified line.

647

Macro CPXERR_BAD_INDCONSTR
Definition file: cplex.h

CPXERR_BAD_INDCONSTR

1439 Line %d: Illegal indicator constraint
Indicator constraints are not allowed in the objective, nor in lazy constraints, nor in user cuts sections. The
indicator variable may only be compared against values of 0 (zero) and 1 (one). The MPS format requires that
the indicator type be "IF" and that indicator constraints be of type 'E', 'L', or 'G'.

648

Macro CPXERR_BAD_INDICATOR
Definition file: cplex.h

CPXERR_BAD_INDICATOR

1551 Line %d: Unrecognized basis marker '%s'
An invalid basis marker appears in the BAS file.

649

Macro CPXERR_BAD_LAZY_UCUT
Definition file: cplex.h

CPXERR_BAD_LAZY_UCUT

1438 Line %d: Illegal lazy constraint or user cut
MPS reader does not allow 'E', 'N', or 'R' in lazy constraints or user cuts.

650

Macro CPXERR_BAD_LUB
Definition file: cplex.h

CPXERR_BAD_LUB

1229 Illegal bound change specified by entry %d
The bound change specifier must be L, U, or B.

651

Macro CPXERR_BAD_METHOD
Definition file: cplex.h

CPXERR_BAD_METHOD

1292 Invalid choice of optimization method
Unknown method selected for CPXhybnetopt or CPXhybbaropt. Select CPX_ALG_PRIMAL or
CPX_ALG_DUAL.

652

Macro CPXERR_BAD_NUMBER
Definition file: cplex.h

CPXERR_BAD_NUMBER

1434 Line %d: Couldn't convert '%s' to a number
CPLEX was unable to interpret a string as a number on the specified line.

653

Macro CPXERR_BAD_OBJ_SENSE
Definition file: cplex.h

CPXERR_BAD_OBJ_SENSE

1487 Line %d: Unrecognized objective sense '%s'
There is an OBJSENSE line in an MPS problem file, but CPLEX can not locate the MIN or MAX objective sense
statement. Check the MPS file for correct syntax. See the File Formats Manual for a description of MPS format.

654

Macro CPXERR_BAD_PARAM_NAME
Definition file: cplex.h

CPXERR_BAD_PARAM_NAME

1028 Bad parameter name to CPLEX parameter routine
The parameter name does not exist.

655

Macro CPXERR_BAD_PARAM_NUM
Definition file: cplex.h

CPXERR_BAD_PARAM_NUM

1013 Bad parameter number to CPLEX parameter routine
The CPLEX parameter number does not exist.

656

Macro CPXERR_BAD_PIVOT
Definition file: cplex.h

CPXERR_BAD_PIVOT

1267 Illegal pivot
This error occurs if illegal or bad simplex pivots are attempted. Examples are attempts to remove nonbasic
variables from the basis or selection of a zero column to enter the basis. Also, this error code may be generated
if a pivot would yield a numerically unstable or singular basis.

657

Macro CPXERR_BAD_PRIORITY
Definition file: cplex.h

CPXERR_BAD_PRIORITY

3006 Negative priority entry %d
Priority orders must be positive integer values.

658

Macro CPXERR_BAD_PROB_TYPE
Definition file: cplex.h

CPXERR_BAD_PROB_TYPE

1022 Unknown problem type. Problem not changed
CPXchgprobtype could not change the problem type since an unknown type was specified.

659

Macro CPXERR_BAD_ROW_ID
Definition file: cplex.h

CPXERR_BAD_ROW_ID

1532 Incorrect row identifier
Selected row does not exist.

660

Macro CPXERR_BAD_SECTION_BOUNDS
Definition file: cplex.h

CPXERR_BAD_SECTION_BOUNDS

1473 Line %d: Unrecognized section marker. Expecting RANGES, BOUNDS, QMATRIX, or ENDATA
An unrecognized MPS file section marker occurred after the COLUMNS section of the MPS file.

661

Macro CPXERR_BAD_SECTION_ENDATA
Definition file: cplex.h

CPXERR_BAD_SECTION_ENDATA

1462 Line %d: Unrecognized section marker. Expecting ENDATA
An unrecognized MPS file section marker occurred after the COLUMNS section of the MPS file.

662

Macro CPXERR_BAD_SECTION_QMATRIX
Definition file: cplex.h

CPXERR_BAD_SECTION_QMATRIX

1475 Line %d: Unrecognized section marker. Expecting QMATRIX or ENDATA
An unrecognized MPS file section marker occurred after the RHS or BOUNDS section of the MPS file

663

Macro CPXERR_BAD_SENSE
Definition file: cplex.h

CPXERR_BAD_SENSE

1215 Illegal sense entry %d
Legal sense symbols are L, G, E, and R.

664

Macro CPXERR_BAD_SOS_TYPE
Definition file: cplex.h

CPXERR_BAD_SOS_TYPE

1442 Line %d: Unrecognized SOS type: %c%c
Only SOS Types S1 or S2 can be specified within an SOS or MPS file.

665

Macro CPXERR_BAD_STATUS
Definition file: cplex.h

CPXERR_BAD_STATUS

1253 Invalid status entry %d for basis specification
The basis status values are out of range.

666

Macro CPXERR_BADPRODUCT
Definition file: cplex.h

CPXERR_BADPRODUCT

32023 Licensing problem: License not valid for this product
The license is not configured to support the particular part of the product you are trying to use. For example, this
error occurs when when anyone tries to run the Interactive Optimizer with a license configured only for runtime
application deployment (for example, ILM key type RTNODE). In such a case, either locate a different ILM key
that has been provided to you, or try compiling and running one of the simple examples found in the distribution,
such as lpex1.c and its language variants, instead of using the Interactive Optimizer. Contact your support
representative for assistance if you are unable to determine the correct ILM key for your purposes.

667

Macro CPXERR_BAS_FILE_SHORT
Definition file: cplex.h

CPXERR_BAS_FILE_SHORT

1550 Basis missing some basic variables
Number of basic variables is less than the number of rows.

668

Macro CPXERR_BAS_FILE_SIZE
Definition file: cplex.h

CPXERR_BAS_FILE_SIZE

1555 %d %s basic variable(s)
Number of basic variables doesn't match the problem. Check the CPXcopybase call.

669

Macro CPXERR_CALLBACK
Definition file: cplex.h

CPXERR_CALLBACK

1006 Error during callback
An error condition occurred during the callback, as, for example, when a MIP problem is being solved, if a
callback asks for information that is not available from CPLEX.

670

Macro CPXERR_CANT_CLOSE_CHILD
Definition file: cplex.h

CPXERR_CANT_CLOSE_CHILD

1021 Cannot close a child environment
It is not permitted to call CPXcloseCPLEX for a child environment.

671

Macro CPXERR_CHILD_OF_CHILD
Definition file: cplex.h

CPXERR_CHILD_OF_CHILD

1019 Cannot clone a cloned environment
CPXparenv cannot be called from a child thread.

672

Macro CPXERR_COL_INDEX_RANGE
Definition file: cplex.h

CPXERR_COL_INDEX_RANGE

1201 Column index %d out of range
The specified column index is negative or greater than or equal to the number of columns in the currently loaded
problem.

673

Macro CPXERR_COL_REPEAT_PRINT
Definition file: cplex.h

CPXERR_COL_REPEAT_PRINT

1478 %d Column repeats messages not printed
The MPS problem or REV file contains duplicate column entries. Inspect and edit the file.

674

Macro CPXERR_COL_REPEATS
Definition file: cplex.h

CPXERR_COL_REPEATS

1446 Column '%s' repeats
The MPS file contains duplicate column entries. Inspect and edit the file.

675

Macro CPXERR_COL_ROW_REPEATS
Definition file: cplex.h

CPXERR_COL_ROW_REPEATS

1443 Column '%s' has repeated row '%s'
The specified column appears more than once in a row. Check the MPS file for duplicate entries.

676

Macro CPXERR_COL_UNKNOWN
Definition file: cplex.h

CPXERR_COL_UNKNOWN

1449 Line %d: '%s' is not a column name
The MPS file specifies a column name that does not exist.

677

Macro CPXERR_CONFLICT_UNSTABLE
Definition file: cplex.h

CPXERR_CONFLICT_UNSTABLE

1720 Infeasibility not reproduced.
Computation failed because a previously detected infeasibility could not be reproduced. A conflict exists and can
be queried, but it is not minimal.

678

Macro CPXERR_COUNT_OVERLAP
Definition file: cplex.h

CPXERR_COUNT_OVERLAP

1228 Count entry %d specifies overlapping entries
Entries in the matcnt array are such that the specified items overlap.

679

Macro CPXERR_COUNT_RANGE
Definition file: cplex.h

CPXERR_COUNT_RANGE

1227 Count entry %d negative or larger than allowed
Entries in matcnt arrays must be nonnegative or less than the number of items possible (columns or rows, for
example).

680

Macro CPXERR_DBL_MAX
Definition file: cplex.h

CPXERR_DBL_MAX

1233 Numeric entry %d is larger than allowed maximum of %g
Data checking detected a number too large.

681

Macro CPXERR_DECOMPRESSION
Definition file: cplex.h

CPXERR_DECOMPRESSION

1027 Decompression of unpresolved problem failed
CPLEX was unable to restore the original problem, due, for example, to insufficient memory.

682

Macro CPXERR_DUP_ENTRY
Definition file: cplex.h

CPXERR_DUP_ENTRY

1222 Duplicate entry or entries
One or more duplicate entries for a (row, column) pair were found. To identify which pair or pairs caused this
error message, use one of the routines in check.c.

683

Macro CPXERR_EXTRA_BV_BOUND
Definition file: cplex.h

CPXERR_EXTRA_BV_BOUND

1456 Line %d: 'BV' bound type illegal when prior bound given
Check the MPS file for bound values which conflict with this type specification.

684

Macro CPXERR_EXTRA_FR_BOUND
Definition file: cplex.h

CPXERR_EXTRA_FR_BOUND

1455 Line %d: 'FR' bound type illegal when prior bound given
A column with an upper or lower bound previously assigned has an illegal FR bound assignment. Since the FR
bound type has neither an upper nor lower bound, no other bound type can be specified. Check the MPS file.

685

Macro CPXERR_EXTRA_FX_BOUND
Definition file: cplex.h

CPXERR_EXTRA_FX_BOUND

1454 Line %d: 'FX' bound type illegal when prior bound given
A column with either an upper or lower bound previously assigned has an illegal FX bound assignment. Since the
FX bound type fixes both upper and lower bounds, no additional bounds can be specified. Check the MPS file.

686

Macro CPXERR_EXTRA_INTEND
Definition file: cplex.h

CPXERR_EXTRA_INTEND

1481 Line %d: 'INTEND' found while not reading integers
Integer markers are incorrectly positioned in the MPS file.

687

Macro CPXERR_EXTRA_INTORG
Definition file: cplex.h

CPXERR_EXTRA_INTORG

1480 Line %d: 'INTORG' found while reading integers
Integer markers are incorrectly positioned in the MPS file.

688

Macro CPXERR_EXTRA_SOSEND
Definition file: cplex.h

CPXERR_EXTRA_SOSEND

1483 Line %d: 'SOSEND' found while not reading a SOS
SOS markers are incorrectly positioned in the MPS file.

689

Macro CPXERR_EXTRA_SOSORG
Definition file: cplex.h

CPXERR_EXTRA_SOSORG

1482 Line %d: 'SOSORG' found while reading a SOS
SOS markers are incorrectly positioned in the MPS file.

690

Macro CPXERR_FAIL_OPEN_READ
Definition file: cplex.h

CPXERR_FAIL_OPEN_READ

1423 Could not open file '%s' for reading
CPLEX could not read the specified file. Check the file specification.

691

Macro CPXERR_FAIL_OPEN_WRITE
Definition file: cplex.h

CPXERR_FAIL_OPEN_WRITE

1422 Could not open file '%s' for writing
CPLEX could not create the specified file. Check the file specification.

692

Macro CPXERR_FILE_ENTRIES
Definition file: cplex.h

CPXERR_FILE_ENTRIES

1553 Line %d: Wrong number of entries
The BAS or VEC or FLT file contains a line with too many or too few entries.

693

Macro CPXERR_FILE_FORMAT
Definition file: cplex.h

CPXERR_FILE_FORMAT

1563 File '%s' has an incompatible format. Try setting reverse flag
When a binary file that has been produced on a different computer system is being read, reversing the setting of
the byte order may allow reading.

