
IBM ILOG Plant PowerOps

3.2

C++ Reference Manual

July 2009

Copyright © International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Table of Contents
Overview..1

Group optim.plant.checker..2

Group optim.plant.engine..3

Group optim.plant.io..4

Group optim.plant.model...5

Group optim.plant.solution..10

Class IloMSAbstractActivity..11

Class IloMSAbstractMaterialFlowArc...15

Class IloMSAbstractMaterialFlowNode..20

Class IloMSAbstractProduction..22

Class IloMSActivity...25

Class IloMSActivityChain...31

Class IloMSActivityCompatibilityConstraint..33

Class IloMSBatchingEngine..35

Class IloMSBatchingSolution..36

Class IloMSBucket..41

Class IloMSBucketSequence...43

Class IloMSBucketTemplate..45

Class IloMSBucketTemplateSequence...47

Class IloMSCalendar..49

Class IloMSCalendarInterval...52

Class IloMSChecker...56

Class IloMSCheckerMessage..58

Class IloMSCheckForStop...60

Class IloMSCheckForStopI..61

Class IloMSCsvReader...62

Class IloMSCsvWriter...64

Class IloMSDate..65

Class IloMSDefaultCheckForStop...67

i

Table of Contents
Class IloMSDemand...68

Class IloMSDueDate...74

Class IloMSInventoryMaxCostFunction...77

Class IloMSInventoryMinCostFunction..80

Class IloMSMaterial..83

Class IloMSMaterialFamily...102

Class IloMSMaterialFamilyCardinalityConstraint..104

Class IloMSMaterialProduction...106

Class IloMSMode..111

Class IloMSModel...120

Class IloMSObject..158

Class IloMSOptimizationCriterion...163

Class IloMSOptimizationProfile...164

Class IloMSPlannedDelivery..174

Class IloMSPlannedProduction...177

Class IloMSPlanningEngine..181

Class IloMSPlanningSolution..185

Class IloMSPrecedence...189

Class IloMSProcurement...191

Class IloMSProcurementToDemandArc...195

Class IloMSProcurementToProdArc...196

Class IloMSProcurementToStorageArc..197

Class IloMSProdToDemandArc...198

Class IloMSProdToProdArc...199

Class IloMSProdToStorageArc..200

Class IloMSProductionOrder...201

Class IloMSQuality...206

Class IloMSRecipe..207

Class IloMSRecipeFamily..215

ii

Table of Contents
Class IloMSRecipeFamilyFilter..217

Class IloMSRepairAlgorithm...221

Class IloMSReplicateAlgorithm...224

Class IloMSResource...227

Class IloMSResourceCapacityCostFunction...241

Class IloMSResourceConstraint...244

Class IloMSResourceFamily..245

Class IloMSScheduledActivity..247

Class IloMSSchedulingEngine..253

Class IloMSSchedulingSolution..255

Class IloMSScope...261

Class IloMSSetupActivity...264

Class IloMSSetupMatrix...265

Class IloMSSolutionHook..268

Class IloMSSolutionHookI...271

Class IloMSStandardKPI..274

Class IloMSStorageToDemandArc..276

Class IloMSStorageToProdArc..277

Class IloMSStorageUnit...278

Class IloMSUnit...282

Enumeration IloMSActivityCompatibilityType...284

Enumeration IloMSBatchingAlgorithm...285

Enumeration IloMSBucketPeriodUnit...286

Enumeration IloMSBucketType...287

Enumeration IloMSCheckerMessageLevel...288

Enumeration IloMSCleaningStatus...289

Enumeration IloMSDay...290

Enumeration IloMSDemandCompatibilityType..291

Enumeration IloMSDimension...292

iii

Table of Contents
Enumeration IloMSMaterialFlowNodeType..293

Enumeration IloMSMaterialFlowType...294

Enumeration IloMSPeggingStrategy...295

Enumeration IloMSPerformedStatus..296

Enumeration IloMSPlanningAlgorithm...297

Enumeration IloMSPlanningSetupModel..298

Enumeration IloMSPrecedenceType...299

Enumeration IloMSRecipeFamilyStatus...300

Enumeration IloMSRecipeType...301

Enumeration IloMSRepairCapacity...302

Enumeration IloMSRepairExtent...303

Enumeration IloMSServiceLevelType...304

Global function operator<<..305

Macro ILOMSCHECKFORSTOP0...306

Macro IloMSIdentifier...307

Macro IloMSIntMinusInfinity..308

Macro IloMSIntPlusInfinity...309

Macro IloMSNoFeature...310

iv

Overview

Group Summary

optim.plant.checker The solution checking objects.

optim.plant.engine The optimization engines.

optim.plant.io The input and output objects.

optim.plant.model The problem object model.

optim.plant.solution The solution objects.

1

Group optim.plant.checker
The solution checking objects.

Class Summary

IloMSChecker The IloMSChecker class is used to check the validity of a model or solution.

IloMSCheckerMessage The IloMSCheckerMessage class is used to record the errors found in a model or
solution.

Use to check solutions.

2

Group optim.plant.engine
The optimization engines.

Class Summary

IloMSBatchingEngine The IloMSBatchingEngine class is used to solve batch sizing problems to
integrate planning and scheduling.

IloMSPlanningEngine The IloMSPlanningEngine class is used to solve manufacturing planning
problems represented by IloMSModel objects.

IloMSRepairAlgorithm The IloMSRepairAlgorithm class is used to change a scheduling solution while
enforcing (or repairing) some constraints.

IloMSReplicateAlgorithm The IloMSReplicateAlgorithm class is used to duplicate a set of production
orders.

IloMSSchedulingEngine

The IloMSSchedulingEngine class implements a scheduling engine that uses the
current batching solution (getCurrentBatchingSolution of IloMSModel) to
compute a scheduling solution. The solution can be accessed with
getCurrentSchedulingSolution of IloMSModel.

Enumeration Summary

IloMSBatchingAlgorithm IloMSBatchingAlgorithm selects the batching algorithm used by the batching
engine.

IloMSPlanningAlgorithm IloMSPlanningAlgorithm sets the planning algorithm used by the planning
engine.

IloMSRepairExtent The enumerated type IloMSRepairExtent is used to identify the extent of repair
with regards to constraints.

IBM® ILOG® Plant PowerOps contains several optimization engines.

The planning engine uses a model containing planning data as input. This engine is typically used for mid-term
planning to determine production and inventory level in time buckets. Constraints are satisfied globally by time
bucket, not at each time unit. The output is a planning solution containing the recipes to use and in what amount
per time bucket.

The batching (or lot-sizing) engine takes a model and a planning solution as input and determines how the level
of production of recipes must be split into production orders (typically batches). It may also compute a pegging
between these production orders in terms of material flow arcs. The output is a lot-sizing solution that is a set of
production orders and material flow arcs.

The scheduling engine takes as input either a model with scheduling data or a model with a lot-sizing solution. It
generates activities from production orders and tries to determine a schedule respecting the constraint at each
time unit.

3

Group optim.plant.io
The input and output objects.

Class Summary

IloMSCheckForStop The IloMSCheckForStop class is used as the base class for engine stopping
callback.

IloMSCheckForStopI The abstract class IloMSCheckForStopI is used to enable you to specify a
stopping condition for the scheduling engine.

IloMSCsvReader The IloMSCsvReader class is used to read Plant PowerOps problems and
solutions from CSV files.

IloMSCsvWriter The IloMSCsvWriter class is used to write Plant PowerOps problems and
solutions to CSV files.

IloMSDefaultCheckForStop This IloMSDefaultCheckForStop class is used to enable you to stop the
scheduling engine by changing the internal state of an object of this class.

IloMSSolutionHook The IloMSSolutionHook class provides a call-back mechanism that is activated
every time a new solution is found.

IloMSSolutionHookI The IloMSSolutionHookI class provides a call-back mechanism that is
activated every time a new solution is found.

Macro Summary

ILOMSCHECKFORSTOP0 This macro is provided in order to facilitate the definition of the classes
IloMSCheckForStopI and IloMSCheckForStop.

Includes classes to read and write to csv files.

4

Group optim.plant.model
The problem object model.

Class Summary

IloMSAbstractActivity The IloMSAbstractActivity class is a common superclass for
both production and setup activities.

IloMSAbstractMaterialFlowArc

The IloMSAbstractMaterialFlowArc class is used to represent
flows of material between stock, procurements, production orders,
and customer demands. In general, such a flow of material induces
a temporal constraint (precedence) between the corresponding
nodes.

IloMSAbstractMaterialFlowNode
The IloMSAbstractMaterialFlowNode class is an abstract
mother class for all extrema of material flow arcs; these are typically
production orders, demands, and so forth.

IloMSAbstractProduction The abstract class IloMSAbstractProduction is used to
represent production orders and planned production.

IloMSActivity IloMSActivity is used to represent production activities.

IloMSActivityChain
The IloMSActivityChain class is used to represent sequences
of activities to be executed successively on the same primary
resource.

IloMSActivityCompatibilityConstraint The class IloMSActivityCompatibilityConstraint is used
to represent compatibility constraints between two activities.

IloMSBucket The IloMSBucket class is used to represent time buckets in
planning.

IloMSBucketSequence The IloMSBucketSequence class is used to represent a sequence
of time buckets.

IloMSBucketTemplate The IloMSBucketTemplate class defines a pattern or mold for
bucket generation.

IloMSBucketTemplateSequence The IloMSBucketTemplateSequence class is used to connect a
set of bucket templates to a given bucket sequence.

IloMSCalendar The IloMSCalendar class is used to represent calendars
associated with the different modes of an activity.

IloMSCalendarInterval IloMSCalendarInterval is used to represent a calendar as a set
of calendar intervals.

IloMSDate The class IloMSDate is used to contain date information.

IloMSDemand
The class IloMSDemand is used to represent the request for a
certain amount of material deliverable in a time window, with an
optional preferred due date.

IloMSDueDate The IloMSDueDate class is used to represent due date objects.

IloMSInventoryMaxCostFunction The class IloMSInventoryMaxCostFunction is used to
evaluate the cost of violating the maximal inventory over time.

IloMSInventoryMinCostFunction
The class IloMSInventoryMinCostFunction is used to
evaluate the cost of violating the minimal inventory (creating an
inventory deficit) over time.

IloMSMaterial The IloMSMaterial class represents Stock-Keeping Units; it is
used to represent finished products, raw materials, or intermediates.

IloMSMaterialFamily
The IloMSMaterialFamily class is used to represent material
families. A material may be a member of several families. Families
are grouped by their type in the GUI for aggregation purpose.

5

IloMSMaterialFamilyCardinalityConstraint
The IloMSMaterialFamilyCardinalityConstraint class is
used to represent cardinality constraints on the number of products
that can be produced in a given time interval.

IloMSMaterialProduction The class IloMSMaterialProduction is used to represent all
production and consumption of a material.

IloMSMode The IloMSMode class is used to represent the different ways to
perform an activity.

IloMSModel The IloMSModel class gathers the objects that define the
manufacturing problem to be solved.

IloMSObject The class IloMSObject is used to represent all types of Plant
PowerOps objects.

IloMSOptimizationCriterion The IloMSOptimizationCriterion class is used to represent
optimization criteria.

IloMSOptimizationProfile The IloMSOptimizationProfile class is used to represent
optimization profiles.

IloMSPlannedDelivery

The class IloMSPlannedDelivery is used in a planning solution
to represent the amount of material that exits from inventory in a
period of time to satisfy a specific demand. This amount is in
addition to any already-fixed pegging arcs to the demand.

IloMSPlannedProduction
The class IloMSPlannedProduction is used to represent the
quantity of a recipe that is planned to be executed in a period of
time.

IloMSPrecedence The IloMSPrecedence class is used to represent precedence
constraints between activities.

IloMSProcurement The class IloMSProcurement is used to represent material
procured from outside the plant or the initial stock.

IloMSProcurementToDemandArc

The IloMSProcurementToDemandArc class is used to represent
flow of material between a procurement and a demand. Note that a
material flow between two nodes represents a precedence constraint
between them.

IloMSProcurementToProdArc

The IloMSProcurementToProdArc class is used to represent
flow of material between a procurement and a production order.
Note that a material flow between two nodes represents a
precedence constraint between them.

IloMSProcurementToStorageArc

The IloMSProcurementToStorageArc class is used to represent
flow of material between a procurement and stock or storage. Note
that a material flow between two nodes represents a precedence
constraint between them.

IloMSProdToDemandArc

The IloMSProdToDemandArc class is used to represent flow of
material between a production order and a demand. Note that a
material flow between two nodes represents a precedence constraint
between them.

IloMSProdToProdArc

The IloMSProdToProdArc class is used to represent flow of
material between two production orders. Note that a material flow
between production orders represents a precedence constraint
between them.

IloMSProdToStorageArc

The IloMSProdToStorageArc class is used to represent flow of
material between a production order and stock or storage. Note that
a material flow between two nodes represents a precedence
constraint between them.

IloMSProductionOrder The class IloMSProductionOrder is used to represent
production orders.

IloMSQuality

6

The class IloMSQuality is used to represent qualities of
materials.

IloMSRecipe The class IloMSRecipe is used to represent production recipes.

IloMSRecipeFamily

The IloMSRecipeFamily class is used to represent recipe
families. A recipe may be a member of several families. Families are
a way to define submodels and to perform a partial database load of
the data.

IloMSRecipeFamilyFilter The IloMSRecipeFamilyFilter class is used to filter a model to
create a submodel that contains recipe families.

IloMSResource The IloMSResource class is used to describe production
resources on which activities will be performed.

IloMSResourceCapacityCostFunction The class IloMSResourceCapacityCostFunction is used to
evaluate the cost of using a resource over time.

IloMSResourceConstraint The class IloMSResourceConstraint is used to represent a
resource requirement on an activity.

IloMSResourceFamily
The IloMSResourceFamily class is used to represent resource
families. A resource may be a member of several families. Families
are grouped by their type in the GUI for aggregation purpose.

IloMSScheduledActivity The class IloMSScheduledActivity is used to represent an
activity as scheduled on the shop floor.

IloMSScope The IloMSScope class represents scopes, used in the GUI as a
means to control optimization.

IloMSSetupActivity The IloMSSetupActivity class is used to explicitly represent
setup activities.

IloMSSetupMatrix
The IloMSSetupMatrix class is used to store the setup time and
cost incurred when two production activities follow each other on the
same resource.

IloMSStandardKPI The IloMSStandardKPI class is used to represent the Key
Performance Indicators that are defined as standard in PPO.

IloMSStorageToDemandArc

The IloMSStorageToDemandArc class is used to represent flow
of material between stock or storage and a demand. Note that a
material flow between two nodes represents a precedence constraint
between them.

IloMSStorageToProdArc

The IloMSStorageToProdArc class is used to represent flow of
material between stock or storage and a production order. Note that
a material flow between two nodes represents a precedence
constraint between them.

IloMSStorageUnit The IloMSStorageUnit class represents a location or storage
facility for materials.

IloMSUnit The IloMSUnit class is used to represent units of measure.

Macro Summary

IloMSIdentifier IloMSIdentifier is used to provide a name for programming elements.

IloMSIntMinusInfinity IloMSIntMinusInfinity represents negative infinity as -999999999.

IloMSIntPlusInfinity IloMSIntPlusInfinity represents positive infinity as 999999999.

IloMSNoFeature IloMSNoFeature is used to represent that no feature is selected.

Enumeration Summary

IloMSActivityCompatibilityType IloMSActivityCompatibilityType is used to select a type used to
enforce a compatibility constraint.

7

IloMSBucketPeriodUnit
IloMSBucketPeriodUnit is used to select the time period over which the
buckets will be generated. Period unit is a calendar unit. This period unit must
be greater than or equal to the bucket type.

IloMSBucketType IloMSBucketType is used to select the type (the default duration) of
buckets defined by bucket templates.

IloMSCheckerMessageLevel IloMSCheckerMessageLevel is used to identify the severity of the checker
message.

IloMSCleaningStatus IloMSCleaningStatus identifies the cleaning status of an activity.

IloMSDay The enumerated type IloMSDay is used to identify the day of the week.

IloMSDemandCompatibilityType IloMSDemandCompatibilityType table places logical constraints on
demand deliveries in the planning model.

IloMSDimension IloMSDimension is used to identify the dimension type of the unit.

IloMSMaterialFlowNodeType IloMSMaterialFlowNodeType is used to define the node type of the
material flow.

IloMSMaterialFlowType IloMSMaterialFlowType is used to define the path of material flow.

IloMSPeggingStrategy IloMSPeggingStrategy is used to identify the pegging strategy to be used
with arcs carrying a given IloMSMaterial.

IloMSPerformedStatus

The enumerated type IloMSPerformedStatus is used to identify the status
of an activity in the scheduling solution as performed or unperformed. To let
the scheduling engine decide whether or not to perform an activity, the activity
must have the status IloMSPerformedOrUnperformed.

IloMSPlanningSetupModel
IloMSPlanningSetupModel is used to define which approximation of the
setup model the planning engine must take into account for each resource in
a given time interval.

IloMSPrecedenceType IloMSPrecedenceType is used to define the type of precedence constraint
between two activities.

IloMSRecipeFamilyStatus IloMSRecipeFamilyStatus is used to give more semantics to an
IloMSRecipeFamilyFilter.

IloMSRecipeType IloMSRecipeType is used to provide additional semantics to a recipe.

IloMSRepairCapacity The enumerated type IloMSRepairCapacity is used to identify the
capacity of repair.

IloMSServiceLevelType IloMSServiceLevelType sets the service level.

Function Summary

operator<< This operator directs output to an output stream, usually standard output.

The problem object model gathers classes used to define an IBM® ILOG® Plant PowerOps model.

Most classes in this group inherit from IloMSObject.

Plant PowerOps can be used to describe manufacturing scheduling and planning problems.

A manufacturing scheduling problem includes a description of the activities to be performed; of the different
modes in which each of these activities can be performed; of the resources and types of setups required in each
mode; and of a variety of additional constraints (for example, precedence constraints) to satisfy.

A solution assigns to activities the modes, start times, and end times that satisfy the constraints. In some cases,
it is permissible to leave an activity in an "unperformed" mode, meaning that a mode, a start time, and an end
time are chosen, but no resources are assigned to the activity. This might be used to pinpoint the need to either
add capacity on a resource or subcontract some of the activities, rather than performing them too early or too
late.

8

A "good" solution must typically respond to a number of conflicting optimization criteria. For example, a solution
may have to balance criteria specifying the lowest possible manufacturing cost; the avoidance of time-consuming
machine setups; and delivery of the products on time (for example, not too early to avoid storage costs, nor too
late to avoid inconvenience and cost to the customer). The importance given to different optimization criteria
varies depending on the environment (importance of setups, need to reduce storage, etc.) and the given context
(high versus low demand). The overall (compound) optimization criterion is defined as a linear combination of the
individual criteria. The weight of each criterion is provided as part of the model.

Plant PowerOps offers an API that provides more than just activities and resources; the notions of recipes,
production orders, materials and demand are also available.

A recipe is the description of a generic process that transforms some input materials into output material(s). A
recipe consists of a set of prototype activities, linked by precedence and possibly other constraints. Each
prototype activity is executable in one or several modes, and consumes and produces given materials in given
quantities.

Production orders (or batches) are obtained by instantiating recipes. A production order specifies the batch size
and the recipe to use. For each order, production activities and associated constraints are generated by
instantiating the prototype activities of the recipe, for a batch of the given size.

9

Group optim.plant.solution
The solution objects.

Class Summary

IloMSBatchingSolution The IloMSBatchingSolution class is used to represent a batching solution.

IloMSPlanningSolution The IloMSPlanningSolution class is used to represent partial and complete
planning solutions found by a planning engine.

IloMSSchedulingSolution
The IloMSSchedulingSolution class is used to represent partial and complete
solutions to the scheduling problem defined in the corresponding instance of
IloMSModel.

IBM® ILOG® Plant PowerOps solution management.

Plant PowerOps contains several engines that each create a solution object when their method solve() returns
true. Solutions are both created and used as input by PPO engines.

For instance, the planning engine creates a planning solution, and the batching engine creates a batching
solution; but the batching engine requires a planning solution as input.

Notion of initial solution: Scheduling Solutions can be used as a starting point of an optimization and may be
repaired if they are not feasible.

Notion of frozen solution: A frozen solution contains elements that optimization will not alter; for example, the
start time of an activity must not be changed.

10

Class IloMSAbstractActivity
Definition file: ilplant/absactivity.h
Library: plant

The IloMSAbstractActivity class is a common superclass for both production and setup activities.
An activity can be performed in one or different modes.

Due dates can be attached either to the start time or to the end time of an activity. Earliness and tardiness costs
will be incurred when an activity does not start or end at the given due date. When several due dates apply to the
same activity, the earliness and tardiness costs of the activity are defined as the maximal earliness and tardiness
costs over all the given due dates.

Precedence constraints are used to relate the start and end times of two activities and impose minimal and
maximal delays between them.

All the methods of the IloMSAbstractActivity class throw an exception if an empty handle (that is, an
uninitialized object) is used.

See Also: IloMSMode, IloMSDueDate, IloMSPrecedence

Method Summary

public IloMSActivityChain getActivityChain() const

public IloMSActivityCompatibilityConstraint getActivityCompatibilityConstraint(IloInt
index) const

public IloMSCleaningStatus getCleaningStatus() const

public IloMSDueDate getDueDate(IloInt index) const

public IloMSPrecedence getIncomingPrecedence(IloInt index) const

public IloMSMode getMode(IloInt index) const

public IloMSMode getModePrototype(IloInt generatedIndex)
const

public IloInt getNumberOfActivityCompatibilityConstraints()
const

public IloInt getNumberOfDueDates() const

public IloInt getNumberOfIncomingPrecedences() const

public IloInt getNumberOfModes() const

public IloInt getNumberOfOutgoingPrecedences() const

public IloMSPrecedence getOutgoingPrecedence(IloInt index) const

public IloMSProductionOrder getProductionOrder() const

public IloMSRecipe getRecipe() const

public IloBool hasActivityChain() const

public IloBool hasProductionOrder() const

public IloBool hasRecipe() const

11

public IloBool isActivityPrototype() const

public IloBool isProductionActivity() const

public IloBool isSetupActivity() const

public void setCleaningStatus(IloMSCleaningStatus
status)

public void setIdentifier(IloMSIdentifier identifier)

public IloMSActivity toProductionActivity() const

public IloMSSetupActivity toSetupActivity() const

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloMSActivityChain getActivityChain() const

This method returns the activity chain containing the invoking activity. An exception is thrown if the activity is not
in an activity chain.

public IloMSActivityCompatibilityConstraint
getActivityCompatibilityConstraint(IloInt index) const

This method returns the activity compatibility constraint of the invoking activity with the given index. An
exception is thrown if the given index is out of bounds.

public IloMSCleaningStatus getCleaningStatus() const

This method returns the cleaning status of the invoking activity.

public IloMSDueDate getDueDate(IloInt index) const

This method returns the due date of the invoking activity with the given index. An exception is thrown if the
given index is out of bounds.

public IloMSPrecedence getIncomingPrecedence(IloInt index) const

This method returns the incoming precedence of the invoking activity with the given index. An exception is
thrown if the given index is out of bounds.

public IloMSMode getMode(IloInt index) const

This method returns the mode of the invoking activity with the given index. On a generated activity from a
production order, it returns the generated mode. On an activity prototype from a recipe, it returns the mode

12

prototype. An exception is thrown if the given index is out of bounds.

public IloMSMode getModePrototype(IloInt generatedIndex) const

This method returns the mode prototype corresponding to the generated mode specified by generatedIndex.
This method can be called from a generated activity or a prototype.

public IloInt getNumberOfActivityCompatibilityConstraints() const

This method returns the number of activity compatibility constraints associated with the invoking activity.

public IloInt getNumberOfDueDates() const

This method returns the number of due dates of the invoking activity.

public IloInt getNumberOfIncomingPrecedences() const

This method returns the number of incoming precedence constraints of the invoking activity; that is, the number
of precedence constraints for which the invoking activity is the "successor" activity.

public IloInt getNumberOfModes() const

This method returns the number of modes of the invoking activity.

public IloInt getNumberOfOutgoingPrecedences() const

This method returns the number of outgoing precedence constraints of the invoking activity; that is, the number of
precedence constraints for which the invoking activity is the "predecessor" activity.

public IloMSPrecedence getOutgoingPrecedence(IloInt index) const

This method returns the outgoing precedence of the invoking activity with the given index. An exception is
thrown if the given index is out of bounds.

public IloMSProductionOrder getProductionOrder() const

This method returns the production order to which the invoking activity belongs. An exception is thrown if the
invoking activity does not belong to any production order.

public IloMSRecipe getRecipe() const

This method returns the recipe to which the invoking activity (a prototype activity) belongs. An exception> is
thrown if the invoking activity is not a prototype activity.

13

public IloBool hasActivityChain() const

This method returns true if the invoking activity is part of an activity chain.

public IloBool hasProductionOrder() const

This method returns true if the invoking activity belongs to a production order.

public IloBool hasRecipe() const

This method returns true if the invoking activity is a prototype activity.

public IloBool isActivityPrototype() const

This method returns true if the invoking activity is an activity prototype.

public IloBool isProductionActivity() const

This method returns true if the invoking activity is an instance of the class IloMSActivity.

public IloBool isSetupActivity() const

This method returns true if the invoking activity is an instance of the class IloMSSetupActivity.

public void setCleaningStatus(IloMSCleaningStatus status)

This method sets the cleaning status of the invoking activity.

public void setIdentifier(IloMSIdentifier identifier)

This modifier associates an identifier with the invoking activity. An exception is thrown if the given identifier is
already used.

public IloMSActivity toProductionActivity() const

This method casts the invoking activity to an IloMSActivity.

public IloMSSetupActivity toSetupActivity() const

This method casts the invoking activity to an IloMSSetupActivity.

14

Class IloMSAbstractMaterialFlowArc
Definition file: ilplant/matflowarc.h
Library: plant

The IloMSAbstractMaterialFlowArc class is used to represent flows of material between stock,
procurements, production orders, and customer demands. In general, such a flow of material induces a temporal
constraint (precedence) between the corresponding nodes.
Eight types of material flow arcs are distinguished. A stock-to-production arc means that some material initially in
stock will be used as an input to a given production order. A stock-to-demand arc means that some material
initially in stock will be used to (partially or totally) satisfy a demand. A procurement-to-production arc means that
some material provided by a given procurement will be used as an input to a given production order. A
procurement-to-demand arc means that some material provided by a given procurement will be used to (partially
or totally) satisfy a demand. A procurement-to-stock arc means that some material provided by a given
procurement will remain in stock. A production-to-production arc means that some material produced by a given
production order will be used as an input to another given production order. A production-to-demand to demand
arc means that some material produced by a given production order will be used to (partially or totally) satisfy a
demand. A production-to-storage arc means that some material produced by a given production order will remain
in stock.

A material flow arc specifies the quantity of material that is moved between the two corresponding nodes. Firm
minimal and maximal quantities can also be specified. When the firm minimal quantity is not 0, PPO is not
allowed to remove the arc and the quantity on the arc is not allowed to go below the firm minimal quantity. When
the firm maximal quantity is not infinite, PPO is not allowed to extend the quantity on the arc above the given
maximal quantity.

All the methods of the IloMSAbstractMaterialFlowArc class throw an exception if an empty handle (that is,
an uninitialized object) is used.

Method Summary

public IloInt getEndConsumptionTime() const

public IloInt getEndProductionTime() const

public IloNum getFirmQuantityMax() const

public IloNum getFirmQuantityMin() const

public IloMSMaterial getMaterial() const

public IloMSMaterialFlowType getMaterialFlowType() const

public const char * getMaterialFlowTypeName() const

15

public IloMSAbstractMaterialFlowNode getPredecessor() const

public IloNum getQuantity() const

public IloNum getQuantityInDisplayUnit() const

public IloInt getStartConsumptionTime() const

public IloInt getStartProductionTime() const

public IloMSAbstractMaterialFlowNode getSuccessor() const

public IloBool isFirm() const

public void setFirm(IloBool firm)

public void setFirmQuantityMax(IloNum firmQuantityMax)

public void setFirmQuantityMin(IloNum firmQuantityMin)

public void setQuantity(IloNum quantity)

public IloMSProcurementToDemandArc toProcurementToDemandArc() const

public IloMSProcurementToProdArc toProcurementToProdArc() const

public IloMSProcurementToStorageArc toProcurementToStorageArc() const

public IloMSProdToDemandArc toProdToDemandArc() const

public IloMSProdToProdArc toProdToProdArc() const

public IloMSProdToStorageArc toProdToStorageArc() const

public IloMSStorageToDemandArc toStorageToDemandArc() const

public IloMSStorageToProdArc toStorageToProdArc() const

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloInt getEndConsumptionTime() const

internal

public IloInt getEndProductionTime() const

internal

public IloNum getFirmQuantityMax() const

This method returns the maximal quantity carried by this arc.

public IloNum getFirmQuantityMin() const

This method returns the minimal quantity carried by this arc.

public IloMSMaterial getMaterial() const

16

This method returns the material along the arc.

public IloMSMaterialFlowType getMaterialFlowType() const

This method returns the type of the material flow arc.

public const char * getMaterialFlowTypeName() const

This method returns the type of the material flow arc as a readable string.

public IloMSAbstractMaterialFlowNode getPredecessor() const

This method returns the node (procurement, production order, or null) which provides the material flowing along
the arc.

public IloNum getQuantity() const

This method returns the quantity of material along the arc.

public IloNum getQuantityInDisplayUnit() const

This method returns the quantity of material along the arc, converted in the display unit of the material.

public IloInt getStartConsumptionTime() const

internal

public IloInt getStartProductionTime() const

internal

public IloMSAbstractMaterialFlowNode getSuccessor() const

This method returns the node (production order, demand, or null) which consumes the material flowing along the
arc.

public IloBool isFirm() const

This method returns true if the firm minimal quantity carried by this arc is strictly positive, i.e., if the arc cannot be
removed.

public void setFirm(IloBool firm)

If the given Boolean is true, this method sets the firm minimal quantity and the firm maximal quantity of the arc to
its current quantity. Otherwise (i.e., if the given Boolean is false), this method resets the firm minimal quantity and
the firm maximal quantity of the arc to 0 and infinity.

17

public void setFirmQuantityMax(IloNum firmQuantityMax)

This method sets the maximal quantity carried by this arc.

public void setFirmQuantityMin(IloNum firmQuantityMin)

This method sets the minimal quantity carried by this arc.

public void setQuantity(IloNum quantity)

This method sets the quantity of material along the arc.

public IloMSProcurementToDemandArc toProcurementToDemandArc() const

This method casts the invoking arc to an IloMSProcurementToDemandArc.

public IloMSProcurementToProdArc toProcurementToProdArc() const

This method casts the invoking arc to an IloMSProcurementToProdArc.

public IloMSProcurementToStorageArc toProcurementToStorageArc() const

This method casts the invoking arc to an IloMSProcurementToStorageArc.

public IloMSProdToDemandArc toProdToDemandArc() const

This method casts the invoking arc to an IloMSProdToDemandArc.

public IloMSProdToProdArc toProdToProdArc() const

This method casts the invoking arc to an IloMSProdToProdArc.

public IloMSProdToStorageArc toProdToStorageArc() const

This method casts the invoking arc to an IloMSProdToStorageArc.

public IloMSStorageToDemandArc toStorageToDemandArc() const

This method casts the invoking arc to an IloMSStorageToDemandArc.

public IloMSStorageToProdArc toStorageToProdArc() const

18

This method casts the invoking arc to an IloMSStorageToProdArc.

19

Class IloMSAbstractMaterialFlowNode
Definition file: ilplant/matflownode.h
Library: plant

The IloMSAbstractMaterialFlowNode class is an abstract mother class for all extrema of material flow
arcs; these are typically production orders, demands, and so forth.

See Also: IloMSAbstractMaterialFlowNode, IloMSAbstractMaterialFlowArc, IloMSProductionOrder,
IloMSDemand

Method Summary

public const char * getCategory() const

public IloMSMaterialFlowNodeType getMaterialFlowNodeType() const

public IloBool isFirm() const

public void setCategory(const char * category)

public void setFirm(IloBool firm)

public IloMSDemand toDemand()

public IloMSProductionOrder toProductionOrder()

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public const char * getCategory() const

This method returns the status or category of a counterpart or counter-component in an external system, such as
SAP-R/3-APO.

public IloMSMaterialFlowNodeType getMaterialFlowNodeType() const

This method returns the type of node.

public IloBool isFirm() const

This method returns true if the node is firm.

20

public void setCategory(const char * category)

This method sets the status or category of a counterpart or counter-component in an external system, such as
SAP-R/3-APO.

public void setFirm(IloBool firm)

This method makes the node firm.

public IloMSDemand toDemand()

This method casts the invoking node into a demand object.

public IloMSProductionOrder toProductionOrder()

This method casts the invoking node into a production order.

21

Class IloMSAbstractProduction
Definition file: ilplant/absproduction.h
Library: plant

The abstract class IloMSAbstractProduction is used to represent production orders and planned
production.
It represents a production using the recipe of a process. The batch size is used to compute the quantity of
material produced or consumed. Batch size is also used to adjust the processing time of generated activities (if a
variable processing time has been specified on the activity prototypes of the recipe).

See Also: IloMSRecipe, IloMSDemand, IloMSAbstractMaterialFlowArc, IloMSPlannedProduction,
IloMSProductionOrder

Method Summary

public void addPlannedMode(IloMSMode modePrototype)

public IloNum getBatchSize() const

public IloInt getNumberOfPlannedModes() const

public IloMSMode getPlannedMode(IloInt activityPrototypeIndex) const

public IloInt getPlannedTimeMax() const

public IloInt getPlannedTimeMin() const

public IloMSRecipe getRecipe() const

public IloBool isFirm() const

public void setBatchSize(IloNum batchSize)

public void setFirm(IloBool firm)

public void setPlannedTimeMax(IloInt value)

public void setPlannedTimeMin(IloInt value)

Inherited Methods from IloMSAbstractMaterialFlowNode

getCategory, getMaterialFlowNodeType, isFirm, setCategory, setFirm, toDemand,
toProductionOrder

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

22

Methods

public void addPlannedMode(IloMSMode modePrototype)

This method adds a reference to the mode prototype in the original recipe. This mode prototype corresponds to a
decision of the planning engine with respect to which resource was used among the alternatives defined in the
original recipe.

public IloNum getBatchSize() const

This method returns the batch size, that is, the quantity of recipe to be executed by this production order.

public IloInt getNumberOfPlannedModes() const

This method returns the number of mode prototypes corresponding to the decisions of the planning engine, with
respect to which resource was used among the alternatives defined in the original recipe.

public IloMSMode getPlannedMode(IloInt activityPrototypeIndex) const

This method returns the mode of#-th activity prototype. This mode prototype corresponds to a decision of the
planning engine with respect to which resource is to be used among the alternatives defined in the original
recipe.

public IloInt getPlannedTimeMax() const

This accessor returns an approximate maximal time at which the production order is supposed to be done. The
time is expressed in the time unit of the model, from the date origin of the model.

public IloInt getPlannedTimeMin() const

This accessor returns an approximate minimal time at which the production order could be done. The time is
expressed in the time unit of the model, from the date origin of the model.

public IloMSRecipe getRecipe() const

This accessor returns the recipe implemented by the invoking production order.

public IloBool isFirm() const

This method returns the status of the invoking object (firm batch size min is strictly positive).

public void setBatchSize(IloNum batchSize)

This method sets the batch size, that is, the quantity of recipe to be executed by this production order.

23

public void setFirm(IloBool firm)

This method sets the firm batch size min and max to the current batch size.

A firm production order must be scheduled in order to be taken into account in the planning module (a scheduled
activity must exist for each of its activities). The planning module will not try to move it. The planning module will
treat a firm order as a fixed order, as opposed to the scheduling module which may try to move it.

public void setPlannedTimeMax(IloInt value)

This accessor sets an approximate maximal time at which the production order is supposed to be done. The time
is expressed in the time unit of the model, from the date origin of the model.

public void setPlannedTimeMin(IloInt value)

This accessor sets an approximate minimal time at which the production order could be done. The time is
expressed in the time unit of the model, from the date origin of the model.

24

Class IloMSActivity
Definition file: ilplant/activity.h
Library: plant

IloMSActivity is used to represent production activities.
The IloMSActivity class inherits from the class IloMSAbstractActivity.

Activity types and phases

There are three basic activity types in PPO: Production, cleanup, and setup activities. IloMSActivity
represents the first two types (cleanup activities are production activities with a status set to cleaning with
IloMSAbstractActivity::setCleaningStatus). Setup activities are instances of the class
IloMSSetupActivity.

An activity typically has three phases in PPO: As a prototype, an instance, and as a scheduled activity. A
prototype activity is a template or mold of an activity, represented through the recipes and modes in the data
model. A prototype is not an actual specific activity instance, but rather a model of an activity that typically is
performed many times in a plant process. During optimization, the production orders are created and this process
uses the activity prototypes as a template to create the actual, explicit instances of activities. Each activity
instance must be performed at some point in the schedule in order to meet the demand of the production orders.
Optimization schedules each of these instances to a particular time slot, and the results can be viewed in the
Scheduled Activities data table in the GUI.

All the methods of the IloMSActivity class throw an exception if an empty handle (that is, an uninitialized
object) is used.

Setup states on production activities

A setup state per setup feature can be associated with each production activity. A setup time and a setup cost
will be incurred between any two production activities directly following each other on the same unary resource.
This setup time and setup cost depend on the setup states of the two activities. By default, the setup state of an
activity is set to the special value -1, meaning the setup time and the setup cost before or after the activity is
equal to 0.

Spanning over multiple activities

An activity s can span over a set of activities {a}. The activity s is called the spanning activity and its time
bounds are computed as a propagation of the time bounds of its spanned activities. More precisely, it means that
the start time of the spanning activity is equal to the earliest of the start times of the spanned activities, and that
the end time of the spanning activity is equal to the latest of the end times of the spanned activities.

The main difference between precedence constraints and spanning constraints is that with precedence
constraints, one can specify that an activity covers a set of activities but if there is no known order among the
activities then one cannot constrain the covering activity so that:

The start time of the covering activity is equal to the start of the earliest covered activity•
The end time of the covering activity is equal to the end time of the latest covered activity.•

25

Modifying activity names

You can define multiline names using n to start a new line. To properly see multiline names in the Gantt, change
the Activity and Resource Chart Row Height in the Options menu.

By default, activities generated from activity prototypes have an automatic long name based on a concatenation
of the production order name and the activity prototype name, separated by a dot. To keep the original name of
the activity prototype, you must set the setting bShortName to true. When the bShortName setting is true, the
activity label from the activity prototypes interprets the following special characters as shown:

^a = abbreviated main product name to 3 first letters (NOT SUPPORTING MULTIBYTE CHARACTERS)•
^b = abbreviated main ingredient name to 3 first letters (NOT SUPPORTING MULTIBYTE
CHARACTERS)

•

^i = main product identifier•
^j = main ingredient identifier•
^m = main ingredient name•
^n = order index•
^o = order identifier•
^p = main product name•
^q = quantity of main product or batch size; if missing round up as an integer•
^r = recipe name, or if missing then the recipe identifier, or if missing the recipe id•
^s = batch size•

See the method putSetting of IloMSOptimizationProfile for more information.

See Also: IloMSAbstractActivity

Method Summary

public void addSpannedActivity(IloMSActivity activity, IloBool
onStart, IloBool onEnd)

public void addSpannedActivity(IloMSActivity activity)

public ILOMSDEPRECATED IloInt getEndMaxIfPerformed()

public ILOMSDEPRECATED IloInt getEndMinIfPerformed()

public IloInt getNumberOfSpannedActivities() const

26

public IloMSPerformedStatus getPerformedStatus() const

public IloMSSetupActivity getSetupActivity() const

public IloMSIdentifier getSetupState() const

public IloMSIdentifier getSetupState(IloMSIdentifier feature) const

public IloMSActivity getSpannedActivity(IloInt index) const

public ILOMSDEPRECATED IloInt getStartMaxIfPerformed()

public ILOMSDEPRECATED IloInt getStartMinIfPerformed()

public IloBool hasSetupActivity() const

public IloBool hasSetupState() const

public IloBool hasSetupState(IloMSIdentifier feature) const

public IloBool isSpanningOnEnd(IloInt index) const

public IloBool isSpanningOnStart(IloInt index) const

public IloMSSetupActivity newSetupActivity()

public void removeSetupState(IloMSIdentifier feature)

public ILOMSDEPRECATED void setEndMaxIfPerformed(IloInt value)

public ILOMSDEPRECATED void setEndMinIfPerformed(IloInt value)

public void setPerformedStatus(IloMSPerformedStatus perfStatus)

public void setSetupState(IloMSIdentifier setupState)

public void setSetupState(IloMSIdentifier feature,
IloMSIdentifier setupState)

public ILOMSDEPRECATED void setStartMaxIfPerformed(IloInt value)

public ILOMSDEPRECATED void setStartMinIfPerformed(IloInt value)

Inherited Methods from IloMSAbstractActivity

getActivityChain, getActivityCompatibilityConstraint, getCleaningStatus,
getDueDate, getIncomingPrecedence, getMode, getModePrototype,
getNumberOfActivityCompatibilityConstraints, getNumberOfDueDates,
getNumberOfIncomingPrecedences, getNumberOfModes, getNumberOfOutgoingPrecedences,
getOutgoingPrecedence, getProductionOrder, getRecipe, hasActivityChain,
hasProductionOrder, hasRecipe, isActivityPrototype, isProductionActivity,
isSetupActivity, setCleaningStatus, setIdentifier, toProductionActivity,
toSetupActivity

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public void addSpannedActivity(IloMSActivity activity, IloBool onStart, IloBool
onEnd)

This method adds a spanned activity to the invoking activity. The spanning constraint may be enforced only on
start or only on end, or on both.

27

public void addSpannedActivity(IloMSActivity activity)

This method adds a spanned activity to the invoking activity. The spanning constraint is enforced both on start
and on end.

public ILOMSDEPRECATED IloInt getEndMaxIfPerformed()

This deprecated method returns the maximal end time imposed on the generated activity when it is performed.

public ILOMSDEPRECATED IloInt getEndMinIfPerformed()

This deprecated method returns the minimal end time imposed on the generated activity when it is performed.

public IloInt getNumberOfSpannedActivities() const

This method returns the number of spanned activities covered by the invoking activity.

public IloMSPerformedStatus getPerformedStatus() const

This method returns the performed status for the activity. When the value returned is
IloMSPerformedOrUnperformed, it means that the scheduling engine must decide to set this activity to either
performed or unperformed in the solution. The decision taken by the scheduling engine can be accessed by
using the appropriate method in the scheduling solution.

See Also: IloMSPerformedStatus, IloMSSchedulingSolution

public IloMSSetupActivity getSetupActivity() const

This method returns the explicit setup activity associated with the invoking production activity. A null reference is
returned if the invoking production activity has no explicit setup activity.

public IloMSIdentifier getSetupState() const

This method returns the setup state of the invoking activity. It is equivalent to calling
getSetupState(IloMSNoFeature).

public IloMSIdentifier getSetupState(IloMSIdentifier feature) const

This method returns the setup state of the invoking activity for the given setup feature.

public IloMSActivity getSpannedActivity(IloInt index) const

This method returns the spanned activity covered by the invoking activity associated with index.

28

public ILOMSDEPRECATED IloInt getStartMaxIfPerformed()

This deprecated method returns the maximal start time imposed on the generated activity when it is performed.

public ILOMSDEPRECATED IloInt getStartMinIfPerformed()

This deprecated method returns the minimal start time imposed on the generated activity when it is performed.

public IloBool hasSetupActivity() const

This method returns true if the invoking activity has an explicit setup activity, and false otherwise.

public IloBool hasSetupState() const

This method returns true if a setup state is defined for the invoking activity.

public IloBool hasSetupState(IloMSIdentifier feature) const

This method returns true if a setup state is defined for the invoking activity for the given setup feature.

public IloBool isSpanningOnEnd(IloInt index) const

This method returns true if the spanning constraint is enforced on end with the indexed spanned activity.

public IloBool isSpanningOnStart(IloInt index) const

This method returns true if the spanning constraint is enforced on start with the indexed spanned activity.

public IloMSSetupActivity newSetupActivity()

This method creates an explicit setup activity for the invoking production activity.

public void removeSetupState(IloMSIdentifier feature)

This method removes the setup state required by the invoking activity for the given setup feature.

public ILOMSDEPRECATED void setEndMaxIfPerformed(IloInt value)

This deprecated method sets the maximal end time if the activity is performed. If it is unperformed, its end time is
not constrained. This can be used, for example, to specify that the activity has to be unperformed once it reaches
a certain tardiness threshold. This method has no effect on activity prototypes; use only with generated activities.

29

public ILOMSDEPRECATED void setEndMinIfPerformed(IloInt value)

This deprecated method sets the minimal end time if the activity is performed. If it is unperformed, its end time is
not constrained. This can be used, for example, to specify that the activity has to be unperformed once it reaches
a certain earliness threshold. This method has no effect on activity prototypes; use only with generated activities.

public void setPerformedStatus(IloMSPerformedStatus perfStatus)

This method allows setting the performed status for the activity. When the value provided as argument is
IloMSPerformedOrUnperformed, it means that the scheduling engine must decide to set this activity to either
performed or unperformed. The decision taken by the scheduling engine can be accessed by using the
appropriate method in the scheduling solution.

See Also: IloMSPerformedStatus, IloMSSchedulingSolution

public void setSetupState(IloMSIdentifier setupState)

This method sets the setup state of the invoking activity. It is equivalent to calling
setSetupState(IloMSNoFeature, setupState).

public void setSetupState(IloMSIdentifier feature, IloMSIdentifier setupState)

This method sets the setup state of the invoking activity for the given setup feature. The parameter setupState
is the setup state of the invoking activity.

public ILOMSDEPRECATED void setStartMaxIfPerformed(IloInt value)

This deprecated method sets the maximal start time if the activity is performed. If it is unperformed, its start time
is not constrained. This method can be used, for example, to specify that the activity has to be unperformed once
it reaches a certain tardiness threshold. This method has no effect on activity prototypes; use only with generated
activities.

public ILOMSDEPRECATED void setStartMinIfPerformed(IloInt value)

This deprecated method sets the minimal start time if the activity is performed. If it is unperformed, its start time is
not constrained. This can be used, for example, to specify that the activity has to be unperformed once it reaches
a certain earliness threshold. This method has no effect on activity prototypes; use only with generated activities.

30

Class IloMSActivityChain
Definition file: ilplant/actchain.h
Library: plant

The IloMSActivityChain class is used to represent sequences of activities to be executed successively on
the same primary resource.
In a manufacturing environment, it is often the case that several activities contributing to the production of the
same lot must be performed on the same primary resource, without being interrupted by other activities
contributing to the production of other lots. Such is the case, for example, if the process consists of installing a
product on a machine and performing several treatments on the product without uninstalling it. The concept of
activity chain is introduced for this purpose. Roughly, an activity chain is a sequence of production activities with
the same setup state, that must be performed successively on the same primary resource.

An activity chain must meet all the following criteria: 1) The activities must be scheduled in one consistent order
on the same primary resource. 2) The activities must be production activities. No setup activities are allowed in
the chain. 3) The activities must all have the same setup state. 4) The required capacity on the primary resource
must be the same for all activities (A1,A2,A3 will form a rectangle on the primary resource). 5) The resource is
used from the beginning to the end of the chain.

The manufacturing scheduling problem would be less complex if an activity chain could be replaced by a unique
activity to be performed on the primary resource under consideration. However, there are many cases in which
representing the individual activities and linking them in an activity chain might be necessary. For example,
consider the case where each individual activity requires different scarce secondary resources that need to be
taken into account to build a realistic schedule. Another example is if some of the individual activities cannot be
interrupted by "breaks" (such as lunch breaks), but breaks are allowed within the activity chain (that is, between
the individual activities).

All the methods of the IloMSActivityChain class throw an exception if an empty handle (that is, an
uninitialized object) is used.

Method Summary

public void appendActivity(IloMSActivity activity)

public IloBool canAppend(IloMSActivity activity) const

public IloMSActivity getActivity(IloInt index) const

public IloInt getNumberOfActivities() const

public IloInt getPosition(IloMSActivity activity) const

public void setIdentifier(IloMSIdentifier identifier)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public void appendActivity(IloMSActivity activity)

31

This method adds a new activity at the end of the activity chain. An exception is thrown if the invoking chain
already contains an activity with a different setup state.

public IloBool canAppend(IloMSActivity activity) const

This method returns false if any of the following conditions are true: The invoking activity chain already contains
an activity with a different setup state; the invoking chain already contains an activity with a different cleaning
status; the activity to be appended has a setup activity and it is not the first activity in the chain.

public IloMSActivity getActivity(IloInt index) const

This method returns the activity of the invoking chain with the given index. An exception is thrown if the given
index is out of bounds.

public IloInt getNumberOfActivities() const

This method returns the total number of activities in the invoking chain.

public IloInt getPosition(IloMSActivity activity) const

This method returns the position of the activity into the activity chain

public void setIdentifier(IloMSIdentifier identifier)

This modifier associates an identifier with the invoking activity chain. An exception is thrown if the given
identifier is already used.