694

Macro CPXERR_FILTER_VARIABLE_TYPE
Definition file: cplex.h

CPXERR_FILTER_VARIABLE_TYPE

3414 Diversity filter has non-binary variable(s)
Only binary variables are allowed in diversity filters.

695

Macro CPXERR_ILL_DEFINED_PWL
Definition file: cplex.h

CPXERR_ILL_DEFINED_PWL

1213
A piecewise linear function has been defined with a discontinuity at the anchor point. Such a definition does not
fully specify the piecewise linear function.

696

Macro CPXERR_ILOG_LICENSE
Definition file: cplex.h

CPXERR_ILOG_LICENSE

32201 ILM Error %d
A licensing error has occurred. Check the environment variable ILOG_LICENSE_FILE. For more information,
consult the troubleshooting section of the ILOG License Manager User's Guide and Reference Manual.

697

Macro CPXERR_IN_INFOCALLBACK
Definition file: cplex.h

CPXERR_IN_INFOCALLBACK

1804 Calling routines not allowed in informational callback
CPLEX encountered an error in an informational callback, when the user-written callback attempted to invoke a
routine other than the routines CPXgetcallbackinfo or CPXgetcallbackincumbent allowed in
informational callbacks.

698

Macro CPXERR_INDEX_NOT_BASIC
Definition file: cplex.h

CPXERR_INDEX_NOT_BASIC

1251 Index must correspond to a basic variable
The requested variable is not basic.

699

Macro CPXERR_INDEX_RANGE
Definition file: cplex.h

CPXERR_INDEX_RANGE

1200 Index is outside range of valid values
Selected index is too large or small.

700

Macro CPXERR_INDEX_RANGE_HIGH
Definition file: cplex.h

CPXERR_INDEX_RANGE_HIGH

1206 %s: 'end' value %d is greater than %d
The index in the query routine is too large. The symbol %s represents a string, %d a number.

701

Macro CPXERR_INDEX_RANGE_LOW
Definition file: cplex.h

CPXERR_INDEX_RANGE_LOW

1205 %s: 'begin' value %d is less than %d
The index in the query routine is too small. The symbol %s represents a string, %d a number.

702

Macro CPXERR_INT_TOO_BIG
Definition file: cplex.h

CPXERR_INT_TOO_BIG

3018 Magnitude of variable %s: %g exceeds integer limit %d
CPXmipopt tried to branch on the specified integer variable at a value larger than representable in the
branch-and-cut tree. Check the problem formulation.

703

Macro CPXERR_INT_TOO_BIG_INPUT
Definition file: cplex.h

CPXERR_INT_TOO_BIG_INPUT

1463 Line %d: Magnitude exceeds integer limit %d
A number has been read that is greater than the largest integer value that can be represented by the computer.

704

Macro CPXERR_INVALID_NUMBER
Definition file: cplex.h

CPXERR_INVALID_NUMBER

1650 Number not representable in exponential notation
The number to be printed is not representable.

705

Macro CPXERR_LIMITS_TOO_BIG
Definition file: cplex.h

CPXERR_LIMITS_TOO_BIG

1012 Problem size limits too large
One of the problem dimensions or read limits requires an array length beyond the architectural maximum of the
computer.

706

Macro CPXERR_LINE_TOO_LONG
Definition file: cplex.h

CPXERR_LINE_TOO_LONG

1465 Line %d: Line longer than limit of %d characters
The length of the input line was beyond the size CPLEX can process.

707

Macro CPXERR_LO_BOUND_REPEATS
Definition file: cplex.h

CPXERR_LO_BOUND_REPEATS

1459 Line %d: Repeated lower bound
The lower bound for a column is repeated within the problem file on the specified line. Two individual lower
bounds could exist. Alternatively, an MI bound and individual lower bound could be in conflict. Check the MPS
file.

708

Macro CPXERR_LP_NOT_IN_ENVIRONMENT
Definition file: cplex.h

CPXERR_LP_NOT_IN_ENVIRONMENT

1806 Problem is not member of this environment
CPLEX encountered an error caused by an LP pointer attempting to access an environment other than the
environment where the problem problem was created.

709

Macro CPXERR_MIPSEARCH_WITH_CALLBACKS
Definition file: cplex.h

CPXERR_MIPSEARCH_WITH_CALLBACKS

1805 MIP dynamic search incompatible with control callbacks
CPLEX encountered an error caused by a control callback invoked during dynamic search in MIP optimization.

710

Macro CPXERR_MISS_SOS_TYPE
Definition file: cplex.h

CPXERR_MISS_SOS_TYPE

3301 Line %d: Missing SOS type
An SOS type has not been specified.

711

Macro CPXERR_MSG_NO_CHANNEL
Definition file: cplex.h

CPXERR_MSG_NO_CHANNEL

1051 No channel pointer supplied to message routine
The message routine needs a pointer to a channel.

712

Macro CPXERR_MSG_NO_FILEPTR
Definition file: cplex.h

CPXERR_MSG_NO_FILEPTR

1052 No file pointer found for message routine
The message routine needs a pointer to a file.

713

Macro CPXERR_MSG_NO_FUNCTION
Definition file: cplex.h

CPXERR_MSG_NO_FUNCTION

1053 No function pointer found for message routine
The message routine needs a pointer to a function.

714

Macro CPXERR_NAME_CREATION
Definition file: cplex.h

CPXERR_NAME_CREATION

1209 Unable to create default names
The current names of rows or columns don't allow the creation of default names.

715

Macro CPXERR_NAME_NOT_FOUND
Definition file: cplex.h

CPXERR_NAME_NOT_FOUND

1210 Name not found
Name does not exist. Check the arguments of CPXgetcolindex or CPXgetrowindex.

716

Macro CPXERR_NAME_TOO_LONG
Definition file: cplex.h

CPXERR_NAME_TOO_LONG

1464 Line %d: Identifier/name too long to process
The length of the identifier or name was beyond the size CPLEX can process.

717

Macro CPXERR_NAN
Definition file: cplex.h

CPXERR_NAN

1225 Numeric entry %d is not a double precision number (NAN)
The value is not a number.

718

Macro CPXERR_NEED_OPT_SOLN
Definition file: cplex.h

CPXERR_NEED_OPT_SOLN

1252 Optimal solution required
An optimal solution must exist before the requested operation can be performed.

719

Macro CPXERR_NEGATIVE_SURPLUS
Definition file: cplex.h

CPXERR_NEGATIVE_SURPLUS

1207 Insufficient array length
The array is too short to hold the requested data.

720

Macro CPXERR_NET_DATA
Definition file: cplex.h

CPXERR_NET_DATA

1530 Inconsistent network file
Check the NET format file for errors.

721

Macro CPXERR_NET_FILE_SHORT
Definition file: cplex.h

CPXERR_NET_FILE_SHORT

1538 Unexpected end of network file
Check the NET format file for errors.

722

Macro CPXERR_NO_BARRIER_SOLN
Definition file: cplex.h

CPXERR_NO_BARRIER_SOLN

1223 No barrier solution exists
The requested operation requires the existence of a barrier solution.

723

Macro CPXERR_NO_BASIC_SOLN
Definition file: cplex.h

CPXERR_NO_BASIC_SOLN

1261 No basic solution exists
The requested operation requires the existence of a basic solution. Apply primal or dual simplex or crossover.

724

Macro CPXERR_NO_BASIS
Definition file: cplex.h

CPXERR_NO_BASIS

1262 No basis exists
The requested operation requires the existence of a basis.

725

Macro CPXERR_NO_BOUND_SENSE
Definition file: cplex.h

CPXERR_NO_BOUND_SENSE

1621 Line %d: No bound sense
The sense marker is missing from the specified line.

726

Macro CPXERR_NO_BOUND_TYPE
Definition file: cplex.h

CPXERR_NO_BOUND_TYPE

1460 Line %d: Bound type missing
No bound type could be found for the specified column bound on the specified line. Check the MPS file.

727

Macro CPXERR_NO_COLUMNS_SECTION
Definition file: cplex.h

CPXERR_NO_COLUMNS_SECTION

1472 Line %d: No COLUMNS section
The required COLUMNS section is missing from the MPS file. Check the file.

728

Macro CPXERR_NO_CONFLICT
Definition file: cplex.h

CPXERR_NO_CONFLICT

1719 No conflict is available.
Either a conflict has not been computed or the computation failed. For example, computation may fail because
the problem is feasible and thus does not contain conflicting constraints.

729

Macro CPXERR_NO_DUAL_SOLN
Definition file: cplex.h

CPXERR_NO_DUAL_SOLN

1232 No dual solution exists
There is no dual solution available, so there is no quality information about the dual either.

730

Macro CPXERR_NO_ENDATA
Definition file: cplex.h

CPXERR_NO_ENDATA

1552 ENDATA missing
BAS files must have an ENDATA record as the last line of the file.

731

Macro CPXERR_NO_ENVIRONMENT
Definition file: cplex.h

CPXERR_NO_ENVIRONMENT

1002 No environment
Be sure to pass a valid environment pointer to the routines.

732

Macro CPXERR_NO_FILENAME
Definition file: cplex.h

CPXERR_NO_FILENAME

1421 File name not specified
A filename must be specified for the requested operation to succeed.

733

Macro CPXERR_NO_ID
Definition file: cplex.h

CPXERR_NO_ID

1616 Line %d: Expected identifier, found '%c'
Instead of the expected identifier CPLEX found the character shown in the error message.

734

Macro CPXERR_NO_ID_FIRST
Definition file: cplex.h

CPXERR_NO_ID_FIRST

1609 Line %d: Expected identifier first
A variable name is missing on the specified line.

735

Macro CPXERR_NO_INT_X
Definition file: cplex.h

CPXERR_NO_INT_X

3023 Integer feasible solution values are unavailable
When the incumbent for the problem has been provided by a MIP Start or by an advanced callback function
working on the original problem, the incumbent solution values are not available for the reduced problem.

736

Macro CPXERR_NO_LU_FACTOR
Definition file: cplex.h

CPXERR_NO_LU_FACTOR

1258 No LU factorization exists
The requested item requires the presence of factoring. You may need to optimize with a 0 (zero) iteration limit to
factor.

737

Macro CPXERR_NO_MEMORY
Definition file: cplex.h

CPXERR_NO_MEMORY

1001 Out of memory
The computer has insufficient memory available to complete the selected operation. Downsize problem or
increase the amount of physical memory available. Depending on the command, several memory-conserving
corrections can be made.

738

Macro CPXERR_NO_MIPSTART
Definition file: cplex.h

CPXERR_NO_MIPSTART

3020 No MIP start exists
CPXgetmipstart failed because no MIP start data is available for the problem.

739

Macro CPXERR_NO_NAME_SECTION
Definition file: cplex.h

CPXERR_NO_NAME_SECTION

1441 Line %d: No NAME section
The NAME section required in an MPS file is missing.

740

Macro CPXERR_NO_NAMES
Definition file: cplex.h

CPXERR_NO_NAMES

1219 No names exist
The requested operation is successful only if names have been assigned. Typically, this failure occurs when a file
is being read, such as an ORD file, when no names were assigned during the prior call to CPXreadcopyprob.

741

Macro CPXERR_NO_NORMS
Definition file: cplex.h

CPXERR_NO_NORMS

1264 No norms available
Norms are not present. Change pricing, and call the optimization routine.

742

Macro CPXERR_NO_NUMBER
Definition file: cplex.h

CPXERR_NO_NUMBER

1615 Line %d: Expected number, found '%c'
Some character other than a number, as required, appears on the specified line.

743

Macro CPXERR_NO_NUMBER_BOUND
Definition file: cplex.h

CPXERR_NO_NUMBER_BOUND

1623 Line %d: Missing bound number
The bound data is missing from the LP file. CPLEX expected a number where no number was found.

744

Macro CPXERR_NO_NUMBER_FIRST
Definition file: cplex.h

CPXERR_NO_NUMBER_FIRST

1611 Line %d: Expected number first
Some character other than a number, as required, appears on the specified line.

745

Macro CPXERR_NO_OBJ_SENSE
Definition file: cplex.h

CPXERR_NO_OBJ_SENSE

1436 Max or Min missing
The sense of the objective function (Max maximization or Min minimization) is missing from the LP file. No
problem has been read as a consequence.

746

Macro CPXERR_NO_OBJECTIVE
Definition file: cplex.h

CPXERR_NO_OBJECTIVE

1476 Line %d: No objective row found
No free row was found in the MPS file. Check the file. At least one free row must be present. Free rows have an
N sense beginning in column 2.

747

Macro CPXERR_NO_OP_OR_SENSE
Definition file: cplex.h

CPXERR_NO_OP_OR_SENSE

1608 Line %d: Expected '+','-' or sense, found '%c'
Some character other than a + or - operator, as required, appears on the specified line.

748

Macro CPXERR_NO_OPERATOR
Definition file: cplex.h

CPXERR_NO_OPERATOR

1607 Line %d: Expected '+' or '-', found '%c'
Some character other than + or - appears between variable names on the specified line.

749

Macro CPXERR_NO_ORDER
Definition file: cplex.h

CPXERR_NO_ORDER

3016 No priority order exists
The requested command cannot be executed because no priority order has been loaded.

750

Macro CPXERR_NO_PROBLEM
Definition file: cplex.h

CPXERR_NO_PROBLEM

1009 No problem exists
The requested command cannot be executed because no problem has been loaded.

751

Macro CPXERR_NO_QMATRIX_SECTION
Definition file: cplex.h

CPXERR_NO_QMATRIX_SECTION

1461 Line %d: No QMATRIX section
The required QMATRIX section for quadratic programs is missing from the QP file. Check the file.

752

Macro CPXERR_NO_QP_OPERATOR
Definition file: cplex.h

CPXERR_NO_QP_OPERATOR

1614 Line %d: Expected ^ or *
The ^ or * operator is missing from the QP term.

753

Macro CPXERR_NO_QUAD_EXP
Definition file: cplex.h

CPXERR_NO_QUAD_EXP

1612 Line %d: Expected quadratic exponent
An exponent of 2 is expected after the ^ operator.

754

Macro CPXERR_NO_RHS_COEFF
Definition file: cplex.h

CPXERR_NO_RHS_COEFF

1610 Line %d: Expected RHS coefficient
No RHS coefficient is present after the sense marker on the specified line.

755

Macro CPXERR_NO_RHS_IN_OBJ
Definition file: cplex.h

CPXERR_NO_RHS_IN_OBJ

1211 rhs has no coefficient in obj
You cannot make changes to the righthand side of an objective row because no coefficients exist.

756

Macro CPXERR_NO_RNGVAL
Definition file: cplex.h

CPXERR_NO_RNGVAL

1216 No range values
No ranges exist for this problem.

757

Macro CPXERR_NO_ROW_NAME
Definition file: cplex.h

CPXERR_NO_ROW_NAME

1486 Line %d: No row name
A row name is missing within the ROWS section.

758

Macro CPXERR_NO_ROW_SENSE
Definition file: cplex.h

CPXERR_NO_ROW_SENSE

1453 Line %d: No row sense
No sense for the row was found on the specified line.

759

Macro CPXERR_NO_ROWS_SECTION
Definition file: cplex.h

CPXERR_NO_ROWS_SECTION

1471 Line %d: No ROWS section
No ROW section was found in the MPS file.

760

Macro CPXERR_NO_SENSIT
Definition file: cplex.h

CPXERR_NO_SENSIT

1260 Sensitivity analysis not available for current status
Sensitivity information is not available because an optimal basic solution does not exist for the currently loaded
problem. Optimize the problem, and check to make sure that it is not infeasible or unbounded.

761

Macro CPXERR_NO_SOLN
Definition file: cplex.h

CPXERR_NO_SOLN

1217 No solution exists
The requested command cannot be executed because no solution exists for the problem. Optimize the problem
first.

762

Macro CPXERR_NO_SOLNPOOL
Definition file: cplex.h

CPXERR_NO_SOLNPOOL

3024 No solution pool exists
The requested command cannot be executed because no solution pool exists for the problem. Optimize the
problem first. If you have changed the solution pool capacity parameter from its default value, note that it needs
to take a positive value for the solution pool to exist.

763

Macro CPXERR_NO_SOS
Definition file: cplex.h

CPXERR_NO_SOS

3015 No user-defined SOSs exist
SOS information can be written to a file only if the SOS has already been defined. SOS Type 3 information
(found by the SOSSCAN feature) cannot be written to an SOS file.

764

Macro CPXERR_NO_SOS_SEPARATOR
Definition file: cplex.h

CPXERR_NO_SOS_SEPARATOR

1627 Expected ':', found '%c'
The separator :: must follow the S1 or S2 declaration.

765

Macro CPXERR_NO_TREE
Definition file: cplex.h

CPXERR_NO_TREE

3412 Current problem has no tree
No tree exists until after the mixed integer optimization has begun.

766

Macro CPXERR_NO_VECTOR_SOLN
Definition file: cplex.h

CPXERR_NO_VECTOR_SOLN

1556 Vector solution does not exist
CPLEX could not write VEC file because no vector solution is available.

767

Macro CPXERR_NODE_INDEX_RANGE
Definition file: cplex.h

CPXERR_NODE_INDEX_RANGE

1230 Node index %d out of range
The specified node index is negative or greater than or equal to the number of nodes in the network.

768

Macro CPXERR_NODE_ON_DISK
Definition file: cplex.h

CPXERR_NODE_ON_DISK

3504 No callback info on disk/compressed nodes
Information about nodes stored in node files is not available through the advanced callback functions.

769

Macro CPXERR_NOT_DUAL_UNBOUNDED
Definition file: cplex.h

CPXERR_NOT_DUAL_UNBOUNDED

1265 Dual unbounded solution required
The called function requires that the LP stored in the problem object has been determined to be primal infeasible
by the dual simplex algorithm.

770

Macro CPXERR_NOT_FIXED
Definition file: cplex.h

CPXERR_NOT_FIXED

1221 Only fixed variables are pivoted out
CPXpivotout can pivot out only fixed variables.

771

Macro CPXERR_NOT_FOR_MIP
Definition file: cplex.h

CPXERR_NOT_FOR_MIP

1017 Not available for mixed-integer problems
The requested operation can not be performed for mixed integer programs. Change the problem type.

772

Macro CPXERR_NOT_FOR_QCP
Definition file: cplex.h

CPXERR_NOT_FOR_QCP

1031 Not available for QCP
Function is not available for quadratically constrained problems.

773

Macro CPXERR_NOT_FOR_QP
Definition file: cplex.h

CPXERR_NOT_FOR_QP

1018 Not available for quadratic programs
The requested operation can not be performed for quadratic programs. Change the problem type.

774

Macro CPXERR_NOT_MILPCLASS
Definition file: cplex.h

CPXERR_NOT_MILPCLASS

1024 Not a MILP or fixed MILP
Function requires that problem type must be CPXPROB_MILP or CPXPROB_FIXEDMILP.

775

Macro CPXERR_NOT_MIN_COST_FLOW
Definition file: cplex.h

CPXERR_NOT_MIN_COST_FLOW

1531 Not a min-cost flow problem
Check the MIN format file for errors.

776

Macro CPXERR_NOT_MIP
Definition file: cplex.h

CPXERR_NOT_MIP

3003 Not a mixed-integer problem
The requested operation can be performed only on a mixed integer problem.

777

Macro CPXERR_NOT_MIQPCLASS
Definition file: cplex.h

CPXERR_NOT_MIQPCLASS

1029 Not a MIQP or fixed MIQP
Function requires that problem type be CPXPROB_MIQP or CPXPROB_FIXEDMIQP (that is, it has a quadratic
objective).

778

Macro CPXERR_NOT_ONE_PROBLEM
Definition file: cplex.h

CPXERR_NOT_ONE_PROBLEM

1023 Not a single problem
No problem available, or problem is fixed, and the operation is inappropriate for this types of problem.

779

Macro CPXERR_NOT_QP
Definition file: cplex.h

CPXERR_NOT_QP

5004 Not a quadratic program
The requested operation can be performed only on a quadratic problem.

780

Macro CPXERR_NOT_SAV_FILE
Definition file: cplex.h

CPXERR_NOT_SAV_FILE

1560 File '%s' is not a SAV file
The selected file does not match the type specified.

781

Macro CPXERR_NOT_UNBOUNDED
Definition file: cplex.h

CPXERR_NOT_UNBOUNDED

1254 Unbounded solution required
The requested operation can be performed only on a problem determined to be unbounded.

782

Macro CPXERR_NULL_NAME
Definition file: cplex.h

CPXERR_NULL_NAME

1224 Null pointer %d in name array
Null pointers are not allowed in name arrays.

783

Macro CPXERR_NULL_POINTER
Definition file: cplex.h

CPXERR_NULL_POINTER

1004 Null pointer for required data
A value of NULL was passed to a routine where NULL is not allowed.

784

Macro CPXERR_ORDER_BAD_DIRECTION
Definition file: cplex.h

CPXERR_ORDER_BAD_DIRECTION

3007 Illegal direction entry %d
Legal direction entries are limited to the values CPX_BRANCH_GLOBAL, CPX_BRANCH_DOWN, and
CPX_BRANCH_UP.

785

Macro CPXERR_PARAM_INCOMPATIBLE
Definition file: cplex.h

CPXERR_PARAM_INCOMPATIBLE

1807 Incompatible parameters
Incompatible parameters cannot be used together. In particular, CPX_PARAM_POLISHTIME cannot be used with
any of the CPX_PARAM_POLISHAFTER... parameters.

786

Macro CPXERR_PARAM_TOO_BIG
Definition file: cplex.h

CPXERR_PARAM_TOO_BIG

1015 Parameter value too big
The value of the CPLEX parameter is outside the range of possible settings.

787

Macro CPXERR_PARAM_TOO_SMALL
Definition file: cplex.h

CPXERR_PARAM_TOO_SMALL

1014 Parameter value too small
The value of the CPLEX parameter is outside the range of possible settings.

788

Macro CPXERR_PRESLV_ABORT
Definition file: cplex.h

CPXERR_PRESLV_ABORT

1106 Aborted during presolve
The user halted preprocessing by means of a callback.

789

Macro CPXERR_PRESLV_BAD_PARAM
Definition file: cplex.h

CPXERR_PRESLV_BAD_PARAM

1122 Bad presolve parameter setting
Dual presolve reductions (CPX_PARAM_REDUCE) were specified in the presence of lazy constraints, or nonlinear
reductions (CPX_PARAM_PRELINEAR) were specified in the presence of user cuts.

790

Macro CPXERR_PRESLV_BASIS_MEM
Definition file: cplex.h

CPXERR_PRESLV_BASIS_MEM

1107 Not enough memory to build basis for original LP
Insufficient memory exists to complete the uncrushing of the presolved problem.

791

Macro CPXERR_PRESLV_COPYORDER
Definition file: cplex.h

CPXERR_PRESLV_COPYORDER

1109 Can't copy priority order info from original MIP
The CPLEX call to CPXcopyorder failed.

792

Macro CPXERR_PRESLV_COPYSOS
Definition file: cplex.h

CPXERR_PRESLV_COPYSOS

1108 Can't copy SOS info from original MIP
The CPLEX call to CPXcopysos failed.

793

Macro CPXERR_PRESLV_CRUSHFORM
Definition file: cplex.h

CPXERR_PRESLV_CRUSHFORM

1121 Can't crush solution form
Presolve could not reduce the solution.

794

Macro CPXERR_PRESLV_DUAL
Definition file: cplex.h

CPXERR_PRESLV_DUAL

1119 The feature is not available for solving dual formulation
Certain presolve features are not compatible with its creating an explicit dual formulation.