32

Class IloMSActivityCompatibilityConstraint
Definition file: ilplant/actcompcst.h
Library: plant

The class IloMSActivityCompatibilityConstraint is used to represent compatibility constraints
between two activities.
This constraint enables you to enforce that two given activities will be executed in compatible modes. For
example you may want to impose them to execute on the same line or on the same primary resource or on
connected primary resources. You may also impose compatibility among the performance statuses such that, for
example, if a first activity is performed then a second activity must be unperformed. The actual constraint
enforced depends on the type of the IloMSActivityCompatibilityConstraint and can be chosen using
the enumerated type IloMSActivityCompatibilityType. Note that some compatibility types are
bidirectional (for example, IloMSConnectedPrimaryResources, IloMSSameLineId,
IloMSSamePrimaryResourceAndCapacity); in this case the order of the two activities is not important.
Some other compatibility types are not bidirectional (for example, IloMSPerformedImpliesPerformed); in
this case the order of the two activities matters.

All the methods of the IloMSActivityCompatibilityConstraint class throw an exception if an empty
handle (that is, an uninitialized object) is used.

See Also: IloMSActivity, IloMSMode, IloMSResource, IloMSActivityCompatibilityType

Method Summary

public IloMSAbstractActivity getFirstActivity() const

public IloMSAbstractActivity getSecondActivity() const

public IloMSActivityCompatibilityType getType() const

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloMSAbstractActivity getFirstActivity() const

This method returns the first activity affected by the invoking compatibility constraint.

public IloMSAbstractActivity getSecondActivity() const

This method returns the second activity affected by the invoking compatibility constraint.

public IloMSActivityCompatibilityType getType() const

This method returns the type of the invoking activity compatibility constraint.

33

34

Class IloMSBatchingEngine
Definition file: ilplant/batchengine.h
Library: plant

The IloMSBatchingEngine class is used to solve batch sizing problems to integrate planning and scheduling.
The batching engine is responsible for splitting the production computed by the planning engine (as recipe levels)
into production orders (batch-sizing), and is responsible for creating material flow arcs (pegging) that will be used
by the scheduling engine. It takes as input an IloMSPlanningSolution and creates an
IloMSBatchingSolution with instances of IloMSProductionOrder and
IloMSAbstractMaterialFlowArc.

See Also: IloMSPlanningSolution, IloMSRecipe, IloMSProductionOrder, IloMSAbstractMaterialFlowArc,
IloMSPlanningEngine, IloMSSchedulingEngine, IloMSBatchingSolution

Constructor Summary

public IloMSBatchingEngine(IloMSModel model, IloMSPlanningSolution
planningSolution)

Method Summary

public IloBool solve()

Constructors

public IloMSBatchingEngine(IloMSModel model, IloMSPlanningSolution
planningSolution)

This method creates a batching engine for the given IloMSModel object, taking a planningSolution as
input.

Methods

public IloBool solve()

This method solves a batching problem. It splits the production levels computed by the planning solution into
various production orders and may compute pegging arcs. It must respect the minimal and maximal batch sizes
defined in the recipes. It returns true if a solution is found to batch sizing; false otherwise.

See Also: IloMSProductionOrder, IloMSAbstractMaterialFlowArc, IloMSRecipe

35

Class IloMSBatchingSolution
Definition file: ilplant/batchsolution.h
Library: plant

The IloMSBatchingSolution class is used to represent a batching solution.
All methods of the IloMSBatchingSolution class throw an exception if an empty handle (that is, an
uninitialized object) is used.

Method Summary

public IloMSAbstractActivity getAbstractActivityByIdentifier(IloMSIdentifier
identifier) const

public IloMSActivity getActivity(IloInt index) const

public IloMSActivityChain getActivityChain(IloInt i) const

public IloMSChecker getChecker()

public IloMSSchedulingSolution getCurrentSchedulingSolution() const

public IloMSAbstractMaterialFlowArc getIncomingMaterialFlowArc(IloMSAbstractMaterialFlowNode
node, IloInt index) const

public IloMSSchedulingSolution getInitialSchedulingSolution() const

public IloMSAbstractMaterialFlowArc getMaterialFlowArc(IloInt index) const

public IloInt getNumberOfActivities() const

public IloInt getNumberOfActivityChains() const

public IloInt getNumberOfIncomingMaterialFlowArcs(IloMSAbstractMaterialFlowNode
node) const

public IloInt getNumberOfMaterialFlowArcs() const

public IloInt getNumberOfOutgoingMaterialFlowArcs(IloMSAbstractMaterialFlowNode
node) const

public IloInt getNumberOfProductionOrders(IloMSRecipe
recipe) const

public IloInt getNumberOfProductionOrders() const

public IloMSAbstractMaterialFlowArc getOutgoingMaterialFlowArc(IloMSAbstractMaterialFlowNode
node, IloInt index) const

public IloMSProductionOrder getProductionOrder(IloMSRecipe recipe, IloInt
index) const

public IloMSProductionOrder getProductionOrder(IloInt index) const

public IloBool hasInitialSchedulingSolution() const

public IloMSProcurementToDemandArc newProcurementToDemandArc(IloMSMaterial
material, IloNum quantity, IloMSProcurement
pred, IloMSDemand succ)

public IloMSProcurementToProdArc newProcurementToProdArc(IloMSMaterial
material, IloNum quantity, IloMSProcurement
pred, IloMSProductionOrder succ)

public IloMSProcurementToStorageArc newProcurementToStorageArc(IloMSMaterial
material, IloNum quantity, IloMSProcurement

36

pred)

public IloMSProdToDemandArc newProdToDemandArc(IloMSMaterial material,
IloNum quantity, IloMSProductionOrder pred,
IloMSDemand succ)

public IloMSProdToProdArc newProdToProdArc(IloMSMaterial material,
IloNum quantity, IloMSProductionOrder pred,
IloMSProductionOrder succ)

public IloMSProdToStorageArc newProdToStorageArc(IloMSMaterial material,
IloNum quantity, IloMSProductionOrder pred)

public IloMSProductionOrder newProductionOrder(IloMSRecipe recipe)

public IloMSStorageToDemandArc newStorageToDemandArc(IloMSMaterial material,
IloNum quantity, IloMSDemand succ)

public IloMSStorageToProdArc newStorageToProdArc(IloMSMaterial material,
IloNum quantity, IloMSProductionOrder succ)

public void setIdentifier(IloMSIdentifier identifier)

public void setInitialSchedulingSolution(IloMSSchedulingSolution
solution)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloMSAbstractActivity getAbstractActivityByIdentifier(IloMSIdentifier
identifier) const

This method returns the abstract activity with the given identifier in the invoking batching solution.

public IloMSActivity getActivity(IloInt index) const

This method returns the activity at the given index in the invoking batching solution.

public IloMSActivityChain getActivityChain(IloInt i) const

This method returns the nth activity chain owned by this solution.

public IloMSChecker getChecker()

This method returns the checker of the invoking scheduling solution.

public IloMSSchedulingSolution getCurrentSchedulingSolution() const

This method returns the current scheduling solution; note that values returned before solving are no longer valid
after solving with success.

37

public IloMSAbstractMaterialFlowArc
getIncomingMaterialFlowArc(IloMSAbstractMaterialFlowNode node, IloInt index) const

This method returns the incoming material flow arc of the given material flow node with the given index. An
exception is thrown if the given index is out of bounds.

public IloMSSchedulingSolution getInitialSchedulingSolution() const

This method returns the initial scheduling solution.

public IloMSAbstractMaterialFlowArc getMaterialFlowArc(IloInt index) const

This method returns the material flow arc with the given index. An exception is thrown if the given index is out
of bounds.

public IloInt getNumberOfActivities() const

This method returns the number of activities in the invoking batching solution.

public IloInt getNumberOfActivityChains() const

This method returns the number of activity chains owned by this solution.

public IloInt getNumberOfIncomingMaterialFlowArcs(IloMSAbstractMaterialFlowNode
node) const

This method returns the number of incoming material flow arcs of the given material flow node in the invoking
batching solution; that is, the number of material flow arcs for which the given material flow node is the
"successor" material flow node.

public IloInt getNumberOfMaterialFlowArcs() const

This function returns the number of existing material flow arcs.

public IloInt getNumberOfOutgoingMaterialFlowArcs(IloMSAbstractMaterialFlowNode
node) const

This method returns the number of outgoing material flow arcs of the given material flow node in the invoking
batching solution; that is, the number of material flow arcs for which the given material flow node is the
"predecessor" material flow node.

public IloInt getNumberOfProductionOrders(IloMSRecipe recipe) const

This method returns the number of production orders of recipe in the invoking batching solution.

38

public IloInt getNumberOfProductionOrders() const

This method returns the number of production orders in the invoking batching solution. If the solution was created
on a model that already contained some production orders, these will be counted as well.

public IloMSAbstractMaterialFlowArc
getOutgoingMaterialFlowArc(IloMSAbstractMaterialFlowNode node, IloInt index) const

This method returns the outgoing material flow arc of the given material flow node with the given index. An
exception is thrown if the given index is out of bounds.

public IloMSProductionOrder getProductionOrder(IloMSRecipe recipe, IloInt index)
const

This method returns the production orders of the given recipe with the given index in the invoking batching
solution.

public IloMSProductionOrder getProductionOrder(IloInt index) const

This method returns the production orders with the given index in the invoking batching solution.

public IloBool hasInitialSchedulingSolution() const

This method returns true if there is an initial scheduling solution.

public IloMSProcurementToDemandArc newProcurementToDemandArc(IloMSMaterial
material, IloNum quantity, IloMSProcurement pred, IloMSDemand succ)

This method creates and returns a new material flow arc between the procurement and the demand.

The argument quantity is indicative in this instance and is not taken into account in the optimization.

public IloMSProcurementToProdArc newProcurementToProdArc(IloMSMaterial material,
IloNum quantity, IloMSProcurement pred, IloMSProductionOrder succ)

This method creates and returns a new material flow arc between the procurement and the production order.

public IloMSProcurementToStorageArc newProcurementToStorageArc(IloMSMaterial
material, IloNum quantity, IloMSProcurement pred)

This method creates and returns a new material flow arc between the procurement and the stock.

public IloMSProdToDemandArc newProdToDemandArc(IloMSMaterial material, IloNum
quantity, IloMSProductionOrder pred, IloMSDemand succ)

39

This method creates and returns a new material flow arc between the predecessor production order pred and
the successor demand succ.

The quantity is in this version indicative and not taken into account in the optimization.

public IloMSProdToProdArc newProdToProdArc(IloMSMaterial material, IloNum quantity,
IloMSProductionOrder pred, IloMSProductionOrder succ)

This method creates and returns a new material flow arc between the predecessor production order pred and
the successor production order succ. This introduces an implicit precedence constraint between a producer
activity of pred producing the material, and a consumer activity of succ consuming the material.

public IloMSProdToStorageArc newProdToStorageArc(IloMSMaterial material, IloNum
quantity, IloMSProductionOrder pred)

This method creates and returns a new material flow arc between the predecessor production order pred and
the stock.

public IloMSProductionOrder newProductionOrder(IloMSRecipe recipe)

This function creates and returns a new production order on the invoking batching solution. The production order
implements the recipe and the default batch size is 1.

public IloMSStorageToDemandArc newStorageToDemandArc(IloMSMaterial material, IloNum
quantity, IloMSDemand succ)

This method creates and returns a new material flow arc between the stock and the demand succ.

public IloMSStorageToProdArc newStorageToProdArc(IloMSMaterial material, IloNum
quantity, IloMSProductionOrder succ)

This method creates and returns a new material flow arc between the stock and the production order succ.

public void setIdentifier(IloMSIdentifier identifier)

This modifier associates an identifier with the invoking batching solution. An exception is thrown if the given
identifier is already used.

public void setInitialSchedulingSolution(IloMSSchedulingSolution solution)

This method specifies an initial scheduling solution.

40

Class IloMSBucket
Definition file: ilplant/bucket.h
Library: plant

The IloMSBucket class is used to represent time buckets in planning.
Typical time buckets are months, weeks, or days, and are used by the planning engine to globally check
constraints (as opposed to the scheduling engine which checks constraints at each time unit). Each bucket has a
start time and an end time. The start time is included in the bucket and the end time is excluded.

Two consecutive buckets are usually such that the end time of the first bucket equals the start time of the second
bucket. Time buckets are owned by a bucket sequence.

See Also: IloMSBucketSequence

Method Summary

public IloNum getBucketRatio(IloInt start, IloInt end) const

public IloMSBucketSequence getBucketSequence()

public IloInt getDuration() const

public IloInt getEndTime() const

public IloInt getStartTime() const

public void setEndTime(IloInt endTime)

public void setIdentifier(IloMSIdentifier identifier)

public void setStartTime(IloInt startTime)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloNum getBucketRatio(IloInt start, IloInt end) const

This method returns the intersection duration between the bucket and the interval [start;end) divided by
(end - start).

public IloMSBucketSequence getBucketSequence()

This method returns the bucket sequence that owns this bucket.

public IloInt getDuration() const

This method returns the duration of the bucket.

41

public IloInt getEndTime() const

This method returns the end time of the bucket.

public IloInt getStartTime() const

This method returns the start time of the bucket.

public void setEndTime(IloInt endTime)

This method sets the end time of the invoking bucket.

public void setIdentifier(IloMSIdentifier identifier)

This modifier associates an identifier with the invoking bucket.

public void setStartTime(IloInt startTime)

This method sets the start time of the invoking bucket.

42

Class IloMSBucketSequence
Definition file: ilplant/bucketsequence.h
Library: plant

The IloMSBucketSequence class is used to represent a sequence of time buckets.
Time buckets are stored in a bucket sequence in chronological order. A model can have several bucket
sequences. For example, the planning module can use daily buckets, while the GUI displays weekly buckets.

Note that the bucket sequence used for optimization must be more detailed than GUI display bucket sequences.
Also, the time boundaries set by the optimized bucket sequence must be respected everywhere; in other words,
the buckets in any other sequence must exactly overlap the optimized bucket sequence. For example, one week
of the display bucket sequence exactly overlaps seven days of the optimized bucket sequence.

See Also: IloMSModel, IloMSBucket

Method Summary

public void add(IloMSBucket bucket)

public IloMSBucket findBucket(IloInt time) const

public IloInt findBucketIndex(IloInt time) const

public IloMSBucket getBucket(IloInt index) const

public IloInt getNumberOfBuckets() const

public void setIdentifier(IloMSIdentifier identifier)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public void add(IloMSBucket bucket)

This method adds the bucket to the invoking sequence in chronological order.

public IloMSBucket findBucket(IloInt time) const

This method finds the bucket that matches the time passed as argument.

public IloInt findBucketIndex(IloInt time) const

This method finds the bucket index that matches the time passed as argument.

public IloMSBucket getBucket(IloInt index) const

43

This method returns the bucket for the index.

public IloInt getNumberOfBuckets() const

This method returns the number of buckets.

public void setIdentifier(IloMSIdentifier identifier)

This modifier associates an identifier with the invoking bucket.

44

Class IloMSBucketTemplate
Definition file: ilplant/buckettemplate.h
Library: plant

The IloMSBucketTemplate class defines a pattern or mold for bucket generation.

See Also: IloMSModel, IloMSBucket, IloMSBucketSequence, IloMSBucketTemplateSequence

Method Summary

public IloInt getBucketRank() const

public IloMSBucketSequence getBucketSequence() const

public IloMSBucketTemplateSequence getBucketTemplateSequence() const

public IloMSBucketType getBucketType() const

public IloInt getNumberOfPeriods() const

public IloMSBucketPeriodUnit getPeriodUnit() const

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloInt getBucketRank() const

This method returns the rank of this bucket template.

public IloMSBucketSequence getBucketSequence() const

This method returns the bucket sequence.

public IloMSBucketTemplateSequence getBucketTemplateSequence() const

This method returns the bucket template sequence.

public IloMSBucketType getBucketType() const

This method returns the type of this bucket template.

public IloInt getNumberOfPeriods() const

45

This method returns the number of periods of this bucket template.

public IloMSBucketPeriodUnit getPeriodUnit() const

This method returns the period unit of this bucket template.

46

Class IloMSBucketTemplateSequence
Definition file: ilplant/buckettemplatesequence.h
Library: plant

The IloMSBucketTemplateSequence class is used to connect a set of bucket templates to a given bucket
sequence.

See Also: IloMSModel, IloMSBucket, IloMSBucketTemplate, IloMSBucketSequence

Method Summary

public IloMSBucketSequence getBucketSequence() const

public IloMSBucketTemplate getBucketTemplate(IloInt index) const

public IloInt getNumberOfBucketTemplates() const

public void setBucketSequence(IloMSBucketSequence bucketSequence)

public void setIdentifier(IloMSIdentifier identifier)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloMSBucketSequence getBucketSequence() const

This method returns the current bucket sequence.

public IloMSBucketTemplate getBucketTemplate(IloInt index) const

This method returns the bucket template at the index position.

public IloInt getNumberOfBucketTemplates() const

This method returns the number of bucket templates.

public void setBucketSequence(IloMSBucketSequence bucketSequence)

This method associates a bucket sequence to the current object.

public void setIdentifier(IloMSIdentifier identifier)

47

This modifier sets the identifier of the current object.

48

Class IloMSCalendar
Definition file: ilplant/calendar.h
Library: plant

The IloMSCalendar class is used to represent calendars associated with the different modes of an activity.
A calendar consists of a set of time intervals representing breaks, shifts and/or productivity intervals. Calendars
can be associated with different activity modes.

Breaks are time intervals when activities cannot be executed because, for example, a resource is not available. A
maximal break duration is associated with each activity mode; this means that an activity cannot be interrupted if
the break is longer than the maximal break duration. For example, if the maximal break duration is eight hours,
the activity cannot be interrupted by a break longer than eight hours. If the break maximal duration is zero, then
the activity is not breakable.

A productivity interval specifies the speed at which the activity executes over time. It consists of a list of time
intervals to which a strictly positive floating point number called "productivity" is attached. (By default, the
productivity is equal to 1.0.) The productivity is used to relate the processing time and the duration of the activity.
When the productivity is 0.5, two duration units are needed to execute one unit of processing time. When the
productivity is 2.0, one duration unit is needed to execute two units of processing time. When the productivity is
greater than 1.0, the processing time of the mode will usually not be fixed; that is, the difference between the
maximal processing time and the minimal processing time will usually exceed "productivity - 1.0" to allow an
appropriate rounding of both the processing time and the duration of the activity. For example, if in a solution the
productivity is 2.0 from the start time to the end time of the activity, and if the duration is 10, then the processing
time in this solution is 20. If the minimal and maximal processing times are both equal to 19, the engine regards
such a solution as invalid.

The shift intervals specify that some points in time are shift changes. Some activities cannot overlap a shift
change, and this is controlled by the shift breakable flag. If the shift breakable flag is set to true, then the activity
can be executed during more than one shift (that is, it can overlap a shift change).

If a calendar has no break interval, then it is assumed there are no breaks. If a calendar has no productivity
intervals, it is assumed that the productivity is 1.0 at all times. If a calendar has no shift intervals, it is assumed
that there are no shifts (or equivalently that all activities executed in the calendar are breakable by shifts).

All the methods of the IloMSCalendar class throw an exception if an empty handle (that is, an uninitialized
object) is used.

See Also: IloMSResource, IloMSMode, IloMSCalendarInterval

Method Summary

public IloNum getEnergy(IloInt capacity, IloInt start, IloInt end)

public IloMSCalendarInterval getInterval(IloInt index) const

public IloMSCalendarInterval getNextBreak(IloInt time) const

public IloMSCalendarInterval getNextEndOfShift(IloInt time) const

public IloInt getNumberOfIntervals() const

public IloBool isAdditive()

public void removeInterval(IloMSCalendarInterval interval)

public void setAdditive(IloBool additive)

public void setIdentifier(IloMSIdentifier identifier)

49

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloNum getEnergy(IloInt capacity, IloInt start, IloInt end)

This method returns the energy available on the invoking calendar between start and end. The energy is
computed on the basis of the breaks, capacity and productivity of the invoking calendar. The value capacity is
used as default for the time intervals on which the capacity is not defined.

public IloMSCalendarInterval getInterval(IloInt index) const

This method returns the calendar interval with the given index.

public IloMSCalendarInterval getNextBreak(IloInt time) const

This method returns the next calendar interval which is a break, and is after the specified time. It returns a null
object when no candidate calendar interval is found.

public IloMSCalendarInterval getNextEndOfShift(IloInt time) const

This method returns the next calendar interval with an end which is an end of shift, and is after the specified
time. It returns a null object when no candidate calendar interval is found.

public IloInt getNumberOfIntervals() const

This method returns the number of calendar intervals of the invoking calendar.

public IloBool isAdditive()

Returns true if and only if the invoking calendar is additive. If the calendar is additive, then each calendar interval
provides capacity over a given time interval; if several intervals overlap, then the corresponding capacities shall
be added to determine the actual capacity of the resource at a given time. If the calendar is not additive, then
each calendar interval limits the capacity available over a given time interval; if several intervals overlap, the most
constraining limit applies.

public void removeInterval(IloMSCalendarInterval interval)

This method removes the given calendar interval from the invoking calendar.

public void setAdditive(IloBool additive)

50

States whether the invoking calendar is additive or not.

public void setIdentifier(IloMSIdentifier identifier)

This modifier associates an identifier with the invoking calendar.

51

Class IloMSCalendarInterval
Definition file: ilplant/calendar.h
Library: plant

IloMSCalendarInterval is used to represent a calendar as a set of calendar intervals.
The IloMSCalendarInterval class is used to represent a calendar as a set of calendar intervals, each
interval having its own capacity, productivity, break, and end of shift properties. Note that none of these
properties is compulsory as each has a default value. The default capacity is the capacity of the resource to
which the calendar is attached; the default productivity is 1.0; and a calendar interval is neither a break nor an
end of shift by default.

Calendar intervals can be periodic or aperiodic (without recurring regular intervals). A periodic interval of
periodicity p > 0 (zero) is implicitly repeated every p units of time from a given "period start time" to a given
"period end time". An aperiodic interval (with periodicity 0 or zero) occurs only once, from its start time to its end
time (although on the GUI Calendars view, you can copy the interval using the "Repeat every" GUI function).

All the methods of the IloMSCalendarInterval class throw an exception if an empty handle (that is, an
uninitialized object) is used.

See Also: IloMSCalendar

Method Summary

public IloInt getCapacity() const

public IloInt getEndTime() const

public IloInt getPeriodEndTime() const

public IloInt getPeriodicity() const

public IloInt getPeriodStartTime() const

public IloNum getProductivity() const

public IloInt getStartTime() const

public IloBool hasCapacity() const

public IloBool isBreak() const

public IloBool isEndOfShift() const

public void setBreak(IloBool isBreak)

public void setCapacity(IloInt capacity)

public void setEndOfShift(IloBool isEndOfShift)

public void setEndTime(IloInt time)

public void setPeriodEndTime(IloInt periodEndTime)

public void setPeriodicity(IloInt periodicity)

public void setPeriodStartTime(IloInt periodStartTime)

public void setProductivity(IloNum productivity)

public void setStartTime(IloInt time)

public void unsetCapacity()

Inherited Methods from IloMSObject

52

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloInt getCapacity() const

This method returns the capacity of the invoking calendar interval. An exception is thrown if the invoking calendar
interval does not have a capacity limitation.

public IloInt getEndTime() const

This method returns the end time of the invoking calendar interval.

public IloInt getPeriodEndTime() const

This method returns the period end time of the invoking calendar interval.

public IloInt getPeriodicity() const

This method returns the periodicity of the invoking calendar interval (0 or zero if the interval is not periodic).

public IloInt getPeriodStartTime() const

This method returns the period start time of the invoking calendar interval.

public IloNum getProductivity() const

This method returns the productivity of the invoking calendar interval. An exception is thrown if the invoking
calendar interval includes no productivity information.

public IloInt getStartTime() const

This method returns the start time of the invoking calendar interval.

public IloBool hasCapacity() const

This method returns true if the invoking interval includes a capacity limitation and false otherwise.

public IloBool isBreak() const

This method returns true if the invoking interval is marked as a break and false otherwise.

53

public IloBool isEndOfShift() const

This method returns true if the invoking interval is marked as an end of shift and false otherwise.

public void setBreak(IloBool isBreak)

This modifier states whether the invoking calendar interval is a break.

public void setCapacity(IloInt capacity)

This modifier sets the capacity of the invoking calendar interval. An exception is thrown if the given capacity is
strictly negative.

public void setEndOfShift(IloBool isEndOfShift)

This modifier states whether the invoking calendar interval is an end of shift.

public void setEndTime(IloInt time)

This modifier sets the end time of the invoking calendar interval.

public void setPeriodEndTime(IloInt periodEndTime)

This modifier sets the period end time of the invoking calendar interval. An exception is thrown if the given
periodEndTime is not greater than or equal to the end time of the invoking interval.

public void setPeriodicity(IloInt periodicity)

This modifier sets the periodicity of the invoking calendar interval. An exception is thrown if the given
periodicity is strictly negative.

public void setPeriodStartTime(IloInt periodStartTime)

This modifier sets the period start time of the invoking calendar interval. An exception is thrown if the given
periodStartTime is not smaller than or equal to the start time of the invoking interval.

public void setProductivity(IloNum productivity)

This modifier sets the productivity of the invoking calendar interval. An exception is thrown if the given
productivity is strictly negative.

public void setStartTime(IloInt time)

54

This modifier sets the start time of the invoking calendar interval.

public void unsetCapacity()

This modifier unsets the capacity of the invoking calendar interval. The capacity of a resource over this interval is
then equal to the nominal capacity of this resource.

55

Class IloMSChecker
Definition file: ilplant/checker.h
Library: plant

The IloMSChecker class is used to check the validity of a model or solution.
All methods of the IloMSChecker class throw an exception if an empty handle (that is, an uninitialized object) is
used.

Method Summary

public IloMSCheckerMessageLevel check()

public void clear()

public IloMSCheckerMessageLevel getLevel(const char * type) const

public IloMSCheckerMessageI * getMessage(IloMSCheckerMessageLevel level, IloInt
index) const

public IloMSCheckerMessageI * getMessage(IloInt index) const

public IloInt getNumberOfMessages(IloMSCheckerMessageLevel
level) const

public IloInt getNumberOfMessages()

public IloMSCheckerMessageI * newMessage(const char * messageType)

public void setLevel(const char * type,
IloMSCheckerMessageLevel level)

Methods

public IloMSCheckerMessageLevel check()

This method returns IloMSCheckerOk (IloMSCheckerMessageLevel) if no error is detected.

See Also: IloMSCheckerMessageLevel

public void clear()

This method clears the violation messages registered at the last check() call.

public IloMSCheckerMessageLevel getLevel(const char * type) const

This method returns the level associated with the given message type.

See Also: IloMSCheckerMessageLevel

public IloMSCheckerMessageI * getMessage(IloMSCheckerMessageLevel level, IloInt
index) const

This method returns the message associated with level and index.

56

See Also: IloMSCheckerMessageLevel

public IloMSCheckerMessageI * getMessage(IloInt index) const

This method returns the message at index.

public IloInt getNumberOfMessages(IloMSCheckerMessageLevel level) const

This method returns the number of messages at level.

See Also: IloMSCheckerMessageLevel

public IloInt getNumberOfMessages()

This method returns the number of messages.

public IloMSCheckerMessageI * newMessage(const char * messageType)

This method creates a new message. The message type must be known to the checker (see
IloMSChecker.setLevel(type,level)).

public void setLevel(const char * type, IloMSCheckerMessageLevel level)

This message sets the level associated with the given message type.

See Also: IloMSCheckerMessageLevel

57

Class IloMSCheckerMessage
Definition file: ilplant/checker.h
Library: plant

The IloMSCheckerMessage class is used to record the errors found in a model or solution.
All methods of the IloMSCheckerMessage class throw an exception if an empty handle (that is, an uninitialized
object) is used.

Method Summary

public IloInt getEndTime() const

public const char * getErrorString() const

public IloMSObject getInvolvedObject(IloInt index) const

public const char * getInvolvedString(IloInt index) const

public IloMSCheckerMessageLevel getLevel() const

public IloInt getNumberOfInvolvedObjects() const

public IloInt getNumberOfInvolvedStrings() const

public IloInt getStartTime() const

public const char * getType() const

public void setEndTime(IloInt endTime)

public void setStartTime(IloInt startTime)

Methods

public IloInt getEndTime() const

This method returns the time at which the occurrence of the reported issue ends. It may be equal to
IloMSIntPlusInfinity.

public const char * getErrorString() const

This method returns the default error string for the message.

public IloMSObject getInvolvedObject(IloInt index) const

This method returns the PPO object involved with the given index. An exception is thrown if the given index is
out of bounds.

public const char * getInvolvedString(IloInt index) const

This method returns the string involved with the given index. An exception is thrown if the given index is out of
bounds.

58

public IloMSCheckerMessageLevel getLevel() const

This method returns the level of the message.

See Also: IloMSCheckerMessageLevel

public IloInt getNumberOfInvolvedObjects() const

This method returns the number of objects involved in composing the message.

public IloInt getNumberOfInvolvedStrings() const

This method returns the number of strings involved in composing the message. It can be used to change the
message display.

public IloInt getStartTime() const

This method returns the time at which the occurrence of the reported issue starts. It may be equal to
IloMSIntMinusInfinity.

public const char * getType() const

This method returns the type of the message.

public void setEndTime(IloInt endTime)

This method sets the time at which the occurrence of the reported issue ends. It can be used to compose a
custom message.

public void setStartTime(IloInt startTime)

This method sets the time at which the occurrence of the reported issue starts. It can be used to compose a
custom message.

59

Class IloMSCheckForStop
Definition file: ilplant/control.h
Library: plant

The IloMSCheckForStop class is used as the base class for engine stopping callback.
The classes IloMSCheckForStopI and IloMSCheckForStop enable you to write code that will regularly be
executed by the scheduling engine or the planning engine of Plant PowerOps. The defined
IloMSCheckForStop object must be set to the scheduling engine IloMSSchedulingEngine or planning
engine IloMSPlanningEngine in order for it to be considered.

The virtual method stop of the implementation class must be redefined. The scheduling and planning engines
guarantee that this function will be called regularly. The engine will stop as soon as the return value of the stop
function is true.

See Also: IloMSDefaultCheckForStop, IloMSPlanningEngine, IloMSSchedulingEngine

Method Summary

public IloBool stop() const

Methods

public IloBool stop() const

This method calls the virtual method of the implementation class IloMSCheckForStopI.

60

Class IloMSCheckForStopI
Definition file: ilplant/control.h
Library: plant

The abstract class IloMSCheckForStopI is used to enable you to specify a stopping condition for the
scheduling engine.
The IloMSCheckForStopI and IloMSCheckForStop classes enable you to write code that will regularly be
executed by the scheduling engine of Plant PowerOps. The defined IloMSCheckForStop object must be set to
the scheduling engine IloMSSchedulingEngine in order for it to be considered.

The virtual method stop must be redefined. The scheduling engine guarantees that this function will be called
regularly. The engine will stop as soon as the return value of the stop function is true.

See Also: IloMSSchedulingEngine, IloMSCheckForStop, ILOMSCHECKFORSTOP0,
IloMSDefaultCheckForStop

Constructor Summary

public IloMSCheckForStopI()

Method Summary

public virtual void reset()

public virtual IloBool stop() const

Constructors

public IloMSCheckForStopI()

This constructor creates a new instance of the class.

Methods

public virtual void reset()

This virtual method is called to reset the stop value to zero.

public virtual IloBool stop() const

This virtual method is called regularly by the scheduling engine. The scheduling engine will stop as soon as this
function returns the value true.

61

Class IloMSCsvReader
Definition file: ilplant/csvreader.h
Library: plant

The IloMSCsvReader class is used to read Plant PowerOps problems and solutions from CSV files.

Constructor Summary

public IloMSCsvReader(IloMSModel plant)

Method Summary

public IloMSBatchingSolution readBatchingSolution(const char * filename)

public IloBool readModel(const char * filename)

public IloMSPlanningSolution readPlanningSolution(const char * filename)

public IloMSSchedulingSolution readSchedulingSolution(const char * filename)

public void readSettings(const char * filename)

Constructors

public IloMSCsvReader(IloMSModel plant)

This constructor creates a CSV reader for the given IloMSModel object.

Methods

public IloMSBatchingSolution readBatchingSolution(const char * filename)

This method reads a batching solution from a file in CSV format. The parameter filename is the name of the
input file.

public IloBool readModel(const char * filename)

This method reads the problem description from the given CSV file. It returns true if no error is found in the file;
false otherwise. The parameter filename is the name of the input file. An IloTableNotFoundException is
thrown if the ACTIVITY or the MODE table is empty.

public IloMSPlanningSolution readPlanningSolution(const char * filename)

This method reads a planning solution from a file in CSV format. The parameter filename is the name of the
input file.

public IloMSSchedulingSolution readSchedulingSolution(const char * filename)

62

This method reads a scheduling solution from a file in CSV format. The parameter filename is the name of the
input file.

public void readSettings(const char * filename)

This method reads the settings from a file in CSV format. The old settings are overridden with the new values.
Settings that are not specified in the input file but set on the IloMSModel will be kept. The parameter filename
is the name of the input file.

63

Class IloMSCsvWriter
Definition file: ilplant/csvreader.h
Library: plant

The IloMSCsvWriter class is used to write Plant PowerOps problems and solutions to CSV files.

Constructor Summary

public IloMSCsvWriter(IloMSModel plant)

Method Summary

public void writeModel(const char * filename, IloBool includeSettings=IloFalse)

public void writePlanningSolution(const char * filename, IloMSPlanningSolution
solution)

public void writeSettings(const char * filename)

Constructors

public IloMSCsvWriter(IloMSModel plant)

This constructor creates a CSV writer for the given IloMSModel object.

Methods

public void writeModel(const char * filename, IloBool includeSettings=IloFalse)

This method writes the Plant PowerOps problem description into the given CSV file.

The parameter filename is the name of the output file. The parameter includeSettings can be used to
specify whether the settings will be included in the output file or not.

public void writePlanningSolution(const char * filename, IloMSPlanningSolution
solution)

This method writes a planning solution from a file in CSV format. The parameter filename is the name of the
output file.

public void writeSettings(const char * filename)

This method writes the settings to a file in CSV format. The parameter filename is the name of the output file.

64

Class IloMSDate
Definition file: ilplant/date.h
Library: plant

The class IloMSDate is used to contain date information.
This class contains year, month, and day information, as well as the optional hour, minute and seconds. It is
always interpreted with respect to Universal Time UTC (previously called GMT).

Constructor and Destructor Summary

public IloMSDate(IloInt year, IloInt month, IloInt dayInMonth, IloInt hour=0,
IloInt minute=0, IloInt seconds=0)

public IloMSDate(const char * dateString)

Method Summary

public IloInt getDayOfMonth() const

public IloMSDay getDayOfWeek() const

public IloInt getDayOfYear() const

public IloInt getHours() const

public IloInt getMinutes() const

public IloInt getMonth() const

public IloInt getSeconds() const

public IloInt getYear() const

Constructors and Destructors

public IloMSDate(IloInt year, IloInt month, IloInt dayInMonth, IloInt hour=0,
IloInt minute=0, IloInt seconds=0)

This constructor creates a date by passing the year, month, and other time units as integers.

public IloMSDate(const char * dateString)

This constructor creates a date by passing a date string which complies to the ISO 8601 date format of
"YYYY-MM-DD HH::MM::SS."

Methods

public IloInt getDayOfMonth() const

This method returns the day in the month.

public IloMSDay getDayOfWeek() const

65

This method returns the day in the week as an enumerated value: IloMSSunday, IloMSMonday, and so forth.

public IloInt getDayOfYear() const

This method returns the day in the year, for example, 32 for Feb, 1st.

public IloInt getHours() const

This method returns the hours.

public IloInt getMinutes() const

This method returns the minutes.

public IloInt getMonth() const

This method returns the month in the year.

public IloInt getSeconds() const

This method returns seconds.

public IloInt getYear() const

This method returns the year.

66

Class IloMSDefaultCheckForStop
Definition file: ilplant/control.h
Library: plant

This IloMSDefaultCheckForStop class is used to enable you to stop the scheduling engine by changing the
internal state of an object of this class.
The IloMSDefaultCheckForStop class enables you to stop the engine by changing the internal state of an
object of this class via the method stopIt(). An object of the class IloMSDefaultCheckForStop must be
set to the scheduling or planning engine in order for it to be considered. You can create one by calling
newDefaultCheckForStop() on IloMSModel.

An instance of IloMSDefaultCheckForStop can be in stopping state or in non-stopping state. The function
stop returns false if the object is in non-stopping state. It returns true otherwise. The methods stopIt and
reset enable controlling the internal state of the object.

This class redefines the virtual method stop of the base (implementation) class IloMSCheckForStopI.

See Also: IloMSModel, IloMSSchedulingEngine, IloMSPlanningEngine, IloMSCheckForStop

Method Summary

public void reset()

public void stopIt()

Inherited Methods from IloMSCheckForStop

stop

Methods

public void reset()

This method resets the state of the object to non-stopping state.

public void stopIt()

This method sets the state of the object to stopping state.

67

Class IloMSDemand
Definition file: ilplant/demand.h
Library: plant

The class IloMSDemand is used to represent the request for a certain amount of material deliverable in a time
window, with an optional preferred due date.
You may use IloMSDemand to represent a forecast for demand or actual known customer demands.

For each demand, you can define a due date, an earliest delivery start time, and a latest delivery end time. The
due date is the ideal time to deliver the demand; earliness or tardiness penalties may be incurred if the delivery
occurs before or after the due date.

Note that a demand may be delivered in several subdeliveries, hence part may be tardy and part may be early.
Each subdelivery can be considered as an activity of duration at least 1. For each of these subdeliveries, the
inventory of the demanded material is decremented at the subdelivery end time; tardiness is incurred if the
subdelivery end time strictly exceeds the due date; earliness is incurred if the subdelivery end time strictly
precedes the due date. If the earliest delivery start time is defined, none of the subdeliveries can start before this
time. If the latest delivery end time is defined, none of the subdeliveries can end after this time. Note that the
earliest delivery start time must be strictly lower than the latest delivery end time, otherwise it is not possible to
deliver.

Revenues and nondelivery costs are also associated with demands. For each unit of material that is delivered,
the revenue is obtained. For each unit of material that is not delivered, the nondelivery cost is incurred. For
example, suppose D is a demand for 100 units of material M that provides a revenue per unit of 100 and a
nondelivery cost per unit of 50. Suppose that 70 units are delivered; then the total revenue for this demand is
7000, and the total nondelivery cost 1500.

It is possible to set the nondelivery cost to infinity, thereby making a delivery mandatory; however, do this only
when you are certain that the demand can be met. Otherwise, PPO may conclude that your problem has no
solution.

If neither the revenue nor the nondelivery cost of a demand is defined, or if both are set to 0, then there is no
incentive to satisfy the demand and it is very likely that PPO will not satisfy it (except of course if the demand is
already pegged with existing procurements or production orders). The model checker of PPO issues a message
if both revenue and nondelivery cost are undefined or if both are set to 0.

Method Summary

public IloInt getDeliveryEndMax() const

public IloInt getDeliveryStartMin() const

public IloMSDueDate getDueDate() const

public IloMSMaterial getMaterial() const

public IloInt getMaxNumberOfPeggingArcs() const

public IloNum getNonDeliveryVariableCost() const

public IloNum getQuantity() const

public IloNum getQuantityInDisplayUnit() const

public IloInt getRemainingShelfLife() const

public IloNum getRevenue() const

68

public IloMSStorageUnit getStorageUnit() const

public IloBool hasDueDate() const

public IloBool hasRemainingShelfLife() const

public IloBool hasStorageUnit() const

public IloBool isFirm() const

public IloBool isPromised() const

public void setDeliveryCompulsory()

public void setDeliveryEndMax(IloInt timeMax)

public void setDeliveryStartMin(IloInt timeMin)

public void setDueDate(IloMSDueDate dueDate)

public void setFirm(IloBool firm)

public void setIdentifier(IloMSIdentifier identifier)

public void setMaterial(IloMSMaterial material)

public void setMaxNumberOfPeggingArcs(IloInt maxNumber)

public void setNonDeliveryVariableCost(IloNum nonDeliveryCost)

public void setPromised(IloBool promised)

public void setQuantity(IloNum quantity)

public void setQuantityInDisplayUnit(IloNum quantityInDisplayUnit)

public void setRemainingShelfLife(IloInt value)

public void setRevenue(IloNum revenue)

public void setStorageUnit(IloMSStorageUnit storageUnit)

Inherited Methods from IloMSAbstractMaterialFlowNode

getCategory, getMaterialFlowNodeType, isFirm, setCategory, setFirm, toDemand,
toProductionOrder

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloInt getDeliveryEndMax() const

This method returns the latest time at which the delivery of the demand can end. A demand may be satisfied in
several subdeliveries, each of which shall be considered as an activity of duration >= 1. None of these
subdeliveries can end after the value returned by this method.

public IloInt getDeliveryStartMin() const

This method returns the earliest time at which the delivery of the demand can start. A demand may be satisfied in
several subdeliveries, each of which shall be considered as an activity of duration >= 1. None of these
subdeliveries can start before the value returned by this method.

69

public IloMSDueDate getDueDate() const

This method returns the associated due date of the demand object. An exception is thrown if no due date is
attached to this demand.

public IloMSMaterial getMaterial() const

This method returns the requested material.

public IloInt getMaxNumberOfPeggingArcs() const

This method returns the maximum number of incoming (consumption) pegging arcs.

public IloNum getNonDeliveryVariableCost() const

This method returns the cost of nondelivery for each unit of demand.

public IloNum getQuantity() const

This method returns the quantity of the requested material, expressed in the primary unit of the material.

public IloNum getQuantityInDisplayUnit() const

This method returns the quantity of the procured material, in the material display unit.

public IloInt getRemainingShelfLife() const

This method returns the minimum remaining shelf life of the material required by this demand.

public IloNum getRevenue() const

This method returns the revenue per unit of satisfied demand.

public IloMSStorageUnit getStorageUnit() const

This method returns the storage unit from which the material must be shipped.

public IloBool hasDueDate() const

This method returns true if the demand has an associated due date demand object.

70

public IloBool hasRemainingShelfLife() const

This method returns true if a minimum remaining shelf life is required by this demand.

public IloBool hasStorageUnit() const

This method returns true if the material requested must be shipped from a specific storage unit.

public IloBool isFirm() const

This method returns true if the node is firm.

public IloBool isPromised() const

This method returns the status of the invoking object with respect to the "Available-To-Promise" calculation. The
promised demand is used only in the ATP calculation for master production scheduling. Note that a promised
status is not enough to make the demand delivery mandatory for the optimizer: An infinite nondelivery cost must
be set in order to make the delivery of this demand a hard constraint.

public void setDeliveryCompulsory()

This method sets the cost of nondelivery for each unit of demand to infinity.

public void setDeliveryEndMax(IloInt timeMax)

This method sets the latest time at which the delivery of the demand can end. A demand may be satisfied in
several subdeliveries, each of which shall be considered as an activity of duration >= 1. None of these
subdeliveries can end after timeMax.

public void setDeliveryStartMin(IloInt timeMin)

This method sets the earliest time at which the delivery of the demand can start. A demand may be satisfied in
several subdeliveries, each of which shall be considered as an activity of duration >= 1. None of these
subdeliveries can start before timeMin.

public void setDueDate(IloMSDueDate dueDate)

This method associates a due date with the demand object.

public void setFirm(IloBool firm)

This method makes the node firm.

71

public void setIdentifier(IloMSIdentifier identifier)

This modifier associates an identifier with the invoking demand. An exception is thrown if the given
identifier is already used.

public void setMaterial(IloMSMaterial material)

This method sets the material requested by this demand.

public void setMaxNumberOfPeggingArcs(IloInt maxNumber)

This method sets the maximum number of incoming (consumption) pegging arcs.

public void setNonDeliveryVariableCost(IloNum nonDeliveryCost)

This method sets the cost of nondelivery for each unit of demand.

public void setPromised(IloBool promised)

This method sets the status of the invoking object with respect to the "Available-To-Promise" (ATP) calculation.
The promised demand is used only in the ATP calculation for master production scheduling. Note that a
promised status is not enough to make the demand delivery mandatory for the optimizer: An infinite nondelivery
cost must be set in order to make the delivery of this demand a hard constraint.

public void setQuantity(IloNum quantity)

This method sets the quantity of material requested by this demand, expressed in the primary unit of the material.

public void setQuantityInDisplayUnit(IloNum quantityInDisplayUnit)

This method sets the quantity of material requested by this demand. The provided quantity is expressed in the
display unit of the material.

public void setRemainingShelfLife(IloInt value)

This method sets the minimum remaining shelf life of the material required by this demand.

public void setRevenue(IloNum revenue)

This method sets the revenue per unit of satisfied demand.

public void setStorageUnit(IloMSStorageUnit storageUnit)

72

This method sets the storage unit from which the material must be shipped.

73

Class IloMSDueDate
Definition file: ilplant/duedate.h
Library: plant

The IloMSDueDate class is used to represent due date objects.
A due date object can be attached either to a demand or an activity. If attached to an activity, the due date can
be the activity start time, end time, or to a time point between the start and the end of the activity.

Four cost penalties are defined for a given due date. The earliness fixed cost is a fixed price to be paid if the
activity is early. The tardiness fixed cost is a fixed price to be paid if the activity is tardy. The earliness variable
cost is the price to be paid (in addition to the earliness fixed cost) per time unit that the activity is early. The
tardiness variable cost is the price to be paid (in addition to the tardiness fixed cost) per time unit that the activity
is tardy.

For example, suppose the due date for the end time of an activity is 1000, the earliness fixed cost is 10, the
earliness variable cost is 2.0, the tardiness fixed cost is 200, and the tardiness variable cost is 5.0. If the activity
ends at time 995, the earliness cost is 10 + 2.0 * (1000 - 995) = 20.0, and the tardiness cost is zero. If the activity
ends at time 1010, the tardiness cost is 200 + 5.0 * (1010 - 1000) = 250.0, and the earliness cost is zero. And, of
course, if the activity ends exactly at time 1000, both the earliness and the tardiness costs are zero.

Note that if the due date is attached to a demand, then both variable and fixed costs are multiplied by the quantity
of material that is delivered before or after the due date.

By default, the earliness and tardiness costs are equal to 0. The setEarlinessFixedCost,
setTardinessFixedCost, setEarlinessVariableCost, and setTardinessVariableCost methods
must be used to override this default. Otherwise, there is no penalty for delivering the demand (or performing the
activity) early if the earliness fixed and variable costs are null, and there is no penalty for delivering the demand
late if the tardiness fixed and variable costs are null.

All the methods of the IloMSDueDate class throw an exception if an empty handle (that is, an uninitialized
object) is used.

See Also: IloMSDemand, IloMSAbstractActivity

Method Summary

public IloInt getDueTime() const

public IloNum getEarlinessCost(IloInt startTime, IloInt endTime) const

public IloNum getEarlinessFixedCost() const

public IloNum getEarlinessVariableCost() const

public IloNum getStartEndCoefficient() const

public IloNum getTardinessCost(IloInt startTime, IloInt endTime) const

public IloNum getTardinessFixedCost() const

public IloNum getTardinessVariableCost() const

public void setEarlinessFixedCost(IloNum cost)

public void setEarlinessVariableCost(IloNum cost)

public void setStartEndCoefficient(IloNum coefficient)

public void setTardinessFixedCost(IloNum cost)

74

public void setTardinessVariableCost(IloNum cost)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloInt getDueTime() const

This method returns the time at which either the demand or the start or the end of the activity is due.

public IloNum getEarlinessCost(IloInt startTime, IloInt endTime) const

This method returns the value of the earliness cost incurred by an activity starting at the given startTime and
ending at the given endTime.

public IloNum getEarlinessFixedCost() const

This method returns the fixed cost used to compute the earliness cost if early.

public IloNum getEarlinessVariableCost() const

This method returns the variable cost used to compute the earliness cost if early.

public IloNum getStartEndCoefficient() const

This method returns a coefficient stating if the due date applies to the start (0.0) or to the end (1.0) of the
activity. Intermediate values can be used to specify intermediate points between the start time and the end time
of the activity. For example, 0.4 means that the due date applies to start + 0.4 (end - start) = 0.6 start + 0.4 end.
The default returned value is equal to 1.0. This method applies only to due dates associated with activities; it
does not apply to due dates associated with demands.

public IloNum getTardinessCost(IloInt startTime, IloInt endTime) const

This method returns the value of the tardiness cost incurred by an activity starting at the given startTime and
ending at the given endTime.

public IloNum getTardinessFixedCost() const

This method returns the fixed cost used to compute the tardiness cost if tardy.

public IloNum getTardinessVariableCost() const

75

This method returns the variable cost used to compute the tardiness cost if tardy.

public void setEarlinessFixedCost(IloNum cost)

This method sets the earliness fixed cost of the invoking due date object to the given cost.

If the due date is attached to a demand, this fixed cost will be multiplied by the quantity of material delivered
early.

An exception is thrown if the given cost is strictly negative.

public void setEarlinessVariableCost(IloNum cost)

This method sets the earliness variable cost of the invoking due date object to the given cost.

If the due date is attached to a demand, this variable cost will be multiplied by the quantity of material delivered
early and by the difference between the due time and the material delivery time. If the due date is attached to an
activity, this variable cost will be multiplied by the difference between the due time and (start + StartEndCofficient
* (end - start)).

An exception is thrown if the given cost is strictly negative.

public void setStartEndCoefficient(IloNum coefficient)

This method sets the coefficient stating if the due date applies to the start (0.0) or to the end (1.0) of the activity.
Default is 1.0. This method applies only to due dates associated with activities; it does not apply to due dates
associated with demands.