795

Macro CPXERR_PRESLV_FAIL_BASIS
Definition file: cplex.h

CPXERR_PRESLV_FAIL_BASIS

1114 Could not load unpresolved basis for original LP
Most likely insufficient memory exists to complete the uncrushing of the presolved problem.

796

Macro CPXERR_PRESLV_INF
Definition file: cplex.h

CPXERR_PRESLV_INF

1117 Presolve determines problem is infeasible
The loaded problem contains blatant infeasibilities.

797

Macro CPXERR_PRESLV_INForUNBD
Definition file: cplex.h

CPXERR_PRESLV_INForUNBD

1101 Presolve determines problem is infeasible or unbounded
The loaded problem contains blatant infeasibilities or unboundedness.

798

Macro CPXERR_PRESLV_NO_BASIS
Definition file: cplex.h

CPXERR_PRESLV_NO_BASIS

1115 Failed to find basis in presolved LP
A basis could not be recovered during uncrushing, most likely due to lack of memory.

799

Macro CPXERR_PRESLV_NO_PROB
Definition file: cplex.h

CPXERR_PRESLV_NO_PROB

1103 No presolved problem created
Most likely insufficient memory exists to complete the loading of the presolved problem.

800

Macro CPXERR_PRESLV_SOLN_MIP
Definition file: cplex.h

CPXERR_PRESLV_SOLN_MIP

1110 Not enough memory to recover solution for original MIP
Most likely insufficient memory exists to complete the uncrushing of the presolved problem.

801

Macro CPXERR_PRESLV_SOLN_QP
Definition file: cplex.h

CPXERR_PRESLV_SOLN_QP

1111 Not enough memory to compute solution to original QP
Most likely insufficient memory exists to complete the uncrushing of the presolved problem.

802

Macro CPXERR_PRESLV_START_LP
Definition file: cplex.h

CPXERR_PRESLV_START_LP

1112 Not enough memory to build start for original LP
Most likely insufficient memory exists to complete the uncrushing of the presolved problem.

803

Macro CPXERR_PRESLV_TIME_LIM
Definition file: cplex.h

CPXERR_PRESLV_TIME_LIM

1123 Time limit exceeded during presolve
Time limit exceeded during preprocessing.

804

Macro CPXERR_PRESLV_UNBD
Definition file: cplex.h

CPXERR_PRESLV_UNBD

1118 Presolve determines problem is unbounded
The loaded problem contains blatant unboundedness.

805

Macro CPXERR_PRESLV_UNCRUSHFORM
Definition file: cplex.h

CPXERR_PRESLV_UNCRUSHFORM

1120 Can't uncrush solution form
Presolve could not create a full solution.

806

Macro CPXERR_PRIIND
Definition file: cplex.h

CPXERR_PRIIND

1257 Incorrect usage of pricing indicator
The value of the pricing indicator is out of range.

807

Macro CPXERR_PRM_DATA
Definition file: cplex.h

CPXERR_PRM_DATA

1660 Line %d: Not enough entries
There were illegal or missing values in a parameter file (.prm).

808

Macro CPXERR_PRM_HEADER
Definition file: cplex.h

CPXERR_PRM_HEADER

1661 Line %d: Missing or invalid header
Illegal or missing version number in the header of a parameter file (.prm).

809

Macro CPXERR_PTHREAD_CREATE
Definition file: cplex.h

CPXERR_PTHREAD_CREATE

3603 Could not create thread
An error occurred during a system call needed to initialize parallel MIP.

810

Macro CPXERR_PTHREAD_MUTEX_INIT
Definition file: cplex.h

CPXERR_PTHREAD_MUTEX_INIT

3601 Could not initialize mutex
An error occurred during a system call needed to initialize parallel MIP.

811

Macro CPXERR_Q_DIVISOR
Definition file: cplex.h

CPXERR_Q_DIVISOR

1619 Line %d: Missing or incorrect divisor for Q terms
Quadratic terms must be enclosed in square brackets and followed by a division sign with the divisor 2, that is, [
]/2.

812

Macro CPXERR_Q_DUP_ENTRY
Definition file: cplex.h

CPXERR_Q_DUP_ENTRY

5011 Duplicate entry for pair '%s' and '%s'
There are duplicate entries for the quadratic term.

813

Macro CPXERR_Q_NOT_INDEF
Definition file: cplex.h

CPXERR_Q_NOT_INDEF

5014 Q is not indefinite
Function requires that the Q matrix be indefinite.

814

Macro CPXERR_Q_NOT_POS_DEF
Definition file: cplex.h

CPXERR_Q_NOT_POS_DEF

5002 Q in '%s' is not positive semi-definite
The Q matrix associated with the quadratic objective or with a quadratic constraint must be positive semi-definite
(for minimizations). Check the appropriate quadratic term(s).

815

Macro CPXERR_Q_NOT_SYMMETRIC
Definition file: cplex.h

CPXERR_Q_NOT_SYMMETRIC

5012 Q is not symmetric
The Q matrix must be symmetric. Check off-diagonal elements. Look for either a missing or superfluous element.

816

Macro CPXERR_QCP_SENSE
Definition file: cplex.h

CPXERR_QCP_SENSE

6002 Illegal quadratic constraint sense
Legal sense symbols for quadratic constraints are L and G.

817

Macro CPXERR_QCP_SENSE_FILE
Definition file: cplex.h

CPXERR_QCP_SENSE_FILE

1437 Line %d: Illegal quadratic constraint sense
LP reader does not allow equality in quadratic constraints; MPS file format does not allow 'E', 'N', or 'R' in
quadratic constraints.

818

Macro CPXERR_QUAD_EXP_NOT_2
Definition file: cplex.h

CPXERR_QUAD_EXP_NOT_2

1613 Line %d: Quadratic exponent must be 2
Only an exponent of 2 is allowed after the exponentiation operator ^.

819

Macro CPXERR_QUAD_IN_ROW
Definition file: cplex.h

CPXERR_QUAD_IN_ROW

1605 Line %d: Illegal quadratic term in a constraint
Quadratic terms are not allowed in indicator constraints, lazy constraints, or user cuts.

820

Macro CPXERR_RANGE_SECTION_ORDER
Definition file: cplex.h

CPXERR_RANGE_SECTION_ORDER

1474 Line %d: 'RANGES' section out of order
The RANGES section can appear only after the RHS section in an MPS file.

821

Macro CPXERR_RESTRICTED_VERSION
Definition file: cplex.h

CPXERR_RESTRICTED_VERSION

1016 Promotional version. Problem size limits exceeded
The current problem is too large for your version of CPLEX. Reduce the size of the problem.

822

Macro CPXERR_RHS_IN_OBJ
Definition file: cplex.h

CPXERR_RHS_IN_OBJ

1603 Line %d: RHS sense in objective
The objective row erroneously includes a sense specifier.

823

Macro CPXERR_RIM_REPEATS
Definition file: cplex.h

CPXERR_RIM_REPEATS

1447 Line %d: %s '%s' repeats
The MPS file contains duplicate names.

824

Macro CPXERR_RIM_ROW_REPEATS
Definition file: cplex.h

CPXERR_RIM_ROW_REPEATS

1444 %s '%s' has repeated row '%s'
The MPS file contains duplicate row names.

825

Macro CPXERR_RIMNZ_REPEATS
Definition file: cplex.h

CPXERR_RIMNZ_REPEATS

1479 Line %d: %s %s repeats
The MPS file contains duplicate entries in an extra rim vector.

826

Macro CPXERR_ROW_INDEX_RANGE
Definition file: cplex.h

CPXERR_ROW_INDEX_RANGE

1203 Row index %d out of range
The specified row index is negative or greater than or equal to the number of rows in the currently loaded
problem.

827

Macro CPXERR_ROW_REPEAT_PRINT
Definition file: cplex.h

CPXERR_ROW_REPEAT_PRINT

1477 %d Row repeats messages not printed
The MPS problem or REV file contains duplicate row entries. Inspect and edit the file.

828

Macro CPXERR_ROW_REPEATS
Definition file: cplex.h

CPXERR_ROW_REPEATS

1445 Row '%s' repeats
The MPS file contains duplicate row entries. Inspect and edit the file.

829

Macro CPXERR_ROW_UNKNOWN
Definition file: cplex.h

CPXERR_ROW_UNKNOWN

1448 Line %d: '%s' is not a row name
The MPS file specifies a row name that does not exist.

830

Macro CPXERR_SAV_FILE_DATA
Definition file: cplex.h

CPXERR_SAV_FILE_DATA

1561 Not enough data in SAV file
The file is corrupted or was generated by an incompatible version of the software.

831

Macro CPXERR_SAV_FILE_WRITE
Definition file: cplex.h

CPXERR_SAV_FILE_WRITE

1562 Unable to write SAV file to disk
CPLEX could not open or write to the requested SAV file. Check the file designation and disk space.

832

Macro CPXERR_SBASE_ILLEGAL
Definition file: cplex.h

CPXERR_SBASE_ILLEGAL

1554 Superbases are not allowed
Basis or restart file contains superbasis that cannot be read.

833

Macro CPXERR_SBASE_INCOMPAT
Definition file: cplex.h

CPXERR_SBASE_INCOMPAT

1255 Incompatible with superbasis
The requested operation is incompatible with an existing superbasis.

834

Macro CPXERR_SINGULAR
Definition file: cplex.h

CPXERR_SINGULAR

1256 Basis singular
CPLEX cannot factor a singular basis. See the discussion of numeric difficulties in the CPLEX User's Manual.

835

Macro CPXERR_STR_PARAM_TOO_LONG
Definition file: cplex.h

CPXERR_STR_PARAM_TOO_LONG

1026 String parameter is too long
Length of the string was greater than 510.

836

Macro CPXERR_SUBPROB_SOLVE
Definition file: cplex.h

CPXERR_SUBPROB_SOLVE

3019 Failure to solve MIP subproblem
CPXmipopt failed to solve one of the subproblems in the branch-and-cut tree. This failure can be due to a limit
(for example, an iteration limit) or due to numeric trouble. Check the log, or add a call to CPXgetsubstat in the
Callable Library) for information about the cause.

837

Macro CPXERR_THREAD_FAILED
Definition file: cplex.h

CPXERR_THREAD_FAILED

1234 Creation of parallel thread failed.
Could not create one or more requested parallel threads.

838

Macro CPXERR_TILIM_CONDITION_NO
Definition file: cplex.h

CPXERR_TILIM_CONDITION_NO

1268 Time limit reached in computing condition number
Condition number computation was not completed due to a time limit.

839

Macro CPXERR_TILIM_STRONGBRANCH
Definition file: cplex.h

CPXERR_TILIM_STRONGBRANCH

1266 Time limit reached in strong branching
Strong branching was not completed due to a time limit.

840

Macro CPXERR_TOO_MANY_COEFFS
Definition file: cplex.h

CPXERR_TOO_MANY_COEFFS

1433 Too many coefficients
The problem contains more matrix coefficients than are allowed.

841

Macro CPXERR_TOO_MANY_COLS
Definition file: cplex.h

CPXERR_TOO_MANY_COLS

1432 Too many columns
The problem contains more columns than are allowed.

842

Macro CPXERR_TOO_MANY_RIMNZ
Definition file: cplex.h

CPXERR_TOO_MANY_RIMNZ

1485 Too many rim nonzeros
Reset the rim vector nonzero read limit to a larger number.

843

Macro CPXERR_TOO_MANY_RIMS
Definition file: cplex.h

CPXERR_TOO_MANY_RIMS

1484 Too many rim vectors
Reset the rim vector read limit to a larger number.

844

Macro CPXERR_TOO_MANY_ROWS
Definition file: cplex.h

CPXERR_TOO_MANY_ROWS

1431 Too many rows
The problem contains more rows than are allowed.

845

Macro CPXERR_TOO_MANY_THREADS
Definition file: cplex.h

CPXERR_TOO_MANY_THREADS

1020 Thread limit exceeded
The maximum number of cloned threads has been exceeded.

846

Macro CPXERR_TREE_MEMORY_LIMIT
Definition file: cplex.h

CPXERR_TREE_MEMORY_LIMIT

3413 Tree memory limit exceeded
The reading of the tree file has stopped because the tree memory limit has been reached.

847

Macro CPXERR_UNIQUE_WEIGHTS
Definition file: cplex.h

CPXERR_UNIQUE_WEIGHTS

3010 Set does not have unique weights
SOS weights must be unique.

848

Macro CPXERR_UNSUPPORTED_CONSTRAINT_TYPE
Definition file: cplex.h

CPXERR_UNSUPPORTED_CONSTRAINT_TYPE

1212 Unsupported constraint type was used.
CPLEX was unable to use the specified constraint type, or the constraint type identifier is invalid in a parameter
passed to the routine CPXrefineconflictext or CPXfeasoptext.

849

Macro CPXERR_UP_BOUND_REPEATS
Definition file: cplex.h

CPXERR_UP_BOUND_REPEATS

1458 Line %d: Repeated upper bound
The upper bound for a column is repeated within the problem file on the specified line. Two individual upper
bounds could exist. Alternatively, a PL bound and individual bound could be in conflict. Check the MPS file.

850

Macro CPXERR_WORK_FILE_OPEN
Definition file: cplex.h

CPXERR_WORK_FILE_OPEN

1801 Could not open temporary file
CPLEX was unable to access a temporary file in the directory specified by CPX_PARAM_WORKDIR.

851

Macro CPXERR_WORK_FILE_READ
Definition file: cplex.h

CPXERR_WORK_FILE_READ

1802 Failure on temporary file read
CPLEX was unable to read a temporary file in the directory specified by CPX_PARAM_WORKDIR.

852

Macro CPXERR_WORK_FILE_WRITE
Definition file: cplex.h

CPXERR_WORK_FILE_WRITE

1803 Failure on temporary file write
CPLEX was unable to write a temporary file in the directory specified by CPX_PARAM_WORKDIR.

853

Macro CPXERR_XMLPARSE
Definition file: cplex.h

CPXERR_XMLPARSE

1425 XML parsing error at line %d: %s
The parser was unable to parse the input file. Additional information about the reason is given in the message.

854

Macro CPXMIP_ABORT_FEAS
Definition file: cplex.h

CPXMIP_ABORT_FEAS

113 (MIP only) enum: AbortFeas
Stopped, but an integer solution exists

855

Macro CPXMIP_ABORT_INFEAS
Definition file: cplex.h

CPXMIP_ABORT_INFEAS

114 (MIP only) enum: AbortInfeas
Stopped; no integer solution

856

Macro CPXMIP_ABORT_RELAXED
Definition file: cplex.h

CPXMIP_ABORT_RELAXED

126 (MIP only) enum: AbortRelaxed
This status occurs only after a call to the Callable Library routine CPXfeasopt (or the Concert Technology
method feasOpt), when the algorithm terminates prematurely, for example after reaching a limit.

This status means that a relaxed solution is available and can be queried.

857

Macro CPXMIP_FAIL_FEAS
Definition file: cplex.h

CPXMIP_FAIL_FEAS

109 (MIP only) enum: FailFeas
Terminated because of an error, but integer solution exists

858

Macro CPXMIP_FAIL_FEAS_NO_TREE
Definition file: cplex.h

CPXMIP_FAIL_FEAS_NO_TREE

116 (MIP only) enum: FailFeasNoTree
Out of memory, no tree available, integer solution exists

859

Macro CPXMIP_FAIL_INFEAS
Definition file: cplex.h

CPXMIP_FAIL_INFEAS

110 (MIP only) enum: FailInfeas
Terminated because of an error; no integer solution

860

Macro CPXMIP_FAIL_INFEAS_NO_TREE
Definition file: cplex.h

CPXMIP_FAIL_INFEAS_NO_TREE

117 (MIP only) enum: FailInfeasNoTree
Out of memory, no tree available, no integer solution

861

Macro CPXMIP_FEASIBLE
Definition file: cplex.h

CPXMIP_FEASIBLE

127 (MIP only) enum: Feasible
This status occurs only after a call to the Callable Library routine CPXfeasopt (or the Concert Technology
method feasOpt) on a MIP problem. The problem under consideration was found to be feasible after phase 1 of
FeasOpt. A feasible solution is available. This status is also used in the status field of solution and mipstart files
for solutions from the solution pool.

862

Macro CPXMIP_FEASIBLE_RELAXED_INF
Definition file: cplex.h

CPXMIP_FEASIBLE_RELAXED_INF

122 (MIP only) enum: FeasibleRelaxedInf
This status occurs only after a call to the Callable Library routine CPXfeasopt (or the Concert Technology
method feasOpt) with the parameter CPX_PARAM_FEASOPTMODE (or FeasOptMode) set to
CPX_FEASOPT_MIN_INF (or MinInf) on a mixed integer problem. A relaxation was successfully found and a
feasible solution for the problem (if relaxed according to that relaxation) was installed. The relaxation is minimal.

863

Macro CPXMIP_FEASIBLE_RELAXED_QUAD
Definition file: cplex.h

CPXMIP_FEASIBLE_RELAXED_QUAD

124 (MIP only) enum: FeasibleRelaxedQuad
This status occurs only after a call to the Callable Library routine CPXfeasopt (or the Concert Technology
method feasOpt) with the parameter CPX_PARAM_FEASOPTMODE (or FeasOptMode) set to
CPX_FEASOPT_MIN_QUAD (or MinQuad) on a mixed integer problem. A relaxation was successfully found and a
feasible solution for the problem (if relaxed according to that relaxation) was installed. The relaxation is minimal.

864

Macro CPXMIP_FEASIBLE_RELAXED_SUM
Definition file: cplex.h

CPXMIP_FEASIBLE_RELAXED_SUM

120 (MIP only) enum: FeasibleRelaxedSum
This status occurs only after a call to the Callable Library routine CPXfeasopt (or the Concert Technology
method feasOpt) with the parameter CPX_PARAM_FEASOPTMODE (or FeasOptMode) set to
CPX_FEASOPT_MIN_SUM (or MinSum) on a mixed integer problem. A relaxation was successfully found and a
feasible solution for the problem (if relaxed according to that relaxation) was installed. The relaxation is minimal.

865

Macro CPXMIP_INFEASIBLE
Definition file: cplex.h

CPXMIP_INFEASIBLE

103 (MIP only) enum: Infeasible
Solution is integer infeasible

866

Macro CPXMIP_INForUNBD
Definition file: cplex.h

CPXMIP_INForUNBD

119 (MIP only) enum: InfOrUnbd
Problem has been proved either infeasible or unbounded

867

Macro CPXMIP_MEM_LIM_FEAS
Definition file: cplex.h

CPXMIP_MEM_LIM_FEAS

111 (MIP only) enum: MemLimFeas
Limit on tree memory has been reached, but an integer solution exists

868

Macro CPXMIP_MEM_LIM_INFEAS
Definition file: cplex.h

CPXMIP_MEM_LIM_INFEAS

112 (MIP only) enum: MemLimInfeas
Limit on tree memory has been reached; no integer solution

869

Macro CPXMIP_NODE_LIM_FEAS
Definition file: cplex.h

CPXMIP_NODE_LIM_FEAS

105 (MIP only) enum: NodeLimFeas
Node limit has been exceeded but integer solution exists

870

Macro CPXMIP_NODE_LIM_INFEAS
Definition file: cplex.h

CPXMIP_NODE_LIM_INFEAS

106 (MIP only) enum: NodeLimInfeas
Node limit has been reached; no integer solution

871

Macro CPXMIP_OPTIMAL
Definition file: cplex.h

CPXMIP_OPTIMAL

101 (MIP only) enum: Optimal
Optimal integer solution has been found

872

Macro CPXMIP_OPTIMAL_INFEAS
Definition file: cplex.h

CPXMIP_OPTIMAL_INFEAS

115 (MIP only) enum: OptimalInfeas
Problem is optimal with unscaled infeasibilities

873

Macro CPXMIP_OPTIMAL_POPULATED
Definition file: cplex.h

CPXMIP_OPTIMAL_POPULATED

129 (MIP only) enum: OptimalPopulated
This status occurs only after a call to the Callable Library routine CPXpopulate (or the Concert Technology
method populate) on a MIP problem. Populate has completed the enumeration of all solutions it could
enumerate.

874

Macro CPXMIP_OPTIMAL_POPULATED_TOL
Definition file: cplex.h

CPXMIP_OPTIMAL_POPULATED_TOL

130 (MIP only) enum: OptimalPopulatedTol
This status occurs only after a call to the Callable Library routine CPXpopulate (or the Concert Technology
method populate) on a MIP problem. Populate has completed the enumeration of all solutions it could
enumerate whose objective value fit the tolerance specified by the parameters CPX_PARAM_SOLNPOOLAGAP and
CPX_PARAM_SOLNPOOLGAP.

875

Macro CPXMIP_OPTIMAL_RELAXED_INF
Definition file: cplex.h

CPXMIP_OPTIMAL_RELAXED_INF

123 (MIP only) enum: OptimalRelaxedInf
This status occurs only after a call to the Callable Library routine CPXfeasopt (or the Concert Technology
method feasOpt) with the parameter CPX_PARAM_FEASOPTMODE (or FeasOptMode) set to
CPX_FEASOPT_OPT_INF (or OptInf) on a mixed integer problem. A relaxation was successfully found and a
feasible solution for the problem (if relaxed according to that relaxation) was installed. The relaxation is optimal.

876

Macro CPXMIP_OPTIMAL_RELAXED_QUAD
Definition file: cplex.h

CPXMIP_OPTIMAL_RELAXED_QUAD

125 (MIP only) enum: OptimalRelaxedQuad
This status occurs only after a call to the Callable Library routine CPXfeasopt (or the Concert Technology
method feasOpt) with the parameter CPX_PARAM_FEASOPTMODE (or FeasOptMode) set to
CPX_FEASOPT_OPT_QUAD (or OptQuad) on a mixed integer problem. A relaxation was successfully found and a
feasible solution for the problem (if relaxed according to that relaxation) was installed. The relaxation is optimal.

877

Macro CPXMIP_OPTIMAL_RELAXED_SUM
Definition file: cplex.h

CPXMIP_OPTIMAL_RELAXED_SUM

121 (MIP only) enum: OptimalRelaxedSum
This status occurs only after a call to the Callable Library routine CPXfeasopt (or the Concert Technology
method feasOpt) with the parameter CPX_PARAM_FEASOPTMODE (or FeasOptMode) set to
CPX_FEASOPT_OPT_SUM (or OptSum) on a mixed integer problem. A relaxation was successfully found and a
feasible solution for the problem (if relaxed according to that relaxation) was installed. The relaxation is optimal.

878

Macro CPXMIP_OPTIMAL_TOL
Definition file: cplex.h

CPXMIP_OPTIMAL_TOL

102 (MIP only) enum: OptimalTol
Optimal solution with the tolerance defined by epgap or epagap has been found

879

Macro CPXMIP_POPULATESOL_LIM
Definition file: cplex.h

CPXMIP_POPULATESOL_LIM

128 (MIP only) enum: PopulateSolLim
This status occurs only after a call to the Callable Library routine CPXpopulate (or the Concert Technology
method populate) on a MIP problem. The limit on mixed integer solutions generated by populate, as specified
by the parameter CPX_PARAM_POPULATELIM, has been reached.