An exception is thrown if the given coefficient is not between 0.0 and 1.0.

public void setTardinessFixedCost(IloNum cost)

This method sets the tardiness fixed cost of the invoking due date object to the given cost.

If the due date is attached to a demand, this fixed cost will be multiplied by the quantity of material delivered late.

An exception is thrown if the given cost is strictly negative.

public void setTardinessVariableCost(IloNum cost)

This method sets the tardiness variable cost of the invoking due date object to the given cost.

If the due date is attached to a demand, this variable cost will be multiplied by the quantity of material delivered
late and by the difference between the material delivery time and the due time. If the due date is attached to an
activity, this variable cost will be multiplied by the difference between the due time and (start + StartEndCofficient
* (end - start)).

An exception is thrown if the given cost is strictly negative.

76

Class IloMSInventoryMaxCostFunction
Definition file: ilplant/costfunctions.h
Library: plant

The class IloMSInventoryMaxCostFunction is used to evaluate the cost of violating the maximal inventory
over time.
An instance of IloMSInventoryMaxCostFunction is used to represent a piecewise or stepwise linear cost
function to evaluate the cost of maintaining inventory over time. This feature is only used by the planning engine.

See Also: IloMSRecipe, IloMSMaterial

Method Summary

public IloNum getFixedCost(IloInt level) const

public IloNum getInventoryMax(IloInt level) const

public IloInt getNumberOfLevels()

public IloNum getVariableCost(IloInt level) const

public IloBool isGeneratedFromDaysOfSupply() const

public void setFixedCost(IloInt level, IloNum value)

public void setIdentifier(IloMSIdentifier identifier)

public void setInventoryMax(IloInt level, IloNum value)

77

public void setVariableCost(IloInt level, IloNum value)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloNum getFixedCost(IloInt level) const

This method returns the fixed cost incurred to enter this level of inventory; that is, the fixed cost incurred when
the maximal inventory of the previous level is exceeded.

public IloNum getInventoryMax(IloInt level) const

This method returns the amount of inventory up to which this level applies.

public IloInt getNumberOfLevels()

This modifier returns the number of levels associated with the invoking function.

public IloNum getVariableCost(IloInt level) const

This method returns the slope of the piecewise linear cost function for this level of inventory. That is, it returns the
variable cost for inventory included in this level (from the maximal inventory of the previous level to the maximal
inventory of this level).

public IloBool isGeneratedFromDaysOfSupply() const

This method returns true if this inventory function has been generated from the days of supply values. Days of
supply are transformed by PPO to a set of cost functions.

public void setFixedCost(IloInt level, IloNum value)

This method sets the fixed cost value incurred to enter this level of inventory; that is, the fixed cost when the
maximal inventory of the previous level is exceeded.

public void setIdentifier(IloMSIdentifier identifier)

This modifier associates an identifier with the invoking function.

public void setInventoryMax(IloInt level, IloNum value)

78

This method sets the amount of inventory value up to which this level applies.

public void setVariableCost(IloInt level, IloNum value)

This method sets the slope of the piecewise linear cost function for this level of inventory. That is, it sets the
variable cost for inventory included in this level (from the maximal inventory of the previous level to the maximal
inventory of this level).

79

Class IloMSInventoryMinCostFunction
Definition file: ilplant/costfunctions.h
Library: plant

The class IloMSInventoryMinCostFunction is used to evaluate the cost of violating the minimal inventory
(creating an inventory deficit) over time.
An instance of IloMSInventoryMinCostFunction is used to represent a piecewise or stepwise linear cost
function for penalizing inventory deficits. This feature is only used by the planning engine.

See Also: IloMSRecipe, IloMSMaterial

Method Summary

public IloNum getFixedCost(IloInt level) const

public IloNum getInventoryMin(IloInt level) const

public IloInt getNumberOfLevels()

public IloNum getVariableCost(IloInt level) const

public IloBool isGeneratedFromDaysOfSupply() const

public void setFixedCost(IloInt level, IloNum value)

public void setIdentifier(IloMSIdentifier identifier)

public void setInventoryMin(IloInt level, IloNum value)

public void setVariableCost(IloInt level, IloNum value)

80

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloNum getFixedCost(IloInt level) const

This method returns the fixed cost incurred if the inventory falls below the value of minimal inventory of the given
level.

public IloNum getInventoryMin(IloInt level) const

This method returns the minimal inventory for this level.

public IloInt getNumberOfLevels()

This modifier returns the number of levels associated with the invoking function.

public IloNum getVariableCost(IloInt level) const

This method returns the absolute value of the negative slope of the piecewise linear cost function for an inventory
deficit occurring with this level; that is, the variable cost from below the minimal inventory for this level down to
the minimal inventory of the next level (0 if undefined).

public IloBool isGeneratedFromDaysOfSupply() const

This method returns true if this inventory function has been generated from the days of supply values. Days of
supply are transformed by PPO to a set of cost functions.

public void setFixedCost(IloInt level, IloNum value)

This method sets the fixed cost incurred if the inventory falls below the minimal inventory for the given level.

public void setIdentifier(IloMSIdentifier identifier)

This modifier associates an identifier with the invoking function.

public void setInventoryMin(IloInt level, IloNum value)

This method sets the minimal amount of inventory for this level.

81

public void setVariableCost(IloInt level, IloNum value)

This method sets the absolute value of the negative slope of the piecewise linear cost function for a violation of
the minimal inventory of this level; that is, from the minimal inventory of this level down to the minimal inventory
of the next level (0 if undefined).

82

Class IloMSMaterial
Definition file: ilplant/material.h
Library: plant

The IloMSMaterial class represents Stock-Keeping Units; it is used to represent finished products, raw
materials, or intermediates.
A material may be consumed or produced by the activity prototypes of recipes.

A material may have unique characteristics of size, style, and inventory. For example, consider two models of
white shirts that differ in size or style but that are located in the same warehouse; each model of shirt would be a
different instance of IloMSMaterial. Similarly, the same model of shirt located in two different inventories
would also be represented by two different IloMSMaterial instances. In this latter case, the separate
IloMSMaterial instances can be associated with an IloMSMaterialFamily to group the results from the
different warehouses in reports and graphs.

Units of Measure

You can define various units of measurement for a material. The primary unit is used for modeling and
computation to measure the material quantity from recipe production and/or consumption, for determination of
storage quantities, and so forth. You can define secondary alternative units; each secondary unit has a
conversion factor that relates it to the one primary unit. Then you can select one of these secondary units as the
display unit for display purposes in the Graphical User Interface.

Material Inventory Costs

The inventory cost is defined using piecewise or stepwise functions as follows:

83

Also for the inventory deficit cost:

You can use the notion of "target minimum days of supply" to define the inventory min cost function. This creates
a cost function like the following:

You can use the notion of "target maximum days of supply" to define the inventory cost function. This creates a
cost function like the following:

84

See Also: IloMSRecipe, IloMSUnit, IloMSMaterialFamily

Method Summary

public void addSecondaryUnit(IloMSUnit
secondaryUnit, IloNum numerator, IloNum
denominator)

public IloNum convert(IloNum quantity, IloMSUnit
fromUnit, IloMSUnit toUnit) const

public IloMSMaterial deepCopy(const char * name,
IloMSIdentifier identifier) const

public IloInt getAverageLeadTime() const

public IloNum getComputedInitialQuantity() const

public IloNum getConsumedFixedQuantity(IloInt index)
const

public IloNum getConsumedVariableQuantity(IloInt
index) const

public IloMSAbstractActivity getConsumingActivityPrototype(IloInt
index) const

public IloMSRecipe getConsumingRecipe(IloInt index) const

public IloNum getDaysOfSupplyTarget() const

public IloNum getDaysOfSupplyTargetMax() const

public IloNum getDaysOfSupplyTargetMin() const

public IloNum getDemandVariability() const

public IloMSUnit getDisplayUnit() const

public IloNum getFixedCostOfInventoryMax(IloInt time,
IloInt levelNumber) const

public IloNum getFixedCostOfInventoryMin(IloInt time,
IloInt levelNumber) const

public IloNum getInventoryCapacity() const

public IloNum getInventoryCostFunctionTimeStep() const

public IloNum getInventoryMax(IloInt time, IloInt
levelNumber) const

public IloMSInventoryMaxCostFunction getInventoryMaxCostFunction(IloInt i)
const

public IloMSInventoryMaxCostFunction

85

getInventoryMaxCostFunctionAtTime(IloInt
time) const

public IloInt getInventoryMaxCostFunctionValidityEnd(IloInt
i) const

public IloInt getInventoryMaxCostFunctionValidityStart(IloInt
i) const

public IloNum getInventoryMin(IloInt time, IloInt
levelNumber) const

public IloMSInventoryMinCostFunction getInventoryMinCostFunction(IloInt i)
const

public IloMSInventoryMinCostFunction getInventoryMinCostFunctionAtTime(IloInt
time) const

public IloInt getInventoryMinCostFunctionValidityEnd(IloInt
i) const

public IloInt getInventoryMinCostFunctionValidityStart(IloInt
i) const

public IloInt getLeadTimeStdDeviation() const

public ILOMSDEPRECATED IloMSMaterialFamily getMaterialFamily() const

public IloInt getMaturity() const

public IloInt getNumberOfConsumingActivityPrototypes()
const

public IloInt getNumberOfConsumingRecipes() const

public IloInt getNumberOfInventoryMaxCostFunctions()
const

public IloInt getNumberOfInventoryMinCostFunctions()
const

public IloInt getNumberOfLevelsOfInventoryMax(IloInt
time) const

public IloInt getNumberOfLevelsOfInventoryMin(IloInt
time) const

public IloInt getNumberOfProcurements() const

public IloInt getNumberOfProducingActivityPrototypes()
const

public IloInt getNumberOfProducingRecipes() const

public IloInt getNumberOfSecondaryUnits() const

public IloInt getNumberOfStorageUnits() const

public IloMSPeggingStrategy getPeggingStrategy() const

public IloMSUnit getPrimaryUnit() const

public IloMSProcurement getProcurement(IloInt index) const

public IloNum getProducedFixedQuantity(IloInt index)
const

public IloNum getProducedVariableQuantity(IloInt
index) const

public IloMSAbstractActivity getProducingActivityPrototype(IloInt
index) const

public IloMSRecipe getProducingRecipe(IloInt index) const

public IloMSUnit getSecondaryUnit(IloInt index) const

86

public IloNum getSecondaryUnitDenominator(IloInt
index) const

public IloNum getSecondaryUnitNumerator(IloInt index)
const

public IloMSServiceLevelType getServiceLevelType() const

public IloInt getShelfLife() const

public IloMSStorageUnit getStorageUnit(IloInt index) const

public IloNum getTargetMaxVariableCost() const

public IloNum getTargetMinVariableCost() const

public IloNum getTargetServiceLevel() const

public IloNum getTargetVariableCost() const

public IloNum getVariableCostOfInventoryMax(IloInt
time, IloInt levelNumber) const

public IloNum getVariableCostOfInventoryMin(IloInt
time, IloInt levelNumber) const

public IloNum getWeight() const

public IloBool hasDaysOfSupplyTargetMax() const

public IloBool hasDaysOfSupplyTargetMin() const

public IloBool hasDisplayUnit() const

public IloBool hasInventoryCapacity() const

public IloBool hasInventoryMaxCostFunctionAtTime(IloInt
time) const

public IloBool hasInventoryMinCostFunctionAtTime(IloInt
time) const

public IloInt hasMaturity() const

public IloBool hasPrimaryUnit() const

public IloBool hasShelfLife() const

public void newMaterialQuality(IloMSQuality quality,
IloNum levelMin, IloNum levelMax)

public void removeInventoryMaxCostFunction(IloInt i)

public void removeInventoryMaxCostFunction(IloMSInventoryMaxCostFunction
function, IloInt start, IloInt end)

public void removeInventoryMinCostFunction(IloInt i)

public void removeInventoryMinCostFunction(IloMSInventoryMinCostFunction
function, IloInt start, IloInt end)

public void setAverageLeadTime(IloInt avgLeadTime)

public void setDaysOfSupplyTarget(IloNum days)

public void setDaysOfSupplyTargetMax(IloNum days)

public void setDaysOfSupplyTargetMin(IloNum days)

public void setDemandVariability(IloNum
demandVariability)

public void setDisplayUnit(IloMSUnit unit)

public void setIdentifier(IloMSIdentifier
identifier)

public void setInitialQuantity(IloNum quantity)

87

public void setInventoryCapacity(IloNum value)

public void setInventoryCostFunctionTimeStep(IloInt
timeStep)

public void setInventoryMaxCostFunction(IloMSInventoryMaxCostFunction
function, IloInt validityStart, IloInt
validityEnd)

public void setInventoryMinCostFunction(IloMSInventoryMinCostFunction
function, IloInt validityStart, IloInt
validityEnd)

public void setLeadTimeStdDeviation(IloInt
leadTimeStdDeviation)

public ILOMSDEPRECATED void setMaterialFamily(IloMSMaterialFamily
materialFamily)

public void setMaturity(IloInt maturity)

public void setPeggingStrategy(IloMSPeggingStrategy
strategy)

public void setPrimaryUnit(IloMSUnit unit)

public void setServiceLevelType(IloMSServiceLevelType
slType)

public void setShelfLife(IloInt shelfLife)

public void setTargetMaxVariableCost(IloNum cost)

public void setTargetMinVariableCost(IloNum cost)

public void setTargetServiceLevel(IloNum
serviceLevel)

public void setTargetVariableCost(IloNum cost)

public void setWeight(IloNum weight)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public void addSecondaryUnit(IloMSUnit secondaryUnit, IloNum numerator, IloNum
denominator)

This method adds a secondary unit of measure in which the quantities of this material can be expressed. Define
a conversion factor expressed by a numerator and denominator to convert from the primary unit to the
secondaryUnit.

Example: Let the Piece be the primary unit of a material. Imagine a Piece is composed of three Cups, and six
Pieces make a Box. Then the conversion factor from primary unit (Piece) to Cup is defined by the ratio 3/1 and
the conversion factor from primary unit (Piece) to Box is defined by the ratio 1/6.

public IloNum convert(IloNum quantity, IloMSUnit fromUnit, IloMSUnit toUnit) const

This method converts the quantity of this material expressed in fromUnit to the toUnit.

88

public IloMSMaterial deepCopy(const char * name, IloMSIdentifier identifier) const

This method clones the invoking material, associating the specified name and identifier to the copy. It also copies
the producing recipes. This method adds the clone to the families of the original and duplicates the conversions
for the unit of measures.

public IloInt getAverageLeadTime() const

This method returns the average lead time for the material. Lead time is defined as total time to produce material.
This value is used in the service-level-based computation of the safety stock. A value of zero will disable the
safety stock calculation.

public IloNum getComputedInitialQuantity() const

This method returns the quantity of the invoking material that is initially available.

public IloNum getConsumedFixedQuantity(IloInt index) const

This method returns the fixed quantity of this material consumed by a given activity prototype. An exception is
thrown if the given index is out of bounds.

public IloNum getConsumedVariableQuantity(IloInt index) const

This method returns the variable quantity of this material consumed by a given activity prototype. An exception is
thrown if the given index is out of bounds.

public IloMSAbstractActivity getConsumingActivityPrototype(IloInt index) const

This method returns a specific activity prototype consumer of this material. An exception is thrown if the given
index is out of bounds.

public IloMSRecipe getConsumingRecipe(IloInt index) const

This method returns a specific consumer recipe of this material. An exception is thrown if the given index is out
of bounds.

public IloNum getDaysOfSupplyTarget() const

This method returns the targeted ideal days of supply.

public IloNum getDaysOfSupplyTargetMax() const

This method returns the targeted maximal days of supply.

89

public IloNum getDaysOfSupplyTargetMin() const

This method returns the targeted minimal days of supply.

public IloNum getDemandVariability() const

This method returns the demand variability ratio. This ratio (between 0 and 1) is used by the planning module to
compute a safety stock value from the target service level. A value of zero means that demands are certain.

public IloMSUnit getDisplayUnit() const

This method returns the display unit of material measurement. The material quantity displays in this unit in the
Plant PowerOps Application Interface.

public IloNum getFixedCostOfInventoryMax(IloInt time, IloInt levelNumber) const

This method returns the fixed cost defined at this level of the inventory max cost function valid at the given time
for the invoking material. This feature is only used by the planning engine.

public IloNum getFixedCostOfInventoryMin(IloInt time, IloInt levelNumber) const

This method returns the fixed cost defined at level levelNumber of the inventory min cost function valid at the
given time for the invoking material. This feature is only used by the planning engine.

public IloNum getInventoryCapacity() const

This method returns the maximal theoretical inventory for the invoking material.

public IloNum getInventoryCostFunctionTimeStep() const

This method returns the time step used to compute inventory costs.

public IloNum getInventoryMax(IloInt time, IloInt levelNumber) const

This method returns the inventory max defined at this level of the inventory max cost function valid at the given
time for the invoking material. This feature is only used by the planning engine.

public IloMSInventoryMaxCostFunction getInventoryMaxCostFunction(IloInt i) const

This method returns the inventory max cost functions with the given index of the invoking material. One can use
several inventory levels and associate increasing costs with these levels. This feature is only used by the
planning engine.

90

public IloMSInventoryMaxCostFunction getInventoryMaxCostFunctionAtTime(IloInt time)
const

This method returns the inventory max cost functions valid at the given time for the invoking material. This
feature is only used by the planning engine.

public IloInt getInventoryMaxCostFunctionValidityEnd(IloInt i) const

This method returns the end time of the validity interval for the inventory max cost functions with the given index
in the invoking material. This feature is only used by the planning engine.

public IloInt getInventoryMaxCostFunctionValidityStart(IloInt i) const

This method returns the start time of the validity interval for the inventory max cost functions with the given index
in the invoking material. This feature is only used by the planning engine.

public IloNum getInventoryMin(IloInt time, IloInt levelNumber) const

This method returns the inventory min defined at this level of the inventory min cost function valid at the given
time for the invoking material. This feature is only used by the planning engine.

public IloMSInventoryMinCostFunction getInventoryMinCostFunction(IloInt i) const

This method returns the inventory min cost functions with the given index of the invoking material. One can use
several inventory levels and associate increasing costs with those levels. This feature is only used by the
planning engine.

public IloMSInventoryMinCostFunction getInventoryMinCostFunctionAtTime(IloInt time)
const

This method returns the inventory min cost functions valid at the given time for the invoking material. This
feature is only used by the planning engine.

public IloInt getInventoryMinCostFunctionValidityEnd(IloInt i) const

This method returns the end time of the validity interval for the inventory min cost functions with the given index
in the invoking material. This feature is only used by the planning engine.

public IloInt getInventoryMinCostFunctionValidityStart(IloInt i) const

This method returns the start time of the validity interval for the inventory min cost functions with the given index
in the invoking material. This feature is only used by the planning engine.

public IloInt getLeadTimeStdDeviation() const

91

This method returns the lead time standard deviation. The lead time is assumed to follow a Gaussian normal law
of average getAverageLeadTime() and standard deviation as returned by getLeadTimeStdDeviation().
This value is used in the computation of service-level safety stocks. A value of zero (the default) means that the
lead time is certain.

public ILOMSDEPRECATED IloMSMaterialFamily getMaterialFamily() const

This deprecated method retrieves the primary family of this material.

public IloInt getMaturity() const

This method returns the maturation time; that is, the number of time units after production before the material is
mature enough to be consumed.

public IloInt getNumberOfConsumingActivityPrototypes() const

This method returns the number of activity prototypes in all recipes that are consumers of the material.

public IloInt getNumberOfConsumingRecipes() const

This method returns the number of recipes that are consumers of the material.

public IloInt getNumberOfInventoryMaxCostFunctions() const

This method returns the number of inventory max cost functions on the resource bucket.

public IloInt getNumberOfInventoryMinCostFunctions() const

This method returns the number of inventory min cost functions on the resource bucket.

public IloInt getNumberOfLevelsOfInventoryMax(IloInt time) const

This method returns the number of levels of the inventory max cost function valid at the given time for the
invoking material. This feature is only used by the planning engine.

public IloInt getNumberOfLevelsOfInventoryMin(IloInt time) const

This method returns the number of levels of the inventory min cost function valid at the given time for the
invoking material. This feature is only used by the planning engine.

public IloInt getNumberOfProcurements() const

This method returns the number of procurements of the material that exist in the model.

92

public IloInt getNumberOfProducingActivityPrototypes() const

This method returns the number of activity prototypes in all recipes that are producers of the material.

public IloInt getNumberOfProducingRecipes() const

This method returns the number of recipes that are producers of the material.

public IloInt getNumberOfSecondaryUnits() const

This method returns the number of secondary units in which this material can be expressed.

public IloInt getNumberOfStorageUnits() const

This method returns the number of storage units in which this material is storable.

public IloMSPeggingStrategy getPeggingStrategy() const

This method returns the type of pegging strategy to use for material flow arcs.

See Also: IloMSPeggingStrategy

public IloMSUnit getPrimaryUnit() const

This method returns the primary unit used for measuring material quantity. The classes
IloMSMaterialProduction and IloMSStorageUnit use this same unit of measure.

public IloMSProcurement getProcurement(IloInt index) const

This method returns the procurement of the material with the corresponding index.

public IloNum getProducedFixedQuantity(IloInt index) const

This method returns the fixed quantity of this material produced by a given activity prototype. An exception is
thrown if the given index is out of bounds.

public IloNum getProducedVariableQuantity(IloInt index) const

This method returns the variable quantity of this material produced by a given activity prototype. An exception is
thrown if the given index is out of bounds.

public IloMSAbstractActivity getProducingActivityPrototype(IloInt index) const

93

This method returns a specific activity prototype producer of this material. An exception is thrown if the given
index is out of bounds.

public IloMSRecipe getProducingRecipe(IloInt index) const

This method returns a specific producer recipe. An exception is thrown if the given index is out of bounds.

public IloMSUnit getSecondaryUnit(IloInt index) const

This method returns the secondary unit with the corresponding index in which this material can be expressed.

public IloNum getSecondaryUnitDenominator(IloInt index) const

This method returns the denominator of the converting factor between the secondary unit with corresponding
index and the primary unit of this material.

public IloNum getSecondaryUnitNumerator(IloInt index) const

This method returns, for this material, the numerator of the converting factor between the secondary unit (with the
corresponding index) and the primary unit.

public IloMSServiceLevelType getServiceLevelType() const

This method returns the service level type associated with the material.

public IloInt getShelfLife() const

This method returns the shelf life; that is, the number of time units before the material expires.

public IloMSStorageUnit getStorageUnit(IloInt index) const

This method returns the storage unit with the corresponding index in which this material can be stored.

public IloNum getTargetMaxVariableCost() const

This method returns the variable cost incurred per day and per unit of material when inventory is above the
maximal target inventory.

public IloNum getTargetMinVariableCost() const

This method returns the variable cost incurred per day and per unit of material when inventory is below the
minimal target inventory.

94

public IloNum getTargetServiceLevel() const

This method returns the target service level. This value expresses a minimum value of service level. The precise
meaning of the service level depends on the ServiceLevelType enumerated value.

See Also: IloMSServiceLevelType

public IloNum getTargetVariableCost() const

This method returns the variable cost incurred per day and per unit of material when inventory is above the
minimal target inventory and below maximal target inventory (that is, within the coverage corridor).

public IloNum getVariableCostOfInventoryMax(IloInt time, IloInt levelNumber) const

This method returns the variable cost defined at this level of the inventory max cost function valid at the given
time for the invoking material. This feature is only used by the planning engine.

public IloNum getVariableCostOfInventoryMin(IloInt time, IloInt levelNumber) const

This method returns the variable cost defined at this level of the inventory min cost function valid at the given
time for the invoking material. This feature is only used by the planning engine.

public IloNum getWeight() const

This method returns the length of one unit of the invoking material.

This method returns the width of one unit of the invoking material.

This method returns the depth of one unit of the invoking material.

This method returns the volume occupied by one unit of the invoking material.

This method returns the weight of one unit of the invoking material.

public IloBool hasDaysOfSupplyTargetMax() const

This method returns true if a target of maximal days of supply is defined.

public IloBool hasDaysOfSupplyTargetMin() const

This method returns true if a target of minimal days of supply is defined.

public IloBool hasDisplayUnit() const

This method returns true if a display unit has been defined on this material.

95

public IloBool hasInventoryCapacity() const

This method returns true if the maximal theoretical inventory has been set to a value other than infinity (which is
the default inventory capacity).

public IloBool hasInventoryMaxCostFunctionAtTime(IloInt time) const

This method returns true if an inventory max cost function is valid at the given time for the invoking material. It
returns false otherwise. This feature is only used by the planning engine.

public IloBool hasInventoryMinCostFunctionAtTime(IloInt time) const

This method returns true if an inventory min cost function is valid at the given time for the invoking material. It
returns false otherwise. This feature is only used by the planning engine.

public IloInt hasMaturity() const

This method returns true if a maturation time is defined for this material.

public IloBool hasPrimaryUnit() const

This method returns true if a primary unit has been defined on this material.

public IloBool hasShelfLife() const

This method returns true if a shelf life is defined for this material.

public void newMaterialQuality(IloMSQuality quality, IloNum levelMin, IloNum
levelMax)

This method adds a quality to the invoking material with lower and upper bounds to enforce.

public void removeInventoryMaxCostFunction(IloInt i)

This method removes the inventory max cost function of the given index for the invoking material. This feature is
only used by the planning engine.

public void removeInventoryMaxCostFunction(IloMSInventoryMaxCostFunction function,
IloInt start, IloInt end)

This method removes the inventory max cost function for the invoking material previously defined between
start and end. This feature is only used by the planning engine.

96

public void removeInventoryMinCostFunction(IloInt i)

This method removes the inventory min cost function of the given index i from the invoking material. This feature
is only used by the planning engine.

public void removeInventoryMinCostFunction(IloMSInventoryMinCostFunction function,
IloInt start, IloInt end)

This method removes the inventory min cost function from the invoking material previously defined between
start and end. This feature is only used by the planning engine.

public void setAverageLeadTime(IloInt avgLeadTime)

This method sets the average lead time of the material. This value is used in service-level computations of safety
stocks. The default value is 0.

public void setDaysOfSupplyTarget(IloNum days)

This method sets the targeted ideal days of supply.

public void setDaysOfSupplyTargetMax(IloNum days)

This method sets the targeted maximal days of supply.

public void setDaysOfSupplyTargetMin(IloNum days)

This method sets the targeted minimal days of supply.

public void setDemandVariability(IloNum demandVariability)

This method sets the demand variability of the material. In service-level computation of safety stocks, each
demand of the material is assumed to follow a Gaussian probability law, with the mean value being the demand
quantity itself. The standard deviation is computed by multiplying the demand quantity by the material's demand
variability ratio.

This value is a ratio between 0 and 1 (strict). A value of zero means the demand has no uncertainty at all, while a
value close to 1 means the demand quantity is very poorly known. The default value is 0.

public void setDisplayUnit(IloMSUnit unit)

This method sets the display unit of material measurement. The material quantity displays in this unit in the Plant
PowerOps Application Interface.

public void setIdentifier(IloMSIdentifier identifier)

97

This modifier associates an identifier with the invoking material. An exception is thrown if the given
identifier is already used.

public void setInitialQuantity(IloNum quantity)

This method sets the quantity of the invoking material that is initially available independently of any specified
material flow arc.

public void setInventoryCapacity(IloNum value)

This method sets the maximal theoretical inventory for the invoking material as hard constraint.

This is useful in fixed location systems where a SKU is assigned a permanent location and no other items are
stored there. In a floating location system where goods are stored wherever there is appropriate space for them,
the setQuantityMax method of the IloMSStorageUnit class must be used instead to limit the warehouse
capacity.

public void setInventoryCostFunctionTimeStep(IloInt timeStep)

This method sets the time step used to compute inventory costs.

public void setInventoryMaxCostFunction(IloMSInventoryMaxCostFunction function,
IloInt validityStart, IloInt validityEnd)

This method sets the inventory max cost function for the invoking material between validityStart and
validityEnd. This feature is only used by the planning engine.

public void setInventoryMinCostFunction(IloMSInventoryMinCostFunction function,
IloInt validityStart, IloInt validityEnd)

This method sets the inventory min cost function for the invoking material between validityStart and
validityEnd. This feature is only used by the planning engine.

public void setLeadTimeStdDeviation(IloInt leadTimeStdDeviation)

This method sets the lead time standard deviation of the material. For service-level safety stock computations,
the lead time is assumed to follow a Gaussian (normal) law with mean value AVERAGE_LEAD_TIME, and
standard deviation LEAD_TIME_STD_DEVIATION. The default value is 0, meaning the lead time has no
uncertainty.

public ILOMSDEPRECATED void setMaterialFamily(IloMSMaterialFamily materialFamily)

This deprecated method assigns a primary family to this material.

public void setMaturity(IloInt maturity)

98

This method sets the maturation time. Maturation time is the minimal number of time units that must elapse after
material production completes before that material can be consumed. For example, if the production of a material
ends at t-1, then at t + maturity the material is consumable; at t + maturity - 1 the material is not yet
consumable.

When defining maturity or shelf life, initial quantities must be expressed as procurements received in the past
with a clear production date.

public void setPeggingStrategy(IloMSPeggingStrategy strategy)

This method sets the type of pegging strategy to use for material flow arcs.

See Also: IloMSPeggingStrategy

public void setPrimaryUnit(IloMSUnit unit)

This method is used in the case of a hollow material. It sets the maximal length of a material that would fit in the
hollow.

This method is used in the case of a hollow material. It sets the maximal width of a material that would fit in the
hollow.

This method is used in the case of a hollow material. It sets the maximal depth of a material that would fit in the
hollow.

This method is used in the case of a hollow material. It sets the maximal volume of a material that would fit in the
hollow.

This method is used in the case of a hollow material. It sets the maximal weight of a material that would fit in the
hollow.

This method sets the primary unit used for measuring material quantity. The classes
IloMSMaterialProduction and IloMSStorageUnit use this same unit of measure.

public void setServiceLevelType(IloMSServiceLevelType slType)

This method sets the service level type of the material. The default value is IloMSServiceLevelDisabled, for
which no service level stock computations are performed. You can base the type on the probability of a stock-out
event (alpha type) or on the demand quantity that is met by stock-on-hand (beta type).

The actual level (a numerical value) for this service type is set by the method
IloMSMaterial::setTargetServiceLevel.

See Also: IloMSServiceLevelType

public void setShelfLife(IloInt shelfLife)

This method is used in the case of a hollow material. It returns the maximal length of a material that would fit in
the hollow space.

This method is used in the case of a hollow material. It returns the maximal width of a material that would fit in
the hollow space.

99

This method is used in the case of a hollow material. It returns the maximal depth of a material that would fit in
the hollow space.

This method is used in the case of a hollow material. It returns the maximal volume of a material that would fit in
the hollow space.

This method is used in the case of a hollow material. It returns the maximal weight of a material that would fit in
the hollow space.

This method sets the shelf life; that is, the number of time units before the material expires and is no longer
consumable. For example, if the production of a material ends at t-1, then at t - 1 + shelf life the
material is still consumable; at t + shelf life the material is no longer consumable.

When defining maturity or shelf life, initial quantities must be expressed as procurements received in the past
with a clear production date.

public void setTargetMaxVariableCost(IloNum cost)

This method sets the variable cost incurred per day and per unit of material when inventory is above the maximal
target inventory.

public void setTargetMinVariableCost(IloNum cost)

This method sets the variable cost incurred per day and per unit of material when inventory is below the minimal
target inventory.

public void setTargetServiceLevel(IloNum serviceLevel)

This method sets the target service level of the material. This value is interpreted as a probability, the semantics
of which depends upon the service level type set by IloMSMaterial::setServiceLevelType. The service
level must be between 0.5 and 1 (strict). The default value is 0.95.

As an example, the default service level of 0.95 means that in combination with an alpha service level type, we
want to limit the probability of a stock-out event to 5%. In combination with a beta or fill rate service level type, we
want to meet 95% of all demand quantity.

See Also: IloMSServiceLevelType

public void setTargetVariableCost(IloNum cost)

This method sets the variable cost incurred per day and per unit of material when inventory is above the minimal
target inventory and below maximal target inventory (that is, within the coverage corridor).

public void setWeight(IloNum weight)

This method sets the length of one unit of the invoking material.

This method sets the width of one unit of the invoking material.

This method sets the depth of one unit of the invoking material.

This method sets the volume occupied by one unit of the invoking material.

100

This method sets the weight of one unit of the invoking material.

101

Class IloMSMaterialFamily
Definition file: ilplant/materialfamily.h
Library: plant

The IloMSMaterialFamily class is used to represent material families. A material may be a member of
several families. Families are grouped by their type in the GUI for aggregation purpose.

See Also: IloMSMaterial

Method Summary

public void add(IloMSMaterial material)

public void display(ostream & stream) const

public IloMSMaterialFamilyCardinalityConstraint getCardinalityConstraint(IloInt
index) const

public IloMSMaterial getMaterial(IloInt index) const

public IloInt getNumberOfCardinalityConstraints()
const

public IloInt getNumberOfMaterials() const

public IloMSIdentifier getType() const

public IloBool isMember(IloMSMaterial material)
const

public void remove(IloMSMaterial material)

public void setIdentifier(IloMSIdentifier
identifier)

public void setType(IloMSIdentifier type)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public void add(IloMSMaterial material)

This method adds the material to the invoking family.

public void display(ostream & stream) const

This method displays the material family in the stream passed as argument.

public IloMSMaterialFamilyCardinalityConstraint getCardinalityConstraint(IloInt

102

index) const

This method returns the nth cardinality constraint attached to the material family.

See Also: IloMSMaterialFamilyCardinalityConstraint

public IloMSMaterial getMaterial(IloInt index) const

This method returns the material with the index in the invoking family.

public IloInt getNumberOfCardinalityConstraints() const

This method returns the number of cardinality constraints attached to the material family.

See Also: IloMSMaterialFamilyCardinalityConstraint

public IloInt getNumberOfMaterials() const

This method returns the number of materials in this family.

public IloMSIdentifier getType() const

This method retrieves the type of the family.

public IloBool isMember(IloMSMaterial material) const

This method return true if the material is a member of the invoking family.

public void remove(IloMSMaterial material)

This method removes the material from the invoking family.

public void setIdentifier(IloMSIdentifier identifier)

This modifier associates an identifier with the invoking material family. An exception is thrown if the given
identifier is already used.

public void setType(IloMSIdentifier type)

This method registers the invoking family in the collection of families of same type.

103

Class IloMSMaterialFamilyCardinalityConstraint
Definition file: ilplant/materialfamilycardct.h
Library: plant

The IloMSMaterialFamilyCardinalityConstraint class is used to represent cardinality constraints on
the number of products that can be produced in a given time interval.

Method Summary

public IloMSBucketSequence getBucketSequence() const

public IloInt getCardinalityMax() const

public IloMSMaterialFamily getMaterialFamily() const

public void setBucketSequence(IloMSBucketSequence sequence)

public void setCardinalityMax(IloInt cardMax)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloMSBucketSequence getBucketSequence() const

This method returns the bucket sequence of the invoking cardinality constraint.

public IloInt getCardinalityMax() const

This method returns the maximum number of materials that can be produced in each bucket of the constraint's
bucket sequence.

See Also: IloMSBucketSequence

public IloMSMaterialFamily getMaterialFamily() const

This method returns the material family of the invoking constraint.

public void setBucketSequence(IloMSBucketSequence sequence)

This method sets the bucket sequence used by the invoking cardinality constraint to count the number of
produced materials.

See Also: IloMSBucketSequence

104

public void setCardinalityMax(IloInt cardMax)

This method sets the maximum number of materials that can be produced in each bucket of the constraint's
bucket sequence.

See Also: IloMSBucketSequence

105

Class IloMSMaterialProduction
Definition file: ilplant/materialproduction.h
Library: plant

The class IloMSMaterialProduction is used to represent all production and consumption of a material.
A positive material production quantity represents production of material; a negative quantity represents material
consumption.

Method Summary

public IloMSAbstractActivity getActivity() const

public IloNum getComputedQuantity() const

public IloNum getComputedQuantityOnPrototype(IloNum batchSize)
const

public IloNum getFixedQuantity() const

public IloMSMaterial getMaterial() const

public IloInt getMaxNumberOfPeggingArcs() const

public IloMSMode getMode() const

public IloNum getRatioMax() const

public IloNum getRatioMin() const

public IloMSRecipe getRecipe() const

public IloMSAbstractActivity getStorageActivity() const

public IloMSStorageUnit getStorageUnit() const

public IloInt getTimeOffset() const

public IloNum getVariableQuantity() const

public IloBool hasActivity() const

public IloBool hasMode() const

public IloBool hasRecipe() const

public IloBool hasStorageActivity() const

public IloBool hasStorageUnit() const

public IloBool isConsuming() const

public IloBool isContinuous() const

public IloBool isProducing() const

public void setContinuous(IloBool continuous)

public void setFixedQuantity(IloNum fixedQuantity)

public void setMaterial(IloMSMaterial material)

public void setMaxNumberOfPeggingArcs(IloInt maxNumber)

public void setRatioMax(IloNum rMax)

public void setRatioMin(IloNum rMin)

public void setStorageActivity(IloMSAbstractActivity
storageActivity)

106

public void setStorageUnit(IloMSStorageUnit storageUnit)

public void setTimeOffset(IloInt timeOffset)

public void setVariableQuantity(IloNum quantity)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloMSAbstractActivity getActivity() const

This method returns the associated activity.

public IloNum getComputedQuantity() const

This method returns the sum of the fixed and variable quantities produced (or consumed if quantity is
negative) for the invoking material production object. It throws an exception if called on a material production
prototype.

public IloNum getComputedQuantityOnPrototype(IloNum batchSize) const

This method returns the quantity (fixed + variable) generated by an activity that would belong to a production
order with the batch size specified as parameter. It throws an exception if called on a generated material
production.

public IloNum getFixedQuantity() const

This method returns the produced (consumed if the value is negative) fixed quantity of the invoking material
production object.

public IloMSMaterial getMaterial() const

This method returns the produced or consumed material of the invoking material production object.

public IloInt getMaxNumberOfPeggingArcs() const

This method returns the maximum number of incoming (consumption) or outgoing (production) pegging arcs.

public IloMSMode getMode() const

This method returns the associated mode.

107

public IloNum getRatioMax() const

This method returns the ratio maximum in the recipe for the invoking material production or consumption.

public IloNum getRatioMin() const

This method returns the ratio minimum in the recipe for the invoking material production or consumption.

Note that if the ratio minimum is different than the ratio maximum in a recipe, then the recipe is considered to be
a flexible recipe template for planning. All positive quantities on material productions must then have the same
absolute value; likewise, all negative quantities on material productions must have the same absolute value.

public IloMSRecipe getRecipe() const

This method returns the associated recipe.

public IloMSAbstractActivity getStorageActivity() const

This method returns the associated storage activity.

public IloMSStorageUnit getStorageUnit() const

This method returns the associated storage unit.

public IloInt getTimeOffset() const

This method returns the associated time offset.

public IloNum getVariableQuantity() const

This method returns the produced (consumed if the value is negative) variable quantity of the invoking material
production object.

public IloBool hasActivity() const

This method returns true if the invoking material production has an associated activity.

public IloBool hasMode() const

This method returns true if the invoking material production has an associated mode.

public IloBool hasRecipe() const

108

This method returns true if the invoking material production has an associated recipe.

public IloBool hasStorageActivity() const

This method returns true if the invoking material production has an associated storage activity.

public IloBool hasStorageUnit() const

This method returns true if the invoking material production has an associated storage unit.

public IloBool isConsuming() const

This method returns true if the invoking material production object has a negative production quantity.

public IloBool isContinuous() const

This method returns true, if the production/consumption is continuous and false if it is discrete.

public IloBool isProducing() const

This method returns true if the invoking material production object has a positive production quantity.

public void setContinuous(IloBool continuous)

This method sets the production/consumption to be continuous or discrete.

public void setFixedQuantity(IloNum fixedQuantity)

This method sets the fixed produced (consumed if quantity is negative) fixed quantity of the invoking material
production object.

public void setMaterial(IloMSMaterial material)

This method changes the produced or consumed material of the invoking material production object.

public void setMaxNumberOfPeggingArcs(IloInt maxNumber)

This method sets the maximum number of incoming (consumption) or outgoing (production) pegging arcs.

public void setRatioMax(IloNum rMax)

This method sets the ratio maximum in the recipe for the invoking material production or consumption.

109

public void setRatioMin(IloNum rMin)

This method sets the ratio minimum in the recipe for the invoking material production or consumption.

Note that if the ratio minimum is different than the ratio maximum in a recipe, then the recipe is considered to be
a flexible recipe template for planning. All positive quantities on material productions must then have the same
absolute value; likewise, all negative quantities on material productions must have the same absolute value.

public void setStorageActivity(IloMSAbstractActivity storageActivity)

This method sets the associated storage activity.

public void setStorageUnit(IloMSStorageUnit storageUnit)

This method sets the associated storage unit.

public void setTimeOffset(IloInt timeOffset)

This method sets the associated time offset.

public void setVariableQuantity(IloNum quantity)

This method sets the produced (consumed if quantity is negative) variable quantity of the invoking material
production object.

110

Class IloMSMode
Definition file: ilplant/mode.h
Library: plant

The IloMSMode class is used to represent the different ways to perform an activity.
A mode is a way of performing an activity. For instance, an activity can have a longer or a shorter processing
time depending on the resource on which it is scheduled. The cost of performing an activity on a resource or on
another resource may also be different. Some activities can be interrupted by resource breaks, and some cannot,
and some activities have limits on the length of breaks allowed.

When using recipes and production orders to express the scheduling problem, it is possible to describe the
processing time in two parts: a fixed one independent of the batch size (production order size), and a variable
one depending on the batch size. The effective processing time of generated activities is computed as follows:
effective_processing_time = prototype_processing_time + prototype_variable_processing_time*batch_size. Note
that prototype_processing_time may still vary between prototype_processing_time_min and
prototype_processing_time_max.

All the methods of the IloMSMode class throw an exception if an empty handle (that is, an uninitialized object) is
used.

See Also: IloMSAbstractActivity, IloMSCalendar, IloMSRecipe, IloMSProductionOrder

Method Summary

public IloBool contains(IloMSResource res)

public IloMSAbstractActivity getActivity() const

public IloNum getBatchSizeMax() const

public IloNum getBatchSizeMin() const

public IloInt getBreakDurationMax() const

public IloMSCalendar getCalendar() const

public IloInt getEndMax() const

public IloInt getEndMin() const

public IloNum getFixedCost() const

public IloInt getFixedProcessingTimeMax() const

public IloInt getFixedProcessingTimeMin() const

public IloMSIdentifier getLineId() const

public IloMSMaterialProduction getMaterialProduction(IloInt index) const

public IloInt getMaxEndDurationInBreak() const

public IloInt getNumber() const

public IloInt getNumberOfMaterialProductions() const

public IloInt getNumberOfResourceConstraints() const

public IloInt getNumberOfSecondaryResourceConstraints() const

public IloInt getPrimaryRequiredCapacity() const

public IloMSResource getPrimaryResource() const

public IloMSResourceConstraint getResourceConstraint(IloInt index) const

111

public IloInt getSecondaryRequiredCapacity(IloInt index) const

public IloMSResource getSecondaryResource(IloInt index) const

public IloMSResourceConstraint getSecondaryResourceConstraint(IloInt index) const

public IloInt getStartMax() const

public IloInt getStartMin() const

public IloNum getUnperformedCost() const

public IloNum getUnperformedSetupCost() const

public IloInt getUnperformedSetupTime() const

public IloNum getVariableCost() const

public IloNum getVariableProcessingTime() const

public IloBool hasCalendar() const

public IloBool hasPrimaryResource() const

public IloBool isShiftBreakable() const

public IloMSResourceConstraint newPrimaryResourceConstraint(IloMSResource
resource, IloInt capacity)

public IloMSResourceConstraint newSecondaryResourceConstraint(IloMSResource
resource, IloInt capacity)

public void setBatchSizeMax(IloNum batchSizeMax)

public void setBatchSizeMin(IloNum batchSizeMin)

public void setBreakDurationMax(IloInt value)

public void setCalendar(IloMSCalendar calendar)

public void setEndMax(IloInt emax)

public void setEndMin(IloInt emin)

public void setFixedCost(IloNum cost)

public void setFixedProcessingTime(IloInt ptime)

public void setFixedProcessingTimeMax(IloInt pmax)

public void setFixedProcessingTimeMin(IloInt pmin)

public void setLineId(IloMSIdentifier id)

public void setMaxEndDurationInBreak(IloInt value)

public void setShiftBreakable(IloBool value)

public void setStartMax(IloInt smax)

public void setStartMin(IloInt smin)

public void setUnperformedCost(IloNum unperformedCost)

public void setUnperformedSetupCost(IloNum setupCost)

public void setUnperformedSetupTime(IloInt setupTime)

public void setVariableCost(IloNum cost)

public void setVariableProcessingTime(IloNum
variableProcessingTime)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

112

Methods

public IloBool contains(IloMSResource res)

This predicate is true if this mode contains res as a primary or secondary resource.

public IloMSAbstractActivity getActivity() const

This method returns the activity performed by the invoking mode.

public IloNum getBatchSizeMax() const

This method returns the additional constraint on maximum batch size for any order using this mode. It restricts
the recipe batch size max. A typical application is when using a single multi-mode recipe, to constrain the
allowable batch size for orders flowing through a particular path.

See Also: IloMSRecipe, IloMSProductionOrder, IloMSActivity

public IloNum getBatchSizeMin() const

This method returns the additional constraint on minimum batch size for any order using this mode. It restricts the
recipe batch size min. A typical application is when using a single multi-mode recipe, to constrain the allowable
batch size for orders flowing through a particular path.

See Also: IloMSRecipe, IloMSProductionOrder, IloMSActivity

public IloInt getBreakDurationMax() const

This method returns the maximal break duration over which the activity in the invoking mode cannot be
interrupted by a break.

public IloMSCalendar getCalendar() const

This method returns the calendar associated with the invoking mode. An exception is thrown if the mode has no
calendar.

public IloInt getEndMax() const

This method returns the latest possible end time of the activity in the invoking mode.

public IloInt getEndMin() const

This method returns the earliest possible end time of the activity in the invoking mode.

public IloNum getFixedCost() const

113

This method returns the fixed cost of the invoking mode for an activity prototype. The fixed cost is the part of the
cost which is independent of the batch size.

public IloInt getFixedProcessingTimeMax() const

This method returns the upper bound of the part of the processing time which is independent of the batch size for
the invoking mode.

public IloInt getFixedProcessingTimeMin() const

This method returns the lower bound of the part of the processing time which is independent of the batch size for
the invoking mode.

public IloMSIdentifier getLineId() const

This method returns the line identifier of the invoking mode (by default, the line identifier of the primary resource
of the mode, or -1 if the mode has no specific line identifier and no primary resource).

public IloMSMaterialProduction getMaterialProduction(IloInt index) const

This method returns the material production of the invoking mode with the given index.

public IloInt getMaxEndDurationInBreak() const

This method returns the maximal duration over which the activity in the invoking mode can end in a break.

public IloInt getNumber() const

This method returns the index of the mode of the activity to which it belongs.

public IloInt getNumberOfMaterialProductions() const

This method returns the number of material productions associated with the invoking mode.

public IloInt getNumberOfResourceConstraints() const

This method returns the number of resource constraints associated with the invoking mode (primary +
secondary).

public IloInt getNumberOfSecondaryResourceConstraints() const

This method returns the number of secondary resource constraints associated with the invoking mode.

114

public IloInt getPrimaryRequiredCapacity() const

This method returns the required capacity of the primary resource. An exception is thrown if the mode has no
primary resource constraint.

public IloMSResource getPrimaryResource() const

This method returns the primary resource required by the invoking mode.

public IloMSResourceConstraint getResourceConstraint(IloInt index) const

This method returns the required resource constraint of the invoking mode with the given index.

public IloInt getSecondaryRequiredCapacity(IloInt index) const

This method returns the capacity required on the secondary resource of the invoking mode with the given index.

public IloMSResource getSecondaryResource(IloInt index) const

This method returns the required secondary resource of the invoking mode with the given index.

public IloMSResourceConstraint getSecondaryResourceConstraint(IloInt index) const

This method returns the required secondary resource of the invoking mode with the given index.

public IloInt getStartMax() const

This method returns the latest possible start time of the activity in the invoking mode.

public IloInt getStartMin() const

This method returns the earliest possible start time of the activity in the invoking mode.

public IloNum getUnperformedCost() const

This method returns the cost of not performing the activity in the invoking mode.

public IloNum getUnperformedSetupCost() const

This method returns the setup cost of the activity if the invoking mode has been chosen and the activity is in
unperformed status.

115

public IloInt getUnperformedSetupTime() const

This method returns the setup time of the activity if the invoking mode has been chosen and the activity is in
unperformed status.

public IloNum getVariableCost() const

This method returns the variable cost of the invoking mode for an activity prototype. The variable cost is the part
of the cost which is proportional to the batch size.

public IloNum getVariableProcessingTime() const

This method returns the variable processing time of an activity prototype. It is used for batch size dependent
processing time.

The effective processing time of generated activities is computed as follows: effective_processing_time =
prototype_processing_time + prototype_variable_processing_time*batch_size, where batch_size is the size of
the production order implementing a recipe.