880

Macro CPXMIP_SOL_LIM
Definition file: cplex.h

CPXMIP_SOL_LIM

104 (MIP only) enum: SolLim
The limit on mixed integer solutions has been reached

881

Macro CPXMIP_TIME_LIM_FEAS
Definition file: cplex.h

CPXMIP_TIME_LIM_FEAS

107 (MIP only) enum: TimeLimFeas
Time limit exceeded, but integer solution exists

882

Macro CPXMIP_TIME_LIM_INFEAS
Definition file: cplex.h

CPXMIP_TIME_LIM_INFEAS

108 (MIP only) enum: TimeLimInfeas
Time limit exceeded; no integer solution

883

Macro CPXMIP_UNBOUNDED
Definition file: cplex.h

CPXMIP_UNBOUNDED

118 (MIP only) enum: Unbounded
Problem has an unbounded ray

884

	Table of Contents
	About This Manual
	Concepts
	Group optim.cplex.callable
	Group optim.cplex.callable.accessmipresults
	Group optim.cplex.callable.accessnetworkresults
	Group optim.cplex.callable.accessqcpresults
	Group optim.cplex.callable.accessresults
	Group optim.cplex.callable.advanced
	Group optim.cplex.callable.advanced.callbacks
	Group optim.cplex.callable.analyzesolution
	Group optim.cplex.callable.callbacks
	Group optim.cplex.callable.createdeletecopy
	Group optim.cplex.callable.debug
	Group optim.cplex.callable.manageparameters
	Group optim.cplex.callable.message
	Group optim.cplex.callable.modifynetwork
	Group optim.cplex.callable.modifyproblem
	Group optim.cplex.callable.network
	Group optim.cplex.callable.optimizers
	Group optim.cplex.callable.portability
	Group optim.cplex.callable.querygeneralproblem
	Group optim.cplex.callable.querymip
	Group optim.cplex.callable.querynetwork
	Group optim.cplex.callable.queryqcp
	Group optim.cplex.callable.queryqp
	Group optim.cplex.callable.readfiles
	Group optim.cplex.callable.readnetworkfiles
	Group optim.cplex.callable.solutionpool
	Group optim.cplex.callable.util
	Group optim.cplex.callable.writefiles
	Group optim.cplex.callable.writenetworkfiles
	Group optim.cplex.errorcodes
	Group optim.cplex.solutionquality
	Group optim.cplex.solutionstatus
	Global function CPXaddfuncdest
	Global function CPXmstwrite
	Global function CPXgetmiprelgap
	Global function CPXkillpnorms
	Global function CPXdualwrite
	Global function CPXcrushx
	Global function CPXgetslack
	Global function CPXsetdblparam
	Global function CPXgetsosindex
	Global function CPXgetnumsemiint
	Global function CPXcheckcopysos
	Global function CPXgetcallbackincumbent
	Global function CPXcopyquad
	Global function CPXNETgetphase1cnt
	Global function CPXbinvarow
	Global function CPXNETchgobj
	Global function CPXNETgetnumnodes
	Global function CPXqconstrslackfromx
	Global function CPXgetdblquality
	Global function CPXsolninfo
	Global function CPXgetsolvecallbackfunc
	Global function CPXmdleave
	Global function CPXreadcopyorder
	Global function CPXcopyobjname
	Global function CPXgetsolnpoolmipstart
	Global function CPXdualfarkas
	Global function CPXgetcolinfeas
	Global function CPXdelcols
	Global function CPXslackfromx
	Global function CPXcheckcopyquad
	Global function CPXbinvacol
	Global function CPXcheckchgcoeflist
	Global function CPXgetcallbacknodeub
	Global function CPXnewcols
	Global function CPXprechgobj
	Global function CPXgettime
	Global function CPXNETgetnumarcs
	Global function CPXgetnumindconstrs
	Global function CPXcopyorder
	Global function CPXNETsolninfo
	Global function CPXgetsolnpooldivfilter
	Global function CPXaddcols
	Global function CPXkilldnorms
	Global function CPXdelsetsolnpoolsolns
	Global function CPXNETgetnodename
	Global function CPXsetheuristiccallbackfunc
	Global function CPXcutcallbackaddlocal
	Global function CPXgetnumsos
	Global function CPXgetcallbackctype
	Global function CPXsolution
	Global function CPXsetterminate
	Global function CPXgetobjname
	Global function CPXpopulate
	Global function CPXgetmipstart
	Global function CPXNETcopybase
	Global function CPXrefineconflictext
	Global function CPXgetbhead
	Global function CPXboundsa
	Global function CPXgetsolnpoolx
	Global function CPXcloneprob
	Global function CPXgetxqxax
	Global function CPXdelindconstrs
	Global function CPXgetnumrows
	Global function CPXNETgetstat
	Global function CPXdelmipstarts
	Global function CPXgetmipitcnt
	Global function CPXsolwritesolnpoolall
	Global function CPXgetnumqpnz
	Global function CPXgetub
	Global function CPXsiftopt
	Global function CPXfreeprob
	Global function CPXgetsiftitcnt
	Global function CPXcopyctype
	Global function CPXNETgetarcnodes
	Global function CPXobjsa
	Global function CPXgetnummipstarts
	Global function CPXgetdj
	Global function CPXNETfreeprob
	Global function CPXgetparamname
	Global function CPXcopymipstart
	Global function CPXcopyprotected
	Global function CPXNETgetdj
	Global function CPXdjfrompi
	Global function CPXchgrhs
	Global function CPXdelsolnpoolsolns
	Global function CPXbranchcallbackbranchconstraints
	Global function CPXrefinemipstartconflictext
	Global function CPXgetbestobjval
	Global function CPXgetqconstrinfeas
	Global function CPXgetmipstartindex
	Global function CPXfreelazyconstraints
	Global function CPXchgobj
	Global function CPXpivotout
	Global function CPXgetnumcuts
	Global function CPXcopypartialbase
	Global function CPXsetlogfile
	Global function CPXgetprobtype
	Global function CPXsetinfocallbackfunc
	Global function CPXgetincumbentcallbackfunc
	Global function CPXNETgetitcnt
	Global function CPXchgrowname
	Global function CPXgetsolnpoolfiltertype
	Global function CPXcheckcopyqpsep
	Global function CPXcheckaddcols
	Global function CPXgetx
	Global function CPXflushstdchannels
	Global function CPXNETcopynet
	Global function CPXNETchgnodename
	Global function CPXchgbds
	Global function CPXreadcopymipstarts
	Global function CPXgetnumquad
	Global function CPXaddchannel
	Global function CPXNETgetarcindex
	Global function CPXgetnumcols
	Global function CPXgetpi
	Global function CPXreadcopyprob
	Global function CPXgetmipstartname
	Global function CPXNETgetnodeindex
	Global function CPXNETreadcopybase
	Global function CPXgetbranchcallbackfunc
	Global function CPXaddfpdest
	Global function CPXgetnodeleftcnt
	Global function CPXfltwrite
	Global function CPXgetcallbacknodeobjval
	Global function CPXgetrowinfeas
	Global function CPXfopen
	Global function CPXfreeusercuts
	Global function CPXNETgetbase
	Global function CPXdelqconstrs
	Global function CPXdelsetsolnpoolfilters
	Global function CPXNETgetslack
	Global function CPXgetray
	Global function CPXgetcrossppushcnt
	Global function CPXrhssa
	Global function CPXgetintquality
	Global function CPXaddrows
	Global function CPXgetcallbackpseudocosts
	Global function CPXdelnames
	Global function CPXdperwrite
	Global function CPXgetobj
	Global function CPXcopyqpsep
	Global function CPXNETchgsupply
	Global function CPXsetdeletenodecallbackfunc
	Global function CPXNETwriteprob
	Global function CPXgetcutcallbackfunc
	Global function CPXgetnumint
	Global function CPXwritemipstarts
	Global function CPXgetnumnz
	Global function CPXsetnodecallbackfunc
	Global function CPXgetsolnpoolnumfilters
	Global function CPXgetcallbacknodeinfo
	Global function CPXbinvrow
	Global function CPXcleanup
	Global function CPXgetnodecnt
	Global function CPXgetsolnpoolintquality
	Global function CPXgetsolnpooldblquality
	Global function CPXgetsolnpoolsolnname
	Global function CPXgetstatstring
	Global function CPXgetqpcoef
	Global function CPXgetcallbacknodelp
	Global function CPXgetindconstr
	Global function CPXgetphase1cnt
	Global function CPXchgrngval
	Global function CPXNETaddnodes
	Global function CPXNETgetobj
	Global function CPXgetcrossdpushcnt
	Global function CPXgetparamtype
	Global function CPXNETsolution
	Global function CPXgetstrparam
	Global function CPXstrlen
	Global function CPXNETgetnodearcs
	Global function CPXgeterrorstring
	Global function CPXgetconflictext
	Global function CPXsettuningcallbackfunc
	Global function CPXNETgetarcname
	Global function CPXgetsense
	Global function CPXgetcols
	Global function CPXgetparamnum
	Global function CPXgetbasednorms
	Global function CPXfreepresolve
	Global function CPXgetindconstrinfeas
	Global function CPXgetcrossdexchcnt
	Global function CPXaddsos
	Global function CPXaddsolnpooldivfilter
	Global function CPXbaropt
	Global function CPXdelsolnpoolfilters
	Global function CPXmipopt
	Global function CPXpivotin
	Global function CPXtuneparam
	Global function CPXgetlpcallbackfunc
	Global function CPXgetchannels
	Global function CPXgetsolnpoolfiltername
	Global function CPXNETgetobjsen
	Global function CPXgetcallbacksosinfo
	Global function CPXgetobjsen
	Global function CPXpreslvwrite
	Global function CPXqpindefcertificate