See Also: IloMSRecipe, IloMSProductionOrder, IloMSActivity

public IloBool hasCalendar() const

This method returns true if the invoking mode has a calendar and false otherwise.

public IloBool hasPrimaryResource() const

This predicate returns true if this mode has a primary resource constraint.

public IloBool isShiftBreakable() const

This method returns the shift breakable flag for the activity in the invoking mode. An activity that is
"shift-breakable" can overlap a shift change. An activity that is not shift-breakable must be completely executed
within a shift.

public IloMSResourceConstraint newPrimaryResourceConstraint(IloMSResource resource,
IloInt capacity)

This method creates a primary resource constraint on the invoking mode if none already exists and the specified
resource is not already referred to by another resource constraint.

public IloMSResourceConstraint newSecondaryResourceConstraint(IloMSResource
resource, IloInt capacity)

This method creates a secondary resource constraint on the invoking mode if the specified resource is not
already referred to by another resource constraint.

116

public void setBatchSizeMax(IloNum batchSizeMax)

This method enforces that the batch size of any order using this mode is lower than the specified value. It
restricts the recipe batch size max. A typical application is when using a single multi-mode recipe, to constrain
the allowable batch size for orders flowing through a particular path.

See Also: IloMSRecipe, IloMSProductionOrder, IloMSActivity

public void setBatchSizeMin(IloNum batchSizeMin)

This method enforces that the batch size of any order using this mode is greater than the specified value. It
restricts the recipe batch size min. A typical application is when using a single multi-mode recipe, to constrain the
allowable batch size for orders flowing through a particular path.

See Also: IloMSRecipe, IloMSProductionOrder, IloMSActivity

public void setBreakDurationMax(IloInt value)

This method sets to the given value the maximal break duration over which the activity in the invoking mode
cannot be interrupted by a break.

public void setCalendar(IloMSCalendar calendar)

This method sets the calendar of the invoking mode. If a calendar is not specified, then the mode uses the
calendar of its primary resource. Note that breaks and work periods are taken into account on calendars
assigned to modes, but resource capacities are not. Calendars on resources do account for capacities. An
exception is thrown if a calendar has already been declared for the mode.

public void setEndMax(IloInt emax)

This method sets the latest possible end time (emax) of the activity in the invoking mode.

public void setEndMin(IloInt emin)

This method sets the earliest possible end time (emin) of the activity in the invoking mode.

public void setFixedCost(IloNum cost)

This method sets the fixed cost of the invoking mode for an activity prototype. The parameter cost is the part of
the mode cost which is independent of the batch size. An exception is thrown if the given cost is negative.

public void setFixedProcessingTime(IloInt ptime)

This method sets the part of the processing time which is independent of the batch size for the invoking mode.

117

public void setFixedProcessingTimeMax(IloInt pmax)

This method sets the upper bound of the part of the processing time which is independent of the batch size for
the invoking mode.

public void setFixedProcessingTimeMin(IloInt pmin)

This method sets the lower bound of the part of the processing time which is independent of the batch size for
the invoking mode.

public void setLineId(IloMSIdentifier id)

This method sets the line identifier of the invoking mode to the given value id. An exception is thrown if the given
id is negative.

public void setMaxEndDurationInBreak(IloInt value)

This method sets to the given value the maximal duration over which the activity in the invoking mode can end
in a break.

public void setShiftBreakable(IloBool value)

This method sets the shift breakable flag for the activity in the invoking mode. An activity that is "shift-breakable"
can overlap a shift change. An activity that is not shift-breakable must be completely executed within a shift.

public void setStartMax(IloInt smax)

This method sets the latest possible start time (smax) of the activity in the invoking mode.

public void setStartMin(IloInt smin)

This method sets the earliest possible start time (smin) of the activity in the invoking mode.

public void setUnperformedCost(IloNum unperformedCost)

This method sets the cost of not performing the activity in the invoking mode. If the activity is a prototype, the
effective unperformed cost of generated activities is computed as follows: effective_unperformed_cost =
prototype_unperformed_cost*batch_size, where batch_size is the size of the production order implementing a
recipe. An exception is thrown if the given unperformedCost is negative.

public void setUnperformedSetupCost(IloNum setupCost)

This method sets to the given value the setup cost of the activity if it is not performed in the invoking mode. The
parameter setupCost is the setup cost to add to the global setup cost if the invoking mode has been chosen

118

and the activity is in unperformed status. An exception is thrown if the given setupCost is strictly negative.

public void setUnperformedSetupTime(IloInt setupTime)

This method sets to the given value the setup time of the activity if it is not performed in the invoking mode. The
parameter setupTime is the setup time to add to the global setup time if the invoking mode has been chosen
and the activity is in unperformed status. An exception is thrown if the given setupTime is strictly negative.

public void setVariableCost(IloNum cost)

This method sets the cost of the invoking mode for an activity prototype. The parameter cost is the part of the
mode cost which is proportional to the batch size. An exception is thrown if the given cost is negative.

public void setVariableProcessingTime(IloNum variableProcessingTime)

This method sets the variable processing time of an activity prototype. It is used for batch size dependent
processing time.

The effective processing time of generated activities is computed as follows: effective_processing_time =
prototype_processing_time + prototype_variable_processing_time*batch_size, where batch_size is the size of
the production order implementing a recipe.

See Also: IloMSRecipe, IloMSProductionOrder, IloMSActivity

119

Class IloMSModel
Definition file: ilplant/model.h
Library: plant

The IloMSModel class gathers the objects that define the manufacturing problem to be solved.
The manufacturing problem may consist of a planning problem and a scheduling problem. The objects that define
the planning problem include recipes, materials and demands.

The objects that define the scheduling problem include activities, resources, modes for executing the activities,
associated resource constraints, precedence constraints, calendars, and so forth.

The bridge between planning and scheduling is realized via the notions of production orders and material flow
arcs and by the description of recipes using activity prototypes.

The IloMSModel object is also used to set the weights associated with different optimization criteria and to
interact with the optimizer.

All the methods of the IloMSModel class throw an exception if an empty handle (that is, an uninitialized object)
is used.

See Also: IloMSActivity, IloMSResource, IloMSRecipe, IloMSProductionOrder, IloMSMaterial,
IloMSAbstractMaterialFlowArc, IloMSDemand

Constructor Summary

public IloMSModel()

Method Summary

public void close()

public void commitCurrentBatchingSolution()

public IloInt convertDateToTime(const IloMSDate &
date) const

public IloMSDate convertTimeToDate(IloInt time) const

public IloMSModel copy()

public void copyBatchingFrom(IloMSModel origin)

public void copyPlanningSolutionFrom(IloMSModel
origin)

public void copySchedulingSolutionFrom(IloMSModel
origin)

public void end()

public void generateActivities()

public IloMSActivityChain getActivityChainPrototype(IloInt index)
const

public IloMSActivityChain getActivityChainPrototypeByIdentifier(IloMSIdentifier
identifier) const

public IloMSAbstractActivity getActivityPrototypeByIdentifier(IloMSIdentifier
identifier) const

120

public IloInt getBatchingHorizon() const

public IloNum getBatchingWeight(IloMSOptimizationCriterion
criterion) const

public IloNum getBatchingWeight(IloMSIdentifier
criterionId) const

public IloMSBucket getBucket(IloInt index) const

public IloMSBucket getBucketByIdentifier(IloMSIdentifier
identifier) const

public IloMSBucketSequence getBucketSequence(IloInt index) const

public IloMSCalendar getCalendar(IloInt index) const

public IloMSCalendar getCalendarByIdentifier(IloMSIdentifier
identifier) const

public IloMSChecker getChecker()

public IloMSBatchingSolution getCurrentBatchingSolution() const

public IloMSOptimizationProfile getCurrentOptimizationProfile() const

public IloMSPlanningSolution getCurrentPlanningSolution() const

public IloMSSchedulingSolution getCurrentSchedulingSolution() const

public IloMSDate getDateOrigin() const

public static IloInt getDefaultTimeCheckingTolerance()

public IloMSDemand getDemand(IloInt index) const

public IloMSDemand getDemandByIdentifier(IloMSIdentifier
identifier) const

public IloMSBucketSequence getDisplayedBucketSequence() const

public IloNum getElapsedTime() const

public IloInt getEndMax() const

public IloNum getEpsilon() const

public IloInt getIndex(IloMSResource res) const

public IloInt getIndex(IloMSActivity act) const

public IloInt getIntDateOrigin() const

public IloMSInventoryMaxCostFunction getInventoryMaxCostFunction(IloInt
index) const

public IloMSInventoryMaxCostFunction getInventoryMaxCostFunctionByIdentifier(IloMSIdentifier
identifier) const

public IloMSInventoryMinCostFunction getInventoryMinCostFunction(IloInt
index) const

public IloMSInventoryMinCostFunction getInventoryMinCostFunctionByIdentifier(IloMSIdentifier
identifier) const

public IloInt getMakespanOrigin() const

public IloMSMaterial getMaterial(IloInt index) const

public IloMSMaterial getMaterialByIdentifier(IloMSIdentifier
identifier) const

public IloMSMaterialFamily getMaterialFamily(IloMSIdentifier
materialFamilyType, IloInt index) const

public IloMSMaterialFamily getMaterialFamily(IloInt index) const

public IloMSMaterialFamily getMaterialFamilyByIdentifier(IloMSIdentifier

121

identifier) const

public IloMSIdentifier getMaterialFamilyType(IloInt index)
const

public IloMSAbstractMaterialFlowArc getMaterialFlowArc(IloInt index) const

public IloInt getMemoryUsage() const

public IloInt getNumberOfActivityChainPrototypes()
const

public IloInt getNumberOfBuckets() const

public IloInt getNumberOfBucketSequences() const

public IloInt getNumberOfCalendars() const

public IloInt getNumberOfDemands() const

public IloInt getNumberOfInventoryMaxCostFunctions()
const

public IloInt getNumberOfInventoryMinCostFunctions()
const

public IloInt getNumberOfMaterialFamilies(IloMSIdentifier
materialFamilyType) const

public IloInt getNumberOfMaterialFamilies() const

public IloInt getNumberOfMaterialFamilyTypes() const

public IloInt getNumberOfMaterialFlowArcs() const

public IloInt getNumberOfMaterials() const

public IloInt getNumberOfOptimizationCriteria() const

public IloInt getNumberOfOptimizationProfiles() const

public IloInt getNumberOfProcurements() const

public IloInt getNumberOfProductionOrders() const

public IloInt getNumberOfQualities() const

public IloInt getNumberOfRecipeFamilies(IloMSIdentifier
recipeFamilyType) const

public IloInt getNumberOfRecipeFamilies() const

public IloInt getNumberOfRecipeFamilyTypes() const

public IloInt getNumberOfRecipes() const

public IloInt getNumberOfResourceCapacityCostFunctions()
const

public IloInt getNumberOfResourceFamilies(IloMSIdentifier
type) const

public IloInt getNumberOfResourceFamilies() const

public IloInt getNumberOfResourceFamilyTypes() const

public IloInt getNumberOfResources() const

public IloInt getNumberOfScopes() const

public IloInt getNumberOfSetupMatrices() const

public IloInt getNumberOfStandardKPIs() const

public IloInt getNumberOfUnits() const

public IloMSOptimizationCriterion getOptimizationCriterion(int index)
const

122

public IloMSOptimizationCriterion getOptimizationCriterionByIdentifier(IloMSIdentifier
identifier) const

public IloMSOptimizationProfile getOptimizationProfile(IloInt index)
const

public IloMSOptimizationProfile getOptimizationProfileByIdentifier(IloMSIdentifier
identifier) const

public IloMSBucketSequence getOptimizedBucketSequence()

public IloInt getPlanningHorizon() const

public IloInt getPlanningOrigin() const

public IloNum getPlanningWeight(IloMSOptimizationCriterion
criterion) const

public IloNum getPlanningWeight(IloMSIdentifier
criterionId) const

public IloMSProcurement getProcurement(IloInt index) const

public IloMSProductionOrder getProductionOrder(IloInt index) const

public IloMSProductionOrder getProductionOrderByIdentifier(IloMSIdentifier
identifier) const

public IloInt getProductivityGrain() const

public IloMSQuality getQuality(IloInt index) const

public IloMSQuality getQualityByIdentifier(IloMSIdentifier
identifier) const

public IloMSRecipe getRecipe(IloInt index) const

public IloMSRecipe getRecipeByIdentifier(IloMSIdentifier
identifier) const

public IloMSRecipeFamily getRecipeFamily(IloMSIdentifier
recipeFamilyType, IloInt index) const

public IloMSRecipeFamily getRecipeFamily(IloInt index) const

public IloMSRecipeFamily getRecipeFamilyByIdentifier(IloMSIdentifier
identifier) const

public IloMSIdentifier getRecipeFamilyType(IloInt index) const

public IloMSRepairAlgorithmI * getRepairAlgorithm()

public IloMSReplicateAlgorithmI * getReplicateAlgorithm()

public IloMSResource getResource(IloInt index) const

public IloMSResource getResourceByIdentifier(IloMSIdentifier
identifier) const

public IloMSResourceFamily getResourceFamily(IloInt index) const

public IloMSResourceFamily getResourceFamily(IloMSIdentifier
resourceFamilyType, IloInt index) const

public IloMSResourceFamily getResourceFamilyByIdentifier(IloMSIdentifier
identifier) const

public IloMSIdentifier getResourceFamilyType(IloInt index)
const

public IloInt getSchedulingHorizon() const

public IloNum getSchedulingWeight(IloMSOptimizationCriterion
criterion) const

public IloNum getSchedulingWeight(IloMSIdentifier
criterionId) const

123

public IloMSScope getScope(IloInt index) const

public IloMSScope getScopeByIdentifier(IloMSIdentifier
identifier) const

public IloMSSetupMatrix getSetupMatrix(IloInt index) const

public IloMSSetupMatrix getSetupMatrixByIdentifier(IloMSIdentifier
identifier) const

public IloInt getSlackOnPlannedEndTime() const

public IloInt getSlackOnPlannedStartTime() const

public IloMSStandardKPI getStandardKPI(IloInt index) const

public IloInt getStartMin() const

public IloNum getTime() const

public IloInt getTimeCheckingTolerance() const

public IloInt getTimeUnit() const

public const char * getTimeZone() const

public IloMSUnit getUnit(IloInt index) const

public IloMSUnit getUnitByIdentifier(IloMSIdentifier
identifier) const

public const char * getVersion() const

public IloNum getWeight(IloMSOptimizationCriterion
criterion) const

public IloNum getWeight(IloMSIdentifier criterionId)
const

public IloBool hasPlanningData() const

public IloBool hasSchedulingData() const

public IloBool isClosed()

public IloBool isTimeZoneDefined() const

public IloMSActivityChain newActivityChainPrototype(IloMSRecipe
recipe)

public IloMSActivityCompatibilityConstraint newActivityCompatibilityConstraint(IloMSAbstractActivity
act1, IloMSAbstractActivity act2,
IloMSActivityCompatibilityType type)

public IloMSActivity newActivityPrototype(IloMSRecipe recipe)

public IloMSBatchingSolution newBatchingSolution()

public IloMSBucket newBucket(IloInt startTime, IloInt
endTime, IloMSBucketSequence
bucketSequence)

public IloMSBucket newBucket(IloInt startTime, IloInt
endTime)

public IloMSBucketSequence newBucketSequence()

public IloMSBucketTemplate newBucketTemplate(IloMSBucketTemplateSequence
bucketTemplateSequence, IloInt
bucketRank, IloMSBucketType type,
IloMSBucketPeriodUnit unit, IloInt
numberOfPeriods)

public IloMSBucketTemplateSequence newBucketTemplateSequence(IloMSBucketSequence
bucketSequence)

public IloMSCalendar newCalendar()

124

public IloMSCalendarInterval newCalendarInterval(IloMSCalendar
calendar, IloInt startTime, IloInt
endTime)

public IloMSDefaultCheckForStop newDefaultCheckForStop()

public IloMSDemand newDemand(IloMSMaterial material, IloNum
quantity)

public IloMSDueDate newDueDate(IloMSAbstractActivity
activity, IloInt time)

public IloMSDueDate newDueDate(IloMSDemand demand, IloInt
time)

public IloMSInventoryMaxCostFunction newInventoryMaxCostFunction()

public IloMSInventoryMinCostFunction newInventoryMinCostFunction()

public IloMSMaterial newMaterial()

public IloMSMaterialFamily newMaterialFamily()

public IloMSMaterialFamilyCardinalityConstraint newMaterialFamilyCardinalityConstraint(IloMSMaterialFamily
family, IloMSBucketSequence sequence,
IloInt cardMax)

public IloMSMaterialProduction newMaterialProduction(IloMSMode mode,
IloMSMaterial material, IloNum
variableQuantity, IloNum fixedQuantity)

public IloMSMaterialProduction newMaterialProduction(IloMSAbstractActivity
absAct, IloMSMaterial material, IloNum
variableQuantity, IloNum fixedQuantity)

public IloMSMaterialProduction newMaterialProduction(IloMSMode mode,
IloMSMaterial material, IloNum quantity)

public IloMSMaterialProduction newMaterialProduction(IloMSAbstractActivity
absAct, IloMSMaterial material, IloNum
quantity)

public IloMSMode newMode(IloMSAbstractActivity activity)

public static IloMSModel newModel()

public IloMSOptimizationProfile newOptimizationProfile(IloMSOptimizationProfile
profile)

public IloMSOptimizationProfile newOptimizationProfile()

public IloMSPlanningSolution newPlanningSolution()

public IloMSPrecedence newPrecedence(IloMSAbstractActivity
pred, IloMSAbstractActivity succ,
IloMSPrecedenceType type, IloInt
delayMin, IloInt delayMax)

public IloMSProcurement newProcurement(IloMSMaterial material,
IloNum quantity)

public IloMSProcurementToDemandArc newProcurementToDemandArc(IloMSMaterial
material, IloNum quantity,
IloMSProcurement pred, IloMSDemand succ)

public IloMSProcurementToProdArc newProcurementToProdArc(IloMSMaterial
material, IloNum quantity,
IloMSProcurement pred,
IloMSProductionOrder succ)

public IloMSProcurementToStorageArc newProcurementToStorageArc(IloMSMaterial
material, IloNum quantity,
IloMSProcurement pred)

125

public IloMSProdToDemandArc newProdToDemandArc(IloMSMaterial
material, IloNum quantity,
IloMSProductionOrder pred, IloMSDemand
succ)

public IloMSProdToStorageArc newProdToStorageArc(IloMSMaterial
material, IloNum quantity,
IloMSProductionOrder pred)

public IloMSQuality newQuality()

public IloMSRecipe newRecipe()

public IloMSRecipeFamily newRecipeFamily()

public IloMSRecipeFamilyFilter newRecipeFamilyFilter(IloMSScope scope)

public IloMSResource newResource(IloInt capacity)

public IloMSResourceCapacityCostFunction newResourceCapacityCostFunction()

public IloMSResourceConstraint newResourceConstraint(IloMSMode mode,
IloMSResource resource, IloInt capacity,
IloBool isPrimary)

public IloMSResourceFamily newResourceFamily()

public IloMSScope newScope()

public IloMSSetupMatrix newSetupMatrix()

public IloMSActivity newStorageActivityPrototype(IloMSActivity
producingActivity, IloMSMaterial
producedMaterial)

public IloMSStorageToDemandArc newStorageToDemandArc(IloMSMaterial
material, IloNum quantity, IloMSDemand
succ)

public IloMSStorageToProdArc newStorageToProdArc(IloMSMaterial
material, IloNum quantity,
IloMSProductionOrder succ)

public IloMSStorageUnit newStorageUnit()

public IloMSUnit newUnit()

public IloMSIdentifier newUUID()

public IloMSRecipe newWasteRecipe(IloMSMaterial material,
IloNum wasteCost)

public void putSetting(const char * valueName, const
char * value)

public void readSettings(const char * filename)

public void registerLicense(char * plantLicense, int
plantSignature)

public void removeAllProperties()

public void removeAutomaticRecipes()

public void removeNotFirmedData()

public void removeProperty(const char * name)

public IloBool repeg()

public void reserveCurrentBatchingSolution()

public void rollbackCurrentBatchingSolution()

public void setBatchingHorizon(IloInt horizon)

public void

126

setBatchingWeight(IloMSOptimizationCriterion
criterion, IloNum value)

public void setBatchingWeight(IloMSIdentifier
criterionId, IloNum value)

public void setCheckForStop(IloMSCheckForStop hook)

public void setCurrentBatchingSolution(IloMSBatchingSolution
solution)

public void setCurrentMaterialFamilyType(IloMSIdentifier
familyType)

public void setCurrentOptimizationProfile(IloMSOptimizationProfile
profile)

public void setCurrentPlanningSolution(IloMSPlanningSolution
solution)

public void setCurrentRecipeFamilyType(IloMSIdentifier
familyType)

public void setCurrentResourceFamilyType(IloMSIdentifier
familyType)

public void setDateOrigin(IloMSDate date)

public void setDisplayedBucketSequence(IloMSBucketSequence
sequence)

public void setEndMax(IloInt latestEndTime)

public void setIntDateOrigin(IloInt
inSecondsSince_01_01_2001)

public void setIntProperty(const char * name, IloInt
value)

public void setMakespanOrigin(IloInt makespanOrigin)

public void setNumProperty(const char * name, IloNum
value)

public void setObject(IloAny object)

public void setOptimizedBucketSequence(IloMSBucketSequence
sequence)

public void setPlanningHorizon(IloInt horizon)

public void setPlanningWeight(IloMSOptimizationCriterion
criterion, IloNum value)

public void setPlanningWeight(IloMSIdentifier
criterionId, IloNum value)

public void setProductivityGrain(IloInt grain)

public void setSchedulingHorizon(IloInt horizon)

public void setSchedulingWeight(IloMSOptimizationCriterion
criterion, IloNum value)

public void setSchedulingWeight(IloMSIdentifier
criterionId, IloNum value)

public void setSlackOnPlannedEndTime(IloInt value)

public void setSlackOnPlannedStartTime(IloInt value)

public void setStartMin(IloInt earliestStartTime)

public void setStringProperty(const char * name,
const char * value)

127

public void setTimeCheckingTolerance(IloInt
toleranceInTimeUnits)

public void setTimeUnit(IloInt inSeconds)

public void setTimeZone(const char * identifier)

public void setTraceFile(const char * filename=0,
ios_base::openmode mode=ios_base::out)

public void setTraceLevel(IloInt level)

public void setWeight(IloMSOptimizationCriterion
criterion, IloNum value)

public void setWeight(IloMSIdentifier criterionId,
IloNum value)

public IloBool solve() const

public void write(const char * filename, IloBool
writeSettings)

public void writeSettings(const char * filename)

public void writeSolution(const char * filename,
IloMSSchedulingSolution solution)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Constructors

public IloMSModel()

This constructor creates a new IloMSModel object.

Methods

public void close()

This method is used to close the model.

After the creation of all objects that are to be contained in the model (including the precedence and mode
compatibility constraints, activity chains and due dates), the model can be closed. If the model is not closed then
there is no access to any implicitly created setup activities, and
IloMSBatchingSolution::newSchedulingSolution will raise an exception. If you call IloMSModel::solve
without closing the model, it will be closed automatically.

public void commitCurrentBatchingSolution()

internal

This method deletes the earlier batching solution saved when calling the
reserveCurrentBatchingSolution() method. A typical use of this method is to save a successful solution
in a custom batching algorithm.

128

public IloInt convertDateToTime(const IloMSDate & date) const

This method converts a date since the date origin of the problem to a number of time units.

public IloMSDate convertTimeToDate(IloInt time) const

This method converts the number of time units since the date origin of the problem into a date.

public IloMSModel copy()

This method returns a copy of the invoking model.

public void copyBatchingFrom(IloMSModel origin)

This methods copies the production orders and arcs existing on the current batching solution of the model
passed as parameter (origin) to the current batching solution of the invoking model.

Note that the method generateActivities and copySchedulingSolutioFrom must be invoked to get a
complete solution.

public void copyPlanningSolutionFrom(IloMSModel origin)

This methods copies the planned productions and planned deliveries from the current planning solution of the
model passed as parameter (origin) to the current planning solution of the invoking model.

Previous planned productions and planned deliveries are erased.

public void copySchedulingSolutionFrom(IloMSModel origin)

This methods copies the scheduling information from the current scheduling solution of the model passed as
parameter (origin) to the current scheduling solution of the invoking model.

This is performed for all activities in the target model that have a counterpart in the original model.

public void end()

This method cleans up the environment owned by the invoking IloMSModel object.

public void generateActivities()

This method generates for all production orders the real activities from the prototype activities contained in the
recipes, and associated constraints. Note that the close and solve methods automatically call
generateActivities.

public IloMSActivityChain getActivityChainPrototype(IloInt index) const

129

This method returns the activity chain prototype with the given index. An exception is thrown if the given index
is out of bounds.

public IloMSActivityChain getActivityChainPrototypeByIdentifier(IloMSIdentifier
identifier) const

This method returns the activity chain with the given identifier. An exception is thrown if there is no activity
chain with the given identifier.

public IloMSAbstractActivity getActivityPrototypeByIdentifier(IloMSIdentifier
identifier) const

This method returns the activity prototype with the given identifier. An exception is thrown if there is no
activity prototype with the given identifier.

public IloInt getBatchingHorizon() const

This deprecated method returns the end of horizon to consider when batching. Use the method
getSchedulingHorizon.

public IloNum getBatchingWeight(IloMSOptimizationCriterion criterion) const

This method returns the weight of the given criterion.

public IloNum getBatchingWeight(IloMSIdentifier criterionId) const

This method returns the weight of the given criterion.

public IloMSBucket getBucket(IloInt index) const

This method returns the time bucket with the given index. The returned time bucket is one owned by the bucket
sequence specified as the optimized bucket sequence. An exception is thrown if the given index is out of
bounds.

public IloMSBucket getBucketByIdentifier(IloMSIdentifier identifier) const

This method returns the time bucket with the given identifier. An exception is thrown if there is no time
bucket with the given identifier.

public IloMSBucketSequence getBucketSequence(IloInt index) const

This method returns the bucket sequence with the given index. An exception is thrown if the given index is out
of bounds.

130

public IloMSCalendar getCalendar(IloInt index) const

This method returns the calendar with the given index. An exception is thrown if the given index is out of
bounds.

public IloMSCalendar getCalendarByIdentifier(IloMSIdentifier identifier) const

This method returns the calendar with the given identifier. An exception is thrown if there is no calendar with
the given identifier.

public IloMSChecker getChecker()

This method returns the checker of the invoking model.

public IloMSBatchingSolution getCurrentBatchingSolution() const

This method returns the currently active batching solution.

public IloMSOptimizationProfile getCurrentOptimizationProfile() const

This function returns the current optimization profile containing all overridden parameters for engines.

public IloMSPlanningSolution getCurrentPlanningSolution() const

This method returns the current planning solution.

public IloMSSchedulingSolution getCurrentSchedulingSolution() const

This method returns the currently active scheduling solution. Note that after a successful solve, the previous
scheduling solution is destroyed and thus any prior reference is invalid.

public IloMSDate getDateOrigin() const

This method returns the absolute date origin. The given date is understood to be in UTC.

public static IloInt getDefaultTimeCheckingTolerance()

This method returns the default tolerance used for filtering nonfatal error messages with regard to time and
capacity violations in the checkers.

public IloMSDemand getDemand(IloInt index) const

131

This method returns the demand with the given index. An exception is thrown if the given index is out of
bounds.

public IloMSDemand getDemandByIdentifier(IloMSIdentifier identifier) const

This method returns the demand with the given identifier. An exception is thrown if there is no demand with
the given identifier.

public IloMSBucketSequence getDisplayedBucketSequence() const

This function returns the bucket sequence used by the GUI.

public IloNum getElapsedTime() const

This method returns the time, in seconds, elapsed since the invocation of the method solve().

public IloInt getEndMax() const

This method returns the common latest end time associated with all the activities of the model.

public IloNum getEpsilon() const

This method returns the default tolerance used for floating point arithmetic.

public IloInt getIndex(IloMSResource res) const

This method returns the index of the resource res in the model. Many Plant PowerOps objects can be accessed
via an index ranging from 0 to the number of objects in the model minus one.

public IloInt getIndex(IloMSActivity act) const

This method returns the index of the activity act in the model. Many Plant PowerOps objects can be accessed
via an index ranging from 0 to the number of objects in the model minus one. The index is available for all actual
activities of the model, not for the activity prototypes of the recipe. To find out the index of an activity prototype in
a recipe use the getPrototypeIndex(act) method on the IloMSRecipe.

public IloInt getIntDateOrigin() const

This method returns the date origin, expressed in seconds since January 1st, 2001 UTC.

public IloMSInventoryMaxCostFunction getInventoryMaxCostFunction(IloInt index)
const

132

This method returns the maximal inventory cost function with the given index. An exception is thrown if the given
index is out of bounds.

public IloMSInventoryMaxCostFunction
getInventoryMaxCostFunctionByIdentifier(IloMSIdentifier identifier) const

This method returns the maximal inventory cost function with the given identifier. An exception is thrown if
there is no maximal inventory cost function with the given identifier.

public IloMSInventoryMinCostFunction getInventoryMinCostFunction(IloInt index)
const

This method returns the minimal inventory cost function with the given index. An exception is thrown if the given
index is out of bounds.

public IloMSInventoryMinCostFunction
getInventoryMinCostFunctionByIdentifier(IloMSIdentifier identifier) const

This method returns the minimal inventory cost function with the given identifier. An exception is thrown if
there is no minimal inventory cost function with the given identifier.

public IloInt getMakespanOrigin() const

This method returns the makespan origin, that is, the time that serves as a basis to calculate the makespan. The
makespan is the difference between the end time of the last activity and the returned origin.

public IloMSMaterial getMaterial(IloInt index) const

This method returns the material with the given index. An exception is thrown if the given index is out of
bounds.

public IloMSMaterial getMaterialByIdentifier(IloMSIdentifier identifier) const

This method returns the material with the given identifier. An exception is thrown if there is no material with
the given identifier.

public IloMSMaterialFamily getMaterialFamily(IloMSIdentifier materialFamilyType,
IloInt index) const

This function returns the material family with the index of the corresponding material family type.

public IloMSMaterialFamily getMaterialFamily(IloInt index) const

This method returns the material family with the given index. An exception is thrown if the given index is out of
bounds.

133

public IloMSMaterialFamily getMaterialFamilyByIdentifier(IloMSIdentifier
identifier) const

This method returns the material family with the given identifier. An exception is thrown if there is no
material family with the given identifier.

public IloMSIdentifier getMaterialFamilyType(IloInt index) const

This function returns the material family type identifier with the corresponding index.

public IloMSAbstractMaterialFlowArc getMaterialFlowArc(IloInt index) const

This method returns the material flow arc with the given index. An exception is thrown if the given index is out
of bounds.

public IloInt getMemoryUsage() const

This method returns the memory usage of the model.

public IloInt getNumberOfActivityChainPrototypes() const

This method returns the number of activity chains in the model.

public IloInt getNumberOfBuckets() const

This function returns the number of existing time buckets used by the optimizer.

public IloInt getNumberOfBucketSequences() const

This function returns the number bucket sequence; at least one should be defined

public IloInt getNumberOfCalendars() const

This method returns the number of calendars in the model.

public IloInt getNumberOfDemands() const

This function returns the number of existing demands.

public IloInt getNumberOfInventoryMaxCostFunctions() const

This method returns the number of inventory max cost functions in the model.

134

public IloInt getNumberOfInventoryMinCostFunctions() const

This method returns the number of inventory min cost functions in the model.

public IloInt getNumberOfMaterialFamilies(IloMSIdentifier materialFamilyType) const

This function returns the number of material families of the corresponding material family type.

public IloInt getNumberOfMaterialFamilies() const

This function returns the number of existing material families.

public IloInt getNumberOfMaterialFamilyTypes() const

This function returns the total number of material family types.

public IloInt getNumberOfMaterialFlowArcs() const

This function returns the number of existing material flow arcs.

public IloInt getNumberOfMaterials() const

This function returns the number of existing materials.

public IloInt getNumberOfOptimizationCriteria() const

This method returns the number of optimization criteria.

public IloInt getNumberOfOptimizationProfiles() const

This function returns the number of existing optimization profiles.

public IloInt getNumberOfProcurements() const

This function returns the number of existing procurements.

public IloInt getNumberOfProductionOrders() const

This function returns the number of existing production orders.

public IloInt getNumberOfQualities() const

135

This function returns the number of existing material qualities.

public IloInt getNumberOfRecipeFamilies(IloMSIdentifier recipeFamilyType) const

This function returns the number of recipe families of the corresponding recipe family type.

public IloInt getNumberOfRecipeFamilies() const

This function returns the number of existing recipe families.

public IloInt getNumberOfRecipeFamilyTypes() const

This function returns the total number of recipe family types.

public IloInt getNumberOfRecipes() const

This function returns the number of existing recipes.

public IloInt getNumberOfResourceCapacityCostFunctions() const

This method returns the number of resource capacity cost functions in the model.

public IloInt getNumberOfResourceFamilies(IloMSIdentifier type) const

This function returns the number of existing resource families of the corresponding type.

public IloInt getNumberOfResourceFamilies() const

This function returns the number of existing resource families.

public IloInt getNumberOfResourceFamilyTypes() const

This function returns the total number of resource family types.

public IloInt getNumberOfResources() const

This method returns the number of resources in the model.

public IloInt getNumberOfScopes() const

136

This method returns the number of scopes.

public IloInt getNumberOfSetupMatrices() const

This method returns the number of setup matrices in the model.

public IloInt getNumberOfStandardKPIs() const

This method returns the number of standard Key Performance Indicators defined in PPO.

public IloInt getNumberOfUnits() const

This function returns the number of existing units of measure.

public IloMSOptimizationCriterion getOptimizationCriterion(int index) const

This method returns the optimization criterion at index. An exception is thrown if the given index is out of
bounds.

public IloMSOptimizationCriterion
getOptimizationCriterionByIdentifier(IloMSIdentifier identifier) const

This method returns the optimization criterion with the given identifier. An exception is thrown if there is no
optimization criterion with the given identifier.

public IloMSOptimizationProfile getOptimizationProfile(IloInt index) const

This method returns the optimization profile with the given index. An exception is thrown if the given index is
out of bounds.

public IloMSOptimizationProfile getOptimizationProfileByIdentifier(IloMSIdentifier
identifier) const

This method returns the optimization profile with the given identifier. An exception is thrown if there is no
optimization profile with the given identifier.

public IloMSBucketSequence getOptimizedBucketSequence()

This function returns the bucket sequence used by the optimizer.

The default bucket sequence is null.

public IloInt getPlanningHorizon() const

137

This method returns the end of horizon to consider when planning. The planning engine will take decisions over
the optimized bucket sequence until the latest bucket that ends exactly at or before this limit. See
setPlanningHorizon for more information.

public IloInt getPlanningOrigin() const

This method returns the origin time of the inventory. This typically equals the start time of the first time bucket. All
procurements received before this date are considered to be in the initial stock.

public IloNum getPlanningWeight(IloMSOptimizationCriterion criterion) const

This method returns the weight of the given criterion.

public IloNum getPlanningWeight(IloMSIdentifier criterionId) const

This method returns the weight of the given criterion.

public IloMSProcurement getProcurement(IloInt index) const

This method returns the procurement with the given index. An exception is thrown if the given index is out of
bounds.

public IloMSProductionOrder getProductionOrder(IloInt index) const

This method returns the production order with the given index. An exception is thrown if the given index is out
of bounds.

public IloMSProductionOrder getProductionOrderByIdentifier(IloMSIdentifier
identifier) const

This method returns the production order with the given identifier. An exception is thrown if there is no
production order with the given identifier.

public IloInt getProductivityGrain() const

This method returns the precision of the productivity computation.

public IloMSQuality getQuality(IloInt index) const

This method returns the quality with the given index. An exception is thrown if the given index is out of bounds.

public IloMSQuality getQualityByIdentifier(IloMSIdentifier identifier) const

138

This method returns the quality with the given identifier. An exception is thrown if there is no unit with the
given identifier.

public IloMSRecipe getRecipe(IloInt index) const

This method returns the recipe with the given index. An exception is thrown if the given index is out of bounds.

public IloMSRecipe getRecipeByIdentifier(IloMSIdentifier identifier) const

This method returns the recipe with the given identifier. An exception is thrown if there is no recipe with the
given identifier.

public IloMSRecipeFamily getRecipeFamily(IloMSIdentifier recipeFamilyType, IloInt
index) const

This function returns the recipe family with the index of the corresponding recipe family type.

public IloMSRecipeFamily getRecipeFamily(IloInt index) const

This method returns the recipe family with the given index. An exception is thrown if the given index is out of
bounds.

public IloMSRecipeFamily getRecipeFamilyByIdentifier(IloMSIdentifier identifier)
const

This method returns the recipe family with the given identifier. An exception is thrown if there is no recipe
family with the given identifier.

public IloMSIdentifier getRecipeFamilyType(IloInt index) const

This function returns the recipe family type identifier with the corresponding index.

public IloMSRepairAlgorithmI * getRepairAlgorithm()

This method returns the repair algorithm of the invoking model.

public IloMSReplicateAlgorithmI * getReplicateAlgorithm()

This method returns the replicate algorithm of the invoking model.

public IloMSResource getResource(IloInt index) const

This method returns the resource with the given index. An exception is thrown if the given index is out of
bounds.

139

public IloMSResource getResourceByIdentifier(IloMSIdentifier identifier) const

This method returns the resource with the given identifier. An exception is thrown if there is no resource with
the given identifier.

public IloMSResourceFamily getResourceFamily(IloInt index) const

This function returns the resource family with the index.

public IloMSResourceFamily getResourceFamily(IloMSIdentifier resourceFamilyType,
IloInt index) const

This function returns the resource family with the index of the corresponding resource family type.

public IloMSResourceFamily getResourceFamilyByIdentifier(IloMSIdentifier
identifier) const

This method returns the resource family with the given identifier. An exception is thrown if there is no
resource family with the given identifier.

public IloMSIdentifier getResourceFamilyType(IloInt index) const

This function returns the resource family type identifier with the corresponding index.

public IloInt getSchedulingHorizon() const

This method returns the end time of the scheduling horizon of the current optimization profile. The scheduling
horizon affects the batching engine, scheduling engine, and GUI behavior. See the method
setSchedulingHorizon for more information.

public IloNum getSchedulingWeight(IloMSOptimizationCriterion criterion) const

This method returns the weight of the given criterion.

public IloNum getSchedulingWeight(IloMSIdentifier criterionId) const

This method returns the weight of the given criterion.

public IloMSScope getScope(IloInt index) const

This method returns the scope with the given index. An exception is thrown if the given index is out of bounds.

public IloMSScope getScopeByIdentifier(IloMSIdentifier identifier) const

140

This method returns the scope with the given identifier. An exception is thrown if there is no scope with the
given identifier.

public IloMSSetupMatrix getSetupMatrix(IloInt index) const

This method returns the setup matrix with the given index. An exception is thrown if the given index is out of
bounds.

public IloMSSetupMatrix getSetupMatrixByIdentifier(IloMSIdentifier identifier)
const

This method returns the setup matrix with the given identifier. An exception is thrown if there is no setup
matrix with the given identifier.

public IloInt getSlackOnPlannedEndTime() const

This method returns the slack applied by the lot streaming engine to the end time of production orders generated
from the planning solution.

public IloInt getSlackOnPlannedStartTime() const

This method returns the slack applied by the lot streaming engine to the start time of production orders generated
from the planning solution.

public IloMSStandardKPI getStandardKPI(IloInt index) const

This method returns the standard Key Performance Indicator with the given index. An exception is thrown if the
given index is out of bounds.

public IloInt getStartMin() const

This method returns the common earliest start time associated with all the activities of the model.

public IloNum getTime() const

This method returns the time, in seconds, since the creation of the invoking IloMSModel object.

public IloInt getTimeCheckingTolerance() const

This method returns the tolerance used for filtering nonfatal error messages with regard to time and capacity
violations in the checkers.

public IloInt getTimeUnit() const

141

This method returns the time unit, expressed in seconds.

public const char * getTimeZone() const

This method returns the identifier of the time zone.

public IloMSUnit getUnit(IloInt index) const

This method returns the unit of measure with the given index. An exception is thrown if the given index is out
of bounds.

public IloMSUnit getUnitByIdentifier(IloMSIdentifier identifier) const

This method returns the unit of measure with the given identifier. An exception is thrown if there is no unit
with the given identifier.

public const char * getVersion() const

This method returns the version number as the string "Major.Minor.Technical Tag", with the copyright and build
information of the PPO version you are using.

public IloNum getWeight(IloMSOptimizationCriterion criterion) const

This method returns the weight of the given criterion.

public IloNum getWeight(IloMSIdentifier criterionId) const

This method returns the weight of the given criterion.

public IloBool hasPlanningData() const

This predicate is true if the model currently contains planning data, typically time buckets.

public IloBool hasSchedulingData() const

This predicate is true if the model currently contains scheduling data, typically, production orders or activities.

public IloBool isClosed()

This method returns true if the model has been closed, and false otherwise. See IloMSModel::close.

142

public IloBool isTimeZoneDefined() const

This predicate is true if the model has a defined time zone different from the default one.

public IloMSActivityChain newActivityChainPrototype(IloMSRecipe recipe)

This method creates and returns a new activity chain prototype to be used for constraining several activity
prototypes. For related information see the PPO_ACTIVITY_CHAIN table in the Data Schema.

public IloMSActivityCompatibilityConstraint
newActivityCompatibilityConstraint(IloMSAbstractActivity act1,
IloMSAbstractActivity act2, IloMSActivityCompatibilityType type)

This method creates and returns a new activity compatibility constraint of the given type.

The possible types are IloMSSameLineId which constrains the two modes (of the two given activities) to have
the same line identifier; IloMSSamePrimaryResource which constrains the two modes to have the same
primary resource; IloMSSamePrimaryResourceAndCapacity constrains the two modes to have the same
primary resource and capacity requirement; IloMSSamePerformedStatus means that the two activities have
to be in the same performed status (either both performed or both unperformed), and
IloMSDifferentPerformedStatus means the opposite.

The other types are: IloMSPerformedImpliesPerformed, IloMSUnperformedImpliesUnperformed,
IloMSPerformedImpliesUnperformed, IloMSUnperformedImpliesPerformed which state that the
status of act1 logically implies the status of act2.

See Also: IloMSActivityCompatibilityType

public IloMSActivity newActivityPrototype(IloMSRecipe recipe)

This function creates and returns a new activity prototype for the recipe. For related information see the
PPO_ACTIVITY_PROTO table in the Data Schema.

public IloMSBatchingSolution newBatchingSolution()

This method returns a new instance of a batching solution.

public IloMSBucket newBucket(IloInt startTime, IloInt endTime, IloMSBucketSequence
bucketSequence)

This method creates and returns a new time bucket beginning at startTime, ending at endTime and for the
sequence bucketSequence. The sequence bucketSequence passed as parameter cannot be null. For
related information see the PPO_BUCKET table in the Data Schema.

public IloMSBucket newBucket(IloInt startTime, IloInt endTime)

This method creates and returns a new time bucket in the optimized bucket sequence beginning at startTime
and ending at endTime. For related information see the PPO_BUCKET table in the Data Schema.

143

public IloMSBucketSequence newBucketSequence()

This method creates and returns a new bucket sequence. For related information see the
PPO_BUCKET_SEQUENCE table in the Data Schema.

public IloMSBucketTemplate newBucketTemplate(IloMSBucketTemplateSequence
bucketTemplateSequence, IloInt bucketRank, IloMSBucketType type,
IloMSBucketPeriodUnit unit, IloInt numberOfPeriods)

This method creates and returns a new bucket template. For related information see the
PPO_BUCKET_TEMPLATE table in the Data Schema.

public IloMSBucketTemplateSequence newBucketTemplateSequence(IloMSBucketSequence
bucketSequence)

This method creates and returns a new bucket template sequence. For related information see the
PPO_BUCKET_SEQUENCE table in the Data Schema.

public IloMSCalendar newCalendar()

This method creates and returns a new calendar. For related information see the PPO_CALENDAR table in the
Data Schema.

public IloMSCalendarInterval newCalendarInterval(IloMSCalendar calendar, IloInt
startTime, IloInt endTime)

This method creates and returns a new calendar interval on the calendar calendar. For related information see
the PPO_CALENDAR_INTERVAL table in the Data Schema.

public IloMSDefaultCheckForStop newDefaultCheckForStop()

This method creates and returns a new default check for the stop object.

public IloMSDemand newDemand(IloMSMaterial material, IloNum quantity)

This function creates and returns a new demand for the specified quantity of material. For related
information see the PPO_DEMAND table in the Data Schema.

public IloMSDueDate newDueDate(IloMSAbstractActivity activity, IloInt time)

This method creates and returns a new due date for the given activity. For related information see the
PPO_DUE_DATE table in the Data Schema.

public IloMSDueDate newDueDate(IloMSDemand demand, IloInt time)

144

This method creates and returns a new due date for the given demand. For related information see the
PPO_DUE_DATE table in the Data Schema.

public IloMSInventoryMaxCostFunction newInventoryMaxCostFunction()

This method defines a maximal inventory cost function. The class IloMSInventoryMaxCostFunction is used
to evaluate the cost of violating the maximal inventory over time. For related information see the
PPO_INVENTORY_MAX_COST_FCT table in the Data Schema.

See Also: IloMSInventoryMaxCostFunction

public IloMSInventoryMinCostFunction newInventoryMinCostFunction()

This method defines a minimal inventory cost function. The class IloMSInventoryMinCostFunction is used
to evaluate the cost of violating the safety stock over time. For related information see the
PPO_INVENTORY_MIN_COST_FCT table in the Data Schema.

See Also: IloMSInventoryMinCostFunction

public IloMSMaterial newMaterial()

This function creates and returns a new material. For related information see the PPO_MATERIAL table in the
Data Schema.

public IloMSMaterialFamily newMaterialFamily()

This function creates and returns a new material family. For related information see the
PPO_MATERIAL_FAMILY table in the Data Schema.

public IloMSMaterialFamilyCardinalityConstraint
newMaterialFamilyCardinalityConstraint(IloMSMaterialFamily family,
IloMSBucketSequence sequence, IloInt cardMax)

This function creates a new material family cardinality constraint on family. This constraint is active in planning,
and expresses the fact that at most cardMax materials of the family can be produced in each bucket of
sequence. Note that while sequence may differ from the sequence used to create planning buckets, the two
must have the same milestones. For example, if the planning engine uses daily buckets, the cardinality sequence
may use two-day buckets, but not half-day buckets.

public IloMSMaterialProduction newMaterialProduction(IloMSMode mode, IloMSMaterial
material, IloNum variableQuantity, IloNum fixedQuantity)

This method defines a production (or consumption if quantity is negative) of the material by the mode. All
other modes of the associated activity will not be affected when calling this method. If you want to define a
common behavior for all modes of an activity, it is recommended to pass the activity instead of the mode. For
related information see the PPO_MATERIAL_PRODUCTION_PROTO table in the Data Schema.

public IloMSMaterialProduction newMaterialProduction(IloMSAbstractActivity absAct,
IloMSMaterial material, IloNum variableQuantity, IloNum fixedQuantity)

145

This method defines a production or consumption (if quantity is negative) of the material by the activity.
All modes of this activity will produce/consume the material in the same way. If absAct is an activity
prototype, the material production will have a reference to the corresponding recipe. For related information see
the PPO_MATERIAL_PRODUCTION_PROTO table in the Data Schema.

public IloMSMaterialProduction newMaterialProduction(IloMSMode mode, IloMSMaterial
material, IloNum quantity)

This method defines a production (or consumption if quantity is negative) of the material by the mode. All
other modes of the associated activity will not be affected when calling this method. If you want to define a
common behavior for all modes of an activity, it is recommended to pass the activity instead of the mode. For
related information see the PPO_MATERIAL_PRODUCTION_PROTO table in the Data Schema.

public IloMSMaterialProduction newMaterialProduction(IloMSAbstractActivity absAct,
IloMSMaterial material, IloNum quantity)

This method defines a production or consumption (if quantity is negative) of the material by the activity.
All modes of this activity will produce/consume the material in the same way. If absAct is an activity
prototype, the material production will have a reference to the corresponding recipe. For related information see
the PPO_MATERIAL_PRODUCTION_PROTO table in the Data Schema.

public IloMSMode newMode(IloMSAbstractActivity activity)

This method creates and returns a new mode for the given activity. For related information see the
PPO_MODE_PROTO table in the Data Schema.

public static IloMSModel newModel()

This method creates and returns a new IloMSModel object owning its own memory allocation environment. For
related information see the PPO_MODEL table in the Data Schema.

public IloMSOptimizationProfile newOptimizationProfile(IloMSOptimizationProfile
profile)

This function creates and returns a new optimization profile, which is a copy of the given profile For related
information see the PPO_OPTIMIZATION_PROFILE table in the Data Schema.

public IloMSOptimizationProfile newOptimizationProfile()

This function creates and returns a new optimization profile. For related information see the
PPO_OPTIMIZATION_PROFILE table in the Data Schema.

public IloMSPlanningSolution newPlanningSolution()

This method returns a new instance of a planning solution.

146

public IloMSPrecedence newPrecedence(IloMSAbstractActivity pred,
IloMSAbstractActivity succ, IloMSPrecedenceType type, IloInt delayMin, IloInt
delayMax)

This method creates and returns a new precedence constraint between the predecessor activity pred and the
successor activity succ.

The type of the precedence constraint can be IloMSPrecedenceType::StartToStart for start to start of
the activities, IloMSPrecedenceType::StartToEnd for start to end,
IloMSPrecedenceType::EndToStart for end to start, or IloMSPrecedenceType::EndToEnd for end to
end.

The parameters delayMin and delayMax are used to set the minimal and maximal delays for the constraint.

For a precedence constraint of type IloMSPrecedenceType::StartToStart, delayMin is the minimal
delay between the start times of the two activities. This minimal delay must be positive or null. The special value
-1 indicates that no minimal delay constraint applies. The parameter delayMax is the maximal delay between
the start times of the two activities. This maximal delay must be positive or null. The special value -1 indicates
that no maximal delay constraint applies.

For a precedence constraint of type start to end IloMSPrecedenceType::StartToEnd, delayMin is the
minimal delay between the start time of pred and the end time of succ. This minimal delay must be positive or
null. The special value -1 indicates that no minimal delay constraint applies. The parameter delayMax is the
maximal delay between the start time of pred and the end time of succ. This maximal delay must be positive or
null. The special value -1 indicates that no maximal delay constraint applies.

For a precedence constraint of type end to start IloMSPrecedenceType::EndToStart, delayMin is the
minimal delay between the end time of pred and the start time of succ. This minimal delay must be positive or
null. The special value -1 indicates that no minimal delay constraint applies. The parameter delayMax is the
maximal delay between the end time of pred and the start time of succ. This maximal delay must be positive or
null. The special value -1 indicates that no maximal delay constraint applies.

For a precedence constraint of type end to end IloMSPrecedenceType::EndToEnd, the parameter
delayMin is the minimal delay between the end times of the two activities. This minimal delay must be positive
or null. The special value -1 indicates that no minimal delay constraint applies. The parameter delayMax is the
maximal delay between the end times of the two activities. This maximal delay must be positive or null. The
special value -1 indicates that no maximal delay constraint applies.

For any type of constraint, an exception is thrown if the given delayMin or the given delayMax is strictly
smaller than -1.

For related information see the PPO_PROD_PROD_PRECED table in the Data Schema.

See Also: IloMSPrecedenceType

public IloMSProcurement newProcurement(IloMSMaterial material, IloNum quantity)

This method returns the new procurement with the specified quantity for the material.

public IloMSProcurementToDemandArc newProcurementToDemandArc(IloMSMaterial
material, IloNum quantity, IloMSProcurement pred, IloMSDemand succ)

This method creates and returns a new material flow arc between the procurement pred and the demand succ.

public IloMSProcurementToProdArc newProcurementToProdArc(IloMSMaterial material,

147

IloNum quantity, IloMSProcurement pred, IloMSProductionOrder succ)

This method creates and returns a new material flow arc between the procurement pred and the production
order succ. This introduces an implicit temporal constraint between the procurement receipt time and a
consumer activity of succ consuming the material.

public IloMSProcurementToStorageArc newProcurementToStorageArc(IloMSMaterial
material, IloNum quantity, IloMSProcurement pred)

This deprecated method creates and returns a new material flow arc between the procurement pred and stock.

public IloMSProdToDemandArc newProdToDemandArc(IloMSMaterial material, IloNum
quantity, IloMSProductionOrder pred, IloMSDemand succ)

This method creates and returns a new material flow arc between the predecessor production order pred and
the successor demand succ.

The quantity is in this version indicative and not taken into account in the optimization.

For related information see the PPO_PROD_TO_DEMAND_ARC table in the Data Schema.

public IloMSProdToStorageArc newProdToStorageArc(IloMSMaterial material, IloNum
quantity, IloMSProductionOrder pred)

This deprecated method creates and returns a new material flow arc between the predecessor production order
pred and stock.

public IloMSQuality newQuality()

This method returns the new material quality to be used for blending problems.

public IloMSRecipe newRecipe()

This function creates and returns a new recipe. For related information see the PPO_RECIPE table in the Data
Schema.

public IloMSRecipeFamily newRecipeFamily()

This function creates and returns a new recipe family. For related information see the PPO_RECIPE_FAMILY
table in the Data Schema.

public IloMSRecipeFamilyFilter newRecipeFamilyFilter(IloMSScope scope)

This function creates and returns a new recipe family filter on a scope. For related information see the
PPO_RECIPE_FAMILY_FILTER table in the Data Schema.

148

public IloMSResource newResource(IloInt capacity)

This method creates and returns a new resource with the given capacity. An exception is thrown if the given
capacity is negative. For related information see the PPO_RESOURCE table in the Data Schema.

public IloMSResourceCapacityCostFunction newResourceCapacityCostFunction()

This method defines a resource capacity cost function. The class IloMSResourceCapacityCostFunction is
used to evaluate the cost of using a resource over time. For related information see the
PPO_RESOURCE_CAPACITY_COST_FCT table in the Data Schema.

See Also: IloMSResourceCapacityCostFunction

public IloMSResourceConstraint newResourceConstraint(IloMSMode mode, IloMSResource
resource, IloInt capacity, IloBool isPrimary)

This method creates a new resource constraint for the given mode. The parameter mode is the mode of the
activity for which the resource is required. The parameter resource is the required resource, and capacity is
the required capacity. The parameter isPrimary is a Boolean indicating if the given resource is the primary
resource for the given mode.

An exception is thrown if the given capacity is negative, if the given mode already has a resource constraint for
the given resource, or if isPrimary is true and the given mode already has a primary resource constraint.

public IloMSResourceFamily newResourceFamily()

This method returns the new resource family to be used for aggregating resources in the GUI.

public IloMSScope newScope()

This function creates and returns a new scope. For related information see the PPO_SCOPE table in the Data
Schema.

public IloMSSetupMatrix newSetupMatrix()

This method creates and returns a new setup matrix. For related information see the PPO_SETUP_MATRIX
table in the Data Schema.

public IloMSActivity newStorageActivityPrototype(IloMSActivity producingActivity,
IloMSMaterial producedMaterial)

This function creates and returns a new storage activity prototype associated with the corresponding activity
and producing this material.

The material specified must be produced by the producing activity in a storage unit associated with the
resource referred to as the primary resource by its modes. (See IloMSStorageUnit.setResource and
IloMSMaterialProduction.setStorageUnit). Note that the consuming recipes must also consume from
this storage unit.

149

When a storage activity is declared, the instance of IloMSMaterialProduction representing the consumption
must also specify a maximum number of incoming pegging arcs equal to one; see
IloMSMaterialProduction.setMaxNumberOfPeggingArcs.

For related information see the PPO_ACTIVITY_PROTO table in the Data Schema.

public IloMSStorageToDemandArc newStorageToDemandArc(IloMSMaterial material, IloNum
quantity, IloMSDemand succ)

This deprecated method creates and returns a new material flow arc between the storage and the demand succ.

public IloMSStorageToProdArc newStorageToProdArc(IloMSMaterial material, IloNum
quantity, IloMSProductionOrder succ)

This deprecated method creates and returns a new material flow arc between stock and the production order
succ.

public IloMSStorageUnit newStorageUnit()

This method creates and returns a new storage unit. For related information see the PPO_STORAGE_UNIT
table in the Data Schema.

public IloMSUnit newUnit()

This function creates and returns a new unit of measure. For related information see the PPO_UNIT table in the
Data Schema.

public IloMSIdentifier newUUID()

This method creates and returns a Universally Unique Identifier (UUID).

The intent of UUIDs is to enable distributed systems to uniquely identify information without significant central
coordination. Thus, anyone can create a UUID and use it to identify something with reasonable confidence that
the identifier will never be unintentionally used by anyone for anything else. Information labeled with UUIDs can
therefore be used for identifying PPO objects in a relational database.

public IloMSRecipe newWasteRecipe(IloMSMaterial material, IloNum wasteCost)

This helper function creates and returns a new recipe for discarding material. In the material rebalancing engine,
the waste criterion is used to penalize the excess of semi-finished materials to be thrown away due to a
mismatch between semi-finished and finished products. In the planning engine, the waste criterion is used to
penalize the amount of material to throw away because the shelf life expired. The planning engine enforces that
not a single expired item remains in stock. In order to achieve that, it is mandatory to create waste recipes for any
material with limited shelf life (a violation in the checker signals that as a warning if waste recipe are forgotten).
The total waste cost is defined for the planning as the sum of processing cost of all "planned productions" of
waste recipes.

The recipe created has an activity prototype of fixed processing time 1 with a variable processing cost equal to
the wasteCost. If the material is storable in multiple storage units, this function creates a mode of the activity for
consuming from each possible storage unit. For related information see the PPO_RECIPE and PPO_MODE

150

tables in the Data Schema.

public void putSetting(const char * valueName, const char * value)

This method enables you to set a global parameter. To set parameters dependent upon the optimization profile,
use IloMSOptimizationProfile::putSetting instead.

The key slackOnPlannedStartTime expects an integer value (default is zero if inventory corridors are
defined; otherwise IloMSIntPlusInfinity). It defines the number of time units of anticipation allowed to the
scheduling engine with respect to the start of the time bucket chosen by the planning engine.

The key slackOnPlannedEndTime expects an integer value (default is IloMSIntPlusInfinity). It defines
the number of time units of delay allowed to the scheduling engine with respect to the end of the time bucket
chosen by the planning engine.

The key modeOfPlanningOnly expects a boolean value (default is false). If the value is true, then the
scheduling engine is forced to respect the decisions taken by the planning engine with respect to chosen
resources. Note that if super resources have been defined, then the scheduling engine choices are restricted to
the subresources of the super resource chosen by the planning. This is a way to limit a possible combinatorial
explosion of modes in scheduling.

The key bShortName expects a boolean value. If the value is false (default) then the activity names (as labeled
on the Gantt Diagram for example) are obtained by concatenating the production order name to the activity
prototype name. If the value is true, then the activity labels are copied from the activity prototype name with
special control characters available that start with the caret ^ symbol. See IloMSActivity for more information
on the pattern syntax.

The key MapFile expects a string value. This parameter allows a background map to be displayed in the
Distribution Planning view for multi-location problems. By default, the directory data and images are scanned.

The key MapGraphicFactor expects a floating point value. This parameter is used to tune the representation
of nodes and arcs in the Distribution Planning view.

The key PUSH_BALANCE_MATERIAL_INVENTORIES expects a boolean value (default is true). If the value is
false, material inventories won't be equilibrated (other considerations aside).

public void readSettings(const char * filename)

This method reads the settings from a file in CSV format. The parameter filename is the name of the input file.

public void registerLicense(char * plantLicense, int plantSignature)

This method registers the runtime license IloMSModel.

public void removeAllProperties()

This method removes all properties.

public void removeAutomaticRecipes()

This method deletes all recipes with recipe type 'Automatic' and the associated production orders and pegging
arcs (even firm ones). Corresponding planned productions are also removed from the planning solution.

151

Automatic recipes are typically created automatically by PPO when the settings
bAutomaticGenerationInflowRecipes and bAutomaticGenerationWasteRecipes are set to true.

public void removeNotFirmedData()

This method deletes all production orders and pegging arcs on the current batching solution that do not have a
firm quantity.

public void removeProperty(const char * name)

This method removes the property with the given name.

public IloBool repeg()

This method runs the repegging algorithm on the current model.

public void reserveCurrentBatchingSolution()

internal

This method retains the current batching solution for possible rollback and creates a copy of the current batching
solution for use within a custom batching algorithm.

public void rollbackCurrentBatchingSolution()

internal

This method deletes the current batching solution and reinstalls an earlier version saved when calling the
reserveCurrentBatchingSolution() method. A typical use of this method is when a failure occurs in a
customized batching algorithm.

public void setBatchingHorizon(IloInt horizon)

This deprecated method sets the end of horizon to consider when batching. Use setSchedulingHorizon.

public void setBatchingWeight(IloMSOptimizationCriterion criterion, IloNum value)

This method sets the weight of the given criterion to the given value.

public void setBatchingWeight(IloMSIdentifier criterionId, IloNum value)

This method sets the weight of the given criterion to the given value.

public void setCheckForStop(IloMSCheckForStop hook)

152

This method creates a hook to stop an optimization engine.

public void setCurrentBatchingSolution(IloMSBatchingSolution solution)

This method sets the specified instance of a batching solution as the current batching solution.

public void setCurrentMaterialFamilyType(IloMSIdentifier familyType)

This method selects the current material family type for aggregation purpose in the GUI.

public void setCurrentOptimizationProfile(IloMSOptimizationProfile profile)

This function sets the current optimization profile containing all overridden parameters for engines.

public void setCurrentPlanningSolution(IloMSPlanningSolution solution)

Set the specified instance of a planning solution as the current planning solution.

public void setCurrentRecipeFamilyType(IloMSIdentifier familyType)

This method selects the current recipe family type for aggregation purpose in the GUI.

public void setCurrentResourceFamilyType(IloMSIdentifier familyType)

This method selects the current resource family type for aggregation purpose in the GUI.

public void setDateOrigin(IloMSDate date)

This method sets the absolute date origin. All relative times (given as integer) are interpreted with respect to this
date origin. The given date is understood to be in UTC.

public void setDisplayedBucketSequence(IloMSBucketSequence sequence)

This function changes the bucket sequence used by the GUI.

It has to be set at least once (except when no bucket is defined).

public void setEndMax(IloInt latestEndTime)

This method sets the latest possible end time for all the activities of the model.

public void setIntDateOrigin(IloInt inSecondsSince_01_01_2001)

153

This method defines the date, expressed in seconds since January 1st 2001 UTC, that corresponds to the time 0
(zero) used in the model. For example, setIntDateOrigin(31 * 24 * 3600) means that time 0
corresponds to February 1st, 2001.

public void setIntProperty(const char * name, IloInt value)

This method sets the value of an integer property named name.

public void setMakespanOrigin(IloInt makespanOrigin)

This method sets the makespan origin, that is, the time that serves as a basis to calculate the makespan. The
makespan is the difference between the end time of the last activity and the given makespanOrigin.

public void setNumProperty(const char * name, IloNum value)

This method sets the value of a numeric property named name.

public void setObject(IloAny object)

This method provides a name for the invoking IloMSModel object.

This modifier associates a pointer with an external object to the invoking object.

public void setOptimizedBucketSequence(IloMSBucketSequence sequence)

This function changes the bucket sequence used by the optimizer.

It has to be set at least once (except when no bucket is defined).

public void setPlanningHorizon(IloInt horizon)

This method sets the end of horizon to consider when planning. The planning engine will take decisions over the
optimized bucket sequence until the latest bucket that ends exactly at or before this limit.

Let E be the end of the latest bucket that ends exactly at or before the planning horizon. The planning engine
generates only planned deliveries and corresponding planned productions for demands whose earliest possible
delivery can start before E (DELIVERY_START_MIN < E). Demands that are to be delivered after E
(DELIVERY_START_MIN ≥ E) are taken into account in the inventory corridor by forcing the planning engine to
create enough planned productions to stay between the minimum and the maximum number of days of supply at
the end of the horizon.

public void setPlanningWeight(IloMSOptimizationCriterion criterion, IloNum value)

This method sets the weight of the given criterion to the given value.

public void setPlanningWeight(IloMSIdentifier criterionId, IloNum value)

154

This method sets the weight of the given criterion to the given value.

public void setProductivityGrain(IloInt grain)

This method is used to set the precision of the productivity computation. The default value is 100.

public void setSchedulingHorizon(IloInt horizon)

This method sets the end time of the scheduling horizon of the current optimization profile, and thereby affects
the batching engine, scheduling engine, and GUI behavior.

The batching engine does not consider planned productions or planned deliveries that start in time buckets equal
to or after the scheduling horizon. Therefore, such planning information is not converted into production orders
and material flow arcs, and no corresponding activities are created. In the scheduling solution, the nondelivery
cost for a demand that has its delivery end max greater than this horizon is computed based on the pegged
quantity, not on the quantity of the demand itself.

Integrated planning and scheduling problems (where both planning and scheduling are required) have a further
consideration regarding solution display in the GUI. If the scheduling horizon is less than the planning horizon,
then for time periods before the scheduling horizon the solution data is based on the scheduling solution. For
time periods after the scheduling horizon, the planning solution data (planned productions and planned
deliveries) are displayed in the appropriate views of the GUI.

public void setSchedulingWeight(IloMSOptimizationCriterion criterion, IloNum value)

This method sets the weight of the given criterion to the given value.

public void setSchedulingWeight(IloMSIdentifier criterionId, IloNum value)

This method sets the weight of the given criterion to the given value.

public void setSlackOnPlannedEndTime(IloInt value)

This method sets the slack applied by the scheduling engine to the end time of production orders generated from
the planning solution.

public void setSlackOnPlannedStartTime(IloInt value)

This method sets the slack applied by the scheduling engine to the start time of production orders generated from
the planning solution.

public void setStartMin(IloInt earliestStartTime)

This method sets the earliest possible start time for all the activities of the model.

public void setStringProperty(const char * name, const char * value)

155

This method sets the value of a string property named name.

public void setTimeCheckingTolerance(IloInt toleranceInTimeUnits)

This method sets the tolerance used for filtering nonfatal error messages with regard to time and capacity
violations in the checkers.

public void setTimeUnit(IloInt inSeconds)

This method defines the time unit, expressed in seconds, used throughout the model. For example,
setTimeUnit(60) means that an activity of duration 1 takes one minute in reality (setTimeUnit(60) = one
minute, setTimeUnit(3600) = one hour, etc.). This parameter has no impact on the optimization.

public void setTimeZone(const char * identifier)

This method sets the identifier of the time zone.

A list of possible time zone settings is available in the Date and time display section of the reference material.

public void setTraceFile(const char * filename=0, ios_base::openmode
mode=ios_base::out)

This method writes information about the optimization run to an output device. If the passed filename is 0 (zero)
then messages are written to the standard output. The detail of information reported depends on the trace level
(see IloMSModel::setTraceLevel). The parameter filename is the name of the output trace file.

public void setTraceLevel(IloInt level)

This method serves to activate or deactivate the tracing of the optimization run. The possible values for the
parameter level are 0 (zero) or 1. If level is 0 then trace is deactivated; if it is 1, then trace is activated.

public void setWeight(IloMSOptimizationCriterion criterion, IloNum value)

This method sets the weight of the given criterion to the given value.

public void setWeight(IloMSIdentifier criterionId, IloNum value)

This method sets the weight of the given criterion to the given value. The possible criteria are:
TotalCleanupCost, TotalEarlinessCost, TotalInventoryCost (excess), TotalInventoryDeficitCost,
TotalNonDeliveryCost, TotalRevenue, TotalProcessingCost (mode costs), TotalSetupCost, TotalSetupTime,
TotalTardinessCost, TotalUnperformedCost

Other values are possible but their use with the scheduling engine is discouraged (TotalIdleCost,
TotalResourceCost, Makespan, MaxEarlinessCost, MaxTardinessCost).

public IloBool solve() const

156

This method solves the problem using the appropriate engines. It may use the planning engine, the lot sizing
engine and/or the scheduling engine, depending on the requirements of the current optimization profile. It returns
true if a solution is found; false otherwise. Note that in case of success the previous solutions are no longer valid.
A new planning/batching/scheduling solution instance may have replaced the previous current
planning/batching/scheduling solution. For this reason, do not use a reference to a solution obtained before
solving.

public void write(const char * filename, IloBool writeSettings)

This method writes the problem instance to a CSV file. The parameter filename is the name of the output file.
The parameter writeSettings is a Boolean specifying if the parameter settings shall be saved in the file as
well.

public void writeSettings(const char * filename)

This method writes the settings to a file in CSV format. The parameter filename is the name of the output file.

public void writeSolution(const char * filename, IloMSSchedulingSolution solution)

This method writes the given solution to a file in CSV format. The parameter filename is the name of the output
file. The parameter solution is the solution to be written.

157

Class IloMSObject
Definition file: ilplant/object.h
Library: plant

158

159

The class IloMSObject is used to represent all types of Plant PowerOps objects.
This mother class contains all the general services (get/setName,get/setObject, and named properties)
common to all classes used to model the problem and describe the solution. The named properties mechanism is
a simple way to add fields to existing concepts without subclassing.

Method Summary

public void display(ostream & out) const

public IloMSIdentifier getIdentifier() const

public IloInt getIntProperty(const char * name) const

public IloMSModel getModel() const

public const char * getName() const

public IloNum getNumProperty(const char * name) const

public IloAny getObject() const

public const char * getStringProperty(const char * name) const

public IloBool hasIdentifier() const

public IloBool isPropertyDefined(const char * name) const

public void removeAllProperties()

public void removeProperty(const char * name)

public void setIntProperty(const char * name, IloInt)

public void setName(const char * name)

public void setNumProperty(const char * name, IloNum)

public void setObject(IloAny object)

public void setStringProperty(const char * name, const char *)

public const char * toString() const

Methods

public void display(ostream & out) const

This method displays the object on the output stream out.

public IloMSIdentifier getIdentifier() const

This accessor returns the identifier of the invoking object. An exception is thrown if the invoking object has no
identifier.

public IloInt getIntProperty(const char * name) const

This method returns the value of the integer property named name.

public IloMSModel getModel() const

This method returns the instance of IloMSModel on which the invoking object has been instantiated.

160

public const char * getName() const

This accessor returns the name of the invoking object.

public IloNum getNumProperty(const char * name) const

This method returns the value of the numeric property named name.

public IloAny getObject() const

This accessor returns a pointer to the external object associated with the invoking object.

public const char * getStringProperty(const char * name) const

This method returns the value of the string property named name.

public IloBool hasIdentifier() const

This predicate returns true if the invoking object has an identifier.

public IloBool isPropertyDefined(const char * name) const

This method allows testing for the existence of a named property.

public void removeAllProperties()

This method removes all properties.

public void removeProperty(const char * name)

This method removes the property with the given name.

public void setIntProperty(const char * name, IloInt)

This method sets the value of an integer property named name.

public void setName(const char * name)

This modifier provides a name for the invoking object.

public void setNumProperty(const char * name, IloNum)

161

This method sets the value of a numeric property named name.

public void setObject(IloAny object)

This modifier associates a pointer with an external object to the invoking object.

public void setStringProperty(const char * name, const char *)

This method sets the value of a string property named name.

public const char * toString() const

This method returns a character string containing a display message.

162

Class IloMSOptimizationCriterion
Definition file: ilplant/kpi.h
Library: plant

The IloMSOptimizationCriterion class is used to represent optimization criteria.
An optimization criterion is a specific type of Key Performance Indicator that can be optimized by the PPO
optimization engines.

See Also: IloMSStandardKPI

Inherited Methods from IloMSStandardKPI

getValue, getValue, getValue, isEditable, isVisible, setVisible, toMinimize

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

163

Class IloMSOptimizationProfile
Definition file: ilplant/optimizationprofile.h
Library: plant

The IloMSOptimizationProfile class is used to represent optimization profiles.
Optimization profiles are containers of parameters to tune the optimization engines.

Method Summary

public IloBool areBatchIntegralityConstraintsEnabledForPlanning()

public IloBool areBatchSizeConstraintsEnabledForPlanning()

public IloBool areIntegralityAfterBatchingHorizonConstraintsEnabledForPlanning()

public IloBool areReservoirCapacityConstraintsEnabledForScheduling()

public IloBool areResourceCapacityConstraintsEnabledForPlanning()

public IloBool areSetupConstraintsEnabledForPlanning()

public IloBool areShelfLifeAndMaturityConstraintsEnabledForPlanning()

public IloBool areStockConstraintsEnabledForPlanning()

public void display(ostream & stream) const

public IloMSBatchingAlgorithm getBatchingAlgorithm() const

public IloInt getBatchingHorizon() const

public IloNum getBatchingRelativeGap() const

public IloNum getBatchingTimeLimit() const

public IloNum getBatchingWeight(IloMSOptimizationCriterion criterion) const

public IloMSPlanningAlgorithm getPlanningAlgorithm() const

public IloInt getPlanningHorizon() const

public IloNum getPlanningRelativeGap() const

public IloNum getPlanningTimeLimit() const

public IloNum getPlanningWeight(IloMSOptimizationCriterion criterion) const

public IloNum getRebalancingTimeLimit() const

public IloInt getSchedulingHorizon() const

public IloNum getSchedulingTimeLimit() const

public IloNum getSchedulingWeight(IloMSOptimizationCriterion criterion) const

public IloNum getWeight(IloMSOptimizationCriterion criterion) const

public IloBool isBatchingRequired() const

public IloBool isPlanningRequired() const

public IloBool isRebalancingRequired() const

public IloBool isRepeggingRequired() const

public IloBool isSchedulingOrPostSchedulingRequired() const

public IloBool isSchedulingRequired() const

public void putSetting(const char * key, const char * value)

164

public void setBatchingAlgorithm(IloMSBatchingAlgorithm algo)

public void setBatchingHorizon(IloInt horizon)

public void setBatchingRelativeGap(IloNum gap)

public void setBatchingRequired(IloBool batchingRequired)

public void setBatchingTimeLimit(IloNum timeLimit)

public void setBatchingWeight(IloMSOptimizationCriterion criterion, IloNum
weight)

public void setBatchIntegralityConstraintsEnabledForPlanning(IloBool enabled)

public void setBatchSizeConstraintsEnabledForPlanning(IloBool enabled)

public void setIdentifier(IloMSIdentifier identifier)

public void setIntegralityAfterBatchingHorizonConstraintsEnabledForPlanning(IloBool
enabled)

public void setPlanningAlgorithm(IloMSPlanningAlgorithm algo)

public void setPlanningHorizon(IloInt horizon)

public void setPlanningRelativeGap(IloNum gap)

public void setPlanningRequired(IloBool planningRequired)

public void setPlanningTimeLimit(IloNum timeLimit)

public void setPlanningWeight(IloMSOptimizationCriterion criterion, IloNum
weight)

public void setRebalancingRequired(IloBool rebalancingRequired)

public void setRebalancingTimeLimit(IloNum timeLimit)

public void setRepeggingRequired(IloBool repeggingRequired)

public void setReservoirCapacityConstraintsEnabledForScheduling(IloBool
enabled)

public void setResourceCapacityConstraintsEnabledForPlanning(IloBool enabled)

public void setSchedulingHorizon(IloInt horizon)

public void setSchedulingRequired(IloBool schedulingRequired)

public void setSchedulingTimeLimit(IloNum timeLimit)

public void setSchedulingWeight(IloMSOptimizationCriterion criterion, IloNum
weight)

public void setScope(IloMSScope scope)

public void setSetupConstraintsEnabledForPlanning(IloBool enabled)

public void setShelfLifeAndMaturityConstraintsEnabledForPlanning(IloBool
enabled)

public void setStockConstraintsEnabledForPlanning(IloBool enabled)

public void setWeight(IloMSOptimizationCriterion criterion, IloNum weight)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

165

Methods

public IloBool areBatchIntegralityConstraintsEnabledForPlanning()

This method returns true if the constraint on recipes requiring integer batch sizes is enforced for the planning
module in this optimization profile.

public IloBool areBatchSizeConstraintsEnabledForPlanning()

This method returns true if the constraints on minimal and maximal batch sizes are enforced for the planning
module in this optimization profile.

public IloBool areIntegralityAfterBatchingHorizonConstraintsEnabledForPlanning()

This accessor returns the relative gap used to stop shipping optimization. For example, if the relative gap is 0.01,
optimization will stop as soon as it is proven that the cost of the current solution is not more than 1% above the
optimum.

This modifier sets the relative gap used to stop shipping optimization. For example, if the relative gap is 0.01,
optimization will stop as soon as it is proven that the cost of the current solution is not more than 1% above the
optimum.

This method returns false if a relaxation window has been defined between the batching and the planning
horizon. If false is returned, all binary and integer variables are considered as floating point variables.

public IloBool areReservoirCapacityConstraintsEnabledForScheduling()

This method returns true if the constraints on the maximum capacity of storage units are enforced by the
scheduling engine in this optimization profile. Otherwise it returns false. Enforcing the maximum capacity
constraint on storage units consumes processing time and memory, and may lead to infeasibilities.

public IloBool areResourceCapacityConstraintsEnabledForPlanning()

This method returns true if the constraint on resource finite capacity is enforced for the planning module in this
optimization profile.

public IloBool areSetupConstraintsEnabledForPlanning()

This method returns true if the constraint on setup times is enforced for the planning module in this optimization
profile.

public IloBool areShelfLifeAndMaturityConstraintsEnabledForPlanning()

This method returns true if the constraints on maturity and shelf life of materials are enforced for the planning
module in this optimization profile. If true, the planning module will prohibit demand delivery or material
consumption by production orders if the material is not mature or already expired.

public IloBool areStockConstraintsEnabledForPlanning()

166

This method returns true if the constraints on maximum inventory are enforced for the planning module in this
optimization profile.

public void display(ostream & stream) const

This method displays the optimization profile in the stream passed as argument.

public IloMSBatchingAlgorithm getBatchingAlgorithm() const

This method returns the batching algorithm that the solve procedure uses if batching is required.

public IloInt getBatchingHorizon() const

This deprecated method returns the time of the batching horizon end. Use the method
getSchedulingHorizon.

public IloNum getBatchingRelativeGap() const

This accessor returns the relative gap used to stop batching optimization. For example, if the relative gap is 0.01,
optimization will stop as soon as it is proven that the cost of the current solution is not more than 1% above the
optimum.

public IloNum getBatchingTimeLimit() const

This accessor returns the time limit specific to the batching engine. Only the optimized batching engine takes it
into account.

public IloNum getBatchingWeight(IloMSOptimizationCriterion criterion) const

This accessor returns the weight for the given criterion in the invoking optimization profile.

public IloMSPlanningAlgorithm getPlanningAlgorithm() const

This method returns the planning algorithm that the planning engine will use.

public IloInt getPlanningHorizon() const

This accessor returns the time of the planning horizon end. The planning engine will take decisions over the
optimized bucket sequence until the latest bucket that ends exactly at or before this limit. See
setPlanningHorizon for more information.

public IloNum getPlanningRelativeGap() const

167

This accessor returns the relative gap used to stop planning optimization. For example, if the relative gap is 0.01,
optimization will stop as soon as it is proven that the cost of the current solution is not more than 1% above the
optimum.

public IloNum getPlanningTimeLimit() const

This accessor returns the time limit specific to the planning engine.

public IloNum getPlanningWeight(IloMSOptimizationCriterion criterion) const

This accessor returns the weight for the given criterion in the invoking optimization profile.

public IloNum getRebalancingTimeLimit() const

This accessor returns the time limit specific to the material rebalancing engine.

public IloInt getSchedulingHorizon() const

This method returns the end time of the scheduling horizon. The scheduling horizon affects the batching engine,
scheduling engine, and GUI behavior. See the method setSchedulingHorizon for more information.

public IloNum getSchedulingTimeLimit() const

This accessor returns the time limit specific to the scheduling engine.

public IloNum getSchedulingWeight(IloMSOptimizationCriterion criterion) const

This accessor returns the weight for the given criterion in the invoking optimization profile.

public IloNum getWeight(IloMSOptimizationCriterion criterion) const

This accessor returns the weight for the given criterion in the invoking optimization profile.

public IloBool isBatchingRequired() const

This method returns true if there is a need for a batching and pegging pass with the batching engine.

public IloBool isPlanningRequired() const

This method returns true if there is a need for a planning pass with the planning engine.

public IloBool isRebalancingRequired() const

168

This method returns true if there is a need for a material rebalancing pass.

public IloBool isRepeggingRequired() const

This method returns true if there is a need for a final demand repegging pass.

public IloBool isSchedulingOrPostSchedulingRequired() const

This method returns true if there is a need for a scheduling or post-processing pass based on existing scheduling
solution.

public IloBool isSchedulingRequired() const

This method returns true if there is a need for a scheduling pass with the scheduling engine.

public void putSetting(const char * key, const char * value)

This modifier associates a value with the key in the internal settings of the invoking optimization profile.

Note that the value must be interpretable as string or integer, floating point, or Boolean within the semantics of
the corresponding setting. See IloMSModel::putSetting for more information on the documented settings.

See Also: IloMSActivity, IloMSModel

public void setBatchingAlgorithm(IloMSBatchingAlgorithm algo)

This method sets the batching algorithm that the solve procedure uses if batching is required.

public void setBatchingHorizon(IloInt horizon)

This deprecated method sets the time of the batching horizon end. Use setSchedulingHorizon.

public void setBatchingRelativeGap(IloNum gap)

This modifier sets the relative gap used to stop batching optimization. For example, if the relative gap is 0.01,
optimization will stop as soon as it is proven that the cost of the current solution is not more than 1% above the
optimum.

public void setBatchingRequired(IloBool batchingRequired)

This method is used to express the need for a batching and pegging pass with the batching engine.

public void setBatchingTimeLimit(IloNum timeLimit)

169

This modifier sets the time limit expressed in seconds specific to the batching engine. Only the optimized
batching engine takes it into account.

public void setBatchingWeight(IloMSOptimizationCriterion criterion, IloNum weight)

This modifier associates a weight for the criterion in the invoking optimization profile.

public void setBatchIntegralityConstraintsEnabledForPlanning(IloBool enabled)

When this method is called with false as parameter, the planning module relaxes the constraints enforcing
integer batch sizes.

public void setBatchSizeConstraintsEnabledForPlanning(IloBool enabled)

When this method is called with false as parameter, the planning module relaxes the minimal and maximal batch
size constraints.

public void setIdentifier(IloMSIdentifier identifier)

This modifier associates an identifier with the invoking optimization profile. An exception is thrown if the
given identifier is already used.

public void setIntegralityAfterBatchingHorizonConstraintsEnabledForPlanning(IloBool
enabled)

When this method is called with false as parameter, a relaxation window is defined between the scheduling and
the planning horizon. The batching engine uses the horizon of the scheduling horizon.

public void setPlanningAlgorithm(IloMSPlanningAlgorithm algo)

This method sets the planning algorithm that the planning engine uses.

public void setPlanningHorizon(IloInt horizon)

This modifier sets the time of the planning horizon end. The planning engine will take decisions over the
optimized bucket sequence until the latest bucket that ends exactly at or before this limit.

Let E be the end of the latest bucket that ends exactly at or before the planning horizon. The planning engine
generates only planned deliveries and corresponding planned productions for demands whose earliest possible
delivery can start before E (DELIVERY_START_MIN < E). Demands that are to be delivered after E
(DELIVERY_START_MIN ≥ E) are taken into account in the inventory corridor by forcing the planning engine to
create enough planned productions to stay between the minimum and the maximum number of days of supply at
the end of the horizon.

.

public void setPlanningRelativeGap(IloNum gap)

170

This modifier sets the relative gap used to stop planning optimization. For example, if the relative gap is 0.01,
optimization will stop as soon as it is proven that the cost of the current solution is not more than 1% above the
optimum.

public void setPlanningRequired(IloBool planningRequired)

This method is used to express the need for a planning pass with the planning engine.

public void setPlanningTimeLimit(IloNum timeLimit)

This modifier sets the time limit expressed in seconds specific to the planning engine.

public void setPlanningWeight(IloMSOptimizationCriterion criterion, IloNum weight)

This modifier associates a weight for the criterion in the invoking optimization profile.

public void setRebalancingRequired(IloBool rebalancingRequired)

This method is used to express the need for a material rebalancing pass with the material rebalancing engine.

public void setRebalancingTimeLimit(IloNum timeLimit)

This modifier sets the time limit expressed in seconds specific to the material rebalancing engine.

public void setRepeggingRequired(IloBool repeggingRequired)

This method is used to express the need for a final demand repegging pass.

public void setReservoirCapacityConstraintsEnabledForScheduling(IloBool enabled)

When this method is called with true as parameter, the engine module enforces the maximum capacity
constraints of storage units. When it is called with false as parameter, the scheduling module relaxes the
maximum capacity constraints of storage units. Enforcing the maximum capacity constraint on storage units
consumes processing time and memory, and may lead to infeasibilities.

public void setResourceCapacityConstraintsEnabledForPlanning(IloBool enabled)

When this method is called with false as parameter, the planning module considers all resources as infinite
capacity resources.

public void setSchedulingHorizon(IloInt horizon)

This method sets the end time of the scheduling horizon, and thereby affects the batching engine, scheduling
engine, and GUI behavior.

171

The batching engine does not consider planned productions or planned deliveries that start in time buckets equal
to or after the scheduling horizon. Therefore, such planning information is not converted into production orders
and material flow arcs, and no corresponding activities are created. In the scheduling solution, the nondelivery
cost for a demand that has its delivery end max greater than this horizon is computed based on the pegged
quantity, not on the quantity of the demand itself.

Integrated planning and scheduling problems (where both planning and scheduling are required) have a further
consideration regarding solution display in the GUI. If the scheduling horizon is less than the planning horizon,
then for time periods before the scheduling horizon the solution data is based on the scheduling solution. For
time periods after the scheduling horizon, the planning solution data (planned productions and planned
deliveries) are displayed in the appropriate views of the GUI.

public void setSchedulingRequired(IloBool schedulingRequired)

This method is used to express the need for a scheduling pass with the scheduling engine.

public void setSchedulingTimeLimit(IloNum timeLimit)

This modifier sets the time limit expressed in seconds specific to the scheduling engine.

public void setSchedulingWeight(IloMSOptimizationCriterion criterion, IloNum
weight)

This modifier associates a weight for the criterion in the invoking optimization profile.

public void setScope(IloMSScope scope)

This modifier associates a scope to the invoking optimization profile.

public void setSetupConstraintsEnabledForPlanning(IloBool enabled)

When this method is called with false as parameter the planning module relaxes setup time constraints.

public void setShelfLifeAndMaturityConstraintsEnabledForPlanning(IloBool enabled)

When this method is called with false as parameter, the planning module does not take into account shelf life and
maturity constraints. In such a case material consumption and demand delivery by production orders is valid
even if the material is not yet mature or is already expired.

public void setStockConstraintsEnabledForPlanning(IloBool enabled)

When this method is called with false as parameter, the planning module relaxes the maximum inventory
constraints on all materials.

public void setWeight(IloMSOptimizationCriterion criterion, IloNum weight)

172

This modifier associates a weight for the criterion in the invoking optimization profile.

173

Class IloMSPlannedDelivery
Definition file: ilplant/planneddelivery.h
Library: plant

The class IloMSPlannedDelivery is used in a planning solution to represent the amount of material that exits
from inventory in a period of time to satisfy a specific demand. This amount is in addition to any already-fixed
pegging arcs to the demand.
Satisfying a demand is to be understood as shipping a quantity of material in a certain time window determined
by the planning engine [planned time min;planned time max]. A demand may be satisfied in several shipments
occurring at different moments; therefore several instances of IloMSPlannedDelivery may coexist for the
same demand in the same planning solution with different time windows. These time windows correspond to time
buckets.

Instances of this class are owned by a planning solution.

See Also: IloMSPlanningSolution, IloMSPlanningEngine, IloMSDemand

Method Summary

public void display(ostream & stream) const

public IloMSDemand getDemand() const

public IloNum getFirmQuantityMax() const

public IloNum getFirmQuantityMin() const

public IloInt getPlannedTimeMax() const

public IloInt getPlannedTimeMin() const

public IloNum getQuantity() const

public IloBool isFirm() const

public void setDemand(IloMSDemand dem)

public void setFirm(IloBool firm)

public void setFirmQuantityMax(IloNum firmQuantityMax)

public void setFirmQuantityMin(IloNum firmQuantityMin)

public void setPlannedTimeMax(IloInt endMax)

public void setPlannedTimeMin(IloInt startMin)

public void setQuantity(IloNum qty)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public void display(ostream & stream) const

174

This method displays the planned delivery in the stream passed as argument.

public IloMSDemand getDemand() const

This method returns the demand that the invoking object satisfies partly or completely.

public IloNum getFirmQuantityMax() const

This method returns the maximum quantity to be shipped in the specified time bucket for the corresponding
demand.

public IloNum getFirmQuantityMin() const

This method returns the minimum quantity to be shipped in the specified time bucket for the corresponding
demand.

public IloInt getPlannedTimeMax() const

This method returns the planned time before which this demand delivery can occur. When determined by the
planning engine, this is typically the end time of a bucket.

public IloInt getPlannedTimeMin() const

This method returns the minimal planned time at which an amount of material is planned to be shipped for
satisfying a demand. When determined by the planning engine, this is typically the start time of a bucket.

public IloNum getQuantity() const

This method returns the quantity to ship for a demand in a time window. This time window is typically a time
bucket determined by the planning engine.

public IloBool isFirm() const

This method returns the status of the invoking object (firm quantity min is strictly positive).

public void setDemand(IloMSDemand dem)

This method sets the demand that the invoking object satisfies partly or completely.

public void setFirm(IloBool firm)

This method sets the firm quantity min and max to the current quantity.

175

A firm planned delivery forces the planning engine to respect the corresponding shipped quantity for the
corresponding demand in the corresponding bucket.

public void setFirmQuantityMax(IloNum firmQuantityMax)

This method sets the maximum quantity to be shipped in the specified time bucket for the corresponding
demand.

public void setFirmQuantityMin(IloNum firmQuantityMin)

This method sets the minimum quantity to be shipped in the specified time bucket for the corresponding demand.

public void setPlannedTimeMax(IloInt endMax)

This method sets the planned time before which the demand delivery must occur. The demand delivery has to
occur before endMax.

public void setPlannedTimeMin(IloInt startMin)

This method sets the minimal planned time at which the delivery can occur. The demand delivery has to occur at
startMin or later.

public void setQuantity(IloNum qty)

This method sets the quantity qty to ship in a time window for the specific demand to which it is attached.

176

Class IloMSPlannedProduction
Definition file: ilplant/plannedprod.h
Library: plant

The class IloMSPlannedProduction is used to represent the quantity of a recipe that is planned to be
executed in a period of time.
Instances of the class IloMSPlannedProduction are owned by a planning solution.

Planned productions can be seen as future production orders planned to be executed within a time window. The
batching engine typically takes this information as input data, and splits the quantity of work planned into several
production orders in order that the batch size constraints are respected, and the cardinality constraints are
enforced on the material flow.

Several planned productions may coexist for the same time bucket in the planning solution. Each one typically
uses a different set of resources; this is why an instance of IloMSPlannedProduction refers to the mode
prototypes of the original recipes chosen by the planning engine.

See Also: IloMSPlanningSolution, IloMSPlanningEngine, IloMSBatchingEngine, IloMSAbstractProduction,
IloMSRecipe, IloMSMode

Method Summary

public void addMode(IloMSMode modePrototype)

public void display(ostream & stream) const

public IloNum getFirmBatchSizeMax() const

public IloNum getFirmBatchSizeMin() const

public IloMSMode getMode(IloInt activityPrototypeIndex) const

public IloInt getNumberOfModes() const

public IloInt getPlannedNumberOfBatches() const

public IloInt getPlannedTimeMax() const

public IloInt getPlannedTimeMin() const

public ILOMSDEPRECATED IloNum getQuantity() const

public void setFirmBatchSizeMax(IloNum ub)

public void setFirmBatchSizeMin(IloNum lb)

public void setIdentifier(IloMSIdentifier identifier)

public void setPlannedNumberOfBatches(IloInt number)

public void setPlannedTimeMax(IloInt value)

public void setPlannedTimeMin(IloInt value)

public ILOMSDEPRECATED void setQuantity(IloNum qty)

public void setRecipe(IloMSRecipe recipe)

Inherited Methods from IloMSAbstractProduction

177

addPlannedMode, getBatchSize, getNumberOfPlannedModes, getPlannedMode,
getPlannedTimeMax, getPlannedTimeMin, getRecipe, isFirm, setBatchSize, setFirm,
setPlannedTimeMax, setPlannedTimeMin

Inherited Methods from IloMSAbstractMaterialFlowNode

getCategory, getMaterialFlowNodeType, isFirm, setCategory, setFirm, toDemand,
toProductionOrder

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public void addMode(IloMSMode modePrototype)

This method adds a reference to the mode prototype in the original recipe. This mode prototype corresponds to a
decision of the planning engine with respect to which resource was used among the alternatives defined in the
original recipe.

public void display(ostream & stream) const

This method displays the planned production in the stream passed as argument.

public IloNum getFirmBatchSizeMax() const

This method retrieves the batch size upper bound used by the planning engine for execution of the recipe in the
corresponding time bucket.

public IloNum getFirmBatchSizeMin() const

This method retrieves the batch size lower bound used by the planning engine for execution of the recipe in the
corresponding time bucket.

public IloMSMode getMode(IloInt activityPrototypeIndex) const

This method returns the mode of#-th activity prototype. This mode prototype corresponds to a decision of the
planning engine with respect to which resource is to be used among the alternatives defined in the original
recipe.

public IloInt getNumberOfModes() const

This method returns the number of mode prototypes corresponding to the decisions of the planning engine, with
respect to which resource was used among the alternatives defined in the original recipe.

178

public IloInt getPlannedNumberOfBatches() const

This method returns the planned number of batches found by the planning engine in the associated time bucket.

public IloInt getPlannedTimeMax() const

This method returns the end time of the time bucket in which the planning engine decided to plan the invoked
production.

This time is used as a hard constraint by the scheduling engine for all the activities of the production order if the
setting "slackOnPlannedEndTime" is set to zero.

public IloInt getPlannedTimeMin() const

This method returns the start time of the time bucket in which the planning engine decided to plan the invoked
production.

This time is used as a hard constraint by the scheduling engine for all the activities of the production order if the
setting "slackOnPlannedStartTime" is set to zero.

public ILOMSDEPRECATED IloNum getQuantity() const

This method returns the quantity of recipe planned in the time bucket by the planning engine. Note that this
quantity is not a quantity of material, but must be understood as a quantity of work expressed in the same unit as
the production order batch sizes.

public void setFirmBatchSizeMax(IloNum ub)

This method sets the batch size upper bound used by the planning engine for execution of the recipe in the
corresponding time bucket.

public void setFirmBatchSizeMin(IloNum lb)

This method sets the batch size lower bound used by the planning engine for execution of the recipe in the
corresponding time bucket.

public void setIdentifier(IloMSIdentifier identifier)

This modifier associates an identifier with the invoking planned production.

public void setPlannedNumberOfBatches(IloInt number)

This method sets the number of planned batches of the recipe by the planning engine in the associated time
bucket.

179

public void setPlannedTimeMax(IloInt value)

This method overrides the end time of the time bucket in which the planning engine decided to plan the
production.

This time is used as a hard constraint by the scheduling engine for all the activities of the production order if the
setting "slackOnPlannedEndTime" is set to zero.

public void setPlannedTimeMin(IloInt value)

This method overrides the start time of the time bucket in which the planning engine decided to plan the
production.

This time is used as a hard constraint by the scheduling engine for all the activities of the production order if the
setting "slackOnPlannedStartTime" is set to zero.

public ILOMSDEPRECATED void setQuantity(IloNum qty)

This method sets the quantity qty of the recipe to run in a specific time window.

public void setRecipe(IloMSRecipe recipe)

This method sets the recipe to produce.

180

Class IloMSPlanningEngine
Definition file: ilplant/planengine.h
Library: plant

The IloMSPlanningEngine class is used to solve manufacturing planning problems represented by
IloMSModel objects.
The Production Planning module of Plant PowerOps solves a planning problem with setups under finite capacity
constraints.

The model and planning problem

An IloMSModel instance typically includes:

A period of time divided into successive time buckets, possibly of different durations•
A set of recipes enabling the production of materials•
A set of resources required to be in particular setup states by each activity of each recipe•
Initial and maximal stocks for each material•
A set of unplanned demands, with each demand requesting a given quantity of a given material at a
given due date

•

A set of fixed production orders (with given start and end times for all activities) implementing a recipe•
A set of procurements (with receipt and production times) procuring material in the future (already
planned arrival of material) or in the past (dated stock).

•

The planning problem then consists of deciding how many units of each recipe will be executed during each time
bucket, so as to minimize a combination of the following costs:

Processing costs; several recipes can be used to manufacture the same materials, at different costs•
Resource capacity costs; several levels of capacity may be available at different costs for each resource
over each bucket

•

Idle costs•
Setup costs•
Inventory costs•
Inventory deficit costs•
Nondelivery costs (also called unsatisfied demand costs)•
Earliness costs•
Tardiness costs•

The linear combination of all costs is weighted by optimization criteria contained in the current optimization
profile.

While minimizing these costs, an additional solution objective may be maximizing revenue.

The hard constraints taken into account are:

Resource capacity constraints•
Minimal and maximal batch size constraints•
Batch size integrality constraints•
Setup time constraints•
Maximal inventory constraints•
Campaign duration constraint•
Shelf life and maturity constraints•

The planning module solution

The planning solution is an instance of IloMSPlanningSolution composed of IloMSPlannedProduction
and IloMSPlannedDelivery instances. The quantity of a planned production is expressed in the same unit as
the batch size of production orders of the corresponding recipe. The planned demand delivery consists of a stock

181

exit to deliver part or all the amount of a specific demand. This delivery occurs in a time bucket that must be
strictly included in a delivery window [delivery start min;delivery end max) of the demand.

Automatic inference of the planning problem from the description of the scheduling problem

In PPO there is a single description for the model: the detailed scheduling problem. Although the planning engine
uses a very different technology as compared to the scheduling engine (mathematical programming versus
constraint programming), there is no need to input the data model twice. For example, a specific mechanism
infers the possible routing from the multimode recipes.