	Global function CPXgetcrosspexchcnt
	Global function CPXNETgetlb
	Global function CPXcompletelp
	Global function CPXuncrushpi
	Global function CPXgetsolnpoolsolnindex
	Global function CPXdelsetmipstarts
	Global function CPXgetprestat
	Global function CPXreadcopymipstart
	Global function CPXbranchcallbackbranchgeneral
	Global function CPXNETchgarcnodes
	Global function CPXgetsiftphase1cnt
	Global function CPXgetcoef
	Global function CPXgetgrad
	Global function CPXdelsetcols
	Global function CPXgetcallbackorder
	Global function CPXgetsolnpoolnumsolns
	Global function CPXdelchannel
	Global function CPXfputs
	Global function CPXgetlb
	Global function CPXgetsolnpoolmeanobjval
	Global function CPXpivot
	Global function CPXchgcolname
	Global function CPXinfostrparam
	Global function CPXgetitcnt
	Global function CPXgetbaritcnt
	Global function CPXgetcutoff
	Global function CPXNETchgobjsen
	Global function CPXgetsolnpoolfilterindex
	Global function CPXdelfpdest
	Global function CPXgetorder
	Global function CPXchgqpcoef
	Global function CPXreadcopysol
	Global function CPXNETdelnodes
	Global function CPXcutcallbackadd
	Global function CPXgetdnorms
	Global function CPXbinvcol
	Global function CPXgetcallbackgloballb
	Global function CPXgetqconstrindex
	Global function CPXNETgetprobname
	Global function CPXdelrows
	Global function CPXgetnumqconstrs
	Global function CPXgetijdiv
	Global function CPXcopynettolp
	Global function CPXgetindconstrname
	Global function CPXgetcallbacklp
	Global function CPXNETbasewrite
	Global function CPXgetsolnpoolobjval
	Global function CPXopenCPLEX
	Global function CPXsetbranchnosolncallbackfunc
	Global function CPXaddmipstarts
	Global function CPXsetcutcallbackfunc
	Global function CPXsetstrparam
	Global function CPXsetintparam
	Global function CPXchgctype
	Global function CPXgetsosinfeas
	Global function CPXNETcreateprob
	Global function CPXgetcallbacknodex
	Global function CPXsetmipcallbackfunc
	Global function CPXNETreadcopyprob
	Global function CPXnewrows
	Global function CPXgetobjoffset
	Global function CPXflushchannel
	Global function CPXfeasoptext
	Global function CPXgetnumbin
	Global function CPXhybbaropt
	Global function CPXdisconnectchannel
	Global function CPXNETprimopt
	Global function CPXcopybasednorms
	Global function CPXsetdefaults
	Global function CPXNETchgname
	Global function CPXNETaddarcs
	Global function CPXhybnetopt
	Global function CPXrefinemipstartconflict
	Global function CPXgetqconstrname
	Global function CPXcopystart
	Global function CPXgetredlp
	Global function CPXgetmipstarts
	Global function CPXftran
	Global function CPXsetsolvecallbackfunc
	Global function CPXuncrushform
	Global function CPXinfointparam
	Global function CPXprimopt
	Global function CPXgetsubmethod
	Global function CPXcheckaddrows
	Global function CPXcopylpwnames
	Global function CPXchgcoeflist
	Global function CPXbtran
	Global function CPXgetcallbackinfo
	Global function CPXgetcallbacknodeintfeas
	Global function CPXNETchgarcname
	Global function CPXgetsolnpoolrngfilter
	Global function CPXNETgetub
	Global function CPXgetax
	Global function CPXqpuncrushpi
	Global function CPXgetinfocallbackfunc
	Global function CPXcopypnorms
	Global function CPXbranchcallbackbranchbds
	Global function CPXgetdblparam
	Global function CPXlpopt
	Global function CPXNETgetpi
	Global function CPXgetconflict
	Global function CPXgetmethod
	Global function CPXgetbase
	Global function CPXmsgstr
	Global function CPXgetdeletenodecallbackfunc
	Global function CPXgetcallbackglobalub
	Global function CPXcopybase
	Global function CPXaddusercuts
	Global function CPXcopydnorms
	Global function CPXcheckcopylp
	Global function CPXwriteprob
	Global function CPXmstwritesolnpoolall
	Global function CPXmstwritesolnpool
	Global function CPXNETextract
	Global function CPXsetbranchcallbackfunc
	Global function CPXsolwritesolnpool
	Global function CPXqpopt
	Global function CPXgetmipcallbackfunc
	Global function CPXtuneparamprobset
	Global function CPXreadcopyparam
	Global function CPXgetnumsemicont
	Global function CPXNETcheckcopynet
	Global function CPXgetprotected
	Global function CPXgetrowname
	Global function CPXNETchgbds
	Global function CPXchgsense
	Global function CPXNETgetx
	Global function CPXpreaddrows
	Global function CPXsolwrite
	Global function CPXcheckcopyctype
	Global function CPXgetstat
	Global function CPXtightenbds
	Global function CPXembwrite
	Global function CPXgetdsbcnt
	Global function CPXchgprobtypesolnpool
	Global function CPXgetnodecallbackfunc
	Global function CPXgetobjval
	Global function CPXgetpsbcnt
	Global function CPXgetintparam
	Global function CPXputenv
	Global function CPXaddlazyconstraints
	Global function CPXcheckcopylpwnames
	Global function CPXgetrngval
	Global function CPXcloseCPLEX
	Global function CPXgetnodeint
	Global function CPXchgmipstart
	Global function CPXdelsetsos
	Global function CPXordwrite
	Global function CPXgetrhs
	Global function CPXgetsolnpoolnummipstarts
	Global function CPXgetlogfile
	Global function CPXgetcallbackindicatorinfo
	Global function CPXgetprobname
	Global function CPXgetsolnpoolnumreplaced
	Global function CPXgetcallbacknodestat
	Global function CPXNETdelset
	Global function CPXchgobjsen
	Global function CPXchgprobtype
	Global function CPXchgmipstarts
	Global function CPXgetcallbackseqinfo
	Global function CPXsetincumbentcallbackfunc
	Global function CPXcreateprob
	Global function CPXmbasewrite
	Global function CPXaddsolnpoolrngfilter
	Global function CPXqpdjfrompi
	Global function CPXrefineconflict
	Global function CPXcheckvals
	Global function CPXgetindconstrslack
	Global function CPXgetsosname
	Global function CPXpresolve
	Global function CPXreadcopysolnpoolfilters
	Global function CPXcrushpi
	Global function CPXgetqconstr
	Global function CPXgetrows
	Global function CPXstrcpy
	Global function CPXgetindconstrindex
	Global function CPXaddqconstr
	Global function CPXgetcallbacknodelb
	Global function CPXsetnetcallbackfunc
	Global function CPXgetquad
	Global function CPXNETgetobjval
	Global function CPXstrongbranch
	Global function CPXaddindconstr
	Global function CPXdualopt
	Global function CPXNETgetsupply
	Global function CPXbasicpresolve
	Global function CPXchgname
	Global function CPXpperwrite
	Global function CPXcopysos
	Global function CPXgetnetcallbackfunc
	Global function CPXfeasopt
	Global function CPXgetsubstat
	Global function CPXsetlpcallbackfunc
	Global function CPXinfodblparam
	Global function CPXreadcopybase
	Global function CPXchgprobname
	Global function CPXgetctype
	Global function CPXgetsolnpoolqconstrslack
	Global function CPXmsg
	Global function CPXdelfuncdest
	Global function CPXgetheuristiccallbackfunc
	Global function CPXcopylp
	Global function CPXcrushform
	Global function CPXwriteparam
	Global function CPXNETdelarcs
	Global function CPXgetcolname
	Global function CPXgetrowindex
	Global function CPXdelsetrows
	Global function CPXgetcolindex
	Global function CPXclpwrite
	Global function CPXgetpnorms
	Global function CPXgetsolnpoolslack
	Global function CPXgettuningcallbackfunc
	Global function CPXfclose
	Global function CPXversion
	Global function CPXuncrushx
	Global function CPXgetijrow
	Global function CPXchgcoef
	Global function CPXgetqconstrslack
	Global function CPXunscaleprob
	Global function CPXgetsos
	Global function CPXgetchgparam
	Macro CPX_DUAL_OBJ
	Macro CPX_EXACT_KAPPA
	Macro CPX_KAPPA
	Macro CPX_MAX_COMP_SLACK
	Macro CPX_MAX_DUAL_INFEAS
	Macro CPX_MAX_DUAL_RESIDUAL
	Macro CPX_MAX_INDSLACK_INFEAS
	Macro CPX_MAX_INT_INFEAS
	Macro CPX_MAX_PI
	Macro CPX_MAX_PRIMAL_INFEAS
	Macro CPX_MAX_PRIMAL_RESIDUAL
	Macro CPX_MAX_QCPRIMAL_RESIDUAL
	Macro CPX_MAX_QCSLACK
	Macro CPX_MAX_QCSLACK_INFEAS
	Macro CPX_MAX_RED_COST
	Macro CPX_MAX_SCALED_DUAL_INFEAS
	Macro CPX_MAX_SCALED_DUAL_RESIDUAL
	Macro CPX_MAX_SCALED_PI
	Macro CPX_MAX_SCALED_PRIMAL_INFEAS
	Macro CPX_MAX_SCALED_PRIMAL_RESIDUAL
	Macro CPX_MAX_SCALED_RED_COST
	Macro CPX_MAX_SCALED_SLACK
	Macro CPX_MAX_SCALED_X
	Macro CPX_MAX_SLACK
	Macro CPX_MAX_X
	Macro CPX_OBJ_GAP
	Macro CPX_PRIMAL_OBJ
	Macro CPX_SOLNPOOL_DIV
	Macro CPX_SOLNPOOL_FIFO
	Macro CPX_SOLNPOOL_FILTER_DIVERSITY
	Macro CPX_SOLNPOOL_FILTER_RANGE
	Macro CPX_SOLNPOOL_OBJ
	Macro CPX_STAT_ABORT_DUAL_OBJ_LIM
	Macro CPX_STAT_ABORT_IT_LIM
	Macro CPX_STAT_ABORT_OBJ_LIM
	Macro CPX_STAT_ABORT_PRIM_OBJ_LIM
	Macro CPX_STAT_ABORT_TIME_LIM
	Macro CPX_STAT_ABORT_USER
	Macro CPX_STAT_CONFLICT_ABORT_CONTRADICTION
	Macro CPX_STAT_CONFLICT_ABORT_IT_LIM
	Macro CPX_STAT_CONFLICT_ABORT_MEM_LIM