When considering the planning problem, just be aware of:

Defining the time buckets•
Abstracting multiple resources into one super resource•
Defining the level of approximation you need with regard to setups.•

Definition of time buckets

Defining time buckets is an important task. Remember that the planning engine makes rough approximations at
the bucket level, enforcing constraints at time bucket granularity; while the scheduling engine enforces
constraints at the time unit granularity. For example: The resource capacity is seen as an energy in the time
bucket; the inventory max is enforced at each end of the bucket; the material balance is global to the bucket; the
maturity and shelf life constraints are enforced pessimistically with respect to bucket size, and so forth.

Note that if a recipe requires a fixed processing time greater than the bucket size, the inference mechanism will
automatically detect it and will enforce the resource capacity constraints on a gliding window of several buckets.

Resource abstraction

Multiple resources can be abstracted into one single super resource at the planning level to decrease the
complexity of the problem. Only similar resources with the same connectivity can be grouped together.

Setup approximation

For each resource and each period of time different setup approximations are available:

Per bucket per recipe means that the fixed capacity requirements including setups will be counted
independently for each bucket and each recipe

•

Per bucket per setup feature means that the fixed capacity requirements including setups will be
counted independently for each bucket and each setup feature

•

Cross bucket per recipe is similar to "Per bucket per recipe" except that the continuation of the same
recipe from a bucket to the next will not necessitate redoing the setups in the second bucket

•

Cross bucket per setup feature is similar to "Per bucket per setup feature" except that the
continuation of the same setup features from a bucket to the next will not necessitate redoing the setups
in the second bucket.

•

All these models are approximations of what really happens in the factory. A more precise model would require
representation of the sequence of activities that occurs on each resource, that is, to go from a planning to a
scheduling model.

Time offset approximation

The inference mechanism makes an estimate of when a material is produced or consumed. One can however
override that inferred value by defining time offsets in the IloMSMaterialProduction instances attached to
instances of IloMSMode.

Complexity considerations

The response time of the planning engine is a function of several characteristics of the problem. First, there is the
size of the problem, which is mainly a function of:

Number of buckets * number of recipes•

182

Number of buckets * number of resources•
Number of buckets * number of materials•

Another complexity issue is the existence of noncontinuous variables, which depends upon:

The type of setup approximation (adds binary variables)•
The existence of fixed processing times and costs (adds integer variables)•
The use of integral constraints for batch size (adds integer variables)•

These variables complicate the problem and may transform it into a complex MILP (Mixed Integer Linear
Problem).

Relaxation window

There are separate horizons for the planning and scheduling modules. The batching module shares the horizon
of the scheduling module. When the scheduling horizon is shorter than the planning horizon, you can relax the
integrality constraints after the scheduling and batching horizon by calling
setIntegralityAfterBatchingHorizonConstraintsEnabledForPlanning(false) on the current
IloMSOptimizationProfile. This defines a relaxation window between the scheduling and the planning
horizons.

Maturity and shelf life constraints

Maturity and shelf life constraints are handled pessimistically. For instance if a material shelf life is less than the
size of a bucket, it must be consumed in the same bucket as it is produced. Note that if you don't define a waste
recipe to throw away obsolete stock, then the obsolete goods will remain in stock until the end of the horizon.

Earliness and tardiness costs

A demand may have a due date which defines the optimal time for delivery of demanded material. To define the
optimal time, four costs may be defined on an IloMSDueDate object:

Earliness fixed cost: a fixed cost to be paid per unit of material if the demand is delivered early. In the
planning model, this cost will be incurred if the material is delivered in any bucket that precedes the due
date.

•

Earliness variable cost: a cost per unit of material and per unit of time that the delivery is early. In the
planning model, this cost will be multiplied by the difference between the due date and the end time of
the bucket in which the material is delivered.

•

Tardiness fixed cost: a fixed cost to be paid per unit of material if the demand is delivered late. In the
planning model, this cost will be incurred if the material is delivered in any bucket that follows the due
date.

•

Tardiness variable cost: a cost per unit of material and per unit of time that the delivery is late. In the
planning model, this cost will be multiplied by the difference between the start time of the bucket in
which the material is delivered and the due date.

•

Mandatory demand and unsatisfied demand

An infinite nondelivery cost for a demand makes it mandatory. A finite nondelivery cost defines the cost per unit
of material not delivered to the customer. If there is neither revenue nor nondelivery cost then the planning
engine may decide not to produce anything (except if some safety stock has been defined).

Advanced use: Formula optimization and blending

The production planning engine also supports recipes with flexible ratios of ingredients for blending purposes.
When using this feature the planning engine may create recipe instances as a side effect on the model. For each
flexible recipe, a recipe instance with fixed ratios of ingredients may be created for each time bucket. This
features allows formula optimization based on quality of materials. The assumption is that qualities blend linearly.
See examples/data/oil/refinery.csv for a blending example.

See Also: IloMSModel, IloMSBucket, IloMSMaterial, IloMSDemand, IloMSDueDate, IloMSRecipe, IloMSActivity,
IloMSMode, IloMSMaterialProduction, IloMSResource, IloMSProductionOrder, IloMSProcurement,
IloMSSetupMatrix, IloMSPlanningSetupModel, IloMSStorageUnit, IloMSQuality, IloMSPlannedDelivery,

183

IloMSPlannedProduction, IloMSPlanningSolution, IloMSOptimizationProfile

Constructor Summary

public IloMSPlanningEngine(IloMSModel plant)

Method Summary

public IloMSPlanningSolution getBestSolution() const

public void setCheckForStop(IloMSCheckForStop checkForStop)

public void setTimeLimit(IloInt timeLimit)

public IloBool solve()

public void whenSolution(IloMSSolutionHook whenSolutionHook)

Constructors

public IloMSPlanningEngine(IloMSModel plant)

This method creates a planning engine for the given IloMSModel object.

Methods

public IloMSPlanningSolution getBestSolution() const

After solving, this method returns the best planning solution found by the invoking engine. This solution is not
necessarily the optimal one.

public void setCheckForStop(IloMSCheckForStop checkForStop)

This method installs a stopping callback on the invoking engine.

public void setTimeLimit(IloInt timeLimit)

This method sets the timeLimit granted for finding a solution.

public IloBool solve()

This method solves the planning problem. It returns true if a solution is found; false otherwise.

public void whenSolution(IloMSSolutionHook whenSolutionHook)

This method installs a solution callback on the invoking engine.

184

Class IloMSPlanningSolution
Definition file: ilplant/plansolution.h
Library: plant

The IloMSPlanningSolution class is used to represent partial and complete planning solutions found by a
planning engine.
All methods of the IloMSPlanningSolution class throw an exception if an empty handle (that is, an
uninitialized object) is used.

Method Summary

public void display(ostream & stream) const

public void end()

public IloNum getActualCost() const

public IloNum getAmountOfSatisfiedDemand(IloMSDemand demand,
IloMSBucket bucket) const

public IloNum getAmountOfSatisfiedDemand(IloMSDemand demand)
const

public IloMSChecker getChecker()

public IloNum getInventoryLevel(IloMSMaterial material,
IloMSBucket bucket) const

public IloNum getLowerBound() const

public IloInt getNumberOfPlannedDeliveries(const IloMSDemand
demand) const

public IloInt getNumberOfPlannedDeliveries() const

public IloInt getNumberOfPlannedProductions() const

public IloNum getObjectiveValue() const

public IloMSPlannedDelivery getPlannedDelivery(const IloMSDemand demand, IloInt
i) const

public IloMSPlannedDelivery getPlannedDelivery(IloInt i) const

public IloMSPlannedProduction getPlannedProduction(IloInt i) const

public IloNum getProductionLevel(IloMSMaterial material,
IloMSBucket bucket) const

public IloNum getValue(IloMSOptimizationCriterion criterion)
const

public IloNum getValueInternal(IloMSOptimizationCriterion
criterion) const

public IloNum getWaste(IloMSMaterial material, IloMSBucket
bucket) const

public IloMSPlannedDelivery newPlannedDelivery(IloMSDemand demand, IloMSBucket
bucket, IloNum quantity)

public IloMSPlannedProduction newPlannedProduction(IloMSRecipe recipe,
IloMSBucket bucket, IloNum quantity)

185

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public void display(ostream & stream) const

This method displays the solution in the stream passed as argument.

public void end()

This method destroys the planning solution and frees its memory.

public IloNum getActualCost() const

This method returns the value of the total cost, which is the linear combination of the weighted standard planning
KPIs.

public IloNum getAmountOfSatisfiedDemand(IloMSDemand demand, IloMSBucket bucket)
const

This method returns the amount of the given demand that is satisfied in the specified bucket in the invoking
solution.

public IloNum getAmountOfSatisfiedDemand(IloMSDemand demand) const

This method returns the amount of the given demand that is satisfied in the invoking solution.

public IloMSChecker getChecker()

This method returns the checker of the invoking solution.

public IloNum getInventoryLevel(IloMSMaterial material, IloMSBucket bucket) const

This method returns the stock quantity of the specified material at the end of the specified bucket with regard to
the invoking planning solution.

public IloNum getLowerBound() const

This method returns the best lower bound of the objective found by solving the relaxed problem.

public IloInt getNumberOfPlannedDeliveries(const IloMSDemand demand) const

186

This method returns the number of planned demand deliveries for the specified demand owned by this planning
solution.

public IloInt getNumberOfPlannedDeliveries() const

This method returns the number of planned demand deliveries owned by this planning solution.

public IloInt getNumberOfPlannedProductions() const

This method returns the number of planned productions owned by the invoking planning solution.

public IloNum getObjectiveValue() const

This method returns the value of the objective function found by the planning for this solution.

public IloMSPlannedDelivery getPlannedDelivery(const IloMSDemand demand, IloInt i)
const

This method returns the planned demand delivery with the specified index i for the specified demand in the
invoking solution.

public IloMSPlannedDelivery getPlannedDelivery(IloInt i) const

This method returns the planned demand deliveries with the specified index i in the solution.

public IloMSPlannedProduction getPlannedProduction(IloInt i) const

This method returns the planned production with the specified index i in the solution.

public IloNum getProductionLevel(IloMSMaterial material, IloMSBucket bucket) const

This method returns the quantity of the specified material produced in the specified bucket with regard to the
invoking planning solution.

public IloNum getValue(IloMSOptimizationCriterion criterion) const

This method returns the value of the given criterion in the objective function.

public IloNum getValueInternal(IloMSOptimizationCriterion criterion) const

internal (tests)

187

public IloNum getWaste(IloMSMaterial material, IloMSBucket bucket) const

This method returns the amount of material to throw away in the specified bucket.

public IloMSPlannedDelivery newPlannedDelivery(IloMSDemand demand, IloMSBucket
bucket, IloNum quantity)

This method creates, adds and returns a new demand delivery for the specified demand in the specified bucket.

public IloMSPlannedProduction newPlannedProduction(IloMSRecipe recipe, IloMSBucket
bucket, IloNum quantity)

This method creates, adds and returns a new planned production in the specified bucket for the specified recipe.
The decision about modes (resource alternatives) must be specified by adding references to mode prototypes on
the planned production object.

188

Class IloMSPrecedence
Definition file: ilplant/precedence.h
Library: plant

The IloMSPrecedence class is used to represent precedence constraints between activities.
Four types of precedence constraints are distinguished: start-to-start precedence constraints relate the start
times of the two activities; start-to-end constraints relate the start time of the predecessor with the end time of the
successor; end-to-start constraints relate the end time of the predecessor with the start time of the successor;
and end-to-end constraints relate the end times of the two activities.

You can define positive minimum (DELAY_MIN) and maximum (DELAY_MAX) delays between the relevant start
or end points of the two activities. These delays are specified in TIME_UNITs. The special value -1 indicates that
the corresponding delay constraint does not apply. In particular, when the minimum delay constraint does not
apply, the relevant time point of the successor is not forced to follow the relevant time point of the predecessor.

All the methods of the IloMSPrecedence class throw an exception if an empty handle (that is, an uninitialized
object) is used.

See Also: IloMSAbstractActivity

Method Summary

public IloInt getDelayMax() const

public IloInt getDelayMin() const

public IloMSAbstractActivity getPredecessor() const

public IloMSAbstractActivity getSuccessor() const

public IloMSPrecedenceType getType() const

public IloBool hasDelayMax() const

public IloBool hasDelayMin() const

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloInt getDelayMax() const

This method returns the maximal delay between the relevant time points of the two activities.

public IloInt getDelayMin() const

This method returns the minimal delay between the relevant time points of the two activities.

189

public IloMSAbstractActivity getPredecessor() const

This method returns the predecessor activity of the invoking precedence constraint.

public IloMSAbstractActivity getSuccessor() const

This method returns the successor activity of the invoking precedence constraint.

public IloMSPrecedenceType getType() const

This method returns the type of the precedence relation between the two activities.

See Also: IloMSPrecedenceType

public IloBool hasDelayMax() const

This method returns true if the maximal delay constraint applies, and false otherwise.

public IloBool hasDelayMin() const

This method returns true if the minimal delay constraint applies, and false otherwise.

190

Class IloMSProcurement
Definition file: ilplant/procurement.h
Library: plant

The class IloMSProcurement is used to represent material procured from outside the plant or the initial stock.
A procurement, represented by an instance of IloMSProcurement, is an amount of material with an age
computable according to its production date. A procurement may override the default shelf life and maturity
characteristics of the material.

Method Summary

public IloInt getConsumptionTimeMax() const

public IloInt getConsumptionTimeMin() const

public IloMSMaterial getMaterial() const

public IloInt getMaturity() const

public IloInt getOverriddenMaturity() const

public IloInt getOverriddenShelfLife() const

public IloInt getProductionTime() const

public IloNum getQuantity() const

public IloNum getQuantityInDisplayUnit() const

public IloInt getReceiptTime() const

public IloInt getShelfLife() const

public IloMSStorageUnit getStorageUnit() const

public IloBool hasOverriddenMaturity() const

public IloBool hasOverriddenShelfLife() const

public IloBool hasStorageUnit() const

public void setIdentifier(IloMSIdentifier identifier)

public void setMaterial(IloMSMaterial material)

public void setOverriddenMaturity(IloInt value)

public void setOverriddenShelfLife(IloInt value)

public void setProductionTime(IloInt value)

public void setQuantity(IloNum quantity)

public void setQuantityInDisplayUnit(IloNum quantityInDisplayUnit)

public void setReceiptTime(IloInt time)

public void setStorageUnit(IloMSStorageUnit storageUnit)

Inherited Methods from IloMSAbstractMaterialFlowNode

getCategory, getMaterialFlowNodeType, isFirm, setCategory, setFirm, toDemand,
toProductionOrder

191

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloInt getConsumptionTimeMax() const

This method returns the latest time at which the material provided by this procurement may be consumed. It is
the sum of the production time and the (possibly overridden) shelf life of the material. It can be infinite if no shelf
life is defined for the material.

public IloInt getConsumptionTimeMin() const

This method returns the earliest time at which the material provided by this procurement may be consumed. It is
either the receipt time of the procurement or the sum of the production time and the (possibly overridden)
maturation time for the material.

public IloMSMaterial getMaterial() const

This method returns the procured material.

public IloInt getMaturity() const

This method returns the maturation time (overridden or not) of the material provided by this procurement.

public IloInt getOverriddenMaturity() const

This method returns the overridden maturation time of the material provided by this procurement. If the value
returned is negative, it means that the maturation time of the material is not overridden.

public IloInt getOverriddenShelfLife() const

This method returns the overridden shelf life of the material provided by this procurement. If the value returned is
negative, it means that the shelf life of the material is not overridden.

public IloInt getProductionTime() const

This method returns the time at which the material provided by this procurement was produced (for age
computation).

public IloNum getQuantity() const

This method returns the quantity of the procured material expressed in the primary unit of the material.

192

public IloNum getQuantityInDisplayUnit() const

This method returns the quantity of the procured material in the material display unit.

public IloInt getReceiptTime() const

This method returns the receipt time of the procurement.

public IloInt getShelfLife() const

This method returns the shelf life (overridden or not) of the material provided by this procurement.

public IloMSStorageUnit getStorageUnit() const

This method returns the storage unit in which the procured material is stored. As the storage unit is optional, a
NULL object may be returned.

public IloBool hasOverriddenMaturity() const

This method returns true if the maturation time of the material provided by this procurement has been overridden.

public IloBool hasOverriddenShelfLife() const

This method returns true if the shelf life of the material provided by this procurement has been overridden.

public IloBool hasStorageUnit() const

This method returns true if a storage unit has been specified this procurement.

public void setIdentifier(IloMSIdentifier identifier)

This modifier associates an identifier with the invoking procurement. An exception is thrown if the given
identifier is already used for another procurement.

public void setMaterial(IloMSMaterial material)

This method sets the procured material.

public void setOverriddenMaturity(IloInt value)

This method sets the overridden maturation time of the material provided by this procurement.

193

public void setOverriddenShelfLife(IloInt value)

This method sets the overridden shelf life of the material provided by this procurement.

public void setProductionTime(IloInt value)

This method sets the production time of the material provided by this procurement (for age computation).

public void setQuantity(IloNum quantity)

This method sets the quantity of material provided by this procurement, expressed in the primary unit of the
material.

public void setQuantityInDisplayUnit(IloNum quantityInDisplayUnit)

This method sets the quantity of material provided by this procurement. The provided quantity is expressed in the
display unit of the material.

public void setReceiptTime(IloInt time)

This method sets the receipt time of the procurement.

public void setStorageUnit(IloMSStorageUnit storageUnit)

This method sets the storage unit in which the procured material is stored.

194

Class IloMSProcurementToDemandArc
Definition file: ilplant/matflowarc.h
Library: plant

The IloMSProcurementToDemandArc class is used to represent flow of material between a procurement and
a demand. Note that a material flow between two nodes represents a precedence constraint between them.
A flow of material between a procurement and demand is modeled as a precedence constraint between the
procurement and the demand, and may partially or entirely satisfy the demand.

All the methods of the IloMSProcurementToDemandArc class throw an exception if an empty handle (that is,
an uninitialized object) is used.

Method Summary

public IloMSDemand getDemand() const

public IloMSProcurement getProcurement() const

Inherited Methods from IloMSAbstractMaterialFlowArc

getEndConsumptionTime, getEndProductionTime, getFirmQuantityMax,
getFirmQuantityMin, getMaterial, getMaterialFlowType, getMaterialFlowTypeName,
getPredecessor, getQuantity, getQuantityInDisplayUnit, getStartConsumptionTime,
getStartProductionTime, getSuccessor, isFirm, setFirm, setFirmQuantityMax,
setFirmQuantityMin, setQuantity, toProcurementToDemandArc, toProcurementToProdArc,
toProcurementToStorageArc, toProdToDemandArc, toProdToProdArc, toProdToStorageArc,
toStorageToDemandArc, toStorageToProdArc

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloMSDemand getDemand() const

Returns the successor demand in this arc.

public IloMSProcurement getProcurement() const

Returns the predecessor procurement.

195

Class IloMSProcurementToProdArc
Definition file: ilplant/matflowarc.h
Library: plant

The IloMSProcurementToProdArc class is used to represent flow of material between a procurement and a
production order. Note that a material flow between two nodes represents a precedence constraint between
them.
A flow of material between a procurement and a production order is modeled as a precedence constraint
between the procurement and the consuming activity of the production order.

All the methods of the IloMSProcurementToProdArc class throw an exception if an empty handle (that is, an
uninitialized object) is used.

Method Summary

public IloMSProcurement getProcurement() const

public IloMSProductionOrder getProductionOrder() const

Inherited Methods from IloMSAbstractMaterialFlowArc

getEndConsumptionTime, getEndProductionTime, getFirmQuantityMax,
getFirmQuantityMin, getMaterial, getMaterialFlowType, getMaterialFlowTypeName,
getPredecessor, getQuantity, getQuantityInDisplayUnit, getStartConsumptionTime,
getStartProductionTime, getSuccessor, isFirm, setFirm, setFirmQuantityMax,
setFirmQuantityMin, setQuantity, toProcurementToDemandArc, toProcurementToProdArc,
toProcurementToStorageArc, toProdToDemandArc, toProdToProdArc, toProdToStorageArc,
toStorageToDemandArc, toStorageToProdArc

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloMSProcurement getProcurement() const

Returns the predecessor procurement.

public IloMSProductionOrder getProductionOrder() const

Returns the successor production order.

196

Class IloMSProcurementToStorageArc
Definition file: ilplant/matflowarc.h
Library: plant

The IloMSProcurementToStorageArc class is used to represent flow of material between a procurement
and stock or storage. Note that a material flow between two nodes represents a precedence constraint between
them.
A flow of material between a procurement and storage is modeled as a precedence constraint between the
procurement and the storage.

All the methods of the IloMSProcurementToStorageArc class throw an exception if an empty handle (that is,
an uninitialized object) is used.

Method Summary

public IloMSProcurement getProcurement() const

Inherited Methods from IloMSAbstractMaterialFlowArc

getEndConsumptionTime, getEndProductionTime, getFirmQuantityMax,
getFirmQuantityMin, getMaterial, getMaterialFlowType, getMaterialFlowTypeName,
getPredecessor, getQuantity, getQuantityInDisplayUnit, getStartConsumptionTime,
getStartProductionTime, getSuccessor, isFirm, setFirm, setFirmQuantityMax,
setFirmQuantityMin, setQuantity, toProcurementToDemandArc, toProcurementToProdArc,
toProcurementToStorageArc, toProdToDemandArc, toProdToProdArc, toProdToStorageArc,
toStorageToDemandArc, toStorageToProdArc

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloMSProcurement getProcurement() const

Returns the predecessor procurement.

197

Class IloMSProdToDemandArc
Definition file: ilplant/matflowarc.h
Library: plant

The IloMSProdToDemandArc class is used to represent flow of material between a production order and a
demand. Note that a material flow between two nodes represents a precedence constraint between them.
A flow of material between production and demand is modeled as a precedence constraint between the
producing activity of a production order and a demand, and may partially or entirely satisfy the demand.

All the methods of the IloMSProdToDemandArc class throw an exception if an empty handle (that is, an
uninitialized object) is used.

Method Summary

public IloMSDemand getDemand() const

public IloMSProductionOrder getProductionOrder() const

Inherited Methods from IloMSAbstractMaterialFlowArc

getEndConsumptionTime, getEndProductionTime, getFirmQuantityMax,
getFirmQuantityMin, getMaterial, getMaterialFlowType, getMaterialFlowTypeName,
getPredecessor, getQuantity, getQuantityInDisplayUnit, getStartConsumptionTime,
getStartProductionTime, getSuccessor, isFirm, setFirm, setFirmQuantityMax,
setFirmQuantityMin, setQuantity, toProcurementToDemandArc, toProcurementToProdArc,
toProcurementToStorageArc, toProdToDemandArc, toProdToProdArc, toProdToStorageArc,
toStorageToDemandArc, toStorageToProdArc

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloMSDemand getDemand() const

Returns the successor demand.

public IloMSProductionOrder getProductionOrder() const

Returns the production order predecessor.

198

Class IloMSProdToProdArc
Definition file: ilplant/matflowarc.h
Library: plant

The IloMSProdToProdArc class is used to represent flow of material between two production orders. Note that
a material flow between production orders represents a precedence constraint between them.
A flow of material between two production orders is modeled as a precedence constraint between the producing
and consuming activities of the corresponding production orders.

All the methods of the IloMSProdToProdArc class throw an exception if an empty handle (that is, an
uninitialized object) is used.

Method Summary

public IloMSProductionOrder getPredecessorProductionOrder() const

public IloMSProductionOrder getSuccessorProductionOrder() const

Inherited Methods from IloMSAbstractMaterialFlowArc

getEndConsumptionTime, getEndProductionTime, getFirmQuantityMax,
getFirmQuantityMin, getMaterial, getMaterialFlowType, getMaterialFlowTypeName,
getPredecessor, getQuantity, getQuantityInDisplayUnit, getStartConsumptionTime,
getStartProductionTime, getSuccessor, isFirm, setFirm, setFirmQuantityMax,
setFirmQuantityMin, setQuantity, toProcurementToDemandArc, toProcurementToProdArc,
toProcurementToStorageArc, toProdToDemandArc, toProdToProdArc, toProdToStorageArc,
toStorageToDemandArc, toStorageToProdArc

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloMSProductionOrder getPredecessorProductionOrder() const

Returns the production order predecessor.

public IloMSProductionOrder getSuccessorProductionOrder() const

Returns the production order successor.

199

Class IloMSProdToStorageArc
Definition file: ilplant/matflowarc.h
Library: plant

The IloMSProdToStorageArc class is used to represent flow of material between a production order and
stock or storage. Note that a material flow between two nodes represents a precedence constraint between
them.
A flow of material between a production order and storage is modeled as a precedence constraint between the
producing activity of a production order and stock.

All the methods of the IloMSProdToStorageArc class throw an exception if an empty handle (that is, an
uninitialized object) is used.

Method Summary

public IloMSProductionOrder getProductionOrder() const

Inherited Methods from IloMSAbstractMaterialFlowArc

getEndConsumptionTime, getEndProductionTime, getFirmQuantityMax,
getFirmQuantityMin, getMaterial, getMaterialFlowType, getMaterialFlowTypeName,
getPredecessor, getQuantity, getQuantityInDisplayUnit, getStartConsumptionTime,
getStartProductionTime, getSuccessor, isFirm, setFirm, setFirmQuantityMax,
setFirmQuantityMin, setQuantity, toProcurementToDemandArc, toProcurementToProdArc,
toProcurementToStorageArc, toProdToDemandArc, toProdToProdArc, toProdToStorageArc,
toStorageToDemandArc, toStorageToProdArc

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloMSProductionOrder getProductionOrder() const

Returns the predecessor to the production order.

200

Class IloMSProductionOrder
Definition file: ilplant/order.h
Library: plant

The class IloMSProductionOrder is used to represent production orders.
An instance of IloMSProductionOrder represents a batch using the recipe of a process. This order has a
multiplication factor regarding the recipe called the batch size. The batch size is used to compute the quantity of
material produced or consumed by the production order. Batch size is also used to adjust the processing time of
generated activities (if a variable processing time has been specified on the activity prototypes of the recipe). A
production order producing finished goods may partially or wholly satisfy a single demand, or may satisfy several
demands. A production order producing only intermediates does not satisfy demand. The material flow between
production orders can be modeled by adding material flow arcs between production orders.

See Also: IloMSRecipe, IloMSActivity, IloMSMaterial, IloMSAbstractMaterialFlowArc

Method Summary

public IloMSActivity getActivity(IloMSActivity prototype) const

public IloMSActivity getActivity(IloInt index) const

public IloMSAbstractActivity getActivityPrototype(IloMSAbstractActivity activity)
const

public IloMSBatchingSolution getBatchingSolution() const

public const char * getComment() const

public IloInt getEndMax() const

public IloInt getNumberOfActivities() const

public IloInt getOverriddenExpirationTime() const

public IloInt getPlannedTimeMax() const

public IloInt getPlannedTimeMin() const

public IloInt getStartMin() const

public IloBool hasGenerated(IloMSActivity activity) const

public IloBool isEditable() const

public IloBool isFirmingEditable() const

public IloBool isFixed() const

public IloBool isSatisfying(IloMSDemand demand) const

public void setComment(const char * comment)

public void setEditable(IloBool editable)

public void setEndMax(IloInt value)

public void setFirmingEditable(IloBool firmingEditable)

public void setFixed(IloBool fixed)

public void setIdentifier(IloMSIdentifier identifier)

201

public void setOverriddenExpirationTime(IloInt timeUnits)

public void setPlannedTimeMax(IloInt value)

public void setPlannedTimeMin(IloInt value)

public void setStartMin(IloInt value)

Inherited Methods from IloMSAbstractProduction

addPlannedMode, getBatchSize, getNumberOfPlannedModes, getPlannedMode,
getPlannedTimeMax, getPlannedTimeMin, getRecipe, isFirm, setBatchSize, setFirm,
setPlannedTimeMax, setPlannedTimeMin

Inherited Methods from IloMSAbstractMaterialFlowNode

getCategory, getMaterialFlowNodeType, isFirm, setCategory, setFirm, toDemand,
toProductionOrder

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloMSActivity getActivity(IloMSActivity prototype) const

This method returns the generated activity corresponding to the prototype passed as argument.

public IloMSActivity getActivity(IloInt index) const

This method returns the generated activity specified by the index passed as argument.

public IloMSAbstractActivity getActivityPrototype(IloMSAbstractActivity activity)
const

This method returns the activity prototype corresponding to the generated activity passed as argument.

public IloMSBatchingSolution getBatchingSolution() const

This method returns the batching solution to which the invoking production order belongs.

public const char * getComment() const

This accessor returns the comment associated with the invoking production order.

public IloInt getEndMax() const

202

This method returns the latest end time of this production order. The time is expressed in the time unit of the
model, from the date origin of the model.

public IloInt getNumberOfActivities() const

This method returns the number of generated activities.

public IloInt getOverriddenExpirationTime() const

This accessor returns the expiration time of the lot produced by this production order. This time is a function of
the shelf life of the products produced by the order and can be overridden manually.

public IloInt getPlannedTimeMax() const

This method returns the end time of the time bucket in which the planning engine decided to plan the production.

This time is used as a hard constraint by the scheduling engine for all the activities of the production order if the
setting "slackOnPlannedEndTime" is set to zero.

public IloInt getPlannedTimeMin() const

This method returns the start time of the time bucket in which the planning engine decided to plan the production.

This time is used as a hard constraint by the scheduling engine for all the activities of the production order if the
setting "slackOnPlannedStartTime" is set to zero.

public IloInt getStartMin() const

This method returns the earliest start time of this production order. The time is expressed in the time unit of the
model, from the date origin of the model.

public IloBool hasGenerated(IloMSActivity activity) const

This predicate method returns true if the activity passed as argument has been generated by this production
order.

public IloBool isEditable() const

This method returns true if the production order can be edited.

public IloBool isFirmingEditable() const

This method returns true if the firming status of this production order can be edited.

public IloBool isFixed() const

203

This method returns the status of the invoking object (it is fixed if all the activity start times and modes are fixed).

public IloBool isSatisfying(IloMSDemand demand) const

This predicate method returns true if the demand passed as argument is satisfied partially or totally by this
production order.

public void setComment(const char * comment)

This modifier associates a comment with the invoking production order.

public void setEditable(IloBool editable)

This method is used to allow or prevent any modification of the order.

public void setEndMax(IloInt value)

This method sets the latest end time of this production order. None of the activities of this production order will be
allowed to end after the given time. The time is expressed in the time unit of the model, from the date origin of the
model.

public void setFirmingEditable(IloBool firmingEditable)

This method is used to allow or prevent any modification of the firming status of the order.

public void setFixed(IloBool fixed)

This method fixes the start time, end time, performed status, and mode of all the activities belonging to the
production order and firms the production order itself.

public void setIdentifier(IloMSIdentifier identifier)

This modifier associates an identifier with the invoking production order. An exception is thrown if the given
identifier is already used.

public void setOverriddenExpirationTime(IloInt timeUnits)

This modifier overrides the expiration time of the lot produced by this production order.

public void setPlannedTimeMax(IloInt value)

204

This method overrides the end time of the time bucket in which the planning engine decided to plan the
production.

This time is used as a hard constraint by the scheduling engine for all the activities of the production order if the
setting "slackOnPlannedEndTime" is set to zero.

public void setPlannedTimeMin(IloInt value)

This method overrides the start time of the time bucket in which the planning engine decided to plan the
production.

This time is used as a hard constraint by the scheduling engine for all the activities of the production order if the
setting "slackOnPlannedStartTime" is set to zero.

public void setStartMin(IloInt value)

This method sets the earliest start time of this production order. None of the activities of this production order will
be allowed to start before the given time. The time is expressed in the time unit of the model, from the date origin
of the model.

205

Class IloMSQuality
Definition file: ilplant/quality.h
Library: plant

The class IloMSQuality is used to represent qualities of materials.
Recipes may linearly blend ingredients of different qualities to determine and constrain the quality of the recipe
product.

See Also: IloMSRecipe, IloMSMaterial

Method Summary

public void setIdentifier(IloMSIdentifier identifier)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public void setIdentifier(IloMSIdentifier identifier)

This method associates an identifier with the invoking quality. An exception is thrown if the given
identifier is already used.

206

Class IloMSRecipe
Definition file: ilplant/recipe.h
Library: plant

The class IloMSRecipe is used to represent production recipes.
A recipe object models a production process and is composed of activity prototypes. It contains a template of
activity prototypes and constraints that can be used as a mold to generate a set of dependent activities. To
effectively use a recipe, create an instance of IloMSProductionOrder for that recipe, using the method
newProductionOrder. The real activities are generated by cloning the activity prototypes of the recipe. This
generation is done at the latest when calling the solve method of IloMSSchedulingEngine. It can also be
done earlier by explicitly calling generateActivities of IloMSModel.

The creation of a new recipe starts by using newRecipe of IloMSModel. A new activity prototype is created
using a call to newActivity of IloMSModel.

A recipe may produce or consume one or several products. For a given IloMSMaterial, at most one of the
recipe prototype activities can produce or consume it.

A primary product and a primary ingredient may be declared. Also, the batch size of production orders can be
expressed in the display unit of the main product.

See Also: IloMSProductionOrder, IloMSMaterial, IloMSModel, IloMSSchedulingEngine

Method Summary

public void changeMaterial(IloMSMaterial oldMaterial,
IloMSMaterial newMaterial, IloMSStorageUnit
oldMaterialStorageUnit, IloMSStorageUnit
newMaterialStorageUnit)

public IloMSRecipe deepCopy(IloMSIdentifier identifier=0) const

public IloMSActivity getActivityPrototype(IloInt index) const

public IloNum getAllocationWeight() const

public IloNum getBatchSizeMax() const

public IloNum getBatchSizeMin() const

public IloMSUnit getBatchSizeUnit() const

public IloInt getCampaignCycle() const

public IloInt getCampaignMaxNumberOfOrders() const

public IloNum getConsumedFixedQuantity(IloMSMaterial material)
const

public IloMSMaterial getConsumedMaterial(IloInt index) const

public IloNum getConsumedQuantity(IloMSMaterial material) const

public IloNum getConsumedVariableQuantity(IloMSMaterial material)
const

public IloMSAbstractActivity getConsumingActivityPrototype(IloMSMaterial
material) const

public IloInt getEndMax() const

public IloInt getNumberOfActivityPrototypes() const

207

public IloInt getNumberOfConsumedMaterials() const

public IloInt getNumberOfProducedMaterials() const

public IloInt getNumberOfProductionOrders() const

public IloMSMaterial getPrimaryIngredient() const

public IloMSMaterial getPrimaryProduct() const

public IloNum getProducedFixedQuantity(IloMSMaterial material)
const

public IloMSMaterial getProducedMaterial(IloInt index) const

public IloNum getProducedQuantity(IloMSMaterial material) const

public IloNum getProducedVariableQuantity(IloMSMaterial material)
const

public IloMSAbstractActivity getProducingActivityPrototype(IloMSMaterial
material) const

public IloMSProductionOrder getProductionOrder(IloInt index) const

public IloInt getPrototypeIndex(IloMSActivity prototype) const

public IloMSRecipeType getRecipeType() const

public IloNum getSplitBatchSizeMin() const

public IloInt getStartMin() const

public IloBool hasCampaignConstraint() const

public IloBool hasIntegerBatchSize() const

public IloBool hasPrimaryIngredient() const

public IloBool hasPrimaryProduct() const

public IloBool isFlexibleInstance() const

public IloBool isRequiring(IloMSResource resource) const

public IloBool isWasteRecipe() const

public void setAllocationWeight(IloNum ratio)

public void setBatchSizeMax(IloNum limit)

public void setBatchSizeMin(IloNum limit)

public void setCampaignCycle(IloInt cycle)

public void setCampaignMaxNumberOfOrders(IloInt maxOrders)

public void setEndMax(IloInt time)

public void setIdentifier(IloMSIdentifier identifier)

public void setIntegerBatchSize(IloBool isInteger)

public void setPrimaryIngredient(IloMSMaterial
primaryIngredient)

public void setPrimaryProduct(IloMSMaterial primaryProduct)

public void setRecipeType(IloMSRecipeType type)

public void setSplitBatchSizeMin(IloNum limit)

public void setStartMin(IloInt time)

public void splitCrossBucketOrders()

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,

208

getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public void changeMaterial(IloMSMaterial oldMaterial, IloMSMaterial newMaterial,
IloMSStorageUnit oldMaterialStorageUnit, IloMSStorageUnit newMaterialStorageUnit)

This method changes all occurrences of the couple (oldMaterial,oldMaterialStorageUnit) in the
invoking recipe to the couple (newMaterial,newMaterialStorageUnit). If oldMaterialStorageUnit
is null then all occurrences of oldMaterial are replaced by newMaterial, not considering storage units. If the
newMaterial is null, then all production or consumption of oldMaterial is removed.

public IloMSRecipe deepCopy(IloMSIdentifier identifier=0) const

This function implements a new recipe with exactly the same structure but different identifiers as the invoking
recipe. If a null identifier is passed to this method, a UUID will be generated.

public IloMSActivity getActivityPrototype(IloInt index) const

This method returns a specific activity prototype contained in the recipe.

public IloNum getAllocationWeight() const

This method returns the allocation weight. When a material can be produced by using alternative recipes, this
allocation weight controls distribution of the dependent demand for the semi-finished product across the different
routings.

public IloNum getBatchSizeMax() const

This method returns the maximal size of production orders implementing this recipe.

public IloNum getBatchSizeMin() const

This method returns the minimal size of production orders implementing this recipe.

public IloMSUnit getBatchSizeUnit() const

This method returns the unit of measurement for the primary product per one unit of batch size in the invoking
recipe. A null pointer may be returned if it is not possible to determine the correspondence between a unit of
measure and a unit of recipe.

public IloInt getCampaignCycle() const

209

This method returns the campaign cycle time. This value is used in conjunction with the
"campaignMaxNumberOfOrders" field to set an upper bound on the number of produced orders per time interval.

public IloInt getCampaignMaxNumberOfOrders() const

This method returns the maximum number of produced orders per cycle time. This value is used in conjunction
with the "campaignCycle" field to set an upper bound on the number of produced orders per time interval.

public IloNum getConsumedFixedQuantity(IloMSMaterial material) const

This method returns the quantity of material consumed by one unit of recipe execution.

public IloMSMaterial getConsumedMaterial(IloInt index) const

This method returns the material consumed by the invoking recipe.

public IloNum getConsumedQuantity(IloMSMaterial material) const

This method returns the quantity of material consumed by one unit of recipe execution.

public IloNum getConsumedVariableQuantity(IloMSMaterial material) const

This method returns the quantity of material consumed by one unit of recipe execution.

public IloMSAbstractActivity getConsumingActivityPrototype(IloMSMaterial material)
const

This method returns the activity prototype of the invoking recipe that consumes the material passed as
parameter.

public IloInt getEndMax() const

This method returns the valid end time of the recipe. The recipe cannot be used after the returned time.

public IloInt getNumberOfActivityPrototypes() const

This method returns the number of activity prototypes contained in the recipe.

public IloInt getNumberOfConsumedMaterials() const

This method returns the number of materials consumed by the invoking recipe.

public IloInt getNumberOfProducedMaterials() const

210

This method returns the number of materials produced by the invoking recipe.

public IloInt getNumberOfProductionOrders() const

This method returns the number of production orders of the invoking recipe.

public IloMSMaterial getPrimaryIngredient() const

This method returns the primary ingredient of this recipe.

public IloMSMaterial getPrimaryProduct() const

This method returns the primary product of this recipe.

public IloNum getProducedFixedQuantity(IloMSMaterial material) const

This method returns the quantity of material produced by one unit of recipe execution.

public IloMSMaterial getProducedMaterial(IloInt index) const

This method returns the material produced by the invoking recipe.

public IloNum getProducedQuantity(IloMSMaterial material) const

This method returns the quantity of material produced by one unit of recipe execution.

public IloNum getProducedVariableQuantity(IloMSMaterial material) const

This method returns the quantity of material produced by one unit of recipe execution.

public IloMSAbstractActivity getProducingActivityPrototype(IloMSMaterial material)
const

This method returns the activity prototype of the invoking recipe that produces the material passed as parameter.

public IloMSProductionOrder getProductionOrder(IloInt index) const

This method returns the production order of the invoking recipe with specified index.

public IloInt getPrototypeIndex(IloMSActivity prototype) const

211

This method returns the index of the corresponding production activity prototype within the invoking recipe, or
throws an exception if the prototype is not found.

public IloMSRecipeType getRecipeType() const

This method returns the type of the invoking recipe.

See Also: IloMSRecipeType

public IloNum getSplitBatchSizeMin() const

This method returns the minimal possible size of production orders when splitting cross-bucket orders. If not
defined then the minimal batch size (setBatchSizeMin) is used.

public IloInt getStartMin() const

This method returns the valid start time of the recipe. The recipe cannot be used before the returned time.

public IloBool hasCampaignConstraint() const

This method returns true if the recipe has a campaign constraint.

public IloBool hasIntegerBatchSize() const

This method returns true if any production orders created from this recipe must take an integer batch size.

public IloBool hasPrimaryIngredient() const

This method returns true if a primary ingredient has been declared for this recipe.

public IloBool hasPrimaryProduct() const

This method returns true if a primary product has been declared for this recipe.

public IloBool isFlexibleInstance() const

This method returns true if the invoking recipe comes from the instantiation of a flexible recipe after solving a
blending problem with the planning module.

public IloBool isRequiring(IloMSResource resource) const

This method returns true if the recipe requires the resource resource.

212

public IloBool isWasteRecipe() const

This method returns true if the invoking recipe consumes one material and produces nothing.

public void setAllocationWeight(IloNum ratio)

This method sets the allocation weight. When a material can be produced by using alternative recipes, this
allocation weight controls distribution of the dependent demand for the semi-finished product across the different
routings.

public void setBatchSizeMax(IloNum limit)

This method sets the maximal size of production orders implementing this recipe.

public void setBatchSizeMin(IloNum limit)

This method sets the minimal size of production orders implementing this recipe.

public void setCampaignCycle(IloInt cycle)

This method sets the campaign cycle time of the recipe.

public void setCampaignMaxNumberOfOrders(IloInt maxOrders)

This method sets the campaign maximum number of orders per cycle time of the recipe.

public void setEndMax(IloInt time)

This method sets the valid end time of the recipe. The recipe cannot be used after the time time.

public void setIdentifier(IloMSIdentifier identifier)

This modifier associates an identifier with the invoking recipe. An exception is thrown if the given identifier is
already used.

public void setIntegerBatchSize(IloBool isInteger)

This method states that any production orders created from this recipe must take an integer batch size.

public void setPrimaryIngredient(IloMSMaterial primaryIngredient)

This method sets the primary ingredient of this recipe.

213

public void setPrimaryProduct(IloMSMaterial primaryProduct)

This method sets the primary product of this recipe.

public void setRecipeType(IloMSRecipeType type)

This method specifies the type of the invoking recipe.

See Also: IloMSRecipeType

public void setSplitBatchSizeMin(IloNum limit)

This method sets the minimal possible size of production orders when splitting cross-bucket orders using the
splitCrossBucketOrders API. If not defined then the minimal batch size (setBatchSizeMin) is used.

public void setStartMin(IloInt time)

This method sets the valid start time of the recipe. The recipe cannot be used before the time time.

public void splitCrossBucketOrders()

This method splits all production orders of the invoking recipe that cross the boundaries of the buckets in the
current solution.

Note that this is possible on recipes having a single activity prototype and for which the processing time is purely
variable.

214

Class IloMSRecipeFamily
Definition file: ilplant/recipefamily.h
Library: plant

The IloMSRecipeFamily class is used to represent recipe families. A recipe may be a member of several
families. Families are a way to define submodels and to perform a partial database load of the data.

See Also: IloMSRecipe, IloMSRecipeFamilyFilter, IloMSScope

Method Summary

public void add(IloMSRecipe recipe)

public void display(ostream & stream) const

public IloInt getNumberOfRecipes() const

public IloMSRecipe getRecipe(IloInt index) const

public IloMSIdentifier getType() const

public IloBool isMember(IloMSRecipe recipe) const

public void remove(IloMSRecipe recipe)

public void setIdentifier(IloMSIdentifier identifier)

public void setType(IloMSIdentifier type)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public void add(IloMSRecipe recipe)

This method adds the recipe to the invoking family.

public void display(ostream & stream) const

This method displays the recipe family in the stream passed as argument.

public IloInt getNumberOfRecipes() const

This method returns the number of recipes in this family.

public IloMSRecipe getRecipe(IloInt index) const

215

This method returns the recipe with the index in the invoking family.

public IloMSIdentifier getType() const

This method retrieves the type of the family.

public IloBool isMember(IloMSRecipe recipe) const

This method return true if the recipe is a member of the invoking family.

public void remove(IloMSRecipe recipe)

This method removes the recipe from the invoking family.

public void setIdentifier(IloMSIdentifier identifier)

This modifier associates an identifier with the invoking recipe family. An exception is thrown if the given
identifier is already used.

public void setType(IloMSIdentifier type)

This method registers the invoking family in the collection of families of the same type.

216

Class IloMSRecipeFamilyFilter
Definition file: ilplant/recipefamilyfilter.h
Library: plant

The IloMSRecipeFamilyFilter class is used to filter a model to create a submodel that contains recipe
families.
The submodel contains only the recipe families as defined in the filter. Two different sets of recipe families are
created: A first set contains "frozen" recipe families, with the recipes and corresponding orders of this set fixed. A
second set contains "planned" recipe families, with the recipes and corresponding orders that are planned and
scheduled.

The scope permits creation of a submodel with this filter applied on the core model.

See Also: IloMSScope, IloMSRecipeFamily

Method Summary

public void addFrozenRecipeFamily(IloMSRecipeFamily recipeFamily)

public void addPlannedRecipeFamily(IloMSRecipeFamily recipeFamily)

public void addRecipeFamily(IloMSRecipeFamily recipeFamily,
IloMSRecipeFamilyStatus recipeFamilyStatus)

public void display(ostream & stream) const

public IloMSRecipeFamily getFrozenRecipeFamily(IloInt i) const

public IloInt getNumberOfFrozenRecipeFamilies() const

public IloInt getNumberOfPlannedRecipeFamilies() const

public IloMSRecipeFamily getPlannedRecipeFamily(IloInt i) const

public IloMSScope getScope()

public IloBool isFrozenMember(IloMSRecipeFamily recipeFamily)

public IloBool isMember(IloMSRecipeFamily recipeFamily)

public IloBool isPlannedMember(IloMSRecipeFamily recipeFamily)

public void removeFrozenRecipeFamily(IloMSRecipeFamily recipeFamily)

public void removePlannedRecipeFamily(IloMSRecipeFamily
recipeFamily)

public void removeRecipeFamily(IloMSRecipeFamily recipeFamily,
IloMSRecipeFamilyStatus recipeFamilyStatus)

public void setIdentifier(IloMSIdentifier identifier)

public void setScope(IloMSScope scope)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

217

Methods

public void addFrozenRecipeFamily(IloMSRecipeFamily recipeFamily)

This method adds a frozen recipe family from this filter.

To the associated filter, it adds the given recipe family from the list of frozen recipe families.

public void addPlannedRecipeFamily(IloMSRecipeFamily recipeFamily)

This method adds a planned recipe family from this filter.

To the associated filter, it adds a given recipe family from the list of planned recipe families.

public void addRecipeFamily(IloMSRecipeFamily recipeFamily, IloMSRecipeFamilyStatus
recipeFamilyStatus)

This method adds a recipe family from this filter, given the recipe family status.

To the associated filter, it adds the given recipe family either from the list of planned recipe families or from the
list of frozen recipe families.

public void display(ostream & stream) const

This method displays the planned production in the stream passed as argument.

public IloMSRecipeFamily getFrozenRecipeFamily(IloInt i) const

This method returns the frozen recipe family at index i.

public IloInt getNumberOfFrozenRecipeFamilies() const

This method returns the number of frozen recipe families in this filter.

In the associated submodel, this is the number of recipe families for which recipes and corresponding orders will
be fixed.

public IloInt getNumberOfPlannedRecipeFamilies() const

This method returns the number of planned recipe families in this filter.

In the associated submodel, this is the number of recipe families for which recipes and corresponding orders will
be planned and scheduled.

public IloMSRecipeFamily getPlannedRecipeFamily(IloInt i) const

This method returns the planned recipe family at index i.

218

public IloMSScope getScope()

This method returns the scope to which the filter is associated.

The scope permits creation of a submodel with this filter applied on the core model.

public IloBool isFrozenMember(IloMSRecipeFamily recipeFamily)

This method returns true if the given recipe family belongs to this filter.

Only the set of frozen recipe families is searched.

public IloBool isMember(IloMSRecipeFamily recipeFamily)

This method returns true if the given recipe family belongs to this filter.

Both the set of frozen recipe families and the set of planned recipe families are searched.

public IloBool isPlannedMember(IloMSRecipeFamily recipeFamily)

This method returns true if the given recipe family belongs to this filter.

Only the set of planned recipe families is searched.

public void removeFrozenRecipeFamily(IloMSRecipeFamily recipeFamily)

This method removes a frozen recipe family from this filter.

In the associated filter, it removes a given recipe family from the list of frozen recipe families.

public void removePlannedRecipeFamily(IloMSRecipeFamily recipeFamily)

This method removes a planned recipe family from this filter.

In the associated filter, it removes a given recipe family from the list of planned recipe families.

public void removeRecipeFamily(IloMSRecipeFamily recipeFamily,
IloMSRecipeFamilyStatus recipeFamilyStatus)

This method removes a recipe family from this filter, given the recipe family status.

In the associated filter, it removes the given recipe family either from the list of planned recipe families or from the
list of frozen recipe families.

public void setIdentifier(IloMSIdentifier identifier)

219

This modifier associates an identifier with the invoking recipe family filter.

public void setScope(IloMSScope scope)

This method sets the scope to which the filter is applied.

The scope permits creation of a submodel with this filter applied on the core model.

220

Class IloMSRepairAlgorithm
Definition file: ilplant/repair.h
Library: plant

The IloMSRepairAlgorithm class is used to change a scheduling solution while enforcing (or repairing) some
constraints.
IloMSRepairAlgorithm is deprecated. Use Java(TM) class IloMSCommandProcessorRepairCapacity.

The IloMSRepairAlgorithm can be used either to 'repair' a solution in which some constraints are violated, or
to change some activities in the solution while maintaining or repairing the constraints associated with those
activities. The possibilities include: Changing the date of an activity, changing the activity mode, changing the
activity primary resource, or changing the batch size of the associated production order.

Depending on the values for the 'scope' and the 'capacity' parameters, the repair algorithm will consider more or
fewer constraints, for more or fewer activities.

The 'scope' parameter determines the set of activities that will have their constraints enforced. The 'capacity'
parameter determines whether the capacity of the primary resource of the selected activities (it must be the same
for all) is considered.

The usage pattern for IloMSRepairAlgorithm is the following: Get the instance using
IloMSModel::getRepairAlgorithm(), then add one or more activities using addSelectedActivity(),
possibly set a non-null delta using setDelta(), and call zero or one of setNewMode(), setNewBatchSize()
or setNewResource(), then call repair().

See Also: IloMSRepairCapacity, IloMSRepairExtent, IloMSModel

Method Summary

public void addSelectedActivity(IloMSScheduledActivity pivot)

public IloBool repair()

public void setDelta(IloInt delta)

public void setNewBatchSize(IloNum newBatchSize)

public void setNewMode(IloMSMode newMode)

public void setNewResource(IloMSResource newRes)

public void setRepairCapacity(IloMSRepairCapacity repairCapacity)

public void setRepairExtent(IloMSRepairExtent repairExtent)

Methods

public void addSelectedActivity(IloMSScheduledActivity pivot)

This method adds an activity to the set of activities that will be changed.

public IloBool repair()

This method changes the selected activities and repairs the constraints.

221

The selected activities are first changed as specified using setDelta(int),
setNewResource(IloMSResource), setNewMode(IloMSMode) or setNewBatchSize(double).

Then the constraints, as defined by the IloMSRepairExtent and IloMSRepairCapacity parameters, are
enforced.

The method returns true if the repair algorithm succeeded in finding a new solution, and false otherwise.

public void setDelta(IloInt delta)

This method sets the amount of time units by which the selected activities must be shifted (to the future if > 0, to
the past if < 0).

If the given value is not null, then the start time of the selected activities will be moved by at least the given value.
Moreover, any other activity will be constrained to start at or after its original start time (if delta > 0) or to end at or
before its original end time (if delta < 0).

public void setNewBatchSize(IloNum newBatchSize)

This method sets the new batch size of the production order of the selected activity.

This method can be called only for one selected activity at a time. This method can not be called together with
setNewResource(IloMSResource) or setNewMode(IloMSMode).

public void setNewMode(IloMSMode newMode)

This method sets the new mode of the selected activity.

This method can be called only for one selected activity at a time. This method can not be called together with
setNewResource(IloMSResource) or setNewBatchSize(double).

public void setNewResource(IloMSResource newRes)

This method sets the new primary resource used by the selected activities.

This method can be called only if all of the selected activities currently use the same primary resource. This
method can not be called together with setNewMode(IloMSMode) or setNewBatchSize(double).

public void setRepairCapacity(IloMSRepairCapacity repairCapacity)

This method defines how capacity constraints will be repaired.

If the value is IloMSRepairNoResource, capacity constraints are ignored.

If the value is IloMSRepairOneResource, then the capacity constraints of the primary resource of the selected
activities will be enforced; activities that overlap will be changed to eliminate this overlap. Note that the selected
activities should all have the same primary resource, and this resource should have a unitary capacity.

See Also: IloMSRepairCapacity

public void setRepairExtent(IloMSRepairExtent repairExtent)

222

This method defines the set of activities whose constraints will be repaired.

If the value is IloMSRepairActivity, then only the activities that are actually selected (e.g., in the Gantt
chart) will have their constraints (duration, calendar) enforced. In particular, precedence constraints will not be
considered.

If the value is IloMSRepairProductionOrder, then all the activities that belong to the production order(s) of
the selected activities will have their constraints enforced. In particular, this means that precedence constraints
between those activities will be enforced.

If the value is IloMSRepairCluster, then all the activities that belong to clusters of the production order(s) of
the selected activities will have their constraints enforced. In particular, this means that pegging constraints
between those production orders will be enforced.

See Also: IloMSRepairExtent

223

Class IloMSReplicateAlgorithm
Definition file: ilplant/replicate.h
Library: plant

The IloMSReplicateAlgorithm class is used to duplicate a set of production orders.
Use IloMSReplicateCommand instead.

The replicated set of production orders is moved away from the original orders depending upon the value of the
offset. If the time duration of the offset is positive, then the replicated production orders are moved that amount
of time to the future. If the offset is negative, the orders are moved by that duration to the past.

See Also: IloMSProductionOrder, IloMSScheduledActivity, IloMSProdToProdArc

Method Summary

public void addActivityToReplicate(IloMSScheduledActivity
act)

public void computeModifiedSet()

public IloInt getNumberOfPO()

public IloInt getNumberOfReplicatedActivities()

public IloInt getNumberOfReplicatedArcs()

public IloInt getNumberOfReplicatedPO()

public IloInt getOffset()

public IloMSScheduledActivityI * getReplicatedActivity(IloInt i)

public IloMSProdToProdArcI * getReplicatedArc(IloInt i)

public IloMSProductionOrderI * getReplicatedPO(IloInt i)

public void initialize()

public IloBool replicate(IloBool replicateArcs=IloTrue)

public void reset()

public void setOffset(IloInt offset)

Methods

public void addActivityToReplicate(IloMSScheduledActivity act)

This method adds an activity to the set of duplicated activities.

public void computeModifiedSet()

This method computes the modified set of duplicated production orders.

public IloInt getNumberOfPO()

This method returns the number of production orders that are selected for duplication.

224

public IloInt getNumberOfReplicatedActivities()

This method returns the number of activities corresponding to the replicated production orders.

public IloInt getNumberOfReplicatedArcs()

This method returns the number of arcs that are replicated during the duplication of production orders.

public IloInt getNumberOfReplicatedPO()

This method returns the number of duplicated production orders.

public IloInt getOffset()

This method returns the offset between the original set of production orders and the duplicated set of production
orders.

public IloMSScheduledActivityI * getReplicatedActivity(IloInt i)

This method returns the replicated activity.

public IloMSProdToProdArcI * getReplicatedArc(IloInt i)

This method returns the replicated arc.

public IloMSProductionOrderI * getReplicatedPO(IloInt i)

This method returns the replicated production order.

public void initialize()

This method initializes variables that are used in the algorithm used to replicate a set of production orders.

public IloBool replicate(IloBool replicateArcs=IloTrue)

This method is the core function of the replicate algorithm; it creates the duplicated production orders that are
delayed by the offset.

public void reset()

This method resets the algorithm used to replicate a set of production orders.

225

public void setOffset(IloInt offset)

This method sets the offset. The offset is the time duration between the original set of production orders and the
duplicated set of production orders.

226

Class IloMSResource
Definition file: ilplant/resource.h
Library: plant

The IloMSResource class is used to describe production resources on which activities will be performed.
A resource is typically used to model a machine, a tool, a vehicle or equipment. It can also be used to model
workers. Do not use IloMSResource to model materials being consumed or produced; use IloMSMaterial
for that purpose.

Resources can be aggregated together into larger groups; one reason to do so is to make solving the planning
problem easier. Use of super resources allows the planning engine to consider within each time bucket the
grouped capacity of all the resources of a super resource. Note that super resources must group only similar
resources, which typically have identical connectivity and make the same products. To define super resources in
order to lighten the planning problem, use methods such as IloMSResource::setSuperResource.

You can also group resources into resource families. This allows you to tailor and organize resource data for
reporting or visibility purposes (for example, to improve visibility on the Gantt Diagram). To create resource
families, use the class IloMSResourceFamily.

You can define resource usage and idle costs. The cost for using a resource often increases with the capacity
used; this resource capacity cost can be defined as a piecewise linear function or as a stepwise linear function.
Idle cost can be defined as a piecewise linear function.

You can use IloMSResourceCapacityCostFunction to create a penalty for idle resources.

All the methods of the IloMSResource class throw an exception if an empty handle (that is, an uninitialized
object) is used.

See Also: IloMSMaterial, IloMSResourceCapacityCostFunction, IloMSResourceFamily

Method Summary

public void addConnectedResource(IloMSResource
otherResource)

public IloMSCalendar getCalendar() const

public IloNum getCapacity(IloInt time, IloInt
levelNumber) const

227

public IloInt getCapacity() const

public IloMSResourceCapacityCostFunction getCapacityCostFunction(IloInt i) const

public IloMSResourceCapacityCostFunction getCapacityCostFunctionAtTime(IloInt
time) const

public IloInt getCapacityCostFunctionValidityEnd(IloInt
i) const

public IloInt getCapacityCostFunctionValidityStart(IloInt
i) const

public const char * getCategory() const

public IloNum getCleanupCost() const

public IloMSRecipe getCleanupRecipe() const

public IloInt getCleanupTime() const

public IloMSResource getConnectedResource(IloInt index) const

public IloInt getDisplayRank() const

public IloInt getEndMax() const

public IloMSIdentifier getFinalSetupState(IloMSIdentifier
feature) const

public IloNum getFixedCostOfCapacity(IloInt time,
IloInt levelNumber) const

public IloNum getIdleVariableCostOfCapacity(IloInt
time, IloInt levelNumber) const

public IloMSIdentifier getInitialSetupState(IloMSIdentifier
feature) const

public IloMSIdentifier getLineId() const

public IloInt getMaxIdleTimeBeforeCleanup() const

public IloInt getMaxNumberOfBatchesBeforeCleanup()
const

public IloInt getMaxTimeBeforeCleanup() const

public IloInt getNumberOfBatchesSinceLastCleanup()
const

public IloInt getNumberOfCapacityCostFunctions() const

public IloInt getNumberOfConnectedResources() const

public IloInt getNumberOfLevelsOfCapacity(IloInt time)
const

public IloInt getNumberOfPlanningSetupModels() const

public IloInt getNumberOfSubResources() const

public IloNum getPlanningCapacityReductionFactor()
const

public IloMSPlanningSetupModel getPlanningSetupModel(IloInt i) const

public IloMSPlanningSetupModel getPlanningSetupModelAtTime(IloInt time)
const

public IloInt getPlanningSetupModelValidityEnd(IloInt
i) const

public IloInt getPlanningSetupModelValidityStart(IloInt
i) const

public IloInt getRank() const

228

public IloMSSetupMatrix getSetupMatrix(IloMSIdentifier feature)
const

public IloInt getStartMin() const

public IloMSStorageUnit getStorageUnit() const

public IloMSResource getSubResource(IloInt index) const

public IloMSResource getSuperResource() const

public IloInt getTimeFence() const

public IloInt getTimeOfLastCleanup() const

public IloNum getVariableCostOfCapacity(IloInt time,
IloInt levelNumber) const

public IloNum getX() const

public IloNum getY() const

public IloBool hasCalendar() const

public IloBool hasCapacityCostFunctionAtTime(IloInt
time) const

public IloBool hasCleanupRecipe() const

public IloBool hasFinalSetupState(IloMSIdentifier
feature) const

public IloBool hasInitialSetupState(IloMSIdentifier
feature) const

public IloBool hasSetupMatrix(IloMSIdentifier feature)
const

public IloBool hasStorageUnit() const

public IloBool hasSuperResource() const

public IloBool isConnectedWith(IloMSResource
otherResource) const

public IloBool isTimeFenceDefined() const

public void removeCapacityCostFunction(IloInt i)

public void removeCapacityCostFunction(IloMSResourceCapacityCostFunction
function, IloInt start, IloInt end)

public void removeConnectedResource(IloMSResource
otherResource)

public void removePlanningSetupModel(IloInt i)

public void removePlanningSetupModel(IloMSPlanningSetupModel
model, IloInt start, IloInt end)

public void setCalendar(IloMSCalendar calendar)

public void setCapacityCostFunction(IloMSResourceCapacityCostFunction
function, IloInt validityStart, IloInt
validityEnd)

public void setCategory(const char * category)

public void setCleanupRecipe(IloMSRecipe recipe)

public void setDisplayRank(IloInt rank)

public void setEndMax(IloInt endMax)

public void setFinalSetupState(IloMSIdentifier
feature, IloMSIdentifier
initialSetupState)

229

public void setIdentifier(IloMSIdentifier
identifier)

public void setInitialSetupState(IloMSIdentifier
initialSetupState)

public void setInitialSetupState(IloMSIdentifier
feature, IloMSIdentifier
initialSetupState)

public void setLineId(IloMSIdentifier id)

public void setMaxIdleTimeBeforeCleanup(IloInt
value)

public void setMaxNumberOfBatchesBeforeCleanup(IloInt
value)

public void setMaxTimeBeforeCleanup(IloInt value)

public void setNumberOfBatchesSinceLastCleanup(IloInt
numberOfBatches)

public void setPlanningCapacityReductionFactor(IloNum
factor)

public void setPlanningSetupModel(IloMSPlanningSetupModel
model, IloInt validityStart, IloInt
validityEnd)

public void setRank(IloInt rank)

public void setSetupMatrix(IloMSSetupMatrix
setupMatrix)

public void setSetupMatrix(IloMSIdentifier feature,
IloMSSetupMatrix setupMatrix)

public void setStartMin(IloInt startMin)

public void setSuperResource(IloMSResource
superResource)

public void setTimeFence(IloInt timeFence)

public void setTimeOfLastCleanup(IloInt value)

public void setX(IloNum x)

public void setY(IloNum y)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public void addConnectedResource(IloMSResource otherResource)

This method creates a connection between the invoking resource and the resource specified as parameter. A
connection between resources allows you to enforce the usage of two connected resources as the primary
resources of two activities. There is no need to define the resource connections when all activities can use any
resource as the primary resource.

public IloMSCalendar getCalendar() const

230

This method returns the calendar associated with the invoking resource. An exception is thrown if the resource
has no calendar.

public IloNum getCapacity(IloInt time, IloInt levelNumber) const

This method returns the capacity defined at level levelNumber of the capacity cost function valid at the given
time for the invoking resource. This feature is only used by the planning engine.

public IloInt getCapacity() const

This method returns the maximal instantaneous capacity of the invoking resource.

public IloMSResourceCapacityCostFunction getCapacityCostFunction(IloInt i) const

This method returns the capacity cost functions with the given index i of the invoking resource. One can use
several capacity levels and associate increasing costs of resource usage. This feature is only used by the
planning engine.

public IloMSResourceCapacityCostFunction getCapacityCostFunctionAtTime(IloInt time)
const

This method returns the capacity cost functions valid at time for the invoking resource. This feature is only used
by the planning engine.

public IloInt getCapacityCostFunctionValidityEnd(IloInt i) const

This method returns the end time of the validity interval for the capacity cost functions with the given index i in
the invoking resource. One can use several capacity levels and associate increasing costs of resource usage.
This feature is only used by the planning engine.

public IloInt getCapacityCostFunctionValidityStart(IloInt i) const

This method returns the start time of the validity interval for the capacity cost functions with the given index i in
the invoking resource. One can use several capacity levels and associate increasing costs of resource usage.
This feature is only used by the planning engine.

public const char * getCategory() const

This method returns the category of this resource to be interpreted for symbolic representation in a specialized
editor.

public IloNum getCleanupCost() const

This method returns the cost of a cleaning activity.

231

public IloMSRecipe getCleanupRecipe() const

This method returns the cleanup recipe associated with the resource that allows creating cleanup orders when
required.

public IloInt getCleanupTime() const

This method returns the processing time of a cleaning activity.

public IloMSResource getConnectedResource(IloInt index) const

This method returns the connected resource with the given index for the invoking resource.

public IloInt getDisplayRank() const

This method returns the rank of the resource, as displayed in the Gantt Diagram.

public IloInt getEndMax() const

This method returns the time after which no production activity or setup can end on the resource.

It is the common latest end time shared by all modes requiring the resource.

public IloMSIdentifier getFinalSetupState(IloMSIdentifier feature) const

This method returns the required final setup state of the invoking resource for the given setup feature. An
exception is thrown if the invoking resource has no initial setup.

public IloNum getFixedCostOfCapacity(IloInt time, IloInt levelNumber) const

This method returns the fixed cost defined at level levelNumber of the capacity cost function valid at the given
time for the invoking resource. This feature is only used by the planning engine.

public IloNum getIdleVariableCostOfCapacity(IloInt time, IloInt levelNumber) const

This method returns the idle variable cost defined at level levelNumber of the capacity cost function valid at the
given time for the invoking resource. This feature is only used by the planning engine.

public IloMSIdentifier getInitialSetupState(IloMSIdentifier feature) const

This method returns the initial setup state of the invoking resource for the given setup feature. An exception is
thrown if the invoking resource has no initial setup.

232

public IloMSIdentifier getLineId() const

This method returns the line identifier of the invoking resource.

public IloInt getMaxIdleTimeBeforeCleanup() const

This method returns the maximum number of time units between two cleanups if the resource is idle.

public IloInt getMaxNumberOfBatchesBeforeCleanup() const

This method returns the maximum number of batches executable between two cleanups.

public IloInt getMaxTimeBeforeCleanup() const

This method returns the maximum number of time units between two cleanups.

public IloInt getNumberOfBatchesSinceLastCleanup() const

This method returns the number of batches executed since last clean up.

public IloInt getNumberOfCapacityCostFunctions() const

This method returns the number of capacity cost functions in the invoking resource. One can use several
capacity levels and associate increasing costs of resource usage. This feature is only used by the planning
engine.

public IloInt getNumberOfConnectedResources() const

This method returns the number of connected resources to the invoking resource.

public IloInt getNumberOfLevelsOfCapacity(IloInt time) const

This method returns the number of levels of the capacity cost function valid at the given time for the invoking
resource. This feature is only used by the planning engine.

public IloInt getNumberOfPlanningSetupModels() const

This method returns the number of planning setup models in the invoking resource. This feature is only used by
the planning engine.

public IloInt getNumberOfSubResources() const

233

This method returns the number of subresources of the invoking resource.

public IloNum getPlanningCapacityReductionFactor() const

This method returns the factor limiting the bucket capacity of the resource for the planning engine so that the
planning optimization is not too optimistic with availability of the resource with respect to real scheduling
constraints.

public IloMSPlanningSetupModel getPlanningSetupModel(IloInt i) const

This method returns the planning setup model with the given index i of the invoking resource. This feature is
only used by the planning engine.

public IloMSPlanningSetupModel getPlanningSetupModelAtTime(IloInt time) const

This method returns the planning setup model valid at time for the invoking resource. This feature is only used
by the planning engine.

public IloInt getPlanningSetupModelValidityEnd(IloInt i) const

This method returns the end time of the validity interval for the planning setup model with the given index i in the
invoking resource. This feature is only used by the planning engine.

public IloInt getPlanningSetupModelValidityStart(IloInt i) const

This method returns the start time of the validity interval for the planning setup model with the given index i in
the invoking resource. This feature is only used by the planning engine.

public IloInt getRank() const

This method returns the rank of the resource, as displayed in the Gantt Diagram.

public IloMSSetupMatrix getSetupMatrix(IloMSIdentifier feature) const

This method returns the setup matrix of the invoking resource for the given setup feature. An exception is thrown
if the invoking resource has no setup matrix.

public IloInt getStartMin() const

This method returns the time before which no production activity or setup can start on the resource.

It is the common earliest start time shared by all modes requiring the resource.

public IloMSStorageUnit getStorageUnit() const

234

This method returns the associated storage unit.

public IloMSResource getSubResource(IloInt index) const

This method returns the subresource with the given index. An exception is thrown if the given index is out of
bounds.

public IloMSResource getSuperResource() const

This method returns the super-resource to which the invoking resource belongs. An exception is thrown if the
invoking resource has no super-resource.

public IloInt getTimeFence() const

This method retrieves the time fence to apply to the model start min at each database session to obtain this
resource start min.

public IloInt getTimeOfLastCleanup() const

This method returns the end time of the last cleanup executed before the origin of the resource.

public IloNum getVariableCostOfCapacity(IloInt time, IloInt levelNumber) const

This method returns the variable cost defined at level levelNumber of the capacity cost function valid at the
given time for the invoking resource. This feature is only used by the planning engine.

public IloNum getX() const

This method returns the X-coordinate in the plant layout representation.

public IloNum getY() const

This method returns the Y-coordinate in the plant layout representation.

public IloBool hasCalendar() const

This method returns true if the invoking resource has a calendar and false otherwise.

public IloBool hasCapacityCostFunctionAtTime(IloInt time) const

This method returns true if a capacity cost functions is valid at time for the invoking resource. It returns false
otherwise. This feature is only used by the planning engine.

235

public IloBool hasCleanupRecipe() const

This method returns true if a cleanup recipe is associated with the resource.

public IloBool hasFinalSetupState(IloMSIdentifier feature) const

This method returns true if a final setup state has been specified for the invoking resource on the given setup
feature feature, and false otherwise.

public IloBool hasInitialSetupState(IloMSIdentifier feature) const

This method returns true if an initial setup state has been specified for the invoking resource on the given setup
feature feature, and false otherwise.

public IloBool hasSetupMatrix(IloMSIdentifier feature) const

This method returns true if the invoking resource has a setup matrix for the given setup feature feature, and
false otherwise.

public IloBool hasStorageUnit() const

This method returns true if a storage unit is associated to this resource.

public IloBool hasSuperResource() const

This method returns true if the invoking resource has a super-resource. In such a case, the planning module
considers globally the capacity of the super-resource.

public IloBool isConnectedWith(IloMSResource otherResource) const

This method returns true if a direct or indirect connection exists between the invoking resource and the resource
specified as parameter.

Note that a resource A is connected with a resource B if one of the following is true:

A is directly connected with B•
A is directly connected with superResource(B)•
superResource(A) is directly connected with B•
superResource(A) is directly connected with superResource(B).•

public IloBool isTimeFenceDefined() const

This method returns true if a valid time fence has been specified for the invoking resource. Any negative value for
the time fence causes this method to return false.

236

public void removeCapacityCostFunction(IloInt i)

This method removes the capacity cost function of the given index i for the invoking resource. This feature is
only used by the planning engine.

public void removeCapacityCostFunction(IloMSResourceCapacityCostFunction function,
IloInt start, IloInt end)

This method removes the capacity cost function function for the invoking resource previously defined between
start and end. This feature is only used by the planning engine.

public void removeConnectedResource(IloMSResource otherResource)

This method removes a connection between the invoking resource and the resource specified as parameter.

public void removePlanningSetupModel(IloInt i)

This method removes the planning setup model of the given index i for the invoking resource. This feature is
only used by the planning engine.

public void removePlanningSetupModel(IloMSPlanningSetupModel model, IloInt start,
IloInt end)

This method removes the planning setup model model from the invoking resource previously defined between
start and end. This feature is only used by the planning engine.

public void setCalendar(IloMSCalendar calendar)

This method sets the calendar of the invoking resource. The calendar on the resource is the "default" calendar
used when no calendar is specified on the mode.

public void setCapacityCostFunction(IloMSResourceCapacityCostFunction function,
IloInt validityStart, IloInt validityEnd)

This method sets the capacity cost function function for the invoking resource between validityStart and
validityEnd. This feature is only used by the planning engine.

public void setCategory(const char * category)

This method sets the desired category on this resource to be interpreted for symbolic representation in a
specialized editor.

The expected values are: column, cooler, filter, mixer, operator, packer, pasteurizer, separator,
sterilizer, tank or team.

237

public void setCleanupRecipe(IloMSRecipe recipe)

This method sets the recipe on the invoking resource that allows creating cleanup orders when required.

public void setDisplayRank(IloInt rank)

This method sets the desired rank of the resource as displayed in the GUI: The smaller the rank value, the higher
the resource appears in the Gantt Diagram.

public void setEndMax(IloInt endMax)

This method sets the time after which no production activity or setup can end on the resource.

It is the common latest end time shared by all modes requiring the resource.

public void setFinalSetupState(IloMSIdentifier feature, IloMSIdentifier
initialSetupState)

This method sets the required final setup state of the invoking resource for the given setup feature.

public void setIdentifier(IloMSIdentifier identifier)

This modifier associates an identifier with the invoking resource. An exception is thrown if the given identifier
is already used.

public void setInitialSetupState(IloMSIdentifier initialSetupState)

This method sets the initial setup state of the invoking resource. This is equivalent to
setInitialSetupState(IloMSNoFeature, initialSetupState).

public void setInitialSetupState(IloMSIdentifier feature, IloMSIdentifier
initialSetupState)

This method sets the initial setup state of the invoking resource for the given setup feature.

public void setLineId(IloMSIdentifier id)

This method sets the line identifier of the invoking resource to the given value. The parameter id is the line
identifier of the resource. An exception is thrown if the given id is negative.

public void setMaxIdleTimeBeforeCleanup(IloInt value)

This method sets the maximum number of time units between two cleanups if the resource is idle.

238

public void setMaxNumberOfBatchesBeforeCleanup(IloInt value)

This method sets the maximum number of batches between two cleanups.

public void setMaxTimeBeforeCleanup(IloInt value)

This method sets the maximum number of time units between two cleanups.

public void setNumberOfBatchesSinceLastCleanup(IloInt numberOfBatches)

This method sets the number of batches executed since last clean up (before the start time of the model).

public void setPlanningCapacityReductionFactor(IloNum factor)

This method applies a factor between 0.0 and 1.0 to limit the bucket capacity for the planning engine so that
the planning optimization is not too optimistic with availability of the resource with respect to real scheduling
constraints.

public void setPlanningSetupModel(IloMSPlanningSetupModel model, IloInt
validityStart, IloInt validityEnd)

This method sets the planning setup model model for the invoking resource between validityStart and
validityEnd. The default model is NoSetup which means that setup activities are not taken into account. This
feature is only used by the planning engine.

public void setRank(IloInt rank)

This method sets the desired rank of the resource as displayed in the GUI: The smaller the rank value, the higher
the resource appears in the Gantt Diagram.

public void setSetupMatrix(IloMSSetupMatrix setupMatrix)

This method sets the setup matrix of the invoking resource to the given setupMatrix. This is equivalent to
setSetupMatrix(IloMSNoFeature,setupMatrix).

An exception is thrown if the invoking resource already has a setup matrix.

public void setSetupMatrix(IloMSIdentifier feature, IloMSSetupMatrix setupMatrix)

This method sets the setup matrix of the invoking resource for the given setup feature to the given
setupMatrix. An exception is thrown if the invoking resource already has a setup matrix.

public void setStartMin(IloInt startMin)

239

This method sets the time before which no production activity or setup can start on the resource.

It is the common earliest start time shared by all modes requiring the resource.

public void setSuperResource(IloMSResource superResource)

This method sets the super-resource of the invoking resource. Note that hierarchies with three levels or more are
not supported. An exception is thrown if the invoking resource has a subresource or if the given
superResource has a super-resource itself.

public void setTimeFence(IloInt timeFence)

This method sets the time fence to apply to the model start min at each database session to obtain this resource
start min. The previous value of startMin of this resource will be conserved if it is greater than this computed
value.

public void setTimeOfLastCleanup(IloInt value)

This method sets the end time of the last cleanup executed before the origin of the resource.

public void setX(IloNum x)

This method sets the desired X-coordinate for plant layout representation.

public void setY(IloNum y)

This method sets the desired Y-coordinate for plant layout representation.

240

Class IloMSResourceCapacityCostFunction
Definition file: ilplant/costfunctions.h
Library: plant

The class IloMSResourceCapacityCostFunction is used to evaluate the cost of using a resource over
time.
An instance of IloMSResourceCapacityCostFunction is used to represent a piecewise or stepwise linear
cost function used to evaluate the cost of using a resource over time. It also allows penalizing idle resources by
using a piecewise linear idle cost. This feature is only used by the planning engine.

See Also: IloMSRecipe, IloMSResource

Method Summary

public IloNum getCapacity(IloInt level) const

public IloNum getFixedCost(IloInt level) const

public IloNum getIdleVariableCost(IloInt level) const

public IloInt getNumberOfLevels()

public IloNum getVariableCost(IloInt level) const

public void setCapacity(IloInt level, IloNum value)

public void setFixedCost(IloInt level, IloNum value)

public void setIdentifier(IloMSIdentifier identifier)

public void setIdleVariableCost(IloInt level, IloNum value)

public void setVariableCost(IloInt level, IloNum value)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

241

Methods

public IloNum getCapacity(IloInt level) const

This method returns the capacity limit up to which this level applies.

public IloNum getFixedCost(IloInt level) const

This method returns the fixed cost incurred to enter this level of capacity; that is, when the capacity of the
previous level is exceeded.

public IloNum getIdleVariableCost(IloInt level) const

This method returns the slope of the piecewise linear cost function when not using the capacity included in the
[floor;ceil) segment of the level.

public IloInt getNumberOfLevels()

This modifier returns the number of levels associated with the invoking function.

public IloNum getVariableCost(IloInt level) const

This method returns the slope of the piecewise linear cost function for this level of capacity; that is, for capacity
included in this level (from the capacity of the previous level to the capacity of this level).

public void setCapacity(IloInt level, IloNum value)

This method sets the capacity limit (between 0 and the capacity of the resource) up to which this level applies.

For example, for a resource of capacity 2, if we want the average capacity on a time bucket to be penalized
above 66% usage, then we must create two levels; one level with capacity 1.32 and a zero variable cost, and one
level with a capacity of 2.0 or higher and a positive variable cost.

public void setFixedCost(IloInt level, IloNum value)

This method sets the fixed cost incurred to enter this level of capacity; that is, when the capacity of the previous
level is exceeded.

public void setIdentifier(IloMSIdentifier identifier)

This modifier associates an identifier with the invoking function.

public void setIdleVariableCost(IloInt level, IloNum value)

242

This method sets the slope of the piecewise linear cost function when not using the capacity included in the
[floor;ceil) segment of the level.

public void setVariableCost(IloInt level, IloNum value)

This method sets the slope of the piecewise linear cost function for this level of capacity; that is, for capacity
included in this level (from the capacity of the previous level to the capacity of this level).

243

Class IloMSResourceConstraint
Definition file: ilplant/rescst.h
Library: plant

The class IloMSResourceConstraint is used to represent a resource requirement on an activity.
This constraint enables the mode of an activity to require a certain amount of capacity on a given resource. Note
that a resource may be required as the primary or the secondary resource by an activity. Only one resource can
be required as primary for a given mode; there can be many secondary resource constraints. When used as
secondary, the setup and cleanup features are not available.

See Also: IloMSAbstractActivity, IloMSMode, IloMSResource

Method Summary

public IloMSMode getMode() const

public IloInt getRequiredCapacity() const

public IloMSResource getResource() const

public IloBool isPrimary() const

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloMSMode getMode() const

This method returns the mode of an activity requiring a resource.

public IloInt getRequiredCapacity() const

This method returns the capacity required on the resource by the activity in the mode.

public IloMSResource getResource() const

This method returns the required resource.

public IloBool isPrimary() const

This method returns true if the resource is required as primary resource.

244

Class IloMSResourceFamily
Definition file: ilplant/resourcefamily.h
Library: plant

The IloMSResourceFamily class is used to represent resource families. A resource may be a member of
several families. Families are grouped by their type in the GUI for aggregation purpose.

See Also: IloMSResource

Method Summary

public void add(IloMSResource resource)

public void display(ostream & stream) const

public IloInt getNumberOfResources() const

public IloMSResource getResource(IloInt index) const

public IloMSIdentifier getType() const

public IloBool isMember(IloMSResource resource) const

public void remove(IloMSResource resource)

public void setIdentifier(IloMSIdentifier identifier)

public void setType(IloMSIdentifier type)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public void add(IloMSResource resource)

This method adds the resource to the invoking family.

public void display(ostream & stream) const

This method displays the resource family in the stream passed as argument.

public IloInt getNumberOfResources() const

This method returns the number of resources in this family.

public IloMSResource getResource(IloInt index) const

245

This method returns the resource with the index in the invoking family.

public IloMSIdentifier getType() const

This method retrieves the type of the family.

public IloBool isMember(IloMSResource resource) const

This method return true if the resource is a member of the invoking family.

public void remove(IloMSResource resource)

This method removes the resource from the invoking family.

public void setIdentifier(IloMSIdentifier identifier)

This modifier associates an identifier with the invoking resource family. An exception is thrown if the given
identifier is already used.

public void setType(IloMSIdentifier type)

This method registers the invoking family in the collection of families of same type.

246

Class IloMSScheduledActivity
Definition file: ilplant/schedact.h
Library: plant

The class IloMSScheduledActivity is used to represent an activity as scheduled on the shop floor.

Method Summary

public void addFirmPossibleMode(IloMSMode mode)

public void addPossibleMode(IloMSMode mode)

public void display(ostream & stream) const

public IloMSAbstractActivity getActivityPrototype() const

public IloInt getEndMax() const

public IloInt getEndMin() const

public IloInt getEndTime() const

public IloInt getFirmEndMax() const

public IloInt getFirmEndMin() const

public IloInt getFirmModeNumber() const

public IloMSPerformedStatus getFirmPerformedStatus() const

public IloInt getFirmPossibleModeNumber(IloInt i) const

public IloInt getFirmStartMax() const

public IloInt getFirmStartMin() const

public IloMSAbstractActivity getGeneratedActivity() const

public IloInt getModeNumber() const

public IloInt getNumberOfFirmPossibleModes() const

public IloInt getNumberOfPossibleModes() const

public IloMSPerformedStatus getPerformedStatus() const

public IloInt getPossibleModeNumber(IloInt i) const

public IloMSProductionOrder getProductionOrder() const

public IloMSSchedulingSolution getSchedulingSolution() const

public IloInt getStartMax() const

public IloInt getStartMin() const

public IloInt getStartTime() const

public void removeFirmPossibleMode(IloMSMode mode)

public void removePossibleMode(IloMSMode mode)

public void setEndTime(IloInt endTime)

public void setFirmEndMax(IloInt firmEndMax)

public void setFirmEndMin(IloInt firmEndMin)

public void setFirmModeNumber(IloInt firmModeNumber)

247

public void setFirmPerformedStatus(IloMSPerformedStatus
status)

public void setFirmStartMax(IloInt firmStartMax)

public void setFirmStartMin(IloInt firmStartMin)

public void setModeNumber(IloInt modeNumber)

public void setPerformedStatus(IloMSPerformedStatus status)

public void setStartTime(IloInt startTime)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public void addFirmPossibleMode(IloMSMode mode)

This method adds mode to the set of firm possible modes for the scheduled activity.

public void addPossibleMode(IloMSMode mode)

This method adds mode to the possible modes for the scheduled activity.

public void display(ostream & stream) const

This method displays the scheduled activity in the stream passed as argument.

public IloMSAbstractActivity getActivityPrototype() const

This method returns the activity prototype to which the invoking scheduled activity is associated.

public IloInt getEndMax() const

This method returns the maximal end time of the scheduled activity.

public IloInt getEndMin() const

This method returns the minimal end time of the scheduled activity.

public IloInt getEndTime() const

This method returns the end time that is recommended for the invoking scheduled activity.

248

public IloInt getFirmEndMax() const

This method returns the firm maximal end time of the invoking scheduled activity. This is usually known when the
activity has been completed on the shop floor.

public IloInt getFirmEndMin() const

This method returns the firm minimal end time of the invoking scheduled activity.

public IloInt getFirmModeNumber() const

This method returns the number of the firm mode of the scheduled activity, if the firm mode is bound. It returns -1
if the firm mode is not bound.

public IloMSPerformedStatus getFirmPerformedStatus() const

This method returns the possible firm performed status of the scheduled activity.

See Also: IloMSPerformedStatus

public IloInt getFirmPossibleModeNumber(IloInt i) const

This method returns the number of the i-th firm possible mode for the scheduled activity.

public IloInt getFirmStartMax() const

This method returns the firm maximal start time of the invoking scheduled activity. This is usually known when
the activity is about to start on the shop floor.

public IloInt getFirmStartMin() const

This method returns the firm minimal start time of the invoking scheduled activity.

public IloMSAbstractActivity getGeneratedActivity() const

This method returns the generated activity that corresponds to the invoking scheduling activity if it exists, and
null otherwise.

public IloInt getModeNumber() const

This method returns the mode number of the scheduled activity, if the mode is bound. It returns -1 if the mode is
not bound.

249

public IloInt getNumberOfFirmPossibleModes() const

This method returns the number of firm possible modes for the scheduled activity.

public IloInt getNumberOfPossibleModes() const

This method returns the number of possible modes for the scheduled activity.

public IloMSPerformedStatus getPerformedStatus() const

This method returns the possible performed status of the scheduled activity.

See Also: IloMSPerformedStatus

public IloInt getPossibleModeNumber(IloInt i) const

This method returns the number of the i-th possible mode for the scheduled activity.

public IloMSProductionOrder getProductionOrder() const

This method returns the production order to which the invoking scheduled activity is associated.

public IloMSSchedulingSolution getSchedulingSolution() const

This method returns the scheduling solution that manages the invoking scheduled activity.

public IloInt getStartMax() const

This method returns the maximal start time of the scheduled activity.

public IloInt getStartMin() const

This method returns the minimal start time of the scheduled activity.

public IloInt getStartTime() const

This method returns the start time that is recommended for the invoking scheduled activity.

public void removeFirmPossibleMode(IloMSMode mode)

This method removes mode from the set of firm possible modes for the scheduled activity.

250

public void removePossibleMode(IloMSMode mode)

This method removes mode from the set of possible modes for the scheduled activity.

public void setEndTime(IloInt endTime)

This method sets the end time of the invoking scheduled activity.

public void setFirmEndMax(IloInt firmEndMax)

This method sets the firm maximal end time of the invoking scheduled activity.

public void setFirmEndMin(IloInt firmEndMin)

This method sets the firm minimal end time of the invoking scheduled activity.

public void setFirmModeNumber(IloInt firmModeNumber)

This method sets the firm mode number of the invoking scheduled activity.

public void setFirmPerformedStatus(IloMSPerformedStatus status)

This method sets the firm performed status of the scheduled activity to status.

See Also: IloMSPerformedStatus

public void setFirmStartMax(IloInt firmStartMax)

This method sets the firm maximal start time of the invoking scheduled activity.

public void setFirmStartMin(IloInt firmStartMin)

This method sets the firm minimal start time of the invoking scheduled activity.

public void setModeNumber(IloInt modeNumber)

This method sets the number of the mode that is recommended for executing the invoking scheduled activity.

public void setPerformedStatus(IloMSPerformedStatus status)

This method sets the performed status of the scheduled activity to status.

251

See Also: IloMSPerformedStatus

public void setStartTime(IloInt startTime)

This method sets the start time of the invoking scheduled activity.

252

Class IloMSSchedulingEngine
Definition file: ilplant/schedengine.h
Library: plant

The IloMSSchedulingEngine class implements a scheduling engine that uses the current batching solution
(getCurrentBatchingSolution of IloMSModel) to compute a scheduling solution. The solution can be
accessed with getCurrentSchedulingSolution of IloMSModel.
In a scheduling solution, the activities for the production orders have been created (instances of
IloMSScheduledActivity), and they have been given an execution status, a mode and start and end dates.
In other words, the scheduling engine always returns a complete solution unless there is a failure.

The usage pattern is the following: First create an instance of IloMSSchedulingEngine (using the static
method newSchedulingEngine in Java(TM) or the constructor in C++). If needed, configure the engine using
the methods setFirstSolutionTimeLimit, setNumberOfSolutionsLimit, and setTimeLimit. If you
want to be notified each time a solution is found by the engine, set a call-back using whenSolution. If you want
to be able to stop the engine before the end of the search, use setCheckForStop. Call solve. The engine
starts computing solutions, and always keeps the best one with respect to the KPIs defined in the current
optimization profile (IloMSModel::getCurrentOptimizationProfile).

See Also: IloMSModel

Constructor Summary

public IloMSSchedulingEngine(IloMSModel plant)

Method Summary

public void end()

public void setCheckForStop(IloMSCheckForStop checkForStop)

public void setFirstSolutionTimeLimit(IloInt timeLimit)

public void setNumberOfSolutionsLimit(IloInt limit)

public void setTimeLimit(IloInt timeLimit)

public IloBool solve()

public void whenSolution(IloMSSolutionHook whenSolutionHook)

Constructors

public IloMSSchedulingEngine(IloMSModel plant)

This constructor creates a scheduling engine for the given IloMSModel object.

See Also: IloMSModel

Methods

public void end()

This method releases the memory allocated by the invoking scheduling engine.

253

public void setCheckForStop(IloMSCheckForStop checkForStop)

This method sets the stopping conditions defined by the object checkForStop.

public void setFirstSolutionTimeLimit(IloInt timeLimit)

This method sets the maximal amount of time allowed to find the first solution. By default, it is equal to the global
time limit. It can exceed the global time limit. If a first solution is found before the global time limit, then the search
continues and stops at the global time limit. Otherwise, it stops either as soon as a first solution is found or when
the "first solution time limit" is reached.

public void setNumberOfSolutionsLimit(IloInt limit)

This method sets the maximal number of solutions allowed during the solving process. By default, there is no
limit in the number of solutions.

public void setTimeLimit(IloInt timeLimit)

This method sets the maximal amount of time (in seconds) allowed during the solving process. The default time
limit is ten seconds.

public IloBool solve()

This method solves the scheduling problem using the default strategy. It returns true if a solution is found; false
otherwise.

public void whenSolution(IloMSSolutionHook whenSolutionHook)

This method sets a call-back that is executed every time a new solution is found.

254

Class IloMSSchedulingSolution
Definition file: ilplant/schedsolution.h
Library: plant

The IloMSSchedulingSolution class is used to represent partial and complete solutions to the scheduling
problem defined in the corresponding instance of IloMSModel.
A solution is complete (isBound() returns true) if and only if all the activities have a defined performed status,
mode, and start and end times.

Note that a scheduling solution reference obtained before solving is no longer valid after solving.

All methods of the IloMSSchedulingSolution class throw an exception if an empty handle (that is, an
uninitialized object) is used.

Method Summary

public void addPossibleMode(IloMSMode mode)

public IloBool computeDynamicPegging()

public IloBool containsPossibleMode(IloMSMode mode) const

public IloNum getAmountOfSatisfiedDemand(IloMSDemand demand)
const

public IloMSChecker getChecker()

public IloMSCleaningStatus getCleaningStatus(IloMSSetupActivity activity)
const

public IloNum getEarlinessCost(IloMSAbstractActivity activity)
const

public IloInt getEndMax(IloMSAbstractActivity activity) const

public IloInt getEndMin(IloMSAbstractActivity activity) const

public IloInt getEndTime(IloMSAbstractActivity activity) const

public IloMSActivity getFirstActivity(IloMSResource res) const

public IloNum getInventoryLevel(IloMSMaterial material, IloInt
time) const

public IloMSMode getMode(IloMSAbstractActivity activity) const

public IloNum getModeCost(IloMSActivity activity) const

public IloMSActivity getNextActivity(IloMSActivity act) const

public IloInt getNumberOfScheduledActivities() const

public IloMSPerformedStatus getPerformedStatus(IloMSAbstractActivity activity)
const

public IloMSScheduledActivity getScheduledActivity(IloMSAbstractActivity act)
const

public IloMSScheduledActivity getScheduledActivity(IloInt i) const

public IloNum getSetupCost(IloMSAbstractActivity activity) const

public IloInt getSetupTime(IloMSAbstractActivity activity) const

public IloNum

255

getShippingQuantity(IloMSProcurementToDemandArc
arc) const

public IloNum getShippingQuantity(IloMSProdToDemandArc arc) const

public IloInt getStartMax(IloMSAbstractActivity activity) const

public IloInt getStartMin(IloMSAbstractActivity activity) const

public IloInt getStartTime(IloMSAbstractActivity activity) const

public IloNum getTardinessCost(IloMSAbstractActivity activity)
const

public IloNum getValue(IloMSOptimizationCriterion criterion)
const

public IloBool hasBoundMode(IloMSAbstractActivity activity) const

public IloBool isBound() const

public void removePossibleMode(IloMSMode mode)

public void setCleaningStatus(IloMSSetupActivity activity,
IloMSCleaningStatus status)

public void setIdentifier(IloMSIdentifier identifier)

public void setMode(IloMSMode mode)

public void setPerformedStatus(IloMSAbstractActivity activity,
IloMSPerformedStatus status)

public void setValue(IloMSOptimizationCriterion criterion,
IloNum value)

public void unsetMode(IloMSAbstractActivity activity)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public void addPossibleMode(IloMSMode mode)

This method adds the given mode to the possible modes of the activity in the invoking solution.

public IloBool computeDynamicPegging()

This methods recomputes a pegging for all the materials that use the dynamic pegging strategy.

All existing pegging arcs are removed and new ones are created. The arcs with material having a Static
pegging type are untouched.

public IloBool containsPossibleMode(IloMSMode mode) const

This method returns true if the given mode is possible according to the invoking solution.

public IloNum getAmountOfSatisfiedDemand(IloMSDemand demand) const

256

This method returns the quantity of shipped material for the specified demand.

public IloMSChecker getChecker()

This method returns an instance of IloMSChecker that can be used to verify the validity of the solution.

public IloMSCleaningStatus getCleaningStatus(IloMSSetupActivity activity) const

This method returns the possible cleaning status of activity in the invoking solution.

See Also: IloMSCleaningStatus

public IloNum getEarlinessCost(IloMSAbstractActivity activity) const

This method returns the earliness cost of the activity.

public IloInt getEndMax(IloMSAbstractActivity activity) const

This method returns the maximal end time of activity in the invoking solution.

public IloInt getEndMin(IloMSAbstractActivity activity) const

This method returns the minimal end time of activity in the invoking solution.

public IloInt getEndTime(IloMSAbstractActivity activity) const

This method returns the end time of activity in the invoking solution. An exception is thrown if the given
activity has an unbound end time in the invoking solution.

public IloMSActivity getFirstActivity(IloMSResource res) const

This method returns the first production activity scheduled on the argument resource. It returns an empty handle
if no activity is scheduled on this resource.

public IloNum getInventoryLevel(IloMSMaterial material, IloInt time) const

This method returns the quantity in inventory at the specified time for the specified material.

public IloMSMode getMode(IloMSAbstractActivity activity) const

This method returns the mode selected for activity in the invoking solution. An exception is thrown if the mode
is not fixed (that is, more than one mode is possible).

257

public IloNum getModeCost(IloMSActivity activity) const

This method returns the mode cost of the activity.

public IloMSActivity getNextActivity(IloMSActivity act) const

This method returns the next production activity scheduled just after the argument activity, on the same resource.
It returns an empty handle if there is no such activity.

public IloInt getNumberOfScheduledActivities() const

This method returns number of scheduled activities managed by the invoking solution.

public IloMSPerformedStatus getPerformedStatus(IloMSAbstractActivity activity)
const

This method returns the performed status of activity in the invoking solution.

See Also: IloMSPerformedStatus

public IloMSScheduledActivity getScheduledActivity(IloMSAbstractActivity act) const

This method returns the scheduled activity managed by the invoking solution that corresponds to the given
generated activity. It returns null if there is no such activity.

Note that a scheduled activity obtained before solving is no longer valid after solving.

public IloMSScheduledActivity getScheduledActivity(IloInt i) const

This method returns the i-th scheduled activity managed by the invoking solution. It throws an exception if there
is no such activity.

Note that a scheduled activity obtained before solving is no longer valid after solving.

public IloNum getSetupCost(IloMSAbstractActivity activity) const

This method returns the setup cost of activity in the invoking solution. An exception is thrown if the given
activity is a production activity without a setup.

public IloInt getSetupTime(IloMSAbstractActivity activity) const

This method returns the setup time of activity in the invoking solution. An exception is thrown if the given
activity is a production activity without a setup.

public IloNum getShippingQuantity(IloMSProcurementToDemandArc arc) const

258

internal

public IloNum getShippingQuantity(IloMSProdToDemandArc arc) const

internal

public IloInt getStartMax(IloMSAbstractActivity activity) const

This method returns the maximal start time of activity in the invoking solution.

public IloInt getStartMin(IloMSAbstractActivity activity) const

This method returns the minimal start time of activity in the invoking solution.

public IloInt getStartTime(IloMSAbstractActivity activity) const

This method returns the start time of activity in the invoking solution. An exception is thrown if the given
activity has an unbound start time in the invoking solution.

public IloNum getTardinessCost(IloMSAbstractActivity activity) const

This method returns the tardiness cost of the activity.

public IloNum getValue(IloMSOptimizationCriterion criterion) const

This method returns the value of the given criterion in the objective function.

public IloBool hasBoundMode(IloMSAbstractActivity activity) const

This method returns true if there is exactly one mode for activity in the invoking solution.

public IloBool isBound() const

This method returns true if and only if all the decision variables for all the activities in the invoking solution are
fixed (activity start and end times, modes and performed status).

public void removePossibleMode(IloMSMode mode)

This method removes the given mode from the possible modes of the activity in the invoking solution.

public void setCleaningStatus(IloMSSetupActivity activity, IloMSCleaningStatus
status)

This method sets the possible cleaning status of activity in the invoking solution.