	Macro CPX_STAT_CONFLICT_ABORT_NODE_LIM
	Macro CPX_STAT_CONFLICT_ABORT_OBJ_LIM
	Macro CPX_STAT_CONFLICT_ABORT_TIME_LIM
	Macro CPX_STAT_CONFLICT_ABORT_USER
	Macro CPX_STAT_CONFLICT_FEASIBLE
	Macro CPX_STAT_CONFLICT_MINIMAL
	Macro CPX_STAT_FEASIBLE
	Macro CPX_STAT_FEASIBLE_RELAXED_INF
	Macro CPX_STAT_FEASIBLE_RELAXED_QUAD
	Macro CPX_STAT_FEASIBLE_RELAXED_SUM
	Macro CPX_STAT_INFEASIBLE
	Macro CPX_STAT_INForUNBD
	Macro CPX_STAT_NUM_BEST
	Macro CPX_STAT_OPTIMAL
	Macro CPX_STAT_OPTIMAL_FACE_UNBOUNDED
	Macro CPX_STAT_OPTIMAL_INFEAS
	Macro CPX_STAT_OPTIMAL_RELAXED_INF
	Macro CPX_STAT_OPTIMAL_RELAXED_QUAD
	Macro CPX_STAT_OPTIMAL_RELAXED_SUM
	Macro CPX_STAT_UNBOUNDED
	Macro CPX_SUM_COMP_SLACK
	Macro CPX_SUM_DUAL_INFEAS
	Macro CPX_SUM_DUAL_RESIDUAL
	Macro CPX_SUM_INDSLACK_INFEAS
	Macro CPX_SUM_INT_INFEAS
	Macro CPX_SUM_PI
	Macro CPX_SUM_PRIMAL_INFEAS
	Macro CPX_SUM_PRIMAL_RESIDUAL
	Macro CPX_SUM_QCPRIMAL_RESIDUAL
	Macro CPX_SUM_QCSLACK
	Macro CPX_SUM_QCSLACK_INFEAS
	Macro CPX_SUM_RED_COST
	Macro CPX_SUM_SCALED_DUAL_INFEAS
	Macro CPX_SUM_SCALED_DUAL_RESIDUAL
	Macro CPX_SUM_SCALED_PI
	Macro CPX_SUM_SCALED_PRIMAL_INFEAS
	Macro CPX_SUM_SCALED_PRIMAL_RESIDUAL
	Macro CPX_SUM_SCALED_RED_COST
	Macro CPX_SUM_SCALED_SLACK
	Macro CPX_SUM_SCALED_X
	Macro CPX_SUM_SLACK
	Macro CPX_SUM_X
	Macro CPXERR_ABORT_STRONGBRANCH
	Macro CPXERR_ADJ_SIGN_QUAD
	Macro CPXERR_ADJ_SIGN_SENSE
	Macro CPXERR_ADJ_SIGNS
	Macro CPXERR_ALGNOTLICENSED
	Macro CPXERR_ARC_INDEX_RANGE
	Macro CPXERR_ARRAY_BAD_SOS_TYPE
	Macro CPXERR_ARRAY_NOT_ASCENDING
	Macro CPXERR_ARRAY_TOO_LONG
	Macro CPXERR_BAD_ARGUMENT
	Macro CPXERR_BAD_BOUND_SENSE
	Macro CPXERR_BAD_BOUND_TYPE
	Macro CPXERR_BAD_CHAR
	Macro CPXERR_BAD_CTYPE
	Macro CPXERR_BAD_DIRECTION
	Macro CPXERR_BAD_EXPO_RANGE
	Macro CPXERR_BAD_EXPONENT
	Macro CPXERR_BAD_FILETYPE
	Macro CPXERR_BAD_ID
	Macro CPXERR_BAD_INDCONSTR
	Macro CPXERR_BAD_INDICATOR
	Macro CPXERR_BAD_LAZY_UCUT
	Macro CPXERR_BAD_LUB
	Macro CPXERR_BAD_METHOD
	Macro CPXERR_BAD_NUMBER
	Macro CPXERR_BAD_OBJ_SENSE
	Macro CPXERR_BAD_PARAM_NAME
	Macro CPXERR_BAD_PARAM_NUM
	Macro CPXERR_BAD_PIVOT
	Macro CPXERR_BAD_PRIORITY
	Macro CPXERR_BAD_PROB_TYPE
	Macro CPXERR_BAD_ROW_ID
	Macro CPXERR_BAD_SECTION_BOUNDS
	Macro CPXERR_BAD_SECTION_ENDATA
	Macro CPXERR_BAD_SECTION_QMATRIX
	Macro CPXERR_BAD_SENSE
	Macro CPXERR_BAD_SOS_TYPE
	Macro CPXERR_BAD_STATUS
	Macro CPXERR_BADPRODUCT
	Macro CPXERR_BAS_FILE_SHORT
	Macro CPXERR_BAS_FILE_SIZE
	Macro CPXERR_CALLBACK
	Macro CPXERR_CANT_CLOSE_CHILD
	Macro CPXERR_CHILD_OF_CHILD
	Macro CPXERR_COL_INDEX_RANGE
	Macro CPXERR_COL_REPEAT_PRINT
	Macro CPXERR_COL_REPEATS
	Macro CPXERR_COL_ROW_REPEATS
	Macro CPXERR_COL_UNKNOWN
	Macro CPXERR_CONFLICT_UNSTABLE
	Macro CPXERR_COUNT_OVERLAP
	Macro CPXERR_COUNT_RANGE
	Macro CPXERR_DBL_MAX
	Macro CPXERR_DECOMPRESSION
	Macro CPXERR_DUP_ENTRY
	Macro CPXERR_EXTRA_BV_BOUND
	Macro CPXERR_EXTRA_FR_BOUND
	Macro CPXERR_EXTRA_FX_BOUND
	Macro CPXERR_EXTRA_INTEND
	Macro CPXERR_EXTRA_INTORG
	Macro CPXERR_EXTRA_SOSEND
	Macro CPXERR_EXTRA_SOSORG
	Macro CPXERR_FAIL_OPEN_READ
	Macro CPXERR_FAIL_OPEN_WRITE
	Macro CPXERR_FILE_ENTRIES
	Macro CPXERR_FILE_FORMAT
	Macro CPXERR_FILTER_VARIABLE_TYPE
	Macro CPXERR_ILL_DEFINED_PWL
	Macro CPXERR_ILOG_LICENSE
	Macro CPXERR_IN_INFOCALLBACK
	Macro CPXERR_INDEX_NOT_BASIC
	Macro CPXERR_INDEX_RANGE
	Macro CPXERR_INDEX_RANGE_HIGH
	Macro CPXERR_INDEX_RANGE_LOW
	Macro CPXERR_INT_TOO_BIG
	Macro CPXERR_INT_TOO_BIG_INPUT
	Macro CPXERR_INVALID_NUMBER
	Macro CPXERR_LIMITS_TOO_BIG
	Macro CPXERR_LINE_TOO_LONG
	Macro CPXERR_LO_BOUND_REPEATS
	Macro CPXERR_LP_NOT_IN_ENVIRONMENT
	Macro CPXERR_MIPSEARCH_WITH_CALLBACKS
	Macro CPXERR_MISS_SOS_TYPE
	Macro CPXERR_MSG_NO_CHANNEL
	Macro CPXERR_MSG_NO_FILEPTR
	Macro CPXERR_MSG_NO_FUNCTION
	Macro CPXERR_NAME_CREATION
	Macro CPXERR_NAME_NOT_FOUND
	Macro CPXERR_NAME_TOO_LONG
	Macro CPXERR_NAN
	Macro CPXERR_NEED_OPT_SOLN
	Macro CPXERR_NEGATIVE_SURPLUS
	Macro CPXERR_NET_DATA
	Macro CPXERR_NET_FILE_SHORT
	Macro CPXERR_NO_BARRIER_SOLN
	Macro CPXERR_NO_BASIC_SOLN
	Macro CPXERR_NO_BASIS
	Macro CPXERR_NO_BOUND_SENSE
	Macro CPXERR_NO_BOUND_TYPE
	Macro CPXERR_NO_COLUMNS_SECTION
	Macro CPXERR_NO_CONFLICT
	Macro CPXERR_NO_DUAL_SOLN
	Macro CPXERR_NO_ENDATA
	Macro CPXERR_NO_ENVIRONMENT
	Macro CPXERR_NO_FILENAME
	Macro CPXERR_NO_ID
	Macro CPXERR_NO_ID_FIRST
	Macro CPXERR_NO_INT_X
	Macro CPXERR_NO_LU_FACTOR
	Macro CPXERR_NO_MEMORY
	Macro CPXERR_NO_MIPSTART
	Macro CPXERR_NO_NAME_SECTION
	Macro CPXERR_NO_NAMES
	Macro CPXERR_NO_NORMS
	Macro CPXERR_NO_NUMBER
	Macro CPXERR_NO_NUMBER_BOUND
	Macro CPXERR_NO_NUMBER_FIRST
	Macro CPXERR_NO_OBJ_SENSE
	Macro CPXERR_NO_OBJECTIVE
	Macro CPXERR_NO_OP_OR_SENSE
	Macro CPXERR_NO_OPERATOR
	Macro CPXERR_NO_ORDER
	Macro CPXERR_NO_PROBLEM
	Macro CPXERR_NO_QMATRIX_SECTION
	Macro CPXERR_NO_QP_OPERATOR
	Macro CPXERR_NO_QUAD_EXP
	Macro CPXERR_NO_RHS_COEFF
	Macro CPXERR_NO_RHS_IN_OBJ
	Macro CPXERR_NO_RNGVAL
	Macro CPXERR_NO_ROW_NAME
	Macro CPXERR_NO_ROW_SENSE
	Macro CPXERR_NO_ROWS_SECTION
	Macro CPXERR_NO_SENSIT
	Macro CPXERR_NO_SOLN
	Macro CPXERR_NO_SOLNPOOL
	Macro CPXERR_NO_SOS
	Macro CPXERR_NO_SOS_SEPARATOR
	Macro CPXERR_NO_TREE
	Macro CPXERR_NO_VECTOR_SOLN
	Macro CPXERR_NODE_INDEX_RANGE
	Macro CPXERR_NODE_ON_DISK
	Macro CPXERR_NOT_DUAL_UNBOUNDED
	Macro CPXERR_NOT_FIXED
	Macro CPXERR_NOT_FOR_MIP
	Macro CPXERR_NOT_FOR_QCP
	Macro CPXERR_NOT_FOR_QP
	Macro CPXERR_NOT_MILPCLASS
	Macro CPXERR_NOT_MIN_COST_FLOW
	Macro CPXERR_NOT_MIP
	Macro CPXERR_NOT_MIQPCLASS
	Macro CPXERR_NOT_ONE_PROBLEM
	Macro CPXERR_NOT_QP
	Macro CPXERR_NOT_SAV_FILE
	Macro CPXERR_NOT_UNBOUNDED
	Macro CPXERR_NULL_NAME
	Macro CPXERR_NULL_POINTER
	Macro CPXERR_ORDER_BAD_DIRECTION
	Macro CPXERR_PARAM_INCOMPATIBLE
	Macro CPXERR_PARAM_TOO_BIG
	Macro CPXERR_PARAM_TOO_SMALL
	Macro CPXERR_PRESLV_ABORT
	Macro CPXERR_PRESLV_BAD_PARAM
	Macro CPXERR_PRESLV_BASIS_MEM
	Macro CPXERR_PRESLV_COPYORDER
	Macro CPXERR_PRESLV_COPYSOS
	Macro CPXERR_PRESLV_CRUSHFORM
	Macro CPXERR_PRESLV_DUAL
	Macro CPXERR_PRESLV_FAIL_BASIS
	Macro CPXERR_PRESLV_INF
	Macro CPXERR_PRESLV_INForUNBD
	Macro CPXERR_PRESLV_NO_BASIS
	Macro CPXERR_PRESLV_NO_PROB
	Macro CPXERR_PRESLV_SOLN_MIP
	Macro CPXERR_PRESLV_SOLN_QP
	Macro CPXERR_PRESLV_START_LP
	Macro CPXERR_PRESLV_TIME_LIM
	Macro CPXERR_PRESLV_UNBD
	Macro CPXERR_PRESLV_UNCRUSHFORM
	Macro CPXERR_PRIIND
	Macro CPXERR_PRM_DATA
	Macro CPXERR_PRM_HEADER
	Macro CPXERR_PTHREAD_CREATE
	Macro CPXERR_PTHREAD_MUTEX_INIT
	Macro CPXERR_Q_DIVISOR
	Macro CPXERR_Q_DUP_ENTRY
	Macro CPXERR_Q_NOT_INDEF
	Macro CPXERR_Q_NOT_POS_DEF
	Macro CPXERR_Q_NOT_SYMMETRIC
	Macro CPXERR_QCP_SENSE
	Macro CPXERR_QCP_SENSE_FILE
	Macro CPXERR_QUAD_EXP_NOT_2
	Macro CPXERR_QUAD_IN_ROW
	Macro CPXERR_RANGE_SECTION_ORDER
	Macro CPXERR_RESTRICTED_VERSION
	Macro CPXERR_RHS_IN_OBJ
	Macro CPXERR_RIM_REPEATS
	Macro CPXERR_RIM_ROW_REPEATS
	Macro CPXERR_RIMNZ_REPEATS
	Macro CPXERR_ROW_INDEX_RANGE
	Macro CPXERR_ROW_REPEAT_PRINT
	Macro CPXERR_ROW_REPEATS
	Macro CPXERR_ROW_UNKNOWN
	Macro CPXERR_SAV_FILE_DATA
	Macro CPXERR_SAV_FILE_WRITE
	Macro CPXERR_SBASE_ILLEGAL
	Macro CPXERR_SBASE_INCOMPAT
	Macro CPXERR_SINGULAR
	Macro CPXERR_STR_PARAM_TOO_LONG
	Macro CPXERR_SUBPROB_SOLVE
	Macro CPXERR_THREAD_FAILED
	Macro CPXERR_TILIM_CONDITION_NO
	Macro CPXERR_TILIM_STRONGBRANCH
	Macro CPXERR_TOO_MANY_COEFFS
	Macro CPXERR_TOO_MANY_COLS
	Macro CPXERR_TOO_MANY_RIMNZ
	Macro CPXERR_TOO_MANY_RIMS
	Macro CPXERR_TOO_MANY_ROWS
	Macro CPXERR_TOO_MANY_THREADS
	Macro CPXERR_TREE_MEMORY_LIMIT
	Macro CPXERR_UNIQUE_WEIGHTS
	Macro CPXERR_UNSUPPORTED_CONSTRAINT_TYPE
	Macro CPXERR_UP_BOUND_REPEATS
	Macro CPXERR_WORK_FILE_OPEN
	Macro CPXERR_WORK_FILE_READ
	Macro CPXERR_WORK_FILE_WRITE
	Macro CPXERR_XMLPARSE
	Macro CPXMIP_ABORT_FEAS
	Macro CPXMIP_ABORT_INFEAS
	Macro CPXMIP_ABORT_RELAXED
	Macro CPXMIP_FAIL_FEAS
	Macro CPXMIP_FAIL_FEAS_NO_TREE
	Macro CPXMIP_FAIL_INFEAS
	Macro CPXMIP_FAIL_INFEAS_NO_TREE
	Macro CPXMIP_FEASIBLE
	Macro CPXMIP_FEASIBLE_RELAXED_INF
	Macro CPXMIP_FEASIBLE_RELAXED_QUAD
	Macro CPXMIP_FEASIBLE_RELAXED_SUM
	Macro CPXMIP_INFEASIBLE
	Macro CPXMIP_INForUNBD
	Macro CPXMIP_MEM_LIM_FEAS
	Macro CPXMIP_MEM_LIM_INFEAS
	Macro CPXMIP_NODE_LIM_FEAS
	Macro CPXMIP_NODE_LIM_INFEAS
	Macro CPXMIP_OPTIMAL
	Macro CPXMIP_OPTIMAL_INFEAS
	Macro CPXMIP_OPTIMAL_POPULATED
	Macro CPXMIP_OPTIMAL_POPULATED_TOL
	Macro CPXMIP_OPTIMAL_RELAXED_INF
	Macro CPXMIP_OPTIMAL_RELAXED_QUAD
	Macro CPXMIP_OPTIMAL_RELAXED_SUM
	Macro CPXMIP_OPTIMAL_TOL
	Macro CPXMIP_POPULATESOL_LIM
	Macro CPXMIP_SOL_LIM
	Macro CPXMIP_TIME_LIM_FEAS
	Macro CPXMIP_TIME_LIM_INFEAS
	Macro CPXMIP_UNBOUNDED