259

See Also: IloMSCleaningStatus

public void setIdentifier(IloMSIdentifier identifier)

This modifier associates an identifier with the invoking scheduling solution. An exception is thrown if the
given identifier is already used.

public void setMode(IloMSMode mode)

This method sets the mode as the one selected (that is, the only one possible) for the corresponding activity in
the invoking solution.

public void setPerformedStatus(IloMSAbstractActivity activity, IloMSPerformedStatus
status)

This method sets the performed status of activity in the invoking solution.

See Also: IloMSPerformedStatus

public void setValue(IloMSOptimizationCriterion criterion, IloNum value)

This method sets the value of the given criterion in the solution.

public void unsetMode(IloMSAbstractActivity activity)

This method unsets the selection of modes: All modes of the activity become possible in the solution.

260

Class IloMSScope
Definition file: ilplant/scope.h
Library: plant

The IloMSScope class represents scopes, used in the GUI as a means to control optimization.
The scope is linked to an optimization profile and is a container of filters. In particular, a scope can contain a
recipe family filter (which is composed of one set of frozen recipe families and one set of planned recipe families).
You can use a scope to create a submodel based on the core model. The associated filters allow selection of
which part of the core model we want to solve in this particular scope. The associated optimization profile permits
determination of how to solve the subproblem.

See Also: IloMSRecipeFamilyFilter

Method Summary

public void addFrozenRecipe(IloMSRecipe recipe)

public void addPlannedRecipe(IloMSRecipe recipe)

public IloMSModel buildSubModel()

public void display(ostream & stream) const

public IloInt getPositionIndex()

public IloMSRecipeFamilyFilter getRecipeFamilyFilter()

public IloBool hasRecipeFamilyFilter()

public void setIdentifier(IloMSIdentifier identifier)

public void setPositionIndex(IloInt scopeIndex)

public void setRecipeFamilyFilter(IloMSRecipeFamilyFilter
recipeFamilyFilter)

public void transferResults(IloMSModel subModel, IloMSModel
mainModelModel)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public void addFrozenRecipe(IloMSRecipe recipe)

This method adds a recipe to the list of frozen recipes of the invoking scope.

The list of frozen recipes is used to build the submodel. The recipes and corresponding orders are fixed in the
submodel.

public void addPlannedRecipe(IloMSRecipe recipe)

261

This method adds a recipe to the list of planned recipes of the invoking scope.

The list of planned recipes is used to build the submodel. The recipes and corresponding orders are planned and
scheduled in the submodel.

public IloMSModel buildSubModel()

This method builds the submodel associated with the invoking scope.

The scope permits creation of a submodel based on the core model. The associated filters control which part of
the core model solved in this particular scope.

If the scope has an associated recipe family filter, the submodel is generated from the core model, with
the filter applied.

•

If the scope doesn't have an associated recipe family filter, then the core model is not filtered, and the
generated submodel is the same as the core model.

•

public void display(ostream & stream) const

This method displays the scope in the stream passed as argument.

public IloInt getPositionIndex()

This method returns the index associated with the invoking scope.

The index is used to display scopes in the desired order in the GUI. It is also used to consecutively solve each
subproblem corresponding to each scope.

public IloMSRecipeFamilyFilter getRecipeFamilyFilter()

This modifier retrieves the recipe family filter in the invoking scope.

public IloBool hasRecipeFamilyFilter()

This modifier returns true if a recipe family filter has been associated with the invoking scope.

If the scope has an associated recipe family filter, the submodel is generated from the core model, with
this filter applied.

•

If the scope doesn't have an associated recipe family filter, then the core model is not filtered, and the
generated submodel is the same as the core model.

•

public void setIdentifier(IloMSIdentifier identifier)

This modifier associates an identifier with the invoking scope.

public void setPositionIndex(IloInt scopeIndex)

This modifier associates an index to the invoking scope.

262

The index is used to display scopes in the desired order in the GUI. It is also used to consecutively solve each
subproblem corresponding to each scope.

public void setRecipeFamilyFilter(IloMSRecipeFamilyFilter recipeFamilyFilter)

This modifier sets the recipe family filter in the invoking scope.

The recipe family filter is used to filter the core model in order to create a submodel, in order to solve only the
filtered part of the process.

public void transferResults(IloMSModel subModel, IloMSModel mainModelModel)

This method transfers the results obtained in the submodel to the main (or core) model.

When you finish solving the submodel, it is necessary to transfer the results from the submodel to the core
model. Only orders from the list of planned recipes are transferred from the submodel to the core model.

263

Class IloMSSetupActivity
Definition file: ilplant/setupactivity.h
Library: plant

The IloMSSetupActivity class is used to explicitly represent setup activities.
All the methods of the IloMSSetupActivity class throw an exception if an empty handle (that is, an
uninitialized object) is used.

See Also: IloMSAbstractActivity

Method Summary

public IloMSActivity getProductionActivity() const

Inherited Methods from IloMSAbstractActivity

getActivityChain, getActivityCompatibilityConstraint, getCleaningStatus,
getDueDate, getIncomingPrecedence, getMode, getModePrototype,
getNumberOfActivityCompatibilityConstraints, getNumberOfDueDates,
getNumberOfIncomingPrecedences, getNumberOfModes, getNumberOfOutgoingPrecedences,
getOutgoingPrecedence, getProductionOrder, getRecipe, hasActivityChain,
hasProductionOrder, hasRecipe, isActivityPrototype, isProductionActivity,
isSetupActivity, setCleaningStatus, setIdentifier, toProductionActivity,
toSetupActivity

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloMSActivity getProductionActivity() const

This method returns the production activity associated with the invoking setup activity.

264

Class IloMSSetupMatrix
Definition file: ilplant/setupmtx.h
Library: plant

The IloMSSetupMatrix class is used to store the setup time and cost incurred when two production activities
follow each other on the same resource.
A setup type can be associated with each activity. A setup time and a setup cost will be incurred between any
two production activities directly following each other on the same unary resource. This setup time and this setup
cost depend on the setup types of the two activities. The IloMSSetupMatrix class is used to store the setup
time and cost between any two setup states i and j.

PPO supports the notion of setup feature. An activity may require several features to be each in a specific state.
The setup times and costs incurred by each feature are additive.

All the methods of the IloMSSetupMatrix class throw an exception if an empty handle (that is, an uninitialized
object) is used.

Method Summary

public IloInt getDefaultSetupCost(IloMSIdentifier state) const

public IloInt getDefaultSetupTime(IloMSIdentifier state) const

public IloInt getNumberOfSetupStates() const

public IloInt getSetupCost(IloMSIdentifier i, IloMSIdentifier j) const

public IloMSIdentifier getSetupState(IloInt index) const

public IloInt getSetupTime(IloMSIdentifier i, IloMSIdentifier j) const

public IloBool isCleanup(IloMSIdentifier i, IloMSIdentifier j) const

public void setDefaultSetup(IloMSIdentifier state, IloInt time, IloInt
cost, IloBool cleanup=IloFalse)

public void setIdentifier(IloMSIdentifier identifier)

public void setSetup(IloMSIdentifier i, IloMSIdentifier j, IloInt time,
IloInt cost, IloBool cleanup=IloFalse)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloInt getDefaultSetupCost(IloMSIdentifier state) const

This method returns the approximated cost for switching from an unknown state to state.

public IloInt getDefaultSetupTime(IloMSIdentifier state) const

265

This method returns the approximated time for switching from an unknown state to state.

public IloInt getNumberOfSetupStates() const

Returns the number of setup states supported by this matrix; that is, the number of lines and columns of the
matrix.

public IloInt getSetupCost(IloMSIdentifier i, IloMSIdentifier j) const

This method returns the setup cost between the given setup states i and j. An exception is thrown if one of the
two given setup types is out of bounds.

public IloMSIdentifier getSetupState(IloInt index) const

Returns the setup state identifier with the given index.

public IloInt getSetupTime(IloMSIdentifier i, IloMSIdentifier j) const

This method returns the setup time between the given setup states i and j. An exception is thrown if one of the
two given setup types is out of bounds.

public IloBool isCleanup(IloMSIdentifier i, IloMSIdentifier j) const

This method returns true if the transition between the given setup states i and j requires a cleanup. An
exception is thrown if one of the two given setup types is out of bounds.

public void setDefaultSetup(IloMSIdentifier state, IloInt time, IloInt cost,
IloBool cleanup=IloFalse)

This method sets the time and cost for switching from an unknown state to state. When defined, these values
override those inferred by the planning engine as setup approximations. Note that the other engines do not use
these values.

public void setIdentifier(IloMSIdentifier identifier)

This modifier associates an identifier with the invoking setup matrix. An exception is thrown if the given
identifier is already used.

public void setSetup(IloMSIdentifier i, IloMSIdentifier j, IloInt time, IloInt
cost, IloBool cleanup=IloFalse)

This method sets the setup time and the setup cost between two setup states i and j. If cleanup is true, then
this transition requires a major cleanup.

An exception is thrown if the given i or j are out of bounds, or if time is negative.

266

267

Class IloMSSolutionHook
Definition file: ilplant/control.h
Library: plant

The IloMSSolutionHook class provides a call-back mechanism that is activated every time a new solution is
found.
The IloMSSolutionHookI and IloMSSolutionHook classes enable you to write code that will be executed
every time a new solution is found by one of engines of Plant PowerOps. The defined IloMSSolutionHook
object must be set to the engines in order for it to be considered.

The IloMSSolutionHook class is the handle class and contains a pointer to an object of type
IloMSSolutionHookI. The IloMSSolutionHookI class is a pure virtual class. You need to redefine the
function execute in order to specify actions that must be taken every time the engines of Plant PowerOps finds
a new solution. The newly found solution is given in the function argument sol of the execute callback.

See Also: IloMSPlanningSolution, IloMSPlanningEngine, IloMSBatchingSolution, IloMSBatchingEngine,
IloMSSchedulingSolution, IloMSSchedulingEngine

Method Summary

public void endBatching(IloMSModel model) const

public void endPlanning(IloMSModel model) const

public void endScheduling(IloMSModel model) const

public void execute(IloMSBatchingSolution sol) const

public void execute(IloMSPlanningSolution sol) const

public void execute(IloMSSchedulingSolution sol) const

public IloNum getElapsedTime() const

public void startBatching(IloMSModel model) const

public void startBatchingPolishing(IloMSModel model) const

public void startPlanning(IloMSModel model) const

public void startPlanningPolishing(IloMSModel model) const

public void startScheduling(IloMSModel model) const

public void startSchedulingPolishing(IloMSModel model) const

Methods

public void endBatching(IloMSModel model) const

Notification method.

public void endPlanning(IloMSModel model) const

Notification method.

public void endScheduling(IloMSModel model) const

268

Notification method.

public void execute(IloMSBatchingSolution sol) const

This method calls the virtual method of the implementation class IloMSSolutionHookI.

public void execute(IloMSPlanningSolution sol) const

This method calls the virtual method of the implementation class IloMSSolutionHookI.

public void execute(IloMSSchedulingSolution sol) const

This method calls the virtual method of the implementation class IloMSSolutionHookI.

public IloNum getElapsedTime() const

This method returns the time, in seconds, elapsed since the call to the solve() method.

public void startBatching(IloMSModel model) const

Notification method.

public void startBatchingPolishing(IloMSModel model) const

Notification method.

public void startPlanning(IloMSModel model) const

Notification method.

public void startPlanningPolishing(IloMSModel model) const

Notification method.

public void startScheduling(IloMSModel model) const

Notification method.

public void startSchedulingPolishing(IloMSModel model) const

Notification method.

269

270

Class IloMSSolutionHookI
Definition file: ilplant/control.h
Library: plant

The IloMSSolutionHookI class provides a call-back mechanism that is activated every time a new solution is
found.
The IloMSSolutionHookI and IloMSSolutionHook classes enable you to write code that will be executed
every time a new solution is found by one of the engines of Plant PowerOps. The defined IloMSSolutionHook
object must be set to the engines in order for it to be considered.

The IloMSSolutionHook class is the handle class and contains a pointer to an object of type
IloMSSolutionHookI. The IloMSSolutionHookI class is a pure virtual class. You need to redefine the
function execute in order to specify actions that must be taken every time one of the engines of Plant
PowerOps finds a new solution. The newly found solution is given in the function argument sol of the execute
callback.

Note that for intermediate solutions, only the costs are given; other values may be omitted by the engines.

See Also: IloMSPlanningSolution, IloMSPlanningEngine, IloMSBatchingSolution, IloMSBatchingEngine,
IloMSSchedulingSolution, IloMSSchedulingEngine, IloMSSolutionHook

Constructor Summary

public IloMSSolutionHookI()

Method Summary

public virtual void endBatching(IloMSModel model) const

public virtual void endPlanning(IloMSModel model) const

public virtual void endScheduling(IloMSModel model) const

public virtual void execute(IloMSPlanningSolution sol) const

public virtual void execute(IloMSBatchingSolution sol) const

public virtual void execute(IloMSSchedulingSolution sol) const

public virtual void startBatching(IloMSModel model) const

public virtual void startBatchingPolishing(IloMSModel model) const

public virtual void startPlanning(IloMSModel model) const

public virtual void startPlanningPolishing(IloMSModel model) const

public virtual void startScheduling(IloMSModel model) const

public virtual void startSchedulingPolishing(IloMSModel model) const

Constructors

public IloMSSolutionHookI()

This constructor creates a new instance of the class.

271

Methods

public virtual void endBatching(IloMSModel model) const

This notifies that batching has ended.

public virtual void endPlanning(IloMSModel model) const

This notifies that planning has ended.

public virtual void endScheduling(IloMSModel model) const

This notifies that scheduling has ended.

public virtual void execute(IloMSPlanningSolution sol) const

This method is the virtual function to be redefined for reacting to when the optimizer finds a new planning
solution.

public virtual void execute(IloMSBatchingSolution sol) const

This method is the virtual function to be redefined for reacting to when the optimizer finds a new batching
solution.

public virtual void execute(IloMSSchedulingSolution sol) const

This method is the virtual function to be redefined for reacting to when the optimizer finds a new scheduling
solution.

public virtual void startBatching(IloMSModel model) const

This notifies that batching has started.

public virtual void startBatchingPolishing(IloMSModel model) const

This is a notification method.

public virtual void startPlanning(IloMSModel model) const

This notifies that planning has started.

public virtual void startPlanningPolishing(IloMSModel model) const

272

This is a notification method.

public virtual void startScheduling(IloMSModel model) const

This notifies that scheduling has started.

public virtual void startSchedulingPolishing(IloMSModel model) const

This is a notification method.

273

Class IloMSStandardKPI
Definition file: ilplant/kpi.h
Library: plant

The IloMSStandardKPI class is used to represent the Key Performance Indicators that are defined as
standard in PPO.
A standard KPI can also be an optimization criterion.

Method Summary

public IloNum getValue(IloMSSchedulingSolution solution) const

public IloNum getValue(IloMSBatchingSolution solution) const

public IloNum getValue(IloMSPlanningSolution solution) const

public IloBool isEditable() const

public IloBool isVisible() const

public void setVisible(IloBool visible) const

public IloBool toMinimize() const

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloNum getValue(IloMSSchedulingSolution solution) const

This method returns the value of the KPI for the solution specified as argument.

public IloNum getValue(IloMSBatchingSolution solution) const

This method returns the value of the KPI for the solution specified as argument.

public IloNum getValue(IloMSPlanningSolution solution) const

This method returns the value of the KPI for the solution specified as argument.

public IloBool isEditable() const

This method returns true if the weight of KPI is editable.

274

public IloBool isVisible() const

This method returns true if the KPI is visible.

public void setVisible(IloBool visible) const

This method enables (makes visible) the KPI.

The KPI Comparison Panel displays the visible custom KPIs and the visible standard KPIs with non-null weights.
In the KPIs Summary view, the initial KPIs tab shows all visible standard and custom KPIs. The other KPI tabs
(such as Standard Scheduling KPIs) display the KPIs with non-null weight regardless of visibility.

public IloBool toMinimize() const

This method returns true if the goal or best result is to minimize the KPI.

275

Class IloMSStorageToDemandArc
Definition file: ilplant/matflowarc.h
Library: plant

The IloMSStorageToDemandArc class is used to represent flow of material between stock or storage and a
demand. Note that a material flow between two nodes represents a precedence constraint between them.
A flow of material between storage or stock and a demand is modeled as a precedence constraint between
storage and the demand. The material may partially or entirely satisfy the demand.

All the methods of the IloMSStorageToDemandArc class throw an exception if an empty handle (that is, an
uninitialized object) is used.

Method Summary

public IloMSDemand getDemand() const

Inherited Methods from IloMSAbstractMaterialFlowArc

getEndConsumptionTime, getEndProductionTime, getFirmQuantityMax,
getFirmQuantityMin, getMaterial, getMaterialFlowType, getMaterialFlowTypeName,
getPredecessor, getQuantity, getQuantityInDisplayUnit, getStartConsumptionTime,
getStartProductionTime, getSuccessor, isFirm, setFirm, setFirmQuantityMax,
setFirmQuantityMin, setQuantity, toProcurementToDemandArc, toProcurementToProdArc,
toProcurementToStorageArc, toProdToDemandArc, toProdToProdArc, toProdToStorageArc,
toStorageToDemandArc, toStorageToProdArc

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloMSDemand getDemand() const

Returns the successor demand in this arc.

276

Class IloMSStorageToProdArc
Definition file: ilplant/matflowarc.h
Library: plant

The IloMSStorageToProdArc class is used to represent flow of material between stock or storage and a
production order. Note that a material flow between two nodes represents a precedence constraint between
them.
A flow of material between storage or stock and a production order is modeled as a precedence constraint
between storage and the consuming activity of a production order.

All the methods of the IloMSStorageToProdArc class throw an exception if an empty handle (that is, an
uninitialized object) is used.

Method Summary

public IloMSProductionOrder getProductionOrder() const

Inherited Methods from IloMSAbstractMaterialFlowArc

getEndConsumptionTime, getEndProductionTime, getFirmQuantityMax,
getFirmQuantityMin, getMaterial, getMaterialFlowType, getMaterialFlowTypeName,
getPredecessor, getQuantity, getQuantityInDisplayUnit, getStartConsumptionTime,
getStartProductionTime, getSuccessor, isFirm, setFirm, setFirmQuantityMax,
setFirmQuantityMin, setQuantity, toProcurementToDemandArc, toProcurementToProdArc,
toProcurementToStorageArc, toProdToDemandArc, toProdToProdArc, toProdToStorageArc,
toStorageToDemandArc, toStorageToProdArc

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloMSProductionOrder getProductionOrder() const

This method returns the successor to the production order.

277

Class IloMSStorageUnit
Definition file: ilplant/storageunit.h
Library: plant

The IloMSStorageUnit class represents a location or storage facility for materials.
Storage units can store one or several materials.

Activities may produce to or consume from a storage unit. Particular storage units can be specified for material
procurement or storage. Note that if a storage unit is specified for a material, then any demand, procurement or
material production in the recipes referring to that material must also specify the storage unit.

Storage units are useful to model multiple locations in multi-site planning. A longitude, latitude and a category
(warehouse, factory) can be specified for representation in the GUI.

If not attached to a unary resource, a storage unit is simply a location (such as a warehouse) with a possible
maximum storage capacity. A storage unit attached to a unary resource can model a storage tank. The unary
resource ensures the sequencing of batches in the tank.

A group of tanks (or super storage unit) can be created by defining a storage unit S and attaching it to a super
resource R. Then each storage unit associated to a subresource of the super resource R is a substorage unit of
S. Such grouping simplifies the planning problem by considering globally the super resource capacities and the
super storage unit aggregated volume. It is also useful for specifying the production or consumption of a material
in a recipe. Note that the storage unit destination of a material must be consistent with the primary resource
required by the activity producing it (if the storage unit is attached to a resource).

When using super storage units, be aware that any material exit (demand, activity consumption) must never refer
to a subunit. That is, consumption must remain "fuzzy". Note, however, that initial stock or procurements must
refer to precise subunits. When a material production on a mode of an activity prototype refers to a super unit at
the recipe level, the mode generation on corresponding production orders will generate material productions on
precise subunits. Thus any production in the transactional data is precise, and any consumption is fuzzy.

See Also: IloMSMaterial, IloMSMaterialProduction, IloMSDemand, IloMSProcurement

Method Summary

public void addStorableMaterial(IloMSMaterial material)

public IloBool canStore(IloMSMaterial material) const

public const char * getCategory() const

public IloNum getInitialQuantity(IloMSMaterial material) const

public IloNum getLatitude() const

public IloNum getLongitude() const

public IloInt getMergingLimit(IloMSMaterial material) const

public IloInt getNumberOfStorableMaterials() const

public IloNum getQuantityMax() const

public IloNum getRackingQuantityMin(IloMSMaterial material) const

public IloMSResource getResource() const

public IloMSMaterial getStorableMaterial(IloInt i) const

public IloBool isAutomatic() const

278

public IloBool isMultipurpose() const

public void removeStorableMaterial(IloMSMaterial material)

public void setCategory(const char * category)

public void setIdentifier(IloMSIdentifier identifier)

public void setInitialQuantity(IloMSMaterial material, IloNum quantity)

public void setLatitude(IloNum latitude)

public void setLongitude(IloNum longitude)

public void setMergingLimit(IloMSMaterial material, IloInt
numberMaxOfMixableBatches)

public void setQuantityMax(IloNum maxLevel)

public void setRackingQuantityMin(IloMSMaterial material, IloNum
minLevel)

public void setResource(IloMSResource resource)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public void addStorableMaterial(IloMSMaterial material)

This method adds material to the list of storable materials of the invoking storage unit.

public IloBool canStore(IloMSMaterial material) const

This method returns true if material can be stored by the invoking storage unit, and false otherwise.

public const char * getCategory() const

This method retrieves the category of the storage unit for graphical interpretation in the Distribution Planning
view. Expected values are warehouse or factory.

public IloNum getInitialQuantity(IloMSMaterial material) const

This method returns the stocked quantity of material in the invoking storage unit at the start time of the
planning.

public IloNum getLatitude() const

This method retrieves the latitude of the storage unit expressed in degrees [-90;+90] from the equator (negative
for Southern Hemisphere).

279

public IloNum getLongitude() const

This method retrieves the longitude of the storage unit expressed in degrees [-180;+180] from the Greenwich
Meridian (negative for Eastern Hemisphere).

public IloInt getMergingLimit(IloMSMaterial material) const

This method returns the merging limit for batches of the specified material filling this storage unit.

public IloInt getNumberOfStorableMaterials() const

This method returns the number of materials that can be stored in the invoking storage unit.

public IloNum getQuantityMax() const

This method returns the maximal level over all the horizon.

public IloNum getRackingQuantityMin(IloMSMaterial material) const

This method returns the minimum level that must be reached before starting to rack material from the invoking
storage unit.

public IloMSResource getResource() const

This method returns the resource associated with a storage unit, if one exists.

public IloMSMaterial getStorableMaterial(IloInt i) const

This method returns material number i from the list of storable materials of the invoking storage unit.

public IloBool isAutomatic() const

This method returns true if the storage unit has been automatically created by PPO to deal with a material not
explicitly used with storage units.

public IloBool isMultipurpose() const

This method returns true if the storage unit can store several materials.

public void removeStorableMaterial(IloMSMaterial material)

This method removes material from the list of storable materials of the invoking storage unit.

280

public void setCategory(const char * category)

This method sets the category of the storage unit for graphical interpretation in the Distribution Planning view.
Expected values are warehouse or factory.

public void setIdentifier(IloMSIdentifier identifier)

This modifier associates an identifier with the invoking storage unit.

public void setInitialQuantity(IloMSMaterial material, IloNum quantity)

This method sets the stocked quantity of material in the invoking storage unit to quantity at the start time of
the planning.

public void setLatitude(IloNum latitude)

This method sets the latitude of the storage unit expressed in degrees [-90;+90] from the equator (negative for
Southern Hemisphere).

public void setLongitude(IloNum longitude)

This method sets the longitude of the storage unit expressed in degrees [-180;+180] from the Greenwich
Meridian (negative for Eastern Hemisphere).

public void setMergingLimit(IloMSMaterial material, IloInt
numberMaxOfMixableBatches)

This method sets the merging limit for batches of the specified material filling this storage unit. To prohibit
merging batches for a material, set numberMaxOfMixableBatches to one.

public void setQuantityMax(IloNum maxLevel)

This method sets the maximal level over all the horizon.

public void setRackingQuantityMin(IloMSMaterial material, IloNum minLevel)

This method sets the minimal level that must be reached before starting to rack this material from the invoking
storage unit.

public void setResource(IloMSResource resource)

This method assigns a resource to the storage unit to make it behave as a storage tank.

281

Class IloMSUnit
Definition file: ilplant/unit.h
Library: plant

The IloMSUnit class is used to represent units of measure.
This class is used to define the standard conversion of a unit of measure to its dimension (if so desired). Some
units of measure do not have a dimension or a standard conversion factor. For example, the pallet, the cup, and
the box may have different conversion factors, depending on the contained material. Other units of measure do
have a dimension, and thus a standard conversion to the metric system, such as length, surface area, volume,
and mass. For example, the metric ton is a "mass" dimension, and its conversion factor from the standard unit of
the dimension in the metric system (kilogram) is always 1/1000; it does not depend on the material being
measured. The standard units are kilogram for mass, meter for length, squared meter for surface area, cubic
meter for volume.

To define a secondary (display) unit and its conversion factors, see IloMSMaterial.

See Also: IloMSMaterial

Method Summary

public IloNum getCheckingTolerance() const

public static IloNum getDefaultCheckingTolerance()

public IloMSDimension getDimension() const

public IloNum getStandardConversion() const

public void setCheckingTolerance(IloNum factor)

public void setDimension(IloMSDimension dimension)

public void setIdentifier(IloMSIdentifier identifier)

public void setStandardConversion(IloNum factor)

Inherited Methods from IloMSObject

display, getIdentifier, getIntProperty, getModel, getName, getNumProperty,
getObject, getStringProperty, hasIdentifier, isPropertyDefined,
removeAllProperties, removeProperty, setIntProperty, setName, setNumProperty,
setObject, setStringProperty, toString

Methods

public IloNum getCheckingTolerance() const

This modifier returns the tolerance to be used in the checkers, when this unit is used as display unit.

public static IloNum getDefaultCheckingTolerance()

This modifier returns the default tolerance to be used in the checkers, when this unit is used as display unit.

public IloMSDimension getDimension() const

282

This accessor returns the dimension of the invoking unit.

See Also: IloMSDimension

public IloNum getStandardConversion() const

This accessor returns the standard conversion factor from the standard unit (of the same dimension) to the
invoking unit. An exception is thrown if the invoking unit has no dimension.

See Also: IloMSDimension

public void setCheckingTolerance(IloNum factor)

This modifier associates a tolerance to be used in the checkers when this unit is used as display unit.

Note that if a recipe has a primary product, then the tolerance used to check the batch size of any production
orders of the recipe will use this tolerance. The tolerance on the batch size is then equal to the checking
tolerance of the display unit of the primary product converted in primary unit and divided by the canonical quantity
produced by the recipe.

This methods throws an exception if you try to set a negative tolerance.

See Also: IloMSDimension

public void setDimension(IloMSDimension dimension)

This modifier associates a standard dimension with the invoking unit. For units which have different masses
depending on the material, use NoDimension.

See Also: IloMSDimension

public void setIdentifier(IloMSIdentifier identifier)

This modifier associates an identifier with the invoking unit.

public void setStandardConversion(IloNum factor)

This modifier associates a standard conversion to this unit (instance of IloMSUnit) from the standard
dimension. The expected value is the multiplication factor to convert a value from the standard unit into this unit
instance. For example, if the unit represents the ton, then the standard conversion is 0.001; that is you must
multiply by 0.001 any units expressed in the standard unit of mass (kilograms) to convert into tons. An exception
is thrown if the invoking unit has no dimension.

The standard units are kilogram for mass, meter for length, squared meter for surface area, cubic meter for
volume, and seconds for time.

283

Enumeration IloMSActivityCompatibilityType
Definition file: ilplant/types.h
Library: plant

IloMSActivityCompatibilityType is used to select a type used to enforce a compatibility constraint.
Some of the possible types are Same Line Id which constrains the two modes (of the two given activities) to
have the same line identifier; Same Primary Resource which constrains the two modes to have the same
primary resource; Same Primary Resource And Capacity constrains the two modes to have the same primary
resource and capacity requirement; Same Performed Status means that the two activities have to be in the
same performed status (either both performed or both unperformed), and Different Performed Status means
the opposite.

The types Performed Implies Performed, Unperformed Implies Unperformed, Performed Implies
Unperformed, and Unperformed Implies Performed state that the status of activity1 logically implies the
status of activity2.

Connected Primary Resources enforces that the primary resource of the two activities have a connection.

See Also: IloMSActivityCompatibilityConstraint, IloMSResource, IloMSMode, IloMSActivity

Fields:

IloMSSameLineId = 0

IloMSSamePrimaryResource = 1

IloMSSamePrimaryResourceAndCapacity = 2

IloMSSamePerformedStatus = 3

IloMSDifferentPerformedStatus = 4

IloMSPerformedImpliesPerformed = 5

IloMSUnperformedImpliesUnperformed = 6

IloMSPerformedImpliesUnperformed = 7

IloMSUnperformedImpliesPerformed = 8

IloMSConnectedPrimaryResources = 9

284

Enumeration IloMSBatchingAlgorithm
Definition file: ilplant/types.h
Library: plant

IloMSBatchingAlgorithm selects the batching algorithm used by the batching engine.
The heuristic engine batches first, then pegs the production orders. Advanced heuristic is "smarter" than the
simple heuristic in the sense it batches on the fly while pegging orders. Constraint based uses constraint
programming to solve batching and is able deal with all cases of pegging cardinality constraints (maximum
number of incoming or outgoing material flow arcs). Automatic tries successively the previous engines, until one
succeeds.

Fields:

IloMSBatchingAlgorithmHeuristic = -1

IloMSBatchingAlgorithmAutomatic = 0

IloMSBatchingAlgorithmConstraintBased = 3

IloMSBatchingAlgorithmAdvancedHeuristic = 4

285

Enumeration IloMSBucketPeriodUnit
Definition file: ilplant/types.h
Library: plant

IloMSBucketPeriodUnit is used to select the time period over which the buckets will be generated. Period
unit is a calendar unit. This period unit must be greater than or equal to the bucket type.
The possible types are:

Hour•
EightHShift•
Day•
Week which starts on Monday•
Month•
Quarter•
Year.•

See Also: IloMSBucketType, IloMSBucketTemplate, IloMSBucketSequence

Fields:

IloMSHourPeriod = 0

IloMS8hShiftPeriod = 1

IloMSDayPeriod = 2

IloMSWeekPeriod = 3

IloMSMonthPeriod = 4

IloMSQuarterPeriod = 5

IloMSYearPeriod = 6

286

Enumeration IloMSBucketType
Definition file: ilplant/types.h
Library: plant

IloMSBucketType is used to select the type (the default duration) of buckets defined by bucket templates.
The possible types are:

Hour•
EightHShift for eight hour buckets starting at midnight. To change the start time use the OFFSET of the
related IloMSBucketSequence object.

•

Day•
Week•
Month•
Quarter•
Year.•

See Also: IloMSBucketPeriodUnit, IloMSBucketTemplate, IloMSBucketSequence

Fields:

IloMSHourType = 0

IloMS8hShiftType = 1

IloMSDayType = 2

IloMSWeekType = 3

IloMSMonthType = 4

IloMSQuarterType = 5

IloMSYearType = 6

287

Enumeration IloMSCheckerMessageLevel
Definition file: ilplant/types.h
Library: plant

IloMSCheckerMessageLevel is used to identify the severity of the checker message.

Fields:

IloMSCheckerOk = 0

IloMSCheckerWarning = 1

IloMSCheckerError = 2

IloMSCheckerFatal = 3

288

Enumeration IloMSCleaningStatus
Definition file: ilplant/types.h
Library: plant

IloMSCleaningStatus identifies the cleaning status of an activity.

Fields:

IloMSCleaning = 0

IloMSNotCleaning = 1

IloMSCanBeCleaning = 2

289

Enumeration IloMSDay
Definition file: ilplant/types.h
Library: plant

The enumerated type IloMSDay is used to identify the day of the week.

Fields:

IloMSSunday = 0

IloMSMonday = 1

IloMSTuesday = 2

IloMSWednesday = 3

IloMSThursday = 4

IloMSFriday = 5

IloMSSaturday = 6

290

Enumeration IloMSDemandCompatibilityType
Definition file: ilplant/types.h
Library: plant

IloMSDemandCompatibilityType table places logical constraints on demand deliveries in the planning
model.
This table is taken into account only in the Planning module and is usable only with unsplitable demand.
Unsplitable demand are specified by putting the max number of pegging arcs of a demand to one.

Covered Implies Covered means that if demand1 is fully satisfied then demand2 must also be fully satisfied.

Same Covering Status means that demand1 and demand2 are either both fully satisfied or both unsatisfied.

Fields:

IloMSSameCoveringStatus = 0

IloMSCoveredImpliesCovered = 1

291

Enumeration IloMSDimension
Definition file: ilplant/types.h
Library: plant

IloMSDimension is used to identify the dimension type of the unit.
A unit of measure (an instance of the class IloMSUnit) may either have no dimension (such as pallets or
boxes), or it can be linked to the international system of measure.

See Also: IloMSUnit

Fields:

IloMSDimensionNoDimension = 0

IloMSDimensionLength = 1

IloMSDimensionSurface = 2

IloMSDimensionVolume = 3

IloMSDimensionTime = 4

IloMSDimensionMass = 5

IloMSNumberOfDimensions = 6

292

Enumeration IloMSMaterialFlowNodeType
Definition file: ilplant/types.h
Library: plant

IloMSMaterialFlowNodeType is used to define the node type of the material flow.

Fields:

IloMSProductionNode = 0

IloMSStorageNode = 1

IloMSDemandNode = 2

IloMSProcurementNode = 3

IloMSUndefinedNode = 4

IloMSPlannedProductionNode = 5

293

Enumeration IloMSMaterialFlowType
Definition file: ilplant/types.h
Library: plant

IloMSMaterialFlowType is used to define the path of material flow.

Fields:

IloMSStorageToProduction = 0

IloMSStorageToDemand = 1

IloMSProductionToProduction = 2

IloMSProductionToDemand = 3

IloMSProductionToStorage = 4

IloMSProcurementToProduction = 5

IloMSProcurementToDemand = 6

IloMSProcurementToStorage = 7

IloMSPlannedProductionToDemand = 8

294

Enumeration IloMSPeggingStrategy
Definition file: ilplant/types.h
Library: plant

IloMSPeggingStrategy is used to identify the pegging strategy to be used with arcs carrying a given
IloMSMaterial.
Pegging strategy is used by the GUI and can be either static or one of two types of dynamic. Dynamic pegging
strategy allows for the pegging in the Gantt Diagram to be updated after a modification is made there. With the
dynamic strategy you let PPO recompute the pegging arcs between production orders (instances of
IloMSProdToProdArc).

The pegging strategies:

The static strategy IloMSPeggingStrategyStatic means that the pegging is calculated by the
batching engine or defined interactively and cannot be modified dynamically when moving an activity on
the Gantt.

•

IloMSPeggingStrategyDynamicEarliestEndMax means that the algorithm tries first the
producing orders that must be consumed in priority.

•

IloMSPeggingStrategyDynamicFirstInFirstOut selects from among the different possible
producing orders the one that is scheduled the earliest.

•

Fields:

IloMSPeggingStrategyStatic = 0

IloMSPeggingStrategyDynamicEarliestEndMax = 1

IloMSPeggingStrategyDynamicFirstInFirstOut = 2

IloMSNumberOfPeggingStrategies = 3

295

Enumeration IloMSPerformedStatus
Definition file: ilplant/types.h
Library: plant

The enumerated type IloMSPerformedStatus is used to identify the status of an activity in the scheduling
solution as performed or unperformed. To let the scheduling engine decide whether or not to perform an activity,
the activity must have the status IloMSPerformedOrUnperformed.

Fields:

IloMSUnperformed = 0

IloMSPerformed = 1

IloMSPerformedOrUnperformed = 2

296

Enumeration IloMSPlanningAlgorithm
Definition file: ilplant/types.h
Library: plant

IloMSPlanningAlgorithm sets the planning algorithm used by the planning engine.
The planning algorithms are useful to deal with infeasibilities in input data, providing different approaches to deal
with problems due to the balance of intermediate materials using inflow recipes or waste recipes.

OnePass solves a single mathematical programming model with a single weighted objective function, combining
business objectives and "technical" costs. With this approach, the costs of processing these recipes must be
carefully computed so that the optimizer uses them only as a fallback position, in case of infeasibilities. The
drawback of this approach is the potentially wide range in numerical values that coexist during optimization,
which can lead to numerical stability issues. The business objectives could get diluted in an objective function
containing high technical costs. A bad solution with respect to the business objective may result if the relative gap
limit stops optimization when the solution is "good enough."

MultiPass uses goal programming to deal with infeasible material flow. The business objective is kept separate
from technical costs such as inflow and waste recipe costs or nondelivery costs. This approach assumes it is
always better to deliver a product, as compared to other considerations.

The automatic selection lets PPO decide which of the two algorithms is used.

Fields:

IloMSPlanningAlgorithmAutomatic = 0

IloMSPlanningAlgorithmOnePass = 1

IloMSPlanningAlgorithmMultiPass = 2

297

Enumeration IloMSPlanningSetupModel
Definition file: ilplant/types.h
Library: plant

IloMSPlanningSetupModel is used to define which approximation of the setup model the planning engine
must take into account for each resource in a given time interval.
For each resource and each period of time different setup approximations are available.

Per bucket per recipe means that the fixed capacity requirements including setups will be counted
independently for each bucket and each recipe.

Per bucket per setup feature means that the fixed capacity requirements including setups will be counted
independently for each bucket and each setup feature.

Cross bucket per recipe is similar to "Per bucket per recipe" except that the continuation of the same recipe
from a bucket to the next will not necessitate redoing the setups in the second bucket.

Cross bucket per setup feature is similar to "Per bucket per setup feature" except that the continuation of the
same setup features from one bucket to the next will not necessitate redoing the setups in the second bucket.

Fields:

IloMSPlanningSetupModelNoSetup = -1

IloMSPlanningSetupModelPerBucketPerRecipe = 0

IloMSPlanningSetupModelPerBucketPerSetupFeature = 1

IloMSPlanningSetupModelCrossBucketPerRecipe = 2

IloMSPlanningSetupModelCrossBucketPerSetupFeature = 3

IloMSNumberOfPlanningSetupModels = 4

298

Enumeration IloMSPrecedenceType
Definition file: ilplant/types.h
Library: plant

IloMSPrecedenceType is used to define the type of precedence constraint between two activities.

Fields:

IloMSStartToStart = 0

IloMSStartToEnd = 1

IloMSEndToStart = 2

IloMSEndToEnd = 3

299

Enumeration IloMSRecipeFamilyStatus
Definition file: ilplant/types.h
Library: plant

IloMSRecipeFamilyStatus is used to give more semantics to an IloMSRecipeFamilyFilter.
IloMSRecipeFamilyStatus is used to tag the corresponding IloMSRecipeFamilyStatus as one of the
following: Undefined, Frozen or Planned. If the type is Frozen then recipes of this family and its production
orders are fixed into the submodel. If the type is Planned then recipes of this family and its production orders are
planned into the submodel.

Fields:

IloMSRecipeFamilyStatusUndefined = -1

IloMSRecipeFamilyStatusFrozen = 0

IloMSRecipeFamilyStatusPlanned = 1

300

Enumeration IloMSRecipeType
Definition file: ilplant/types.h
Library: plant

IloMSRecipeType is used to provide additional semantics to a recipe.
IloMSRecipeType is used to tag the corresponding recipe as one of the following: Fixed, Transport,
Automatic, Order, Make, or Undefined.

If the type is Fixed then the recipe can be used only in manual mode; the planning engine will not be allowed to
use it, and only already-existing fixed production orders or orders created interactively can use this recipe. If the
type is Transport then it means that consuming an SKU and producing another is just a matter of transportation
of the same item to a different location. This is used in the GUI to compute the stock in transit (Stock Coverage
view) and the transported quantity (Warehouse Summary view). The value Automatic tags the technical waste
and inflow recipes created and deleted by PPO to deal with infeasibility.

The other values are purely informative, but can be used in plug-ins or in future versions of PPO. For instance,
the type Order can be used for recipes simulating a good or material ordered from outside, typically acquired
from a third party, as opposed to the type Make indicating an in-house production. The "make or order" decision
can be taken by the planning engine based on capacity of the plant and recipe costs. Note that if the quantity and
receipt date of procured goods are already known, no recipe has to be defined, only the procurements.

Fields:

IloMSRecipeTypeUndefined = -1

IloMSRecipeTypeMake = 0

IloMSRecipeTypeOrder = 1

IloMSRecipeTypeFixed = 2

IloMSRecipeTypeTransport = 3

IloMSRecipeTypeAutomatic = 4

301

Enumeration IloMSRepairCapacity
Definition file: ilplant/types.h
Library: plant

The enumerated type IloMSRepairCapacity is used to identify the capacity of repair.
If the value is IloMSRepairNoResource, capacity constraints are ignored.

If the value is IloMSRepairOneResource, then the capacity constraints of the primary resource of the selected
activities will be enforced; activities that overlap will be changed to eliminate this overlap. Note that the selected
activities should all have the same primary resource, and it should have a unary capacity.

See Also: IloMSRepairAlgorithm

Fields:

IloMSRepairNoResource = 0

IloMSRepairOneResource = 1

IloMSRepairAllResources = 2

302

Enumeration IloMSRepairExtent
Definition file: ilplant/types.h
Library: plant

The enumerated type IloMSRepairExtent is used to identify the extent of repair with regards to constraints.
If the value is IloMSRepairActivity, then only the selected activities will have their constraints (duration,
calendar) enforced. In particular, precedence constraints will not be considered.

If the value is IloMSRepairProductionOrder, then all the activities that belong to the production order(s) of
the selected activities will have their constraints enforced. In particular, this means that precedence constraints
between those activities will be enforced.

If the value is IloMSRepairCluster, then all the activities that belong to clusters of the production order(s) of
the selected activities will have their constraints enforced. In particular, this means that pegging constraints
between those production orders will be enforced.

See Also: IloMSRepairAlgorithm

Fields:

IloMSRepairSetup = -1

IloMSRepairActivity = 0

IloMSRepairProductionOrder = 1

IloMSRepairCluster = 2

303

Enumeration IloMSServiceLevelType
Definition file: ilplant/types.h
Library: plant

IloMSServiceLevelType sets the service level.
The service level is used to determine the acceptable level of unsatisfied demand that may occur due to
insufficient available stock or inventory. The default value is IloMSServiceLevelDisabled, for which no
service level stock computations are performed. You can set the service type based on either the probability of a
stock-out event, or on overall demand quantity that is satisfied.

The alpha level measures the probability that a stock-out event will not happen. A stock-out event occurs in a
given time bucket if the total demand due in the bucket exceeds the inventory quantity that is available in the
bucket. This service level is used to set a limit on the frequency (on average) of stock out events. This type is
also known as the type 1, cycle, or event-based service level.

The beta level is based on the overall demand quantity which is satisfied. It sets a lower limit on the expected
demand satisfaction ratio based on overall demand quantity, irrespective of how many cycles (time buckets) are
involved. The beta type is also known as the type 2, fill rate, or quantity-based service level.

See Also: IloMSMaterial

Fields:

IloMSServiceLevelDisabled = 0

IloMSServiceLevelAlpha = 1

IloMSServiceLevelBeta = 2

IloMSServiceLevelAlphaDynamic = 3

IloMSServiceLevelBetaDynamic = 4

IloMSNumberOfServiceLevelTypes = 5

304

Global function operator<<
public ILOMSEXPORTED ostream & operator<<(ostream & s, const IloMSObject & obj)

Definition file: ilplant/object.h
Library: plant

This operator directs output to an output stream, usually standard output.

305

Macro ILOMSCHECKFORSTOP0
Definition file: ilplant/control.h
Library: plant

ILOMSCHECKFORSTOP0(_this)

This macro is provided in order to facilitate the definition of the classes IloMSCheckForStopI and
IloMSCheckForStop.
The IloMSCheckForStopI and IloMSCheckForStop classes enable you to write code that will regularly be
executed by the scheduling engine of Plant PowerOps. The defined IloMSCheckForStop object must be set to
the scheduling engine (IloMSSchedulingEngine) in order for it to be considered.

See Also: IloMSCheckForStopI, IloMSCheckForStop, IloMSSchedulingEngine

306

Macro IloMSIdentifier
Definition file: ilplant/types.h
Library: plant

IloMSIdentifier

IloMSIdentifier is used to provide a name for programming elements.

307

Macro IloMSIntMinusInfinity
Definition file: ilplant/types.h
Library: plant

IloMSIntMinusInfinity

IloMSIntMinusInfinity represents negative infinity as -999999999.

308

Macro IloMSIntPlusInfinity
Definition file: ilplant/types.h
Library: plant

IloMSIntPlusInfinity

IloMSIntPlusInfinity represents positive infinity as 999999999.

309

Macro IloMSNoFeature
Definition file: ilplant/types.h
Library: plant

IloMSNoFeature

IloMSNoFeature is used to represent that no feature is selected.

310

	Table of Contents
	Overview
	Group optim.plant.checker
	Group optim.plant.engine
	Group optim.plant.io
	Group optim.plant.model
	Group optim.plant.solution
	Class IloMSAbstractActivity
	Class IloMSAbstractMaterialFlowArc
	Class IloMSAbstractMaterialFlowNode
	Class IloMSAbstractProduction
	Class IloMSActivity
	Class IloMSActivityChain
	Class IloMSActivityCompatibilityConstraint
	Class IloMSBatchingEngine
	Class IloMSBatchingSolution
	Class IloMSBucket
	Class IloMSBucketSequence
	Class IloMSBucketTemplate
	Class IloMSBucketTemplateSequence
	Class IloMSCalendar
	Class IloMSCalendarInterval
	Class IloMSChecker
	Class IloMSCheckerMessage
	Class IloMSCheckForStop
	Class IloMSCheckForStopI
	Class IloMSCsvReader
	Class IloMSCsvWriter
	Class IloMSDate
	Class IloMSDefaultCheckForStop
	Class IloMSDemand
	Class IloMSDueDate
	Class IloMSInventoryMaxCostFunction
	Class IloMSInventoryMinCostFunction
	Class IloMSMaterial
	Class IloMSMaterialFamily
	Class IloMSMaterialFamilyCardinalityConstraint
	Class IloMSMaterialProduction
	Class IloMSMode
	Class IloMSModel
	Class IloMSObject
	Class IloMSOptimizationCriterion
	Class IloMSOptimizationProfile
	Class IloMSPlannedDelivery
	Class IloMSPlannedProduction
	Class IloMSPlanningEngine
	Class IloMSPlanningSolution
	Class IloMSPrecedence
	Class IloMSProcurement
	Class IloMSProcurementToDemandArc
	Class IloMSProcurementToProdArc
	Class IloMSProcurementToStorageArc
	Class IloMSProdToDemandArc
	Class IloMSProdToProdArc
	Class IloMSProdToStorageArc
	Class IloMSProductionOrder
	Class IloMSQuality
	Class IloMSRecipe
	Class IloMSRecipeFamily
	Class IloMSRecipeFamilyFilter
	Class IloMSRepairAlgorithm
	Class IloMSReplicateAlgorithm
	Class IloMSResource
	Class IloMSResourceCapacityCostFunction
	Class IloMSResourceConstraint
	Class IloMSResourceFamily
	Class IloMSScheduledActivity
	Class IloMSSchedulingEngine
	Class IloMSSchedulingSolution
	Class IloMSScope
	Class IloMSSetupActivity
	Class IloMSSetupMatrix
	Class IloMSSolutionHook
	Class IloMSSolutionHookI
	Class IloMSStandardKPI
	Class IloMSStorageToDemandArc
	Class IloMSStorageToProdArc
	Class IloMSStorageUnit
	Class IloMSUnit
	Enumeration IloMSActivityCompatibilityType
	Enumeration IloMSBatchingAlgorithm
	Enumeration IloMSBucketPeriodUnit
	Enumeration IloMSBucketType
	Enumeration IloMSCheckerMessageLevel
	Enumeration IloMSCleaningStatus
	Enumeration IloMSDay
	Enumeration IloMSDemandCompatibilityType
	Enumeration IloMSDimension
	Enumeration IloMSMaterialFlowNodeType
	Enumeration IloMSMaterialFlowType
	Enumeration IloMSPeggingStrategy
	Enumeration IloMSPerformedStatus
	Enumeration IloMSPlanningAlgorithm
	Enumeration IloMSPlanningSetupModel
	Enumeration IloMSPrecedenceType
	Enumeration IloMSRecipeFamilyStatus
	Enumeration IloMSRecipeType
	Enumeration IloMSRepairCapacity
	Enumeration IloMSRepairExtent
	Enumeration IloMSServiceLevelType
	Global function operator<<
	Macro ILOMSCHECKFORSTOP0
	Macro IloMSIdentifier
	Macro IloMSIntMinusInfinity
	Macro IloMSIntPlusInfinity
	Macro IloMSNoFeature

